Manon Robbe-Saule 
  
Nicolò Rubens 
  

My rst thanks go to Neil M. RIBE, my supervisor during this adventure. I am grateful to him for all his valuable advice and suggestions and for everything I learned in these years, scientically and beyond. Most of all, I am sincerely grateful to him for teaching me what it means to be a researcher, from the importance of nurturing the curiosity which stimulates the questions that feed this job, to the methods and tools to be used to chase the right answers. Then, I want to thank my co-supervisor Anne DAVAILLE who guided me through the magic world of colloids in the last part of the thesis. Thanks also for the essential help that you provided me when I rst arrived in France and I had to face the scary monster of French bureaucracy. Also, I want to thank Christiane ALBA-SIMIONESCO, Oriana OSTA and all the other members of the Laboratoire Léon Brillouin (LLP) of the CEA Saclay who kindly helped me during the experimental analysis performed in their laboratory.

A warm thank you goes to all the people involved in the CREEP project, met in many workshops, courses and conferences over the past three years. Being part of this family has been a unique experience in scientic and human terms. In particular, I would like to thank Boris KAUS who welcomed me at the Johannes Gutenberg University of Mainz for a one month session of LaMEM simulations and Christian MÜLLER who supervised me during my industrial internship at SCHOTT company. A special thought goes to all the CREEP PhD students with whom I shared joys and sorrows during this journey (mainly joys, luckily) and, in particular, to Simon PREUÿ and Jana SCHIERJOTT who

LIST OF FIGURES 1.6 (a): Phase diagram of [START_REF] Schellart | Kinematics and ow patterns in deep mantle and upper mantle subduction models: Inuence of the mantle depth and slab to mantle viscosity ratio[END_REF] showing the modes of free subduction as a function of the viscosity contrast (η SP η M ) and the ratio of the mantle depth to the sheet thickness (T M T SP ). (b)-(c): Phase diagram of [START_REF] Li | Dynamics of free subduction from 3-D boundary element modeling[END_REF] showing the modes of free subduction as a function of the viscosity contrast (η 2 η 1 ) and the ratio of the mantle depth to the sheet thickness (H h). In (b) the authors show the dierent shapes of the slab as it touches the bottom boundary. They also report the corresponding angle of the slab's tip. The dashed lines in (c) report the same regime boundaries given in 2.2 Spatial distribution of the norm of the velocity vector corresponding to the expression for J ij in (2.5). The line force acts in x and we consider F 1 = F 2 = η = 1, so that u i = J ij . . . . . . . . . . . . . . . . .

x LIST OF FIGURES 2.3 From Ribe (2015): Image system required to describe a general Stokes ow in the presence of an impermeable and traction-free wall.

Because the latter is equivalent to a plane of mirror symmetry, the Stokeslet located at x has to be balanced by a Stokeslet reected across the wall, located at the image point x IM ≡ x -2dn and with strength F * ≡ R ⋅ F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Spatial distribution of the norm of the velocity vector associated with the Green's function J G ij in (2.6a). The free-slip wall is at r 2 = 0 between the two line forces at x and x IM . The line force acts normal to the wall (F 1 = 0) and F 2 = η = 1, so that u i = J G ij . . . . . . 27 2.5 Two-dimensional model of two uid drops immersed in an innitely deep ambient uid bounded at x 2 = 0 by a free-slip surface. The two drops, of radius a, have viscosity η i = λ i η 0 and density ρ i , where i = 1, 2. η 0 and ρ 0 are the viscosity and the density, respectively, of the ambient uid. The drops are bounded by the contours C 1 and C 2 whose normal vector n points out of their volumes V 1 and V 2 . . 29 2.6 From [START_REF] Ribe | Bending and stretching of thin viscous sheets[END_REF]: Model of a two-dimensional thin sheet of viscous uid with variable thickness H(s), constant viscosity η and constant excess density δρ. s and z dene the local coordinate system related to the sheet's midsurface, located at z = 0. The midsurface has inclination θ(s) from the horizontal and curvature K(s) = dθ ds. In the most general case, inertialess ow in the sheet is driven both by its buoyancy and by externally applied normal P ± (s) and tangential 3.1 2D model geometry of free subuduction of a dense subducting plate (SP) with viscosity η 1 = λ 1 η 0 and density ρ 1 beneath an overriding plate (OP) with viscosity η 2 = λ 2 η 0 and density ρ 2 in an ambient uid with viscosity η 0 and density ρ 0 . The ambient uid is innitely deep and is bounded at x 2 =0 by a free-slip surface. The arclength coordinate along the SP's midsurface is s ∈ [0, L SP + ], while it is s OP ∈ [0, L OP ] for the OP arclength coordinate. The symbol b identies the `bending length' of the SP, equal to the sum of the slab length and the length of the seaward portion of the SP where exural bulging occurs (see section 2.3.3 for more details). . . . . . 3.2 Time evolution of free subduction for dierent congurations: (a) SP Only case, (b) SP+OP case with d 2 h SP =0.2, (c) SP+OP case with d 2 h SP =0.08. In all cases the thin solid line represents the initial conguration of the system specied in table 3.2, while the thick solid line corresponds to the nal state of the sheets at the dimensionless time t = th SP g∆ρ 1 η 0 = 21.5. The vertical coordinate x2 of the deepest point on the slab and its equivalent in km are indicated. The inset of (c) is a zoomed-in view of the nal state of the system. . As demonstrated in [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF], the only eect of the lubrication layer thickness d 1 is to modify b , hence the exural stiness St. . 3.6 Dimensionless plate speed U SP V Stokes as a function of L SP for several values of St and θ 0 = 30 ○ (semi-log plot). Values of St ∈ [0.37, 14] were obtained using the following parameters: h =7 ( , , ), h =5 ( , , ) and λ=10 2 ( , ), λ=10 3 ( , ), λ=10 3.13 Curling rate K and stretching rate ∆ along the midsurface of the OP for three dierent values of θ 0 , h SP = 7, and Γ = 0 (top gure) and for three dierent values of h SP , θ 0 = 30 ○ , and Γ = 0 (bottom gure). The other parameters are given in the text. . . . . . . . . . 60 xiii LIST OF FIGURES 3.14 Top gure: Curling rate K and stretching rate ∆ along the midsurface of a neutrally buoyant (Γ = 0) or positively buoyant (Γ = -0.25) OP. For both cases h SP = 5 and θ 0 = 30 ○ . The other parameters are given in the text. Bottom gure: Curling rate K and stretching rate ∆ for dierent values of d 2 h SP , with h SP = 5, θ 0 = 30 ○ and Γ = 0. Arclengths -1 ≤ s ≤ 0 correspond to a leftward extension of the midsurface into the triangular endpiece of the OP (g. 3.1). . .

3.15

Rates of energy dissipation due to bending (φ b , solid line) and stretching/shortening (φ s , dashed line) of a positively buoyant OP with Γ = -0.25. For comparison, the dotted line shows the stretching/shortening curve for a neutrally buoyant OP (Γ = 0). . . . . . .

3.16

Dimensionless convergence speed plotted against dimensionless interface strength for dierent values of the viscosity ratio of the plates: λ 1 = 150, 250, 350, 450. The horizontal dashed lines represent the values of V Conv V Stokes that correspond to the true convergence rate of the `BEM-segment', nondimensionalized using the range of mantle viscosities given by [START_REF] Mitrovica | A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data[END_REF]. See text for more details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.17 Principal forces and velocities associated with subduction. The dashed lines indicate the characteristic velocities of the two plates, and the thick lines indicate the forces acting on them. F D(OP)+ is the drag force driving the OP motion while the dierent forces F D(xxx)- represent the drag resisting the displacement of the portion of the plate to which they refer. F n and F t are the lubrication forces acting on the two plates, equal in magnitude and opposite in direction. F int is the internal force of the SP opposing its bending and F b is the slab's negative buoyancy driving the entire system. The portion of the SP shown, of length b , is the portion where the bending moment is signicant. . . . . . . . . . . . . . . . . . . . . . . . . . .

3.18

Deformation of the OP midsurface. The dashed line represents the initial shape of the midsurface, while the solid line indicates its new position after one time step. The vertical displacement of the midsurface has been exaggerated by a factor ∼ 10 2 . The model is the case h SP = 5, θ 0 = 30 ○ shown in g. 3.13 (at the bottom). . .

xiv LIST OF FIGURES

4.1 Close-up view of the portion of an isolated SP that deforms by bending. Its characteristic length is the bending length b , which is the sum of the slab length ( ) and width of the zone of exural bulging ( fb ). The minimum raidus of curvature of the plate's midsurface is R min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Dissipation ratio R as a function of the exural stiness St of the SP, predicted by BEM numerical solutions for λ 1 ∈ [150 -10 5 ], h SP ∈ [5 -10], L SP h SP ∈ [20 -32] and dip angles θ 0 = 30 ○ (black circles), 60 ○ (red circles) and 90 ○ (blue circles). The three insets show the geometry of the plate corresponding to each value of θ 0 . Empty circles indicate solutions for which dissipation by stretching of the plate is more than 5% of the total dissipation rate D SP . The green arrow labelled `Time' indicates the expected time evolution of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3 Dimensionless subduction interface dissipation rate D SI as a function of the group of parameters on the right-hand side of eq. ( 4.13), for 108 BEM solutions with λ 1 ∈ [150-10 5 ], λ 2 = 250, h SP ∈ [5-10], -6] and θ 0 = 60 ○ . The range of γ used corresponds to that inferred by [START_REF] Gerardi | Boundary element modeling of two-plate interaction at subduction zones: Scaling laws and application to the Aleutian subduction zone[END_REF] for the central Aleutian subduction zone. Dierent values of θ 0 shift the curve horizontally. Inset: close-up view of the subduction interface, dened by its thickness d 2 , inclination θ SI and viscosity η SI , where η SI ≡ η 0 for our model. 2017), the plume-induced subduction mechanism has been suggested. . .

L SP h SP = L OP h OP = 20, γ ∈ [2

5.3

Experimental setup of a drying convection experiment. The colloid layer into the tank (green) is dried from above by an air stream whose temperature (T ) and humidity (Rh) are controlled by a climatic chamber. For our experiment is T = 25 ○ C and Rh = 30%.

The tank is placed on a metal plate that can be heated if needed. Further below there is a weight scale that records the mass lost during the experiment because of the evaporation of water. . . . .

(a)

V Et curve shown in gure 5.2a. (b) V Et curve of our experiment. The green dashed lines compare the three regimes of convection of our experiment with the ones identied in (a). The red dots correspond to the four top views of the tank reported in gure 5. (2005). We assume h SP ∼ 100 km. The last line (`BEM-segment') describes the conguration adopted for the simulation and it reports the corresponding value of V Conv adopted for the comparison. . . . . . . . . . . . . . .

3.5

Horizontal speed ratio of the congurations shown in 3.4.2 g. 3.9

3.6 Length of the OP midsurface that identies the width of the OP zone where the deformation is bending-dominated. We report 4 dierent h SP , θ 0 pairs. The other parameters of the model are the ones corresponding to the cases shown in g. 

Introduction

The Earth is one of the four rocky planets of our solar system. Like Mercury, Venus and Mars it mainly consists of silicate rocks and heavy metals. During its formation, it separated into three principal layers: a core, a mantle and a crust. The core, made mostly of an iron-nickel alloy [START_REF] Birch | Density and composition of mantle and core[END_REF], is the Earth's innermost part and is divided into two sections: the inner core, a solid sphere with a radius ≈ 1, 200 km [START_REF] Engdahl | Dierential PKiKP travel times and the radius of the inner core[END_REF], and the outer core, a liquid shell ≈ 2, 400 km thick, enclosed between the inner core boundary and the core mantle boundary (CMB) [START_REF] Birch | Density and composition of mantle and core[END_REF][START_REF] Li | Experimental constraints on core composition[END_REF]. The latter, located at ≈ 2, 890 km beneath the Earth's surface, represents the lower limit of the second principal layer of the Earth that is the mantle. This can be divided into two dierent parts: the lower mantle, principally composed of a magnesium silicate mineral with a distorted perovskite structure, and the upper mantle dominated by peridotite rocks [START_REF] Davies | Dynamic Earth: Plates, plumes and mantle convection[END_REF]. The lower mantle extends from the CMB up to 750 -660 km depth, while the upper mantle spans between 410 -350 km and 35 km (e.g. [START_REF] Niazi | Upper mantle structure of western North America from apparent velocities of P waves[END_REF][START_REF] Davies | Dynamic Earth: Plates, plumes and mantle convection[END_REF]. Between these two regions is a transition zone where the rocks undergo dierent phase transitions (e.g. [START_REF] Deuss | Seismic observations of splitting of the mid-transition zone discontinuity in Earth's mantle[END_REF]. Starting from a depth of 35 km (i.e. the Moho discontinuity), we nally come to the shallowest layer of the Earth, the crust. There are two types of crust: oceanic, which is thinner (7 -10 km) and composed of rocks rich in magnesium silicate minerals (e.g. [START_REF] Klein | Geochemistry of the igneous oceanic crust[END_REF] and continental, which is thicker (35 -40 km) and composed of rocks rich in silicates and aluminum minerals (e.g. [START_REF] Cogley | Continental margins and the extent and number of the continents[END_REF]. A schematic vertical prole of the Earth's interior is shown in gure 1.1a. As one immediately notices in gure 1.1a, there is no unique denition of the layers of the Earth from the crust down to the CMB. Depending on the type of investigation adopted (seismological, mineralogical or dynamical) the boundaries and the terminology of the dierent layers change. In this work, however, we shall refer only to the dynamical reference given in the third column, where we distinguish between the lithosphere, the upper and lower mantle, separated by the 660 km discontinuity where a viscosity jump occurs [START_REF] Rudolph | Viscosity jump in Earth's mid-mantle[END_REF], and the physicists, seismologists and geodynamicists [START_REF] Massmeyer | Thermal Instabilities in a Yield-Stress Fluid: From the Laboratory to the Planetary Scale[END_REF][START_REF] Davies | Dynamic Earth: Plates, plumes and mantle convection[END_REF]. (b): dynamic cross-section of the Earth [START_REF] Courtillot | Three distinct types of hotspots in the Earth's mantle[END_REF].

hot thermal boundary layer at the CMB. This division of the Earth is appropriate for the study of thermal convection in the mantle, i.e. the slow creeping ow of mantle rocks that results from the cooling of the Earth (e.g. Turcotte & Schubert, 2014;[START_REF] Ricard | Physics of mantle convection[END_REF]. A cartoon of mantle convection is shown in gure 1.1b, where we can see hot/light currents (i.e. plumes) rising from the CMB all the way to the Earth's surface, and cold/heavy tectonic plates, formed by breaking of the rigid lithosphere, sinking down toward the CMB. The last phenomenon, known as subduction, is one of the principal surface expressions of mantle convection and represents a key ingredient of global geodynamics. It aects Earth processes ranging from the generation of mega-earthquakes and explosive volcanoes at the surface to the recycling of volatile species back into the deep interior. Yet despite its obvious importance, various aspects of subduction remain to be claried, from the mechanics of the phenomenon itself to the eect of subduction zones on large-scale mantle convection. 

Subduction

A close-up view of a subduction zone is shown in gure 1.2. Here we see the oceanic subducting plate (SP), on the left, the continental overriding plate (OP), on the right, and the margin between the two where the SP starts to bend and sink, which is called the trench. This typical conguration captures the main features of a subduction system which, however, change signicantly from region to region on Earth. First of all, together with the oceanic-continental conguration, we also observe oceanic-oceanic (e.g. North American-Carribean plates) or continental-continental (e.g. Indian-Asian plates) plate collision on our planet. Moreover, even considering only the classical oceanic-continental collision, seismic tomography shows that subduction occurs with many dierent styles. For example, the SP sinks i) with a constant dip from upper to lower mantle, broadening in the transition zone, as in the Central America subduction zone; ii) nearly vertically (e.g. the Marianas trench) or iii) with a steep angle in the upper mantle, followed by attening in the transition zone, e.g. the Tonga trench (e.g. [START_REF] Fukao | Subducting slabs stagnant in the mantle transition zone[END_REF][START_REF] Bijwaard | Closing the gap between regional and global travel time tomography[END_REF]. Finally, concerning the OP deformation style, focal mechanisms of earthquakes occurring within the OPs indicate that it varies from highly compressional to highly extensional (e.g. Heuret & Lallemand, 2005). This can be appreciated from the map of gure 1.3, which shows the OP stress-state for the Earth's principal subduction zones. Among other features, we can recognize the The state of strain in the OP is reported in the legend at the bottom right corner.

strong compression of central South America (in red), related to the rise of the Andes mountains (e.g. [START_REF] Rutland | Andean orogeny and ocean oor spreading[END_REF][START_REF] Sobolev | What drives orogeny in the Andes?[END_REF] and the extension of the Eurasian plate at the central Mediterranean subduction zone (in blue) which, starting in the late Miocene, led to the opening of the Tyrrhenian basin (e.g. [START_REF] Boccaletti | New data and hypothesis on the development of the Tyrrhenian basin[END_REF][START_REF] Faccenna | The dynamics of back-arc extension: An experimental approach to the opening of the Tyrrhenian Sea[END_REF]. Understanding how subduction gives rise to all these dierent features is one of the main challenges in modern geodynamics.

Subduction modeling

Numerical and experimental modeling of subduction have proved to be powerful techniques for investigating such complex phenomenon. Thanks to the impressive progress of the last decades, these tools have provided convincing explanations for many features of the present and past geological record, including the correlation between trench velocity and SP velocity [START_REF] Funiciello | Trench migration, net rotation and slabmantle coupling[END_REF], the shape of island arcs [START_REF] Morra | Curvature of oceanic arcs[END_REF] and episodes of lower-mantle slab penetration [START_REF] Goes | Evidence of lower-mantle slab penetration phases in plate motions[END_REF].

There are two main classes of subduction models: forced and free. In the rst (forced) case, the system is partially or totally forced by a boundary condition imposed as a kinematic constraint. A classical example of this type of model is the `corner ow' model of [START_REF] Mckenzie | Speculations on the consequences and causes of plate motions[END_REF], shown in gure 1.4. Here the 2-D viscous ow in a wedge-shaped region is induced by the imposed speed U 0 of the wedge's inclined lower boundary representing the subducting plate. Following the analytical model of [START_REF] Mckenzie | Speculations on the consequences and causes of plate motions[END_REF], the subduction rate of the SP is imposed in other models of the forced class, either with a piston that pushes the SP toward the OP in analog models (gure 1.5a) or by prescribing it as a boundary condition in numerical models (gure 1.5c). This approach is useful to study specic features of subduction and also when one wants to mimic the eect of far-eld driving forces (Schellart & Strak, 2016). However, it lacks self-consistency since there is an external source that continuously adds energy to the system. In the second (free) case, the motion and deformation of the plates are controlled entirely by the internal forces in the system. Usually, the only driving force taken into account is slab pull (e.g. Turcotte & Schubert, 2014) and subduction is triggered by imposing an initial dipping angle to the SP (gures 1.5b and 1.5d). This type of approach is useful for understanding the natural evolution of subduction systems and the causal link between the forces and the velocities observed within them. As will be described in 3, the latter is the model class that has been chosen for the present study.

1.1.2

Subduction of an isolated plate Figure 1.5 shows several examples of realistic model setups comprising both a SP and an OP. However, much progress in our understanding of subduction has rst come from models that consider an isolated SP without an OP. In particular, this approach has provided signicant insight into the origin of the dierent modes of subduction that have been observed both in analog and numerical models.

As recent studies have shown, one of the key parameters controlling the dierent styles of subduction is the viscosity contrast (λ ≡ η 1 η 0 ) between the SP (η 1 ) and the surrounding mantle (η 0 ) (e.g. [START_REF] Kincaid | An experimental study of subduction and slab migration[END_REF]Di Giuseppe et al., The similarity criteria which should be satisfied in the modeling are as follows [Shemerida, 1983[Shemerida, , 1992] ] C•s/(PlgH ) = const E/(plgH ) = const

(1)

Ap/pa = const

Vt/H=const, where c• s, E, H, and Pl are the lithosphere yield limit for normal loading, Young's modulus, thickness, and density, respectively;

Pa is the asthenosphere density; Ap = Pl ' Pa; V is the rate of subduction, t is the time, and g is the acceleration of gravity. A decrease in lithosphere density Pl, when Pa is held constant, causes the subducted plate to float up beginning from the stage when this plate reaches a specific length. Also, the frontal arc elevation becomes larger. The lower the Pl value (i.e., the greater tile value of IApl), the earlier the "Benioff zone" begins to rise and the higher the elevation of the "frontal arc" is. This is demonstrated in the next two experiments.

Experiment 2. Here Ap m = -0.14 x 103 kg/m 3. Tile buoyancy force is so large in this experiment that the subducted plate begins to rise practically at once (Figtire 3). After some development the subduction (or, more exactly, undertlu'usting) stops, and all of the deformation is concentrated in the intraplate regions, mostly within the subducting plate (Figures 3c-3e). This plate in turn experiences plastic compression and flexural buckling. The deformation then localizes in the sag behind the outer rise resulting in "lithosphere" failure and the initiation of a new subduction zone (Figtires 3c-3e). [START_REF] Schellart | Kinematics and ow patterns in deep mantle and upper mantle subduction models: Inuence of the mantle depth and slab to mantle viscosity ratio[END_REF] proposed the phase diagram shown in gure 1.6a. Using just these two paramters, the author was able to classify a broad range of data coming from dierent laboratory studies [START_REF] Schellart | Kinematics of subduction and subduction-induced ow in the upper mantle[END_REF][START_REF] Bellahsen | Dynamics of subduction and plate motion in laboratory experiments: Insights into the plate tectonics behavior of the Earth[END_REF][START_REF] Funiciello | Mapping mantle ow during retreating subduction: Laboratory models analyzed by feature tracking[END_REF]. He identied four main modes of subduction: weak trench retreating (Regime I) and strong trench retreating (Regime IV), trench retreating with folding (Regime II), and trench advancing (Regime III). The same phase diagram has been reproduced quantitatively by [START_REF] Li | Dynamics of free subduction from 3-D boundary element modeling[END_REF] using a 3-D numerical model based on the boundary element method (gure 1.6c). As highlighted in gure 1.6b, the authors found a strong correlation between the subduction mode selected and the value of θ D , representing the dip of the subducting slab as it impinges on the bottom boundary of the experiment/numerical model (a rough analog of the 660 km discontinuity). The authors concluded that the retreating mode (Regime I and IV) always occurs for θ D < 90 ○ , retreating plus folding (Regime II) occurs when θ D ∈ [97 ○ -130 ○ ] and for larger values of θ D the trench advancing mode (Regime III) is selected. [START_REF] Li | Dynamics of free subduction from 3-D boundary element modeling[END_REF], following the work of [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF], also claried the role of the viscosity ratio λ in the dynamics of the SP by identifying a key dimensionless parameter, the SP's `exural stiness' St ≡ λ (h b ) 3 , where h is the SP's thickness and b , the SP's `bending length', represents the length of the portion of the SP where the deformation is dominated by bending. I will come back in 2.3.3 to the denition of b and its meaning. Thanks to this proper measure of the mechanical resistance of the SP relative to that of the ambient mantle, [START_REF] Li | Dynamics of free subduction from 3-D boundary element modeling[END_REF] conrmed the scaling law found by [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF] showing that the slab's sinking speed V Sink is controlled by the ambient mantle viscosity η 0 when St ≤ 1, and by the SP viscosity η 1 when St ≫ 1 (see gure 3.5, 3.4.1 and Ribe (2010) for more details).

Tile value of

1.1.3

Two-plate interaction along a weak subduction interface Even if models of an isolated SP are useful to capture meaningful features of subduction, adding an OP to the system is crucial for more realistic modeling of natural subduction zones. In this context three main questions arise: (i) how does the presence of the OP inuence the kinematics of the SP? (ii) what controls the interplate stress state along the subduction interface? (iii) what drives the deformation and motion of the OP (e.g. [START_REF] Krien | Gravity above subduction zones and forces controlling plate motions[END_REF]; van Dinther In recent years, several authors have used 3-D analog and numerical models of the free class to address the question of the mechanism of deformation of the OP, focusing, in particular, on the controlling factor for backarc extension. In general, it is found that backarc extension is strongly correlated with trench retreat (e.g. [START_REF] Duarte | Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology[END_REF][START_REF] Meyer | Three-dimensional dynamic models of subducting plateoverriding plate-upper mantle interaction[END_REF][START_REF] Schellart | A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle ow: Results from dynamic subduction models with an overriding plate[END_REF][START_REF] Chen | Does subduction-induced mantle ow drive backarc extension?[END_REF]. A possible mechanical interpretation of this result is that slab rollback induces a toroidal mantle ow that exerts shear stresses on the base of the OP that in turn lead to backarc opening (gure 1.7a). The rate of extension in the backarc zone depends on whether the OP is free to move or is xed at its end on the opposite side from the trench [START_REF] Chen | Overriding plate deformation and variability of fore-arc deformation during subduction: Insight from geodynamic models and application to the Calabria subduction zone[END_REF]. Interestingly, backarc extension is also observed in the 2-D (toroidal ow absent by denition) numerical model of Holt et al. (2015a) when the OP is positively buoyant. For such a case, if the poloidal ow suddenly becomes weaker due to interaction of the slab with a viscosity increase at 660 km depth, a shift from extension to compression in the backarc zone may occur. (2015) concluded that interplate stresses at the interface are the primary control on forearc deformation within the OP. The forearc can be compressional or extensional depending on the magnitude of those stresses, whereas backarc deformation is insensitive to them (gure 1.7b). [START_REF] Duarte | Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology[END_REF] also found that the subduction rate of the SP is controlled by the rheology of the subduction interface, decreasing strongly as the viscosity of the interface increases due to enhanced mechanical coupling between the plates.

