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Résumé

La convolution est une opération mathématique par laquelle la forme d'une fonction est modifiée par la forme d'une autre fonction, le noyau de convolution. La déconvolution consiste à estimer la fonction d'origine, quand on connaît le noyau de convolution et la sortie du système. L'identification du système consiste à estimer le noyau de convolution en connaissant l'entrée et la sortie du système. La déconvolution aveugle consiste à estimer à la fois le noyau et fonction d'origine, ne connaissant que la sortie du système. Ces problèmes ne peuvent être résolus efficacement qu'en ajoutant des a priori, définis par des considérations mathématiques (positivité) ou physiques (causalité). Le domaine des problèmes inverses qui utilise des approches de régularisation sous contraintes se situe à la frontière des mathématiques appliquées et de la physique et offre un large choix d'algorithmes permettant de résoudre les problèmes de déconvolution. Dans ce cadre, nous pouvons concevoir d'outils plus efficaces que d'autres techniques de déconvolution antérieures qui présentent des limitations dues à l'absence de contraintes, avec un complexité et temps de calcul élevé.

Cette thèse a commencé par l'étude d'un problème de micro-vibrations apparaissant dans l'instrument Planetary Fourier Spectrometer (PFS) à bord de la mission Mars Express. Les spectres de l'atmosphère martienne acquis par l'instrument présentaient des artefacts évidents causés par ces micro-vibrations que les praticiens auraient aimé voir supprimées. Etant donné qu'il n'y avait accès qu'aux spectres de PFS livrés, un algorithme de déconvolution aveugle 1D était envisagé pour déterminer les spectres de l'atmosphère de Mars originale ainsi que le signal de micro-vibrations qui affectait le premier. Sur la base des travaux effectués sur ce problème, les exigences relatives à une nouvelle étude utilisant des méthodes de problèmes inverses appliquées à la spectroscopie ont été formulées entre le Laboratoire des signaux et systèmes de Centrale Supélec / Université Paris-Sud / CNRS et le Laboratoire de Géosciences Planétaires de l' Université Paris-Sud comme un effort interdisciplinaire. Les algorithmes développés ont montré des résultats prometteurs pour d'autres applications dans le domaine des géosciences 7 nécessitant des techniques de déconvolution 1D; l'étude s'est donc étendue à la validation de ces méthodes pour les domaines de l'hydrologie et de la sismologie. Dans les pages suivantes, tous les efforts sont consacrés à la conception d'algorithmes simples, précis et rapides permettant d'apporter des solutions adéquates à trois problèmes de déconvolution 1D dans les domaines susmentionnés. Un autre objectif de cette thèse est de fournir gratuitement à d'autres praticiens les toolboxes algorithmiques d'accompagnement résultant de ce travail.

Dans le chapitre 2, nous examinons étape par étape comment concevoir une solution de déconvolution 1D et définissons tous les outils mathématiques, d'optimisation, d'algorithmique, numériques et de calcul qui seront utilisés dans les chapitres sur l'applications. Nous commenc ¸ons par référencer les espaces mathématiques que nos formulations et algorithmes vont habiter. Ensuite, nous continuons dans la section 2.1 en définissant ce qui est un problème mal posé, puisque nos trois applications entrent dans cette catégorie. Nous abordons ensuite les cinq niveaux de conception d'un algorithme de déconvolution 1D dans la section 2.2: niveau de problème direct, niveau de problème inverse, niveau d'optimisation, niveau numérique et niveau de calcul. La raison en était de permettre à cette thèse d'être interprétée comme un livre de recettes destiné aux praticiens souhaitant concevoir leur propre algorithme d'optimisation pour leur problèmes inverses. Le lecteur devrait pouvoir suivre un tel processus de conception sans oublier certains aspects importants, savoir quels outils existent dans un domaine où il ne s'est pas spécialisé et éviter de tomber dans certains des pièges qui peuvent apparaitre. Nous commenc ¸ons par le niveau de problème direct et le niveau de problème inverse dans les sections 2.2.1 et 2.2.2 où nous présentons le modèle direct et la fonctionnelle dans la méthodologie du problème inverse basée sur la régularisation eton explique aussi le concept de la méthodologie du problème inverse basée sur la méthode Bayésienne.

Au niveau d'optimisation 2.2.3, nous discutons des approches d'optimisation et des techniques algorithmiques permettant de résoudre la fonctionelle. Au niveau numérique 2.2.4, nous prenons le système linéaire classique d'équations et le présentons sous différents angles, ainsi que la fac ¸on dont les gens le modifient pour atteindre la solution optimale, grâce à l'utilisation de normes différentes, conditionnant les matrices de Toeplitz et utiliser des outils tels que le numéro de conditionnement. Au niveau de calcul 2.2.5, nous traitons de fac ¸ons très spécialisées comment améliorer un algorithme au niveau code, processeur et utilisation de la mémoire, en expliquant comment réduire le temps d'exécution et prendre conscience des limites de la machine en ce qui concerne calcul de haute performance. Voyant que ce travail est axé sur la déconvolution 1D, nous exam-inons ensuite la définition de la convolution et les concepts de déconvolution et de déconvolution en aveugle dans 1D dans la section 2.3, ainsi qu'une brève introduction aux autres méthodes utilisées. Enfin, sur la base des concepts et des outils présentés dans ce chapitre, nous résumons les choix que nous avons faits et les outils que nous avons décidé d'utiliser dans nos applications 2.4.

Dans le chapitre 3, nous commenc ¸ons par notre première application dans le domaine de l'hydrologie où nous estimons le temps de résidence de l'eau d'un canal hydrologique par déconvolution 1D. Nous présentons ce modèle dans la section 3.2. Nous utilisons un algorithme de minimisation alternante (voir la section 3.3) avec un solveur de signaux lisse basé sur la méthode Projected Newton et nous expliquons en détail notre implémentation dans la section 3.4. Nous appliquons également un opérateur de régularitsation basé sur la norme 2 et résolvons le problème sous des contraintes de positivité et de causalité, tout au long de l'estimation. Nous discutons des travaux liés précédents dans la section 3.5. Nous expliquons comment nous avons conc ¸u un processus automatique pour choisir l'hyper-paramètre λ dans la section 3.6 au cours de notre phase de validation des tests synthétiques. Ensuite, nous montrons l'efficacité de notre algorithme sur des données réelles dans 3.7. Nous presentons nos conclusions dans la section 3.8. Le contenu de ce chapitre a été présenté sous forme de poster lors de la conférence GRETSI 2017 [START_REF] Meresescu | Estimation du temps de résidence hydrologique: Déconvolution 1d[END_REF] et sous la forme d'un article publié dans Computers & Geosciences [START_REF] Meresescu | Water residence time estimation by 1d deconvolution in the form of a l2-regularized inverse problem with smoothness, positivity and causality constraints[END_REF].

Dans le chapitre 4, nous présentons notre deuxième application dans le domaine de la sismologie où nous estimons la fonction de réflectivité d'une trace sismique par déconvolution 1D dans le domaine des problèmes inverses et présentons ce modèle dans la section 4.2. Nous présentons notre algorithme de déconvolution, un solveur de signaux sparse soumis à une contrainte de positivité. Nous discutons ensuite des méthodes déjà utilisées sur le terrain et montrons en quoi elles diffèrent des nôtres dans la section 4.5. Nous validons ensuite l'algorithme dans la section 4.6 et concevons un processus automatique pour choisir le paramètre hyper-paramètre λ du modèle. Nous présentons ensuite les résultats de notre algorithme sur les données simulées dans la section 4.7 et sur les sismogrammes réels enregistrés, dans la section 4.8. Enfin, nous réitérons nos conclusions dans la section conclusion 4.9.

Dans le chapitre 5, nous présentons notre troisième application dans le domaine de la spectrométrie de Fourier liée à l'instrument de mission Mars Express, The Planetary Fourier Spectrometer (PFS). Les spectres délivrés par cet instrument présentent des fantômes à certaines longueurs d'onde provoquées par des micro-vibrations produites par d'autres instruments et mécanismes présents sur l'orbiteur. Dans cette application, seul le signal mesuré est connu; le spectre d'origine de Mars (sans fantômes) ainsi que le noyau de micro-vibrations doivent être estimés simultanément. Nous commenc ¸ons par une introduction au problème dans la section 5.1, puis nous poursuivons avec la modélisation analytique des micro-vibrations et de leurs effets sur le spectre de Mars dans la section 5.2. Après cela, nous présentons la formulation du problème direct et inverse et l'algorithme proposé pour le résoudre dans la section 5.3. Enfin, nous testons deux versions de l'algorithme sur des données synthétiques et présentons nos résultats dans les sections 5.5 et 5.7. Finalement, nous résumons nos résultats dans la section 5.8. Le contenu de ce chapitre a été présenté lors d'une conférence au Congrès Européen des Sciences Planétaires de 2018 [Meresescu et al., 2018a].

Dans le dernier chapitre de ce travail (6), nous donnons un aperc ¸u de nos découvertes et perspectives les plus utiles pour le développement ultérieur de nos algorithmes.

Chapter 1 Introduction

Convolution is a mathematical operation through which the shape of one function is changed by the shape of some other function, the convolution kernel. Simple deconvolution consists in estimating the original function, knowing the convolution kernel and the output of the system. System identification is estimating the convolution kernel knowing the input and the output of the system. The more complex blind deconvolution consists in the estimation of both the kernel and the input, knowing only the output of the system. These problems can only be efficiently solved by adding priors, defined by mathematical (positivity), or physical considerations (causality). The field of inverse problems under constraints with regularization lies at the border between applied mathematics and physics and offers a wide range of algorithms to solve deconvolution problems. In this framework we can design better tools than other previous deconvolution techniques that show limitations by lack of constraints, or by high level of complexity, or by an increased computational time.

This thesis started as a study of a micro-vibrations problem arising in the Planetary Fourier Spectrometer (PFS) instrument on board the Mars Express mission. The Mars atmosphere spectra acquired by the instrument presented obvious artifacts caused by these micro-vibrations that practitioners would have liked to see removed. Since there was access only to the delivered PFS spectra, a 1D blind deconvolution algorithm was envisaged to determine the original Mars atmosphere spectra and also the micro-vibrations signal that affected the former. Based on the work done for this problem, the requirements for a new study using inverse problems methods applied to spectroscopy have been formulated between the Laboratory of Signals and Systems of Centrale Supélec/Paris-Sud University/CNRS and the Laboratory of Planetary Geosciences of Paris-Sud University as an interdisciplinary effort. The developed algorithms showed promising results for other CHAPTER 1. INTRODUCTION applications in the field of Geosciences that needed 1D deconvolution techniques, therefore the study extended into the validation of these methods for the fields of hydrology and also seismology. In the following pages all the effort is put into designing simple, accurate and fast algorithms that reach adequate solutions in three 1D deconvolution problems in the aforementioned fields. Another goal of this thesis is to provide freely the accompanying algorithmic toolboxes resulting from this work to other practitioners.

In chapter 2 we take a step by step look at how to design a 1D deconvolution solution and define all the mathematical, optimization, algorithmic, numerical and computational tools that will be used in the application chapters. We start with referencing the mathematical spaces that our formulations and algorithms will inhabit. Then, we continue in section 2.1 by defining what is an ill-posed problem, since all three of our applications fall under this category. We then go on in discussing the five levels of design of a 1D deconvolution algorithm in section 2.2: direct problem level, inverse problem level, optimization level, numerical level and computational level. The reason for doing this, was to allow this thesis to be read as a cookbook for practitioners who would like to design their own regularized inverse problem, deconvolution algorithms. The reader should be able to follow along such a design process without forgetting some important aspects, being informed of what tools exist in a field where they have not specialized and avoid falling into some of the traps that appear while searching for those expected results from the measurement data. We start with the Direct Problem Level and the Inverse Problem Level in sections 2.2.1 and 2.2.2 where we present the direct model and the cost functional formulation in regularization-based inverse problem methodology and we touch the concept of Bayesian-based based inverse problem methodology. At the Optimization Level in section 2.2.3 we discuss optimization approaches and algorithmic techniques for solving the aforementioned formulation. At the Numerical Level in section 2.2.4 we take the classical linear system of equations concept and present it from different perspectives and how people modify it to reach the optimal solution, through the use of different norms, conditioning Toeplitz matrices, step size computation and using such tools as the condition number. At the Computational Level in section 2.2.5 we deal with very specialized ways of improving an algorithm at its code level, processor and memory usage, explaining ways to decrease runtime and be aware of limitations of the machine when it comes to high-performance computing. Seeing that this work focuses on 1D deconvolution, we then take a look at the definition of the convolution and the concepts of deconvolution and blind deconvolution in 1D in section 2.3 along with a short introduction on other methods used in the application fields.

Finally, based on the concepts and tools presented in this chapter, we summarize the choices we made and the tools we decided to use in our application chapters in section 2.4.

In chapter 3 we start with our first application in the field of hydrology where we estimate the water residence time of a hydrological channel by 1D deconvolution. We present this model in section 3.2. We use an Alternating Minimization algorithm (see section 3.3) with a smooth signal solver based on the Projected Newton method and we explain in detail our implementation in section 3.4. We also apply a smoothness operator based on the 2 norm and solve the problem under positivity and causality constraints, all along the estimation. We discuss previous related work in section 3.5. We explain how we designed an automatic process for choosing the λ hyper-parameter in section 3.6 in our synthetic tests validation phase. Afterwards we show the efficiency of our algorithm on real data in 3.7. We conclude our findings in section 3.8. The content of this chapter has been presented as a poster at the GRETSI 2017 conference [START_REF] Meresescu | Estimation du temps de résidence hydrologique: Déconvolution 1d[END_REF] and as a published article in Computers & Geosciences [START_REF] Meresescu | Water residence time estimation by 1d deconvolution in the form of a l2-regularized inverse problem with smoothness, positivity and causality constraints[END_REF].

In chapter 4 we present our second application in the field of seismology where we estimate the reflectivity function of a seismic trace by 1D deconvolution in the field of inverse problems and we present this model in section 4.2. We present our deconvolution algorithm, a sparse signal solver under a positivity constraint. We then discuss already used methods in the field and show how they differ from ours in section 4.5. We then validate the algorithm in section 4.6 and design an automatic process to choose the model's λ hyper-parameter. We then further present our algorithm's results on simulated data in section 4.7 and on real, recorded seismograms, in section 4.8. Finally we reiterate our findings in the conclusion section 4.9.

In chapter 5 we present our third application in the field of Fourier spectrometry related to the Mars Express mission instrument, the Planetary Fourier Spectrometer (PFS). Spectra delivered by this instrument present ghosts at certain wavelengths caused by micro-vibrations produced by other instruments and mechanisms found on the orbiter. In this application only the measured signal is known and both the original Mars spectrum (clean of ghosts) and also the microvibrations Kernel need to be estimated at the same time. We start by an introduction to the problem in section 5.1, then we continue with the analytical modeling of the micro-vibrations and their effect on the Mars spectrum in section 5.2. After this we present the direct and inverse problem formulation and the proposed algorithm to solve it in section 5.3. Finally we test two versions of the algorithm on synthetic data and present our results in sections 5.5 and 5.7. In the end we sum up our findings in section 5.8. The content of this chapter has been presented in a talk at the European Planetary Science Congress 2018 [Meresescu et al., 2018a].

In the concluding chapter of this work (6) we give an overview of our most useful findings and perspectives for further development of our algorithms.

Chapter 2 Inverse Problems

An inverse problem is the formulation through which from a set of observable data and a model of the physical system being analyzed we can infer some other set of data that is hidden in the system and which we need to bring to surface. Therefore an inverse problem has three components [Tarantola, 2004]:

• Direct Model: using the physical laws that define the system to obtain a mathematical model that can roughly predict how the system behaves.

• Parametrization Set: minimal set of parameters and their position in the Direct Model equation that best describes the physical system.

• Inverse Model: using the observable realizations of the system and the direct model to backtrack to the best values of the above Parametrization Set and to also obtain the hidden data.

Solving an inverse problem implies two intertwined steps:

• Finding a strategy that allows to estimate the best parameters for the model.

• Using the above parametrized model and observations from the physical system in an algorithm whose output is the data that we are looking for; this algorithm will be referred in the text as the Solver.

Since each parametrization set gives a different model, the totality of these models form a Model Space or a Model Manifold. There are different approaches to find an optimal parametrization set in this manifold, either by statistical means or by heuristic test-based methods, by integrating the search in the Solver itself 19 (here sometimes the resulting parameter set describes also the data that needs to be estimated) or by using the Solver and the data it produces to approximate the good parametrization set range. There is no guarantee that a model space is linear, therefore the heuristic approach is not suited for non-linear applications. Also there is no guarantee that the model space is finite-dimensional [Tarantola, 2004].

Another space that belongs to the inverse problem is the Data Space, or the Data Manifold of all possible observations or measurements. A third space is the Solution Space. The Solver's job is to navigate the Solution Space generated by the model towards, ideally, the global minimum or as close to this as possible, in a reasonable amount of computation time.

Well-Posed and Ill-Posed Problems

Before going into what we call a well-posed and ill-posed problem we should revisit the underlying mathematical types that the Model Space, Data Space and Solution Space inhabit. In Figure 2.1 we can see a classification of the most used topological spaces in functional analysis, the branch of mathematics that deals with the theoretical principles used in optimization theory, simulation theory, deconvolution, etc. A topological space can be equipped with a metric (a dot product, a reunion of semi-norms or a norm) that allows measurements to be done on the inhabitant concepts of said topological space (functions, vectors). A norm is a mathematical instrument that can measure the length of a vector and therefore also the difference between two vectors in a normed vector space -a Hilbert space in our case [START_REF] Boyd | Convex Optimization[END_REF] or an Euclidean space on the computer. We have a norm if the three following conditions hold on a given mathematical operation, given vector a and b from R n and p the used norm:

1) a p = 0 ⇐⇒ a = 0 2) a p ≥ 0, ∀a ∈ R n 3) λ a p = λ a p 4) a + b p ≤ a p + b p (2.1)
A metric that does not verify the first condition is called a semi-norm.

Usually, the Model, Data and Solution spaces mentioned previously are all of the same type but it can be, that to solve some problems, it is necessary to pass through a different topological space by using notions from the field of functional analysis. Finding an optimal Solution in the Solution Space is a procedure that needs to comply with the classical concepts of injectivity, surjectivity and bijectivity but this time applied for vectors or functions in a topological space. Therefore a well-posed problem needs to respect the Hadamard conditions [Hadamard, 1923]:

• existence of a solution

• uniqueness of the solution

• continuity of the solution An ill-posed problem violates at least one of the Hadamard conditions and this is often encountered in an inverse problem setting. In the field of inverse problems we work in the Hilbert space when choosing an approach to solve the problem and in the finite Euclidean space when designing the algorithm and when running it on the computer. The approach we choose restricts the Hilbert Solution Space to one that allows the estimation of n-dimensional solution vectors in the generalized world of the Euclidean space. This Solution Space can be further restricted through regularization so that it suits the real-life problem and that the Hadamard conditions are largely fulfilled. Or better said, fulfilled enough that the obtained solution is useful in practice.

To understand how one can go about restricting the Solution Space we start from a linear system of equations [Idier, 2001]:

X • k = y, k ∈ K and y ∈ Y , K and Y two infinite functional spaces (2.2)
Where:

• X is a matrix representing the input data to a physical system • y is a vector result of passing the data X through the physical system, meaning the output data

• k is a vector characteristic to the physical system that changes the input data X into output data y

The way to estimate k depends on which of the Hadamard conditions does not hold: Where: KerX is a vectorial sub-space called the kernel of X, where all input values of the linear operation exist, ImX is a vectorial sub-space called the image of X, where all output values of the linear operation exist and ImX is a vectorial subspace called the coimage of X. If all three conditions hold, we are dealing with a well-posed inverse problem and the solution will be obtained by applying the inverse of X:

KerX = {0} -
k = X -1 • y (2.4)
If Y = Im X or existence does not hold, the following pseudo-solution can enforce it over the Hilbert space: If KerX = {0} (uniqueness) does not hold, the idea is to add a regularization term that specifies a narrower area of the Hilbert space from where the solution can be chosen, inducing stability to the system:

k ∈ K that minimizes y -X • k p p ,
k ∈ K that minimizes 1 p y -X • k p p + λ R(k), (2.6) 
where

• the p norm to the power p is used for the data fidelity term

• R is the regularization applied on k

Solution Levels in an Inverse Problem

When solving an inverse problem there are different challenges that can appear along the way and although these can be solved with the traditional tools that exists in one's field, a systematization of these levels in the inverse problem field and the tools that go into each level can be useful. In Figure 2.2 these challenges are separated into five categories. Sometimes choosing a certain approach at the Inverse Problem level can remove problems at lower levels but any choice comes with disadvantages besides its advantages and we will try to present these in this chapter and in the application chapters.

Direct Problem Level

In this thesis, we focus on particular problems which can be formulated as linear time-invariant direct problem. Linear time-invariant operator can be expressed mathematically as a convolution:

x * k = y (2.7)
Where:

• x is the input data going into the system

• k is the impulse response of the system

• y is the output data coming out from the system Notice that the convolution can be expressed under the matrix forms:

y = x * k (2.8) = Xk (2.9) = Kx (2.10)
where X and K are appropriate circulant matrices. One can refer to Appendix .2 for a detailed example of the convolution, and the construction of corresponding circulant matrix.

For the simple case where only one vector needs to be estimated we have two situations:

• Source Restoration: when the input data to the black-box system, x, is unknown and needs to be estimated

• System Identification: when the impulse response of the black-box system, k, is unknown and needs to be estimated

In this work we will deal with System Identification through the study of our applications in the fields of hydrology and seismology and both Source Restoration and System Identification through the study of our spetroscopy application.

Inverse Problem Level

There are two schools of thought in the inverse problem field: the regularizationbased approach which tries to reach the solution by minimizing a composite criterion functional and the Bayesian-based based approach that tries to reach the same solution but through a statistical inference.

Regularization-based Inverse Problem Methodology

At the inverse problem level we have to design a cost function or functional that can be minimized by also taking into account the needed constraints on the vector to estimate. Starting from (2.6) and (2.7) we can express the functional as follows:

J(k) = 1 p y -X • k p p + λ R(k) s.t. k ≥ 0 (2.11)
Where designable ingredients are the following,

• . p p is the p norm to the power p. Common choices for the regularization term are p = 2, in order to take white Gaussian noise into account p = 1, in order to make the data term robust to outliers.

We will stick to the choice p = 2 in this thesis, as it fits well to the models under consideration.

• R(k) is the regularizer that restricts the Solution Space to an adequate one.

For example, classical regularizers are:

-

R(k) = 1 2 k 2 2 or R(k) = 1 2 ∇k 2 2
if the solution is expected to be smooth.

-R(k) = k 1 , if the solution is expected to be sparse.

• λ is the so-called hyper-parameter that controls the degree to which the regularization is applied (how smooth should k be? How sparse?)

• k ≥ 0 one possible constraint on the vector to estimate, that each element of vector k should be positive

The λ hyper-parameter is a modifier of the Model Space, each value of λ morphs the space into a new version of itself that puts a different degree of emphasis on the regularization (all vectors to choose from have that degree λ • R(k) of smoothness/sparsity). This is one example on how the Solution Space can be narrowed down.

The ideal case is that this formulation will be a convex or a quadratic one in vector form. This fact ensures one global minimum where the estimated k will be the best trade off between the fidelity term and the regularization term.

Finding a solution to this formulation implies as seen in 2.1 two parts: finding an appropriate λ parameter that choses a good model from the Model Space and choosing a method to navigate the Solution Space associated version towards its minimum where the best X • k lies. This can be done either simultaneously or separately as we will see in the following sections.

Bayesian-based Inverse Problem Methodology

The Bayesian formulation of an inverse problem appears from the insight that there is a gain to be had by modeling the distributions in the topological spaces from where samples of x, k and y can be extracted and then refining these distributions by using algorithms depicted in section 2.3.3.

The main ingredients of the Bayesian approach is then the choice of priors in order to model the knowledge on the data.

Then, the a posteriori law is obtained by applying Bayes's rule is [Idier, 2001]:

p(k|y, X, θ ) = p(k|θ ) • p(y|k, X, θ ) p(y|X, θ ) (2.12)
That goal is to estimate the a posteriori law of the data k, knowing the observations k. In (2.12), there are two priors:

• p(y|k, X, θ ), the prior on the observations y, knowing the data k. It usually corresponds in practice to a model of the noise.

• p(k|y, X, θ ), the prior on the data k.

• θ is a hyper-parameter vector of the a priori chosen distributions to model the signal to estimate and the attached error to this estimation.

The regularization-based approach can be thought as an a posteriori law in the Bayesian context. Indeed, one can write:

p(k|y, X, θ ) ∝ exp - 1 2σ 2 y -X • k p p + λ R(k) ∝ exp - 1 2σ 2 y -X • k p p exp -{λ R(k)} (2.

13)

Where:

exp -1 2σ 2 y -X • k p p is the prior on the observations knowing the data exp -{λ R(k)} is the prior on the data.

Then, the so-called Maximum A Posteriori approach to a solution obtained by maximizing p(k|y, X, θ ) is equivalent to minimizing the functional

1 p y -X • k p p + λ R(k).
One can observe that the classical choices of . 2 2 and . 1 in the regularizationbased approach correspond here to a Gaussian prior and a Laplacian prior respectively.

Optimization Level

At the Optimization Level, after we have obtained the inverse problem formulation, we need to choose an optimization algorithm, Solver, that will navigate the inverse problem formulation towards a solution estimating only the data (the parametrization set would be estimated with separate methods) or the data and the parametrization set, both at the same time.

Norms Choosing the norms to use at the Inverse Problem Level enforces other choices down the line in the design of a solution since they can favor either smooth or sparse solutions, or induce a convex optimization problem or a non-convex one, a continuous one or a non-continuous one.

Optimization Approaches and Algorithms Depending on the (2.11) formulation we can have:

• a differentiable functional -we use a gradient descent, Newton algorithm or other similar algorithms to reach the minimum [START_REF] Boyd | Convex Optimization[END_REF] • a differentiable functional under constraints -we use gradient descent or Projected Newton [Bertsekas, 1982] • the regularization term of the functional is non-differentiable -we use a proximal descent approach [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] • a non-differentiable functional -we can use a smooth function approximation for every non-differentiable part and solve it as a differentiable functional [Nesterov, 2005] Convex Optimality Map Non-convex Optimality Map We can divide the ingredients that go into the design of the inverse problem formulation into two categories: solution approaches and implementation techniques that put into practice these approaches.

Solution Approaches

1* Regularizers Regularizers are the Regularization Term in the inverse problem formulation below, shown in red, besides the Fidelity Term to the data shown in blue.

Estimate

k ∈ K that minimizes 1 p y -X • k p p + λ R(k) (2.14)
Together with the hyper-parameter λ they define in a way the makeshift of the Solution Space. λ acts here as a dial of how much we apply whatever the operator R should do on a solution or better said this dial acts on the Solution Space by choosing a subspace of possible solutions.

• if R would be a smoothing operator, together with λ , this term would define the level of smoothness that all possible solutions on the Optimality Map should have. The bigger the λ the smoother the transition is between consequent values inside all possible k est vectors [START_REF] Tikhonov | Nonlinear ill-posed problems[END_REF] • if R would be a sparsity inducing term, this would create only sparse solutions from which to choose from [Tibshirani, 1996] • R could use mixed norms so as to obtain either smooth or sparse signals [Kowalski, 2009] 2* Constraints Using constraints is the most simple way of restricting the result to a solution that complies with the physical characteristics of the problem. Here are some examples:

• in a thermal simulation of heat dispersing in a 2-dimensional medium, the boundary conditions at the end of this medium might need to be set to 0. Meaning that no heat can disperse outside of this boundary and no heat is coming in. This will be reflected by padding with zeros the system matrix X.

• constraints can also be inequalities and can then be embedded in Lagrangean formulations that are easy to solve, like in very real life problem of finding the optimal degree of insulation for a building so that a comfortable temperature can be kept throughout the year.

• in an inverse problem formulation, constraints can be applied on the vector that is estimated by setting the appropriate range of values to the limits given by the constraints during the estimation.

