
HAL Id: tel-01982476
https://theses.hal.science/tel-01982476

Submitted on 15 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to unsupervised learning from massive
high-dimensional data streams : structuring, hashing and

clustering
Anne Morvan

To cite this version:
Anne Morvan. Contributions to unsupervised learning from massive high-dimensional data streams :
structuring, hashing and clustering. Machine Learning [cs.LG]. Université Paris sciences et lettres,
2018. English. �NNT : 2018PSLED033�. �tel-01982476�

https://theses.hal.science/tel-01982476
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres
PSL Research University

Préparée à l’Université Paris-Dauphine

Contributions to unsupervised learning from massive high-dimensional
data streams: structuring, hashing and clustering

École doctorale de Dauphine – ED 543

Spécialité INFORMATIQUE

Soutenue par Anne MORVAN
le 12.11.2018

Dirigée par Jamal ATIF

COMPOSITION DU JURY :

M. Rémi GRIBONVAL
INRIA
Président du jury

M. Albert BIFET
Télécom ParisTech
Rapporteur

M. Liva RALAIVOLA
Université Aix-Marseille, Critéo
Rapporteur

M. Jamal ATIF
Université Paris-Dauphine
Directeur de thèse

M. Cédric GOUY-PAILLER
CEA
Co-encadrant de thèse

Mme Florence d’ALCHE-BUC
Télécom ParisTech
Examinateur

M. Krzysztof CHOROMANSKI
Google Brain Robotics
Membre du jury

Université Paris-Dauphine, PSL Research
University

Doctoral Thesis

Contributions to unsupervised learning
from massive high-dimensional data
streams: structuring, hashing and

clustering

Author:
Anne Morvan

Supervisors:
Pr. Jamal Atif

Dr. Cédric Gouy-Pailler

Examiners:
Dr. Rémi Gribonval

Pr. Albert Bifet
Pr. Liva Ralaivola

Pr. Florence d’Alché-Buc
Dr. Krzysztof Choromanski

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

between

the Data Science Team, LAMSADE & the LADIS Lab, CEA-LIST

November 12, 2018

http://www.dauphine.fr/fr/index.html
http://www.dauphine.fr/fr/index.html
http://www.lamsade.dauphine.fr/?lang=fr
http://www-list.cea.fr/recherche-technologique/programmes-de-recherche/intelligence-ambiante/analyse-de-donnees
http://www-list.cea.fr/

iii

“Pour ce qui est de l’avenir, il ne s’agit pas de le prévoir mais de le rendre possible.”

Antoine de Saint-Exupéry

v

Université Paris-Dauphine, PSL Research University

Abstract
Ecole doctorale de l’Université Paris-Dauphine

LAMSADE & LADIS, CEA-LIST

Doctor of Philosophy

Contributions to unsupervised learning from massive high-dimensional
data streams: structuring, hashing and clustering

by Anne Morvan

This thesis focuses on how to perform efficiently unsupervised machine learning such
as the fundamentally linked nearest neighbor search and clustering task, under time
and space constraints for high-dimensional datasets. These constraints require to
store a very limited amount of information of the dataset, to potentially handle
the data points as a stream and to increase their processing rate of flow. This is
realized by designing compact data representations preserving approximatively the
data points distance and structure. The engendered loss of information generates
approximative results but this approximation should be controlled and compensated
by an easier data streams processing. Therefore, the compact structures building is
a parametrized trade-off between memory usage, rate of flow and precision of the
result. After introduction to the context and review for the nearest neighbor search
and clustering of some state-of-the-art exact and approximation algorithms which
can be classified into three types: data-independent, data-dependent and graph-based,
three chapters describe a contribution to the field for each one of these categories.

First, a new theoretical framework named Structured spinners is proposed to re-
duce the space cost and to increase the rate of flow of data-independent Cross-polytope
LSH, a state-of-the-art algorithm for the nearest neighbor search. The idea is to re-
place the random Gaussian matrices in the hash functions by pseudo-random struc-
tured ones such as the classical circulant, Toeplitz, Hankel, Hadamard etc. matrices.
Theoretical guarantees on the accuracy result support their use, in particular for the
state-of-the-art matrix built from three randomized Hadamard blocks for which the
efficiency was assessed only experimentally until this work. Experiments not only on
the approximate nearest neighbors search, but also on a wide range of applications
such as kernel approximation, convex optimization via Newton sketches or neural
networks confirm the usefulness of the Structured spinners which represent almost no
loss of accuracy in comparison with the unstructured counterparts.

Second, a novel streaming data-dependent method is designed to learn compact
binary codes from high-dimensional data points in only one pass. Besides some the-
oretical guarantees, the quality of the obtained embeddings is evaluated on the ap-
proximate nearest neighbors search task.

Finally, a recent graph-sketching technique is used to conceive a space-efficient
parameter-free clustering algorithm from the recovery of an approximate minimum
spanning tree of the compressed data dissimilarity graph. An application to the
context of privacy-preserving clustering is then demonstrated.

Open questions and perspectives for future research conclude this work.

http://www.dauphine.fr/fr/index.html
http://www.edd.dauphine.fr/fr.html
http://www.lamsade.dauphine.fr/?lang=fr
http://www-list.cea.fr/recherche-technologique/programmes-de-recherche/intelligence-ambiante/analyse-de-donnees
http://www-list.cea.fr/

vii

Université Paris-Dauphine, PSL Research University

Résumé
Ecole doctorale de l’Université Paris-Dauphine

LAMSADE & LADIS, CEA-LIST

Thèse de doctorat

Contributions à l’apprentissage non supervisé à partir de flux de données
massives en grande dimension : structuration, hashing et clustering

par Anne Morvan

Cette thèse étudie deux tâches d’apprentissage non supervisé fondamentalement liées
que sont la recherche des plus proches voisins et le clustering sur des données en grande
dimension sous d’importantes contraintes de temps et d’espace. Ces dernières im-
posent de ne stocker qu’un nombre très limité d’information, possiblement de traiter
les données en flux et d’augmenter le débit de traitement. Ceci est permis par la
conception de représentations de données compactes préservant approximativement
la distance et la structure des données. La perte d’information engendrée génère des
résultats approximatifs mais cette approximation doit être contrôlée et compensée
par un traitement du flux de données facilité. Ainsi, la construction des structures
compactes est un compromis entre la mémoire utilisée, le débit et la précision du
résultat. Après présentation du contexte et revue de l’état de l’art des algorithmes
exacts et approchés pour la recherche des plus proches voisins et le clustering, classés
en trois types: indépendants ou dépendants des données et fondés sur les graphes,
trois chapitres décrivent une contribution au domaine dans chacune des catégories.

Tout d’abord, un nouveau cadre théorique nommé Pivoteurs structurés est pro-
posé pour réduire le coût spatial et augmenter le débit du Cross-polytope LSH, une
méthode état de l’art indépendante des données pour la recherche du plus proche
voisin. L’idée est de remplacer les matrices aléatoires Gaussiennes dans les fonctions
de hachage par des matrices pseudo-aléatoires structurées classiques. Des garanties
théoriques sur la précision du résultat supportent leur usage, en particulier celui de
la matrice état de l’art construite à partir de trois blocs de Hadamard aléatoirisés
pour laquelle l’efficacité n’était jusqu’à présent prouvée qu’expérimentalement. Des
expériences ne se restreignant pas à la recherche des plus proches voisins approchés
confirment l’utilité des Pivoteurs structurés qui n’impliquent presque aucune perte de
précision en comparaison avec leurs homologues non structurés.

Ensuite, une méthode originale adaptée aux données est conçue pour apprendre
en une seule passe sur le flux des codes compacts binaires de données en grande
dimension. En plus de certaines garanties théoriques, la qualité des représentations
obtenues est mesurée dans le cadre de la recherche des plus proches voisins approchés.

Puis, un algorithme de clustering sans paramètre et efficace en termes de coût
de stockage est développé en s’appuyant sur l’extraction d’un arbre couvrant min-
imal approché du graphe de dissimilarité compressé. Une application au clustering
préservant la vie privée différentielle est démontrée.

Des questions restées ouvertes et des perspectives de recherche future concluent
enfin ce travail.

http://www.dauphine.fr/fr/index.html
http://www.edd.dauphine.fr/fr.html
http://www.lamsade.dauphine.fr/?lang=fr
http://www-list.cea.fr/recherche-technologique/programmes-de-recherche/intelligence-ambiante/analyse-de-donnees
http://www-list.cea.fr/

ix

Acknowledgements
Many people deserve my thanks. First, I am immensely grateful to my PhD

advisors, Pr. Jamal Atif from Université Paris-Dauphine, PSL Research University
and Dr. Cédric Gouy-Pailler from the Commissariat à l’Energie Atomique et aux
Energies alternatives (CEA). Both of them have been great role models as researchers
and mentors. In particular, I admire Jamal deeply for his dedication and impressive
depth of knowledge, while Cédric has been of great help for precising my research
work always in a pragmatic way and for overcoming many technical issues.

I would like to thank the CEA for the complete financial support of this thesis
(bourse CFR), Dr. Véronique Serfaty from the Direction Générale de l’Armement
(DGA) for the half contribution to the funding, Dr. Anthony Larue and then Dr.
Lorène Allano for their welcoming at LADIS lab in CEA, Pr. Alexis Tsoukiàs and
then Pr. Daniela Grigori at LAMSADE lab and Rida Laraki from the Doctoral school
in Université Paris-Dauphine.

I thank Dr. Rémi Gribonval from INRIA for presiding the jury, Pr. Albert Bifet
from Télécom ParisTech and Liva Ralaivola from Université Aix-Marseille and Critéo
for having accepted to be rapporteurs of this thesis and Pr. Florence d’Alché-Buc
from Télécom ParisTech for being a member of my jury.

I thank all my coauthors. In particular, I am greatly indebted with Dr. Krzysztof
Choromanski from Google Brain Robotics, Dr. Tamás Sarlós from Google and Dr.
Antoine Souloumiac from CEA for the pleasure of collaborating with them, for their
help and for encouraging me. I also thank Rafaël Pinot, PhD student between Uni-
versité Paris-Dauphine and CEA and his advisor Florian Yger, associate Professor at
Université Paris-Dauphine for their help and fruitful collaboration.

I want to thank also my former officemates at LAMSADE and CEA for provid-
ing me with the ideal environment to work, for their enthusiasm and their valuable
and enjoyable time, in particular: Alexis, Fabien, Arnaud, Marisnel, Ismail, Youen,
Anaëlle, Maud, Maxime, Noëlie, Marine, Krystyna, Jean-Pierre, Pierre, Jérôme, Au-
rore, Flore, Paul, Satya, Marcel, Thomas, Olivier, Michel.

Most of all, I am grateful to my family and friends for their unconditional support
and patience in difficult times, and especially to my love Thibaut: always motivating
me for going further and further; without him, this PhD thesis could not have been
possible.

xi

Contents

Abstract v

Résumé vii

Acknowledgements ix

1 Introduction 1
1.1 Context and motivation . 2

1.1.1 Big data era and the need of adapted processing 2
1.1.2 Unsupervised machine learning problems 3
1.1.3 Nearest neighbor search and clustering of high-dimensional

massive data through compression 8
1.2 Main contributions and outline of the thesis 10

1.2.1 Structured random matrices, an approach for fast and large-
scale machine learning computations 10

1.2.2 Learning compact binary codes from massive data streams with
hypercubic hashing for Nearest Neighbors search 12

1.2.3 A Minimum Spanning Tree-based approach for clustering mas-
sive data . 12

2 Related work 15
2.1 Introduction . 16
2.2 Data-independent approaches . 18

2.2.1 Hashing . 18
2.2.2 Locality-Sensitive Hashing (LSH) 21
2.2.3 Random Projection . 24

2.3 Data-dependent approaches . 26
2.3.1 Some data-dependent hashing techniques 26
2.3.2 Principal Component Analysis-based approaches (PCA) 27
2.3.3 Similarity / Metric learning . 33
2.3.4 Space-efficient clustering approaches 35

2.4 Graph-based approaches . 40
2.4.1 Graph-based clustering . 41
2.4.2 Graph-sketching approach . 45

2.5 Position of the contributions regarding the state of the art 51

3 Structured random matrices, an approach for fast and large-scale
machine learning computations 53
3.1 Introduction . 54

3.1.1 Projections and classical framework of machine learning algo-
rithms . 54

3.1.2 Classical projection cost . 54
3.1.3 Structuring for time and space savings 54

xii

3.1.4 Contributions . 55
3.2 The family of Structured spinners . 56

3.2.1 The role of the three blocks M1, M2, and M3 58
3.2.2 Stacking together Structured spinners 59

3.3 Theoretical results . 59
3.3.1 What will be shown . 59
3.3.2 Structured spinners’ equivalent definition 60
3.3.3 Proof of Lemma 3.2.2 . 60
3.3.4 Accuracy of the Structured Spinners in the randomized setting 62

3.4 Experiments with Locality-Sensitive Hashing (LSH) 69
3.4.1 Experimental setup . 69
3.4.2 Collision probabilities with Cross-polytope LSH 70

3.5 Conclusion . 70

4 Learning compact binary codes from massive data streams with Hy-
percubic hashing for Nearest Neighbors search 73
4.1 Introduction . 73
4.2 Preliminaries . 75
4.3 Theoretical justification of optimality of a rotation R for Hypercubic

quantization hashing . 77
4.4 The proposed online algorithm: UnifDiag Hashing 81

4.4.1 The principle of UnifDiag . 81
4.4.2 Time and space complexities comparison with existing online

works . 84
4.5 Experiments . 87

4.5.1 Comparison of Hypercubic Quantization Hashing methods for
the Nearest Neighbors search task 87

4.5.2 Effect of the rotation on the binary codes 89
4.6 Conclusion . 91

5 Graph sketching-based massive data clustering 95
5.1 Introduction . 96
5.2 Theoretical framework motivating MST-based clustering methods . . . 97

5.2.1 Further notations . 97
5.2.2 Theoretical justification by notion of Cluster 98

5.3 DBMSTClu, MST-based clustering . 99
5.3.1 DBMSTClu principle . 99
5.3.2 Separation, dispersion and validity indices concepts 99
5.3.3 DBMSTClu algorithm . 102

5.4 Theoretical guarantees for DBMSTClu 102
5.4.1 DBMSTClu exact clustering recovery proof 103
5.4.2 Analysis of DBMSTClu algorithm 108

5.5 Implementation for linear time and space complexities 113
5.6 Retrieval of an approximate MST via sketching 115

5.6.1 Streaming graph sketching . 115
5.6.2 Recovery of an approximate MST from the graph sketch 116

5.7 Experiments . 116
5.7.1 Safety of the sketching . 117
5.7.2 Scalability of the clustering . 120

5.8 Conclusion . 121

xiii

6 Conclusion 123
6.1 Summary of the contributions . 123
6.2 Discussion . 124
6.3 Perspectives . 125

6.3.1 How to overcome the current limitations 125
6.3.2 Applications . 126

A Further mathematical tools: distances 127

B Further structured matrices as complements of Chapter 2 129

C Some other Structured spinners’ applications 135
C.1 Introduction . 135
C.2 Complementary related work . 136

C.2.1 Kernel approximation via random features map 136
C.2.2 Newton sketches for convex optimization 136
C.2.3 Neural networks . 137

C.3 Complements of the theoretical results for the randomized setting . . . 138
C.3.1 Recall of notation . 138
C.3.2 b-convexity for angular kernel approximation 138

C.4 Accuracy of the Structured spinners in the adaptive setting 139
C.5 Experiments . 141

C.5.1 Kernel approximation . 141
C.5.2 Convex optimization via Newton sketches 142
C.5.3 Neural networks . 144

D Complements of Chapter 4: When matrix R is random 149

E Graph-based clustering under differential privacy 153
E.1 Introduction . 154
E.2 Preliminaries . 154

E.2.1 Differential privacy in graphs 155
E.2.2 Differentially-private clustering 157

E.3 Differentially-private tree-based clustering 157
E.3.1 PAMST algorithm . 157
E.3.2 Differentially-private clustering 159
E.3.3 Differential privacy trade-off of clustering 160

E.4 Experiments . 164
E.4.1 Synthetic datasets . 164
E.4.2 NYC "Taxi & Limousine Commission Trip Record" dataset . . 165

E.5 Conclusion . 166

F Publications 171

G Résumé de la thèse en français 173
G.1 Introduction . 174

G.1.1 Contexte et motivation . 174
G.1.2 Contributions . 177

G.2 Des matrices aléatoires structurées, une approche pour de
l’apprentissage à grande échelle . 179
G.2.1 Principe . 179
G.2.2 Expérience . 180

xiv

G.3 Apprentissage de codes compacts binaires de flux de données massives
via le hashing hypercubique pour la recherche des plus proches voisins 182
G.3.1 Principe . 182
G.3.2 Expériences . 182

G.4 Clustering de données massives à partir d’un arbre couvrant minimum 185
G.4.1 Principe . 185
G.4.2 Expériences . 186

G.5 Conclusion . 190
G.5.1 Rappel des contributions et inscription dans le sujet 190
G.5.2 Perspectives . 191

G.6 Publications . 192

xv

List of Figures

1.1 The thesis subject positioning. On large high-dimensional unlabeled
data, unsupervised learning such as the nearest neighbors search and
clustering can be applied, ideally in a streaming fashion. To overcome
the curse of dimensionality, (online) dimensionality reduction is made
on the data and suitable algorithms working on these compressed data
- possibly in the form of a stream - are designed for the NN search and
clustering. 4

1.2 How to handle the constraints. I: Input, O: Output. (up) The classical
algorithm vs (bottom) an (online) approximation algorithm applied
on compressed data. The compression can be performed with dimen-
sionality reduction, sampling or sketching techniques. The result of
an approximation algorithm is approximate but has been obtained at
a cheaper cost: the rate of flow has been sped up while the memory
requirements have been reduced. 10

1.3 Overview of our contributions to unsupervised learning from massive
high-dimensional data streams. 11

2.1 Typology of considered methods for unsupervised (approximation) al-
gorithms. Graph-based methods are data-dependent but perform a
relaxation of the distance-preserving constraint. They preserve the
structure, the neighborhood of the points, which is looser than the
distance. 17

2.2 For points in 1 dimension, illustration of hashing to fill a hash table
with 12 buckets. The hash function should be defined such that colli-
sions should be avoided as much as possible. 19

2.3 For points in 1 dimension, illustration of Locality-Sensitive Hashing to
fill a hash table with 12 buckets. The hash function should be defined
such that near points in the initial space have a high probability to
collide. On the contrary, far points have a low probability to collide. . 21

2.4 For points in 2 dimensions, illustration of Locality-Sensitive Hashing to
fill a hash table with 12 buckets. The hash function should be defined
such that near points in the initial space have a high probability to
collide. On the contrary, far points have a low probability to collide.
If the blue point is a query point to find its nearest neighbors, find
them among the points from the same buckets (union represented by
the dash line) among the hash tables. Thus, the red point is returned.
The search can be enlarged to the nearest bucket for each hash table
(delimited by the dotted line) and then the yellow point is considered. 22

2.5 General (offline) scheme for Hypercubic hashing methods. The first
step consists in computing the c× d-projection matrix with PCA. The
second rotates the PCA-projected data. Finally, the sign function is
applied pointwise to obtain binary coefficients. 29

xvi

2.6 Graph with 4 nodes defined by the stream s used to illustrate the
Graph sketch definition. 46

2.7 Supernode illustration with a graph of 4 nodes. (left) the original
graph. (right) graph with collapsing nodes 1 and 2 into supernode 1′.
(left) a(1) = (1, 0, 1, 0, 0, 0) and a(2) = (−1, 0, 0, 1, 1, 0). (right)
a(1′) = a(1) + a(2) = (0, 0, 1, 1, 1, 0) . 47

3.1 Pictorial explanation of the role of the three matrix-blocks in the con-
struction of the structured spinner. (left) M1 rotates vector v such that
the rotated version vr is balanced. (middle) M2 transforms vectors
v,w,u such that their images vr,wr,ur are near-orthogonal. (right)
The projections of the random vector r onto such two near-orthogonal
vectors v, w are near-independent. 59

3.2 Cross-polytope LSH - collision probabilities for distance between 0 and√
2 with n = 256, m = 64 (a). (b) A zoom on higher distances enables

to distinguish the curves which are almost superposed. 72

4.1 General (offline) scheme for Hypercubic hashing methods with nota-
tion from Section 4.2. The first step consists in computing the c × d-
projection matrix with PCA. The second rotates the PCA-projected
data. Finally, the sign function is applied pointwise to obtain binary
coefficients. 74

4.2 Covariance matrix of projected data from CIFAR dataset with c = 32. 77
4.3 Effect of the rotation. (a) Five random blobs/clusters have been drawn

in 2D from some Gaussian distributions (we call them respectively the
yellow, the light green, the blue, the violet and the emerald clusters).
(b) They have been projected onto the c = 2 principal components. We
see that the light green, the blue and the violet clusters are crossing the
horizontal axis after PCA-projection: their points are spread accross
two (or more for the blue cluster) orthants. Hence, some points of the
same cluster will have different binary codes since the sign function of a
vector is determined by from which sides of the hyperplanes delimiting
the orthants the vector is. An idea would be to rotate the data so
that to minimize the number of points estranged to the main ones in
their cluster. (c) The effect of the ITQ rotation. (d) The effect of the
UnifDiag rotation. On this kind of data, the best idea is indeed to set
the clusters in the center of orthants, i.e. to equalize the variance on
both axes. 78

4.4 Covariance matrix of rotated PCA-projected data from CIFAR dataset
with c = 32. The particular structure of covariance for UnifDiag is due
to the sparsity of the rotation. 86

4.5 The fully online pipeline for the hashing technique with OPAST and
UnifDiag. For clarity, the subscript t is dropped. 86

4.6 MAP@2000 in the batch setting for various code lengths c ∈
{8, 16, 32, 64}. 88

4.7 MAP@2000 in the online setting for different code lengths and CIFAR:
(a) c = 8, (b) c = 16, (c) c = 32, (d) c = 64. 90

4.8 MAP@2000 in the online setting for different code lengths and GIST:
(a) c = 8, (b) c = 16, (c) c = 32, (d) c = 64. 91

4.9 Cumulative distribution function for CIFAR and GIST and different
hashing methods: ∀i ∈ [c],P[|y(i)

t | < ε] for c = 32. 92

xvii

4.10 Effect of the rotation on the small binary codes for simulated data: 6
clusters with d = 960 and c = 32: (a) PCA, (b) RandRot, (c) ITQ, (d)
IsoHash, (e) UnifDiag. 93

5.1 Basic scheme illustrating DBMSTClu algorithm. 100
5.2 SEP and DISP definitions with N = 12, K = 3 for dashed cluster C1

in the middle. 100
5.3 Validity Index of a Cluster’s example with N = 3. For a small ε,

cutting edge with weight ε or 1 gives respectively the left and right
partitions. (left) VC(Cεleft) = 1; VC(Cεright) = ε − 1 < 0. (right)
VC(C1

left) = 1 − ε > 0; VC(C1
right) = 1. The right partition, for which

validity indices of each cluster are positive, is preferred. 101
5.4 Illustration for Theorem 5.4.1’s proof. 105
5.5 Illustration for Theorem 5.4.2’s proof. 106
5.6 Illustration for Theorem 5.4.2’s proof. Each circle corresponds to a

cluster. The six clusters are handled within five couples of clusters. . . 107
5.7 Counter-example for Remark 5.4.1. 111
5.8 Generic example of Proposition 5.4.3 and 5.4.5’s proofs. 112
5.9 Illustration of the recursive relationship for left and right Disper-

sions resulting from the cut of edge e: DISPleft(e) = max(w(S1)),
DISPright(e) = max(w(S2), w(S3)) where w(.) returns the edge
weights. Separation works analogically. 113

5.10 Three blobs: SEMST, DBSCAN (ε = 1.4, minPts = 5), DBMSTClu
with an approximate MST. 118

5.11 Noisy circles: SEMST, DBSCAN (ε = 0.15, minPts = 5), DBMSTClu
with an approximate MST. 118

5.12 Noisy moons: SEMST, DBSCAN (ε = 0.16, minPts = 5), DBMSTClu
with an approximate MST. 119

5.13 Mushroom dataset: SEMST, DBSCAN (ε = 1.5, minPts = 2), DB-
MSTClu with an approximate MST (projection on the first three prin-
cipal components). 119

5.14 DBMSTClu’s execution time with values of N ∈
{1K, 10K, 50K, 100K, 250K, 500K, 750K, 1M}. 121

C.1 Accuracy of random feature map kernel approximation for the G50C
dataset. 145

C.2 Accuracy of random feature map kernel approximation for the USPST
dataset. 146

C.3 Numerical illustration of the convergence (a) and computational com-
plexity (b) of the Newton sketch algorithm with various Structured
spinners. (a) Various sketching structures are compared in terms of the
convergence against iteration number. (b) Wall-clock times of Struc-
tured spinners are compared in various dimensionality settings. . . . 147

C.4 Test error for MLP (left) and convolutional network (right). 148

E.1 PAMST algorithm from Pinot [2018]. I: Input. 158
E.2 Our new method: PTClust returning a clustering partition Π under

weight Differential Privacy (DP). I: Input, O: Output. 160

xviii

E.3 Circles experiments for N = 100. Figure E.3a represents the homoge-
neous graph. Figure E.3b shows the results of the DBMSTClu algo-
rithm. Remaining Figures illustrate results of PTClust for parameters
wmin = 0.1, wmax = 0.3, µ = 0.1 for all and respectively ε = 1.0,
ε = 0.7 and ε = 0.5 for Figures E.3c, E.3d and E.3e. 167

E.4 Moons experiments for N = 100. Figure E.4a represents the homoge-
neous graph. Figure E.4b shows the results of the DBMSTClu algo-
rithm. Remaining Figures illustrate results of PTClust for parameters
wmin = 0.1, wmax = 0.3, µ = 0.1 for all and respectively ε = 1.0,
ε = 0.7 and ε = 0.5 for Figures E.4c, E.4d and E.4e. 168

E.5 An exact MST before DBMSTClu cuts on the NYC dataset. 169
E.6 DBMSTClu results on the NYC dataset. 169
E.7 NYC taxis experiments, PTClust results. 170

G.1 Cross-polytope LSH - (a) Probabilités de collision pour des distances
comprises entre 0 et

√
2. (b) Un zoom sur les distances les plus élevées

permet de distinguer les courbes qui sont presque superposées. 181
G.2 MAP@2000 dans le cadre streaming pour différentes tailles de code et

le dataset CIFAR: (a) c = 8, (b) c = 16, (c) c = 32, (d) c = 64. 183
G.3 MAP@2000 dans le cadre streaming pour différentes tailles de code et

le dataset GIST: (a) c = 8, (b) c = 16, (c) c = 32, (d) c = 64. 184
G.4 Schéma basique de fonctionnement de l’algorithme DBMSTClu où T

désigne un arbre couvrant minimum (approché ou non). Initialement,
le DBCVI est égal à une valeur arbitraire la plus faible possible pour
forcer une première coupe. 186

G.5 Trois boules: SEMST, DBSCAN (ε = 1.4, minPts = 5), DBMSTClu
avec un arbre couvrant minimum approché. 187

G.6 Cercles bruités: SEMST, DBSCAN (ε = 0.15, minPts = 5), DBMST-
Clu avec un arbre couvrant minimum approché. 188

G.7 Bananes bruitées: SEMST, DBSCAN (ε = 0.16, minPts = 5), DB-
MSTClu avec un arbre couvrant minimum approché. 188

G.8 Temps d’exécution de DBMSTClu avec N ∈
{1K, 10K, 50K, 100K, 250K, 500K, 750K, 1M}. 188

xix

List of Tables

4.1 Mean variance for the binary codes (averaged on 10 runs) obtained for
6 convex clusters with random centroids in d = 960. 92

5.1 Silhouette coefficients, Adjusted Rand Index and DBCVI for the blobs,
noisy circles and noisy moons datasets with SEMST, DBSCAN and
DBMSTClu. 120

5.2 Numerical values for DBMSTClu’s execution time (in s) varying N
and K (averaged on 5 runs). The last row shows the execution time
ratio between K = 100 and K = 5. 120

C.1 Speedups for the Gaussian kernel approximation via the Structured
spinners. It has been tested for square matrices with dimension 2k for
k up to 15. Indeed, the used machine with 16Go RAM is not able
to store square matrices with dimension 2k for k > 15. For instance,
for dimension 215, the kernel computation costs 1.382s in the unstruc-
tured case and 4363µs with HD3HD2HD1, which constitutes the best
obtained speedup. 142

C.2 Running time (in [µs]) for the MLP - unstructured matrices vs Struc-
tured spinners. 144

G.1 Coefficients de Silhouette, Adjusted Rand Index et DBCVI pour les
boules, les cercles et bananes bruités avec SEMST, DBSCAN et DB-
MSTClu. 187

G.2 Valeurs numériques pour le temps d’exécution de DBMSTClu (en s)
en faisant varier N et K (moyenné sur 5 lancers). La dernière ligne
montre le ratio de temps d’exécution entre le cas K = 100 et K = 5. 189

xxi

List of Abbreviations

cdf cumulative distribution function
DFT Discrete Fourier Transform
e.g. exempli gratia
Eq. Equation
EVD EigenValue Decomposition
FHT Fast Hadamard Transform
FFT Fast Fourier Transform
FJLT Fast Johnson-Lindenstrauss Transform
i.e id est
i.i.d identically and independently distributed
IFFT Inverse Fast Fourier Transform
JL Johnson-Lindenstrauss
JLT Johnson-Lindenstrauss Transform
MSF Minimum Spanning Forest
MST Minimum Spanning Tree
PCA Principal Component Analysis
PSD Positive Semi-Definite
Q.E.D quod erat demonstrandum
resp. respectively
s.t. such that
std standard deviation
SVD Singular Value Decomposition

xxiii

List of Symbols

C Set of complex numbers
R Set of real numbers
N Set of natural integers
Z Set of relative integers
Z+ Set of positive integers
Z/aZ The ring of integers modulo a Z/aZ = {0, . . . , a− 1}
dxe Ceiling function of x dxe = min{a ∈ Z | a ≥ x}
N Number of instances in a dataset
d Dimension of one data point
Rd Set of d-dimensional real-valued vectors
Rd×N Set of d×N real-valued matrices
Md×N Set of matrices of dimensions d×N
x An arbitrary vector
M An arbitrary matrix
Id d× d Identity matrix
0d×N d×N Matrix with null coefficients
X Input space
X Dataset X ∈ Rd×N
MT Transpose of M
ΣM Covariance matrix of matrix M ∈ Rd×N ΣM = 1

N−1MMT

Tr(M) Trace function of M
M† The Moore Penrose / pseudo inverse of M
M∗ The adjoint operator of M M∗ = MT = MT

||M||2 Spectral norm of M ‖M‖2 = supx 6=0
‖Mx‖2
‖x‖2

‖M‖F Frobenius norm of M ‖M‖F = (Tr(MM∗))1/2 = (Tr(M∗M))1/2

M � 0 M is Positive Semi-Definite
[a] Set of integers between 1 and a [a] = {1, . . . , a}
‖v‖2 L2-norm of v ∈ Rd ‖v‖2 =

√∑d
i=1 v2

i

‖v‖∞ Infinite norm of v ∈ Rd ‖v‖∞ = maxi∈[d](|vi|)
diag(v) Returns a diagonal matrix with diagonal v
diag(M) Returns the diagonal of a matrix M
sign(.) Sign function applied pointwise
u . ∗ v the element-wise vector-vector product
<(a) Returns the real part of a ∈ C
Sd+ Cone of symmetric PSD M ∈ Rd×d
O(d) Set of all orthogonal matrices in Rd×d
N (µ, σ2) Gaussian distribution: mean µ, std σ

xxv

To my family,
To my better half, Thibaut.

1

Chapter 1

Introduction

Contents
1.1 Context and motivation . 2

1.1.1 Big data era and the need of adapted processing 2
1.1.2 Unsupervised machine learning problems 3

Dimensionality reduction and the curse of dimensionality . 3
Nearest neighbors search . 3

Naive approach . 4
Space partitioning suffers from the curse of dimen-

sionality 5
Considered solution: approximation algorithms and

dimensionality reduction via hashing . . . 5
Data-independent approach and introduction to the

context of our first contribution 5
Data-dependent approach and introduction to the

context of our second contribution 6
Clustering . 6

Centroid-based clustering 7
Distribution-based clustering 7
Connectivity-based clustering also named as hierar-

chical clustering 7
Density-based clustering 8

1.1.3 Nearest neighbor search and clustering of high-dimensional
massive data through compression 8
Dimensionality reduction, hashing and sampling 8
Sketching . 9
The price of compression: approximation and looking for a

trade-off . 9
1.2 Main contributions and outline of the thesis 10

1.2.1 Structured random matrices, an approach for fast and large-
scale machine learning computations 10

1.2.2 Learning compact binary codes from massive data streams
with hypercubic hashing for Nearest Neighbors search . . . 12

1.2.3 A Minimum Spanning Tree-based approach for clustering
massive data . 12

2 Chapter 1. Introduction

1.1 Context and motivation

1.1.1 Big data era and the need of adapted processing

Today, every electronic device is conceived to collect an overwhelming volume of
data in the hope to transform it into valuable information and insightful decisions
through machine learning applications. A lot of emerging applications involve massive
datasets such as the observations made by sensors from the Internet of Things (IoT),
the customer click streams (cookies), the phone calls records, the large sets of web
pages, multimedia data, financial transactions, etc. These amassed data serve as
a colossal source of revenue for companies when analyzed. Therefore, tremendous
quantity of data should be handled. In practice, because of this huge volume of data,
some critical issues can arise and make some classical analysis approaches fail:

1. There is a high number of instances - also called records - in the database.
Then, two cases can be distinguished.

• On the one hand, these data may not be loaded entirely into memory.
• On the other hand, even if the data have been successfully centralized,
this can make some algorithms intractable. For instance, algorithms with
time complexity equal to O(N2) where N is the number of instances are
infeasible above some thousands or tens of thousands points.

2. These data are potentially high dimensional. This means that each record is de-
scribed by a large set of attributes. This can be problematic for several reasons.
First, this increases the complexity cost of the analysis algorithms. In some
high-dimensional space, every data points are also far from each other, which
makes very difficult to find similarities or differences between them. Further-
more, the algorithms could suffer from the curse of dimensionality. See below
in the next Section for a definition.

3. The data may be also intrinsically a (potentially infinite) stream. This means
that the data are caught on the fly as they are measured - for instance by the
Internet of things’ sensors - and should be processed directly. Besides, even if
the data are not by nature a stream, as previously written, they can be stored
on distributed sources in such amount that it is impossible to load the whole
data into a centralized memory.
For both cases, an online algorithm1 is required to process the data in a limited
number of passes (ideally in only one pass), either because of the intrinsic
streaming nature of data or because of the memory limits constraining the
data to be handled as a stream.
Let us consider a data stream as the sequence of data points
x1, x2, . . . , xt, . . . , xN from a dataset X that come one at a time. A particu-
larity of the streaming setting is that the output of a decision for data point
xt should be done before xt+1 is read, without access to the next and previous
data points. However, the corresponding decisions can be made with an avail-
able memory of previous seen data points bounded by a function of the input
size, mainly a sublinear function.

4. Finally, the vast quantity of available data makes them tedious to label. There-
fore, most of the time, analysis should be performed in an unsupervised manner.

1In the sequel, we use without difference the terms streaming and online.

1.1. Context and motivation 3

1.1.2 Unsupervised machine learning problems

The main paradigms that can be drawn in unsupervised learning are dimensionality
reduction, clustering and density estimation [Bishop, 2006].

In this thesis, we focus in particular on clustering and the nearest neighbor search
(in the sense of similarity search) problems. Dimensionality reduction is seen as
a tool to tackle the curse of dimensionality in both of these problems.

Dimensionality reduction and the curse of dimensionality

The dimensionality reduction is a transformation which maps data points from
a high-dimensional space onto a lower-dimensional one while preserving the dis-
tance between the points. As classical methods, one can cite Principal Component
Analysis (PCA) [Pearson, 1901, Hotelling, 1933], Independent Component Analysis
(ICA) [Herault and Ans, 1984], the nonlinear ISOMAP [Tenenbaum et al., 2000],
Locally Linear Embedding (LLE) [Roweis and Saul, 2000] and kernel PCA [Schölkopf
et al., 1998]. One can also mention the approach of feature selection [Guyon and
Elisseeff, 2003] which chooses a reduced number of existing attributes.

The curse of dimensionality term expresses the fact that it is very challenging
to learn in a high-dimensional space since much more data are needed to prevent
overfitting. Indeed, the curse of dimensionality arises when the number of instances
required to obtain good model generalization performance is exponential in the di-
mension d of the data. As an example, for learning in an unsupervised manner
Lipschitz-continuous functions in Rd, at least Ω(εmax(d,2)) data points are required to
learn a function with estimation error2 ε > 0 [Luxburg and Bousquet, 2004].

Why nearest neighbors and clustering in particular? Our choice to con-
sider in particular the nearest neighbors search and clustering is motivated by the
fact they are two fundamental exploratory analysis tools. They have in common the
ability to segment data points into groups with similar properties by applying some
(approximate) distance - or structure - preserving transformations on the data. Be-
sides, nearest neighbors and clustering algorithms are as a matter of fact the most
basic machine learning classification rules. In practice, they can help at identify-
ing clients with similar behavior for market segmentation, exhibiting communities
in social networks, detecting recurrent patterns in financial transactions, or from a
sequenced genome of a new organism, finding the genes that are similar to those al-
ready present in the databases, just to name a few concrete applications. Moreover,
they are significantly useful for the highly frequent case when data labeling is too
expensive. Actually, from a few manually labeled data, these unsupervised learning
algorithms enable to extend the properties of some point to all other ones contained
in the same cluster or neighborhood. Then, manual labeling can be easier if it is
performed directly on some pre-selected formed clusters or neighboring points. Now
let us introduce more precisely the nearest neighbors search and clustering problems
with some classical approaches. Figure 1.1 sums up the context of this thesis.

Nearest neighbors search

We give here the definition of the nearest neighbor problem for simplicity.
2The estimation error defines a loss function on the set of possible decision functions for an

algorithm outputting a predictor [Hastie et al., 2001].

4 Chapter 1. Introduction

Large dataset

Unlabeled data

High-dimensional data

Streaming /
Online algorithm

Unsupervised
algorithm

The curse of
dimensionality

Nearest neigh-
bors search

Clustering

Dimensionality
reduction

Data

Figure 1.1: The thesis subject positioning. On large high-
dimensional unlabeled data, unsupervised learning such as the nearest
neighbors search and clustering can be applied, ideally in a streaming
fashion. To overcome the curse of dimensionality, (online) dimension-
ality reduction is made on the data and suitable algorithms working on
these compressed data - possibly in the form of a stream - are designed

for the NN search and clustering.

Definition 1.1.1 (Nearest neighbor search). Given a set of instances X =
{x1, x2, . . . , xN} in a metric space defined by a set X with distance function dist,
the nearest neighbor search consists in building a data structure that given any query
point y ∈ X returns the nearest neighbor defined as argminx∈X dist(x, y).

Notice that several instances of the nearest neighbor problem lead to solutions
for the more general nearest neighbors one when all points within a radius r to the
query or k nearest neighbors should be retrieved. The nearest neighbor problem can
be defined for any distance function (see Appendix A for examples of distances).

After having defined the nearest neighbor problem, let us see classical approaches
to solve it.

Naive approach The naive approach for retrieving the nearest neighbor from a
query point y begins with the building of a data structure with all points from X.
Then, a linear scan over this structure is performed. This means that all distances
between y and the points of the data structure are computed. Finally the point with
the minimal distance from y is returned. The time and space complexity is linear
in N , the number of points in the dataset and this is clearly prohibitive for large
datasets (some applications can have easily 109 data points).

To save the N pairwise distance computations, one can for X = {0, 1}d pre-
compute and save all possible 2d corresponding pairwise Hamming distance. The
time cost is significantly reduced: only one memory lookup is required. However for
high-dimensional data, the O(2d) space cost is inefficient.

1.1. Context and motivation 5

Space partitioning suffers from the curse of dimensionality Therefore other
data structures have been investigated looking for a better balance between the nec-
essary time to answer a query which is called the query time and the amount of
required memory or space cost. From the family of space partitioning, the Voronoi
diagram [Aurenhammer, 1991], kd-trees [Bentley, 1975] and variants have space and
time costs unacceptable for d ≥ 20. This is another effect of the dimensionality curse:
when the optimized methods do not longer bring any advantage over the naive linear
scan.

Considered solution: approximation algorithms and dimensionality reduc-
tion via hashing For overcoming the running time and memory requirements bot-
tlenecks, approximation methods have been designed.

Approximative Nearest Neighbor (ANN) algorithms simply give a point whose
distance from the query is at most a times the distance from the query to its
exact nearest point. a > 1 is called the approximation factor.

The most known method from this category is Locality-Sensitive Hashing (LSH) [Gio-
nis et al., 1999, Indyk and Motwani, 1998]. See more details on LSH in Section 2.2.2.

The principle of approximative nearest neighbor algorithms is to change the fea-
ture representation by reducing the data dimensionality of the dataset and the
query point, for instance with hashing.

This dimensionality reduction via hashing can be data-independent with random pro-
jection (see Section 2.2) or data-dependent (see Section 2.3) and is obtained from an
optimization or machine learning scheme. Finally, the similarity search is done on
the feature space. It is expected that some data points have the same smaller feature
representation. Thus, the linear scan is done only on the set of data points with the
same feature code or neighboring ones (looking for neighboring codes is called multi-
probing [Andoni et al., 2015a]). That is why optimally, considered features are binary
in order to use the cheap-to-compute Hamming distance. Reducing the number of
distance computations clearly diminishes the query time.

Data-independent approach and introduction to the context of our
first contribution The two popular methods of this family are Hyperplane
LSH [Charikar, 2002] and Cross-polytope LSH [Terasawa and Tanaka, 2007]. In
the streaming setting, the fact that the feature transformation is data-independent
avoids the necessity of storing information on previously seen data points to compute
it. It is enough to perform the linear scan as data are seen in a streaming fashion
and to maintain the current nearest neighbor.

In that case, this is critical to compute the dimensionality reduction efficiently
and to reduce the cost of the distance computations.

The latter is guaranteed by working on short binary codes as the new feature rep-
resentation and to apply the Hamming distance on them. Regarding the cost of the
dimensionality reduction, let us denote c, c � d, the targeted dimension of the new
feature vectors while d is the initial dimension of the input vectors. The computa-
tion cost of the projection of one date point for Hyperplane LSH and Cross-polytope
LSH is respectively O(cd) and O(cd2). The space costs are the same. Please see

6 Chapter 1. Introduction

Section 2.2.2 for evidence. State-of-the-art approaches, taking their inspiration from
the Fast Johnson-Lindenstrauss Transform (FJLT) [Ailon and Chazelle, 2006], reduce
the computation cost to respectively O(c log d) and O(cd log d) with a space cost - de-
pending on the chosen transform - decreased to subquadratic, usually at most linear,
or sometimes even constant (in d). This is enabled by heavy use of structured ran-
dom projections instead of fully random ones. However, until this work they lack of a
general theoretical framework comprising all existing structured transformations. In
particular, the state-of-the-art structured matrix proposed by Andoni et al. [2015a]
for Cross-polytope LSH HD3HD2HD1 - where H is the normalized Hadamard trans-
form (see Definition 2.2.3 p.25) and the Di are random diagonal matrices with ±1
entries for i ∈ [3] - had no proof until this work that it performs similarly to a random
rotation, despite the experimental evidence. Therefore:

In machine learning applications approximatively preserving the distance and the
structure of data, how to prove the effectiveness of the structured approach for
random projections in general and HD3HD2HD1 in particular with O(c log d)
or O(cd log d) time cost and subquadratic, usually at most linear, or sometimes
even constant (in d) space cost?

Data-dependent approach and introduction to the context of our second
contribution Even if data-independent methods have already a good precision for
the nearest neighbor search, sometimes it is not enough. In practice, data-dependent
methods still have a better accuracy than LSH based on random projections. One
method ticks almost all of the constraints checkboxes. This is Online Sketching Hash-
ing (OSH) [Leng et al., 2015a]. It is an online data-dependent unsupervised hashing
method from the Hypercubic hashing family inspired by the original offline state-
of-the-art ITerative Quantization (ITQ) [Gong et al., 2013] algorithm. In brief, the
principle is to project the data points onto the first principal components, apply a suit-
able learned rotation and finally the sign function to obtain binary codes. OSH uses
a recent sketching technique to perform efficiently the Principal Component Analysis
(PCA) in order to avoid the storage of the entire dataset. However, by default, it
takes a random rotation instead of learning it carefully as for ITQ. Besides, OSH,
which will be more detailed in Section 2.3.2, p. 30, is rather mini-batch than fully
online. Then, an open question is:

How to perform accurate nearest neighbor search by learning the smaller binary
feature representations in a streaming fashion with minimal space cost? More
precisely, in the frame of the state-of-the-art Hypercubic hashing family, how to
propose an online version of ITQ [Gong et al., 2013], the popular state-of-the-
art algoritm representing this family? How to perform the online estimation of
the PCA? How to learn in an online fashion the relevant rotation after PCA-
projection of the data?

Framed questions are the open problems which are partially addressed in this
thesis. Before digging into more details on how the challenges are handled, let us see
now the clustering problem definition and associated classical approaches.

Clustering

The clustering problem can be defined as the following.

1.1. Context and motivation 7

Definition 1.1.2 (Clustering problem). Given a set of instances X =
{x1,x2, . . . ,xN} and a pairwise distance dist(., .) or similarity function sim(., .), the
goal of the Clustering problem is to find a partition Π = {C1, . . . , CK} of X such
that: ∀i ∈ [K], ∀xu,xv ∈ Ci, ∀xw ∈ Cj with j ∈ [K]\{i},

sim(xu,xv) > sim(xu,xw) (1.1)

and
sim(xu,xv) > sim(xv,xw). (1.2)

The clustering problem consists in finding and optimizing a good objective func-
tion measuring the quality of the partition. The latter heavily depends on the choice
of the similarity function. The time cost is, as for the nearest neighbors approach,
subject to the number of required pairwise similarity computations.

The purpose of this thesis is not to review all clustering algorithms. We focus
rather on very classical approaches. As the concept of Cluster is not easy to define,
there are as many methods as ways to define it:

Centroid-based clustering In this model, clusters are summarized by a central
vector which is not necessary in the dataset. Methods like k-means [Lloyd, 1982],
k-medians [Jain and Dubes, 1988], k-medoids [Kaufman and Rousseeuw, 1987] and
variants belong to this family model. Given an expected number of clusters k, the
goal is to find k centers and to assign the data points to the nearest cluster center
while minimizing the squared distance to this center. The main drawbacks of this
model are:

• The number k should be specified in advance.

• The resulting clustering partition is very sensitive to the initialization of the k
centers.

• It is not able to detect non-convex shaped clusters.

Distribution-based clustering This model defines a cluster as a group of points
belonging most likely to the same distribution. Methods from this model have a strong
theoretical foundation but the choice of an approximate distribution is difficult. The
most popular model of this kind of approaches is known as Gaussian mixture models
and is solved with the Expectation-maximization algorithm [Dempster et al., 1977].

Connectivity-based clustering also named as hierarchical clustering
Within this family of methods, two approaches are possible: agglomerative or divisive.
In the agglomerative version, all points are initially individual clusters. Then for the
next steps, the two nearest clusters are merged until there remains only one cluster
or K. In the divisive version, all points are contained in one cluster and the clusters
with the largest "variance" are split until K clusters are reached or the clusters con-
tain one point. For both cases, the key question is: how to compute the similarity or
the distance between two clusters? Popular choices of distance between two clusters
are: the minimum distance between the points of two different clusters (single-linkage
clustering [Sibson, 1973]), the maximum (complete linkage clustering [Defays, 1977])
or the mean (average linkage clustering [Day and Edelsbrunner, 1984]). A particular-
ity of these methods is that they do not produce a unique partitioning of the dataset,
but a hierarchy. Some drawbacks that can be mentioned:

8 Chapter 1. Introduction

• They are sensitive to outliers which can cause additional clusters or unwilling
clusters merging.

• The complexity is O(N3) for N data points with agglomerative clustering and
O(2N−1) for the divisive one. This is prohibitive for large datasets.

