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Frédéric Legoll Professor – École Nationale des Ponts et Chaussées
Christian Soize Professor – Université Paris-Est
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Chapter 1

General Introduction

Contents
1.1 Research positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Background in continuum mechanics . . . . . . . . . . . . . . . . . . . 4

1.1 Research positioning

Uncertainty quantification has now become a predominant ingredient of predictive science and
engineering. Since the seminal work from Ghanem and Spanos [1], many developments were
proposed regarding the mathematical representation, identification and propagation of model-
form and parametric uncertainties in computational models (see [2] for state-of-the-art reviews;
see also [3, 4, 5]). All these aspects of uncertainty quantification are deeply intertwined and are of
paramount importance in the development of numerical tools for robust design and high-fidelity
simulations.

This thesis is specifically focused on the construction, identification and simulation of new
mathematical models for stochastic nonlinear constitutive laws in computational mechanics and
mechanics of materials. The complementary issue of devising efficient solvers for the propagation
of uncertainties in this setup will not be addressed, and the interested reader is referred to the
extensive literature available on this topic [2]. Here, the class of hyperelastic models is considered,
with the aim to address a wide span of materials ranging from engineered polymeric composites
to soft biological tissues. The variability exhibited by these media is very well documented.
In the case of biological materials for instance, aleatoric uncertainties are raised by various
factors such as microstructural complexity and randomness, potential disease and subject-to-
subject variability. In practice, they offer great challenges for the development and widespread
adoption of, e.g., computational assisted diagnosis and surgery, as well as for the development of
compatible artificial substitutes. Experimental evidences of such variability can be found in, e.g.,
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] for brain and liver tissues, spinal cord white matter and
abdominal organs. As an illustration, stress responses of thirteen samples for the three layers
constituting arterial walls are shown in Fig. 1.1. The fluctuations in the mechanical responses
are significant and advocate the development of a stochastic modeling framework (see [19] and
the references therein for applications to the cardiovascular system).
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Chapter 1. General Introduction

Figure 1.1 – Stretch-stress responses for thirteen samples of the three layers composing an artery
wall (from left to right: adventitia, media and intima). A uniaxial tensile test is considered [18].

In contrast to the modeling of scalar- and tensor-valued coefficients for stochastic linear
elliptic operators, which was quite extensively investigated during the past decade (see, e.g.,
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36], the proper modeling of constitutive
equations in finite elasticity has received little attention to date. Note first that randomness in
nonlinear constitutive models can be defined in a multiscale setup where some morphological
parameters, such as fiber length and orientation for fibrous tissues, are made random; see, e.g.,
[37, 38] for the case of two-dimensional engineered composites. In this context, the problem of
representing the stochastic stored energy function can be approached by relying on a polynomial
chaos expansion, the coefficients of which can be evaluated using an appropriate stochastic solver.
An early attempt to randomize the parameters defining a particular isotropic stored energy
function can be found in [39], where information theory was invoked to derive a model that is
consistent with the knowledge of the support for the random variables (see [40] for an extension
to the anisotropic case). Other studies involving Gaussian models (which will be seen to be non-
admissible) can be found in, e.g., [41, 42]. In [43] (see also [44]), a Bayesian approach accounting
for both spatial variability and non-simplified domains was proposed for isotropic hyperelastic
materials.

The main objective of this work is to provide an integrated modeling approach for a variety
of situations that were independently and/or partially considered so far, focusing on one of the
most widely used class of stored energy functions, and including the case of

(i) compressible and incompressible media;

(ii) isotropic and anisotropic materials;

(iii) homogeneous and spatially varying behaviors.

The framework will be developed by accounting for two types of constraints. First, mathematical
constraints related to the analysis of the nonlinear boundary value problems will be systematically
incorporated, hence making the propagation of the model(s) through nonlinear operators a well-
posed problem. Second, it will be assumed that the data available for model calibration are
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1.2. Organization of the dissertation

limited in terms of both the nature of the experiments and the number of tested samples. The
latter constraint prevents, in particular, to resort to a pure statistical approach. Some results of
this thesis were published in the series of papers [45, 46, 47, 48] that have inspired the recent works
[49] and [50], in which a Bayesian identification procedure and a specific statistical treatment of
(virtually generated) dependencies between the parameters were introduced, respectively. Note
finally that the results presented in this document constitute a theoretically sound basis for the
integration of time-dependency (that is, for developing stochastic nonlinear viscoelastic models
for hyperelastic media), which is not discussed hereinafter.

1.2 Organization of the dissertation

This dissertation is organized as follows. The theoretical background related to the theory of
finite elasticity is recalled in Section 1.4. The nonlinear boundary value problem is introduced,
and the mathematical constraints under which the existence of solutions is ensured are detailed.
Chapters 2, 3 and 4 are concerned with the stochastic modeling and functional approximation
of homogeneous, isotropic stored energy functions for incompressible and compressible hyper-
elastic media. Chapters 5 and 6 investigate the extension of such probabilistic models to
spatially dependent, anisotropic hyperelastic media at small and finite strains. These chapters
are described in detail below.

• Chapter 2 is focused on the modeling of isotropic, incompressible hyperelastic materials.
The class of Ogden-type stored energy functions is specifically considered and extended to a
stochastic framework. The modeling capabilities offered by the proposed probabilistic model
are next assessed by performing Monte Carlo simulations. An inverse identification strategy
is then discussed and benchmarked for various soft biological tissues at given strain rates.

• In Chapter 3, the case of isotropic, compressible hyperelastic media is considered. The class
of Ogden’s potentials is investigated, and explicit results for Neo-Hookean and Mooney-Rivlin
materials are specified. As an illustration, the propagation of material uncertainties through
a multiscale operator is addressed, using a polynomial chaos expansion for the homogenized
stored energy function.

• In Chapter 4, the construction of functional approximations for nonlinear multiscale solution
maps is tackled. This chapter is independent from the rest of the thesis. Here, the homog-
enized potential is approximated by a polynomial series, and the accuracy of the surrogate
model is then assessed on selected two-dimensional microstructures. The definition of closest
approximations into appropriate sets of stored energy functions is subsequently proposed and
benchmarked using a FE2-type approach.

• Chapter 5 is concerned with spatially dependent, anisotropic and nearly-incompressible stored
energy functions. A prototypical stored energy function is purposely selected and used to
develop the modeling approach, and the simulation of the random field model on complex
geometries is addressed. The framework is then deployed to perform uncertainty quantification
on arterial walls using a real, patient-specific geometry.

• Chapter 6 presents a probabilistic model for non-Gaussian random fields of elasticity tensors
with values in any material symmetry class. The approach exploits the underlying structure
of the state space and combines a tensor decomposition with a random matrix formulation.
Monte-Carlo simulations of spatially dependent transversely isotropic and orthotropic tensors
are finally conducted on curved geometries.

3



Chapter 1. General Introduction

1.3 Notation

• Matrix sets. In what follows, Mn denotes the set of real square matrices [A] of size n, Sn ⊂Mn

is the subset of symmetric matrices, Mn
+ ⊂Mn is the subset of matrices with strictly positive

determinants and Sn+ ⊂ Sn is the subset of symmetric and positive definite matrices. In
addition, let Snsym ⊂ Sn be the set of symmetric and positive-definite matrices [A] such that
[Q][A][Q]T = [A] for all [Q] ∈ Gsym, where Gsym ⊂ SO(n) is a symmetry goup. The superscript
"sym" corresponds to the symmetry class under consideration such as isotropy (iso), transverse
isotropy (ti) or triclinic materials (tric). Finally, [In] denotes the (n× n) identity matrix.

• Random variables and random fields. Deterministic scalar, vectors in Rn and matrices in
Mn are denoted by a, a and [A], respectively. The entries in the canonical bases {ei}ni=1

and {ei ⊗ ej}ni=1,j=1 are denoted by {ai}ni=1 and {Aij}ni=1,j=1. Random scalars, vectors and
matrices, defined on a probability space (Θ,T ,P), will be denoted by A, A and [A]. A family
of random variables indexed by a set S ⊆ Rn are referred to as random fields and denoted
by {A(x),x ∈ S}, {A(x),x ∈ S} and {[A(x)],x ∈ S}, depending on the nature of the state
space. For any x fixed in the subset S , A(x), A(x) and [A(x)] are random variables defined on
the probability space (Θ,T ,P). For any fixed θ ∈ Θ, a(θ), a(θ) and [A(θ)] are realizations of
the random variables A, A and [A]. Similarly, x 7→ a(x; θ), x 7→ a(x; θ) and x 7→ [A(x; θ)] are
realizations of the random fields {A(x),x ∈ S}, {A(x),x ∈ S} and {[A(x)],x ∈ S}. Finally,
k0 denotes the normalization constant in probability density functions. The value of k0 may
therefore change from line to line.

• Inner products and norms. For any a and b in Rn, the inner product is given by 〈a,b〉 =∑n
i=1 aibi and the associated norm writes ‖a‖2 = 〈a,a〉. More generally, the p-norm ‖a‖p is

given by ‖a‖p = (
∑n

i=1 |ai|p)1/p. For any [A] and [B] in Mn, the inner product 〈[A], [B]〉F =
Tr([A]T [B]) and the associated Frobenius norm ‖[A]‖F of [A] reads as ‖[A]‖2F = 〈[A], [A]〉F .

1.4 Background in continuum mechanics

In this section, we briefly recall the framework of continuum mechanics that will be used through-
out this work. The exposure is borrowed from classical textbooks in finite elasticity; see, e.g.,
[51, 52, 53] and [54, 55].

1.4.1 Kinematics

Let P be a body consisting of a continuous collection of material points. At some time t = t0,
this body occupies a reference configuration B ⊂ R3 whose particles are identified by their
position x = (x1, x2, x3). The reference configuration B is understood as the closure of an open
connected set B with boundary ∂B. For some time t > t0, the body of interest occupies a new
configuration B

ϕ referred to as the deformed or actual configuration. For any material point
x ∈ B, the position xϕ in the deformed configuration is given by xϕ = ϕ(x) where the so-called
deformation map ϕ : B → B

ϕ is injective, except on the boundaries where there is self-contact,
and orientation-preserving. For any x ∈ B, the deformation gradient [Fϕ] is a second-order
tensor defined as

[Fϕ(x)] =

3∑
k=1

3∑
`=1

∂ϕk(x)

∂x`
ek ⊗ e` , (1.1)
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1.4. Background in continuum mechanics

where {ei}3i=1 denotes the canonical basis of the Euclidean space R3 and ⊗ is the dyadic product
such that (a ⊗ b)ij = aibj , 1 6 i, j 6 n for any a,b in Rn. The deformation gradient satisfies
the orientation-preserving condition:

det([Fϕ(x)]) > 0 , ∀x ∈ B . (1.2)

The vector-valued fields u : B → R3 and uϕ : Bϕ → R3 defined as u(x) = ϕ(x) − x and
uϕ(xϕ) = xϕ − ϕ−1(xϕ) correspond to the displacement fields in the Lagrangian and Eulerian
description, respectively. For all x ∈ B, the deformation gradient is related to the displacement
field by the relation [Fϕ(x)] = [I3] + [∇u(x)] where

[∇u(x)] =
3∑

k=1

3∑
`=1

∂uk(x)

∂x`
ek ⊗ e` , (1.3)

is the Lagrangian gradient of the displacement field. The symmetric second-order tensor [Cϕ(x)]
is known as the right Cauchy-Green deformation tensor and defined as [Cϕ(x)] = [Fϕ(x)]T [Fϕ(x)].
Due to the orientation-preserving property of the deformation gradient, it can be deduced that
the right Cauchy-Green tensor is positive-definite

1.4.2 Quasi-static boundary value problem of finite elasticity

In what follows, we restrict our attention to materials that exhibit an elastic behavior. In this
case, the constitutive equations are entirely determined by the current deformation gradient field
x 7→ [Fϕ(x)]. The continuum body is submitted to surface forces on a portion of its boundary
∂Bϕ and to body forces in its interior. We then denote by gϕ : ΓϕN → R3 and bϕ : Bϕ → R3 the
applied surfaces and body forces, respectively, where ΓϕN ⊂ ∂Bϕ is the portion of the deformed
configuration submitted to the natural boundary conditions. According to the stress principle,
there exists a vector field tϕ : Bϕ × S → R3 such that tϕ(xϕ,nϕ) = gϕ(xϕ), where nϕ is the
outer unit normal of the boundary ΓϕN and S is the unit sphere. Cauchy’s theorem then states
that there exists a unique and symmetric second-order tensor [σ] : Bϕ ×M3

+ → S3 such that

tϕ(xϕ,nϕ) = [σ(xϕ, [Fϕ])]nϕ , (1.4)

and
−divϕ([σ(xϕ, [Fϕ])]) = bϕ(xϕ) , xϕ ∈ Bϕ ,

tϕ(xϕ,nϕ) = gϕ(xϕ) , xϕ ∈ ΓϕN ,
(1.5)

where divϕ is the divergence operator with respect to the actual coordinates xϕ. This boundary
value problem is supplemented with essential boundary conditions of the form uϕ(xϕ) = uϕd (xϕ)
on a portion ΓϕD such that ΓϕD

⋂
ΓϕN = {0}. In addition, it can be expressed in terms of the

reference configuration by having recourse to the so-called Piola transforms. More precisely, the
first Piola-Kirchhoff stress tensor [P ] : B ×M3

+ →M3 is defined as

[P (x, [Fϕ])] = det([Fϕ(x)])[σ(xϕ, [Fϕ])][Fϕ(x)]−T , xϕ = ϕ(x) . (1.6)

Given a location x in the reference configuration, the first Piola-Kirchhoff stress tensor allows
for computing the stress associated in the deformed configuration. Let then b : B → R3 be the
applied body forces in the reference configuration such that b(x)dv = bϕ(xϕ)dvϕ where dvϕ and
dv are infinitesimal volume elements in the deformed and reference configurations. The applied
body force in the reference configuration can then be written as

b(x) = det([Fϕ(x)])bϕ(xϕ) , xϕ = ϕ(x) . (1.7)

5



Chapter 1. General Introduction

Similarly, via the so-called Nanson’s formula [53] and the equivalence g(x)da = gϕ(xϕ)daϕ, it is
found that the surface forces g : ΓN → R3 applied on the portion ΓN ⊂ ∂B reads as

g(x) = det([Fϕ(x)])‖[Fϕ(x)]−Tn‖gϕ(xϕ) , xϕ = ϕ(x) . (1.8)

Using the properties of the divergence operator and the expressions of the applied forces given
by Eqs. (1.7) and (1.8), the boundary value problem in the undeformed configuration is given by

−div([P (x, [Fϕ])]) = b(x) , x ∈ B ,

t(x,n) = g(x) , x ∈ ΓN ,
(1.9)

where div is the divergence operator with to the coordinates x. The above boundary value
problem is supplemented with additional essential boundary conditions u(x) = ud(x) on ΓD,
with ΓD

⋂
ΓN = {0}.

1.4.3 The constitutive equations of hyperelasticity

This work is focused on the modeling of hyperelastic media. In this case, there exists a so-called
stored energy function w : B ×M3

+ → R such that the first Piola-Kirchhoff stress tensor reads
as

[P (x, [F ])] =

3∑
k=1

3∑
`=1

∂w(x, [F ])

∂Fk`
ek ⊗ e` , ∀x ∈ B , ∀[F ] ∈M3

+ . (1.10)

The hyperelastic material is said to be homogeneous if the stored energy function depends on
the location x only through the deformation gradient. We consider a stored energy function
that fulfills the principle of frame-invariance (see [56, 57] or, e.g., [51]) which states that the
response of the material and any observable physical quantity must be invariant under changes
of the frame of reference. This implies that the stored energy function must satisfy the invariance
condition

w(x, [F ]) = w(x, [Q][F ]) , ∀[Q] ∈ SO(3) , (1.11)

for all x ∈ B and [F ] ∈M3
+. It can be deduced that for any [F ] ∈M3

+, the constitutive equations
in the reference configuration can be written in terms of the associated right Cauchy-Green tensor
[53]. More precisely, there exists a stored energy function w̃ : B × S3

+ → R such that

w(x, [F ]) = w̃(x, [C]) , [C] = [F ]T [F ] , (1.12)

for all [F ] ∈M3
+. In order to obtain simpler constitutive equations in the reference configuration,

the symmetric second Piola-Kirchhoff stress tensor [S] : B × S3
+ → S3 is introduced and defined

as
[S(x, [C])] = [F ]−1[P (x, [F ])] , [C] = [F ]T [F ] , (1.13)

for any [F ] fixed in M3
+. Using the constitutive equation for hyperelastic materials given by

Eq. (1.10) together with Eqs. (1.12)-(1.13), it is deduced that the second Piola-Kirchhoff stress
tensor can be written as

[S(x, [C])] =
3∑

k=1

3∑
`=1

2
∂w̃(x, [C])

∂Ck`
ek ⊗ e` . (1.14)

The stored energy function satisfies additional invariance conditions related to the symmetry
properties of the material under consideration. For instance, a material is said to be isotropic

6



1.4. Background in continuum mechanics

if its mechanical response is invariant under any rotation of its reference configuration. More
generally, an anisotropic material is characterized by the property that a rotation [Q] of its
reference configuration modifies the constitutive equations except if [Q] belongs to a specific
group of orthogonal transformations, referred to as the symmetry group G and such that, for all
x ∈ B and for all [F ] ∈M3

+,

w(x, [F ]) = w(x, [F ][Q]) , ∀ [Q] ∈ G , (1.15)

or equivalently, for all [C] ∈ S3
+,

w̃(x, [C]) = w̃(x, [Q]T [C][Q]) , ∀ [Q] ∈ G . (1.16)

For a given symmetry class, the invariance condition given by Eq. (1.16) imposes restrictions
on the functional forms of the stored energy function w̃(x, ·) : S3

+ → R. In practice, isotropic
and anisotropic models are constructed by invoking representation theorems, such as the Rivlin-
Ericksen theorem [58, 51] and by introducing additional second-order tensors that reflect the
symmetry properties of the material of interest [59, 60].

1.4.4 Existence of solutions in finite elasticity

In the context of hyperelasticity, solving the boundary value problem given by Eq. (1.9) is equiv-
alent to minimizing the energy functional I : X 1,p → R defined as [53, 55]

I(ϕ) =

∫
B
w(x, [Fϕ(x)]) dx−

∫
ΓN

〈g(x),ϕ(x)〉 da−
∫

B
〈f(x),ϕ(x)〉 dx , (1.17)

where X 1,p, p > 1, is a functional space of the form

X 1,p = {ϕ ∈W 1,p(B,R3) : I(ϕ) < +∞ , ϕ = ϕd|ΓD} , (1.18)

withW 1,p(B,R) the Sobolev space of functions in Lp(B,R3) with partial derivatives in Lp(B,R3)
[61]. By computing the first Gateaux derivative of the energy function given by Eq. (1.17), one
has

d

dε
I(ϕ+ εv)|ε=0 =

∫
B

∂w(x, [Fϕ(x)])

∂Fk`

∂vk(x)

∂x`
dx−

∫
ΓN

〈g(x),v(x)〉 da−
∫

B
〈f(x),v(x)〉 dx ,

(1.19)
which leads to the weak formulation of the boundary value problem given by (1.9), i.e., find
ϕ ∈ X 1,p such that∫

B
〈[P (x, [Fϕ(x)])], [∇v(x)]〉F dx =

∫
ΓN

〈g(x),v(x)〉 da +

∫
B
〈f(x),v(x)〉 dx , ∀v ∈ X 1,p

0 ,

(1.20)
with X 1,p

0 the space of functions in X that vanish on the boundary ΓD where essential boundary
conditions are applied, that is,

X 1,p
0 = {ϕ ∈W 1,p(B,R3) : I(ϕ) < +∞ , ϕ = 0|ΓD} . (1.21)

Existence theorems in finite elasticity are based on the minimization of the energy functional and
the method of direct calculus of variations [62, 63]. The existence of minimizers is ensured if the
energy functional is sequentially weakly lower semicontinuous and coercive [62]. In practice, this
property is imposed by constructing stored energy functions that satisfy generalized convexity
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Chapter 1. General Introduction

and growth conditions, also referred to as coercivity. While a convex stored energy function with
respect to the deformation gradient leads to sequentially weakly lower semicontinuity, it is well-
known that it conflicts with physical restrictions such as frame-invariance and non-uniqueness
[53]. As an alternative, the concept of quasiconvexity was proposed by Morrey [64]. It is a
non-local convexity condition which is rather complicated to verify in practice and the growth
conditions are incompatible with physical requirements. In order to circumvent these issues,
the condition of polyconvexity is widely used nowadays as it does not conflict with physical
restrictions, and leads to a sequentially weakly lower semicontinuous energy functional.

Definition 1.4.1 (Polyconvexity). In three-dimensional elasticity, a function f is said to be
polyconvex if there exists a convex function f? such that [65, 62]

f([F ]) = f?([F ],Cof([F ]),det([F ])) (1.22)

where Cof([F ]) = det([F ])[F ]−T .

Example. For any constants a > 0, b > 0, c > 0 and d > 0, let f be the function defined as

f([F ]) = a‖[F ]‖2F + b‖Cof([F ])‖2F + c(det([F ]))2 − d log(det([F ])) , ∀ [F ] ∈M3 . (1.23)

The functions [F ] 7→ a‖[F ]‖2F and δ 7→ cδ2−d log(δ) are both strictly convex. Hence, the function
f? can be defined as

f?([F ], [H], δ) = a‖[F ]‖2F + b‖[H]‖2F + cδ2 − d log(δ) . (1.24)

It is worth pointing out that the definition of f? is not necessarily unique.

Polyconvexity implies that the function f is also rank-one convex, which is another important
convex condition defined below.

Definition 1.4.2 (Rank-one convexity). A function f is said to be rank-one convex if [62]

f(λ[F1] + (1− λ)[F2]) 6 λf([F1]) + (1− λ)f([F2]) , (1.25)

for every λ ∈ [0, 1] and [F1], [F2] with rank{[F1]− [F2]} 6 1. Let then ξ and η be two vectors in
R3 such that [F1]− [F2] = ξ ⊗ η, then rank-one convexity can be rewritten as

f([F2] + (1− µ)ξ ⊗ η) 6 µf([F2]) + (1− µ)f([F2] + ξ ⊗ η) , (1.26)

for all µ ∈ [0, 1].

If in addition the function f is twice differentiable, i.e., f ∈ C2(M3), then rank-one convexity
is equivalent to the ellipticity condition

3∑
i,j,k,`=1

∂2f([F ])

∂Fij∂Fk`
ξiηjξkη` > 0 , ∀ ξ,η ∈ R3 , (1.27)

which is also referred to as the Legendre-Hadamard condition. For brevity, quasiconvexity is not
discussed herein and the interested reader is referred to, e.g., [62]. We finally note that these
generalized convexity conditions are related as follows:

convexity ⇒ polyconvexity ⇒ quasiconvexity ⇒ rank-one convexity. (1.28)

We are now in position to state Ball’s existence theorem in nonlinear elasticity [65]. This theorem
is based on the assumptions of polyconvexity and suitable growth conditions which express the
physical requirement that extreme strains lead to infinite stress. Let w be a stored energy
function that satisfies the following properties:
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1.4. Background in continuum mechanics

(i) Polyconvexity. There exists a convex function w? such that

w(x, [F ]) = w?(x, [F ],Cof([F ]),det([F ])) , (1.29)

for all x ∈ B.

(ii) Coercivity. There exist constants c0 > 0, c1 ∈ R, p > 2, q > 3/2, such that

w(x, [F ]) > c0(‖[F ]‖pF + ‖Cof([F ])‖qF )− c1 , (1.30)

for all x ∈ B and for all [F ] ∈M3
+.

(iii) Limit behavior. The limit of the stored energy function as det([F ]) ↓ 0 is infinity, i.e.

lim
det([F ])↓0

w(x, [F ]) = +∞ . (1.31)

In this setting, it can be shown that there exists at least one minimizer of the energy functional
in the space

X 1,1 = {ϕ ∈W 1,1(B,R3) : I(ϕ) < +∞ , ϕ = ϕd|ΓD} . (1.32)

The above existence result is due to Müller et al. [66] and is a refinement of Ball’s existence
theorem with weaker growth conditions (see also, e.g., [67, 68]). As an illustration, let us consider
the isotropic and homogeneous stored energy function defined as

w([F ]) = a‖[F ]‖2F + b‖Cof([F ])‖2F + c(det([F ]))2 − d log(det([F ])) . (1.33)

Under the assumptions that a > 0, b > 0, c > 0 and d > 0, the above stored energy function
is polyconvex, satisfies the coercivity property with p = q = 2, and the limit behavior given by
Eq. (1.31). This constitutive model has been proposed in [69] (see also [53]) and corresponds to
a Mooney-Rivlin type model [54]. It should be noted that the above existence results hold for
compressible and incompressible materials. In the particular case of near/weak incompressibility,
extended existence results can be found [70].

1.4.5 The boundary value problem of linearized elasticity

In this last section, we consider the particular case of linearized elasticity. A first-order approx-
imation of the boundary value problem given by Eq. (1.9) leads to the boundary value problem
of linearized elasticity [58, 53], that is,

−div([σ(u)]) = b(x) , x ∈ B ,

[σ(u)]n = g(x) , x ∈ ΓN ,
(1.34)

where for any displacement field x 7→ u(x), the linearized stress tensor [σ(u)] and the deformation
tensor at small strains [ε(u)] are defined as

σij(u) = Aijk`(x)εk`(u) , 1 6 i, j, k, ` 6 3 , (1.35)

with summation over repeated indices and

[ε(u)] =
1

2
([∇u(x)] + [∇u(x)]T ) . (1.36)
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In Eq. (1.35), the fourth-order elasticity tensor JAK is given by

Aijk`(x) =
∂2w̃(x, [C])

∂CijCk`

∣∣∣∣
[C]=[I3]

, ∀x ∈ B , (1.37)

and has the minor and major symmetry properties

Aijk`(x) = Ajik`(x) = Aij`k(x) , Aijk`(x) = Ak`ij(x) , 1 6 i, j, k, ` 6 3 . (1.38)

In addition, from the material symmetry properties of stored energy function (see Eq. (1.16)), it
can be deduced that the elasticity tensor also satisfies the invariance condition

Aijk`(x) =
3∑
p=1

3∑
q=1

3∑
r=1

3∑
s=1

QipQjqQkrQ`sApqrs(x) , ∀ [Q] ∈ G . (1.39)

Depending on the material symmetry group G , the number of independent coefficients of the
elasticity tensor ranges from 2 for isotropic materials to 21 for triclinic materials. Following [71],
the elasticity tensor can be decomposed as

JA(x)K =
N∑
i=1

ci(x)JEiK , (1.40)

where {JEiK}Ni=1 is a set of fourth-elasticity tensors whose expressions depend on the symmetry
group G under consideration. For instance, in the case of isotropic materials, the elasticity tensor
depends on only two independent coefficients and can be written as

JA(x)K = 3c1(x)JE1K + 2c2(x)JE2K , (1.41)

where JE1K and JE2K are two mutually orthogonal projectors defined as

E1ijk` =
1

3
δijδk` , E2ijk` =

1

2
(δikδj` + δi`δjk)− E1ijk` , 1 6 i, j, k, ` 6 3 , (1.42)

and the parameters c1(x) and c2(x) correspond to the bulk and shear moduli at small strains. In
contrast, in the case of triclinic materials the set of tensors {JEiK}21

i=1 is given by the canonical
basis of S6, and the elasticity tensor depends on 21 independent coefficients. Other important
symmetry classes that cover a wide range of applications are, for instance, transverse isotropy
and orthotropy.

1.4.5.1 Existence of a weak solution

Let V be the Sobolev space H1
0(B,R3). For the boundary value problem of linearized elasticity,

the weak formulation writes: find w = u− ud ∈ V such that

a(v,w) = `(v)− a(v,ud) , ∀v ∈ V , (1.43)

where the symmetric bilinear form a : V × V → R and the linear form ` : V → R are given by

a(v,w) =

∫
B

[ε(v)] : JA(x)K : [ε(w)] dx , (1.44)

where the double inner product represents the double contraction and

`(v) =

∫
B
〈f(x),v(x)〉 dx +

∫
ΓN

〈h(x),v(x)〉 da . (1.45)

If the linear form ` : V → R is continuous, and the bilinear form a : V × V → R is continuous
and elliptic then according to Lax-Milgram’s theorem, there exists a unique solution to the weak
formulation given by Eq. (1.43) (see, e.g., [52, 53, 72] and the references therein).
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1.4. Background in continuum mechanics

1.4.5.2 Voigt’s modified notation

For calculations and numerical purposes, a matrix representation of the elasticity tensor is gen-
erally introduced using Voigt’s modified notation [73]. Let then ε(u) and σ(u) be the vectors in
R6 defined as

ε(u) = (ε11(u), ε22(u), ε33(u),
√

2ε23(u),
√

2ε13(u),
√

2ε12(u)) , (1.46)

and
σ(u) = (σ11(u), σ22(u), σ33(u),

√
2σ23(u),

√
2σ13(u),

√
2σ12(u)) , (1.47)

The constitutive equations of linearized elasticity (see Eq. (1.35)) can then be rewritten as σ(u) =
[A(x)]ε(u) where the second-order elasticity tensor [A(x)] is given by

[A(x)] =



A1111(x) A1122(x) A1133(x)
√

2A1123(x)
√

2A1113(x)
√

2A1112(x)

A2211(x) A2222(x) A2233(x)
√

2A2223(x)
√

2A2213(x)
√

2A2212(x)

A3311(x) A3322(x) A3333(x)
√

2A3323(x)
√

2A3313(x)
√

2A3312(x)√
2A2311(x)

√
2A2322(x)

√
2A2333(x) 2A2323(x) 2A2313(x) 2A2312(x)√

2A1311(x)
√

2A1322(x)
√

2A1333(x) 2A1323(x) 2A1313(x) 2A1312(x)√
2A1211(x)

√
2A1222(x)

√
2A1233(x) 2A1223(x) 2A1213(x) 2A1212(x)


.

For instance, in the case of isotropic materials, the modified Voigt notation of the projectors
JE1K and JE2K are given by (see Eq. (1.41))

[E1] =



1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , [E2] =



2/3 2/3 2/3 0 0 0
2/3 2/3 2/3 0 0 0
2/3 2/3 2/3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (1.48)

and the second-order elasticity tensor reduces to

[A(x)] =



c1(x) + 2c2(x)/3 c1(x)− 2c2(x)/3 c1(x)− 2c2(x)/3 0 0 0
c1(x)− 2c2(x)/3 c1(x) + 2c2(x)/3 c1(x)− 2c2(x)/3 0 0 0
c1(x)− 2c2(x)/3 c1(x)− 2c2(x)/3 c1(x) + 2c2(x)/3 0 0 0

0 0 0 2c2(x) 0 0
0 0 0 0 2c2(x) 0
0 0 0 0 0 2c2(x)

 .
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Chapter 2

Stochastic Modeling of Incompressible
Isotropic Hyperelastic Materials
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2.1 Introduction

In this chapter, we address the construction of a class of stochastic stored energy energy functions
associated with incompressible, homogeneous and isotropic hyperelastic materials [45, 46]. The
aim is twofold. The primary goal is to derive a methodology to construct probabilistic models
for which samples are consistent with existence theorems in nonlinear elasticity. These models
can be used, for instance, to regularize ill-posed statistical inverse problems, or as prior models
in a Bayesian approach to model identification [74, 75]—in both deterministic and stochastic
frameworks. A second investigated aspect is the identification of these new models using real
experimental data on soft biological tissues. As pointed out in Chapter 1, the experimental
responses of such materials are very prone to uncertainties, and thus constitute appropriate
benchmarks for the stochastic constitutive models. Here, the attention is restricted to the class
of Ogden’s stored energy functions [76, 77], which is widely used within the engineering and
scientific communities [78] to model polymeric materials and most soft biological tissues (see,
e.g., [79, 80]). The generalization to other types of stored energy functions can be addressed
in a straightforward manner but may raise additional technicalities, depending on the retained

13



Chapter 2. Stochastic Modeling of Incompressible Isotropic Hyperelastic Materials

functional form for the nonlinear potential. Extensions to anisotropic and/or spatially dependent
nonlinear behaviors will be addressed later on in this thesis.

This chapter is organized as follows. In Section 2.2, the deterministic hyperelastic model is
first presented. The construction of a class of stochastic stored energy functions is then addressed
in Sections 2.3–2.7. Monte Carlo simulations are performed in Section 2.8 in order to illustrate
the model capabilities. Finally, in Section 2.9, an inverse identification procedure is presented
and applied to experimental data bases for brain tissues, liver tissues and spinal cord white
matter.

2.2 Deterministic background

In this section, the deterministic form of the stored energy function under consideration is intro-
duced, and constraints on model parameters are detailed. These constraints will be specifically
invoked in Section 2.3 to derive the stochastic version of the stored energy function.

Let w be the stored energy function of the homogeneous and incompressible hyperelastic
medium. The incompressibility condition is taken into account by introducing a Lagrange mul-
tiplier κ (which is typically interpreted as an hydrostatic pressure) in the constitutive equations
[54], that is, the first Piola-Kirchhoff stress tensor is given by

[P ([F ])] =

3∑
k=1

3∑
`=1

∂w([F ])

∂Fk`
ek ⊗ e` − κ[F ]−T . (2.1)

A general-order Ogden-type stored energy function is defined as [76, 77]

w([F ]) =
m∑
i=1

pi(Tr(([F ]T [F ])ηi/2)− 3) +
n∑
j=1

pj+m(Tr((Cof([F ]T [F ]))ηj+m/2)− 3) , ∀[F ] ∈M3
+ ,

(2.2)
where {pk}m+n

k=1 and {ηk}m+n
k=1 are two sets of model parameters. Let p = (p1, . . . , pm+n) and

η = (η1, . . . , ηm+n). The following assumptions regarding these parameters are next introduced:

pk > 0 , 1 6 k 6 m+ n , (2.3)

and
η1 > · · · > ηm > 1 , ηm+1 > · · · > ηm+n > 1 . (2.4)

Under these assumptions, it can be shown that the stored energy function given by Eq. (2.2) is
polyconvex; see, e.g., [65, 53]. Since the hyperelastic material is incompressible throughout this
chapter, the convexity statement does not involve the determinant of the deformation gradient
anymore and thus, there exists a convex function w? such that

w([F ]) = w?([F ],Cof([F ])) , ∀ [F ] ∈M3
+ . (2.5)

If the inequalities in Eq. (2.4) are complemented by the following ones:

η1 > 2 , ηm+1 >
3

2
, (2.6)

then the growth conditions given by Eq. (1.30) are fulfilled and the existence of solutions to the
associated nonlinear boundary value problem is ensured (see Section 1.4.4).
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Upon expanding the stored energy function near the reference configuration, it can be de-
duced that the model parameters further satisfy the following consistency relation with linearized
elasticity:

m+n∑
k=1

pkη
2
k = 2µ , (2.7)

where µ is the shear modulus at small strains (recall that only isotropic, incompressible materials
are considered at this stage); see [54, 55].