Numerical Level

At the numerical level we deal with problems that appear when we have to do matrix inversions or try to ensure stability and convergence of a Solver, or an improvement of runtime. In the previous level we have chosen the Direct Model and analyzed in the Inverse Model what constraints are needed to represent both the physical properties of the real-life system and to restrict the Solution Space so that we can obtain a solution that best complies with these conditions. At the current level we look at the practical methods to implement this. If we take a simple linear system of equations (LSE) direct model:

y = X • k (2.15)
Solving for k, while knowing y and X implies a matrix inversion of X:

k = X -1 • y (2.16)
This is valid only when X is invertible. Since the system is often ill-posed, the solution by inversion is often not straightforward. Therefore some analysis is needed on the matrix to be inverted and on the tools that either can make this inversion possible (like the pseudo-inverse) or even unnecessary.

System Matrices Firstly, one important aspect is to understand what type of system matrices X exist since they can be seen as having different functions for different types of applications:

• a System Matrix that contains mainly the inputs for a process that can be expressed as a linear system of equations.

y = X • k
• a System Matrix that defines how the components of the k vector (signal) communicate with each other, or better said, what physical connections exist between the different parts of k in the real-life problem.

Example: when k is a steel rod for which we need to simulate the spreading of heat by using the Laplace operator. We divide (discretize) the steel rod into n small segments. In the System Matrix non-zero coefficients will appear where a n -1 and n segment are connected and zero coefficients will appear for all other elements of the matrix. Often the direct model contains a load vector that expresses the constant input that is being fed to the system, whereas in the previous model the load was already included in the System Matrix. y = X • k + h where h is the load vector

• a System Matrix that is the circulant matrix representation of the convolution, basically the first term of the convolution is transformed into a matrix that is applied on the second term of the convolution.

y = x * k y = X • k
Once we have understood how these matrices fit into the Direct Model and since we know that an inversion is needed, we can analyze what problems arise while trying to do this. As expected, inversion does not work swiftly especially for ill-posed problems, when X matrices that have unfortunate natural characteristics.

Condition Number of a Square Matrix

The condition number of a problem/matrix is defined as [START_REF] Boyd | Convex Optimization[END_REF]:

κ(X) = X • X -1 (2.17)
Multiple norms can be used here for the computation of the condition number.

When the value is close to 1 the problem is called well-conditioned and when it is bigger than 1 it is called an ill-conditioned problem. This number therefore says something about the stability of the problem and its convergence rate, meaning the number of iterations after which we expect the solver to reach a solution. In practice, the condition number can be computed by the following formula [START_REF] Boyd | Convex Optimization[END_REF]:

κ(X) = |λ max | |λ min | (2.18)
Where: λ max is the maximum eigenvalue of X λ min is the minimum eigenvalue of X

• if κ(X) 1 we have a well-conditioned matrix [Pflaum, 2011a].

• κ(X) 1 we have an ill-conditioned matrix; these types of condition numbers can range in practice between 10 10 and 10 20 , therefore, in practical implementations, having a κ(X) 1000 is seen as a good condition number [Pflaum, 2011a].

Pre-Conditioning If the matrix X is ill-conditioned, one can look for a preconditioner P such that P -1 X becomes well-conditioned [START_REF] Benedetto | C. g. preconditioning for toeplitz matrices[END_REF]. This involves improving the condition number of X. There are two aspects that a pre-conditioner should respect:

• the inversion of P must be simpler than that of X

• the maximum eigenvalue of P must be similar to that of X, so that the spectral radius of P -1 X is clustered around 1 or uniformly bound with respect to the size of the matrices.

Methods for generating pre-conditioners for ill-conditioned Toeplitz matrices with non-negative generating functions can be found in [Strang, 1986, Chan, 1988]. For negative generating functions, P can be created from a trigonometric polynomial like in [START_REF] Benedetto | C. g. preconditioning for toeplitz matrices[END_REF]. Another way of looking at this is to see pre-conditioning as a way of choosing not to solve X • k = y by using the direct inverse X -1 but to find an approximation of X that is easier to invert. For example in [START_REF] Parikh | Proximal algorithms[END_REF] we have a special case of a proximal solution approach to a linear system of equations called iterative refinement, useful when X is singular and with a very high condition number. The usual approach to this would be to compute the Cholesky factorization of X but when even this does not exist or cannot be computed in a stable manner, one can try to do the Cholesky factorization on (X + εI) instead of on X, with a small scalar ε. Therefore we use the inverse (X + εI) -1 instead of X -1 to solve X • k = y. One observation to be made is that in the case of a convolution-deconvolution problem finding a pre-conditioner for the convolution Topelitz matrix [Ng, 2004] is like a design stage where not only algorithm related improvements can be made but also constraints of the real life problem can be added to this matrix representation, like causality.

Step-Size In usual descent algorithms for unconstrained optimization problems, one aspect to choose is the step size of the algorithm towards the minimum. Depending on the algorithm the step size and the direction of the descent have to be identified in the same time. From the initialization of the solution usually one has a bigger step size to accelerate the navigation towards the minimum, and, as the estimation gets closer to the optimum, the step-size needs to decrease so as not to over-step this minimum and land at a higher altitude on the optimality map but in a different place than the initialization point, or better said, the algorithm should not diverge. [START_REF] Boyd | Convex Optimization[END_REF] talk about line search, exact line search and backtracking line search (inexact). The best known technique is the [Armijo, 1966] which is itself an iterative technique to find the best step size out of all possible step sizes.

Step sizes can also be incorporated in the descent algorithm like in Newton's Method, but the Projected Newton Method [Bertsekas, 1982] used in constrained optimization problems has an explicit step size. If the algorithm is not runtime intensive in practice, it is of interest to note that even a simpler solution for the step size can be utilized: starting from a step size of 1, reducing this step size by 10% at those iterations where the functional value increases instead of decreasing, and reinstating the previous correct estimation of k. This might be seen as the pocket-knife solution for the step size search, a lighter version of the Armijo Backtracking algorithm, and can be used for non-intensive runtime algorithms.

Computational Level

At the computational level, we inspect if the algorithm converges, its computational speed, how to decide when to stop an iterative algorithm if the solution seems good enough and what good enough is. At this level we also deal with the way in which the chosen programming language, our algorithm and the computer architecture we are running the program on are well adjusted to each other and to the problem size and type.

Norm-wise Absolute Error When verifying the accuracy of an algorithm, one often used method is to test it on known synthetic data. Let's take again the linear model used earlier in matrix representation:

y = X • k (2.19)
Where k is the data (vector or signal) to be estimated. With synthetic data test cases, when estimating k est , the real k is known and we can then compare directly the k est with the real k through the norm-wise absolute error:

ε abs = k -k est 2 2 
(2.20)

Where we use the 2 norm as metric for the Solution Space and the squared difference to compute the absolute error. This error gives an absolute difference between the two vectors. If the values of the vectors are big, the difference is big. If the values are small, the difference itself is small. So if we were to apply the same estimation algorithm on two very different problems, it would not be possible to compare how the algorithm did its job across these two problems, for example expressing in percentage how different the obtained k est is to k in both cases.

Norm-wise Relative Error This percentage difference between the estimated and the true signal can be computed with the norm-wise relative error.

ε rel = k -k est 2 2 k 2 2 (2.21)
Residual and Stopping Criterion When hearing the word residual one would probably think at the difference that is still to be estimated until k est is as close as possible to the real k. If this works for synthetic test cases, and maybe the norm-wise relative error would even be sufficient here, for real test cases, where k is unknown, we can introduce the residual concept but this time from a computational engineering point of view [Pflaum, 2011b].

r i = y -X • k i (2.22)
Where:

i -is the current iteration of the algorithm k i is the estimation of k at iteration i r i is the residual

The connection between the residual and the absolute error of the estimation being the following:

e i = k -k i X • e i = r i X • (k -k i ) = r i X • k -X • k i = r i y -X • k i = r i (2.23)
Where: k is the true signal that needs to be estimated, known for synthetic data, unknown for real data k i is the estimation of k at iteration i e i is the absolute error usually computed like in 2.20 X is the matrix form of the known input signal to the linear time invariant system y is the output signal from the linear time invariant system r i is the residual A stopping criterion for an iterative algorithm is a condition that is tested against a preset limit value. When this step evaluates to true, the iterative algorithm is stopped since the condition indicates that the solver has converged to a solution. Sometimes we see algorithms that iterate until a preset number of iteration (like 100 or 3000 or 10000) and we have no idea if the solution is reached after a much lower number of iterations or if maybe the maximum iterations number should be bigger. We can investigate this only by trial and error. The stopping criterion is a non supervised way of stopping an iterative algorithm. It does not say anything about the quality of the solution (if it is the global minimum or a local one) but it helps to avoid unnecessary iterations being done that do not improve the estimation from a certain point forward.

The main idea to implement a stopping criterion is to take a look at two consecutive r i values and verify how much of a change took place in the estimated vector. If we choose a stopping criterion minimum value of let's say stoppingcriterion min = 10 -6 , this means that the iterative algorithm will stop when two consecutive residual values will be so close to each other that they only differ by a 0.000001%. This concept can be visualized in Figure 2.4. In practice if the residual is small, also the norm-wise absolute error between the true k and the estimated k est will be small [Pflaum, 2011a].

Convergence Rate

The convergence rate of an algorithm is an estimate of how many iterations are needed for a certain algorithm to converge to a solution. This can be done by using the residual [Pflaum, 2011b]. We are searching for a small parameter q such that:

k i+2 -k i+1 2 2 ≤ q • k i+1 -k i 2 2
(2.24)

We can get an approximation of q denoted with q and knowing that can be computed with the following formula using the residual concept:

q = r i+1 2 2 r i 2 2
, for large i, whatever norm and not necessarily squared.

(2.25)

We can take q as an approximation of q and have a rough idea about how many iterations are needed for an algorithm to converge to a solution with the given input data.

The convergence rate of an iterative algorithm for solving a linear system of equations depends on the spectral radius of the System Matrix because this is the dominant eigenvalue that modifies vector k in the largest sense [Pflaum, 2011a]:

ρ(X) = max |λ (X)| (2.26) 
Where: λ (X) are the eigenvalues of matrix X λ max is the largest eigenvalue.

Functional Value

The functional value is the value obtained by replacing k est in the following equation:

J i = 1 p y -X • k est p p + λ R(k est ) (2.27)
The value of the functional says something about the position given by k est from inside the Solution Space to the reconstructed y rec = X • k est on the Data Space or better said on the Optimality Map constructed by its inverse problem formulation. Its value has no absolute meaning with respect to a local or a global optimum on this map. Therefore we cannot say if one value or another is a good sign or not with respect to where we are on the map compared to a stationary point. But we do know it needs to decrease in value during the iterative algorithm when the estimation is descending towards these stationary points. Duality Gap Another way of identifying when we are approaching the local or global optimum is to use the concept of duality gap. The idea is to bound or solve an optimization problem through another optimization problem [Chiang, 2007] and we can do this by using Legendre-Fenchel's conjugate function (or polar) of the J functional [Rockafellar, 1966, Rockafellar, 1972]. At the current iteration, i, of an iterative algorithm the duality gap can be computed in the following way:

dg J i = J i -J * i (2.28)
Where:

J * i is Legendre-Fenchel's conjugate of J i .
When the solver is with the estimation at the global minimum, the duality gap value should be 0. Therefore minimizing the original J functional is transformed into another minimization problem. This concept is illustrated in Figure 2.5.

Parallelization Besides being able to identify when an algorithm has reached a point where the estimation will not improve, another important aspect is to ensure that for computationally intensive problems, that the way in which the algorithm is written takes advantage of the programming libraries available, the computer architecture and the programming language itself. In inverse problems where matrices can be big, or there are matrix-matrix multiplication operations, a knowledge of the L1, L2 and L3 level memory caches size and layout of the processor's cores is needed to make sure that the algorithm runs in a manageable amount of time [Pflaum, 2011a]. In most available linear algebra libraries, there are certain strategies implemented that already solve most of these problems. One such problem is cache misses that happen when multiplying two matrices that are too large to fit in the smallest cache memory of the processor: the problem is presented in 2.6 and the strategy in 2.7, where a simple transpose of the second matrix in the multiplication will ensure that the loaded elements will be useful for computing several values of the resulting matrix instead of just the first one. This avoids unnecessary cache loading and unloading of the second matrix to access the correct column elements. This type of strategy is of interest when no libraries are used and the whole code base is written from scratch in a low level programming language.

For those very big problems, hyper-spectral deconvolution, computer tomog-raphy or MRI deconvolution, a Graphical Processor Unit or GPU might be necessary and the algorithm needs to be written in dedicated programming languages that run on a GPU (like C++ with Cuda) or by using special available libraries (like the numerical linear algebra library in C++, BLAS).

Floating Point Representation At the machine representation level we deal with the problems of representing real numbers on a set length of the machine word size (currently either 32 or 64 bit on most processors). Since a real number cannot be completely represented in machine memory, an approximation will be done with the floating point system. In Figure 2.8. we see how a number from the real set is represented in machine memory. This representation is important for using the residual value or the relative error stopping criterion in an iterative algorithm. The question arises -what are the minimal values that we can safely and meaningfully choose for them? In practice, in Matlab or C++ people often use as lower limit that can guarantee precision in operations the 10 -14 limit. It is clear that when either computing residuals or relative errors, comparing numbers, or doing simple mathematical operations, by using smaller values than this limit can lead to garbage results or wrap-around the mantissa results (a modulo effect) depending on the programming language and the compiler. Therefore a r min = 10 -20 will be meaningless in practice and will just increase runtime without the guarantee that the final results are close to the real values that we want to estimate. This is due to the fact that we only need one multiplication by such numbers and the result would surpass the available memory for it to make mathematical sense. Even doing operations above some orders of magnitude to this limit can lead to untrustworthy results because of error accumulation in iterative algorithms. To allow computations to be trustworthy below this limit, more memory for storing the mantissa is needed so then a double precision 64 bit floating point number can be used, with the disadvantage that it doubles the space needed in memory to store a vector or a matrix. Depending on the machine used, programming language and compiler, the use of double precision floating point arithmetic is not the default and must be specified or purposefully set. We have done this in Matlab for the sparse solver algorithm presented further in this work.

Deconvolution and Blind Deconvolution

Deconvolution and blind deconvolution are a particular field of inverse problems methodology. Whenever two signals, a measurements signal and a impulse re- sponse signal get convolved and the resulting convolution signal is also available, we use a deconvolution algorithm to try to obtain the original measurements and a blind deconvolution algorithm to separate and estimate both of the two original signals. Sometimes we know the input and output to an interesting black box system and we would like to know how that system behaves, how it transforms the inputs, so that we can make predictions about what will happen to new inputs. This is called system identification and uses an algorithm to estimate the impulse response of the black box but to simplify the terminology used in this work, we will also call it deconvolution.

1D Deconvolution

The convolution in the time domain for real numbers is equivalent to the pointwise multiplication of the signal vectors passed through the Fourier Transform in the Fourier domain [START_REF] Oppenheim | Signals &Amp; Systems[END_REF]. By using the Fast Fourier Transform Method and doing only a point-wise multiplication in the Fourier domain, the convolution operation becomes much faster in practice, therefore it is of great interest in applications where the physical systems can be modeled in the form:

y = x * k
Where we have three possible cases as to which unknown signal vectors need to be estimated:

• x is the vector of unknown original observations, k is a noise kernel that modifies x through convolution and this results in the observed y

• x is an input to a black-box system whose unknown impulse response is k and whose output y we know to be the result of the convolution between x and k

• both x and k are unknown signals that convolved give the observed y

The convolution can also be expressed as:

y = X • k
Where X is a circulant Toeplitz matrix resulting from vector x For more on Toeplitz matrix see Appendix .1. For more on the 1D convolution and to understand our practical implementation of it in the Fourier Domain and how we avoided circularity see Appendix .2. this formulation is useful when one wants to find k; the unknown stays in vector form, while the known vector becomes a linear transform operator, or sometimes called a dictionary. We will call finding a Solver for k deconvolution and in the simplest case it just needs the inverse of X, the formula used being:

X • k = y k = X -1 • y
In the simplest case the matrix is invertible and this happens if the determinant is non-zero. A wished for case in practice is when a matrix is symmetric, therefore all eigenvalues of X are real. If additionally these are also positive, X is a symmetric positive definite matrix and this fact also implies that the attached Solution Space is a convex one having one unique global minimum -only one k that verifies the given equation. Because this does not always happen in practice, given the fact that X is generated from a vector representation of real-life measurements, the idea of deconvolution has expanded to encompass other techniques, from simple approaches to complex optimization algorithms that estimate k. We will present immediately the simpler approaches while the more complex ones will be referenced in the applications chapters of this text.

Inverse Filtering

Filtering Filtering is the basic method to design a k that acts in the Fourier domain on the polluted observed measurements y to obtain the original clean measurements x by removing frequencies from the signal that should not be there. Usually the pollution is noise, like in a blurred image, or known unwanted frequencies like the 50 Hz electrical network frequency that should be eliminated from an electro-cardiogram signal before this is shown on the monitor to the doctor. The k does not need an estimation algorithm here, but is usually heuristically designed with knowledge about the real-life problem and digital filter design methodology [Smith, 1997].

Wiener Filtering The Wiener filtering technique works on the principle that in y we have at certain frequencies a more pronounced presence of signal parts of x, while at some frequencies we have a more pronounced presence of noise. What the Wiener filter does is to block the noise frequencies while it gives more gain to the signal frequencies [Smith, 1997]. In filtering the original direct model y = x * k is changed to y = k * x + n where n is the term for additive noise. So k and x change position in this direct model, k becoming now the linear operator applied from the left to x. x, the original measurements, are here still the unknown, while k is considered here the known impulse response of the system that changes x to y although in practice it is actually not known and needs to be estimated also.

To estimate x we try to find a g depending on k that applied from the left to y, will give an estimate of x. So we need to do a convolution with g to achieve a deconvolution for x.

x = g * y Where g is defined in the Fourier domain as:

G( f ) = K( f ) * • S( f ) |K( f )| 2 • S( f ) + N( f ) (2.29)
Where: G( f ), K( f ) -Fourier transforms of g and k respectively K( f ) * -is the complex conjugate of K( f ), the adjoint S( f ) -power spectral density of x N( f ) -mean power density of the noise n If k is also unknown, like in many real-life applications, digital signal processing engineers will apply methods to get an estimation of this k. A straightforward one is giving as input x to the system a very simple signal like one Dirac at a central frequency and then observing how this signal is transformed at the output y. In this case k would be very similar to the y signal and therefore y can be used as k. Estimating x becomes:

X( f ) = G( f ) •Y ( f )
Where X( f ) is the estimation of x in the Fourier domain and Y(f) is the Fourier transform of y (2.30)

The Wiener filter is mostly used here to remove the additive noise of the measurements but all along it also does a deconvolution between x and k.

Kalman Filtering This method is one of the first to introduce the idea that the expression of k can be updated dynamically, as new observations come into the system. A widely known application is in-flight trajectory correction/optimization for aircrafts and missiles [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF]. The filter comes with two sets of equations: the time update or prediction set of equations and the measurements update or correction set of equations [START_REF] Welch | An introduction to the kalman filter[END_REF]. For the discrete Kalman filter we have:

k i apr = Ak i-1 apos + Bu i-1 P i apr = AP i-1 apos A T + Q (2.31) K i = P i apr X T (XP i apr X T + R) -1 k i apos = k i apr + K i (z i -Xk i apr )
P i apos = (I -K i X)P i apr (2.32) Where: k i apr and k i apos is the a priori and a posteriori estimation of k A is the difference equation, relating the state of the process at step i -1 to the state at current step i B is an optional control input matrix for the state k Q is the process noise covariance matrix, assumed constant R is the measurement noise (error) covariance matrix, assumed constant The two previous matrices model two noise signals that are assumed independent, white and Gaussian K i is the Kalman gain matrix z i is the vector of measurements for the process taken at iteration i P i apr and P i apos are the a priori estimate error covariance matrix and the a posteriori estimate error covariance matrix respectively X is the real inputs matrix to the process/system I is the identity matrix

The Cross-Correlation One first method to identify k is by cross-correlation of the two known signals x and y. Intuitively this verifies the similarity between x and y and then says that the dissimilarity that appears between the two signals must be k. The discrete time cross-correlation between x and y is:

k[n] = x[n] y[n] = = τ=∞ ∑ τ=-∞ x * [τ] • y[n + τ] (2.33)
Where:

x

* [τ] is the complex conjugate of x[τ]
Already from the formula of the cross-correlation we intuitively understand why the cross-correlation might be useful for deconvolution. The complex conjugate, the adjoint, will also make an appearance in more complex deconvolution methods further in the text. In practice we implemented the cross-correlation in the following way:

R xy = x y y rec = x * R xy σ y = ∑ n i (y i -µ y ) 2 n , σ y rec = ∑ n i (y rec i -µ y rec ) 2 n k est = R xy • σ y σ y rec (2.34)
Where:

-is the cross-correlation * -is the convolution σ -is the standard deviation µ -is the mean One can check that if x and y are white Gaussian noise, then k est is indeed a convergent estimator of k. The cross-correlation is relatively widely used in different fields as a fast and simple deconvolution method. The advantage for this solution is that no inversion of the X Toeplitz matrix needs to be done, so in the case where this is not possible, the cross-correlation still works. The drawback with this method is that, as soon as the signal to be estimated, k, should respect some physical properties of the real-life problem, the cross-correlation does not allow any such constraints being imposed on its result. As we will see in 3, although the cross-correlation manages to identify key characteristics of signal k, there are other methods that can deliver a more accurate k estimation.

1D Blind-Deconvolution

When both x and k are unknown we consider this problem a blind deconvolution one. Again, as soon as the physical properties of the system generate some constraints on how k and x should look like, we can see from the definition of the Wiener filter or the cross-correlation that we cannot impose these constraints, since it only deals with magnitudes and powers of these signals. For these constraints more complex blind deconvolution algorithms are needed.

Non-Statistical Approaches and Implementation Techniques

Alternating Minimization -AM The approach used here is to minimize a cost function (functional) that includes both unknowns, x and k, while the technique used in practice is an Alternating Minimization which is an iterative Solver with two steps where at the first step x is considered known and k is estimated and at the second step the process is inversed, until both x and k converge towards a solution by way of using some constraints and known properties of x and k. This approach is seen as a regularization-based method. For example, the SOOT algorithm [START_REF] Repetti | Euclid in a taxicab: Sparse blind deconvolution with smoothed ell 1 /ell 2 regularization[END_REF] for blind-deconvolution, aims to estimate a smooth kernel and a sparse signal.

Statistical Approaches and Implementation Techniques

Maximum A Posteriori -MAP Maximum A Posteriori approach tries to maximize the posterior probability density as an approach to a solution for both x and k and is the statistical equivalent of minimizing the cost function with the AM algorithm:

{k est , x est , θ est } MAP = argmax k,x,θ p(y|k, x, θ ) • p(k|θ ) • p(x|θ ) • p(θ ) (2.35)
Where: θ -is a parameter that models the uncertainty of the model.

Maximum Likelihood -ML Maximum Likelihood approach tries to maximize the likelihood of p(y|k, x, θ ) with respect to the parameters: guess on their distributions. The sampler then picks samples (values or whole vectors of values) from these distributions whenever an algorithm like EM needs it. Furthermore, if a certain value for a parameter or a vector are needed in a certain step of the EM algorithm, these picked samples will depend on distributions that were updated by the previous step. So we basically have an AM algorithm like before, but this time focused on estimating and updating the underlying modeling distributions of where our optimal solution lies in the Solution Space.

{k est , x est , θ est } ML = argmax k,x

Premises used for 1D Deconvolution in this Work

In Figure 2.9 we summarize the levels in solving an inverse problem and the approaches, implementation techniques and tools to design an adequate algorithm.

We focus on the regularization-based methodology and reiterate all the presented aspects in this introduction chapter, while adding some well-known tools that were not used in this work for a better overview.

Solution Navigation Table

Going from left to right, the decisions we took in designing our solvers, taking into account the particularities of our applications, were the following:

• At the inverse problem level we decided we will use the regularizationbased methodology because of usual fast computational runtimes, but we didn't exclude the possibility to use a mixed approach with the Bayesianbased framework, if classical regularization and constrained optimization techniques did not show good results.

• At the optimization level we used a cost functional approach with an Alternating Minimization algorithm for when two unknowns needed to be estimated.

• At the numerical level we avoided doing a pre-conditioning of the convolution Toeplitz matrix since this would modify the input data and we also avoided a factorization. We used instead a non-circular implementation of the convolution by padding this matrix with zeros towards the longest length between vectors x and k. The descent algorithms were chosen to be fast so that it allowed us to do an analysis with many synthetic tests on the hyperparameter λ of the inverse problem formulation, so as to obtain for each application, a suitable range for λ that a practitioner could confidently use. This resulted in multiple strategies for choosing a good λ as close as possible to the one that would be needed if the vector to estimate would be known and could be compared to the estimation, as we will see in the application chapters. The step size strategy used was the approximation of the Backtracking Armijo step-size inexact line search, where we kept an estimation that showed a decrease in the cost functional J and the used step size while we threw this estimation away and reduced the step size if J increased. We used a relaxation technique for our sparse signal Solver.

• At the computational level we used the relative error and residual for synthetic tests. For the real data tests, where the relative error was not available, we used the residual or the duality gap alongside a maximum iteration limit for our iterative algorithms so as to keep the runtime small but still trust that our estimated results are accurate. The algorithm would iterate until the residual or duality gap limits were reached or when the maximum number of iterations was reached. We set the precision to 64 bit on Matlab when we considered that we need lower residual or dual gap limits.

• One level that could be added to the design methodology of a Solver is the application level: at this level we needed tools to measure the similarity between the type of signals that the application provided and the ones we estimated or tools that confirm if a hyper-parameter choice strategy is feasible to use in practice or not. We call these tools metrics and we present them in the application chapters.

Chapter 3

Smooth Signal Deconvolution -Application in Hydrology

Introduction

The hydrological Water Residence Time distribution (residence time) or the Catchment Transit Time is a characteristic distribution curve of a hydrological channel allowing the analysis of the transit of water through a given medium. Its estimation and study is necessary for applications such as the transit of water coming from rain/melted snow through mountain sub-surface channels until it reaches basins/aquifers at the bottom of the mountain [START_REF] Mcguire | A review and evaluation of catchment transit time modeling[END_REF], when using wetlands as a natural treatment plant for pollutants that are already in the water [START_REF] Werner | Wetland residence time distribution modeling[END_REF], to better manage and protect drinking water sources from pollution [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF], to study the water transport of dissolved nutrients [START_REF] Gooseff | Residence time distributions in surface transient storage zones in streams: Estimation via signal deconvolution[END_REF]. For a more comprehensive application range, including deciphering hydro-bio-geochemical processes or river monitoring, the review done in [START_REF] Mcguire | A review and evaluation of catchment transit time modeling[END_REF]] is a useful starting point. We call here the residence time the linear response of the aquifer system. In this context it refers to wave propagation of the water dynamics, not to the actual molecular travel time [START_REF] Botter | Catchment residence and travel time distributions: The master equation[END_REF]].

For the first example the rainfall is measured and/or estimated, the channel is the totality of free space between solid particles that allow the water to flow through them, and the aquifers are deposits of water at the bottom of the mountain, that are accessible to measurements for their water volume. Characterization of the channel means identifying its residence time. Each channel has a different curve because each channel has a different geological makeshift, and also the curve might vary according to season. This curve basically offers a visual idea about how long after a rainfall event the water arrives at the aquifer, how fast the volume of water grows inside the channel initially and how slowly it eventually evacuates the medium. Such an interpretation is useful for example in tunnel construction [START_REF] Jeannin | Assessing karst-hydraulic hazards in tunneling-the brunnmühle spring system-bernese jura, switzerland[END_REF], where it is important to determine how fast and in what amount water from neighboring karsts will enter the tunnel during construction and afterwards, and what mechanisms should be put in place to deflect and remove this water.

In the case of the water volumes passing through wetlands for removing pollutants, the residence time shows how much time the fresh water spends inside a wetland sector and to what degree it mixes with the wetland water or removes previously stationary volumes of water. This is important to know for ecological projects where wetlands are used as natural pollution treatment plants.

In the case of protecting water wells sources, it is of importance to establish the contribution of neighboring water sources to fresh water wells so that in the case of a contamination, an estimation of the effects can be accurately done.

A final example is the study of exchange of solute nutrients between transient water and hyporheic (storage) zones through whirlpools, and eddies in groundwater sources. The residence time for this application shows a power law tailing rather than an exponential law one. Therefore an accurate method of estimating the residence time is needed.