Turning nally to the inuence of the OP on the kinematics of the SP, Holt et al. (2015a) showed that the OP viscosity does not inuence signicantly any of the characteristic velocities of the SP. They also found that increasing the OP's thickness decreases the rate of slab rollback, but does not aect the subduction rate or the slab's sinking speed. The same correlation between trench motion and the thickness of the OP is found in the 2-D numerical model of Garel et al. (2014).

Rayleigh-Bénard convection

In the rst part of this introduction we have seen some examples highlighting the inuence of subduction on dierent phenomena observed in the area close to the subduction zone itself. However, a global-scale eect of subduction zones might also occur on Earth. In particular, several authors have suggested that the viscous dissipation of energy occurring at subduction zones can strongly inuence largescale mantle convection (e.g. Conrad & Hager, 1999b;[START_REF] Korenaga | Energetics of mantle convection and the fate of fossil heat[END_REF]. In order to understand how this might occur, it is useful here to give some basic concepts underlying the study of Earth's mantle convection.

In the simplest terms, thermal convection in the mantle can be described as a Rayleigh-Bénard (R-B) instability problem. A typical 2-D conguration of this type of convection is illustrated in gure 1.8, where we consider a uid layer of thickness d conned between two horizontal planes (rigid or traction-free) kept at dierent temperatures. The system is heated from below and cooled from above (T 1 > T 0 ) and we assume that there is no volumetric heat generation within it. Under certain conditions, due to the density variation given by the gradient of temperature, the uid layer becomes unstable and generates the ow indicated by the curved arrows in gure 1.8. This uid motion repeats regularly in cells that extend horizontally according to the characteristic wavelength λ of the convection pattern (e.g. [START_REF] Ribe | Analytical approaches to mantle dynamics[END_REF]. Turcotte & Schubert (2014): Rayleigh-Bénard model setup consisting of a uid layer of thickness d, heated from below and cooled from above (T 1 > T 0 ). The characteristic horizontal wavelength of the convection pattern is λ. Note that the vertical coordinate increases downward.

1.2. Rayleigh-Bénard convection 1. INTRODUCTION x 1 λ x 3 = +d/2 x 3 = -d/2 T 1 T 0 Figure 1.8. Modied from
For the R-B problem, the governing equations describing the conservation of mass, momentum and energy are the following:

∂u j ∂x j = 0
(1.1a)

∂P ∂x i = η∇ 2 u i -g i ρ 0 α(T -T 0 ) (1.1b) ∂T ∂t + u j ∂T ∂x j = κ∇ 2 T, (1.1c)
where κ is the thermal diusivity and we consider an incompressible and isoviscous uid (η=constant) in the relevant approximations for mantle convection of negligible inertia (Reynolds number, Re ≈ 10 -20 ) and innite Prandtl number, Pr ≈ 10 23 . Moreover, we assume the validity of the Boussinesq approximation according to which the density variations are retained only in the term that represents the buoyancy force, and are neglected everywhere else. This means that the density dierence caused by the thermal expansion (ρ ′ ) is small enough not to aect the hypothesis of incompressibility but sucient to drive the ow. The latter eect is taken into account in (1.1b) by the term ρ ′ = -ρ 0 α(T -T 0 ), where α is the volumetric coecient of thermal expansion and T 0 is the reference temperature corresponding to the reference density ρ 0 ≫ ρ ′ . We further notice that in (1.1b), P represents the dynamic pressure of the ow P = pρ 0 g i x 3 , that is the total pressure minus the hydrostatic contribution related to the reference density. This problem is addressed by means of a linearized stability analysis of the onset of convection when the motions and the thermal disturbance are innitesimal. In this section I summarize some key results of this analysis, whose detailed explanation can be found in Turcotte & Schubert (2014).

Consider the setup shown in gure 1.8 with the uid at rest. We assume a steady (∂ ∂t) conductive state without any horizontal gradient (∂ ∂x 1 = 0). The velocity is everywhere zero (u ic = 0), and the steady conductive temperature prole

T c satises d 2 T c dx 2 3 = 0.
The solution is

T = T c = (T 1 + T 0 ) 2 + (T 1 -T 0 ) d x 3 , (1.2) 
Imagine now that we increase the temperature dierence across the uid layer up to the point where the slightest further increase causes the layer to become unstable and convection to start. Let the temperature be T = T c + T ′ and the velocity be

u i = u ′
i , where T ′ and u ′ i are small perturbations of the steady conductive state. Substituting these expressions into 1.1 and neglecting products of perturbation quantities, we obtain ∂u ′ j ∂x j = 0

(1.3a)

∂P ′ ∂x i = η∇ 2 u ′ i -g i ρ 0 α(T ′ -T 0 )
(1.3b)

∂T ′ ∂t + u ′ 3 d (T 1 -T 0 ) = κ∇ 2 T ′ .
(1.3c)

We now assume that the upper and lower surfaces of the convecting layer are isothermal and free-slip, viz.

T ′ = 0 on x 3 = ±d 2 (1.4a) ∂u ′ 1 ∂x 3 = u ′ 3 = 0 on x 3 = ±d 2.
(1.4b)

Rewriting eq. (1.3) in terms of the stream function ψ ′ , we reduce the problem to the two partial dierential equations

η∇ 4 ψ ′ = ρ 0 g 3 α ∂T ′ ∂x 1
(1.5a) 

∂T ′ ∂t + 1 d (T 1 -T 0 ) ∂ψ ′ ∂x 1 = κ∇ 2 T ′ , (1.5b) 
which admit solutions of the form

ψ ′ = ψ ′ 0 cos πx 3 d sin 2πx 1 λ e st
(1.6a)

T ′ = T ′ 0 cos πx 3 d cos 2πx 1 λ e st .
(1.6b)

where s is the growth rate that characterizes the time evolution of the perturbations. An expression for s is obtained by substituting (1.6a) and (1.6b) into (1.5b), yielding

sd 2 κ = Rak 2 -(π 2 + k 2 ) 3 (π 2 + k 2 ) 2 ,
(1.7)

where k = 2πd λ is the dimensionless wavenumber and Ra is the Rayleigh number dened as

Ra = ρ 0 g 3 α(T 1 -T 0 )d 3 κη .
(1.8)

The Rayleigh number expresses the relative importance of the buoyancy force acting against the viscous resistance of the uid and the tendency of lateral temperature gradients to disappear by diusion. Setting s = 0, we can nally nd the (TBLs) and on the sides by cold (sinking) and hot (rising) thermal plumes. The boundary-layer structure of the ow is a direct consequence of the strong advection that controls heat transport in the uid. Because the thermal Péclet number Pe T ≡ RePr ≈ 10 3 is large, advection eectively counteracts thermal diusion and connes temperature gradients close to the boundaries of the cell. This resembles what happens in mantle convection, where horizontal TBLs are nothing else than the cold oceanic lithosphere (upper TBL) and the D ′′ -layer (lower TBL).

For the conguration of gure 1.10, steady-state boundary layer analysis provides a useful scaling law for the convective heat transport as a function of the vigor of the ow. I now show briey how we can obtain it.

We start from the integrated energy balance within the volume V of a single convection cell, bounded by free-slip surfaces S on the four sides: (1.11) where e ij = 1 2(∂u i ∂x j + ∂u j ∂x i ) is the strain rate tensor and σ ij = -P δ ij + 2ηe ij is the corresponding stress tensor. Equation (1.11) can be obtained by taking the dot product of the velocity and the momentum balance (1.1b) and then converting the volume integrals to integrals over the cell surface using Gauss's theorem. The quantity ∆T p appearing in (1.11) is the temperature dierence between the isothermal core T = T c and the upper (T 0 ) or lower boundary (T 1 ). Cold and hot thermal plumes are then assumed to have the same temperature structure as the corresponding cold or hot TBL. (Turcotte & Schubert, 2014;Conrad & Hager, 1999b). From the continuity equation and the assumption of free-slip boundaries, the rst integral on the right-hand side of (1.11) vanishes, whence we obtain

2η V e ij e ij dV = S u i σ ij n j dS - V u i g i ρ 0 α∆T p dV,
2η V e ij e ij dV = - V u i g i ρ 0 α∆T p dV,
(1.12) 1. INTRODUCTION 1.2. Rayleigh-Bénard convection which states that the viscous dissipation in the uid volume is exactly balanced by the buoyancy ux associated with the thermal plumes. Now we use the simplied 2-D velocity eld shown in gure 1.11 to perform a scaling analysis of (1.12). First, we identify a characteristic velocity scale v 0 ≈ u 0 ∼ U and a characteristic length scale λ 2 ≈ d ∼ D. Because e ij ∼ U D and the volume of the square 2-D cell is V ∼ D 2 , the viscous dissipation term scales as

2η V e ij e ij dV ∼ ηU 2 .
(1.13)

The buoyancy term scales as

- V u i g i ρ 0 α∆T p dV ∼ U ρ 0 g 3 α ∆T p (Dδ), (1.14)
where the volume over which we integrate here is that of the descending and rising thermal plumes, whose thickness δ is determined by the growth of the corresponding TBL. The parameter δ is obtained from the half-space model

δ ∼ √ κt ∼ κD U , (1.15) 
which describes how the TBL thickens by conductive cooling/heating during a time t ∼ D U until it becomes unstable and starts to sink/rise. Using (1.15) with (1.14) and substituting (1.13) and (1.14) into (1.12), we nally obtain an expression for the characteristic velocity U :

U D κ ∼ Ra 2 3 , (1.16)
where Ra has been dened in (1.8) and

∆T p ∼ ∆T ≡ (T 1 -T 0 ) because T c -T 0 = 1 2(T 1 -T 0 ).
The last step is to correlate the velocity (1.16) with the convective heat ux. The latter has to be equal to the total heat ow Q evacuated from the upper boundary of the convection cell. From the half-space cooling model of the upper TBL, we obtain

Q = 2K∆T p u 0 λ 2 πκ 1 2 ∼ K∆T U D κ 1 2 , (1.17)
where K is the thermal conductivity of the uid. Now the heat that would be transported by the cell purely by conduction in the absence of convection is

Q c = K∆T λ 2d ∼ K∆T.
(1.18) which is the well-known scaling law connecting the (dimensionless) heat ow evacuated by the cell with the strength of convection within it. Eq (1.20) gives some useful information on the long-term evolution of the convecting system. We will see in the next section how we can exploit this argument to build a thermal evolution model able to make predictions about the present-day energy budget of the Earth.

1.3

Thermal evolution of the Earth

The Earth has been cooling down for several billion years. Estimates of the mantle temperature T m indicate a temperature drop of ≈ 200 K from the beginning of mantle sub-solidus convection (T m ≈ 1800 K, [START_REF] Litasov | Phase relations and melt compositions in CMAS pyroliteH 2 O system up to 25 GPa[END_REF]) until today (T m ≈ 1600 K, McKenzie et al. (2005)). These values constrain the average cooling rate of the Earth to 50 ± 25 K Gy -1 [START_REF] Jaupart | Heat Generation and Transport in the Earth[END_REF], which seems to be consistent with geochemical data from the analysis of mid-ocean ridge basalts [START_REF] Abbott | An empirical thermal history of the Earth's upper mantle[END_REF].

While it cools, the Earth also generates heat due to radioactive decay of uranium (U), thorium (Th) and potassium (K) (e.g. Turcotte & Schubert, 2014). Thus, in order to measure the eciency of the Earth's cooling, it proves useful to dene the Urey ratio Ur as the ratio of the global rate of heat generation H to the global rate of heat loss Q:

Ur = H Q .
(1.21)

For the present-day Earth, geochemical data suggest Ur ∈ [0.1-0.5], depending on the dierent estimates of H and Q used (e.g. [START_REF] Jaupart | Temperatures, heat and energy in the mantle of the Earth[END_REF][START_REF] Davies | Dynamic Earth: Plates, plumes and mantle convection[END_REF][START_REF] Stein | Heat ow of the Earth[END_REF][START_REF] Jochum | U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle[END_REF][START_REF] O'connell | On the thermal state of the Earth[END_REF] and on the assumption made concerning the role (active or passive) of continental heat sources in driving mantle convection [START_REF] Jaupart | Heat Generation and Transport in the Earth[END_REF]. In any case, the data provide a robust upper limit Ur ≤ 0.5.

Given this range of Ur, we can now try to build a cooling model for the Earth We start from the Earth's global energy balance

M ⟨C p ⟩ d ⟨T ⟩ dt = -Q + H, (1.22)
where M is the mass of the Earth, C p its heat capacity, T its temperature, Q the total rate of heat loss and H the total rate of heat production. We indicate with the symbol ⟨⟩ a spatially averaged value of the corresponding variable. Assuming an exponential decay with time of the amount of heat generated by the sum of the radioactive elements U, Th and K, H can be approximated as

H(t) = H 0 e -t τ D ,
(1.23)

where t = 0 at present and t < 0 in the past, while τ D represents an average decay time-scale of the three elements, whose value is τ D ≈ 3 Gy [START_REF] Labrosse | Thermal evolution of the Earth: Secular changes and uctuations of plate characteristics[END_REF]). An expression for Q is obtained from the scaling law (1.20) derived earlier, where Q ∼ K∆T Ra β , with β= 1/3. Considering now a temperature-dependent viscosity η(T ), we can write

Q = CT 1+β η -β (T ), (1.24)
where C is a constant taking into account the dependence on all the dierent uid properties that depend weakly on temperature [START_REF] Jaupart | Heat Generation and Transport in the Earth[END_REF].

Using an Arrhenius-type viscosity law η = η 0 (T T 0 ) -n and noting that variations of temperature in the Earth are much smaller than its absolute value (a drop of 200 K against a present-day mantle temperature of 1600 K), we can linearize eq.(1.24) around a reference value T 0 , obtaining [START_REF] Christensen | Thermal evolution models for the Earth[END_REF][START_REF] Labrosse | Thermal evolution of the Earth: Secular changes and uctuations of plate characteristics[END_REF])

Q = Q 0 1 + (1 + β + βn) T -T 0 T 0 , (1.25)
where Q 0 is the heat loss at the reference temperature T 0 and n = 35 [START_REF] Davies | Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth[END_REF][START_REF] Christensen | Thermal evolution models for the Earth[END_REF]. Substituting (1.25) and (1.23), into (1.22) we nally obtain the Earth's energy equation

M C p dT dt = -Q 0 1 + (1 + β + βn) T -T 0 T 0 + H 0 e -t τ D ,
(1.26)

where we have dropped the symbol ⟨⟩ to lighten the notation. A critical parameter that can be extracted from eq.(1.26) is the characteristic time-scale τ R of mantle convection underlying the secular cooling of the Earth. This is the time required for the temperature and the heat ux to drop by a factor e when the heat sources are instantaneously removed. Hence, it tell us how quickly mantle convection adapts to an external perturbation which changes its state of equilibrium, for example a new boundary condition or a new rate of heat generation [START_REF] Labrosse | Thermal evolution of the Earth: Secular changes and uctuations of plate characteristics[END_REF]. Setting to zero the heat production term in(1.26), we obtain

τ R = M C p T 0 (1 + β + βn) Q 0 , (1.27) which leads to τ R ≈ 800 Myr, adopting standard values of n = 35, β = 1 3, M = 6 × 10 24 kg, Q 0 = 30 TW, T 0 = 1300 K and C p = 1200 J kg -1 K -1 .
From the analytical solution of (1.26)

T = T 0 + Q 0 τ R M C p e -t τ R -1 + τ R M C p τ D τ D -τ R H 0 e -t τ D -e -t τ R ,
(1.28) in the limit t ≫ τ R , we nally obtain a simple expression for the present-day Urey ratio [START_REF] Labrosse | Thermal evolution of the Earth: Secular changes and uctuations of plate characteristics[END_REF])

Ur = τ D -τ R τ D ,
(1.29) which predicts Ur = 0.73, higher than the upper limit constrained by geochemical data.

1.3.2 Viscous dissipation of energy at subduction zones One possible explanation for the failure of the cooling model presented above lies in the small value of the mantle relaxation time τ R , which makes the process of secular cooling highly sensitive to any uctuations from the equilibrium state.

In the context of the calculations presented in the preceding section, the low value of τ R might be ascribed to the exponent β, which we assumed to have the value 1 3 in accordance with the scaling law (1.20). However, there is no good reason to suppose that β = 1 3 is representative of mantle convection. First, the prediction β = 1 3 assumes that there are no volumetric heat sources within the mantle. As we have seen, this is not a good approximation for whole-mantle convection given the radioactive decay of uranium, thorium and potassium. Nevertheless, as recent studies seem to suggest, internal heating should not change 1. INTRODUCTION 1.3. Thermal evolution of the Earth much the 1/3 power dependence of the Nusselt number on the Rayleigh number (e.g. [START_REF] Sotin | Three-dimensional thermal convection in an iso-viscous, innite prandtl number uid heated from within and from below: applications to the transfer of heat through planetary mantles[END_REF][START_REF] Vilella | Temperature and heat ux scaling laws for isoviscous, innite prandtl number mixed heating convection[END_REF]. Second, convection models with the horizontal convection pattern like the one of gure 1.10 (e.g. [START_REF] Grigné | Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth[END_REF] are characterized by a `rectangular' seaoor age distribution [START_REF] Labrosse | Thermal evolution of the Earth: Secular changes and uctuations of plate characteristics[END_REF]. The latter arises from the fact that all the plates start to subduct after traveling the same time, thus inducing a constant spatial distribution of seaoor ages in the whole domain of the model (gure 1.12(A)-(B)). On the contrary, the peculiar characteristic of mantle convection is to have generated a plate-tectonics system with a `triangular' seaoor age distribution [START_REF] Sclater | Oceans and continents: similarities and dierences in the mechanisms of heat loss[END_REF][START_REF] Rowley | Rate of plate creation and destruction: 180 Ma to present[END_REF][START_REF] Cogné | Temporal variation of oceanic spreading and crustal production rates during the last 180 My[END_REF]. A simplied representation of such a system is depicted in 1.12(C). Because young plates also can now subduct, the spatial distribution of seaoor ages in the whole model domain has a peak for short seaoor ages and decreases linearly as the seaoor age increases (gure 1.12(D)). Taking into account this feature, [START_REF] Labrosse | Thermal evolution of the Earth: Secular changes and uctuations of plate characteristics[END_REF] obtained τ R ≈ 10 Gy in their empirical cooling model. Third, the assumption of an isoviscous system neglects the dissipation of energy that occurs at subduction zones where highly viscous lithospheric plates must bend and then slide along the subduction interface. The resistance to deformation at such plate boundaries might partly decouple the dynamics of the lithosphere (i.e. the upper TBL) from the mantle convection that takes place below it. The plate speed and the corresponding surface heat ow would then be less sensitive to any variations in the properties of the mantle, thereby reducing the eective value of β.

This latter argument has been the object of considerable debate in the past 20 years. In fact, it is still unclear whether or not subduction zones dissipate a signicant amount of energy (e.g. [START_REF] Irvine | Eect of plate thickness on bending radius and energy dissipation at the subduction zone hinge[END_REF][START_REF] Leng | Constraints on viscous dissipation of plate bending from compressible mantle convection[END_REF][START_REF] Krien | Gravity above subduction zones and forces controlling plate motions[END_REF][START_REF] Davies | Eect of plate bending on the Urey ratio and the thermal evolution of the mantle[END_REF][START_REF] Rose | Mantle rheology and the scaling of bending dissipation in plate tectonics[END_REF]Conrad & Hager, 1999b). In the pioneering work of Conrad & Hager (1999a), the authors suggested that the bending of long and highly viscous plates at subduction zones dissipates most of the energy that drives mantle convection. On this view, the surface heat ux is nearly independent of the underlying mantle, implying β ≈ 0 (Conrad & Hager, 1999b). A key parameter in the model of Conrad & Hager (1999a) is the minimum radius of curvature R min of the subducting plate, which the authors take to be 200 km. Subsequently, [START_REF] Korenaga | Energetics of mantle convection and the fate of fossil heat[END_REF] proposed a counterintuitive scaling law with β < 0, implying that the surface heat ow decreases as mantle convection becomes more vigorous. According to Korenaga, the thickening of the lithosphere is controlled by dehydration during melting at mid-ocean ridges. A hotter mantle (higher values of Ra m ), which produces more melt, would thus lead to a thicker lithosphere that slows down mantle convection. [START_REF] Davies | Eect of plate bending on the Urey ratio and the thermal evolution of the mantle[END_REF] pared two dierent mantle convection models in which the lithosphere thickens either by conductive cooling or by the dehydration stiening process. He concluded that the result β < 0 is an artefact of the small value of R min = 200 km and the high value of the SP viscosity η 1 = 10 23 Pa s assumed by [START_REF] Korenaga | Energetics of mantle convection and the fate of fossil heat[END_REF]. Higher values of R min = 300-500 km and/or lower lithosphere viscosities (η 1 = 10 22 Pa s) recover the standard result β = 1 3 and imply that the dissipation of energy at subduction zones is minor. Other authors have suggested that the viscous dissipation associated with the deformation of the lithosphere is never dominant. Using a numerical model for compressible convection, [START_REF] Leng | Constraints on viscous dissipation of plate bending from compressible mantle convection[END_REF] found that the dissipation occurring in a subduction zone is 10-20 % of the total dissipation. A slightly wider range, 10-30 %, is suggested by the study of [START_REF] Krien | Gravity above subduction zones and forces controlling plate motions[END_REF], who combined analysis of short and intermediate wavelength gravity and geoid anomalies with the predictions of a 2-D numerical model. Finally, Capitanio et al. ( 2007) investigated free subduction numerically using a constant or layered linear viscoelastic rheology and found that the lithospheric dissipation is generally less than 25% of the total. Similar results are obtained when a plastic rheology is adopted to model the lithosphere (e.g. [START_REF] Buett | Bending stress and dissipation in subducted lithosphere[END_REF][START_REF] Rose | Mantle rheology and the scaling of bending dissipation in plate tectonics[END_REF]. This assumption seems also to be consistent with observations from natural subduction zones [START_REF] Buett | Curvature of subducted lithosphere from earthquake locations in the Wadati-Benio zone[END_REF]Holt et al., 2015b). Chapter 2

Stokes ow

Theoretical models developed for the study of inertialess ows underlie the investigation of many geophysical ows of the Earth's mantle, where, as already anticipated in 1.2, a typical value of the Reynolds number is Re ≈ 10 -20 . An important class of such ows is that of an incompressible, isothermal and purely viscous Newtonian uid. In this case the governing equations are

∂u j ∂x j = 0
(2.1a)

∂σ ij ∂x j = f i (2.1b
)

σ ij = -p + 2ηe ij , e ij = 1 2 ∂u i ∂x j + ∂u j ∂x i (2.1c)
where we recognize the continuity equation (2.1a), the balance of momentum (2.1b) and the stress tensor σ ij and the strain-rate tensor e ij in (2.1c). Here, we consider the case of a ow produced entirely by body forces, whose distribution per unit volume is f i . For buoyancy-driven ows, the case of interest for the present work,

f i = ρg i .
Flow satisfying (2.1), called Stokes ow, presents a number of interesting properties. First, like all slow viscous ows, it is characterized by the property of instantaneity, whereby the velocity eld u i and the stress state σ ij are determined exclusively by the distribution of the forcing term f i and the boundary conditions at that specic instant. This means there is no time lag between the forcing and the uid's response to it. Therefore, the temporal evolution of the ow is simply due to the temporal evolution of the driving term (e.g. [START_REF] Ribe | Analytical approaches to mantle dynamics[END_REF]. Next, as a consequence of its linear rheology, Stokes ows exhibit also the properties of linearity and reversibility. The rst implies the principle of superposition, whereby the sum of any two solutions (e.g., for dierent forcing distributions or boundary conditions) is also a solution. It also implies that u i and σ ij are directly proportional to the forcing term that generates them. Reversibility states that if the sign of the forcing term is reversed, the sign of u i and σ ij of all the material points belonging to uid changes. The reversibility principle is particularly powerful when used in combination with symmetry arguments, because it allows us to evaluate if a given hypothetical behavior is physically possible or not (gure 2.1).

2.1

Singular solutions

Due to their linearity, the Stokes equations admit several singular solutions. These arise when the velocity and/or the pressure becomes innite at one or more points within the uid. We distinguish between two main classes of singular solutions: those involving point or (in two dimensions) line forces, and those related to volume sources and sinks. In this paragraph, I will focus on the singular solution associated with a line force. For more information on all the other singular solutions, refer to [START_REF] Ribe | Analytical approaches to mantle dynamics[END_REF] and [START_REF] Kim | Microhydrodynamics: Principles and Selected Applications[END_REF].