For m = n = 1 and η1 = η2 = 2, the potential (2.2) reduces to the Mooney-Rivlin model for
incompressible materials:

w([F ]) = p1(‖[F ]‖2F − 3) + p2(‖Cof([F ])‖2F − 3) , ∀[F ] ∈M3
+ , (2.8)

with p1 > 0, p2 > 0 and 4p1 + 4p2 = 2µ. Note that the single-term stored energy function of the
form

w([F ]) = p1(Tr(([F ]T [F ])η1/2)− 3) , ∀[F ] ∈M3
+ , (2.9)

satisfies the assumptions in Ball’s existence theorem if p1 = 2µ/η2
1 > 0 and η1 > 3 [65].

Finally, the Neo-Hookean model for incompressible materials [81] can be obtained by taking
η1 = 2 in the above equation, that is,

w([F ]) =
µ

2
(‖[F ]‖2F − 3) , ∀[F ] ∈M3

+ . (2.10)

Specific discussions on existence theorems for the Neo-Hookean model can be found in [65, 82].

2.3 Construction of the probabilistic model

Let W be the stochastic stored energy function corresponding to the probabilistic modeling of
w, defined on a probability space (Θ, T ,P) and indexed by the matrix set M3

+.
In this work, the vector of exponents η is kept deterministic (hence, the coercivity property

does not constraint the construction of the probabilistic model) and a few remarks related to this
modeling choice are in order. It should be noticed first that proceeding with random exponents
does not raise any technical issue while constructing the probabilistic formulation. However, this
would lead to a high-dimensional parametrization that would make model identification hardly
feasible, especially when the amount of data is limited. In addition, the consideration of random
exponents amounts to modifying the space in which the nonlinear response is approximated from
one sample to another, which is not justified in most applications. Finally, it will be seen at the
end of this chapter that randomizing the vector p is sufficient to properly mimic the variability
observed for a wide class of materials.

Let P = (P1, . . . , Pm+n) be the random vector corresponding to the probabilistic modeling
of p, and define the stochastic Ogden-type stored energy function as

W([F ]) =

m∑
i=1

Pi(Tr(([F ]T [F ])ηi/2)−3)+

n∑
j=1

Pj+m(Tr((Cof([F ]T [F ]))ηj+m/2)−3) , ∀[F ] ∈M3
+ .

(2.11)
The construction of a probabilistic model for the random variable P is performed by imposing
that the stochastic stored energy function is polyconvex and consistent with linearized elasticity
almost surely (a.s.). The first constraint imposes that

Pk > 0 a.s., 1 6 k 6 m+ n , (2.12)
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while the second one yields the coupling equation (see Eq. (2.7))

m+n∑
k=1

Pkη
2
k = 2� a.s., (2.13)

where � is the random variable corresponding to the stochastic modeling of the shear modulus
µ. In practice, imposing Eq. (2.13) can be achieved in two different ways. In a first approach, a
probabilistic model can be constructed for the random vector P without taking into account the
consistency relation. The probability distribution of the random shear modulus can then easily
be determined by an appropriate measure transformation. While this choice leads to simpler
derivations, it does not allow constraints on the elastic modulus to be accounted for, at least in
a direct form. A second, two-step approach can be developed where a probabilistic model is first
constructed for the random shear modulus �, and a stochastic model for random variable P is
subsequently derived through a conditioning on �. In order to ensure that Eq. (2.13) holds a.s.,
an arbitrary component of P, say Pm+n, must then be selected and defined afterwards as:

Pm+n =
1

η2
m+n

(
2�−

m+n−1∑
k=1

Pkη
2
k

)
. (2.14)

In this case, the construction of the probabilistic model is achieved on the random variables �
and (P1, . . . , Pm+n−1). More precisely, the joint probability density function f�,P1,...,Pm+n−1 is
written as

f�,P1,...,Pm+n−1(µ, p1, . . . , pm+n−1) = f�(µ)× fP1,...,Pm+n−1|�=µ(p1, . . . , pm+n−1|µ) , (2.15)

where f� is the probability density function of � and fP1,...,Pm+n−1|�=µ denotes the conditional
probability density function of (P1, . . . , Pm+n−1) given � = µ. Note that the probabilistic model
for f�,P1,...,Pm+n−1 completely defines the system of marginal probability distributions for the
stochastic process {W([F ]), [F ] ∈M3

+}.
In what follows, the second strategy is pursued. For technical convenience, we introduce the

normalized random variable U defined as

Uk =
η2
k

2�
Pk , 1 6 k 6 m+ n− 1 , (2.16)

where � > 0 a.s., by construction. By combining Eqs. (2.14) and (2.16), it can be deduced that
the random variable U takes its values in the set S defined as

S =
{

u ∈ (0, 1)m+n−1 : 1−
m+n−1∑
k=1

uk > 0
}

(2.17)

and corresponding to the interior of a simplex. The conditional probability density function
fP1,...,Pm+n−1|� can then be written as

fP1,...,Pm+n−1|�=µ(p1, . . . , pm+n−1|µ) = fU

(
η2

1

2µ
p1, . . . ,

η2
m+n−1

2µ
pm+n−1

)
×
m+n−1∏
k=1

η2
k

2µ
, (2.18)

where fU is the probability density function of the random variable U.
In this work, explicit forms for f� and fU are constructed within the framework of information

theory, using the principle of maximum entropy. This important tool is briefly introduced using
generic notations in the next section.
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2.4. Maximum entropy principle

2.4 Maximum entropy principle

Let X be a vector-valued random variable defined by a probability distribution fX(x)dx, the
definition of which is sought. Assume that the probability density function fX has a support
denoted by SX ⊆ Rn (hence, fX(x) = 0 for x /∈ SX), with SX ⊆ Rn. Additionally, it is
assumed that some information related to X can be formulated in the form of a mathematical
expectation:

E {H (X)} = f , (2.19)

where H is a given measurable mapping from Rn into RN , with N > 1, and f is a given vector
in RN . If H is the identity operator, then f corresponds to the mean value of X for instance.
When H gathers several constraints, it is assumed that the latter are algebraically independent.

The Maximum Entropy (MaxEnt) principle then states that the most objective model given
the above constraint (see Eq. (2.19)) is defined as [83, 84]

fX = argmax
f ∈CX

E {f} , (2.20)

where
E {f} = −

∫
SX

f(x) log (f(x)) dx (2.21)

denotes Shannon’s entropy for the probability density function f [85], and CX is the set of
all probability density functions supported over SX and satisfying the constraints defined by
Eq. (2.19).

In order to solve the functional optimization problem defined by Eq. (2.20), a Lagrange
multiplier τ with values in T ⊂ RN and associated with Eq. (2.19) is introduced. Proceeding
with the calculus of variation on the associated Lagrangian, the solution is found as

fX(x) = 1SX
(x) k0 exp (−〈τ ,H (x)〉) , (2.22)

where 1SX
is the indicator function of SX and k0 is the normalization constant.

In the sequel, the MaxEnt principle will be used to construct the probabilistic models for the
random shear modulus � and the conditioned random vector P|�. These models are detailed in
Section 2.5 and Sections 2.6–2.7, respectively.

2.5 Stochastic modeling of the shear modulus

Following the previous section, assume that the constraints related to the available information
on the stochastic shear modulus � are given by

E{�} = µ , µ > 0 , (2.23a)

E{log(�)} = ν , |ν| < +∞ . (2.23b)

The first constraint given by Eq. (2.23a) is related to the mean value of �, while the second one
is a repulsive term near the origin implying that � and �−1 are second-order random variables
[86], i.e.,

E{�2} < +∞ , E{�−2} < +∞ . (2.24)
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Let ρ1 ∈ R+
∗ and (1− ρ2) ∈ (−∞, 1) be the Lagrange multipliers associated with the constraints

given by Eqs. (2.23a) and (2.23b), respectively. The probability density function f� inferred from
the MaxEnt principle then writes

f�(µ) = 1R+
∗

(µ) k0 µ
ρ2−1 exp

(
− ρ1µ

)
, (2.25)

where 1R+
∗
is the indicator function of R+

∗ . It can be seen that the probability law f�(µ)dµ thus
defined corresponds to a Gamma probability measure with parameters (ρ2, ρ

−1
1 ). Consequently,

the Lagrange multipliers can be expressed in terms of the mean µ and the coefficient of variation
δ� of the random shear modulus, so that

f�(µ) = 1R+
∗

(µ) k0 µ
δ−2

� −1 exp

(
− µ

µδ2
�

)
, (2.26)

where
k0 =

1

(µδ2
�)δ

−2
� Γ(δ−2

� )
, (2.27)

with Γ the Gamma function [87] defined as

Γ(z) =

∫ +∞

0
tz−1 exp(−t) dt , ∀ z > 0 . (2.28)

2.6 Stochastic modeling accounting for polyconvexity and small
strain consistency

2.6.1 General derivations

Let us now consider the modeling of the S-valued random variable U. As with the shear modulus,
repulsive constraints at the boundaries of S are introduced as

E{log(Uk)} = νk , 1 6 k 6 m+ n− 1 , (2.29a)

E
{

log
(

1−
m+n−1∑
k=1

Uk

)}
= νm+n , (2.29b)

where |νk| < +∞ for 1 6 k 6 m + n. Let (1 − λ1), . . . , (1 − λm+n) be the associated (m +
n) Lagrange multipliers. By invoking the MaxEnt principle, it can then be deduced that the
probability density function fU writes

fU(u) = 1S(u) k0

(
m+n−1∏
k=1

uλk−1
k

)(
1−

m+n−1∑
k=1

uk

)λm+n−1

. (2.30)

The above equation shows that U is distributed according to a Dirichlet-type I probability law
[88] with parameters λ1, . . . , λm+n, and the normalization constant then takes the form

k0 =
Γ(
∑m+n

k=1 λk)∏m+n
k=1 Γ(λk)

. (2.31)

18



2.6. Stochastic modeling accounting for polyconvexity and small strain consistency

The integrality of fU requires the Lagrange multipliers to be all strictly positive. In what follows,
the additional constraints λk > 1, 1 6 k 6 m + n, are considered to yield unimodal first-order
marginal probability density functions. The admissible set Dλ for the vector-valued Lagrange
multiplier λ = (λ1, . . . , λm+n) is chosen as

Dλ = {λ ∈ Rm+n : λk > 1 , 1 6 k 6 m+ n} . (2.32)

It should be noticed at this point that the selection of the random variable Pk, 1 6 k 6 m+ n,
in the consistency relation (see Eqs. (2.14) and (2.13)) is arbitrary, given the symmetry of the
constraints given by Eqs. (2.29a)–(2.29b). From the proposed construction, we can now state
the following proposition.

Proposition 2.1. For m > 1 and n > 1, let W be the stochastic stored energy function defined
as

W([F ]) =
m∑
i=1

Pi(Tr(([F ]T [F ])ηi/2)− 3) +
n∑
j=1

Pj+m(Tr((Cof([F ]T [F ]))ηj+m/2)− 3) (2.33)

for all [F ] in M3
+, in which

(i) η1 > 2, ηm+1 > 3/2, η1 > · · · > ηm > 1, and ηm+1 > . . . ηm+n > 1;

(ii) the random shear modulus � is Gamma-distributed with parameters (δ−2
� , µδ2

�), where µ and
δ� are respectively the mean value and coefficient of variation of �;

(iii) the random variables Pk, 1 6 k 6 m+ n, are defined as

Pk =
2�
η2
k

Uk , 1 6 k 6 m+ n− 1 , Pm+n =
2�
η2
m+n

(
1−

m+n−1∑
k=1

Uk

)
, (2.34)

where the random variable U = (U1, . . . , Um+n−1) takes its values in

S =
{

u ∈ (0, 1)m+n−1 : 1−
m+n−1∑
k=1

uk > 0
}
, (2.35)

and follows a Dirichlet-type I distribution with a vector-valued parameter λ such that λk > 1
for 1 6 k 6 m+ n.

Then the stored energy function W is polyconvex, coherent at small strains, and coercive almost
surely.

The above proposition ensures the well-posedness of the nonlinear stochastic boundary value
problem for any element in the class of stochastic stored energy functions.

Remark 2.6.1. From a practical standpoint, realizations of U can easily be drawn as follows. If
Y1, . . . , Ym+n are independent Gamma random variables with respective parameters (λ1, 1), . . . ,
(λm+n, 1), then the random variable U can be defined component-wise as [89]

Ui = Yi ×
(m+n∑

k=1

Yk

)−1

, 1 6 i 6 m+ n− 1 . (2.36)
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Remark 2.6.2. Explicit expressions of the probability density functions p 7→ fPk(p) for the
random variables P1, . . . , Pm+n can be readily obtained. In fact, given that the shear modulus is
gamma distributed with parameters (ρ2, ρ

−1
1 ) and that the marginal probability measures of Uk and

(1−
∑m+n−1

k=1 Uk) are beta distributions with parameters (λk, χk) and (λm+n, χm+n) respectively,
it can be shown that [90]

fPk(p) = 1R+
∗

(p) k0 p
ρ2−1 exp

(
−
η2
kρ1

2
p

)
U
(
χk, 1 + ρ2 − λk,

η2
kρ1

2
p

)
, 1 6 k 6 m+n , (2.37)

where U corresponds to the Kummer function [87]

U(a, b; z) =
1

Γ(a)

∫ +∞

0
exp(−zt)ta−1(1 + t)b−a−1 dt , (2.38)

and

χk = (
m+n∑
`=1

λ`)− λk , 1 6 k 6 m+ n . (2.39)

The normalization constant k0 writes

k0 =

(
2

ρ1η2
k

)−ρ2 Γ(χk)

Γ(ρ2)B(λk, χk)
. (2.40)

2.6.2 Case of Mooney-Rivlin materials

In the case of an incompressible isotropic Mooney-Rivlin model, for which m = n = 1 and
η1 = η2 = 2, the stochastic stored energy function reduces to

W([F ]) = P1(‖[F ]‖2F − 3) + P2(‖Cof([F ])‖2F − 3) , ∀ [F ] ∈M3
+ , (2.41)

where the random coefficients are given by

P1 =
�
2
U , P2 =

�
2

(1− U) . (2.42)

The random variable U follows a beta-type I distribution with parameters λ1 > 1 and λ2 > 1,
that is

fU (u) = 1(0,1)(u){B(λ1, λ2)}−1uλ1−1(1− u)λ2−1 , (2.43)

in which B is the beta function given by [87]

B(x, y) =

∫ 1

0
tx−1(1− t)y−1 dt . (2.44)

2.6.3 Case of single-term Ogden stochastic stored energy functions

The stochastic stored energy function

W([F ]) = P1(Tr(([F ]T [F ])η1/2)− 3) , ∀ [F ] ∈M3
+ , (2.45)

is admissible (in the sense that the associated nonlinear stochastic boundary value problem is
well posed) if P1 > 0 almost surely, and η1 > 3 (see [65]). Moreover, consistency with linearized
elasticity yields P1η

2
1 = 2�, so that the stochastic stored energy function can be rewritten as

W([F ]) =
2�
η2

1

(Tr(([F ]T [F ])η1/2)− 3) , ∀ [F ] ∈M3
+ . (2.46)

The particular case η1 = 2 leads to the Neo-Hookean model in three dimensional elasticity.
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2.6. Stochastic modeling accounting for polyconvexity and small strain consistency

2.6.4 Computation of the Lagrange multipliers

Two cases can be distinguished regarding the computation of the Lagrange multipliers, depending
on whether or not the right-hand sides in Eqs. (2.23b) and (2.29a)–(2.29b) are known. When
the parameters ν and ν1, . . . , νm+n are unknown, the Lagrange multipliers can be identified by
solving a statistical inverse problem in which the left-hand sides of the aforementioned equations
are not estimated.

When the parameters ν1, . . . , νm+n are known, explicit expressions of the constraints can be
derived as functions of the multipliers, owing to some properties exhibited by the probability
laws under consideration. This enables the robust and efficient treatment of the left-hand sides
in Eqs. (2.29a)–(2.29b) without resorting to Monte-Carlo simulations. More specifically, it can
first be shown that the marginal probability density functions fUk and fV of the random variables
Uk, 1 6 k 6 m+ n, and V = 1−

∑m+n−1
k=1 Uk, correspond to beta distributions with parameters

(λk, χk), where it is recalled that χk = (
∑m+n

`=1 λ`)−λk. These probability density functions thus
read as

fUk(u) = 1(0,1)(u)
1

B(λk, χk)
uλk−1(1− u)χk−1 (2.47)

and
fV (v) = 1(0,1)(v)

1

B(λm+n, χm+n)
vλm+n−1(1− v)χm+n−1 . (2.48)

From the equality

E
{

log
(

1−
m+n−1∑
k=1

Uk

)}
= {B(λm+n, χm+n)}−1

∫ 1

0
log(v)vλm+n−1(1− v)χm+n−1 dv , (2.49)

it follows that

E
{

log
(

1−
m+n−1∑
k=1

Uk

)}
= {B(λm+n, χm+n)}−1 ∂

∂λm+n

∫ 1

0
vλm+n−1(1− v)χm+n−1 dv ,

=
∂

∂λm+n
log(B(λm+n, χm+n)) .

(2.50)

Since B(x, y) = Γ(x)Γ(y)/Γ(x+ y) for all (x, y) ∈ R+
∗ × R+

∗ , it can be deduced that

E
{

log
(

1−
m+n−1∑
k=1

Uk

)}
=

Γ′(λm+n)

Γ(λm+n)
−

Γ′(
∑m+n

k=1 λk)

Γ(
∑m+n

k=1 λk)
. (2.51)

Proceeding similarly for the random variables U1, . . . , Um+n−1, one has

E{log(Uk)} =
Γ′(λk)

Γ(λk)
−

Γ′(
∑m+n

k=1 λk)

Γ(
∑m+n

k=1 λk)
, 1 6 k 6 m+ n− 1 . (2.52)

By letting ψ be the digamma function defined as ψ(z) = Γ′(z)/Γ(z) for all z > 0 (see [87]), it
follows that the constraints given by Eqs. (2.29a)-(2.29b) are finally given by (see [91] for similar
results)

ψ(λk)− ψ
(m+n∑
k=1

λk

)
= νk , 1 6 k 6 m+ n . (2.53)
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In practice, the above system of (m + n) nonlinear equations can be solved by using any suit-
able optimization algorithm, such as a nonlinear least-squares algorithm or a Newton-Rapshon
algorithm. Given some initial guess λ(0) ∈ Dλ, the Newton-Raphson scheme is given by

for ` > 0 : [K(λ(`))](λ(`+1) − λ(`)) = −r(λ(`)) , (2.54)

where the function r is defined as rk(λ) = νk−
(
ψ(λk)−ψ

(∑m+n
k=1 λk

))
for 1 6 k 6 m+n, and

the tangent matrix reads as

[K(λ)]jk =
∂rj(λ)

∂λk
= −

(
ψ′(λj)δjk − ψ′

(m+n∑
i=1

λi

))
, 1 6 j, k 6 m+ n , (2.55)

where ψ′ is referred to as the trigamma function [87].

2.7 Stochastic modeling accounting for mean values, polyconvexi-
ty and small strain consistency

2.7.1 General derivations

Assume now that the repulsive constraints (2.29a)–(2.29b)) are supplemented with a constraint
related to the mean value of U, that is:

E{U} = u , (2.56)

where u is a given vector in S . In this case, the probability density function fU obtained through
entropy maximization takes the form

fU(u) = 1S(u) k0

(m+n−1∏
k=1

uλk−1
k

)(
1−

m+n−1∑
k=1

uk

)λm+n−1

exp

(
−
m+n−1∑
k=1

ξkuk

)
, (2.57)

where {λk}m+n
k=1 and {ξk}m+n−1

k=1 are the sets of Lagrange multipliers associated with the repulsive
constraints (see Eqs. (2.29a–2.29b)) and Eq. (2.56). This probability density function corresponds
to a multivariate Kummer-Beta distribution if ξk = ξ, 1 6 k 6 m+n−1, in which case an explicit
algebraic expression for k0 can be obtained in terms of confluent hypergeometric functions [92].
Furthermore, the proposition stated in Section 2.6 similarly holds when U follows the probability
density function given by Eq. (2.57), hence ensuring the well-posedness of the stochastic boundary
value problem.

The probability density function fU is non-standard and can be sampled by using Markov
Chain Monte Carlo approaches (see, e.g., [93]). In the present study, sampling is achieved by
solving a Langevin dynamics [94] with an adaptive stochastic time step [30].

2.7.2 Case of Mooney-Rivlin materials

For the incompressible Mooney-Rivlin model, the probability density function fU corresponds to
a Kummer-Beta distribution with parameters (λ1, λ2, ξ1), that is

fU (u) = 1S(u) k0 u
λ1−1(1− u)λ2−1 exp(−ξ1u) , (2.58)
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2.8. Numerical illustrations

where λ1 > 1, λ2 > 1 and ξ1 ∈ R [95, 96, 88]. It can be deduced that the normalization constant
takes the form

k0 =
1

B(λ1, λ2)F(λ1, λ1 + λ2,−ξ1)
, (2.59)

in which F stands for the confluent hypergeometric function (see, e.g., [87]), i.e.,

F(x, y, z) =
1

B(x, y − x)

∫ 1

0
ux−1(1− u)y−x−1 exp(zu) du . (2.60)

Upon evaluating the constraints given by Eqs. (2.29a)-(2.29b) and Eq. (2.56), it can be shown
that the Lagrange multipliers satisfy the following set of nonlinear equations

ψ(λ1)− ψ(λ1 + λ2) +
∂ log(F(λ1, λ1 + λ2,−ξ1))

∂λ1
= ν1 , (2.61a)

ψ(λ2)− ψ(λ1 + λ2) +
∂ log(F(λ1, λ1 + λ2,−ξ1))

∂λ2
= ν2 , (2.61b)

λ1

λ1 + λ2

F(λ1 + 1, λ1 + λ2 + 1,−ξ1)

F(λ1, λ1 + λ2,−ξ1)
= E{U} . (2.61c)

In practice, solving for ξ1 in Eq. (2.61c) allows one to enforce the constraint on the mean value
for given repulsive conditions at the boundaries of S , controlled by the Lagrange multipliers λ1

and λ2.

2.8 Numerical illustrations

In the rest of this chapter, we consider a specimen of a hyperelastic material undergoing a
homogeneous simple tension defined by a prescribed stretch υ along e1 (see, e.g., [78, 79]) . In
this case, the deformation gradient takes the form

[F ] = υ e1 ⊗ e1 + υ−1/2(e2 ⊗ e2 + e3 ⊗ e3) . (2.62)

The non-vanishing stochastic Cauchy stress (along e1) associated with the stochastic Ogden-type
stored energy function is then given by

Σ(υ) =

m∑
i=1

Piηi(υ
ηi − υ−ηi/2) +

n∑
j=1

Pj+mηj+m(υηj+m/2 − υ−ηj+m) , υ > 0 . (2.63)

Below, the computation of the Lagrange multipliers for given equality constraints is not addressed
(see the discussion in Section 2.6.4). As an alternative, these multipliers are considered as free
model parameters and parametric studies are performed in order to illustrate the modeling
capabilities of the proposed stochastic models.

2.8.1 Monte Carlo simulations without mean constraints

2.8.1.1 Case of incompressible Neo-Hookean materials

For the incompressible Neo-Hookean model, the random Cauchy stress reduces to

Σ(υ) = �
(
υ2 − 1

υ

)
, ∀ υ > 0 . (2.64)
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Figure 2.1 – Confidence regions with a probability level of 0.9 of the Cauchy stress for the
incompressible Neo-Hookean model and coefficient of variations δ� ranging from 0.1 to 0.3.

The mean value µ of the random shear modulus is chosen as µ = 0.39 MPa. Confidence regions
at a 0.9 probability level for the random Cauchy stress are shown in Fig. 2.1 for different values
of the coefficient of variation δ�. As expected, the probabilistic model allows one to generate
different levels of statistical fluctuations around the given mean function υ 7→ µ(υ2−1/υ). For a
given value of δ�, the variance thus exhibited turns out to increase along along with the stretch,
which is in accordance with the experimental trends that can be found in the literature.

2.8.1.2 Case of incompressible Mooney-Rivlin materials

For incompressible Mooney-Rivlin materials, the stochastic Cauchy stress is given by

Σ(υ) =
(

2P1 +
2P2

υ

)(
υ2 − 1

υ

)
, (2.65)

where the random variables P1 and P2 are defined by Eqs. (2.42–2.43). Confidence regions for
the random Cauchy stress are shown in Fig. 2.2 for λ1 = λ2 = λ ∈ {1, 5, 30}, δ� = 0.1 (left
panel) and δ� = 0.2 (right panel). Similar results are displayed in Figs. 2.3 and 2.4, for various
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Figure 2.2 – Confidence regions at a 0.9 probability level of the Cauchy stress for λ1 = λ2 = λ,
δ� = 0.1 (left panel) and δ� = 0.2 (right panel).
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Figure 2.3 – Confidence regions at a 0.9 probability level of the Cauchy stress for different sets
of Lagrange multipliers (λ1, λ2) and a fixed coefficient of variation δ� = 0.2.
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Figure 2.4 – Confidence regions at a 0.9 probability level of the Cauchy stress for different sets
of Lagrange multipliers (λ1, λ2) and a fixed coefficient of variation δ� = 0.2.

combinations of λ1, λ2 and δ�. It is seen that different behaviors can be simulated by properly
selecting the values of the Lagrange multipliers, hence illustrating the flexibility of the proposed
stochastic model. More precisely, it is observed that increasing the value of λ1 for fixed values of
λ2 and δ� pushes the lower bound of the confidence region upwards (meaning that the variability
in the stress response is reduced). In a ‘symmetric’ way, increasing the value of λ2 for fixed
values of λ1 and δ� pushes the upper bound of the confidence region downwards. As expected,
the level of repulsion allowed is seen to depend on the selected value of δ�.

2.8.2 Monte Carlo simulations with mean constraints

The stochastic model developed in Section 2.7 is now considered. In the case of a Mooney-Rivlin
material, the random variable U follows a Kummer-Beta distribution defined by the probability
density function given by Eq. (2.58) with parameters λ1 > 1, λ2 > 1 and ξ1 ∈ R. Confidence
regions of the random Cauchy stress are displayed in Fig. 2.5 for λ1 = λ2 = 15 and several
values of ξ1 in R. While the additional Lagrange multiplier ξ1 allows for specifying the mean
function for the Cauchy stress, it is seen that the value of this multiplier also slightly affects
the level of fluctuations (for given repulsive conditions). In order to proceed with a target mean
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Figure 2.5 – Confidence regions with a 0.9 probability level of the Cauchy stress for λ1 = λ2 = 15,
δ� = 0.2 and various values for the remaining Lagrange multiplier ξ1 ∈ R.

function while being able to select a given level of statistical fluctuations, it is indeed necessary
to enforce the mean constraint given by Eq. (2.61c) for arbitrary Lagrange multipliers (λ1, λ2).
To illustrate this point, assume that the target mean value of the random variable U is given by
E{U} = 0.4. The Lagrange multiplier ξ1 can hence be seen as a function of (λ1, λ2) and must
satisfy the equation

λ1

λ1 + λ2

F(λ1 + 1, λ1 + λ2 + 1,−ξ1)

F(λ1, λ1 + λ2,−ξ1)
= 0.4 . (2.66)

The above equation can be solved by using, for instance, a nonlinear least-square algorithm, and
the hypergeometric function can be computed following the algorithm proposed in [97]. The
graph of (λ1, λ2) 7→ ξ1(λ1, λ2) thus constructed is shown in Fig. 2.6.

5
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Figure 2.6 – Graph of (λ1, λ1) 7→ ξ1(λ1, λ2) such that E{U} = 0.4.

Confidence regions at 90% for the random Cauchy stress obtained for some values of (λ1, λ2, ξ1)
such that E{U} = 0.4 are shown in Fig. 2.7, and the probability density functions associated
with the random variable U are further shown in Fig. 2.8.
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Figure 2.7 – Confidence regions with a 0.9 probability level of the Cauchy stress for selected
values of (λ1, λ2) and ξ1 such that E{U} = 0.4.
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Figure 2.8 – Probability density function fU of the Kummer-Beta random variable U for selected
values of (λ1, λ2) and ξ1 such that E{U} = 0.4.

2.9 Identification of the stochastic models using experimental
data

In this final section, a two-step methodology enabling the identification of model parameters
is proposed and benchmarked on real data. More specifically, we consider the identification of
stochastic hyperelastic models for soft biological tissues [46]. The experimental response of such
materials typically exhibits a pronounced variability, as largely documented in the literature
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. While these uncertainties are routinely smoothed out
through an averaging procedure along the loading path, they can critically impact simulation
predictiveness or clinical diagnosis, for instance. A few attempts to model this variability using a
Bayesian approach can be found in [98, 99, 100, 101]. It should be noticed that in contrast with
the Bayesian approach where the posterior probability density function is generally unknown
analytically, the proposed formulation allows existence results to be invoked and ensures the
existence of solutions to the nonlinear boundary value problem almost surely. The developed
models are therefore intended to constitute optimal choices for prior distributions.
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2.9.1 Calibration of the mean model

Let λ = (λ1, . . . , λm+n) and ρ = (ρ1, ρ2) be the vectors of hyperparameters. In accordance with
most available experimental setups, it is assumed that data are available in the form of mean
values and standard deviations of the stress response along a given loading path. Homogeneous
tensile tests are considered, and the associated non-zero first Piola-Kirchhoff stress is given by
(see Eq. (2.63))

T (υ) =
m+n∑
k=1

Pkfk(υ; ηk) , υ > 0 , (2.67)

where for notational convenience, the functions

fk(υ; ηk) =

{
ηk(υ

ηk−1 − υ−ηk/2−1) , k = 1, . . . ,m ,

ηk(υ
ηk/2−1 − υ−ηk−1) , k = m+ 1, . . . ,m+ n ,

(2.68)

were introduced. Below, {ξexp
k
}Nk=1 and {ςexp

k }
N
k=1 denote the values of the mean and standard

deviation of T at some prescribed stretches {υexp
k }

N
k=1: these values define the experimental

information based on which the stochastic model has to be identified.
In the first step of the approach, the mean value

p = (p
1
, . . . , p

m+n
) = E{P} , (2.69)

of the random variable P and the deterministic exponents η = (η1, . . . , ηm+n) are identified by
fitting the mean experimental response with an Ogden-type constitutive model of order (m,n).
This can be achieved by solving a least-square optimization problem [78, 79], i.e.,

(p,η) = argmin
(a,b)∈A×B

N∑
k=1

(t(υexp
k ; a,b)− ξexp

k
)2 , (2.70)

where t(υexp
k ; a,b) is the predicted stress at stretch υexp

k :

t(υexp
k ; a,b) =

m+n∑
`=1

a`f`(υ
exp
k ; b`) . (2.71)

The admissible sets are defined according to Section 2.2 and are given by

A = (R+
∗ )m+n (2.72)

and

B =
{
η ∈ Rm+n : η1 > 2 , ηm+1 > 3/2 , η1 > · · · > ηm > 1 , ηm+1 > · · · > ηm+n > 1

}
. (2.73)

The optimization problem defined by Eq. (2.70) can be solved by using standard algorithms for
constrained nonlinear problems and may admit multiple solutions, given the nonlinearity of the
function υ 7→ t(υ; a,b). Hereinafter, a randomization of the starting points will be considered in
order to reduce the impact of the local optimizer.
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2.9.2 Calibration of the Lagrange multipliers

Using Eq. (2.34) and the statistical independence of the random variables � and Pk, 1 6 k 6
m+ n, it is first deduced that

E{Pk} =
2E{�}
η2
k

E{Uk} , 1 6 k 6 m+ n− 1 , (2.74)

and

E{Pm+n} =
2E{�}
η2
m+n

E
{(

1−
m+n−1∑
k=1

Uk

)}
. (2.75)

For notational convenience, let τ1 = ρ2 and τ2 = ρ−1
1 , so that the random shear modulus follows

a Gamma distribution with parameters (τ1, τ2) and

µ = E{�} = τ1τ2 . (2.76)

Since the random variable U follows a Dirichlet distribution with parameters λ1, . . . , λm+n, one
has

E{Pk} =
2τ1τ2

η2
k

λk
‖λ‖1

, 1 6 k 6 m+ n− 1 , (2.77)

with ‖λ‖1 =
∑m+n

i=1 |λi|. Combining the results from Section 2.9.1 with Eqs. (2.76–2.77) then
leads to a system of m + n equations involving the sought-for Lagrange multipliers τ and λ.
Solving for τ2 and λ1, . . . , λm+n−1 yields

τ2 =
µ

τ1
, λk = αkλm+n , αk =

η2
k pk

2µ−
∑m+n−1

`=1 η2
` p`

, 1 6 k 6 m+ n− 1 . (2.78)

Consequently, τ1 and λm+n now appears as the only remaining hyperparameters to be calibrated.
The identification can then be achieved by letting

(τ1, λm+n) = argmin
(x,y)∈R+

∗ ×[1,+∞)

N∑
k=1

(
Var{T (υexp

k ;x, y)}1/2 − ςexp
k

)2
, (2.79)

where Var{T (υexp
k ;x, y)} denotes the variance of the random Piola-Kirchhoff stress T (υexp

k ) at
stretch υexp

k obtained for

� ∼ G
(
x,
µ

x

)
(2.80)

and
U ∼ Dir(α1y, α2y, . . . , αm+n−1y, y) . (2.81)

In view of solving the optimization problem given by Eq. (2.79), an explicit expression of the
variance of the random variable T (υ) in terms of the Lagrange multipliers is given in the next
section, for any fixed υ > 0.