To obtain the residence time, one can distinguish two families of methods: active and passive. The active methods are carried out by releasing tracers at the entrance of the system at a given time, like artificial dyes, and then by tracing the curve while measuring the tracer levels at the exit of the system [START_REF] Dzikowski | Simulation algorithm of time-dependent tracer test systems in hydrogeology[END_REF], Werner and Kadlec, 2000, Payn et al., 2008, Robinson et al., 2010]. Although robust, this methodology involves high effort and high operational costs. It could also perturb the water channel and this may lead to biased results. The passive methodology consists of recording data at the inlet and outlet of the water channel by specific water isotopes [START_REF] Mcguire | A review and evaluation of catchment transit time modeling[END_REF], water electrical conductivity [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] or by simply recording the rainfall levels at high altitude grounds and the aquifer water levels at the base [START_REF] Delbart | Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method[END_REF]. In the passive case, the residence time is not measured directly but must be retrieved by deconvolution. Some authors also use deconvolution in the active methodology when the release of tracer cannot be considered as instantaneous [START_REF] Mcguire | A review and evaluation of catchment transit time modeling[END_REF], Cirpka et al., 2007, Payn et al., 2008]. The residence time can then be approximated as the impulse response of the system and this in turn can be estimated by deconvolution [START_REF] Neuman | Developing a new deconvolution technique to model rainfallrunoff in arid environments[END_REF], Skaggs et al., 1998, Fienen et al., 2006]. The method can also be used for enhancing geophysical models, although not targeted explicitly for Water Residence Time estimation [START_REF] Zuo | Geophysical model enhancement technique based on blind deconvolution[END_REF]. Deconvolution methods can be parametric [Neuman and De Marsily, 1976, Long and Derickson, 1999, Etcheverry and Perrochet, 2000, Werner and Kadlec, 2000, Luo et al., 2006, McGuire and McDonnell, 2006] or non-parametric [START_REF] Neuman | Developing a new deconvolution technique to model rainfallrunoff in arid environments[END_REF], Dietrich and Chapman, 1993, Skaggs et al., 1998, Michalak and Kitanidis, 2003, Cirpka et al., 2007, Fienen et al., 2008, Gooseff et al., 2011, Delbart et al., 2014].

Parametric deconvolution has the advantage of always providing a result with expected properties such as correct shape and positiveness but with the caveat of being insensitive to unexpected results for real data (for instance a second peak in the residence time). The non-parametric deconvolution has the advantage of being blind, meaning that no strong a priori are being set on the estimated curve, but in the absence of adapted mathematical constraints, the results may not reflect the physics of the residence time curve (these are sometimes negative or non-causal).

Our method is non-parametric and takes into account limitations of previous methods from the same category: variable-sized rainfall time series as input compared to [START_REF] Neuman | Developing a new deconvolution technique to model rainfallrunoff in arid environments[END_REF], a more compact direct model formulation than in [START_REF] Neuman | Developing a new deconvolution technique to model rainfallrunoff in arid environments[END_REF], Cirpka et al., 2007], less computational effort and less time consuming than for a Bayesian Monte-Carlo inverse problem methodol-ogy [START_REF] Fienen | A bayesian geostatistical transfer function approach to tracer test analysis[END_REF], Fienen et al., 2008], strictly using a passive method with respect to mixed methods like the ones in [START_REF] Gooseff | Residence time distributions in surface transient storage zones in streams: Estimation via signal deconvolution[END_REF]. In contrast to the cross-correlation [START_REF] Vogt | Fluctuations of electrical conductivity as a natural tracer for bank filtration in a losing stream[END_REF], Delbart et al., 2014] we avoid the unrealistic hypothesis that the rain signal can be considered as white noise. In fact, rainfall datasets have long-range memory properties and therefore we simulate the input rainfall for synthetic tests as a multifractal signal [START_REF] Tessier | Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions[END_REF]. One important difference from other non-parametric deconvolution methods is that we enforce causality explicitly through projection. We also discuss the importance of this aspect to avoid a sub-optimal solution when using a Fourier Domain based convolution [McCormick, 1969]. In [START_REF] Neuman | Developing a new deconvolution technique to model rainfallrunoff in arid environments[END_REF], Dietrich and Chapman, 1993, Delbart et al., 2014] the causality constraint was not mentioned. In [START_REF] Skaggs | Deconvolution of a nonparametric transfer function for solute transport in soils[END_REF], Cirpka et al., 2007, Payn et al., 2008, Gooseff et al., 2011], causality is taken into account through a carefully constructed Toeplitz matrix for the convolution operation.

We propose a new algorithm to estimate the residence time with the following properties:

• passive: only input rainfall and output aquifer water levels are required;

• flexible: in the sense that it handles even unexpected solutions (double peaks or unexpected shapes of the residence time). It can handle Dirac-like rain events as inputs but also clustered rain events over a longer time period (for instance a whole season);

• constrained: by physical and mathematical aspects of the residence time (positivity, smoothness and causality);

• automatic: providing a simple and accurate way of choosing the best hyperparameter that governs the smoothness of the residence time curve, without human operation;

• efficient/accurate: a fast algorithm that provides a good signal-to-noise ratio, avoiding noise amplification.

This last property is important in order to deal with non-linearity and non-stationarity of the water channel, a known difficulty in residence time estimation [Neuman and De Marsily, 1976, Massei et al., 2006, McGuire and McDonnell, 2006, Payn et al., 2008] 3.2 Model

Direct Problem

The direct model for water propagation through a hydrological channel can be written in the form [START_REF] Neuman | Developing a new deconvolution technique to model rainfallrunoff in arid environments[END_REF]:

y = c1 + x * k + n , (3.1) 
with:

• y ∈ R T + , y = (y 0 , ..., y T ) output of the linear system: aquifer water level (known), real, positive signal, of length T , where T is the number of measurements available

• c ≥ 0 aquifer initial mean water level (to estimate), real, positive, scalar

• 1 column vector of all ones of length T ,

• x ∈ R T + , x = (x 0 , ..., x T ) input of the linear system: rainfall level (known), real, positive signal, of length T • * convolution operator • k ∈ R K + , k = (k -K 2 , ...k 0 , k 1 , ...k K 2
) the system's impulse response: the water residence time (to estimate), real, positive signal, of length K, and K ≤ T

• n ∈ R T white Gaussian noise, real, signal of length T .

The impulse response of the system -k -as well as the aquifer initial mean water level -c1will be estimated here. It is required that k be smooth, positive and causal. If positivity is obvious for the residence time, causality refers to the delayed, unidirectional flow of water from the point of entry to the aquifer, thus the idea that k must progress only in the positive time domain (negative time domain elements of k are zero). Smoothness regularization is used in order to avoid noise amplification in the deconvolution.

Inverse Problem

To estimate k, we will solve a minimization problem under constraints starting from the following functional:

J(k, c) = 1 2 y -x * k -c1 2 2 + λ ∇k 2 2 (3.2)
We are looking for the estimates that minimize J under the following constraints of positivity and causality:

k est , c est = argmin k∈R K + ,c 1 2 y -x * k -c1 2 2 + λ ∇k 2 2 (3.3) s.t. causality is enforced: ∀i ∈ {-K/2, . . . , 0} k i = 0 s.t. positivity is enforced: ∀i ∈ {1, . . . , K/2} k i ≥ 0
This function classically introduces a fidelity term (attachment to the data) corresponding to the white Gaussian noise, as well as a 2 regularization term on the gradient of k in order to favor smooth solutions. The smoothness degree of the estimate is controlled by the hyper-parameter λ . A bigger λ will stress more the smoothness of the solution, while a smaller λ will better fit the solution to the data. One main goal is to design a solver that will estimate a smooth signal and that is adapted to a hydrological application by applying constraints. Another main goal of this work is to find the optimal λ range that consistently gives accurate estimates while taking into account both good data representation and smoothness a priori. In the following, we rewrite the functional (3.2) using matrix operators:

J(k, c) = 1 2 y -Xk -c1 2 2 + λ Dk 2 2 (3.4)
Where X is the circulant matrix corresponding to the convolution by the signal x, while D is the finite-difference matrix corresponding to the gradient used for applying smoothness on the estimated signal.

To estimate k we start from taking the derivative of the functional J with respect to k, and setting it to zero. 0

= -y T X -X T y + X T Xk + X T c1 + c1 T X + 2λ D T Dk = -2X T y + 2X T c1 + (X T X + 2λ D T D)k 3.2. MODEL leading to k = (X T X + 2λ D T D) -1 • 2X T (y -c1)
We estimate c by deriving J with respect to c and setting it to zero:

-y T + k T X T -y + Xk + c1 = 0 which leads to c = (y -Xk)
That is, c corresponds to an average of the obtained vector.

The minimization of J can be interpreted as a Maximum A Posteriori (MAP) estimation in a Bayesian context with a Gaussian prior on the noise and an exponential family on the smoothness. Since the problem is convex, we estimate k and c by an Alternating Minimization algorithm (shortened throughout as AM), that ensures a global minimization for the two items to be estimated. A historical overview is available from [O'Sullivan, 1998]. With a fixed c, the problem is a simple quadratic optimization with constraints that is solved using the Projected Newton Method [Bertsekas, 1982], chosen for computational speed. With a fixed k, the estimate of c is given by an analytic formula.

Projections By using the 2 norm we know that the solution for the functional is the orthogonal projection on the sub-space formed by the constraints. In practice, projections are done directly on the vector to be estimated, at each iteration. Once we have the current estimation, the vector gets transformed into a form of itself that respects the needed constraints (positivity, causality, symmetry, etc.). This translates into a new position of the product X • k est = y rec on the Optimality Map, since the original k est has changed. The procedure can be as simple as setting to zero all negative values of k est when k est needs to be positive. This leads to approaching the stationary point (local or global optimum) from an area that complies with the positivity constraint. Therefore each iteration will have less and less negative values until these disappear completely and also the differences between consecutive k est s are minimal, and that is the point when the iterative algorithm can be stopped.

The AM algorithm will evaluate k to convergence while applying a projection on the positivity and causality constraints in each iteration. The closed form solution without projection for k when c is considered fixed is computed and used as initialization for the iterative AM algorithm.

Alternating Minimization for 1D Deconvolution

Considering that both k and c must be estimated, we propose an AM algorithm where in a first step k est is estimated, then in the second step c est is updated.

Estimation of k est with the Projected Newton Method

The update of k est while c is fixed (considered known) will be computed with the Projected Newton Method whose formula is presented below:

k t+1 = P k t + α t • (-∇ 2 J(k, c) -1 • ∇J(k, c)) (3.5)
Where α t > 0 is the descent step size and P is the projection over the constraints for the current iteration t. For k = k -K/2 , . . . , k 0 , k K/2 , we have

P(k) = 0, . . . , 0, (k 0 ) + , . . . , (k K/2 ) + ,
where (x) + = max(0, x).

The Projected Newton Method was chosen after trials have been done with the FISTA method [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] that was converging slower for this problem.

To obtain the final expression of (3.5) we retake the gradient w.r.t k computed previously:

∇J(k, c) = (X T X + 2λ D T D)k -2X T (y -c1) (3.6)
The Hessian w.r.t k is:

∇ 2 J(k, c) = X T X + 2λ D T D (3.7)
By replacing (3.6) and (3.7) in (3.5), we get the update term to use in the solver and we see that only the step size α t can evolve at each iteration of the algorithm implementation, while k t is changed by a constant called Newton's step and the application of the projection P.

k t+1 = P k t + α t • -(X T X + 2λ D T D) -1 • X T X + 2λ D T D k t -2X T (y -c1) k t+1 = P k t + α t • -Ik t + 2(X T X + 2λ D T D) -1 • X T (y -c1) k t+1 = P k t -α t k t + 2α t (X T X + 2λ D T D) -1 • X T (y -c1) k t+1 = P (1 -α t )k t + 2α t • (X T X + 2λ D T D) -1 • X T ỹ k t+1 = P (1 -α t )k t + 2α t • t n (3.8) Where α t is the variable step size, ỹ is a notation for (y -c1), t n = (X T X + 2λ D T D) -1 • X T ỹ is called Newton's step.

Estimation of c

Remembering the result of the derivative of (3.4) with respect to c1 from 3.2.2:

∇J(k, c) = -y + Xk + c1 = 0 (3.9)
With k fixed, the estimation of c at each iteration of the algorithm is given by:

c = (y -Xk) , (3.10) 
Where m is the empirical mean of vector m. One observation to be made is that the step size α t is computed with the pocket knife strategy explained in Chapter 2.

The AM algorithm for estimating k and c is summarized in Alg. 1.

Implementation Details

On the Used Metric

To measure the similarity between our estimates and the real signals we need to introduce a metric. In the case of smooth signal estimation we found that the Signal to Noise Ratio (SNR) in the Mean Squared Error sense is the best metric to use :

SNR = 20 log 10 m 2 2 m -m est 2 2 [dB] , (3.11) 
Where m is the true signal k or y and m est is the estimated k est or reconstructed y rec signal respectively.

On the Convolution Implementation and the Causality Constraint

Although in the previous sections the model and the solution are written in matrix form, the Matlab implementation of the convolution for our AM algorithm is done through dot product multiplication in the Fourier Domain with appropriate 

c est = y, ŷ = y -c est 2: t n = (X T X + λ D T D) -1 • X T ŷ, k est = t n 3: k err rel = 1, y err rel = 1, s = 0,t = 0, J re f = 1 2
ŷ 2 , y rec = 1 4: while s != s max and y err rel > y err min do 5:

α = 1, s = s + 1 6: k est old = k est , y rec old = y rec , ŷ = y -c est 7:
while t != t max and k err rel > k err min and α > α min do 8:

t = t + 1 9: k est = P ((1 -α)k est old + 2α t n ) 10: J(k est ) = 1 2 ŷ -x * k est 2 2 + λ Dk est 2 2 11: if (J(k est ) > J re f ) then 12:
k est old = k est , α = 0.9 • α 13: else 14: 

J re f = J(k est ),t =
y rec = ỹrec + c est , y err rel = y rec -y rec old 2 2 y rec 2 2
22: end while 23: return k est , y rec , c est zero padding, meaning that no Toeplitz matrix is explicitly defined here for the convolution. It is also possible to carefully implement a causal convolution by designing a proper Toeplitz matrix. However, the convolution in the Fourier Domain appears to be more efficient in general. This implementation of the convolution is used in all algorithms of this study. This implementation also allows for the estimation of a k residence time longer than the inputs x and y, although this would be under-determined. Once that noncircularity is enforced through this particular implementation of the convolution, another aspect that is dealt with is the causality constraint.

In Figure 3.2, we present the convolution of two synthetic signals, of rainfall Diracs and a residence time curve. We convolve the rainfall time series once with a residence time curve found in the negative time domain (causality is not respected) and once when this curve is in the positive time domain (causality is respected). The resulting curve appears before the rain events in the first case which is wrong. In the second case the resulting curve appears after these rainfall events as expected for real applications. This means that the estimated residence time curve needs to be done in the positive time domain of the signal. If lobes can appear in the negative time domain, they incorporate energy that should be present in the residence time curve thus reducing its amplitude and distorting its shape.

In Figure 3.3 we present one synthetic test. In blue we have the synthetic signals, the rainfall, the true residence time curve and the result of the convolution, the aquifer level. We then estimate with the AM algorithm all the possible residence time curves: with no positivity and no causality constraints applied, only the positivity constraint applied, only the causality constraint applied, and both positivity and causality constraints applied. In all cases, the convolution between the rainfall and these residence time curves give a reconstructed aquifer curve that is similar in general shape with the real one. The best residence time estimation and aquifer curve reconstruction are nonetheless the ones where both positivity and causality constraints are applied in the algorithm. We compare our results also with the cross-correlation method, denoted as XCORR in our plots since it is often used by practitioners when estimating the residence time because of its simplicity 3.5.2.

These tests show that not applying the causality constraint all along the AM algorithm, and setting the negative time domain of k est to zero only at the end, would lead to a suboptimal solution caused by the way in which the AM algorithm navigates through the optimality map attached to the given functional: any change in the estimated vector k est at the end of the algorithm moves the value of the functional away from the optimal point that was estimated in the last iteration [McCormick, 1969, Bertsekas, 1982]. The AM algorithm navigates this map towards a global minimum [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] and it stops when the difference between two consecutive values of the J functional, is smaller than a given limit value ε. After each computation of k est with Newton's method we apply the projection step where positivity and causality is enforced by setting to zero the negative time interval elements of k est and setting to zero the negative elements in the positive time interval of k est . k est now respects both the positivity and causality constraints, but by doing so, has also changed the vector y rec , meaning the J functional value has also changed. The second iteration ensures that this value decreases again and that the new estimation of k est will respect the positivity and causality constraints before needing to apply the projection again. Therefore this solver needs only two iterations to finish.

3.5 Discussion on Related Work

Comparison to Previous Works

As a first example, let's take [START_REF] Neuman | Developing a new deconvolution technique to model rainfallrunoff in arid environments[END_REF] which does a regularized non-parametric deconvolution and uses a bi-criterion curve; it navigates the optimality map to find the optimal estimation of the residence time by using a lag-one auto-correlation coefficient between the two error criteria. We consider this to be similar to our approach but our functional has a simpler, unified formulation from the direct model's point of view and a different method to navigate the optimality map through the Projected Newton method in the AM algorithm. Also in the cited article there is no discussion about positivity, smoothness and causality of the estimated residence time.

In the case of the [START_REF] Skaggs | Deconvolution of a nonparametric transfer function for solute transport in soils[END_REF]] article, the inverse problem formulation is similar to ours with some differences:

J(k) = 1 2 y -X • k 2 2 + λ 2 ∇ 2 k 2 2 k est = argmin y∈R K + ,λ 1 2 y -X • k 2 2 + λ 2 ∇ 2 k 2 2 with k ≥ 0 , x k = 1 (3.12)
Where

• y is the output of the system, known;

• x is the input of the system, known;

• X is the Toeplitz matrix of the input of the system;

• k is the impulse response of the system, to estimate;

• λ is the hyper-parameter to estimate with Fischer's Statistic method;

• ∇ 2 k denotes a smoothing operator of second degree applied on k

The hyper-parameter λ is here squared and determined with Fischer's Statistic method (F), while smoothness is implemented by a second derivative applied on k. There is a constraint for positivity and the condition that the integral of the obtained curve sums up to 1. The solutions are evaluated with [Provencher, 1982] Fischer's Statistic method and visual inspection. Another aspect here is the multiple peak problem, where [Provencher, 1982] argues to investigate separately for certain values of F. Also, to avoid computational difficulties in the test runs, a basis function representation of k was introduced to ensure linearity between the probability density function (pdf) representation and the transport model. A causality constraint is not discussed here. In contrast, we estimate λ by using the SNR values between the reconstructed aquifer water level curve and the original one. A bigger SNR means a better reconstruction and also a better estimation of k through the constraints, and this is realized through the λ hyper-parameter possible choice strategies. A hydrologist can then estimate the same curve with a range of values for λ , for multiple time series and time series lengths, and then see what λ value best fits for that particular tested site. We do smoothness regularization with a first-order derivative since testing with a second-order derivative did not show any improvement on the estimate, thus our direct model is slightly simpler. Our algorithm does not make an a priori assumption about the shape of the estimated residence time, therefore multiple lobes can appear without having to set any fixed number of these beforehand. The estimation of k is also free from being modeled with basis functions. The sole observation here is that the channel needs to be short enough so that it can be considered linear.

In the case of [START_REF] Fienen | A bayesian geostatistical transfer function approach to tracer test analysis[END_REF] the presented method is a Bayesian Monte-Carlo non-parametric deconvolution method that gives as result the full shape of the residence time distribution curve containing all possible residence time curves for that channel with zones of interest curves and the average curve. The method can yield multiple peaks in the transfer function with some computational cost -"Using the MCMC Gibbs sampler with reflected Brownian motion requires some computational effort (CPU time up to several days on a typical desktop computer)" [START_REF] Fienen | A bayesian geostatistical transfer function approach to tracer test analysis[END_REF]. There is a constraint for positivity and for causality implemented like in [START_REF] Michalak | A method for enforcing parameter nonnegativity in bayesian inverse problems with an application to contaminant source identification[END_REF]. Expectation Maximization is used to estimate the parameters. The algorithm is tested on uni-modal and bimodal cases. In comparison, our method provides faster estimates of the residence time curve for a Dirac-like rainfall event or for a clustered rainfall event. The computational cost per tested hyper-parameter λ is small. There is no constraint on the shape of the residence time curve other than smoothness (controlled by λ ), and positivity and causality which we implement throughout the algorithm. On the downside, our algorithm does not estimate the uncertainties attached to the residence time like in a Bayesian approach.

Another example is [START_REF] Dietrich | Unit graph estimation and stabilization using quadratic programming and difference norms[END_REF] with an algorithm based on ridge regression, where the direct model is similar to ours but has two hyperparameters to be set. [START_REF] Michalak | A method for enforcing parameter nonnegativity in bayesian inverse problems with an application to contaminant source identification[END_REF] is another article where Bayesian Monte-Carlo deconvolution is done through an inverse problem setup.

Here positivity and causality are implicitly enforced by the method of images applied to reflected Brownian motion that gives "a prior pdf that is non-zero only in the non-negative parameter range" [START_REF] Michalak | A method for enforcing parameter nonnegativity in bayesian inverse problems with an application to contaminant source identification[END_REF]]. The MCMC is here implemented with the Gibbs sampling algorithm. Similar to [START_REF] Fienen | A bayesian geostatistical transfer function approach to tracer test analysis[END_REF] the result is also a pdf with zones of interest for the residence time curve. Even if the computational time for Bayesian MCMC deconvolution methods is deemed "manageable" [START_REF] Michalak | A method for enforcing parameter nonnegativity in bayesian inverse problems with an application to contaminant source identification[END_REF], probably even more so with current hardware, the need for a fast method seems necessary for the community, and we expand on this in the next paragraph.

Comparison to the Cross-Correlation Method

We use the cross-correlation method as a benchmark to compare the performance of our algorithm. The cross-correlation measures the similarity between two signals, the first one being a shifted version of itself.

The AM algorithm also estimates the initial aquifer mean water level, c est , and the estimated residence time amplitude depends on this constant level. If we retake the cross-correlation definition form 2.33, it is necessary to obtain this same amplitude for the cross-correlation method, for comparison purposes, and this is done through the following:

R xy = x y = t=+∞ t=-∞ x * (t) • y(t + τ)dτ y rec-xcorr = x * R xy k est-xcorr = R xy • σ y σ y rec-xcorr (3.13)
The cross-correlation implicitly assumes that the input rainfall is white noise. In this case, the auto-correlation of each rain fall time series would be a Dirac at the center. Since real rainfall time series have actually long-tailed statistics, the cross-correlation method is inexact. Here we use multifractals to simulate realistic rainfall [START_REF] Tessier | Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions[END_REF]. Therefore, we expect the cross-correlation method to have a limited performance in real-life tests.

The decision to benchmark against the cross-correlation is due to the fact that it is the preferred method for hydrologists in numerous recent articles: for determining transport of biological constituents in [START_REF] Sheets | Lag times of bank filtration at a well field, cincinnati, ohio, usa[END_REF], or studying river-groundwater interaction with different types of measurements being crosscorrelated like in [START_REF] Hoehn | Assessing residence times of hyporheic ground water in two alluvial flood plains of the southern alps using water temperature and tracers[END_REF]. Cross-correlation is also used by [START_REF] Vogt | Fluctuations of electrical conductivity as a natural tracer for bank filtration in a losing stream[END_REF] for estimating mixing ratios and mean residence times, by [START_REF] Delbart | Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method[END_REF] for estimating the pure residence time curve. Therefore, the hydrology community is interested in a simple and fast method with minimal implementation time that gives a residence time curve estimation from different time series measurements. In the case of the cross-correlation method, one focuses on analyzing the position of the maximal amplitude and general shape of the curve. From this curve hydrologists extract the characteristics of interest for that particular channel (mean residence time, mixing ratios, etc.). In contrast to the crosscorrelation method we offer positivity, smoothness and causality constraints that give a more precise curve and a similar computing time. [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] Another benchmark method for the AM is the one presented in [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] that uses measurements in fluctuations of electrical-conductivity as inputs, with a direct model similar to (3.1). The algorithm in [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] is the same as the one used in [START_REF] Vogt | Fluctuations of electrical conductivity as a natural tracer for bank filtration in a losing stream[END_REF] and both articles compare their results with those of the cross-correlation method. In [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] the deconvolution algorithm is also an Alternating Minimization algorithm, but this time between estimating the residence time in the first step using a Bayesian Maximum A Posteriori method, and estimating the variance of the noise and the slope parameters in the second step. One can notice that Equation (3.4) is similar to [Cirpka et al., 2007, Eq.(8)]. One main advantage of the [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] approach is that it delivers the uncertainty curves of the full Bayesian method while not being a full Bayesian deconvolution method, thus having a fast computation time. One drawback is that the two parameters, variance of noise and slope, need to have well chosen initial values. In a full Bayesian-based deconvolution these parameters would also need to be estimated and this would be done by Markov Chain Monte Carlo methods which are computationally intensive. With regularizationbased deconvolution we try to avoid high computational costs and having multiple parameters that need carefully chosen initial values. The optimal value for our hyper-parameter λ can be automatically obtained from the inputs.

Comparison to

Results on Synthetic Data

General Test Setup

In the context of a realistic synthetic validation we generate the rain signals x with a multifractal simulation based on [START_REF] Tessier | Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions[END_REF]. We use the multifractal parameters H = -0.1,C1 = 0.4, α = 0.7. Furthermore, we simulate k with a Beta function B(x, α = 2, β = 6). We choose arbitrarily c = 100.

Hyper-parameter Choice Strategies

Examples of results obtained from synthetic data are shown in Figure 3.4 and Figure 3.5. The positivity and causality constraints are well respected. In addition, our method always provides a better estimation of the residence time k est in comparison with the standard cross-correlation method. The cross-correlation method manages to preserve the position of the maximum intensity of the residence time distribution but does not match either the shape or the amplitude of the true k. It can be observed that for a high noise level of y, the λ hyper-parameter has a high value in order to obtain better estimates k est and y rec . With a big λ , the regularization term has more importance in comparison to the fidelity term, therefore smoothing is more important, which improves results when entries are noisy. Therefore, an analysis of the deconvolution results is also necessary in order to find the right adaptation of the λ hyper-parameter for a particular noise level.

We propose four strategies to automatically tune the λ hyper-parameter. We test these on synthetic tests batches with different input SNRs given to the y vector, meaning different measurement noise levels that are easy to simulate on synthetic data. A lower input SNR value means measurements with high noise and a higher input SNR value means measurements with low noise.

1. λ oracle : choosing the λ corresponding to the best estimation of k est by maximizing the k est SNR output (or minimizing the distance between k est and k). This strategy only works if the solution is known and represents the maximum achievable value.

2. λ discrepancy : choosing the λ giving the residual variance between y and y rec closest to that of the noise. This method is known as Morozov's discrepancy principle [START_REF] Pereverzev | Morozov's discrepancy principle for tikhonov regularization of severely ill-posed problems in finite-dimensional subspaces[END_REF]. In simple terms, we estimate the quality of the measurements of y in dB and trace a constant (line) of this over the plot of y rec versus the λ range. If in general the performance of the algorithm is below this line, we choose the optimal λ value at the point where the line and the curve are the closest to one another 3.6 (b). If the algorithm works rather well for the given input SNR, meaning the y rec intersects this constant line (surpasses it) at two points, then we choose the optimal λ value at the second point of intersection. Therefore, we choose the higher λ value to favor smoother solutions to reduce noise 3.7 (b).

3. λ f idelity : choosing the λ corresponding to the best reconstruction of y rec by maximizing the y rec SNR output (or minimizing the distance between y rec and y). This is the value of the reconstruction optimum. This completely heuristic method automatically selects the hyper-parameter with a performance close to the selection by Morozov's discrepancy principle as will be seen next, in a completely blind way (without a priori knowledge of the variance of the noise).

4. λ corrCoe f f : choosing the λ corresponding to the best reconstruction of y rec by maximizing the correlation coefficient value between y rec and y.

Another very common method for choosing the λ hyper-parameter value is the Lcurve method [Hansen and O'Leary, 1993]. We have chosen to design and test the aforementioned strategies because of their ease of implementation and use both for synthetic tests and also for real-life tests. The four λ strategies give different estimates of k est , whose SNR value is compared to the y input SNR, the goal being to obtain the best possible k est SNR for To show the quality of the estimation, for each noise level, we run 30 test cases chosen randomly from a data base of 100 generated test cases. For each chosen x convolved with the known k, the resulting y signal has Gaussian noise added to it according to the input SNR test value. We apply the AM, XCORR and [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] methods to each test case for all λ s. For each test run we record the k est SNR value, the y rec SNR value and the y rec correlation coefficient.