Imagine that a point force F i (Stokeslet) is applied at a position x (the bold symbol denotes a vector) in the uid. The velocity and the stress induced at any point y will satisfy [START_REF] Ribe | Analytical approaches to mantle dynamics[END_REF]:

∂u j ∂x j = 0
(2.2a)

∂σ ij ∂x j = -F i δ(y -x) (2.2b)
where δ(yx) = δ(y 1x 1 )δ(y 2x 2 )δ(y 3x 3 ) and δ is the Dirac delta-function. Given the proportionality between u i , σ ij and the forcing term, and requiring that u i → 0 and σ ij → -p 0 δ ij as yx → ∞, where p 0 is a far-eld (dynamically irrelevant) pressure, u i and σ ij can be written as

u i = J ij F j η, σ ik = K ijk F j , (2.3)
where we introduce the tensorial Green's functions J ij and K ijk , representing the singular solutions of the velocity (J ij ) and the stress (K ijk ) due to a unit line force. Using eq. ( 2.3) in eq. ( 2.2) and dropping the arbitrary vector F j , the governing equations of the ow assume the form

∂J ij ∂x i = 0
(2.4a) 

-∞ 0 +∞ -∞ 0 +∞ 0 +∞ x F r 1 r 2 |u(r)| Figure 2.2.
Spatial distribution of the norm of the velocity vector corresponding to the expression for J ij in (2.5). The line force acts in x and we consider

F 1 = F 2 = η = 1, so that u i = J ij . ∂K ijk ∂x i = -δ jk δ(y -x),
(2.4b)

whose solutions in a 2-D domain, the one of interest in the present thesis, are [START_REF] Pozrikidis | Boundary Integral and Singularity Methods for Linearized Viscous Flow[END_REF][START_REF] Ribe | Analytical approaches to mantle dynamics[END_REF]:

J ij (r) = 1 4π -δ ij lnr + r i r j r 2 , K ijk (r) = - 1 π r i r j r k r 4 ,
(2.5)

where r = yx and r = r . The Green's functions in (2.5) are solutions for an unbounded 2-D Stokes ow generated by a line force acting at x with strength F per unit length of the line (the 2-D analog of the 3-D Stokeslet). For such a conguration, we show in gure 2.2 the spatial distribution of the norm of the velocity vector u(r). As we observe, the velocity is singular at y = x, where u(r) → +∞, and decays away from x. However, due to the logarithmic term in the Green's function J ij (r) in (2.5), u(r) does not vanish for r → ±∞, violating the boundary condition imposed at the beginning. This is related to Stokes's paradox, which states that a 2-D Stokes ow around an innitely long cylinder moving perpendicular to its axis does not exist [START_REF] Ribe | Analytical approaches to mantle dynamics[END_REF]. In the following paragraph, we will show how we can resolve this paradox with the help of an impermeable boundary.

Eect of a free-slip wall

We consider now a 2-D Stokes ow bounded by a free-slip wall. The model setup that describes this new conguration is illustrated in gure 2.3. Here the ow is given by the combined action of two line forces: the rst, located at the point x at a distance d from the boundary, is the line force that actually generates the ow; the second, located at the image point x IM , is the one that we add in order to satisfy the boundary condition of an impermeable and traction-free wall. To fulll such requirements, x IM has coordinates x IM ≡ x -2dn, where n is the vector normal to the wall, while the magnitude of the line force is equal to

F * ≡ R ⋅ F,
where R ij ≡ δ ij -2n i n j is a reection tensor that reverses the sign of the wallnormal component of F and leaves its wall-parallel component unchanged [START_REF] Ribe | Analytical approaches to mantle dynamics[END_REF]. From the superposition of the two line forces, we can thus nd the new Green's functions J G ij (r) and K G ijk (r) which are solutions of the 2-D Stokes ow bounded by the free-slip wall:

J G ij (r) = J ij (r) + (-1) j+1 J ij (r IM ) (2.6a) 2. STOKES FLOW 2.1. Singular solutions -∞ 0 +∞ -∞ 0 +∞ 0 +∞ x F x IM F * Fr ee -s lip wa ll r 1 r 2 |u(r)| Figure 2.4.
Spatial distribution of the norm of the velocity vector associated with the Green's function J G ij in (2.6a). The free-slip wall is at r 2 = 0 between the two line forces at x and x IM . The line force acts normal to the wall (F 1 = 0) and F 2 = η = 1, so that

u i = J G ij . K G ijk (r) = K ijk (r) + (-1) j+1 K ijk (r IM ), (2.6b) 
where r IM = yx IM and J ij (r) and K ijk (r) are the Green's functions given above in (2.5) for an innite uid. Now, because of the presence of the image singularity J ij (r IM ) in eq. (2.6a), the logarithmic divergence for r → ∞ can be canceled out and Stokes's paradox resolved [START_REF] Ribe | Analytical approaches to mantle dynamics[END_REF]. However, we need to pay attention to the orientation of the line forces as the solution of the governing equations exists only when the net force on the uid is zero. Therefore, if for example we refer to the conguration of gure 2.3, a Stokes ow solution exists only if the Stokeslet has no horizontal component (F 1 = 0, see gure 2.4) or if we replace the free-slip wall with a no-slip wall that can sustain the horizontal stress. Similarly, considering the 2-D Stokes ow around an innitely long cylinder, the solution exists in case of cylinder sinking perpendicular to a free-slip wall because the integrated normal stress over the wall turns out to be exactly equal and opposite to the drag on the cylinder. In 2.2. Boundary-integral representation 2. STOKES FLOW the case of a cylinder moving parallel to the wall, instead, a no-slip wall becomes necessary in order to counterbalance the horizontal drag on the cylinder.

2.2

Boundary-integral representation By combining dierent types of singular solutions we can build a useful representation of Stokes ow, called the boundary-integral representation. Unlike the classical partial dierential equations, which describe the spatial gradient of the velocity over the whole uid domain V , the boundary-integral representation expresses the velocity at any point in V in terms of the velocity u i and the stress σ ij on the surface S bounding the uid domain. This representation of the Stokes ow is particularly convenient as it reduces the dimensionality of the problem by one (we solve line integrals in a 2D domain or surface integrals in a 3D domain). Thus, it makes possible a powerful numerical technique, called the boundaryelement method, which does not require the discretization of the whole ow domain [START_REF] Pozrikidis | Boundary Integral and Singularity Methods for Linearized Viscous Flow[END_REF].

The starting point for deriving the boundary-integral representation is the integral form of the Lorentz reciprocal theorem [START_REF] Ribe | Analytical approaches to mantle dynamics[END_REF]

) S u * i σ ij n j dS + V f j u * j dV = S u i σ * ij n j dS + V f * j u j dV, (2.7) which relates two Stokes ow (u i , σ ij , f i ) and (u * i , σ * ij , f * i ). Let (u i , σ ij )
be the ow of interest with no body forces (f i = 0), and u * i ≡ J ij (yx)F j η and σ * ik ≡ K ijk (yx)F j be the ow induced by a line force

f * i ≡ F i δ(y -x)
located at x. Substituting these expressions into (2.7) and dropping the arbitrary vector F j yields

1 η S J ij (y -x)σ ik (y)n k (y)dS(y) - V u j (y)δ(y -x)dV (y) = = S K ijk (y -x)u i (y)n k (y)dS(y) (2.8)
where the normal vector n points out of the uid domain V . The second integral on the left-hand side can be rewritten as [START_REF] Pozrikidis | Boundary Integral and Singularity Methods for Linearized Viscous Flow[END_REF])

V u j (y)δ(y -x)dV (y) = χ(x)u j (x)
(2.9)

where χ(x) = 0, 1 2, 1 depending on whether x lies outside V , right on S, or inside V , respectively. Then substituting eq. (2.9) into eq. (2.8), we nally get the 2. STOKES FLOW 2.2. Boundary-integral representation

x 2 x 1 n C 1 a 1 η 1 , ρ 1 V 1 λ 1 = η 1 /η 0 n C 2 a 2 η 2 , ρ 2 V 2 λ 2 = η 2 /η 0 η 0 , ρ 0 V 0 a 1 = a 2 = a Figure 2
.5. Two-dimensional model of two uid drops immersed in an innitely deep ambient uid bounded at x 2 = 0 by a free-slip surface. The two drops, of radius a, have viscosity η i = λ i η 0 and density ρ i , where i = 1, 2. η 0 and ρ 0 are the viscosity and the density, respectively, of the ambient uid. The drops are bounded by the contours C 1 and C 2 whose normal vector n points out of their volumes V 1 and V 2 .

boundary-integral representation

1 η S J ij σ ik n k dS - S u i K ijk n k dS = χ(x)u j (x)
(2.10)

where the arguments (y) for n k , σ ik , u i and (yx) for J ij and K ijk have been suppressed to lighten the notation. In (2.10), the rst integral, called the singlelayer potential, represents the velocity given by a surface distribution of point forces with density σ ik n k dS. The second integral, called the double-layer potential, represents the velocity eld induced by a superposition of sources, sinks and force dipoles. A detailed description of the two integrals can be found in Pozrikidis (1992).

2-D Boundary-integral representation of two uid drops immersed in a uid half-space

In the light of the boundary-integral representation (2.10), we derive here the integral representation of the system depicted in gure 2.5 that represents the basis of the subduction model we have developed for our work. In gure 2.5 we have two viscous drops immersed in a innitely deep ambient uid, bounded at the top by a free-slip surface. The force triggering the motion is the negative/positive buoyancy of the two drops associated with their higher/lower density surplus with respect to the ambient uid. All the other parameters describing the system are listed in the caption of gure 2.5. We begin by writing the boundary-integral representation for each of the three uid domains appearing in the model. According to eq. (2.10), it is:

for the uid drop 1:

1 η 1 C 1 J(y -x) ⋅ σ (1) (y) ⋅ n(y) dl(y) - C 1 u (1) (y) ⋅ K(y -x) ⋅ n(y) dl(y) = = χ 1 (x)u (1) (x),
(2.11)

for the uid drop 2:

1 η 2 C 2 J(y -x) ⋅ σ (2) (y) ⋅ n(y) dl(y) - C 2 u (2) (y) ⋅ K(y -x) ⋅ n(y) dl(y) = = χ 2 (x)u (2) (x),
(2.12) and for the ambient uid:

- 1 η 0 C 1 J(y -x) ⋅ σ (0) (y) ⋅ n(y) dl(y) -1 η 0 C 2 J(y -x) ⋅ σ (0) (y) ⋅ n(y) dl(y)+ + C 1 u (0) (y) ⋅ K(y -x) ⋅ n(y) dl(y) + C 2 u (0) (y) ⋅ K(y -x) ⋅ n(y) dl(y) = χ 0 (x)u (0) (x).
(2.13)

We emphasize that J(yx) and K(yx) are the Green's function dened in (2.6), properly modied in order to satisfy the free-slip boundary condition at

x 2 = 0.
Next, taking the linear combination λ 1 (2.11) + λ 2 (2.12) + (2.13) we obtain [START_REF] Manga | Buoyancy-driven interactions between two deformable viscous drops[END_REF]:

χ 0 (x)u (0) (x) + χ 1 (x)λ 1 u (1) (x) + χ 2 (x)λ 2 u (2) (x) = = ∆ρ 1 η 0 C 1 (g ⋅ y)n ⋅ Jdl + ∆ρ 2 η 0 C 2 (g ⋅ y)n ⋅ Jdl+ + (1 -λ 1 ) C 1 u (1) ⋅ K ⋅ n dl + (1 -λ 2 ) C 2 u (2) ⋅ K ⋅ n dl,
(2.14)

where ∆ρ i = (ρ iρ 0 ), with i = 1, 2, are the density dierences and we drop the 2. STOKES FLOW 2.2. Boundary-integral representation arguments (y) for n, u (1) , u (2) and (y-x) for J and K to simplify the notation. We also made use of the matching condition on the normal stress across the uid/uid interface

σ (0) -σ (i) ⋅ n = -∆ρ i (g ⋅ y) ⋅ n, (i = 1, 2).
(2.15)

Finally, adopting the dimensionless variables

(x, ŷ) = a -1 (x, y), û(i) = η 0 a 2 g∆ρ 1 u (i) (i = 1, 2)
(2.16) we rewrite eq. (2.14) in its dimensionless form (hat symbols suppressed):

C 1 -(e 2⋅ y)n ⋅ Jdl -Γ C 2 (e 2⋅ y)n ⋅ Jdl + (1 -λ 1 ) C 1 u (1) ⋅ K ⋅ n dl+ +(1 -λ 2 ) C 2 u (2) ⋅ K ⋅ n dl = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ u (0) (x) if x ∈ V 0 λ 1 u (1) (x) if x ∈ V 1 λ 2 u (2) (x) if x ∈ V 2 (1 + λ 1 ) 2 u (1) (x) if x ∈ C 1 (1 + λ 2 ) 2 u (2) (x) if x ∈ C 2 (2.17)
where e 2 = -g g is the (upward-pointing) vertical unit vector and Γ ≡ ∆ρ 2 ∆ρ 1 . Equations (2.17) allow for a complete calculation of the ow eld in the whole space domain. The rst step is to compute the interfacial velocities u (1) and u (2) considering material points x ∈ C 1 and x ∈ C 2 , for which (2.17) reduces to a pair of coupled Fredholm integral equations of the second kind. As y and x can lie on the same contour, the resolution of such a system requires the regularization of the corresponding integrals by `subtracting the singularity' at y = x. According to [START_REF] Pozrikidis | Boundary Integral and Singularity Methods for Linearized Viscous Flow[END_REF], this procedure yields

C i (e 2⋅ y)n ⋅ J dl = C i e 2⋅ (y -x)n ⋅ Jdl (2.18) C i u (i) (y) ⋅ K ⋅ n dl = C i [u (i) (y) -u (i) (x)] ⋅ K ⋅ n dl -1 2 u (i) (x)
(2.19) where i = 1, 2. Thus, we can write: 2.3. Thin viscous-sheet theory 2. STOKES FLOW

P 11 = C 1 -[(x 2y ) -(x 2x )] n ⋅ (y)J(y -x)dl(y), for x ∈ C 1 ∧ y ∈ C 1 (2.20a) S 21 = C 2 -(x 2y )n ⋅ (y)J(y -x)dl(y), for x ∈ C 1 ∧ y ∈ C 2 (2.20b) Q 11 = C 1 [u(y) -u(x)] ⋅ K(y -x) ⋅ n(y)dl(y) for x ∈ C 1 ∧ y ∈ C 1 (2.20c) D 21 = C 2 u(y) ⋅ K(y -x) ⋅ n(y)dl(y) for x ∈ C 1 ∧ y ∈ C 2 (2.20d) S 12 = C 1 -(x 2y )n ⋅ (y)J(y -x)dl(y), for x ∈ C 2 ∧ y ∈ C 1 (2.20e) P 22 = C 2 -[(x 2y ) -(x 2x )] n(y) ⋅ J(y -x)dl(y), for x ∈ C 2 ∧ y ∈ C 2 (2.20f) D 12 = C 1 u(y) ⋅ K(y -x) ⋅ n(y)dl(y) for x ∈ C 2 ∧ y ∈ C 1 (2.20g) Q 22 = C 2 [u(y) -u(x)] ⋅ K(y -x) ⋅ n(y)dl(y) for x ∈ C 2 ∧ y ∈ C 2 (2.20h)
where eq. (2.18) and eq. (2.19) have been used when points x and y are on the same contour and we indicate with x 2y the vertical coordinate of the point y deriving from the dot product e 2⋅ y = e 2⋅ (x 1 e 1 + x 2 e 2 ). The same is valid for e 2⋅ x → x 2x .

Combining (2.20) and (2.17), we obtain

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ P 11 + ΓS 21 + (1 -λ 1 ) Q 11 - 1 2 u (1) (x) + (1 -λ 2 )D 21 = 1 + λ 1 2 u (1) (x) S 12 + ΓP 22 + (1 -λ 1 )D 12 + (1 -λ 2 ) Q 22 - 1 2 u (2) (x) = 1 + λ 2 2 u (2) (x).
(2.21)

Simplifying leads to the nal formulation

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ P 11 + ΓS 21 + (1 -λ 1 )Q 11 + (1 -λ 2 )D 21 = u (1) (x) S 12 + ΓP 22 + (1 -λ 1 )D 12 + (1 -λ 2 )Q 22 = u (2) (x) (2.22)
where the rst equation of the system is obtained for 1) and u (2) are known, the velocity within the drops or in the ambient uid can be determined if desired by solving the equations (2.17) for the regions of interest.

x ∈ C 1 ∧ y ∈ C 1,2 , while the second is for x ∈ C 2 ∧ y ∈ C 1,2 . Once u (

Thin viscous-sheet theory

A lithospheric plate is ≈ 100 Km thick and ≈ 1, 000 -10, 000 km wide. It moves and interacts with neighboring plates, deforming in a purely viscous manner on The midsurface has inclination θ(s) from the horizontal and curvature K(s) = dθ ds. In the most general case, inertialess ow in the sheet is driven both by its buoyancy and by externally applied normal P ± (s) and tangential T ± (s) stresses.

geological time scales. Due to these features, its long-term and large-scale dynamics can be investigated with the help of thin viscous-sheet theory [START_REF] England | A thin viscous sheet model for continental deformation[END_REF], 1983;[START_REF] Ribe | The dynamics of thin shells with variable viscosity and the origin of toroidal ow in the mantle[END_REF][START_REF] Weinstein | Thermal convection with non-Newtonian plates[END_REF][START_REF] Ribe | Bending and stretching of thin viscous sheets[END_REF][START_REF] Ribe | A general theory for the dynamics of thin viscous sheets[END_REF].

In this section I will show several results that have been systematically adopted in this thesis. For further details, refer to Ribe (2001).

Exact governing equations

Figure 2.6 shows a characteristic 2-D conguration of a thin sheet of a highly viscous uid. The sheet is assumed Newtonian, with a constant viscosity η, and is denser by an amount δρ than the ambient uid in which it is immersed. It has thickness H(s), variable along the arclength coordinate s of the sheet's midsurface, and it extends over a characteristic horizontal length scale L, such that ε ≡ H L ≪ 1, where denes the slenderness of the sheet. The s-and z-directions constitute the local reference frame relative to the sheet's midusrface which lies at z = 0, halfway between the sheet's upper and lower surfaces. The midsurface has inclination θ(s) from the horizontal and curvature K(s) = dθ ds. The inertialess ow within the sheet has tangential component u(s, z) and normal component w(s, z). The velocities at the midsurface are U (s) = u(s, 0) and W (s) = w(s, 0). In the most general case, the creeping ow within the sheet is driven both by its buoyancy (2.24a)

σ zs = η 1 h ∂w ∂s + h ∂ ∂z u h , (2.24b) 
where h = 1 -zK and g s s + g z z = -g(s sinθ + z cosθ), where s and z are unit vectors in the s-and z-directions.

Assuming for simplicity that the forces exerted on the sheet by the ambient uid are negligible relative to the bouyancy force, we integrate the momentum equations (2.23b) and (2.23c) across the sheet, obtaining the global force balances (2.25a)

dQ ds + KN = -Hg z δρ, (2.25b) 
where

N = H 2 -H 2 σ ss dz, Q = H 2 -H 2 σ zs dz (2.26)
are the `resultants' of the bre stress σ ss and the shear stress σ zs , respectively. Next, multypling (2.23b) by z and then integrating, we get an expression describing the global torque balance

dM ds -Q = 1 12 KH 3 g s δρ ⇒ dM ds ≈ Q (2.27)
where we have used KH ≪ 1. The quantity M is the rst moment of the bre stress

M = H 2 -H 2 zσ ss dz,
(2.28) where

∆ ≡ U ′ -KW, ω ≡ W ′ + KU.
(2.32)

The parameters ∆ and ω are the basic quantities that characterize the midsurface deformation. Specically, ∆ measures the rate of stretching of the midsurface while ω measures its rate of rotation.

With the denitions (2.32) in hand, we seek now for the constitutive relations describing the stretching (N) and the bending (M) moments of a thin viscous sheet. We begin by assuming that the deformation of the thin sheet is dominated by the component σ ss of the stress tensor, such that σ sz and σ zz can be neglected and set to zero. Recalling the denitions given in (2.24), the rst hypothesis

σ sz = 0 implies ∂ ∂z u h = - 1 h 2 ∂w ∂s .
(2.33)

Setting w = W (s) on the RHS of (2.33) and considering the rst-order Taylor expansion of h -2 around the point z = 0,

h -2 = 1 1 -2zK -(zK) 2 ≈ 1 + 2zK + O(zK) 2 , (2.34) eq. (2.33) becomes ∂ ∂z u h = -W ′ (1 + 2zK).
(2.35)

Now we integrate (2.35) subject to u(0) = U and keep only terms that are linear in z, to obtain

u = U -(W ′ + KU )z + O(z 2 ) ≡ U -ωz.
(2.36)

The next step is to exploit the vanishing of σ zz = 0 to get an expression for the pressure p = 2η ∂w ∂z .

(2.37) (2.38)

As done before, we set w = W (s) on the RHS of the equation and, noticing that

h -1 ≈ 1 + zK + O(zK) 2 , we obtain ∂w ∂z = (KW -∂u ∂s)(1 + zK).
(2.39)

Finally, using (2.36) for ∂u ∂s and dropping the quadratic terms in z we get

∂w ∂z = -∆(1 + zK) + ω ′ z + O(z 2 ) ≡ -∆(1 + zK) + ω ′ z,
(2.40) which when substituted in (2.37) yields

p = 2η [-∆(1 + zK) + ω ′ z] .
(2.41)

We can now use (2.41) and (2.36) in the expression for σ ss , obtaining

σ ss = -p + 2η h ∂u ∂s -Kw ≈ -p + 2η ∂u ∂s -KW (1 + zK)
(2.42)

≈ 4η(1 + zK)∆ -4ηω ′ z + O(z 2 ).
(2.43) Thus, the stretching and the bending moments of the thin viscous sheet are

N = H 2 -H 2 σ ss dz ≈ 4ηH∆ (2.44a) M = H 2 -H 2 zσ ss dz ≈ - ηH 3 3 (ω ′ -K∆) ≡ - ηH 3 3 K, (2.44b)
where we introduce in (2.44b) the `curling rate' K, which measures the rate of change of curvature of the sheet's midsurface.

Viscous dissipation and bending length

Viscous sheets deform by some combination of bending and stretching. For some applications such as subduction modeling, it is interesting to understand which mechanism of deformation dominates. This can be done by calculating separately the rates of energy dissipation associated with deformation by bending and 2.3. Thin viscous-sheet theory 2. STOKES FLOW Force balance:

N ′ -KQ = -Hg s δρ, Q ′ + KN = -Hg z δρ
Torque balance:

M ′ = Q Midsurface kinematics: ∆ = U ′ -KW , ω = W ′ + KU , K = ω ′ -K∆
Stretching moment:

N = 4ηH∆
Bending moment:

M = -ηH 3 K 3
Viscous dissipation due to stretching:

φ s = 4ηH∆ 2
Viscous dissipation due to bending:

φ b = ηH 3 K2 3
Evolution of the midsurface shape:

Dx Dt = U s + W z
Evolution of the thickness:

DH Dt = -H∆
stretching. Given the thin sheet approximation and the consequent negligible contribution of shear strains to the dissipation, the calculation turns out to be quite simple. In fact, taking into account the energy balance of an inertialess ow (1.11) and given the expression for e ss that one obtains from (2.42), the dissipation rate per unit volume of the sheet is to lowest order

4ηe 2 ss ≈ 4η ∆ -z K 2 .
(2.45)

Integrating (2.45) across the sheet, we obtain the dissipation rate per unit area of the midsurface

φ(s) = 1 3 ηH 3 K2 + 4ηH∆ 2 = φ b + φ s , (2.46)
which is the sum of two contributions associated with deformation by bending (φ b ) and stretching (φ s ). Eq. (2.46) is the last expression we need in order to fully characterize the dynamics of a thin viscous sheet. The complete set of thin-sheet equations obtained in the present section is summarized in table 2.1. The derivation of the last two expressions describing the evolution of the sheet's geometry can be found in 6 of [START_REF] Ribe | Bending and stretching of thin viscous sheets[END_REF].