2.9.2.1 Sampling-free resolution

In order to solve the optimization problem defined by Eq. (2.79), one has to compute the vari-
ance of the random variable T (υ) for any υ > 0. An estimator for this variance can readily be
computed by resorting to Monte Carlo simulations. However, given that the random variables
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� and U are distributed according to labelled distributions, an explicit expression of the vari-
ance Var{T (υ)} can be obtained to improve the robustness of the formulation and reduce the
computational cost. From Eq. (2.67), it is seen that

Var{T (υ)} =
m+n∑
k=1

m+n∑
`=1

Cov{Pk, P`}fk(υ; ηk)f`(υ; η`) , (2.82)

where Cov{Pk, P`} denotes the covariance between the random variables Pk and P` for 1 6 k, ` 6
m+ n. Furthermore, the introduction of random variables � and U yields

Cov{Pk, P`} =
4E{�2}
η2
kη

2
`

(E{UkU`} − E{Uk}E{U`}) , 1 6 k, ` 6 m+ n− 1 , (2.83)

Cov{Pk, Pm+n} =
4E{�2}
η2
kη

2
m+n

(
E
{
Uk

(
1−

m+n−1∑
`=1

U`

)}
− E{Uk}E

{(
1−

m+n−1∑
`=1

U`

)})
, (2.84)

for 1 6 k 6 m+ n− 1, and

Cov{Pm+n, Pm+n} =
4E{�2}
η4
m+n

(
E
{(

1−
m+n−1∑
`=1

U`

)2}
− E

{(
1−

m+n−1∑
`=1

U`

)}2
)
, (2.85)

with
E{�2} = τ1τ

2
2 (1 + τ1) . (2.86)

Since the marginal probability distributions of the random variables Uk and 1 −
∑m+n−1

`=1 U`
coincide with beta laws with parameters (λk, χk) and (λm+n, χm+n), it can then be deduced that

E{Uk} =
λk
‖λ‖1

, 1 6 k 6 m+ n− 1 , E
{(

1−
m+n−1∑
`=1

U`

)}
=
λm+n

‖λ‖1
, (2.87)

E{U2
k} =

λkχk + λ2
k(‖λ‖1 + 1)

‖λ‖21(‖λ‖1 + 1)
, (2.88)

and

E
{(

1−
m+n−1∑
`=1

U`

)2}
=
λm+nχm+n + λ2

m+n(‖λ‖1 + 1)

‖λ‖21(‖λ‖1 + 1)
. (2.89)

Finally, for 1 6 k, ` 6 m + n − 1 with k 6= `, it can be shown that the marginal probability
density function of the random variable (Uk, U`) is a Dirichlet distribution with parameters
(λk, λ`, ‖λ‖1 − λk − λ`). Hence, it follows that

E{UkU`} =
λkλ`

‖λ‖1(1 + ‖λ‖1)
, (2.90)

and similarly,

E
{
Uk

(
1−

m+n−1∑
`=1

U`

)}
=

λkλm+n

‖λ‖1(1 + ‖λ‖1)
. (2.91)

Finally, the combination of Eqs. (2.83)–(2.91), allow us to compute the variance of the random
stress T (υ) in Eqs. (2.79)–(2.82) for given values of the hyperparameters, without resorting to
Monte Carlo simulations. In this work, the optimization problems are solved by using the Matlab
function fmincon (with an sqp algorithm) for a set of 1000 initial guesses determined by Latin
Hypercube sampling. Here, the randomization of the starting points aims at reducing (in part)
the impact of the local optimizer.
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2.9. Identification of the stochastic models using experimental data

2.9.2.2 Closed-form relations for first-order stochastic stored energy functions

For a first-order stochastic stored energy function, the Dirichlet distribution of the random
variable U reduces to a beta distribution with parameters (λ1, λ2) and the random Piola-Kirchhoff
stress simply writes

T (υ) = P1f1(υ; η1) + P2f2(υ; η2) , ∀υ > 0 . (2.92)

From Eq. (2.82), it is deduced its variance reduces to

Var{T (υ)} = Var{P1}f2
1 (υ; η1) + Var{P2}f2

2 (υ; η2) + 2Cov{P1, P2}f1(υ; η1)f2(υ; η2) , (2.93)

where the variances Var{Pj} and covariance Cov{P1, P2} of the random variables P1 and P2 are
given by

Var{P1} =
4τ1τ

2
2

η4
1

λ1(λ1 + λ2 + λ1λ2 + λ2
1 + τ1λ2)

(λ1 + λ2)2(1 + λ1 + λ2)
, (2.94)

Var{P2} =
4τ1τ

2
2

η4
2

λ2(λ1 + λ2 + λ1λ2 + λ2
2 + τ1λ1)

(λ1 + λ2)2(1 + λ1 + λ2)
, (2.95)

and

Cov{P1, P2} =
4τ1τ

2
2

η2
1η

2
2

λ1λ2(λ1 + λ2 − τ1)

(λ1 + λ2)2(1 + λ1 + λ2)
. (2.96)

By substituting Eqs. (2.94–2.96) into Eq. (2.93), we obtain the variance of the random stress
T (υ) for given values of the hyperparameters, which allows us to evaluate the variance of the
random variable T (υ) in the optimization problem given by Eq. (2.79).

2.9.2.3 Discussion regarding the identification strategy

A number of remarks regarding the above calibration strategy are relevant at this point. First
of all, it should be noticed that the dimension of the problem related to the calibration of τ1 and
λm+n is independent of the values of m and n. As a consequence, the methodology does not
suffer from a curse of dimensionality and turns out to be very robust in that sense.

Secondly, and while the set of model parameters can be shown to be unique when the con-
straint equations can be estimated from experiments, considering the mean and variability of the
stress response does not allow the hyperparameters to be uniquely defined (one may note that
issues related to uniqueness are also encountered in a deterministic context. More specifically, it
should be observed that the random stress involves nonlinear functions of � and U. Therefore,
a given variability in the random stress may equivalently be generated by different combinations
of fluctuations in � and U.

Additionally, the choice of the hyperparameters to be identified within the second step turns
out to be arbitrary, so that the associated optimization problem may alternatively be formulated
by selecting any couple (τk, λ`) for 1 6 k 6 2 and 1 6 ` 6 m + n. In accordance with the
probabilistic modeling strategy, an approach to circumvent this limitation may consist in solving
the set of 2(m + n) optimization problems thus defined, and in proceeding to model selection
through the maximization of entropy.

Finally, it should be noted that Eq. (2.78) can be used in order to investigate the sensitivity
of the cost function in the optimization problem given by Eq. (2.79) with respect to the second
design variable λm+n. In particular, it may be useful in identifying the combination of parameters
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that maximizes the gradient of the cost function over the search space. For instance, and focusing
on the first-order model for illustration purposes, the coefficient of variation δU of U is given by

δU =

√
λ2

λ1(λ1 + λ2 + 1)
, (2.97)

with

λ1 =
η2

1 p1

η2
2 p2

λ2 . (2.98)

When the mean parameters and model exponents are such that λ1 � λ2, the random variable U
takes small positive values and exhibits large statistical fluctuations. Similarly, when λ1 � λ2,
the realizations of the random variable U are close to 1 and the statistical fluctuations are very
small. In both cases, the coefficient of variation δU of the random variable U quickly reaches a
plateau as λ2 becomes larger, and this behavior may decrease the robustness of the optimization
procedure.

2.9.3 Applications to soft biological tissues

In this section, the stochastic model and the identification methodology are applied to reproduce
the experimental variability exhibited by various biological tissues, including brain tissues, liver
tissues and spinal cord white matter [46].

2.9.3.1 Brain tissue

In this first application, the modeling of the variability exhibited by brain tissues is addressed by
considering the experimental results provided in [12]. The database is composed of 72 samples of
brain tissue tested for strains ranging up to 50% and for strain rates ε̇ ∈ {0.5, 5, 30} s−1. Below,
we address the calibration task in unconfined compression for low and medium strain rates.
Experimental data are given for white and gray matter, and final data are expressed in terms of
mean and standard deviation plots at increasing stretches. The optimal mean parameters and
exponents (p,η) are reported in Tab. 2.1 for the compression tests at different strain rates (for
m = n = 1). It should be noticed that the inequality constraints raised by the polyconvexity

ε̇ 0.5 s−1 5 s−1

p
1
(kPa) 0.1467 0.1881

p
2
(kPa) 0.0457 0.7823

η1 5.5945 4.5907
η2 1.991 1.5

µ (kPa) 2.3863 2.3863

λ1 253.5375 22.461
λ2 9.9982 9.9732
τ1 2.3679 6.6398
τ2 1.0078 0.4311

ε̇ 0.5 s−1 5 s−1

p
1
(kPa) 1.1131 1.4720

p
2
(kPa) 1.1120 0.4897

η1 2 2.6185
η2 1.5 1.5

µ (kPa) 3.4772 5.5973

λ1 3.2290 91.5357
λ2 1.8146 9.9919
τ1 33.2721 6.6819
τ2 0.1045 0.8377

Table 2.1 – calibrated parameters for m = n = 1 (left panel: gray matter in compression, right
panel: white matter in compression).

and coerciveness properties are fulfilled, so that the mean model is admissible. Regarding the
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2.9. Identification of the stochastic models using experimental data

computation of the Lagrange multipliers λnp and τ1, performed within the second step of the
methodology, the algorithm is found to converge in a few iterations, regardless of the initial guess.
It can be observed that the first-order stochastic stored energy function (that is, m = n = 1) can
reproduce the experimental results very well. These data are quantitatively compared with the
prediction of the calibrated stochastic model in Figs. 2.9 and 2.10, where the confidence interval
at 95% is also reported. In accordance with the error values listed above, it is seen that the
proposed probabilistic approach allows for properly reproducing the known features of the stress
response.
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Figure 2.9 – Graph of υ 7→ t(υ) (kPa) and υ 7→ Var{T (υ)} for gray matter tissues in unconfined
compression with ε̇ = 0.5 s−1 and ε̇ = 5 s−1.
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Figure 2.10 – Graph of υ 7→ t(υ) (kPa) and υ 7→ Var{T (υ)} for white matter tissues in unconfined
compression with ε̇ = 0.5 s−1 and ε̇ = 5 s−1.

2.9.3.2 Liver tissue

As a second example, we now turn to the modeling of bovine liver tissues. Specifically, the
statistical results are extracted from [102], in which uniaxial compression tests were performed
at a 0.01 s−1 strain rate. The orders of the stochastic stored energy function are chosen from a
preliminary study as m = 1 and n = 1 – note that the deterministic fitting in the above reference
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was obtained using an exponential-type stored energy function. The calibrated parameters are
listed in Tab. 2.2. A qualitative comparison between the statistical properties estimated by means

ε̇ p
1

p
2

η1 η2 µ λ1 λ2 τ1 τ2

0.01 s−1 0.1886 0.005 2.1783 12.0502 0.8088 314.6755 254.251 591.7831 0.0014

Table 2.2 – calibrated mean values and exponents for m = n = 1 (liver tissues in compression).

of Monte Carlo simulations with the calibrated stochastic model and those computed using the
experimental data can be visualized in Fig. 2.11. Similarly to the case of brain tissues, it is seen
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Figure 2.11 – Graph of υ 7→ t(υ) (kPa) and υ 7→ Var{T (υ)} (kPa) for liver tissues in uniaxial
compression with ε̇ = 0.01 s−1.

that the probabilistic model and the identification strategy allows the data to be reproduced
with a reasonably high level of accuracy, hence showing the relevance of the overall methodology.

2.9.3.3 Spinal cord white matter

In this final application, we address the modeling of the variability exhibited by porcine spinal
cord white matter under unconfined compression. Experimental data can be found in [103],
where the mechanics of spinal cord injury and its finite element implementation are investi-
gated. The database is composed of 104 independent samples extracted from Yorkshire pigs.
Unconfined compression tests were performed for strains ranging up to 40% and for a strain rate
ε̇ ∈ {0.005, 0.05, 0.5} s−1. The probabilistic potential defined with m = n = 1 is found to accu-
rately reproduce the experimental descriptors, as shown in Fig. 2.12. The calibrated parameters
are finally listed in Tab. 2.3.

2.10 Conclusion

In this chapter, we have addressed the construction, simulation and inverse identification of
stochastic stored energy functions for homogeneous, isotropic and incompressible hyperelastic
media [45, 46]. The approach relies on the maximum entropy principle, which is invoked to
ensure the well-posedness of the stochastic nonlinear boundary value problem. Two probabilistic
models were proposed and can be seen as stochastic extensions of Ogden-type stored energy
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Figure 2.12 – Graph of υ 7→ t(υ) (kPa) and υ 7→ Var{T (υ)} for spinal cord white matter in
unconfined compression with ε̇ = 0.005 s−1, ε̇ = 0.05 s−1 and ε̇ = 0.5 s−1.

ε̇ 0.005 s−1 0.05 s−1 0.5 s−1

p
1
(kPa) 1.0003× 10−10 0.0103 0.0019

p
2
(kPa) 0.0518 0.0060 0.0110

η1 2 10.3688 11.4613
η2 4.5327 4.2267 5.3704

µ (kPa) 0.5317 0.6049 0.2864

λ1 4.3716× 10−9 10.3103 3.7483× 104

λ2 11.6189 1.0021 4.6814× 104

τ1 25.3264 16.5984 21.7408
τ2 0.0210 0.0364 0.0132

Table 2.3 – calibrated parameters for m = n = 1 (spinal white matter in compression).

functions. A simple identification procedure was further devised and applied on a variety of
soft biological tissues. It was shown that the model allows the experimental mean behavior and
variability to be accurately reproduced at various strain rates.
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Stochastic Modeling of Compressible Isotropic
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3.1 Introduction

This chapter extends the framework presented in Chapter 2 to the case of homogeneous, isotropic
and compressible hyperelastic materials [47]. This generalization raises two main difficulties.
First, it requires the definition of the joint probability density function for the random bulk and
shear moduli at small strains. In the present case, these elastic moduli satisfy an inequality
constraint that will generate statistical dependencies. Second, the probabilistic model involves
more complex algebraic constraints raised by consistency relations with linearized elasticity.

This chapter is organized as follows. The deterministic stored energy function for which a
stochastic extension is sought is first presented in Section 3.2. Sections 3.3 and 3.4 are concerned
with the construction of probabilistic models for Neo-Hookean and Ogden-type stored energy
functions. Uncertainty propagation is finally performed in a nonlinear multiscale setting in
Section 3.5.

3.2 Deterministic background

Let us consider a homogeneous, isotropic and compressible hyperelastic medium characterized
by the Ogden-type stored energy function w [77, 76, 53, 51]:

w([F ]) =
m∑
i=1

pi(Tr(([F ]T [F ])ηi/2)− 3) +
n∑
j=1

pj+m(Tr((Cof([F ]T [F ]))ηj+m/2)− 3) + g(det([F ])) ,

(3.1)
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where g : R+
∗ → R is the convex function defined as

g(δ) =
pm+n+1

2
(δ − 1)2 − s log(δ) , ∀δ ∈ R+

∗ , (3.2)

and such that limδ↓0 g(δ) = +∞. When the model parameters satisfy (see [65, 53])

pk > 0 , 1 6 k 6 m+ n+ 1 , s > 0 , (3.3)

and
η1 > 2 , η1 > · · · > ηm > 1 , ηm+1 >

3

2
, ηm+1 > · · · > ηm+n > 1 , (3.4)

then the stored energy function defined by Eq. (3.1) is polyconvex and satisfies

(i) the growth condition given by Eq. (1.30), that is, there exist c0 > 0, c1 ∈ R, p > 2 and
q > 3/2 such that

w([F ]) > c0(‖[F ]‖pF + ‖Cof([F ])‖qF )− c1 , ∀[F ] ∈M3
+; (3.5)

(ii) the physically-based condition limdet([F ])↓0w([F ]) = +∞.

Under these assumptions, the existence of minimizers for the energy functional is ensured [65,
53, 66, 68].

The stored energy function can be expanded near the reference configuration as [53]

w([F ]) =
1

2
[E] : JAK : [E] +O(‖[E]‖3F ) , [E] =

1

2

(
[F ]T[F ]− [I3]

)
, (3.6)

where JAK denotes the fourth-order elasticity tensor of the form

JAK = 3κJE1K + 2µJE2K , (3.7)

in which κ and µ correspond to the bulk and shear moduli of the isotropic material at small
strains. In the present case, and following the methodology proposed in [54], Eq. (3.6) can
equivalently be recast using the following conditions:

ŵ(1, 1, 1) = 0 ,
∂ŵ

∂υj
(1, 1, 1) = 0 ,

∂2ŵ

∂υi∂υj
(1, 1, 1) = λ+ 2µδij , 1 6 i, j 6 3 , (3.8)

where ŵ corresponds to the stored energy function expressed in terms of the singular values
{υ1([F ])}3j=1 of [F ] ∈M3

+, that is

ŵ(υ1, υ2, υ3) =

m∑
i=1

pi(υ
ηi
1 + υηi2 + υηi3 − 3)

+
m∑
j=1

pj+m((υ1υ2)ηj+m + (υ2υ3)ηj+m + (υ1υ3)ηj+m − 3)

+
pm+n+1

2
(υ1υ2υ3 − 1)2 − s log(υ1υ2υ3) ,

(3.9)

and λ = κ− 2µ/3 denotes the Lamé parameter. It can then be deduced that
m∑
i=1

piη
2
i − pm+n+1 =

8

3
µ− κ , (3.10a)

n∑
j=1

pj+mη
2
j+m + pm+n+1 = κ− 2

3
µ , (3.10b)
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and

s =
m∑
i=1

piηi + 2
n∑
j=1

pj+mηj+m . (3.11)

The equality stated by Eq. (3.10b) shows that λ > 0, hence restricting the analysis to the class
of (non-auxetic) materials with strictly positive Poisson ratio at small strains.

A compressible Mooney-Rivlin material is defined for m = n = 1 and η1 = η2 = 2 (see, e.g.,
[104]):

w([F ]) = p1

(
‖[F ]‖2F − 3

)
+ p2

(
‖Cof([F ])‖2F − 3

)
+
p3

2
(det([F ])− 1)2 − s log(det([F ])) , (3.12)

for all [F ] in M3
+, and the consistency relations then reduce to:

4p1 − p3 =
8

3
µ− κ , 4p2 + p3 = κ− 2

3
µ , s = 2p1 + 4p2 . (3.13)

This stored energy function was proposed by Ciarlet and Geymonat in a slightly different form
[69] (see also [53]).

A compressible Neo-Hookean material is defined by the stored energy function [54]:

w([F ]) =
µ

2

(
‖[F ]‖2F − 3

)
+
λ

2
(det([F ])− 1)2 − µ log (det ([F ])) , ∀[F ] ∈M3

+ . (3.14)

The construction of a probabilistic model for the Neo-Hookean case is first addressed in Section
3.3. The general case of Ogden-type stored energy functions is subsequently tackled in Section
3.4.

3.3 Stochastic modeling of Neo-Hookean materials

Let C = (C1, C2) be the random variable corresponding to the stochastic modeling of the bulk
and shear moduli, and let JAK be the random elasticity tensor at small strains:

JAK = 3C1JE1K + 2C2JE2K . (3.15)

The stochastic stored energy function associated with the compressible Neo-Hookean model
defined by Eq. (3.14) is then written as

W([F ]) =
C2

2

(
‖[F ]‖2F − 3

)
+

Λ

2
(det([F ])− 1)2 − C2 log (det ([F ])) , ∀[F ] ∈M3

+ , (3.16)

with Λ = C1 − 2C2/3. By definition, the above stored energy function only depends on the
random Lamé parameter Λ and the random shear modulus C2 (or equivalently, on the random
bulk modulus C1 and the shear modulus C2). In the present case, the polyconvexity property is
only relevant to the two-dimensional case and implies that

Λ > 0 , C2 > 0 , (3.17)

almost surely. The stochastic extension of the classical Neo-Hookean model is then completely
defined by the probabilistic model of random variable C. In order to proceed with the MaxEnt
construction, assume that

E {C} = c (3.18)
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and consider the repulsive constraints

E
{

log
(
C1 −

2

3
C2

)}
= ν1 , |ν1| < +∞ (3.19)

and
E{log(C2)} = ν2 , |ν2| < +∞ , (3.20)

associated with Eq. (3.17). Let L1 ∈ R, L2 ∈ R, (1−α) ∈ (−∞, 1) and (1−β) ∈ (−∞, 1) be the
Lagrange multipliers associated with Eqs. (3.18), (3.19) and (3.20), respectively. The probability
density function induced by the MaxEnt principle is then given by

fC(c) = 1SC
(c) k0

(
c1 −

2

3
c2

)α−1
cβ−1

2 exp (−L1c1 −L2c2) . (3.21)

where
SC =

{
c ∈ R2 : c1 −

2

3
c2 > 0 , c2 > 0

}
. (3.22)

Furthermore, it can be deduced from Eq. (3.21) that Λ and C2 are statistically independent
random variables and are defined by the probability density functions

fΛ(λ) = 1R+
∗

(λ)
1

Γ(α)θα1
λα−1 exp

(
− λ
θ1

)
, (3.23)

and
fC2(c2) = 1R+

∗
(c2)

1

Γ(β)θβ2
cβ−1

2 exp

(
−c2

θ2

)
, (3.24)

with θ1 = 1/L1 and θ2 = 3/(3L2 + 2L1). The equations (3.23) and (3.24) show that Λ and
C2 are, in the case of the Neo-Hookean materials, statistically independent Gamma-distributed
random variables with parameters (α, θ1) and (β, θ2), respectively.

3.4 Stochastic modeling of Ogden-type stored energy functions

Let W be the stochastic stored energy function corresponding to the probabilistic modeling of
an Ogden-type potential for isotropic compressible materials:

W([F ]) =
m∑
i=1

Pi(Tr(([F ]T [F ])ηi/2)− 3) +
n∑
j=1

Pj+m(Tr((Cof([F ]T [F ]))ηj+m/2)− 3)

+
Pm+n+1

2
(det([F ])− 1)2 − S log(det([F ])) ,

(3.25)

where the random variables P1, . . . , Pm+n+1 correspond to the stochastic versions of model pa-
rameters p1, . . . , pm+n+1 and the random variable S reads as (see Eq. (3.11))

S =
m∑
i=1

Piηi + 2
n∑
j=1

Pj+mηj+m . (3.26)

As for the incompressible case discussed in Section 2.3, it is assumed that the exponents {ηk}m+n
k=1

are deterministic and satisfy the constraints given by Eq. (3.4). Let P = (P1, . . . , Pm+n+1) and
η = (η1, . . . , ηm+n+1).

The constraints related to the existence theorems and consistency with linearized elasticity
require that
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(i) Pk > 0, 1 6 k 6 m+ n+ 1, almost surely;

(ii) the random variables C and P satisfy

m∑
i=1

Piη
2
i − Pm+n+1 =

8

3
C2 − C1 , (3.27a)

n∑
j=1

Pj+mη
2
j+m + Pm+n+1 = C1 −

2

3
C2 . (3.27b)

One way to ensure that Eqs. (3.10a)–(3.10b) hold without defining the probability measure on
a manifold is to select two components of P, say Pm and Pm+n, and to enforce the equalities
afterwards, setting

Pm =
1

η2
m

(8

3
C2 − C1 −

m−1∑
i=1

Piη
2
i + Pm+n+1

)
(3.28)

and

Pm+n =
1

η2
m+n

(
C1 −

2

3
C2 −

m+n−1∑
j=m+1

Pjη
2
j − Pm+n+1

)
. (3.29)

The above selection of Pm and Pm+n is arbitrary when m > 1 and n > 1. However, any other
selection would yield similar algebraic forms for the constructed probability measures, given
the symmetry of the constraint equations in terms of these variables. Imposing Pm > 0 and
Pm+n > 0 then implies, in view of Eqs. (3.28) and (3.29), that

C1 −
8

3
C2 +

m−1∑
i=1

Piη
2
i < Pm+n+1 < C1 −

2

3
C2 −

m+n−1∑
j=m+1

Pjη
2
j (3.30)

almost surely. In summary, the constraints to be accounted for in the MaxEnt formulation are
given by

Pk > 0 , 1 6 k 6 m− 1 and m+ 1 6 k 6 m+ n− 1 (3.31)

and

C1 −
8

3
C2 +

m−1∑
i=1

Piη
2
i < Pm+n+1 < C1 −

2

3
C2 −

m+n−1∑
j=m+1

Pjη
2
j (3.32)

almost surely. The constraint Pm+n+1 > 0, combined with Eq. (3.32), then leads to the condition

Pm+n+1 > max
{

0, C1 −
8

3
C2 +

m−1∑
i=1

Piη
2
i

}
. (3.33)

Assume next that
C1 −

8

3
C2 > 0 (3.34)

almost surely. This inequality is stronger than the classical condition C1 − 2C2/3 > 0, but is
satisfied by most materials in practice. Moreover, it allows for substantial simplifications in the
algebraic results that will be presented below, and the inequality Pm+n+1 > 0 then holds almost
surely.
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Let P̃ be the vector-valued random variable obtained by removing the entries Pm and Pm+n

in the random vector P, i.e.,

P̃ = (P1, . . . , Pm−1, Pm+1, . . . , Pm+n−1, Pm+n+1) . (3.35)

Similarly, let η̃ be the vector given by

η̃ = (η1, . . . , ηm−1, ηm+1, . . . , ηm+n−1) . (3.36)

The constraints given by Eqs. (3.31) and (3.30) then take the forms

P̃k > 0 , 1 6 k 6 m+ n− 1 (3.37)

and

C1 −
8

3
C2 +

m−1∑
i=1

P̃iη̃
2
i < P̃m+n−1 < C1 −

2

3
C2 −

m+n−2∑
j=m

P̃j η̃
2
j . (3.38)

Let f
C,P̃

be the joint probability density function of random variables C and P̃. As for the
incompressible case (see Section 2.3), the construction of the probabilistic model is achieved in
a two-step strategy involving a conditioning on the elastic moduli:

f
C,P̃

(c,p) = fC(c)× f
P̃|C=c

(p) , (3.39)

where

• fC is the marginal probability density function of random variable C;

• f
P̃|C=c

is the conditional probability density function of random variable P̃ given C.

In this approach, the MaxEnt principle is applied sequentially (as opposed as the strategy that
would involve a conditional entropy), first to construct the probability law for the elastic moduli
at small strains, and then to derive the expression of the conditional probability measures. These
points are addressed in order in Sections 3.4.1, 3.4.2 and 3.4.3.

3.4.1 Stochastic modeling of C

Assume that the available information on the random variable C is given by

E {C1} = c1 , E {C2} = c2 , (3.40)

where (c1, c2) ∈ SC, and by constraints related to the inequality given by Eq. (3.34) and the
condition C2 > 0:

E
{

log

(
C1 −

8

3
C2

)}
= ν1 , |ν1| < +∞ , (3.41)

E {log (C2)} = ν2 , |ν2| < +∞ . (3.42)

Let L1 ∈ R, L2 ∈ R, (1 − α) ∈ (−∞, 1) and (1 − β) ∈ (−∞, 1) be the Lagrange multipliers
associated with the above constraints. It follows that the probability density function fC, induced
by the MaxEnt principle, writes:

fC(c) = 1SC
(c) k0

(
c1 −

8

3
c3

)α−1

cβ−1
2 exp (−L1c1 −L2c2) , (3.43)
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in which the support SC is defined as:

SC =

{
c ∈ R2 : c1 −

8

3
c2 > 0 , c2 > 0

}
. (3.44)

Note that by construction, this support is different from the one introduced in Section 3.3. Let
Λ̃ be the random variable defined as:

Λ̃ = C1 −
8

3
C2 . (3.45)

Performing the measure transformation then yields

f
Λ̃,C2

(λ, c2) = k0 1R+
∗

(λ)λα−1 exp

(
− λ
θ1

)
× 1R+

∗
(c2)cβ−1

2 exp

(
−c2

θ2

)
, (3.46)

which shows that Λ̃ and C2 turn out to be statistically independent Gamma-distributed random
variables defined by the parameters (α, θ1) and (β, θ2), respectively. Note that similar results
were obtained in [28, 29] where it was found, under less restrictive constraints, that C1 and C2

are statistically independent Gamma-distributed random variables in the context of linearized
elasticity.

3.4.2 Stochastic modeling under inequality constraints

We now proceed with the second step of the modeling strategy, and address the construction of
a probabilistic model for P̃|C. Here, the constraints are given by (see Eqs. (3.37) and (3.38))

P̃k > 0 , k = 1, . . . ,m+ n− 1 , (3.47)

and

C1 −
8

3
C2 +

m−1∑
i=1

P̃iη̃
2
i < P̃m+n−2 < C1 −

2

3
C2 −

m+n−1∑
j=m

P̃j η̃
2
j . (3.48)

In order to simplify the algebraic expressions in the above inequality constraints, consider an
auxiliary random variable U with values in a subset of Rm+n+1 and let Ũ be the random vector
obtained by removing the entries Um and Um+n from U. Let P̃ be subsequently defined as

P̃ = h(Ũ,C) , (3.49)

where h is the mapping given by

hj(u, c) =
2c2uj
η̃2
j

, j = 1, . . . ,m+ n− 2 , (3.50)

and

hm+n−1(u, c) = 2c2

(
1−

m+n−2∑
i=1

ui

)
um+n−1 + c1 −

8

3
c2 + 2c2

m−1∑
j=1

uj . (3.51)

By substituting these relations into Eq. (3.48), it can be deduced that1−
m+n−2∑
j=1

Ũj

 Ũm+n−1 > 0 (3.52)
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and 1−
m+n−2∑
j=1

Ũj

(1− Ũm+n−1

)
> 0 , (3.53)

with
Ũj > 0 , j = 1, . . . ,m+ n− 2 , (3.54)

in view of Eqs. (3.47) and (3.50). It follows that the random variable Ũ takes its values in the
set U defined as

U =
{

u ∈ (0, 1)m+n−1 : 1−
m+n−2∑
k=1

uk > 0
}
. (3.55)

The conditional probability density function f
P̃|C is then given by

f
P̃|C=c

(p) = f
Ũ

(h−1(p, c))× | det([J(p, c)])| , (3.56)

where [J(p, c)] denotes the jacobian matrix defined component-wise as

[J(q, c)]jk =
∂h−1

j (q, c)

∂qk
, 1 6 j, k 6 m+ n− 1 . (3.57)

As a consequence, the conditional probability density function f
P̃|C=c

writes

f
P̃|C=c

(p|c) = f
Ũ

(h−1(p, c))×

(
m+n−2∏
k=1

η̃2
k

2c2

)
1

2c2 −
m+n−2∑
i=1

piη̃2
i

. (3.58)

Let us now construct the probability density function f
Ũ
. The constraints induced by

Eq. (3.52) are defined as

E
{

log
(

1−
m+n−2∑
i=1

Ũi

)}
= χ1 , |χ1| < +∞ , (3.59)

and
E{log(Ũm+n−1)} = νm+n−1 , |νm+n−1| < +∞ , (3.60)

and are supplemented with (see Eq. (3.53))

E{log(1− Ũm+n−1)} = χ2 , |χ2| < +∞ . (3.61)

Furthermore, Eq. (3.54) is taken into account by imposing that

E{log(Ũj)} = νj , |νj | < +∞ , j = 1, . . . ,m+ n− 2 . (3.62)

Let (1 − τm+n−1) ∈ (−∞, 1), (1 − ρ1) ∈ (−∞, 1), (1 − ρ2) ∈ (−∞, 1) and (1 − τk) ∈ (−∞, 1),
1 6 k 6 m + n − 2, be the Lagrange multipliers associated with Eqs. (3.59), (3.60), (3.61) and
(3.62), respectively. The probability density function f

Ũ
then takes the form

f
Ũ

(u) = 1U (u) k0

(
m+n−2∏
k=1

uτk−1
k

)(
1−

m+n−2∑
i=1

ui

)τm+n−1−1

uρ1−1
m+n−1(1− um+n−1)ρ2−1 (3.63)
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and can be written as

f
Ũ

(u) = f
Ũ1...Ũm+n−2

(u1, . . . , um+n−2)× f
Ũm+n−1

(um+n−1) , (3.64)

in which
f
Ũ1...Ũm+n−2

(u1, . . . , um+n−2) = 1S(u1, . . . , um+n−2)

×

Γ
(∑m+n−1

k=1 τk

)
∏m+n−1
k=1 Γ(τk)


(
m+n−2∏
k=1

uτk−1
k

)(
1−

m+n−2∑
k=1

uk

)τm+n−1−1

(3.65)
and

f
Ũm+n−1

(v) = 1(0,1)(v)
1

B(ρ1, ρ2)
vρ1−1(1− v)ρ2−1 . (3.66)

Here, the support S is given by

S =
{

u ∈ (0, 1)m+n−2 : 1−
m+n−2∑
k=1

uk > 0
}
. (3.67)

As a consequence, it is seen that

• the random variables (Ũ1, . . . , Ũm+n−2) and Ũm+n−1 are statistically independent;

• (Ũ1, . . . , Ũm+n−2) follows a Dirichlet distribution with parameters (τ1, . . . , τm+n−1);

• Ũm+n−1 follows a Beta distribution with parameters (ρ1, ρ2).

Note that the integration constants in Eqs. (3.65) and (3.66) were readily inferred from the an-
alytical expressions of the labeled statistical distributions under consideration.

The main result can be summarized in the following proposition.

Proposition 3.1. For m > 1 and n > 1, let W be the stochastic Ogden-type stored energy
function defined as

W([F ]) =
m∑
i=1

Pi(Tr(([F ]T [F ])ηi/2)− 3) +
n∑
j=1

Pj+m(Tr((Cof([F ]T [F ]))ηj+m/2)− 3)

+
Pm+n+1

2
(det([F ])− 1)2 − S log(det([F ])) ,

(3.68)

for all [F ] ∈M3
+, where

Pk =
2C2

η2
k

Uk , 1 6 k 6 m− 1 , m+ 1 6 k 6 m+ n− 1 , (3.69)

Pm =
2C2

η2
m

(
1−

m−1∑
i=1

Ui −
m+n−1∑
j=m+1

Uj

)
Um+n+1 , (3.70)

Pm+n =
2C2

η2
m+n

(
1−

m−1∑
i=1

Ui −
m+n−1∑
j=m+1

Uj

)
(1− Um+n+1) , (3.71)

Pm+n+1 = 2C2

(
1−

m−1∑
i=1

Ui −
m+n−1∑
j=m+1

Uj

)
Um+n+1 + C1 −

8

3
C2 + 2C2

m−1∑
i=1

Ui . (3.72)

and
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• η is such that η1 > 2, η1 > . . . ηm > 1, ηm+1 > 3/2 and ηm+1 > · · · > ηm+n > 1;

• Λ̃ = C1 − 8C2/3 follows a Gamma distribution with parameters (α, θ1);

• C2 follows a Gamma distribution with parameters (β, θ2);

• (U1, . . . , Um−1, Um+1, . . . , Um+n−1) and Um+n+1 are statistically independent;

• (U1, . . . , Um−1, Um+1, . . . , Um+n−1) follows a Dirichlet distribution with the vector-valued
parameter τ = (τ1, . . . , τm+n−1);

• Um+n+1 follows a Beta distribution with parameter ρ = (ρ1, ρ2);

• S is the R+
∗ -valued random variable defined by Eq. (3.11).

Then the stored energy function W is polyconvex, coherent at small strains, and coercive almost
surely.

As with the case of incompressible materials, this proposition underlines the key role played
by the stochastic model to ensure that the stochastic nonlinear boundary value problem is well
posed. In addition, it should be noticed that robust generators are available for sampling the
involved probability density functions.

Example. The case of Mooney-Rivlin materials corresponds to m = n = 1 and η1 = η2 = 2, so
that m + n + 1 = 3, P = (P1, P2, P3) and P̃ = P3. The stochastic stored energy function then
writes

W([F ]) =P1

(
‖[F ]‖2F − 3

)
+ P2

(
‖Cof([F ])‖2F − 3

)
+
P3

2
(det([F ])− 1)2 − (2P1 + 4P2) log (det([F ])) ,

(3.73)

for all [F ] ∈M3
+. The random variables P1 and P2 are given by

P1 =
2C2

4
U , P2 =

2C2

4
(1− U) . (3.74)

The probability density function of the random variable C is given by Eq. (3.43), and the random
variable P3 is given by

P3 = 2C2U + C1 −
8

3
C2 , (3.75)

where U is a Beta distributed random variable with parameters (ρ1, ρ2).