Density-based clustering For density-based clustering, clusters are modelled as
areas of higher density separated by sparse ones. The points in sparse areas are con-
sidered as noise or border points. One prominent method is known as DBSCAN [Ester
et al., 1996]. The building of the clusters is based on "density-reachability". Inspired
by the linkage-based clustering, DBSCAN connects points within a given distance
threshold if and only if there is a minimum number of other points within this radius.
In this model, a cluster contains all density-connected points plus all the ones that
are within these points’ range. The advantages of DBSCAN are:

• The concept of density-reachability enables the recovering of clusters with ar-
bitrary shapes.

• In terms of time complexity, DBSCAN requires only a linear number of range
queries on the database.

Nevertheless, DBSCAN needs two parameters to tune: the radius for the reachability
distance and the minimum number of points to consider a group of points as a cluster.
So the following question remains open:

How to recover a partition of non-convex clusters without any parameter with
time and space complexities linear in the number of data points?

To this end, in Section 2.3.4, state-of-the-art space-efficient clustering algorithms
will be reviewed before introducing our model in Chapter 5.

1.1.3 Nearest neighbor search and clustering of high-dimensional
massive data through compression

Dimensionality reduction, hashing and sampling

In Section 1.1.2, we motivated the choice to consider classical unsupervised learning
problems such as nearest neighbor search (and dimensionality reduction as a tool
for it) and clustering. The very brief overview of classical approaches for these dis-
tance/structure preserving algorithms stresses that they do not necessary take into
account all the major constraints3 we have to face though in real-world applications.
It is recalled that these constraints require analysis of data in an unsupervised manner
for large-scale datasets with high-dimensional data points potentially in a streaming
fashion while providing a model with acceptable precision. Some state-of-the-art
methods take into account one or several of these constraints to preserve approxi-
mately the distance/structure. Other ones should be adapted. How to realize this
adaptation for handling these massive high-dimensional data?

A natural idea to handle massive high-dimensional data is to apply the learning
task on a compressed representation of the dataset which eases the process by
allowing space savings and some increase of the data processing rate of flow.

3Enumerated in Section 1.1.1.

1.1. Context and motivation 9

To respect this constraint, we impose that this compression, if learned, should be
done in an unsupervised manner. We already mentioned dimensionality reduction
as a compression tool for fighting against the curse of dimensionality. Coupled with
hashing, it reduces time and space complexities of the algorithms by compressing each
data point individually but without reducing the size of the dataset. On the contrary,
sampling [Vitter, 1985] is another "compression" tool which selects a reduced number
of data points to keep from the dataset without touching the number of features.
Finally, the technique of sketching borrows the best to all these three concepts for
data compression. We briefly expose the advantages of sketching and how it is well-
adapted to stream data in the two following Sections.

Sketching

Sketching [Cormode et al., 2012] compacts the whole database into a single vector,
named sketch but still approximates it well by enabling to infer its relevant properties.
Most of considered sketches are linear. This means that when a data point is added to
the database, updating the corresponding compact data structure is simply adding the
individual sketch of this single item. This linearity implies also that the database can
be divided in different chunks for which local sketches are computed in parallel and
then, the final sketch of the entire database is simply the concatenation of the local
ones. This is very interesting for distributed computing and stream data. Sketching
is indeed closely linked with the development of streaming algorithms that have in
common to heavily rely on these compact probabilistic data structures in order to
handle data streams while observing the strong space constraints.

The streaming model was described in works from Munro and Paterson [1980],
Flajolet and Martin [1985], Henzinger et al. [1999] and real interest in streaming al-
gorithms follows the work from Alon et al. [1996] where lower and upper bounds for
the space complexity are provided to approximate frequency moments of sequence of
data points. Early work focused indeed on processing numerical data for estimating
basic statics such as quantiles [Agrawal and Swami, 1995, Cormode and Muthukr-
ishnan, 2005, Ma et al., 2013], heavy hitters [Boyer and Moore, 1991, Cormode and
Muthukrishnan, 2005], or the number of distinct elements [Flajolet and Martin, 1985,
Durand and Flajolet, 2003, Flajolet et al., 2007] in a stream. Finally, regarding
the streaming algorithms field, three great surveys should be stressed out. Work
from Muthukrishnan [2005] introduces general techniques while the survey from Cor-
mode and Muthukrishnan [2012] highlights applications of one of the most well known
sketch approach, namely Count-Min Sketch. More recently, McGregor [2014] discusses
streaming algorithms applied to graphs.

The price of compression: approximation and looking for a trade-off

Data compression due to the lossy information, either by dimensionality reduc-
tion, sampling or sketching comes with a price. This is the result of the processing
algorithm, namely the model or the answer which is approximated.

Hopefully, an approximative result is enough in many applications. For instance,
while wanting to compute the number of hits of each Wikipedia corpus webpage
(about 35 millions of Wikipedia pages are stored), a simple magnitude of order is
already meaningful. Hence, in this thesis while wanting to construct compact data
representations in order to address some distance and structure preserving unsuper-
vised problems, we should keep in mind this trade-off game between:

10 Chapter 1. Introduction

1. the space cost,

2. the rate of flow and

3. the accuracy of the result.

They should be parametrized according to the user’s needs. The principle is summa-
rized in Figure 1.2. To end this introduction, let us enumerate the different contri-
butions described in this thesis.

I: data

I: data

Classical
algorithm

(Online)
Approximation

algorithm

O: exact and/or expensive result

O: approximate but cheaper result

Error bounded

Rate of flow ↗

Memory ↘

Dimensionality
reduction

Sampling

Sketching

Figure 1.2: How to handle the constraints. I: Input, O: Output. (up)
The classical algorithm vs (bottom) an (online) approximation algo-
rithm applied on compressed data. The compression can be performed
with dimensionality reduction, sampling or sketching techniques. The
result of an approximation algorithm is approximate but has been ob-
tained at a cheaper cost: the rate of flow has been sped up while the

memory requirements have been reduced.

1.2 Main contributions and outline of the thesis

In this thesis, three main contributions are addressing the previously stated problems.
They are respectively data-independent, data-dependent (parameters are learned) and
graph-based corresponding to the three principal approaches for preserving approx-
imatively the structure and the distance of the data points. Driven by the needs
pointed in Section 1.1.3, our contributions are approximative distance and structure-
preserving algorithms for nearest neighbors search and clustering in unsupervised
learning. These approximation algorithms rely on a certain compression of the in-
put data. Our ways of compression for each contribution can be summarized in one
word: structuring, hashing and minimum spanning tree (so one part of this thesis’
title). Our contributions are now briefly summed up in the following sections and
schematized in Figure 1.3.

1.2.1 Structured random matrices, an approach for fast and large-
scale machine learning computations

1.2. Main contributions and outline of the thesis 11

Contributions

Nearest
neighbors

Clustering

When speed
matters over

accuracy

For a better
trade-off

between speed
and accuracy

Structured
Spinners:

Structuring to
speed up LSH-
based schemes

Chapter 3

UnifDiag:
Online Hyper-
cubic hashing

Chapter 4

When look-
ing for a

space-efficient
non-parametric

method de-
tecting non-

convex clusters

DBMSTClu:
MST-based
algorithm
Chapter 5

Other applica-
tions: kernel

approximation,
convex opti-

mization, neural
networks, etc.
Appendix B Node clustering

under weight dif-
ferential privacy

PTClust :
differentially-

private cluster-
ing algorithm
Appendix D

Figure 1.3: Overview of our contributions to unsupervised learning
from massive high-dimensional data streams.

A structuring technique is explained to speed up the state-of-the-art data-
independent LSH-based schemes for Approximate Nearest Neighbor (ANN)
search.

We recall briefly, LSH-based schemes [Indyk and Motwani, 1998, Charikar, 2002,
Terasawa and Tanaka, 2007, Sundaram et al., 2013, Andoni et al., 2015a] consist in
performing dimensionality reduction of the high-dimensional input vectors with ran-
dom projections to make the similarity search faster on the smaller obtained feature
vectors. When the dimensions of the projection matrix and the vector are high, this
product computation can be very expensive. To remedy this problem, it is suggested
to replace the use of random matrices by structured ones chosen from the family
of the introduced model Structured Spinners. Matrices of the Structured Spinners’
family are formed as products of three structured matrix-blocks that incorporate ro-
tations and follow some conditions. Using this kind of matrices leads both to space
cost reduction and considerable speedups of the matrix-vector product thanks to fast
Fourier or Hadamard transforms that are applied instead.

Theoretical guarantees characterizing the capacity of the structured model in
reference to its unstructured counterpart are provided.

They rely essentially on concentration theorems such as the results for random vectors
of the Berry-Esseen type Central Limit Theorem [Bentkus, 2003] or Azuma’s inequal-
ity [Azuma, 1967]. They demonstrate that there is almost no loss of accuracy in the
considered applications, as confirmed by the experimental part. As a by-product, the
proposed technique is generalizable to lots of machine learning applications relying on
matrice-vector products where the parameters of the matrix are random (typically,
each entry of the matrix has been drawn from a Gaussian distribution) or learned,
as shown in Appendix C. A few examples include vector quantization, kernel approx-
imation via random feature maps, convex optimization with Newton sketches and
deep neural networks.

12 Chapter 1. Introduction

1.2.2 Learning compact binary codes from massive data streams
with hypercubic hashing for Nearest Neighbors search

When data-independent LSH techniques do not provide sufficient accuracy for
similarity search involved in ANN and clustering, we propose a new method for
learning compact similarity-preserving binary codes for massive high-dimensional
data streams.

Given an expected code length c and high-dimensional input data points, the pre-
sented algorithm provides a binary embedding of c bits aiming at preserving the
distance between the points from the original high-dimensional space. The method
can be categorized into the family of hypercubic hashing. It combines:

1. the online estimation of the principal subspace,

2. the projection of the data points onto the c first estimated approximate principal
components of the covariance matrix,

3. the rotation of the approximate PCA-projected data points where the rotation
is learned so that to equalize the variance over the different approximate PCA
directions,

4. and the application of the sign function pointwise (defined later by Equa-
tion 2.11, p.23) in order to obtain binary codes.

Some theoretical results in this thesis attempt to justify for the first time, to the best
of our knowledge, the requirement of a rotation matrix after the PCA projection in
hypercubic hashing. This has been only intuitively motivated until this work.

We denote d the dimension of the data in the initial high-dimensional space. This
algorithm is particularly time and space efficient with complexities respectively in
O(dc + c2) and O(c2) additional to the storage of the projection matrix and the
rotation. This outperforms the state-of-the-art online hypercubic hashing method on
this aspect.

The quality of the obtained binary codes is demonstrated through extensive ex-
periments on real data for the nearest neighbors search task in the online setting. The
algorithm provides a similar quality of the binary embeddings in comparison with the
competing state-of-the-art online hypercubic hashing approaches.

1.2.3 A Minimum Spanning Tree-based approach for clustering mas-
sive data

For this last contribution, we propose a new clustering algorithm named DB-
MSTClu based on the graph approach for preserving the structure of the data.

The dataset can be represented as a dissimilarity graph but for large-scale applica-
tions, this graph is too big to be entirely loaded into memory. Therefore, the infor-
mation on the dataset will be compressed into a Minimum Spanning Tree (MST)4

of this data dissimilarity graph. Relying exclusively on a MST helps to respect the
linear time and space complexity constraints. As a new space-efficient density-based
non-parametric clustering algorithm, DBMSTClu, by performing suitable cuts on the
MST, enables the recovery of arbitrary-shaped data clusters from massive datasets.

4See Definition 2.4.5 p.43.

1.2. Main contributions and outline of the thesis 13

• Space-efficient: It is applied only on a Minimum Spanning Tree (MST) T of the
dissimilarity graph G between the N objects to cluster. For N objects, there
are only N − 1 edges to store.

• Density-based: Unlike k-means, k-medians or k-medoids algorithms, it does not
fail at distinguishing clusters with particular (possibly embedded) structures.

• Non-parametric: No input parameter (such as the number of clusters or char-
acteristics of the clusters) is needed contrarily to DBSCAN or the Spectral
Clustering method.

Thanks to the property of the MST for expressing the underlying structure of
a graph, the algorithm correctly detects the right number of non-convex clusters by
cutting suitable edges on T .

The optimality of the MST-based approach is indeed justified in this thesis, to
the best of our knowledge, for the first time.

In DBMSTClu, the cut criterion to maximize, named DBCVI for Density-Based
Clustering Validation Index, is based on the weighted sum of indices computed for
each cluster. At the cluster level, one can compute this index by taking the normalized
subtract of the Separation and Dispersion of the cluster. The Separation measures
how the clusters are well-separated while low Dispersion expresses a dense cluster with
less empty space. DBMSTClu basically performs cuts on the MST as long as the cut
criterion can be improved by taking at each step the cut maximizing the DBCVI.
Theoretical guarantees on the retrieval of the exact clustering partition are procured
and DBMSTClu’s advantage over the existing state-of-the-art is exhibited on several
datasets. As a by-product, the algorithm accompanied by theoretical guarantees has
been successfully applied to differentially-private clustering.

Nevertheless, storing a dissimilarity graph G costs theoretically O(N2) edges. So,
an issue is:

How to compute space-efficiently a Minimum Spanning Tree of a weighted graph?

As a solution to retrieve efficiently an MST from it, G can be handled as a stream
of edge weight updates and only a limited number of linear measurements of G is
kept. G is sketched in one pass over the data into a compact structure requiring
O(N polylog(N)) space. Hence, one can say that the sketching phase follows the
dynamic semi-streaming model. Then, an approximate MST is recovered from this
graph sketch in O(N polylog(N)) time.

Outline of the thesis

For presenting these contributions, the thesis is organized as the following. A first
Chapter (Chapter 2) of this thesis is dedicated to enumerating state-of-the-art data-
independent, data-dependent and graph-based approaches for the nearest neighbor
search and clustering. Then, follow three Chapters (Chapters 3, 4, 5) devoted to the
three main obtained results for which Sections 1.2.1, 1.2.2 and 1.2.3 gave a bird’s-eye
view. Finally, some perspectives described in the last Chapter (Chapter 6) conclude
this work. Appendices C, D and E constitute some complements to respectively
Chapter 3, 4 and 5. Appendix F enumerates the publications made during this PhD
thesis.

15

Chapter 2

Related work

Contents
2.1 Introduction . 16
2.2 Data-independent approaches 18

2.2.1 Hashing . 18
2.2.2 Locality-Sensitive Hashing (LSH) 21

Hyperplane LSH . 23
Cross-polytope LSH . 23

2.2.3 Random Projection . 24
Dense distribution . 24
Sparse distribution . 25

2.3 Data-dependent approaches 26
2.3.1 Some data-dependent hashing techniques 26
2.3.2 Principal Component Analysis-based approaches (PCA) . . 27

PCA Principle . 27
Hypercubic quantization hashing 28

ITerative Quantization (ITQ) 29
Isotropic Hashing (IsoHash) 30
The burden of PCA for ITQ and IsoHash 30

Streaming matrix sketching for PCA and Online Sketching
Hashing (OSH) . 30

Streaming matrix sketching with Frequent-Directions 30
Online Sketching Hashing (OSH) 32

Fast Orthonormal Projection Approximation and Subspace
Tracking (OPAST) 32

2.3.3 Similarity / Metric learning 33
2.3.4 Space-efficient clustering approaches 35

The k-means problem . 35
CURE algorithm . 37
CluStream . 38
DenStream . 38

2.4 Graph-based approaches . 40
2.4.1 Graph-based clustering . 41

General graph clustering . 41
Spectral clustering . 41

Principle . 41
The similarity graph 42
The (Graph) Laplacian matrix 42

16 Chapter 2. Related work

MST-based clustering approaches 43
Standard Euclidean MST (SEMST) 44
Zahn Euclidean MST (ZEMST) 44
Maximum Standard Deviation Reduction (MSDR) . 44

2.4.2 Graph-sketching approach 45
Virtual representation of an unweighted graph 45

Stream description of an unweighted graph 45
Representation of the stream 46

Representation application for connectivity 46
Sketch of an unweighted graph with `0-sampling 47
Sketch application for connectivity 49

Independent repetitions of the L levels 49
Independent rounds of the repetitions of the L levels 49

Sketch extension for a weighted graph and application to the
approximate (weight of a) MST 49

2.5 Position of the contributions regarding the state of the art 51

2.1 Introduction

Addressed problems in this thesis are from the field of unsupervised machine learn-
ing. Specifically, it is attempted to design efficient distance and structure preserving
algorithms for essential exploratory tasks such as nearest neighbors search and cluster-
ing. They are constrained by bounded memory and the necessity to process massive
high-dimensional datasets very fast, possibly in an online manner. Though, a cer-
tain approximation on the result, in comparison with the exact answer obtained with
unlimited time and memory, is allowed. The challenge is in finding a good balance
between time, memory usage and precision of the model.

It will be seen in this Chapter that approaches for solving this problem may
be from three different types: data-independent, data-dependent and graph-based. See
Figure 2.1 for an illustration. Some existing algorithms from each class of methods will
be described. They do not always take into account all aforementioned constraints.
The limits of these methods raise the open questions that we tend to address in this
thesis:

How to perform data-independent or data-dependent similarity search in an effi-
cient manner?

How to recover non-convex clusters without any parameter with time and space
complexities linear in the number of data points?

More particularly, we began in Chapter 1 to draw the contours of the proposed
models. Compression (hashing, sampling, dimensionality reduction, sketching) is the
key tool to achieve this goal. We consider:

1. a data-independent dimensionality reduction method based on structured ran-
dom projections,

2. a data-dependent hashing approach relying on an online estimation of the Prin-
cipal Components Analysis (PCA) and

2.1. Introduction 17

3. a graph-based technique for clustering which summarizes a dataset by the un-
derlying Minimum Spanning Tree of the dissimilarity data graph.

We recap there all the corresponding open questions:

In machine learning applications approximatively preserving the distance and the
structure of data, how to prove the effectiveness of the structured approach for
random projections in general and HD3HD2HD1 in particular with O(c log d)
or O(cd log d) time cost and subquadratic, usually at most linear, or sometimes
even constant (in d) space cost?

How to perform accurate nearest neighbor search by learning the smaller binary
feature representations in a streaming fashion with minimal space cost? More
precisely, in the frame of the state-of-the-art Hypercubic hashing family, how to
propose an online version of ITQ [Gong et al., 2013], the popular state-of-the-
art algoritm representing this family? How to perform the online estimation of
the PCA? How to learn in an online fashion the relevant rotation after PCA-
projection of the data?

How to compute space-efficiently a Minimum Spanning Tree of a weighted graph?

Unsupervised (approximation) algorithm

Data-
independent

Data-dependent

Distance-preserving

Distance-preserving

...

Graph-based

Neighboring-preserving

Figure 2.1: Typology of considered methods for unsupervised (ap-
proximation) algorithms. Graph-based methods are data-dependent
but perform a relaxation of the distance-preserving constraint. They
preserve the structure, the neighborhood of the points, which is looser

than the distance.

18 Chapter 2. Related work

Plan of the Chapter In the remaining part of this Chapter, we will present fun-
damental principles of state-of-the-art methods competing with our proposed models
and the ones from which we have been inspired. We begin to answer partially to the
previous raised framed questions by introducing preliminaries to our models. To that
purpose, the description is made by following the distinctive scheme data-independent
(Section 2.2) / data-dependent (Section 2.3) / graph-based (Section 2.4). More pre-
cisely, we will cover more or less briefly hashing (Section 2.2.1), Locality-Sensitive
Hashing and variants (Section 2.2.2), (structured) random projection (Section 2.2.3),
PCA, associated data-dependent hashing techniques and some efficient online estima-
tions of PCA (Section 2.3.2), space-efficient (Section 2.3.4) and graph-based clustering
methods (Section 2.4.1) and a graph-sketching technique for retrieving a Minimum
Spanning Tree (Section 2.4.2).

2.2 Data-independent approaches

Among data-independent methods, we choose here to detail Locality-Sensitive Hash-
ing (LSH) [Indyk and Motwani, 1998], the state-of-the-art for similarity search and
for which we made some improvements. First, this is necessary to explain the concept
of hashing behing LSH.

2.2.1 Hashing

Problems addressed in this thesis heavily rely on hashing to reduce the space cost
of the handled objects. In particular, randomness involved in the compact data
structures is due to random functions from a family of hashing or hash functions
applied to the input data in order to make them have a certain independence. A
family of functions H is defined as follows: H := {h | h : S → D} where S (resp. D)
is the source (resp. destination) set. The cardinality of S is potentially infinite while
the cardinality of D is controlled. The properties of H are:

• Every function h ∈ H is easy to represent.

• For any x ∈ S, the evaluation of h(x) is cheap to compute.

• If |S| > |D|, then,

– there are collisions i.e. for any h ∈ H, there are x, y ∈ S, x 6= y such that
h(x) = h(y). In particular, if |S| is small, hashed values of elements in S
have smaller probability of collision.

– every h ∈ H is irreversible.

Hash functions are sometimes required to be k-wise independent or pairwise in-
dependent. The definition of pairwise independent hash functions is given below in
Definition 2.2.1, the case of k-wise independence can be easily derived.

Definition 2.2.1 (Pairwise independent hash functions). A family of functions H =
{h | h : S → D} is pairwise independent if for any h randomly drawn from H, these
two conditions hold:

1. ∀x ∈ S, the random variable h(x) is uniformly distributed in D.

2. ∀x1 6= x2 ∈ S, the random variables h(x1) and h(x2) are independent.

2.2. Data-independent approaches 19

This definition implies that over all random choices of a function h ∈ H, for any
x1 6= x2 ∈ S and y1, y2 ∈ D,

Ph∈H[(h(x1) = y1) ∩ (h(x2) = y2)] = 1/|D|2.

Typically, hash functions are used in hash tables with |S| > |D|. They enable to
quickly access a data record from its hashed search key: the latter points out a bucket
of the hash table where a set of records is stored. For conventional hash functions,
such as those used in cryptography (ex: SHA-1 [National Security Agency, 1995]),
the probability of collisions is supposed to be minimized. Figure 2.2 illustrates this
principle.

b b

b b

bb

b b

Figure 2.2: For points in 1 dimension, illustration of hashing to fill a
hash table with 12 buckets. The hash function should be defined such

that collisions should be avoided as much as possible.

Suppose there are n elements to place in k buckets and the considered hash func-
tion is ideal i.e. with a uniform distribution. Then Propositions 2.2.1, 2.2.2 and 2.2.3
hold. They are illustrative results for which the proof is easily re-demonstrable.

Proposition 2.2.1. Considering the problem of placing n elements in k buckets of a
hash table with a uniformly distributed hash function, the probability that at least two
elements are in collision is approximatively

1− e
−n(n−1)

2k . (2.1)

Proof. After placing the first item in a bucket, the probability that the second
finds an empty bucket is k−1

k . By generalization, the probability that there is no
collision is

p = k − 1
k
× k − 2

k
× . . .× k − (n− 2)

k
× k − (n− 1)

k
. (2.2)

The Taylor series expansion of the exponential function provides a first-order
approximation for ex with x � 1: ex ≈ 1 + x. Thus, e−

c
k ≈ 1 − c

k = k−c
k for

c ∈ {1, 2, . . . , n− 2, n− 1}. So,

p ≈ e−
1
k × e−

2
k × . . .× e

−(n−2)
k × e

−(n−1)
k = e

−(1+2+...+(n−2)+(n−1))
k = e

−n(n−1)
2k . (2.3)

The probability that at least two elements are in collision is 1−p which completes
the proof.

Proposition 2.2.2. Considering the problem of placing n elements in k buckets of a
hash table with a uniformly distributed hash function, the expected number of elements

20 Chapter 2. Related work

which will be in collision is

E[number of elements which collide with at least another one]

= n

(
1−

(
1− 1

k

)n−1
)
. (2.4)

Proof. Given two elements x, y, the probability that x collides with y is 1/k. So
the probability that x does not collide with y is 1 − 1/k. The probability that
n − 1 items do not collide with x is then

(
1− 1

k

)n−1
. By complementarity, the

probability that at least one element collides with x is 1−
(
1− 1

k

)n−1
. Therefore

E[number of elements which collide with at least another one]

= n

(
1−

(
1− 1

k

)n−1
)
. (2.5)

Proposition 2.2.3. Considering the problem of placing n elements in k buckets of a
hash table with a uniformly distributed hash function, the expected number of buckets
containing collisions is

E[number of buckets with 2 or more items] = k−k
(

1− 1
k

)n
−n

(
1− 1

k

)n−1
. (2.6)

Proof. The expected number of buckets containing collisions is equal to

E[number of buckets with 2 or more items]
= k − E[number of empty buckets]
− E[number of buckets with only one element]. (2.7)

• The probability that any bucket is chosen for one given element is 1/k.
So the probability that it is not chosen is 1 − 1/k. After n elements, the
probability that any bucket is still empty is

(
1− 1

k

)n
. Therefore

E[number of empty buckets] = k

(
1− 1

k

)n
. (2.8)

• Given two elements x, y, the probability that x collides with y is 1/k. So
the probability that x does not collide with y is 1 − 1/k. The probability
that n− 1 items do not collide with x is then

(
1− 1

k

)n−1
. Therefore

E[number of buckets with only one element] = n

(
1− 1

k

)n−1
. (2.9)

This completes the proof.

2.2. Data-independent approaches 21

2.2.2 Locality-Sensitive Hashing (LSH)

For a family of hashing functions H = {h | h : S → D} where S (resp. D) is the
source (resp. destination) set, when the cardinality of S is such that some collisions
are not avoidable, it could be useful to exploit the collision probabilities by defining
hash functions preserving a relationship for instance, the distance between the input
data points. This is the goal of Locality-Sensitive Hashing (LSH) [Indyk and Mot-
wani, 1998] in order to perform Approximate Nearest Neighbor (ANN) search. While
Figure 2.2 shows general hashing, Figure 2.3 illustrates LSH.

b b

b b

bb

bb

Figure 2.3: For points in 1 dimension, illustration of Locality-
Sensitive Hashing to fill a hash table with 12 buckets. The hash func-
tion should be defined such that near points in the initial space have
a high probability to collide. On the contrary, far points have a low

probability to collide.

Locality-Sensitive Hashing (LSH) [Indyk and Motwani, 1998] is a method for ap-
proximative search in high-dimensional spaces and constitutes a solution to the curse
of dimensionality problem. A classic application is the Approximative Nearest Neigh-
bors (ANN) search.

LSH uses a family of hash functions to hash input data into several hash tables
so that similar data points are mapped to the same buckets in different hash tables
with high probability, the number of buckets being obviously much smaller than the
universe of possible input data. Let dist(x, y) denote any distance function between
points x and y (some examples of distance functions are given in Appendix A). For-
mally, a family H is called (R, aR, p1, p2)-sensitive with R and a some strictly positive
thresholds, p1 � p2, if H = {h | h : S → D} satisfies the following conditions for any
two points x, y ∈ S and any h ∈ H:

• If dist(x, y) ≤ R, then Ph∈H[h(x) = h(y)] ≥ p1.

• If dist(x, y) ≥ aR, then Ph∈H[h(x) = h(y)] ≤ p2.

The constant a quantifies the gap between what it is meant for a distance to be
"near" or "far". The quality of a hash function depends on the two parameters: p1,
the collision probability for nearby points, and p2 the collision probability for points
that are far apart. The gap between p1 and p2 expresses how "sensitive" the hash
function is to variations in the distance. It is summed up by the quantity ρ = log(1/p1)

log(1/p2)
which is usually written as a function of the distance gap a.

The LSH algorithm for ANN search works in two steps, with parameter c denoting
the number of hash functions to concatenate for constructing a hash value and L, the
number of hash tables:

1. Building of the data structure: The algorithm defines L families of hash func-
tions H1, . . . ,HL for each table i ∈ [L]. For a given point x and a hash table
i ∈ [L], the hash value fi(x) is the concatenation of c hash functions hHi1 , . . . , hHic
chosen uniformly at random in Hi. It means that for any input point x, for all
i ∈ [L],

fi(x) = [hHi1 (x) . . . hHic (x)]. (2.10)

22 Chapter 2. Related work

Then L hash tables are built where the i-th hash table contains all the points
from S, hashed into buckets according to function fi. If |S| = N , then the space
required for LSH is O(NL).

2. Nearest neighbors query: For a given query point x, the algorithm iterates on
the L functions to return the points located in the same bucket than x for each
hash table. Then the brute-force is applied to the union of all returned points
to find the nearest neighbors: the distances between all points are computed
and the nearest neighbors are retrieved. Note that the nearest two points are,
the higher the probability that these two points collide together into the same
bucket among all the hash tables.
Also note that some hash functions from the same family can have an intrinsic
distance. In this case, the search can be enlarged to the nearest bucket(s)
defined by the one(s) pointed by the hash functions for each hash table. This
is multiprobing [Lv et al., 2007, Andoni et al., 2015a]. It is necessary though,
to define carefully what are the neighboring buckets according to the used hash
functions.

Figure 2.4 illustrates the whole algorithm. Determining good Locality-Sensitive Hash

L

b
b b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

f1

f2

fL

Figure 2.4: For points in 2 dimensions, illustration of Locality-
Sensitive Hashing to fill a hash table with 12 buckets. The hash func-
tion should be defined such that near points in the initial space have
a high probability to collide. On the contrary, far points have a low
probability to collide. If the blue point is a query point to find its
nearest neighbors, find them among the points from the same buckets
(union represented by the dash line) among the hash tables. Thus,
the red point is returned. The search can be enlarged to the nearest
bucket for each hash table (delimited by the dotted line) and then the

yellow point is considered.

functions and thus, designing LSH-based efficient nearest neighbor search algorithms
are problems that have attracted much interest over the last few years [Andoni and
Indyk, 2008, Raginsky and Lazebnik, 2009, Grauman and Kulis, 2011]. Two variants
of LSH are dominant, Hyperplane [Charikar, 2002] and Cross-polytope LSH [Terasawa
and Tanaka, 2007]. In the next Sections, they are explained but restricted to the case
of only one hash table for writing simplicity.

2.2. Data-independent approaches 23

Hyperplane LSH

Given a set of data points in the unit sphere Sd−1 ⊂ Rd, the family of hash functions
H in Hyperplane LSH [Charikar, 2002] is defined as follows. Taking a random vector
r ∈ Rd such that each entry of r is drawn from the normalized Gaussian distribution
noted N (0, 1), we defined a hash function hr corresponding to this vector such that
for any data point x ∈ Sd−1,

hr(x) := sign(r · x) =
{

1 if r · x ≥ 0
−1 if r · x < 0 (2.11)

Denoting distang the angular distance (see Definition A.0.8 p.128), one has the fol-
lowing locality sensitive hashing scheme:

P[hr(x) = hr(y)] = 1− distang(x,y). (2.12)

The data point x ∈ Sd−1 is then represented by the hash vector

f(x) = [hr1(x) . . . hrc(x)] = sign(Rx) (2.13)

where the sign function is applied pointwise and R ∈ Rc×d is the matrix formed by
r1, . . . , rc as rows. In practice, the corresponding implementations on real data de-
crease the query time complexity by multiple orders of magnitude in comparison with
a linear scan [Lv et al., 2007, Sundaram et al., 2013]. Nevertheless, Hyperplane LSH
has worse theoretical guarantees than Cross-polytope LSH [Terasawa and Tanaka,
2007].

Cross-polytope LSH

Cross-polytope has been proposed by Terasawa and Tanaka [2007] and its perfor-
mance has been recently further analyzed by Andoni et al. [2015a].

Given a set of data points in the unit sphere Sd−1 ⊂ Rd, the family of hash
functionsH in Cross-polytope LSH is defined as follows. Taking a random matrix A ∈
Rd×d such that each entry of A is drawn from the normalized Gaussian distribution1,
we defined a hash function hA corresponding to this matrix such that for any data
point x ∈ Sd−1,

hA(x) := η

(Ax
‖Ax‖2

)
, (2.14)

where η(.) returns the point closest to Ax
‖Ax‖2 from the set {±ei}1≤i≤d, with ei being

the i-th standard basis vector of Rd. The data point x ∈ Sd−1 is then represented by
the hash vector f(x) = [hA1(x) . . . hAc(x)].

Theorem 2.2.1 from Andoni et al. [2015a] (Theorem 1 in the paper) bounds the
collision probability for two points under the above family H. We let the reader refer
to the corresponding paper for the proof.

Theorem 2.2.1 (Andoni et al. [2015a]). Suppose that x,y ∈ Sd−1 such that ‖x −
y‖2 = τ , where 0 < τ < 2. Then,

ln 1
Ph∼H[h(x) = h(y)] = τ2

4− τ2 · ln d+O(ln ln d). (2.15)
1When d is large, A can be considered as a rotation.

24 Chapter 2. Related work

By comparing both Hyperplane and Cross-polytope LSH, it becomes obvious that
the Cross-polytope LSH is not quite practical. The main bottleneck is generating and
storing the Ai matrices, and finally multiply them with the data points. For each
Ai, this costs O(d2) time and space which is infeasible for large d. That is why for
any matrix A, Andoni et al. [2015a] proposed instead to multiply the input vector
with matrix HD3HD2HD1 where H is the normalized Hadamard transform, and Di

for i ∈ {1, 2, 3} is a random diagonal ±1-matrix. HD3HD2HD1 is an orthogonal
transformation which requires only O(d) memory space. Its product with any input
vector can be computed in O(d log d) time using the Fast Hadamard Transform. An-
doni et al. [2015a] noted experimentally that three applications of HDi are exactly
equivalent to applying a true random rotation when d tends to infinity, while for
instance, only two applications of HDi are not sufficient. But they are not giving a
theoretical explanation.

How to prove that for Cross-polytope LSH, HD3HD2HD1 is equivalent to a
random Gaussian matrix in terms of accuracy of the similarity search?

We provide an answer to this question in Chapter 3. In the meantime, as the the-
ory governing the LSH-based approach comes from the field of random projections,
commonly used for instance in dimensionality reduction, let us see the corresponding
fundamentals.

2.2.3 Random Projection

Random projection is a cost-efficient alternative to Principal Component Analy-
sis (PCA) (see Section 2.3.2, p.27) for dimensionality reduction since it is data-
independent. The theoretical foundations are given by the Lemma from Johnson
and Lindenstrauss [1984]:

Lemma 2.2.1 (Johnson and Lindenstrauss [1984]). Let ε ∈]0, 1[, X =
{x1, . . . ,xN} ⊂ Rd. Let c ∈ N, s.t. c ≥ Cε−2 log(N) for some constant C. Then
there exists a linear map Φ : Rd → Rc such that :

∀xi,xj ∈ X , (1− ε)‖xi − xj‖2 ≤ ‖Φxi −Φxj‖2 ≤ (1 + ε)‖xi − xj‖2. (2.16)

This Lemma states that N data points from an Euclidean space can be projected
onto a lower dimensional space with a dimension equal to O(1/ε2 log(N)) while incur-
ring a distorsion bounded by 1± ε in the pairwise distances of the points. To achieve
this with high probability, the matrix Φ to choose is required to be dense and can be
a near orthonormal random matrix i.e. Φ is drawn uniformly from all the near or-
thonormal c×d matrices. As a result, when comparing with the original space, there
is a near isometric embedding in the target space which preserves pairwise distances
and angles.

Dense distribution

Since Johnson-Lindenstrauss (JL) Lemma, some progress has been made concerning
the required dense distribution of Φ. Instead of drawing uniformly at random a ma-
trix, it is enough to draw each entry from an identically and independently distributed
(i.i.d.) Gaussian distribution [Frankl and Maehara, 1987]:

Φi,j ∼ N (0, (1√
c
)2) (2.17)

2.2. Data-independent approaches 25

where c is the lower targeted dimension. Then Indyk and Motwani [1998] and Das-
gupta and Gupta [1999] simplified the JL Lemma’s proof. Soon after, more com-
pact forms were proposed: Φi,j follows a uniformly distribution from the set {−1, 1}
[Achlioptas, 2003] or any sub-Gaussian distribution [Matoušek, 2008].

Definition 2.2.2 (sub-Gaussian variable). The probability distribution of a random
variable X is called sub-Gaussian if there exist C, a > 0 such that for every t > 0,

P[|X| > t] ≤ Ce−at2 . (2.18)

More simply, this means that the tails of a sub-Gaussian distribution are
dominated by the tails of a Gaussian one or, said differently, that the tails of a
sub-Gaussian distribution decay at least as fast as the tails of a Gaussian one.

So at this point, more efficient ways to compute the projection matrix Φ under
the dense distribution have been developed. But the storage of Φ still requires a
dense c × d matrix and the cost to map all the data onto the lower space is also in
O(c × d). This is very expensive when dealing with high-dimensional datasets, so
sparse forms have been also investigated.

Sparse distribution

Sparsification of the matrix Φ is not obvious. Kane and Nelson [2010] showed indeed
that the number of nonzero entries in Φ should be in O(d log(N)/ε) while Ailon and
Chazelle [2006] argued that the matrix cannot get too sparse because in case of an
already sparse input vector, the projection will distort it too much. In that event,
the resulting projection would be poorly concentrated. The authors get around this
problem by showing that a randomized Fast Fourier Transform (FFT) can be used
as a first step. This way, a sparse input vector would be densified while an already
dense vector would not be sparsified. This is the role of H and D in the following
proposed matrix Φ called the Fast Johnson-Lindenstrauss Transform (FJLT) [Ailon
and Chazelle, 2006]:

Φ = PHD (2.19)

where for some constant q,

Pi,j =
{
∼ N (0, (1√

q)2) with probability q

0 with probability 1− q
(2.20)

and H stands for the normalized Hadamard matrix (cf. Definition 2.2.3 below) and
D for a diagonal matrix with independent Rademacher (±1) entries.

Definition 2.2.3 (normalized Hadamard matrix). The normalized Hadamard matrix
is defined recursively for an even dimension d = 2i:

H0 = 1 (2.21)

H1 = 1√
2

(
1 1
1 −1

)
(2.22)

Hi = 1√
2

(
Hi−1 Hi−1
Hi−1 −Hi−1

)
(2.23)

The role of the block HD is to densify a possibly sparse input vector. Another
possibility for sparsifying Φ is described by Matoušek [2008]: for some constants η

26 Chapter 2. Related work

and q ∈ O(η2c) ≤ 1:

Pi,j =

1√
q with probability q

2
0 with probability 1− q
−1√
q with probability q

2

(2.24)

for x such that ‖x‖∞/‖x‖2 ≤ η. The latter condition means that x should not be
sparse, though.

This Section showed that sparsification of the projection matrix is enabled by com-
bination of classical structured matrices. Previous examples include the Hadamard
transform, diagonal and permutation matrices. Further structured matrices are de-
tailed in Appendix B.

When the precision of the result in preserving the distance between the points is
not enough with data-independent methods, data-dependent ones can be involved.
Lots of work have been made in this field. This would be vain in this thesis to review
them all. Instead, the choice has been made to give in Section 2.3 the most important
work related to ours (from Chapters 4 and 5) and the algorithms we are building a
new online method on (in Chapter 4).

2.3 Data-dependent approaches

2.3.1 Some data-dependent hashing techniques

For hashing functions introduced in Section 2.2.1, the data-dependent approaches,
where the binary embeddings are learned from the training set, are known to pre-
serve better the distance between points. There exists a plethora of them. This is out
of the scope of this thesis to review them all. Among this branch of methods, unsuper-
vised methods - which are of interest here - [Weiss et al., 2008, Liu et al., 2011, Gong
et al., 2013, Kong and Li, 2012, Lee, 2012, Liu et al., 2014, Yu et al., 2014, Raziper-
chikolaei and Carreira-Perpiñán, 2016] design hash codes preserving distances in the
original space while (semi-)supervised ones attempt to keep label similarity [Wang
et al., 2012, Liu et al., 2012]. Wang et al. [2018] propose an extensive survey of these
methods and make further distinctions to finally show that quantization-based tech-
niques are superior in terms of search accuracy. We can cite: ITerative Quantization
(ITQ) [Gong et al., 2013], Isotropic Hashing (IsoHash) [Kong and Li, 2012], Cartesian
K-means [Norouzi and Fleet, 2013] and some deep-learning-based methods [Lai et al.,
2015, Liong et al., 2015, Do et al., 2016].

Specifically, when the dataset is too large to fit into memory, distributed hashing
can be used [Leng et al., 2015b] or online hashing techniques [Huang et al., 2013,
Leng et al., 2015a, Cakir and Sclaroff, 2015, Cakir et al., 2017] can process the data
in only one pass, as a continuous stream, and compute binary hash codes as a new
data point is seen. This latter area has attracted lots of interest in the past few years.
Online Hashing (OKH) [Huang et al., 2013] learns the hash functions from a stream
of similarity-labeled pair of data with a "Passive-Aggressive" method [Crammer et al.,
2006]. Supervised MIHash algorithm [Cakir et al., 2017] also uses similarity labels
between pairs of data and considers Mutual Information to compute the binary em-
beddings. On the unsupervised side, in Online Sketching Hashing (OSH) [Leng et al.,
2015a], the binary embeddings are learned from a maintained sketch of the dataset
with a smaller size which preserves the property of interest.

2.3. Data-dependent approaches 27

From the family of quantization-based hashing methods, there is the category of
Hypercubic hashing which at some point relies on the Principal Component Analysis
(PCA). Before introducing prominent hashing functions from this type, let us first
describe the PCA in Section 2.3.2.

2.3.2 Principal Component Analysis-based approaches (PCA)

PCA Principle

Let us represent an original dataset by a data matrix X ∈ Rd×N where N is the
number of observations and d the dimensionality of data. One observation xj = X∗j
is a column of X for j ∈ [N]. Data are then zero-centered, i.e. the following operation
is performed, where Xi = 1

N

∑N
j=1 Xij :

∀(i, j) ∈ [d]× [N], Xij ← Xij −Xi. (2.25)

Principal Component Analysis [Pearson, 1901, Hotelling, 1933] linearly transforms X
into another matrix Y ∈ Rd×N so that for some d× d orthogonal matrix P,

Y = PX. (2.26)

This change of basis, without any dimensionality reduction, returns a set of linearly
uncorrelated attributes named principal components from a dataset of possibly corre-
lated ones and aims at reexpressing the data so that to optimally discriminate linearly
separable data. Let us rewrite the equation as the following, where {Pi∗} denotes the
set of rows of P, the principal components, and {xj} denotes the set of columns of X
i.e. input data:

PX =

P1∗
P2∗
...

Pd∗

(
x1 x2 . . . xN

)
=

P1∗.x1 P1∗.x2 . . . P1∗.xN
P2∗.x1 P2∗.x2 . . . P2∗.xN

...
...

Pd∗.x1 Pd∗.x2 . . . Pd∗.xN

 . (2.27)

This shows clearly that X is being projected onto the rows of P which are the new
basis for describing the original data points of X. In the PCA decomposition, this
new basis is defined by the directions which enable to decorrelate the original data,
i.e. the directions in which the variance is maximized.

Let us consider the covariance matrix of X defined as ΣX = 1
N−1XXT ∈ Rd×d.

ΣX = 1
N − 1

X1∗.XT

1∗ X1∗.XT
2∗ . . . X1∗.XT

d∗
X2∗.XT

1∗ X2∗.XT
2∗ . . . X2∗.XT

d∗
...

...
Xd∗.XT

1∗ Xd∗.XT
2∗ . . . Xd∗.XT

d∗

 (2.28)

ΣX sums up all the possible covariance pairs between the d variables or attributes. In
particular, the diagonal entries correspond to the actual variance of each dimension.
Similarly, ΣY can be defined for the transformed matrix Y. According to the PCA
objective, the covariances of different variables (non-diagonal entries) in the matrix
ΣY should be minimized i.e. being as close to zero as possible while the variances (di-
agonal coefficients) should be maximized. This is equivalent to say that the targeted

28 Chapter 2. Related work

ΣY should be diagonal. The following holds:

ΣY = 1
N − 1YYT = 1

N − 1(PX)(PX)T = 1
N − 1P(XXT)PT . (2.29)

Therefore, the problem goal can also be expressed as maximizing the following objec-
tive function J , where Tr(.) stands for the Trace application:

J(P) = Tr(PXXTPT), PPT = Id. (2.30)

Moreover, (XXT)T = (XT)TXT = XXT . Hence, XXT is a d× d symmetric matrix
and orthogonally (in particular orthonormally) diagonalizable. So there exists an
orthonormal d × d matrix U whose columns are the orthonormal eigenvectors of
XXT so that:

XXT = UΛUT (2.31)

where Λ = diag(λ1, λ2, . . . , λd) is a diagonal matrix formed with the set of eigenvalues
of XXT {λi} for i ∈ [d] such that λ1 ≥ λ2 ≥ . . . ≥ λd. If the rank r of XXT , i.e.
the number of nonzero eigenvalues or the number of orthonormal eigenvectors, is less
than d, the d − r corresponding eigenvectors in U are random orthonormal vectors.
So ΣY can be rewritten:

ΣY = 1
N − 1P(UΛUT)PT . (2.32)

If one takes P = UT , the equation becomes:

ΣY = 1
N − 1(UTU)Λ(UTU) = 1

N − 1Λ (2.33)

since U is orthonormal, i.e. UTU = Id. Finally, the principal components, i.e. the
rows of P are chosen to be the d eigenvectors of XXT sorted in the decreasing order
of corresponding eigenvalues such that the first principal component has the highest
variance possible.

Note that PCA can be performed through EigenValue Decomposition (EVD) of
the covariance matrix as previously shown but also with Singular Value Decomposi-
tion (SVD) of the data matrix X.

To perform dimensionality reduction i.e. to obtain V ∈ Rc×N given a targeted
lower dimension c with c � d, it suffices to keep the c first principal components to
build the c× d matrix W. V is then defined as follows:

V = WX ∈ Rc×N . (2.34)

Hypercubic quantization hashing

In Hypercubic quantization hashing methods [Jégou et al., 2010, Gong et al., 2013,
Kong and Li, 2012, Leng et al., 2015a, Chen et al., 2017], after having obtained the
PCA-projected dataset V = WX ∈ Rc×N , V is rotated with the orthogonal matrix
R ∈ Rc×c s.t. RRT = RTR = Ic:

Y = RV ∈ Rc×N . (2.35)

2.3. Data-dependent approaches 29

In the sequel, we denote W̃ = RW. Then, to have finally binary codes, the sign
function is applied pointwise:

B = sign(Y) ∈ {−1, 1}c×N . (2.36)

Recall that for any real x, sign(x) = 1 if x ≥ 0 and −1 otherwise. We also use
this notation for the same function applied component-wise on coefficients of vectors.
Figure 2.5 summarizes the general scheme of Hypercubic hashing methods.

Input: X ∈ Rd×N , c� d
W = PCA(X, c),
V = WX ∈

Rc×N

Compute
rotation R

from V, Y =
RV ∈ Rc×N

B = sign(Y) Output: B
V Y

Figure 2.5: General (offline) scheme for Hypercubic hashing meth-
ods. The first step consists in computing the c × d-projection matrix
with PCA. The second rotates the PCA-projected data. Finally, the

sign function is applied pointwise to obtain binary coefficients.

We describe now more in details two main figures of this family: ITerative Quan-
tization (ITQ) [Gong et al., 2013] and Isotropic Hashing (IsoHash) [Kong and Li,
2012].

ITerative Quantization (ITQ) For ITQ [Gong et al., 2013], R is the solution of
an orthogonal Procustes problem which consists in minimizing the quantization error
Q(B,R) of mapping the resulting data to the vertices of the 2c hypercube:

Q(B,R) = ‖B− W̃X‖2F = ‖B−RWX‖2F = ‖B−RV‖2F , (2.37)

where ‖.‖F denotes the Froebenius norm.

Algorithm 1 ITQ algorithm [Gong et al., 2013]
1: Inputs : data : V = WX, V ∈ Rc×N PCA-projected X; code length: c; number

of iterations: K
2: R ← randomOrthogonalMatrix(c, c) // Initialization
3: for i in [K] do
4: B = sign(RV) // Fix R and update B
5: S,Ω, S̃T = SVD(VTB) // Fix B and update R
6: R = S̃ST
7: return R

Algorithm 1 describes ITQ. R is initially some random orthogonal matrix:
randomOrthogonalMatric(c, c) in Algorithm 1 constructs a c × c random orthog-
onal matrix. Then, iteratively, ITQ alternatively computes B = sign(RWX) after
freezing R, and optimizes R according to B. In the latter step, R = S̃ST by defining
S,Ω, S̃T = SVD(VBT) the Singular Values Decomposition (SVD) of VBT . Hence,
ITQ’s goal is to map the values of the projected data to their component-wise sign.
This is currently the best method among Hypercubic quantization techniques. Its
drawback is that it is a full offline process and there is no convergence guarantees for
obtaining R.