To conclude this chapter we show how we can exploit the formula for the bending moment to determine the crucial length scale characterizing the bending 2. STOKES FLOW 2.3. Thin viscous-sheet theory response of a subducting lithospheric plate. Indeed, equation (2.44b) shows that M (s) ∼ K(s). Therefore, we might compute K(s) along the sheet's midsurface in order to see if the bending moment concentrates in some specic portion of the sheet. This is done in gure 2.8a, which refers to the subduction model investigated in [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF]. The gure reports the variation of the normalized curling rate K as a function of the dimensionless arclength s h of a subducting sheet whose thickness is h. Each curve refers to a particular value of the viscosity ratio (γ) between the subducting sheet and the surrounding uid. The plot clearly highlights that there is a zone along the midsurface where the function K is much higher than in the rest. This is the portion of the sheet where signicant bending occurs, and its characteristic length scale is called the`bending length' b [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF]. Its precise mathematical denition is illustrated in gure 2.8a for the case γ = 10 2 : it is the distance from the rightmost end of the sheet's midsurface to the rst zero of K(s) to the left of the point where this function has its global minimum. In geodynamical terms, b is the sum of the slab length plus the length of the region seaward of the trench where exural bulging occurs (gure 2.8b). The important point here is that the bending length b is the proper length scale characterizing the bending response of a subducting plate deforming under the action of gravity. This follows from the fact that unlike in an elastic body, where M is proportional to the local curvature K, in a viscous sheet M is proportional to the rate of change of the curvature K. In the elastic case, the bending response is properly described by a purely geometric length scale such as the minimum radius of curvature (R min in gure 2.8b). On the contrary, in the viscous case we need a `dynamic' length scale as the bending length which arises only after we actually solve the equations describing the system. For more details on this last argument, refer to 8 of [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF]. Here we investigate the mechanics underlying the phenomenon of subduction using a 2-D numerical model of free subduction in which a Subducting Plate (SP) and an Overriding Plate (OP) interact across a relatively weak interface. After introducing the model setup and the numerical technique adopted in the work (the Boundary Element Method, BEM), we set the stage with an overview of time-dependent subduction without (SP Only case) and with (SP+OP case) an OP. This section makes clear the critical inuence of the subduction interface strength which, unlike many previous studies (e.g. [START_REF] Van Hunen | A thermo-mechanical model of horizontal subduction below an overriding plate[END_REF][START_REF] Babeyko | High-resolution numerical modeling of stress distribution in visco-elasto-plastic subducting slabs[END_REF][START_REF] Rodríguez-González | The role of the overriding plate thermal state on slab dip variability and on the occurrence of at subduction[END_REF]Holt et al., 2015a), is treated here as a variable. Next, we exploit the quasi-static character of Stokes ow to examine instantaneous solutions of the model equations, for both the SP Only and the SP+OP cases. A key result here is that the surface speed of the SP always depends logarithmically on the ratio of the surface plate length to the slab length. We also determine a scaling law for the convergence rate of the sinking slab as a function of the exural stiness of the SP and the dimensionless subduction interface thickness. We then turn to an analysis of the deformation state of the OP, using instantaneous BEM solutions interpreted in terms of thin viscous-sheet theory. These solutions show that the deformation of the OP is dominated by compression, bending, and (in some cases) extension as one moves from the forearc to the backarc region. Finally, we apply our results by using BEM solutions with realistic geometry to infer the long-term strength of the subduction interface in 

Lubrication layer thickness between the plates [m]

h SP

SP thickness [m]

h OP

OP thickness [m]

L SP

SP length [m]

L OP OP length [m] Slab length [m] θ 0 Initial dip of the slab's tip [-] s Arclength coordinate along SP midsurface [m] s OP Arclength coordinate along OP midsurface [m] C 1 SP contour [m] C 2 OP contour [m] S 1 SP area [m 2 ] S 2 OP area [m 2 ] η 0 Ambient uid viscosity [Pa s] ρ 0 Ambient uid density [kg m -3 ] ρ 1 SP density [kg m -3 ] η 1 SP viscosity [Pa s] λ 1 ≡ η 1 η 0 ; SP viscosity contrast [-] ρ 2 OP density [kg m -3 ] η 2 OP viscosity [Pa s] λ 2 ≡ η 2 η 0 ; OP viscosity contrast [-] b Bending length [m]
is initially zero at both s = L SP and s = L SP + .

The OP comprises at t = 0 a central at portion with constant thickness h OP and length L OP , bounded on the right by a rounded end and on the left by a triangular portion separated from the SP by a gap (lubrication layer) of constant width d 2 . The exact shape of the triangular piece depends on the choice of and d 2 . Sharp corners that could reduce the accuracy of the numerical method are avoided by rounding two of the corners of the triangular piece. The arclength coordinate on the OP's midsurface is

s OP ∈ [0, L OP ].
Referring again to gure 3.1, we point out that another lubrication layer of thickness d 1 is present above the SP and the OP. Its role is to allow an `earthlike' lateral movement of the plates. According to lubrication theory, strong normal stresses develop in the thin layer and resist the vertical motion of the plates when they are subjected to a vertical force. In the case of the negatively buoyant SP, an upward-directed normal stress ∼ h SP g∆ρ 1 is set up in the layer and exactly compensates the negative buoyancy of the at portion of the plate, which is then 3.2. BEM formulation 3. MECHANICS OF SUBDUCTION free to move laterally in response to slab pull [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF]. The situation is opposite for a positively buoyant OP: downward-directed normal stresses ∼ h OP g∆ρ 2 prevent the OP from rising towards the free-slip surface, and allow it to deform freely in response to its buoyancy and the inuence of the nearby slab.

BEM formulation

Because inertia is negligible in the mantle, the ow within the plates and outside them is governed by the Stokes equation of motion. Stokes ow problems with deformable uid/uid interfaces can be eciently solved using the boundary-element method (BEM). This numerical technique is based on the boundary-integral representation of Stokes ow derived in 2.2. The method is especially well adapted to tracking uid-uid interfaces having continuous curvature, like the ones shown in gure 3.1. The BEM has several advantages: unwanted wall eects are entirely absent, the dimensionality of the problem is reduced by one (from 2-D to 1-D in our case), and it is easy to obtain high (fourth-order) accuracy of the solutions for the velocity at each time step.

The model problem sketched in gure 3.1 comprises three distinct uid regions, two of which are singly connected. For this geometry, the (dimensionless) boundary-integral representation of the ow is the one given in eq. (2.17), where the dimensionless variables are now dened as follows:

(x, ŷ) = h -1 SP (x, y), û(i) = η 0 h 2 SP g∆ρ 1 u (i) (i = 1, 2).
(3.2)

When interested in time dependent solutions, we advance in time the material points x ∈ C 1 and x ∈ C 2 according to:

dx dt = u(x) (3.3)
where the dimensionless time is

t = h SP g∆ρ 1 η 0 t.
(3.4)

As described in 2.2.1, in order to obtain the ow eld of our subduction model, we rst need to compute the interfacial velocities of the plates solving the coupled integral equations (2.22). For the numerical resolution, the contours C 1 and C 2 are discretized using three-node curved elements C n 1 (n 1 = 1, 2, ..., N 1 ) and 3. MECHANICS OF SUBDUCTION 3.3. Unsteady subduction C n 2 (n 2 = 1, 2, ..., N 2 ), over each of which y, n and u vary as

y(ξ) = ∑ 3 m=1 φ m (ξ)y m , n(ξ) = ∂ ξ y × e 3 ∂ ξ y × e 3 , u(ξ) = ∑ 3 m=1 φ m (ξ)u m , (3.5) 
where y m are the (known) nodal coordinates, u m are the (unknown) nodal velocities and φ m (ξ) are quadratic basis functions dened on a master element ξ ∈ [-1, 1]. Substitution of (3.5) into (2.22) transforms the integrals over C 1 and C 2 into sums over the elements C n 1 and C n 2 , each of which is evaluated on ξ ∈ [-1, 1] using 6-point Gauss-Legendre quadrature. The resulting system of 4(N 1 +N 2 ) coupled linear equations is solved iteratively using the biconjugate gradient algorithm of Press et al. (1992), yielding the nodal velocities u m with fourth-order-accuracy. Finally, the evolution in time of the shape of the plates is obtained by solving (3.3) with a second-order Runge-Kutta (midpoint) method.

We emphasize that the element size (mesh resolution) is variable along the two contours, being smaller along the portions that adjoin the thin lubrication layers. This is done in order to avoid the loss of numerical accuracy that occurs when the distance between the observation point y and the source point x of the Green's functions is smaller then the element size (see Appendix C for more details).

To test the accuracy of the model, we ran simulations for a geometry comprising two eectively solid (λ 1 = λ 2 = 10 5 ) cylinders of radius R with Γ = 1, located at the same depth and separated by a horizontal distance d 2 . We computed the horizontal (u 1 ) and vertical (u 2 ) components of the velocity of the cylinders as well as their spin ω, as functions of increasing d 2 . In the limit d 2 R ≫ 1, u 1 → 0 and ω → 0, and u 2 approaches the prediction of the analytical solution of [START_REF] Wakiya | Application of bipolar coordinates to the two-dimensional creeping motion of a liquid. ii. Some problems for two circular cylinders in viscous uid[END_REF] for a solid cylinder sinking normal to a free-slip surface.

Unsteady subduction

We begin our study with an overview of the qualitative features of the temporal evolution of the system. For reference, we rst examine the unsteady subduction of an isolated SP (from now on the SP Only case), adding the OP later to see how its presence inuences the dynamics. We shall refer to the latter case as the SP+OP case.

Figure 3.2 shows the initial and nal states of three simulations starting from initial congurations given in table 3.2. Figure 3.2a shows the subduction of an isolated SP to t = 21.5, at which time the slab's tip is at a depth 6.8h SP Time evolution of free subduction for dierent congurations: (a) SP Only case, (b) SP+OP case with d 2 h SP =0.2, (c) SP+OP case with d 2 h SP =0.08. In all cases the thin solid line represents the initial conguration of the system specied in table 3.2, while the thick solid line corresponds to the nal state of the sheets at the dimensionless time t = th SP g∆ρ 1 η 0 = 21.5. The vertical coordinate x2 of the deepest point on the slab and its equivalent in km are indicated. The inset of (c) is a zoomed-in view of the nal state of the system.

(corresponding to a dimensional depth 660 km for h SP = 100 km and d 1 h SP = 0.2.)

We then add the OP and run the simulation for the same dimensionless time t = 21.5. The cases shown in gs. 3.2b and 3.2c dier only in the thickness d 2 of the lubrication layer between the plates, which is 0.2h SP for the former case and 0.08h SP for the latter.

Comparing the SP Only case and both SP+OP cases, we immediately see that the presence of the OP leads to an overall slowing down of the subduction process, as indicated by the reduced convergence rate and trench rollback speed. Moreover, the slowing-down is more pronounced for the smaller lubrication gap thickness. This is indicated by the depths reached by the slabs at t = 21.5, which are 340 km for d 2 h SP =0.2 and 275 km for d 2 h SP =0.08. Furthermore, the OP moves seaward as subduction proceeds, indicating the strong mechanical coupling of the OP and the SP across the lubrication gap separating them.

A useful parameter for illustrating the evolution of subduction is the length s of the sheet's midsurface that is below the depth x 2 = -h SP -d 1 of the base of the plate. The derivative d s dt is then the instantaneous convergence rate. Figure 3.3(a) shows ˆ s = s /h SP for the three cases of gure 3.2. The convergence rate is an increasing function of d 2 at all times. This reects the inuence of the viscous drag exerted on the SP by the subduction interface, which increases as d 2 decreases for a given magnitude of the relative tangential velocity between the SP and the OP. The subduction interface drag force works against the slab pull, leading to slower subduction. This eect is emphasized in gure 3.3b, which shows the instantaneous convergence rate (d s dt) t=0 at the initial time as a function of the dimensionless thickness of the subduction interface. The convergence rate strongly decreases as the subduction interface becomes thinner.

The dominant role of the parameter d 2 h SP becomes even clearer if we examine the inuence of the geometry and physical properties of the OP on the evolution of s . To do so, we x the value of d 2 h SP = 0.2 and we explore indivdually the eect of the OP length

L OP h SP ∈ [8 -32], of its thickness h OP h SP ∈ [0.75 -1.25],
of its viscosity λ 2 ∈ [150 -600] and of its density Γ ∈ [-0.5 -0]. It arises that all the dierent curves s (t) remain identical to the one depicted in g. 3.3(a), thus proving that none of the OP properties listed above have any consequence on the convergence rate. Only the thickness h OP shows a certain eect for long times ( t ≥ 10), with a higher value of h OP resulting in a lower value of the subducted length ˆ s and viceversa. However, this variation is small (2-3%) compared to the eect of varying d 2 h SP , which is therefore the dominant parameter controlling s (t).

To conclude this section, we highlight an interesting feature of the geometry of the lubrication gap at the end of our SP+OP simulations. While the gap initially has a constant thickness d 2 , it evolves during subduction so that it is narrower at the bottom than at the top (inset of 3.2c). This aspect is quantied in gure 3.4 where we track the time evolution of the maximum (d max 2

) and minimum (d min 2 ) thickness of the subduction interface for the model of gure 3.2c. The lubrication layer quickly widens at the top (increasing d max 2

) while thinning at the bottom (decreasing d min 2 ). This means that subduction of the SP drags uid from the wider to the narrower part of the gap. According to lubrication theory, this is precisely the condition required to build up a positive excess pressure in the gap that keeps the two plates apart.

3.4

Thin-sheet analysis: SP kinematics

We begin by recalling the property of instantaneity of slow viscous ow with negligible inertia. A consequence of this property is that the dynamics of the two 3. MECHANICS OF SUBDUCTION 3.4. Thin-sheet analysis: SP kinematics interacting plates are entirely determined at each instant by the geometry of the system at that instant and by the uid properties (i.e. density and viscosity of the ambient uid and of the plates). Thus, in order to study the mechanics of SP-OP interaction it makes sense rst to examine quasi-static congurations, without the added complexity of the purely kinematic time evolution. Following this approach, in this section and in 3.5 we shall refer only to instantaneous solutions of the model (eq. (2.17)) whose geometrical parameters (e.g. θ 0 , , L SP , h OP etc.) will be varied in order to represent dierent subduction zones at some arbitrary instant in time.

In order to better highlight the eect of the OP, we rst review the case of free subduction of an isolated SP, recalling existing results and obtaining some new ones.

3.4.1

Instantaneous solutions: SP only

The crucial dimensionless parameter that controls the free subduction of an isolated SP can be determined using a simple scaling analysis of the forces acting on the portion of the SP that deforms by bending [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF]. The analysis is carried out for a subducting plate whose leading end dips at an angle θ 0 and sinks with a vertical velocity V Sink . Three forces act on the bending portion of the plate: the negative buoyancy of the slab, the internal viscous resistance to bending, and the traction applied by the external uid. Balancing the negative buoyancy and the external traction yields a typical sinking speed V Sink ∼ V Stokes , where

V Stokes = h SP g∆ρ 1 η 0 .
(3.6)

The characteristic ratio of the internal viscous resistance to the external traction is the `exural stiness'

St = η 1 η 0 h SP b 3 , (3.7)
where b is the `bending length', dened as the distance from the leading end of the SP's midsurface to one characteristic zero of the function K(s) that quanties the rate of curling of the SP's midsurface. In geodynamical terms, b is the sum of the slab length and the length of the region seaward of the trench where exural bulging occurs (see 2.3.3 for details). [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF] showed that the sinking speed V Sink obeys a scaling law of the form which states that two SPs are dynamically similar if they have the same values of St and θ 0 . The requirement that θ 0 be the same for both SPs is the condition for geometrical similarity of the slab's midsurface. Numerical solutions [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF] show that V Sink does not depend on L SP , which implies that geometrical similarity of the midsurface of the whole plate is not required.

V Sink V Stokes = fct(St, θ 0 ), (3.8 
As an illustration of the scaling law (3.8), g. 3.5 shows V Sink V Stokes vs. St for θ 0 = 30 ○ , obtained from BEM solutions for dierent values of d 1 h SP , h SP , and η 1 η 0 . All the points collapse onto a single master curve, validating (3.8). The master curve has two distinct limits. In the `Stokes' limit St ≤ 1, the slab's negative buoyancy is balanced by the external traction. The slope of the curve is zero, meaning that the sinking speed is controlled entirely by the viscosity η 0 of the ambient uid. In the `exural' limit St ≫ 1, by contrast, the negative buoyancy is balanced by the internal resistance to bending. The slope of the curve is -1, and the sinking speed is controlled by the viscosity η 1 of the SP.

With the denition of St in hand, we now determine a scaling law for the plate speed U SP , dened as the average horizontal velocity of the midsurface of the at portion of the SP. Unlike V Sink , U SP depends on the plate length L SP , because a longer plate is subject to a greater drag force from the underlying mantle. Accordingly, the analog of the scaling law (3.8) is

U SP V Stokes = fct St, θ 0 , L SP .
(3.9) h =7 ( , , ), h =5 ( , , ) and λ=10 2 ( , ), λ=10 3 ( , ), λ=10 4 ( , ).

Both θ 0 and L SP appear in the list of arguments because both are necessary to dene the geometrical similarity of the sheet's whole midsurface.

Guided by the proposed scaling law (3.9), we plot in g. 3.6 the dimensionless SP speed U SP V Stokes as a function of L SP for several values of St and θ 0 = 30 ○ . The exural stiness St was adjusted by varying both the viscosity ratio λ 1 and the slab length , which directly aects b . Three aspects of the results are noteworthy. First, the six curves in g. 3.6 are nonintersecting and appear from top to bottom in order of increasing St, which validates the assumed form (3.9) of the scaling law. Second, each curve on this semi-log plot is a nearly perfect straight line, indicating that the plate speed depends logarithmically on the plate length for a wide range of values of St. Third, the transition from the Stokes to the exural limit is manifest in the decreasing slopes of the curves from top to bottom. For low values of St, an increase of L SP increases the drag force on the base of the plate, and therefore strongly aects U SP since it is the external viscosity η 0 that governs the plate's dynamics. On the other hand, for St ≫ 1 U SP becomes much less sensitive to L SP since it is the internal viscosity η 1 (and no longer the basal drag) that controls the plate motion.

Both the slope α and the intercept β of the lines in g. 3.6 obviously depend the numerical solutions for U SP V Stokes collapse onto the universal curve (3.10) to within an error of ± 5 %.

To conclude our analysis of the SP Only case, we quantify the convergence speed V Conv ≡ d s dt. A numerically stable value of this speed is obtained by running the code for three time steps and dening V Conv as the best-tting slope of the curve s (t). The results are shown in g. 3.8. The numerical solutions show that V Conv , like V Sink , does not depend on the plate length L SP . However, we nd that V Conv depends on the ratio h. The scaling law therefore has the general form

V Conv V Stokes = fct St, θ 0 , h .
(3.11)

The presence of h in the list of arguments means that dynamical similarity depends on the geometry of the whole slab, and not just the geometry of its midsurface. 

Instantaneous solutions: SP+OP

The next task is to determine how the presence of the OP inuences the reference scaling laws (3.9) and (3.11) for the SP alone. In order to reduce the number of parameters involved, we shall vary only the OP geometry and the width of the lubrication layer between the two plates, leaving xed the OP viscosity ratio λ 2 = 10 4 (quasi-rigid OP) and its buoyancy ratio Γ = 0 (neutrally buoyant OP). This choice is partly motivated by previous results showing that the viscosity and buoyancy of the OP play a crucial role in determining its stress state but only weakly inuence the SP kinematics (Holt et al., 2015a). We begin by examining the inuence of dierent geometrical parameters on the dimensionless plate speed U SP V Stokes , following the approach used to build gure 3.6. However, we now x both the dip of the slab (=30 ○ ) and its viscosity ratio (=10 3 ), which give a nearly constant value of St for all congurations having the same slab length. While St depends somewhat on the OP thickness and the thickness of the lubrication layer between the two plates, the dependence on h SP and λ 1 is much stronger, and so it is plausible to consider St constant unless otherwise specied. Fig. 3.9 shows the dimensionless plate speed The rst noteworthy aspect of g. 3.9 is that all the curves are straight lines. The dimensionless plate speed therefore depends logarithmically on L SP , just as it did for the SP Only case. We nd that this dependence is general, independently of the geometry of the system.

Next, we focus on the two solid lines of gure 3.9 labeled as SP+OP Ref and SP Only, whose parameters are given in table 3.3. We see that the presence of the OP decreases U SP , but more strongly for a shorter SP. This means that the dimensionless SP speed depends on the ratio L SP L OP of the lengths of the two plates. This is conrmed by comparing the SP+OP Ref curve with the curve for a shorter overriding plate (L OP h SP = 10). We choose the point with L SP = 5.45 on the SP+OP Ref curve (black star), and draw a horizontal line that meets the curve for L OP h SP = 10 at the point with L SP = 3.15 denoted by the white star. We nd that the two starred points have similar values of the ratio

L SP L OP ∈ [2.2, 2.4].
Turning to the dependence of U SP on the other geometrical parameters, we see rst that it is essentially independent of h OP . Next, the normalized SP speed U SP V Stokes increases when the slab length decreases from 7h SP to 5h SP . This is surprising at rst sight, since for a SP alone a shorter (hence stier) slab is associated with a lower value of U SP V Stokes (g. 3.6). The cause of this counterintuitive behavior lies in the presence of the OP, whose trenchward velocity decreases when h SP decreases (gure 3.10a). Since the SP and the OP are strongly coupled by the lubrication force in the gap between them, the SP necessarily moves faster (to the right in g. 3.1) when the OP moves more slowly (to the left).

Finally, we see in g. 3.9 that an increase in the lubrication gap thickness d 2 from 0.1h SP to 0.2h SP increases U SP by a large factor ∼ 1.6. This occurs because increasing d 2 decreases the lubrication force at the subduction interface that is responsible for the coupling between the two plates.

In view of the discussion above, we can nally write the scaling law for the SP speed in the presence of an OP in the general form

U SP V Stokes = fct St, θ 0 , L SP , h SP , L SP L OP , d 2 h SP .
(3.12)

Obviously a scaling law with six arguments is too complicated to explore fully, and so we content ourselves with the results presented above.

Before turning to an examination of the convergence rate V Conv , we mention two interesting features that have emerged from our analysis of the SP speed. The rst concerns the driving mechanism for the motion of the OP. Two forces act on the OP: the tractions applied by the subduction-induced ow beneath its base, and the lubrication force in the subduction interface. The subduction-induced tractions are obviously the driving force, as conrmed by the fact that the OP speed is an increasing function of the parameter h SP that represents the importance of slab pull (g. 3.10a). Because the sum of the forces is zero, the lubrication force must necessarily be a resisting force. This is conrmed by the fact that U OP decreases as the subduction interface becomes narrower (g. 3.10a). Figure 3.11 shows the subduction-induced ow for h SP = 7 along with the velocity at the lower surface of the OP. The vertical gradient of the horizontal velocity near the SP corresponds to a shear stress that drives the OP leftward.

The second feature concerns the dependence of U SP on the interplate gap width for values d 2 > 0.2h SP . Fig. 3.10b shows the dimensionless SP speed U SP V Stokes as a function of d 2H h SP for the reference case, where d 2H is the horizontal separation between the SP and the OP. The dashed line shows the value of U SP V Stokes for the corresponding SP Only case. Surprisingly, we nd that the presence of the OP slows down the SP only for small separations d 2H h SP ≤ 0.65. For larger separations, the presence of the OP makes the SP move faster by up to 75%. In the limit d 2H h SP → ∞ the SP Only case is recovered.

We now turn to the inuence of the OP on the dimensionless convergence speed V Conv V Stokes . Numerical solutions show that V Conv is controlled only by the geometries of the slab's midsurface and the lubrication gap, and is independent of L SP , L OP , and h OP . In the presence of the OP, therefore, the generalized form of 

Thin-sheet analysis: OP deformation

In this section we focus on the subduction-induced deformation of the OP. As in the previous section, we consider only instantaneous solutions of the Stokes equations for the geometry shown in g. 3.1. To simplify the notation, the arclength coordinate s OP will be denoted by s.

To understand the deformation of a thin viscous sheet, it suces to characterize the deformation of its midsurface. To do this, we solve equation (2.17) for points x located on the OP midsurface to obtain the midsurface velocity U (s)s + W (s)z, where s and z are unit vectors parallel to and perpendicular to the midsurface, respectively. The deformation of the midsurface is then characterized by the rate of stretching ∆ and the rate of change of curvature (`curling rate') K, which for a at sheet are

∆ = U ′ , K = W ′′ , (3.14)
where primes denote d ds. The quantities ∆ and K measure the rates of deformation of the midsurface by stretching (or shortening) and by bending, respectively. Useful measures of the intensities of the stretching and bending deformations of a thin sheet are the rates of viscous dissipation of energy associated with each.

3. MECHANICS OF SUBDUCTION 3.5. Thin-sheet analysis: OP deformation Per unit area of the OP midsurface, these are

φ s = 4η 2 h OP ∆ 2 , φ b = 1 3 η 2 h 3 OP K2 , (3.15)
where the subscripts s and b refer to stretching/shortening and bending, respectively. The relative magnitudes of φ b (s) and φ s (s) indicate which mode of deformation is dominant as a function of arclength. We note for future reference that

φ b = -M K, M = - 1 3 η 2 h 3 OP K, (3.16)
where M is the bending moment.

In the rest of this section, all quantities referred to are dimensionless, having been nondimensionalized using h SP as the length scale and g∆ρ 1 h 2 SP η 0 as the velocity scale. Consequently, the rates of viscous dissipation of energy will scale as:

φ = η 0 h 3 SP (g∆ρ 1 ) 2 φ.
(3.17)

Our rst task is to explore how the properties of the SP inuence the deformation of the OP. Our numerical simulations show that the OP deformation depends neither on L SP nor on L OP , and so we set these arbitrarily to L SP = L OP = 16h SP . We then x the viscosity ratios of both plates (λ 1 = λ 2 = 350), the OP thickness (h OP = h SP ) and the interplate gap width (d 2 h SP = 0.1), which allows us to focus on the SP dip θ 0 and slab length h SP . Fig. 3.13, at the top, shows K(s) and ∆(s) as function of θ 0 for h SP = 7 and Γ = 0. The steeper the subduction, the higher the magnitude of the bending moment in the OP. However, the length of the portion of the OP where the bending moment is signicant (= bending length) is independent of θ 0 . The stretching rate ∆ does not vary monotonically with the slab dip: its magnitude increases from θ 0 = 30 ○ to 60 ○ , and then decreases from 60 ○ to 90 ○ . For θ 0 = 30 ○ there is weak backarc extension for s > 2.7.