Remark 3.4.1. Proceeding similarly as in the incompressible case (see Eq. (2.53) in Section
2.6.1), the set of nonlinear equations to be solved, induced by Eqs. (3.59)-(3.62), reads as:

ψ(τm+n−1)− ψ
(m+n−1∑

k=1

τk

)
= χ1 ,

ψ(τj)− ψ
(m+n−1∑

k=1

τk

)
= νj , j = 1, . . . ,m+ n− 2 ,

(3.76)

and
ψ(ρ1)− ψ(ρ1 + ρ2) = νm+n−1 ,

ψ(ρ2)− ψ(ρ1 + ρ2) = χ2 ,
(3.77)

where it is recalled that ψ is the digamma function [87]. In practice, this system of m + n + 1
equations can be solved by using a nonlinear least-square algorithm for instance.
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3.4.3 Stochastic modeling under inequality and mean constraints

In this section, additional constraints related to the mean values of random variables P̃j , j =
1, . . . ,m + n − 1 are considered. The probabilistic model is therefore constructed under the
constraints given by Eqs. (3.59)-(3.62), which are complemented with

E{Ũ} = ũ , (3.78)

where ũ ∈ U . The probability density function of random variable Ũ then takes the form:

f
Ũ

(u) =1U (u) k0

(
m+n−2∏
k=1

uτk−1
k

)(
1−

m+n−2∑
i=1

ui

)τm+n−1−1

uρ1−1
m+n−1(1− um+n−1)ρ2−1

× exp

(
−
m+n−2∑
k=1

ξkuk −$um+n−1

)
,

(3.79)

where ξk ∈ R, 1 6 k 6 m+n− 2 and $ ∈ R are additional Lagrange multipliers associated with
the mean constraint. It is observed that

f
Ũ

(u1, . . . , um+n−2, um+n−1) = f
Ũ1...Ũm+n−2

(u1, . . . , um+n−2)× f
Ũm+n−1

(um+n−1) , (3.80)

hence showing that (Ũ1, . . . , Ũm+n−2) and Ũm+n−1 are statistically independent. The associated
probability density functions write

f
Ũ1...Ũm+n−2

(u1, . . . , um+n−2) = 1S(u1, . . . , um+n−2) k0

(
m+n−2∏
k=1

uτk−1
k

)

×

(
1−

m+n−2∑
k=1

uk

)τm+n−1−1

× exp

(
−
m+n−2∑
k=1

ξkuk

)
,

(3.81)

and

f
Ũm+n−1

(v) = 1(0,1)(v)
vρ1−1(1− v)ρ2−1 exp(−$v)

B(ρ1, ρ2)F(ρ1, ρ1 + ρ2,−$)
. (3.82)

The main result stated in Proposition 3.1 still holds with the probability density functions
f
Ũ1...Ũm+n−2

and f
Ũm+n−1

defined by Eqs. (3.81) and (3.82), respectively. In the particular case
where ξk = ξ, 1 6 k 6 m + n − 2, an explicit expression for the normalization constant k0 in
Eq. (3.81) can be obtained in terms of confluent hypergeometric functions [92].

Example. In the particular case of a Mooney-Rivlin material, the stochastic stored energy func-
tion is defined by Eqs. (3.73) and (3.74), where P3 takes the form

P3 = 2C2Ũ + C1 −
8

3
C2 , (3.83)

and Ũ follows a Kummer-Beta distribution with parameters ρ1, ρ2 and $ (see Eq. (3.82)). In
this case and following previous developments, it can be shown that these parameters satisfy the
following system of equations:

χ1 = ψ(ρ1)− ψ(ρ1 + ρ2) +
∂

∂ρ1
log (F(ρ1, ρ1 + ρ2,−$)) , (3.84a)

χ2 = ψ(ρ2)− ψ(ρ1 + ρ2) +
∂

∂ρ2
log (F(ρ1, ρ1 + ρ2,−$)) , , (3.84b)

ũ =
ρ1

ρ1 + ρ2

F(ρ1 + 1, ρ1 + ρ2 + 1,−$)

F(ρ1, ρ1 + ρ2,−$)
. (3.84c)
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3.5 Uncertainty propagation in computational homogenization

As a numerical illustration, the proposed probabilistic formulation is used in this section to model
uncertainties in the nonlinear properties of constitutive phases within a multiscale setup (see,
e.g., [38] for the propagation of microstructural randomness). A two-dimensional microstruc-
ture composed of a Neo-Hookean matrix reinforced by stiffer Neo-Hookean circular inclusions is
considered. The volume fraction is fixed to 0.4, and forty inclusions (with equal diameters) are
randomly placed by using the packing generation algorithm detailed in [105]. The considered
representative volume element B ⊂ R2 is shown in Fig. 3.1.

Figure 3.1 – Realization of the random microstructure under consideration.

3.5.1 Homogenization framework for hyperelastic composites

Since the properties of the inclusion phase are assumed deterministic and defined by an isotropic
Neo-Hookean model, it follows that

w(f)([F ]) =
µ(f)

2

(
‖[F ]‖2F − 3

)
+
λ(f)

2
(det([F ])− 1)2 − µ(f) log (det([F ])) , (3.85)

with λ(f) > 0 and µ(f) > 0. Here, uncertainties on the constitutive behavior of the matrix phase
are taken into account through the stochastic Neo-Hookean stored energy function (see Section
3.3)

W(m)([F ]) =
C2

2
(‖[F ]‖2F − 3) +

Λ

2
(det([F ])− 1)2 − C2 log(det([F ])) , (3.86)

where the random variables Λ and C2 follow Gamma distributions with parameters (α, θ1) and
(β, θ2), respectively. The local stochastic stored energy function is then defined as

W(x, [F ]) = χ(m)(x)W(m)([F ]) + χ(f)(x)w(f)([F ]) , ∀x ∈ B , ∀[F ] ∈M3
+ , (3.87)

where χ(r), r ∈ {f,m}, is the characteristic function of phase r. When B undergoes linear
deformations on its boundaries, and assuming the separation of scales (in practice, this key
assumption is checked through a convergence analysis with respect to the measure of B), the
stochastic effective stored energy function is then defined as (see [106, 107, 108] for reviews in a
deterministic context)

Weff([F ]) = min
z∈K([F ])

1

|B|

∫
B
W(x, [F ] + [∇z(x)]) dx , (3.88)
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3.5. Uncertainty propagation in computational homogenization

where K([F ]) is the set of admissible fluctuations fields:

K([F ]) = {z ∈W 1,p(B,R3) : z(x) = 0 on ∂B} . (3.89)

Since the microscopic stored energy functions w(f) and W(m) are almost surely frame-invariant,
it follows that there exists an effective potential W such that

W([C]) = Weff([F ]) , [C] = [F ]T[F ] , (3.90)

for all [F ] ∈ M3
+. From a numerical standpoint, the finite element mesh for the microstructure

shown in Fig. 3.1 is composed of 5 431 nodes and 10 660 linear triangular elements. The nonli-
near boundary value problems are solved with a standard nonlinear finite element method [109]
implemented with the C++ library Eigen3 [110].

Below, the propagation of the uncertainties from the microscale to the macroscale is ad-
dressed. The framework is first presented in Section 3.5.2. The numerical results are then
discussed in Section 3.5.3.

3.5.2 Polynomial chaos expansion of the stochastic effective potential

In this section, the stochastic effective stored energy function is modeled using a polynomial
chaos expansion (PCE) [111, 112, 1]. Let Y be the random variable such that

Y1 =
Λ

θ1
, Y2 =

C2

θ2
. (3.91)

By construction, the random variables Y1 and Y2 are statistically independent and follow Gamma
distributions with parameters (α, 1) and (β, 1). It is assumed below that the stochastic effective
stored energy function is a second-order random variable, regardless of the macroscopic right
Cauchy-Green tensor [C] under consideration, i.e.,

E{W2
([C])} < +∞ , ∀[C] ∈ K , (3.92)

where K is a given subset of S3
+. Note here that the homogenization is performed at small strains,

and that no local instability can occur. Therefore, and for all [C] fixed in K, the random variable
W([C]) admits the following decomposition:

W([C]) =

+∞∑
|ζ|=0

zζ([C]) Ψζ(Y) , (3.93)

where ζ ∈ N2 is a multi-index, |ζ| = ζ1 + ζ2, and {Ψζ}ζ is a set of multivariate polynomials that
are orthonormal with respect to the probability measure PY(dy) of Y:

E {Ψζ(Y) Ψς(Y)} = δζς , (3.94)

where δζς = δζ1ς1×δζ2ς2 and δij denotes the Kronecker symbol. Note that the above polynomials
implicitly depend on the parameters α and β defining the probability distribution of Y. The
coefficients {zζ([C])}ζ are then given by

zζ([C]) = E
{
W([C])Ψζ(Y)

}
, (3.95)
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for all ζ ∈ N2. The orthonormal polynomials {Ψζ}ζ correspond to the bivariate normalized and
generalized Laguerre polynomials [113] defined as [87]

Ψζ(Y) = ϕζ1(Y1)× ϕζ2(Y2) , (3.96)

where ϕζ1 and ϕζ2 are given by

ϕζ1(Y1) =

√
ζ1!Γ(α)

Γ(ζ1 + α)
L

(α−1)
ζ1

(Y1) , ϕζ2(Y2) =

√
ζ2!Γ(β)

Γ(ζ2 + β)
L

(β−1)
ζ2

(Y2) . (3.97)

In Eq. (3.97), the polynomial L(ξ−1)
n stands for the classical generalized Laguerre polynomial

of order n ∈ N with parameter ξ > 0. In practice, the polynomial chaos expansion given by
Eq. (3.93) is truncated at an order p, yielding the mean-square convergent approximation

Wp([C]) =

p∑
|ζ|∈Ap

zζ([C])Ψζ(Y) , (3.98)

where Ap = {ζ ∈ N2 : |ζ| 6 p} and card(Ap) = (2 + p)!/(2p!). In practice, the polynomial
coefficients can be computed by using the Monte Carlo method, quadrature rules or stochastic
collocation methods (see [2] for extensive surveys in both low and high dimensions). Given
the low stochastic dimension of the problem, the polynomial coefficients given by Eq. (3.95) are
computed thanks to a generalized Gauss-Laguerre quadrature rule [87, 114]:

zζ([C]) ' z?ζ([C]) =
1

Γ(α)Γ(β)

nQ∑
i=1

nQ∑
j=1

ω
(nQ)
ij w([C]; y(i,j))Ψζ(y

(i,j)) , (3.99)

where {ω(nQ)
ij ,y(i,j)}nQi,j=1 is the set of weights and nodes for the two-dimensional generalized

Gauss-Laguerre quadrature rule, and w([C]; y(i,j)) denotes the value of the stochastic stored
energy function W ([C]) for Y1 = y

(i,j)
1 and Y2 = y

(i,j)
2 .

The optimal order p and number of quadrature points nQ must be determined through
convergence studies. For a given order of expansion, the number of integration points nopt

Q is
determined by studying the error function εQ defined as

εQ(nQ) =
‖z?(nQ + 1)− z?(nQ)‖

‖z?(nQ)‖
, nQ > 1 , (3.100)

where z?(nQ) gathers the polynomial coefficients {z?ζ}ζ computed with nQ quadrature points
along each direction. The optimal number nopt

Q is then chosen such that εQ(nopt
Q ) < εtol

Q , where
εtol
Q is some user-specified tolerance parameter. The optimal order popt is determined such that
ε(popt) < εtol, where ε(p) is the following L2 error measure:

ε(p) =
E{(W([C])−Wp([C]))2}

E{W([C])2}
, (3.101)

and εtol denotes a tolerance parameter. The above error measure is computed with the generalized
Gauss-Laguerre quadrature rule (note that the number of integration points that is necessary to
reach convergence may be higher than nopt

Q ).
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3.5. Uncertainty propagation in computational homogenization

3.5.3 Results for a two-dimensional loading

For numerical purposes, we consider the macroscopic loading path defined by the following set
M ⊂ S3

+ of macroscopic Cauchy-Green tensors:

M =
{

[C] ∈ S3
+ | (C11, C22) ∈ ([0.8, 1.5])2, C33 = 1, Cij = 0 for i 6= j

}
. (3.102)

For the stochastic matrix phase, the mean values of the material parameters are chosen as
c

(1)
1 = 1750 MPa and c(1)

2 = 358.125 MPa. The associated shape parameters (α, θ1) and (β, θ2)

are such that θ1 = λ(1)/α and θ2 = c
(1)
2 /β, where λ(1) = c

(1)
1 − 2c

(1)
2 /3. The parameters α and β

are further chosen as α = β = 25, hence inducing a coefficient of variation for random variables
Λ(1) and C(1)

2 equal to 20%. The deterministic material parameters characterizing the inclusions
are chosen as c(2)

1 = 100c
(1)
1 and c(2)

2 = 100c
(1)
2 , so that the elastic contrast between the matrix (in

mean) and the fillers is equal to 100. The mean computation time associated with each call to
the nonlinear finite element solver is 0.8664 second on a 2,9 GHz core. The convergence analysis
of the polynomial chaos expansion with respect to p and nQ is performed for a given macroscopic
loading defined by

[C0] = 1.5(e1 ⊗ e1 + e2 ⊗ e2) + 0.3(e1 ⊗ e2 + e2 ⊗ e1) . (3.103)

The tolerance parameter εtol
Q associated with the convergence of numerical integration is chosen

as 10−10. The graphs of the error functions nQ 7→ εQ(nQ) and p 7→ ε(p) are shown in Fig. (3.2) for
1 6 nQ 6 20 and p = 2k+ 1, k ∈ {0, 1, 2, 3}. The associated results are summarized in Tab. 3.1.

1 4 7 10 13 16 19
10

-15

10
-10

10
-5

10
0

10
5

1 2 3 4 5 6 7
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

Figure 3.2 – Graphs of the error functions nQ 7→ εQ(nQ) (left panel) and p 7→ ε(p) (right panel),
for 1 6 nQ 6 20 and p = 2k + 1, k ∈ {0, 1, 2, 3}.

Based on the convergence study, the optimal order popt is chosen as popt = 7 with nopt
Q = 12.

In order to illustrate the accuracy of the polynomial chaos expansion, some probability density
functions estimated by sampling the PCE are compared with reference solutions obtained by
direct Monte Carlo simulations (20 000 samples are used). The probability density function
of the stochastic effective potential for the macroscopic Cauchy-Green tensor [C0] is shown in
Fig. (3.3) (left panel). In addition, a comparison for the joint probability density function of the
stochastic effective potential at points [C0] and [C1], with

[C1] = 1.6(e1 ⊗ e1 + e2 ⊗ e2) + 0.2(e1 ⊗ e2 + e2 ⊗ e1) , (3.104)
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p 1 3 5 7

nopt
Q 8 9 11 12

εQ(nopt
Q ) 0.2370× 10−11 0.6976× 10−11 0.3377× 10−11 0.5318× 10−11

ε(p) 3.98× 10−8 2.02× 10−11 1.59× 10−13 3.47× 10−15

Table 3.1 – Optimal numbers of integration points ntol
Q for odd orders p = 1, 3, 5, 7 and associated

errors and for [C] = [C0].
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Figure 3.3 – Left: Probability density function of the stochastic effective potential for [C] = [C0].
Thick black line: according to 20000 Monte Carlo simulations. Red dots: According to the PC
expansion truncated at order p = 7. Right: Graph of the joint probability density function
fW([C0])W([C1]). Thick line: Monte Carlo simulations. Thin line: PCE.

is also provided in the same figure (right panel) In both cases, a very good match is observed.
Finally, we characterize below the mean and variance fields of the stochastic effective stored
energy function on a regular grid composed of 100 points belonging to M . The grid is specifically
constructed with 10 equally-spaced points along each direction in the plane (C11, C22). For each
macroscopic point, the polynomial chaos is constructed with p = 7 and nQ = 12, resulting
in 144 × 100 nonlinear simulations. According to Eq. (3.98), the mean value E{Wp([C])} and
variance E{W2

p([C])} can be estimated as

E{Wp([C])} = zζ(1)([C]) , E{W2
p([C])} =

p∑
|ζ|=0

z2
ζ([C]) . (3.105)

The mean and variance fields are shown in Fig. (3.4).

3.6 Conclusion

This chapter was dedicated to the construction of Ogden-type stochastic stored energy functions
for homogeneous, isotropic and compressible materials [47]. As with the incompressible case,
the methodology consists in ensuring the well-posedness of the stochastic nonlinear boundary
value problem through an entropy maximization. Explicit forms were derived for Neo-Hookean
and Mooney-Rivlin models, as well as for general-order Ogden potentials. The use of the pro-
posed models was finally illustrated by propagating constitutive-model uncertainties through a
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multiscale operator.
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Projection of Effective Strain Energy Functions
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4.1 Introduction

The growing use of composite materials for structural applications and the continuous increase
of the computational capacities have motivated the development of coupling strategies where
information is exchanged back-and-forth between the microscopic and macroscopic scales (see
Fig. 4.1). This class of methods includes the multilevel FE2 method [115, 116], which offers a

L

L

e

e

ud

b

Figure 4.1 – Schematic representation of the FE2 method: here, information is sent back-and-
forth between the microscopic and macroscopic scales, at every Gauss point of the coarse mesh.

55



Chapter 4. Projection of Effective Strain Energy Functions

great versatility in terms of handled constitutive equations. Although the associated algorithms
can easily be made parallel (see, e.g., [117] for a large-scale simulation), such approaches still
suffer from their computational cost. Many alternative approaches were then proposed to address
general situations, such as the Multiscale Finite Element Methods (MsFEMs) [118, 119], where
multiscale basis functions are constructed in finite element spaces as the simulation goes on, and
the Finite Element Heterogeneous Multiscale Methods (FE-HMMs) [120, 121, 122, 123].

Alternatively, various methodologies aiming at the definition of surrogate models were also
proposed in the last few years. Here, the basic idea is to construct a response surface mapping the
relevant macroscopic variables onto the nonlinear effective behavior; thanks to a post-processing
procedure defined on a set of offline microscale computations. Such a strategy has been followed
in [124, 125, 126] by means of proper orthogonal decomposition, low-rank approximations and
spline interpolations, in [127] by resorting on Neural Networks or in [128, 129, 130, 131] to list
a few. A overview of the predictive models in nonlinear computational homogenization can be
found in, e.g., [132, 133]. In particular, the contribution in [134] is concerned with an expansion in
orthogonal polynomials, and proposes the use of compressive sampling [135] in order to compute
the coefficients involved in the polynomial series.

In this chapter, the construction of surrogate models for the homogenized stored energy
functions is constructed using polynomial series in terms of the macroscopic deformations and
projections onto given classes of potentials. This chapter is organized as follows. Section 4.2
is devoted to a brief review of homogenization theory for nonlinear hyperelastic materials. The
construction of surrogate model using a polynomial series is then investigates, in Section 4.3.
The accuracy of the approximation is then extensively assessed on various deterministic and
disordered microstructures. Finally, in Section 4.4, the definition of projections onto classical
sets of stored energy functions is explored. The relevance of this approach is illustrated on several
examples, including a two-scale structural problem.

4.2 Background on concurrent multiscale coupling

4.2.1 Definition of the macroscopic boundary value problem

Let Bmacro be the reference configuration occupied by the structure of interest. The latter
undergoes a deformation map ψ : Bmacro → R3, and the associated deformation gradient is
denoted by

[F (y)] = [∇ψ(y)] , ∀y ∈ Bmacro . (4.1)

The potential defining the hyperelastic medium at the macroscale is denoted by wmacro : M3
+ → R

and such that the effective first Piola-Kirchhoff stress tensor writes

[P ([F ])] =

3∑
k=1

3∑
`=1

∂wmacro([F ])

∂F k`
ek ⊗ e` , ∀[F ] ∈M3

+ . (4.2)

By letting h(macro) : Γmacro
N → R3 be the vector corresponding to the natural boundary conditions

applied on the portion Γmacro
N of ∂Bmacro, the energy functional I(macro) : Xmacro → R writes

I(macro)(ψ) =

∫
Bmacro

wmacro([∇ψ(y)]) dy −
∫

ΓN

〈h(macro)(y),ψ(y)〉 dy , (4.3)

with Xmacro = {ψ ∈ W 1,p(Bmacro,R3) : I(macro)(ψ) < +∞ , ψ = ψd|ΓD}, in which ψd : ΓD →
R3 some essential boundary conditions.
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4.2.2 Definition of the homogenization problem

Let us consider the representative volume element Bmicro located at point y in the structure,
and denote its boundary by ∂Bmicro. Let LBmicro

be the characteristic length of Bmicro. This
volume element is constituted of nr homogeneous phases, with each phase r occupying a domain
B

(r)
micro such that Bmicro =

⋃nr
r=1 B

(r)
micro and

⋂nr
r=1 B

(r)
micro = ∅. The local stored energy function

w : Bmicro ×M3
+ → R then takes the form

w(x, [F ]) =

nr∑
r=1

χ(r)(x)w(r)([F ]) , ∀x ∈ Bmicro , ∀[F ] ∈M3
+ , (4.4)

where χ(r) and w(r) are the characteristic function and stored energy function associated with
phase r, respectively. Assume that the stored energy functions of the nr homogeneous phases are
objective, so that they can be expressed in terms of the right Cauchy-Green tensor. Hence, there
exist w̃ and w̃(r), 1 6 r 6 nr, such that for an associated pair ([F ], [C]), w(r)([F ]) = w̃(r)([C])
and w(x, [F ]) = w̃(x, [C]) for all x in Bmicro. In addition, it is assumed that the stored energy
functions {w(r)}nrr=1 are admissible in the sense considered in the previous chapters (that is, they
are polyconvex and coercive, and satisfy the consistency condition for vanishing deformation
gradients).

Following [106], and upon neglecting body forces, the macroscopic deformation gradient
[F (y)] and effective first Piola-Kirchhoff stress [P (y)] are defined as

[F (y)] =
1

|Bmicro|

∫
∂Bmicro

ϕ(x; y)⊗ n(x) ds =
1

|Bmicro|

∫
Bmicro

[∇ϕ(x; y)] dx (4.5)

and

[P (y)] =
1

|Bmicro|

∫
∂Bmicro

[P (x; [∇ϕ(x; y)])]n(x)⊗ x ds =
1

|Bmicro|

∫
Bmicro

[P (x; [∇ϕ(x; y)])] dx ,

(4.6)
where n(x) is the unit outer normal vector at x ∈ ∂Bmicro and [P ] is the first Piola-Kirchhoff
stress at the microscale. The microscopic deformation map ϕ(·; y) : Bmicro → R3 is assumed
to take the form of a linear contribution x 7→ [F (y)]x superimposed with a fluctuation field
z : Bmicro → R3, that is [136, 108, 137, 133]

ϕ(x; y) = [F (y)]x + z(x) , x ∈ Bmicro , (4.7)

By substituting the above equation into Eq. (4.5), it is deduced that the fluctuation field must
satisfy the condition

1

|Bmicro|

∫
∂Bmicro

z(x)⊗ n(x) ds = [0] . (4.8)

In what follows, a fluctuation field vanishing on ∂Bmicro (that is, z(x) = 0 for all x ∈ ∂Bmicro) is
considered, so that ϕ(x; y) = [F (y)]x for all x ∈ ∂Bmicro and Hill’s lemma is satisfied [106]. The
effective stored energy function wmacro is then defined by the following variational formulation
[106, 107, 108]:

wmacro([F ]) = min
z∈K([F ])

1

|Bmicro|

∫
Bmicro

w(x, [F ] + [∇z(x)]) dx , (4.9)

where K([F ]) is the set of admissible fluctuations fields

K([F ]) = {z ∈W 1,p(Bmicro,R3) : z(x) = 0 on ∂Bmicro} . (4.10)
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Note that the use of non-convex stored energy functions rises additional difficulties in the case
of finite deformations, such that the non-uniqueness of the solution and the development of
microscopic and macroscopic instabilities (which require an adaptation of the mathematical
definition of the effective stored energy function, see, e.g., [138, 139, 140]).

4.2.3 FE2 method

In the FE2 method [115, 116], information is exchanged back-and-forth between the microscopic
and macroscopic scales. Consider first the weak formulation [141, 109] associated with the
macroscopic problem: find ψ ∈ H1

0(Bmacro,R3) such that

a(ψ,v) = `(v)− a(ψd,v) , ∀v ∈ H1
0(Bmacro,R3) , (4.11)

where

a(ψ,v) =

∫
Bmacro

[P (y)] : [∇v(y)] dy , `(v) =

∫
ΓN

〈h(macro)(y),v(y)〉 dy . (4.12)

Using successive linearizations, the above weak formulation is solved with a Newton-Raphson
algorithm (see, e.g., [109, 142]), i.e.,

for k > 0 : a′(ψ(k),v) · (∆ψ(k+1)) = `(v)− a(ψd,v)− a(ψ(k),v) , (4.13)

where a′(ϕ(k), ·) · (∆ψ(k+1)) denotes the Gateaux derivative of a(ψ, ·) at ψ(k) with the increment
∆ψ(k+1) = ψ(k+1) − ψ(k). Given the deformation map y 7→ ψ(k)(y) at the k-th iteration, one
has to determine the effective stored energy function (in order to compute the associated first
or second Piola-Kirchhoff stress tensor) by solving the microscopic boundary value problems at
every location y in Bmacro. The weak formulation of the microscopic problem at y ∈ Bmicro is
given by: find ϕ(·; y) ∈ H1

0(Bmacro,R3) such that

a(ϕ(·; y),v) = `(v)− a(ϕd(·; y),v) , ∀v ∈ H1
0(Bmicro,R3) , (4.14)

with ϕd(x; y) = ([F (y)]− [I3])x for x ∈ ΓD and

a(ϕ(·; y),v) =

∫
Bmicro

[P (x, [∇ϕ(x; y)])] : [∇v(x)] dx , `(v) =

∫
ΓN

〈h(x),v(x)〉 dx . (4.15)

For each iteration k > 0, the above weak formulation must be solved at every location y in
the structure (in order to determine the effective stored energy function defined by Eq. (4.9)).
While such an approach enables the treatment of any nonlinear constitutive behavior, it remains
computationally expensive. In order to avoid these issues, the construction of a polynomial
approximation for the effective stored energy function is investigated in Section 4.3.

4.3 Polynomial approximation of stored energy functions

4.3.1 Vector representation of the macroscopic right Cauchy-Green tensor

Let {[b(ij)], 1 6 i 6 j 6 3} be the orthogonal basis of S3 defined as [73]:

[b(ii)] = ei ⊗ ei , 1 6 i 6 3 , [b(ij)] =
1√
2

(ei ⊗ ej + ej ⊗ ei) , 1 6 i < j 6 3 . (4.16)
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For three-dimensional applications, [C] admits the decomposition

[C] =
∑

16i63

Cii[b
(ii)] +

√
2
∑

16i<j63

Cij [b
(ij)] , (4.17)

where the coefficients {Cij}16i6j63 belong to a given 6-dimensional set such that [C] is positive-
definite. Let c = (c1, . . . , c6) be the vector representation of [C] defined component-wise as

ci = Cii , 1 6 i 6 3 , c9−(i+j) = Cij , 1 6 i < j 6 3 . (4.18)

We finally denote by w the effective stored energy function expressed in terms of c:

w(c) = wmacro([F ]) , (4.19)

with c the vector representation of [C] = [F ]T [F ] defined by Eqs. (4.17)-(4.18).

Remark 4.3.1. The above convention can be readily adapted for plane-strain deformations. In
particular, and when non-vanishing strain deformations are contained in the plane spanned by
e1 and e2, the above vector representation reads as c = (c1, c2, c3), with c1 = C11, c2 = C22 and
c3 = C12.

4.3.2 Polynomial approximation of the effective stored energy function

Below, an approximation of the effective stored energy function w that is uniformly accurate over
a given set K ⊂ Rd is sought, with d = 3 and d = 6 for two- and three-dimensional applications
respectively. It is assumed that K is located sufficiently far away from the boundary of the cone
of positive semidefinite matrices, expressed in vector form. This situation is frequently met in
practice, at least for small perturbations around the configuration at equilibrium. In the sequel,
K is taken as

K =
d
"
i=1

[ai, bi] . (4.20)

Let L2
ρ(K,R) be the space of functions that are square integrable with respect to the uniform

measure ρ(c)dc, with

ρ(c) =
1

|K|
1K(c) . (4.21)

This space is endowed with the inner product

〈f, g〉L2
ρ(K,R) =

∫
K
f(c)g(c) ρ(c)dc , (4.22)

and the associated norm ‖f‖L2
ρ(K,R) = 〈f, f〉1/2

L2
ρ(K,R)

. Let PAp ⊂ L2
ρ(K,R) be the polynomial space

spanned by the multivariate polynomials Ψα that are orthonormal with respect to ρ(c)dc:∫
K

Ψα(c)Ψβ(c) ρ(c) dc = δαβ , ∀α,β ∈ Ap , (4.23)

where δαβ is a generalized Kronecker symbol defined as δαβ = δα1β1 × · · · × δαdβd and Ap is a
set of multi-indexes given by Ap = {α ∈ Nd : |α| 6 p}, with |α| = α1 + · · · + αd. Assume that
the effective stored energy function w belongs to L2

ρ(K,R), that is

‖w‖L2
ρ(K,R) < +∞ . (4.24)
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In this context, the projection wp of the effective stored energy function w is defined as

‖wp − w‖L2
ρ(K,R) = inf

v ∈PAp

‖w − v‖L2
ρ(K,R) . (4.25)

Using the orthonormal property of the polynomial basis in PAp , the polynomial coefficients of
the projection

wp(c) =

p∑
|α|=0

zαΨα(c) (4.26)

are given by
zα = 〈w,Ψα〉L2

ρ(K,R) , (4.27)

Upon introducing the linear mapping u 7→ c = q(u) = [D]u + m, with [D] a (d × d) diagonal
matrix and m in Rd such that:

Dii =
1

2
(bi − ai) , mi =

1

2
(ai + bi) , 1 6 i 6 d , (4.28)

the orthogonality property can be rewritten as

1

2d

∫
[−1,1]d

Ψα(q(u))Ψβ(q(u)) du = δαβ , (4.29)

and shows that the polynomials `α(u) = Ψα(q(u)) correspond to the multivariate normalized
Legendre polynomials. More specifically, the polynomials `α : [−1, 1]d → R are given by

`α(u) = `α1(u1)× · · · × `αd(ud) , (4.30)

with `αi : [−1, 1]→ R the normalized one-dimensional Legendre polynomials on [−1, 1] such that

`n(u) =
√

2n+ 1Pn(u) . (4.31)

In the above equation, the Legendre polynomials Pn : [−1, 1]→ R are given by

Pn+1(u) =
1

2k

[n/2]∑
l=0

(−1)lClnC
n
2n−2lx

n−2l , n > 0 , (4.32)

where Ckn the binomial coefficient, and they satisfy the recurrence relation [87]:

Pn+1(u) =
2n+ 1

n+ 1
uPn(u)− n

n+ 1
Pn−1(u) , n > 1 ,

P0(u) = 1 , P1(u) = u .
(4.33)

The orthonormal multivariate Legendre polynomials are then obtained by using Eqs. (4.30)-
(4.31). Equivalently, the polynomials Ψα can be defined as Ψα(c) = `α(q−1(c)) and seen
as shifted Legendre polynomials, where q−1(c) = [D]−1(c − m). The coefficients zα of the
polynomial expansion can then be rewritten as

zα = 〈w, `α〉L2
$([−1,1]d,R) =

1

2d

∫
[−1,1]d

w(q(u))`α(u) du , ∀α ∈ Ap , (4.34)

where $ : [−1, 1]d → R denotes the uniform density on [−1, 1]d. In practice, the above integral
can be evaluated by using either a quadrature rule or numerical Monte Carlo simulations (see
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4.3. Polynomial approximation of stored energy functions

[143] for a recent survey). In this work, given the low stochastic dimension which is considered
for numerical purposes (where dim(K) = 3) and the choice of the uniform measures on K, we
will resort on a Gauss-Legendre quadrature rule. In order to derive closed-form expressions for
the second Piola-Kirchhoff stress tensor and tangent elastic moduli matrix, the approximated
effective stored energy function can then be rewritten as a generalized Fourier-Legendre series
at order p:

wp(c) =

p∑
|α|=0

zα

d∏
k=1

√
2αk + 1Pαk(q−1

k (ck)) . (4.35)

In the three dimensional case, the vector form of the second effective Piola-Kirchhoff stress tensor
reads as

s = (S11, S22, S33, S23, S13, S12) , (4.36)

with Sij the entries of the second Piola-Kirchhoff stress tensor for the projected stored energy
function. It can be deduced that

sj(c) = ηj

p∑
|α|=0

zα
√

2αj + 1
dPαj (q

−1
j (cj))

dcj

3∏
`=1, ` 6=j

√
2α` + 1Pα`(q

−1
` (c`)) , (4.37)

for 1 6 j 6 6, with η1 = η2 = η3 = 2 and η4 = η5 = η6 = 1. Let [L] be the tangent elastic
moduli matrix defined as

[L] =



L1111 L1122 L1133 L1123 L1123 L1112

L2211 L2222 L2233 L2223 L2223 L2212

L3311 L3322 L3333 L3323 L3323 L3312

L2311 L2322 L2333 L2323 L2323 L2312

L1311 L1322 L1333 L1323 L1323 L1312

L1211 L1222 L1233 L1223 L1223 L1212

 . (4.38)

One has

Lij(c) = ςij

p∑
|α|=0

zα

(
3∏

k=1

√
2αk + 1

)
dPαi(q

−1
i (ci))

dci

dPαj (q
−1
j (cj))

dcj
Pα`(q

−1
` (c`)) , (4.39)

for 1 6 i < j 6 6 and ` = 9− i− j, and

Ljj(c) = ςjj

p∑
|α|=0

zα

(
3∏

k=1

√
2αk + 1

)
d2Pαj (q

−1
j (cj))

dc2
j

3∏
`=1, ` 6=j

Pα`(q
−1
` (c`)) (4.40)

for 1 6 j 6 6. In the above equations, [ς] is a (6× 6) matrix given by

[ς] =



4 4 4 2 2 2
4 4 4 2 2 2
4 4 4 2 2 2
2 2 2 1 1 1
2 2 2 1 1 1
2 2 2 1 1 1

 , (4.41)

and the derivatives of the Legendre polynomials are given by

dPαj (q
−1
j (cj))

dcj
=

2(1 + αj)

(bj − aj)(1− q−2
j (cj))

(
q−1
j (cj)Pαj (q

−1
j (cj))− Pαj+1(q−1

j (cj))
)

(4.42)
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Chapter 4. Projection of Effective Strain Energy Functions

for 1 6 j 6 6 and cj 6= aj , bj . The above relations can easily be adapted to the two-dimensional
case (d = 3).