For each input SNR of y we average the 30 tests results and we obtain each time three plots showing the evolution of the k est SNR, of y rec SNR and y rec correlation coefficient, depending on the λ choice. The mean values and their standard deviation are shown in Figure 3.6 for a y input SNR of 5 dB and Figure 3.7 for 25 dB respectively. We lose the optimality for each single example due to averaging, but we show the variability of the criteria depending on noise level and input data. In the figures we present graphically the four strategies for optimal λ value determination.

In Figure 3.8, we can see how the four strategies compare with the crosscorrelation method. For a k est length of 1000 data points to estimate, we show in (a) the results for when inputs x and y are 1000 data points long and in (b) the results for when they are 5000 data points long. The k est SNR is always the best for the λ oracle strategy as expected. Across the plots, λ corrCoe f f performs closest to it. The λ f idelity strategy is similar to λ discrepancy for SNRs from 10 dB to 30 dB. For the highest noise level, y input SNR < 10 dB, λ f idelity is worst for short time series and λ discrepancy is worst for longer time series. Whatever the strategy, our method is always better than the cross-correlation.

The average optimal λ value for each strategy, given the y input SNR level, is presented in Figure 3.9. In (a) and (b), we see the evolution of the λ values versus the y input SNR for the four given strategies. The four strategies of the hyper-parameters λ are similar at low noise level, down to 10 dB for both 1000 and 5000 data points. Then, they begin to diverge but λ corrCoe f f always stays in the neighborhood of λ oracle , meaning it is a valid strategy to use in real test cases where k is not known. At very high noise levels for 1000 data points, λ discrepancy increases and provides an over-regularized, highly smooth solution that is far from the optimum. For 5000 data points both λ f idelity and λ discrepancy deliver smaller λ s. If for λ f idelity we can still expect that it would deliver a proper k est , we can suspect that λ discrepancy would stress more an attachment to the data. This means that the estimated k est would give a y rec that would follow too closely the shape Corr Coeff (c) Figure 3.7: Same as in Figure 3.6 with an y input SNR of 25 dB. We find that λ f idelity , λ discrepancy and λ corrCoe f f approach the optimal λ oracle in average.

of y, including its noise. Furthermore we investigate the influence of data volume on the k estimate. The aggregated results are presented in Figure 3.10, (a) for a y input SNR of 5 dB and in (b) for a y input SNR of 25 dB. All of our four strategies show significant improvement when the input time series of rainfall and aquifer measurements are longer, especially when the measurements are noisy.

Comparison to Similar Methods

In Figure 3.11, we can see how our method compares to the cross-correlation method and the algorithm described in [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] for various y input SNRs and 1000 and 5000 data points respectively (positive time interval of residence time to be estimated of 500 data points). Our method and the [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] algorithm show similarly good results in comparison with the crosscorrelation. The method of [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] has a smaller standard deviation than our method, showing a weaker dependence of the noise/structure of the dataset.

While our proposed approach provides different output results depending on the given λ , the best solution being picked automatically, the operator can choose an appropriate solution based on his own expertise, from an appropriate range around the optimal λ . Moreover, the solution is independent from the initialization due to the convexity of the J functional.

In Figure 3.12, bar plots illustrate the average runtime for 30 test cases, for different y input SNRs, for the three algorithms. The AM algorithm is consistently faster than the [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] algorithm for y input SNRs higher than 15 dB 3.12(c). It is also faster for the small data sets of 1000 points 3.12(a),3.12(b).

Results on Real Data

The tests on real data are conducted on data sets made available from the Base de Données des Observatoires en Hydrologie c Irstea, [Irstea, 2017]. The data is gathered in the Ile de France region, in France. The measurements are from two neighboring sites, one at a higher altitude for rainfall measurements and the second at a lower altitude for aquifer measurements, taken at every 1 hour intervals, between January 1 st , 2016 and January 1 st , 2017. The aquifer water level measurements have negative values due to the calibration of the used measuring Figure 3.12: Analysis of runtimes between the AM algorithm and the [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] algorithm for various lengths of the dataset and various noise levels. Figure 3.13: One example of a real test case with the λ corrCoe f f strategy and precipitation events found at the beginning of the x time series. We estimate the residence time k est and the aquifer initial mean water level c est ; we also plot the aquifer water level curve y rec in blue. AM stands for the Alternating Minimization, XCORR for the standard cross-correlation, the true residence time k is not known. The position of the maximum amplitude of k est is similar for the two methods but the shape of k est varies significantly. Only the AM method has the physical properties of positivity and causality.

instrument, a piezometer that measures the pressure exerted by the column of water above it. The 0 reference level for the calibration can be the level of the monitoring well hole or the bottom of the aquifer. Whatever the reference level is, we can see in the data an increase in the absolute value of the aquifer water level after a precipitation event which is essential to test our algorithm.

For the real data, the estimates are based on the λ corrCoe f f strategy with λ s chosen around the optimal values found with the synthetic data set, between 10 8 and 10 2 . In Figure 3.13, Figure 3.14 and Figure 3.15, estimates of the residence time for real-life measurements of x and y are shown.

In all cases, the estimated curves honor the given positivity and causality constraints. For the cross-correlation, even if the y rec is close to the original y, the curve for the residence time estimated by this method has the disadvantage to not respect the positivity and causality constraints across all of the presented cases. The AM algorithm is also capable of estimating the aquifer initial mean water level c. This can be seen in the y rec red curves -the values for this curve vary around -1000. When looking at the rainfall series and the residence time curve, it is obvious that these values cannot be obtained unless c would be also correctly estimated and added to the raw result of the convolution between x and k est . Also, the estimated residence time curve k est is not normalized to resemble that of a distribution curve, since this amplitude is useful in computing the mean water residence time. In order to estimate the mean residence time τ, one has to simply renormalize the estimated transfer function k est and take the mean:

τ = t= K 2 ∑ t=0           k est (t) •t t= K 2 ∑ t=0 k est (t)           (3.14)
The AM algorithm succeeds in reconstructing the y rec with an SNR around 10 dB in the studied cases, using the λ corrCoe f f and provides a better reconstruction SNR than the cross-correlation (XCORR) method.

We find small but significant changes in the residence time curve for different data sets of the same channel, as also identified in other datasets [START_REF] Delbart | Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method[END_REF]. This may be due to the seasonal variability of the inputs (rainfall) and its effects on the hydrological process. This aspect would be of interest to study into more detail for specific sites to better understand it.

Another observation to be made is the fact that if non-linearities of the system are present (in transit or at the aquifer level), our approach may also lead to oversimplification. Nonetheless, the question arises if a hydrological channel could be considered as a linear and stationary system by parts (smaller time series) and therefore allow the use of our method for estimating partial residence time curves which can then be put together in a more complex mapping of the channel.

One can also note in the plots that the y rec SNR is slightly better for cases when a heavy rainfall event appears at the beginning of the time series x instead of towards the end, suggesting the fact that the residence time estimation would also be better.

Finally, the examples show the appearance of multiple lobes that are considered a sign of reservoirs of the hydrological channel keeping part of the water for some time before releasing it in a later discharge. This demonstrates the usefulness of a non-parametric deconvolution method in comparison with parametric deconvolution methods where such lobes are either ignored or fixed in number.

Conclusion

We propose a new approach to estimate a smooth residence time taking into account positivity and causality constraints and having a fast runtime. We highlight why these constraints must be used all along the algorithmic process to reach the expected solution in the case of non-parametric 1D deconvolution for the AM algorithm presented here.

The estimation of the residence time k est was done using a fast Alternating Minimization algorithm with two steps: (1) 1D deconvolution and ( 2) estimation of the aquifer initial mean water level. All tests have been done on a personal laptop, with CPU Intel(R) Core(TM) i7-6600U CPU @ 2.6GHz 2.81 GHz, 16.0 GB RAM, 64-bit OS, x-64-based processor, using Matlab R . We validated the approach on synthetic tests and proposed several strategies to automatically estimate a hyper-parameter, λ , that controls the smoothness of the residence time curve. We have found that between these strategies, the correlation coefficient strategy seems to be very efficient to estimate the best value for λ .

We validated our AM method on synthetic data and found that the results are better than the standard cross-correlation method and similar to those of the [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] method. We also demonstrated the capabilities of our AM method on real data. Additionally, our method respects the physical constraints (positivity, causality, non-circularity) which are important for interpretation purposes. The estimation made by our method will provide better information for hydro-geologists on amplitude and full shape of the residence time, the aquifer initial mean water level and will also improve the estimation of the mean residence time.

As possible improvements we propose refining this methodology for the potential non-linear aspects of the water transit time through the medium.

The Matlab implementation of the code is available under the CECILL license at: http://planeto.geol.u-psud.fr/spip.php?article280. Credit and additional license details for Mathworks packages used in the toolboxes can be found in the readme.txt file of each toolbox.

Chapter 4

Sparse Signal Deconvolution -Application in Seismology

Introduction

The geological subsurface is generally composed of several superposed materials: the geological layers. At the interface between each layers, the acoustic impedance changes, creating a reflection of seismic wave. Thanks to this property, it is possible to image the subsurface with seismic techniques. The active seismic imaging consist on the creation of a mechanical wave at the surface (Figure 4.1) that is reflected back by the interface from the ground. The seismic trace is the record at the surface of the waves coming up again. The Seismic Reflectivity Function is the impulse response of the subsurface rock packages to an initial, natural or artificially created Seismic Impulse input signal. The measured output signal in this case is the Seismic Trace which is considered a convolution of the seismic wave and the seismic reflectivity function. It is basically the earth's filtration of a pulse originating from a seismic source, either natural or from a controlled explosion [Lines. [START_REF] Ulrych ; Lines | The old and the new in seismic deconvolution and wavelet estimation*[END_REF]. The main goal of deconvolution applied to this problem is to obtain the seismic reflectivity functions as a series of signals containing Diracs, their exact positions and amplitudes being of great importance for applications like identification of hydrocarbon bearing subsurface areas [START_REF] Arya | Deconvolution of seismic data -an overview[END_REF]. The applications can be for shallow or deep water subsurface prospections [Arya andHolden, 1978, Chapman andBarrodale, 1983] or land subsurface prospections [START_REF] Stefan | Signal restoration through deconvolution applied to deep mantle seismic probes[END_REF].

The natural or man-made seismic wave passes through different layers of the subsurface and at the interface between different layers encounters differ-Figure 4.1: Seismogram model [Kruk, 2001].

ent acoustic impedances translated into the coefficients of the seismic reflectivity function. Convolved with this function, the seismic wave gives the seismic trace or the seismogram which is the recorded signal by geologists. This is a superposition of reflected and delayed wavelets [START_REF] Arya | Deconvolution of seismic data -an overview[END_REF]. Figure 4.1 shows this process in detail. The seismogram is recorded using pressure or velocity detectors [START_REF] Arya | Deconvolution of seismic data -an overview[END_REF]. The goal of seismic deconvolution is to find either only the seismic reflectivity function when doing prospections where the original seismic wave is known [START_REF] Arya | Deconvolution of seismic data -an overview[END_REF] or to use blind deconvolution to find both the seismic reflectivity function and the original seismic wave, when the later is a natural occurrence that is not fully known [van der [START_REF] Van Der Baan | Robust wavelet estimation and blind deconvolution of noisy surface seismics[END_REF], Repetti et al., 2015[START_REF] Liu | Sparse blind deconvolution of seismic data via spectral projectedgradient[END_REF], Mirel and Cohen, 2017, Pakmanesh et al., 2018].

Model

Direct Problem

The seimic trace (seismogram) is formed by the seismic wave convolved with the seismic reflectivity function

y = x * k + n , (4.1) 
with:

• y ∈ R T , y = (y 0 , ..., y T ) output of the linear system: seismogram (known), real signal, of length T , where T is the number of available measurements

• x ∈ R T , x = (x 0 , ..., x T ) input of the linear system: seismic wave or seismic wavelet (known), real signal, of length T

• * convolution operator

• k ∈ R K + , k = (k 0 , ..., k T
) impulse response to be estimated, real signal, of length K, where K is the length of the estimated vector and K ≤ T

• n ∈ R T white Gaussian noise, real, signal of length T .

The impulse response of the subsurface layers, the reflectivity function, will be estimated here. In the estimation of the reflectivity function, the most important thing is to estimate correctly the positions and the magnitude of the Diracs. As opposed to Figure 4.1 if we apply on the seismogram the Hilbert transform we obtain a positive y and by taking a positive shape for the seismic wavelet, we will then be able to estimate a real and positive reflectivity function, so that k ∈ R K + .

Inverse Problem

To estimate k, we will solve a minimization problem under constraints starting from the following functional:

J(k) = 1 2 y -x * k 2 2 + λ k 1 (4.2)
We are looking for the estimate that minimizes J under the positivity constraint:

k est = argmin k∈R K + 1 2 y -x * k 2 2 + λ k 1 s.t. positivity is enforced: ∀i ∈ {0, . . . , T } k i ≥ 0 (4.3) 90CHAPTER 4. SPARSE SIGNAL DECONVOLUTION -APPLICATION IN SEISMOLOGY
This function introduces again a fidelity term to the data and as well a 1 regularization term on k to favor sparse solutions. The sparsity of the estimate is controlled by the hyper-parameter λ . An increased λ will give less Diracs in the solution, while a smaller λ will better fit the solution to the data. We will devise a sparse signal estimator that is adapted to a seismological application through its constraints. A secondary goal is to automatically find an optimal λ range that consistently gives accurate estimates. Rewriting the functional (4.2) in matrix form:

J(k) = 1 2 y -Xk 2 2 + λ k 1 (4.4)
Where X is the Toeplitz matrix corresponding to the convolution by the seismic wave (wavelet) x.

FISTA with Warm Restart for 1D Deconvolution

The algorithm for estimating the reflectivity function is a classical one for such a cost functional. The ISTA algorithm was presented in [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF] as an iterative thresholding algorithm for linear inverse problems with a sparsity constraint. In [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] ISTA was further presented with a proximal operator. In [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] the FISTA algorithm was introduced, a faster version of the ISTA. The novelty in our implementation of the FISTA algorithm for solving this problem is that we use a positivity constraint through projection, making it a Projected FISTA. Although there are more accurate methods of estimation [START_REF] Chaux | Nested iterative algorithms for convex constrained image recovery problems[END_REF], we are using the FISTA for its computational speed. Also, since the regularization term of the functional is nondifferentiable, the fact that its proximal is computable allows us to use the FISTA and still obtain a good enough solution in practice. In other words, the projected FISTA will lead to an approximation of the solution. It cannot converge to the minimizer, but this sub-optimal solution is satisfactory and much more faster to obtain than with other methods. The Solver in its entirety is presented in Algorithm 2. For the given λ range , the algorithm starts from the biggest λ in the outer loop and estimates consecutively k est in the inner loop. Once the stopping criterion has been reached, the inner loop breaks and the next λ value will be used.

The k est value from the previous λ is used as initialization when restarting the inner loop, procedure that is called the warm restart.

Algorithm 2 FISTA with Warm Restart for Seismology Input: x, y, λ range , k res min , j max Output: k est ,y rec 1:

k est = zeros, z est = k est 2: L = fft(x) 2 ∞ Lipschitz constant computation 3: for all λ i in λ range do 4: i = i + 1 5: λ onL i = λ i L 6:
for j up to j max do 7:

j = j + 1 8: k old = k est 9: k est = z est + x * * (y -x * z est ) L 10:
Proximal (Soft Thresholding):

11: ∀k ∈ [0, K -1], k k = k k • 1 - λ /L |k k | + 12:
Projection:

13:

if k est should be positive then The algorithm presented can be found in a Matlab package released under a CECIL License; the link is provided at the end of this chapter. The implementation is done again not in matrix form, the way the modeling and solution was presented in this text but in a dot product multiplication in the Fourier Domain with zero padding to avoid circularity of the convolution result. The toolbox allows for estimation of sparse, real or complex, positive or non-positive signals. Causality can also be enforced if necessary by adding another projection step, although in this physical application it is not needed. Imposing causality of a system without the need to modify the system matrix (convolution matrix) is discussed in section 3.4.2.

Implementation Details

On the Used Metric

To compare two signals with one another, in this case the original signal k in a synthetic test case and the estimated signal k est we need to apply a metric that can accurately measure the differences from an amplitude, energy and peak position and general shape point of view. If in the previous chapter we used the SNR and the cross-correlation as a comparison metric, in the case of comparing sparse signals, these two metrics prove to be inefficient. Therefore the match distance is introduced [C. Shen and Wong, 1983] as a more accurate metric for k est estimation. This metric is used in [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF] as a measure of similarity between image histograms and it proves effective also for comparing 1D signals. We show in Figure 4.2 the concept behind this metric and how it can be computed and used in (4.5):

d M (h, k) = ∑ i | ĥi -ki | (4.5)
Where ĥi = ∑ j≤i h j is the cumulative sum of signal h i and ki = ∑ j≤i k i is the cumulative sum of signal k i .

In this test, we aim at discussing the efficiency of each distance to measure how close to one another are sparse positive signals.

We design a reference sparse signal, called sig1, with 1000 data points, made of 5 Diracs with random position and amplitude. The second signal, sig2, is similar to sig1 but the Diracs are shifted randomly left or right by 1 data point. The third signal, sig3, is a signal with small random values, similar to a noise signal. Sig3 and sig1 are thus very different due to the random generation. Sig4 is a white noise signal. Sig5 is a convolution of sig1 with a Gaussian kernel in order to simulate a non optimum retrieval but centered at the good position. The main goal is to see if the match distance metric is better at identifying similarities between the reference sig1 and sig2 and sig5 than the SNR or the correlation metric. It should also clearly show that sig3 and sig4 are very different with respect to the reference sig1.

Figure 4.3 represents the 5 signals and the corresponding metrics. When looking at the numerical values for the match distances we can clearly see that the match distance is small for the signals that are similar to the reference one and much larger for sig3 and sig4. Contrary to this, the SNR does a poor job at clearly stating the difference to the reference signal, since it should display a larger SNR value for similar signals and smaller SNR value for different signals. The correlation coefficient also does a poor job at showing similarities and differences. Therefore we should definitively use the match distance as metric for sparse signal comparison in the same way we used the SNR for the smooth signal comparison in the hydrology problem. The SNR metric is still relevant for smooth signal, such y. The correlation coefficient strategies will also be kept and analyzed. 

Discussion on Related Work

In this section, we review the previous work in this field. In the field of seismology, deconvolution is a well-known principle for decades. Often, digital filtering was used and described as deconvolution but also inverse problem deconvolution methods were tested and used. In [Lines. [START_REF] Ulrych ; Lines | The old and the new in seismic deconvolution and wavelet estimation*[END_REF] we have a review of available methods for seismogram deconvolution. Here the deconvolution is seen as a two step process: first using some method to estimate the seismic input waves (wavelets) and second to design an inverse filter that will estimate the seismic reflectivity function from the seismic trace. Since our focus will not be on extracting the seismic waves we will not go into depth about the methods used for this.

In [START_REF] Arya | Deconvolution of seismic data -an overview[END_REF] we have an overview over the different methods of deconvolution and filtering applied in such problems. In homomorphic deconvolution [Ulrych, 1971, Jin andEisner, 1984] a non-linear system representation of the convolution between the seismic wave (wavelet) and the seismic reflectivity function is used, based on a principle of superposition of the seismic waves [Oppenheim, 1967]:

D(a • x * b • k) = a • D(x) + b • D(k) (4.6)
Where: D -is the characteristic system matrix a and b are scalars

The inverse D -1 performs the change from the additive space to the convolution space. Low-pass filtering is used to obtain a complex cepstrum of the seismic wave (wavelet), while high-pass filter is used to obtain the complex cepstrum of the coefficients for the seismic reflectivity function. Retrieving from the cepstrum the needed values when the seismic wave is not minimum phase, has proven difficult. Minimum phased wavelet is a very short duration wavelet that has its entire energy at its beginning, thus being causal and having a phase different from zero. A zero-phase wavelet is symmetric and easier to use in practice, has a zero phase but is farther away from the true form of a wavelet. [START_REF] Jin | A review of homomorphic deconvolution[END_REF]] also concluded that it is impossible to completely separate convolved signals by homomorphic deconvolution, also because of the cepstrum, since the components extend to infinity in the quefrency domain, meaning they "contaminate each other". Also they note that padding with zeros a signal before doing homomorphic deconvolution, the result will improve, and although the reason is stated as unknown in the article, we suspect it is because of the removal of the convolution circular effect over the signals.

Other used methods are Wiener filtering for time-invariant systems and Kalman filtering [START_REF] Kurniadi | The discrete kalman filtering approach for seismic signals deconvolution[END_REF] because it can handle time-varying models, at least for other applications except seismic deconvolution where [START_REF] Arya | Deconvolution of seismic data -an overview[END_REF] concluded that at that time it could not be used successfully. In newer work, [START_REF] Kurniadi | The discrete kalman filtering approach for seismic signals deconvolution[END_REF], Kalman filtering as a deconvolution technique for seismograms is again analyzed, although in the article concludes that it is not clear if the Kalman filter is the best choice for deconvolving seismic signals. The Kalman filter is defined through two equations:

k = A • k + B • x, system state equation y = H • x + D • k, output equation (4.7)
Where:

-A, B, H, D are time varying matrices When it comes to seismic deconvolution, deterministic deconvolution is used when the seismic wave is known and measured while going out from the generator. It is removed from the seismic trace through a filtering technique, that also has to take into account ghosting created by the seismic wave source and the seismic trace receiver, which also need to be removed [START_REF] Arya | Deconvolution of seismic data -an overview[END_REF]. Although these methods are considered deconvolution techniques, they pertain more to the domain of digital signal processing than that of inverse problems, the closest to this field being the homomorphic deconvolution that presents difficulties in retrieving the seismic wave or the seismic reflectivity function because of the complex-value nature of the obtained cepstrums.

In [START_REF] Claerbout | Robust modeling with erratic data[END_REF] an asymmetric form of the 1 norm regularized deconvolution method is proposed for seismic data to determine the time of first arrival of a seismic wave in a seismic trace. Here the ell 2 norm is seen as a filtering technique that uses the mean to obtain a solution while the ell 1 norm is seen as the more robust version, that ignores blatantly wrong data, similar to the median filtering. It is argued that using the ell 1 norm should be the natural choice for problems pertaining to already positive measurements.

In [START_REF] Taylor | Deconvolution with the l 1 norm[END_REF], an alternate minimization algorithm is proposed to deconvolve both the seismic input and reflectivity function from a given noisy seismic trace, with focus on the use of the L 1 norm for estimating the spiky reflectivity function. The λ hyper-parameter term is seen as a pre-whitening scalar, or stabilization term for the solution. A short analysis on the λ hyper-parameter value needed for the deconvolution is also done, implying the idea that in practice a weighted form of the λ and regularization term is needed.

In [START_REF] Chapman | Deconvolution of marine seismic data using the l1 norm[END_REF], the reflectivity function is estimated by deconvolution with L 1 regularization and was tested on synthetic data. Since this application deals with simulated underwater prospection setup, the seismic output can be disturbed by the air bubbles triggered by the explosions taking place under water, making the retrieval of the reflectivity function more difficult.

In [START_REF] Bednar | L1deconvolution and its application to seismic signal processing[END_REF] the regularized deconvolution for noisy seismic traces with the L p norm is investigated, where p is investigated between 1 and 3. In this work the cases with p = 1 and 1 ≤ p ≤ 2 were shown to be unstable. We aim to prove for p = 1 that this is not the case.

In [START_REF] Cheng | Simultaneous wavelet estimation and deconvolution of reflection seismic signals[END_REF] a Bayesian deconvolution method based on the Gibbs sampler is used to deconvolve the seismic waves (wavelets) and the reflectivity function in the same time. The reflectivity function estimation presents a low match with the real data at low SNR (signal-to-noise ratio) values.

[ [START_REF] Porsani | Mixed-phase deconvolution and wavelet estimation[END_REF] states some important assumptions in their article: the fact that the reflectivity function is a stationary random process uncorrelated to the stationary random noise. Also, with a high measurements SNR, the autocorrelation of the seismic trace can be used as an estimate of the seismic wave (wavelet). Here a minimum-phase wavelet and the reflectivity function are being extracted with a mixed-phase inverse filter. The algorithm contains seven steps to perform the deconvolution of the wavelet, and implies multiple filter design coefficient computations.

Blind deconvolution for seismic data has been studied in a classical inverse problem setup in [START_REF] Repetti | Euclid in a taxicab: Sparse blind deconvolution with smoothed ell 1 /ell 2 regularization[END_REF] this time with a smooth 1 2 regularization to estimate both the seismic input and the reflectivity function. The motivation was the fact that using only one least-squares fidelity term is sensitive to noise and using a simple 2 regularization term may lead to an over-smooth estimate. Therefore the direct model will be:

J(x, k) = 1 2 y -x * k 2 2 + g(x, k) + ϕ(x) J(x, k) = 1 2 y -x * k 2 2 + g 1 (x) + g 2 (k)+ ∑ N n=1 x 2 n + α 2 -α + β ∑ N n=1 x 2 n + η 2 (4.8)
Where:
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• g(x, k) -is a set of lower semi continuous, convex functions, continuous on their domain being applied on x and k respectively.

• ϕ(x) -is the 1 /l 2 norm, being replaced with the following smooth approx-

imation: ϕ(x) = λ log l 1,α (x) + β l 2,η (x) , with α, β , λ , η ∈] 0, +∞[ ,
The estimation is done using an alternating minimization algorithm with a proximal step after each estimation of x and k respectively. An analysis on criteria to choose the afore mentioned hyper-parameters is missing.

In [E. [START_REF] Liu | Sparse blind deconvolution of seismic data via spectral projectedgradient[END_REF] a blind deconvolution algorithm is proposed for multi-channel alternating wavelet and reflectivity function estimation. The 1 regularized inverse problem formulation comes with an analysis on how to determine a good value for the λ hyper-parameter for both the smooth wavelet estimation and the sparse reflectivity function estimation.

We are using the results from an initial homomorphic deconvolution as input to a 1 norm regularized deconvolution. The seismic waves are simulated with the Ricker method [Ricker, 1953] and the seismic traces are inputs to a FISTA algorithm [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]] that will estimate the sparse reflectivity functions.

Results on Synthetic Data

General Test Setup

To be able to find a suitable λ range to use for estimating the sparse k est signal, we generated tests of x, k and y, where x was one envelope of the seismic wavelet, the ks were reflectivity functions of 1000 data points, containing four Diracs at random positions, two having a random magnitude of between 1 and 2 intensity, while the other two having a 60% magnitude of a random magnitude between 1 and 2 intensity. The ys were the convolution results of the wavelet and the ks.

White Gaussian noise was added corresponding to the ys, at 7 levels of noise, or input SNR: 0 db, 5 dB, 10 db, 15 dB, 20 db, 25 dB, 30 dB. The lower the dB level, the more noise was added to y. For analyzing the influence of the λ value on the estimated k, the lambda range was created with its maximum being the maximum value obtained by using the Lipschitz constant calculation formula presented in Algorithm 2:

λ max = x * * y ∞ (4.9)
The minimal value for the λ range was taken at 5 orders of magnitude smaller than the λ max and 10 λ values were sampled in a logarithmic spaced manner. The tests were run in the following manner: (i) for each input SNR, 30 randomly created test sets were created; (ii) the k was estimated by our sparse deconvolution algorithm for the 10 decreasing λ values, with warm restart. The results encompass in total 7 input SNRs times 30 test cases times 10 lambdas, meaning 2100 individual deconvolution runs, or better said 2100 estimated ks with an average runtime per test of under 1 second.

One synthetic test example of the reflectivity function estimation is presented in Figure 4.4 where the seismic trace has an initial input SNR of 10 dB. We notice that the positions and magnitudes of the Diracs are well estimated although some small magnitude false Diracs are also present. The algorithm also reduces the input noise of the seismic trace giving a smoother reconstructed seismic trace curve.

The aim of this section is to validate the algorithm but also to propose and discuss several hyper-parameter λ choice strategies. In section 4.7, we will discuss the results on a more precise simulation of the waveform. In section 4.8, we will apply the strategy on real data.

Hyper-parameter Choice Strategies

Similar to the hydrology problem we decided on several λ choice strategies that could identify an optimal λ hyper-parameter value for this problem, the main goal being that any researcher using this algorithm should be able to automatically choose an adequate λ value without needing to modify anything else in the algorithm. We tested six strategies to automatically tune the λ hyper-parameter by testing the algorithm on synthetic signals, where the true k is known, so that the validity of the k est can be measured. The six strategies tested are the following:

1. λ oracle-corrCoe f f : choosing the λ corresponding to the best reconstruction of k est by maximizing the correlation coefficient value between k est and k.