30 Chapter 2. Related work

Isotropic Hashing (IsoHash) Let us begin with some notation. For any real a,
diagc(a) returns a c× c-diagonal matrix whose diagonal coefficients are all equal to a,
while for any matrix M, diag(M) returns a diagonal matrix with the same diagonal
as M. For any matrix M, we denote ΣM = MMT 2. O(c) is the set of all orthogonal
matrices in Rc×c, i.e. O(c) = {Q | QTQ = QQT = Ic}.

Let σ2
1, ..., σ

2
c be the diagonal coefficients of ΣV, hence σ2

1 ≥ ... ≥ σ2
c . Iso-

Hash [Kong and Li, 2012] (but also UnifDiag, see Section 4.4) looks for a matrix
R balancing the variance over the c directions, i.e. equalizing the diagonal coeffi-
cients of ΣY to the same value:

τ = Tr(ΣV)/c. (2.38)

Let us define, for any real a, T (a), the set of all c×cmatrices with diagonal coefficients
equal to a:

T (a) = {T ∈ Rc×c | diag(T) = diagc(a)} (2.39)

and
M(ΣV) = {QΣVQT | Q ∈ O(c)}. (2.40)

Then, IsoHash determines R by solving this optimization problem:

R ∈ argmin
Q: T∈T (τ), Z∈M(ΣV)

‖T− Z‖F . (2.41)

One of the proposed methods by IsoHash to solve this problem (Gradient Flow) is to
reformulate it as:

R ∈ argmin
Q∈O(c)

1
2‖ diag(QΣVQT)− diag(τ)‖2F . (2.42)

Then, R results from a gradient descent converging to the intersection between the
set of orthogonal matrices and the set of transfer matrices making ΣY diagonal.

The burden of PCA for ITQ and IsoHash PCA described as above requires
the storage of the entire dataset which costs O(Nd). Besides, in practice, the time
complexity of the eigenvalue decomposition of XXT is O(d3) while the complexity of
the SVD of X is O(min(dN2, Nd2)) [Jolliffe, 1986]. Therefore, this becomes infeasible
for high-dimensional datasets. Efficient approximation of PCA, especially in an online
fashion, has led to numerous works. It is out the scope of this thesis to review them
all. Nevertheless, in the following Sections two approaches will be described:

1. one based on the sketching of the dataset,

2. another one based on the tracking in an online fashion of the principal subspace.

Streaming matrix sketching for PCA and Online Sketching Hashing (OSH)

First, an algorithm named Frequent-Directions [Liberty, 2013] is presented for sketch-
ing a matrix.

Streaming matrix sketching with Frequent-Directions Let consider A ∈
Rn×m the large matrix to sketch where n is the dimension to reduce. In the stream-
ing model, the sketching algorithm takes as input the sequence of n rows of A and

2This is a slight abuse of notation as the normalization factor is discarded.

2.3. Data-dependent approaches 31

returns a sketch matrix B ∈ Rl×m such that l� n, l is even and l� d. This is done
using only O(ml) space, which is actually the required space to store B. The goal is
to guarantee that ATA ≈ BTB and more precisely:

∀x ∈ Rm, ‖x‖2 = 1, 0 ≤ ‖Ax‖22 − ‖Bx‖22 ≤ 2‖A‖2F /l (2.43)

or
BTB ≺ ATA and ‖ATA−BTB‖2 ≤ 2‖A‖2F /l (2.44)

where any matrix positive semidefinite (resp. positive definite) M is denoted as
M � 0 (resp. M � 0). So ATA − BTB is positive definite. Each sketch update
which corresponds to one processed row of A costs O(ml) operations.

The principle of the Frequent-Directions algorithm is the following: B is initialized
to 0l×m which is the l ×m matrix with all coefficients set to zero. While there are
zero-valued rows in B, they are filled with rows from A. If there are still rows from
A to process but no zero-valued rows, half the rows of B are nullified by a two-stage
process:

1. B is rotated from the left using its SVD such that its rows are orthogonal and in
descending magnitude of order. In this setting, B = UΣVT , UTU = UUT =
VTV = Il, Σ = diag((σ1, . . . , σl)), σ1 ≥ . . . ≥ σl ≥ 0.

2. The squared median singular value (σ2
l/2, with l supposed to be an even integer)

is used to nullify all singular values below this threshold: it leads to a new B
with at least half rows that are zero vectors.

The method is described in Algorithm 2. Let us analyze the time complexity of the

Algorithm 2 Frequent-Directions algorithm [Liberty, 2013] - row version
1: Inputs : A ∈ Rn×m, l
2: B← 0l×m // Initialization
3: for j in 1, . . . , n do
4: Insert Aj∗ into a zero-valued row of B
5: if B has no zero-valued rows then
6: [U,Σ,V]← SVD(B)
7: δ ← σ2

l/2
8: Σ̂←

√
max (Σ− Ilδ, 0)

9: B← Σ̂VT // At least half the rows of B are all zero.
10: return B

algorithm. The worst case for one update is when SVD of B is performed and it
costs O(ml2). It is required every l/2 processed rows of A since at each SVD, at
least l/2 rows of B are nullified. Otherwise, the update time is O(m) when no SVD
is performed since the cost is only to add a vector with size m in B. So the total
running time for n rows of A is

O

n/(l/2)×ml2︸ ︷︷ ︸
with SVD

+ (n− n

l/2)m︸ ︷︷ ︸
without SVD

 = O(nml) (2.45)

because the cost is dominated by the SVD computation.

32 Chapter 2. Related work

Finally, remark that this sketch has the interesting (and desired) property to en-
able the partitioning of matrix A into chunks of rows less than n for which local
sketches can be computed and then combined in an arbitrary order. This is particu-
larly relevant for distributed computations.

Online Sketching Hashing (OSH) The Frequent-Directions technique is used
for instance in Online Sketching Hashing (OSH) algorithm from Leng et al. [2015a]
to sketch online the dataset X ∈ Rd×N in order to perform an efficient version of
the PCA. The dataset X ∈ Rd×N is split into different chunks X1,X2, . . . ∈ Rd×n,
n < N and the Frequent-Directions algorithm is applied to obtain a compact updated
representation of the dataset X′ ∈ Rd×l as new chunks are seen, with l� n and l� d.
Then, classical PCA is performed on X′ ∈ Rd×l as an approximate PCA of X ∈ Rd×N .
In this case, PCA has been obtained efficiently with RSVD [Golub and van der Vorst,
2000] for the specific case d � l, with complexity O(dl2 + l3), which is much more
efficient than the original O(d3). Algorithm 3 presents the used column version of
Frequent-Directions algorithm.

Algorithm 3 Frequent-Directions algorithm [Liberty, 2013] - column version
1: Inputs : A ∈ Rn×m, l
2: B← 0n×l // Initialization
3: for j in 1, . . . ,m do
4: Insert A∗j into a zero-valued column of B
5: if B has no zero-valued columns then
6: [U,Σ,V]← SVD(B)
7: δ ← σ2

l/2
8: Σ̂←

√
max (Σ− Ilδ, 0)

9: B← UΣ̂ // At least half the columns of B are all zero.
10: return B

However one can argue that PCA is not exactly made online, rather in mini-
batches. Recent works from Boutsidis et al. [2015], Karnin and Liberty [2015] present
online algorithms for PCA projection of X ∈ Rd×N (by handling the columns of the
matrix as a stream) with respectively bounds on the norm of the residual matrices
‖X−WTY‖2F and ‖X− (XY†)Y‖2F where M† stands for the Moore Penrose inverse
or pseudo-inverse of M, Y ∈ Rc×N is the projected dataset of X ∈ Rd×N onto
the approximate c first principal components and W ∈ Rc×d is the PCA projection
matrix.

Nevertheless, in practice, we found easier to use OPAST algorithm [Abed-Meraim
et al., 2000] which does not require repeated Singular Value Decompositions (SVD),
a task that is very time consuming.

Fast Orthonormal Projection Approximation and Subspace Tracking
(OPAST)

OPAST algorithm [Abed-Meraim et al., 2000] is explicited in Algorithm 4. We let
the reader refer to the paper’s proof in order to justify each step of the algorithm. In
brief, the projection matrix W is initialized to a random orthonormal c × d matrix.
The c × c-matrix Z maintains the information relatively to the covariance matrix.
The forgetting factor α ∈ (0, 1] diminishes the weight of the old seen points in order
to deal with the non-stationary data points. Then, each input vector of the stream
is projected on the current updated W before updating W with suitable calculus.

2.3. Data-dependent approaches 33

Algorithm 4 OPAST algorithm [Abed-Meraim et al., 2000]
1: Inputs : stream : x1,x2, . . . ,xN ∈ Rd; dimension of the principal subspace c;

forgetting factor α ∈ (0, 1]
2: // Initialization:
3: W← randomOrthonormalMatrix(c, d)
4: Z← Ic
5: for x in stream do
6: y := Wx
7: q := 1

αZy
8: γ := 1

1+yTq
9: p := γ(x−WTy)

10: Z← 1
αZ− γqqT

11: τ := 1
‖q‖2

(
1√

1+‖p‖2‖q‖2
− 1

)
12: p′ := τWTq + (1 + τ‖q‖2)p
13: W←W + qp′T
14: return W

2.3.3 Similarity / Metric learning

Locality Sensitive Hashing (LSH) [Indyk and Motwani, 1998] described in Sec-
tion 2.2.2 maps with high probability similar items to the same buckets in the hash
table representing the memory. This approach can be seen as one data-independent
paradigm for similarity learning.

The goal of similarity learning is to learn from data a similarity function that
measures how close two objects are. Other approaches of this field will be data-
dependent and supervised. That is why we won’t review extensively this field as
we rather focus on unsupervised methods. Similarity learning is strongly related to
metric learning (see survey from Bellet et al. [2013]) where a distance metric is learned
and should satisfies the four conditions enumerated in Definition A.0.1 p. 127 for a
distance.

Besides LSH, other principal approaches in similarity learning are task-dependent:

• Regression: The dataset is a set of tuples (xi, yi, si) where xi, yi are a couple of
points from a dataset X labeled by a similarity si ∈ R. The objective is to learn
a function f such that f(xi, yi) ≈ si for each tuple of the dataset. This can help
to predict the similarity given an unseen couple with unknown similarity.

• Classification: The dataset is the same as for the regression but si ∈ {−1, 1}
such that if two points are similar, si = 1 or si = −1 otherwise. One can define
the sets:

S := { (xi, yi) | si = 1} (2.46)

and
D := { (xi, yi) | si = −1}. (2.47)

The goal is to learn a classifier that settles if a new pair of points is similar
or not. Some selected works are [Huang et al., 2013, Cakir and Sclaroff, 2015,
Cakir et al., 2017].

34 Chapter 2. Related work

• Ranking: The dataset is a set of triplets of points (xi, x+
i , x

−
i) which means that

xi is more similar to x+
i than to x−i . One can define the set:

R := { (xi, x+
i , x

−
i) | xi is more similar to x+

i than x−i }. (2.48)

The purpose is to learn a function f such that for any new triplet of points
(x, x+, x−), it holds:

f(x, x+) > f(x, x−), (2.49)

corresponding to a ranking function. Please note that this supervision is weaker
than in regression. Indeed, the exact measure of similarity is not given, only the
relative order of similarity instead. Hence, ranking-based similarity learning is
more scalable. Some selected work is [Lai et al., 2015].

Metric learning has been proposed as a preprocessing step for many approaches
in clustering or nearest neighbors algorithms [Xing et al., 2002]. Metric learning aims
at learning the parameters of some pairwise real-valued metric function according to
the application. The most prominent one is the Mahalanobis distance.

Definition 2.3.1 (Mahalanobis distance). For x,y ∈ Rd, the Mahalanobis distance
between x and y is defined as:

distM (x,y) =
√

(x− y)TΣ−1(x− y) (2.50)

where Σ is the covariance matrix corresponding to the distribution of x and y.

Due to a slight common writing abuse, the Mahalanobis distance refers rather to
the following definition:

Definition 2.3.2 ((general) Mahalanobis distance). For x,y ∈ Rd, the (general)
Mahalanobis distance between x and y is defined as:

distM(x,y) =
√

(x− y)TM(x− y) (2.51)

where M ∈ Sd+ and Sd+ is the cone of symmetric Positive Semi-Definite (PSD) d× d
real-values matrices. The role of M is to guarantee that distM obeys to the properties
of a pseudo-distance: nonnegativity, symmetry and triangle inequality are preserved
but there is only distM(x,x) = 0 instead of the identity of indiscernibles’ property.

The Mahalanobis distance is often considered for the following interesting prop-
erty. Please note that if M = I, the Mahalanobis distance is equivalent to the Eu-
clidean distance. For any other M, by the fact that M is PSD, M can be factorized
by L ∈ Rk×d such that M = LTL where k is the rank of M. Then for any x,y ∈ Rd,

distM(x,y) =
√

(x− y)TM(x− y) (2.52)

=
√

(x− y)TLTL(x− y) (2.53)

=
√

(Lx− Ly)T (Lx− Ly). (2.54)
(2.55)

This can be interpreted as the Euclidean distance after the linear projection of the
data by the transformation L. If M is taken low-rank with rank(M) = r < d, the
linear projection is a dimensionality reduction technique.

2.3. Data-dependent approaches 35

Finding the parameters of the metric, i.e here the coefficients of M depends on the
sets of S, D and the sets of constraints R. This can be typically solved by optimizing
the following general form of objective function:

min
M

`(M,S,D,R) + λR(M) (2.56)

where `(M,S,D,R) is a loss function which penalizes the violation of the constraints
and R(M) is a regularizer and λ ≥ 0 the regularization parameter. The different
state-of-the art approaches will differ in the choice of the metric, constraints, loss
function and regularizer. Even if the Mahalanobis distance has a less expressive
power due to its linear definition,

• It is easier to optimize because it generally leads to convex objective functions
and hence to global optimal solutions.

• It is less prone to overfitting.

Please refer to the survey from [Bellet et al., 2013] for an extensive study.

In the next part, we review briefly space-efficient clustering approaches which are
unsupervised data-dependent methods preserving and highlighting the structure of a
dataset.

2.3.4 Space-efficient clustering approaches

In Chapter 5, we propose a new parameter-free clustering algorithm recovering
arbitrary-shaped clusters working in O(N) for the time and space costs. Hence,
we expose here some state-of-the-art space-efficient and/or online approaches for an
overview of what has been done.

First, lots of work have been pursued to propose a streaming version of k-means
algorithm [Lloyd, 1982]. Let us recall the corresponding problem definition.

The k-means problem

Definition 2.3.3 (k-means clustering problem). Given a set X ∈ Rd×N and an
associated weight function w : X→ Z+, find a clustering partition Π = {C1, . . . , Ck},
with for all i ∈ [k], Ci ⊂ Rd that minimizes the objective function

φΠ(X) =
∑
x∈X

min
i∈[k]

(w(x) · ‖x−mi‖22) (2.57)

where mi = 1
|Ci|

∑
x∈Ci x encodes the centroid of the cluster Ci. φΠ is called the

potential function corresponding to the clustering partition.

A point can have a positive integral weight associated with it. By default, this
weight is assumed to be equal to 1. The initial solving algorithm from Lloyd [1982]
is:

1. Choose k random points from X (columns) to form the centers m1, . . . ,mk of
clusters C1, . . . , Ck.

2. Assign each point x from X to the nearest center mi.

3. Recompute the newly formed cluster centers mi for i ∈ [k].

36 Chapter 2. Related work

4. Repetition of steps 2 and 3 until the set of centers is stable.

The space complexity of k-means is O(N) while the time complexity is O(Nkdt)
where t is the number of iterations to reach the stability of the centers. As k-means is
very sensitive to initialization, k-means++ [Arthur and Vassilvitskii, 2007] provides
a smart way to choose the initial k centers. Previous step 1 is replaced by:

1. Choose an initial center m1 from X.

2. For i ∈ [k − 1],

• Choose the next center mi as x′ ∈ X, x′ 6= mj for all j ∈ [i − 1], with
probability minj∈[i−1] ‖x′−mj‖22∑

x∈X minj∈[i−1] ‖x−mj‖22
.

Streaming k-means When all the data points can not be accessed at the same
time and/or do not fit into memory, STREAM algorithm has been designed [Guha
et al., 2003] to that purpose. It is based on a divide-and-conquer strategy. Before
showing the principle, we need the definition of an (a, b)-approximation for the k-
means problem.

Definition 2.3.4 ((a, b)-approximation). An algorithm A is called (a, b)-
approximation for the k-means problem if it returns a clustering partition Π with
ak centers and potential φΠ such that φΠ

φOPT
≤ b in the worst case, for a > 1, b > 1

and φOPT denoting the potential of the optimal clustering partition ΠOPT .

The principle of STREAM algorithm [Guha et al., 2003] is then:

1. Divide the dataset X into n chunks X1, . . . ,Xn.

2. For each i ∈ [n],

• Run an (a, b)-approximation algorithm to the k-means objective A on Xi

to get at most ak centers mi1 ,mi2 , . . . corresponding to clusters Πi =
{Ci1 , Ci2 , . . .}.

3. Define the set X′ = ∪iΠi by associating to each point mij the weight |Cij |.

4. Run an (a′, b′)-approximation algorithm to the k-means objective A′ on X′ to
return at most a′k centers m′1,m′2,

5. Return associated clustering partition Π′.

Ailon et al. [2009] proposed, accompanied by theoretical approximation guaran-
tees, to take:

• A as the run of 3 log(N) independent k-means# (see definition below) on data
and keeping the clustering partition with the smaller cost.

• A′ as k-means++.

k-means# [Ailon et al., 2009] is an alternative to k-means++:

1. Choose 3 log(k) centers independently at random from X.

2. For i ∈ [k − 1],

2.3. Data-dependent approaches 37

• Choose 3 log(k) centers independently and with probability
minj ‖x′−mj‖22∑
x∈X minj ‖x−mj‖22

.

Hence, in comparison with k-means++, the algorithm k-means#, at each round for
choosing centers, stores O(log k) centers instead of just one. The running time of
k-means# is O(Ndk log k). Besides, Ailon et al. [2009] state that the final proposed
streaming algorithm (combining k-means#, k-means in STREAM from Guha et al.
[2003]) costs Nα memory for some fixed α > 0 and O(Ndk2 logN log k) time.

Streaming k-means [Ailon et al., 2009] is interesting since it delivers a one-pass
streaming method for the k-means problem but it has essentially the same drawbacks
as k-means: it still fails to detect clusters with non-convex shapes since only the
centroid point of each cluster is stored.

This is not the case of CURE algorithm [Guha et al., 2001] presented in the next
Section.

CURE algorithm

CURE [Guha et al., 2001] (CURE for Clustering Using REpresentatives) is a hierar-
chical agglomerative clustering algorithm taking as parameters the number of desired
clusters k and a number n of scattered points chosen to represent each cluster. Ini-
tially, each point is a single cluster. In memory, each cluster is stored as a data
structure containing:

• a mean point as the average of other ones contained in the same cluster,

• some sample of points representative of the cluster indexed by a k-d tree [Bent-
ley, 1975],

• a heap with the nearest representative points of each other cluster.

Then, this information is used to merge the closest pair of clusters until they are only
k. The sample of representative points for each cluster enables to recover arbitrary-
shaped ones. After the merging of two clusters, the sample of representative points
is reduced as the following: the first chosen point is the farthest one from the mean
point and the n− 1 other ones are the farthest from the previously selected scattered
points.

To reduce the time and space costs, the authors propose also to perform the
clustering on a random sample of the dataset [Vitter, 1985]. Then, remaining points
which have not been used for the clustering are assigned to the cluster containing the
representative point closest to them.

After some implementation tricks, the space cost of the algorithm is O(N) while
the time complexity of this offline method is O(N2 log(N)) which is not suitable for
large datasets.

Therefore, let us see CluStream [Aggarwal et al., 2003] and DenStream [Cao et al.,
2006] algorithms which are more time-efficient. The following presented algorithms
have the advantage to take into account evolution in the data. This means that it
can take few points to see before identifying one given point to be an outlier and vice
versa. Hence, merging but also splitting clusters are enabled. Both algorithms create
micro-clusters based on local densities in an online fashion and aggregate them later
to build bigger clusters in offline steps.

38 Chapter 2. Related work

CluStream

In Clustream [Aggarwal et al., 2003], the data structure to represent a micro-cluster
is a temporal extension of the cluster feature vector from Zhang et al. [1996]. Let
us consider a stream of data points x1, . . . ,xN ∈ Rd with associated time stamps
t1, . . . , tN . The corresponding statistics summary contains the tuple with size (2d+3)
(CF2x,CF1x, CF2t, CF1t, n) where:

• CF2x ∈ Rd is the squared sum of the points in the cluster

• CF1x ∈ Rd is the linear sum of the points in the cluster,

• CF2t ∈ Z+ is the sum of the squares of the time stamps for the points in the
cluster,

• CF1t ∈ Z+ is the sum of the time stamps for the points in the cluster,

• n is the number of contained points in the cluster.

The additivity property of the stored statistics makes the merging and splitting of
micro-clusters easy.

During the process, CluStream maintains k micro-clusters C1, . . . , Ck. k is de-
termined by the amount of main memory allocated to store the micro-clusters. This
means that k is larger than the number of underlying clusters but still significantly
smaller than N . The initial clusters are built by performing standard k-means on the
first observed points of the stream. Then, when a new point is seen, two possibilities
arise:

• The new point is assigned to a current micro-cluster which should be updated
accordingly,

• or it builds a micro-cluster on it own.

The point is added to the cluster with the nearest centroid if the distance to this
nearest centroid is below a defined maximum boundary. Otherwise, this point creates
a new cluster. In this case, to maintain the same number of clusters k, one should be
removed if identified as outlier or two nearest ones should be merged. To determine
if a cluster is an outlier, the decision is made on the relevance stamp based on some
approximation of the average stamps of the last points entered in the cluster. When
the relevance stamp of any micro-cluster is below a certain threshold, the cluster can
be deleted.

Some drawbacks of CluStream are:

1. CluStream works with a fixed number of micro-clusters. This would make it
sensitive to noise because it could cause lots of clusters to merge for maintaining
the same number of clusters.

2. CluStream produces mainly spherical clusters.

These are addressed by DenStream [Cao et al., 2006].

DenStream

With DenStream [Cao et al., 2006],

• There is no assumption on the number of clusters.

2.3. Data-dependent approaches 39

• Clusters recovered can be non-convex.

• DenStream can deal with outliers.

In their model, to handle the evolving data stream, the weight of each point is de-
creased exponentially with time T using the fading function f(T) = 2−λT where
λ > 0. The algorithm maintains in an online fashion three types of structure, the
group of core-micro-clusters, potential-micro-clusters and outlier-micro-clusters. We
define them now.

Definition 2.3.5 (core-micro-cluster [Cao et al., 2006]). Given two parameters µ > 0
and ε > 0, a core-micro-cluster at time T is defined as a tuple of a weight w ≥ µ, a
center m ∈ Rd and a radius r ≤ ε denoted as cmc(w,m, r) for a group of close points
x1, . . . ,xn ∈ Rd with time stamps t1, . . . , tn.

• w :=
∑n
i=1 f(T − ti),

• m :=
∑n

i=1 f(T−ti)xi
w ,

• r :=
∑n

i=1 f(T−ti)‖xi−m‖2
w .

The constraints on the weight and the radius express that the core-micro-cluster
should be dense. Let us denote Nc the number of core-micro-clusters. The constraint
on the radius makes Nc larger than the number of true clusters but less than N .
Moreover, each point is assigned to only one core-micro-cluster. Therefore, by de-
noting Tc(Tc → ∞) the current time, Nc ≤ W

µ where W := v
∑Tc
T=0 2−λT = v

1−2−λ is
the overall weight of the data stream as a function of the speed v i.e. the number
of points arriving in one unit time. Non-convex clusters will be described by several
core-micro-clusters.

Definition 2.3.6 (potential core-micro-cluster [Cao et al., 2006]). Given three pa-
rameters µ > 0, ε > 0, 0 < β ≤ 1, a potential core-micro-cluster at time T for a
group of close points x1, . . . ,xn ∈ Rd with time stamps t1, . . . , tn, is defined as a tuple
of CF1 ∈ Rd the weighted linear sum of the points, CF2 ∈ Rd the weighted squared
sum of the points, a weight w ≥ βµ, a center m ∈ Rd and a radius r ≤ ε.

• CF1 :=
∑n
i=1 f(T − ti)xi

• CF2 :=
∑n
i=1 f(T − ti)x2

i

• w :=
∑n
i=1 f(T − ti),

• m := CF1
w ,

• r :=
√
|CF2|
w − (|CF1|

w)2.

β parametrizes the threshold distinguishing potential core-micro-clusters of outlier
micro-clusters.

Definition 2.3.7 (outlier-micro-cluster [Cao et al., 2006]). Given three parameters
µ > 0, ε > 0, 0 < β ≤ 1, a potential core-micro-cluster at time T for a group
of close points x1, . . . ,xn ∈ Rd with time stamps t1, . . . , tn, is defined as a tuple of
CF1 ∈ Rd the weighted linear sum of the points, CF2 ∈ Rd the weighted squared
sum of the points, a weight w < βµ, T0 the creation time, a center m ∈ Rd and a
radius r ≤ ε. CF1, CF2, w, m, r have the same expression as in Definition 2.3.6.
T0 := t1 determines the life span of the outlier-micro-cluster.

40 Chapter 2. Related work

DenStream works then as the following:

1. Initialization: on some first data points from the stream, DBSCAN [Ester et al.,
1996] is used to determine a group of potential micro-clusters.

2. When a new point x is seen,

• If the radius of the nearest potential core-micro-cluster after merging with
x is below or equal to ε, the merging is effective.
• If the radius of the nearest outlier-micro-cluster after merging with x is
below or equal to ε, the merging is effective. Compute the new weight w.
If w > βµ, this micro-cluster becomes a potential core-micro-cluster.
• Otherwise, x creates a new outlier-micro-cluster.

3. For each other existing potential core-micro-cluster, the weight is decayed reg-
ularly. It the latter goes below βµ, the corresponding micro-cluster becomes an
outlier one.

To avoid too many outlier-micro-clusters, a pruning strategy is used: the ones with
a weight below a lower limit of weight ξ are removed. See please the paper for how
to define this quantity.

DenStream captures non-spherical clusters by applying in an offline process on
the core-micro-clusters a DBSCAN-like [Ester et al., 1996] algorithm.

This method, and so do the other ones described in this Section, requires pa-
rameters which are not easy to tune, so the need of a free-parameter clustering
algorithm but still keeping the memory usage low and the ability to recover
arbitrarily-shaped clusters. This is the contribution of Chapter 5.

Our method belongs to the graph-based approximative structure preserving algorithms
family. Therefore, we will cover now some state-of-the art graph-based approaches
generally for approximative distance / structure preserving algorithms.

2.4 Graph-based approaches

Graph data is known to be a useful representation for structured data in many fields,
such as bioinformatics or social, computer, information network analysis where indi-
viduals and their interaction need to be expressed. More generally, a graph can always
be built based on the dissimilarity (respectively similarity) of data where points of
the dataset are the vertices and weighted edges stand for "distances" (respectively
similarity) between these objects. In this thesis, we will work with simple undirected
graphs. We begin with some fundamental definitions:

Definition 2.4.1 (unweighted graph). An unweighted graph G = (V, E) consists in
a set of vertices or nodes V and a set of edges E ⊆ V ×V . No attributes are assigned
to nodes or edges. The graph is undirected and simple (no self and multiple loops).

Definition 2.4.2 (weighted graph G). Let G = (V,E,w) be a simple undirected
weighted graph with a vertex set V , an edge set E, and a weight function w := E → R
but we assume if not stated otherwise that the weight function w := E → (0, 1] for
simplicity. One will respectively call the edge set and the node set of a graph G using
the applications E(G) and V (G). We call G = (V,E) the topology of the graph.

2.4. Graph-based approaches 41

In the sequel, cursive letters are used to represent weighted graphs and straight
letters refer to topological arguments. |V | and |E| stand respectively for the car-
dinality of sets V and E. In short, |V | = N and |E| = M . For a dense graph,

|E| := M = N(N − 1)
2 =

(
N

2

)
(2.58)

and E := {e1, . . . , eM}. E(G) is used to describe the set of edges of a graph
G. Hence, when working with graph data, with N the number of nodes, the data
dimension of the object to handle is the number of edges which is O(N2). If the
graph is too large to be stored in the main memory of a single machine, specific data
structures can be designed to represent it.

Our proposed model for space-efficient clustering works on a Minimum Spanning
Tree (MST) of the dissimilarity graph and will be explained in Chapter 5. A challenge
is to retrieve efficiently an MST of this dissimilarity graph when memory does not
allow O(N2) space.

Hence, this Section is organized as follows. First, graph-based clustering algo-
rithms such as graph clustering, Spectral clustering and MST-based approaches are
presented in Section 2.4.1. The limits of the methods will be given to introduce our
model from Chapter 5. Then, Section 2.4.2 details the preliminaries to our model i.e.
how to retrieve efficiently an MST of the dissimilarity graph with a graph sketching
technique [Ahn et al., 2012a].

2.4.1 Graph-based clustering

General graph clustering

The approach of representing data with a graph has led to an extensive literature over
graph clustering related to graph partitioning [Schaeffer, 2007]. From the clustering
methods point of view, DenGraph [Falkowski et al., 2007] proposes a graph version of
DBSCAN which is able to deal with noise while work from Ailon et al. [2013] focuses
on the problem of recovering clusters with considerably dissimilar sizes.

Recent works include also approaches from convex optimization using low-rank de-
composition of the adjacency matrix [Oymak and Hassibi, 2011, Chen et al., 2012a,b,
2014a,b]. These methods bring theoretical guarantees about the exact recovery of the
ground truth clustering partition for the Stochastic Block Model [Holland et al., 1983,
Condon and Karp, 2001, Rohe et al., 2011] but demand to compute the eigendecom-
position of a N × N matrix which leads respectively to O(N3) and O(N2) for time
and space complexities. Moreover they are restricted to unweighted graphs. Indeed,
weights in the work from Chen et al. [2014b] are about uncertainty of existence of an
edge, not a distance between points.

Spectral clustering

Spectral clustering algorithms may be the most popular graph-based clustering family
of methods [Luxburg, 2007].

Principle Given N points x1, . . . ,xN ∈ X ⊂ Rd and a similarity function s :
X × X → Z, algorithms from the spectral clustering family:

1. Build a simple undirected weighted similarity graph G = (V,E,w) where V
is the set of nodes constituted by the N points, E the set of edges linking

42 Chapter 2. Related work

nodes with a positive similarity or a similarity above a certain threshold and
w : E → Z+ is the corresponding weight function.

2. Find a partition of G such that the edges between different groups have a very
low weight (i.e. small similarity which means that points in different clusters
are dissimilar from each other) and the edges within a group have high weight
(i.e. high similarity which means that points within the same cluster are similar
to each other).

The similarity graph Spectral clustering methods differ first in the way of com-
puting the similarity graph. But for all, the weight on an existing edge is the similarity
between the two connected vertices.

• The ε-neighborhood graph: All the points with pairwise distance smaller than
some ε > 0 are connected.

• The k-nearest neighbors graphs: In this model, a vertex is connected with all
its k nearest neighbors. As this relationship is asymmetric, the resulting graph
would be directed. To make the graph undirected, two strategies can be applied:

– The directions of the edges are ignored: if vertex u is connected with vertex
v, then v is also connected with u. This is the commonly known k-nearest
neighbors graph.

– To connect vertices u and v, v should be among the k-nearest neighbors of
u and u should be one of the k-nearest neighbors of v. This is the mutual
k-nearest neighbors graph.

• The fully connected graph: All points with a positive similarity are connected
to each other.

After building the similarity graph G, let us denote the matrix W ∈ RN×N the
adjacency matrix representing G where Wij is the similarity between xi and xj . We
define also D the diagonal degree matrix such that ∀i ∈ [N], Dii =

∑
j 6=i Wij .

The (Graph) Laplacian matrix A useful tool used in spectral clustering algo-
rithms is the Graph Laplacian matrix or in short, the Laplacian matrix. Again, the
definition of the Laplacian matrix depends on the algorithm. There are:

• The unnormalized Laplacian matrix:

L := D−W (2.59)

• The symmetric normalized Laplacian matrix:

Lsym := D−1/2LD−1/2 = IN −D−1/2WD−1/2 (2.60)

• The random walk normalized Laplacian matrix:

Lrw := D−1L = IN −D−1W. (2.61)

Interesting properties of these matrices are :

• L is symmetric.

2.4. Graph-based approaches 43

• L, Lsym, Lrw are positive semi-definite and have N non-negative, real-valued
eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λN . Be careful, here the eigenvalues are sorted
in increasing order.

• The multiplicity k of the eigenvalue 0 of L, Lsym and Lrw equals the number
of connected components of the similarity graph G.

From this stage, all spectral clustering algorithms share the similar following steps:

• Computing the k first eigenvectors of the Laplacian matrix, Uk := [u1, . . .uk] ∈
RN×k.

• Running k-means on the rows of Uk.

Shi and Malik [2000]’s version uses the unnormalized Laplacian matrix, while Ng
et al. [2002] takes the normalized symmetric one (and the rows of Uk are normalized).
Where k-means fails, spectral clustering manages to recover non-convex-shaped clus-
ters. Before performing the standard k-means algorithm, a new feature representation
of data is computed as the rows of Uk. Nevertheless, k is required and the eigende-
composition of the Laplacian matrix with cost O(N3) is prohibitive for large datasets.

Our proposed graph-based clustering algorithm in Chapter 5 is only linear in N
for the time and space cost. This is made possible by working on a very sparse graph,
the Minimum Spanning Tree (MST). Clustering based on an MST is not a new thing.
In next Section, we show some MST-based clustering methods.

MST-based clustering approaches

For decades since, MST-based clustering methods [Zahn, 1971, Asano et al., 1988,
Xu et al., 2002, Grygorash et al., 2006] have been developed and can be classified
into the group of density-based techniques since they do not only recover spherical
clusters. The Minimum Spanning Tree (MST) is indeed known to help recognizing
clusters with arbitrary shapes [Zahn, 1971]. Clustering algorithms from this family
identify clusters by performing suitable cuts among the MST edges. The fact that
the connected graph is a tree i.e. without any cycle, guarantees that each cut in the
MST creates two new connected components which are assimilated as clusters.

In practice, MST-based clustering algorithms have been successfully applied in
bioinformatics [Xu et al., 2002] and image color segmentation [Grygorash et al., 2006].

We recall the definition of a connected graph, of the connected components of a
graph and of a minimum spanning tree before introducing some MST-based clustering
approaches.

Definition 2.4.3 (connected graph). A connected graph G = (V,E) is a graph where
there exists a path between every pair of vertices.

Definition 2.4.4 (connected component). A connected component of a graph G =
(V,E) is a maximal connected subgraph of G such that each vertex is linked to each
other by paths, and vertices and edges belong only to this connected component.

Definitions 2.4.3 and 2.4.4 are straightforwardly adaptable to a weighted graph.
Let us now recall the definition of a minimum spanning tree.

Definition 2.4.5 (Minimum spanning tree). A minimum spanning tree T =
(VT , ET , wT) of a connected weighted graph G = (V,E,w) is a connected acyclic
subgraph of G minimizing the sum of edge weights such that VT = V . The definition

44 Chapter 2. Related work

is extended for a disconnect graph G as the union of minimum spanning trees of each
of its connected components, building a spanning forest (MSF).

Regarding MST-based clustering approaches, let us begin with a simple naive
algorithm, called Standard Euclidean MST (SEMST) [Asano et al., 1988, Xu et al.,
2002].

Standard Euclidean MST (SEMST) Given a number of expected clusters K,
SEMST [Asano et al., 1988, Xu et al., 2002] consists in deleting the K − 1 heaviest
edges from the Euclidean MST of the considered graph. Neverthelesss, this completely
fails when the intra-cluster distance is lower than the inter-clusters one.

Zahn Euclidean MST (ZEMST) ZEMST algorithm [Zahn, 1971] does not re-
quire the number of expected parameters. It simply removes edges that are considered
inconsistent i.e. in brief the ones with a weight significantly larger than the average
weight of the nearby edges in the tree.

Definition 2.4.6 (inconsistent edge [Zahn, 1971]). Let us consider an edge e linking
nodes v1 and v2. For some l > 0, let us define Nl(v1) and Nl(v2) the set of all edges
that belong to the paths of length l originating from v1, respectively v2, except edge e.
Let us denote w̄Nl(v1) and w̄Nl(v2) the average weight of edges in Nl(v1) respectively in
Nl(v2). Similarly, σNl(v1) and σNl(v2) are the standard deviation of edges in Nl(v1),
respectively Nl(v2).

Edge e with weight w is said to be inconsistent for some parameters a, a > 0 and
hence will be removed by ZEMST algorithm if any of these equations holds:

• w > w̄Nl(v1) + a× σNl(v1),

• w > w̄Nl(v2) + a× σNl(v2),

• w
amax(w̄Nl(v1),w̄Nl(v2))

> b.

Maximum Standard Deviation Reduction (MSDR) MSDR algorithm [Gry-
gorash et al., 2006] considers initially the whole MST as a cluster. It computes the
initial standard deviation of the edge weights within this cluster. Then, at each it-
eration, it tests each cut by computing the standard deviation of the two resulting
clusters. It chooses the cut maximizing the overall standard deviation reduction in
comparison with the preceding clustering partition. The stopping criterion is when
the standard deviation reduction becomes too small. A post-processing based on a
polynomial regression of the standard deviation at each step may decide to get back
at a previous clustering partition and replace some cut edges.

Some drawbacks of the method can be pointed out.

• MSDR encourages clusters with points far from each other as soon as they are
equally "far".

• Moreover, it does not handle clusters with less than three points on which the
standard deviation on edge weights is not defined.

• The time complexity is by default O(N + (N − 1) + (N − 2) + . . . 2) = O(N2)
since at each iteration, the standard deviation of the edge weights should re-
computed.

• The post-processing phase to refine the number of clusters is purely heuristic.

2.4. Graph-based approaches 45

A major bottleneck of MST-based clustering algorithms is the building of an MST
which costs O(|E| log |V |) time, which is basically the time cost to sort the edge set.
Even if algorithms for constructing MSTs have been developped to ensure a close
to linear time complexity under different hypotheses [Gabow et al., 1986, Fredman
and Willard, 1994, Karger et al., 1995], the space cost complexity remains a problem
since the |E| edges are assumed to be stored. In the next Section, a graph sketching
technique is used to recover an approximate MST in O(N polylogN) time and space.

2.4.2 Graph-sketching approach

Specific data structures have been designed to deal with graphs of O(N2) edges when
they do not fit into memory. Approximation algorithms in charge of analyzing them
work directly on this built compact representation of the graph, named sketch. The
sketch is usually built in a streaming fashion where the stream is a sequence of edges.

The survey from McGregor [2014] gives an overview of the existing literature on
processing massive graphs in the streaming model, though lots of graph analyzing
tasks involve a memory space in O(N polylogN). Thus, associated algorithms are
rather considered semi-streaming.

Moreover, most of the state-of-the-art algorithms work on graphs defined by a
sequence of inserted edges and do not consider deletions. This insert-only stream-
ing model is a very restrictive one. Work from Ahn et al. [2012a] is the first to
provide a sketch of a dynamic graph supporting insertions and deletions for which
semi-streaming algorithms can be designed to recover different properties of graphs:
connectivity, approximate weight of a minimum spanning tree, bipartiteness, etc.
It has lead to numerous works since, with among others the ones from Ahn et al.
[2012b, 2013], Bhattacharya et al. [2015], Huang and Peng [2016], Bandyopadhyay
et al. [2016].

In this Section, it is described how to sketch an undirected weighted graph,
based on the work from Ahn et al. [2012a]. Please note that in this thesis, only
undirected graphs are considered.

Let us begin with unweighted graphs.

Virtual representation of an unweighted graph

Stream description of an unweighted graph One edge is compactly determined
by its position among the ordered set of all possible edges, i.e. the edges of the
corresponding complete graph. As the graph is undirected, this set is ordered as the
following:

E = {(i, j), ∀i ∈ [N], ∀j ∈ [N] | i < j}. (2.62)

Definition 2.4.7 (stream of an unweighted graph). In the streaming model, an un-
weighted graph G = (V, E) is described by a stream s of edge updates:

s := 〈s1, . . . , sj , . . . 〉 (2.63)

where sj is the j-th update in the stream corresponding to the tuple sj = (i, w) with i
denoting the index of the edge to update according to Equation 2.62 and w = 1 if the
edge is added or w = 0 if it is removed from the graph.

Figure 2.6 represents a graph with 4 nodes. Hence, according to Equation 2.62,
the edge set of the corresponding complete graph is, in this order:

46 Chapter 2. Related work

4

1

2

3

Figure 2.6: Graph with 4 nodes defined by the stream s used to
illustrate the Graph sketch definition.

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) indexed from 1 to 6. So the graph can be
described by the following stream, considering that only insertions have been made:

s = 〈(1, 1), (3, 1), (4, 1), (5, 1)〉 . (2.64)

Another possible stream, involving deletion is:

s = 〈(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (2, 0)〉 (2.65)

where the edge number 2 between nodes 1 and 3 is added and later removed from the
graph.

Representation of the stream Now, for each node vi ∈ V , define a vector a(i) ∈
{−1, 0, 1}M , M = |E|, such that:

a(i)
{j,k} =

1 if i = j < k and {vj , vk} ∈ E
−1 if j < k = i and {vj , vk} ∈ E
0 otherwise.

(2.66)

For instance, nodes in Figure 2.6 have the following vector representations:

a(1) = (1, 0, 1, 0, 0, 0)
a(2) = (−1, 0, 0, 1, 1, 0)
a(3) = (0, 0, 0,−1, 0, 0)
a(4) = (0, 0,−1, 0,−1, 0) (2.67)

This representation allows the following Lemma:

Lemma 2.4.1 (Ahn et al. [2012a]). For any subset of nodes S ⊂ V , the nonzero
entries of the concatenated vector

∑
i∈S a(i) correspond exactly to the edges resulting

from the cut (S, V \S).

Representation application for connectivity

Based on the previously explained representation of an unweighted graph G, here is
an easy algorithm to recover its connected components in O(logN) time complexity.

At the beginning, each node is considered as a connected component. One con-
nected component C ⊂ V is described as a supernode the vector representation of
which is

∑
i∈C a(i) (cf. Lemma 2.4.1). This way, this supernode behaves like a node

resulting from the collapse of the ones contained in C. The ±1 coefficients trick

2.4. Graph-based approaches 47

4

1

2

3

4

1’

3

Figure 2.7: Supernode illustration with a graph of 4 nodes. (left)
the original graph. (right) graph with collapsing nodes 1 and 2 into

supernode 1′.
(left) a(1) = (1, 0, 1, 0, 0, 0) and a(2) = (−1, 0, 0, 1, 1, 0).

(right) a(1′) = a(1) + a(2) = (0, 0, 1, 1, 1, 0)

makes edges from the same connected components disappear. Figure 2.7 illustrates
the concept of supernodes.

A whole connected component has been recovered as soon as the vector represen-
tation of the corresponding supernode is equal to the zero vector. For instance, let us
take the graph from Figure 2.6. It is composed from one connected component with
vector representation

∑4
i=1 a(i) = (0, . . . , 0) where a(i) for i = 1, . . . , 4 are defined in

Equation 2.67.
Finally, the algorithm is:

• In the first iteration, an arbitrary incident edge is selected for each node.

• Linked nodes are then collapsed into supernodes by merging the corresponding
representation vectors.

• In the next iterations, while there exists an edge from every supernode to an-
other one, they are collapsed into new supernodes making growing the detected
connected components.

The number of iterations is bounded by O(logN) and a spanning forest of the graph
is included in the set of selected edges during the process to connect supernodes.

Sketch of an unweighted graph with `0-sampling

The space cost O(N3) of the described representation is obviously prohibitive and
hopefully not used explicitly in practice. A more space-efficient approach in-
volves the `0-sampling technique [Cormode and Firmani, 2014]. The latter requires
O(polylogN) space for representing a(i) for a given node i. Hence, the whole graph
can be sketched into O(N polylogN) space and the `0-sampling technique enables to
return a random nonzero element from a given a(i) which corresponds to the selection
process of an incident edge from node i.

Definition 2.4.8 (`0-sampling). An (ε, δ) `p-sampler for a nonzero vector x ∈ Rd
fails with a probability at most δ or returns some i ∈ [d] with probability

(1± ε) |xi|
p

‖x‖pp
(2.68)

48 Chapter 2. Related work

where ‖x‖pp = (
∑
i∈[d] |xi|p)1/p is the p-norm of x. In particular, if p = 0, in case of

no failure, it returns some i with probability

(1± ε) 1
| supp x| (2.69)

where supp x = {i ∈ [d] | xi 6= 0}.

Here considered vectors are a(i) ∈ NM for all i ∈ [N]. Given some i, a(i) is
described on L levels, L = O(log(N)). The L levels represent virtual copies of the
initial vector a(i) which are more sparse as the number of levels increases. More
precisely, for each level l ∈ [L], the virtual copy is obtained from input a(i) by zeroing
out coordinates a(i)

j for j ∈ [M] when h(j) 6= l for some random function h taken
from a family of hash functions such that :{

h : [M]→ [L]
Pr[h(j) = l] = 1

2l
(2.70)

where j ∈ [M] corresponds to the j-th coordinate of a(i). For each level l ∈ [L], the
following linear sketches φ, ι, τ are computed as a representation of the virtual copies
of the input vector a(i):

• φ =
∑
j a(i)

j : is the sum of all coordinates of a(i),

• ι =
∑
j j a(i)

j : is the sum of all coordinates of a(i) weighted by the index of the
coordinate itself,

• τ =
∑
j a(i)

j zj mod p, with p a suitably large prime and z ∈ Z/pZ.

Hence, for a given node i, instead of storing the whole vector a(i) with dimension M ,
O(logN) triplets of counters φ, ι and τ are stored. In order to apply the previous
connectivity algorithm directly on these sketches, the edge selection process should
be adapted. If one can detect a triplet representing a nonzero 1-sparse vector, the
nonzero coordinate corresponds obviously to an incident edge to the (super)node i.

Definition 2.4.9 (k-sparsity). A vector x ∈ Rd is k-sparse if and only if | supp x| ≤ k
where supp x = {i ∈ [d] | xi 6= 0}. A vector x ∈ Rd is exactly k-sparse if | supp x| = k.

So a nonzero vector is 1-sparse if it has a unique nonzero coordinate. With only
the triplet (φ, ι, τ) available, the following test enables to check whether a vector x is
1-sparse: if τ = φ z

ι
φ mod p then x is 1-sparse.

Lemma 2.4.2 (1-sparsity test). Given a vector x ∈ Rd, if x is 1-sparse, then the
test always gives a positive answer. If x is k-sparse, 1 < k ≤ d, then the test gives a
negative answer with probability at least 1 − d/p with p a suitable large prime taken
from the expression of τ .

Indeed, if x is 1-sparse for coordinate j, φ = 1, ι = j, τ = zj mod p and clearly
τ = φ z

ι
φ mod p. But if x is k-sparse, k > 1, there is a risk with probability less

than d/p that the test fails, i.e. that the test states x is 1-sparse instead. So the
necessity to take p large enough. It follows that: if 1-sparsity test gives a positive
answer, i = φ/ι gives the unique nonzero coordinate of x.

Since the edge selection process is now explicit for a graph sketch built from
O(N logN) triplets (φ, ι, τ), the final algorithm to compute the connected components
of an unweighted graph is now described.

2.4. Graph-based approaches 49

Sketch application for connectivity

Independent repetitions of the L levels When willing to draw an incident edge
to node i, there is a risk that there is no 1-sparse vector among the L levels of a(i) and
thus, no edge can be selected. To decrease this risk probability, O(logN) independent
repetitions (with independent hash functions) are stored for each level. So the size
of the whole sketch becomes O(N log2N) and if no edge has been selected among
the L levels of the first repetition, then it is tried to the next L levels of the second
repetition, etc. It stops as soon as an edge is found or every repetitions have been
investigated without success.

Independent rounds of the repetitions of the L levels Another important
tricky point should be stressed about the graph sketches. Suppose that from the
sketch of node i, S(a(i)), a neighbor has been queried and node j as been yield.