4.3.3 Computation of the coefficients and orthonormal polynomials

Let {γi, û(i)}NQi=1 be the NQ weights and integration nodes determined according to the Gauss-
Legendre quadrature rule (recall here that the integration is performed with respect to univariate
uniform measures). The polynomial coefficients are thus approximated as follows:

zα ≈ z∗α(NQ) =
1

2d

NQ∑
i=1

γi w(q(û(i)))`α(û(i)) , ∀α ∈ Ap . (4.43)

When resorting on quadrature rules, the orthogonal polynomials can be constructed using, e.g.,
analytical expressions or recurrence relations. In practice, and following [144, 145], the numerical
orthogonality of this basis must be controlled. To this aim, let [M ] be the (N×N) matrix defined
as

Mij = 〈`α(i) , `α(j)〉L2
$([−1,1]d,R) , 1 6 i, j 6 N , (4.44)

where N = card(Ap) = (d + p)!/(d!p!) and the inner product is computed through the Gauss-
Legendre quadrature rule. Since the relation [M ] = [IN ] holds theoretically, the orthogonality of
the polynomials can be evaluated by considering the normalized error εM given by

εM =
‖[M ]− [IN ]‖F√

N
. (4.45)

For d = 3, p = 10 (hence, N = 286) and using 20 quadrature points along each direction (so
that NQ = 8 000), the numerical construction of the polynomials based on the above recurrence
relation yields εM = 8.5×10−15, whereas the computational algorithm proposed in [145] induces
an error εM = 5.7 × 10−12. Denoting by {ρk}Nk=1 the set of ordered eigenvalues of [M ], the
numerical degree of orthogonality can be further confirmed and illustrated by the graph of
mapping k 7→ |ρk − 1|, which is shown in Fig. (4.2) for both the analytical and computational
generation techniques.
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Figure 4.2 – Graph of k 7→ |ρk − 1|, 1 6 k 6 N .

The convergence analysis with respect to the parameters of the formulation, namely the order
p of the polynomial approximation and the total number NQ of quadrature points, is completed
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4.3. Polynomial approximation of stored energy functions

as follows. Without loss of generality, we first set NQ = ndQ, with nQ the number of points
along a given direction in the quadrature grid. For a given order p, the optimal number of points
Nopt
Q = (nopt

Q )d is selected such that εQ(nopt
Q ) 6 εtol

Q for some tolerance parameter εtol
Q > 0, with

nQ 7→ εQ(nQ) the error function

εQ(nQ) =
‖z∗((nQ + 1)d)− z∗(ndQ)‖

‖z∗(ndQ)‖
, nQ > 1 , (4.46)

and z∗ = (z∗
α(1) , . . . , z

∗
α(N)) (see Eq. (4.43)). In order to perform the convergence analysis with

respect to the order p of the polynomial expansion, we further introduce the L2 error measure
p 7→ ε(p) such that

ε(p) =
‖wp − w‖L2

ρ(K,R)

‖w‖L2
ρ(K,R)

, (4.47)

where w is the reference value for the effective stored energy function (as obtained by the nonlin-
ear finite element analysis). The above L2 error is again computed through the Gauss-Legendre
quadrature rule. Note that this estimation may require a number of quadrature points that is
slightly larger than nopt

Q , so that the associated convergence must be characterized as well. The
optimal order popt is then chosen such that ε(popt) 6 εtol, with εtol > 0 an error parameter.

4.3.4 Numerical applications

The aim of this section is to assess the capability of the polynomial approximation to model the
effective nonlinear response of selected microstructures. At this point, it should be noted that:

• alternative approaches, such as mean-field (i.g Hashin-Shtrikman) bounds and estimates
[146, 147, 148], provide accurate estimates of the effective nonlinear behavior for fiber-
reinforced composites. Benchmark studies on these approaches can be found elsewhere
[149, 150];

• whenever required, the characterization of the scale transition from the apparent behavior
to the effective one can be performed by following, for instance, the methodology proposed
in [151].

For the sake of simplicity, plane-strain deformations are considered in the sequel (d = 3). The
polynomial basis {Ψα,α ∈ Ap} is then orthonormal with respect to the uniform measure ρ(c)dc
such that

ρ(c)dc =

3∏
i=1

ρ(ci)(dci) , (4.48)

with
ρ(ci)(dci) =

1

|bi − ai|
1[ai,bi](ci)dci , 1 6 i 6 3 . (4.49)

Random and deterministic microstructures are considered in Sections 4.3.4.1-§4.3.4.2, and the
accuracy of the polynomial approximation is illustrated for different macroscopic loadings and
contrasts. The nonlinear boundary value problems are solved by using the finite element method
with a Galerkin approximation [152, 153] (with either 3-node or 6-node triangular elements,
depending on the application under consideration) combined to a classical Newton-Raphson
scheme [109], using the library Eigen3 [110].
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Chapter 4. Projection of Effective Strain Energy Functions

4.3.4.1 Case of a quasi-isotropic random microstructure.

In this first application, we consider a composite made up of a Neo-Hookean matrix reinforced by
stiff Neo-Hookean inclusions of diameter D. In practice, and following the methodology detailed
in [151], the value of D must be chosen such that the ratio LBmicro

/D is large enough; here,
LBmicro

/D ≈ 15. In this case, the homogenized stored energy function exhibits small statistical
fluctuations (the coefficient of variation of the homogenized potential, estimated by means of
Monte Carlo simulations, is estimated at 1.45%) and the scale of separation can reasonably be
assumed (in which case the effective behavior is independent of the prescribed conditions). The
microstructure contains 59 inclusions and is sampled by using the packing generation algorithm
(with periodic boundary conditions) detailed in [105]. The Neo-Hookean model for the matrix
phase is characterized by the parameters κ(m) = 1750 and µ(m) = 328.125 (both in [MPa]),
whereas the parameters for the inclusions are such that the elastic constraint % is equal to 100,
i.e.,

% =
κ(f)

κ(m)
=
µ(f)

µ(m)
= 100 . (4.50)

The support K is chosen as

K = [0.9, 1.5]× [0.9, 1.5]× (1/
√

2)[−0.1, 0.5] . (4.51)

The considered microstructure is shown in Fig. 4.3 and the associated finite element mesh contains
17486 elements, The graphs of the error functions nQ 7→ εQ(nQ) and p 7→ ε(p) are shown in

Figure 4.3 – Representative volume element with volume fraction φ = 0.2.

Fig. (4.4) for p = 2k + 1, 2 6 k 6 8. The optimal number of quadrature points and associated
errors are summarized in Tab. 4.1 for p > 9. In order to further investigate the relevance of the

p 9 11 13 15 17

nopt
Q 11 12 13 14 15

εQ(nopt
Q ) 3.4847× 10−12 3.832× 10−12 3.826× 10−12 3.824× 10−12 3.823× 10−12

ε(p) 3.17× 10−7 2.06× 10−8 1.45× 10−9 1.05× 10−10 7.43× 10−12

Table 4.1 – Optimal number of quadrature points and associated errors for p = 2k+1, 4 6 k 6 8.
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Figure 4.4 – Left: graph of nQ 7→ εQ(nQ) for p = 2k + 1, 2 6 k 6 8. The red dots denote the
optimal numbers of integration points for each case, for εtol

Q = 10−10. Right: graph of p 7→ ε(p)
for p = 2k + 1, 2 6 k 6 8.

proposed approach, the latter is now compared with the N.E.X.P. method proposed in [126].
This method essentially relies on the combination of parallel factor decomposition and cubic
spline interpolation over a regular grid. For comparison purposes, the reference values for the
effective stored energy function are computed for particular plane-strain states of deformation.
These states are chosen different from those used to construct the projection (for the proposed
approach) and the interpolation (for the N.E.X.P. scheme), and define a much finer grid (denoted
by G ) as compared to the aforementioned ones. The following pointwise distance function is next
introduced:

E(c) = |P{w}(c)− w(c)| , ∀ c ∈ G , (4.52)

where P{w} is the surrogate model for the effective stored energy function defined either through
the proposed approach or by the spline interpolation (corresponding to the N.E.X.P. method)
constructed with 17 equally-spaced points along each direction (hence requiring 4 913 nonlinear
computations). The graphs of c 7→ E(c) computed for particular tensile and shear tests are
displayed in Fig. 4.5 – in both cases, the loading interval is discretized with 100 equally-spaced
points.

The case of a biaxial stretching is further addressed in Fig. 4.7, with the grid G shown in
Fig. 4.6. In order the presented spline-based response to be consistently compared with the
proposed approach, the associated results are reconstructed based on the full three-dimensional
interpolation. – see Fig. 4.6. For the cases under consideration, it is seen that the polynomial
expansion and the spline interpolation both yield accurate approximations of the effective stored
energy function, and that the error induced by the proposed approach is much smaller than the
one obtained with the interpolation scheme, with a decrease of almost four orders of magnitude on
average for p = 15 and 2 744 nonlinear computations. Finally, the stability of the surrogate model
with respect to the elastic contrast is depicted in Fig. 4.8, where the graph of c1 7→ E(c1, 0, 0) is
shown for % ∈ {100, 1000, 10000} (note that large contrasts require a finer finite mesh; here , the
finest mesh contains 63 708 elements). Based on the convergence criterion detailed in Section
4.3.3, the optimal order of expansion is found to be equal to 17 in all cases. It is seen that the
surrogate model remains very accurate regardless of the elastic contrast. Additionally, the error
profile is found to exhibit a similar structure for all values of %. This result can be explained by
noticing that

• in all cases, the homogenized potential is expanded by using the same polynomial basis
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Figure 4.5 – Left panel: graph of mapping c1 7→ E(c1, 1, 0) for c1 ∈ [0.9, 1.5]. Right panel: graph
of mapping c3 7→ E(1, 1, c3) for c3 ∈ (1/

√
2)[−0.1, 0.5]. The polynomial expansions and spline

interpolations appear in thick black lines and thin blue lines, respectively.
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Figure 4.6 – Discretization of the macroscopic states of deformation (partial view). Red dots:
comparison points. Blue squares: interpolation points (N.E.X.P. method). Orange disks: quadra-
ture points (proposed approach).

(since the optimal orders of expansion are the same);

• the homogenized potential involved in the computation of the coefficients does not change
significantly for % > 100 in this particular application.

4.3.4.2 Case of an anisotropic deterministic microstructure

We now turn to the anisotropic case and Mooney-Rivlin matrix reinforced by a rectangular
Mooney-Rivlin inclusion. The model parameters (in [MPa]) are chosen as α(m) = 164.0625,
s

(m)
1 = 1.6953× 103 and β(m) = 10 for the matrix phase, and as α(f) = 100α(m), β(f) = 10β(m)

and κ(f) = 100κ(m) for the inclusions. The microstructure is shown in Fig. 4.9. The support of the
density function ρ is chosen as K = [0.9, 1.5]× [0.9, 1.5]× [0, 0.3]. The values of parameters p and
nQ are deduced from a convergence analysis and set to 15 and 14 respectively. For the particular
plane-strain condition defined by c1 ∈ [0.9, 1.5], c2 = c1 and c3 ∈ [0, 0.3], the approximate
effective shear stress S12 and tangent elastic modulus L1122 are compared with their reference
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Figure 4.7 – Graph of mapping (c1, c2) 7→ E(c1, c2, 0) estimated with the polynomial expansion
at different orders (blue surface) and the spline interpolation (white surface), for (c1, c2) ∈
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Figure 4.8 – Graph of the mapping c1 7→ E(c1, 1, 0) [MPa] for c1 ∈ [0.9, 1.5] and several values of
the elastic contrast %.

Figure 4.9 – View of the deterministic microstructure containing the rectangular inclusion.
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values in Figs. 4.10 and 4.11 respectively. In both cases, and despite the anisotropic nature of
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Figure 4.10 – Effective shear stress [S]12: reference solution (left panel) and polynomial expansion
(right panel).
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Figure 4.11 – Effective tangent elastic modulus L1122: reference solution (left panel) and poly-
nomial expansion (right panel).

the mechanical response, it is seen that the polynomial expansion still provides a very accurate
representation for the effective nonlinear behavior. Finally, we now consider the projection
of the potential associated with the matrix phase onto the same Hilbert basis (that is, using
the same order of expansion) as the effective potential, namely w(m)

p (c) =
∑
α∈Ap

z
(m)
α Ψα(c)

with nQ = 14. The graphs of mappings k 7→ zα(k) and k 7→ z
(m)

α(k) are shown in Fig. 4.12, for
1 6 k 6 30. It is observed that the two series exhibit a very similar signature, hence suggesting
that the effective behavior may accurately be approximated by a Neo-Hookean model. A natural
question here is then to determine how to define such a projection in a more general setting,
and to determine whether this approximation is satisfactory or not. These points are specifically
addressed in the next section.
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Figure 4.12 – Graphs of mappings k 7→ zα(k) (red-filled circles) and k 7→ z
(m)

α(k) (squares) for
1 6 k 6 30.

4.4 Defining projections onto sets of stored energy functions

In the previous sections, the effective stored energy function was approximated by a polynomial
series in terms of orthonormal Legendre polynomials. The surrogate model has been found to
provide an accurate approximation for various microstructures, contrasts and loading paths.
However, this polynomial approximation is valid for macroscopic loadings c with values in the
set K chosen beforehand. In this section, we propose to project the effective potential on sets of
stored energy functions, such that the resulting surrogate model can be used for any macroscopic
loading conditions and can easily be used in any commercial finite element software.

4.4.1 Mathematical formulation

Let C ⊂ L2
ρ(K,R) denote a given set of stored energy functions defined from K into R (we

recall here that a vector representation of the right Cauchy-Green tensor is used). Accordingly,
the notations C NH and C MR denote the sets of stored energy functions corresponding to Neo-
Hookean and Mooney-Rivlin materials, respectively. Each element wC (·;π) : K → R of C is
therefore seen as a mapping indexed by a vector-valued parameter π (of length nπ) belonging
to an admissible set A ⊂ (R∗+)nπ such that

A =
nπ

"
i=1

[πmin
i , πmax

i ] , (4.53)

with πmin
i > 0, 1 6 i 6 nπ. In practice, and when the stored energy functions of all constitutive

phases belong to the same class of potentials, the sets of bounds {πmin
i }

nπ
i=1 and {πmax

i }nπ
i=1 may

be inferred by taking the minimum and maximum over the parameters defining the constitutive
phases, for instance. It should be pointed out that for a given c ∈ K, the mapping A→ wC (·;π)
may be nonlinear in general.

We propose to define the closest approximation of w in the set C by minimizing the distance
‖wC (·;π) − w‖2L2

ρ(K,R) with respect to the vector-valued parameter π ∈ A. While this can be
achieved by resorting on Monte Carlo simulations or a Gauss-Legendre rule as in the previous
sections, we will rely on the polynomial approximations of the effective stored energy functions
w ∈ L2

ρ(K,R) and wC (·;π) ∈ C . More precisely, let wp,C (·;π) be the polynomial approximation
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of wC (·;π), i.e.,

wp,C (c;π) =

p∑
|α|=0

yα(π)Ψα(c) , (4.54)

in which the polynomial coefficients are given by yα(π) = 〈wC (·;π),Ψα〉. We then define the
closest approximation w?C of the stored energy function wp as

w?C (c) =

p∑
|α|=0

yα(π?)Ψα(c) , π? = argmin
π ∈A

‖wp,C (·;π)− wp‖2L2
ρ(K,R) , (4.55)

where

‖wp,C (·;π)− wp‖2L2
ρ(K,R) =

p∑
|α|=0

(yα(π)− zα)2 = ‖y(π)− z‖2 , (4.56)

where the vectors y(π) = (yα(1)(π), . . . , yα(N)(π)) and z = (zα(1) , . . . , zα(N)) gathering the poly-
nomial coefficients of the expansions wp,C and wp have been introduced. In the next section, we
considere the particular case of Ogden’s class of stored energy functions.

4.4.2 Case of Ogden-type stored energy functions

In the sequel of this chapter, we restrict ourselves to a class C of stored energy functions which
depend linearly on the model parameters π ∈ A. In this case, each element wC ∈ C can be
written as

wC (c;π) =

nπ∑
j=1

πjgj(c) , (4.57)

where c 7→ gj(c) are given real-valued mappings for 1 6 j 6 nπ. The set of stored energy
functions C is then defined as

C =
{
wC (·;π) ∈ L2

ρ(K,R) : wC (c;π) =

nπ∑
j=1

πjgj(c) ,π ∈ A
}
, (4.58)

The projection wp,C of wC ∈ C onto PAp reduces to

wp,C (c;π) =

p∑
|α|=0

nπ∑
j=1

πjv
(j)
α Ψα(c) , (4.59)

where the polynomial coefficients v(j)
α are given by v

(j)
α = 〈Ψα, gj〉L2

ρ(K,R) for all α ∈ Ap and
1 6 j 6 nπ. The optimization problem given by Eq. (4.60) can then be rewritten as follows

wp,Cp(c) =

p∑
|α|=0

nπ∑
j=1

π?j v
(j)
α Ψα(c) , π? = argmin

π ∈A
‖[V ]π − z‖2 , (4.60)

where the additional matrix [V ] is defined as Vki = 〈Ψα(k) , gi〉L2
ρ(K,R) for 1 6 i 6 nπ and

1 6 j 6 N , with N � nπ in practice. Hence, the above optimization problem corresponds to a
constrained least-squares problem (recall that the solution is sought over the admissible set A):

π? = argmin
π ∈A

J (π) , (4.61)
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where the quadratic cost function J is defined as

J (π) =
1

2
〈π, [D]π〉+ 〈f ,π〉 , ∀π ∈ A , (4.62)

and
[D] = [V ]T [V ] , f = −[V ]T z . (4.63)

By construction, the matrix [D] is symmetric and at least positive semidefinite, hence implying
the convexity of the cost function J . In some cases of practical interest, such as the case
of Neo-Hookean materials, [D] can be shown to be positive definite, thus ensuring the strict
convexity of the cost function. Note finally that the case of microstructures involving hyperelastic
phases defined by different classes of stored energy functions can be handled by searching for the
minimum of the residual distance over the classes onto which the effective stored energy function
may be projected.

Example. In the case of Neo-Hookean materials, any stored energy function in the class C NH

can be written as
wNH(c;π) = π1g1(c) + π2g2(c) , (4.64)

where the functions g1 and g2 are given by

g1(c) =
1

2
(c1 + c2 − 2)− log(c1c2 − c2

3) , (4.65a)

g2(c) =
1

2

(√
c1c2 − c2

3 − 1
)2
, (4.65b)

in the two-dimensional case (d = 3). The matrix [V ] involved in the convex cost function J
given by Eq. (4.62) writes

[V ] =

 〈g1,Ψα(1)〉L2
ρ(K,R) 〈g2,Ψα(1)〉L2

ρ(K,R)

...
...

〈g1,Ψα(N)〉L2
ρ(K,R) 〈g2,Ψα(N)〉L2

ρ(K,R)

 . (4.66)

For Mooney-Rivlin materials, any wMR ∈ C MR can be written as

wMR(c;π) =

3∑
j=1

πjgj(c) , ∀c ∈ K , (4.67)

where

g1(c) = c1 + c2 − 2− log(c1c2 − c2
3) , (4.68a)

g2(c) = c1 + c2 + c1c2 − 3− c2
3 − 2 log(c1c2 − c2

3) , (4.68b)

g3(c) =
1

2

(√
c1c2 − c2

3 − 1
)2
, (4.68c)

in the two-dimensional case. The expression of the matrix [V ] can easily be deduced as well.

In order to investigate the existence and uniqueness of a solution to the optimization problem
defined by Eqs. (4.53) and (4.60), we consider the definition of a closest approximation w?C in
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the subset C defined by Eq. (4.58). Given the definition of the admissible set A, the set C is a
non-empty closed subset of L2

ρ(K,R). In addition, for all π, π′ in A and t ∈ [0, 1], one has

twC (c;π) + (1− t)wC (c;π′) =

nπ∑
i=1

(tπi + (1− t)π′i)gi(c) . (4.69)

The admissible set A being convex, it is deduced tπ + (1− t)π′ ∈ A for every t ∈ [0, 1]. Hence,
it follows that

twC (c;π) + (1− t)wC (c;π′) ∈ Cp , ∀t ∈ [0, 1] , (4.70)

which shows the strict convexity of Cp. By virtue of the projection theorem in a Hilbert space
[72], it can be deduced that there exists a unique solution to the approximation problem defined
by Eq. (4.60).

4.4.3 Numerical applications

4.4.3.1 Case of a random microstructure

As a first application, we consider the random microstructure described in Section 4.3.4.1. The
optimization problem defined by Eqs. (4.61)-(4.62) is solved using an interior-point algorithm
with the initial guess defined by the material parameters (µ(m), λ(m)) associated with the ma-
trix phase. The support of the density function ρ is chosen as K = [0.9, 1.5] × [0.9, 1.5] ×
(1/
√

2)[−0.1, 0.5]. The closest Neo-Hookean model is found to be characterized by the material
parameters µ? = π?1 and λ? = π?2 given by

µ? = 1.7529µ(m) = 575.2783 MPa (4.71)

and
λ? = 1.3170λ(m) = 2.0167 GPa . (4.72)

The associated residual distance is given by

‖w?p,C − wp‖L2
ρ(K,R) ≈ 1.56 . (4.73)

In order to investigate the influence of the support K (which defines the measure of c and
may therefore impact the approximation in a given class of stored energy function) on the Neo-
Hookean parameters µ? and κ?, we consider a sequence {K(i)}10

i=1 of imbricated supports such
that

K(`) =
3
"
i=1

[a
(`)
i , b

(`)
i ] , 1 6 ` 6 10 . (4.74)

For each support, the optimal order of expansion and number of quadrature points are obtained
from a convergence analysis on the error functions nQ 7→ εQ(nQ) and p 7→ ε(p) defined in Section
4.3.3 (see Eqs. (4.46) and (4.47)). Below, the error parameters εtol

Q and εtol are respectively set
to 5× 10−12 and 5× 10−10. The definition of these supports and the associated parameters are
listed in Tab. 4.2, and the sequence of imbricated supports can be visualized in Fig. 4.13.

For a given support K(`), we introduce the following relative error ε?(`) characterizing the
accuracy of the approximation in the class under consideration:

ε?(`) =
‖[V (`)]π?(`)− z(`)‖

‖z(`)‖
. (4.75)
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` = 1 ` = 2 ` = 3 ` = 4 ` = 5 ` = 6 ` = 7 ` = 8 ` = 9 ` = 10

a
(`)
1 = a

(`)
2 0.95 0.93 0.91 0.88 0.86 0.84 0.82 0.79 0.77 0.75

b
(`)
1 = b

(`)
2 1.10 1.14 1.19 1.23 1.28 1.32 1.37 1.41 1.46 1.50

a
(`)
3 -0.05 -0.07 -0.09 -0.12 -0.14 -0.16 -0.18 -0.21 -0.23 -0.25

b
(`)
3 0.05 0.07 0.09 0.12 0.14 0.16 0.18 0.21 0.23 0.25

|K(`)| 0.002 0.007 0.015 0.029 0.048 0.075 0.111 0.156 0.213 0.281

popt 9 9 11 11 13 13 13 15 17 17

nopt
Q 10 10 12 12 13 14 14 15 17 17

Table 4.2 – Definition of the supports K(`), 1 6 ` 6 10, under consideration.
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Figure 4.13 – Left panel: graphs of the supports K(`), 1 6 ` 6 10 (black lines), and graph of the
boundary for the admissible set (red lines). Right panel: graphs of the supports in the plane
(c1, c3).
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Figure 4.14 – Graph of mapping |K(`)| 7→ ε?(`), 1 6 ` 6 10.

Above, the use of variable ` on the right-hand side underlines the fact that all quantities are
computed considering K(`) as the support for the measure of c. The graph of |K(`)| 7→ ε?(`),
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1 6 ` 6 10, is shown in Fig. 4.14. On the one hand, it is seen that the relative error between
the surrogate representation of the effective stored energy function and its approximation in
the class of Neo-Hookean materials is less than two percent, regardless of the support under
consideration. On the other hand, it is further observed that the error is almost independent of
the measure of the support, hence suggesting the use of smaller supports (which require smaller
numbers of quadrature points) in order to estimate the sought closest approximation. Recalling
that π? = (µ?, λ?), the previous result can also be illustrated by considering the Lamé constants,
as shown in Fig. 4.15.
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Figure 4.15 – Graph of mappings |K(`)| 7→ λ?(`)/λ(m) and |K(`)| 7→ µ?(`)/µ(m), 1 6 ` 6 10.

4.4.3.2 Case of a deterministic microstructure: sensitivity with respect to the elas-
tic contrast and volume fraction

In this second application, we consider a deterministic representative volume element made of
a Neo-Hookean matrix reinforced by a single circular inclusion (see below), with the aim to
investigate the impact of both the measure of the domain occupied by the inclusion and the
elastic contrast on the definition of the closest approximation. Let φ denote the above measure,
and % denote the contrast between the elastic properties of the constitutive phases (see Eq. (4.50).
The microstructure with the case φ = 0.1 is shown in Fig. 4.16.

Figure 4.16 – View of the deterministic microstructure with the circular inclusion (φ = 0.1).
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The support of the density function ρ is chosen as K = [0.9, 1.5]×[0.9, 1.5]×(1/
√

2)[−0.1, 0.5].
The evolution of the relative error ε? (see Eq. (4.75)) with respect to parameters φ and % is shown
in Fig. 4.17 (note here that the measure of the support is now constant).
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Figure 4.17 – Graph of the distance ε? as a function of the contrast % and the initial volume
fraction φ.

As expected, it is found that the error increases with φ, regardless of the elastic contrast. In
addition, the impact of the elastic contrast turns out to be negligible for φ 6 0.1, but tends to
become more pronounced for larger values of φ. It is however worth noticing that the relative
error is smaller than one percent for all the configurations under consideration. The evolution
of the Neo-Hookean parameters λ? and µ? with respect to φ and % is finally shown in Fig. 4.18,
and confirms the trends observed on the relative error measure.
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Figure 4.18 – Graph of λ?/λ(m) and µ?/µ(m) as a function of the contrast % and the initial volume
fraction φ.

4.4.3.3 Case of a deterministic microstructure: sensitivity with respect to the
anisotropy

As a complementary numerical illustration, we address the case of a deterministic microstructure
made of a Neo-Hookean matrix reinforced by a Neo-Hookean ellipsoidal inclusion. Denoting by a
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and b the minor and major axis of the ellipse respectively (the minor axis being aligned with the
horizontal direction), we consider four microstructures, each of which being defined by a specific
value of the anisotropy ratio b/a (see Fig. 4.19). The values of a and b are specifically chosen
such that the volume fraction remains constant over the different configurations.

Figure 4.19 – Meshed views of the microstructures under consideration, with b/a ∈
{1, 2.25, 4, 6.25} from left to right.

In order to ensure the numerical stability in the case of slender inclusions, the approxima-
tion is sought over K = [0.9, 1.5] × [0.9, 1.5] × [0, 0.3]. For εtol = 10−10, the optimal order of
expansion is found to be popt = 15, regardless of the microstructure under consideration. This
result shows the capability of the retained polynomial basis to accurately represent anisotropic
potentials, even with reduced expansion orders. The signature of the anisotropy can be further
visualized by considering the ordered sequence z

α
(1)
s
> . . . > z

α
(N)
s

of polynomial coefficients and
by characterizing the evolution of this signature as the ratio b/a increases. The graph of the
mapping k 7→ z

α
(k)
s

is shown in Fig. 4.20 for the ten larger coefficients.
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Figure 4.20 – Graph of k 7→ z
α

(k)
s

for 1 6 k 6 10.

While some coefficients remain almost constant whatever the ratio b/a, some coefficients
(namely, the first, second and fifth ones in the ordered sequence) are impacted by the anisotropy
level, hence allowing the associated polynomials, which actually enrich the isotropic response, to
be identified. Finally, the evolution of the residual with respect to the projection onto the set of
isotropic Neo-Hookean potentials (see Eq. (4.75)) is depicted in Fig. 4.21.

As expected, it is seen that the residual increases as the underlying microstructure becomes
more anisotropic.
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Figure 4.21 – Evolution of the distance ε? as a function of the ratio b/a.

4.4.3.4 Two-scale structural application

In this last section, we investigate the accuracy of the polynomial expansion and that of the
closest isotropic stored energy function for a two-scale structural problem. In particular, these
surrogate solutions are compared with a reference solution obtained by the FE2 multiscale ap-
proach [115, 116]. The structure under consideration is depicted in Fig. 4.22, where L = 1m,
e = 0.15m and ud = 0.1x2e2. In this application, the domain is discretized using 6-node trian-
gular elements [109], and the convergence in the L2 sense of the displacement field is reached
with 15288 elements (note that local mesh refinement is performed wherever necessary). The

L

L

e

e

ud

b

Figure 4.22 – Geometry of the structure and definition of boundary conditions.

associated microstructure is the same as the one described in Section 4.3.4.1 (consisting of a
Neo-Hookean matrix reinforced by randomly distributed circular inclusions), and is replicated
at each macroscopic point. The support K is set to K = [0.75, 1.5] × [0.75, 1.5] × [−0.25, 0.15],
and the polynomial expansion is constructed with εtol

Q = 5× 10−12 and εtol = 5× 10−11. Based
on the preliminary study, it is deduced that popt = 17 and nopt

Q = 16. The distance between the
effective stored energy function and its closest Neo-Hookean approximation is given by 0.2142.
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The associated parameters λ? and µ? are given by λ? = 1.9504 × 103 MPa and µ? = 640.8884
MPa, or equivalently by µ? = 1.9532µ and λ? = 1.2737λ. Note that these results are coherent
with the ones obtained in Section 4.4.3.1 (see Figs. 4.14 and 4.15). The plots of the Von Mises
stress computed by using the FE2 method, the PCE-based surrogate model and the closest
Neo-Hookean approximation are shown in Figs. 4.23 and 4.24.

FE2 solution Polynomial approximation Closest Neo-Hookean
approximation

Figure 4.23 – Plot of the Von Mises stress [Pa]: reference solution (left panel), solution based on
the PAp projection (middle panel) and solution based on the C NH projection (right panel).

In accordance with the previous numerical results, it is seen that the closest approximation
in the class of Neo-Hookean models provides a good approximation, especially for the peak
values of the Von Mises stress. Whereas the construction of the surrogate model requires some
preprocessing steps, including the call to nonlinear finite element computations, it is important to
note that the estimation of the closest Neo-Hookean parameters allows one to consider values of
the Cauchy-Green tensor that fall outside the support K. Hence, the proposed approach does not
suffer from boundary effects, such as those typically encountered in interpolation-based schemes,
and allows for a direct coupling with commercial codes for nonlinear finite element analysis.

FE2 solution Polynomial approximation Closest Neo-Hookean
approximation

Figure 4.24 – Zoom-in plots of the Von Mises stress [Pa]: reference solution (left), solution based
on the PAp projection (middle) and solution based on the C NH projection (right).
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4.5 Conclusion

In this chapter, the approximation of homogenized stored energy functions has been addressed
by resorting to projections onto polynomial spaces and relevant sets of stored energy functions
[154]. A surrogate model for the homogenized stored energy function was first constructed using
Legendre polynomials. The efficiency of the approach was assessed on two problems and com-
pared with another interpolation scheme proposed elsewhere. While the polynomial surrogate
approximates the solution map with a very good accuracy, the approach suffers from a curse of
dimensionality in three-dimensional applications. Other strategies could be pursued to circum-
vent this issue; see, e.g., [155, 156, 157, 158, 159] and the references therein. The functional
framework further allowed for the precise definition of closest approximations of arbitrary stored
energy functions in well-defined classes, such as Ogden-type potentials. The relevance of the
methodology and its sensitivity with respect to some parameters related to the microstructure
were also investigated by considering two microstructures a structural problem relying on a non-
concurrent coupling. The definition of such closest approximations is particularly appealing from
an engineering point of view, since it allows information to be readily transferred into commercial
finite elements softwares.
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Random Field Models for Anisotropic Stored
Energy Functions
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5.1 Introduction

This chapter is concerned with the modeling and simulation of spatially varying anisotropic
stored energy functions for nearly incompressible materials, defined on complex geometries. This
chapter is organized as follows. The definition of a prototypical anisotropic stored energy function
is first presented in Section 5.2. The probabilistic model is then constructed in Section 5.3. A
sampling strategy based on the resolution of a stochastic partial differential equation is proposed
in Section 5.4. Uncertainty propagation is finally addressed in Section 5.5, where the modeling
of an arterial wall is investigated in detail.

5.2 Background on anisotropic stored energy functions

The construction of anisotropic stored energy functions has been extensively addressed in the
past few years, especially for the modeling of soft biological tissues (see, e.g., [80]). In the case
of arterial walls, the anisotropy is associated with the presence of families of fibers with non-
orthogonal preferred directions. For instance, in [104] the arterial wall is modeled as a nearly
incompressible hyperelastic materials with two non-orthogonal preferred directions. Anisotropy
is taken into account by relying on the structural approach which consists in introducing struc-
tural tensors [59, 60] that reflect the symmetry properties of the material. However, as fibers
are not perfectly aligned but rather dispersed around the preferred directions, several works
propose to take into account the fibers dispersion through different methodologies [160, 161].
Reviews of constitutive models for arteries motivated by phenomenological considerations can
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be found in [162, 163, 164]. The construction of anisotropic polyconvex stored energy functions
has been carried out in [165, 166, 167] for nearly incompressible materials and applied for large-
scale simulation in, e.g., [168, 169, 170, 171, 172]. In particular, the widely used constitutive
model proposed in [104] was shown to be polyconvex in [167] under mild assumptions. A list of
polyconvex models for nearly incompressible and compressible hyperelastic media can be found
in the textbook [173]. Like most soft biological tissues, arterial walls are modeled as nearly
incompressible and show different behaviors for isochoric or volumetric states of deformations
[104]. One approach to take into account this feature is to decouple the deformation gradient
into isochoric and volumetric contributions, as proposed in [174]. In this context, a multiplicative
decomposition is introduced:

[F ] = J−1/3[F ] , J = det([F ]) , (5.1)

such that det([F ]) = 1. The isochoric right Cauchy-Green tensor [C] defined as [C] = [F ]T [F ]
can also be written as [C] = J−2/3[C]. In the following, we let x 7→ a1(x) and x 7→ a2(x) be
the non-orthogonal preferred directions schematically identified with the directions of the two
families of aligned fibers. The construction of suitable stored energy function is based on the
introduction the structural tensors x 7→ [M`(x)] for ` = 1, 2, such that

[M`(x)] = [Q][M`(x)][Q]T , ∀[Q] ∈ Ga`(x) , ∀x ∈ B , (5.2)

where Gc is the symmetry group defined as Gc = {[Q] ∈ SO(3) : [Q]c = c} for some given
c ∈ R3. Herein, we consider the prototypical stored energy function given by [70, 104, 167]

w(x, [F ]) = µ1(x)
‖[F ]‖2F

(det([F ]))2/3
+ µ2(x)

‖Cof([F ])‖3F
(det([F ]))2

+ µ3(x)h(det([F ]))

+
µ4(x)

β4

(
exp

(
β4〈‖[F ]a1(x)‖2 − 1〉2m

)
+ exp

(
β4〈‖[F ]a2(x)‖2 − 1〉2m

))
,

(5.3)

in which 〈g〉m = max(0, g) represents the Macauley bracket and the function h writes

h(δ) = δβ3 + δ−β3 , ∀ δ > 0 . (5.4)

The first three terms correspond to a isotropic nearly incompressible Mooney-Rivlin like con-
tribution [70], while the exponential terms represent locally anisotropic contributions associated
to the preferred directions x 7→ a1(x) and x 7→ a2(x) [104]. It is worth pointing out that we
do not resort to the volumetric-isochoric decomposition for the anisotropic terms as it leads to
unphysical behaviors. In addition, the Macauley bracket ensures that the anisotropic terms do
not contribute to the constitutive equations whenever the fibers are under compression. Hence,
the material is locally isotropic if it undergoes compression along both preferred directions at a
given location x in B. In what follows, it is assumed that the model parameters are uniformly
bounded by below, i.e.,

µj(x) > µmin
j > 0 , ∀x ∈ B , (5.5)

and that
β3 > 2 , β4 > 0 . (5.6)

It can then be shown that the stored energy function satisfies the following fundamental proper-
ties.
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(i) Polyconvexity. For all x ∈ B, there exists a convex function w? such that

w(x, [F ]) = w?(x, [F ],Cof([F ]),det([F ])) . (5.7)

The proof follows from the polyconvexity of the functions [165, 166, 167]

[F ] 7→ ‖(det([F ]))1/3[F ]‖αF , [F ] 7→ ‖(det([F ]))−2/3Cof([F ])‖γF , (5.8)

[F ] 7→ exp(β4〈‖[F ]a`(x)‖2 − 1〉2m) , (5.9)

and the convexity of the function h(δ) = δβ3 + δ−β3 for α > 3/2, γ > 3, β3 > 2 and β4 > 0.
The reader is referred to [70] and [167] for more details about the polyconvexity of isochoric
and exponential functions, respectively. The model parameters being uniformly bounded
from below (see Eq. (5.5)) and the exponents satisfying Eq. (5.6), it can be deduced that
the stored energy function is polyconvex. Note that this property implies ellipticity (see
Eq. (1.27)).