The bottom part of g. 3.13 shows K(s) and ∆(s) as functions of h SP for θ 0 = 30 ○ and Γ = 0. The magnitude of the bending moment does not vary signicantly with the slab length, but the bending portion of the OP becomes longer as the slab length increases. The magnitude of the compression ∆ < 0 is greater for longer slabs, while shorter slabs cause weak extension in the OP. The shorter the slab, the longer the portion of the OP deforming in extension (s > 1.5 for h SP = 5, s > 2.7 for h SP = 7.) At the top of g. 3.14 are shown K(s) and ∆(s) for two values of Γ, θ 0 = 30 ○ , and h SP = 5. In the previous gures, we saw that a short and shallowly dipping slab leads to relatively small bending and stretching deformations of the OP. However, the same two conditions are precisely those that lead to back-arc extension (around 300 km from the trench assuming h SP = 100 km). Fig. 3.14 (top) shows that the transition between compression and extension is further encouraged by OP buoyancy. For example, when Γ = -0.25 (∆ρ 2 = -18 kg/m 3 assuming ∆ρ 1 = 70 kg/m 3 ), the stretching rate curve shifts upward and the length of the extension zone increases. The curling rate K, however, is unaected. Fig. 3.15 shows the rates of energy dissipation φ b and φ s for the congurations of the top part of g. 3.14. The deformation changes from compression-dominated close to the trench to bending-dominated further away, a general pattern that we nd for many choices of the dimensionless parameters of the model. Only for steep angles of subduction and (mainly) long slabs is the deformation of the OP almost exclusively compression-dominated. For the particular case of a positively buoyant OP (Γ < 0), g. 3.15 shows that there is an additional extension-dominated domain in the backarc region beyond the bending zone.

To conclude this section, we examine the inuence of the thickness of the OP and of the interplate gap on the OP deformation. As one would expect, varying the OP thickness within the range h OP ∈ [0.75, 1.25] changes K and ∆ substantially, simply because the resistance of the OP to deformation is proportional to h OP (for stretching) and h 3 OP (for bending). As for the eect of the subduction channel width d 2 , it is signicant only very close to the trench. To show this, we extend leftward the OP midsurface (gure 3.1) into the triangular endpiece, which allows us to calculate K and ∆ for -1 ≤ s ≤ 0. The bottom part of g. 3.14 shows K and ∆ for three dierent values of d 2 h SP for a case with h SP = 5, θ 0 = 30 ○ and Γ = 0. The dierences among the three curves are conned essentially to -1 ≤ s ≤ 1. In the near-trench (forearc) region -1 ≤ s ≤ 0, both K and ∆ increase in magnitude as d 2 h SP diminishes, reecting the increase of the lubrication pressure in the subduction interface. The inuence of the lubrication force on the deformation of the OP essentially disappears beyond s = 1.

3.6

Geophysical application: evaluation of the interface viscosity of the central Aleutian slab

In this section we apply our BEM model to a real subdction zone in order to constrain the eective value of the strength of the subduction interface. We start by dening the dimensionless interface strength of a subduction zone as

γ = η SI η 0 h SP d 2 , (3.18)
where η SI is the viscosity of the uid in the subduction interface channel. Equation (3.18) arises from the denition of the shear force acting on the SP across the subduction interface, and implies that the interface strength can be increased either by increasing its viscosity or decreasing its thickness d 2 . In our model, η SI ≡ η 0 is constant, but this does not matter because only the ratio η SI d 2 is dynamically signicant. Thus we can vary the strength of the subduction interface by varying d 2 alone. The next step is to choose a subduction zone that can be reasonably approximated by our model. Perusing the database of Lallemand et al. (2005), we decided to focus on the central Aleutian subduction zone. There are two main reasons for this choice. First, this portion of the Aleutian slab is far from the edges of the subduction zone, making it reasonable to use a 2-D model with no toroidal ow. This approximation is validated by the similarity of the geometries and subduction rates among the three neighboring central Aleutian transects listed in table 3.4. Second, the central Aleutian slab extends to depths of only 500-550 km, and so has not yet interacted with a potential viscosity jump at the 660 km discontinuity. Our model with a constant mantle viscosity is therefore reasonable for subduction in the Aleutian region. The particular value of the viscosity that we choose is 3.6. Geophysical application 3. MECHANICS OF SUBDUCTION Table 3.4. Geometry and convergence rates of the 3 transects of the central Aleutian slab derived from Lallemand et al. (2005). We assume h SP ∼ 100 km. The last line (`BEM-segment') describes the conguration adopted for the simulation and it reports the corresponding value of V Conv adopted for the comparison. Having selected the subduction zone, we specify the corresponding conguration of our BEM model by averaging the properties given for the three transects CALE4, CALE5 and CALE6 tabulated by Lallemand et al. (2005). Table 3.4 gives the relevant parameters for these transects, together with a list (`BEMsegment') of the parameters adopted for the simulation. The lengths L SP and L OP of the two plates have been computed as the square roots of the approximate areas of the subducting Pacic plate (≈ 10 8 km 2 ) and the overriding North American plate (≈ 8×10 7 km 2 ). However, the choice of the two lengths is somewhat arbitrary since the target parameter of our analysis, V Conv , depends neither on L SP nor on L OP ( 3.4.2).

Observed parameters

Having dened the geometry of the subduction zone, we then run the model for a reasonable range [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF] of the viscosity ratios of the two plates, λ 1 = λ 2 ∈ [150-450], and for a range of values of the dimensionless interface strength γ ∈ [0.5-20]. This yields curves of the dimensionless convergence rate as a function of γ. Next, we dimensionalize the calculated convergence rates by multiplying by the velocity scale V Stokes given by equaion (3.6). To calculate V Stokes , we assume h SP = 100 km and ∆ρ 1 = 70 kg m -3 , and take η 0 to be the depth-averaged viscosity in the range 0-1000 km inferred by [START_REF] Mitrovica | A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data[END_REF]. Taking into account the error bars on the viscosities estimated by [START_REF] Mitrovica | A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data[END_REF], we nd that the minimum, best-estimate, and maximum values of η 0 are η 0(-) ∼ 3.92 × 10 20 Pa s, η 0(Best) ∼ 5.44 × 10 20 Pa s, η 0(+) ∼ 6.95 × 10 20 Pa s. (3.19) Thus, we can now obtain the corresponding value of V Conv V Stokes for the `BEMsegment' as a function of the mantle viscosities given in 3.19) and nd the range In the derivation of the scaling law (3.12) for U SP , two other interesting features have emerged. The rst is that U SP , unlike V Conv , depends also on the horizontal speed of the OP as explained in 3.4.2. It follows that two dierent geometrical congurations will have the same value of U SP only if the value of U OP does not change, i.e., if U SP U OP is constant. This explains why the ratio L SP L OP appears in the scaling law (3.12). Among the forces acting on the OP, the only one that depends on L OP is the resisting drag F D(OP)-, since the driving shear force F D(OP)+ is determined by the mantle return ow within the wedge and is always conned to the forearc region of the OP. Thus when we vary L SP or L OP with all other geometrical parameters held constant, only the two drag forces that oppose the motion of the two horizontal plates change. Accordingly, congurations with the same ratio L SP L OP will also have the same ratio F D(SP)-F D(OP)-and, consequently, a constant speed ratio U SP U OP . This is conrmed by table 3.5 for the congurations with dierent values of L SP L OP that were shown in 3.4.2, g. 3.9.

The second noteworthy aspect of the scaling law (3.12) is the near-perfect logarithmic dependence of U SP on the ratio L SP . Although U SP is still correlated with the negative buoyancy (F b ∝ ) that drives the plate and with the resisting drag force measured by the plate length L SP , the dependence between these two quantities turns out to be surprisingly weak, namely logarithmic. This feature seems to agree with observations in nature, where the speeds of plates attached to subducting slabs are poorly correlated with their lengths (Conrad & Hager, 1999a).

Turning now to the OP, our rst result concerns the forces that drive its motion. Some studies (e.g. [START_REF] Chen | Overriding plate deformation and variability of fore-arc deformation during subduction: Insight from geodynamic models and application to the Calabria subduction zone[END_REF] conclude that the interplate lubrication force, depending on the conguration of the system, may drive, rather than resist, the motion of the OP. However, we nd that the opposite is always the case. As shown in g. 3.2c (inset), the subduction interface evolves so that it is narrower at the bottom than at the top. The downgoing plate therefore drags uid from the wider to the narrower part of the gap. According to lubrication theory, this is just the condition for the existence of a positive pressure within the gap, which is what keeps the two plates apart. Accordingly, the normal force in the gap resists, rather than drives, the leftward motion of the OP, regardless of the geometry of 3. MECHANICS OF SUBDUCTION 3.7. Discussion Table 3.6. Length of the OP midsurface that identies the width of the OP zone where the deformation is bending-dominated. We report 4 dierent h SP , θ 0 pairs. The other parameters of the model are the ones corresponding to the cases shown in g. 3.13. The last result regarding the OP deformation concerns the inuence of the subduction interface. Our model conrms the short-range nature of the lubrication forces that develop within the subduction interface, as also reported by Duarte et al. ( 2013) and Chen et al. (2015). In particular, g. 3.14 (at the bottom) shows that varying the thickness of the lubrication layer (i.e. the magnitude of the lubrication forces)inuences both the shortening and the bending of the OP, but only in the forearc region.

h SP θ 0 Width 5 30 ○ s ∈ [0.5 -2.5] 5 60 ○ s ∈ [0.8 -2.5] 7 30 ○ s ∈ [1.5 -3.0] 7 60 ○ none which is positive (extensional) if Γ < 0.
In conclusion, we compare the range of values of the dimensionless interface strength γ constrained by our work with values assumed in or constrained by other published subduction models. As shown in table 3.7, these values vary by a factor 90 0.13 ∼ 700, with our inferences (2.0-6.3) being squarely in the middle of the range. Two important aspects of the numbers in table 3.7 require some comments.

First, we note that three studies (denoted by asterisks) infer values of γ from natural data. Of these, the study of [START_REF] Duarte | How weak is the subduction zone interface[END_REF] stands out on account of its very large estimate γ ≈ 90. However, in this study there is a large uncertainty concerning the characterization of the interface between the two plates. The laboratory experiment starts with the two plates separated by a horizontal distance d 2H ∼ 1 cm that is comparable to the thickness h SP ∼ 1.6 cm of the SP. As subduction proceeds, the two plates move closer together, until they are separated by a thin (≈ 1 mm) interface when the SP approaches the bottom of the tank. The Second, when plate velocities observed in nature are used to infer γ the assumed value of the viscosity ratio λ 1 between the SP and the mantle is critical [START_REF] Duarte | How weak is the subduction zone interface[END_REF]. This is clear in g. 3.16, where the point of intersection between the horizontal lines (= real velocity of the transect) and the curves for dierent λ 1 varies signicantly. This can be explained using the scaling law (3.13) for the convergence speed of the SP. Once the slab's geometry is xed, V Conv depends on the exural stiness St and the ratio d 2 h SP (or γ if we also take into account the viscosity ratio η SI η 0 ). Now since the geometry is xed, eq. (3.7) shows that St depends only on λ 1 , because the bending length b itself does [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF]. We can therefore write

V Conv = fct (λ 1 , γ) (3.21)
for a model conguration where the geometry is known. Thus, if we x V Conv to a value obtained from natural data, the value of λ 1 will be crucial in determining the corresponding value of γ. In physical terms, lower values of λ 1 speed up the SP so that a stronger interface (higher γ) is needed for a given V Conv , and vice versa. Accordingly, a better constraint on the interface strength of real subduction zones requires a more precise knowledge of the viscosity ratio between the SP and the underlying mantle. 

Conclusions

In this work we studied the dynamics of subduction by means of a numerical model based on the boundary-element method (BEM). Systematically interpreting the results in the light of thin-viscous sheet theory, we explored the kinematics of the SP and the deformation of the OP, particularly focusing on the inuence of the subduction interface on those aspects.

Regarding the kinematics of the SP, we rst found a scaling law that describes the convergence speed of the descending slab. Neither the length of the SP nor that of the OP inuences the convergence rate, which is instead controlled by the slab's shape, the exural stiness St of the plate, and the strength of the subduction interface. The convergence rate increases as either the stiness of the plate or the strength of the subduction interface decreases. Next, we considered the horizontal speed U SP of the at portion of the plate. For the case of an isolated SP, U SP obeys the scaling law U SP V Stokes = α(St) + β(St) log(L SP ), where α and β are logarithmic functions of St. Adding the OP to the system, the scaling law becomes rather complex, with both the strength of the interface and the length of the OP now being dynamically relevant. However, numerical solutions still show a perfect logarithmic dependence of U SP V Stokes on L SP . This very weak correlation between plate speed and plate length for plates attached to subducting slabs seems to be in agreement with natural observations.

Turning to the OP, we found a three-zone pattern of deformation that is similar for the majority of cases we explored. Close to the trench, the OP is always under strong compression due to the opposing actions of the horizontal resultant of the lubrication force within the subduction interface and the shear force below the forearc region of the OP. The latter force derives from the mantle return ow and is the sole force driving OP motion. Further from the trench is a second zone of deformation dominated by bending, except for long subducting slabs and steep subduction angles for which compression continues to dominate. Finally, signicant extension appears in the back-arc region when the OP is positively buoyant, a result that we explained using simple analytical thin-layer models.

We concluded by using the BEM model to constrain the interface viscosity η SI of a natural subduction zone, the central portion of the Aleutian subduction zone. For a realistic range of values of the viscosity ratio between the SP and the underlying mantle, we found η SI = 0.96 -1.72 ×10 20 Pa s for a corresponding range of mantle viscosities η 0 = 3.92 -6.95 × 10 20 Pa s. The main goal of this work is to quantify the amount of energy dissipated in a subduction zone and to understand how that dissipation is partitioned among the dierent elements of the system. Accordingly, we write the total dissipation rate D Total as a sum of four contributions, viz.,

D Total = D SP + D OP + D SI + D M (4.1)
where the terms on the right-hand side represent the rates of viscous dissipation due to the deformation of the subducting plate (D SP ), the overriding plate (D OP ), the subduction interface (D SI ) and the ambient mantle (D M ).

Consider rst the total dissipation rate D Total . The balance of mechanical energy for a Stokes ow in a volume V bounded by a surface S is

2η V e ij e ij dV = S u i σ ij n j dS + V u j f j dV. (4.2)
Eq. ( 4.2) states that the total rate of dissipation in a volume V (left-hand side) is the sum of the rate at which the uid stress σ ij does work on S (rst term on the right-hand side) plus the rate at which the gravitational body force f j = -ρgδ j3 does work on V (second term). Now introduce the modied pressure p = p + ρgx 3 and the corresponding modied stress tensor σij = -pδ ij + 2ηe ij = σ ijρgx 3 δ ij . Eq. ( 4.2) then takes the simpler form (4.3) which states that the total rate of viscous dissipation in V is equal to the rate at which the modied stress performs work on S. For the three-uid domain with a free-slip upper surface shown in gure 3.1,

2η V e ij e ij dV = S u i σij n j dS,
D M + D SI = C 1 u i σ(0) ij (-n j )dC + C 2 u i σ(0) ij (-n j )dC, (4.4a) 
D SP = C 1 u i σ(1) ij n j dC, D OP = C 2 u i σ(2) ij n j dC, (4.4b) 
where σ(i) ij (i=0,1 or 2) is the modied stress tensor of uid i. The quantity -n j appears in (4.4a) because the normal vector that points out of the volume S 0 is opposite to n, which was dened as pointing out of the plates. Now substitute eq. ( 4.4) into eq. ( 4.1) and apply the normal stress matching conditions σ(k) ij -4.2. Scaling analysis 4. ENERGETICS OF SUBDUCTION σ(0) ij n j = n i ∆ρ k gy j for points on C k (k = 1 or 2). The result is

D Total = ∆ρ 1 g C 1 u i n i y j dC + ∆ρ 2 g C 2 u i n i y j dC. (4.5)
Because we know (i.e., have calculated) the velocity u on C 1 and C 2 , (4.5) implies that the total dissipation rate can be obtained simply by evaluating two integrals over the uid/uid interfaces. In this study, however, we shall assume a neutrally buoyant OP (∆ρ 2 = 0), whereupon the second integral in (4.5) vanishes.

We now turn to the dissipation rates D SP and D OP within the two plates. In principle these could be calculated from (4.3). However, determination of the stress σij on C 1 and C 2 requires the solution of Fredholm integral equations of the rst kind, which are notorious for their numerical instability. Accordingly, we exploit thin viscous-sheet theory (see table 2.1 in 2.3.3) to write

D SP = L SP + 0 4η 1 h SP ∆ 2 + 1 3 η 1 h 3 SP K2 ds, (4.6a) 
D OP = L OP 0 4η 2 h OP ∆ 2 + 1 3 η 2 h 3 OP K2 ds, (4.6b) 
where ∆ is the rate of stretching of the midsurface of the sheet and K is its rate of change of curvature. The total rate of dissipation within each plate is thus the sum of contributions from deformation by stretching/shortening (4ηh∆ 2 ) and by bending (1 3ηh 3 K2 ). The quantities ∆ and K are calculated by numerical dierentiation of the velocity u on the sheet's midsurface as shown in 2.3.2.

Next, we calculated the rate of viscous dissipation within the SI from the integral

D SI = 2η 0 A SI e ij e ij dA SI , (4.7)
where A SI is the area of the uid in the lubrication gap between the plates. We evaluated the integral (4.7) by assuming that the uid velocity varies linearly across the gap between the known values on either side.

Finally, the rate of viscous dissipation in the ambient mantle (D M ) is obtained from eq.( 4.1) once all the other quantities are known.

Scaling analysis

In this section we determine the crucial dimensionless parameters that control the energetics of subduction by performing a scaling analysis of instantaneous BEM solutions. Because inertia is negligible in Stokes ow, the energetic state of the the total dissipation rate in the ambient mantle by scaling (4.2). This yields

D M ∼ η 0 V 2 Sink f 2 (θ), (4.10) 
which is obtained using the scales e ij ∼ V Sink b and A M ∼ 2 b . Like (4.9), it contains an unknown function f 2 (θ).

Now because D BL = D SP and D Total = D SP + D M , equations (4.9), (4.10) and (4.8) imply

R ∼ St St + F(θ) , (4.11) 
where

F(θ) = f 2 (θ) f 1 (θ) and St ≡ η 1 η 0 (h SP b ) 3
is the exural stiness of the SP that measures its mechanical resistance to bending [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF].

Let us now test the scaling law (4.11) against our BEM solutions. To do this, we run a large number of models for three values of θ 0 and dierent values of h SP , L SP h SP and λ 1 ≡ η 1 η 0 , computing for each case the exural stiness St and the dissipation number R. The results are shown in gure 4.2. The solid symbols show results for which the bending contribution to D SP exceeds 95%. These collapse onto three master curves, one for each value of θ 0 , thereby conrming the scaling law (4.11). In the limit of St ≫ 1, where we can suppose St ≫ F(θ 0 ), R tends to a constant value that is independent of θ 0 , as expected from eq. (4.11). Open symbols, shown for completeness, are for models with a signicant (≥ 5%) stretching contribution to D SP , and for that reason obey less well the scaling law (4.11).

The three master curves in gure 4.2 highlight two other interesting features. First, they tell us something about the temporal evolution of the system. In particular, the curves show that R increases if either St or θ 0 increases. Now, during unsteady subduction, St decreases because the slab length increases, whereas θ 0 increases because the slab gets steeper. We therefore expect the system to evolve as indicated by the thick green arrow. We will verify this later during our analysis of time-dependent BEM solutions. Second, the curves show that R never exceeds 0.7 and is typically < 0.5. The latter value represents the `equipartition limit', where the dissipation is equally shared between the mantle and the plate. Only sti plates exceed this limit.

Subduction below an OP

We add now the OP to the system. For this SP+OP case, D BL ≡ D SP +D OP +D SI .

We expect the OP to have two opposite eects on the dissipation ratio. On the an OP. For this purpose, we rewrite (4.12) in dimensionless form as

DSI ∼ γ V 2 Conv sin (θ SI ) -1 , (4.13) 
where

DSI = η 0 h 4 SP (g∆ρ 1 ) 2 D SI , VConv = η 0 h 2 SP (g∆ρ 1 ) V Conv , γ = η SI η 0 h SP d 2 . (4.14)
The quantity γ is the dimensionless strength of the SI [START_REF] Gerardi | Boundary element modeling of two-plate interaction at subduction zones: Scaling laws and application to the Aleutian subduction zone[END_REF].

Because η SI = η 0 in our model, we explore the inuence of γ by varying d 2 alone [START_REF] Gerardi | Boundary element modeling of two-plate interaction at subduction zones: Scaling laws and application to the Aleutian subduction zone[END_REF]. Figure 4.3 shows DSI as a function of γ V 2 Conv sin (θ SI )

-1 for 108 BEM solutions for the ranges of parameters given in the caption of gure 4.3. All the points collapse onto a straight line with slope of unity, conrming the scaling law (4.13).

Turning now to the rate of dissipation within the OP, our BEM solutions show that the energy dissipated to deform the OP is never more than 0.03D BL , whatever system conguration we use. We can therefore safely assume D BL ≈ D SP + D SI for our SP+OP case study.

A natural next step would be to determine a complete scaling law for R that includes the eect of the SI and that reduces to (4.11) in the limit γ = 0 of an innitely weak (i.e., thick) SI. However, this turns out to be impractical given the large number of parameters involved. Instead, we show in gure 4.4 how the value of γ inuences the dissipation ratio R. Dissipation in the SI can enhance R significantly, but only for low values of the SP's exural stiness (St ≪ 1). In this limit, D SI can exceed D SP by a factor of two or more. However, as soon as St increases beyond ≈ 2, the eect of γ vanishes and we recover to a good approximation the corresponding SP only case (empty circles in gure 4.4). Moreover, in the limit γ → 0 we recover the SP only results for all values of the stiness St.

Unsteady subduction

Our next task is to explore how R varies during unsteady subduction, focussing on the more realistic SP+OP case. We consider two examples: `low viscosity'

with λ 1 = 250 and `high viscosity' with λ 1 = 2500. The remaining parameters for both examples are given in table 4.1. We ran the simulations until the slab's tip reached the depth x 2 = -6.7h SP , keeping track of R(t) and St(t). The results are shown in gure 4.5 for λ 1 = 250 The BEM solutions for the SP+OP system were obtained

for λ 1 ∈ [150 -10 5 ], γ ∈ [2 -6], h SP = 7, θ 0 = 60 ○ and L SP h SP = L OP h OP = 20.
Empty circles trace the corresponding curve for the SP only case with θ 0 = 60 ○ . The rst important result of gure 4.5 is that R remains always below the value 0.5 corresponding to equipartition of the dissipation between the boundary layer and the ambient mantle. Second, the shapes of the curves concerning the subduction of an isolated SP (gure 4.5b and d, empty circles), which show R increasing as St decreases, agree with what we expected from our earlier SP Only solutions (Figure 4.2, 4.2.1). The behavior of the SP+OP case is more complex (gure 4.5b and d, lled circles). Recall that the temporal evolution of R reects 4. ENERGETICS OF SUBDUCTION 4.4. Mantle convection modeling a balance between two competing eects: a dynamical one (R decreases as St and D SI D BL decrease with time) and a geometrical one (R increases as the slab dip increases). For the SP+OP case with λ 1 = 250, the dynamical eect dominates at rst, leading to a steady decrease of R with time. Then, at St ≈ 0.6, the balance is reversed and R starts to increase (gure 4.5b). For λ 1 = 2500, by constrast, the two eects nearly cancel out, maintaining a constant value R ≈ 0.4 (gure 4.5d).

Finally, we note that for λ 1 = 2500 the simulations for the SP+OP and the SP Only cases have rather similar variations of R as a function of St, where 2 < St < 10. This agrees with the results of gure 4.4, which show that the inuence of the OP on the energetics of the system becomes almost negligible for St > 2. This is not the case for λ 1 = 250, for which the SP+OP and the SP Only simulations follow very dierent paths in the St-R space.

Parameterized model of mantle convection

We want now to describe the steady-state thermal convection in a cell of length L h and thickness H (gure 4.6). At the top of cell is the SP which thickens by conductive cooling as it moves toward the trench, reaching a thickness h SP when it enters the subduction zone. We assume no heat sources within the system and we consider a well-mixed mantle (i.e. high mantle Rayleigh numbers, Ra m ) at temperature T m . The only temperature dierence is across the SP, and is ∆T = T m -T Surf , where T Surf is the temperature at the SP's surface. We begin by dening the Nusselt number (Nu) of the convection cell as the ratio of the surface heat ow in the presence of convection to that transported purely by conduction (e.g. Turcotte & Schubert, 2014). The numerator is the integral over the length L h of the vertical temperature gradient predicted by the standard half-space cooling model. The denominator is the heat transported by conduction across the entire thickness of the cell H. We thus have

Nu = 2H U SP πκL h 1 2 , (4.15)
where κ is the thermal diusivity and U SP is the horizontal speed of the SP. Scaling the continuity equation in the convection cell, we obtain

U SP L h ∼ V Sink L z , (4.16) 
where L z is the vertical distance from the slab's tip to the lower surface of the SP (4.17)

The next step is to determine V Sink in terms of the dierent contributions to the viscous dissipation at the subduction zone. The global balance of mechanical energy is (4.18) where

D M + D BL ≡ D M (1 + C R ) ∼ h SP g∆ρ 1 V Sink ,
D BL ∼ C R D M , C R ≡ R (1 -R),
and D Total ∼ h SP g∆ρ 1 V Sink . Making use of (4.10) for D M , we obtain

V Sink ∼ h SP g∆ρ 1 η 0 f 2 (θ) (1 + C R ) . (4.19) 
Because (4.19) relates the slab's sinking speed to the coecient C R that describes the partitioning of viscous dissipation between the boundary layer and the mantle, we expect dierent regimes of mantle convection depending on the value of C R .