The question is: is it allowed to continue to use S(a(i)) to return an additional
neighbor of i?

Updating the sketch by deleting j from the the neighborhood and then trying to
sample another edge does not work, otherwise by repeating the process, all neighbors
of i could be returned from a sketch with size significantly less than O(N2)! It is cru-
cial that the data being sketched should not be adaptively updated based on the sketch
itself. The issue can be remedied by growing the sketch to the size O(N log3N): to
each node sketch with already size O(N log2N), add O(logN) rounds corresponding
to the number of tries to sample a neighbor for each node i.

The final algorithm which returns the connected components of an unweighted
graph based on its sketch with (N log3N) space cost is:

• Construct t = log(N) sketches S1, ... St for each node i represented by a(i),
i ∈ [N] with L levels and K repetitions for each node.

• Initialize the set of supernodes V̂ = V where supernodes will be build from the
collapse of nodes from the same connected component.

• For round r = 1, . . . , t:

– For each s ∈ V̂ , try to sample an inter-supernode edge using the sketch∑
vi∈s Sr(a

(i)) using all levels and repetitions.

– Update V̂ by collapsing the connected supernodes.

• Return |V̂ | connected components of G with the selected edges corresponding
to a spanning forest.

In the next part, the method is extended to a weighted graph in order to retrieve
an approximate MST.

Sketch extension for a weighted graph and application to the approximate
(weight of a) MST

Work from Ahn et al. [2012a] gives the following lemma regarding the weight of an
approximate MST recovered from the sketch of a graph G. The given upper bound
and the proof are corrected here.

50 Chapter 2. Related work

Lemma 2.4.3. Let G = (V,E,w) be a simple undirected weighted graph with a vertex
set V , an edge set E, and a weight function w := E → [1, wmax] where wmax =
poly(|V |) = poly(N) is the maximal possible weight in G. Suppose G is connected but
the same applies if G is disconnected. Let Gi be the subgraph of G consisting of all
edges whose weight is at most wi = (1 + ε)i for i = 0, . . . , r where r = dlog1+ε(wmax)e
for some small ε. Let cc(H) denote the number of connected components of a graph
H. Let T be a minimum spanning tree of G, then it holds:

w(T) ≤ N − (1 + ε)r+1 cc(Gr) +
r∑
i=0

λi cc(Gi) ≤ (1 + ε) w(T) (2.71)

with w(T) denoting the weight of T i.e. the sum of all edge weights and λi = (1 +
ε)i+1 − (1 + ε)i.

Proof. Consider the graph G′ formed by rounding each edge weight of G up to
the nearest power of (1 + ε). It holds clearly:

w(T) ≤ w(T ′) ≤ (1 + ε) w(T) (2.72)

where T ′ is a MST of G′. The idea is now to determine w(T ′) which constitutes
a lower and upper bound of w(T). G′ has N nodes and K connected components
with respectively Ni nodes in each connected component cci such that

∑K
i=1Ni =

N . It is clear that for all i ∈ [K], each connected component cci has Ni−1 edges.
Indeed, more would imply a cycle which is not allowed in a tree. There is also
no edge between the other connected components by Definition 2.4.4.

|E(G′)| =
K∑
i=1

(Ni − 1) =
K∑
i=1

Ni −K = N −K (2.73)

Similarly, where G′i is the subgraph of G′ consisting of all edges whose weight is
at most wi = (1 + ε)i,

∀i = 0, . . . , r, |E(G′i)| = N − cc(G′i) (2.74)

To build T ′, let us consider the classical Kruskal algorithm. First, N − cc(G′0)
edges of weight 1 corresponding to G′0 are added. Then, edges of weight exactly
1 + ε. Their number is the number of edges in G′1 minus the number of edges of
weight 1 i.e. N −cc(G′1)− (N − cc(G′0)) = cc(G′0)− cc(G′1). For the following edges
to add, it can be easily shown that the number of edges with weight (1 + ε)i+1

is equal to cc(G′i)− cc(G′i+1). Finally, w(T ′) is a weighted sum of the number of
edges of each weight corresponding exactly to the Kruskal algorithm:

w(T ′) = 1︸︷︷︸
weight

× (N − cc(G′0))︸ ︷︷ ︸
number of edges

+
r−1∑
i=0

[(1 + εi+1)i+1︸ ︷︷ ︸
weight

(cc(G′i)− cc(G′i+1)︸ ︷︷ ︸
number of edges

] (2.75)

w(T ′) = N − cc(G0) +
r−1∑
i=0

[(1 + εi+1)i+1 (cc(Gi)− cc(Gi+1)] (2.76)

by remarking that for all i ∈ {0, . . . , r}, cc(G′i) = cc(Gi), where Gi is the subgraph
of G with the same topology as G′i.

2.5. Position of the contributions regarding the state of the art 51

Lemma 2.4.3 gives a formula to compute the approximate weight of an MST of
a given graph G. To this end, r + 1 = dlog1+ε(wmax)e + 1 subgraphs G′i (defined in
the Lemma’s proof) associated to G should be sketched with the method previously
described for an unweighted graph. Then, the connected components of each sub-
graphs should be retrieved in order to compute the approximate formula. We easily
extend the process to recover a whole approximate MST or MSF (and not just the
approximate weight) by storing the selected edges during the procedure to compute
the connected components of each subgraph.

As a conclusion, work from Ahn et al. [2012a] has been slightly modified to com-
pute approximately in a single pass an approximate MST (or MSF) by appropriate
samplings from the graph sketch. The characteristics of the sketch are the following:

• The spatial complexity of the sketch is more precisely O(ε−1N log3N) with ε
defined in Lemma 2.4.3 (Theorem 3.4 p.8 from Ahn et al. [2012a]).

• The MST recovery time from the sketch is O(N polylog(N)).

• The time for each update of the sketch is polylog(N).

Since the algorithm needs only one pass over the data, in this context, the number
of nodes is known while the edges, whose weights can be increased or decreased (but
have always to stay positive) are summarized into these sketches.

Lastly, it should be noted that the weighted graphs on which our node clustering
algorithm is applied (Chapter 5) are defined such that all edge weights are a real
number between 0 and 1 but the sketching phase here outputs an MST with integer
weights and some known maximal value. It suffices to scale the weights to go from
one type to another.

2.5 Position of the contributions regarding the state of
the art

In the previous Sections some current advances have been presented concerning
approximatively-distance and structure-preserving algorithms for unsupervised ma-
chine learning applications such as nearest neighbor search and clustering.

Some limitations of the state-of-art are addressed in this thesis.

• First, the data-independent state-of-the-art Cross-polytope LSH [Terasawa and
Tanaka, 2007] for efficient similarity search working with random rotations are
not very practical when dealing with very large and high-dimensional datasets.
The random matrices can be indeed too large to fit into memory and the multi-
plication cost with the input vectors prohibitive. To remedy this problem, this
thesis describes in Chapter 3 a family of structured matrices, named Structured
Spinners which can be used instead of the random ones. This comes with theo-
retical guarantees on the accuracy results which are confirmed by the experimen-
tal part. In particular, the state-of-the-art structured matrix HD3HD2HD1
proposed by Andoni et al. [2015a] where H denotes the Hadamard transform
and Di for i ∈ {1, 2, 3} random diagonal ±1-matrices lacked of theoretical foun-
dations. This work rectifies this.

• Second, even if the dimensionality reduction techniques based on random projec-
tions (like Hyperplane LSH [Charikar, 2002]) have the advantage to constitute
a cheaper alternative in terms of space and cost, data-dependent (even unsu-
pervised) methods are known to better preserve the distance and structure of

52 Chapter 2. Related work

the data and in particular, to provide better accuracy of the result in similarity
search via hashing [Wang et al., 2016]. However, state-of-the-art unsupervised
hashing techniques adapted to the data are rarely compatible with a construc-
tion in an online fashion. In Chapter 4, a new method is proposed to learn small
binary codes from a data stream in order to retrieve the nearest neighbors of
data points. It achieves better accuracy than the competing unsupervised online
hashing methods.

• Finally, regarding the state-of-the-art clustering algorithms, almost none of
them enable the recover of some arbitrary-shaped clusters space-efficiently with-
out any parameter. Chapter 5 exposes the development of a solution to this
effect with DBMSTClu algorithm. DBMSTClu preserves the structure of the
dataset by working on only a minimum spanning tree of the underlying dissim-
ilarity graph which ensures a time and space complexity linear in the number
of points.

As bonuses, Appendix C shows further applications with theoretical guarantees of
the Structured Spinners while Appendix E describes how DBMSTClu can be applied
for differentially-private clustering.

53

Chapter 3

Structured random matrices, an
approach for fast and large-scale
machine learning computations

Contents
3.1 Introduction . 54

3.1.1 Projections and classical framework of machine learning al-
gorithms . 54

3.1.2 Classical projection cost . 54
3.1.3 Structuring for time and space savings 54
3.1.4 Contributions . 55

3.2 The family of Structured spinners 56
3.2.1 The role of the three blocks M1, M2, and M3 58
3.2.2 Stacking together Structured spinners 59

3.3 Theoretical results . 59
3.3.1 What will be shown . 59
3.3.2 Structured spinners’ equivalent definition 60
3.3.3 Proof of Lemma 3.2.2 . 60
3.3.4 Accuracy of the Structured Spinners in the randomized setting 62

3.4 Experiments with Locality-Sensitive Hashing (LSH) . . . 69
3.4.1 Experimental setup . 69
3.4.2 Collision probabilities with Cross-polytope LSH 70

Experimental protocol . 70
Results . 70

3.5 Conclusion . 70

This Chapter concerns a collaboration with Krzysztof Choromanski1, Tamas
Sarlos1, Anna Choromanska2, Mariusz Bojarski3, Francois Fagan4 and Nourhan
Sakr4 published at the International Conference on Artificial Intelligence and Statis-
tics (AISTATS) 2017 under the title "Structured adaptive and random spinners for
fast machine learning computations". Anne was responsible of the experimental re-
sults except those of Newton sketches and Neural Network accuracy results conducted
respectively by Cédric and Mariusz.

1Google Brain Robotics
2NYU Tandon School of Engineering, ECE
3NVIDIA
4Columbia University

54 Chapter 3. Structured random matrices, an approach for fast and large-scale
machine learning computations

3.1 Introduction

3.1.1 Projections and classical framework of machine learning algo-
rithms

A striking majority of machine learning algorithms performs projections of input data
xt ∈ Rn via some matrices of parameters A ∈ Rm×n, where the obtained projections
are often passed to a possibly highly nonlinear function f : f(Axt). In the case of
randomized machine learning algorithms, the projection matrix is typically Gaussian
with i.i.d. entries taken fromN (0, 1). Otherwise, it is learned through an optimization
scheme. In the randomized setting, a few examples include:

• the variants of the Johnson-Lindenstrauss Transform (JLT) applying some ran-
dom projections to reduce the data dimensionality of the input data while
approximately preserving the Euclidean distance [Ailon and Chazelle, 2006,
Liberty et al., 2008, Ailon and Liberty, 2011],

• the LSH-based schemes [Har-Peled et al., 2012, Charikar, 2002, Terasawa
and Tanaka, 2007], including the fastest known variant of the Cross-polytope
LSH [Andoni et al., 2015b].

For both cases, m� n.

In the frame of our work on unsupervised large-scale machine learning, these
are the applications considered in this Chapter. For further applications in the
randomized and adaptive settings, with potentially m � n, please refer to Ap-
pendix C.

3.1.2 Classical projection cost

The computation of projections takes Θ(mn|X |) time, where m× n is the size of the
projection matrix and |X | denotes the number of data samples from a dataset X . In
case of high-dimensional data,

1. this comprises a significant fraction of the overall computational time,

2. while storing the projection matrix frequently becomes a bottleneck in terms of
space complexity.

3.1.3 Structuring for time and space savings

In this Chapter, a remedy for both problems is proposed, which relies on replacing
the aforementioned algorithms by their "structured variants". As mentioned in Chap-
ter 2, structured matrices were previously explored in the literature mostly in the
context of the Johnson-Lindenstrauss Transform (JLT) [Johnson and Lindenstrauss,
1984], where the high-dimensional data are linearly transformed and embedded into a
much lower dimensional space while approximately preserving the Euclidean distance
between the data points. Section 2.2.3 showed that several extensions of JLT have
been proposed, e.g. [Liberty et al., 2008, Ailon and Liberty, 2011, Ailon and Chazelle,
2006, Vybíral, 2011]. Most of these structured constructions involve sparse [Ailon and
Chazelle, 2006, Dasgupta et al., 2010] or circulant matrices [Vybíral, 2011, Hinrichs
and Vybíral, 2011] providing computational speedups and space compression.

Section 2.2.2 stated that linear projections are used in the LSH setting to con-
struct codes for some given data points which speed up such tasks as approximate

3.1. Introduction 55

nearest neighbor search. As a recall, a notable set of methods are the so-called
Cross-polytope techniques introduced in work from Terasawa and Tanaka [2007] and
their aforementioned discrete structured variants proposed in work from Andoni et al.
[2015b] that are based on the Walsh-Hadamard transform. Before this work, they
were only experimentally verified to produce good quality codes.

Hence, in this Chapter, we propose that the projection is performed by applying a
structured matrix from the family that we introduce here as the Structured spinners.
Depending on the setting,
• the structured matrix is either learned (please see Appendix C for an example
with neural networks),

• or its parameters are taken from a random distribution (either continuous or
discrete if further compression is required). This is the case considered in this
Chapter.

Each structured spinner is a product of three matrix-blocks that incorporate rota-
tions.
A notable member of this family is a matrix of the form HD3HD2HD1, where
Dis are either random diagonal ±1-matrices or adaptive diagonal matrices and
H is the Hadamard matrix described in Definition 2.2.3.

This matrix is used in the fastest known Cross-polytope LSH method introduced in
work from Andoni et al. [2015b] such that the Dis are random diagonal ±1-matrices.

In the structured case, the computational speedups are significant. Indeed, the
projections can be calculated often in

O(max(n,m) logn) time (3.1)

if the Fast Fourier Transform techniques are applied. In the context considered in this
Chapter for Cross-polytope LSH, the cost is more precisely O(n logn). At the same
time, using matrices from the family of Structured spinners leads to the reduction
of the space complexity to subquadratic, usually at most linear, or sometimes even
constant.

3.1.4 Contributions

The key contributions of this Chapter are:

1. The description of the Structured spinners family providing a highly
parametrized class of structured methods with applications in various random-
ized or adaptive settings such as:

• dimensionality reduction algorithms,
• new fast Cross-polytope LSH techniques,
• quantization with random projection trees,
• kernel approximations via random feature maps,
• deep learning,
• convex optimization algorithms via Newton sketches, and more.

2. A comprehensive theoretical explanation of the effectiveness of the structured
approach based on the Structured spinners. Such analysis was provided in the
literature before for a strict subclass of a very general family of structured
matrices that are considered in this Chapter. This means that:

56 Chapter 3. Structured random matrices, an approach for fast and large-scale
machine learning computations

The proposed family of the Structured spinners contains all previously con-
sidered structured matrices as special cases.

This is including the recently introduced P -model [Choromanski and Sindhwani,
2016].

In this Chapter, the first theoretical guarantees for a wide range of dis-
crete structured transforms are provided, in particular for the fastest known
Cross-polytope LSH method [Andoni et al., 2015b] based on HD3HD2HD1
discrete matrices.

The proposed theoretical methods in the random setting apply the relatively new
Berry-Esseen type Central Limit Theorem results for random vectors. The theoretical
findings are supported by empirical evidence regarding the accuracy and efficiency
of the Structured spinners in a wide range of different applications. Not only do
the Structured spinners cover all already existing structured transforms as special
instances, but also many other structured matrices that can be applied in all afore-
mentioned applications.

Plan of the Chapter The model of the Structured spinners is explained in Sec-
tion 3.2. Theoretical guarantees for the random setting are given in Section 3.3 while
the reader should refer to Appendix C for the adaptive setting. Finally, experiments
are conducted in Section 3.4.

3.2 The family of Structured spinners
Before introducing the family of Structured spinners, some notations are explained. If
not specified otherwise, matrix D is a random diagonal matrix with diagonal entries
taken independently at random from {−1,+1}. Dt1,...,tn denotes the diagonal matrix
with diagonal equal to (t1, . . . , tn).

For a matrix A = {ai,j}i,j=1,...,n ∈ Rn×n, ‖A‖F denotes its Frobenius norm, i.e.

‖A‖F =
√ ∑
i,j∈{1,...,n}

a2
i,j , (3.2)

and by ‖A‖2 its spectral norm, i.e.

‖A‖2 = sup
x 6=0

‖Ax‖2
‖x‖2

. (3.3)

H stands for the L2-normalized Hadamard matrix from Definition 2.2.3. r is said
to be a random Rademacher vector if every element of r is chosen independently at
random from {−1,+1}. For a vector r ∈ Rk and n > 0, let C(r, n) ∈ Rn×nk be a
matrix, where the first row is of the form (rT , 0, . . . , 0) and each subsequent row is
obtained from the previous one by right-shifting in a circulant manner the previous
one by k. For a sequence of matrices W1, . . . ,Wn ∈ Rk×n, V(W1, . . . ,Wn) ∈ Rnk×n
represents a matrix obtained by vertically stacking matrices: W1, . . . ,Wn. Each
structured matrix Gstruct ∈ Rn×n from the family of Structured spinners is a product
of three main structured components/blocks, i.e.:

Gstruct = M3M2M1, (3.4)

3.2. The family of Structured spinners 57

where matrices M1,M2 and M3 satisfy Conditions 3.2.1, 3.2.2 and 3.2.3.

Condition 3.2.1. Matrices M1 and M2M1 are (δ(n), p(n))-balanced isometries.

Condition 3.2.2. M2 = V(W1, . . . ,Wn)Dρ1,...,ρn for some (∆F ,∆2)-smooth set
such that W1, . . . ,Wn ∈ Rk×n and ρ1, . . . , ρn are some i.i.d sub-Gaussian random
variables with sub-Gaussian norm K.

Condition 3.2.3. M3 = C(r, n) for r ∈ Rk, where r is random
Rademacher/Gaussian in the random setting or is learned in the adaptive setting.

Hence, matrix Gstruct is a structured spinner with parameters: δ(n), p(n),K,ΛF
and Λ2. The introduced conditions are explained below with Definition 3.2.1 of a
(δ(n), p(n))-balanced matrix, Definition 3.2.2 for a sub-Gaussian norm (see Defini-
tion 2.2.2 p.25 for a sub-Gaussian variable) and Definition 3.2.3 of a (ΛF ,Λ2)-smooth
set of matrices.

Definition 3.2.1 ((δ(n), p(n))-balanced matrix). A randomized matrix M ∈ Rn×m
is (δ(n), p(n))-balanced if for every x ∈ Rm with ‖x‖2 = 1 the following holds:

P[‖Mx‖∞ >
δ(n)√
n

] ≤ p(n). (3.5)

Remark 3.2.1. One can take as M1 a matrix HD1 since matrix HD1 is
(log(n), 2ne−

log2(n)
8)-balanced.

This result first appeared in work from Ailon and Chazelle [2006]. The following
proof was given in work from Choromanski and Sindhwani [2016], it is repeated it here
for completeness. In this proof, the standard concentration result named Azuma’s
Inequality is used [Azuma, 1967].

Lemma 3.2.1. (Azuma’s Inequality) Let X1, . . . , Xn be a martingale and assume
that −αi ≤ Xi ≤ βi for some positive constants α1, . . . , αn, β1, . . . , βn. Denote X =∑n
i=1Xi. Then the following is true:

P[|X − E[X]| > a] ≤ 2e
− a2

2
∑n

i=1(αi+βi)2 (3.6)

Now let us proof Remark 3.2.1.

Proof. Denote by x̃j an image of xj under transformation HD. Note that the
ith dimension of x̃j is given by the formula: x̃ji = hi,1x

j
1 + . . .+hi,nx

j
n, where hl,u

stands for the lth element of the uth column of the randomized Hadamard matrix
HD. First, Azuma’s Inequality is used to find an upper bound on the probability
such that |x̃ji | > a, where a = log(n)√

n
. By Azuma’s Inequality, there is:

P[|hi,1xj1 + . . .+ hi,nx
j
n| ≥ a] ≤ 2e−

log2(n)
8 . (3.7)

The following is used: αi = βi = 1√
n
. Now the union bound over all n dimensions

is taken and the proof is completed.

Definition 3.2.2 (sub-Gaussian norm). For a random sub-Gaussian variable X, the
sub-Gaussian norm of X is defined as:

‖X‖ψ2 = inf{t > 0 | E[e
X2
t2] ≤ 2} (3.8)

58 Chapter 3. Structured random matrices, an approach for fast and large-scale
machine learning computations

Definition 3.2.3 ((ΛF ,Λ2)-smooth set). A deterministic set of matrices
W1, . . . ,Wn ∈ Rk×n is (ΛF ,Λ2)-smooth if:

• ‖Wi
1‖2 = . . . = ‖Wi

n‖2 for i = 1, . . . , n, where Wi
j stands for the jth column of

Wi,

• for i 6= j and l = 1, . . . , n it holds: (Wi
l)T ·W

j
l = 0,

• maxi,j ‖(Wj)TWi‖F ≤ ΛF and maxi,j ‖(Wj)TWi‖2 ≤ Λ2.

Remark 3.2.2. If the unstructured matrix G has rows taken from the general multi-
variate Gaussian distribution with diagonal covariance matrix Σ 6= I then one needs
to rescale vectors r accordingly. For clarity, it is assumed here that Σ = I and
theoretical results are presented for this setting.

All structured matrices previously considered are special cases of a wider family of
Structured spinners (for clarity, it will be explicitly shown for some important special
cases). It holds:

Lemma 3.2.2. The following matrices: GcircD2HD1,
√
nHD3HD2HD1 and√

nHDg1,...,gnHD2HD1, where Gcirc is Gaussian circulant, are valid structured spin-

ners for δ(n) = log(n), p(n) = 2ne−
log2(n)

8 , K = 1, ΛF = O(
√
n) and Λ2 = O(1). The

same is true if one replaces Gcirc by a Gaussian Hankel or Toeplitz matrix.

Proof. See proof below in Section 3.3.3 after introduction to new tools.

3.2.1 The role of the three blocks M1, M2, and M3

The role of the blocks M1, M2, M3 can be intuitively explained. Matrix M1 makes
vectors "balanced", so that there is no dimension that carries too much of the L2-
norm of the vector. The balanceness property was already applied in the structured
setting [Ailon and Chazelle, 2006].

The role of M2 is more subtle and differs between adaptive and random settings.
In the random setting, the cost of applying the structured mechanism is the loss of
independence. For instance, the dot products of the rows of a circulant Gaussian
matrix with a given vector x are no longer independent, as it is the case in the
fully random setup. Those dot products can be expressed as a dot product of a
fixed Gaussian row with different vectors v. Matrix M2 makes these vectors close to
orthogonal5.

Finally, matrix M3 defines the capacity of the entire structured transform by
providing a vector of parameters (either random or to be learned). The near-
independence of the aforementioned dot products in the random setting is now implied
by the near-orthogonality property achieved by M2 and the fact that the projections
of the Gaussian vector or the random Rademacher vector onto "almost orthogonal
directions" are "close to independent".

The role of the three matrices is described pictorially in Figure 3.1.
5In the adaptive setup, the "close to orthogonality" property is replaced by the independence

property.

3.3. Theoretical results 59

vr v

x

y

z

x x

y y

v
vr

vr v

x

y

z

w
u

wr

ur
x

y

z

v
w

r

x

y

v

w

α

α = π/2 - ε

Figure 3.1: Pictorial explanation of the role of the three matrix-
blocks in the construction of the structured spinner. (left) M1 rotates
vector v such that the rotated version vr is balanced. (middle) M2
transforms vectors v,w,u such that their images vr,wr,ur are near-
orthogonal. (right) The projections of the random vector r onto such

two near-orthogonal vectors v, w are near-independent.

3.2.2 Stacking together Structured spinners
The Structured spinners are described as square matrices, but in practice it is not
restricted to those. One can construct an m × n structured spinner for m ≤ n from
the square n× n structured spinner by taking its first m rows(see Appendix B). One
can then stack vertically these independently constructed m × n matrices to obtain
an k × n matrix for both: k ≤ n and k > n.

The constant m should be seen as another parameter of the model that tunes the
"structuredness" level, i.e. larger values of m indicate a more structured approach
while smaller values lead to more random matrices (the case m = 1 is the fully
unstructured one).

Now that the model of the Structured spinners is fully defined, let us see the
theoretical guarantees that accompany it. The main purpose of them is to prove
Lemma 3.2.2 and the accuracy of the Structured Spinners in the randomized setting,
in particular for the Cross-polytope LSH with HD3HD2HD1

6.

3.3 Theoretical results

3.3.1 What will be shown

It is shown now that Structured spinners can replace their unstructured counter-
parts in many machine learning algorithms (not only for dimensionality reduction
techniques and LSH-based schemes) with minimal loss of accuracy.

Let AG be a machine learning algorithm applied to a fixed dataset X ⊆ Rn and
parametrized by a set G of matrices G ∈ Rm×n, where each G is either learned or
Gaussian with independent entries taken from N (0, 1). Assume furthermore, that AG
consists of functions f1, . . . , fs, where each fi applies a certain matrix Gi from G to
vectors from some linear space Li of dimensionality at most d. Note that for a fixed
dataset X function fi is a function of a random vector

qfi = ((Gix1)T , . . . , (Gixdi)T)T ∈ Rdi·m, (3.9)
6Some proofs in the adaptive setting can be found in Appendix C.

60 Chapter 3. Structured random matrices, an approach for fast and large-scale
machine learning computations

where dim(Li) = di ≤ d and x1, . . . ,xdi stands for some fixed basis of Li.
Denote by f ′i the structured counterpart of fi, where Gi is replaced by the struc-

tured spinner (for which vector r is either learned or random).

It will be shown that f ′is "resemble" fis distribution-wise; and this, surprisingly,
under very weak conditions regarding fis. In particular, they can be nondiffer-
entiable, even non-continuous.

To that purpose, an equivalent definition of the Structured spinners’ model is
introduced. It is more technical, yet more convenient to work with in the proofs.
Besides, this new model enables to give the proof of Lemma 3.2.2.

3.3.2 Structured spinners’ equivalent definition
Note that from the initial definition of the Structured spinners one can conclude that
each structured matrix Gstruct ∈ Rn×n from the family of structured spinners is a
product of three main structured blocks, i.e.:

Gstruct = B3B2B1, (3.10)

where matrices B1,B2,B3 satisfy two conditions that are given below.

Condition 3.3.1. Matrices: B1 and B2B1 are (δ(n), p(n))-balanced isometries.

Condition 3.3.2. Pair of matrices (B2,B3) is (K,ΛF ,Λ2)-random.

Below the definition of (K,ΛF ,Λ2)-randomness is given.

Definition 3.3.1 ((K,ΛF ,Λ2)-randomness). A pair of matrices (Y,Z) ∈ Rn×n ×
Rn×n is (K,ΛF ,Λ2)-random if there exists r ∈ Rk, and a set of linear isometries
φ = {φ1, . . . , φn}, where φi : Rn → Rk, such that:

• r is either a ±1-vector with i.i.d. entries or Gaussian with identity covariance
matrix,

• for every x ∈ Rn the jth element (Zx)j of Zx is of the form: rT · φj(x),

• there exists a set of i.i.d. sub-Gaussian random variables {ρ1, . . . , ρn} with sub-
Gaussian norm at most K, mean 0, the same second moments and a (ΛF ,Λ2)-
smooth set of matrices {Wi}i=1,...,n such that for every x = (x1, . . . , xn)T , the
following holds: φi(Yx) = Wi(ρ1x1, . . . , ρnxn)T .

3.3.3 Proof of Lemma 3.2.2

Finally, we can prove Lemma 3.2.2 which is recalled here, within the modified model.

Lemma 3.2.2 The following matrices: GcircD2HD1,
√
nHD3HD2HD1 and√

nHDg1,...,gnHD2HD1, where Gcirc is Gaussian circulant, are valid structured spin-

ners for δ(n) = log(n), p(n) = 2ne−
log2(n)

8 , K = 1, ΛF = O(
√
n) and Λ2 = O(1). The

same is true if one replaces Gcirc by a Gaussian Hankel or Toeplitz matrix.

Proof. Let us first assume the GcircD2HD1-setting (analysis for Toeplitz Gaus-
sian or Hankel Gaussian is completely analogous). In that setting, it is easy to
see that one can take r to be a Gaussian vector (this vector corresponds to the

3.3. Theoretical results 61

first row of Gcirc). Furthermore linear mappings φi are defined as:

φi((x0, x1, . . . , xn−1)T) = (xn−i, xn−i+1, . . . , xi−1)T , (3.11)

where operations on indices are modulo n. The value of δ(n) and p(n) come from
the fact that matrix HD1 is used as a (δ(n), p(n))-balanced matrix and from
Remark 3.2.1. In that setting, sequence (ρ1, . . . , ρn) is discrete and corresponds
to the diagonal of D2. Thus, K = 1.

To calculate ΛF and Λ2, note first that matrix W1 is defined as I and sub-
sequent Wis are given as circulant shifts of the previous ones (i.e. each row
is a circulant shift of the previous row). That observation comes directly from
the circulant structure of Gcirc. Thus there is: ΛF = O(

√
n) and Λ2 = O(1).

The former is true since each Ai,j := (Wj)TWi has O(n) nonzero entries and
these are all 1s. The latter is true since each nontrivial Ai,j in that setting is an
isometry (this is straightforward from the definition of {Wi}i=1,...,n).

Finally, all other conditions regarding Wi-matrices are clearly satisfied (each
column of each Wi has unit L2 norm and corresponding columns from different
Wi and Wj are clearly orthogonal).

Now let us consider the setting, where the structured matrix is of the form:√
nHD3HD2HD1. In that case, r corresponds to a discrete vector (namely, the

diagonal of D3). Linear mappings φi are defined as:

φi((x1, . . . , xn)T) = (
√
nhi,1x1, . . . ,

√
nhi,nxn)T , (3.12)

where (hi,1, . . . , hi,n)T is the ith row of H. One can also notice that the set
{Wi}i=1,...,n is defined as: wia,b =

√
nhi,aha,b. Let us first compute the Frobe-

nius norm of the matrix Ai,j , defined based on the aforementioned sequence
{Wi}i=1,...,n :

‖Ai,j‖2F =
∑

l,t∈{1,...,n}
(Ai,j

l,t)
2

=
∑

l,t∈{1,...,n}
(
n∑
k=1

wjk,lw
i
k,t)2 = n2 ∑

l,t∈{1,...,n}
(
n∑
k=1

hj,khk,lhi,khk,t)2 (3.13)

To compute the expression above, note first that for r1 6= r2 the following holds:

θ =
∑
k,l

hr1,khr1,lhr2,khr2,l =
∑
k

hr1,khr2,k
∑
l

hr1,lhr2,l = 0, (3.14)

where the last equality comes from fact that different rows of H are orthogonal.
From the fact that θ = 0, there is:

‖Ai,j‖2F = n2 ∑
r=1,...,n

∑
k,l

h2
i,rh

2
j,rh

2
r,kh

2
r,l = n · n2(1√

n
)8 · n2 = n. (3.15)

Thus there is: ΛF ≤
√
n.

Now ‖Ai,j‖2 is computed. Notice that from the definition of Ai,j there is

Ai,j = Ei,jFi,j , (3.16)

where the lth row of Ei,j is of the form (hj,1h1,l, . . . , hj,nhn,l) and the tth column

62 Chapter 3. Structured random matrices, an approach for fast and large-scale
machine learning computations

of Fi,j is of the form (hi,1h1,t, . . . , hi,nhn,t)T . Thus one can easily verify that Ei,j

and Hi,j are isometries (since H is) thus Ai,j is also an isometry and therefore
Λ2 = 1. As in the previous setting, remaining conditions regarding matrices Wi

are trivially satisfied (from the basic properties of Hadamard matrices). That
completes the proof.

Now, taking proof’s goal of Section 3.3.1, the Structured spinners are shown to be
an accurate counterpart to unstructured matrices in the randomized setting7.

3.3.4 Accuracy of the Structured Spinners in the randomized set-
ting

The following definition is needed.

Definition 3.3.2 (b-convexity of a set). A set S is b-convex if it is a union of at
most b pairwise disjoint convex sets.

Fix a function fi : Rdi·m → V, for some domain V. Our main result states that
for any S ⊆ V such that f−1

i (S) is measurable and b-convex for b not too large, the
probability that fi(qfi) belongs to S is close to the probability that f ′i(qf ′i) belongs
to S.

Theorem 3.3.1 (structured random setting). Let A be a randomized algorithm using
unstructured Gaussian matrices G and let s, d and fis be as at the beginning of the
section. Replace the unstructured matrix G by one of the structured spinners defined
in Section 3.2 with blocks of m rows each. Then for n large enough, ε = omd(1) and
fixed fi with probability psucc at least:

1− 2p(n)d− 2
(
md

2

)
e
−Ω(min(ε2n2

K4Λ2
F
δ4(n)

, εn
K2Λ2δ2(n)

))
(3.17)

with respect to the random choices of M1 and M2 the following holds for any S such
that f−1

i (S) is measurable and b-convex:

|P[fi(qfi) ∈ S]− P[f ′i(qf ′i) ∈ S]| ≤ bη, (3.18)

where the probabilities in the last formula are with respect to the random choice of
M3, η = δ3(n)

n
2
5
, and δ(n), p(n),K,ΛF ,Λ2 are as in the definition of structured spinners

from Section 3.2.

Overview of Theorem 3.3.1’s proof Let us briefly give an overview of the proof
before presenting it in detail. Challenges regarding proving accuracy results for struc-
tured matrices come from the fact that, for any given x ∈ Rn, different dimensions
of y = Gstructx are no longer independent (as it is the case for the unstructured
setting). For matrices from the family of structured spinners one can, however, show
that with high probability different elements of y correspond to projections of a given
vector r (see Section 3.2) into directions that are close to orthogonal. The "close-to-
orthogonality" characteristic is obtained with the use of the Hanson-Wright inequality
that focuses on concentration results regarding quadratic forms involving vectors of
sub-Gaussian random variables. If r is Gaussian, then from the well-known fact that
projections of the Gaussian vector into orthogonal directions are independent, one

7Theoretical guarantees for the adaptive setting can be found in Appendix C.

3.3. Theoretical results 63

can conclude that dimensions of y are "close to independent". If r is a discrete vector
then there is a need to show that for n large enough, it "resembles" the Gaussian
vector. This is where the aforementioned techniques regarding multivariate Berry-
Esseen-type central limit theorem results need to be applied.

Proof. Notation from Section 3.2 and previous sections is used. It is assumed
that the model with structured matrices stacked vertically, each of m rows, is
applied. Without loss of generality, one can assume that there is just one block
since different blocks are chosen independently. Let Gstruct be a matrix from the
family of structured spinners. Let us assume that Gstruct is used by a function f
operating in the d-dimensional space and let us denote by x1, . . . ,xd some fixed
orthonormal basis of that space.

B1 application. The first goal is to compute:

y1 = Gstructx1, . . . ,yd = Gstructxd. (3.19)

Denote by x̃i the linearly transformed version of x after applying block B1,
i.e. x̃i = B1xi. Since B1 is (δ(n), p(n))-balanced), with probability at least:
pbalanced ≥ 1 − dp(n) each element of each x̃i has absolute value at most δ(n)√

n
.

One can shortly say that each x̃i is δ(n)-balanced. This event is called Ebalanced.
Note that by the definition of structured spinners, each yi is of the form:

yi = (rT · φ1(B2x̃i), . . . , rT · φm(B2x̃i))T . (3.20)

B2 application. For clarity and to reduce notation, r is assumed to be
n-dimensional. To obtain results for vectors r of different dimensionality D, it
suffices to replace in our analysis and theoretical statements n by D. Let us
denote

A = {φ1(B2x̃1), . . . , φm(B2x̃1), . . . , φ1(B2x̃d), . . . , φm(B2x̃d))}. (3.21)

Our goal is to show that with high probability (in respect to random choices of
B1 and B2) for all vi,vj ∈ A, i 6= j the following is true:

|(vi)T · vj | ≤ t (3.22)

for some given 0 < t� 1.
Fix some t > 0, the lower bound on the corresponding probability is searched.

Let us fix two vectors v1,v2 ∈ A and denote them as: v1 = φi(B2x), v2 =
φj(B2y) for some x = (x1, . . . , xn)T and y = (y1, . . . , yn)T . With denotation
from Section, there is 3.2):

φi(B2x) = (wi11ρ1x1 + . . .+ wi1,nρnxn, . . . , w
i
n,1ρ1x1 + . . .+ win,nρnxn)T (3.23)

and

φj(B2y) = (wj11ρ1y1 + . . .+ wj1,nρnyn, . . . , w
j
n,1ρ1y1 + . . .+ wjn,nρnyn)T . (3.24)

Then, the following holds:

(v1)T · v2 =
∑

l∈{1,...,n},u∈{1,...,n}
ρlρu(

n∑
k=1

xlyuw
i
k,uw

j
k,l). (3.25)

64 Chapter 3. Structured random matrices, an approach for fast and large-scale
machine learning computations

Under assumptions from Theorem 3.3.1, the expected value of the expression
above is now shown to be 0. There is:

E[(v1)T · v2] = E[
∑

l∈{1,...,n}
ρ2
l xlyl(

n∑
k=1

wik,lw
j
k,l)], (3.26)

since ρ1, . . . , ρn are independent and have expectations equal to 0. Now notice
that if i 6= j then from the assumption that corresponding columns of matrices
Wi and Wj are orthogonal, the above expectation is 0. Now assume that i = j.
But then x and y have to be different and thus they are orthogonal (since they
are taken from the orthonormal system transformed by an isometry). In that
setting it holds:

E[(v1)T · v2] = E[
∑

l∈{1,...,n}
ρ2
l xlyl(

n∑
k=1

(wik,l)2)] = τw
n∑
l=1

xlyl = 0, (3.27)

where τ stands for the second moment of each ρi, w is the squared L2-norm of
each column of Wi (τ and w are well defined due to the properties of structured
spinners). The last inequality comes from the fact that x and y are orthogonal.
Now if matrices Ai,j are defined as in the definition of the model of structured
spinners then one can see that

(v1)T · v2 =
∑

l,u∈{1,...,n}
ρlρuT

i,j
l,u , (3.28)

where T i,jl,u = xlyuAi,j
l,u.

Now the following inequality is used:

Theorem 3.3.2 (Hanson-Wright Inequality). Let X = (X1, . . . , Xn)T ∈ Rn be
a random vector with independent components Xi which satisfy: E[Xi] = 0 and
have sub-Gaussian norm at most K for some given K > 0. Let A be an n × n
matrix. Then for every t ≥ 0 the following is true:

P[XTAX− E[XTAX] > t] ≤ 2e
−cmin(t2

K4‖A‖2
F

, t
K2‖A‖2

)
, (3.29)

where c is some universal positive constant.

Note that, assuming δ(n)-balancedness, there is: ‖Ti,j‖F ≤ δ2(n)
n ‖A

i,j‖F and
‖Ti,j‖2 ≤ δ2(n)

n ‖A
i,j‖2.

Now X = (ρ1, . . . , ρn)T and A = Ti,j are taken in the theorem above. Apply-
ing the Hanson-Wright inequality in that setting, taking the union bound over
all pairs of different vectors vi,vj ∈ A (this number is exactly:

(md
2
)
) and the

event Ebalanced, finally taking the union bound over all s functions fi, there is
with probability at least:

pgood = 1− p(n)ds− 2
(
md

2

)
se
−Ω(min(t2n2

K4Λ2
F
δ4(n)

, tn
K2Λ2δ2(n)

))
(3.30)

for every f any two different vectors vi,vj ∈ A satisfy: |(vi)T · vj | ≤ t.

3.3. Theoretical results 65

Note that from the fact that B2B1 is (δ(n), p(n))-balanced and from Equa-
tion 3.30, it holds with probability at least:

pright = 1− 2p(n)ds− 2
(
md

2

)
se
−Ω(min(t2n2

K4Λ2
F
δ4(n)

, tn
K2Λ2δ2(n)

))
. (3.31)

for every f any two different vectors vi,vj ∈ A satisfy: |(vi)T · vj | ≤ t and
furthermore each vi is δ(n)-balanced.

B3 application. Assume now that this event happens. Consider the vector

q′ = ((y1)T , . . . , (yd)T)T ∈ Rmd. (3.32)

Note that q′ can be equivalently represented as:

q′ = (rT · v1, . . . , rT · vmd), (3.33)

where: A = {v1, . . . ,vmd}. From the fact that φiB2 and B1 are isometries one
can conclude that: ‖vi‖2 = 1 for i = 1, . . . ,md.

Now the following Berry-Esseen type result is needed for random vectors:

Theorem 3.3.3 (Bentkus [2003]). Let X1, . . . ,Xn be independent vectors taken
from Rk with common mean E[Xi] = 0. Let S = X1 + . . . + Xn. Assume that
the covariance operator C2 = cov(S) is invertible. Denote βi = E[‖C−1Xi‖32]
and β = β1 + . . . + βn. Let C be the set of all convex subsets of Rk. Denote
∆(C) = supA∈C |P[S ∈ A] − P[Z ∈ A]|, where Z is the multivariate Gaussian
distribution with mean 0 and covariance operator C2. Then:

∆(C) ≤ ck
1
4β (3.34)

for some universal constant c.

Denote Xi = (riv1
i , . . . , riv

k
i)T for k = md, r = (r1, . . . , rn)T and vj =

(vj1, . . . , vjn). Note that q′ = X1 + . . . + Xn. Clearly there is: E[Xi] = 0 (the
expectation is taken with respect to the random choice of r). Furthermore, given
the choices of v1, . . . ,vk, random vectors X1, . . . ,Xn are independent.

Let us calculate now the covariance matrix of q′, Σq′ := E[(q′ − E[q′])(q′ −
E[q′])T] = E[q′q′T] since, because of definition of r, E[q′] = 0. There is:

q′i = r1v
i
1 + . . .+ rnv

i
n, (3.35)

where q′ = (q′1, . . . ,q′k).
Thus for i1, i2 there is:

(Σq′)i1,i2 = E[q′i1q
′
i2] =

n∑
j=1

vi1j v
i2
j E[r2

j] + 2
∑

1≤j1<j2≤n
vi1j1v

i2
j2
E[rj1rj2] = (vi1)T · vi2 ,

(3.36)
where the last equation comes from the fact rj are either Gaussian fromN (0, 1) or
discrete with entries from {−1,+1} and furthermore different rjs are independent.

Therefore if i1 = i2 = i, since each vi has unit L2-norm, it holds that

E[q′iq′i] = 1, (3.37)

66 Chapter 3. Structured random matrices, an approach for fast and large-scale
machine learning computations

and for i1 6= i2 there is:
|E[q′i1q

′
i2]| ≤ t. (3.38)

As a conclusion the covariance matrix Σq′ of the distribution q′ is a matrix with
entries 1 on the diagonal and other entries of absolute value at most t.

For t = ok(1) small enough, from:

• the fact that C−1 is a constant,

• the δ(n)-balancedness of vectors v1, . . . ,vk,

• and from the well-known fact that for any vector z ∈ Rk, ‖z‖2 ≤
√
k‖z‖∞,

one can conclude that:

βi = E[‖C−1Xi‖32] = O(E[‖Xi‖32]) = O

√(k
n

)3
δ3(n)

 , (3.39)

Now, using Theorem 3.3.3, there is

sup
A∈C
|P[q′ ∈ A]− P[Z ∈ A]| = O

(
k

1
4n · k

3
2

n
3
2
δ3(n)

)
= O

(
δ3(n)√
n
k

7
4

)
, (3.40)

where:

• Z is taken from the multivariate Gaussian distribution with covariance
matrix I + E,

• diagonal coefficients of E are equal to 0 and the absolute value of all its
off-diagonal entries is at most ε,

• C is the set of all convex sets.

Now if the above inequality is applied to the pairwise disjoint convex sets
A1, . . . , Aj , where A1 ∪ . . . ∪ Aj = f−1

i (S) and l ≤ b (such sets exist from the b-
convexity of f−1

i (S)), take η = δ3(n)√
n
k

7
4 , ε = t = omd(1) and take n large enough,

the statement of the theorem follows, recall that:

• P[q′ ∈ A] = P[q′ ∈ f−1
i (S)] = P[fi(q′) ∈ S],

• k = md,

• we can take P[Z ∈ A] = P[f ′i(qf ′i) ∈ S].

Remark 3.3.1. Theorem 3.3.1 does not require any strong regularity conditions re-
garding fis (such as differentiability or even continuity). In practice, b is often a
small constant. For instance, for the angular kernel approximation where fis are
non-continuous and for S-singletons, one can take b = 1 (see Appendix C).

Now let us think of fi and f ′i as random variables, where randomness is generated
by vectors qfi and qf ′i respectively. Then, from Theorem 3.3.1, there is:

Theorem 3.3.4. Denote by FX the cdf of the random variable X and by φX its
characteristic function. If fi is convex or concave in respect to qfi, then for every t

3.3. Theoretical results 67

the following holds: |Ffi(t)−Ff ′i (t)| = O

(
δ3(n)
n

2
5

)
. Furthermore, if fi is bounded then:

|φfi(t)− φf ′i (t)| = O

(
δ3(n)
n

2
5

)
.

Proof. Let us assume that fi is a convex function of qfi (if fi is concave then the
proof is completely analogous). For any t ∈ R let St = {qfi : fi(qfi) ≤ t} for fi
and St = {qf ′i : f ′i(qf ′i) ≤ t} for f

′
i . From the convexity assumption it holds that

St is a convex set. Thus Theorem 3.3.1 can be directly applied and the result
regarding cdf functions follows. To obtain the result regarding the characteristic
functions, notice first that there is:

φX(t) :=
∫ 1

−1
P[cos(tX) > s]ds+ i

∫ 1

−1
P[sin(tX) > s]ds (3.41)

The event {cos(tX) > s} for t 6= 0 is equivalent to: X ∈ ∪I∈II for some family of
intervals I thanks to the periodicity of cos function. Similar observation is true
for the event {sin(tX) > s}.

In our scenario, from the fact that fi is bounded, the corresponding families I
are finite. Furthermore, the probability of belonging to a particular interval can
be expressed by the values of the cdf function in the endpoints of that interval.
From this observation and the result on cdfs that has been just obtained, the
result for the characteristic functions follows immediately.

Theorem 3.3.1 implies strong accuracy guarantees for the specific structured spin-
ners. As a corollary there is:

Theorem 3.3.5. Under assumptions from Theorem 3.3.1 the probability psucc from

Theorem 3.3.1 reduces to: 1−4ne−
log2(n)

8 d−2
(md

2
)
e
−Ω(ε2n

log4(n)
) for the structured matri-

ces
√
nHD3HD2HD1,

√
nHDg1,...,gnHD2HD1 as well as for the structured matrices

of the form GstructD2HD1, where Gstruct is Gaussian circulant, Gaussian Toeplitz
or Gaussian Hankel matrix.

Proof. This comes directly from Theorem 3.3.1 and Lemma 3.2.2.

As a corollary of Theorem 3.3.5, the following result is obtained showing the
effectiveness of the Cross-polytope LSH with structured matrices HD3HD2HD1 that
was only heuristically confirmed before Andoni et al. [2015b].

Theorem 3.3.6. Let x,y ∈ Rn be two unit L2-norm vectors. Let vx,y be the vector
indexed by all (2m)2 ordered pairs of canonical directions (±ei,±ej), where the value
of the entry indexed by (u,w) is the probability that: h(x) = u and h(y) = w, and
h(v) stands for the hash of v. Then with probability at least:

psuccess = 1− 8ne−
log2(n)

8 − 2
(

2m
2

)
e
−Ω
(

ε2n
log4(n)

)
(3.42)

the version of the stochastic vector v1
x,y for the unstructured Gaussian matrix G and

its structured counterpart v2
x,y for the matrix HD3HD2HD1 satisfy:

‖v1
x,y − v2

x,y‖∞ ≤ log3(n)n−
2
5 + cε, (3.43)

68 Chapter 3. Structured random matrices, an approach for fast and large-scale
machine learning computations

for n large enough, where c > 0 is a universal constant. The probability above is taken
with respect to random choices of D1 and D2.