(ii) For all x ∈ B, [F ] ∈M3, there exists constants c0 > 0, c1 ∈ R, 3/2 < p < 2 and 3/2 < q < 3
such that

w?(x, [F ], [H], δ) > c0 (‖[F ]‖pF + ‖[H]‖qF + δβ3)− c1 , (5.10)

where the parameters p and q are given by

3

2
< p =

6β3

3β3 + 2
< 2 ,

3

2
< q =

3β3

β3 + 2
< 3 . (5.11)

and the constants c0 and c1 take the form

c0 = min
{
µmin

1

3β3 + 2

3β3
, µmin

3 η1
3β3 + 2

2
, µmin

2

β3 + 2

β3
, µmin

3 η2
β3 + 2

2
, µmin

3 η3

}
. (5.12)

and c1 = 0, for any real scalars η1, η2 and η3 such that η1 + η2 + η3 = 1. This property can
be derived following the methodology proposed in [70] which relies on Young’s inequality.
It implies that the stored energy function satisfies uniform growth conditions, also referred
to as uniform coercivity in the sequel of this chapter. Note that Eq. (5.10) is stronger than
the coercivity property given by Eq. (1.30).

Following [65, 70], these properties imply that there exists minimizers to the energy functional
in the space

X 1,p = {ϕ ∈W 1,p(B,R3) : π(ϕ) < +∞ , ϕ|ΓD = ϕd} , (5.13)

where ϕd : ΓD → R3 correspond to the essential boundary conditions. We end this section by
analyzing the behavior at small strains of the hyperelastic medium characterized by the above
stored energy function. Let [S̆] be the second Piola-Kirchhoff stress tensor written in terms of
the Green-Lagrange deformation tensor [E] given by

[E] =
1

2
([F ]T [F ]− [I3]) , ∀[F ] ∈M3

+ . (5.14)

Using the definition of the stored energy function given by Eq. (5.3), it can be deduced that the
linearized Piola-Kirchhoff stress tensor writes

[S̆(x, [E])] =
(
2µ3(x)β2

3 −
4

3
µ1(x)− 2µ3(x)31/2

)
Tr([E])[I3]

+
(
4µ1(x) + 6

√
3µ2(x)

)
[E] + 8µ4(x)

2∑
`=1

〈Tr([Eϕ(x)][M`(x)])〉m[M`(x)] + o(‖[E]‖) .

(5.15)
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By letting x 7→ JA(x)K be the elasticity tensor at small strains defined such that [S̆(x, [E])] =
JA(x)K : [E] + o(‖[E]‖), it can be deduced that

JA(x)K = JAiso(x)K + 8µ4(x)
2∑
`=1

1S`([E])[M`(x)]⊗ [M`(x)] , (5.16)

where S` denotes the set of deformation tensors [E] such that Tr([E][M`(x)]) > 0, and x 7→
JAiso(x)K denotes an isotropic contribution of the form

JAiso(x)K = 6µ3(x)β2
3JE1K + (4µ1(x) + 6

√
3µ2(x))JE2K (5.17)

in which JE1K and JE2K are the fourth-order mutually orthogonal projectors defined as

JE1K =
1

3
[I3]⊗ [I3] , JE2K = [I3]� [I3]− JE1K . (5.18)

This shows that the hyperelastic material is isotropic at small strains, with bulk and shear moduli
given by x 7→ 2µ3(x)β2

3 and x 7→ 2µ1(x) + 33/2µ2(x), whenever it undergoes compression along
to the two preferred directions x 7→ a1(x) and x 7→ a2(x). When a local stretch is prescribed
along one preferred direction, say a1(x), then the random elasticity tensor exhibits transverse
isotropy with respect to a1(x). Apart from these two situations, the elastic behavior at small
strains turns out to be anisotropic.

5.3 Definition of a random field model

The functional form of the stored energy function for which a stochastic extension is sought has
been presented in the previous section. We now let {Wε(x, [F ]), (x, [F ]) ∈ B × M3

+} be the
random field corresponding to the stochastic stored energy function, defined on the probability
space (Θ,T ,P), indexed by B ×M3

+, and corresponding to the probabilistic modeling of the
potential given by Eq. (5.3). In a first step, an algebraic decomposition of the stochastic stored
energy function is introduced in order to enforce uniform growth conditions. Let 0 < ε � 1 be
an arbitrary small regularizing parameter such that

Wε(x, [F ]) =
1

1 + ε
(W(x, [F ]) + εE{W(x, [F ])}) , ∀x ∈ B , ∀[F ] ∈M3

+ . (5.19)

Let then {G(x),x ∈ B} be a vector-valued random field such that G(x) = (G1(x), . . . , G4(x))
corresponding to the probabilistic modeling of the parameter x 7→ (µ1(x), . . . , µ4(x)) involved in
Eq. (5.3). The random field {W(x, [F ]), (x, [F ]) ∈ B ×M3

+} is then defined as

W(x, [F ]) = G1(x)
‖[F ]‖2F

(det([F ]))2/3
+G2(x)

‖Cof([F ])‖3F
(det([F ]))2

+G3(x)h(det([F ]))

+
G4(x)

β4

(
exp

(
β4〈‖[F ]a1(x)‖2 − 1〉2m

)
+ exp

(
β4〈‖[F ]a2(x)‖2 − 1〉2m

))
,

(5.20)

where β3 > 2 and β4 > 0. In addition, the following hypotheses are made regarding the random
field {G(x),x ∈ x ∈ B}. It is first assumed that for every x ∈ B, the random variables Gj(x)
are such that

Gj(x) > 0 , 1 6 j 6 4 , (5.21)
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almost surely. In addition, the mean value of the random field {G(x),x ∈ B} is homogeneous
over B, i.e.,

E{G(x)} = g , ∀x ∈ B , (5.22)

with gj > 0, 1 6 j 6 4. Using the decomposition given by Eq. (5.19) and the definition of the
random field in Eq. (5.20), one has

Wε(x, [F ]) = G1ε(x)
‖[F ]‖2F

(det([F ]))2/3
+G2ε(x)

‖Cof([F ])‖3F
(det([F ]))2

+G3ε(x)h(det([F ]))

+
G4ε(x)

β4

(
exp

(
β4〈‖[F ]a1(x)‖2 − 1〉2m

)
+ exp

(
β4〈‖[F ]a2(x)‖2 − 1〉2m

))
,

(5.23)

where the random variables Gjε(x) are such that

Gjε(x) =
1

1 + ε
(Gj(x) + εE{Gj(x)}) , 1 6 j 6 4 . (5.24)

Together with Eqs. (5.21)-(5.22), this implies that the entries of the random field {G(x),x ∈ B}
are uniformly bounded by below, i.e.,

Gjε(x) >
εg
j

1 + ε
= µmin

j , 1 6 j 6 4 . (5.25)

This implies that the random potential is uniformly bounded from below, i.e.,

Wε(x, [F ]) >
ε

1 + ε
E{W(x, [F ])} . (5.26)

Let {JAε(x)K,x ∈ B} be the random elasticity tensor at small strains associated to the stochastic
potential defined by Eqs. (5.19)-(5.23). It can be deduced that the random elasticity tensor takes
the form

JAε(x)K =
1

1 + ε
(JA(x)K + εE{JA(x)K}) , ∀x ∈ B , (5.27)

with {JA(x)K,x ∈ B} the random elasticity tensor given by

JA(x)K = JAiso(x)K + 8G4(x)
2∑
`=1

1S`([Eϕ(x)])[M`(x)]⊗ [M`(x)] , (5.28)

in which S` denotes the set of deformation tensors [E] such that Tr([E][M`(x)]) > 0 and the
isotropic contribution writes

JAiso(x)K = 3C1(x)JE1K + 2C2(x)JE2K , (5.29)

where {C1(x),x ∈ B} and {C2(x),x ∈ B} are the random bulk and shear moduli associated
with the isotropic contribution of the random elasticity tensor, that is

C1(x) = 2β2
3G3(x) , C2(x) = 2G1(x) + 3

√
3G2(x) , ∀x ∈ B . (5.30)

The above consistency relations at small strains allow for writing the random variables G3(x)
and G2(x) in terms of the random bulk and shear moduli as follows

G3(x) =
C1(x)

2β2
3

, G2(x) = 3−3/2(C2(x)− 2G1(x)) . (5.31)
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These relations allow a more convenient representation of the stochastic stored energy function
to be introduced. Towards this aim, we introduce a random variable U(x) such that

2G1(x) = C2(x)U(x) , (5.32)

and normalized in the sense that it takes its value in (0, 1), so that the random variable G2(x)
can equivalently be written as

G2(x) = 3−3/2C2(x)(1− U(x)) . (5.33)

Two strategies can be pursued at this stage.

• In a first approach, the stochastic stored energy function is considered as a function of the
random field {G(x),x ∈ B}. The assumptions raised by the mathematical constraints do not
introduce any cross-related information among the variables, leading to statistically indepen-
dent random fields {Gi(x),x ∈ B} and {Gj(x),x ∈ B}, i 6= j.

• In a second approach, the consistency relations with linearized elasticity given by Eq. (5.30) are
taken into account and the stochastic stored energy function is parameterized by the random
fields {Ci(x),x ∈ B}, i = 1, 2, {U(x),x ∈ B} and {G4(x),x ∈ B}. In this case, the random
fields {G1(x),x ∈ B}, {G2(x),x ∈ B} and {G3(x),x ∈ B} are defined by Eqs. (5.32) and
(5.33) which generate statistical dependencies.

The first strategy turns out to be easier to handle in terms of both technical derivations and
sampling issues. The second choice raises, by contrast, more complex calculations but offers the
benefit of relying, in part, on information at small strains. This property may be found useful,
especially for identification purposes, and motivates the selection of this approach.

Remark 5.3.1. The selection of G2(x) as an independent variable in the consistency relations is
arbitrary and turns out to be irrelevant, since similar expressions would be obtained by selecting
G1(x) in lieu of G2(x). More precisely, one shall first extract G1(x) as

G1(x) =
1

2
(C2(x)− 33/2G2(x)) , (5.34)

and then introduce the random variable V (x) such that C2(x)V (x) = 33/2G2(x), so that

2G1(x) = C2(x)(1− V (x)) . (5.35)

The similitude in the expressions is obtained by comparing Eq. (5.35) with Eq. (5.33) and by letting
V (x) = 1− U(x).

Let {P(x) = (C1(x), C2(x), U(x), G4(x)),x ∈ B} be the vector-valued random field of model
parameters. Following the classical approach to the modeling of non-Gaussian random processes,
the random field is defined through the point-wise memoryless transformation

P(x) = H (Ξ(x)) , ∀x ∈ B , (5.36)

where {Ξ(x) = (Ξ1(x), . . . ,Ξ4(x)),x ∈ R3} is a second-order centered Gaussian random field
defined by the covariance function (which may be inferred either from measurements or expertise)

[RΞ(x,y)] = E{Ξ(x)⊗Ξ(y)} = diag(R1(x,y), . . . , R4(x,y)) , (5.37)
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where [RΞ(x,y)] = [I3] and (x,y) 7→ Ri(x,y) denotes the correlation function of the real-valued
Gaussian random field {Ξi(x),x ∈ R3}. The definition of the covariance function Eq. (5.37)
implies that the random fields {Ξi(x),x ∈ B} and {Ξj(x),x ∈ R2}, i 6= j, are statistically
independent from one another. The nonlinear transformation H is obtained by constructing the
family of first-order marginal probability density functions {p 7→ fP(x)(p; x)}x∈B of the random
field {P(x),x ∈ B}. For simplicity, the first-order marginals are chosen as independent of the
location x. Hence, we are concerned with the construction of the probability density function
p 7→ fP(x)(p) of the random variable P(x), for an arbitrary location x in B. Based on the
previous sections, minimal requirements require that

C1(x) > 0 , C2(x) > 0 , G4(x) > 0 , (5.38)

and
0 < U(x) < 1 , (5.39)

for all x in B, almost surely. Following the same methodology as in the previous chapters, we
consider the following constraints:

E{log(Pj(x))} = $j , |$j | < +∞ , j = 1, 2, (5.40a)
E{log(P3(x))} = ζ1 , |ζ1| < +∞ , (5.40b)
E{log(1− P3(x))} = ζ2 , |ζ2| < +∞ , (5.40c)
E{log(P4(x))} = ς4 , |ς4| < +∞ , (5.40d)

where it is recalled that P1(x) = C1(x), P2(x) = C2(x), P3(x) = U(x) and P4(x) = G4(x)
by convention. The above constraints are supplemented with the mean values of the random
variables P1(x), P2(x) and P4(x), that is

E{Pj(x)} = cj , j = 1, 2 , (5.41a)

E{P4(x)} = g
4
. (5.41b)

It should be noted that the properties G1(x) > 0 and G2(x) > 0 readily follow, by construction
(see Eqs. (5.32)-(5.33)). For 1 6 i 6 4, let (λ

(1)
i , λ

(2)
i ) be the Lagrange multipliers with the

constraints on the random variable Pi(x), such that fP(x) is integrable over R4. In this setting,
the MaxEnt-based probability density function p 7→ fP(x)(p) is given by

fP(x)(p) = 1SP(p) k0 exp(−φ(p)) , (5.42)

where the potential function p 7→ φ(p) writes

φ(p) = λ
(1)
1 p1 + λ

(1)
2 log(p1) + λ

(2)
1 p2 + λ

(2)
2 log(p2)

+ λ
(3)
1 log(p3) + λ

(3)
2 log(1− p3) + λ

(4)
1 p4 + λ

(4)
2 log(p4) .

(5.43)

Since the indicator function SP is separable in the present case, Eqs. (5.42)–(5.43) show that
the probability density function p 7→ fP(x)(p) is also separable, so that the random variables
P1(x), . . . , P4(x) are statistically independent. Moreover, and upon performing a change of
variable the Lagrange multipliers and the hyperparameters associated with labeled statistical
distributions, it can be deduced that:

• For j = 1 and j = 2, the random variable Pj(x) follows a Gamma distribution with shape
and scale parameters defined by δ−2

Cj
and cjδ2

Cj
, with cj and δCj the mean and coefficient

of variation of Ci(x).
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• The random variable U(x) is distributed according to a Beta distribution, with parameters
(ρ1, ρ2). By letting δU be the coefficient of variation of the random variable U , one has:

u = E{U} =
ρ1

ρ1 + ρ2
, δ2

U =
ρ2

ρ1(ρ1 + ρ2 + 1)
. (5.44)

• The random parameter G4(x) also follows a Gamma distribution with shape and scale
parameters given by δ−2

G4
and g

4
δ2
G4

.

The random variables C1(x), C2(x), U(x) and G4(x) are then defined as nonlinear transforma-
tions of standard Gaussian fields, such that the target first-order marginal probability density
functions are obtained, that is

Cj(x) = �(Ξj(x); kj , θj) , kj = δ−2
Cj
, θj = cjδ

−2
Cj
, j = 1, 2 , (5.45a)

U(x) = �(Ξ3(x); ρ1, ρ2) , (5.45b)

G4(x) = �(Ξ4(x); k4, θ4) , k4 = δ−2
G4
, θ4 = g

4
δ2
G4
, (5.45c)

where
�(u; k, α) = F−1

Γ(k,α)(FN (u)) (5.46)

and
�(u; ρ1, ρ2) = F−1

B(ρ1,ρ2)(FN (u)) (5.47)

with F−1
Γ(k,α) the inverse cumulative distribution function (i.c.d.f) of the Gamma distribution,

F−1
B(ρ1,ρ2) is the i.c.d.f. of the Beta distribution and FN is the cumulative distribution of the

normal distribution.
The nonlinear transformation H introduced in Eq. (5.36) is thus completely defined by

Eqs. (5.45a)–(5.45c), and the stochastic stored energy function is defined by combining Eqs. (5.23),
(5.24), (5.31) and (5.33). By construction, the random fields {C1(x),x ∈ B}, {C2(x),x ∈ B},
{U(x),x ∈ B} and {G4(x),x ∈ B} are statistically independent. However, the random fields
{G1(x),x ∈ B} and {G2(x),x ∈ B} end up being dependent while {G3(x),x ∈ B} and
{G4(x),x ∈ B} remain independent from all other random fields. It should be emphasized
that the hyperparameters of the labeled probability distributions are spatially dependent if the
right-hand sides in the constraints given by Eq. (5.40) are chosen as spatially dependent. In the
next section, a sampling algorithm for the proposed random field model is presented.

5.4 Sampling the random field model on complex domains

Within the proposed framework, realizations of the stochastic strain energy function can be
obtained by generating realizations of the Gaussian random field {Ξ(x),x ∈ B}. When the
domain B is homotopic to a simple (or simplified) geometry, such as a sphere, covariance models
(satisfying some symmetry or periodicity properties) for the Gaussian field can easily be con-
structed, motivated by experimental data or selected in suitable classes of covariance kernels.
Standard sampling techniques, including direct or iterative factorization methods [175] and spec-
tral approaches [176] can be applied in order to generate independent realizations of the random
field.

In this work, we focus on the more intricate situation where the reference configuration B
is not homotopic to a sphere and involves boundaries defined by arbitrary smooth manifolds.
In order to handle this issue, and following [177], our approach relies on defining each random
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field {Ξj(x),x ∈ B} as the solution (see [178, 179]) of the spatial stochastic partial differential
equation (SPDE)

[γ2(x)− 〈∇, [H(x)]∇〉]ζ/2Ξj(x) = Ẇ (x) , x ∈ B , (5.48)

where γ(x) > 0 is parameter controlloing the correlation range, [H(x)] is a so-called positive-
definite diffusion matrix, ζ ∈ N+

∗ and {Ẇ (x),x ∈ B} is the spatial normalized Gaussian white
noise. In three-dimensional applications, the integer ζ satisfies the relation ζ = ν + 3/2, where
ν > 0 controls the smoothness of the solution. When the SPDE is analytically solved over R3,
the complete class of Matérn covariance kernels (which include the widely used exponential or
square-exponential kernels) can be recovered, and the solution field can be shown to be [ν − 1]
differentiable. The definition of the diffusion field x 7→ [H(x)] is of primary importance in the
proposed methodology, since it allows an ad-hoc covariance structure to be defined, even though
in a non-explicit form, on the complex geometry under consideration. In what follows, we let
{x 7→ êi(x)}3i=1 be a local orthonormal basis that can capture, for instance, the features of the
considered geometry. The diffusion tensor is further decomposed as

[H(x)] =

3∑
i=1

τ̂i êi(x)⊗ êi(x) , ∀x ∈ B , (5.49)

where {τ̂i}3i=1 is a set of strictly positive parameters controlling the magnitude of the local
anisotropy. Illustrative two-dimensional examples can be found in [178, 179] for stationary and
non-stationary cases, and a detailed application of this strategy to vascular vessels in presented
below. Herein, the value ν = 1/2 is selected (hence, ζ = 2), so that a classical Galerkin method
can be used to solve the weak formulation of the SPDE with homogeneous natural boundary
conditions. More specifically, we let Bh be the domain occupied by a finite element mesh of the
reference configuration, made of nd nodes and such that Bh = ∪nee=1Be with ne the number of
finite elements. For notational convenience, no distinction will be made between the Gaussian
field {Ξj(x),x ∈ B} and the stochastic weak solution {Ξhj (x),x ∈ Bh} of the SPDE which takes
the form

Ξj(x) =

nd∑
i=1

ηiψi(x) , (5.50)

where {ψi}ndi=1 is the set of finite element shape functions consisting of piece-wise linear func-
tions. It can then be shown that the weights η1, . . . , ηnd are distributed according to a Gaussian
distribution such that the random vector η = (η1, . . . , ηnd) is centered and exhibits a covariance
matrix denoted by [Q]−1, where [Q] is the precision matrix defined as

[Q] = ([M ] + [K])T [N ]−1([M ] + [K]) . (5.51)

In the above equation, the (nd × nd) matrices [M ], [K] and [N ] are defined components-wise as

Mij =

∫
B
γ2(x)ψi(x)ψj(x) dx , Kij =

∫
B
〈∇ψi(x), [H(x)]∇ψj(x)〉dx , (5.52)

for 1 6 i, j 6 nd, and

Nij =

∫
B
ψi(x)ψj(x) dx . (5.53)

While the above matrices are sparse, it can be seen form Eq. (5.51) that the precision matrix
[Q] turns out to be full and consequently, the computation of its Cholesky factorization may
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be expensive in practice. In order to circumvent this issue, one may alternatively consider the
following sparse approximation

[Q̂] = ([M ] + [K])T [N̂ ]−1([M ] + [K]) , (5.54)

where [N̂ ] is the diagonal matrix with entries N̂ii =
∑nd

j=1Nij , 1 6 i 6 nd. This approximation
is sometimes referred to as a lumped matrix in computational mechanics. Realizations of the
Gaussian field {Ξj(x),x ∈ B} are then obtained by sampling the random vector η according to
the centered Gaussian distribution with covariance matrix [Q̂]−1. In this setting, the stochas-
tic weak solution to the SPDE is a Gaussian Markov approximation which exhibits the same
convergence rate as the solution obtained with the full precision matrix [Q] [177].

A few comments regarding the pros and cons of the aforementioned method are relevant at
this point. First of all, the stochastic solver of the SPDE involves a finite element mesh which may
coincide with the mesh related to the nonlinear mechanical problem, hence allowing for substan-
tial computational savings when complex geometries are considered. In contrast with classical
methods where the Gaussian field is sampled at the nd × ng Gauss integration points (with ng
the number of integration points within each element), this approach generates samples at the nd
nodes of the finite element mesh. Moreover, such a sampling strategy does not involve the storage
of the full covariance matrix and can thus accommodate very large and dense meshes. Since the
precision matrix [Q̂] is sparse, fast factorization techniques can also be employed while sampling
the random vector η. Regarding drawbacks, one may first notice that the analytical form of the
covariance kernel is unknown for bounded domains and/or spatially-dependent parameter fields.
Furthermore, and as reported in [177, 178, 179], variance fluctuations may be observed while
sampling for bounded domains or when resorting on heterogeneous diffusion fields. In this case,
the solution must be subsequently rescaled in order to ensure a zero mean and unit variance.
Another widely used approach to handle this issue is to embed to finite element mesh into a
larger domain. Finally, the sparse inverse approximation [N̂ ]−1 of the matrix [N ] can be shown
to be singular for piecewise quadratic interpolations in two- and three-dimensional applications,
so that other non-singular sparse inverse approximation for [N ]−1 must be introduced in this
case.

We end this section by providing a simple pseudo-code for generating samples of the random
vector η and by considering the particular case of a stationary SPDE.

5.4.1 Case of a stationary stochastic partial derivative equation

Consider the SPDE with ζ = 2 but no longer restricted to B ⊂ R3. If in addition the parameter
x 7→ γ(x) and the diffusion tensor x 7→ [H(x)] are constant over R3, say γ(x) = γ and [H(x)] =
[H] for all x ∈ B, then the SPDE writes

[γ − 〈∇, [H]∇〉] Ξj(x) = Ẇ (x) , x ∈ R3 , (5.55)

where {Ẇ (x),x ∈ R3} is a spatial white noise over R3 with spectral density 1/(2π)3. In this
case, the solution of the stochastic partial derivative equation is stationary and its power spectral
density writes

Sj(ω) =
1

(2π)3

1

γ2 + 〈ω, [H]ω〉
. (5.56)

The associated covariance function is then given by

Rj(x,y) =
1

8πγ
√

det([H])
exp

(
−γ‖[H]−1/2(x− y)‖

)
, (5.57)
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for x and y in R3. It is readily seen that a unit variance can be obtained by setting

γ =
1

8π
√

det([H])
. (5.58)

Furthermore, if the diffusion tensor writes [H] =
∑3

i=1 τiêi⊗êi where the basis {êi}3i=1 is constant
over R3, then

Rj(x,y) =
1

8πγ
√
τ1τ2τ3

exp

(
−γ

3∑
i=1

(
(ŷi − x̂i)2

τi

)1/2
)
, (5.59)

where x̂i = 〈x, êi〉 and ŷi = 〈y, êi〉. When the covariance function is evaluated for any x = xê`
and y = yê` with ` ∈ {1, 2, 3}, one has

Rj(x ê`, y ê`) =
1

8πγ
√
τ1τ2τ3

exp

(
− γ
√
τ`
|y − x|

)
, (5.60)

whence the quantity L` =
√
τ`/γ can be interpreted as the correlation length associated with the

direction ê`.

Algorithm 5.4.1. A simple algorithm for generating nr realizations {ξk(x, θj),x ∈ B}, 1 6
j 6 nr, of the Gaussian field {Ξk(x),x ∈ B} can be constructed as follows. Let [Z] be the
matrix gathering nr independent realizations z(θ1), . . . , z(θnr) of a Gaussian random variable
Z ∼ N (0, [Ind ]) with values in Rnd and given component-wise as Zij = zi(θj) for 1 6 i 6 nd
and 1 6 j 6 nr. Similarly let B be the matrix gathering the nd realizations of the Gaussian field
{Ξk(x),x ∈ B} and such that

Bij = ξk(x
(i), θj) 1 6 i 6 nd , 1 6 j 6 nr , (5.61)

where x(i) is the i-th node of the triangulation Bh. The sparse precision matrix [Q̂] being positive
definite, it can be decomposed as [Q̂] = [L]T [L] where [L] denote its Cholesky factorization. The
matrix [B] is then defined as the solution of the linear system of equations (see e.g [180])

[L][B] = [Z] . (5.62)

5.5 Uncertainty quantification in mechanics of arterial walls

This section is concerned with uncertainty modeling and propagation for soft biological tissues
with a specific emphasis on the mechanics of vascular vessels [104]. Soft biological tissues are
known for exhibiting large uncertainties which can be due to various sources such as age, gender
or diseases (see, e.g., [181, 18] for experimental evidences). Although arterial walls are seen as
a three-layer structure, with each layer being composed of an isotropic ground matrix reinforced
by families of collagen fibers, we restrict our analysis to the modeling of the intermediate layer,
namely the media. In this work, Monte Carlo simulations are used as the stochastic solver (see [2]
for a broad survey on uncertainty propagation, as well as [182] for the development of accelerated
Monte Carlo methods). The stochastic boundary value problems were solved with a parallel finite
element solver and the reader is referred to the Annexes A–B for more details in this regard.
The reminder of this section is organized as follows. First, in Section 5.5.1, the histology of
arterial walls is briefly described in order to highlight the modeling issues. The particular case
of a homogeneous media strip under tension is considered in Section 5.5.2. Forward simulations
are performed in order to get an insight about the influence of the model hyperparameters on
the variability of the stress response. In Section 5.5.3, heterogeneous media strips are considered
to investigate the impact on the correlation structure. Finally, an application to an arterial wall
defined by a patient-specific geometry is presented in Section 5.5.4.
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5.5.1 Histology of arteries

We start by briefly introducing the histology of human arteries [183] and some terminologies
that will be used throughout this chapter. More detailed exposures can be found in, e.g., [104,
161, 184, 162]. Herein, we are concerned with the modeling of elastic arteries, such as the aorta,
which are close to the heart and have a large diameter. They differ from muscular arteries
which exhibit a viscoelastic behavior and can be found, for instance, in the brain. As shown
in Fig. 5.1, the structure of a healthy elastic arterial wall is composed of three layers, namely
the intima, media, and adventitia (also referred to as tunica externa). The intima is a thin
layer mainly made of endothelial cells that form an interface between the arterial wall and the
blood flow. This layer is mechanically irrelevant in the case of healthy elastic arteries, whereas
it is relatively thick in muscular arteries. The middle layer, namely the media, is made of
a complex network of muscle cells, elastin and collagen fibers. It is the primary constituent
of elastic arteries due to its thickness and ability to resist to longitudinal and circumferential
loads. The adventitia is the outermost layer which is made of thick bundles of collagen fibers.
From a mechanical standpoint, the media and adventitia are generally seen as a ground matrix,
represented by the elastin network, reinforced by families of collagen fibers with some given
preferred directions. Recent experimental characterization of the fibers distributions can be
found in, e.g., [185, 186, 187, 188, 189] and a volume-rending of optical section through an entire
aortic wall is shown in the right panel of Fig. 5.1. It can be seen that arterial walls have a complex

Figure 5.1 – Left panel: structure of a healthy elastic arterial wall [190]. Right panel: radial
projection throughout the thickness of the arterial wall with closer views on the adventitia, media
and intima [191].

microstructure with fibers dispersions varying with respect to the depth in the thickness, and in
particular, the identification of the number of families of fibers is still an active research field.
These soft biological tissues are very prone to uncertainties raised by various sources including
age, gender and health state (see [181, 192] for experimental evidences). Stress responses in
the longitudinal and circumferential directions are shown in Fig. 5.2 for thirteen samples of
the adventitia, media and intima coming from different patients. For applications where the
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5.5. Uncertainty quantification in mechanics of arterial walls

Figure 5.2 – Stress responses of uniaxial tensile tests for thirteen samples of adventitia (left),
media (middle) and intima (right) [18].

constitutive model of the wall plays an important role (such as in the computational study of
atherosclerosis evolution [193] and failure for vascular grafts, for which compliance mismatch
was reported to generate postoperative complications [194, 195]; see [196] for a complementary
discussion), such intrinsic variability must be taken into account in numerical simulations.

5.5.2 Case of homogeneous strips

In this first illustration, a homogeneous media strip undergoing a simple tensile test is consid-
ered. In this particular case, where only random variables are involved instead of random fields,
the stochastic parameters are easily sampled by using standard algorithms for univariate prob-
ability distributions. It is assumed that the two preferred directions defining the anisotropic
contributions in the stochastic stored energy function are defined as

a1 = cos(α)e1 + sin(α)e2 , a2 = cos(α)e1 − sin(α)e2 , (5.63)

where e1 and e2 span the median plane of the strip. The mean values of the random variables,
the deterministic exponents β3 and β4 and the angle α are identified by solving a least-square
optimization problem. The relative error between the mean Cauchy stress and the experimental
data provided in [192] is minimized and a nearly incompressible solution is obtained by adding
a classical penalty term in the objective function. The obtained mean parameters are given by
g

1
= 4.1543, g

2
= 2.5084, g

3
= 9.7227 and g

4
= 19.285 in kPa. The values for the remaining

deterministic parameters were obtained as β3 = 3.6537, β4 = 500.02 and α = 46.274 (in degrees).
By using the consistency relations with linearized elasticity, it is found that the mean values of the
bulk and shear moduli of the isotropic elasticity tensor are given by c1 = 259.59 and c2 = 21.343
in kPa. Furthermore, note that the Lagrange multipliers associated with the random variable U
must satisfy the relations

ρ1 =
2g

1

33/2g
2

ρ2 , ρ2 =
1− δ2

U

η(1 + η)δ2
U

, (5.64)
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where 0 < δU < 1 is the coefficient of variation of U , hence leaving ρ2 as the only free hyper-
parameter in the probability density function of U . In order to illustrate the influence of the
statistical fluctuations of the random variables, we proceed as in the previous chapters and com-
pute realizations of the random Cauchy stress by combining analytical derivations with Monte
Carlo simulations. The confidence region at 90% is shown in Fig. 5.3 for δC1 = δG4 = δU = 0.1
and increasing values of the coefficient of variation δC2 . In order to facilitate interpretation, the
evolution of the confidence region when the coefficients of variation of all input random variables
are set to the same value is also shown in Fig. 5.3 (right panel). In this case, all random variables
exhibit larger fluctuations, hence making the variability much larger.
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Figure 5.3 – Confidence regions (at a 90% probability level) of the Cauchy stress for a uniaxial
tensile test along the circumferential direction of the strip. Left panel: δC1 = δG4 = δU = 0.1,
δC2 ∈ {0.1, 0.2, 0.3}. Right panel: δC1 = δG4 = δU = δC2 = δ ∈ {0.2, 0.4, 0.6}. The mean
responses are represented in dashed lines.

These results provide an assessment about the capability of the stochastic model associated
with the first-order marginal probability distribution to faithfully reproduce variability in the
stress response and are in accordance with previous results derived for isotropic hyperelastic
materials.

5.5.3 Case of heterogeneous strips

In this second illustration, numerical simulations of tensile tests on heterogeneous media strips
are carried out. Following the computational framework discussed in [161], media strips of
length lstrip = 10 mm, width wstrip = 3 mm and thickness tstrip = 0.5 mm are considered. A
displacement is prescribed at the top end of the specimens, while the bottom is totally clamped.
The mean parameters obtained in Section 5.5.2 are retained as the mean values of the random
field {G(x),x ∈ B}, and the preferred directions are given by Eq. (5.63). The SPDE approach
described in Section 5.4 is used for sampling purposes, and the diffusion tensor is chosen as
homogeneous over B. More precisely, the tensor [H] is written as

[H] = κ[I3] + τ1[M1] + τ2[M2] , (5.65)

regardless of the Gaussian field under consideration, with [M`] = a` ⊗ a` for ` = 1, 2. The
parameters κ, τ1 and τ2 involved in the diffusion tensor can be properly selected in order to
adjust the anisotropy of the correlation structure inherited by the Gaussian random fields. The
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same coefficient of variation δ is considered for all the random fields and the remaining parameters
κ, τ1 and τ2 are chosen as κ = 0.1, τ1 = τ2 = 10. Realizations of the Cauchy stress along the
loading direction are shown in Figs. 5.4 and 5.5 for γ ∈ {1, 10} and δ ∈ {0.1, 0.2}. These figures
show how the stochastic fluctuations of the random parameters impact the random stress field.
Moreover, it is seen that increasing the parameter γ reduces the correlation range of the random
fields and the random stress field, for a given set of boundary conditions.
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Figure 5.4 – Two realizations of the Cauchy stress [MPa] along the loading direction for δ = 10%,
γ = 1 (left samples) and γ = 10 (right samples).
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Figure 5.5 – Two realizations of the Cauchy stress [MPa] along the loading direction for δ = 20%,
γ = 1 (left samples) or γ = 10 (right samples).