4.4.1

Thermal convection dominated by mantle viscous dissipation

In this section we recover the well-known result for the Nusselt number predicted by boundary-layer analysis of an isoviscous system. Here the energy dissipated to deform the lithosphere is negligible (i.e. D M ≫ D BL and C R → 0). The thickness of the lithosphere h SP is given by the half-space cooling model as 

h SP ∼ κL h U SP 1 2 . ( 4 
h SP H ∼ L z f 2 (θ) Ra m 1 3 , (4.21) 
where the Rayleigh number of the entire cell is Ra m ≡ H 3 g∆ρ 1 (κη 0 ). Then substituting (4.19) into (4.17) and using (4.21), we obtain From the denition C R = D BL D M , we observe that

Nu ∼ Ra m 1 3 L z f 2 (θ) 1 3 , ( 4 
C R ∼ η 1 η 0 h SP b 3 F(θ) + η SI η 0 h SP d SI sin(θ SI )f 2 (θ) V Conv V Sink 2 , (4.23)
where we have used (4.9), (4.10) and ( 4.12) to scale the dierent contributions to the viscous dissipation. Substituting (4.23) into (4.19) we obtain a nonlinear implicit equation for the sinking speed of the slab:

V Sink ∼ h SP g∆ρ 1 η 0 f 2 (θ) 1 + η 1 η 0 h 1 b 3 F(θ) + η SI η 0 h SP d SI sin(θ SI )f 2 (θ) V Conv V Sink 2 -1 . (4.24)
Following the approach of Conrad & Hager (1999b), we dene two additional Rayleigh numbers for the SP and the SI:

Ra SP ≡ 3 b g∆ρ 1 κη 1 , Ra SI ≡ d 3 SI g∆ρ 1 κη SI .
(4.25)

These Rayleigh numbers measure the importance of viscous dissipation within the SP and the SI relative to the energy available within the system. They become large in the limits D SP → 0 and/or D SI → 0 for xed h SP , which limits correspond to decreasing viscosity (η 1 or η SI ) and/or increasing length scale ( b or d SI ). In terms of these Rayleigh numbers, (4.24) can be written as

V Sink ∼ Ra m h SP κ f 2 (θ)H 3 × × 1 + Ra m Ra SP h SP H 3 F(θ) + Ra m Ra SI h SP H d 2 SI H 2 sin(θ SI )f 2 (θ) V Conv V Sink 2 -1 . (4.26) 
We now investigate two limiting cases of (4.26).

Case 1: convection beneath a plate with a short travel time Consider rst the case of a lithosphere that moves from the ridge to the trench in a time t = L h U SP < 80 Myr, the age at which seaoor attening is observed to begin (e.g. [START_REF] Sclater | The heat ow through oceanic and continental crust and the heat loss of the Earth[END_REF]Conrad & Hager, 1999b). This implies that h SP increases continually according to the half-space cooling model. Suppose initially that the viscous dissipation in the subduction interface is negligible (Ra SI → ∞). Simplifying (4.26) accordingly and following the same steps as in 4.4.1, we nd

h SP H ∼ Ra SP Ra m L z f 2 (θ) Ra SP -f 1 (θ)L z 1 3 . (4.27)
Now using (4.27) and the simplied form of (4.26) in eq. ( 4.17) we obtain

Nu ∼ L z f 2 (θ) - F(θ) Ra SP 1 3
Ra m 1 3 .

(4.28)

The Nusselt number still scales as Ra m 1 3 , but the prefactor decreases as the dissipation rate within the SP increases (i.e., as Ra SP decreases). This result remains valid as long as the denominator of (4.27) is nonzero, i.e., if Ra SP ≫ f 1 (θ)L z . This condition follows from the fact that when Ra SP decreases the convection progressively slows down, increasing the traveling time of the lithosphere. Because the lithosphere then has more time to thicken, Ra SP decreases even further, triggering a positive feedback that leads to an unphysical innite plate thickness (Conrad & Hager, 1999b).

To understand the inuence of viscous dissipation in the SI, we adopt (4.26) in its full form. Following again the steps in 4.4.1 and assuming Ra SP ≫ f 1 (θ)L z , we obtain

h SP H 3 - h SP H d 2 SI H 2 A 1 Ra SI ∼ A 2 Ra m , (4.29) 
where

A 1 ≡ C 2 V (L Z ) sin (θ SI ), A 2 ≡ (L Z )f 2 (θ) and C V ≡ V Conv V Sink .
Our BEM simulations show that C V is always less than unity, and we treat it here as a constant. Obtaining representative values of A 1 and A 2 from our BEM solutions, we solve (4.29) numerically for Ra SI (d SI , η SI ) ≤ 0.4 and Ra m (H) ∈ [1.6 × 10 5 -1.3 × 10 6 ]. We nd that h SP H ∼ Ra m 1 3 and Nu ∼ Ra m 1 3 to within a negligible error. We conclude that for convection below a short SP for which the half-space cooling model applies, the scaling law Nu ∼ Ra m 1 3 remains valid even in the presence of viscous dissipation in the subduction interface. We now assume that the travel time of the plate is suciently long (> 80 Myr) that thermal thickening has stopped by the time it reaches the trench. The dependence of h SP on Ra m then breaks down and h SP H becomes a simple constant in the model, with h SP always at its maximum value. Nevertheless, we assume that the amount of heat evacuated by the cell still corresponds to the heat lost during the thickening of the plate, while the amount of heat loss occurring after seaoor attening occurs remains negligible. This implies that (4.17) continues to apply for our analysis.

Considering both contributions D SI and D SP to the viscous dissipation, we substitute (4.26) into (4.17) and obtain

Nu ∼ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ Ra m L z f 2 (θ) h SP H 1 + Ra m Ra SP h SP H 3 F(θ) + Ra m Ra SI h SP H d 2 SI C 2 V H 2 sin(θ SI )f 2 (θ) C R ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 1 2
, (4.30) where the bracket highlights the denition of C R . We now use (4.30) to determine the value of the exponent β that would appear in the corresponding Nu-Ra β m relationship. Observing that Nu-Ra β m implies β = (dNu dRa m )(Ra m Nu), we nd that (4.30) implies

β = 1 2 1 + C R .
(4.31)

Eq. (4.31) shows that β strongly depends on the dissipation partition coecient C R . We note that also the models showed in Conrad & Hager (1999b) 

dening α ≡ D SP R min D SP b = b R min 3 (4.32)
as the factor by which D SP is overestimated if R min is adopted instead of b , all else being equal. We estimate α in a realistic way by running time-dependent BEM simulations starting from the initial conditions reported in table 4.1. Next, for both the `low viscosity' and `high viscosity' cases we stop the simulations at two characteristic depths H 1 h SP = Ĥ1 = 6.7 and H 2 h SP = Ĥ2 = 10.0. Owing to the quasi-stationarity of Stokes ow, these instantaneous congurations can be assumed to be representative for the purposes of our steady-state analysis.

Figure 4.7a shows that α increases rapidly as the slab progressively sinks, illustrating the strong inuence of the chosen length scale in the evaluation of D SP . For the two characteristic depths Ĥ1 and Ĥ2 , for example, we nd α 1 = 33 and α 2 = 134 respectively when λ 1 = 250 (empty circles), and α 1 = 16 and α 2 = 51 respectively when λ 1 = 2500 (lled circles). The dependence of α on the depth Ĥ is explained by gure 4.7b, which shows the dimensionless lengths ˆ b and Rmin as functions of Ĥ for λ 1 = 2500. As the slab penetrates deeper, the bending length increases while the minimum radius of curvature tends to stabilize to a constant value. The ratio b R min , and thus the overestimate of the dissipation D SP , therefore increases with the depth H. For λ 1 = 250, the gap between the two curves of gure 4.7b becomes even wider, which is why α is larger for the `low viscosity' case (empty circles, gure 4.7a).

To show how the overestimation of D SP documented above inuences the in- If, however, we adopt the correct length scale b , β ∈ [0.30, 0.34] for Ĥ = 6.7 and β ∈ [0.25, 0.28] for Ĥ = 10. This shows that one's assumption about the thickness of the convection cell plays a role in the determination of β.

In light of table 4.2, we conclude that it is crucial to use the dynamic length scale b rather than the purely geometric length R min to characterize the bending response of a viscous plate [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF]. This follows from the fact that the bending moment within a viscous plate is proportional to the rate of change of the curvature of its midsurface and not to the curvature itself, as it would be in an elastic plate.

In closing, we remark that the neglect of volumetric heat sources in our parameterized convection model makes it most appropriate for convection in the upper mantle (H = 670 km). Internal heating has to be considered in models of whole-mantle convection with H = 2880 km (Turcotte & Schubert, 2014).

Conclusions

In this work we studied the energetics of subduction using a numerical model based on the BEM. We endeavored to shed light on two topics: the partitioning of viscous dissipation among the dierent elements of a subduction zone (i.e. the subducting plate, the subduction interface and the mantle); and the inuence of the energy dissipated in subduction zones on parameterized models of mantle By means of a scaling analysis of instantaneous BEM solutions for an isolated SP, we found that the ratio R of the energy dissipated in the upper boundary layer to the total energy dissipation obeys the scaling law R ∼ St [St + F(θ)],

where St (the exural stiness) represents the SP's mechanical resistance to bending and F(θ) is a function that accounts for the eect of the dip θ of the descending slab. Adding an OP to the system, we found that R also depends on a third parameter γ, the dimensionless strength of the subduction interface.

Turning to unsteady subduction, we observed that the time evolution of R(t) depends on the SP/mantle viscosity ratio λ 1 . Nonetheless, for both the `low viscosity' (λ 1 = 250) and `high viscosity' (λ 1 = 2500) cases explored, we observed that R(t) remains always below the value 0.5 corresponding to equipartition of the dissipation between the boundary layer and the mantle. We conclude that energy dissipation during free subduction is never dominated by the plate bending and interface shearing contributions. Interestingly, we also noticed that the importance of the dissipation in the subduction interface decreases as subduction proceeds.

Turning to the inuence of strong subduction zones on mantle convection, we found that it primarily depends on the travel time of the lithosphere from the ridge to the trench. For short travel times ≤ 80 Myr, the thickness h SP of the lithosphere when it enters the subduction zone is described by the classical half-space cooling Chapter 5

Laboratory modeling of mantle convection

Together with numerical models, laboratory experiments have long played a central role in mantle convection investigations. A typical setup of a laboratory model consists of a sh tank lled with a uid at which a gradient of temperature is applied in order to generate the thermal instability. The uid is characterized by a high Prandtl number (i.e. Pr > 100), which ensures the dominance of viscous over inertial eects [START_REF] Davaille | Laboratory studies of mantle convection[END_REF]. The gradient of temperature and the thickness of the uid layer are then properly adjusted in order to have a Rayleigh number within the range pertinent for mantle convection. The setup usually follows a Rayleigh-Bénard conguration with the uid layer heated from below and/or cooled from above (e.g. [START_REF] Nataf | Convection experiments in uids with highly temperaturedependent viscosity and the thermal evolution of the planets[END_REF]. However, experiments with internal heating have also been performed [START_REF] Limare | Microwave-heating laboratory experiments for planetary mantle convection[END_REF].

The majority of studies which can be found in literature adopt Newtonian uids, such as silicon oils, sugar syrups, glycerol (e.g. [START_REF] Giannandrea | Variable viscosity convection experiments with a stress-free upper boundary and implications for the heat transport in the Earth's mantle[END_REF][START_REF] Namiki | The inuence of boundary heterogeneity in experimental models of mantle convection[END_REF][START_REF] Davaille | On the transient nature of mantle plumes[END_REF]. Due to their strong strong temperature-dependent viscosity, sugar syrups have proved to be particularly suitable for the modeling of solid-state creep of mantle material (e.g. [START_REF] Nataf | Convection experiments in uids with highly temperaturedependent viscosity and the thermal evolution of the planets[END_REF][START_REF] Davaille | Transient high-Rayleigh-number thermal convection with large viscosity variations[END_REF][START_REF] Androvandi | At least three scales of convection in a mantle with strongly temperature-dependent viscosity[END_REF]. In accordance with analytical studies (e.g. [START_REF] Jaupart | Convective instabilities in a variable viscosity uid cooled from above[END_REF][START_REF] Solomatov | Scaling of temperature-and stress-dependent viscosity convection[END_REF], dierent regimes of thermal convection are observed in a laboratory experiment, depending on the viscosity contrast between the upper and bottom boundary of the uid layer: the `whole layer regime', at low viscosity contrasts, where the entire uid layer takes part in the convective motion; the `sluggish lid regime', at intermediate viscosity contrasts, where convection occurs beneath a strong upper boundary layer which moves and deforms dissipating a signicant amount of energy; the `stagnant lid 5. LABORATORY MODELING OF MANTLE CONVECTION regime', at high viscosity contrasts, where convection takes place under a stagnant lid which passively transports the heat brought from below by convection.

There is a fundamental element of mantle convection that laboratory experiments can not still capture: plate tectonics. In fact, although a strong plate on the surface can be obtained using a uid with a strong temperature-dependent viscosity, the breakage of such plate (i.e. the lithosphere) and the following regime of `plate tectonics convection' has not been observed yet. We know that to make plate tectonics works, weakening and shear localization are required. In numerical models weak zones within the lithosphere can be induced implementing pseudoplastic yielding, whereby plate boundaries develop instantaneously when the stress exceed locally a yield stress [START_REF] Tackley | Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations[END_REF][START_REF] Grigné | Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth[END_REF]. However, this operation requires the use of yield stress values that are smaller than what is known for mantle material [START_REF] Kohlstedt | Strength of the lithosphere: Constraints imposed by laboratory experiments[END_REF]. In order to obtain plate boundaries adopting a consistent yield stress, a specic weakening mechanism inducing localized deformation is required and, in the last years, a number of them have been suggested, as for example lattice preferred orientation of olivine [START_REF] Tommasi | Structural reactivation in plate tectonics controlled by olivine crystal anisotropy[END_REF], two-phase self-lubricating rheology [START_REF] Bercovici | The generation of plate tectonics from mantle convection[END_REF] or shear heating [START_REF] Kaus | Initiation of localized shear zones in viscoelastoplastic rocks[END_REF][START_REF] Crameri | Parameters that control lithospheric-scale thermal localization on terrestrial planets[END_REF]. Concerning laboratory models, experiments run with aqueous colloidal dispersions of nanoparticles have lately shown several interesting features. Thanks to their particular rheology, these uids can indeed generate a supercial lid which breaks in dierent `plates', leading also to episodic subduction events. Exploring further this type of material seems thus a promising route to follow in order to generate self-consistent plate tectonics in the lab. Clarifying the dynamics underlying these systems might also lead to a better comprehension on the weakening mechanism generating plate boundaries on the Earth. 5. LABORATORY MODELING OF MANTLE CONVECTION teraction and, consequently, the energetically favorable conguration of the solid phase within the colloid (gure 5.1b). The latter is what ultimately controls the mechanical response of the colloid at a given applied stress. As illustrate in gure 5.1a the LudoxHS40 is characterized by four dierent rheological regimes. Regime I, for φ p ≤ 0.30, where the colloid is constituted of a network of repelling isolated nanoparticles and it behaves as a Newtonian uid, for any applied stress. Regime II, for 0.31 ≤ φ p ≤ 0.35, where the nanoparticles start to aggregate, forming small clusters which induce solid-like properties, such as elasticity and a yield stress. Within this range of φ p , the colloid behaves as a visco-elastic sol, exhibiting a shear-thinning rheology. Regime III, for 0.35 ≤ φ p ≤ 0.47, where most of the particles have aggregated in stable structures which, however, can still deform and rearrange at high shear. At φ p ≈ 0.35 is the sol-gel transition and the colloid is now a visco-elastic gel which maintains a shear-thinning rheology. Finally, regime IV, for φ p ≥ 0.51, where the colloid has undergone the glass transition and behaves as an elastic-brittle solid. More details on the rheological characterization of such material can be found in Di Giuseppe et al. (2012).

Drying of colloidal systems

Let us now consider a layer of Ludox in an experimental setup similar to the one shown in gure 5.3. The tank is dried from above, equivalent of cooling as both rock cooling and solution dessication are diusion processes ( 7 of [START_REF] Bacchin | Drying colloidal systems: Laboratory models for a wide range of applications[END_REF], and heated uniformly from below. As shown in [START_REF] Davaille | Experimental and observational evidence for plume-induced subduction on Venus[END_REF], in such conguration the laboratory model is characterized by an innite Prandtl number and a high Rayleigh number, as appropriate for mantle convection modeling. A typical evolution of this type of convection experiment can be extrapolated by the curve of gure 5.2a, which shows how the evaporation rate V E varies through time ( 8 of Bacchin et al., 2018). Looking at the trend of V E , we can individuate ve dierent stages of convection. First, there is a regime of vigorous convection `CONV' where V E remains roughly constant. Here, as the water evaporates at the free surface, φ b locally increases generating a thin boundary layer at the top of the tank, whose thickness δ increases with the time. In case this boundary layer becomes gravitationally unstable and sinks, it is readily replaced by hot upwellings rising from below and the layer surface results continuously rejuvenated. The solutal Rayleigh number measuring locally the instability of the boundary layer is dened as

Ra ch ≡ ∆ρgd 3 κ c η , (5.1)
where ∆ρ is the density contrast due to heterogeneities in the solid volume fraction φ b , κ c represents the chemical diusivity and all the other parameters are dened et al., 2017). We enter in the second regime `SL1' when φ b on the top reaches the critical value which marks the sol-gel transition (φ b ≈ 0.35). Due to the formation of the superical jelly skin, which acts as a barrier against the upward ow of the water, V E decreases signicantly. At the same time, convection continues to take places below the skin and a Stagnant Lid regime develops. Now, as the water continues to ow through the skin, it generates pressure gradients and in-plane stresses in the skin, which, in turn, starts to visco-elastically buckle. This deformation is shown in the top view of the tank reported in gure 5.2b. The buckling instability grows in amplitude with time due to the spatial connement of the skin and the increasing of stresses related to the continuous evaporation of water. At one point, because of the high strain and stress at which it is subjected, the skin leaves the elastic regime and it starts to deform plastically until it eventually breaks. Then, due to its higher density with respect to the underlying uid, it sinks toward the bottom. This is the third regime `Subduction' where spontaneous, one-sided subduction events appear,

showing also the characteristic trench roll back feature of natural subduction zones, as highlighted in gure 5.2c. Furthermore, as new uid reaches the surface and dries, new skin is continuously formed and the cycle of buckling deformation and subduction is repeated. Even if we cannot speak yet of true and continuous plate tectonics, this `Subduction' regime presents striking similarities with what is observed on Earth. Here, the combination between a strong buckling instability and the particular rheology of the skin (i.e. the lithosphere), seems to lead to the rupture and the consequent initiation of subduction. Another mechanism triggering subduction, involving the impact of a rising plume on the lower part of the skin, has also been proposed [START_REF] Davaille | Experimental and observational evidence for plume-induced subduction on Venus[END_REF]. This might be valid, in particular, when bottom heating is signicant. In any case, as the system continues to dry, the system reaches a critical point where the top layer is so sti and thick that cannot be broken anymore. It starts the `SL2' regime where convection is in a second Stagnant Lid mode and subduction stops. V E smoothly decreases through time, while the skin continuously thickens. When it approaches the bottom of the tank, V E abruptly decreases and the convection nally stops. This is the `No Convection' regime.

Preliminary results

Aiming to better understand the dynamics underlying the drying of a colloidal dispersion, in the last part of the thesis we run a laboratory experiment, similar to the one described in the previous section. The setup of the experiment is The tank is placed on a metal plate that can be heated if needed. Further below there is a weight scale that records the mass lost during the experiment because of the evaporation of water.

5. LABORATORY MODELING OF MANTLE CONVECTION illustrated in gure 5.3. For our study, we adopted a LudoxTM50 silica colloidal dispersion from Sigma-Aldrich. We used a 30 × 30 × 5 cm tank, placed in a climatic chamber, where the temperature and the humidity were kept at the constant values of T = 25 ○ C and Rh = 30%, respectively. The bottom boundary of the tank was maintained at the room temperature, without providing any heating. The tank was on a scale to record the evolution of mass and evaporation rate. The experiment lasted one day.

Observations

In gure 5.4b is reported the time-evolution of the evaporation rate V E recorded during our experiment. The curve is characterized by 3 dierent zones: Zone Zone 1 seems to correspond to the `SL1' regime of convection. In fact, in our experiment, the `CONV' regime seems to be missing and we assist directly to a rapid formation on the top of a gel skin with a consequent decreasing of the evaporation rate. In this regime, as the gel continues to form, we record a rst subduction/resurfacing event which starts at t = 80 min (gure 5.5a) and evolves followed by news subduction/resurfacing events (gure 5.5b). This leads to a complete rejuvenation of the supercial gel skin. Next, as V E stabilizes around the constant value of V E = 0.008 g/s, we enter in the Zone 2. This is the `Subduction' regime of gure 5.2a. Here cycles of gel breakage, subduction and gel regeneration repeat continuously and in a local scale instead of leading to complete resurfacing.

Unfortunately, we could not get photos of the tank during this stage of convection.

However, the side view of the tank given in gure 5.6, taken at the end of the experiment, clearly shows a rich subduction history. In particular, we can notice the subduction of two fat slabs, as highlighted by the red circle at the bottom left corner of gure 5.6. Within the Zone 2, we can see that at one point (t = 540 min), glass begins to form on the surface of the tank (gure 5.5c). This event roughly corresponds with the point where V E starts slowly to decrease (third red dot gure 5.4c). Finally, as the supercial layer of glass spreads on the entire surface (gure 5.5d) and thickens, subduction/surface regeneration events are more and more rare and we approach the beginning of the `SL2', where convection takes place below a sti glass lid. 

In situ measurements

As it immediately appears from the comparison of the V Et curves of gures 5.4a and 5.4b, using two dierent colloids (LudoxHS40 for what concerns gure 5.4a and LudoxTM50 for what concerns gure 5.4b) for the same type of experiment, it can lead to dierent results. This follows from the fact that changing the properties of the dispersed phase in the colloid (i.e. the silica nanoparticles), the physicalchemical phenomena which control molecular aggregation vary accordingly and the response of the colloidal system observed at the marcoscopic scale results dierent. For the present case, what changes between the two types of colloid is the hydrodynamic radius r H which, measured by means of dynamic light scattering in the initial semi-dilute suspension (φ b ≤ 0.22), results r H ≈ 15 nm for the LudoxHS40 and r H ≈ 30 nm for the LudoxTM50. As we can see in gure 5.7, a dierent value of r H inuences tremendously the correlation between the rheology of the colloid and the particle volume fraction φ b .

In order to shed light on the composition and the nano-scale structure of the LudoxTM50 adopted in our study, we analyzed several samples taken at the end of the experiment. For each sample, which generally was around 15.0 mg, we performed two type of measurements: i) the thermal gravimetric analysis (TGA), where the mass of the sample is measured over time as the temperature changes; ii) the dierential scanning calorimetry (DSC), where the apparatus measures the amount of heat absorbed/released by the sample as a function of temperature. The TGA has been carried out in a dynamic nitrogen atmosphere of 40 mL/min, varying the temperature with a rate of 5 ○ C/min from room temperature to T = The position of the sample in the tank is specied by the region (gure 5.5d) and the depth (gure 5.6). The two samples `Sl1' and `Sl2' are the two fat slabs shown in gure 5.6. Samples 6 and 7 have been taken at slightly lower levels than the depth D1. The temperature in brackets in the column referring to ∆T m indicates the melting point of free water. The sol-gel transition is at φ b = 0.48. 250 ○ C and of 10 ○ C/min beyond. The DSC has been carried out in a dynamic nitrogen atmosphere of 25 mL/min, decreasing the temperature with a rate of -5 ○ C/min from room temperature to -60 ○ C and then increasing it with a rate of 2 ○ C/min up to 20 ○ C. We analyzed 12 samples taken at dierent depth and in dierent regions of the tank, as indicated in table 5.1. Two of these samples were part of the fat slabs shown in gure 5.6. This analysis has been done at the Laboratoire Léon Brillouin of the CEA Saclay thanks to the precious help of Christiane ALBA-SIMIONESCO and Oriana OSTA.

An example of the output obtained from the TGA is shown in gure 5.8. Since at the end of this type of measurement only the silica solid phase of the sample is left, we exploited the TGA to extrapolate the silica weight fraction χ s and the corresponding solid volume fraction φ b , according to

φ b = χ s χ s + (1 -χ s ) * ρ Si ρ W , (5.2)
where ρ Si = 2.36 g/cm 3 is the density of silicon and ρ W = 1.00 g/cm 3 is the density of water. The results on the solid volume fraction are summarized in the 4th column of table 5.1. The data show that at the end of the drying experiment, the colloid presents all the three phases: sol, gel and glass. Region 1 of the tank showing that they were on the top of the tank and that they subducted during the experiment.