2. λ oracle-match-distance : choosing the λ corresponding to the best estimation of k est by minimizing the match distance (eq. 4.5) between the true signal and the estimated one. This strategy only works if the solution is known and represents the maximum achievable value. y rec and y).

4. λ f idelity-corrCoe f f : choosing the λ corresponding to the best reconstruction of y rec by maximizing the correlation coefficient value between y rec and y.

5. λ discrepancy : choosing the λ giving the residual variance between y and y rec closest to that of the noise or "Morozov's discrepancy principle" [START_REF] Pereverzev | Morozov's discrepancy principle for tikhonov regularization of severely ill-posed problems in finite-dimensional subspaces[END_REF] which was explained in the previous chapter.

6. λ di f f erential : choosing the λ giving the point on the y rec output SNR curve that expresses the start of the leveling off of the increase/improvement in the output SNR.

The influence of measurement noise on sparse signal estimation can lead to important changes in the choice of the λ hyper-parameter. Therefore we tested the aforementioned λ strategies for different simulated measurement input noise applied on the y signal, or the seismic trace. These results can be seen in the figures 4.5 to 4.11, where the 30 examples are averaged and the standard deviation is also plotted.

In all plots, the first subplot belongs to an oracle strategy (correlation coefficient and the match distance), meaning the best value of the hyper-parameter value, which can be only computed because k is known. The second subplot contains the real-life applicable strategies that can be used when the k is unknown. The goal is to find which real-life λ choice strategy consistently gives a λ value closest to the oracle ones.

The analysis should be done depending on noise level -the first figure contains maximum possible noise (SNR of 0 dB for y rec ), the last figure contains very little measurement noise (SNR of 30 dB for y rec ). Therefore we can inspect the need for sparse regularization against fidelity to the data by seeing the evolution of the λ oracle values but also get a sense of the real-life λ range to test by analyzing the performances of the real-life λ choice strategies. Also, since the FISTA algorithm with warm restart uses the whole range of given λ s, starting from the biggest one towards the smallest one, we will analyze the strategies and evolution of the λ values from right to left, from the largest one towards the smallest one.

A first point to notice is that the k est match distance always has an optimal, minimum value across the tested λ range. This means that one optimum of λ exists and the goal will be to pick it automatically. It seems that the optimum value is not symmetric and that the slope is much larger for larger λ s.

A second point to notice here is that the y rec output SNR curves do not have a maximum level like in the hydrology case. We would expect for noiseless and 102CHAPTER 4. SPARSE SIGNAL DECONVOLUTION -APPLICATION IN SEISMOLOGY noisy measurements alike, for very small and very large λ s, to have a decrease in the output SNR of y rec , since the fidelity term is also directly influenced by how well k est is estimated. This is clearly not the case. We interpret that this behavior is coming from the fact that the reconstruction is better and better by decreasing the λ as designed in the inverse problem 4.3. Contrarily to the hydrology case, positivity seems not to be an active constraint, so that smaller λ s are still reconstructing well the y observation. For the hydrology case, y rec was not well reconstructed at small λ s because of the positivity constraint that had a much stronger influence.

Thus, the λ f idelity-SNR strategy always offers the smallest possible λ value, showing that the fidelity to the data improves continually for smaller and smaller λ s.

One must therefore propose more robust strategies that pick a λ value closer to that of the top performer oracle strategy λ oracle-match-distance and that can be used in a real-life scenario. A first try is the λ discrepancy strategy, in which a parallel line to the horizontal axis is drawn at the input SNR level of the y rec SNR plot and the intersection of this line and the mean y rec curve will give the λ discrepancy value. If this line does not intersect the y rec curve, then the λ discrepancy value is picked where the distance between this line and the y rec curve is minimal.

Since we have already discussed the fact that the y rec SNR curves have a maximum at small λ s, it is also noticeable that the reconstruction SNR values for all the λ range are un-naturally higher than the input SNR for those 30 tests in the batch. Therefore, for an input SNR of 0 dB, the λ discrepancy is found at the lowest point of the y rec SNR curve, so that it is closest to this input SNR of 0 dB. As the input SNR grows, the λ discrepancy moves up the mean y rec SNR curve, towards smaller λ s as we would expect for less noisy measurements. Nonetheless the values it gives as result are between 1 and 2 orders of magnitude different to the λ oracle-match-distance . This might be caused by the fact that the λ discrepancy is computed as the residual variance between y and y rec closest to that of the noise. Since the seismic reflectivity function has very few Diracs, the information that it brings to the estimation algorithm might be attenuated or even lost with the noise level. The result is a λ discrepancy that moves rapidly towards the λ f idelity-SNR value as the input SNR increases (the signals have less and less noise).

The instability of the λ discrepancy strategy, although predictable, leads us to the λ di f f erential strategy that uses the change in ascent of the y rec curve and the leveling off of this ascent to identify the optimal λ di f f erential value. Basically the λ di f f erential is located just before where the y rec curve starts its plateau. To compute this, a differential vector of the mean values of the y rec curve is computed.

The plateau part of the curve where the changes between two consecutive values are close to 0 will be removed by this differential operation. The abrupt ascent part where changes in λ values bring substantial changes in the y rec output SNR is removed by using a threshold that specifies that we are interested only in the portion with very small changes, or the "hump" of the plot, just before the plateau starts. The thresholding parameter is also of interest here: we noticed that the best performer λ di f f erential is for a threshold of 1% of the maximum possible change value. The pseudo-code for the choice of the λ di f f erential is presented in 3.

Finally, the λ oracle-corrCoe f f strategy offers the same value as the lead performer λ oracle-match-distance at 5, 10 and 30 dBs, but gives values that are different by one order of magnitude with respect to the best performer λ oracle-match-distance at 0, 15, 20 and 25 dBs input SNR. This proves that this strategy is not suitable.

Algorithm 3 λ di f f erential Algorithm Input: y rec-mean-SNR , λ s Output: λ di f f erential value 1: threshold = 0.1 2: renormalize y rec-mean-SNR by its maximum 3: z = di f f (y rec-mean-SNR ), z 4: renormalize z by its maximum 5: ixs = f ind(z < threshold) 6: λ di f f erential-index = ixs(1), taking the index of the biggest lambda 7:

λ di f f erential = λ s λ di f f erential-index 8: return λ di f f erential
The aggregated results over the SNR tested values are presented in Figure 4.12. As opposed to the previous plots, where we did an averaging of the 30 synthetic test results first and an extraction of the depicted λ strategies best values second, in the aggregated plots this was not possible. Therefore we have an extraction of the λ strategies best values first for each of the 30 tests and then an averaging of these best results.

In 4.12 (a) we can notice, as expected, that the λ oracle-match-distance has the smallest match distance for all input SNRs and also the smallest standard deviation between all the strategies and is the best-performer. This strategy cannot be used as a real-life strategy but only as a metric instead of the SNR. Therefore, goodperformer strategies are in this figure those strategies whose curves are closest to the λ oracle-match-distance curve. It seems apparent that more importance should be put on choosing the right strategy for noisy signals, up to 15 dB. The worst performer is the λ oracle-corrCoe f f and proves once again it is a bad metric to use with sparse signals. The same can be said by the λ f idelity-corrCoe f f . Slightly better is the λ f idelity-SNR . The λ discrepancy shows its limitations when dealing with noisy signals up until 15 dB and then performs well-enough together with the λ f idelity-SNR up to 30 dBs. The constant good-performer proves to be the the λ di f f erential across the input SNR range, with a mean curve very close to the λ oracle-match-distance one and a relative small standard deviation.

In 4.12 (b) we can see the evolution of the λ hyper-parameter depending on the input SNR and the strategies we chose. The blue line is the λ evolution of the best-performer λ oracle-match-distance , therefore the good-performers need to be close to this 30 tests mean optimal λ curve. Again, the λ di f f erential is the closest to the best-performer λ oracle-match-distance for all the given input SNRs. One has to note that from 4.5 to 4.11, it seems that the optimum value is not symmetric and that the slope is much larger for larger λ s. Therefore, it is better to reach the optimum by default rather than by excess.

Results on Simulation Data

Results on Non-Linear Simulation Data

Using a dedicated software, we simulated the seismic traces propagation with a non-linear attenuation, i.e. high frequencies will be more attenuated than low frequencies through propagation. This means that the initial seismic wave will be enlarged during the propagation. This non-linear effect is in contrast with our model that assumes linearity, therefore we study on this data set the performance of our algorithm in such a case. For this data set we have the seismic wave, the ground truth reflectivity functions and the seismic traces with 500 data points and a sampling step of dt = 0.002 [s]. We added noise to the output wave and then applied the Hilbert Transform (details in Appendix .4) to obtain a positive envelope for the input y seismic trace. Then the resulting envelopes have 5dB, 10dB and 20dB SNR.

The algorithm setup is the following: we use a non-circular convolution method like in the hydrology problem, a soft thresholding for the proximal operation, to stop the algorithm we have two stopping criteria implemented, either a maximum of 5000 iterations or a k est residual minimal value of 1e -10. The tests were done on Matlab R 2017 release. The initialization of k est was a vector of zeros. For the differential threshold we have chosen the biggest λ di f f erential at the change in ascent vector (differential vector) from the values that presented a 1% change from the maximum possible change.

For the λ range we use the Lipschitz constant calculation formula presented in Algorithm 2 to compute for each of the given seismic trace one λ max and from all these we take the maximum λ to use as an upper limit λ range. The lower λ range limit is three orders of magnitude lower than the λ max and we used 6 lambda values logarithmically spaced between the two limits. This offers us an adequate λ range in which to search for the λ optimal with the λ di f f erential and the λ f idelity choice strategy.

The estimated results are depicted in Figure 4.13. The format of the plot is characteristic to the problem field. In the figure we notice an improvement in the estimation of the k est as the measurements have less and less noise. k est is more sparse with a higher SNR. The algorithm manages also to reduce the noise in the reconstructed signal y rec . We also notice that at the positions of the seismic trace peaks at the 2nd, 3rd and 4th arrivals, there are two Diracs being estimated and that their amplitudes are slightly lower than the true ones in blue. The amplitude is much lower in the low-noise measurements than in the noisy measurements. This is caused by the the enlargement of the wave due to the difference between the simulation model and our estimation model: the simulation model has nonlinearities, while our model assumes that it deals with a linear system.

Results on Linear Simulation Data

Using a dedicated software, we simulated the seismic traces and applied the Hilbert transform to obtain positive envelopes of these signals. The seismic trace signal was generated using the Ricker waveform [Ricker, 1953]. There is no ground truth available here for the reflectivity function since the input is directly the physical properties of the rocks (thickness, density, etc.). The number of data points for the simulated tests were 30000 and the sampling step is dt = 0.00001 [s].

The test setup is the same as described in the previous section.

In Figure 4.14 we can see the results of the FISTA warm-restart algorithm applied on these input signals and the estimations of the k est associated reflectivity functions. There are 11 seismic traces, therefore we present the 11 computed k est s estimated for the λ di f f erential strategy method. The largest wave has been detected but also the small waves. Most of the waves are detected with two peaks in the reflectivity function, again most probably caused by non-linearities of the physical model in contrast to the assumed linearity of the system in our model.

Results on Real Data

For the real data, we received multiple geophone recordings of seismograms of 4607 data points and a sampling step of dt = 0.00025 [s]. Since the seismic wave is difficult to record and was not available, we extracted from the first seismogram the first wavelet and then we centered this wavelet in a zeros initialized vector of 4607 data points also. We then used the same estimation setup as in 4.7 and in the following figures we present the results for two λ strategies: the λ di f f erential strategy with a 1% threshold and a λ maximum strategy that chose the maximum possible λ from the given λ range that delivered an estimation of the vector k est that was different from an all-zeros signal.

In Figure 4.15 we can notice a very good reconstruction of y but the estimation of k est is very poor for the needs of seismologists. This is due to the fact that we have a mix of surface waves and volume waves. We are interested in the volume waves only. Also, the seismic wavelet is not available, so the heuristic method of choosing such a wavelet from one of the seismic traces, although reasonable, may not fit the shape of the seismic trace entirely. This is why we can see many Diracs in the k est since the signal is trying to take the wavelet and put it at all the positions necessary so that the convolution result will be y rec .

Since the reflectivity function should be sparser than this, we tried the λ maximum strategy in Figure 4.16. Here we have a more sparse estimated reflectivity functions but there is still uncertainty if the ones that are present are indeed the correct ones and without having the ground truth, it is difficult to say anything about their accuracy. The y rec waves suffer also from the pronounced sparsity of the estimated reflectivity functions. Nonetheless, the synthetic and simulation-based tests have shown that as long as the recored seismic traces do not contain a mix of signals (surface and volume waves), our algorithm is useful in estimating accurate k est sparse reflectivity functions.

Conclusion

We propose a new approach to estimate the reflectivity function of seismic traces, taking into account the positivity constraint of the seismic wave envelope and seismic trace which should generate positive reflectivity functions. We implement this as a non-parametric deconvolution algorithm in the field of inverse problems and design different strategies for estimating the λ hyper-parameter. The synthetic and simulation-based test results have shown a fair estimation of the seismic reflectivity functions. These results are promising for the use of the algorithm in real life applications, where the data sets are somewhat clean from artifacts that affect these types of recorded signals.

The estimation of the residence time k est was done using a proximal FISTA algorithm. All tests have been done on a personal laptop, with CPU Intel(R) Core(TM) i7-6600U CPU @ 2.6GHz 2.81 GHz, 16.0 GB RAM, 64-bit OS, x-64-based processor, using Matlab R and presented an average run time per test of under 1 second. We validated the approach on synthetic tests and proposed several strategies to automatically estimate the λ hyper-parameter that controls the sparsity of the reflectivity function. We validated our algorithm implementation on synthetic tests and have found that between these strategies, the differential λ strategy was the closest to the best performer oracle λ . With this automatic strategy for λ identification, our tool will help seismologists to obtain an accurate estimation of the seismic reflectivity function. We have also tested our algorithm on real data and presented our results with the caveat that the seismic waves were computed envelopes of simulated seismic waves since accurately measuring these impulses is difficult to do in practice.

As a possible refinement would be to do a blind-deconvolution implementation that at the same time estimates the reflectivity function and also the seismic wave (wavelet). This is useful for underwater seismology applications where it is more difficult to measure this originating wavelet as opposed to land seismology applications.

The Matlab implementation of the code is available under the CECILL license at: http://planeto.geol.u-psud.fr/spip.php?article280. Credit and additional license details for Mathworks packages used in the toolboxes can be found in the readme.txt file of each toolbox.

Chapter 5

Blind Deconvolution -Application in Spectroscopy

Introduction

This chapter focuses on the Planetary Fourier Spectrometer (PFS) instrument [ESA, 2003b] from the The Mars Express Mission [ESA, 2003a] and will try to solve inherent effects on acquired data that can appear due to the unforeseeable interactions between the other instruments and the PFS. The Mars Express Mission [ESA, 2003a] was launched on June 2nd, 2003 and it was built with the effort of 15 European countries and the US. It contained an orbiter with seven instruments on-board and the Beagle 2 lander module.

The Planetary Fourier Spectrometer is a Michelson type infrared spectrometer. It takes measurements on two bands: Short Wavelength (SW) and Long Wavelength (LW). A full presentation of the instrument can be found in [START_REF] Formisano | The planetary fourier spectrometer (pfs) onboard the european mars express mission[END_REF] with more information about the long wavelength channel and its calibration in [Giuranna et al., 2005a] and its short wavelength channel and its calibration in [START_REF] Giuranna | Calibration of the planetary fourier spectrometer short wavelength channel[END_REF]. Methods on how to analyze data from the PFS were presented in [START_REF] Grassi | Methods for the analysis of data from the planetary fourier spectrometer on the mars express mission[END_REF]. We present a short table on the characteristics of the PFS [START_REF] Formisano | The planetary fourier spectrometer (pfs) onboard the european mars express mission[END_REF] in 5.1:

The PFS instrument gave researchers the opportunity to bring to light important findings about Mars and its atmosphere [START_REF] Formisano | Detection of methane in the atmosphere of mars[END_REF][START_REF] Giuranna | Spatial variability, composition and thickness of the seasonal north polar cap of mars in mid-spring[END_REF], Giuranna et al., 2007a, Grassi et al., 2007] but in the same time, the sensitivity of the instrument to micro-vibrations was explained in [START_REF] Comolli | Evaluation of the sensitivity to mechanical vibrations of an ir fourier spectrometer[END_REF] and again later in [Shaojun Bai, 2014] where besides discussing the expected perturbations coming from the power line frequency, other possible SW LW Wavenumber 1700 -8200 cm -1 250 -1700 cm -1 Wavelength 1.25 µm-5.5 µm 5.5 µm-45 µm Field Of Vision 1.6 • , 7 km 2.8 • , 12 km Detector PbSe at 200-220 • K LiTaO 3 pyroelectric Table 5.1: Planetary Fourier Spectrometer specifications, taken from [START_REF] Formisano | The planetary fourier spectrometer (pfs) onboard the european mars express mission[END_REF].

sources were presented that brought the apparition of ghost lines at wavenumbers shifted from the laser line corresponding to multiples of the original disturbance frequency. A solution to this problem was proposed, the idea being that averaging multiple spectra would eliminate the ghosts, although sacrificing several spectra of the same position of Mars to obtain one good average spectrum. The research on the subject continued with [START_REF] Saggin | Mechanical disturbances in fourier spectrometers[END_REF] where the main sources for the ghosts were identified as being mechanical in nature, but the non-linearity of the optical path of the spectrometer was also taken into consideration. In [START_REF] Comolli | Analysis of disturbances in the planetary fourier spectrometer through numerical modeling[END_REF] a numerical modeling of the PFS was made to design a synthetic model that resembles the real PFS spectra to allow the study of how these microvibrations propagate in these spectra. In the mean time, further calibration of the real spectra and phase correction were introduced with [START_REF] Saggin | Instrumental phase-based method for fourier transform spectrometer measurements processing[END_REF]. In [START_REF] Shatalina | Analytical model and spectral correction of vibration effects on fourier transform spectrometer[END_REF] a first attempt at deconvolution was made with a semi-blind deconvolution algorithm and also the analytical formulation of the nature of the mechanical vibrations was derived. In [START_REF] Schmidt | Toward a numerical deshaker for PFS[END_REF] a refinement of the algorithm in [START_REF] Shatalina | Analytical model and spectral correction of vibration effects on fourier transform spectrometer[END_REF] was presented in the form of an Alternating Minimization algorithm with a smooth signal estimation algorithm for the Mars spectra and a sparse signal estimation algorithm for the micro-vibrations signal, called in this text the micro-vibrations kernel. The results achieved were similar to those of averaging 10 spectra with the advantage of obtaining 85% cleaner spectrum but with the downside that the model's and algorithm's parameters could not be automatically identified. This last article constitutes the basis for the work in this chapter.

To sum up, in the case of the Planetary Fourier Spectrometer after the deployment, it was noticed that mechanical micro-vibrations coming from the electrical drives of the probe affect the acquisition of the interferograms. The received spectra have been identified as having ghosts, meaning fluctuations in the spectra found at specific wavelengths. These ghosts are the manifestation of a sparse sig-Figure 5.1: Ghosts affecting one spectrum from the Mars Express PFS [START_REF] Schmidt | Toward a numerical deshaker for PFS[END_REF]. nal, caused by micro-vibrations, that convolves with the original relatively smooth Martian spectra. Since the ghosts could create absorption bands that do not actually exist, their removal from the measured signal is important. In Figure 5.1 we can see the ghosts affecting the Mars spectrum as presented in [START_REF] Schmidt | Toward a numerical deshaker for PFS[END_REF].

To understand the origin of the ghosts, we present in Figure 5.2 a simple diagram of the PFS instrument, a Michelson interferometer.

The right side of the diagram is where the aperture of the instrument is and from here the wave of Mars atmosphere enters the instrument. The wave then intersects the beam splitter in the center and the two resulting waves are directed towards the cubic corner mirrors positioned on two rotating arms. The beams are reflected by the mirrors and then interfere with each other in the center of the instrument. The interferogram wave is directed towards the detector of the instrument. At this point, the detected interferogram is passed in the Fourier domain and results in the Mars atmosphere spectrum. There are two types of errors that come directly from the micro-vibrations themselves and one type that is inherent to all interferometers [START_REF] Comolli | Evaluation of the sensitivity to mechanical vibrations of an ir fourier spectrometer[END_REF], Saggin et al., 2007, Shatalina et al., 2013, Shaojun Bai, 2014]:

• cyclic misalignment of cubic corner mirrors on any of their axes inducing a lower efficiency of the detector (resulting errors are denoted here with ϕ d ) -caused by micro-vibrations; this means that the cubic corner mirror vibrate and cannot reflect the waves resulting from the beam splitter right at their center, resulting in an imprecise interference of the reflected waves and consequently an imprecise interferogram.

• sampling step error caused by the interferogram acquisition trigger, laser zero-crossings, which are not at constant length intervals (resulting errors are denoted here with ϕ s ) -caused by micro-vibrations. As we can see in Figure 5.3, micro-vibrations can also cause a problem for the interferogram acquisition start and stop trigger, which is a laser zero-crossing based trigger. Because of micro-vibrations, the zero-crossings are not correctly read, leading to a variable step-size of the interferogram.

• asymmetry of the resulting interferogram caused by detector imperfections (resulting errors are denoted here with ϕ a ). This third error is inherent to all detectors and just means that the interferogram did not hit the detector exactly in its center. A resulting asymmetric interferogram is shown in Figure 5.4. 

Analytical Modeling of the Micro-vibrations

The two error types presented earlier (micro-vibrations and imperfection of the detector causing asymmetry in the interferogram) were first analytically modeled in [START_REF] Shatalina | Analytical model and spectral correction of vibration effects on fourier transform spectrometer[END_REF]. We present in the following subsections the analytical error modeling but refined with second-order approximations and also with the added asymmetry error. We do this to investigate the nature of the sparse kernel and to identify regularization characteristics or constraints that we could apply in the deconvolution algorithm.

First-order Approximation

As we stated before, we start from the equation of an interferogram of a monochromatic source like in [START_REF] Shatalina | Analytical model and spectral correction of vibration effects on fourier transform spectrometer[END_REF] and refine the original analytical model by adding the micro-vibrations stemming from the cubic corner mirror misalignment and the sampling step error with first and second-order approximations and also the asymmetry error. With all these errors included, 5 models were developed that would result in a convolution of the signal of the source I 0 and a kernel representing these micro-vibrations. The models present a right hand side term and a left hand side term, since a spectrum is the Fourier transform of the acquired interferogram and spreads from (-∞, +∞). For brevity, only the right hand side analytical modeling of the spectra convolution expressions will be presented since one is the complex conjugate of the other and can be inferred.

Ideal monochromatic source An ideal interferogram of a monochromatic source is taken into consideration, equation(1) [START_REF] Forman | Correction of asymmetric interferograms obtained in fourier spectroscopy *[END_REF]:

I σ 1 (x k ) = m I 0 2 cos(2πσ 1 x k ) (5.1)
Where: m : detector efficiency factor of the optical system I 0 : source intensity σ 1 : wavenumber of observed line [m -1 ] x k : optical path difference at the k th zero-crossing

First order approximation of cubic corner mirror misalignment The cubic corner mirror misalignment is modeled through equation ( 22) in [START_REF] Saggin | Mechanical disturbances in fourier spectrometers[END_REF] with first-order approximation only:

m m 0 + b • sin(ω d t k + ϕ d ) (5.2) 
Where:

b = f (ω d , σ 1 ) m 0 >> b ϕ d represents the optical misalignment phase.
Sampling step error misalignment modeling The sampling step error is produced by harmonic type micro-vibrations [START_REF] Saggin | Mechanical disturbances in fourier spectrometers[END_REF] and starting from equation ( 8) of [START_REF] Saggin | Mechanical disturbances in fourier spectrometers[END_REF] the propagation velocity of harmonic disturbances:

ẋ = v m + v 0 sin(ω d t k ) (5.3) 
Where: v m : average velocity m s that according to [START_REF] Saggin | Mechanical disturbances in fourier spectrometers[END_REF] is equal to:

v m = 2500 1 s • 1.2 2 µm = 0.0015 m s
v 0 : amplitude of disturbance with ω d = 2π f d angular frequency, rad s

Finally we model the sampling step error as in equation ( 11) of [START_REF] Saggin | Mechanical disturbances in fourier spectrometers[END_REF]: To simplify the expression, the following formula for the cosine terms was used:

x k = k λ r 2 + v m T D + v 0 ω d [cos(ω d t k ) -cos(ω d (t k + T D ))] (5.4) 
cos(A) -cos(B) = -2 sin A + B 2 sin A -B 2 x k = k λ r 2 + v m T D + v 0 ω d -2 • sin 2ω d t k + ω d T D 2 • sin - ω d T D 2 (5.5)
By using the formulasin(x) = cos x + π 2 :

x k = k λ r 2 + v m T D + v 0 ω d -2 sin ω d T D 2 • cos 2ω d t k + ω d T D 2 + π 2 (5.6) x k = k λ r 2 + v m T D + v 0 ω d 2 cos ω d T D 2 + π 2 • cos 2ω d t k + ω d T D 2 + π 2 (5.7)
We denote:

a = 2 ω d cos ω d T D 2 + π 2 ϕ s = ω d T D 2 + π 2
= the step error therefore the final expression for x k is:

x k = k λ r 2 + v m T D + av 0 • cos (ω d t k + ϕ s ) (5.8)
Introducing the modeled errors in the monochromatic source By replacing m from (5.2) and x k from (5.8) in equation (5.1)

I σ 1 (x k ) = [m 0 + b • sin (ω d t k + ϕ d )] • I 0 2 • cos 2πσ 1 kλ r 2 + v m T D + av 0 • cos (ω d t k + ϕ s )
(5.9)

The continuation of the proof can be read in Appendix .5.

Resulting model as a convolution Finally the intensity of the PFS spectra I(σ ) at σ 1 wavelength can be expressed as the convolution between I original and a micro-vibrations kernel formed by a main Dirac with a magnitude of 1 and one harmonic left and right of this main Dirac at a distance σ d and with the magnitudes denoted by M 1 (σ 1 )e i •ϕ σ M 1 and N 1 (σ 1 )e i •ϕ σ N 1 . The complete expression contains also its complex conjugate term I original * since the micro-vibration kernel acts in the Fourier domain representation on the spectrum:

I(σ ) = m 0 I 0 4 • e i •ϕ σ 1 • δ (σ + σ 1 ) * [δ (σ ) + M 1 (σ 1 )e i •ϕ σ M 1 • δ (σ + (+σ d )) +N 1 (σ 1 )e i •ϕ σ N 1 • δ (σ + (-σ d )) + m 0 I 0 4 • e -i •ϕ σ 1 • δ (σ -σ 1 ) * [δ (σ ) + M 2 (σ 1 )e -i •ϕ σ M 2 • δ (σ -(+σ d )) +N 2 (σ 1 )e -i •ϕ σ N 2 • δ (σ -(-σ d ))]
(5.10)

I(σ ) = I original (σ ) * K 1 (σ 1 , σ d ) + I * original (σ ) * K 2 (σ 1 , σ d ) (5.11) 
Where: I(σ ) : the distorted signal * : the convolution operator I original (σ ) : undistorted signal I original * (σ ) : undistorted conjugate part of the signal M 1 (σ 1 ) : summation terms belonging to δ (σ + (+σ d ))

N 1 (σ 1 ) : summation terms belonging to δ (σ + (-σ d )) M 2 (σ 1 ) : summation terms belonging to δ (σ -(+σ d )) N 2 (σ 1 ) : summation terms belonging to δ (σ -(-σ d )) K 1 (σ 1 , σ d ) : the vibration kernel of the signal K 2 (σ 1 , σ d ) : the vibration kernel of the signal conjugate I original (σ ) = -I * original (σ ) K 1 (σ 1 , σ d ) = -K * 2 (σ 1 , σ d ) Knowing that I(σ )
is real, we can ignore the conjugate part and use only the I original (σ ) part in the deconvolution algorithm. Also, the fact that I 0 appears only in the first term of the convolution ensures the fact that once the deconvolution takes place, the resulting first term will give directly the wanted intensity I 0 . Since I original (σ ) is real and I(σ ) is complex, another conclusion to keep in mind for the design phase of the algorithm is that the micro-vibration kernel should be complex.