For angles between v1
x,y and v2

x,y in the range [0, π3] the result above leads to the
same asymptotics of the probabilities of collisions as these in Theorem 1 of Andoni
et al. [2015b] given for the unstructured Cross-polytope LSH (see Theorem 2.2.1 in
Section 2.2.2, p. 21).

The proof for the discrete structured setting applies Berry-Esseen-type results for
random vectors showing that for n large enough ±1 random vectors r act similarly
to Gaussian vectors.

Proof. For clarity the structured matrix is assumed to consist of just one block of
m rows and we will compare its performance with the unstructured variant of m
rows (the more general case when the structured matrix is obtained by stacking
vertically many blocks is analogous since the blocks are chosen independently).

Consider the two-dimensional linear space H spanned by x and y. Fix some
orthonormal basis B = {u1,u2} of H. Take vectors q and q′. Note that they
are 2m-dimensional, where m is the number of rows of the block used in the
structured setting. From Theorem 3.3.5 with probability at least psuccess, where
psuccess is as in the statement of the theorem, the following holds for any convex
2m-dimensional set A:

|P[q(ε) ∈ A]− P[q′ ∈ A]| ≤ η, (3.44)

where η = log3(n)
n

2
5

. Take two corresponding entries of vectors v1
x,y and v2

x,y

indexed by a pair (ei, ej) for some fixed i, j ∈ {1, . . . ,m} (for the case when the
pair is not of the form (e, ej), but of a general form: (±ei,±ej) the analysis is
exactly the same). Call them p1 and p2 respectively. The goal is to compute
|p1 − p2|. Notice that p1 is the probability that h(x) = ei and h(y) = ej for the
unstructured setting and p2 is that probability for the structured variant.

Let us consider now the event E1 = {h(x) = ei∧h(y) = ej}, where the setting
is unstructured. Denote the corresponding event for the structured setting as
E2. Denote q = (q1, . . . , q2m). Assume that x = α1u1 + α2u2 for some scalars
α1, α2 > 0. Denote the unstructured Gaussian matrix by G. There is:

Gx = α1Gu1 + α2Gu2 (3.45)

Note that there is: Gu1 = (q1, . . . , qm)T and Gu2 = (qm+1, . . . , q2m)T . Denote
by A(ei) the set of all the points in Rm such that their angular distance to ei is
at most the angular distance to all other m − 1 canonical vectors. This set can
be interpreted as the set of all points that are nearer (in the sense of the angular
distance) from ei than for all ej for j ∈ {1, . . . ,m}, j 6= i. Note that this is
definitely a convex set. Now denote:

Q(ei) = {(q1, . . . , q2m)T ∈ R2m : α1(q1, . . . , qm)T + α2(qm+1, . . . , q2m)T ∈ A(ei)}.
(3.46)

Note that since A(ei) is convex, one can conclude that Q(ei) is also convex. Note
that

{h(x) = ei} = {q ∈ Q(ei)}. (3.47)

3.4. Experiments with Locality-Sensitive Hashing (LSH) 69

By repeating the analysis for the event {h(y) = ej},

{h(x) = ei ∧ h(y) = ej} = {q ∈ Y (ei, ej)} (3.48)

for convex set Y (ei, ej) = Q(ei) ∩Q(ej). Now observe that

|p1 − p2| = |P[q ∈ Y (ei, ej)]− P[q′ ∈ Y (ei, ej)]| (3.49)

Thus there is by triangle inequality:

|p1 − p2| ≤ |P[q ∈ Y (ei, ej)]− P[q(ε) ∈ Y (ei, ej)]|
+ |P[q(ε) ∈ Y (ei, ej)]− P[q′ ∈ Y (ei, ej)]| (3.50)

Therefore there is by application of Theorem 3.3.5:

|p1 − p2| ≤ |P[q ∈ Y (ei, ej)]− P[q(ε) ∈ Y (ei, ej)]|+ η. (3.51)

Thus it is just needed to upper-bound:

ξ := |P[q ∈ Y (ei, ej)]− P[q(ε) ∈ Y (ei, ej)]|. (3.52)

Denote the covariance matrix of the distribution q(ε) as I + E. Note that E is
equal to 0 on the diagonal and the absolute value of all other off-diagonal entries
is at most ε.

Denote k = 2m. There is ξ = |A−B|, where

A = 1
(2π)

k
2
√

det(I + E)

∫
Y (ei,ej)

e−
xT (I+E)−1x

2 dx (3.53)

and
B = 1

(2π)
k
2

∫
Y (ei,ej)

e−
xT x

2 dx. (3.54)

Expanding: (I+E)−1 = I−E+E2−. . ., noticing that |det(I+E)−1| = O(ε2m)
by definition of the determinant as a sum over the set of permutations, and using
the above formula, it is easily obtained that:

ξ = O(ε). (3.55)

That completes the proof.

3.4 Experiments with Locality-Sensitive Hashing (LSH)

In this Section, the Structured spinners are applied to Locality-Sensitive Hashing
(LSH)8.

3.4.1 Experimental setup

Experiments were conducted using Python. In particular, NumPy is linked against
a highly optimized BLAS library (Intel MKL). Fast Fourier Transform is performed
using numpy.fft and Fast Hadamard Transform is using ffht from Andoni et al. [2015b].

8Experiments for kernel approximations, Newton sketches and neural networks can be found in
Appendix C.

70 Chapter 3. Structured random matrices, an approach for fast and large-scale
machine learning computations

To have a fair comparison, it has been set up: OMP_NUM_THREADS = 1 so
that every experiment is done on a single thread. Every parameter of the structured
spinner matrix is computed in advance, such that obtained speedups take only matrix-
vector products into account. All figures should be read in color.

3.4.2 Collision probabilities with Cross-polytope LSH

In this experiment, state-of-the-art Cross-polytope LSH is considered.

Experimental protocol

In Figure 3.2, collision probabilities are compared for the low dimensional case (n =
256, m = 64), where for each interval, the collision probability has been computed
for 20000 points. Results are shown for one hash function (averaged over 100 runs)
and are reported for a random 256 × 64 Gaussian matrix G and five other types of
matrices from a family of structured spinners (descending order of the number of
parameters):

• GcircK2K1,

• GToeplitzD2HD1,

• Gskew−circD2HD1,

• HDg1,...,gnHD2HD1,

• and HD3HD2HD1,

where Ki, GToeplitz, and Gskew−circ are respectively a Kronecker matrix with discrete
entries, Gaussian Toeplitz and Gaussian skew-circulant matrices.

Results

All matrices from the family of structured spinners show high collision probabilities for
small distances and low ones for large distances. As theoretically predicted, structured
spinners do not lead to accuracy losses. All considered matrices give almost identical
results.

3.5 Conclusion

This Chapter introduced a general structured paradigm for large scale machine learn-
ing computations with random matrices, providing computational speedups and stor-
age compression. The application considered in this Chapter is in particularly the
approximate nearest neighbors search with LSH method. This framework is also ac-
companied by theoretical guarantees on the effectiveness of the structured approach.

This work brings the first theoretical guarantees for the fastest known Cross-
polytope LSH [Andoni et al., 2015b] based on the HD3HD2HD1 structured
matrix.

However this framework and the theoretical guarantees do not only apply to general
dimensionality reduction algorithms and LSH-based algorithms but also to various
other applications:

• quantization with random projection trees,

3.5. Conclusion 71

• kernel approximations via random feature maps,

• convex optimization via Newton sketches,

• deep learning, etc.

In Appendix C, the last three points are addressed. A remaining open question
is: Can one obtain computation speedups for matrices from the Structured spinners
model for which the Fast Fourier Transform trick does not work ?

72 Chapter 3. Structured random matrices, an approach for fast and large-scale
machine learning computations

+ + +
+

+
+

+
+

+
+

+

+

+

+

Collision probabilities with cross−polytope LSH

Distance

C
ol

lis
io

n
pr

ob
ab

ili
ty

+ + + +
+

+
+

+
+

+
+

+

+

+

+ + +
+

+
+

+
+

+
+

+

+

+

+

+ + + +
+

+
+

+
+

+
+

+

+

+

+ + +
+

+
+

+
+

+
+

+

+

+

+

+ + + +
+

+
+

+
+

+
+

+

+

+

0.
01

0.
05

0.
20

0.
50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 2

G
GcircK2K1
GToeplitzD2HD1

Gskew−circD2HD1
HDg1, g2, …, gn

HD2HD1

HD3HD2HD1

(a)

+

+

+

+

Distance

C
ol

lis
io

n
pr

ob
ab

ili
ty

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0.
01

0.
02

0.
05

0.
10

1.1 1.2 1.3 1.4

G
GcircK2K1
GToeplitzD2HD1

Gskew−circD2HD1
HDg1, g2, …, gn

HD2HD1

HD3HD2HD1

(b)

Figure 3.2: Cross-polytope LSH - collision probabilities for distance
between 0 and

√
2 with n = 256, m = 64 (a). (b) A zoom on higher

distances enables to distinguish the curves which are almost super-
posed.

73

Chapter 4

Learning compact binary codes
from massive data streams with
Hypercubic hashing for Nearest
Neighbors search

Contents
4.1 Introduction . 73
4.2 Preliminaries . 75
4.3 Theoretical justification of optimality of a rotation R for

Hypercubic quantization hashing 77
4.4 The proposed online algorithm: UnifDiag Hashing 81

4.4.1 The principle of UnifDiag 81
4.4.2 Time and space complexities comparison with existing online

works . 84
4.5 Experiments . 87

4.5.1 Comparison of Hypercubic Quantization Hashing methods
for the Nearest Neighbors search task 87
Comparison with batch-based methods 87
Comparison with online methods 89

4.5.2 Effect of the rotation on the binary codes 89
4.6 Conclusion . 91

This Chapter concerns a collaboration with Antoine Souloumiac1 and Krzysztof
Choromanski2. A first version of this work has been published at IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) 2018 under the title
"Streaming Binary Sketching based on Subspace Tracking and Diagonal Uniformiza-
tion".

4.1 Introduction

Nearest neighbors (NN) search is a key task involved in many machine learning appli-
cations such as classification or clustering. For large-scale datasets e.g. in computer
vision or metagenomics, indexing efficiently high-dimensional data becomes necessary

1CEA
2Google Brain Robotics

74 Chapter 4. Learning compact binary codes from massive data streams with
Hypercubic hashing for Nearest Neighbors search

for reducing space needs and speeding up similarity search. This can be classically
achieved by hashing techniques which map data onto lower-dimensional representa-
tions.

We recall from Chapter 2 that two hashing paradigms exist: data-independent
and data-dependent hashing methods. On the one hand, Locality-Sensitive Hashing
(LSH) [Andoni and Indyk, 2008] and its variants [Terasawa and Tanaka, 2007, Andoni
et al., 2015b, Yu et al., 2014] belong to the data-independent paradigm. They rely on
some random projection onto a c-lower dimensional space followed by a scalar quanti-
zation returning the nearest vertex from the set {−1, 1}c for getting the binary codes
(e.g. the sign function is applied point-wise). On the other hand, data-dependent
methods [Wang et al., 2018] learn this projection from data instead and have been
found to be more accurate for computing similarity-preserving binary codes. Among
them, the unsupervised data-dependent Hypercubic hashing methods, embodied by
ITerative Quantization (ITQ) [Gong et al., 2013], use Principal Component Analysis
(PCA) to reduce data dimensionality to c: the data is projected onto the first c prin-
cipal components chosen as the ones with the highest explained variance as they carry
more information on variability. If we then directly mapped each resulting direction
to one bit, each of them would get represented by the same volume of binary code (1
bit), although the cth direction should carry less information than the first one. Thus,
one can intuitively understand why PCA projection application solely leads to poor
performance of the obtained binary codes in the NN search task. This is why data
get often mixed though an isometry after PCA-projection so as to balance variance
over the kept directions. See Figure 4.1, a recall from Section 2.3.2, for the general
scheme of Hypercubic hashing methods.

Input: X ∈ Rd×N , c� d
W = PCA(X, c),
V = WX ∈

Rc×N

Compute
rotation R

from V, Y =
RV ∈ Rc×N

B = sign(Y) Output: B
V Y

Figure 4.1: General (offline) scheme for Hypercubic hashing methods
with notation from Section 4.2. The first step consists in computing
the c × d-projection matrix with PCA. The second rotates the PCA-
projected data. Finally, the sign function is applied pointwise to obtain

binary coefficients.

Works from Jégou et al. [2010] and Chen et al. [2017] use a random rotation3 while
the rotation can also be learned [Gong et al., 2013, Kong and Li, 2012] to that purpose.
This has led to the development of variant online techniques such as Online Sketching
Hashing (OSH) [Leng et al., 2015a] or FasteR Online Hashing (FROSH) [Chen et al.,
2017] which are deployable in the streaming setting when large high-dimensional data
should be processed with limited memory. These are currently the state-of-the-art
of online unsupervised hashing methods for learning on the fly similarity-preserving
binary embeddings.

Nevertheless, even if one can now use these unsupervised online methods for pro-
cessing high-dimensional streams of data, there is still no theoretical justification
that equalizing the variance or in other words choosing directions with isotropic

3In the sequel, the terms orthogonal matrix and rotation are used equivalently.

4.2. Preliminaries 75

variance leads to optimal results.

Contributions In this Chapter, the contributions are two-fold:

1. First, theoretical guarantees to several state of the art quantization-based hash-
ing techniques are brought, by formally proving the need for a rotation when
the methods rely on PCA-like preprocessing.

2. Second, a novel streaming algorithm with convergence guarantees is introduced
where the data are seen only once and the principal subspace plus the balancing
rotation are updated as new data are seen. To obtain the principal subspace and
the rotation, this requires additionally only the storage of two c × c matrices,
instead of the whole initial and projected datasets as for ITQ or IsoHash. Our
algorithm outperforms the known state-of-the-art online unsupervised method
Online Sketching Hashing (OSH) Leng et al. [2015a] while being far less com-
putationally demanding.

We also introduce experiments accompanying the theoretical results and compare the
existing online unsupervised hypercubic quantization-based hashing methods.

Plan of the Chapter For the online setting, the problem of finding compact binary
codes is stated in Section 4.2. This Section also describes the offline inspirations of
the new proposed algorithm from the family of Hypercubic hashing. Before digging
into the details of this novel online binary hashing method in Section 4.4, Section 4.3
brings theoretical elements justifying the design of our method. Experiments show
the usefulness of the technique in Section 4.5.1 and Section 4.6 concludes this Chapter.

4.2 Preliminaries

Recall that for any matrix M, ΣM = MMT 4. For any vector z, z(i) denotes its
ith entry. Let be a stream of N zero-centered data points {xt ∈ Rd}1≤t≤N . The
considered hashing methods aim at obtaining the binary codes, for t ∈ [N]:

bt = sign(W̃xt) ∈ {−1, 1}c (4.1)

where c denotes the code length, c� d, and W̃ ∈ Rc×d is the dimensionality reduction
operator. In other words, for each bit k ∈ [c], the hashing function is defined as

hk(xt) = sign(w̃T
k xt) (4.2)

where w̃k are column vectors of hyperplane coefficients. So w̃T
k is a row of W̃ ∈ Rc×d

for each k. In the framework of Hypercubic quantization hashing functions,

W̃ = RW (4.3)

where W is the linear dimensionality reduction embedding applied to data and R is
a suitable c × c orthogonal matrix. Typically, one can take W as the matrix whose
row vectors wT

k are the c first principal components of the covariance matrix ΣX
where X = [x1, . . . ,xN] ∈ Rd×N . Note that this problem statement includes offline
and online methods: W can be either the PCA or a tracked principal subspace as a
new data point is seen. What is more specific to the methods is the way of learning

4This is a slight abuse of notation as the normalization factor is discarded. See Eq. 2.28 p.27.

76 Chapter 4. Learning compact binary codes from massive data streams with
Hypercubic hashing for Nearest Neighbors search

the appropriate orthogonal matrix for rotating the data which have been previously
projected onto this principal subspace.

After application of the (possibly online estimated) PCA algorithm, the stream
becomes {vt ∈ Rc}1≤t≤N s.t.

vt = Wxt. (4.4)

Then, for all t ∈ [N],
yt = Rvt (4.5)

and
bt = sign(yt). (4.6)

In the sequel, depending on the context, we will be considering either one data point
xt, its initial projection vt = Wxt, its rotated projection yt and binary sketch bt, or
the whole associated sets X, V = WX, Y = RV and B = sign(Y) = [b1, . . . ,bn] ∈
{−1, 1}c×N .

ITerative Quantization (ITQ) For ITQ [Gong et al., 2013], as previously de-
scribed in Section 2.3.2, R is the solution of an orthogonal Procustes problem which
consists in minimizing the quantization error Q(B,R) of mapping the resulting data
to the vertices of the 2c hypercube:

Q(B,R) = ‖B− W̃X‖2F = ‖B−RWX‖2F = ‖B−RV‖2F . (4.7)

This is currently the best method among Hypercubic quantization techniques. Its
drawback is it is a full offline process and there is no convergence guarantees for
obtaining R.

Our goal is to propose an online version of the algorithm. Since the quantization
error minimization from Equation 4.7 in the online setting is not an obvious task,
we looked for a by-product effect of ITQ, hopefully easier to reproduce. Figure 4.2
shows the covariance matrix of CIFAR dataset after PCA and ITQ projection before
the sign application. It can be observed that ITQ tends to uniformize the diago-
nal coefficients of this matrix. Intuitively, we can see on Figure 4.3 that it makes
sense. Consequently, an interesting idea would be to determine a rotation which
directly equalizes the diagonal coefficient of the projected data covariance. This is
basically the principle of IsoHash algorithm [Kong and Li, 2012] explained before in
Section 2.3.2. Our proposed online algorithm shares also the same objective func-
tion but our rotation solution is easier to compute and is integrated in a full online
algorithm (see Section 4.4).

Isotropic Hashing (IsoHash) Let us again consider σ2
1, ..., σ

2
c the diagonal co-

efficients of ΣV, hence σ2
1 ≥ ... ≥ σ2

c . IsoHash [Kong and Li, 2012] but also our
algorithm UnifDiag (see Section 4.4) looks for a matrix R balancing the variance
over the c directions, i.e. equalizing the diagonal coefficients of ΣY to the same value

τ = Tr(ΣV)/c. (4.8)

We recall from Section 2.3.2 that IsoHash, determines the rotation with a gradient
descent converging to the intersection between the set of orthogonal matrices and the
set of transfer matrices making ΣY diagonal.

4.3. Theoretical justification of optimality of a rotation R for Hypercubic
quantization hashing 77

0 5 10 15 20 25 30

0

5

10

15

20

25

30 74
165

2331

1199

0

(a) PCA

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0

265
293
343

188

(b) ITQ

Figure 4.2: Covariance matrix of projected data from CIFAR dataset
with c = 32.

4.3 Theoretical justification of optimality of a rotation
R for Hypercubic quantization hashing

Assuming some distribution on data, we deliver in this Section two results on the
theoretical justification of applying R after PCA projection in terms of efficiency of
the binary codes:

1. We prove the optimality of choosing R as a rotation uniformizing the diagonal
of the covariance matrix.

2. We provide some lower bound on the probability of getting different binary
codes for two data points initially close to each other.

In Appendix D, we also propose an extension to the case with no assumption on
data distribution but some on matrix R: when matrix R is random. It corresponds
to the case of Online Sketching Hashing (OSH) algorithm [Leng et al., 2015a]. Given
an upper bound on the distance between two data points in the initial space, we give
a lower bound on the number of bits in common in their binary codes.

We assume here R ∈ Rc×c is a rotation5 matrix (RRT = RTR = Ic). Moreover,
we make another assumption in the form of Hypothesis 4.3.1:

Hypothesis 4.3.1 (H1). We assume: ∀t ∈ [N], (v(1)
t ,v(2)

t , . . . ,v(c)
t)T ∼ N (0,Σth

V)
s.t. diagonal coefficients of Σth

V are (σth1
2
, . . . , σthc

2). In particular, ∀t ∈ [N], ∀i ∈ [c],
v(i)
t ∼ N (0, σthi

2). Σth
V is not necessary diagonal.

Before introducing Theorem 4.3.1, note that two neighboring data points can have
very dissimilar binary codes if their projections on PCA have many coefficients near
zero, not on the same side of the hyperplanes delimiting the orthants. Indeed, in
this case, the sign function will attribute opposite bits (see again Figure 4.3 for an
illustration).

5Again, this is a slight abuse of notation since we do not need a determinant equal to 1.

78 Chapter 4. Learning compact binary codes from massive data streams with
Hypercubic hashing for Nearest Neighbors search

10 5 0 5 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(a) Initial space
10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5

15

10

5

0

5

10

(b) After PCA

10 5 0 5 10

10

5

0

5

10

(c) After ITQ rotation
10 5 0 5 10

10

5

0

5

10

(d) After UnifDiag rota-
tion

Figure 4.3: Effect of the rotation. (a) Five random blobs/clusters
have been drawn in 2D from some Gaussian distributions (we call them
respectively the yellow, the light green, the blue, the violet and the
emerald clusters). (b) They have been projected onto the c = 2 prin-
cipal components. We see that the light green, the blue and the violet
clusters are crossing the horizontal axis after PCA-projection: their
points are spread accross two (or more for the blue cluster) orthants.
Hence, some points of the same cluster will have different binary codes
since the sign function of a vector is determined by from which sides of
the hyperplanes delimiting the orthants the vector is. An idea would
be to rotate the data so that to minimize the number of points es-
tranged to the main ones in their cluster. (c) The effect of the ITQ
rotation. (d) The effect of the UnifDiag rotation. On this kind of data,
the best idea is indeed to set the clusters in the center of orthants, i.e.

to equalize the variance on both axes.

4.3. Theoretical justification of optimality of a rotation R for Hypercubic
quantization hashing 79

Therefore, after the dimensionality reduction of the data points in the original
space, a good hashing method tends to keep the coefficients of the projected data
away from zero, i.e. away from the hyperplanes delimiting the orthants. The
challenge is then to determine how to move these data points away from the
hyperplanes delimiting the orthants.

Theorem 4.3.1. Assume {xt ∈ Rd}1≤t≤N is a stream of N zero-centered data points
following Hypothesis 4.3.1. Then, choosing R so that it uniformizes the diagonal
of the covariance matrix Σth

Y is equivalent to minimizing some upper bound on the
probability that the data points are close to an hyperplane delimiting an orthant.

Proof. Let ε > 0. For i ∈ [c], t ∈ [N], let pεi be the probability (independent of t)
that y(i)

t = (Rvt)(i) is closer than ε from the orthant:

pεi = P[|y(i)
t | < ε] =

∫ ε

−ε

1√
2π(RΣth

VRT)ii
e

−s2

2(RΣthV RT)ii ds (4.9)

= 2ε√
2π(RΣth

VRT)ii
+ o(ε2)︸ ︷︷ ︸

≤0

≤ 2ε√
2π(RΣth

VRT)ii
. (4.10)

Hence,

min
R

P[
⋃
i∈[c]

(
|y(i)
t | < ε

)
] ≤ min

R

∑
i∈[c]

pεi (4.11)

≤ min
R

 2ε√
2π
∑
i∈[c]

1√
(RΣth

VRT)ii

 . (4.12)

Now, let us define:

R∗ ∈ argmin
R

 2ε√
2π
∑
i∈[c]

1√
(RΣth

VRT)ii

 . (4.13)

We denote for all i ∈ [c],
γR
i =

√
(RΣth

VRT)ii (4.14)

and
γR = (γR

1 , γ
R
2 , . . . , γ

R
c)T . (4.15)

Then, Cauchy-Schwartz inequality gives:
〈
1, γR〉2 ≤ 〈1,1〉 〈γR, γR〉

i.e.
(∑
i∈[c]

γR
i

)2

≤ c .
∑
i∈[c]

(γR
i)2 which rewrites:

∑
i∈[c]

γR
i

−1

≥ c−
1
2 .

∑
i∈[c]

(γR
i)2

− 1
2

(4.16)

80 Chapter 4. Learning compact binary codes from massive data streams with
Hypercubic hashing for Nearest Neighbors search

Besides, c2 =
〈

(γR)−
1
2 , (γR)

1
2
〉2
≤
∑
i∈[c]

(γR
i)−1 .

∑
i∈[c]

γR
i rewrites:

∑
i∈[c]

(γR
i)−1 ≥ c2 .

∑
i∈[c]

γR
i

−1

(4.17)

R is a rotation, hence Tr(RΣth
VRT) = Tr(Σth

V) =
∑
i∈[c]

(σthi)2. So,
∑
i∈[c]

(γR
i)2 =∑

i∈[c]
(RΣth

VRT)ii = Tr(Σth
V) is a constant of R. Then, Equation 4.16 and 4.17

give: ∑
i∈[c]

(γR
i)−1 ≥ c

3
2 .

∑
i∈[c]

(γR
i)2

− 1
2

= c
3
2C−

1
2 . (4.18)

Minimal value of
∑
i∈[c]

(γR
i)−1 is reached if and only if equality holds in the Cauchy-

Schwartz inequalities i.e. if and only if, for all i ∈ [c], γR
i are equal. Hence, for

all i ∈ [c], γR∗
i = γR∗

1 . Conversely, if γR∗
i = γR∗

1 for all i ∈ [c], then

R∗ ∈ argmin
R

 2ε√
2π
∑
i∈[c]

1√
(RΣth

VRT)ii

 . (4.19)

This completes the proof.

If moreover Σth
V is diagonal, inequality from Equation 4.11 becomes an equality. Thus,

choosing R so that it uniformizes the diagonal of the covariance matrix Σth
Y is ex-

actly equivalent to minimizing the probability that the data points are close to an
hyperplane delimiting an orthant plus o(ε2), where ε is the distance to the orthant.

Please note that in practice the algorithm uniformizes the diagonal coefficients
of the empirical covariance matrix ΣV. This still makes sense because 1

NΣV is a
consistent estimator of the theoretical covariance matrix Σth

V .
Now we can bound the probability of getting dissimilar codes for some data points

close to each other, as stated in Theorem 4.3.2 below:

Theorem 4.3.2. Let xt1 ∈ Rd and xt2 ∈ Rd be two data points following Hypoth-
esis 4.3.1, ε > 0 so that ‖xt1 − xt2‖2 ≤ ε and bt1 ∈ {−1, 1}c, bt2 ∈ {−1, 1}c with
bti = sign(RWxti) for i ∈ {1, 2}. Then, the probability of getting dissimilar binary
codes is upper bounded as follows:

P[distH(bt1 ,bt2) > 0] ≤ 2ε
√

2
π
c

3
2
(
Tr(Σth

V)
)− 1

2 . (4.20)

Proof. As PCA performs a projection, one has:

‖vt1 − vt2‖2 ≤ ‖xt1 − xt2‖2 ≤ ε. (4.21)

4.4. The proposed online algorithm: UnifDiag Hashing 81

Then, ‖yt1 − yt2‖2 ≤ ε since R preserves the norm as a rotation. Thus, in
particular, for all i ∈ [c], |y(i)

t1 − y(i)
t2 | ≤ ε. Then,

P[distH(bt1 ,bt2) > 0] = P[
⋃
i∈[c]

(
y(i)
t1 y(i)

t2 < 0
)
] (4.22)

≤ P[
⋃
i∈[c]

(
|y(i)
t1 | < ε ∩ |y(i)

t2 | < ε
)
] (4.23)

because
(
|y(i)
t1 | ≥ ε ∪ |y

(i)
t2 | ≥ ε

)
=⇒

(
y(i)
t1 y(i)

t2 ≥ 0
)
. Moreover,

P[
⋃
i∈[c]

(
|y(i)
t1 | < ε ∩ |y(i)

t2 | < ε
)
] ≤ P[

⋃
i∈[c]
|y(i)
t1 | < ε] + P[

⋃
i∈[c]
|y(i)
t2 | < ε]. (4.24)

Since yt1 and yt2 have the same distribution and using Theorem 4.3.1,

P[
⋃
i∈[c]
|y(i)
t1 | < ε] + P[

⋃
i∈[c]
|y(i)
t2 | < ε] = 2P[

⋃
i∈[c]
|y(i)
t1 | < ε] (4.25)

≤ 2
∑
i∈[c]

P[|y(i)
t1 | < ε] = 2ε

√
2
π
c

3
2
(
Tr(Σth

V)
)− 1

2 (4.26)

The result follows.

4.4 The proposed online algorithm: UnifDiag Hashing

4.4.1 The principle of UnifDiag

In the online setting, what one would like to maintain dynamically is only the cheap
to store c × c symmetric matrix ΣV,t = VtVT

t , the covariance matrix of projected
data seen until data t Vt = WtXt. This is straightforward while updating Wt with
OPAST algorithm [Abed-Meraim et al., 2000].

Then, again, similarly to IsoHash [Kong and Li, 2012], the rotation Rt is learned
for each t to balance the variance over the c directions given by the c principal
components of ΣV,t. After application of Rt, ΣY,t is expected to have each of its
diagonal coefficients equal to τ : ∀i ∈ [c], (ΣY,t)ii = τ = Tr(ΣV,t)/c. In the sequel,
for clarity we drop the subscript t. In our model, R is defined as a product of c− 1
Givens rotations G(i, j, θ). Definition 4.4.1 details what is a Givens rotation.
Definition 4.4.1. A Givens rotation G(i, j, θ) is a matrix of the form:

G(i, j, θ) =

1 · · · 0 · · · 0 · · · 0
...

...
...

0 · · · c · · · −s · · · 0
...

...
...

0 · · · s · · · c · · · 0
...

...
...

0 · · · 0 · · · 0 · · · 1

(4.27)

where for i > j, c := cos(θ) and s := sin(θ) are at the intersections of the i-th and
j-th rows and columns. The nonzero elements are consequently: ∀k 6= i, j, gk,k = 1,
gi,i = gj,j = c, gj,i = −s and gi,j = s for i > j. All remaining coefficients are set to
0. If i < j, G(i, j, θ) = G(j, i,−θ) taken from the definition for i > j.

82 Chapter 4. Learning compact binary codes from massive data streams with
Hypercubic hashing for Nearest Neighbors search

The principle is the following: the Givens rotations are iteratively applied left and
right to ΣV during the iterative Jacobi eigenvalue algorithm for matrix diagonaliza-
tion [Golub and van der Vorst, 2000] with c− 1 steps. For the step r ∈ [c− 1], given
ir, jr, θr,

(ΣY)r ← G(ir, jr, θr) (ΣY)r−1 G(ir, jr, θr)T (4.28)
Rr ← Rr−1 G(ir, jr, θr)T , (4.29)

where (ΣY)0 = ΣV, R0 = Ic.

Now how to determine ir, jr and θr? At each step r, ir and jr are chosen to be
the indices of some diagonal coefficients of (ΣY)r−1 below, respectively above τ . θr is
computed accordingly following the result of Theorem 4.4.1 so that at the end of step
r, r diagonal coefficients of (ΣY)r are equal to τ . So at each step r, only two diagonal
coefficients are modified: at least one of the both becomes exactly equal to τ . Indeed,
one can see that left (resp. right) multiplication by G(ir, jr, θr) impacts only ithr and
jthr rows (resp. columns). Thus, the update in Equation 4.28 at step r only changes
ithr and jthr rows and columns of (ΣY)r−1 and the two updated diagonal coefficients
(ir, ir) and (jr, jr) depend solely on ((ΣY)r−1)irir , ((ΣY)r−1)jrjr , ((ΣY)r−1)jrir and
θr which reduces the optimization of θr at each step r to a 2-dimensional problem, a
classical trick when using the Givens rotations [Golub and van der Vorst, 2000]. By
defining

a := ((ΣY)r−1)jrjr , (4.30)

d := ((ΣY)r−1)irir , (4.31)

b := ((ΣY)r−1)jrir = ((ΣY)r−1)irjr , (4.32)

the 2-dimensional problem is:(
a′ b′

b′ d′

)
:=
(
c −s
s c

)(
a b
b d

)(
c s
−s c

)
. (4.33)

Theorem 4.4.1 gives finally how to compute θr at each step given ir and jr. The
subscript r is dropped for readability.

Theorem 4.4.1. If min(a, d) ≤ τ ≤ max(a, d) (sufficient condition)6 then there

exists one θ ∈ [−π/2, π/2] s.t. a′ = τ , d′ = a + d − τ and b′ = −s2

√(
a−d

2

)2
+ b2

with cos(θ) =
√

1+c1c2−s1s2
2 and sin(θ) = − c1s2+c2s1

2 cos θ , c1 =
(
a−d

2

)
/

√(
a−d

2

)2
+ b2,

s1 = b/

√(
a−d

2

)2
+ b2, c2 = (τ − a+d

2)/
√(

a−d
2

)2
+ b2 and s2 =

√
1− c2

2 ∈ [0, 1].

6Theorem 4.4.1 uses only a sufficient condition. A weaker necessary and sufficient one to guarantee

|c2| ≤ 1 and s2 ∈ [0, 1] is a+d
2 −

√(
a−d

2

)2 + b2 ≤ τ ≤ a+d
2 +

√(
a−d

2

)2 + b2.

4.4. The proposed online algorithm: UnifDiag Hashing 83

Proof. Equation 4.33 implies:

a′ = a+ d

2 +
(
a−d

2 b
)
.

(
cos(2θ)
− sin(2θ)

)
(4.34)

d′ = a+ d

2 −
(
a−d

2 b
)
.

(
cos(2θ)
− sin(2θ)

)
(4.35)

b′ =
(
a−d

2 b
)
.

(
sin(2θ)
cos(2θ)

)
(4.36)

As, the Givens angle θ should be parameterized s.t. the diagonal coefficients are
set to a same value τ ,

(
a−d

2 b
)
.

(
cos(2θ)
− sin(2θ)

)
= τ − a+ d

2 (4.37)

Recall that:

c1 := cos(θ1) =
(
a− d

2

)
/

√(
a− d

2

)2
+ b2 (4.38)

s1 := sin(θ1) = b/

√(
a− d

2

)2
+ b2 (4.39)

c2 := cos(θ2) =
(
τ − a+ d

2

)
/

√(
a− d

2

)2
+ b2 (4.40)

s2 := sin(θ2) =
√

1− c2
2. (4.41)

The condition min(a, d) < τ < max(a, d) guarantees c2 to be well defined i.e.
|c2| ≤ 1 and s2 ∈ R+. Then, Equation 4.37 becomes:

(
c1 s1

)(cos(2θ)
− sin(2θ)

)
= c2. (4.42)

This is clear that a solution of Equation 4.42 is:(
cos(2θ)
− sin(2θ)

)
=
(
c1c2 − s1s2
c1s2 + c2s1

)
. (4.43)

In that case, one can take:

cos(θ) =

√
1 + cos(2θ)

2 =
√

1 + c1c2 − s1s2
2 (4.44)

sin(θ) = sin(2θ)
2 cos(θ) = −c1s2 + c2s1

2 cos θ (4.45)

84 Chapter 4. Learning compact binary codes from massive data streams with
Hypercubic hashing for Nearest Neighbors search

and the corresponding Givens rotation gives:

a′ = τ (4.46)
d′ = a+ d− τ (4.47)

b′ =
(
a−d

2 b
)(sin(2θ)

cos(2θ)

)
(4.48)

=

√(
a− d

2

)2
+ b2

(
c1 s1

)(−c1s2 − c2s1
c1c2 − s1s2

)
(4.49)

= −s2

√(
a− d

2

)2
+ b2 (4.50)

with s2 completely defined by Equation 4.41 and 4.40.

Note that there is no need to compute explicitly θ, θ1 or θ2. The method is
summarized in Algorithm 5 where pop(list) and add(list, e) are subroutines to delete
and return the first element of list, respectively to add e at the end of list. The mean
of ΣY diagonal coefficients being equal to τ , these indices sets are not empty:

iInf := { l ∈ {1, ..., c} | ΣYll
< τ} (4.51)

and
iSup := { l ∈ {1, ..., c} | ΣYll > τ}. (4.52)

Taking one index j from iInf and the other one i from iSup guarantees the condition
of Theorem 4.4.1, which allows to set ΣYjj to the value τ . The index j can then be
removed from iInf and as ΣYii is set to a+ d− τ , the index i reassigned to iInf if
τ > a+d

2 , or in iSup if τ < a+d
2 . The number of diagonal coefficients of ΣY different

from τ has been decreased by one. Finally, the necessary number of iterations to
completely empty iInf and iSup, i.e. uniformizing ΣY diagonal, is bounded by c−1.

Finally, Figure 4.4 shows the covariance matrix of data from CIFAR dataset re-
sulting from the rotation with IsoHash and UnifDiag for c = 32. The particular
structure of covariance for UnifDiag is due to the sparsity of the rotation.

4.4.2 Time and space complexities comparison with existing online
works

Our algorithm requires the storage of two c × c matrices, besides obviously Wt and
Rt: one with OPAST to obtain Wt and ΣV,t for Rt. One update with OPAST for
Wt and ΣV,t costs 4dc+O(c2). Then, to compute Rt, at most c−1 Givens rotations
are needed, each implying four column or row multiplications i.e. 4c flops. So the
final time complexity of our algorithm is 4dc+O(c2).

We compare here the spatial and time costs of our method with, to the best of
our knowledge, the only online unsupervised method, Online Sketching Hashing
(OSH) [Leng et al., 2015a] which is the most similar to ours, i.e. unsupervised,
hyperplanes-based, from the Hypercubic hashing family and reading one data point
at a time. Recall from Section 2.3.2, despite what is announced, OSH is fundamentally
mini-batch: the stream is divided into chunks of data for which a matrix S ∈ Rd×l as a
sketch of the whole dataset X ∈ Rd×N is maintained. Then the principal components
are computed from the updated sketch S. The projection of the data followed by
the random rotation can be applied only after this step. Therefore there are actually
two passes over the data by reading twice data of each chunk. Without counting the

4.4. The proposed online algorithm: UnifDiag Hashing 85

Algorithm 5 Diagonal Uniformization algorithm (UnifDiag)
1: Inputs : ΣV (c× c, symmetric), tolerance: tol
2: R← Ic // c× c Identity matrix
3: τ ← Tr(ΣV)/c
4: ΣY ← ΣV
5: it = 0
6: iInf = { l ∈ {1, ..., c} | (ΣY)ll < τ − tol}
7: iSup = { l ∈ {1, ..., c} | (ΣY)ll > τ + tol}
8: while it < c− 1 & not isEmpty(iInf) & not isEmpty(iSup) do
9: // Givens rotation parameters computation:

10: j ← pop(iInf)
11: i← pop(iSup)
12: a← ΣY[j, j]
13: b← ΣY[i, j]
14: d← ΣY[i, i]
15: c, s from formula in Theorem 4.4.1, p. 82.
16: it← it+ 1
17: // ΣY update:
18: rowj ← ΣY[j, :]
19: rowi ← ΣY[i, :]
20: ΣY[j, :] = c× rowj − s× rowi;
21: ΣY[i, :] = s× rowj + c× rowi
22: ΣY[:, j] = ΣY[j, :]
23: ΣY[:, i] = ΣY[i, :]
24: ΣY[j, j] = a′

25: ΣY[i, i] = d′

26: ΣY[j, i] = b′ from formula in Theorem 4.4.1, p. 82.
27: // Rotation update:
28: colj ← R[:, j]
29: coli ← R[:, i]
30: R[:, j] = c× colj − s× coli
31: R[:, i] = s× colj + c× coli
32: // Indices list update:
33: if a+d

2 < τ − tol then
34: add(iInf, i)
35: if a+d

2 > τ + tol then
36: add(iSup, i)
37: return R

86 Chapter 4. Learning compact binary codes from massive data streams with
Hypercubic hashing for Nearest Neighbors search

0 5 10 15 20 25 30

0

5

10

15

20

25

30

296

0

161

(a) IsoHash

0 5 10 15 20 25 30

0

5

10

15

20

25

30

296

0

184

(b) UnifDiag

Figure 4.4: Covariance matrix of rotated PCA-projected data from
CIFAR dataset with c = 32. The particular structure of covariance for

UnifDiag is due to the sparsity of the rotation.

projection matrix and the rotation, OSH needs spatially to maintain the sketch S
which costs O(d× l) with c� l� d. The SVD decomposition then needs O(dl+ l2)
space. In comparison, we only need O(c2). For each round, OSH takes O(dl2 + l3)
time to learn the principal components, i.e. O(dl + l2) for each new data seen.

We also compare with IsoHash [Kong and Li, 2012]. Although it counts as
an offline method because no technique is proposed to approximatively estimate
the principal subspace, IsoHash rotation can be applied after for instance OPAST.
IsoHash rotation computation involves an integration of a differential equation
using Adams-Bashforth-Moulton PECE solver which costs O(c3) time. Even if c
is small in comparison to d and the complexities do not either depend on N , our
model has the advantages to have a lower time cost and to be much more simple
than IsoHash. Thus, our method shows advantages in terms of spatial and time
complexities over OSH and IsoHash. Moreover, binary hash codes can be directly
computed as a new data point is seen, while OSH, as a mini-batch method, has a delay.

Finally, Figure 4.5 illustrates the fully online pipeline for the hashing technique
with OPAST and UnifDiag.

I: x ∈ Rd (stream)

W,ΣV = OPAST (x,W)
R =

UnifDiag(ΣV)
b = sign(RWx)

O: b ∈ {−1, 1}c

W

ΣV R

WW

Figure 4.5: The fully online pipeline for the hashing technique with
OPAST and UnifDiag. For clarity, the subscript t is dropped.

4.5. Experiments 87

4.5 Experiments

Experiments have been carried out on a single processor machine (Intel Core i7-5600U
CPU @ 2.60GHz, 4 hyper-threads) with 16GB RAM and implemented in Python7.

4.5.1 Comparison of Hypercubic Quantization Hashing methods for
the Nearest Neighbors search task

We propose first an experimental comparison for different code lengths in the batch
and the online settings of our algorithm with the existing competing methods.

The quality of the hashing is assessed here on the Nearest Neighbors (NN) search
task: the retrieved results of the NN search task performed on the c-bits codes of
hashed data points are compared with the true nearest neighbors induced by the
Euclidean distance applied on the initial d-dimensional real-valued descriptors. Mean
Average Precision (MAP), commonly used in Information Retrieval tasks, measures
then the accuracy of the result by taking into account the number of well-retrieved
nearest neighbors and their rank. Based on the MAP criteria, two types of experi-
ments are presented:

1. UnifDiag algorithm is compared with batch-based methods to show that the
streaming constraint does not lose too much accuracy in NN search results.

2. In the online context, the algorithm is set against to existing online methods
in order to exhibit its efficiency. In both cases, tests were conducted on two
datasets: CIFAR-108 and GIST1M9.

CIFAR-10 (CIFAR) contains 60000 32×32 color images equally divided into 10 classes.
960-D GIST descriptors were extracted from those data. GIST1M (GIST) contains
1 million 960-D GIST descriptors, from which 60000 instances were randomly chosen
from the first half of the learning set. To perform the NN search task, 1000 queries
are randomly sampled and the 59000 remaining data points are used as training set.
Then, the sets of neighbors and non-neighbors of the queries are determined by a
nominal threshold which is arbitrarily chosen to be the average distance to the 600th
nearest neighbor in the training set (1% of each dataset). After binary hashing of
the query and training sets, MAP at 2000 is computed over the first 2000 retrieved
nearest neighbors from the training set according to the sorted values of the Hamming
distance between the binary codes. Indeed, we are obviously interested in the fact
that the nearest neighbors are returned first, so MAP@2000 is enough. Results are
averaged over 5 random training/test partitions.

Comparison with batch-based methods

In the offline setting, the hashing function is learned over the whole training set and
the final MAP is printed for different values of c. Figure 4.6 shows the MAP results for
UnifDiag against three unsupervised batch-based methods: ITQ (K = 50), IsoHash
(the original version preceded by a PCA projection) and PCA followed by a random
rotation. The evaluation is made after having seen the whole training set. The online
estimation of the principal subspace via OPAST instead of the classical PCA does not
lead to a loss of accuracy, since UnifDiag reaches similar performances to batch-based
methods for every tested code lengths.

7Code available on Github:
https://github.com/annemorvan/UnifDiagStreamBinSketching

8http://www.cs.toronto.edu/~kriz/cifar.html
9http://corpus-texmex.irisa.fr/

https://github.com/annemorvan/UnifDiagStreamBinSketching
http://www.cs.toronto.edu/~kriz/cifar.html
http://corpus-texmex.irisa.fr/

88 Chapter 4. Learning compact binary codes from massive data streams with
Hypercubic hashing for Nearest Neighbors search

8 16 32 64
Data

0.175

0.200

0.225

0.250

0.275

0.300

M
AP

@
20

00

ITQ
IsoHashPCA
randRotPCA
UnifDiagOPAST

(a) CIFAR

8 16 32 64
Data

0.22

0.24

0.26

0.28

0.30

0.32

0.34

M
AP

@
20

00

ITQ
IsoHashPCA
randRotPCA
UnifDiagOPAST

(b) GIST

Figure 4.6: MAP@2000 in the batch setting for various code lengths
c ∈ {8, 16, 32, 64}.

4.5. Experiments 89

Comparison with online methods

In the online setting, we print the MAP after every 5 data points until the 3000 ones
because a plateau is then reached (but the NN are still computed over the whole
training set). We compared here four unsupervised online baseline methods that
follow the basic hashing scheme

Φ(xt) = sgn(W̃txt), (4.53)

where the projection matrix W̃t ∈ Rc×d is determined according to the chosen
method:

1. OSH [Leng et al., 2015a]: the number of chunks/rounds is set to 100 and
l = 200.

2. RandRotOPAST: Wt is the PCA matrix obtained with OPAST and Rt a
constant random rotation.

3. IsoHashOPAST: Rt is obtained with IsoHash.

4. UnifDiagOPAST.

Figure 4.7 and 4.8 (best viewed in color) show the MAP for both datasets for different
code lengths. Not surprisingly, UnifDiagOPAST and the online version of IsoHash
with OPAST exhibit similar behavior for both datasets. Moreover, for small values of
code length (c < 64), UnifDiagOPAST outperforms OSH and randRotOPAST while
all have similar results for c = 64.

4.5.2 Effect of the rotation on the binary codes

In this Section, in the offline context, the experiments shed light on the theory from
Section 4.3 by showing why a rotation gives better small binary codes than simply
PCA projection. Rotations considered are random or learned from ITQ, IsoHash and
UnifDiag.

First, for CIFAR and GIST datasets, we compute the cumulative distribution
function of P[|y(i)

t | < ε], i.e. the probability for all t ∈ [N] of yt ∈ Rc to have entries
near zero before and after the rotation application. Figure 4.9 plots P[|y(i)

t | < ε] for
c = 32 (averaged on 5 runs). Similar results are obtained for other code lengths. For
all rotation-based methods, this probability is always lower similarly than the one
associated to only PCA projection.

Secondly, we provide a visualization of the rotation efficiency in the clustering
task. This experiment is made on simulated data since a ground truth partition is
required. We consider C equally distributed clusters of N data points such that the
nearest neighbors of a data point are the points from the same cluster. We choose
the centroids from these clusters randomly. The expected result is a small variance
of the binary codes within the same cluster. Figure 4.10 displays the small binary
embeddings obtained with and without rotation for C = 6, n = 6000 points with
d = 960 and c = 32. Each column is a binary code: a yellow case represents a bit
equal to 1 and a red pixel stands for −1. Each cluster, delimited by a blue vertical
line, contains 1000 points plotted in order. An interpretation of the results is that
the rotation tends to move data away from the hyperplanes delimiting the orthant
since more binary codes after application of the rotation have bits in common. This
is illustrated by the obtained blocks of the same color, as opposed to the "blurry"
visualization implied by the PCA alone.

90 Chapter 4. Learning compact binary codes from massive data streams with
Hypercubic hashing for Nearest Neighbors search

0 500 1000 1500 2000 2500 3000
Data

0.12

0.14

0.16

0.18

M
AP

@
20

00

randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(a)

0 500 1000 1500 2000 2500 3000
Data

0.14

0.16

0.18

0.20

0.22

M
AP

@
20

00
randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(b)

0 500 1000 1500 2000 2500 3000
Data

0.18

0.20

0.22

0.24

0.26

M
AP

@
20

00

randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(c)

0 500 1000 1500 2000 2500 3000
Data

0.22

0.24

0.26

0.28

0.30

M
AP

@
20

00

randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(d)

Figure 4.7: MAP@2000 in the online setting for different code
lengths and CIFAR: (a) c = 8, (b) c = 16, (c) c = 32, (d) c = 64.