5.5.4 Case of a patient-specific arterial wall

In this last application, the case of an arterial wall composed by the media layer and defined by a
patient-specific geometry is considered. The arterial wall is submitted to an inner pressure mim-
icking the blood pressure. Computational aspects related to the finite element implementation
for such simulation can be found in, e.g., [141, 109]. The geometry of the inner surface, referred
to as the lumen, was extracted from the database [197] in the form of a STL file (ID:0098). The
finite element mesh of the media layer was then generated following the methodology proposed
in [198] which relies on the Vascular Modelling Toolkit [199] and the meshing software GMSH
[200]. This resulting mesh is shown in Fig. 5.6 is approximatively 12 mm long and consists of
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297 828 cells and 432 250 nodes, leading to a total of 1 296 750 degrees of freedom. As in Section
5.5.3, the mean stochastic stored energy function is obtained by using the parameters fitted in
Section 5.5.2. The main ingredient of the methodology is the definition of the diffusion tensor
x 7→ [H(x)], which allows for sampling on the complex geometry defining the arterial wall. A
methodology to achieve such a construction is introduced in the next section.

Figure 5.6 – Mesh of the patient-specific geometry in its reference configuration and its partition
into 32 subdomains for the parallel finite element solver.

5.5.4.1 Definition of the diffusion field on the arterial wall

At every location x of the reference configuration B, the definition of a local basis {êi(x)}3i=1

and the preferred directions {a`(x)}2`=1 can be performed by having recourse to the Laplace-
Dirichlet Rule-Based (LDBR) algorithm proposed in [201] for the myocardium and adapted for
deterministic simulations on arteries in [172]. In this approach, two auxiliary Laplace boundary
value problems are introduced in order to define local fields, denoted by x 7→ Ψ1(x) and x 7→
Ψ2(x), respectively, the gradient fields of which can be related to the aforementioned local basis
and preferred directions. More precisely, the field x 7→ Ψ1(x) is defined as the solution of the
following Laplace boundary value problem:

〈∇,∇〉Ψ1(x) = 0 , x ∈ B ,

〈∇Ψ1(x),n〉 = 0 , x ∈ Γinner ∪ Γouter ,
(5.66)

supplemented with the essential boundary conditions Ψ1(x) = 0 on Γinlet and Ψ1(x) = 0 on
Γoutlet. Similarly, Ψ2 is seen as the solution of

〈∇,∇〉Ψ2(x) = 0 , x ∈ B ,

〈∇Ψ2(x),n〉 = 0 , x ∈ Γinlet ∪ Γoutlet ,
(5.67)

with the essential conditions Ψ2(x) = 0 on Γinner and Ψ2(x) = 0 on Γouter. The above boundary
value problems are solved with a standard finite element method using quadratic tetrahedra with
10 nodes as finite elements. The numerical solutions {Ψh

1(x),x ∈ B} and {Ψh
2(x),x ∈ B} are

depicted in Fig. 5.7.
For a given x in B, the local basis is next defined as

ê1(x) =
∇Ψh

1(x)

‖∇Ψh
1(x)‖

, ê2(x) = ê1(x)× ê3(x) , ê3(x) =
∇Ψh

2(x)

‖∇Ψ2(x)‖
, (5.68)
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Figure 5.7 – Graph of the finite element solutions x 7→ Ψh
1(x) and x 7→ Ψh

2(x).

and the plots of the vector fields x 7→ ê1(x) and x 7→ ê2(x) thus defined are shown in Fig. 5.8.
For any x in B, the preferred directions (defining the local anisotropic contribution) are finally
expressed as

a1(x) = cos(α)ê1(x) + sin(α)ê2(x) , a2(x) = cos(α)ê1(x)− sin(α)ê2(x) . (5.69)

Figure 5.8 – Local directions x 7→ ê1(x) (left) and x 7→ ê2(x) (right) at uniformly distributed
positions in the media.

5.5.4.2 Characterization of covariance kernels on manifolds

Based on the definition of the local basis addressed in the previous section, we now investigate
through numerical experiments some covariance kernels that can be generated with the SPDE
approach. Without loss of generality, the stochastic properties of interest are characterized by
considering the Gaussian field {Ξ1(x),x ∈ B}. The field of diffusion tensor is first defined as

[H(x)] =
3∑
i=1

τ̂i êi(x)⊗ êi(x) , ∀x ∈ B , (5.70)

where τ̂1, τ̂2 and τ̂2 are strictly positive parameters controlling the local anisotropy of the corre-
lation structure. The plot of covariance function, estimated with 4, 000 independent realizations
of the random field (and with respect to a given reference point on the outer surface), and one
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τ̂ = (100, 1, 1) τ̂ = (1, 100, 1) τ̂ = (100, 100, 1)

τ̂ = (100, 1, 1) τ̂ = (1, 100, 1) τ̂ = (100, 100, 1)

Figure 5.9 – Estimated covariance functions (top) and realizations (bottom) of the Gaussian field
{Ξ1(x),x ∈ B} for γ = 3.

realization of {Ξ1(x),x ∈ B} are shown for γ = 3 and several values of τ̂ = (τ̂1, τ̂2, τ̂3) in Fig. 5.9.

It can be observed that increasing the parameter τ̂k allows for prescribing a locally anisotropic
correlation structure oriented along the associated direction êk, 1 6 k 6 3. In particular,
imposing τ̂1 � τ̂2 and τ̂1 � τ̂3 leads to a strong correlation along the longitudinal direction,
and the associated realizations exhibit a typical signature of this correlation pattern. Similarly,
selecting τ̂2 � τ̂1 and τ̂2 � τ̂3 leads to a longer correlation range along the circumferential
direction. Finally, retaining τ̂1 = τ̂2 � τ̂3 gives a locally isotropic correlation structure in the
plane spanned by (ê1(x), ê2(x)). Further results involving the same directional configurations
but shorter correlation ranges are also shown in Fig. 5.10.

Next, the diffusion tensor is chosen as

[H(x)] = κ[I3] + τ1[M1(x)] + τ2[M2(x)] , (5.71)

where κ > 0, τ1 > 0, τ2 > 0, and the structural tensors are defined with respect to the preferred
directions given by Eq. (5.69) with α = 46.274 in degrees. Correlation functions and realizations
of the Gaussian field are shown in Fig. 5.11 for κ = 0.1, γ = 1 and some values of τ = (τ1, τ2).
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τ̂ = (100, 1, 1) τ̂ = (1, 100, 1) τ̂ = (100, 100, 1)

τ̂ = (100, 1, 1) τ̂ = (1, 100, 1) τ̂ = (100, 100, 1)

Figure 5.10 – Estimated covariance functions (top) and realizations (bottom) of the Gaussian
field {Ξ1(x),x ∈ B} for γ = 10.

τ = (10, 0) τ = (0, 10) τ = (10, 10)

τ = (10, 0) τ = (0, 10) τ = (10, 10)

Figure 5.11 – Estimated covariance functions (top) and realizations (bottom) of the Gaussian
field {Ξ1(x),x ∈ B} for γ = 1 and κ = 0.1.
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As expected, it is observed that selecting τi � τj allows one to prescribe a signature of the
anisotropy along the preferred direction x 7→ ai(x). This feature is relevant to situations where
the random field must account for subscale details. By contrast, the case τ1 ≈ τ2 leads to a locally
isotropic correlation structure in the plane spanned by (a1(x),a2(x)). We end this section by
emphasizing that the random field {G(x),x ∈ B} obtained the non linear transformations of
the Gaussian fields inherits a correlation structure that exhibits the same features, as depicted
in Fig. 5.12 for {G1(x),x ∈ B}.

τ = (10, 0) τ = (0, 10) τ = (10, 10)

τ = (10, 0) τ = (0, 10) τ = (10, 10)

Figure 5.12 – Estimated covariance functions (top) and realizations (bottom) of the Gaussian
field {G1(x),x ∈ B} for γ = 1 and κ = 0.1.

5.5.4.3 Uncertainty propagation

In this final section, uncertainty propagation is performed by considering the random field model
for anisotropic stored energy functions constructed in this work, as well as the sampling strategy
presented in the previous sections. The patient-specific geometry is submitted to a 12 [kPa] pres-
sure on its inner surface. The inlet surface is totally clamped while a sliding boundary condition
is prescribed on the outlet surface. Alternative boundary conditions for such applications can
be found in, e.g., [171]. The diffusion tensor field is defined by Eq. (5.71) with κ = 0.1, γ = 1,
τ1 = τ2 = 10 and α = 46.275 [deg]. The coefficient of variation of the random fields are all set to
10%. Realizations of the Von Mises stress field (in terms of the Cauchy stress tensor) are shown,
together with the response obtained with the nominal (mean) model in Figs. 5.13 and 5.14. It
is seen that the fluctuations in the anisotropic stored energy functions can induce pronounced
fluctuations in the Von Mises stress, especially when compared with the mean response, and may
thus have a strong impact on any subsequent calculation. The localization patterns in the stress
distribution turn out to be rather reproducible, given the influence of the deterministic geometry
and preferred directions. The probability density function of the maximum Von Mises stress,
computed from 500 independent realizations using the kernel estimation method, is finally shown
in Fig. 5.15.
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Figure 5.13 – Response associated with the mean model and three independent realizations of
the Von Mises stress field (in kPa) on the inner surface of the media layer.
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Figure 5.14 – Response associated with the mean model and three independent realizations of
the Von Mises stress field (in kPa) on the outer surface of the media layer.
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Figure 5.15 – Plot of the probability density function of the maximum Von Mises stress (in Pa).
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5.6 Conclusion

In this chapter, a random field model for a prototypical anisotropic stored energy function was
constructed [48]. An efficient and robust computational methodology for sampling the stochastic
stored energy function on complex geometries was then presented and studied. In particular,
the capability of the stochastic model to produce anisotropic correlation kernels and realizations
with specific signatures on non-convex geometry was demonstrated. The proposed framework
was finally applied to estimate the distribution of the Von Mises stress on a patient-specific
geometry.
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A Unified Random Field Model of Elasticity
Tensors
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6.1 Introduction

This last chapter is focused on the construction of a unified approach for modeling a class
of elasticity tensor random fields with values in any symmetry classes. Over the past three
decades, this has been mostly achieved, in linear elasticity, by resorting to polynomial chaos
expansions (see [32] and the references therein for a recent survey) and algebraic decompositions
of random fields—mostly for isotropic media. The latter type of approaches includes the selection
or construction of models in the class of all admissible second-order stochastic representations,
where admissibility typically refers to the fulfillment (with probability one) of all the basic
properties raised by the mathematical analysis of the stochastic boundary value problem [20,
202]. In three-dimensional linear elasticity, such properties include, for instance, the positive-
definiteness of the tensor-valued elasticity coefficient [53]. A contribution involving a priori
model selection can be found, for instance, in [203] for isotropic materials, while construction
methodologies building upon information theory [83, 84] and the maximization of Shannon’s
entropy were proposed in, e.g., [20, 22, 23, 24, 28, 30, 31, 33]. Such information-theoretic models
define admissible subsets of the set of all second-order elasticity random fields [36]. They enable,
in particular, fast numerical simulations for physics-based uncertainty propagation and involve
low-dimensional hyperparameters, which allows for an identification solving (underdetermined)
statistical inverse problems. It should be noticed that a recent theoretical work addressing the
modeling (through spectral expansions) of the complete set of elasticity tensors for all symmetry
classes can be found in [35].

From a modeling standpoint, a key issue is the representation of anisotropy and the evolution
of the latter as the elasticity tensor becomes random. Depending on the retained framework,
the sought quantity of interest and computational resources, one may consider random fields of
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elasticity tensors with fluctuations in a given symmetry class (see [22] for the isotropic case, for
instance) or in the triclinic class (see [204] for a micromechanics-based discussion). The latter
(triclinic) case was first addressed in [20], making use of earlier derivations proposed in [86] for
structural dynamics. The model relies on a random matrix formulation that induces triclinic
fluctuations and does not allow other symmetry classes to be considered, due the eigenvalue
repulsion phenomenon [26]. Similar ideas were then pursued in [28, 29], in which a decomposition
onto an ad hoc tensor basis was used to circumvent this limitation. This approach involves an
exponential map that allows one to relax the algebraic constraints generated by the positive-
definiteness and symmetry properties of the tensor (in practice, these constraints can raise critical
sampling issues for weak symmetries). Additionally, this construction enables efficient random
field sampling through the integration of a family of stochastic differential equations. Below, we
show that these two constructions can, indeed, be unified in a rather simple form.

This chapter is organized as follows. Section 6.2 is concerned with the construction of the
stochastic representation. The methodology is first introduced in Section 6.2.1, and technical
developments are then discussed in Sections 6.2.2–6.2.5. Numerical examples are provided in
Section 6.3. Closed-form expressions for the symmetry classes that are not specifically addressed
throughout the chapter are finally gathered in Section 6.4.

6.2 Construction of the non-Gaussian random field model

6.2.1 Overview of the methodology

Let B be the domain in R3 occupied by the body of interest in its reference configuration.
Fourth-order elasticity tensors are represented using the standard modified Voigt notation [73].
Let then {[A(x)],x ∈ B} be the S-valued random field, with S ⊆ S6

+, corresponding to the
modified Voigt notation of the random elasticity field {JA(x)K,x ∈ B}. Regarding the material
symmetry exhibited by the material, two practical situations can be considered as follows:

• When the symmetry class under consideration is defined by crystallographic orientations
that are independent of the location x in B, the symmetry properties hold in the global
coordinate system and the state space S is equal to S6

sym, where S6
sym ⊂ S6

+ is the set of
elasticity matrices defined as

S6
sym = {[A] ∈ S6

+ : [Q]T [A][Q] = [A] , ∀ [Q] ∈ Gsym} , (6.1)

with Gsym ⊆ SO(3).

• When the material involves crystallographic orientations that are spatially dependent,
meaning that the symmetry properties are exhibited in a local coordinate system, the
state space coincides with S6

+. At every location x in B, the random elasticity matrix
[A(x)] belongs to a set S6

sym(x) but for simplicity, the spatial dependency will be omitted
in the sequel of this chapter. One example of such materials is wood, which typically ex-
hibits orthotropy in local cylindrical coordinates: in this case, the unit vectors a, b and c
defining the three orientations are taken as er(x), eθ(x) and ez(x) at the location x, and
the material appears as triclinic in the global coordinate system. Another example is given
by spherical symmetry, in which the material is transversely isotropic with respect to the
preferred direction er(x) at every location x of B.

Let x 7→ [A(x)] be the mean function of the random elasticity tensor, that is [A(x)] = E{[A(x)]}
for all x in B. It is assumed that the mean field is uniformly bounded, meaning that there exist
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constants 0 < k0 < k1, independent of x, such that

k0‖ξ‖2 6 〈ξ, [A(x)]ξ〉 6 k1‖ξ‖2 , ∀ξ ∈ R6 . (6.2)

In order to ensure the existence of a unique solution to the weak stochastic boundary value
problem [20, 32], the random elasticity tensor must

(H1) take its values in S6
+ almost surely;

(H2) be such that the bilinear form in the associated weak form is continuous and elliptic;

(H3) be a second-order random variable, i.e., E{‖[A(x)]‖2F } < +∞ , x ∈ B.

Any admissible random field model must fulfill the above properties and (H1) makes Gaussian
models non-admissible. It was shown in [20] that the last constraint (H3) requires the random
elasticity tensor to be uniformly bounded, that is there exist 0 < ε0 < ε1 such that

ε0‖ξ‖2 6 〈ξ, [A(x)]ξ〉 6 ε1‖ξ‖2 , ∀ξ ∈ R6 , (6.3)

almost surely, together with E{‖[A(x)]−1‖2F } < +∞. This can be achieved in various ways, by
letting [205]

[A(x)] = [A0(x)] + ([A(x)]− [A0(x)])1/2[M(x)]([A(x)]− [A0(x)])1/2 , ∀x ∈ B , (6.4)

where x 7→ [A0(x)] is a deterministic, symmetric positive-definite lower bound, i.e.,

〈ξ, [A(x)]ξ〉 > 〈ξ, [A0(x)]ξ〉 > 0 , ∀ξ ∈ R6 , (6.5)

almost surely, the definition of which may be inferred, for instance, from micromechanical con-
siderations [28, 204, 25]. This construction involves an additional random field {[M(x)],x ∈ B}
with values in S6

sym and such that

E{[M(x)]} = [I6] , ∀x ∈ B . (6.6)

In the following, we shall consider

[A0(x)] =
ε

1 + ε
[A(x)] , ∀x ∈ B , (6.7)

with ε > 0 an arbitrary small constant. In this setting, it can be deduced that the random matrix
[A(x)] writes

[A(x)] =
1

1 + ε
[A(x)]1/2

(
ε[I6] + [M(x)]

)
[A(x)]1/2 , ∀x ∈ B , (6.8)

and in virtue of the assumption given by Eq. (6.2), the ellipticity constant ε0 is given by

ε0 =
ε k0

1 + ε
. (6.9)

The non-Gaussian random field {[M(x)],x ∈ B} is then defined as a pointwise nonlinear trans-
formation, namely

[M(x)] = H(x,Ξ(x)) , ∀x ∈ B , (6.10)
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where {Ξ(x) = (Ξ1(x), . . . ,Ξn(x)),x ∈ R3} is a second-order centered Gaussian random field
with values in Rn and H is same spatially dependent in order to cover potentially nonstationnary
cases. As it will be seen in the following developments, the integer n corresponds to the dimension
of the matrix set S6

sym. The Gaussian field {Ξ(x),x ∈ R3} is defined by its normalized correlation
function (x,y) 7→ [R(x,y)] such that

[R(x,y)] = diag(R1(x,y), . . . , Rn(x,y)) , ∀(x,y) ∈ R3 × R3 , (6.11)

with
Rk(x,y) = E{Ξk(x)Ξk(y)} , ∀(x,y) ∈ R3 × R3 , 1 6 k 6 n , (6.12)

and [R(x,x)] = [In]. The random fields {Ξi(x),x ∈ R3} and {Ξj(x),x ∈ R3}, 1 6 i < j 6 n,
are statistically independent by construction.

6.2.2 Tensor decomposition of the elasticity field

Following [29, 28], the random matrix [M(x)] is decomposed onto the second-order representation
of the (potentially spatially dependent) Walpole basis Bx = {[Ei(x)]}ni=1 [71]:

[M(x)] =
n∑
i=1

Mi(x)[Ei(x)] , (6.13)

where {Mi(x),x ∈ B}, 1 6 i 6 n, are scalar-valued random fields. Let M(x) be the random
vector gathering the random coefficients, i.e., M(x) = (M1(x), . . . ,Mn(x)). This random vector
takes its values in the subset Sx of Rn such that

Sx =
{

m ∈ Rn :
n∑
i=1

mi[Ei(x)] ∈ S6
+

}
. (6.14)

In the sequel of this work, the decomposition given by Eq. (6.13) is denoted by using the symbolic
representation

[M(x)] =
{

[N1(x)], . . . , [Np(x)],Mq+1(x), . . .Mn(x)
}
, (6.15)

where {[Ni(x)]}pi=1 is a set of p random matrices with values in S+
r , the entries of which are

made up of the q = p × r(r + 1)/2 coordinates of [M(x)] onto Bx. The values of n, p and r
are listed in Tab. (6.1) for all symmetry classes of practical interest (monoclinic systems are not
explicitly considered hereinafter, due to their restricted applicability). Note that for the isotropic

Symmetry class n p r

Isotropy 2 0 −
Cubic 3 0 −
Transverse isotropy 5 1 2
Tetragonal 6 1 2
Trigonal 6 2 2
Orthotropy 9 1 3
Triclinic 21 1 6

Table 6.1 – Values of n, p and r for selected symmetry classes (reduced parameterizations are
used for tetragonal and trigonal classes).
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6.2. Construction of the non-Gaussian random field model

and cubic symmetries, p = 0, and the decomposition does not involve any random matrix. For
a given symmetry class, the identity matrix [I6] is given by

[I6] = {[Ir], . . . , [Ir]︸ ︷︷ ︸
p times

, 1, . . . , 1︸ ︷︷ ︸
(n−N) times

} . (6.16)

The symbolic representation by Eq. (6.15) reflects the particular underlying structure of the
tensor (sub)algebras, and allows for simple calculations within S6

sym. For instance, it can be
shown that the inverse [M(x)]−1 writes

[M(x)]−1 =
{

[N1(x)]−1, . . . , [Np(x)]−1,M−1
q+1(x), . . . ,M−1

n (x)
}
, (6.17)

and that any polynomial transformation f([M(x)]) of the random matrix [M(x)] is given by

f([M(x)]) =
{
f([N1(x)]), . . . , f([Np(x)]), f(Mq+1(x)), . . . , f(Mn(x))

}
. (6.18)

In addition, the random matrix [M(x)] is positive-definite a.s. if and only if the random matrices
[N1(x)], . . . , [Np(x)] are positive definite and the random variables Mq+1(x), . . . ,Mn(x) strictly
positive almost surely. It should be emphasized that while [M(x)] takes its values in S, all the
random matrices take their values in Sr+. These properties will be used in the sequel to construct
the probabilistic model of the elementary elements in the symbolic representation, as well as
to derive closed-form expressions for some model parameters. As an illustration, in the case of
transverse isotropy, one has n = 5, p = 1 and r = 2, so that the random matrix [M(x)] can be
written as

[M(x)] =

{[
M1(x) M3(x)
M3(x) M2(x)

]
︸ ︷︷ ︸

[N1(x)]

,M4(x),M5(x)

}
. (6.19)

The random matrix [M(x)] is positive-definite if and only if 〈v, [N1(x)]v〉 > 0 for all v ∈ R2,
M4(x) > 0 and M5(x) > 0, almost surely.

The mapping H can be constructed by imposing that the family of first-order marginal
probability density functions of {[M(x)],x ∈ B} coincides with a target family, obtained through
the MaxEnt principle. Here, the entropy of a probability density function f (with support S) is
defined as

E {f} = −
∫
S
f([M ]) log(f([M ])) d[M ] , (6.20)

where d[M ] = 215/2
∏
i6j dMij is the measure in S6 [206] and dMij is the Lebesgue measure in

R. In view of invoking the MaxEnt principle, we consider the constraints

E{[M(x)]} = [I6] , (6.21)

and
E{log(det([M(x)]))} = ς(x) , |ς(x)| < +∞ . (6.22)

The first mean constraint follows from the normalization given by Eq. (6.6), while Eq. (6.22)
ensures that [M(x)], as well as its inverse [M(x)]−1 are second-order random variables, and that
[M(x)] is positive-definite, almost surely [20]. In previous works [29, 28], the above constraints
were handled by resorting to an exponential mapping. One advantage of this approach was to
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relax the constraints related to the sampling Sx, hence allowing for the recourse to generation
algorithms based on stochastic differential equations. Herein, we pursue a different approach
and show that the probability density functions of the random matrices [N1(x)], . . . , [Np(x)] and
random variables Mq+1(x), . . . ,Mn(x) correspond to labeled probability distributions. First, we
note that Eqs. (6.15) and Eq. (6.21) readily imply that

E{[Ni(x)]} = [Ir] , 1 6 i 6 p , (6.23)

and
E{Mk(x)} = 1 , q + 1 6 k 6 n . (6.24)

Furthermore, by applying Jensen’s inequality, one has

E{log(det(

n∑
i=1

Mi(x)[Ei(x)]))} 6 log(det([I6])) = 0 , (6.25)

where the concavity of the mapping [X] 7→ log(det([X])) for [X] ∈ S6
+ has been used. Upon

using the aforementioned symbolic representation, one has

log(det(
n∑
i=1

Mi(x)[Ei(x)])) =

p∑
j=1

αj log(det([Nj(x)])) +
n∑

k=q+1

βk−q log(Mk(x)) , (6.26)

where {αj}pj=1 and {βk}n−qk=1 are two sets of positive integers. The proof of Eq. (6.26) is given
below.

Proof. Invoking the symbolic representation given by Eq. (6.15), one has

log(det([M(x)])) = Tr ({log([N1(x)]), . . . , log([Np(x)]), log(Mq+1(x)), . . . , log(Mn(x))}) ,
(6.27)

for any symmetry class. Next, consider a symmetry class (r is then fixed in the sequel) and let
[Tj(x)] = log([Nj(x)]) and Tk(x) = log(Mk(x)). Hence, it is seen that

log(det([M(x)])) = Tr ({[T1(x)], . . . , [Tp(x)], Tq+1(x), . . . , Tn(x)})

=

p∑
j=1

r(r+1)/2∑
i=1

T
(j)
i (x)Tr([EIr(i,j)(x)]) +

n∑
k=q+1

Tk(x)Tr([Ek(x)]) ,
(6.28)

with

[Tj(x)] =

[
T

(j)
1 (x) T

(j)
3 (x)

T
(j)
3 (x) T

(j)
2 (x)

]
, (6.29)

if r = 2 and

[Tj(x)] =

T
(j)
1 (x) T

(j)
4 (x) T

(j)
6 (x)

T
(j)
4 (x) T

(j)
2 (x) T

(j)
5 (x)

T
(j)
6 (x) T

(j)
5 (x) T

(j)
3 (x)

 (6.30)

if r = 3 (note that the case r = 6 corresponding to the triclinic case is not considered here,
since it does not introduce a split between matrix-valued and scalar-valued random fields), and
Ir(i, j) = (j−1)r(r+ 1)/2 + i. Noticing that Tr([EIr(i,j)(x)]) = 0 for Ir(i, j) > r, it follows that

log(det([M(x)])) =

p∑
j=1

αj

r∑
i=1

T
(j)
i (x) +

n∑
k=q+1

Tk(x)Tr([Ek(x)]) , (6.31)
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where αj = Tr([EIr(i,j)(x)]) > 0. Since
∑r

i=1 T
(j)
i (x) = Tr([Tj(x)]) (by construction), it can be

deduced that

log(det(
n∑
i=1

Mi(x)[Ei(x)])) =

p∑
j=1

αj log(det([Nj(x)])) +
n∑

k=q+1

βk−q log(Mk(x)) , (6.32)

with βk−q = Tr([Ek(x)]) for q + 1 6 k 6 n.

As mentioned previously, the first sum in the right-hand side of Eq. 6.26 vanishes for isotropic
and cubic symmetries. On the other hand, the second sum disappears for the triclinic case.
Applying Jensen’s inequality again, it is deduced that

E{log(det([Ni(x)]))} 6 0 , 1 6 j 6 p , (6.33)

and
E{log(Mk(x))} 6 0 , q + 1 6 k 6 n . (6.34)

As a result, the second constraint given by Eq. (6.22) can be rewritten as

E{log(det([Nj(x)]))} = νmj (x) , |νmj (x)| < +∞ , 1 6 j 6 p , (6.35)

and
E{log(Mk(x))} = νsk(x) , |νsk(x)| < +∞ , q + 1 6 k 6 n . (6.36)

It follows that the constraints on the random matrices [N1(x)], . . . , [Np(x)] and the random
variables Mq+1(x), . . . ,Mn(x) can be decoupled and considered separately in the construction of
a probabilistic model.

6.2.3 Stochastic representation of the matrix-valued random fields

We first address the construction of the marginal probability density function [N ] 7→ f[Ni(x)]([N ])
of the random matrix [Ni(x)], 1 6 i 6 p (x being fixed). It was shown in [86] that under the
constraints given by Eqs. (6.23) and (6.34), the probability density function of [Ni(x)] maximizing
the entropy is given by

f[Ni(x)]([N ]) = 1Sr+([N ])× k0 × det([N ])χr × exp

(
− (r + 1)

2δ2
[Ni(x)]

Tr([N ])

)
, (6.37)

where δ[Ni(x)] is the dispersion parameter of [Ni(x)] and with

χr =
(r + 1)(1− δ2

[Ni(x)])

2δ2
[Ni(x)]

. (6.38)

Additionally, the random matrix [Ni(x)] being symmetric and positive-definite, it admits the
decomposition

[Ni(x)] = [Hi(x)]T [Hi(x)] , (6.39)

where [Hi(x)] is the upper-triangular random matrix defined as [20]

[Hi(x)]k` =
δ[Ni(x)]√
r + 1

U
(i)
k` (x) , 1 6 k < ` 6 r , (6.40)
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and
[Hi(x)]`` =

δ[Ni(x)]√
r + 1

√
2�(U

(i)
`` (x), γ

(i)
` (x), 1) , 1 6 ` 6 r , (6.41)

where {{U (i)
k` (x),x ∈ R3}}16k6`6r is a collection of r(r + 1)/2 independent standard normal

random fields, the parameter γ(i)
` (x) is given by

γ
(i)
` (x) =

r + 1

2δ2
[Ni(x)]

+
1− `

2
, (6.42)

and the nonlinear transformation � is defined by Eq. (5.46). In accordance with the symbolic rep-
resentation given by Eq. (6.15), we let {Ξ(x),x ∈ R3} be the random field which is decomposed
as

Ξ(x) = (Ξ(1)(x), . . . ,Ξ(p)(x),Ξq+1(x), . . . ,Ξn(x)) , (6.43)

where each random field {Ξ(j)(x),x ∈ R3}, 1 6 j 6 p, is a Gaussian random vector of length
r(r + 1)/2. By letting α(i, k, `) be the positive integer defined as

α(i, k, `) = k +
1

2
(r(r + 1)(j − 1) + `(`− 1)) , (6.44)

the random matrix [Hi(x)] can be rewritten as

[Hi(x)]k` =
δ[Ni(x)]√
r + 1

Ξ
(i)
α(i,k,`)(x) , 1 6 k < ` 6 r , (6.45)

and
[Hi(x)]`` =

δ[Ni(x)]√
r + 1

√
2�(Ξα(i,`,`)(x), γ

(i)
` (x), 1) , 1 6 ` 6 r . (6.46)

In accordance with Eq. (6.15), the Gaussian random field {Ξ(x),x ∈ B} is formerly written as

Ξ(x) = (Ξ(1)(x), . . . ,Ξ(p)(x),Ξq+1(x), . . . ,Ξn(x)) , (6.47)

where each random field {Ξ(i)(x),x ∈ B}, 1 6 i 6 p, is a Gaussian random vector of length
r(r + 1)/2. The above construction then defines a pointwise nonlinear between {Ξ(x),x ∈ R3}
and {[Ni(x)],x ∈ B}, 1 6 i 6 p.

6.2.4 Stochastic representation of the scalar-valued random fields

Let us now address the case of the remaining coordinates {Mk(x)}nk=q+1, which are assumed to
satisfy the constraints defined by Eqs. (6.24) and (6.36). For these random variables, applying
the MaxEnt principle leads to

fMk(x)(m) = 1(0,∞)(m)× k0 ×m
δ−2
Mk(x)

−1 × exp

(
− m

δ2
Mk(x)

)
, (6.48)

where δMk(x) is the coefficient of variation of Mk(x). As a consequence, each random field
{Mk(x),x ∈ B}, q + 1 6 k 6 n, can be defined by the pointwise mapping

Mk(x) = �(Ξk(x); δ−2
Mk(x), δ

2
Mk(x)) , ∀x ∈ B , (6.49)

where � is defined by Eq. (5.46). This construction defines a pointwise mapping between {Ξk(x),x ∈
B} and {Mk(x),x ∈ B}, q + 1 6 k 6 n.
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6.2.5 Putting things together

The nonlinear mapping H is completely defined by combining Eqs. (6.39), (6.45)–(6.46) and
(6.49) with Eq. (6.13), or equivalently (6.15). This enables, in particular, a fast and robust
sampling of the random fields {[M(x)],x ∈ B} and {[A(x)],x ∈ B}. A sketch of the associated
sampling algorithm is provided below.

(I) Select:

(i) the symmetry class of interest, and deduce the values of n, p, r and the tensor basis
Bx;

(ii) the dispersion fields x 7→ δ[Nj(x)] and x 7→ δMk(x) for 1 6 j 6 p and q + 1 6 k 6 n
(note that they can be chosen as homogeneous for simplicity);

(iii) and an autocorrelation function (x,y) 7→ [R(x,y)] for the Gaussian random field
{Ξ(x),x ∈ B};

(II) Monte Carlo simulations:

(i) generate one realization of the Gaussian fields {Ξk(x),x ∈ B}, 1 6 k 6 n;

(ii) if p 6= 0, then for 1 6 j 6 p, deduce the realization of the fields {[Ni(x)],x ∈ B}
using Eqs. (6.45)–(6.46) with Eq. (6.39);

(iii) for q+1 6 k 6 n, deduce the realization of the fields {Mk(x),x ∈ B} using Eq. (6.49);
(iv) deduce the realizations of [M(x)] and [A(x)] using Eqs. (6.13) and (6.4).

It should be noted that the choice of the covariance function (x,y) 7→ [R(x,y)] is a of primary
importance from a modeling standpoint, since it governs fundamental properties of {Ξ(x),x ∈
B} and {[M(x)],x ∈ B}. In particular, if (x,y) 7→ [R(x,y)] is such that the Gaussian field
{Ξ(x),x ∈ B} has continuous sample paths, then {[M(x)],x ∈ B} also has a continuous version.

Furthermore, the dispersion parameter of the random field {[M(x)],x ∈ B} can readily be
related to the dispersion parameters of the underlying random fields. More precisely, it can be
shown that

δ2
[M(x)] =

1

6

r p∑
j=1

αjδ
2
[Nj(x)] +

n∑
k=q+1

βk−qδ
2
Mk(x)

 . (6.50)

Proof. Let [D(x)] be the random matrix defined as [D(x)] = [M(x)]− [I3]. Using the symbolic
representations of the random matrix [M(x)] and the identity matrix [I3] given by Eqs. (6.15)
and (6.16), one has

[D(x)] = {[F1(x)], . . . , [Fp(x)], Fq+1(x), . . . , Fn(x)} , (6.51)

where the random matrix [Fj(x)] is given by [Fj(x)] = [Nj(x)] − [Ir] and Fk(x) = Mk(x) − 1.
It follows that ‖[M(x)]− [I6]‖2F = Tr([D(x)]T [D(x)]) can be written as

‖[M(x)]− [I6]‖2F = Tr
{

[F1(x)]T [F1(x)], . . . , [Fp(x)]T [Fp(x)], F 2
q+1(x), . . . , F 2

n(x)
}
. (6.52)

Let then [Gj(x)] be the random matrix such that [Gj(x)] = [Fj(x)]T [Fj(x)], with

[Gj(x)] =

[
G

(j)
1 (x) G

(j)
3 (x)

G
(j)
3 (x) G

(j)
2 (x)

]
, (6.53)
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if r = 2 and

[Gj(x)] =

G
(j)
1 (x) G

(j)
4 (x) G

(j)
6 (x)

G
(j)
4 (x) G

(j)
2 (x) G

(j)
5 (x)

G
(j)
6 (x) G

(j)
5 (x) G

(j)
3 (x)

 (6.54)

for r = 3. Proceeding as in Eqs. (6.31)-(6.32), it can be deduced that

‖[M(x)]− [I6]‖2F =

p∑
j=1

r∑
i=1

G
(j)
i (x)Tr([EIr(i,j)(x)]) +

n∑
k=q+1

D2
k(x)Tr([Ek(x)])

=

p∑
j=1

αj

r∑
i=1

G
(j)
i (x) +

n∑
k=q+1

D2
k(x)Tr([Ek(x)])

=

p∑
j=1

αj

r∑
i=1

r∑
`=1

[Fj(x)]i`[Fj(x)]i` +

n∑
k=q+1

D2
k(x)Tr([Ek(x)])

=

p∑
j=1

‖[Fj(x)]‖2F +

n∑
k=q+1

D2
k(x)Tr([Ek(x)])

=

p∑
j=1

αj‖[Nj(x)]− [Ir]‖2F +
n∑

k=q+1

βk−q(Mk(x)− 1)2 .