First-order Approximation with Asymmetry Error

Introduction As discussed in section 5.1 there are three types of errors identified in the acquisition of the spectral data. In the previous subsection two of these were taken into account and their influence on a monochromatic source was modeled and analyzed. In this next section the third error will be included, caused by detector imperfections. The resulting errors are denoted here with ϕ a ) and define the asymmetry found in the interferogram. This error will be introduced as additional vibrations in the ideal interferogram of a monochromatic source:

I σ 1 (x k ) = m I 0 2 cos(2πσ 1 x k +ϕ a )
(5.12)

Where: m : detector efficiency factor of the optical system I 0 : source intensity σ 1 : wavenumber of observed line [m -1 ] x k : optical path difference at the k th zero-crossing ϕ a : vibrations caused by detector imperfections By replacing m from (5.2) and x k from (5.8) in equation (5.12):

I σ 1 (x k ) = [m 0 + b • sin (ω d t k + ϕ d )] • I 0 2 • cos 2πσ 1 kλ r 2 + v m T D + av 0 • cos (ω d t k + ϕ s ) +ϕ a (5.13)
The continuation of the proof can be read in Appendix .6.

Resulting model as a convolution By using the same notation as in (25):

I(σ ) = m 0 I 0 4 • e i •(ϕ σ 1 +ϕ a ) • δ (σ + σ 1 ) * [δ (σ ) + M 1 (σ 1 )e i •ϕ σ M 1 • δ (σ + (+σ d )) +N 1 (σ 1 )e i •ϕ σ N 1 • δ (σ + (-σ d ))] + m 0 I 0 4 • e -i •(ϕ σ 1 +ϕ a ) • δ (σ -σ 1 ) * [δ (σ ) + M 2 (σ 1 )e -i •ϕ σ M 2 • δ (σ -(+σ d )) +N 2 (σ 1 )e -i •ϕ σ N 2 • δ (σ -(-σ d ))]
(5.14)

Where: M 1 (σ 1 ), ϕ σ M 1 : summation term containing now also the asymmetry vibration for δ (σ + (+σ d ))

N 1 (σ 1 ), ϕ σ N 1 : summation term containing now also the asymmetry vibration for

δ (σ + (-σ d )) M 2 (σ 1 ), ϕ σ M 2 :
summation term containing now also the asymmetry vibration for δ (σ -(+σ d )) N 2 (σ 1 ), ϕ σ N 2 : summation term containing now also the asymmetry vibration for δ (σ -(-σ d ))

Again we can express the previous equation as a convolution of the original signal and vibration kernels, this time the micro-vibrations being responsible for an asymmetrical original signal and its conjugate: .5: The approximation in 5.2.2 represents the blue curve section on the graph. The second-order approximation models also the red curve section together with the blue.

I(σ ) = I original asym (σ ) * K 1 (σ 1 , σ d )+I * original asym (σ ) * K 2 (σ 1 , σ d ) (5 

Second-order Approximation

Introduction The cubic corner mirror misalignment was modeled in 5.2 (from equation ( 22) in [START_REF] Saggin | Mechanical disturbances in fourier spectrometers[END_REF]) with first-order approximation only:

m m 0 + b • sin(ω d t k + ϕ d ) (5.16)
Where: b is dependent on the vibration frequency ω d and wavenumber σ 1 m 0 >> b ϕ d represents the optical misalignment phase. The approximation in section 5.2.1 models well enough the blue curve section in Figure 5.5. It is clear that this approximation does not work perfectly for the red curve section part of the graph. Because of this, a second-order approximation will be used starting from the Taylor expansion.

Starting from the Taylor expansion:

m(u) m(0) + 1 1! • dm du (0) • u + 1 2! • d 2 m d 2 u (0) • u 2 + ... (5.17)
Knowing that:

m a • cos(ωu)
Where a is the amplitude of the efficiency factor and u is the function to approximate; we also evaluate the differentials at ωu = 0

⇒ dm du = -aω sin(ωu) = -aω • 0 = 0 ⇒ 1 2! d 2 m d 2 u = - a 2 ω 2 cos(ωu) = - a 2 ω 2 • 1
Meaning that (5.17) can be expressed as:

m(u) m(0) -0 - a 2 ω 2 • u 2 + ... (5.18)
Knowing also that u varies in a periodical manner:

u = u d sin(ω d t k + ϕ d )
Where u d is the amplitude of the vibrations.

m(u) m(0) -0 - a 2 ω 2 • u 2 d sin 2 (ω d t k + ϕ d ) (5.19)
Therefore (5.2) becomes:

m m 0 -b • sin 2 (ω d t k + ϕ d ) (5.20)
We can replace this new expression in (5.9):

I σ 1 (x k ) = m 0 -b sin 2 (ω d t k + ϕ d ) • I 0 2 • cos 2πσ 1 kλ r 2 + v m T D + av 0 • cos (ω d t k + ϕ s ) (5.21)
The continuation of the proof can be read in Appendix .7.
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Resulting model as a convolution

I(σ ) = (2m 0 + b)I 0 8 • e i •ϕ σ 1 • δ (σ + σ 1 ) * [δ (σ ) + M 1 (σ 1 )e i •ϕ σ M 1 • δ (σ + (+σ d )) + N 1 (σ 1 )e i •ϕ σ N 1 • δ (σ + (-σ d )) -P 1 (σ 1 )e i •ϕ σ P 1 • δ (σ + (+2σ d ))-R 1 (σ 1 )e i •ϕ σ R 1 • δ (σ + (-2σ d ))] + (2m 0 + b)I 0 8 • e -i •ϕ σ 1 • δ (σ -σ 1 ) * [δ (σ ) + M 2 (σ 1 )e -i •ϕ σ M 2 • δ (σ -(+σ d )) + N 2 (σ 1 )e -i •ϕ σ N 2 • δ (σ -(-σ d )) -P 2 (σ 1 )e -i •ϕ σ P 2 • δ (σ -(+2σ d ))-R 2 (σ 1 )e -i •ϕ σ R 2 • δ (σ -(-2σ d ))]
(5.22)

Again we can express the previous equation as a convolution of the original signal with a modified amplitude and a micro-vibrations kernel that now affects the signal with two harmonics at σ d and at 2σ d .

I(σ ) = I original (σ ) * K 1 (σ 1 , σ d , 2σ d )+I * original (σ ) * K 2 (σ 1 , σ d , 2σ d ) (5.23)

First and Second-order Approximation

Introduction By using a first and a second-order approximation of the cubic corner mirror misalignment, equation (5.2) becomes:

m m 0 -a 1 ωu d • sin(ω d t k + ϕ d ) - a 2 2 ω 2 u 2 d • sin 2 (ω d t k + ϕ d ) (5.24) m m 0 -b 1 • sin(ω d t k + ϕ d ) -b 2 • sin 2 (ω d t k + ϕ d ) (5.25)
By replacing this in (5.9):

I σ 1 (x k ) = m 0 -b 1 • sin(ω d t k + ϕ d ) -b 2 • sin 2 (ω d t k + ϕ d ) • I 0 2 • cos 2πσ 1 kλ r 2 + v m T D + av 0 • cos (ω d t k + ϕ s ) (5.26)
The continuation of the proof can be read in Appendix .8.

Resulting model as a convolution

I(σ ) = (2m 0 -b 2 )I 0 8 • e i •ϕ σ 1 • δ (σ + σ 1 ) * [δ (σ ) +M 1 (σ 1 )e i •ϕ σ M 1 • δ (σ + (+σ d ))+N 1 (σ 1 )e i •ϕ σ N 1 • δ (σ + (-σ d )) -P 1 (σ 1 )e i •ϕ σ P 1 • δ (σ + (+2σ d ))-R 1 (σ 1 )e i •ϕ σ R 1 • δ (σ + (-2σ d ))] + (2m 0 -b 2 )I 0 8 • e -i •ϕ σ 1 • δ (σ -σ 1 ) * [δ (σ ) +M 2 (σ 1 )e -i •ϕ σ M 2 • δ (σ -(+σ d ))+N 2 (σ 1 )e -i •ϕ σ N 2 • δ (σ -(-σ d )) -P 2 (σ 1 )e -i •ϕ σ P 2 • δ (σ -(+2σ d ))-R 2 (σ 1 )e -i •ϕ σ R 2 • δ (σ -(-2σ d ))]
(5.27)

Again we can express the previous equation as a convolution of the original signal with a modified amplitude and vibration kernels that affect the signal at σ d and at 2σ d as in the previous model. The difference to the previous model can be better seen when comparing ( 70) to ( 53) where we can notice different magnitudes for the harmonics.

I(σ ) = I original (σ ) * K 1 (σ 1 , σ d , 2σ d )+I * original (σ ) * K 2 (σ 1 , σ d , 2σ d )
(5.28)

First and Second-order Approximation with Asymmetry Error

Introduction By using the expression from (5.25) of the cubic corner mirror misalignment and the expression for the ideal interferogram of a monochromatic source from (5.12), we can inspect the convolution equation for all errors that might appear. Therefore let:

I σ 1 (x k ) = m I 0 2 cos(2πσ 1 x k +ϕ a ) (5.29)
Where: m : detector efficiency factor of the optical system I 0 : source intensity σ 1 : wavenumber of observed line [m -1 ] x k : optical path difference at the k th zero-crossing 136CHAPTER 5. BLIND DECONVOLUTION -APPLICATION IN SPECTROSCOPY ϕ a : vibrations caused by detector imperfections and

m m 0 -b 1 • sin(ω d t k + ϕ d ) -b 2 • sin 2 (ω d t k + ϕ d ) (5.30)
By replacing m in the first expression:

I σ 1 (x k ) = m 0 -b 1 • sin(ω d t k + ϕ d ) -b 2 • sin 2 (ω d t k + ϕ d ) I 0 2 • cos [(πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) + 2aπσ 1 v 0 • cos (ω d t k + ϕ s )]
(5.31)

The continuation of the proof can be read in Appendix .9.

Resulting model as a convolution

I(σ ) = (2m 0 -b 2 )I 0 8 • e i •(ϕ σ 1 +ϕ a ) • δ (σ + σ 1 ) * [δ (σ ) +M 1 (σ 1 )e i •ϕ σ M 1 • δ (σ + (+σ d ))+N 1 (σ 1 )e i •ϕ σ N 1 • δ (σ + (-σ d )) -P 1 (σ 1 )e i •ϕ σ P 1 • δ (σ + (+2σ d ))-R 1 (σ 1 )e i •ϕ σ R 1 • δ (σ + (-2σ d ))] + (2m 0 -b 2 )I 0 8 • e -i •(ϕ σ 1 +ϕ a ) • δ (σ -σ 1 ) * [δ (σ ) +M 2 (σ 1 )e -i •ϕ σ M 2 • δ (σ -(+σ d ))+N 2 (σ 1 )e -i •ϕ σ N 2 • δ (σ -(-σ d )) -P 2 (σ 1 )e -i •ϕ σ P 2 • δ (σ -(+2σ d ))-R 2 (σ 1 )e -i •ϕ σ R 2 • δ (σ -(-2σ d ))]
(5.32)

Again we can express the previous equation as a convolution of the asymmetrical original signal with a modified amplitude and vibration kernels that now affect the signal at σ d and at 2σ d and this time with an asymmetry error affecting the original Mars spectrum itself.

I(σ ) = I original asym (σ ) * K 1 (σ 1 , σ d , 2σ d )+I * original asym (σ ) * K 2 (σ 1 , σ d , 2σ d ) (5.33)

Model

In the previous section we developed multiple analytical models for the microvibration kernel, as a means to understand how its general shape looks like and how it affects the original Mars spectrum. We now take a step back to have a look at the direct and inverse model of the micro-vibrations problem, based on which we can develop the algorithm needed for the blind deconvolution.

Direct Problem

The direct problem expression is the following:

y = x * k + n (5.34)
Where:

• y ∈ C T , y = (y 0 , ..., y T ) output of the system: PFS delivered spectra (known), complex signal, of length T ; should be real and positive signal but because of the convolution with the kernel it becomes complex and it's real part can be negative 5.1

• x ∈ R T + , x = (x 0 , ..., x T
) input of the system: Mars original spectrum (unknown), real, positive signal, of length T

• * convolution • k ∈ C T , k = (k 0 , ..., k T ) micro-vibrations Kernel (unknown), complex sig- nal, of length K • n ∈ R T white Gaussian noise, real, signal of length T .
As we can see above, we have two signals to estimate here, therefore we have a blind deconvolution problem. The important aspects to keep in mind are that we need to use a smooth signal estimation algorithm for the Mars spectra x, which should deliver a smooth, positive and real signal, while for the micro-vibrations Kernel k we need to use a sparse signal estimation algorithm which can deliver sparse and complex valued signals. To reduce the noise, we can count on the smooth signal estimation algorithm to achieve this. This is where the experience and solutions from the previous two applications with simple deconvolution problems (one with smooth signal estimation and one with sparse signal estimation) will come in handy.

Inverse Problem

Assuming that k, the micro-vibrations kernel would be known, then finding x, the real Martian spectrum, reduces itself to the minimization of the following functional:

J(x) = 1 2 y -x * k 2 2
(5.35)

Since in this problem both k and x are unknown, another method must be used that can estimate both signals at the same time.

Blind deconvolution for the aforementioned problem is actually the recovery of the clean spectrum from a measurement without knowing the micro-vibration kernel that caused the ghosts in the spectrum in the first place. Therefore, this approach tries to estimate the two signals at the same time. To do so it introduces in the previous expression some constraints about the two unknown signals and derives two cost functions (functionals) that need to be minimized, one for k and one for x.

The Martian Spectra Functional The original Mars spectrum should be relatively smooth, and this is done with the help of the following regularization term added to the fidelity term:

J(x) = 1 2 y -x * k 2 2 + λ x Dx 2 2
(5.36)

Where D is the finite-difference matrix corresponding to the gradient used for applying smoothness on the estimated signal. We are looking for the estimate that minimizes J under a positivity constraint and the fact that x should be real:

x est = argmin x∈R T + 1 2 y -x * k 2 2 + λ x Dx 2 2 s.t. positivity is enforced: ∀i ∈ {0, . . . , T } x i ≥ 0
(5.37)

We will denote for clarity x est as mars e in the following sections.

The Kernel Functional From the mathematical modeling in section 5.2.5 it is known that k contains an odd number of Diracs, with a main Dirac of magnitude 1 in the center and pairs of smaller Diracs at σ d and 2σ d wavelengths away, similar to harmonics in music and that it is complex. Because the micro-vibrations kernel is complex, we know that also the PFS spectra we have to start from are complex valued, although, ideally they shouldn't be. The sparsity of k is enforced by the second term in the following functional, which represents the regularization term for k:

J(k) = 1 2 y -x * k 2 2 + λ k k 1 (5.38)
We are looking for the estimate that minimizes J:

k est = argmin k∈C K + 1 2 y -x * k 2 2 + λ k k 1 (5.39)
We will denote for clarity k est as kernel e in the following sections.

The Aggregate Functional The inverse problem aggregate functional will be the following [START_REF] Schmidt | Toward a numerical deshaker for PFS[END_REF] where we encounter both regularization terms from (5.36) and (5.38):

J(x, k) = 1 2 y -x * k 2 2 + λ x Dx 2 2 + λ k k 1 (5.40)
Where:

• the squared 2 norm imposes a small x derivative, meaning a smooth original Mars signal.

• the 1 norm imposes sparsity on the micro-vibration kernel, ensuring the smallest number possible of non-zero coefficients.

We are looking for the estimates that minimize J:

x est , k est = argmin x∈R T + ,k∈C K + , 1 2 y -x * k 2 2 + λ x Dx 2 2 + λ k k 1 s.t.
positivity is enforced: ∀i ∈ {0, . . . , T } x i ≥ 0

(5.41)

Basic Alternating Minimization Algorithm for 1D Blind Deconvolution

The blind deconvolution algorithm used to estimate both the Kernel and Mars is an Alternating Minimization algorithm, where the problem is divided into two steps, at each step one of the signals being considered as known and based on this, the other signal can be estimated. In the basic version of the AM algorithm, we used two simple methods to estimate alternatively the Kernel and the Mars spectra:

Step 1 -Estimating the Kernel Starting from the Kernel functional with matrix form of x:

J(k) = 1 2 y -Xk 2 2 + λ k k 1 (5.42)
The used solver is the FISTA algorithm [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]: 

Algorithm
f (k i ) = k 0 + X T (y -Xk 0 ) L 4: k i+1 = T λ /L f (k i ) 5: k i+1 = k i+1 + i -1 i + 5 (k i+1 -k i ) 6: k 0 = k i+1 7: y i+1 = x * k i+1 8: end for 9: return k est = k k it max ,y rec = y k it max
Where: -the algorithm uses a proximal descent method -X is the Topelitz matrix expression of the x, conjugate of x signal -T λ /L is the thresholding operator ! in practice the thresholding operator is a soft thresholding, used as a quadratic term, allowing an elimination of close to zero coefficients of the estimated signal, and an increasing smooth importance of coefficients that are different than zero -in line 5 there is a relaxation step to improve runtime which makes the algorithm similar to a conjugate gradient descent algorithm ! in practice this algorithm is implemented in the Fourier domain to allow the replacement of convolution operations with multiplications.

Step 2 -Estimating the Martian Spectra Starting from the Mars functional with k in matrix form:

J(x) = 1 2 y -Kx 2 2 + λ x Dx 2 2 s.t. positivity is enforced: ∀i ∈ {0, . . . , T } x i ≥ 0 (5.43)
Where K is the Topelitz matrix of the convolution with k.

-K T (y -K • x) + λ x • D T D • x = 0 (K T K + λ x D T D) • x = K T y x = (K T K + λ x D T D) -1 • K T y (5.44)
We notice that Mars has a closed form solution which we can use directly.

The two steps presented are done alternatively several iterations to find good approximations of k est and x est . In practice a naive version of the Alternating Minimization algorithm can lead to the trivial solution [START_REF] Benichoux | A fundamental pitfall in blind deconvolution with sparse and shift-invariant priors[END_REF], where x or the Mars spectrum is the measured PFS spectrum and k or the microvibrations kernel has only the main Dirac. To avoid this, the smooth and sparse signal estimation algorithms need to be refined and also the hyper-parameters λ x and λ k need to be carefully chosen, in a similar manner to what has been done in the previous chapters.

In the following section, we will present the results for synthetic tests with the basic Alternating Minimization algorithm that was explained in these paragraphs together with a brute-force approach to identify the hyper-parameters λ x and λ k .

Results on Synthetic Data

General Test Setup

For the synthetic tests that we used in the search for the optimal λµ pair, the inputs of the algorithm are a simple synthetic Mars spectra formed by Gaussians and a synthetic toy Kernel with 5 Diracs that convolved give the synthetic PFS spectrum. The initializations used for the Alternating Minimization algorithm were vectors of zeros. The search for the optimal λµ pair was done only for one synthetic test. Searching for the optimum λµ pair was done by generating two arrays of λ s and µs and running the AM algorithm with all the possible combinations of the parameters from the two arrays.
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Hyper-parameter Redefinition

To control the values of λ k and λ x and while assuming that they are related, two more general parameters have been defined λ and µ, such that the expressions of λ k and λ x depending on these two parameters are the following:

λ k = λ • µ
(5.45)

λ x = λ • (1 -µ) 2 (5.46)
Introducing these pair-parameters in (5.40) we get the following:

J(k, x) = 1 2 y -k * x 2 2 + λ µ • k 1 + (1 -µ) 2 • Dx 2 2
(5.47)

Again, the first part of the equation is the fidelity term. The second part of the equation is the regularization term under a composite form and its influence on the model is constrained by the factor λ . If λ is chosen very small, or too small, then the fidelity term receives more importance in the algorithm, meaning that the estimated Mars signal will very much look like the measured PFS signal. This makes the estimation useless and the solution obtained the trivial one. At the same time the vibration kernel is one Dirac of magnitude 1. If the λ is chosen big, or very big, the regularization term receives more importance in the algorithm and the estimated signals will respect more their constraining forms: the Mars signal should have a relatively smooth derivative, while the vibration Kernel would be sparse. Inside the regularization term we also need the constraining factor µ which balances how much importance we give to the smoothness of the Mars estimated signal and how much to the sparsity to the Kernel. If µ is chosen big or very big, we get a very sparse Kernel, and in the same time a non-smooth Mars signal. If we choose it small or very small, we get a Kernel that is not sufficiently sparse and a relatively smooth estimated Mars signal.

Brute Force Search for Optimal Hyper-parameters Pair

We present in Figure 5.6 one synthetic test trial from the brute force search of an optimal hyper-parameter pair (λ , µ). The synthetic signals have 8000 data points and they are modeled so that they reflect the physical properties of the Mars spectrum and the micro-vibrations Kernel. The Kernel was modeled based on the analytical modeling results obtained in 5.2. For the algorithm run, mars 0 was initialized with a simple Gaussian, while the kernel e (k) was initialized with the cepstrum [START_REF] Oppenheim | From frequency to quefrency: a history of the cepstrum[END_REF] of the p f s (y) measurement. We have observed that the cepstrum gives small Diracs at almost the appropriate positions where the real synthetic Kernel presents these, therefore it seemed to be an astute choice as a method of initialization. The order of estimation in the AM algorithm was mars e first and kernel e second.

As we can see from Figure 5.6, kernel e has Diracs estimated close to the true ones but the magnitude and the positions are not exact. mars e , although slightly smoother than the p f s, shows the corresponding two lobes of the original Mars synthetic spectra but still has some irregularities, probably caused by the misidentification of the exact positions of the Diracs in kernel e and also because the basic AM algorithm was stopped with hand-picked maximum iteration limits which were probably too low.

Since we are using a synthetic spectrum, the real signals can be used to compare against the estimated mars e and kernel e resulting from the Alternate Mini- For this we made a batch test where 5 λ s and 5 µs where used, the AM algorithm had 100 iterations and the kernel estimation algorithm had 1000 iterations. In this brute force approach, no stopping criterion or improved metrics where used.

In Figures 5.7, 5.8 and 5.9 we present the relative errors obtained by the estimations of the synthetic Mars and Kernel and their summed relative errors respectively. Although we can notice that this approach might work in practice, the smallest relative errors are still big, especially for sparse signals.

Therefore to successfully estimate both signals in this blind deconvolution problem, three ideas come to mind from the previously studied applications:

• The algorithms need to be accurately defined for the particularities of the signals (realness, positivity), in a similar manner to the ideas used in the simple deconvolution problems from the previous chapters. Also, concepts like the residual should be used to stop an algorithm to avoid having to guess the number of iterations necessary until the estimated signals stop evolving • The hyper-parameters identification should not be done in a pair-wise way, but independently and adaptively at each step of the AM algorithm

• The decision on what kind of λ hyper-parameter strategy could be used can be made based on best-performer λ strategies close to the oracle λ strategies investigated for the smooth and the sparse signal estimation algorithms in the previous chapters.

• once the appropriate λ strategies are chosen, the user needs only to define a λ x and λ k range.

Advanced Alternating Minimization Algorithm for 1D Blind Deconvolution

With the same direct model and inverse model as the ones used in section 5.3 but with perfected algorithms utilized in the hydrology and seismology problems, we construct an advanced Alternating Minimization algorithm that fulfills the ideas presented at the end of the previous section. For the estimation of Mars we use the Projected Newton algorithm shown in Algorithm 1 with the aquifer mean water level estimation part removed and for the Kernel estimation we use the FISTA algorithm with warm restart shown in Algorithm 2.

We also introduce here the concept of an adaptive λ m for estimating mars e and an adaptive λ k for estimating the kernel e . This is based on the idea that we can choose a range for λ m and λ k initially and then test to see for which value we have the best Mars estimation and for which value we have the best Kernel estimation for a given strategy. Alternatively the best estimate would be given as a known signal to the next step. The improved Alternating Minimization algorithm with adaptive λ choice at each of the two steps is shown in Algorithm 5.

The question that arises here is which λ strategy from the ones investigated, should be used at STEP 1 and which strategy at STEP 2? With synthetic tests where the real mars and kernel signals are known, the oracle λ strategies used at both steps would give us an insight of what is maximum achievable as Mars and Kernel estimates. The real-life λ strategy combinations would show us how far away from this maximum the real-life estimates would be. Testing two by two all possible combinations between oracle and real-life strategies would then help to choose the adequate λ strategy pair to test on a real PFS spectrum. For the test setup, we generated 5 mars, kernel, p f s signal sets with an added noise that would create an input SNR for the p f s signals of 30 dB, meaning that the synthetic PFS spectra are of acceptable quality. The mars signal is the same for all the tests, a non-symmetric Gaussian like shape with an absorption band in the middle. The kernels in the set had each 5 Diracs with a main Dirac in the middle of the range with a magnitude of 1 and the other 4 Diracs were positioned according to the knowledge obtained in section 5.2. The kernels were generated with random imaginary parts added to these magnitudes, therefore the result of the convolution, the p f s signals, were also complex. We ran the signal sets through all possible combinations of λ strategies for STEP 1 and STEP 2. The AM it max was set to 5 iterations, for the mars e estimation we used the Projected Newton algorithm from the hydrology application 1 and for the kernel e estimation we used the improved FISTA algorithm from the seismology application 2. Both algorithms have a residual stopping criteria implemented for when the estimations stop changing in a significant manner between iterations. For one test and one combination of λ strategies the average runtime was 180 seconds on a personal 148CHAPTER 5. BLIND DECONVOLUTION -APPLICATION IN SPECTROSCOPY laptop computer. In total the runtime was approximately 3 hours. For mars the tested lambda choice strategies were the following:

• λ oracle-SNR -the maximum SNR between mars and mars e

• λ oracle-corrCoe f f -the maximum correlation coefficient between mars and mars e

• λ f idelity-SNR -the maximum SNR between p f s and p f s rec

• λ f idelity-corrCoe f f -the maximum correlation coefficient between p f s and p f s rec

The reported performance was the SNR of the corresponding best λ value mars e estimate with the real mars.

For kernel the tested lambda choice strategies were the following:

• λ oracle-match-distance -the minimum match distance between kernel and kernel e

• λ f idelity-SNR -the maximum SNR between p f s and p f s rec

• λ f idelity-di f f -the maximum SNR between p f s and p f s rec but taken at the point of minimum ascent of the curve

The reported performance was the match distance of the corresponding best λ value kernel e estimate with the real kernel.

Adaptive Search for Optimal Hyper-parameters Pair

To exemplify how one of these tests performs we have in the following figures one signal set and the estimated signals. In Figure 5.10 we see that mars e approaches well enough the original mars but the estimation still needs some improvement.

The kernel e estimation has correctly identified the Dirac positions but estimating the amplitudes still poses a challenge. The initialization mars 0 depicted in black is based on the cepstrum of the p f s and it proves a good starting point for the kernel estimation, as far as the Dirac positions go. Finally in Figure 5.12 we can see a perfect reconstruction of the p f s signal by convolving mars e and kernel e , showing once again that incorrect estimations can still give the expected convolution result.

Since the estimation was done with two oracle λ strategies for the two types of signals (λ oracle-SNR for mars e and λ oracle-match-distance for kernel e ) it is not to be expected that by using real life λ strategies would improve the results. Another interesting aspect is how the oracle -SNR metric of mars e and the matchdistance metric of kernel e evolve at each AM iteration from the 5 performed. We know that a high SNR value is to be desired and we notice in Figure 5.13 that the SNR value of mars e is increasing until iteration no.2 of the AM algorithm where it starts to present a plateau and then descends. On the contrary to the SNR metric, the match distance metric shows a better estimation of kernel e when the value decreases. The same behavior can be seen in Figure 5.14 where kernel e has an improved estimation to the AM iteration no. 2 and then the algorithm starts to diverge. Here there is a need for a better automatic stopping criteria than the aggregate functional residual that could recognize the plateaus and stop the AM iterations at iteration no.2 before it starts evolving towards a pair of worse estimates.

In Figure 5.15 we present the non-normalized results of the synthetic batch tests with all possible combinations of λ strategies for STEP 1 and STEP 2 of the AM algorithm. The heat map plots show the best estimation in average for mars e with the SNR metric in dark blue and the best estimation in average for kernel e with the match distance metric in light blue (smaller distance, better fit between the sparse signals kernel and kernel e ). As expected the oracle strategies are the best-performers in average. For the real life Mars spectra deconvolution, we have to choose strategy combinations from the 4 boxes down and to the right, meaning to choose one adequate performer combination from 1. [λ f idelity-SNR , λ f idelity-corrCoe f f ] for mars e and [λ f idelity-SNR , λ f idelity-di f f ] for the kernel e .