4.6. Conclusion 91

0 500 1000 1500 2000 2500 3000
Data

0.12

0.14

0.16

0.18

0.20

0.22
M

AP
@

20
00

randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(a)

0 500 1000 1500 2000 2500 3000
Data

0.16

0.18

0.20

0.22

0.24

0.26

0.28

M
AP

@
20

00

randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(b)

0 500 1000 1500 2000 2500 3000
Data

0.22

0.24

0.26

0.28

0.30

0.32

M
AP

@
20

00

randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(c)

0 500 1000 1500 2000 2500 3000
Data

0.28

0.30

0.32

0.34

M
AP

@
20

00
randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(d)

Figure 4.8: MAP@2000 in the online setting for different code
lengths and GIST: (a) c = 8, (b) c = 16, (c) c = 32, (d) c = 64.

More quantitatively, Table 4.1 compiles the variance of the compact binary rep-
resentations averaged on the 6 clusters for 10 partitions. Not surprisingly, PCA gives
the worst results: the high variance in the binary codes explains the previous "blurry"
visualization. Conversely, all rotation-based methods tend to reduce the variance in
the binary codes.

4.6 Conclusion

State-of-the-art unsupervised Hypercubic quantization hashing methods preprocess
data with Principal Component Analysis and then rotate the projected data to bal-
ance variance over the different directions. It has been shown experimentally that
the compact binary representations that they compute with a rotation give better
accuracy in the nearest neighbors search task than simply the PCA-projection. Nev-
ertheless, to the best of our knowledge, this is the first time that theoretical guarantees
are provided. In particular, rotations uniformizing the diagonal of the data covari-
ance matrix are interesting since they enable to deploy the hashing algorithm in the
streaming setting.

Thus, we introduced a novel method for learning distance-preserving binary em-
beddings of high-dimensional data streams with convergence guarantees. Unlike clas-
sical state-of-the-art methods, our algorithm does not need to store the whole dataset
and enables to obtain without a delay a binary code as a new data point is seen. Our
approach shows promising results as evidenced by the experiments. It can achieve

92 Chapter 4. Learning compact binary codes from massive data streams with
Hypercubic hashing for Nearest Neighbors search

10-2 10-1 100 101

ε

10-2

10-1

100

[|y
(i

)
t
|<

ε] PCA
randRot
ITQ
UnifDiag
IsoHash

(a) CIFAR

10-2 10-1 100

ε

10-1

100

[|y
(i

)
t
|<

ε] PCA
randRot
ITQ
UnifDiag
IsoHash

(b) GIST

Figure 4.9: Cumulative distribution function for CIFAR and GIST
and different hashing methods: ∀i ∈ [c],P[|y(i)

t | < ε] for c = 32.

Table 4.1: Mean variance for the binary codes (averaged on 10 runs)
obtained for 6 convex clusters with random centroids in d = 960.

8 16 32 64
PCA 7.1× 10−2 6.5× 10−2 4.0× 10−2 2.2× 10−2

randRot 3.9× 10−4 2.6× 10−4 1.9× 10−4 7.4× 10−5

ITQ 0.0 2.0× 10−4 1.1× 10−4 1.3× 10−4

UnifDiag 4.1× 10−4 2.2× 10−4 2.5× 10−4 1.1× 10−4

IsoHash 1.4× 10−4 3.3× 10−4 2.1× 10−4 1.3× 10−4

better accuracy than state-of-the-art online unsupervised methods while saving con-
siderable computation time and spatial requirements.

Besides, it has been shown that the Givens rotations, that are a classical tool for
QR factorization, singular and eigendecomposition or joint diagonalization, can also
be used to uniformize the diagonal of a symmetric matrix via an original Givens angle
tuning technique.

As there exists possibly an infinity of rotations uniformizing the covariance matrix
diagonal, further investigation would be to evaluate among them which ones perform
better. Another interesting perspective is to evaluate the performance of the compact
binary codes in other machine learning applications: instead of using the original data,
one could use directly these binary embeddings to perform unsupervised or supervised
learning while preserving the accuracy.

4.6. Conclusion 93

0 1000 2000 3000 4000 5000 6000
Data

1
8

16

24

32

Co
de

 le
ng

th

(a)

0 1000 2000 3000 4000 5000 6000
Data

1
8

16

24

32
Co

de
 le

ng
th

(b)

0 1000 2000 3000 4000 5000 6000
Data

1
8

16

24

32

Co
de

 le
ng

th

(c)

0 1000 2000 3000 4000 5000 6000
Data

1
8

16

24

32

Co
de

 le
ng

th

(d)

0 1000 2000 3000 4000 5000 6000
Data

1
8

16

24

32

Co
de

 le
ng

th

(e)

Figure 4.10: Effect of the rotation on the small binary codes for
simulated data: 6 clusters with d = 960 and c = 32: (a) PCA, (b)

RandRot, (c) ITQ, (d) IsoHash, (e) UnifDiag.

95

Chapter 5

Graph sketching-based massive
data clustering

Contents
5.1 Introduction . 96
5.2 Theoretical framework motivating MST-based clustering

methods . 97
5.2.1 Further notations . 97
5.2.2 Theoretical justification by notion of Cluster 98

5.3 DBMSTClu, MST-based clustering 99
5.3.1 DBMSTClu principle . 99
5.3.2 Separation, dispersion and validity indices concepts 99
5.3.3 DBMSTClu algorithm . 102

5.4 Theoretical guarantees for DBMSTClu 102
5.4.1 DBMSTClu exact clustering recovery proof 103
5.4.2 Analysis of DBMSTClu algorithm 108

5.5 Implementation for linear time and space complexities . . 113
5.6 Retrieval of an approximate MST via sketching 115

5.6.1 Streaming graph sketching 115
5.6.2 Recovery of an approximate MST from the graph sketch . . 116

5.7 Experiments . 116
5.7.1 Safety of the sketching . 117

Synthetic datasets . 117
Real dataset . 117
Results . 117

5.7.2 Scalability of the clustering 120
5.8 Conclusion . 121

This Chapter is a compilation of two published papers in separate collaborations
with Krzysztof Choromanski1 on the one hand and Rafaël Pinot2 and Florian Yger3

on the other hand. The corresponding papers have been published in the two following
international conferences:

• SIAM International Conference on Data Mining (SDM) 2018 under the title
"Graph sketching-based Space-efficient Data Clustering",

1Google Brain Robotics
2CEA, Université Paris-Dauphine
3Université Paris-Dauphine

96 Chapter 5. Graph sketching-based massive data clustering

• International conference on Uncertainty in Artificial Intelligence (UAI) 2018
under the title "Graph-based Clustering under Differential Privacy".

5.1 Introduction

As mentioned earlier in this thesis, clustering is one of the principal data mining tasks
consisting in grouping related objects in an unsupervised manner. It is expected that
objects belonging to the same cluster are more similar to each other than to objects
belonging to different clusters. Sections 1.1.2 and 2.3.4 testify there exists a variety
of algorithms performing this task. Recall that methods like k-means [Lloyd, 1982],
k-medians [Jain and Dubes, 1988] or k-medoids [Kaufman and Rousseeuw, 1987]
are useful unless the number and the shape of the clusters are unknown which is
unfortunately often the case in real-world applications. They are typically unable
to find clusters with a non-convex shape. Although DBSCAN [Ester et al., 1996]
does not have these disadvantages, its resulting clustering still depends on the chosen
parameter values.

One of the successful approaches relies on a graph representation of the data.
Given a set of N data points {x1, . . . , xN}, a graph can be built based on the
dissimilarity of the data where the points of the dataset are the vertices and the
weighted edges express dissimilarities or "distances" between these objects. Besides,
the dataset can be already a graph G modeling a network in many fields, such as
bioinformatics - where gene-activation dependencies are described through a network
- or social, computer, information, transportation network analysis. The clustering
task consequently aims at detecting clusters as groups of nodes close in terms of some
specific similarity. For instance, these clusters can be seen as groups of nodes that
are densely connected with each other and sparsely connected to vertices of other
groups. In this context, Spectral Clustering [Nascimento and de Carvalho, 2011] is
a popular tool to recover clusters with some particular structures for which classical
k-means algorithm fails. When dealing with large scale datasets, a main bottleneck
of the technique is to perform the partial eigendecomposition of the associated graph
Laplacian matrix, though. Another inherent difficulty is to handle the huge number
of nodes and edges of the induced dissimilarity graph: storing all edges can cost
up to O(N2) where N is the number of nodes. Over the last decade, it has been
established that the dynamic streaming model [Muthukrishnan, 2005] associated with
linear sketching techniques [Ahn et al., 2012a] - also suitable for distributed processing
-, is a good way for tackling this last issue.

Contributions In this Chapter, our contributions are threefold:

1. A new clustering algorithm DBMSTClu is presented providing a solution to the
following issues:

(a) detecting arbitrary-shaped data clusters,
(b) with no parameter,
(c) in a space-efficient manner by working on a limited number of linear mea-

surements, a sketched version of the dissimilarity graph G.

DBMSTClu returns indeed a partition of the N points to cluster by relying
only on a Minimum Spanning Tree (MST) of the dissimilarity graph G. This
MST takes O(N) memory space. Moreover, it can be space-efficiently approx-
imatively retrieved in the dynamic semi-streaming model by handling G as a

5.2. Theoretical framework motivating MST-based clustering methods 97

stream of edge weight updates; G is sketched in only one pass over the stream of
edge weight updates into a compact structure taking O(N polylog(N)) space.
DBMSTClu then automatically identifies the right number of non-convex clus-
ters by cutting off suitable edges of the resulting approximate MST in O(N)
time.

2. DBMSTClu belongs to the family of MST-based clustering algorithms. The
first theoretical justifications of MST-based clustering algorithms are given in
order to motivate the design of our algorithm.

3. Finally, DBMSTClu is endowed with specific theoretical guarantees on the re-
covery of a good clustering partition.

Plan of the Chapter The remaining of this Chapter is organized as follows.
Before introducing in Section 5.3 the new proposed MST-based algorithm for

clustering - DBMSTClu (DB for Density-Based) - theoretical motivation is given to
justify the relying on a Minimum Spanning Tree in Section 5.2.

Theoretical guarantees of DBMSTClu are discussed in Section 5.4 and the imple-
mentation enabling its scalability is detailed in Section 5.5.

Then, Section 5.6 recalls the fundamentals of the sketching technique that can be
used to obtain an approximate MST of the dissimilarity graph required as input of
DBMSTClu4.

Section 5.7 presents the experimental results comparing the proposed clustering
algorithm to some other existing methods.

Finally, Section 5.8 concludes the Chapter and discusses future directions.

5.2 Theoretical framework motivating MST-based clus-
tering methods

As previously stated, DBMSTClu is a member of the MST-based clustering al-
gorithms family. The latter, however efficient, lacked of proper motivation. To
this end, this Section closes the gap by providing a theoretical framework for
MST-based clustering methods.

Before justifying the use of MST-based clustering algorithms by definining prop-
erly the concept of a cluster in Section 5.2.1, used notations are defined in Sec-
tion 5.2.2.

Note that the term MST is kept in the whole Chapter for simplicity, but the
conceived algorithm also works on a Minimum Spanning Forest (MSF) if the initial
graph is disconnected.

5.2.1 Further notations

We keep notation from Section 2.4 but for convenience, we recall it here with some
new ones. Let G = (V,E,w) be a simple undirected weighted graph with a vertex
set V , an edge set E, and a weight function w := E → R but we assume the weight
function w := E → (0, 1] for the clustering algorithm. One will respectively call the
edge set and the node set of a graph G using the applications E(G) and V (G). Given
a node set S ⊂ V , one denotes by G|S the subgraph induced by S.

4Full details of the sketching technique are given in Chapter 2, Section 2.4.2 from p.45.

98 Chapter 5. Graph sketching-based massive data clustering

We call G = (V,E) the topology of the graph. Cursive letters are used to represent
weighted graphs and straight letters refer to topological arguments.

Since graphs are simple, the path Pu−v between two vertices u and v is character-
ized either as the ordered sequence of vertices {u, . . . , v} or the corresponding binding
edges depending on the context. Besides, edges eij denote an edge between nodes i
and j.

In practice, either such an underlying network already exists and is the graph data
G or G can be built as the dissimilarity graph between the points from a dataset: the
points of the dataset are the vertices and the weighted edges express dissimilarities or
"distances" between these objects. For instance, one can take the Euclidean distance
(see Definition A.0.4 p.128 for a recall).

5.2.2 Theoretical justification by notion of Cluster

The notion of Cluster later explicited relies on the following definition of theminimum
path distance between two nodes in the graph.

Definition 5.2.1 (Minimum path distance). Let be G = (V,E,w) and u, v ∈ V . The
minimum path distance between u and v is

distG(u, v) = min
Pu−v

∑
e∈Pu−v

w(e) (5.1)

with Pu−v a path (edge version) from u to v in G.

Definition 5.2.2 (Cluster). Let be G = (V,E,w) a graph, w := E → (0, 1], (V, distG)
a metric space based on the minimum path distance distG defined on G and D ⊂ V a
node set. C ⊂ D is a cluster if and only if |C| > 2 and ∀C1, C2 s.t. C = C1 ∪C2 and
C1 ∩ C2 = ∅, one has:

argmin
z∈D\C1

{ min
v∈C1

distG(z, v) } ⊂ C2 (5.2)

Assuming that a cluster is built of at least 3 points makes sense since singletons
or groups of 2 nodes can be legitimately considered as noise. For simplicity of the
proofs, the following theorems hold in the case where noise is neglected. However,
they are still valid in the setting where noise is considered as singletons (with each
singleton representing a generalized notion of cluster).

Theorem 5.2.1. Let be G = (V,E,w) a graph and T a minimum spanning tree of G.
Let also be C a cluster in the sense of Definition 5.2.2 and two vertices v1, v2 ∈ C.
Then, VPv1−v2 ⊂ C with Pv1−v2 a path from v1 to v2 in G, and VPv1−v2 the set of
vertices contained in Pv1−v2.

Proof. Let be v1, v2 ∈ C. If v1 and v2 are neighbors, the result is trivial. Oth-
erwise, as T is a tree, there exists a unique path within T between v1 and v2
denoted by Pv1−v2 = {v1, . . . , v2}. Let now prove by reductio ad absurdum that
VPv1−v2 ⊂ C. Suppose there is h ∈ VPv1−v2 s.t. h /∈ C. We will see that it leads
to a contradiction. We set C1 to be the largest connected component (regarding
the number of vertices) of T s.t. v1 ∈ C1, and every nodes from C1 are in C.
Because of h’s definition, v2 /∈ C1. Let be C2 = C\C1. C2 6= ∅ since v2 ∈ C2. Let
be z∗ ∈ argmin

z∈V \C1

{ min
v∈C1

distG(z, v) } and e∗ = (z∗, v∗) an edge that reaches this

minimum. Let us show that z∗ /∈ C. If z∗ ∈ C, then two possibilities hold:

5.3. DBMSTClu, MST-based clustering 99

1. There is an edge ez∗ ∈ T , s.t. ez∗ = (z∗, z′) with z′ ∈ C1. This is impossible,
otherwise by definition of a connected component, z∗ ∈ C1. Contradiction.

2. For all ez∗ = (z∗, z′) s.t z′ ∈ C1, one has ez∗ /∈ T . In particular, e∗ /∈ T .
Since h is the neighbor of C1 in G, there is also eh ∈ T , s.t. eh = (h, h′)
with h′ ∈ C1. Once again two possibilities hold:

(a) w(ez∗) = min
z∈V \C1

{ min
v∈C1

distG(z, v) } < w(eh). Then, if we replace eh by

ez∗ in T , its total weight decreases. So T is not a minimum spanning
tree. Contradiction.

(b) w(ez∗) = w(eh), therefore h ∈ argmin
z∈V \C1

{ min
v∈C1

distG(z, v) }. Since h /∈ C,

one gets that argmin
z∈V \C1

{ min
v∈C1

distG(z, v) } 6⊂ C2. Thus, C is not a

cluster. Contradiction.

It has been proven that z∗ /∈ C. In particular, z∗ /∈ C2. Then,
argmin
z∈V \C1

{ min
v∈C1

distG(z, v) } 6⊂ C2. Thus, C is not a cluster. Contradiction.

Finally h ∈ C and VPv1−v2 ⊂ C.

Theorem 5.2.1 states that, given a graph G, an MST T , and any two nodes of
C, every node in the path between them is in C. This means that a cluster can be
characterized by a subtree of T . It justifies the use of all MST-based methods for
data clustering or node clustering in a graph.

All the clustering algorithms based on successively cutting edges in an MST to
obtain a subtree forest are meaningful in the sense of Theorem 5.2.1.

In particular, this Theorem holds for the use of DBMSTClu presented in Section 5.3.

5.3 DBMSTClu, MST-based clustering

Now that the use of MST-based clustering methods has been legitimized, this Section
introduces the proposed DBMSTClu algorithm.

5.3.1 DBMSTClu principle

Let us consider T an MST of G, as the unique input of the clustering algorithm
DBMSTClu. The clustering partition results then from successive cuts on T so that
a new cut in T splits a connected component into two new ones. Each final connected
component, a subtree of T , represents a cluster. Initially, T is one cluster containing
all nodes. Then, at each iteration, an edge is cut if some criterion, called Validity
Index of a Clustering Partition (DBCVI) is improved. This edge is greedily chosen to
locally maximize the DBCVI at each step. When no improvement on DBCVI can be
further made, the algorithm stops. The basic scheme of this algorithm is described
in Figure 5.1.

The DBCVI is defined as the weighted average of all cluster validity indices which
are based on two positive quantities, the Dispersion and the Separation of a cluster:

5.3.2 Separation, dispersion and validity indices concepts

Definition 5.3.1 (Cluster Dispersion). The Dispersion of a cluster Ci (DISP) is
defined as the maximum edge weight of Ci. If the cluster is a singleton (i.e. contains

100 Chapter 5. Graph sketching-based massive data clustering

Input: T

Compute
the

DBCV I
for each

cut

Apply
the best
cut on T

Does the
best cut
improve

the
DBCV I?

Return the
clustering
partition

yes

no

Figure 5.1: Basic scheme illustrating DBMSTClu algorithm.

only one node), the associated Dispersion is set to 0. More formally:

∀i ∈ [K], DISP(Ci) :=

 max
j, ej∈Ci

wj if |E(Ci)| 6= 0

0 otherwise.
(5.3)

Definition 5.3.2 (Cluster Separation). The Separation of a cluster Ci (SEP) is
defined as the minimum distance between the nodes of Ci and the ones of all other
clusters Cj , j 6= i, 1 ≤ i, j ≤ K,K 6= 1 where K is the total number of clusters. In
practice, it corresponds to the minimum weight among all already cut edges from T
comprising a node from Ci. If K = 1, the Separation is set to 1. More formally, with
incCuts(Ci) denoting cut edges incident to Ci,

∀i ∈ [K], SEP(Ci) :=

 min
j, ej∈incCuts(Ci)

wj if K 6= 1

1 otherwise.
(5.4)

b
b

b

b

b
b

b

b b
b

b

b

SEP(C1)

DISP(C1)

C1

Figure 5.2: SEP and DISP definitions with N = 12, K = 3 for
dashed cluster C1 in the middle.

Figure 5.2 sums up the introduced definitions. The higher the Separation, the
farther is the cluster separated from the other clusters, while low values suggest that
the cluster is close to the nearest one.

5.3. DBMSTClu, MST-based clustering 101

Definition 5.3.3 (Validity Index of a Cluster). The Validity Index of a Cluster Ci
is defined as:

VC(Ci) := SEP(Ci)−DISP(Ci)
max(SEP(Ci),DISP(Ci))

∈ [−1; 1] (5.5)

The Validity Index of a Cluster (illustration in Figure 5.3) is defined s.t. −1 ≤
VC(Ci) ≤ 1 where 1 stands for the best validity index and −1 for the worst one. No
division by zero (i.e. max(DISP(Ci),SEP(Ci)) = 0) happens because Separation is
always strictly positive. When Dispersion is higher than Separation, −1 < VC(Ci) <
0. Conversely, when Separation is higher than Dispersion, 0 < VC(Ci) < 1. So our
clustering algorithm will naturally encourage clusters with a higher Separation over
those with a higher Dispersion.

b b bϵ 1

VC(Cϵ
left) VC(Cϵ

right)

b b bϵ 1

VC(C1
left) VC(C1

right)

Figure 5.3: Validity Index of a Cluster’s example with N = 3. For a
small ε, cutting edge with weight ε or 1 gives respectively the left and

right partitions.
(left) VC(Cεleft) = 1; VC(Cεright) = ε− 1 < 0.
(right) VC(C1

left) = 1− ε > 0; VC(C1
right) = 1.

The right partition, for which validity indices of each cluster are posi-
tive, is preferred.

Definition 5.3.4 (Density-Based Validity Index of a Clustering Partition). The
Density-Based Validity Index of a Clustering partition Π = {Ci}, 1 ≤ i ≤ K noted
DBCVI(Π) is defined as the weighted average of the Validity Indices of all clusters in
the partition where N is the number of vertices.

DBCVI(Π) :=
K∑
i=1

|Ci|
N

VC(Ci) ∈ [−1, 1] (5.6)

The Density-Based Validity Index of Clustering lies also between −1 and 1 where
1 stands for an optimal density-based clustering partition while −1 stands for the
worst one.

Our defined quantities are significantly distinct from the separation and sparseness
defined in work from Moulavi et al. [2014]. Indeed, firstly, their quantities are not
well defined for the special cases when clusters have less than four nodes or a partition
containing a lonely cluster. Secondly, the way they differentiate internal and external
nodes or edges does not properly recover easy clusters like convex blobs. Moreover,
our DBCVI differs from the Silhouette Coefficient [Rousseeuw, 1987]. The latter
does not perform well with non-convex-shaped clusters and although this is based
on close concepts like tightness and also separation, the global coefficient is based on
the average values of Silhouette coefficients of each point, while our computation of
DBCVI begins at the cluster level.

102 Chapter 5. Graph sketching-based massive data clustering

5.3.3 DBMSTClu algorithm

DBMSTClu is summarized in Algorithm 6. In the latter, evaluateCut(.) computes
the DBCVI when the cut in parameter is applied to T .

The algorithm starts from a partition with one cluster containing the whole
dataset whereas the associated initial DBCVI is set to the worst possible value: −1.
As long as there exists a cut which makes the DBCVI greater from (or equal to)
the one of the current partition, a cut is greedily chosen by maximizing the obtained
DBCVI among all the possible cuts.

When no direct improvement is possible, the algorithm stops. It is guaranteed that
the cut edge locally maximizes the DBCVI at each iteration since by construction, the
algorithm will try each possible cut. In practice, the algorithm stops after a reasonable
number of cuts, getting trapped in a local maximum corresponding to a meaningful
cluster partition. This prevents from obtaining a partition where all the points are
in singleton clusters. Indeed, such a result (K = N) is not desirable, although it
is optimal in the sense of the DBCVI, since in this case, ∀i ∈ [K], DISP(Ci) = 0
and VC(Ci) = 1. Moreover, the non-parametric characteristic helps achieving stable
partitions. In the next Section, several insights are given to support theoretically
these claims.

Algorithm 6 DBMSTClu(T)
1: Input: T , the MST
2: dbcvi← −1.0
3: clusters← ∅
4: cut_list← {E(T)}
5: while dbcvi < 1.0 do
6: cut_tp← ∅
7: dbcvi_tp← dbcvi
8: for each cut in cut_list do
9: newDbcvi← evaluateCut(T , cut)

10: if newDbcvi ≥ dbcvi_tp then
11: cut_tp← cut
12: dbcvi_tp← newDbcvi
13: if cut_tp 6= ∅ then
14: clusters← cut(clusters, cut_tp)
15: dbcvi← dbcvi_tp
16: cut_list← cut_list\{cut_tp}
17: else
18: break
19: return clusters, dbcvi

5.4 Theoretical guarantees for DBMSTClu

Section 5.4.1 gives theoretical guarantees on the exact recovery of an underlying
clustering partition. In Section 5.4.2, further theoretical results are presented to give
more intuition on the way the algorithm works.

All presented results are completely independent on the way an exact or approx-
imate MST is computed. In particular, they are independent of the sketching

5.4. Theoretical guarantees for DBMSTClu 103

phase which can be used to retrieve efficently an approximate MST.

5.4.1 DBMSTClu exact clustering recovery proof

In this Section, please note that the notion of cluster follows Definition 5.2.2 to achieve
theoretical guarantees. Let us first begin by introducing some definitions.

Definition 5.4.1 (Cut). Let us consider a graph G = (V,E,w) with K clusters, T
an MST of G. Let denote (C∗i)i∈[K] the set of the clusters. Then, CutG(T) := {ekl ∈
T | k ∈ C∗i , l ∈ C∗j , i, j ∈ [K]2, i 6= j}. In the sequel, for simplicity, we denote
e(ij) ∈ CutG(T) the edge between cluster C∗i and C∗j .

CutG(T) is basically the set of effective cuts to perform on T in order to en-
sure the exact recovery of the clustering partition. More generally, trees on which
CutG(.) enables to find the right partition are said to be a partitioning topology (see
Definition 5.4.2).

Definition 5.4.2 (Partitionning topology). Let us consider a graph G = (V,E,w)
with K clusters C∗1 , . . . , C∗K . A spanning tree T of G is said to have a partitioning
topology if ∀i, j ∈ [K], i 6= j, |{e = (u, v) ∈ CutG(T) | u ∈ C∗i , v ∈ C∗j }| = 1.

Definitions 5.4.1 and 5.4.2 introduce a topological condition on the tree as input
of the algorithm. Nevertheless, conditions on weights are necessary too. Hence, we
define homogeneous separability which expresses the fact that within a cluster the
edge weights are spread in a controlled manner.

Definition 5.4.3 (Homogeneous separability condition). Let us consider a graph
G = (V,E,w), s ∈ E and T a tree of G. T is said to be homogeneously separable by
s, if

αT max
e∈E(T)

w(e) < w(s) with αT =
max
e∈E(T)

w(e)

min
e∈E(T)

w(e) ≥ 1. (5.7)

One will write for simplicity that HT (s) is verified.

The accuracy of DBMSTClu is proven under the weak homogeneity condition
given by Definition 5.4.4.

Definition 5.4.4 (Weak homogeneity condition of a Cluster). Let us consider a
graph G = (V,E,w) with K clusters C∗1 , . . . , C∗K . A given cluster C∗i , i ∈ [K], is
weakly homogeneous if: for all T an MST of G, and ∀j ∈ [K], j 6= i, s.t. e(ij) ∈
CutG(T), HT|C∗

i
(e(ij)) is verified. For simplicity, one denote

¯
αi := max

T MST of G
αT|C∗

i

Now the proof on accuracy is finally stated by Corollary 5.4.1 which relies on the
Theorems 5.4.1, 5.4.2 and 5.4.3.

Theorem 5.4.1. Let us consider a graph G = (V,E,w) with K homogeneous clusters
C∗1 , . . . , C

∗
K and T an MST of G. Let now assume that at step k < K−1, DBMSTClu

built k + 1 subtrees C1, . . . , Ck+1 by cutting e1, e2, . . . , ek ∈ E.
Then, Cutk := CutG(T) \ {e1, e2, . . . , ek} 6= ∅ =⇒ DBCVIk+1 ≥ DBCV Ik,

i.e. if there are still edges in Cutk, the algorithm will continue to perform some cut.

Proof of Theorem 5.4.1 relies on the following lemma:

Lemma 5.4.1. Let us consider a graph G = (V,E,w) with K clusters C∗1 , . . . , C∗K and
T an MST of G. If for all i ∈ [K], C∗i is weakly homogeneous, then argmax

e∈T
w(e) ⊂

CutG(T) i.e. the heaviest edges in T are in CutG(T).

104 Chapter 5. Graph sketching-based massive data clustering

Proof. Let us consider C∗i a cluster of G. As C∗i is weakly homogeneous, ∀j ∈ [K]
s.t. e(ij) ∈ CutG(T), max

e∈T|C∗
i

w(e) < w(e(ij)). Hence, argmax
e∈E(T)

w(e) ⊂ CutG(T).

Now proof of Theorem 5.4.1 can be given.

Proof. Let note DBCVI at step k, DBCV Ik =
∑k+1
i=1

|Ci|
N VC(Ci). Let assume that

Cutk 6= ∅. Therefore, there is e∗ ∈ Cutk and i ∈ {1, . . . , k + 1} s.t. e∗ ∈ E(Ci).
Since e∗ ∈ CutG(T), using Lemma 5.4.1, one can always take e∗ ∈ argmax

e∈E(Ci)
w(e).

Then, if we denote C1
i , C2

i the two subtrees of Ci induced by the cut of e∗ (see
Figure 5.4 for an illustration) and DBCV Ik+1(e∗) the associated DBCVI value,

∆ = DBCV Ik+1(e∗)−DBCV Ik (5.8)

= |C
1
i |
N

(
SEP(C1

i)−DISP(C1
i)

max(SEP(C1
i),DISP(C1

i))

)
︸ ︷︷ ︸

VC(C1
i)

+ |C
2
i |
N

(
SEP(C2

i)−DISP(C2
i)

max(SEP(C2
i),DISP(C2

i))

)
︸ ︷︷ ︸

VC(C2
i)

− |Ci|
N

(SEP(Ci)−DISP(Ci)
max(SEP(Ci),DISP(Ci))

)
︸ ︷︷ ︸

VC(Ci)

. (5.9)

There are two possible cases:

1. VC(Ci) ≤ 0, then SEP(Ci) ≤ DISP(Ci) = w(e∗). As for l ∈ {1, 2},
SEP(Cli) ≥ SEP(Ci) and DISP(Cli) ≤ DISP(Ci) because e∗ ∈ argmax

e∈E(Ci)
w(e),

then, for l ∈ {1, 2},

SEP(Cli)−DISP(Cli)
max(SEP(Cli),DISP(Cli))

≥ SEP(Cl)−DISP(Ci)
max(SEP(Ci),DISP(Ci))

= SEP(Ci)
w(e) − 1

(5.10)
and ∆ ≥ 0.

2. VC(Ci) ≥ 0, then SEP(Ci) ≥ DISP(Ci) = w(e∗) i.e.
max(SEP(Ci),DISP(Ci)) = SEP(Ci), for l ∈ {1, 2}, DISP(Cli) ≤ DISP(Ci)
i.e. DISP(Cli) ≤ w(e∗), SEP(Cli) = w(e∗) hence SEP(Cli) ≥ DISP(Cli). Thus,
VC(Ci) = 1 − DISP(Ci)

SEP(Ci) and for l ∈ {1, 2}, VC(Cli) = 1 − DISP(Cli)
SEP(Cli)

. Then, for
l ∈ {1, 2}, VC(Cli) ≥ VC(Ci) and ∆ ≥ 0.

For both cases, ∆ = DBCV Ik+1(e∗) − DBCV Ik ≥ 0. Hence, at least the cut
of e∗ improves the current DBCVI, so the algorithm will perform a cut at this
stage.

Theorem 5.4.2. Let us consider a graph G = (V,E,w) with K homogeneous clusters
C∗1 , . . . , C

∗
K and T an MST of G.

Assume now that at step k < K − 1, DBMSTClu built k+ 1 subtrees C1, . . . , Ck+1
by cutting e1, e2, . . . , ek ∈ E. We still denote Cutk := CutG(T)\{e1, e2, . . . , ek}.

If Cutk 6= ∅ then argmax
e∈T \{e1, e2, ..., ek}

DBCV Ik+1(e) ⊂ Cutk i.e. the cut edge at step

k + 1 is in Cutk.

5.4. Theoretical guarantees for DBMSTClu 105

C1
i

e∗ C2
i

Ci

Figure 5.4: Illustration for Theorem 5.4.1’s proof.

Proof. It is sufficient to show that, at step k, if there exists an edge e∗ from Cutk
whose cut builds two clusters, then e∗ maximizes DBCVI among all possible cuts
in the union of itself and both resulting clusters. Indeed, showing this for two
clusters, one can easily generalize to the whole graph as a combination of couples
of clusters (see Figure 5.6 for an illustration): if for each couple, the best local
solution is in Cutk, then the best general solution is necessary in Cutk.

Let us consider at step k of the algorithm two clusters C∗1 and C∗2 such that
e∗ the edge separating them in T is in Cutk (see Figure 5.5 for an illustration).
For readability we denote T|C∗1 = C∗1 and T|C∗2 = C∗2 Let us proof that for all
ẽ ∈ T|C∗1∪C∗2 , one has: DBCV Ik+1(e∗) > DBCV Ik+1(ẽ). W.l.o.g. let assume
ẽ ∈ C∗1 and let denote C∗1,1 and C∗1,2 the resulting subtrees from the cut of ẽ. We
still denote DBCV Ik+1(e) the value of the DBCVI at step k+ 1 for the cut of e.

∆ := DBCV Ik+1(e∗)−DBCV Ik+1(ẽ) (5.11)

= |C
∗
1 |
N

(SEP(C∗1)−DISP(C∗1)
max(SEP(C∗1),DISP(C∗1))

)
+ |C

∗
2 |
N

(SEP(C∗2)−DISP(C∗2)
max(SEP(C∗2),DISP(C∗2))

)
︸ ︷︷ ︸

A

−
(
|C∗1,1|
N

(
SEP(C∗1,1)−DISP(C∗1,1)

max(SEP(C∗1,1),DISP(C∗1,1))

)
+
|C∗1,2|
N

(
SEP(C∗1,2)−DISP(C∗1,2)

max(SEP(C∗1,2),DISP(C∗1,2))

))
︸ ︷︷ ︸

B

(5.12)

By weak homogeneity of C∗1 and C∗2 ,

A = |C
∗
1 |
N

(
1− DISP(C∗1)

SEP(C∗1)

)
+ |C

∗
2 |
N

(
1− DISP(C∗2)

SEP(C∗2)

)
> 0, (5.13)

B =
|C∗1,1|
N

(
SEP(C∗1,1)−DISP(C∗1,1)

max(SEP(C∗1,1),DISP(C∗1,1))

)
︸ ︷︷ ︸

B1

+
|C∗1,2|
N

(
SEP(C∗1,2)−DISP(C∗1,2)

max(SEP(C∗1,2),DISP(C∗1,2))

)
︸ ︷︷ ︸

B2

.

(5.14)

106 Chapter 5. Graph sketching-based massive data clustering

By Lemma 5.4.1’s proof, e∗ ∈ argmax
e∈E(T|C∗1∪C∗2)

w(e) so DISP(C∗1,2) = w(e∗).

Since e∗ ∈ CutG(T), one has w(e∗) ≥ max(SEP(C∗1), SEP(C∗2)). Moreover, as
C∗2 is a subtree of C∗1,2, then SEP(C∗1,2) ≤ SEP(C∗2). Thus, w(e∗) ≥ SEP(C∗1,2).

Finally, B2 = |C∗1,2|
N

(
SEP(C∗1,2)
DISP(C∗1,2) − 1

)
≤ 0.

Besides, w(ẽ) ≤ SEP(C∗1) =⇒ SEP(C∗1,1) = w(ẽ) ≤ max
e∈E(C∗1)

w(e) and

DISP(C∗1,1) = max
e∈E(C∗1,1)

w(e) ≥ min
e∈E(C∗1)

w(e). Then, two possibilities hold:

1. B1 < 0 =⇒ B < 0 < A.

2. B1 ≥ 0, thus one has B1 = |C∗1,1|
N

(
1− DISP(C∗1,1)

SEP(C∗1,1)

)
≤ |C∗1,1|

N

1−
min
e∈C∗1

w(e)

max
e∈C∗1

w(e)

.
Under weak homogeneity condition, there is: DISP(C∗1)

SEP(C∗1) <

min
e∈C∗1

w(e)

max
e∈C∗1

w(e) . Thus,

B1 <
|C∗1,1|
N

(
1− DISP(C∗1)

SEP(C∗1)

)
(5.15)

<
|C∗1 |
N

(
1− DISP(C∗1)

SEP(C∗1)

)
because C∗1,1 is a subtree of C∗1 (5.16)

< A (5.17)

So, B1 +B2 = B < A = DBCV Ik+1(e∗).

Since B < A, ∆ > 0 and e∗ maximizes DBCVI among all possible cuts in the
union of itself and both resulting clusters. Q.E.D.

e∗ C∗
2

C∗
1

ẽ
C∗
1,2C∗

1,1

Figure 5.5: Illustration for Theorem 5.4.2’s proof.

Theorem 5.4.3. Let us consider a graph G = (V,E,w) with K weakly homogeneous
clusters C∗1 , . . . , C∗K and T an MST of G. Let now assume that at step K − 1, DB-
MSTClu built K subtrees C1, . . . , CK by cutting e1, e2, . . . , eK−1 ∈ E. We still denote
CutK−1 := CutG(T)\{e1, e2, . . . , eK−1}.

Then, for all e ∈ T \{e1, e2, . . . , eK−1}, DBCV IK(e) < DBCV IK−1 i.e. the
algorithm stops: no edge gets cut during step K.

5.4. Theoretical guarantees for DBMSTClu 107

Figure 5.6: Illustration for Theorem 5.4.2’s proof. Each circle cor-
responds to a cluster. The six clusters are handled within five couples

of clusters.

Proof. According to Theorem 5.4.1 and Theorem 5.4.2, for all k < K, if Cutk 6= ∅,
the algorithm performs some cut from CutG(T). We still denote for all j ∈ [K]
C∗j = T|C∗j . Since |CutG(T)| = K − 1, the K − 1 first steps produce K − 1 cuts

from CutG(T). Therefore, DBCVIK−1 =
∑

j∈[K−1]

|C∗j |
N VC(C∗j).

Let be e the (expected) edge cut at step K, splitting the tree C∗i into C∗i,1 and
C∗i,2.

∆ = DBCVIK−1−DBCVIK (5.18)

= |C
∗
i |
N

VC(C∗i)−
|C∗i,1|
N

VC(C∗i,1)−
|C∗i,2|
N

VC(C∗i,2) (5.19)

= |C
∗
i |
N

SEP(C∗i)−DISP(C∗i)
max(SEP(C∗i),DISP(C∗i)) −

|C∗i,1|
N

SEP(C∗i,1)−DISP(C∗i,1)
max(SEP(C∗i,1),DISP(C∗i,1))

−
|C∗i,2|
N

SEP(C∗i,2)−DISP(C∗i,2)
max(SEP(C∗i,2),DISP(C∗i,2)) (5.20)

Since C∗i is a weakly homogeneous cluster, therefore SEP(C∗i) ≥ DISP(C∗i).
Then, minimal value of ∆, ∆min is reached when SEP(C∗i,1) ≥ DISP(C∗i,1),
SEP(C∗i,2) ≥ DISP(C∗i,2), SEP(C∗i,1) = SEP(C∗i,2) = min

e′∈E(C∗i)
w(e′) and DISP(C∗i,1) =

108 Chapter 5. Graph sketching-based massive data clustering

DISP(C∗i,2) = max
e′∈E(C∗i)

w(e′). Then,

N ×∆min = |C∗i |
(

1− DISP(C∗i)
SEP(C∗i)

)
− |C∗i,1|

(
1−

DISP(C∗i,1)
SEP(C∗i,1)

)
− |C∗i,2|

(
1−

DISP(C∗i,2)
SEP(C∗i,2)

)

(5.21)

= |C∗i |
(

1− DISP(C∗i)
SEP(C∗i)

)
− |C∗i,1|

1−
max

e′∈E(C∗i)
w(e′)

min
e′∈E(C∗i)

w(e′)

− |C∗i,2|

1−
max

e′∈E(C∗i)
w(e′)

min
e′∈E(C∗i)

w(e′)

 (5.22)

= |C∗i |

−DISP(C∗i)
SEP(C∗i) +

max
e′∈E(C∗i)

w(e′)

min
e′∈E(C∗i)

w(e′)

 (5.23)

By weak homogeneity condition on C∗i ,
DISP(C∗i)
SEP(C∗i) <

min
e′∈E(C∗

i
)
w(e′)

max
e′∈E(C∗

i
)
w(e′) ≤

max
e′∈E(C∗

i
)
w(e′)

min
e′∈E(C∗

i
)
w(e′) .

Therefore, ∆min > 0 and ∆ > 0.

Corollary 5.4.1. Let us consider a graph G = (V,E,w) with K weakly homogeneous
clusters C∗1 , . . . , C∗K and T an MST of G. DBMSTClu(T) stops after K − 1 itera-
tions and the K subtrees produced match exactly the clusters i.e. under homogeneity
condition, the algorithm finds automatically the underlying clustering partition.

Proof. Theorems 5.4.1 and 5.4.3 ensure that under homogeneity condition on all
clusters, the algorithm performs the K − 1 distinct cuts within CutG(T) and
stops afterwards. By definition of CutG(T), it means the DBMSTClu correctly
builds the K clusters.

5.4.2 Analysis of DBMSTClu algorithm

Previous Section demonstrates the exact recovery of the underlying clustering par-
tition with DBMSTClu assuming some hypotheses. This Section gives now some
further analysis of the algorithm to show more insights on the way how the algorithm
works. The main results are the following:

1. Besides the fact it does not require the number of expected clusters in advance,
DBMSTClu differs significantly from the naive approach of SEMST by pre-
ferring a first cut which is not necessarily corresponding to the heaviest edge
(Propositions 5.4.1 and 5.4.2).

2. As long as the current partition contains at least one cluster with a negative
validity index, DBMSTClu will find a cut improving the global index (Proposi-
tion 5.4.3).

3. Conditions are given to determine in advance if and which cut will be performed
in a cluster with a positive validity index (Propositions 5.4.4 and 5.4.5).

Propositions 5.4.1 and 5.4.2 rely on the two basic lemmas regarding the first cut
in an MST:

5.4. Theoretical guarantees for DBMSTClu 109

Lemma 5.4.2 (Highest weighted edge case). Let us consider a graph G = (V,E,w)
and T an MST of G. If at step k = 1, cutting edge e′ = argmax

e∈E(T)
w(e) leads to

DBCV I1(e′) ≥ 0.

Proof. For the first cut, at step k = 1, both separations of obtained clusters C1
and C2 are equal to the weight of the considered edge for cut. Here, this is the one
with the highest weight. Thus, for i = 1, 2, DISP(Ci) ≤ SEP(Ci) =⇒ VC(Ci) ≥
0. Finally, the DBCVI of the partition, as a convex sum of two nonnegative
quantities, is clearly nonnegative.

Lemma 5.4.3 (Lowest weighted edge case). Let us consider a graph G = (V,E,w)
and T an MST of G. If at step k = 1, cutting edge e′ = argmin

e∈E(T)
w(e) leads to

DBCV I1(e′) ≤ 0.

Proof. Same reasoning in the opposite case s.t. SEP(Ci) − DISP(Ci) ≤ 0 for
i ∈ {1, 2}.

Proposition 5.4.1 (When the first cut is not the heaviest). Let us consider a graph
G = (V,E,w) and T an MST of G s.t N = |V |. Let us consider this specific case:
∃e1, e2 ∈ E(T) s.t. w(e1) = w1, w(e2) = w2 and ∀e ∈ E(T)\{e1, e2}, w(e) = w s.t.
w1 > w2 > w > 0. At first step k = 1, DBMSTClu does not cut any edge with weight
w and cuts e2 instead of e1 iff:

w2 >
2n2w1 − n1 +

√
n2

1 + 4w1(n2
2w1 +N2 −Nn1 − n2

2)
2(N − n1 + n2) (5.24)

where n1 (resp. n2) is the number of nodes in the first cluster resulting from the cut
of e1 (resp. e2). Otherwise, e1 gets cut.

Proof. Let DBCV I1(e1) (resp. DBCV I1(e2)) be the DBCVI after the cut of e1
(resp. e2) at step k = 1. As w (resp. w1) is the minimum (resp. maximal) weight,
the algorithm does not cut e since the resulting DBCVI would be negative (cf.
Lemma 5.4.3) while DBCV I1(e1) is guaranteed to be positive (cf. Lemma 5.4.2).
So, the choice will be between e1 and e2 but e2 gets cut iff DBCV I1(e2) >
DBCV I1(e1). DBCV I1(e1) and DBCV I1(e2) expressions are simplified w.l.o.g.
by scaling the weights by w s.t. w ← 1, w1 ← w1/w, w2 ← w2/w, hence
w1 > w2 > 1. Then,

DBCV I1(e2) > DBCV I1(e1) > 0

⇐⇒ n2
N

(w2
w1
− 1) + (1− n2

N
)(1− 1

w2
)− n1

N
(1− 1

w1
) + (1− n1

N
)(1− w2

w1
) > 0

⇐⇒ w2
2 (N + n2 − n1)︸ ︷︷ ︸

a

+w2 (n1 − 2n2w1)︸ ︷︷ ︸
b

+ (n2 −N)w1︸ ︷︷ ︸
c<0

> 0. (5.25)

Clearly, ∆ = b2 − 4ac is positive and c/a is negative. But w2 > 0, then w2 >
−b+
√
b2−4ac

2a which gives the final result after some simplifications.

Proposition 5.4.1 emphasizes that the algorithm is cleverer than simply cutting
the heaviest edge first. Indeed, although w2 < w1, cutting e2 could be preferred over

110 Chapter 5. Graph sketching-based massive data clustering

e1. Moreover, no edge with weight w can get cut at the first iteration as they have
the minimal weight in the tree. Indeed it really happens since an approximate MST
with discrete rounded weights is used when sketching is applied.

Proposition 5.4.2 (First cut on the heaviest edge in the middle). Let us consider
a graph G = (V,E,w) and T an MST of G s.t N = |V |. Let us consider this
specific case: ∃e1, e2 ∈ E(T) s.t. w(e1) = w1, w(e2) = w2 and ∀e ∈ E(T)\{e1, e2},
w(e) = w s.t. w1 > w2 > w > 0. Denote n1 (resp. n2) the number of nodes in
the first cluster resulting from the cut of e1 (resp. e2). In the particular case where
edge e1 with maximal weight w1 stands between two subtrees with the same number
of points, i.e. n1 = N/2, e1 is always preferred over e2 as the first optimal cut i.e.
DBCV I1(e1) > DBCV I1(e2).

Proof. A reductio ad absurdum is made by showing that at step k = 1, cutting
edge e2 i.e. DBCV I1(e2) > DBCV I1(e1) leads to the contradiction w1/w < 1.
With the scaling process from Proposition 5.4.1’proof:

DBCV I1(e1) = 1
2(1− 1

w1
) + 1

2(1− w2
w1

) = 1− 1
2w1
− w2

2w1
(5.26)

DBCV I1(e2) = n2
N

(w2
w1
− 1) + (1− n2

N
)(1− 1

w2
)

= 1− 1
w2

+ n2
N

(w2
w1

+ 1
w2
− 2︸ ︷︷ ︸

=A

) (5.27)

There is w2 > w = 1, so 1
w2

< 1. Besides w2 < w1 so w2
w1

< 1 thus, A < 0. Let
now consider w.l.o.g. that edge e2 is on the "right side" (right cluster/subtree)
of e1 (similar proof if e2 is on the left side of e1). Hence, it is clear that for
maximizing DBCV I1(e2) as a function of n2, we need n2 = n1 + 1. Then,

DBCV I1(e2) > DBCV I1(e1)

⇐⇒ − 1
w2

+ (1
2 + 1

N
)(w2
w1
− 2 + 1

w2
) > − 1

w1
− w2
w1

(5.28)

⇐⇒ (1
2w1

+ 1
Nw1

+ 1
2w1

)w2 − 1− 2
N

+ 1
2w1

+ (−1 + 1
2 + 1

N
) 1
w2

> 0 (5.29)

⇐⇒ (1 + 1
N

)︸ ︷︷ ︸
a>0

w2
2 + w2 (1

2 − w1(1 + 2
N

))︸ ︷︷ ︸
b<0

+w1 (1
N
− 1

2)︸ ︷︷ ︸
c<0

> 0 (5.30)

As c/a < 0 and w2 > 0, w2 > N
2(N+1) [w1(1 + 2

N) − 1
2 +
√

∆] with ∆ =
(w1(1 + 2

N) − 1
2)2 + 4(1 + 1

N)(1
2 −

1
N)w1. This inequality is incompatible with

5.4. Theoretical guarantees for DBMSTClu 111

w1 > w2 since:

w1 > w2 ⇐⇒ w1 >
N

2(N + 1) [w1(1 + 2
N

)− 1
2 +
√

∆] (5.31)

⇐⇒ w1 + 1
2 >
√

∆ (5.32)

⇐⇒ 4
N

w2
1 (1 + 1

N
) + 4

N
w1(−1− 1

N
) < 0 (5.33)

⇐⇒ w1 < 1 : ILLICIT (5.34)

Indeed, after the scaling process, w1 < 1 = w is not possible since by hypothesis,
w1 > w. Finally, it is not allowed to cut e2, the only remaining possible edge to
cut is e1.