Concerning the DSC, an example of the outputs is reported in gure 5.9.

Measuring the heat ow as temperature varies, this technique can identify the temperature at which physical transitions occur, as they are identied by the absorption/release of latent heat, which is much higher than the sensible heat.

The DSC is useful to obtain an information regarding the average size of the pores of the solid network of silica nanoparticles which forms in the colloid during the drying. Indeed, the water entrapped within such a structure undergoes a melting temperature depression ∆T m which is related to the pore diameter d through the Gibbs-Thomson equation [START_REF] Alba-Simionesco | Eects of connement on freezing and melting[END_REF]:

∆T m = T m,bulk -T m,pore = 2 (γ SI -γ SL )ν dλ m,bulk , 
(5.3) where T m,bulk and T m,pore are the melting temperatures of bulk water crystals and of conned water nanocrystals, respectively, γ SI and γ SL are the silica/ice and silica/liquid water surface tensions, ν is the molar volume of the liquid water and λ m,bulk is the bulk latent heat of melting. Due to the dependence of the quantities γ SI , γ SL and ν on the pore diameter d, eq. ( 5.3) is usually adopted in an experimental-tting form. Relevant to our case study, where water nanocrystals melt in a solid structure composed of silica nanoparticles, is the tting equation proposed by [START_REF] Lu | Size-dependent melting of ice in mesoporous silica[END_REF]:

∆T m = 95 d , (5.4) 
which easily correlates d with the ∆T m obtained from the DSC measurements. For all the samples (sol-like, gel-like and glass-like), the DSC showed a melting temperature depression of the conned water between 6.74 ○ C and 7.87 ○ C (6th column of table 5.1), corresponding to an average pore diameter ranging from 12 to 14 nm (7th column of table 5.1). The data did not show any correlations between d and the solid volume fraction of the samples φ b . However, as highlighted in gure 5.9b, for sol-like samples the DSC additionally recorded the melting temperature of water crystals not aected by any connement eect (T m = 0 ○ C). This means that in this phase we have both conned and bulk (or free) water.

The pore diameter d resulted half the nanoparticle hydrodynamic radius (r H ≈ 30 nm). This suggests that all the three phases are characterized by dense packed structures of nanoparticles. In the glass and gel phases these structures probably build a semi-ordered, continuous network of nanoparticles. In the sol phase, due to the presence of free water, they assume more likely the form of dense clusters that keep a certain distance between them.

Ongoing work involves the characterization of the colloid at the dierent stages of the drying experiment. This will help to unmask the correlation between the physical-chemical phenomena controlling the nanoparticles aggregation and the macroscopic response of the colloidal system.

Conclusions

This thesis was devoted to the study of the phenomenon of subduction. For this purpose, we developed a 2-D free subducion model, based on the Boundary Element Method, able to mimic the interaction between a Subducting Plate (SP) and an Overriding Plate (OP) across a Subduction Interface (SI) with a tunable strength. Then, we systematically interpreted the numerical solutions of the model exploiting concepts of thin viscous-sheet theory. This helped us to determine quantitative scaling laws expressing relations among key dimensionless parameters of the system.

We examined subduction from two main points of view: rst, we investigated the phenomenon in a `local' context, aiming to better understand the mechanics underlying it; then, we moved to a `global' context, exploring the eect of subduction zones in the frame of large-scale mantle convection.

Exploring subduction locally, we focused our investigation on the SP kinematics and the OP deformation, paying particular attention at the inuence of the SI strength on both these aspects of subduction. Regarding the SP kinematics, we rst found that the convergence speed of the sinking slab (V Conv ) is mainly controlled by three parameters: the subduction angle θ 0 , the exural stiness St of the SP and the strength γ of the SI. For instance, V Conv increases as we move from shallow to steep subduction (increasing of θ 0 ) or if either the stiness of the SP or the strength of the SI decreases. Interestingly, such speed did not show any dependency neither on the length of the SP (L SP ) nor on that of the OP (L OP ). Next, we analyzed the horizontal plate speed (U SP ) of the at portion of the SP and, considering rst our subduction model in the SP Only conguration (i.e. without the OP), we found that U SP obeys the scaling law U SP V Stokes = α(St) + β(St) log(L SP ), where α and β are logarithmic functions of St. The main result here is the perfect logarithmic dependence of U SP V Stokes on the geometrical ratio L SP , a result which we found systematically also in the SP+OP conguration and for whatever model setups we investigated. This very weak correlation between plate speed and plate length for plates attached to subducting slabs seems to be in agreement with natural observations. Turning to the OP deformation, we detected a characteristic pattern of deformation that repeated similarly for the majority of cases we explored. Close to the trench, the OP is always under strong compression due to the opposing actions of the horizontal resultant of the lubrication force within the SI and the shear force below the forearc region of the OP. This latter force, generated by the mantle return ow, results as the sole driving force triggering the OP motion. Further from the trench there is a second zone of deformation dominated by the bending of the OP. This zone disappears only if one considers steep subduction angles and, especially, long subducting slabs for which compression continues to dominate. Finally, a third mode of deformation, characterized by signicant extension in the backarc region of the OP, arises when the OP is positively buoyant. We explained such result by means of simple analytical thin-layer models. In conclusion of this rst part, we adopted our BEM model to infer the long-term strength of the subduction interface in the central Aleutian subduction zone. For a realistic range of values of the viscosity ratio between the SP and the underlying mantle, we found η SI = 0.96 -1.72 × 10 20 Pa s for a corresponding range of mantle viscosities η 0 = 3.92 -6.95 × 10 20 Pa s.

Next, we turned to the analysis of the energetics of subduction. In particular, we quantied the amount of viscous energy that is dissipated in a subduction zone, discussing then the eects that this might have on large-scale mantle convection.

Considering rst the SP only conguration, by means of a scaling analysis of the instantaneous rates of viscous dissipation associated with the deformation of the SP and of the underlying mantle, we found that the ratio R of the energy dissipated in the upper boundary layer to the total energy dissipation obeys the scaling law R ∼ St [St + F(θ)], where, again, a crucial parameter is the stiness St of the SP and F(θ) represents a function that accounts for the eect of the subduction angle θ. Adding the OP to the system, we found that R also depends on the SI strength γ, which takes into account the dissipation of energy related to the deformation of the SI, particularly relevant for weak SPs. Then, we explored the temporal evolution of the dissipation ratio R(t) for a SP/mante viscosity ratio λ 1 = 250 and λ 1 = 2500. The interesting result here is that R(t) remains always below the value 0.5, thus showing that the energy dissipation during free subduction is never dominated by the plate bending and interface shearing contributions. In light of these results, we nally moved on the study of large-scale mantle convection in presence of strong subduction zones. More specically, we investigated the inuence of the energy dissipation at subduction zones on the exponent β of the scaling law Nu ∼ Ra m β , where β = 1 3 in the classical derivation concerning an isoviscous uid layer. With the help of a parameterized model of mantle convection, we rst showed that a crucial parameter is the time t employed by the lithosphere to travel from the ridge to the trench of the subudction zone. Indeed, we distinguished between two cases depending on whether or not the travel time achieves the value t ≈ 80 Myr, which is commonly indicated as the age at which seaoor attening is observed to occur. If t ≤ 80 Myr, the thickness h SP of the SP when it enters the subduction zone is described by the classical half-space cooling model and depends on the mantle Rayleigh number Ra m . In such case, for a reasonable range of energy dissipation at the subduction zone, associated with both the SP bending and the SI shearing, we found β = 1 3, as for an isoviscous mantle. Dierently, when t ≫ 80 Myr and h SP is not anymore a function of Ra m , we found that β varies according to β = 0.5 (1 + C R ), where C R ≡ R (1 -R) is the ratio of the boundary-layer dissipation rate to that within the surrounding mantle. What drammaticaly inuences the result here is the length scale that one adopts to characterize the bending of the SP. We demonstrated that if the minimum radius of curvature of the plate is used (R min ) the bending dissipation of the SP is strongly overestimated leading thus to β → 0. By contrast, using the correct length scale, the `bending length' b , we found that β ∈ [0.25 -0.34], depending on the depth of the convecting layer which one considers. This suggests that strong subduction zones do not dominate the viscous dissipation associated with mantle convection and that they lead to relatively small departures from the classical Nu ∼ Ra m 1 3 heat transfer law. In light of such results, we conclude that viscous dissipation at subduction zones can not be the cause underlying the failure of parameterized cooling models in predicting the present-day Urey ratio for the Earth. We need to look somewehere else in order to reconcile the arguments coming from geodynamical and geochemical investigations.

In the last part of the thesis, aiming to validate our last results concerning large-scale mantle convection, we investigated a convection experiment based on the drying of a colloidal system. Preliminary results seem to conrm some results that have lately been published. This type of experiment seem to eectively captures the essence of Earth's mantle convection and the particular features which characterized it, as, for instance, the breakage of the strong upper boundary layer (i.e. the lithosphere) and the subsequent phenomenon of subduction. Investigate further the link between nano-scale phenomena, colloid rheology transitions and macroscopic response of the system seems a promising route to explore in order to have a clearer picture of how mantle convection works and to unmask the weakening mechanism leading to subduction initiation on Earth.

for which we obtained unphysical ow elds. Next, we imposed a reasonable resolution for the lower surface of the plates (=0.1h SP ) and we quadrupled it at the interface obtaining a constant element size of ≈ 0.025h SP . For the instantaneous solutions of the model, this mesh represents a good balance between accuracy and computational cost: decreasing the resolution by a factor of 2 led to an average error of 10% while increasing it by the same factor resulted in exactly the same ow eld but with a signicant slowdown in the computational time.

Finally, we made sure that the mesh maintained adequate resolution during time-dependent simulations. In principle, the natural evolution of the interface(not constrained with any `contact algorithm') could reduce the thickness of the lubrication layer to below the xed element size 0.025h SP . To verify that this does not occur, we started from an initial SI thickness d 2 = 0.08h SP and let the system evolve until the slab's tip reached the depth x 2 = -6.6h SP , keeping trace of the minimum distance d min 2 (t) between the two plates. We observed that d min 1. Déformation dominée par la compression : proche de la frontière entre les plaques, sur une distance de ≈ 100/150 km, la plaque continentale subit une forte compression. Ceci est dû aux actions opposées de la résultante horizontale (vers la droite) de la force agissant à l'interface, et de la force de cisaillement qui agit en-dessous de la plaque continentale en la déplaçant (à gauche) vers la plaque plongeante ; 2. Déformation dominée par la flexion : plus loin de la frontière entre les plaques (≈ 150/300 Km), les solutions numériques montrent que la plaque continentale consomme presque toute l'énergie en fléchissant vers le haut. En revanche, si nous considérons une plaque plongeante caractérisée par une valeur élevée de la longueur et/ou de l'angle de subduction θ 0 , la compression reste le mode de déformation qui consomme la majorité de l'énergie disponible ; 3. Déformation dominée par l'extension : encore plus loin de la frontière entre les plaques (≈ 400 Km), la compression et la flexion sont négligeables si la plaque continentale a la même densité que le manteau. Cependant, si nous supposons que la plaque continentale est plus légère que le manteau, une extension significative apparait. En effet, ce résultat est directement lié à l'équation qui décrit l'extension de la plaque continentale dans un modèle simplifié de subduction :

∆ = - d 1 g∆ρ 2 4η 2 , (5) 
où nous avons une déformation par extension (∆ > 0) quand la plaque continentale est moins dense que le manteau ∆ρ 2 < 0.

3 Partitionnement de la dissipation d'énergie visqueuse dans une zone de subduction Dans la dernière partie de ce travail nous nous sommes concentrés sur l'aspect énergétique du phénomène de subduction. En fait, en fonction de cela, l'évolution thermique de la Terre peut changer drastiquement. Un paramètre crucial pour ce type d'analyse est le rapport entre la somme de l'énergie consommée pour deformer la plaque plongeante (D SP ) plus l'énergie consommée pour déformer l'interface de subduction (D SI ) et l'énergie totale disponible dans le systeme (D Total ) :

R ≡ D SP + D SI D Total = D BL D Total , (6) 
où nous indiquons avec D BL l'énergie dissipée pour déformer l'ensemble de la couche limite supérieure.

Nous explorons comment R varie pendant la subduction en prenant deux exemples : "faible contraste de viscosité", avec λ 1 = 250 et "contraste de viscosité élevé", avec λ 1 = 2500. Les paramètres restants pour les deux exemples sont donnés dans le tableau 1. Nous avons exécuté les simulations jusqu'à ce que la plaque plongeante atteigne la profondeur x 2 = -6.7h SP ≈ 660 km, en suivant R(t) et St(t). Les résultats sont indiqués dans la figure 4 pour λ 1 = 250 (en haut) et λ 1 = 2500 (en bas). Les figures 4a et 4c montrent la géométrie du système à trois moments caractéristiques. Les figures 4b et 4d illustrent l'évolution temporelle correspondante de R(t) en fonction de St(t). Le temps augmente de droite à gauche le long de ces courbes. La fraction D SI /D BL de la dissipation de la couche limite qui se produit dans le SI est également notée pour les trois moments.

Le premier résultat important de figure 4 est que R reste toujours en dessous de la valeur 0.5 correspondant à l'équipartition de la dissipation entre la couche limite et le manteau.

Deuxièmement, les figures 4b et 4d montrent que l'évolution temporelle de R reflète un équilibre entre deux effets concurrentiels : un effet dynamique (R diminue lorsque St et D SI /D BL diminuent avec le temps) et un effet géométrique (R augmente lorsque l'angle de subduction augmente). Pour le cas λ 1 = 250, l'effet dynamique domine d'abord, conduisant à un diminution stable de R avec le temps. Puis, à St ≈ 0.6, le solde est inversé et R commence à augmenter (figure 4b). Pour λ 1 = 2500, en revanche, les deux effets s'annulent presque, maintenant une valeur constante R ≈ 0.4 (figure 4d). Il est intéressant de noter que dans les deux cas, l'importance relative de la dissipation à l'interface (D SI /D BL ) diminue pendant la subduction.

Convection thermique sous une couche limite rigide et déformante

Au vu des résultats obtenus, nous avons exploré l'effet de la dissipation d'energie dans les zones de subduction sur la convection du manteau. Pour cela, en partant de l'analyse de la couche limite à l'état d'équilibre, nous avons développé un modèle simplifié de la convection mantellique.

Nous commençons par calculer le nombre de Nusselt (Nu) comme étant le rapport du flux thermique de surface en présence de convection à celui transporté uniquement par conduction (e.g. Turcotte & Schubert, 2014) A partir de l'équilibre global de l'énergie mécanique, nous pouvons écrire V Sink comme Notre conclusion générale est que le phénomène de subduction ne domine pas la dissipation visqueuse associée à la convection du manteau et que la dissipation d'énergie dans une zone de subduction entraîne des écarts relativement faibles par rapport à la loi classique du transfert thermique. Il est donc probablement nécessaire de chercher ailleurs pour concilier les arguments géodynamiques et géochimiques concernant l'histoire thermique de la Terre.

V Sink ∼ h SP g∆ρ 1 η 0 f 2 (θ)(1 + R) , (10) 
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 1 Figure 1.1. (a): Earth's interior according to the terminology adopted by mineral

  Figure 1.2. 3-D cross section of the subduction zone beneath the island of Java, Bali, Lombok and Sumbawa in Indonesia. Credits: Yves R. Descatoir, Earth Observatory of Singapore.
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 1 Figure 1.3. From Schellart et al. (2007): Map of major subduction zones on Earth with plate velocities computed relative to the Indo-Atlantic hotspot reference frame.

Figure 1

 1 Figure 1.4. 2-D analytical model of McKenzie (1969) for mantle ow in subduction zones. Viscous uid with uniform viscosity is contained in two wedge-shaped regions separated by the downgoing portion of the SP. The motions of the downgoing and surface portions of the SP are forced by imposed velocities U 0 . Typical streamlines are shown as solid lines with arrows. Credits: Neil M. Ribe.
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 1 Fig. 1. Scheme of the experiments: 1, isostatic equilibrium level of the "lithosphere" surface; 2, elastico-plastic plate model lithosphere; 3, piston; 4, bath; 5, low-viscosity liquid ("asthenosphere"). The "lithosphere" as shown by continuous lines corresponds to Pl > Pa; the dotted line is for Pl = Pa; the dashed line shows the cut in the overriding plate (see the text for additional explanations), and Pl and Pa are the densities of the lithosphere and asthenosphere, respectively.

Figure 1

 1 Figure 1.5. Examples of subduction model setups. Forced: (a) experimental (Shemenda, 1993), (c) numerical (Rodríguez-González et al., 2012). Free: (b) experimental (Duarte et al., 2013), (d) numerical (Holt et al., 2015a).

Figure 1

 1 Figure 1.6. (a): Phase diagram of Schellart (2008) showing the modes of free subduction as a function of the viscosity contrast (η SP η M ) and the ratio of the mantle depth to the sheet thickness (T M T SP ). (b)-(c): Phase diagram of Li & Ribe (2012) showing the modes of free subduction as a function of the viscosity contrast (η 2 η 1 ) and the ratio of the mantle depth to the sheet thickness (H h). In (b) the authors show the dierent shapes of the slab as it touches the bottom boundary. They also report the corresponding angle of the slab's tip. The dashed lines in (c) report the same regime boundaries given in (a). Regime I and IV: Retreating mode. Regime II: Folding retreating mode. Regime III: Advancing mode.

  [START_REF] Schellart | A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle ow: Results from dynamic subduction models with an overriding plate[END_REF]: Inuence of toroidal ow on backarc opening. (b) Chen et al. (2015): Inuence of interplate stresses on forearc deformation.

Figure 1 . 7 .

 17 Figure 1.7. Mechanisms underlying OP deformation.

  has been explored recently is the inuence of the subduction interface on the deformation of the OP and the rate of subduction of the SP. Based on analog models, Duarte et al. (2013) and Chen et al.

Figure 1

 1 Figure 1.11. From Turcotte & Schubert (2014): Approximation of the velocity eld within a convection cell.

  Figure 1.12. From Labrosse & Jaupart (2007): Plate tectonics systems and corresponding seaoor age distributions. The thick solid lines represent subduction zones while dashed lines are ridges. In (A) all the plate subducts at the same travel time leading to the rectangular age distribution shown in (B). In (C) the presence of continents, in gray, allow for subduction of young plates. Such a system shows an Earth-like triangular seaoor distribution (D).

  Stokes ow is presented along with dierent solutions which characterized it. A particular technique (Boundary-integral representation), useful to solve this type of ow, is also described and several results of thin viscous-sheet theory are derived; in Chapter 3 the results published in Gerardi & Ribe (2018) are presented. This work focuses on unmasking the mechanics underlying the phenomenon of subduction by means of a numerical model built with the Boundary Element Method (BEM), here described. Three main aspects of subduction are investigated: the kinematics of the subducting plate, the overriding plate deformation and the mechanical role played by the subduction interface; in Chapter 4, the results of the manuscript Gerardi G., Ribe N. M., & Tackley P. J. Plate bending, energetics of subduction and modeling of mantle convection: a boundary element approach, currently under review for Earth and Planetary Science Letters, are presented. Based on the same BEM model, this study specically explores the energetics of subduction. The inuence of viscous dissipation of energy at subduction zones on large-scale mantle convection is also studied; in Chapter 5, laboratory modeling of mantle convection is introduced. Here, preliminary results obtained running a convection experiment based on the drying of an aqueous colloidal dispersion of silica nanoparticles are presented.

  Rigid body with fore-aft symmetry falling under gravity in an innite uid: rotation can not occur. Rigid body lacking fore-aft symmetry falling under gravity in an innite uid: rotation can occur.
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 21 Figure 2.1. Examples of the exploitation of the property of reversibility characterizing Stokes ow. Credits: Neil M. Ribe.
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 2 Figure 2.3. From[START_REF] Ribe | Analytical approaches to mantle dynamics[END_REF]: Image system required to describe a general Stokes ow in the presence of an impermeable and traction-free wall. Because the latter is equivalent to a plane of mirror symmetry, the Stokeslet located at x has to be balanced by a Stokeslet reected across the wall, located at the image point x IM ≡ x -2dn and with strength F * ≡ R ⋅ F.

Figure 2

 2 Figure 2.6. From[START_REF] Ribe | Bending and stretching of thin viscous sheets[END_REF]: Model of a two-dimensional thin sheet of viscous uid with variable thickness H(s), constant viscosity η and constant excess density δρ. s and z dene the local coordinate system related to the sheet's midsurface, located at z = 0. The midsurface has inclination θ(s) from the horizontal and curvature K(s) = dθ ds. In the most general case, inertialess ow in the sheet is driven both by its buoyancy and by externally applied normal P ± (s) and tangential T ± (s) stresses.

  dN ds-KQ = -Hg s δρ

  the results published in: Gerardi G. and Ribe N. M. Boundary Element Modeling of Two-Plate Interaction at Subduction Zones: Scaling Laws and Application to the Aleutian Subduction Zone. Journal of Geophysical Research: Solid Earth, 123(6):5227-5248, 2018. The outline of the chapter follows the one of the paper. The `Introduction' section has been omitted in order to avoid redundancy.

  Figure 3.2.

Figure 3

 3 Figure 3.3. Dependence of the convergence rate on the the thickness of the subduction interface. (a) Subducted length s of the midsurface of the SP as a function of time for the three cases of g. 3.2. The values of d 2 h SP indicated are initial values (t = 0). (b) Instanstaneous convergence rate of the initial conguration as a function of the dimensionless gap width d 2 h SP . The dimensional convergence rates indicated are calculated from eq. (3.2) assuming h SP =100 km, η 0 = 5.44 × 10 20 Pa s, and ∆ρ 1 = 70 kg m -3 .
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 34 Figure 3.4. Time evolution of the minimum (dashed line-right axis) and maximum (solid line-left axis) thickness for the model of g. 3.2c.

Figure 3

 3 Figure 3.5. Dimensionless sinking speed V Sink V Stokes as a function of the plate stiness St for θ 0 = 30 ○ . Numerical solutions were obtained forL SP h SP =16, d 1 h SP ∈ [0.1, 0.2],h SP ∈ [5, 10], and λ 1 ∈ [50, 10 5 ]. As demonstrated in[START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF], the only eect of the lubrication layer thickness d 1 is to modify b , hence the exural stiness St.
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 3 Figure 3.7. Values of the slope (left y-axis) and the intercept (right y-axis) extrapolated from the logarithmic t of curves U SP V Stokes = fct (L SP ) as the ones shown in gure 3.6. St varies within the range ∼ [0.3-14].
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 3 Figure 3.8. Dimensionless convergence speed V Conv V Stokes as a function of the exural stiness St for h = 5, 6, 7, 9. The corresponding curve V Sink V Stokes vs. St is shown for comparison. The slab dip is xed at θ 0 = 60 ○ .

  SP+OP reference case with respect to the parameter indicated. L SP L OP ≈ 2 along the line (☀, ), while L SP L OP ≈ 4 along the line (∎, ◻).

V

  Figure 3.12. Dimensionless convergence speed V Conv V Stokes vs. dimensionless horizontal SP/OP separation d 2H h SP , for several values of the exural stiness St and θ 0 = 60 ○ . The dimensionless slab length h SP = 9 (dashed lines) or 6 (solid lines). The open squares indicate the values of V Conv V Stokes for the SP Only case (d 2H h SP → ∞).
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 33 Figure 3.13. Curling rate K and stretching rate ∆ along the midsurface of the OP for three dierent values of θ 0 , h SP = 7, and Γ = 0 (top gure) and for three dierent values of h SP , θ 0 = 30 ○ , and Γ = 0 (bottom gure). The other parameters are given in the text.
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 3 Figure 3.15. Rates of energy dissipation due to bending (φ b , solid line) and stretching/shortening (φ s , dashed line) of a positively buoyant OP with Γ = -0.25. For comparison, the dotted line shows the stretching/shortening curve for a neutrally buoyant OP (Γ = 0).

  5. Horizontal speed ratio of the congurations shown in 3.4.2 g. 3.9Points L SP L OP U SP U OP
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 4 ENERGETICS OF SUBDUCTION 4.1. Rates of viscous dissipation of energy 4.1 Rates of viscous dissipation of energy

Figure 4 . 4 .