For an easier overview the maximum value normalized heat map tables are presented in Figure 5.16. Arguably in average an adequate-performer pair of real life λ strategies would be the λ f idelity-corrCoe f f for the mars e estimation at STEP 1 of the AM algorithm and the λ f idelity-SNR strategy for the kernel e estimation at STEP 2. Since in the application we are interested to obtain mars e more accurately than the kernel, we should choose λ f idelity-corrCoe f f as the preferred pair.

Plot inspection of the estimated mars e -kernel e pairs during these synthetic tests have shown that there is still room for improvement for this version of an AM algorithm used in this particular blind deconvolution problem. The reason for the divergence shown in Figures 5.13 and 5.14 from iteration no. 2 needs to be identified and a solution found. The cepstrum, although it picks the correct positions of the Diracs for the initialization of kernel 0 , it does not manage to give any information about the magnitude of these Diracs. A return to the analytical modeling of the micro-vibrations kernel might lead to an appropriate scaling between the main Dirac and the adjacent ones, knowing that they are similar to harmonics and having some knowledge about the constants forming the magnitudes of these Diracs from section 5.2.

Conclusion

In this chapter an investigation on the removal of the Mars Express PFS instrument acquired spectra ghosts was done, further exploring the method proposed in [START_REF] Schmidt | Toward a numerical deshaker for PFS[END_REF], that of an inverse problem formulation, that translates into a blind deconvolution algorithm. Firstly, the direct analytical model was improved by developing the modeled errors up to second-order approximation. Afterwards the Alternating Minimization algorithm was revised with new insight from simpler deconvolution applications researched in previous chapters and improvements have been made on its runtime and robustness. Extensive tests were made on two versions of this AM algorithm with proposed methods on how to estimate the hyper-parameters that govern the inverse problem formulation. Several hyper-parameter strategies investigated in the previous chapters were used and tested and a suitable heterogeneous λ choice strategy pair for real life inputs was proposed.

As perspectives on further development of the algorithm, for the synthetic tests the initialization of kernel 0 with the cepstrum and knowledge on the magnitudes of the Diracs could be tried, also, since the cepstrum identifies correctly the Dirac positions, the kernel estimation could shift its entire focus on estimating only the magnitudes. For the real life PFS spectra, an initialization of the kernel 0 with so called limb measurements spectra could improve the starting magnitudes and positions of the kernel e . The limb measurements spectra are spectra taken when the instrument is not facing Mars's atmosphere but is directed at the limit between the atmosphere and void. Another possible direction is to take note of the success of Bayesian inverse problem methodology on sparse signal estimation [START_REF] Mohammad-Djafari | Bayesian sparse solutions to linear inverse problems with nonstationary noise with student-t priors[END_REF] and propose a hybrid regularization-Bayesian Alternating Minimization algorithm, where the estimation of kernel e is done with a Joint Maximum A Posteriori algorithm instead of the FISTA algorithm. This would eliminate the need for such attentive analysis to the positions and magnitudes of the Diracs in kernel e and would base its whole estimation on choosing an appropriate statistical distribution that best describes signals like kernel e s, since the distribution choice would statistically and globally describe the way in which the Dirac positions and their magnitudes are related to each other. One downside to this idea would be an increased computational runtime.

The final goal is to apply the designed algorithms on real PFS spectra and remove the ghosts to reveal valid Mars spectra, under the condition that only one PFS spectrum is necessary as input and the runtime of the blind deconvolution algorithm is manageable, since the Mars Express data base contains thousands of spectra to process.

The Matlab implementation of the code is available under the CECILL license at: http://planeto.geol.u-psud.fr/spip.php?article280. Credit and additional license details for Mathworks packages used in the toolboxes can be found in the readme.txt file of each toolbox.

Chapter 6

Conclusions and Perspectives

Conclusions

The work presented here studies the application of 1D deconvolution in the field of inverse problems under constraints with regularization. We treat either simple or blind deconvolution problems (without knowing the kernel). We applied specific algorithms on three problems: simple deconvolution of smooth signals in a hydrology application, simple deconvolution of sparse signals in a seismology application and blind deconvolution on a spectroscopic application. In our work, we searched for simple algorithms that can solve the given inverse problem in a fast manner, we tested the algorithms on synthetic data and designed and evaluated strategies for choosing the governing hyper-parameter. Then we used the close-tooptimal hyper-parameters strategies in real life datasets. The main contributions of this PhD are the application of highly specialized optimization techniques in Geosciences and Planetary science fields, thus improving interdisciplinary collaboration. We applied physical constraints of the real-life model all along the algorithms without having to modify the measured data so that the solution conforms to expectations. We provided simple to use toolboxes with the designed algorithms online, so that any user can experiment with them and demonstrate the practical interest on similar applications.

In more detail, in our introductory chapter we presented the field of inverse problems and inverse problems methodology as a step by step tutorial of how things are done and why they are done in a certain way. We introduced all the concepts we would be using all along our work and pointed out important aspects and decision stages that influence complexity of the algorithm, its runtime, its precision and most importantly its results. We separated the design of an inverse problem solution algorithm as a five-stage process and created the skeleton on 157 which the following chapters were built. At the end we presented a short parallel to neighboring fields from which useful concepts could be borrowed and explained which concepts from this chapter we decided to use and why.

In the hydrology application chapter we proposed a smooth signal estimation algorithm and provided the toolbox online for free use, while at the same time publishing our results in an article in Computers & Geosciences. In this application we used a Projected Newton method in an Alternating Minimization algorithm that allowed us not only to estimate the water residence time curve but also the aquifer mean water level. We validated our method on synthetic tests and proposed simple hyper-parameter choice strategies for a specialist's use and then we tested our algorithm on real data.

In the seismology application chapter we proposed a sparse signal estimation algorithm and also provided the toolbox online for free use. In this application we used a projected FISTA algorithm to estimate the reflectivity functions for seismic traces. We also validated our method on synthetic tests, found a new utilization for a known metric in measuring similarities and differences between sparse signals and proposed one hyper-parameter choice strategy that performed very close to the ground truth in the synthetic test cases.

In the final application chapter we presented the Mars Express Planetary Fourier Spectrometer spectra with "ghosts" problem we improved the original analytical modeling by developing new models up to the order 2, and we proposed a blind deconvolution approach with two versions of an Alternating Minimization algorithm that were based on previous work and also made use of the designed algorithms for the two previous applications. We tested our method on synthetic tests and concluded it can perform well although it is still not robust. We also identified possible ideas to further improve the algorithm, with the ultimate goal to apply it on real spectra from the Mars Express Mission.

Perspectives

The use of inverse problems regularization-based methodology in hyper-spectral imaging or computer tomography is very common, the idea being that very hard deconvolution problems need complex methods to solve them. On the other hand, there are different fields that could benefit from this methodology that still use tools which were not designed to be able to enforce different necessary constraints of the physical model over the solution they provide. This is exactly what the field of inverse problem offers and we aimed to use this work in part also to convince any specialist that deals with a deconvolution and is unsatisfied with the classi-cal deconvolution methods of their field, that they can very quickly read through this text and start using one of our toolboxes to solve their own problems, without worrying that their measured data will be modified or that they won't know which initial value to choose for their hyper-parameter. With this work and the toolboxes offered we hope to offer an insight on how one can use the approaches and methods of the inverse problems field in any application of simple deconvolution or blind deconvolution where the methods normally used do not fit the real life problem.

With this idea in mind, during our work and by our collaboration with specialists in the applications fields, we identified different perspectives for our work. For the hydrology application algorithm new tests have been discussed on more complex hydrological channels like karst aquifers. Another field where the algorithm could be used is in tunnel design, where it is important to know beforehand the amount of water that could reach the tunnel through the natural hydrological channels. For the seismology application algorithm we can envision it being used in underground or underwater prospections or even the deconvolutions of seismic traces measured by space missions on Mars. As continuation for the Mars Express PFS "ghosts" in spectra problem we see further development of the blind deconvolution Alternating Minimization algorithm either in a pure regularization-based direction or in a hybrid regularization-Bayesian direction and an application of these algorithms on the PFS spectra data base as final proof of concept.

.

Inverse Problems: Toeplitz Matrices

For the case of simulating the heating of a rod and in the case of the convolution of two signals, we can express the transformations being done on a vector of interest k by multiplying the X system matrix or convolution matrix from the left:

X • k = y (1)
System matrices and convolution matrices are Toeplitz matrices in practice. Meaning that the main diagonals have constant entries as represented in Figure 1. Convolution matrices are circulant matrices like the one displayed in Figure 2. The circulant aspect of the matrix may pose a problem sometimes, like when a causality constraint needs to be imposed in the inverse problem. This can be handled either by modifying the matrix or by the way in which the convolution is computed in practice. .

Inverse Problems: 1D Convolution

The convolution of two 1D signals in discrete time representation for real values is:

y[n] = (x * k)[n] = τ=n ∑ τ=0 x[n -τ] • k[τ] (2) 
This is the equivalent of mirroring one of the two signals and sliding it over the other, and then doing a sum over their product values at each intersection point.

Understanding the circular convolution in the discrete time domain Let's take the two signals x and k in the discrete time domain from Figure 3: The two previous formulas are for computing y in its entirety, therefore the limits of the integral are from -∞ to +∞. The problem with this is that it makes grasping what happens in the convolution a little difficult to do.

If we take the circulant convolution Toeplitz matrix that we presented earlier in 2 we can derive the associated X circulant convolution matrix of x which describes the discrete convolution formula for two finite signals. Then we can express the convolution operation as the multiplication between this matrix X and the vector k. The matrix and the result of applying it on k is presented in Figure 4 where y has the same length as both signals x and k. If we look at the discrete-time convolution formula (2) and at Figure 4 we notice that when transversing vector y to fill in its elements with the help of the iterator τ, the line of the matrix to be multiplied with k is the τ th line. The position of the elements of this line is also shifted to the right a number or places equal to (τ) while (nτ) signifies the circular manner in which this is done. and k is indeed the circularity itself, which in real life applications does not appear. To avoid it, one can apply a non-circular definition of the convolution by padding x and k with zeros to their left and right. So if we limit our two signals being convolved in the positive time domain from 0 to n max , and we also assume that outside these margins all values are zero, then the expanded general convolution at each point of signal y is the following (with an equivalent discrete-time convolution definition for convenience):

y[n] = (x * k)[n] = τ=n ∑ τ=0 x[τ] • k[n -τ] = x[0] • k[n] + x[1] • k[n -1] + x[2] • k[n -2] + x[3] • k[n -3] + ... + x[n -1] • k[1] + x[n] • k[0]
We can see that the k signal is here the mirrored one. If each signal has 6 points, meaning n max = 6, and we compute the convolution point values for y [3], y[4] and y[6] respectively, we get:

y[3] =(x * k)[3] =x[0] • k[3] + x[1] • k[2] + x[2] • k[1] + x[3] • k[0] y[4] =(x * k)[4] =x[0] • k[4] + x[1] • k[3] + x[2] • k[2] + x[3] • k[1] + x[4] • k[0] y[6] =(x * k)[6] =x[0] • k[6] + x[1] • k[5] + x[2] • k[4] + x[3] • k[3] + x[4] • k[2] + x[5] • k[1] + x[6] • k[0]
From these expansions we get a good grasp on how the convolution works in the discrete time domain. The more we progress along the y temporal axis, finding the value at one specific point of y means doing an accumulation up to that point, of the respective point-value products between the values found in x also up to that point and the values found at the mirrored indices of k, or better said from that point going backwards on k. We could say that for the current point value n, for y there is a memory type contribution from previous values of x and a reversed memory type contribution from the values of k. The computation is depicted with an example in Figure 5, only for y[4].

If we compute only the first 6 terms of y it is clear that our y vector presents an incomplete convolution. It turns out that the support needed for vector y for a non- circular convolution is two times the largest length between x and k. Therefore, to have a complete result, one would have to compute y[n] until n max = 13 as support for all three vectors to avoid the displayed circularity in Figure 4. In this thesis we have implemented our own non-circular convolution method to avoid circularity in the estimated signals and we have done this in the Fourier domain for computational speed.

.

Hydrology: Projected Newton

Two steps of the Projected Newton algorithm are presented in Figure 6.

We start from the initialization of k est , k 0 on the figure, and after each computation of k est with Newton's method (k 1 and k 2 are two examples), we apply a projection step (k 1 and k 2 respectively are the results) where positivity and causality are enforced by setting to zero the negative time interval elements of k est and setting to zero the negative elements in the positive time interval of k est . This is equivalent to a shift of the position of J ('a zig') on the optimality map to a place where the new k est respects both the positivity and causality constraints, but doing so, has also changed the vector y rec meaning J's value. This new position is the starting point for the next iteration of k est ('a zag'), ensuring that the global optimum will be approached from this direction only, one that would allow only zeros in the negative time interval of k est , and only positive values in the positive time interval of k est .

One reference for this is [McCormick, 1969]: " It is important to observe (intuitively) that zig-zagging can only occur if, at some limit point (call it x) of CM1 (Cauchy Modification Number 1), a variable, say x 1 , has the two properties that x1 = 0, and ∂ ( x)/∂ x 1 = 0. Otherwise, in a neighborhood of that point either x k 1 will remain zero (∂ ( x)/∂ x 1 > 0), or it will be increasing away from zero (∂ ( x)/∂ x 1 < 0)." Through multiple iterations of "zig-zagging" "minimization continues along this "bent" vector" towards the "constrained stationary point" [Mc-Cormick, 1969] -the global optimum in our case. Therefore, enforcing causality just at the end of an algorithm leads to a sub-optimal point, while enforcing it all along the deconvolution algorithm with a very small step size towards the last iterations ensures that the results are in a close neighborhood of this optimal point and the approach towards it was done with a (x, k est ) pair where the k est is positive and causal.

.

Seismology: Hilbert Transform

As opposed to the Fourier Transform that when applied to a real signal results in a set of complex coefficients that express the original signal with the aid of two components, magnitude and phase angle, The Hilbert Transform does a 90 degree phase shift, preparing the seismic signal for computing the seismic envelope, instantaneous phase and instantaneous frequency. Let f (t) be the seismic function, and g(t) = H{ f (t)} the Hilbert Transform of f (t) defined as [ Červený;J. Zahradník, 1973]:

g(t) = 1 π +∞ -∞ f (s) s -t ds (3) 
The inverse Hilbert transform is defined as:

f (t) = - 1 π +∞ -∞ g(s) s -t ds (4) 
.5 Planetology: First Order Approximation Continuation of proof from 5.2.1 We can then group the terms in the cosine argument in the following manner:

I σ 1 (x k ) = [m 0 + b • sin (ω d t k + ϕ d )] I 0 2 • cos [(πσ 1 kλ r + 2πσ 1 v m T D ) + 2aπσ 1 v 0 • cos (ω d t k + ϕ s )]
(5) And apply the following cosine expansion:

cos(A + B) = cos(A) cos(B) -sin(A) sin(B) Where: A = πσ 1 kλ r + 2πσ 1 v m T D B = 2aπσ 1 v 0 • cos (ω d t k + ϕ s ))
The development follows:

I σ 1 (x k ) = [m 0 + b • sin (ω d t k + ϕ d )] I 0 2 (E 1 • E 2 -E 3 • E 4 ) (6) 
Where:

E 1 = cos (πσ 1 kλ r + 2πσ 1 v m T D ) E 2 = cos (2aπσ 1 v 0 • cos (ω d t k + ϕ s )) E 3 = sin (πσ 1 kλ r + 2πσ 1 v m T D ) E 4 = sin (2aπσ 1 v 0 • cos (ω d t k + ϕ s ))
Simplification for (6) We can briefly prove for both wavelength channels that the expression 2aπσ 1 v 0 << 1 has an order of magnitude smaller than 10 -2 .

We notice that the argument of the cosine from E2 and that of the sine from E4 are the same and we can write it in the following form:

2πσ 1 v 0 • 2 ω d • cos ω d T D 2 + π 2 << 1 (7) SWC Value Value in SI base units σ 1 1700 -8200cm -1 1.7 -8.2 • 10 -1 m -1 v 0 2500Hz • 1.2µm • 1 2 1.5 • 10 -3 m s T D 125µs 1.25 • 10 -4 s ω d 10 1 -10 2 Hz 10 1 -10 2 s -1
Table 1: Planetary Fourier Spectrometer Short Wave Channel (SWC).

From [START_REF] Formisano | The planetary fourier spectrometer (pfs) onboard the european mars express mission[END_REF], [START_REF] Giuranna | Calibration of the planetary fourier spectrometer short wavelength channel[END_REF], [START_REF] Saggin | Mechanical disturbances in fourier spectrometers[END_REF], [START_REF] Schmidt | Toward a numerical deshaker for PFS[END_REF] we construct the following table of values for the symbols from the previous equation for the Short Wave Channel (SWC):

For (6) we notice that ω d T D 2 is of order between 10 -3 and 10 -2

and since compared to π 2 this is much smaller in value, it means that the cosine term evaluates to roughly cos π 2 0. This means that (7) is also very small.

For the Long Wavelength Channel (LWC) the same approach is taken:

By using the same reasoning as above we can conclude that the expression ( 7) is very small also in the case of the Long Wavelength Channel (LWC).

In both the SWC case and the LWC case let x be the value obtained from the multiplication, we notice that x << 1, meaning that the following rules apply when x is the argument: cos

(x) → 1 ⇒ E 2 → 1 sin(x) → x ⇒ E 4 → 2aπσ 1 v 0 • cos (ω d t k + ϕ s )
Therefore: 

E 3 = sin (πσ 1 kλ r + 2πσ 1 v m T D ) E 4 = 2aπσ 1 v 0 • cos (ω d t k + ϕ s )
Therefore ( 6) becomes:

I σ 1 (x k ) = [m 0 + b • sin (ω d t k + ϕ d )] I 0 2 (E 1 -E 3 • E 4 ) (8) 
Expressing all terms as cosines By further developing the expression from (8):

I σ 1 (x k ) = m 0 I 0 2 cos (πσ 1 kλ r + 2πσ 1 v m T D ) - m 0 I 0 2 • 2aπσ 1 v 0 • sin (πσ 1 kλ r + 2πσ 1 v m T D ) • cos (ω d t k + ϕ s ) + bI 0 2 • sin (ω d t k + ϕ d ) • cos (πσ 1 kλ r + 2πσ 1 v m T D ) - bI 0 2 • 2aπσ 1 v 0 • sin (ω d t k + ϕ d ) • sin (πσ 1 kλ r + 2πσ 1 v m T D ) • cos (ω d t k + ϕ s ) (9 
) We computed in .5 the 2aπσ 1 v 0 to be very small and we also know from paragraph 5.2.1 that b is also very small compared to m 0 . The two factors appearing multiplied in the last term means that we can neglect them in reference to the others. 

For simplification purposes we denote:

ϕ σ 1 = 2πσ 1 v m T D (12) 
Let's take a closer look at the expression ω d t k to see if it can be further simplified. From page 3 [START_REF] Shatalina | Analytical model and spectral correction of vibration effects on fourier transform spectrometer[END_REF] we know that the angular frequency ω d depending on the frequency f d is expressed as:

ω d = 2π f d
And that v 0 << v m means that the average speed is not modified by micro-vibrations:

t k kλ r 2v m
By dividing both sides of the angular frequency ω d definition with the average speed v m :

ω d v m = 2π f d v m
And denoting as the wavenumber of the micro-vibration:

σ d = f d v m ⇒ ω d v m = 2πσ d ⇒ ω d = 2πσ d v m
We conclude that the wavenumber of the micro-vibration σ d depends on the frequency of the micro-vibration. The identified micro-vibration frequencies can be found in [START_REF] Comolli | Analysis of disturbances in the planetary fourier spectrometer through numerical modeling[END_REF] in Figure 1. One other thing to mention here is that these micro-vibrations can have different frequencies when the Mars Express orbiter changes position or depending on the activity of the other instruments found on-board the orbiter.

By multiplying ω d with t k :

ω d t k 2πσ d v m • kλ r 2v m
We obtain the simplified expression:

ω d t k πσ d kλ r (13) 
By replacing ( 12) and( 13) in (11):

I σ 1 (x k ) = A 1 • cos (πσ 1 kλ r + ϕ σ 1 ) - A 2 2
• [sin (πσ 1 kλ r + ϕ σ 1 + πσ d kλ r + ϕ s ) + sin (πσ 1 kλ r + ϕ σ 1πσ d kλ rϕ s )]

+ A 3 2
• [sin (πσ d kλ r + ϕ d + πσ 1 kλ r + ϕ σ 1 ) + sin (πσ d kλ r + ϕ dπσ 1 kλ rϕ σ 1 )] (14) We multiply the amplitudes with the sine summations:

I σ 1 (x k ) = A 1 • cos (πkλ r σ 1 + ϕ σ 1 ) - A 2 
I σ 1 (x k ) = A 1 • cos (πkλ r σ 1 + ϕ σ 1 ) - A 2 2 • sin (πkλ r (σ 1 + σ d ) + (ϕ σ 1 + ϕ s )) - A 2 2
• sin (πkλ r (σ 1σ d ) + (ϕ σ 1ϕ s ))

+ A 3 2 • sin (πkλ r (σ 1 + σ d ) + (ϕ σ 1 + ϕ d )) - A 3 2
• sin (πkλ r (σ 1σ d ) + (ϕ σ 1ϕ d )) (16) We express the sine as cosine knowing that: -sin(x) = cos x + π 2 +sin(x) = cos x -π 2 In the Fourier domain We separate the terms with +σ d from those with -σ d :

I σ 1 (x k ) = A 1 • cos (πkλ
I σ 1 (x k ) = A 1 • cos (πkλ r σ 1 + ϕ σ 1 ) + A 2 2 • cos πkλ r (σ 1 + σ d ) + (ϕ σ 1 + ϕ s + π 2 ) + A 3 2 • cos πkλ r (σ 1 + σ d ) + (ϕ σ 1 + ϕ d - π 2 ) + A 2 2 • cos πkλ r (σ 1 -σ d ) + (ϕ σ 1 -ϕ s + π 2 ) + A 3 2 • cos πkλ r (σ 1 -σ d ) + (ϕ σ 1 -ϕ d + π 2 ) (18)
Knowing that the Fourier Transform of the cosine is:

cos(2πσ 1 x + φ ) F -→
1 2 e iφ δ (σ + σ 1 ) + e -iφ δ (σσ 1 ) Where:

from each term and divide by the amplitude of the main Dirac:

I(σ ) = A 1 2 • e i •ϕ σ 1 • δ (σ + σ 1 ) * [δ (σ )+ + A 2 4 • e i •(ϕ σ 1 +ϕ s + π 2 ) A 1 2 • e i •ϕ σ 1 • δ (σ + (+σ d )) + A 3 4 • e i •(ϕ σ 1 +ϕ d -π 2 ) A 1 2 • e i •ϕ σ 1 • δ (σ + (+σ d )) + A 2 4 • e i •(ϕ σ 1 -ϕ s + π 2 ) A 1 2 • e i •ϕ σ 1 • δ (σ + (-σ d )) + A 3 4 • e i •(ϕ σ 1 -ϕ d + π 2 ) A 1 2 • e i •ϕ σ 1 • δ (σ + (-σ d ))] + A 1 2 • e -i •ϕ σ 1 • δ (σ -σ 1 ) * [δ (σ )+ + A 2 4 • e -i •(ϕ σ 1 +ϕ s + π 2 ) A 1 2 • e -i •ϕ σ 1 • δ (σ -(+σ d )) + A 3 4 • e -i •(ϕ σ 1 +ϕ d -π 2 ) A 1 2 • e -i •ϕ σ 1 • δ (σ -(+σ d )) + A 2 4 • e -i •(ϕ σ 1 -ϕ s + π 2 )
A 1 2

• e -i •ϕ σ 1

• δ (σ -(-σ d )) +

A 3 4 • e -i •(ϕ σ 1 -ϕ d + π 2 ) A 1 2 • e -i •ϕ σ 1 • δ (σ -(-σ d ))] (22) 
After some computations on the magnitudes of the harmonics: + aπσ

I(σ ) = A 1 2 • e i •ϕ σ 1 • δ (σ + σ 1 ) * [δ (σ )+ + A 2 2A 1 • e i •(ϕ s + π 2 ) • δ (σ + (+σ d )) + A 3 2A 1 • e i •(ϕ d -π 2 ) • δ (σ + (+σ d )) + A 2 2A 1 • e i •(-ϕ s + π 2 ) • δ (σ + (-σ d )) + A 3 2A 1 • e i •(-ϕ d + π 2 ) • δ (σ + (-σ d ))] + A 1 2 • e -i •ϕ σ 1 • δ (σ -σ 1 ) * [δ (σ )+ + A 2 2A 1 • e -i •(ϕ s + π 2 ) • δ (σ -(+σ d )) + A 3 2A 1 • e -i •(ϕ d -π 2 ) • δ (σ -(+σ d )) + A 2 2A 1 • e -i •(-ϕ s + π 2 ) • δ (σ -(-σ d )) + A 3 2A 1 • e -i •(-ϕ d + π 2 ) • δ (σ -(-σ d ))] (23 
1 v 0 • e -i •(-ϕ s + π 2 ) + b 2m 0 • e -i •(-ϕ d + π 2 ) • δ (σ -(-σ d )) (25) 
Knowing that the polar vector summation will also result in a polar vector expression, we denote these expressions with a M(σ 1 )e i •ϕ σ M terminology.