Remark 5.4.1. Let us consider the MST in Figure 5.7 with N = 8, w1 = 1, w2 =
w3 = 1− ε, and the other weights set to ε. Clearly, it is not always preferred to cut e1
in the middle since for ε = 0.1, DBCV I1(e2) ≈ 0.27 > DBCV I1(e1) = ε = 0.1. So,
it is a counter-example to a possible generalization of Proposition 5.4.2 where there
would be more than three possible distinct weights in T .

b b b b b b b b
w1w2ϵϵ w3 ϵ ϵ

Figure 5.7: Counter-example for Remark 5.4.1.

These last Propositions hold for every iteration in the algorithm.

Proposition 5.4.3 (Fate of negative VC cluster). Let us consider a graph G =
(V,E,w) and T an MST of G s.t N = |V |. Let be C1, . . . , Ck the current found clus-
ters in the clustering partition at iteration t = k − 1. If {i ∈ [k] | VC(Ci) < 0} 6= ∅,
then ∃j ∈ {i ∈ [k] | VC(Ci) < 0} s.t. DBMSTClu will cut an edge at stage t in cluster
Cj.

Proof. Let i ∈ [k] s.t. VC(Ci) < 0 i.e. SEP(Ci) < DISP(Ci). We denote wlsep
the minimal weight outing cluster Ci and wmax the maximal weight in subtree
Si of Ci i.e. SEP(Ci) := wlsep and DISP(Ci) := wmax. Hence, wlsep < wmax. By
cutting the cluster Ci on the edge with weight wmax, we define C li and Cri resp.
the left and right resulting clusters.

Let us look at VC(C li). If SEP(C li) ≥ DISP(C li) then VC(C li) ≥ 0 ≥ VC(Ci).
Else VC(C li) = SEP(Cli)

DISP(Cli)
− 1. The definition of the separation as a minimum

and our cut imply that SEP(C li) ≥ min(SEP(Ci), wmax) ≥ SEP(Ci). Also the
definition of the Dispersion as a maximum implies that DISP(C li) ≤ DISP(Ci).
Hence we get that SEP(Cli)

DISP(Cli)
− 1 ≥ SEP(Ci)

DISP(Ci) − 1 i.e. VC(C li) ≥ VC(Ci) in this case
too. The same reasoning holds for Cri showing that VC(Cri) ≥ VC(Ci). Finally,
by denoting DBCV It the DBCVI at step t after the cut and DBCV It−1 the

112 Chapter 5. Graph sketching-based massive data clustering

DBCVI before the cut:

DBCV It =
∑
j 6=i

nj
N
VC(Cj) + nli

N
VC(C li) + nri

N
VC(Cri) (5.35)

≥
∑
j 6=i

nj
N
VC(Cj) + nli

N
VC(Ci) + nri

N
VC(Ci) = DBCV It−1. (5.36)

Hence cutting the edge with maximal weight in Ci improves the resulting DBCVI.

Cl
i Cr

i

wmax

Ci

wl
sep wr

sep

Figure 5.8: Generic example of Proposition 5.4.3 and 5.4.5’s proofs.

Thus, at the end of the clustering algorithm, each cluster will have a nonnegative
VC so at each step of the algorithm, this bound holds for the final DBCVI:

DBCV I ≥
k∑
i=1

|Ci|
N

max(VC(Ci), 0). (5.37)

Proposition 5.4.4 (Fate of positive VC cluster I). Let us consider a graph G =
(V,E,w) and T an MST of G. Let be C1, . . . , Ck the current found clusters in the
clustering partition at iteration t = k − 1. ∀i ∈ [k] s.t. VC(Ci) > 0 and SEP(Ci) =
s > 0, then DBMSTClu does not cut an edge e of cluster Ci with weight w < s if both
resulting clusters have at least one edge with weight greater than w.

Proof. Let us be i ∈ [k] s.t. VC(Ci) > 0 and SEP(Ci) = s > 0. Let us consider
clusters C li and Cri resulting from the cut of edge e in Ci. Assume that in the
associated subtree of C li (resp. Cri), there is an edge el (resp. er) with a weight
wl (resp. wr) higher than w s.t. without loss of generality, wl > wr. Since
VC(Ci) > 0, s > wl > wr > w. But cutting edge e implies that DISP(C li) >
SEP(C li) = w (resp. DISP(Cri) > SEP(Cri) = w), and thus VC(C li) < 0 (resp.
VC(Cri) < 0). Cutting edge e would therefore mean to replace a cluster Ci s.t.
VC(Ci) > 0 by two clusters C li and Cri s.t. VC(C li) < 0 and VC(Cri) < 0 which
obviously decreases the current DBCVI. Thus, e does not get cut at this step of
the algorithm.

Proposition 5.4.5 (Fate of positive VC cluster II). Let us consider a graph G =
(V,E,w) and T an MST of G. Let be C1, . . . , Ck the current found clusters in the
clustering partition at iteration t = k − 1. Consider a partition with K clusters s.t.
some cluster Ci, i ∈ [K] with VC(Ci) > 0 is in the setting of Figure 5.8 i.e. cutting
the heaviest edge e with weight wmax results in two clusters: the left (resp. right)
cluster C li (resp. Cri) with n1 points (resp. n2) s.t. DISP(C li) = d1, SEP(C li) = wlsep,

5.5. Implementation for linear time and space complexities 113

DISP(Cri) = d2 and SEP(Cri) = wrsep. Assuming w.l.o.g. wlsep > wrsep, cutting edge e
improves the DBCVI iff: (

n1d1+n2d2
n1+n2

)
wmax

≤ wmax
wrsep

. (5.38)

Proof. As VC(Ci) > 0, there is SEP(Ci) = wrsep > wmax. Then, the DBCVI
before (K clusters) and after cut of wmax (K + 1 clusters) are:

DBCV IK =
K∑
j 6=i

VC(Cj) + n1 + n2
N

(
1− wmax

wrsep

)
(5.39)

DBCV IK+1 =
K∑
j 6=i

VC(Cj) + n1
N

(
1− d1

wmax

)

+ n2
N

(
1− d2

wmax

)
(5.40)

DBMSTClu cuts wmax iff DBCV IK+1 ≥ DBCV IK . So the result after simpli-
fication.

5.5 Implementation for linear time and space complexi-
ties

eb b

b

b

b

b

b

b

bS1

S3

S2

Figure 5.9: Illustration of the recursive relationship for left and
right Dispersions resulting from the cut of edge e: DISPleft(e) =
max(w(S1)), DISPright(e) = max(w(S2), w(S3)) where w(.) returns

the edge weights. Separation works analogically.

For a dataset with N points, T contains N − 1 edges and K − 1 cuts give K
connected components. Note that independently of the technique used to obtain an
MST (the sketching method presented in Section 5.6 is just a possible one), the space
complexity of the algorithm is O(N) which is better than the O(N2) of Spectral
Clustering.

What is about time complexity? For each iteration, all possible edges are greedily
tested as a cut. So for K cuts, the time complexity of a naive implementation of
DBMSTClu described in Algorithm 6 is O(NK). Although this is clearly less than
the O(N3) one implied by Spectral Clustering, this is not satisfying for large-scale
application.

114 Chapter 5. Graph sketching-based massive data clustering

We now explain how to make the implementation efficient in order to achieve the
linear time and space complexities in N5. The principle is based on two tricks:

1. As observed in Section 5.4: for a performed cut in a current cluster Ci, the
VC(Cj) for any j 6= i remain unchanged. Hence, if the VC(Cj) are stored for
each untouched cluster after a given cut, only the edges of C li and Cri respectively
the left and right clusters induced by e’s cut in cluster Ci need to be evaluated
again to determine the DBCVI in case of cut. Thus the number of operations
to find the optimal cut decreases drastically over time as the number of edges
in clusters becomes smaller through the cuts.

2. However finding the first cut already costs O(N) time (by testing all the N − 1
possible cuts) hence paying this price for each cut evaluation at each iteration
would lead to O((N − 1) + (N − 2) + . . .+ 1) = O(N2) operations. Fortunately,
this can be avoided as SEP and DISP exhibit some recurrence relationship in
T : when knowing these values for a given cut, we can deduce the value for a
neighboring cut (cf. Figure 5.9). To determine the first cut, T should be hence
completely crossed following the iterative version of the Depth-First Search.
The difficulty though is that the recursive relationship between the quantities
to update is directional: left and right w.r.t. the edge to cut. So we develop
here double Depth-First search (see principle in Algorithm 7): from any given
edge of T , edges left and right are all visited consecutively with a Depth-First
search, and SEP and DISP are updated recursively thanks to a carefully defined
order in the priority queue of edges to handle.

Algorithm 7 Generic Double Depth-First Search
1: Input: T , the MST; e, the edge of T where the search starts; n_src, source node

of e
2: Q = deque() //Empty priority double-ended queue
3: for incident edges to n_src do
4: pushBack(Q, (incident_e, n_src, FALSE))
5: pushBack(Q, (e, n_src, TRUE))
6: for incident edges to n_trgt do
7: pushBack(Q, (incident_e, n_trgt, FALSE))
8: pushBack(Q, (e, n_trgt, TRUE))
9: while Q is not empty do

10: e, node,marked = popFront(Q)
11: opposite_node = getOtherNodeEdge(e, node)
12: if not marked then
13: for incident edges to node do
14: pushBack(Q, (incident_e, node, F))
15: pushBack(Q, (e, node, T))
16: pushFront(Q, (e, opposite_node, T))
17: else
18: doTheJob(e) //Perform here the task
19: return

5Code available in Python using igraph library on Github: https://github.com/annemorvan/
DBMSTClu/.

https://github.com/annemorvan/DBMSTClu/
https://github.com/annemorvan/DBMSTClu/

5.6. Retrieval of an approximate MST via sketching 115

5.6 Retrieval of an approximate MST via sketching

At this point, one can argue that the usefulness of DBMSTClu depends on an efficient
way of computing a minimum spanning tree. To that purpose:

1. From the stream of edge weights, a sketch of the dissimilarity graph is built,

2. Then an approximate MST is computed with no more information than the
previously obtained sketch.

Sections 5.6.1 and 5.6.2 respectively briefly explain the two steps.

5.6.1 Streaming graph sketching

For the graph sketching, data are processed in the dynamic streaming
model [Muthukrishnan, 2005]:

1. The graph is handled as a stream s of edge weight updates:

s := 〈s1, ... sj , ...〉

where sj is the j-th update in the stream corresponding to the tuple

sj := (i, wold,i, ∆wi)

with i denoting the index of the edge to update, wold,i its previous weight and
∆wi the update to perform. Thus, after reading sj in the stream, the i-th edge
is assigned the new weight wi = wold,i + ∆wi ≥ 0.

2. The graph sketching method makes only one pass over this stream.

3. Edges can be both inserted or deleted (turnstile model) in the graph sketch.
Weights can be increased or decreased but have always to be nonnegative. They
can change regularly, as in social networks where individuals can be friends for
some time then not anymore.

The algorithm from Ahn et al. [2012a] is used here to produce in an online fashion
a limited number of linear measurements summarizing the edge weights of G, as the
new data sj are read from the stream s of edge weight updates. Its general principle is
briefly described here. See Section 2.4.2 for more details. The basic idea is to compress
the information on the edge weights through few linear measurements. These are
updated dynamically as new data sj from stream s is seen only once.

For a given small ε1, G is seen as a set of unweighted subgraphs Gk containing all
the edges with weight lower than (1 + ε1)k, hence Gk ⊂ Gk+1. The Gk are embodied
as N virtual vectors v(i) ∈ {−1, 0, 1}M for i ∈ [N] expressing for each node the
belonging to an existing edge: for j ∈ [M], v(i)

j equals to 0 if node i is not in ej , 1
(resp. −1) if ej exists and i is its left (resp. right) node. All v(i) are described at L
different "levels", i.e. L virtual copies of the true vectors are made with some entries
randomly set to zero s.t. the v(i),l get sparser as the corresponding level l ∈ [L]
increases. The v(i),l for each level are explicitly coded in memory by three counters:

• φ :=
∑M
j=1 v(i),l

j

• ι :=
∑M
j=1 j v(i),l

j

116 Chapter 5. Graph sketching-based massive data clustering

• τ :=
∑M
j=1 v(i),l

j zj mod p, with p a suitably large prime and z ∈ Z/pZ.

The resulting compact data structure further named a sketch enables to draw almost
uniformly at random a nonzero weighted edge of the Gk at any time among the levels
vectors v(i),l which are 1-sparse (with exactly one nonzero coefficient). This is made
possible thanks to `0-sampling [Cormode and Firmani, 2014]:

Definition 5.6.1 (`0-sampling). An (ε, δ) `0-sampler for a nonzero vector x ∈ Rn
fails with a probability at most δ or returns some i ∈ [n] with probability (1±ε) 1

| supp x|
where supp x = {i ∈ [n] | xi 6= 0}.

The sketch requires O(N log3(N)) space. It follows that the sketching is techni-
cally semi-streamed6 but in practice only one pass over the data is needed and the
space cost is significantly lower than the theoretical O(N2) bound. The time cost
for each update of the sketch is polylog(N). This sketch is the first one to support
both insertion and deletion of edges. In this context, the number of nodes is known
while the edges, whose weights can be increased or decreased (but have always to
stay positive) are summarized into those sketches.

5.6.2 Recovery of an approximate MST from the graph sketch

Ahn et al. [2012a] also proposed an algorithm to compute in a single pass the ap-
proximate weight W̃ of an MST T - the sum of all its edge weights - by appropriate
samplings from the sketch in O(N polylog(N)) time. They show that

W ≤ W̃ ≤ (1 + ε1) W (5.41)

where W stands for the true weight and

W̃ = N − (1 + ε1)r+1 cc(Gr) +
r∑

k=0
λk cc(Gk) (5.42)

with λk = (1 + ε1)k+1− (1 + ε1)i, r = dlog1+ε1(wmax)e such that wmax is the maximal
weight of G and cc denotes the number of connected components of the graph in
parameter.

Here an extended method is applied for obtaining rather an approximate MST -
and not simply its weight - by registering edges as they are sampled. Referring to
the proof of Lemma 3.4 in work from Ahn et al. [2012a] and its corrected version
Lemma 2.4.3 in Section 2.4.2, the approach is simply justified by applying Kruskal’s
algorithm where edges with the lower weights are first sampled.

Similarly, note that the sketching technique enables also to recover a Minimum
Spanning Forest (MSF) if the initial graph is disconnected.

5.7 Experiments

Experiments were conducted to show the two following properties:

1. Using an approximate MST by sketching instead of a real one is safe regarding
the precision of the result.

2. DBMSTClu is scalable for large values of N .
6In a streaming algorithm, the space cost should be linear in the number of instances in the

database.

5.7. Experiments 117

Tight lower and upper bounds are given in Section 2.4.2 for the weight of the ap-
proximate MST retrieved by sketching. First experiments in Section 5.7.1 show that
the clustering results do not suffer from the use of an approximate MST instead of
a real one. Experiments from Section 5.7.2 prove then the scalability of DBMSTClu
for large values of N .

Experiments were conducted using Python and scikit-learn library [Pedregosa
et al., 2011] on a single-thread process on an intel processor based node. All Figures
should be read in color.

5.7.1 Safety of the sketching

The results of DBMSTClu are first compared with DBSCAN [Ester et al., 1996]
because it can compete with DBMSTClu as:

1. Non-convex-shaped clusters are recognized.

2. It does not require explicitly the number of expected clusters.

3. It is both time and space-efficient (resp. O(N logN) and O(N)).

Then, the results of another MST-based algorithm are shown for comparison. The
latter called Standard Euclidean MST (SEMST) [Zahn, 1971] cuts the K−1 heaviest
edges of a standard Euclidean MST given a targeted number of clusters K. For
DBMSTClu, the dissimilarity graph is built from the computation of the Euclidean
distance between the data points and passed into the sketch phase to produce an
approximate version of the exact MST.

Synthetic datasets

Experiments were performed on three classic synthetic datasets from the Euclidean
space: three blobs, noisy circles and noisy moons. Each dataset contains 1000 data
points in 20 dimensions: the first two dimensions are randomly drawn from predefined
2D-clusters, as shown in Figure 5.10, 5.11 and 5.12, while the other 18 dimensions
are random Gaussian noise.

Real dataset

DBMSTClu performances are also measured on the mushroom dataset7. It contains
8124 records of 22 categorical attributes corresponding to 23 species of gilled mush-
rooms in the Agaricus and Lepiota family. 118 binary attributes are created from the
22 categorical ones, then the complete graph (about 33 millions of edges) is built by
computing the normalized Hamming distance (i.e. the number of distinct bits divided
by the dimension, see Definition A.0.5 p.128 for a recall) between the points.

Results

Figure 5.10, 5.11, 5.12 and 5.13 show the results for all previously defined datasets
and aforementioned methods when providing to DBMSTClu an approximate MST
obtained from the sketching phase. The synthetic datasets were projected onto 2D
spaces for visualization purposes. They were produced with a noise level such that
SEMST fails and DBSCAN does not perform well without parameters optimization.
In particular, for DBSCAN all the cross points correspond to noise.

7https://archive.ics.uci.edu/ml/datasets/mushroom

https://archive.ics.uci.edu/ml/datasets/mushroom

118 Chapter 5. Graph sketching-based massive data clustering

20 15 10 5 0 5 10 15 20 25
15

10

5

0

5

10

15

20 15 10 5 0 5 10 15 20 25
15

10

5

0

5

10

15

20 15 10 5 0 5 10 15 20 25
15

10

5

0

5

10

15

Figure 5.10: Three blobs: SEMST, DBSCAN (ε = 1.4, minPts =
5), DBMSTClu with an approximate MST.

2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 5.11: Noisy circles: SEMST, DBSCAN (ε = 0.15, minPts =
5), DBMSTClu with an approximate MST.

• With the three blobs, each method performs well: they all manage to retrieve
the three clusters.

• With the concentric circles, SEMST does not cut on the consistent edges, hence
leads to an isolated singleton cluster. DBSCAN classifies the same point plus
a near one as noise while recovering the two circles well. Finally, DBMSTClu
finds the two main clusters and also creates five singleton clusters which can be
legitimately considered as noise as well.

5.7. Experiments 119

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

Figure 5.12: Noisy moons: SEMST, DBSCAN (ε = 0.16, minPts =
5), DBMSTClu with an approximate MST.

4 3 2 1 0 1 2 3 4 5 3
2

1
0

1
2

3

3

2

1

0

1

2

3

4 3 2 1 0 1 2 3 4 5 3
2

1
0

1
2

3

3

2

1

0

1

2

3

4 3 2 1 0 1 2 3 4 5 3
2

1
0

1
2

3

3

2

1

0

1

2

3

Figure 5.13: Mushroom dataset: SEMST, DBSCAN (ε = 1.5,
minPts = 2), DBMSTClu with an approximate MST (projection on

the first three principal components).

• With noisy moons, while DBSCAN considers three outliers, DBMSTClu detects
the same as singleton clusters.

• For the mushroom dataset, if suitable parameters are given to SEMST and
DBSCAN, the right 23 clusters get found while DBMSTClu retrieves them
without tuning any parameter.

120 Chapter 5. Graph sketching-based massive data clustering

As theoretically proved above, experiments emphasize the fact that our algorithm
is more subtle than simply cutting the heaviest edges as the failure of SEMST shows.
Moreover our algorithm exhibits an ability to detect outliers, which could be labeled
as noise in a post-processing phase. Another decisive advantage of our algorithm is
the absence of any required parameters, contrarily to DBSCAN.

Quantitative results for the synthetic datasets are shown in Table 5.1: the achieved
Silhouette coefficient [Rousseeuw, 1987], the Adjusted Rand Index (ARI) [Rand, 1971]
and the DBCVI. For all the indices, the higher, the better.

• The Silhouette coefficient (between −1 and 1) is used to measure a clustering
partition without any external information. For DBSCAN it is computed by
considering noise points as singletons. We see that this measure is not very
suitable for non-convex clusters like noisy circles or moons.

• The ARI (between 0 and 1) measures the similarity between the experimental
clustering partition and the known ground truth. DBSCAN and DBMSTClu
give similar almost optimal results.

• Finally, the obtained DBCVIs are consistent, since the best ones are reached
for DBMSTClu.

For the mushroom dataset, the corresponding DBCVI and Silhouette coefficient
are respectively 0.75 and 0.47.

Silhouette coefficient Adjusted Rand Index DBCVI
SEMST 0.84 0.16 −0.12 1 0 0 0.84 0.001 0.06
DBSCAN 0.84 0.02 0.26 1 0.99 0.99 0.84 −0.26 0.15
DBMSTClu 0.84 −0.26 0.26 1 0.99 0.99 0.84 0.18 0.15

Table 5.1: Silhouette coefficients, Adjusted Rand Index and DBCVI
for the blobs, noisy circles and noisy moons datasets with SEMST,

DBSCAN and DBMSTClu.

5.7.2 Scalability of the clustering

For the mushroom dataset which is not a toy dataset, DBMSTClu’s execution time
(averaged on 5 runs) is 3.36s while DBSCAN requires 9.00s. This gives a first overview
of its ability to deal with a high number of clusters. Further experiments on execu-
tion time were conducted on large-scale random weighted graphs generated from the
Stochastic Block Model with varying equal-sized number of clusters K and N . The
scalability of DBMSTClu is shown in Figure 5.14 and Table 5.2 by exhibiting the
linear time complexity in N . Graphs with 1 million of nodes and 100 clusters were

K\N 1000 10000 50000 100000 250000 500000 750000 1000000
5 0.34 2.96 14.37 28.91 73.04 148.85 218.11 292.25
20 0.95 8.73 43.71 88.51 223.18 449.37 669.29 889.88
100 4.36 40.25 201.76 398.41 995.42 2011.79 3015.61 4016.13
“100/5" 12.82 13.60 14.04 13.78 13.63 13.52 13.83 13.74

Table 5.2: Numerical values for DBMSTClu’s execution time (in
s) varying N and K (averaged on 5 runs). The last row shows the

execution time ratio between K = 100 and K = 5.

5.8. Conclusion 121

easily clustered. In Table 5.2, the row with the execution time ratio between K = 100
and K = 5 illustrates the first trick from Section 5.5 as the observed time ratio is
around 2/3 of the theoretical one 100/5 = 20.

0 200000 400000 600000 800000 1000000

Number of points

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
 (

s)

K=5

K=20

K=100

Figure 5.14: DBMSTClu’s execution time with values of
N ∈ {1K, 10K, 50K, 100K, 250K, 500K, 750K, 1M}.

5.8 Conclusion

In this Chapter 5, a novel space-efficient Density-Based Clustering algorithm, named
DBMSTClu, is introduced. It only relies on a Minimum Spanning Tree (MST) of the
dissimilarity graph G. The spatial and time costs are O(N) with N the number of
data points. This enables to deal easily with graphs of million of nodes.

Moreover, DBMSTClu is non-parametric, unlike most existing clustering methods:
it automatically determines the right number of non-convex clusters.

Although the approach is fundamentally independent from the sketching phase, its
robustness has been assessed by using as input an approximate MST of the sketched
G rather than an exact one. The graph sketch is computed dynamically on the
fly as the new edge weight updates are read in only one pass over the data. This
brings a space-efficient solution for finding an MST of G when the O(N2) edges
cannot fit in memory. Hence, our algorithm adapts to the semi-streaming setting
with O(N polylogN) space.

Our approach shows promising results, as evidenced by the experimental part
regarding time and space scalability and clustering performance even with sketching.

Further work would consist in using this algorithm in privacy issues, as the lost
information when sketching might ensure data privacy (see Appendix E for the ob-
tained results). Moreover, as it is already the case for the graph sketching, we could
look for the adaptation of both the MST recovery and DBMSTClu to the fully on-
line setting. It would consist in modifying both dynamically a current MST and the
clustering partition as a new edge weight update from the stream is seen.

123

Chapter 6

Conclusion

Contents
6.1 Summary of the contributions 123
6.2 Discussion . 124
6.3 Perspectives . 125

6.3.1 How to overcome the current limitations 125
DBMSTClu and the streaming setting 125
On the need of rotations in Hypercubic hashing 126

6.3.2 Applications . 126

This Chapter presents a discussion of the work and some research perspectives.

6.1 Summary of the contributions

The main purpose of this thesis is to investigate how to perform efficiently unsuper-
vised machine learning applications preserving the distance and the data structure
such as the nearest neighbors search and clustering for high dimensional streams. The
proposed models rely on approximation algorithms based on compact representations
of the data which have the attractive advantages to reduce the required memory
space, to increase the data processing rate of flow while maintaining an acceptable
accuracy of the result in comparison with the exact equivalent algorithms.

To this end, three main improvements can be acknowledged, belonging each
to the three main categories for distance and structure preserving methods: data-
independent, data-dependent and graph-based approaches which cover almost all us-
ages for the user.

• The first one concerns a theoretical framework proving the accuracy of the data-
independent fastest known version of the Cross-polytope LSH algorithm [Tera-
sawa and Tanaka, 2007] for the nearest neighbor search. The classical Cross-
polytope LSH involves some matrix-vector products where the matrix is a ran-
dom Gaussian one. Instead of this classical Gaussian matrix, Andoni et al.
[2015a] proposed the structured one HD3HD2HD1 where H stands for the
normalized Hadamard transform and for all i ∈ {1, 2, 3}, Di are random inde-
pendent diagonal matrices with coefficients taken from {+1,−1}. This leads
to considerable memory savings by storing less parameters since the Hadamard
transform does not need to be stored in order to be applied to an input vec-
tor. While the accuracy of the HD3HD2HD1 matrix was only experimentally
checked, our work gives a comprehensive framework justifying the role of each
block HDi. The theory holds for a variety of other structured matrices such

124 Chapter 6. Conclusion

as the circulant, Toeplitz, Hankel etc. matrices. The speedups, in comparison
with the unstructured counterpart, are enabled by the use of the Fast Fourier
Transform to compute the matrix-vector products. (Chapter 3)
Moreover, the applications are not limited to the approximate nearest neighbors
search. One can use them in kernel approximation via random feature maps,
convex optimization with Newton sketches, vector quantization, neural networks
or machine learning applications comprising matrix-vector products where the
involved matrix is learned or random and can be replaced by a structured one.
(Appendix C).

• Secondly, when data-independent methods do not provide enough accuracy, a
novel streaming data-dependent method is proposed to learn compact binary
codes from high-dimensional data points in only one pass over the stream. In
practice, the memory footprint is really small since only a projection matrix
and small square matrices with dimension equal to the targeted code length are
stored. The latter are fully updated in a streaming fashion as the new data
points are seen. Theoretical guarantees support the method and the quality of
the obtained sketches are assessed on the approximate nearest neighbors search
task. (Chapter 4)

• As a last contribution, a space-efficient parameter-free clustering algorithm rec-
ognizing non-convex cluster shapes is presented. The approach of the algorithm
is graph-based. To enable linear time and space complexities of the method in
the number of data points, it works on a Minimum Spanning Tree (MST) of
the data dissimilarity graph and performs relevant cuts on this tree to make
the clusters appear from the resulting connected components. In practice, the
algorithm takes as input rather an approximate MST which has been recovered
from the beforehand sketched data dissimilarity graph. The efficient sketching
phase is streamed by processing the data dissimilarity graph by a sequence of
edges. (Chapter 5)
Finally, the clustering algorithm is applied in the differential privacy framework.
(Appendix E)

6.2 Discussion

In the streaming setting, the three development axes to pursue in this thesis for
existing machine learning algorithms are:

• limiting the required memory space,

• reducing the computation time cost,

• controlling the approximation error.

The matrix-vector product compression and speedup (the Structured spinners, contri-
bution 1 in Chapter 3) and the learning of small binary codes from high-dimensional
vectors (UnifDiag, contribution 2 in Chapter 4) completely respect this given frame-
work. Moreover, the tree-based clustering algorithm (DBMSTClu, contribution 3 in
Chapter 5) follows carefully the three previously stated points. The space cost is in-
deed limited to the storage of a minimum spanning tree which is linear in the number
of vertices. In addition, some implementation efforts have been made to ensure the
linear computation time in the number of vertices. At last but not least, accuracy of
the algorithm is guaranteed:

6.3. Perspectives 125

1. by theory on optimality of MST-based clustering algorithms on the one hand
and specific good clustering partition recovery proofs for DBMSTClu on the
other hand,

2. by experimental results with approximate MST instead of a true one when the
latter results from the graph sketching technique from Ahn et al. [2012a] or
from the differentially private release algorithm from Pinot [2018] (PTClust,
see Appendix E).

Nevertheless, one can argue that even if the computation of the dissimilarity graph
sketch is streamed, the retrieval of an approximate MST and the clustering algorithm
are offline. Indeed, let us consider a fixed graph sketch after stopping the edge
stream. From it, an MST and the underlying clustering partition with DBMSTClu
are recovered. If the edge stream is read again, the graph sketch is easily revised as
a new edge update is seen while the MST and the clustering partition need to be
re-computed from the beginning. This is a clear limitation of the method. However,
the reasonable time to compute an MST and the clustering partition - respectively
O(N log3(N)) and O(N) where N is the number of vertices - makes the clustering
algorithm still useful despite its limitation.

6.3 Perspectives

6.3.1 How to overcome the current limitations

DBMSTClu and the streaming setting

One future research perspective ensues directly from the current limitation of the
clustering algorithm DBMSTClu. The idea is to adapt DBMSTClu to the fully
streaming setting. The difficulties are two-fold:

1. Computing in an online fashion an MST with high space constraints, depending
on the fact that deletions are allowed or not, is not straightforward and is indeed
a research topic itself.
To give some insights on the difficulty, let us first consider the case where only
additions are accepted. The MST is built incrementally so it is initially an
empty set of edges. Step by step, edges from the stream are added to the
current formed MST which is rather a Minimum Spanning Forest (MSF) as
long as the tree is disconnected. Then, an edge from the current MSF may be
removed to respect the constraint on the absence of cycle and the minimization
of the edge weights sum.
Concretely, as long as the new edge seen from the stream contains at least one
vertex which has not been yet encountered before, the edge can be directly
added in the maintained MSF without further calculations. Otherwise, let us
add this edge in the forest anyway: this may create a cycle if it is not connecting
two separated connected components. In that case, it is necessary to compute
the connected component incident to this edge and if there is a cycle, to remove
the edge with the heaviest weight.

2. From a given current MST and the made change according to the current ob-
served edge in a stream, how to update efficiently the clustering partition?
Indeed, DBMSTClu is divisive. Depending on the added edge, some clusters
may require to be merged. However, clusters merging has not been implemented
in the algorithm.

126 Chapter 6. Conclusion

On the need of rotations in Hypercubic hashing

UnifDiag, our proposed online method for learning compact binary codes from high-
dimensional vectors, is a streaming hashing method from the family of Hypercubic
hashing. Recall, in Hypercubic hashing, the compact binary codes for high dimen-
sional data are obtained by projecting the data points with a linear embedding fol-
lowed by a suitable rotation. Then, the sign function is applied pointwise to get
binary coefficients.

From this family, ITQ [Gong et al., 2013] is the algorithm giving the best results
for the nearest neighbors retrieval task. With an expected code length c, the method
projects the data points onto the c first principal components and then learns iter-
atively a rotation which correlates the rotated data points with their binary version
(see Chapter 2, Section 2.3.2 for more details).

For producing a streaming version of this algorithm, the rotation is optimized in
UnifDiag method so that to uniformize the diagonal coefficients of the PCA-projected
data covariance matrix. The thing is, such a rotation is not unique. For instance,
UnifDiag defines the rotation as a product of a sequence of Givens rotations while
IsoHash algorithm [Kong and Li, 2012] computes the rotation by solving a particular
objective function with gradient descent. Hence, the following questions remain open:

• How to find the optimal rotation among the ones uniformizing the diagonal of
the PCA-projected covariance matrix?

• Since ITQ in the offline setting still performs better than UnifDiag, how to solve
the objective function from ITQ (Equation 4.7, p. 76) in an online fashion?
Actually, we do not know yet how to do this. This is why UnifDiag has been
designed so that to optimize this kind of surrogate function aiming at equalizing
the diagonal coefficients of the PCA-projected data covariance.

Besides, the proposed embedding is linear by relying on an approximate PCA
projection and a rotation. This can be limiting if data are not assumed to be linearly
separable. A field to investigate could be non-linear binary embedding and neural
network methods.

6.3.2 Applications

Another aspect of the thesis that could be more developed is real-world applications.
From the implementation point of view, for the moment, the stream has been only
simulated by a for loop. The done work could be more valued if the algorithms are
implemented in streaming frameworks like Kafka streams, Spark streaming or Redis.

Concretely, applications in metagenomics could be investigated for UnifDiag and
DBMSTClu, e.g. to reduce the dimensionality of some metagenomics descriptors and
to perform clustering when the number of clusters is not known in advance.

127

Appendix A

Further mathematical tools:
distances

This Appendix reports some further mathematical tools which are used in the thesis.

Nearest neighbors search and clustering quality results depend heavily on the
chosen distance. Some recall is made on classical distances.

Definition A.0.1 (distance). A distance is a function dist : X ×X → R+ that obeys
the following four axioms. For any x, y ∈ X ,

1. dist(x, y) ≥ 0 (non-negativity), and dist(x, y) = 0 if and only if x = y (identity
of indiscernibles),

2. dist(x, y) = dist(y, x) (symmetry)

3. ∀z ∈ X , dist(x, z) ≤ dist(x, y) + dist(y, z) (triangle inequality)

Such a distance function is known as a metric and with a set defines a metric
space. In this thesis in particular, distance functions will be defined for:

• X = V where V is the set of vertices of a simple undirected weighted graph
G(V,E,w) where E is the edge set and w := E → R a weight function.

• X = Rd where the data points are real d-dimensional vectors.

For graphs i.e. X = V a set of vertices in a graph, we will use the minimum path
distance.

Definition A.0.2 (Minimum path distance). Let be G = (V,E,w) and u, v ∈ V .
The minimum path distance between u and v is

distG(u, v) = min
Pu−v

∑
e∈Pu−v

w(e)

with Pu−v a path from u to v in G.

For the classical case which we will cover more carefully X = Rd for some d > 0,
the L1 and L2-distances are in particular considered.

Definition A.0.3 (L1-distance). For x,y ∈ Rd, the L1-distance between x and y is
defined as:

dist1(x,y) = ‖x− y‖1 =
d∑
i=1
|xi − yi|. (A.1)

The L1-distance is also called Manhattan distance.

128 Appendix A. Further mathematical tools: distances

Definition A.0.4 (L2 distance). For x,y ∈ Rd, the L2-distance between x and y is
defined as:

dist2(x,y) = ‖x− y‖2 =

√√√√ d∑
i=1

(xi − yi)2. (A.2)

The L2-distance is well-known as the Euclidean distance.
Two special cases of L1 and L2-distances respectively should be mentioned.

1. When the data and the queries are in the hypercube {0, 1}d, L1-distance is
equivalent to the Hamming distance.

Definition A.0.5 (Hamming distance). For x,y ∈ {0, 1}d, the Hamming dis-
tance between x and y is defined as:

distH(x,y) =
d∑
i=1

(xi ⊕ yi) (A.3)

where ⊕ denotes the XOR operator.

The Hamming distance has the particular advantage to be cheap to compute
since this is the basic operation of counting the number of different bits
between two binary numbers.

2. When the data and the queries are on the unit sphere Sd−1 ⊂ Rd, the L2-
distance is equivalent to the cosine or the angular distances.

Definition A.0.6 (Cosine similarity). For x,y ∈ Sd−1 ⊂ Rd, the cosine simi-
larity between x and y is defined as:

simcos(x,y) := cos(θ) = xTy
‖x‖2‖y‖2

=
∑d
i=1 xiyi√∑d

i=1 x2
i

√∑d
i=1 y2

i

. (A.4)

Definition A.0.7 (Cosine distance). For x,y ∈ Sd−1 ⊂ Rd, the cosine distance
between x and y is defined as:

distcos(x,y) = 1− simcos(x,y) (A.5)

Definition A.0.8 (Angular distance). For x,y ∈ Sd−1 ⊂ Rd, the angular
distance between x and y is defined as:

distang(x,y) = cos−1(simcos(x,y))
π

(A.6)

129

Appendix B

Further structured matrices as
complements of Chapter 2

This Appendix reports some structured matrices which have been used in the thesis.

The product between a matrix and a vector arises in many problems of machine
learning: dimensionality reduction techniques, random projection or LSH are just a
few examples. With a dense d × d-matrix A and any d-dimensional vector x, the
standard multiplication cost is O(d2). For large values of d, this is prohibitive. We
show in this Section a class of structured matrices which, although they are dense,
depend on at most O(d) parameters. Hence, the memory cost of these matrices goes
from O(d2) to O(d). Moreover, we show how to compute the matrix-vector product
y = Ax in only O(d log d) time where x, y ∈ Rd and A is a d × d-matrix. The
members of this matrix family are:

• the Hadamard matrix (already defined above),

• the circulant matrix,

• the skew-circulant matrix,

• the Toeplitz matrix,

• the Hankel matrix,

• the Kronecker matrix.

They have been successfully used for instance in work from Vybíral [2011], Hinrichs
and Vybíral [2011], Zhang et al. [2015], Andoni et al. [2015a]. Let us begin with
a definition of these matrices and then their efficient matrix-vector products. The
Kronecker matrix will be presented separately.

Applied to a d-dimensional input vector, the Hadamard matrix is called the Fast
(Walsh)-Hadamard transform (FHT). An efficient implementation of the FHT relies
on a divide-and-conquer strategy that recursively decomposes a Hadamard transform
of size d into two ones of size d/2 [Fino and Algazi, 1976]. This directly follows
the recursive definition of the Hadamard matrix. Then, the cost of the Fast Walsh-
Hadamard transform is O(d log d) time while there is nothing to store.

In the sequel, the remaining selected matrices of the considered family of struc-
tured matrices are defined before explaining for all how to compute efficiently the
matrix-vector product.

130 Appendix B. Further structured matrices as complements of Chapter 2

Definition B.0.1 (Circulant matrix). A circulant matrix is of the form:

Cd := C(a1, . . . , ad) =

a1 ad ad−1 . . . a2
a2 a1 ad . . . a3
a3 a2 a1 . . . a4
.
ad ad−1 ad−2 . . . a1

 (B.1)

A circulant matrix is completely determined by the first column, the other ones
are obtained by a shift of the previous one. Hence, it relies on d parameters.

Definition B.0.2 (Skew-circulant matrix). A skew-circulant matrix is of the form:

Sd := S(a1, . . . , ad) =

a1 −ad −ad−1 . . . −a2
a2 a1 −ad . . . −a3
a3 a2 a1 . . . −a4
.
ad ad−1 ad−2 . . . a1

 (B.2)

A skew-circulant matrix is completely determined by the first column and the
other ones are obtained by a shift of the previous one. Moreover, the upper triangle
is of opposite sign. Hence, it relies on d parameters.

Definition B.0.3 (Toeplitz matrix). A Toeplitz matrix is of the form:

Td := T(a−d+1, . . . , a0, . . . , ad−1) =

a0 a1 a2 . . . ad−1
a−1 a0 a1 . . . ad−2
a−2 a−1 a0 . . . ad−3
.

a−d+1 a−d+2 a−d+3 . . . a0

 (B.3)

A Toeplitz matrix is completely determined by the first column and the first row.
Hence it depends on 2d − 1 parameters. The entries are constant on the diagonals
parallel to the main one.

Definition B.0.4 (Hankel matrix). A Hankel matrix is of the form:

Ld := L(a−d+1, . . . , a0, . . . , ad−1) =

a−d+1 a−d+2 a−d+3 . . . a0
a−d+2 a−d+3 a−d+4 . . . a1
a−d+3 a−d+4 a−d+5 . . . a2
.
a0 a1 a2 . . . ad−1

 (B.4)

An Hankel matrix is completely determined by the first column and the last row.
Hence it depends on 2d−1 parameters. The entries are constant on the anti-diagonals,
the ones perpendicular to the main diagonal.

For the latter matrices, an efficient implementation of the matrix-vector product
is based on the fact that they can be decomposed by Fourier matrices.

Appendix B. Further structured matrices as complements of Chapter 2 131

Definition B.0.5 (Fourier matrix). A Fourier matrix of order d is defined as the
following:

Fd :=

1 1 1 . . . 1
1 ωd ω2

d . . . ωd−1
d

1 ω2
d ω4

d . . . ω
2(d−1)
d

.

1 ωd−1
d ω

2(d−1)
d . . . ω

(d−1)(d−1)
d

 (B.5)

where ωd = e−
2πi
d is an d-th root of unity.

The multiplication of the Fourier matrix with any vector is the Discrete Fourier
transform (DFT) whose efficient implementation is the Fast Fourier transform
(FFT) [Cooley and Tukey, 1965]. Fd is a unitary matrix, i.e FdF∗d and so does
F∗d where M∗ denotes the adjoint operator for any matrix M. The efficient product
of F∗d with any vector is the Inverse Fast Fourier transform (IFFT). Both FFT and
IFFT can be performed in O(d log d) time [Cooley and Tukey, 1965].

Circulant product The fast algorithm for matrix-vector product with a circu-
lant matrix is based on the following result [Davis, 1970]. For any vector a =
(a1, a2, . . . , ad)T , a circulant matrix C(a1, . . . , ad) can be diagonalized by the Fourier
matrix i.e.

C(a1, . . . , ad) = F∗d · diag(Fda) · Fd (B.6)

Therefore, for any vector x, Cdx can be computed following Algorithm 8. The time
and space costs of the algorithm depend only on the FFT and IFFT’s ones. So the
final time complexity is O(d log d).

Algorithm 8 Matrix-vector product with a circulant matrix
1: Input: x ∈ Rd, the input vector; a = (a1, . . . , ad)T the first column of the

circulant matrix
2: f = FFT(x)
3: g = FFT(a)
4: h = f . ∗ g // element-wise vector-vector product
5: z = IFFT(h)
6: return z

Skew-circulant product Similarly, the product Sdx can be computed with Algo-
rithm 9 [Pan, 2001]. Please note that if the input vector x is complex, directly return
z′ from Algorithm 9 and not the real part.

Toeplitz product The trick for computing the product of a Toeplitz matrix Td

and any d-dimensional vector x is based on the observation that Td can be embedded
into a 2d× 2d circulant matrix C2d [Kailath and Sayed, 1999] such that:

C2d =
(

Td Ed

Ed Td

)
(B.7)

132 Appendix B. Further structured matrices as complements of Chapter 2

Algorithm 9 Matrix-vector product with a skew-circulant matrix
1: Input: x ∈ Rd, the input vector; a = (a1, . . . , ad)T the first column of the

skew-circulant matrix; ω = (1, e
πi
d , e

2πi
d , . . . , e

(d−1)πi
d)T

2: x′ = x . ∗ ω // element-wise vector-vector product
3: a′ = a . ∗ ω
4: f = FFT(x′)
5: g = FFT(a′)
6: h = f . ∗ g
7: z = IFFT(h)
8: z′ = z . ∗ ω
9: return <(z′)

where

Ed = E(a−d+1, . . . , a0, . . . , ad−1) =

0 a−d+1 a−d+2 . . . a−1

ad−1 0 a−d+1 . . . a−2
ad−2 ad−1 0 . . . a−3
.
a1 a2 a3 . . . 0

 (B.8)

Therefore, it holds:

C2d ·

x
0
...
0

 =
(

Td Ed

Ed Td

)
·

x
0
...
0

 =
(

Tdx
Edx

)
(B.9)

It suffices to multiply C2d with x completed with d zeros following Algorithm 8 and
to truncate the resulting vector to the first d coefficients to get the final result. Hence,
this algorithm can be executed in O(d log d) time.

Hankel product By denoting

Jd :=

0 0 . . . 0 1
0 0 . . . 1 0
.
0 1 . . . 0 0
1 0 . . . 0 0

 (B.10)

the backward identity matrix, there is Jd = JTd = J−1
d . Then, it is easy to see that

JdLd is a Toeplitz matrix for any Hankel matrix Ld (similarly JdTd is a Hankel
matrix for any Toeplitz matrix Td). Thus, to compute the product Ldx in O(d log d)
time [Kailath and Sayed, 1999]:

1. Compute the product z = (JdLd)x as a product between the Toeplitz matrix
JdLd and x following Equation B.9.

2. Returns Jdz since Jd = J−1
d .

Kronecker matrix-vector product

Appendix B. Further structured matrices as complements of Chapter 2 133

Definition B.0.6 (Kronecker product). Let us consider two matrices A ∈ Rk×l and
B ∈ Rm×n. The Kronecker product of A and B is A⊗B ∈ Rkm×ln such that:

A⊗B =

A1,1B . . . A1,lB
A2,1B . . . A2,lB

...
Ak,1B . . . Ak,lB

 (B.11)

Now our Definition B.0.7 of a Kronecker matrix is introduced.

Definition B.0.7 (Kronecker matrix). A Kronecker matrix K ∈ Rk×d is defined as
a product of a sequence of element matrices A1, . . . ,AM such that:

K = A1 ⊗ . . .⊗AM = ⊗Mi=1Ai (B.12)

and ∀i ∈ [M], Ai ∈ Rki×di, ΠM
i=1ki = k and ΠM

i=1di = d.

Hence, the space cost of the Kronecker matrix is O(
∑M
i=1 kidi) which is signifi-

cantly less than O(kd). The efficient multiplication of a Kronecker matrix with a vec-
tor is based on Proposition B.0.1. for which two operations should be introduce [van
Loan, 2000]:

1. For any d-dimensional vector x and two integers k, l such that kl = d,
mat(x, k, l) builds a k × l-matrix from x column-wise i.e. one has, for x =
(x1, . . . , xd)T ,

mat(

x1
x2
...
...
xd

, k, l) =

x1 xk+1 . . . x(l−1)k+1
x2 xk+2 . . . x(l−1)k+2
...

...
...

...
xk−1 x2k−1 . . . xkl−1
xk x2k . . . xd

 (B.13)

2. For any matrix M ∈ Rk×l,

vec(M) = (M1,1,M2,1, . . . ,Mk,1,M1,2, . . . ,Mk−1,l,Mk,l)T ∈ Rkl. (B.14)

i.e. vec(M) returns a vector resulting from the stacking of the columns of M.

Please notice that in particular, for x ∈ Rd and k, l ∈ N such that d = kl,
vec(mat(x, k, l) = x.

In the sequel, similarly to the work from Zhang et al. [2015], we assume for
simplicity - and because we will use later this kind of matrix in practice - that a
Kronecker matrix is square i.e. k = d and that all elementary matrices are de × de
for small de > 0, i.e. d is a multiple of de. In practice, one can take de = 2.

Proposition B.0.1 (Efficient Kronecker product). Let us consider elementary ma-
trices A1, . . . ,AM ∈ Rde×de for small de > 0, K = ⊗Mi=1Ai ∈ Rd×d, d = dMe , and
x ∈ Rd. It holds:

Kx = (⊗Mi=1Ai)x = vec((⊗Mi=2Ai) mat(x, d/de, de)AT
1) (B.15)

Let us consider first the product mat(x, d/de, de)AT
1 ∈ Rd/de×de in Equation B.15.

There are d coefficients to compute and for each coefficient, de multiplications and

134 Appendix B. Further structured matrices as complements of Chapter 2

de−1 additions are required. Hence, totally dde multiplications and dde−d additions
are performed, i.e. d(2de − 1) operations. Please notice that the Kronecker matrix
(⊗Mi=2Ai) is a d/de × d/de matrix since A1 is missing and d = dMe . Then, computing
(⊗Mi=2Ai) mat(x, d/de, de)AT

1 can be seen as de individual matrix-vector products with
d/de-dimensional vectors as columns of the matrix mat(x, d/de, de)AT

1 . Therefore, the
following recursive scheme appears:

f(d, de) = d(2de − 1)︸ ︷︷ ︸
mat(x,d/de,de)AT

1

+def(d/de, de) (B.16)

by developping to the next level of recursion:

= d(2de − 1) + de[d/de(2de − 1) + def(d/d2
e, de)] (B.17)

after simplification:

= 2d(2de − 1) + d2
ef(d/d2

e, de) (B.18)
= . . .