(6.55)

By taking the mathematical expectation on both sides in the above equation, it can be deduced
that

E{‖[M(x)]− [I6]‖2F } =

p∑
j=1

αj‖[Ir]‖2F δ2
[Nj(x)] +

n∑
k=q+1

βk−qδ
2
Mk(x) , (6.56)

and thus, the dispersion parameter δ[M(x)] of the random matrix [M(x)] is given by Eq. (6.50).

Remark 6.2.1. While previous information-theoretic approaches for random fields have involved
similar constraints (which are related, in part, to the well-posedness of the stochastic boundary
value problem) in the definition of the family of first-order marginal distributions, the proposed
framework takes advantage of the structure of the tensor set to properly define the matrix-valued
and scalar-valued random fields (defining the matrix-valued random field of elasticity tensor with
the target symmetry class) through memoryless transformations. This is notably in contrast with
the formulation constructed in [28, 31], based on the use of an exponential map, where the sam-
pling strategy requires solving a family of Itô stochastic differential equations (ISDE) indexed in
space. The latter method is general and can accommodate arbitrary first-order marginal distribu-
tions, but it requires the selection of an appropriate integration scheme [30] and the generation
of as many realizations of “n” Gaussian random fields as necessary to reach the stationary so-
lution at every single point of the domain. Although the proposed formulation still necessitates
the computation of inverse transformations, it allows for substantial computational savings. In
addition, it turns out to be very easy to implement and does not involve any approximation in the
calculation of the Lagrange multipliers, since closed-form expressions can be obtained for these
hyperparameters.

6.3 Numerical examples

In order to illustrate some of the capabilities of the proposed model, two examples involving weak
symmetries and fields indexed by non-polyhedral geometries are provided below. The generation
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of the underlying Gaussian random fields is carried out by resorting on the SPDE approach
presented in Section 5.4 and the diffusion field will be denoted x 7→ [D(x)] in the rest of this
chapter.

6.3.1 Application to spherical transverse isotropy

In this first example, we consider the case of spherical transverse isotropy. This implies that for
any x ∈ B, the elasticity tensor exhibits transverse isotropy with respect to the unit normal
n(x) = er(x), with er(x) the radial basis vector at the location x. This model was notably
shown to be relevant to the modeling of random interphase properties in nanocomposites with
spherical fillers [207], for example. Let [P (x)] and [Q(x)] be the second-order tensors defined as

[P (x)] = n(x)⊗ n(x) , [Q(x)] = [I3]− [P (x)] . (6.57)

The local tensor basis is then defined by the second-order tensor representation of the following
tensor basis [71]:

JE1(x)K = [P (x)]⊗ [P (x)] , JE2(x)K =
1

2
([Q(x)]⊗ [Q(x)]) ,

JE3(x)K =
1√
2

([P (x)]⊗ [Q(x)] + [Q(x)]⊗ [P (x)]) ,

JE4(x)K = [Q(x)]� [Q(x)]− 1

2
([Q(x)]⊗ [Q(x)]) ,

JE5(x)K = [P (x)]� [Q(x)] + [Q(x)]� [P (x)] .

(6.58)

Using Voigt’s modified notation, the random matrix [M(x)] can be decomposed as

[M(x)] =
5∑
i=1

Mi(x)[Ei(x)] = {[N1(x)],M4(x),M5(x)} , (6.59)

where the random matrix [N1(x)] is given by

[N1(x)] =

[
M1(x) M3(x)
M3(x) M2(x)

]
= [H1(x)]T [H1(x)] , (6.60)

with

[H1(x)] =
δ[N1(x)]√

3

[√
2�(Ξ1(x), γ1(x), 1) Ξ3(x)

0
√

2�(Ξ2(x), γ2(x), 1)

]
. (6.61)

In addition, it is found that the dispersion parameter δ[M(x)] writes

δ[M(x)] =

{
1

3

(
δ2

[N1(x)] + δ2
M4(x) + δ2

M5(x)

)}1/2

. (6.62)

We consider sampling the random field inside the unit sphere B = {x ∈ R3 : ‖x‖ 6 1}, and the
field of diffusion tensor x 7→ [D(x)] is taken, for illustration purposes as

[D(x)] = [I3] + λθeθ(x)⊗ eθ(x) , (6.63)

where the parameter λθ > 0 controls the correlation range along eθ. From a computational stand-
point, the Markov approximation is constructed with q = 23 623 nodes. Examples of covariance
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kernels obtained for two values of the diffusion tensor are shown in Fig. 6.1. More precisely, the
left panel display an isotropic kernel, while the right panel shows a strongly anisotropic covari-
ance structure where the correlation along eθ is more pronounced. One realization of the first
Gaussian random field {Ξ1(x),x ∈ B} and the associated realizations of the first component
{M1(x),x ∈ B} and {M11(x),x ∈ B} are shown for the isotropic case in Fig. 6.2, while similar
results for the anisotropic kernel are depicted in Fig. 6.3.

Figure 6.1 – The left panel displays the graph of the correlation function y 7→ R1(x0,y), estimated
with 1 000 independent realizations for γ(x) = 2 and λθ = 0, i.e. [D(x)] = [I3]. The right panel
displays the estimated correlation function γ(x) = 4 and λθ = 50, which corresponds to a
strongly anisotropic correlation structure. The reference point x0 is arbitrarily chosen on the
outer surface of the sphere.

Figure 6.2 – Illustrative results for γ(x) = 2 and λθ = 0. One realization of {Ξ1(x),x ∈ B}
and the associated realizations of {M1(x),x ∈ B} and {M11(x),x ∈ B} are shown in the left,
middle and right panels, respectively.

A comparison between these figures shows that the diffusion x 7→ [D(x)] strongly affects
the local geometry of the elasticity field. From a modeling standpoint, the field of diffusion
tensor is a key parameter that may be appropriately defined in order to reproduce morphological
features raised by fine scale information (such as the local orientation of polymer chains or
fibers, for instance). Finally, an illustration with increasing levels of fluctuation is shown for
the scalar random field {M4(x),x ∈ B} in Fig. 6.4 (the same realization of the Gaussian field
{Ξ(x),x ∈ B} was used for the subfigures).
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Figure 6.3 – Illustrative results for γ(x) = 4 and λθ = 50. One realization of {Ξ1(x),x ∈ B}
and the associated realizations of {M1(x),x ∈ B} and {M11(x),x ∈ B} are shown in the left,
middle and right panels, respectively.

Figure 6.4 – Illustrative results for γ(x) = 2 and λθ = 0. One realization of {M4(x),x ∈ B} is
shown for δ = 0.2 (left), δ = 0.4 (middle) and δ = 0.6 (right).

6.3.2 Application to cylindrical (or polar) orthotropy

In this second application, we consider the case of cylindrical orthotropy, with

B = {x ∈ R3 : x2
1 + x2

2 6 1 , 0 6 x3 6 3} . (6.64)

The material is then assumed to exhibit local orthotropy at the location x, where the crystallo-
graphic directions are defined by the unit mutually orthogonal vectors a(x), b(x) and c(x). This
field of orientation vectors may by chosen as constant and coincident with the global coordinate
system to model orthotropic laminates, or spatially dependent to model symmetries in the local
coordinate system. Here, we address the second situation and define a(x) = er(x), b(x) = eθ(x)
and c(x) = ez(x) so that (x, er(x), eθ(x), ez(x)) corresponds to the local cylindrical coordinate
system at location x. This model is, in particular, relevant to the modeling of spatially dependent
wood properties. The associated tensor basis is given by [71]:

JE1K = a⊗ a⊗ a⊗ a , JE2K = b⊗ b⊗ b⊗ b , JE3K = c⊗ c⊗ c⊗ c ,

JE4K = a⊗ a⊗ b⊗ b , JE5K = b⊗ b⊗ c⊗ c + c⊗ c⊗ b⊗ b ,

JE6K = a⊗ a⊗ c⊗ c + c⊗ c⊗ a⊗ a , JE7K = (a⊗ b + b⊗ a)⊗ (a⊗ b + b⊗ a)/2 ,

JE8K = (b⊗ c + c⊗ b)⊗ (b⊗ c + c⊗ b)/2 , JE9K = (a⊗ c + c⊗ a)⊗ (a⊗ c + c⊗ a)/2 ,
(6.65)

where the spatial dependence of the quantities in the right-hand side has been omitted for
notational convenience. The random field of elasticity tensor is written as

[M(x)] =
9∑
i=1

Mi(x)[Ei(x)] =


M1(x) M4(x) M6(x)
M4(x) M2(x) M5(x)
M6(x) M5(x) M3(x)

 ,M7(x),M8(x),M9(x)

 . (6.66)
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Hence, the random matrix [N1(x)] writes

[N1(x)] =

M1(x) M4(x) M6(x)
M4(x) M2(x) M5(x)
M6(x) M5(x) M3(x)

 , (6.67)

and the dispersion parameter δ[M(x)] is found to be such that

δ[M(x)] =

{
1

6

(
3δ2

[N1(x)] + δ2
M7(x) + δ2

M8(x) + δ2
M9(x)

)}1/2

. (6.68)

The diffusion tensor x 7→ [D(x)] is chosen as

[D(x)] = [I3] + λθ eθ(x)⊗ eθ(x) + λz ez(x)⊗ ez(x) , (6.69)

where the parameters λθ > 0 and λz > 0 can be adjusted in order to target some correlation
ranges along the associated directions. The Markov approximation is constructed with 16, 460
nodes. We consider an isotropic covariance kernel (defined with λθ = λz = 0), as well as two
anisotropic cases where a predominant correlation is locally imposed along eθ or ez as depicted
in Fig. 6.5. One realization of the random field {Ξ1(x),x ∈ B} and the associated realizations
{M1(x),x ∈ B} and {M11(x),x ∈ B} are shown for the isotropic case in Fig. 6.6. As expected,
it is seen that the realizations do not exhibit any noticeable feature in terms of orientation.
Similar results for the two anisotropic configurations are shown in Figs. 6.7–6.8. In contrast to
the isotropic case, it is observed that the realizations can exhibit specific features that may be
found representative of subscale details, such as local fiber orientation.

Figure 6.5 – This figure shows the graph of the correlation function y 7→ R1(x0,y), estimated
with 1, 000 independent realizations, for (γ(x), λθ, λz) = (2, 0, 0) (left panel), (10, 50, 0.1) (middle
panel) and (2, 0, 50) (right panel). The reference point x0 is chosen on the outer surface of the
cylinder.

Since the covariance kernel (x,y) 7→ [R(x,y)] inherited from the choices of κ and [D] is
unknown a priori for spatially dependent coefficients, we investigate below, through numerical
experiments, the shape of the the covariance kernel (x,y) 7→ R1(x,y). For this purpose, we
consider three configurations related to directions of interest, namely:

• the radial direction, for which we select x = (0, 0, 0), y = (u, 0, 0) or (0, u, 0) with u ∈
[−1, 1], and let R1(x,y) = ρ1(u);

• the orthoradial direction, which is explored using x = (ri, 0, 0) and y = (ri cos(θ), ri sin(θ), 0),
with ri ∈ {0.5, 0.75, 1.0} and θ ∈ [−π, π]; here, we let R1(x,y) =: ρ1(riθ), where riθ mea-
sures the arc length at r = ri;
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Figure 6.6 – Illustrative results for γ(x) = 2 and λθ = λz = 0. One realization of {Ξ1(x),x ∈ B}
and the associated realizations of {M1(x),x ∈ B} and {M11(x),x ∈ B} are shown in the left,
middle and right panels, respectively.

Figure 6.7 – Illustrative results for γ(x) = 10 and λθ = 50 and λz = 0.1. One realization of
{Ξ1(x),x ∈ B} and the associated realizations of {M1(x),x ∈ B} and {M11(x),x ∈ B} are
shown in the left, middle and right panels, respectively.

• the longitudinal direction, where x = (u, v, 1.5), y = (u, v, z), u ∈ {−1, 0, 1}, v ∈ {−1, 0, 1}
and z = [1, 2]; we then define R1(x,y) = ρ1(z).

The covariance functions estimated with 20 000 independent realizations are shown for these three
configurations in Fig. 6.9. It can be observed in this figure that the covariance function (expressed
in appropriate coordinates) exhibits some invariance properties along preferred directions. These
properties are induced by the particular definition x 7→ [D(x)], which is chosen in accordance
with the geometric symmetries in this application. While this may suggest stationarity, it is
worth pointing out that the solution is not stationary for the translation in R3.

6.4 Closed-form expressions

In this final section, the tensor bases and the expressions of the dispersion parameter are provided
for the symmetry classes that were not considered to exemplify the framework (recall that the
modified Voigt notation has been used for fourth-order tensors). As indicated previously, the
monoclinic system is not considered either due to limited applicability. In the following, the
nonlinear transformation � of standard Gaussian fields is defined by Eq. (5.46).

6.4.1 Isotropy

In the case of isotropy, the random elasticity tensor writes JC(x)K = 3C1(x)JE1K + 2C2(x)JE2K
where

JE1K =
1

3
[I3]⊗ [I3] , JE2K = [I3]� [I3]− JE1K , (6.70)
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Figure 6.8 – Illustrative results for γ(x) = 20 and λθ = 0 and λz = 50. One realization of
{Ξ1(x),x ∈ B} and the associated realizations of {M1(x),x ∈ B} and {M11(x),x ∈ B} are
shown in the left, middle and right panels, respectively.
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Figure 6.9 – Illustrative results for γ(x) = 20 and λθ = 50 and λz = 0.1. These figures show the
estimated covariance kernels in the selected radial, orthoradial and longitudinal directions.

and the dispersion parameter reads as

δ2
[M(x)] =

1

6

(
δ2
M1(x) + 5δ2

M2(x)

)
. (6.71)

The random matrix [M(x)] then writes [M(x)] = M1(x)[E1] + M2(x)[E2] where the random
variables M1(x) and M2(x) are defined as

Mk(x) = �(Ξk(x), δ−2
Mk(x), δ

2
Mk(x)) , 1 6 k 6 2 , (6.72)

with {Ξk(x),x ∈ B} a normalized Gaussian random field.

6.4.2 Cubic symmetry

Let (a(x),b(x), c(x)) define the crystallographic system at the location x in B. The tensor basis
is then defined as

JE1K =
1

3
[I3]⊗ [I3] , JE2K = [I3]� [I3]− JE0(x)K , JE3(x)K = JE0(x)K− JE1K , (6.73)

with

JE0(x)K = a(x)⊗a(x)⊗a(x)⊗a(x)+b(x)⊗b(x)⊗b(x)⊗b(x)+c(x)⊗c(x)⊗c(x)⊗c(x) . (6.74)

The dispersion parameter is given by

δ2
[M(x)] =

1

6

(
δ2
M1(x) + 3δ2

M2(x) + 2δ2
M3(x)

)
. (6.75)

The random matrix [M(x)] is then decomposed as [M(x)] =
∑3

i=1Mi(x)[Ei(x)], with

Mk(x) = �(Ξk(x), δ−2
Mk(x), δ

2
Mk(x)) , 1 6 k 6 3 . (6.76)
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6.4.3 Tetragonal symmetry

Let n(x) be the unit vector defining the preferred direction of the system, and let a(x) and b(x)
be two unit vectors in R3 such that (a(x),b(x), c(x)) are mutually orthogonal at the location x.
Moreover, let [P (x)] and [Q(x)] be two tensors defined as

[P (x)] = n(x)⊗ n(x) , [Q(x)] = [I3]− [P (x)] . (6.77)

The basis is given by

JE1(x)K = [P (x)]⊗ [P (x)] , JE2(x)K = [Q(x)]⊗ [Q(x)]/
√

2 ,

JE3(x)K = ([P (x)]⊗ [Q(x)] + [Q(x)]⊗ [P (x)])/
√

2 ,

JE4(x)K = (a(x)⊗ b(x) + b(x)⊗ a(x))⊗ (a(x)⊗ b(x) + b(x)⊗ a(x))/2 ,

JE5(x)K = (a(x)⊗ a(x)− b(x)⊗ b(x))⊗ (a(x)⊗ a(x)− b(x)⊗ b(x))/2 ,

JE6(x)K = [P (x)]� [Q(x)] + [Q(x)]� [P (x)] .

(6.78)

Furthermore, the dispersion parameter writes

δ2
[M(x)] =

1

6

(
2δ2

[N1(x)] + δ2
M4(x) + δ2

M5(x) + 2δ2
M6(x)

)
. (6.79)

For this symmetry class, the random matrix [M(x)] then writes [M(x)] =
∑6

i=1Mi(x)[Ei(x)],
and the symbolic representation takes the form [M(x)] = {[N1(x)], N4(x), N5(x), N6(x)}, where

[N1(x)] =

[
M1(x) M3(x)
M3(x) M2(x)

]
. (6.80)

The latter is decomposed as [N1(x)] = [H1(x)]T [H1(x)] with

[H1(x)] =
δ[N1(x)]√

3

[√
2�(Ξ1(x), γ1(x), 1) Ξ3(x)

0
√

2�(Ξ2(x), γ2(x), 1)

]
, (6.81)

in which γ1(x) = 3/(2δ2
[N1(x)]) and γ2(x) = 3/(2δ2

[N1(x)])− 1/2. The remaining random variables
Mk(x), 4 6 k 6 6 are defined as

Mk(x) = �(Ξk(x), δ−2
Mk(x), δ

2
Mk(x)) . (6.82)

6.4.4 Trigonal symmetry

Let n(x) be the unit vector orthogonal to the plan spanned by the unit vectors a(x) and b(x),
and assume that an angle of 2π/3 is left between these two vectors in that plane, at the location
x. Let us introduce the following tensors:

[P (x)] = n(x)⊗ n(x) , [Q(x)] = [I3]− [P (x)] ,

[S(x)] =
√

2/3(a(x)⊗ a(x) + a(x)⊗ b(x) + b(x)⊗ a(x)) ,

[T (x)] =
√

2/3(b(x)⊗ b(x) + a(x)⊗ b(x) + b(x)⊗ a(x)) ,

[U(x)] = (n(x)⊗ a(x) + a(x)⊗ n(x))/
√

2 , [V (x)] = −(n(x)⊗ b(x) + b(x)⊗ n(x))/
√

2 ,

[W (x)] = (4/3)([S(x)]⊗ [U(x)] + [T (x)]⊗ [V (x)]− (1/2)[T (x)]⊗ [U(x)]− (1/2)[S(x)]⊗ [V (x)]) ,

[Z(x)] = (4/3)([U(x)]⊗ [S(x)] + [V (x)]⊗ [T (x)]− (1/2)[U(x)]⊗ [T (x)]− (1/2)[V (x)]⊗ [S(x)]) .
(6.83)
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The basis is then defined by the following tensors:

δ2
[M(x)] =

1

3

(
δ2

[N1(x)] + 2δ2
[N2(x)]

)
. (6.84)

The random matrix [M(x)] reads as [M(x)] =
∑6

i=1Mi(x)[Ei(x)] or using the symbolic repre-
sentation [M(x)] = {[N1(x)], [N2(x)]}, with

[N1(x)] =

[
M1(x) M3(x)
M3(x) M2(x)

]
, [N2(x)] =

[
M4(x) M6(x)
M6(x) M5(x)

]
. (6.85)

Each of the above matrix are decomposed as [Nj(x)] = [Hj(x)]T [Hj(x)] where

[H1(x)] =
δ[N1(x)]√

3

√2�(Ξ1(x), γ
(1)
1 (x), 1) Ξ3(x)

0

√
2�(Ξ2(x), γ

(1)
2 (x), 1)

 , (6.86)

and

[H2(x)] =
δ[N2(x)]√

3

√2�(Ξ4(x), γ
(2)
1 (x), 1) Ξ6(x)

0

√
2�(Ξ5(x), γ

(2)
2 (x), 1)

 , (6.87)

in which γ(j)
` (x) = 3/(2δ2

[Nj(x)]) + (1− `)/2, for 1 6 j, ` 6 2.

6.5 Conclusion

In this chapter, a unified approach to the modeling and simulation of (non-Gaussian) random
fields of elasticity tensors was proposed [34]. The information-theoretic stochastic representation
builds upon the so-called Walpole tensor decomposition, which allows the probabilistic model
to be constructed using independent matrix-valued and scalar-valued random fields. In contrast
to alternative approaches proposed elsewhere, the model can be sampled through a memoryless
transformation, hence providing substantial computational savings. Two applications involving
weak symmetries and spherical and cylindrical geometries were finally given in order to exemplify
some modeling capabilities of the framework. In particular, it was shown that an appropriate
parametrization of the underlying Gaussian fields (through the diffusion field) allows specific
features (such as those related to subscale details, including morphological anisotropy) to be
prescribed on the sample paths of the random field of elasticity tensor. The model and generator
are readily applicable, for instance, to the modeling of composite laminates and wood species, as
well as to the representation of, e.g., bone properties (which may be modeled as a transversely
isotropic material) in computational biomechanics.
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General conclusion

In this thesis, we have addressed the construction, identification and simulation of stochastic
nonlinear constitutive models. The proper randomization of homogeneous, isotropic Ogden-type
stored energy functions was first tackled in the case of compressible and incompressible hyper-
elastic media. This problem was approached within the framework of information theory. More
precisely, the principle of maximum entropy was invoked to impose constraints related to the
mathematical analysis of weak formulations in finite elasticity. The obtained stochastic Ogden
potentials are, in particular, polyconvex and coercive almost surely, which makes the associated
stochastic nonlinear boundary value problem well posed. They can thus be used to perform
uncertainty propagation through nonlinear models, using an appropriate randomization around
a nominal model, or to regularize underdetermined statistical inverse problems. They can also
be used as prior models in a Bayesian formulation to model identification. Two probabilistic
models were derived to offer various levels of modeling flexibility, and explicit results for Neo-
Hookean and Mooney-Rivlin materials were provided. The relevance of the newly constructed
potentials to reproduce experimental variability was then assessed on several databases for soft
biological tissues, available elsewhere. A simple identification procedure was specifically devised,
and it was shown that the stochastic Ogden stored energy functions enable the accurate model-
ing of stochastic hyperelastic responses for a variety of materials, over a wide range of strain rates.

The construction of surrogate models for nonlinear multiscale solution maps was subsequently
presented, and two strategies were proposed. In a first approach, the homogenized potential was
expanded in a polynomial series involving the macroscopic deformations. Extensive numerical
benchmarks were conducted on various deterministic and random microstructures. It was shown
that the polynomial approximant remains very accurate over the considered sets of deformations,
regardless of the underlying microstructural anisotropy. These results are found in accordance
with other theoretical analyses developed elsewhere. In a second approach, the definition of
closest approximations into predefined sets of stored energy functions was proposed. While this
strategy induces a non-vanishing residual between the surrogate and the reference solution, it
allows the multiscale information to be transferred back-and-forth between the microscopic and
macroscopic scales at no additional cost. These two approaches were then gauged against each
other and compared to the FE2 method, and the projection-based approximant was shown to
still deliver very satisfactory results for the localization and magnitude of the peak Von Mises
stress.

In a third stage of development, the modeling and robust simulation of spatially varying,
anisotropic stored energy functions were considered. Here, a prototypical anisotropic potential
was selected and involves structural tensors associated with the class of transversely isotropic
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behaviors. As with the homogeneous case, the maximum entropy principle was invoked and used
to construct the system of first-order marginal probability distributions of the non-Gaussian
field, accounting for constraints related to the stochastic nonlinear boundary value problem. A
methodology allowing the random field model to be sampled on non-convex domains was further
proposed and applied for modeling stochasticity in arterial walls. In particular, the capability of
the proposed computational framework to generate very different correlation kernels on a real,
patient-specific geometry was demonstrated. The forward propagation of the uncertainties hence
generated was finally achieved to estimate the probability density function of the maximum Von
Mises stress in the vascular vessel.

In the last part of this work, a probabilistic model unifying previous information-theoretic
formulations for random fields of elasticity tensors was presented. The random field model allows
fluctuations in all classes of material symmetries (ranging from isotropy to fully anisotropic
media) to be generated and involves a low-dimensional, physically-based parametrization. The
associated random generator turns out to be robust and simple. Numerical illustrations were
finally performed in the case of materials exhibiting spherical isotropy and cylindrical orthotropy
on curved geometries.

Perspectives

In addition to technical refinements that could be proposed here and there, some future research
directions can be identified as follows.

• First, it would be very interesting to complement the probabilistic modeling effort with
developments related to the identification and validation of the stochastic models, using
experimental data.

• Second, introducing time-dependency in the proposed stochastic formulations is a very
natural extension that would broaden the scope of applications for some soft biological
tissues, such as brain tissues.

• Third, investigating the construction and assessing the accuracy of approximants for three-
dimensional, highly nonlinear multiscale solution maps are necessary steps toward the
integration of homogenization-based surrogates.
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Appendix A

Stress and Tangent Tensors

In this annex, closed-form expressions of the second Piola-Kirchhoff stress tensor {[Sε(x)],x ∈ B}
and fourth-order tangent modulus {JLε(x)K,x ∈ B} are given for the stochastic stored energy
function defined by Eq. (5.23). Note first that the latter can be decomposed into volumetric and
isochoric contributions as follows:

Wε(x, [C]) = Wε(x, [C]) +
2∑
`=1

G4ε(x)

β4
exp

(
β4〈‖[F ]a`(x)‖22 − 1〉2m

)
+G3ε(x)h(J) , (A.1)

with J =
√

det([C]), h(J) = Jβ3 + J−β3 and

Wε(x, [C]) = G1ε(x)Tr([C]) +G2ε(x)(Tr(Cof([C])))3/2 . (A.2)

Using the definition of the second Piola-Kirchhoff stress tensor (see Eq. (1.14)), it follows that

[Sε(x, [C])] = [Sisc
ε (x, [C])] +G3ε(x)Jh′(J)[C]−1 (A.3)

where the random isochoric stress tensor writes

[Sisc
ε (x, [C])] = J−2/3

(
[I3]� [I3]− 1

3
[C]−1 ⊗ [C]

)
: [Sε(x, [C])]

+
2∑
`=1

4G4ε(x)〈Tr([C][M`(x)])− 1〉m exp
(
β4〈Tr([C][M`(x)]− 1〉2m

)
[M`(x)] ,

(A.4)
where ([A]� [B])ijkl = (AikBjl +AilBjk)/2 for 1 6 i, j, k, l 6 3 and

Sε(x, [C])ij = 2
∂Wε(x, [C])

∂Cij
, 1 6 i, j 6 3 , (A.5)

Let then {JLε(x, [C])K, (x, [C]) ∈ B × S3
+} be the fourth-order elasticity tensor defined as

Lε(x, [C])ijkl = 4
∂2Wε(x, [C])

∂Cij∂Ckl
, 1 6 i, j, k, l 6 3 . (A.6)

From Eq. (A.3), it is deduced that JLε(x, [C])K can be decomposed as

JLε(x, [C])K = JLisc
ε (x, [C])K + JLvol

ε (x, [C])K + JLani
ε (x, [C])K , (A.7)
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where the isochoric contribution writes

JLisc
ε (x, [C])K = J−4/3

(
[I3]� [I3]− 1

3
[C]−1 ⊗ [C]

)
: JLε(x, [C])K :

(
[I3]� [I3]− 1

3
[C]⊗ [C]−1

)
− 2

3

(
[Sisc
ε (x, [C])]⊗ [C]−1 + [C]−1 ⊗ [Sisc

ε (x, [C])]
)

+
2

3
J−2/3Tr([C][Sε(x, [C])])

(
[C]−1 � [C]−1 − 1

3
[C]−1 ⊗ [C]−1

)
,

(A.8)
the volumetric contribution reads as

JLvol
ε (x, [C])K = G3ε(x)J

(
h′(J) + Jh′′(J)

)
[C]−1 ⊗ [C]−1 − 2G3ε(x)Jh′(J)[C]−1 � [C]−1 , (A.9)

and the anisotropic elasticity tensor is given by

JLani
ε (x, [C])K =

2∑
`=1

8G4ε(x)1Tr([C][M`(x)])>1([C]) exp(β4〈Tr([C][M`(x)])− 1〉2m)[M`(x)]⊗ [M`(x)]

+
2∑
`=1

16G4ε(x)β4〈Tr([C][M`(x)])− 1〉m exp(β4〈Tr([C][M`(x)])− 1〉2m)[M`(x)]⊗ [M`(x)] .

(A.10)
For all x ∈ B and [C] ∈ S3

+, the random tensor JL(x, [C])K involved in Eq. (A.8) is defined as

Lε(x, [C])ijkl = 4
∂2Wε(x, [C])

∂Cij∂Ck`
, 1 6 i, j, k, l 6 3 . (A.11)

Recalling that in the above equations the random field {Gε(x),x ∈ B} is defined component-
wise by Eq. (5.24), realizations of the stress and elasticity tensor can be decomposed in view of
solving the stochastic boundary value problems of interest.
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Weak Formulation and Static Condensation

In this section, we describe the weak formulation that has been used for solving the nonlinear
boundary value problems in chapter 5. The latter are solved with the finite element method
and a total Lagrangian formulation [152, 153, 109]; see also [168, 171] for a discussion about
advances techniques for the numerical modeling of arterial walls. In order to circumvent the
well-known locking phenomenon raised by quasi-incompressibility, we have recourse to a three-
field formulation with static condensation (mean dilation method) [208, 209, 210]. More pre-
cisely, a P2 − P0 − P0 discretization is used, and the displacement-based formulation is solved
with a standard Newton-Raphson combined with load stepping scheme. A parallel finite el-
ement solver was implemented with Sandia C++ Trilinos packages [211, 212], and validated
by using numerical benchmarks and the method of manufactured solution. We consider the
boundary value problem defined in the reference configuration (see Eq. (1.9) in the determinis-
tic setting) where the natural boundary condition is given by the deformation dependent load
h(x) = P det([Fϕ(x)])[Fϕ(x)]−Tn(x), with P 6 0, for x ∈ ΓN . The weak formulation is then
given by [109]: find ϕ ∈ H1(B,R3) such that

a(ϕ,v) = `(ϕ,v) , ∀v ∈ H1
0(B,R3) , (B.1)

where

a(ϕ,v) =

∫
B

(
[Sisc
ε (x, [Cϕ])] + det([Fϕ(x)])h′(det([Fϕ(x)]))[Cϕ(x)]−1

)
: [δE(ϕ,v)] dx , (B.2)

with [δE(ϕ,v)] = ([∇ϕ(x)]T [∇v(x)] + [∇v(x)]T [∇ϕ(x)])/2 and

`(ϕ,v) =

∫
ΓN

〈P det([Fϕ(x)])[Fϕ(x)]−Tn,v〉2 da . (B.3)

The three-field formulation [209, 210] consists in introducing two additional fields x 7→ Θ(x) and
x 7→ p(x) corresponding to the volume dilatation and hydrostatic pressure, respectively, and
such that ∫

B

(
Θ(x)− det([Fϕ(x)])

)
q(x) dx = 0 , ∀q ∈ L2(B,R3) , (B.4)

and ∫
B

(
p(x)−G3ε(x)h′(det([Fϕ(x)]))

)
r(x) dx = 0 , ∀r ∈ L2(B,R3) . (B.5)

In the following, we denote by Bh the triangulation of the reference configuration B, such that
Bh = ∪nee=1Be. While the displacement field is assumed to be continuous over B, the additional
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Appendix B. Weak Formulation and Static Condensation

scalar fields Θ and p are chosen to be constant in each element Be of the triangulation Bh.
This approach is referred to as static condensation or mean dilatation method [208] and leads to
Θe = Θ(x)

∣∣
Be

and pe = p(x)|Be
, with

Θe =
1

|Be|

∫
Be

det([Fϕ(x)]) dx , pe =
1

|Be|

∫
Be

G3ε(x)h′(Θe) dx . (B.6)

The three-field formulation then reduces to a standard displacement formulation, i.e., the non-
linear form a writes

a(ϕ,v) =

ne∑
e=1

∫
Be

(
[Sisc
ε (x, [Cϕ])] + det([Fϕ(x)])pe[Cϕ(x)]−1

)
: [δE(ϕ,v)] dx , (B.7)

Herein, the weak formulation is then solved with a standard Newton-Raphson, that is

for k > 0 : a′(ϕ(k),v).(∆ϕ(k+1))− `(ϕ(k),v).(∆ϕ(k+1)) = `(ϕ,v)− a(ϕ,v) , (B.8)

where a′(ϕ(k),v).(∆ϕ(k+1)) and `(ϕ(k),v).(∆ϕ(k+1)) denote the Gateaux derivatives at ϕ = ϕ(k)

with the increment ∆ϕ(k+1) = ϕ(k+1) −ϕ(k). Using the chain rule, it can first be deduced that

a′(ϕ,v).(∆ϕ) =

ne∑
e=1

∫
Be

[δE(ϕ,v)] : JLeε(x, [Cϕ])K : [δE(ϕ,∆ϕ)] dx

+

ne∑
e=1

∫
Be

([Sε(x, [Cϕ]) + det([Fϕ])pe[Cϕ]−1) : [∇∆ϕ(x)]T [∇v(x)] dx

+

ne∑
e=1

h′′(Θe)

|Be|2

∫
Be

Jϕ[Cϕ]−1 : [δE(ϕ,v)]dx

∫
Be

G3ε(x)dx

∫
Be

Jϕ[Cϕ]−1 : [δE(ϕ,∆ϕ)]dx ,

(B.9)
with

JLeε(x, [Cϕ])K = JLisc
ε (x, [Cϕ])K+Jϕpe([Cϕ]−1⊗[Cϕ]−1−2[Cϕ]−1�[Cϕ]−1)+JLani

ε (x, [Cϕ])K (B.10)

and Jϕ(x) = det([Fϕ(x)]). The pressure load being deformation dependent, the linearization
of the form (ϕ,v) 7→ `(ϕ,v) is rather complicated. This issue can be circumvented by having
recourse to a parameterization of the surface on which the pressure load is applied [141, 109],
that is

`(ϕ,v) =

nΓN∑
e=1

∫
Γξ
e

P〈x̂,ξ1(ξ)× x̂,ξ2(ξ),v〉 dξ1dξ2 , (B.11)

in which x̂(ξ) = ϕ(x) in Be. It can be deduced that the first Gateaux derivative writes

`′(ϕ,v).(∆ϕ) =

nΓN∑
e=1

∫
Γξ
e

P〈∆ϕ,ξ1(x)× x̂,ξ2(ξ) + ∆ϕ,ξ2(x)× x̂,ξ1(ξ),v〉dξ1dξ2 . (B.12)

Note that this leads to a non self-adjoint operator (and thus a non-symmetric tangent matrix
within the Newton-Raphson algorithm) but this issue can be circumvented in some particular
cases such as a closed boundary surface ΓN or fixed contour ∂ΓN [141]. Closed-form expressions
of the discretized matrices and vectors can be found in, e.g., [141, 109].
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