 44 Figure 4.4. Dissipation ratio R as a function of the exural stiness St of the SP for three dierent values of γ. The BEM solutions for the SP+OP system were obtained

  and 4.5c show the geometry of the system at three characteristic times.Figures 4.5b and 4.5d show the corresponding time evolution of R(t) as a function St(t) (lled circles). Time increases from right to left along these curves. The fraction D SI D BL of the boundary-layer dissipation that occurs in the SI is also noted for the three times. Finally, the open circles show R(St) for the same SP but without the OP.
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 4 Mantle convection modeling 4. ENERGETICS OF SUBDUCTION Case 2: convection below a plate with a long travel time

4. 5 Figure 4

 54 Figure 4.7. (a) Overestimation factor α as a function of the dimensionless cell thickness Ĥ for viscosity ratios λ 1 = 250 and 2500. Time increases from left to right. The intersections with the vertical straight lines give the values of α for the two characteristic depths Ĥ1 and Ĥ2 . (b) Time evolution of Rmin (lled circles) and ˆ b (empty circles) for λ 1 = 2500.

  model and depends on the mantle Rayleigh number Ra m . The Nusselt number is then Nu ∼ Ra m β with β = 1 3, as for an isoviscous mantle. For long travel times, by contrast, h SP is a constant. The heat transfer scaling exponent is then β = 0.5 (1+C R ), where C R ≡ R (1-R) is the ratio of the boundary-layer dissipation rate to that within the surrounding mantle. The partitioning factor C R depends strongly on the length scale one adopts to characterize the bending of the SP. If the minimum radius of curvature R min of the plate is used, as in several previous studies, the bending dissipation of the SP is strongly overestimated and β → 0. If however one uses the correct length scale, the bending length b , β ∈ [0.30, 0.34] for H h SP = 6.7 and β ∈ [0.25, 0.28] for H h SP = 10, where H is the depth of the convecting layer. Our overall conclusions are that strong subduction zones do not dominate the viscous dissipation associated with mantle convection, and that subduction zone dissipation leads to relatively small departures from the classical Nu ∼ Ra m 1 3 heat transfer law.

  What makes a colloidal dispersion particularly interesting is the type of rheology which characterized it. In a detailed study, Di Giuseppe et al. (2012) investigated the rheological transitions which a colloidal dispersion of silica nanoparticles (commercial name LudoxHS40) undergoes when subject to drying. Removing the water from the samples, thus increasing the solid volume fraction φ p , the authors studied the rheological behavior of the colloid nding the regime diagram reported in gure 5.1a. As one immediately sees, the critical parameter controlling the rheological transitions is φ p . In fact, depending on this parameter, the distance between the nanoparticles changes accordingly, inuencing the particle-particle in-

Figure 5

 5 Figure 5.1. From Di Giuseppe et al. (2012): (a) regime diagram of aqueous monodisperse silica colloid (LudoxHS40) as a function of the solid volume fraction and the applied stress. The black lled symbols indicate results obtained by the authors. (b) sketch showing the possible spatial arrangement of the nanoparticles within the colloid as a function of the solid volume fraction.

Figure 5

 5 Figure 5.2. From Bacchin et al. (2018): (a) time-evolution of the evaporation rate during an experiment involving the drying of LudoxHS40. The evaporation rate is normalized by the corresponding evaporation rate of pure water in the the same setup. (b) top view of the tank showing the buckling deformation of the visco-elastic skin and the eect related to the impact of a hot upwelling. (c) side view of the tank, composed of superposed images, showing the subduction of the skin. For this experiment, presented in Davaille et al. (2017), the plume-induced subduction mechanism has been suggested.

  Figure 5.3. Experimental setup of a drying convection experiment. The colloid layer into the tank (green) is dried from above by an air stream whose temperature (T) and humidity (Rh) are controlled by a climatic chamber. For our experiment is T = 25 ○ C and Rh = 30%.The tank is placed on a metal plate that can be heated if needed. Further below there is a weight scale that records the mass lost during the experiment because of the evaporation of water.
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 54 Figure 5.4. (a) V Et curve shown in gure 5.2a. (b) V Et curve of our experiment.The green dashed lines compare the three regimes of convection of our experiment with the ones identied in (a). The red dots correspond to the four top views of the tank reported in gure 5.5. The sharp peaks at t ≈ 1200 min t ≈ 1350 min are related to external perturbations.

Figure 5 . 5 .D2Figure 5

 555 Figure 5.5. Top view of the tank during the experiment, showing the time evolution of the skin. The photos have been taken at t = 80 min (a), t = 170 min (b), t = 540 min (c), t = 1475 min (d), which correspond to the four red dots of gure 5.4b.

  Figure 5.7. Phase diagrams for the LudoxHS40 (a) and the LudoxTM50 (b). The gures report the relative viscosity of the colloid (normalized by the viscosity of the water) as a function of the particle volume fraction. The GEL state is dened by G ′ > G ′′ , where G ′ is the storage modulus, characterizing the stored elastic energy and G ′′ is the loss modulus, characterizing the energy dissipated by heat (Di Giuseppe et al., 2012). The elongated bars show the viscosity variations for strain-rates between 10 -1 (white) and 10 3 (black) 1/s. The sol-gel transition is at φ b = 0.35 for the LudoxHS40 and at φ b = 0.48 for the LudoxTM50. The gel-glass transition is at φ b = 0.51 for the LudoxHS40 and at φ b = 0.62 for the LudoxTM50. Measurements of Erika Di Giuseppe.

Figure 5

 5 Figure 5.8. TGA measurement reporting the variation of the mass of the sample (in percentage) as a function of the temperature.

Figure 5

 5 Figure5.9. DSC measurement reporting the amount of heat released (blue curve) or absorbed (red curve) by the sample as a function of the temperature. The peaks correspond to phase transitions of the water contained in the sample: freezing (blue curve), melting (red curve). (a) refers to a glass-like or gel-like samples, while (b) refers to a sol-like sample. The latter shows two melting points of the water, as this is both in a conned-state and in a bulk-state within such type of sample (see text for details).

Figure 3 :

 3 Figure3: Taux de dissipation d'énergie dus à la flexion (φ b , ligne continue) et étirement/raccourcissement (φ s , ligne tiretée) d'une plaque continentale moins dense que le manteau (Γ ≡ ∆ρ 2 /∆ρ 1 = 0). La variable s représente la coordonnée horizontale qui localise la plaque continentale (voir figure2). Pour comparaison, la ligne pointillée montre la courbe d'étirement/raccourcissement d'une plaque continentale avec la même densité que le manteau (Γ = 0).

  où R ≡ R/(1 -R) = D BL /D M .Parce que (10) relie la vitesse d'enfoncement de la plaque plongeante au coefficient R qui décrit la répartition de la dissipation visqueuse entre la couche limite et le manteau, nous prévoyons différents régimes de convection du manteau en fonction de le valeur de R. D'abord, nous notons que si R = 0, nous trouvons le résultat standard Nu m ≡ H 3 g∆ρ 1 /(κη 0 ) est le nombre de Rayleigh du manteau. En revanche, si R = 0, nous obtenons deux cas limites. Considérons d'abord le cas d'une lithosphère qui se déplace vers la fosse océanique en un temps t < 80 Myr, l'âge à laquelle l'aplatissement du fond marin commence à être observé. Dans ce cas là, la loi d'échelle Nu ∼ Ra m 1/3 reste valable même en présence de dissipation visqueuse dans la zone de subduction. Si t > 80 Myr, par contre, nous trouvons la loi d'échelle Nu ∼ Ra β m (12) montre que β dépend fortement du partitionnement de la dissipation d'énergie visqueuse décrit par R. En utilisant notre modèle 2D de subduction, nous avons trouvé β ∈ [0.25 -0.34] pour les cas montrés dans la figure4. Nos calculs montrent qu'il est fondamental d'utiliser l'échelle de longueur correcte b ("bending length") pour caractériser la déformation en flexion de la plaque plongeante. En revanche, si nous utilisons le rayon de courbure minimum R min , la dissipation d'énergie associée avec la flexion de la plaque plongeante est fortement surestimée et nous obtenons β → 0.

  

  

  

  Values of the slope (left y-axis) and the intercept (right y-axis) extrapolated from the logarithmic t of curves U SP V Stokes = fct (L SP ) as the ones shown in gure 3.6. St varies within the range ∼ [0.3-14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.8 Dimensionless convergence speed V Conv V Stokes as a function of the exural stiness St for h = 5, 6, 7, 9. The corresponding curve V Sink V Stokes vs. St is shown for comparison. The slab dip is xed at θ 0 = 60 ○ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.9 Dimensionless plate speed U SP V Stokes as a function of L SP (semilog plot) for the SP+OP case. Solid lines: SP Only and SP+OP reference cases whose conguration is given in table 3.3. Dashed lines: variations of the SP+OP reference case with respect to the parameter indicated. L SP L OP ≈ 2 along the line (☀, ), while L SP L OP ≈ 4 along the line (∎, ◻). . . . . . . . . . . . . . . . . . . . 54 3.10 (a) Dimensionless OP speed vs. dimensionless subduction interface thickness d 2 h SP , for h SP = 5, 6, 7. The ratio L SP = 3.2 is constant. The parameters not specied explicitly are given in table 3.3. (b) Dimensionless plate speed U SP V Stokes as a function of d 2H h SP for the reference case, where d 2H is the horizontal (as opposed to normal) separation between the SP and the OP. The slab length is h SP = 5 and L SP = 3. The other parameters are those given in table 3.3. The dashed line indicates the value of U SP V Stokes for the corresponding SP Only case. . . . . . . . . . . . . . . . . . . . . . . 56 3.11 Mantle ow generated by the sinking slab at t = 0 for the parameters of table 3.The oval indicates the velocity gradient corresponding to a shear stress that drives the OP leftward. . . . . . . . . . . . . . . . 57 3.12 Dimensionless convergence speed V Conv V Stokes vs. dimensionless horizontal SP/OP separation d 2H h SP , for several values of the exural stiness St and θ 0 = 60 ○ . The dimensionless slab length h SP = 9 (dashed lines) or 6 (solid lines). The open squares indicate the values of V Conv V Stokes for the SP Only case (d 2H h SP → ∞). . . . 58
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	1. INTRODUCTION	1.1. Subduction
	2008).	

  by extrenally applied normal P ± (s) and tangential T ± (s) stresses. The exact equations governing its motion are

	2.3. Thin viscous-sheet theory					2. STOKES FLOW
				∂u ∂s	+	∂ ∂z	(hw) = 0	(2.23a)
	∂σ ss ∂s	+	∂ ∂z	(hσ zs ) + σ zs	∂h ∂z	= -hg s δρ	(2.23b)
	∂ ∂z	(hσ zz ) +	∂σ zs ∂s	-σ ss	∂h ∂z	= -hg z δρ	(2.23c)
	where σ ij is the stress tensor. Its components are
	σ ss = -p +	2η h	∂u ∂s	-Kw , σ zz = -p + 2η	∂w ∂z	,

and

Table 2 .

 2 1. Complete set of equations for an evolving thin viscous sheet.

Table 3 .

 3 1. Notation

	Variable	Denition	Units
	d 1	Lubrication layer thickness above the plates	[m]
	d 2		

Table 3

 3 SP /h SP /h SP λ 1 d 2 h SP L OP /h SP h OP /h SP λ 2

				.2. Initial congurations			
		SP				OP			
	θ 0 L Γ
	gure 3.2a 30 ○	16	5	300	-	-	-	-	-
	gure 3.2b 30 ○	16	5	300 0.2	16	1	300 -0.25
	gure 3.2c 30 ○	16	5	300 0.08	16	1	300 -0.25

  Figure 3.6. Dimensionless plate speed U SP V Stokes as a function of L SP for several values of St and θ 0 = 30

	3. MECHANICS OF SUBDUCTION		3.4. Thin-sheet analysis: SP kinematics
		0.012						
			St=0.37				Logarithmic Fit
		0.01						
			St=0.64					
		0.008	St=2.01					
	Stokes							
	SP /V	0.006	St=3.25					
	U							
		0.004	St=9.37					
		0.002	St=13.86					
		0						
			3	4	5	6	7	8	9	10
					L SP /			

○ (semi-log plot). Values of St ∈ [0.37, 14] were obtained using the following parameters:

  U SP V Stokes as a function of L SP for the SP+OP case. The two solid lines are for the SP Only and SP+OP

	3.4. Thin-sheet analysis: SP kinematics	3. MECHANICS OF SUBDUCTION
		0.008						
		0.007						
		0.006						
									SP Only
	U Stokes SP /V	0.005 0.004	d 2 /h SP = 0.2 /h SP = 5					
		0.003	h OP /h SP = 1.25					
									SP+OP Ref
		0.002	L OP /h SP = 10					
		0.001						
			3	4	5	6	7	8	9	10
					L SP /			
	Figure 3.9. Dimensionless plate speed U				

reference cases whose parameters are given in table 3.3. The four dashed lines are for variations of the SP+OP reference case with respect to the parameter indicated. SP V Stokes as a function of L SP (semi-log plot) for the SP+OP case. Solid lines: SP Only and SP+OP reference cases whose conguration is given in table 3.3. Dashed lines: variations of the

Table 3

 3 

	.3. Conguration of the reference cases
		SP		OP
	θ 0	/h SP	λ 1 d 2 h SP L OP /h SP h OP /h SP
	SP Only SP+OP Ref 30 ○ 7 10 3 0.1 30 ○ 7 10 3 -	-16	-1

  Figure 3.10. (a) Dimensionless OP speed vs. dimensionless subduction interface thickness d 2 h SP , for h SP = 5, 6, 7. The ratio L SP = 3.2 is constant. The parameters not specied explicitly are given in table 3.3. (b) Dimensionless plate speed U SP V Stokes as a function of d 2H h SP for the reference case, where d 2H is the horizontal (as opposed to normal) separation between the SP and the OP. The slab length is h SP = 5 and L SP = 3. The other parameters are those given in table 3.3. The dashed line indicates the value of U SP V Stokes for the corresponding SP Only case.

	3.4. Thin-sheet analysis: SP kinematics	3. MECHANICS OF SUBDUCTION
	0.1						0.012		
	(a)						(b)	SP only	
				/hSP					
							0.01		
	ÛOP					USP/VStokes			
							0.008		
							0.006		
	0.01								
	0	0.1	0.2	0.3	0.4	0.5	1	10	100
			d2/hSP					d2H/hSP	

V

  Conv [mm yr -1 ]

			θ 0	[km]	Depth [km]
	CALE4	61.00	58.00 ○	704	550
	CALE5	61.00	59.00 ○	708	550
	CALE6	59.00	62.00 ○	640	500
			Simulation parameters		

V

  Conv [mm yr -1 ] θ 0 /h SP L SP /h SP L OP /h SP h OP /h SP Γ

	`BEM-segment'	60.33	59.67 ○ 6.84 100.00	70.00	1.25 -0.25
	discussed below.				

  This result is only indicative because the model of an isolated OP treated in Appendix A ignores the substantial shear traction generated below the forearc region of the OP by the slab-induced mantle ow. Nevertheless, eq. (3.20) is consistent with the fact that back-arc extension only occurs in numerical solutions when Γ < 0. A similar result has been reported by Holt et al. (2015a) for a model in which the upper surface of the OP is itself a free-slip surface. We show in Appendix B that the horizontal extensional stress found numerically by Holt et al. (2015a) agrees almost exactly with the prediction of a simple plug-ow model for a spreading viscous gravity current.

Table 3 .

 3 7. Dimensionless interface strength of dierent subduction models. The asterisk indicates studies where γ has been inferred by comparison with observed geophysical data. N=Numerical, E=Experimental. The work of Klein et al. (2016) is based on the inversion from GPS data. SP thus varies within a range [0.06, 0.63] in the course of the experiment. The value γ ≈ 90 in table 3.7 is calculated for the smallest value of d 2 h SP = 0.06.

	Study	Type	γ	λ 1	Rheology
	This study*	N	1.97-6.25	150-450	Linear
	Meyer & Schellart (2013) Duarte et al. (2015)*	E E	0.13-0.43 ≤ 90	200 160	Linear Linear (visco-plastic interface)
	Chen et al. (2015)	E	5.3-10.00	200	Linear
					(visco-plastic interface)
	Holt et al. (2015a)	N	0.73-1.80	100-2000	Visco-plastic
	Klein et al. (2016)*	N	0.17-1.3 Elastic lithosphere	Visco-elastic
					asthenosphere
	ratio d 2 h				

Table 4 .

 4 1. Initial congurations of the models whose time evolutions are shown in gure 4.5. SP /h SP /h SP λ 1 d 2 h SP L OP /h SP h OP /h SP λ 2

		SP			OP		
	θ 0 L `Low viscosity' 30 ○	20	5	250 0.25	20	1	250
	`High viscosity' 30 ○	20	5	2500 0.25	20	1	2500
	(top) and λ						

1 = 2500 (bottom).

Figures 4.5a 

  is the standard Nusselt number vs. Rayleigh number scaling for an isoviscous system.Our next task is to understand what happens when C R ≠ 0.

	4.4. Mantle convection modeling	4. ENERGETICS OF SUBDUCTION
	4.4.2	Thermal convection below a strong deforming bound-
		ary layer
			.22)

which

Table 4 .

 4 2. Values of the coecient δ, the energetic ratio C R L and the corresponding exponent β L , where L = b or R min , for four combinations of values of Ĥ and λ1 . R b C R R min β b β R min SI D SP b and C R b are determined from the BEM simulations.The corresponding values of β are then obtained from(4.31). The results are summarized in table 4.2 for our four characteristic combinations of Ĥ and λ 1 . If we use R min as the bending length scale, the estimate of the boundary-layer dissipation D SP is much higher, resulting in values of β close to zero in all cases.

	4.6. Conclusions		4. ENERGETICS OF SUBDUCTION
	Ĥ α C 6.7 250 0.81 33 0.48 λ 1 δ	19	0.34 0.03
	6.7 2500 0.52 16 0.67 10.0 250 0.49 134 0.81 10.0 2500 0.62 51 0.97	11 90 32	0.30 0.04 0.28 ≈ 0 0.25 0.02
	ferred value of β, we calculate the quantity		
	where α, δ ≡ D	C R R min =	α + δ 1 + δ	C R b ,	(4.33)

  The gel-glass transition at φ b = 0.62

	(see gure 5.7).						
	Samples Region Depth	φ b Phase ∆T m [ ○ C] d [nm]
	#1	R1	S	0.39	Sol	7.49 (0.56)	12.7
	#2	R1	D1	0.59	Gel	7.87	12.1
	#3	R1	D2	0.39	Sol	6.93 (0.28)	13.7
	#4	R2	S	0.65 Glass	6.74	14.1
	#5	R2	D1	0.64 Glass	7.21	13.2
	#6	R2	D1-	0.64 Glass	7.59	12.5
	#7	R2	D1--0.68 Glass	7.31	13.0
	#8	R2	D2	0.32	Sol	6.93 (0.56)	13.7
	#9	R3	S	0.53	Gel	7.02	13.5
	#10	R3	D2	0.34	Sol	7.40 (0.47)	12.8
	#11	R4	`Sl1'	0.57	Gel	7.31	13.0
	#12	R4	`Sl2'	0.60	Gel	7.64	12.4

  . Le numérateur est l'intégrale sur toute la longueur horizontale L h du gradient de température vertical prédit par le modèle standard de refroidissement en demi-espace. Le dénominateur est la chaleur transportée par conduction sur toute l'épaisseur du manteu H. Nous avons donc est la diffusivité thermique et U SP est la vitesse horizontale du SP. En mettant à l'échelle l'équation de continuité, on obtient est la distance verticale entre la pointe (plus en bas) de la plaque plongeante et sa surface inférieure. L'équation 8 nous permet de réécrire 7 comme

	Nu = 2H	U SP πκL h	1/2	,	(7)
	où κ U SP L h	∼	V Sink L z			(8)
	où L z Nu ∼ H	V Sink κL z	1/2	.	(9)

et al., 2010;[START_REF] Gerya | Future directions in subduction modeling[END_REF][START_REF] Duarte | Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology[END_REF][START_REF] Garel | Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate[END_REF] 
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never went below ≈ 0.068, so that the accuracy criterion was fullled. We also veried that doubling the resolution of the mesh did not result in any signicant changes in the computed ow eld.
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The horizontal dashed lines represent the values of V Conv V Stokes that correspond to the true convergence rate of the `BEM-segment', nondimensionalized using the range of mantle viscosities given by [START_REF] Mitrovica | A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data[END_REF]. See text for more details.

of γ on the curves V Conv V Stokes = fct (γ) that predicts the observed convergence rate. Figure 3.16 shows the nal result, where we nd γ ∈ [1. 97-6.25]. To estimate the corresponding viscosity of the subduction interface, we assume d 2 h SP ∼ 0.07, which is equivalent to assuming that the subduction interface is the oceanic crust.

We then nd from equation (3.18) that η SI = 0.96-1.72×10 20 Pa s.

Chapter 4

Energetics of subduction and large-scale mantle convection

In this chapter I present the results of the work: Gerardi G., Ribe N. M., & Tackley P. J. Plate bending, energetics of subduction and modeling of mantle convection:

a boundary element approach. The manuscript is currently under review for Earth and Planetary Science Letters. Together with the `Introduction' section, here I omit also the `Model setup and BEM formulation' section included in the original version of the manuscript.

In this chapter we look at the energetics of subduction using the BEM model presented in 3.2. We begin by performing a scaling analysis of instantaneous solutions of the Stokes equations for plates with a specied geometry. Here, we nd that the fraction R of the total energy dissipation that occurs in the upper convective boundary layer is controlled by three key parameters: the exural stiness of the SP, the strength of the subduction interface and the shape (dip) of the descending slab. Next, we examine the time evolution of R(t) during unsteady subduction of plates with medium/high viscosity. Time dependent solutions show that R remains always below 0.5, the value corresponding to equipartition of the dissipation between the boundary layer and the ambient mantle. In conclusion, we explore the consequences of this result for the Nusselt number/Rayleigh number relationship Nu ∼ Ra β m for a convecting system with plates of moderate to high strength. A crucial result here is that the exponent β can change dramatically depending on the length scale used to describe the dissipation due to bending of the SP.

Appendix A

Stretching rate of a thin-viscous sheet below a lubrication layer bounded by a free-slip surface Our goal is to show that a positively buoyant OP beneath a thin lubrication layer tends to deform in extension. For this purpose, we consider an isolated OP, and assume that the shear stress acting on its upper surface is much larger than that on its lower surface. To simplify the notation, we set x 1 → s, x 2 → z, and u 1 → u. The global force balance in the horizontal (s-) direction is [START_REF] Ribe | Bending and stretching of thin viscous sheets[END_REF])

where primes denote d ds, σ sz x 2 =-d 1 is the shear stress acting on the upper surface of the OP, and the quantity in parentheses is the integral of the bre stress σ ss across the OP. To determine σ sz in the lubrication layer, we start from the scomponent of the momentum equation in the lubrication limit, which is

Since the OP is much more viscous than the lubrication layer, the eective boundary condition on the horizontal velocity is u z=-d 1 = 0. Integrating eq. (A.2) subject to that condition and the free-slip surface condition ∂u ∂z z=0 = 0, we obtain

Eq. (A.1) then becomes

Now integrate eq. (A.4) once subject to the condition that both U ′ and p vanish at s = 0, which yields

(A.5)

Now the pressure in the OP is given by the solution of Ribe (2010), viz.,

where

.

(A.7)

Combining (A.5) and (A.6), we obtain

(A.8)

Eq. (A.8) describes the stretching rate of an OP that is suciently long that the two ends do not inuence each other. Far from the ends of the OP (s ≫ 0 ), the stretching rate is

which shows that the OP deforms by extension (U ′ > 0) if it is positively buoyant (∆ρ 2 < 0). We now verify our assumption that the shear stress on the lower surface of the OP (= F - s ) is negligible compared to that on the upper surface (= F + s ). Consider the portion of the OP of length ∼ 0 adjoining the end s = 0, where the shear stress on the bottom surface is largest. From the above solution, we already know that

where the scale for p ′ comes from eq. (A.6). Now, the shear stress on the base of the OP is A.11) where the scale for W comes from eq. (B6) of [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thinsheet analysis[END_REF]. Taking the ratio of the two stresses and using eq. (A.7), we obtain

(A.12)

For small values of d 1 h OP and large viscosity contrasts λ 2 (as in our study),

The analysis above is for an isolated OP, and succeeds in showing that a positively buoyant OP should deform in extension. However, in our BEM model the OP is not isolated, but is strongly inuenced by the shear stress induced on its base by the sinking of the neighboring slab. This additional shear stress is much larger than F + s , and so our assumption F - s ≪ F + s breaks down. The results of the derivation above should therefore be interpreted as indicative rather than as an accurate reection of the BEM model.

Appendix B

Spreading gravity current below a free-slip surface Inspired by the model of Holt et al. (2015a), we consider a buoyant layer of uid (the OP) bounded above by a free-slip surface. The OP has thickness h OP , density ρ OP and viscosity η OP , while the underlying uid has density ρ M = ρ OP -∆ρ and viscosity η M ≪ η OP . To lowest order, the horizontal velocity is constant across the layer (plug ow). The horizontal force balance within the layer is [START_REF] Canright | Buoyant instability of a viscous lm over a passive uid[END_REF])

where U ′ = ∂U ∂s. Integrating (B.1) once, we obtain

where F is a constant. At the ends of the OP, U ′ = h OP = 0, which requires F = 0. Therefore

Now from thin viscous-sheet theory, the horizontal normal stress in the OP is σ ss = 4η OP U ′ , or 1 Dynamique de la plaque de subduction océanique Tout d'abord, nous nous sommes concentrés sur deux vitesses caractéristiques de la plaque de subduction océanique et nous avons déterminé les lois d'échelle qui les decrivent. La vitesse de subduction (V Conv ) est décrite par la loi suivante :

Résumé français

où V Stokes représente la vitesse à laquelle la plaque descend (dans la limite de Stokes), θ 0 est l'angle de subduction, et h SP sont des paramètres qui decrivent la géométrie de la plaque