.6 Planetology: First Order Approximation with Asymmetry Error Continuation of proof from 5.2.2 We can group the terms in the cosine argument in the following manner: The development from (6) stays the same:

I σ 1 (x k ) = [
I σ 1 (x k ) = [m 0 + b • sin (ω d t k + ϕ d )] I 0 2 (E 1 • E 2 -E 3 • E 4 ) (27) 
With the extra term found in E 1 and E 3 :

E 1 = cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) E 2 = cos (2aπσ 1 v 0 • cos (ω d t k + ϕ s )) E 3 = sin (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) E 4 = sin (2aπσ 1 v 0 • cos (ω d t k + ϕ s ))
The simplification for expressions E 2 and E 3 from .5 remains and has no influence over the newly introduced term:

I σ 1 (x k ) = [m 0 + b • sin (ω d t k + ϕ d )] I 0 2 (E 1 -E 3 • E 4 ) (28) 
Where again:

E 1 = cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) E 2 = 1 E 3 = sin (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) E 4 = 2aπσ 1 v 0 • cos (ω d t k + ϕ s )
In the Fourier domain The next steps will go towards transforming all the terms from 28 to cosines. In a first instance equation (10) becomes: The amplitudes are also multiplied with the sine terms:

I σ 1 (x k ) =
I σ 1 (x k ) = A 1 • cos (πkλ r σ 1 + ϕ σ 1 +ϕ a ) - A 2 2
• sin (πkλ r (σ 1 + σ d ) + (ϕ σ 1 + ϕ s )) -A 2 2

• sin (πkλ r (σ 1σ d ) + (ϕ σ 1ϕ s ))

+ A 3 2 • sin (πkλ r (σ 1 + σ d ) + (ϕ σ 1 + ϕ d +ϕ a )) - A 3 2 • sin (πkλ r (σ 1 -σ d ) + (ϕ σ 1 -ϕ d +ϕ a )) (33) 
We express the sines as cosines knowing that:

-sin(x) = cos x + π 2 +sin(x) = cos x -π 2

I σ 1 (x k ) = A 1 • cos (πkλ r σ 1 + ϕ σ 1 +ϕ a ) + A 2 2 • cos πkλ r (σ 1 + σ d ) + (ϕ σ 1 + ϕ s + π 2 ) + A 2 2 • cos πkλ r (σ 1 -σ d ) + (ϕ σ 1 -ϕ s + π 2 ) + A 3 2 • cos πkλ r (σ 1 + σ d ) + (ϕ σ 1 + ϕ d +ϕ a - π 2 ) + A 3 2 • cos πkλ r (σ 1 -σ d ) + (ϕ σ 1 -ϕ d +ϕ a + π 2 ) (34) 
Similar to equation ( 18) we separate the (σ 1 +σ d ) terms from the (σ 1 -σ d ) terms:

I σ 1 (x k ) = A 1 • cos (πkλ r σ 1 + ϕ σ 1 +ϕ a ) + A 2 2 • cos πkλ r (σ 1 + σ d ) + (ϕ σ 1 + ϕ s + π 2 ) + A 3 2 • cos πkλ r (σ 1 + σ d ) + (ϕ σ 1 + ϕ d +ϕ a - π 2 ) + A 2 2 • cos πkλ r (σ 1 -σ d ) + (ϕ σ 1 -ϕ s + π 2 ) + A 3 2 • cos πkλ r (σ 1 -σ d ) + (ϕ σ 1 -ϕ d +ϕ a + π 2 ) (35) 
The Fourier Transform of the cosine is: cos(2πσ 1 x + φ ) F -→ 1 2 e iφ δ (σ + σ 1 ) + e -iφ δ (σσ 1 )

I σ 1 (x k ) = m 0 -bsin 2 (ω d t k + ϕ d ) I 0 2 (E 1 -E 3 • E 4 ) (41) 
Where:

E 1 = cos (πσ 1 kλ r + 2πσ 1 v m T D ) E 2 = 1 E 3 = sin (πσ 1 kλ r + 2πσ 1 v m T D ) E 4 = 2aπσ 1 v 0 • cos (ω d t k + ϕ s )
By multiplying the terms:

I σ 1 (x k ) = m 0 I 0 2 cos (πσ 1 kλ r + 2πσ 1 v m T D ) -m 0 I 0 • aπσ 1 v 0 • sin (πσ 1 kλ r + 2πσ 1 v m T D ) • cos (ω d t k + ϕ s ) + bI 0 2 • sin 2 (ω d t k + ϕ d ) • cos (πσ 1 kλ r + 2πσ 1 v m T D ) +I 0 • b • aπσ 1 v 0 • sin 2 (ω d t k + ϕ d ) • sin (πσ 1 kλ r + 2πσ 1 v m T D ) • cos (ω d t k + ϕ s ) (42) 
Again we can neglect the last term according to (.5) and knowing that: 

I σ 1 (x k ) = (A 1 + A 3 ) • cos (πσ 1 kλ r + ϕ σ 1 ) - A 2 2 • sin (πkλ r (σ 1 + σ d ) + ϕ σ 1 + ϕ s ) - A 2 2 • sin (πkλ r (σ 1 -σ d ) + ϕ σ 1 -ϕ s ) - A 3 2 • cos (πkλ r (σ 1 + 2σ d ) + ϕ σ 1 + 2ϕ d ) - A 3 2 • cos (πkλ r (σ 1 -2σ d ) + ϕ σ 1 -2ϕ d ) (47) 
In the Fourier domain We express the sine as cosine knowing that:

-sin(x) = cos x + π 2

I σ 1 (x k ) = (A 1 + A 3 ) • cos (πσ 1 kλ r + ϕ σ 1 ) + A 2 2 • cos πkλ r (σ 1 + σ d ) + ϕ σ 1 + ϕ s + π 2 + A 2 2 • cos πkλ r (σ 1 -σ d ) + ϕ σ 1 -ϕ s + π 2 - A 3 2 • cos (πkλ r (σ 1 + 2σ d ) + ϕ σ 1 + 2ϕ d ) - A 3 2 • cos (πkλ r (σ 1 -2σ d ) + ϕ σ 1 -2ϕ d ) (48) 
The Fourier Transform for the cosine is: 

cos(2πσ 1 x + φ ) F -→ 1 
Knowing that the polar vector summation will also result in a polar vector expression, we denote these expressions with a M(σ 1 )e i •ϕ σ M terminology.

.8 Planetology: First and Second-order Approximation Continuation of proof from 5.2.4 The usual development follows:

I σ 1 (x k ) = m 0 -b 1 • sin(ω d t k + ϕ d ) -b 2 • sin 2 (ω d t k + ϕ d ) I 0 2 • cos [(πσ 1 kλ r + 2πσ 1 v m T D ) + 2aπσ 1 v 0 • cos (ω d t k + ϕ s )] (54) I σ 1 (x k ) = m 0 -b 1 • sin(ω d t k + ϕ d ) -b 2 • sin 2 (ω d t k + ϕ d ) I 0 2 (E 1 -E 3 • E 4 ) (55) Where: E 1 = cos (πσ 1 kλ r + 2πσ 1 v m T D ) E 2 = 1 E 3 = sin (πσ 1 kλ r + 2πσ 1 v m T D ) E 4 = 2aπσ 1 v 0 • cos (ω d t k + ϕ s )
.9 Planetology: First and Second-order Approximation with Asymmetry Error Continuation of proof from 5.2.5 The usual development follows:

I σ 1 (x k ) = m 0 -b 1 • sin(ω d t k + ϕ d ) -b 2 • sin 2 (ω d t k + ϕ d ) I 0 2 (E 1 -E 3 • E 4 ) (71) 
Where:

E 1 = cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) E 2 = 1 E 3 = sin (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) E 4 = 2aπσ 1 v 0 • cos (ω d t k + ϕ s )
By multiplying the terms: 

I σ 1 (x k ) =
By using (13), we replace ω d t k πσ d kλ r . We also use ( 12) and replace ϕ σ 1 = 2πσ 1 v m T D : 

I σ 1 (x k ) = A 1 • cos (
In the Fourier domain We express the sine as cosine knowing that:

-sin(x) = cos x + π 2 +sin(x) = cos x -π 

I σ 1 (x k ) = (A 1 -A 4 ) • cos
The Fourier Transform for the cosine is:

cos(2πσ 1 x + φ ) F -→ 1 2
e iφ δ (σ + σ 1 ) + e -iφ δ (σσ 1 )

3.12 Analysis of runtimes between the AM algorithm and the [START_REF] Cirpka | Analyzing bank filtration by deconvoluting time series of electric conductivity[END_REF] 
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 2 Figure 2.1: Topological spaces and their connections in a functional analysis setting.

  injectivity in the Hilbert space -uniqueness of a solution Y = ImX -surjectivity in the Hilbert space -existence of a solution ImX = ImX -bijectivity in the Hilbert space -robustness of a solution(2.3) 
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 22 Figure 2.2: Design levels for a Solver.

Figure 2 . 3 :

 23 Figure 2.3: Two optimality maps representations for given direct models with regularization, one convex, the second one non-convex. In red the unknown vectors to be estimated. Two descent algorithm trajectories are drawn on these optimality maps to show how the search for the local/global optimum would look like.
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 2 Figure 2.4: Residual values are closer and closer together as the algorithm converges.
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 25 Figure 2.5: The duality gap dg J gets smaller and smaller as the iterative algorithm converges towards a local or a global optimum.
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 2 Figure 2.6: Why cache misses happen -matrix representation in memory.

Figure 2 . 7 :

 27 Figure 2.7: Transposed matrix strategy in matrix-matrix multiplication to avoid cache misses.
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 28 Figure 2.8: Floating point number machine representation. (a) 32 bit word size, (b) 64 bit word size.
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 29 Figure 2.9: Summary of options in designing a deconvolution algorithm in the inverse problem methodology.
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 31 Figure 3.1: Hydrological channel in a mountain.
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 3435 Figure 3.4: Two examples of the residence time estimation k est and reconstructed aquifer water levels y rec from synthetic data for a y input SNR of 5 dB (noisy measurements). The input rain is generated with realistic multifractal time series. AM stands for the Alternating Minimization, XCORR for the standard crosscorrelation, true for the true solution.

Figure 3 . 6 :

 36 Figure 3.6: Selection strategy of hyper-parameter λ . We plot average and standard deviation over 30 synthetic examples of: (a) k est SNR, (b) y rec SNR and (c) y rec correlation coefficient as a function of λ . The y input SNR is 5 dB, meaning very noisy measurements. The λ oracle point in (a) shows the best λ in average to maximize the k est SNR for the synthetic tests.This can be computed only when the true solution is known. In (b) the λ f idelity maximizes the y rec SNR. The λ discrepancy is achieved when y rec SNR is closest to the actual noise level. In (c), the λ corrCoe f f is the optimum over the correlation coefficient between y rec and y.

Figure 3

 3 Figure 3.8: Quality of the residence time estimation k est for the four hyperparameter selection strategies and the cross-correlation method. Mean and standard deviation of obtained k est SNRs, as a function of the noise level of the measurements, for inputs of length: 1000 data points (a) and 5000 data points (b). The cross-correlation method always stands lower indicating a poorer estimation. The correlation coefficient strategy λ corrCoe f f is the best strategy, across noise level and signal length.

Figure 3 . 9 :

 39 Figure 3.9: The evolution of the four λ strategies depending on the input SNR. For 1000 data points in (a) and 5000 data points in (b).

Figure 3 .Figure 3 .

 33 Figure 3.10: Quality of residence time k est estimation depending on the number of data points contained by x (input rain) and y (output aquifer water level). We can observe that more data points lead to a better estimation for our method for all four λ strategies. (a) is for a y input SNR of 5 dB and (b) is for a y input SNR of 25 dB

Figure 3 .Figure 3 .

 33 Figure 3.14: Same as in Figure3.13 with precipitation events in the middle of the x time series, showing a decrease in the y rec SNR-AM value.
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 42 Figure 4.2: Graphical representation of the Match Distance.

Figure 4 . 3 :

 43 Figure 4.3: Comparison between the SNR, the correlation coefficient and the match distance in identifying similarities between sparse signals. Sig1 is the reference signal. All other signals are created to test the estimation similarity. For the match distance, the smaller the value, the more similar two signals are. For the correlation coefficient and the SNR, the larger the value, the more similar two signals are.

Figure 4 . 4 :

 44 Figure 4.4: One synthetic test case estimation of the reflectivity function in red in (b). The seismic wave is presented in (a) and the resulting reconstructed seismic trace in red in (c). The input SNR for the seismic trace was of 10 dB.

Figure 4

 4 Figure 4.5: Noise input SNR = 0 dB comparison.

Figure 4

 4 Figure 4.12: (a) The figure presents the match distance in average for 30 tests between the estimated k est s and the known ks depending on the input SNR, related to the aforementioned strategies. (b) λ evolution depending on the input SNR for all the aforementioned strategies.

Figure 4

 4 Figure 4.13: Simulated data with wave attenuation (non-linear) tests. Results for the λ di f f erential choice strategy and 1% threshold and three levels of input SNR from higher noise to lower noise: 5dB, 10dB, 20dB. (a) Seismic wave (wavelet). (b) Estimated seismic reflectivity functions. (c) Seismic traces. In blue: original seismic trace. In red: reconstructed seismic trace.
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 444 Figure 4.14: Simulated data with linear behavior and Ricker method envelope extraction. Results for the λ di f f erential choice strategy and 1% threshold. (a) Seismic wave (wavelet). (b) Estimated seismic reflectivity functions. (c) Seismic traces. In blue: original seismic trace. In red: reconstructed seismic trace.
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 52 Figure 5.2: Simplified diagram of the PFS instrument -a Michelson type interferometer. In blue and red we see the incorrect trajectory of the reflected and interfered waves caused by the cyclic misalignment of cubic corner mirrors.

Figure

  Figure 5.3: Sampling step error.

  step λ r : reference laser wavelength [m -1 ] v m : average velocity m s T D : time delay in sampling chain [s] v 0 : amplitude of pendulum oscillation velocity due to micro-vibrations m s ω d : pulsation or angular frequency of micro-vibration rad s 128CHAPTER 5. BLIND DECONVOLUTION -APPLICATION IN SPECTROSCOPY

  Figure5.5: The approximation in 5.2.2 represents the blue curve section on the graph. The second-order approximation models also the red curve section together with the blue.

Figure 5 . 6 :

 56 Figure 5.6: One synthetic test trial using the hyper-parameter redefinition. The original synthetic signals are shown in blue. The Mars and Kernel estimations as well as the PFS spectrum reconstruction are shown in red.

Figure 5

 5 Figure 5.7: Brute force relative error results for the synthetic Mars. Darker cells show a lower relative error between the mars and mars e

Figure 5 Figure 5

 55 Figure 5.8: Brute force relative error results for the synthetic Kernel. Darker cells show a lower relative error between the kernel and kernel e
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 52 Adaptive λ AM Input: mars 0 , kernel 0 , p f s, AM it max Output: mars e , kernel e ,p f s rec 1: mars e = mars 0 2: kernel e = kernel 0 3: for all i in AM it max do 4: STEP 1 : estimate mars e with all λ ms starting from mars 0 , with kernel e fixed 5: pick best mars e and corresponding λ m according to λ m choice strategy 6: STEP 2 : estimate kernel e with all λ ks starting from kernel 0 , with mars e fixed 7: pick best kernel e and corresponding λ k according to λ k choice strategy 8: p f s rec = mars e * kernel e 9: J(p f s) = p f sp f s rec 2 2 + λ m • Dmars e + λ k kernel e 1 10: end for 11: return mars e ,kernel e ,p f s rec 5.7 Results on Synthetic Data 5.7.1 General Test Setup
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 555 Figure 5.10: Estimated Mars spectrum for λ oracle-SNR choice strategy.

Figure 5 Figure 5

 55 Figure 5.13: Evolution of the mars e SNR value across 5 iterations of the AM algorithm.

Figure 5 Figure 5

 55 Figure 5.15: (a) Mars estimation SNRs for all combinations of λ choice strategies -a higher SNR is better and it is represented by the darker shades of blue. (b) Kernel estimation match distances for all combinations of λ choice strategies -a smaller match distance is better and it is represented by the lighter shades of blue.
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 1 Figure 1: A Toeplitz matrix.

Figure 2 :

 2 Figure 2: A circulant convolution Toeplitz matrix.

Figure 3 :

 3 Figure 3: Two signals to be convolved.

Figure 4 :

 4 Figure 4: The circulant convolution Toeplitz matrix X applied on vector k. More on Toeplitz matrices in Appendix

Figure 5 :Figure 6 :

 56 Figure 5: Computing the value for the convolution y[n] = x[n] * k[n] at n = 4. The arrows show which points are taken into consideration just to compute y[4] and what directions the indices follow for the needed multiplications and accumulation. In the end, the value of y[4] is the sum of these multiplications.

  E 1 = cos (πσ 1 kλ r + 2πσ 1 v m T D )

I σ 1 2 • 2 •

 122 (x k ) = m 0 I 0 2 cos (πσ 1 kλ r + 2πσ 1 v m T D ) m 0 I 0 • aπσ 1 v 0 • sin (πσ 1 kλ r + 2πσ 1 v m T D ) • cos (ω d t k + ϕ s ) + bI 0 sin (ω d t k + ϕ d ) • cos (πσ 1 kλ r + 2πσ 1 v m T D )(10)By using the following expansion:sinA • cosB = 1 2 [sin(A + B) + sin(A -B)]and notations:A 1 = m 0 I 0 2 ; A 2 = m 0 I 0 • aπσ 1 v 0 ; A 3 = bI 0 2We obtain:I σ 1 (x k ) = A 1 • cos (πσ 1 kλ r + 2πσ 1 v m T D ) (πσ 1 kλ r + 2πσ 1 v m T D + ω d t k + ϕ s ) + sin (πσ 1 kλ r + 2πσ 1 v m T Dω d t kϕ s )] + A 3 [sin (ω d t k + ϕ d + πσ 1 kλ r + 2πσ 1 v m T D )+ sin (ω d t k + ϕ dπσ 1 kλ r -2πσ 1 v m T D )]

2 •A 3 2 •

 22 [sin (πkλ r (σ 1 + σ d ) + (ϕ σ 1 + ϕ s )) + sin (πkλ r (σ 1σ d ) + (ϕ σ 1ϕ s ))] + [sin (πkλ r (σ 1 + σ d ) + (ϕ σ 1 + ϕ d )) + sin (πkλ r (-σ 1 + σ d ) + (-ϕ σ 1 + ϕ d ))](15)Given the fact that sin(-x) = -sin(x):sin (πkλ r (-σ 1 + σ d ) + (-ϕ σ 1 + ϕ d )) = -sin (πkλ r (σ 1σ d ) + (ϕ σ 1ϕ d ))

  •ϕ σ 1 • δ (σ + σ 1 ) * [δ (σ )+ + aπσ 1 v 0 • e i •(ϕ s + π 2 ) + b 2m 0 • e i •(ϕ d -π 2 ) • δ (σ + (+σ d )) + aπσ 1 v 0 • e i •(-ϕ s + π 2 ) + b 2m 0 • e i •(-ϕ d + π 2 ) • δ (σ + (-σ d )) + m 0 I 0 4 • e -i •ϕ σ 1 • δ (σσ 1 ) * [δ (σ )+ + aπσ 1 v 0 • e -i •(ϕ s + π 2 ) + b 2m 0 • e -i •(ϕ d -π 2 ) • δ (σ -(+σ d ))

  m 0 + b • sin (ω d t k + ϕ d )] I 0 2 • cos [(πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) + 2aπσ 1 v 0 • cos (ω d t k + ϕ s )] (26)And again apply the following cosine expansion:cos(A + B) = cos(A) cos(B)sin(A) sin(B)Where this time:A = πσ 1 kλ r + 2πσ 1 v m T D +ϕ a B = 2aπσ 1 v 0 • cos (ω d t k + ϕ s ))

  1 kλ r + 2πσ 1 v m T D +ϕ a ) m 0 I 0 • aπσ 1 v 0 • sin (πσ 1 kλ r + 2πσ 1 v m T D ) • cos (ω d t k + ϕ s ) + bI 0 2 • sin (ω d t k + ϕ d ) • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a )(29)By using again the following expansion:sinA • cosB = 1 2 [sin(A + B) + sin(A -B)]and notations:A 1 = m 0 I 0 2 ; A 2 = m 0 I 0 • aπσ 1 v 0 ; A 3 = bI 0

2 I

 2 σ 1 (x k ) = m 0 I 0 2 cos (πσ 1 kλ r + 2πσ 1 v m T D ) m 0 I 0 • aπσ 1 v 0 • sin (πσ 1 kλ r + 2πσ 1 v m T D ) • cos (ω d t k + ϕ s ) + bI 0 4 • (1cos(2ω d t k + 2ϕ d )) • cos (πσ 1 kλ r + 2πσ 1 v m T D ) 1 kλ r + 2πσ 1 v m T D ) m 0 I 0 • aπσ 1 v 0 • sin (πσ 1 kλ r + 2πσ 1 v m T D ) • cos (ω d t k + ϕ s ) + bI 0 4 • cos (πσ 1 kλ r + 2πσ 1 v m T D ) -bI 0 4 • cos(πσ 1 kλ r + 2πσ 1 v m T D ) • cos(2ω d t k + 2ϕ d )(44)

2 e

 2 iφ δ (σ + σ 1 ) + e -iφ δ (σσ 1 ) •ϕ σ 1 • δ (σ + σ 1 ) * [δ (σ ) + 2m 0 aπσ 1 v 0 2m 0 + b • e i •(ϕ s + π 2 ) • δ (σ + (+σ d )) + 2m 0 aπσ 1 v 0 2m 0 + b • e i •(-ϕ s + π 2 ) • δ (σ + (-σ d )) -b 4m 0 + 2b • e i •(2ϕ d ) • δ (σ + (+2σ d )) -b 4m 0 + 2b • e i •(-2ϕ d ) • δ (σ + (-2σ d ))] + (2m 0 + b)I 0 8 • e -i •ϕ σ 1 • δ (σσ 1 ) * [δ (σ ) + 2m 0 aπσ 1 v 0 2m 0 + b • e -i •(ϕ s + π 2 ) • δ (σ -(+σ d )) + 2m 0 aπσ 1 v 0 2m 0 + b • e -i •(-ϕ s + π 2 ) • δ (σ -(-σ d )) -b 4m 0 + 2b • e -i •(2ϕ d ) • δ (σ -(+2σ d )) -b 4m 0 + 2b • e -i •(-2ϕ d ) • δ (σ -(-2σ d ))]

2 I 2 = 2 • 2 • 2 • 2 •

 222222 1 kλ r + 2πσ 1 v m T D +ϕ a ) m 0 I 0 • aπσ 1 v 0 • sin (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) • cos (ω d t k + ϕ s ) -b 1 I 0 2 • sin(ω d t k + ϕ d ) • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) +I 0 • b 1 • aπσ 1 v 0 • sin(ω d t k + ϕ d ) • sin (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) • cos (ω d t k + ϕ s ) -b 2 I 0 2 • sin 2 (ω d t k + ϕ d ) • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) +I 0 • b 2 • aπσ 1 v 0 • sin 2 (ω d t k + ϕ d ) • sin (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) • cos (ω d t k + ϕ s )(72) By neglecting the fourth and last term according to (.5):I σ 1 (x k ) = m 0 I 0 2 cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) m 0 I 0 • aπσ 1 v 0 • sin (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) • cos (ω d t k + ϕ s ) -b 1 I 0 2 • sin(ω d t k + ϕ d ) • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) -b 2 I 0 2 • sin 2 (ω d t k + ϕ d ) • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a )(73)And use the following formula to get rid of the squared sine:sin 2 (θ ) = 1cos(2θ ) σ 1 (x k ) = m 0 I 0 2 cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) m 0 I 0 • aπσ 1 v 0 • sin (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) • cos (ω d t k + ϕ s ) -b 1 I 0 2 • sin(ω d t k + ϕ d ) • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) -b 2 I 0 4 • (1cos(ω d t k + ϕ d )) • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a )(74)We expand the last term:I σ 1 (x k ) = m 0 I 0 2 cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) m 0 I 0 • aπσ 1 v 0 • sin (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) • cos (ω d t k + ϕ s ) -b 1 I 0 2 • sin(ω d t k + ϕ d ) • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) -b 2 I 0 4 • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) + b 2 I 0 4 • cos(πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) • cos(2ω d t k + 2ϕ d ) m 0 I 0 • aπσ 1 v 0 ; A 3 = b 1 I 0 2 ; A 4 = b 2 I 0 4 ; I σ 1 (x k ) = A 1 • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) -A 2 • sin (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) • cos (ω d t k + ϕ s ) -A 3 • sin (ω d t k + ϕ d ) • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) -A 4 • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) +A 4 • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) • cos (2ω d t k + 2ϕ d )(76)By using the following expansions:sinA • cosB = 1 2 [sin(A + B) + sin(A -B)] cosA • cosB = 1 2 [cos(A + B) + cos(A -B)] I σ 1 (x k ) = A 1 • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) -A 2 sin (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a + ω d t k + ϕ s ) -A 2 sin (πσ 1 kλ r + 2πσ 1 v m T D +ϕ aω d t kϕ s ) -A 3 sin (ω d t k + ϕ d + πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) -A 3 sin (ω d t k + ϕ dπσ 1 kλ r -2πσ 1 v m T D -ϕ a ) -A 4 •cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a ) + A 4 2 • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a + 2ω d t k + 2ϕ d ) + A 4 2 • cos (πσ 1 kλ r + 2πσ 1 v m T D +ϕ a -2ω d t k -2ϕ d )
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  Algorithm 1 Alternating Minimization for Hydrology Input: x, y, λ , D, α min , k err min , y err min , s max ,t max Output: k est ,c est ,y rec 1:

k est s for an input SNR of 15 dB

  This allows the application of constraints of positivity and causality in the time domain, while doing the convolution in the Fourier domain.

													x
			3.5									
			3									
			2.5									
	[mm]	2									
	Rainfall	1.5			[mm]	5			Rainfall Measurements, x
			1			Rainfall	0		
			0.5							0	100		200	300	400	500	600	700	800	900	1000
													time [hours]
			0	0	100 [1]			1	200	300	400	Water Residence Time, Non Causal k 500 600 700 800	900	1000
					WRT	-500 0 0.5	-400	-300	-200 t [hours] (a)	-100	0	100	200	300	400	500
	WRT [1/t]	1.2 1 0.8 0.2 0.4 0.6		0 k true, true 100 0 5 10 [mm] No Constraints, SNR = 8.31 dB 200 Just Positivity, SNR = 9.51 dB Basin Just Causality, SNR = 16.3 dB Positivity and Causality, SNR = 19.2 dB 300 5 [mm] XCORR, SNR = 4.72 dB	time [hours] 500 Basin Measurements, y 400 600 time [hours] Rainfall Measurements, x (a)	700	800	900	1000
			0		Rainfall	0			
			-0.2							0	100		200	300	400	500	600	700	800	900	1000
													time [hours]
			-500 -0.4	-400			1		-300	-200	-100	0	100 Water Residence Time, Causal k 200 300	400	500
					[1]								t [hours]
					WRT	0 0.5				(b)
								-500	-400 y true,	-300	-200	-100	0	100	200	300	400	500
		140										time [hours]
		125 130 135		Basin [mm]	0 5 10	0	100		200	300	400 Basin Measurements, y 500 600	700	800	900	1000
	Basin [mm]	110 115 120										time [hours] (b)
		105									
		100									
			95									
			90									
			0	100						200	300	400	500	600	700	800	900	1000
													t [hours]

Figure 3.2: The residence time curve is estimated on a [-T /2, T /2] domain where [-T /2, 0] is the negative time domain and [1, T /2] is the positive time domain.

y rec s for an input SNR of 15 dB

  Different results for the k est for different constraints applied during the AM algorithm. All give a similar y rec but the best y rec and k est are those where both positivity and causality constraints are applied.
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  3. λ f idelity-SNR : choosing the λ corresponding to the best reconstruction of y rec by maximizing the SNR output (or minimizing the 2 distance between 100CHAPTER 4. SPARSE SIGNAL DECONVOLUTION -APPLICATION IN SEISMOLOGY
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  4 FISTA Algorithm for Micro-vibration Kernel Estimation Input: x, k 0 , y, k i t max Output: k est ,y rec 1: λ max ← x * y ∞ , L the Lipschitz constant 2: for all i in k it max do

	3:

Table 2 :

 2 Planetary Fourier Spectrometer Long Wavelength Channel (LWC).
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Appendices

x = kλ r 2 : the length of the interferogram on which the Fourier Transform is being performed σ : the frequency in reference to which the left and right terms reside We take the Fourier Transform of each term from (18):

By grouping the terms in δ (σ + (σ 1 ± σ d )) and δ (σ -(σ 1 ± σ d )):

Knowing that one Dirac with the following argument can be expressed as a convolution of two Diracs:

We apply the previous formula and we obtain the following expression:

Due to the distributivity of the convolution operator, we extract δ (σ ± σ 1 )

Where:

By replacing these results in (23):

And by factoring the harmonic Dirac terms:

Equation (11) becomes:

We use the notation (12) ϕ σ 1 = 2πσ 1 v m T D And the expression ( 13)

Resulting in:

By rearranging the terms:

We take into account the fact that sin(-x) = -sin(x) and replace accordingly:

We can then take the Fourier Transform of each term from (35):

We notice that the new micro-vibrations term ϕ a appears only as the exponential term, meaning that we can directly deduce the final form of equation ( 36) from ( 22):

Where:

Knowing that the polar vector summation will also result in a polar vector expression, we denote these expressions with a M(σ 1 )e i •ϕ σ M terminology.

.7 Planetology: Second-order Approximation Continuation of proof from 5.2.3 A similar development to the previous derivations follows:

By using the following expansions:

and notations:

By using (13), we replace ω d t k πσ d kλ r . We also use ( 12) and replace ϕ σ 1 = 2πσ 1 v m T D :

After regrouping the terms containing ±σ d and ±2σ d :

Similarly to (21) we use:

By factoring out δ (σ + σ 1 ) and δ (σσ 1 ):

By multiplying the terms:

) Again we can neglect the fourth and last term according to (.5), knowing that the factor a multiplied with b 1 or b 2 makes them infinitesimal:

And use the following formula to get rid of the squared sine:

We expand the last term:

We use the following notations for simplification:

By using the following expansions:

.8. PLANETOLOGY: FIRST AND SECOND-ORDER APPROXIMATION 195 By using (13), we replace ω d t k πσ d kλ r . We also use ( 12) and replace ϕ σ 1 = 2πσ 1 v m T D . All the known steps follow:

In the Fourier domain We express the sine as cosine knowing that:

The Fourier Transform for the cosine is:

We separate the signal terms from the complex conjugate ones:

.8. PLANETOLOGY: FIRST AND SECOND-ORDER APPROXIMATION 197

.8. PLANETOLOGY: FIRST AND SECOND-ORDER APPROXIMATION 199

Where:

Knowing that the polar vector summation will also result in a polar vector expression, we denote these expressions with a M(σ 1 )e i •ϕ σ M terminology.

We separate the signal terms from the complex conjugate ones:

.9. PLANETOLOGY: FIRST AND SECOND-ORDER APPROXIMATION WITH ASYMMETRY ERROR20

.9. PLANETOLOGY: FIRST AND SECOND-ORDER APPROXIMATION WITH ASYMMETRY ERROR20

Where: 2m 0b 2 ) ; 

Knowing that the polar vector summation will also result in a polar vector expression, we denote these expressions with a M(σ 1 )e i •ϕ σ M terminology.
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