= (M − 1)d(2de − 1) + dM−1
e f(de, de) (B.19)

after the last level of recursion:

= Md(2de − 1) + df(1, de) (B.20)

after replacing by the value of M:

= d(2de − 1) logde(d) + df(1, de) (B.21)

Consequently, the matrix-vector product with a Kronecker matrix which will be used
in the sequel costs d(2de− 1) logde(d) operations. Typically, de = 2 will be chosen, so
the time complexity can be reduced to O(d log d).

From square matrices to rectangular matrices Previously, it has been expli-
cated how to perform efficiently in O(d log d) time matrix-vector products for a wide
range of d × d structured matrices: Hadamard, circulant, skew-circulant, Toeplitz,
Hankel and Kronecker matrices. They can be an efficient counterpart of random
Gaussian projection matrices.

However, for dimensionality reduction, the required projection matrix should be
c × d where c � d. In that case, we perform the d × d corresponding structured
matrix-vector product and then take only the c first coefficients. Finally, the time
cost is O(d log d).

Remark B.0.1. In the Appendix C, an application is shown for kernel approx-
imation with the case of k × d-structured matrices where k >> d. Here some
d × d-structured matrices are stacked vertically and the final time complexity is
O(d log d × k/d) = O(k log d), assuming that k is a multiple of d. For both cases,
the rule to keep in mind is that the time complexity for computing the matrix-
vector multiplication is O(max(input vector dimension, output vector dimension) ×
log(input vector dimension)). See also the scheme from Section 3.2.2.

135

Appendix C

Some other Structured spinners’
applications

Contents
C.1 Introduction . 135
C.2 Complementary related work 136

C.2.1 Kernel approximation via random features map 136
C.2.2 Newton sketches for convex optimization 136
C.2.3 Neural networks . 137

C.3 Complements of the theoretical results for the random-
ized setting . 138

C.3.1 Recall of notation . 138
C.3.2 b-convexity for angular kernel approximation 138

C.4 Accuracy of the Structured spinners in the adaptive setting139
C.5 Experiments . 141

C.5.1 Kernel approximation . 141
C.5.2 Convex optimization via Newton sketches 142
C.5.3 Neural networks . 144

C.1 Introduction

The applications range of the Structured spinners family previously described in
Chapter 3 do not restrict to dimensionality reduction algorithms and LSH-based
schemes. For the randomized setting, they are also:

• kernel approximation techniques based on random feature maps produced
from linear projections with Gaussian matrices followed by nonlinear map-
pings [Rahimi and Recht, 2007, Le et al., 2013, Choromanski and Sindhwani,
2016, Huang et al., 2014, Choromanska et al., 2016],

• algorithms solving convex optimization problems with random sketches of Hes-
sian matrices [Pilanci and Wainwright, 2015, 2014],

• quantization techniques using random projection trees, where splitting in each
node is determined by a projection of data onto some Gaussian direction [Das-
gupta and Freund, 2008],

• and many more.

136 Appendix C. Some other Structured spinners’ applications

Regarding the adaptive setting, the classical example of machine learning nonlin-
ear models where linear projections are learned is a multi-layered neural network [Le-
Cun et al., 2015, Goodfellow et al., 2016], where the operations of linear projection via
matrices with learned parameters followed by the pointwise nonlinear feature trans-
formation are the building blocks of the network’s architecture. These two operations
are typically stacked multiple times to form a deep network.

Further contributions in this Appendix For the randomized setting, we show
also in this Appendix applications in kernel approximation via random features maps
and convex optimization algorithms via Newton sketches while for the adaptive set-
ting, neural networks are given as an example. For the latter to the best of our
knowledge, this work is the first to theoretically explain the effectiveness of struc-
tured neural network architectures (see Section C.4).

Plan of this Appendix Section C.2 gives the corresponding complementary re-
lated work for kernel approximation via random features map, convex optimization
with Newton sketches and structured neural networks. Additional theoretical results
are demonstrated regarding the randomized setting in Section C.3, and in Section C.4
for the accuracy guarantees in the adaptive setting. Finally, further experiments have
been conducted.

C.2 Complementary related work

C.2.1 Kernel approximation via random features map

More recently, the so-called Ψ-regular structured matrices (the Toeplitz and circu-
lant matrices belong to this wider family of matrices) were used to approximate
angular distances [Choromanska et al., 2016] and signed Circulant Random Matri-
ces were used to approximate Gaussian kernels [Feng et al., 2015]. Another work
from Choromanski and Sindhwani [2016] applies structured matrices coming from
the so-called P-model, which further generalizes the Ψ-regular family, to speed up
random feature map computations of some special kernels (angular, arc-cosine and
Gaussian). These techniques did not work for discrete structured constructions, such
as the HD3HD2HD1 matrices, or their direct non-discrete modifications, since they
require matrices with low (polylog) chromatic number of the corresponding coherence
graphs.

C.2.2 Newton sketches for convex optimization

Furthermore, a recently proposed technique based on the so-called Newton Sketch
provides yet another example of application for structured matrices. The method
from Pilanci and Wainwright [2015, 2014] is used for speeding up algorithms solv-
ing convex optimization problems by approximating Hessian matrices using so-called
sketch matrices. Initially, the sub-Gaussian sketches based on i.i.d. sub-Gaussian ran-
dom variables were used. The disadvantage of the sub-Gaussian sketches lies in the
fact that computing the sketch of the given matrix of size n×d requires O(mnd) time,
where m × n in the size of the sketch matrix. Thus the method is too slow in prac-
tice and could be accelerated with the use of structured matrices. Some structured
approaches were already considered, e.g. sketches based on randomized orthonormal
systems were proposed in work from Pilanci and Wainwright [2015].

C.2. Complementary related work 137

C.2.3 Neural networks

All previously considered methods focus on the randomized setting, where the struc-
tured matrix is fully random. In the context of adaptive setting, the parameters are
being learned instead. This Appendix focuses on the example of multi-layer neural
networks. It should be emphasized though that this approach is much more general
and extends beyond this setting.

Structured neural networks were considered before, for instance in work from Yang
et al. [2015], where the so-called Deep Fried Neural Convnets were proposed. Those
architectures are based on the adaptive version of the Fastfood transform used for
approximating various kernels [Le et al., 2013], which is a special case of the structured
spinner matrices. Deep Fried Convnets apply adaptive structured matrices for the
fully connected layers of the convolutional networks. The structured matrix is of the
form: SHGΠHB, where S, G, and B are adaptive diagonal matrices, Π is a random
permutation matrix, and H is the Walsh-Hadamard matrix. The method reduces
the storage and the the computational costs of the matrix multiplication step from,
often prohibitive, O(nd) down to O(n) storage and O(n log d) computational cost,
where d and n denote the size of consecutive layers of the network. At the same time,
this approach does not sacrifice the network’s predictive performance. Another work
from Moczulski et al. [2016] that offers an improvement over Deep Fried Convnets,
looks at a structured matrix family that is very similar to HD3HD2HD1 (however
is significantly less general than the family of Structured spinners). Their theoretical
results rely on the analysis in work from Huhtanen and Perämäki [2015].

The Adaptive Fastfood approach elegantly complements previous works dedicated
to address the problem of huge overparametrization of deep models with structured
matrices. Indeed, the method of Denil et al. [2013] represents the parameter matrix
as a product of two low rank factors and, similarly to Adaptive Fastfood, applies
both at train and test time. Besides, Sainath et al. [2013] introduces low-rank matrix
factorization to reduce the size of the fully connected layers at train time. Li [2013]
uses low-rank factorizations with SVD after training the full model. These methods,
as well as approaches that consider kernel methods in deep learning [Denil et al., 2013,
Mairal et al., 2014, Dai et al., 2014, Huang et al., 2014], are conveniently discussed
in work from Yang et al. [2015].

Structured neural networks are also considered in work from Sindhwani et al.
[2015], where low-displacement rank matrices are applied for linear projections. The
advantage of this approach over Deep Fried Convnets is due to the high parametriza-
tion of low-displacement rank matrices family that allows the adjustment of the num-
ber of learned parameters based on the accuracy and speedup requirements.

The class of Structured spinners proposed in this work is more general than Deep
Fried Convnets or low displacement rank matrices, but it also provides much easier
structured constructions, such as HD3HD2HD1 matrices, where Dis are adaptive
diagonal matrices. Furthermore, to the best of our knowledge, this work is the first
to prove theoretically that structured neural networks learn good quality models, by
analyzing the capacity of the family of Structured spinners.

138 Appendix C. Some other Structured spinners’ applications

C.3 Complements of the theoretical results for the ran-
domized setting

C.3.1 Recall of notation

Note that the setting in Section 3.3 covers a wide range of machine learning algo-
rithms: in particular, kernel approximation via random feature maps. Recall the
notation from Section 3.3.1, p.59:

Let AG be a machine learning algorithm applied to a fixed dataset X ⊆ Rn and
parametrized by a set G of matrices G ∈ Rm×n, where each G is either learned or
Gaussian with independent entries taken from N (0, 1). Assume furthermore, that AG
consists of functions f1, . . . , fs, where each fi applies a certain matrix Gi from G to
vectors from some linear space Li of dimensionality at most d. Note that for a fixed
dataset X function fi is a function of a random vector

qfi = ((Gix1)T , . . . , (Gixdi)T)T ∈ Rdi·m, (C.1)

where dim(Li) = di ≤ d and x1, . . . ,xdi stands for some fixed basis of Li.
Denote by f ′i the structured counterpart of fi, where Gi is replaced by the struc-

tured spinner (for which vector r is either learned or random). The goal is to show
that f ′is "resemble" fis distribution-wise.

Under this notation, one has:

Remark C.3.1. In the kernel approximation setting with random feature maps, one
can match each pair of vectors x,y ∈ X to a different f = fx,y. Each f computes the
approximate value of the kernel for vectors x and y. Thus in that scenario s =

(|X |
2
)

and d = 2 (since one can take: Lf(x,y) = span(x,y)).

Remark C.3.2. In the vector quantization algorithms using random projection trees
one can take s = 1 (the algorithm A itself is a function f outputting the partitioning
of space into cells) and d = dintrinsic, where dintrinsic is an intrinsic dimensionality
of a given dataset X (random projection trees are often used if dintrinsic � n).

C.3.2 b-convexity for angular kernel approximation

Recall that general accuracy results of the Structured spinners in the randomized
setting are given by Theorem 3.3.1, Section 3.3.4 p.53. We rewrite it here for clarity.

Theorem 3.3.1 (structured random setting). Let A be a randomized algorithm
using unstructured Gaussian matrices G and let s, d and fis be as at the beginning
of the section. Replace the unstructured matrix G by one of the structured spinners
defined in Section 3.2 with blocks of m rows each. Then for n large enough, ε = omd(1)
and fixed fi with probability psucc at least:

1− 2p(n)d− 2
(
md

2

)
e
−Ω(min(ε2n2

K4Λ2
F
δ4(n)

, εn
K2Λ2δ2(n)

))
(C.2)

with respect to the random choices of M1 and M2 the following holds for any S such
that f−1

i (S) is measurable and b-convex:

|P[fi(qfi) ∈ S]− P[f ′i(qf ′i) ∈ S]| ≤ bη, (C.3)

C.4. Accuracy of the Structured spinners in the adaptive setting 139

where the probabilities in the last formula are with respect to the random choice of
M3, η = δ3(n)

n
2
5
, and δ(n), p(n),K,ΛF ,Λ2 are as in the definition of the structured

spinners from Section 3.2 p.56.

Let us now consider the particular setting where linear projections are used to
approximate angular kernels between pairs of vectors via random feature maps. In
this case, the linear projection is followed by the pointwise nonlinear mapping, where
the applied nonlinear mapping is the sign function. The angular kernel is retrieved
from the Hamming distance between {−1,+1}-hashes obtained in such a way. Note
that in this case, to each pair x,y of vectors from a database can be assigned a function
fx,y that outputs the binary vector whose length is the size of the hash and whose
indices are turned on for the hashes of x and y which disagree. Such a binary vector
uniquely determines the Hadamard distance between the hashes. Notice that for a
fixed-length hash, fx,y produces only finitely many outputs. If S is a set-singleton
consisting of one of the possible outputs, then one can notice (straightforwardly from
the way the hash is created) that f−1

x,y(S) is an intersection of the convex sets (as a
function of qfx,y). Thus it is convex and thus for sets S which are singletons one can
take b = 1 in Theorem 3.3.1.

C.4 Accuracy of the Structured spinners in the adaptive
setting

The following theorem explains that the Structured spinners can be used to replace
unstructured fully connected neural network layers performing dimensionality reduc-
tion (such as hidden layers in certain autoencoders) provided that input data has low
intrinsic dimensionality. These theoretical findings were confirmed in experiments
that will be presented in the next Section. Notation from Theorem 3.3.1 will be used.

Theorem C.4.1. Consider a matrix M ∈ Rm×n encoding the weights of connections
between a layer l0 of size n and a layer l1 of sizem in some learned unstructured neural
network model. Assume that the input to layer l0 is taken from the d-dimensional
space L (although potentially embedded in a much higher dimensional space). Then
with probability at least

1− 2p(n)d− 2
(
md

2

)
e
−Ω(min(t2n2

K4Λ2
F
δ4(n)

, tn
K2Λ2δ2(n)

))
(C.4)

for t = 1
md and with respect to random choices of M1 and M2, there exists a vector

r defining M3 (see definition of the structured spinner in Section 3.2 p.56) such that
the structured spinner Mstruct = M3M2M1 equals to M on L.

In the proof of Theorem C.4.1, it is shown that by learning vector r ∈ Rk defined
following Condition 3.2.3 p.57, one can approximate well any matrix M ∈ Rm×n
learned by the neural network, providing that the size k of r is large enough in
comparison with the number of projections and the intrinsic dimensionality d of the
dataset X .

Take the parametrized structured spinner matrix Mstruct ∈ Rm×n with a learnable
vector r. Let M ∈ Rm×n be a matrix learned in the unstructured setting. Let
B = {x1, . . . ,xd} be some orthonormal basis of the linear space, where data X is
taken from. One has the following proof for Theorem C.4.1:

140 Appendix C. Some other Structured spinners’ applications

Proof. Note that from the definition of the parametrized structured spinner
model, with probability at least p1 = 1 − p(n) with respect to the choices of
M1 and M2 each Mstructxi is of the form:

Mstructxi = (rT · z1(qi), . . . , rT · zm(qi))T , (C.5)

where each zj(qi) is of the form:

zj(qi) = (wj1,1ρ1q
i
1 + wj1,nρnq

i
n, . . . , w

j
k,1ρ1q

i
1 + wjk,nρnq

i
n)T (C.6)

and B′ = {q1, . . . ,qd} is an orthonormal basis such that for i ∈ [n]:

‖qi‖∞ ≤
δ(n)√
n
. (C.7)

Note that the system of equations for i = 1, . . . , d with fixed Mxi:

Mstructxi = Mxi (C.8)

has the solution in r if the vectors from the set A = {zj(qi) : j ∈ [m], i ∈ [d]}
are independent.

Construct a matrix G ∈ Rmd×k, where rows are vectors from A. The goal is to
show that rank(G) = md, otherwise rank(G) < md which implies that rows of G
are not independent. It suffices to show that det(GGT) 6= 0. Indeed for GGT ∈
Rmd×md if det(GGT) 6= 0, then GGT is invertible and rank(GGT) = md.
But by composition property, rank(GGT) ≤ rank(G). Hence, rank(G) = md.
Denote B = GGT . Note that Bi,j = (vi)Tvj , where A = {v1, . . . ,vmd}. Take
two vectors va,vb ∈ A. Note that from the definition of A there is:

(va)Tvb =
∑

l∈{1,...,n},u∈{1,...,n}
ρlρuxlyu(

k∑
s=1

wis,lw
j
s,u) (C.9)

for some i, j and some vectors x = (x1, . . . , xn)T , y = (y1, . . . , yn)T . Furthermore,

• i = j and x = y if a = b,

• ‖x‖2 = ‖y‖2 = 1 by hypothesis,

• xTy = 0 or x = y and i 6= j for a 6= b.

Indeed for the last point, if a 6= b:

• either x = y: in that case, i 6= j otherwise a = b,

• or x 6= y and xTy = 0.

There is also:

E[(va)Tvb] = E[
∑

l∈{1,...,n}
ρ2
l xlyl(

k∑
s=1

wis,lw
j
s,u)]. (C.10)

From the previous observations and the properties of matrices W1, . . . ,Wn,
the entries of the diagonal of B are equal to 1. Furthermore, all other entries

C.5. Experiments 141

are 0 on expectation. Using Hanson-Wright inequality, for any t > 0 it holds:
|Bi,j | ≤ t for all i 6= j with probability at least:

psucc = 1− 2p(n)d− 2
(
md

2

)
e
−cmin(t2n2

K4Λ2
F
δ4(n)

, tn
K2Λ2δ2(n)

)
. (C.11)

If this is the case, let B̃ ∈ R(md)×(md) be a matrix with diagonal entries
B̃i,i = 0 and off-diagonal entries B̃i,j = −Bi,j . Furthermore, let B∗ ∈ R(md)×(md)

be a matrix with diagonal entries B∗i,i = 0 and off-diagonal entries B∗i,j = t.
Following a similar argument from Brent et al. [2014], note that B∗ = t(J−I)

where J is the matrix of all ones (thus of rank 1) and I is the identity matrix.
Then the eigenvalues of B∗ are t(md − 1) with multiplicity 1 and t(0 − 1) with
multiplicity (md− 1). Thereby, det(I−B∗)=(1− t(md− 1))(1 + t)md−1 can be
explicitly computed.

If ρ(B∗) ≤ 1, Theorem C.4.2 of Brent et al. [2014] can be applied by replacing
F with B∗ and E with B̃. For the convenience of the reader, their theorem is
stated here:

Theorem C.4.2 (Brent et al. [2014]). Let F ∈ Rn×n with nonnegative entries
and ρ(F) ≤ 1. Let E ∈ Rn×n with entries | ei,j |≤ fi,j, then det(I − E) ≥
det(I− F).

That is: if ρ(B∗) ≤ 1, then

det(I−B∗) = (1− t(md− 1))(1 + t)md−1 ≤ det(I− B̃) = det(B). (C.12)

The final step is to observe that:
ρ(B∗) ≤ 1 ⇐⇒ max{| t(md − 1) |, | −t |} = t(md − 1) ≤ 1 ⇐⇒ t ≤ 1

md−1 .
Hence, using this result, it can be seen that det(B) ≥ (1−t(md−1))(1+t)md−1 ≥
0, in particular det(B) > 0 for t = 1

md . That completes the proof.

C.5 Experiments

C.5.1 Kernel approximation

In this experiment, the Gaussian and angular kernels are approximated using Random
Fourier features. The Gaussian random matrix (with i.i.d. Gaussian entries) can be
used to sample random Fourier features with a specified σ. This Gaussian random
matrix is replaced with specific matrices from a family of Structured spinners for
Gaussian and angular kernels. The obtained feature maps are compared. To test the
quality of the structured kernels’ approximations, the Gram-matrix reconstruction
error is computed as in the work from Choromanski and Sindhwani [2016] : ‖K−K̃‖F

‖K‖F ,
where K, K̃ are respectively the exact and approximate Gram-matrices, as a function
of the number of random features. When the number of random features k is greater
than data dimensionality n, the block-mechanism described in Section 3.2.2 is applied.

For the Gaussian kernel, Kij = e
−‖xi−xj‖

2
2

2σ2 and for the angular kernel, Kij = 1− θ
π

with θ = cos−1(xTi xj
‖xi‖2‖xj‖2). For the approximation, K̃i,j = 1√

d′
s(Axi)T 1√

d′
s(Axj)

where s(x) = e
−ix
σ and K̃i,j = 1−distH(s(Axi),s(Axj))

d′ where s(x) = sign(x) respectively.
In both cases, function s is applied pointwise. distH stands for the Hamming distance
and xi, xj are points from the dataset.

142 Appendix C. Some other Structured spinners’ applications

Two datasets are used: G50C (550 points, n = 50) and USPST (test set, 2007
points, n = 256).

• G50C dataset contains 550 points of dimensionality 50 drawn from multivariate
Gaussians.

• USPST is a dataset of 2007 handwritten digits (from 0 to 9) with dimension
256 collected by the US Postal Service.

For the Gaussian kernel, the bandwidth σ is set to 17.4734 for G50C and to 9.4338 for
USPST. The choice of σ comes from Choromanski and Sindhwani [2016] in order to
have comparable results. The results are averaged over 10 runs and the following ma-
trices have been tested: Gaussian random matrix G, GcircK2K1, GToeplitzD2HD1,
Gskew−circD2HD1, HDg1,...,gnHD2HD1 and HD3HD2HD1.

Figure C.1 (resp. C.2) shows results for the G50C (resp. USPST) dataset. In
case of G50C dataset, for both kernels, all matrices from the family of Structured
spinners perform similarly to a random Gaussian matrix. HD3HD2HD1 performs
better than all other matrices for a wide range of sizes of random feature maps. In
case of USPST dataset, for both kernels, all matrices from the family of Structured
spinners again perform similarly to a random Gaussian matrix (except GcircK2K1
which gives relatively poor results) and HD3HD2HD1 is giving the best results.
Finally, the efficiency of the Structured spinners does not depend on the dataset.

Table C.1 shows substantial speedups obtained by the structured spinner matrices.
The speedups are computed as time(G)/time(T), where time(G) and time(T) are
the runtimes for respectively a random Gaussian matrix and a structured spinner
matrix.

MATRIX DIM. 29 210 211 212 213 214 215

GToeplitzD2HD1 x1.4 x3.4 x6.4 x12.9 x28.0 x42.3 x89.6
Gskew−circD2HD1 x1.5 x3.6 x6.8 x14.9 x31.2 x49.7 x96.5

HDg1,...,gnHD2HD1 x2.3 x6.0 x13.8 x31.5 x75.7 x137.0 x308.8
HD3HD2HD1 x2.2 x6.0 x14.1 x33.3 x74.3 x140.4 x316.8

Table C.1: Speedups for the Gaussian kernel approximation via the
Structured spinners. It has been tested for square matrices with di-
mension 2k for k up to 15. Indeed, the used machine with 16Go RAM
is not able to store square matrices with dimension 2k for k > 15. For
instance, for dimension 215, the kernel computation costs 1.382s in the
unstructured case and 4363µs with HD3HD2HD1, which constitutes

the best obtained speedup.

C.5.2 Convex optimization via Newton sketches
This experiment focuses on the Newton sketch approach [Pilanci and Wainwright,
2015], a generic optimization framework. It guarantees super-linear convergence with
exponentially high probability for self-concordant functions [Boyd and Vandenberghe,
2004], and a reduced computational complexity compared to the original second-order
Newton method. The method relies on the use of a sketched version of the Hessian
matrix, in place of the original one. In the subsequent experiment it is demonstrated
that matrices from the family of Structured spinners can be used for this purpose,
thus can speed up several convex optimization problems solvers.

C.5. Experiments 143

In particular, the unconstrained large scale logistic regression problem is consid-
ered, i.e. given a set of n observations {(ai, yi)}i=1,...,n, with ai ∈ Rd and yi ∈ {−1, 1},
the goal is to find x ∈ Rd minimizing the cost function

f(x) =
n∑
i=1

log(1 + exp(−yiaTi x)). (C.13)

The Newton approach to solve this optimization problem entails solving at each iter-
ation the least squares equation ∇2f(xt)∆t = −∇f(xt), where

∇2f(xt) = AT diag
(

1
1 + exp(−aTi x)

(1− 1
1 + exp(−aTi x)

)
)

A ∈ Rd×d (C.14)

is the Hessian matrix of f(xt), A = [aT1 aT2 · · ·aTn] ∈ Rn×d, ∆t = xt+1 − xt is the
increment at iteration t and ∇f(xt) ∈ Rd is the gradient of the cost function. In
work from Pilanci and Wainwright [2015] it is proposed to consider the sketched
version of the least square equation, based on a Hessian square root of ∇2f(xt),

denoted ∇2f(xt)1/2 = diag
(

1
1+exp(−aTi x)(1− 1

1+exp(−aTi x))
)1/2

A ∈ Rn×d. The least
squares problem at each iteration t is of the form:(

(St∇2f(xt)1/2)TSt∇2f(xt)1/2
)

∆t = −∇f(xt), (C.15)

where St ∈ Rm×n is a sequence of isotropic sketch matrices. Let us finally recall that
the gradient of the cost function is

∇f(xt) =
n∑
i=1

(
1

1 + exp(−yiaTi x)
− 1

)
yiai. (C.16)

In this experiment, the goal is to find x ∈ Rd, which minimizes the logistic re-
gression cost, given a dataset {(ai, yi)}i=1,...,n, with ai ∈ Rd sampled according to
a Gaussian centered multivariate distribution with covariance Σi,j = 0.99|i−j| and
yi ∈ {−1, 1}, generated at random. Various sketching matrices St ∈ Rm×n are con-
sidered.

In Figure C.3a the convergence of the Newton sketch algorithm is reported, as
measured by the optimality gap defined in work from Pilanci and Wainwright [2015],
versus the iteration number. As expected, the structured sketched versions of the
algorithm do not converge as quickly as the exact Newton-sketch approach, however
various matrices from the family of Structured spinners exhibit equivalent convergence
properties as shown in the figure.

When the dimensionality of the problem increases, the cost of computing the
Hessian in the exact Newton-sketch approach becomes very large [Pilanci and Wain-
wright, 2015], scaling as O(nd2). The complexity of the structured Newton-sketch
approach with the matrices from the family of Structured spinners is instead only
O(dn log(n) + md2). Figure C.3b also illustrates the wall-clock times of computing
single Hessian matrices and confirms that the increase in the number of iterations
of the Newton sketch compared to the exact Newton method is compensated by the
efficiency of the sketched computations, in particular the Hadamard-based sketches
yield improvements at the lowest dimensions.

144 Appendix C. Some other Structured spinners’ applications

C.5.3 Neural networks

Finally, experiments have been performed with neural networks using two different
network architectures. The first one is a fully-connected network with two fully
connected layers (later called MLP), where the size of the hidden layer is referred as
h, and the second one is a convolutional network with the following architecture:

• Convolution layer with filter size 5× 5, 4 feature maps + ReLU + Max Pooling
(region 2× 2 and step 2× 2)

• Convolution layer with filter size 5× 5, 6 feature maps + ReLU + Max Pooling
(region 2× 2 and step 2× 2)

• Fully-connected layer (h outputs) + ReLU

• Fully-connected layer (10 outputs)

• LogSoftMax.

Experiments were performed on the MNIST data set. In both experiments, each
weights matrix of fully connected layers is re-parametrized with a structured
HD3HD2HD1 matrix from a family of Structured spinners. This setting is compared
with the case where the unstructured parameter matrix is used. Note that in case
when HD3HD2HD1 is used only a linear number of parameters is learned (the
Hadamard matrix is deterministic and even does not need to be explicitly stored,
instead Walsh-Hadamard transform is used). Thus the network has significantly less
parameters than in the unstructured case, e.g. for the MLP network there are O(h)
instead of O(input size× h) parameters.

In Figure C.4 and Table C.2 respectively the test error and the running time
of the unstructured and structured approaches are compared. Figure C.4 shows
that for large enough h, neural networks with Structured spinners achieve similar
performance to those with unstructured projections, while at the same time using
Structured spinners leads to significant computational savings as shown in Table C.2.
As mentioned before, the HD3HD2HD1-neural network is a simpler construction
than the Deep Friend Convnet, however one can replace it with any structured spinner
to obtain compressed neural network architecture of a good capacity.

h 24 25 26 27 28 29 210 211 212

unstructured 42.9 51.9 72.7 99.9 163.9 350.5 716.7 1271.5 2317.4
HD3HD2HD1 109.2 121.3 109.7 114.2 117.4 123.9 130.6 214.3 389.8

Table C.2: Running time (in [µs]) for the MLP - unstructured ma-
trices vs Structured spinners.

C.5. Experiments 145

+

+

+

+

+
+

Gram matrix reconstruction error
G50C dataset for the Gaussian kernel

Number of random features

G
ra

m
 m

at
rix

 r
ec

on
st

ru
ct

io
n

er
ro

r

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+0.

01
0.

02
0.

03
0.

04
0.

05

26 27 28 29 210 211

G
GcircK2K1
GToeplitzD2HD1

Gskew−circD2HD1
HDg1, g2, …, gn

HD2HD1

HD3HD2HD1

+

+

+

+

+
+

Gram matrix reconstruction error
G50C dataset for the angular kernel

Number of random features

G
ra

m
 m

at
rix

 r
ec

on
st

ru
ct

io
n

er
ro

r

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+
+

+0.
01

0.
03

0.
05

0.
07

26 27 28 29 210 211

G
GcircK2K1
GToeplitzD2HD1

Gskew−circD2HD1
HDg1, g2, …, gn

HD2HD1

HD3HD2HD1

Figure C.1: Accuracy of random feature map kernel approximation
for the G50C dataset.

146 Appendix C. Some other Structured spinners’ applications

+

+

+

+
+

+

Gram matrix reconstruction error
USPST dataset for the Gaussian kernel

Number of random features

G
ra

m
 m

at
rix

 r
ec

on
st

ru
ct

io
n

er
ro

r
+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+
+

+
+

0.
00

0.
04

0.
08

0.
12

28 29 210 211 212 213

G
GcircK2K1
GToeplitzD2HD1

Gskew−circD2HD1
HDg1, g2, …, gn

HD2HD1

HD3HD2HD1

+

+

+

+
+

+

Gram matrix reconstruction error
USPST dataset for the angular kernel

Number of random features

G
ra

m
 m

at
rix

 r
ec

on
st

ru
ct

io
n

er
ro

r

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+
+

+

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

28 29 210 211 212 213

G
GcircK2K1
GToeplitzD2HD1

Gskew−circD2HD1
HDg1, g2, …, gn

HD2HD1

HD3HD2HD1

Figure C.2: Accuracy of random feature map kernel approximation
for the USPST dataset.

C.5. Experiments 147

Convergence analysis

n=65536 d=100 m=800
iteration [#]

op
tim

al
ity

 g
ap

0 10 20 30 40 50 60

10−14

10−10

10−6

10−2

102

106

1010
Structured Spinners

Exact Newton
GcircularD2HD1
GToeplitzD2HD1

GHankelD2HD1
HD3HD2HD1

(a)

+
+

+
+

+

Hessian computation time

n [#]

w
al

l−
cl

oc
k

tim
e

[s
]

+
+

+
+

+
+

+
+

+

+ +
+

+

+
+

+
+

+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+

+ + +
+

10−4

10−3

10−2

10−1

100

101

102

103

214 215 216 217 218

Structured Spinners

Exact Newton
GcircularD2HD1
GToeplitzD2HD1

GHankelD2HD1
HD3HD2HD1

d=128
d=4096

(b)

Figure C.3: Numerical illustration of the convergence (a) and com-
putational complexity (b) of the Newton sketch algorithm with various
Structured spinners. (a) Various sketching structures are compared in
terms of the convergence against iteration number. (b) Wall-clock
times of Structured spinners are compared in various dimensionality

settings.

148 Appendix C. Some other Structured spinners’ applications

+ +
+ + + + + + +

MLP neural network error

h

Te
st

 e
rr

or

+

+

+
+

+
+

+ + +

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

24 25 26 27 28 29 210 211 212

unstructured
HD3HD2HD1

+

+ +
+ + + + + +

Convolutional neural network error

h

Te
st

 e
rr

or

+

+
+

+

+ + + + +

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

24 25 26 27 28 29 210 211 212

unstructured
HD3HD2HD1

Figure C.4: Test error for MLP (left) and convolutional network
(right).

149

Appendix D

Complements of Chapter 4:
When matrix R is random

In this Appendix, theoretical optimality justification of a rotation R in Hypercu-
bic quantization hashing is given for the competing existing online method Online
Sketching Hashing (OSH) [Leng et al., 2015a]. Notation from Chapter 4 is kept.

We now show that if we assume R is a random matrix that resembles a random
rotation (i.e. we do not optimize R and furthermore R is not a valid rotation matrix)
we can still get strong guarantees regarding the quality of the hashing mechanism
(even though not as strong as in the case when R is optimized). We will assume that
R is a Gaussian matrix with entries taken independently at random from N (0, 1).
We further make some assumptions regarding the input data and the quality of the
PCA projection mechanism.

Hypothesis D.0.1 (H2). We assume that the variance of the norm of vectors xt is
upper-bounded, namely we assume that l(1 − δ) ≤ ‖xt‖2 ≤ l(1 + δ) for some fixed
l, δ > 0. We also assume that the PCA projection encoded by matrix W satisfies
for every t: ‖Wxt − xt‖2 ≤ ε‖xt‖2 for some ε > 0. The latter condition means
that the fraction of the L2-norm of the vector lost by performing a PCA projection is
upper-bounded (better quality PCA projections are characterized by smaller values of
ε).

We now state the main theoretical result of this Section:

Theorem D.0.1. Let xt1 ,xt2 ∈ Rd be two data points following Hypothesis D.0.1
for some constants l, δ, ε > 0. Then for every ρ > 0 the following holds: if ‖xt1 −
xt2‖2 ≤ ρ and bt1 ∈ {−1, 1}c and bt2 ∈ {−1, 1}c with bt1 = sign(RWxt1) and
bt2 = sign(RWxt2) then for any η > 0 with probability at least 1− e−

η2c
2 the number

of bits in common between bt1 and bt2 is lower bounded by q satisfying

q = c(1− η − 1
π

arccos(A)) (D.1)

with

A = (1− ε)2(1− δ)2

(1 + δ)2 − ρ2

2l2(1 + δ)2 −
ρε

l(1 + δ) − 2ε2 (D.2)

150 Appendix D. Complements of Chapter 4: When matrix R is random

Proof. Note that by Hypothesis D.0.1 and triangle inequality, we know that vt1 =
Wxt1 and vt2 = Wxt2 satisfy

‖vt1 − vt2‖2 = ‖vt1 − xt1 − (vt2 − xt2) + xt1 − xt2‖2
≤ ρ+ 2ε(1 + δ)l. (D.3)

Now consider a particular entry i ∈ {1, . . . , c} of two binary codes bt1 and bt2 ,
namely b(i)

t1 and b(i)
t2 . Note that b(i)

t1 = sign((ri)>vt1) and b(i)
t2 = sign((ri)>vt2),

where ri stands for the transpose of the ith row of R. We have:

(ri)>vt1 = (riproj + riort)>vt1 = (riproj)>vt1 , (D.4)

where riproj stands for the orthogonal projection of the vector ri into a 2-
dimensional linear space spanned by {vt1 ,vt2} and riort denoted the part of the
vector ri that is orthogonal to that subspace.

Similarly, we obtain:

(ri)>vt2 = (riproj + riort)>vt2 = (riproj)>vt2 . (D.5)

Therefore we have: b(i)
t1 = sign((riproj)>vt1) and b(i)

t2 = sign((riproj)>vt2).
Denote by L the subset of the two-dimensional subspace spanned by {vt1 ,vt2}

that consists of these vectors v ∈ Rc that satisfy: (v>vt1)(v>vt2) > 0. Now note
that the projection riproj of the Gaussian vector ri into two-dimensional deter-
ministic linear subspace spanned by {vt1 ,vt2} is still Gaussian. Furthermore,
Gaussian vectors satisfy the isotropic property. The probability that b(i)

t1 and
b(i)
t2 are the same is exactly the probability that riproj ∈ L. From the fact that

riproj is Gaussian and the isotropic property of Gaussian vectors [Charikar, 2002]
we conclude that:

P[b(i)
t1 = b(i)

t2] = P[riproj ∈ L] = 1−
θvt1 ,vt2
π

, (D.6)

where θvt1 ,vt2 stands for an angle between vt1 and vt2 . Besides, we have:

cos(θvt1 ,vt2) = ‖vt1‖
2
2 + ‖vt2‖22 − ‖vt1 − vt2‖22

2‖vt1‖2‖vt2‖2
(D.7)

Note that by property of the PCA, one has: ||vt1 ||2 ≤ ||xt1 ||2 and ||vt2 ||2 ≤
||xt2 ||2. Moreover, triangle inequality gives: ‖vt1‖2 ≥ ‖xt1‖2 − ‖vt1 − xt1‖2.
Thus, ‖vt1‖2 ≥ (1 − ε)(1 − δ)l by using Hypothesis D.0.1. Similarly, ‖vt2‖2 ≥
(1− ε)(1− δ)l. From the above and by using Equation D.3, we get:

cos(θvt1 ,vt2) ≥ 2(1− ε)2(1− δ)2l2 − (ρ+ 2ε(1 + δ)l)2

2l2(1 + δ)2

≥ (1− ε)2(1− δ)2

(1 + δ)2 − ρ2

2l2(1 + δ)2 −
ρε

l(1 + δ) − 2ε2 (D.8)

Hence,

θvt1 ,vt2 ≤ arccos
(

(1− ε)2(1− δ)2

(1 + δ)2 − ρ2

2l2(1 + δ)2 −
ρε

l(1 + δ) − 2ε2
)
. (D.9)

Appendix D. Complements of Chapter 4: When matrix R is random 151

Now denote by Xi a random variable that is +1 if b(i)
t1 and b(i)

t2 are the same and
is 0 otherwise. Note that the probability that Xi is nonzero is exactly

p = 1−
θvt1 ,vt2
π

. (D.10)

Note also that different Xi are independent since different rows ri of the matrix
R are independent. If we denote by X a random variable defined as:

X := X1 + . . .+Xc, (D.11)

then note that E[X] = pc. This random variable X counts the number of entries
of bt1 and bt2 that are the same. Now, using standard concentration results such
as Azuma’s inequality [Azuma, 1967], we can conclude that for all a > 0 :

P[X − pc < −a] ≤ e−
a2
2c . (D.12)

In particular, for a = ηc,

P[X − pc < −ηc] ≤ e−
η2c
2 . (D.13)

Then with probability at least 1 − e−
η2c
2 , one has: X ≥ c(p − η). Putting the

formula on p from Equation D.10 and the obtained upper bound on θvt1 ,vt2 from
Equation D.9, we complete the proof.

153

Appendix E

Graph-based clustering under
differential privacy

Contents
E.1 Introduction . 154
E.2 Preliminaries . 154

E.2.1 Differential privacy in graphs 155
E.2.2 Differentially-private clustering 157

E.3 Differentially-private tree-based clustering 157
E.3.1 PAMST algorithm . 157
E.3.2 Differentially-private clustering 159
E.3.3 Differential privacy trade-off of clustering 160

E.4 Experiments . 164
E.4.1 Synthetic datasets . 164
E.4.2 NYC "Taxi & Limousine Commission Trip Record" dataset 165

Experimental setup . 165
Results . 166

E.5 Conclusion . 166

This Appendix concerns a collaboration with Rafaël Pinot1 and Florian Yger2.
This work has been published at the International conference on Uncertainty in Ar-
tificial Intelligence (UAI) 2018 under the title "Graph-based Clustering under Differ-
ential Privacy". It is an applicative Appendix to Chapter 5.

In this Appendix, the first differentially-private clustering method for arbitrary-
shaped node clusters in a graph is presented. This algorithm takes as input only
an approximate Minimum Spanning Tree (MST) T released under weight differen-
tial privacy constraints from the graph. Then, the underlying non-convex clustering
partition is successfully recovered from cutting optimal cuts on T . As opposed to ex-
isting methods, this algorithm is theoretically well-motivated. Experiments support
the theoretical findings.

This is a direct application of clustering algorithm DBMSTClu presented in Chap-
ter 5 for differentially-private clustering.

1CEA, Université Paris-Dauphine, PSL Research University
2Université Paris-Dauphine, PSL Research University

154 Appendix E. Graph-based clustering under differential privacy

E.1 Introduction

Similarly to Chapter 2, Section 2.4 and Chapter 5, we consider in this Appendix simple
undirected weighted graphs where the weighted edges express "distances" between the
objects represented by the vertices. For understanding the underlying structure in
this kind of graphs [Schaeffer, 2007], graph clustering is then one of the key tools:
the resulting clusters can be seen as groups of nodes close in terms of some specific
similarity.

Nevertheless, it is critical that the data representation used in machine learning
applications protects the private characteristics contained into it.

Let us consider an application where one wants to identify groups of similar web
pages in the sense of traffic volume i.e. web pages with similar audience. In that
case, the nodes stand for the websites. The link between two vertices represents the
fact that some people consult them both. The edge weights are the number of common
users and thus, carry sensitive information about individuals. During any graph data
analysis, no private user surfing behavior should be breached i.e. browsing from one
page to another should remain private. As a standard for data privacy preservation,
differential privacy [Dwork et al., 2006b] has been designed:

An algorithm is differentially private if, given two close databases, it produces
statistically indistinguishable outputs.

Since then, its definition has been extended to weighted graphs. Though, machine
learning applications ensuring data privacy remain rare, in particular for clustering
which encounters severe theoretical and practical limitations. Indeed, some clustering
methods lack of theoretical support and most of them restrict the data distribution
to convex-shaped clusters [Nissim et al., 2007, Blum et al., 2008, McSherry, 2009,
Dwork, 2011] or unstructured data [Ho and Ruan, 2013, Chen et al., 2015].

Hence, the aim of this Appendix is to offer a theoretically motivated private
graph clustering. Moreover, to the best of our knowledge, this is the first weight
differentially-private clustering algorithm able to detect clusters with an arbitrary
shape for weighted graph data.

Our method belongs to the family of Minimum Spanning Tree (MST)-based ap-
proaches. Recall that an MST represents a useful summary of the graph, and appears
to be a natural object to describe it at a lower cost. For clustering purposes, Sec-
tion 2.4.1 showed that it has the appealing property to help retrieving non-convex
shapes [Zahn, 1971, Asano et al., 1988, Grygorash et al., 2006]. Moreover, they appear
to be well-suited for incorporating privacy constraints as it will be formally proved in
this work.

Contributions The contributions in this Appendix are two-fold:
1. A differentially-private version of DBMSTClu is introduced.

2. Several results on its privacy/utility tradeoff are given.

E.2 Preliminaries

Notations from Section 5.2.1 are kept. Moreover, WE denotes the set of all possible
weight functions mapping the edge set E to weights in R.

E.2. Preliminaries 155

E.2.1 Differential privacy in graphs

As opposed to node-differential privacy [Kasiviswanathan et al., 2013] and edge-
differential privacy [Hay et al., 2009], both based on the graph topology, the privacy
framework considered here is weight-differential privacy where the graph topology
G = (V,E) is assumed to be public and the private information to protect is the weight
function w := E → R. Under this model introduced by Sealfon [2016], two graphs
are said to be neighbors if they have the same topology, and close weight functions.
This framework allows one to release an almost MST with weight-approximation error
of O (|V | log |E|) for fixed privacy parameters. Differential privacy is ensured in that
case by using the Laplace mechanism on every edges weight to release a spanning tree
based on a perturbed version of the weight function. The privacy of the spanning
tree construction is thus provided by post-processing (cf. Theorem E.2.5).

However, under a similar privacy setting, Pinot [2018] recently manages to pro-
duce the topology of a tree under differential privacy without relying on the post-
processing of a more general mechanism such as the Laplace mechanism. The algo-
rithm from Pinot [2018], called PAMST, privately releases the topology of an almost
MST thanks to an iterative use of the Exponential mechanism instead. For fixed
privacy parameters, the weight approximation error is O

(
|V |2
|E| log |V |

)
, which outper-

forms the former method from Sealfon [2016] on arbitrary weighted graphs under weak
assumptions on the graph sparseness. Thus, we keep here privacy setting from Pinot
[2018].

Definition E.2.1 (neighboring weight functions [Pinot, 2018]). For any edge set E,
two weight functions w,w′ ∈ WE are neighboring, denoted w ∼ w′, if ||w − w′||∞ :=
max
e∈E
|w(e)− w′(e)| ≤ µ.

µ represents the sensitivity of the weight function and should be chosen according
to the application and the range of this function. The neighborhood between such
graphs is clarified in the following definition.

Definition E.2.2 (neighboring graphs). Let G = (V,E,w) and G′ = (V ′, E′, w′), two
weighted graphs, G and G′ are said to be neighbors if V = V ′, E = E′ and w ∼ w′.

The so-called weight-differential privacy for graph algorithms is now formally de-
fined.

Definition E.2.3 (weight-differential-private graph algorithm [Sealfon, 2016]). For
any graph topology G = (V,E), let A be a randomized algorithm that takes as input
a weight function w ∈ WE. A is called (ε, δ)-differentially private on G = (V,E) if
for all pairs of neighboring weight functions w,w′ ∈ WE, and for all set of possible
outputs S, one has

P [A(w) ∈ S] ≤ eεP
[
A(w′) ∈ S

]
+ δ. (E.1)

If A is (ε, δ)-differentially private on every graph topology in a class C, it is said to
be (ε, δ)-differentially private on C.

One of the first, and most used differentially private mechanisms is the Laplace
mechanism. It is based on the process of releasing a numerical query perturbed by
a noise drawn from a centered Laplace distribution scaled to the sensitivity of the
query. We present here its graph-based reformulation.

Definition E.2.4 (function sensitivity, reformulation of [Dwork et al., 2006b]). Given
some graph topology G = (V,E), for any fG : WE → Rk, the sensitivity of the
function is defined as ∆fG := max

w∼w′∈WE

||fG(w)− fG(w′)||1.

156 Appendix E. Graph-based clustering under differential privacy

Definition E.2.5 (graph-based Laplace mechanism, reformulation of [Dwork et al.,
2006b]). Given some graph topology G = (V,E), any function fG : WE → Rk, any
ε > 0, and w ∈ WE, the graph-based Laplace mechanism isML(w, fG, ε) = fG(w) +
(Y1, . . . , Yk) where Yi are i.i.d. random variables drawn from Lap(∆fG/ε), and Lap(b)
denotes the Laplace distribution with scale b

(
i.e probability density 1

2b exp
(
− |x|b

))
.

Theorem E.2.1 (Dwork et al. [2006b]). The Laplace mechanism is ε-differentially
private.

We define hereafter the graph-based Exponential mechanism. In the sequel we refer
to it simply as Exponential mechanism. The Exponential mechanism represents a way
of privately answering arbitrary range queries. Given some range of possible responses
to the query R, it is defined according to a utility function uG :=WE×R → R, which
aims at providing some total preorder on the rangeR according to the total order in R.
The sensitivity of this function is denoted ∆uG := max

r∈R
max

w∼w′∈WE

|uG(w, r)−uG(w′, r)|.

Definition E.2.6 (graph-based Exponential mechanism). Given some graph topology
G = (V,E), some output range R ⊂ E, some privacy parameter ε > 0, some utility
function uG :=WE×R → R, and some w ∈ WE the graph-based Exponential mech-
anism MExp (G,w, uG,R, ε) selects and outputs an element r ∈ R with probability
proportional to exp

(
εuG(w,r)

2∆uG

)
.

The Exponential mechanism defines a distribution on a potentially complex and
large range R. As the following theorem states, sampling from such a distribution
preserves ε-differential privacy.

Theorem E.2.2 (reformulation of [McSherry and Talwar, 2007]). For any non-empty
range R, given some graph topology G = (V,E), the graph-based Exponential mecha-
nism preserves ε-differential privacy, i.e if w ∼ w′ ∈ WE,

P [MExp (G,w, uG,R, ε) = r] ≤ eεP
[
MExp

(
G,w′, uG,R, ε

)
= r

]
. (E.2)

Further, Theorem E.2.3 highlights the trade-off between privacy and accuracy for
the Exponential mechanism when 0 < |R| < +∞. Theorem E.2.4 presents the ability
of differential privacy to comply with composition while Theorem E.2.5 introduces
its post-processing property.

Theorem E.2.3 (reformulation of [Dwork and Roth, 2013]). Given some graph topol-
ogy G = (V,E), some w ∈ WE, some output range R, some privacy parameter ε > 0,
some utility function uG :=WE×R → R, and denoting OPTuG(w) := max

r∈R
uG(w, r),

one has ∀ t ∈ R,

uG (G,w,MExp (w, uG,R, ε)) ≤ OPTuG(w)− 2∆uG
ε

(t+ ln |R|) (E.3)

with probability at most exp(−t).

Theorem E.2.4 (Dwork et al. [2006a]). For any ε > 0, δ ≥ 0 the adaptive composi-
tion of k (ε, δ)-differentially private mechanisms is (kε, kδ)-differentially private.

Theorem E.2.5 (Post-Processing [Dwork and Roth, 2013]). Let A : WE → B be a
randomized algorithm that is (ε, δ)-differentially private, and h : B → B′ a determin-
istic mapping. Then h ◦ A is (ε, δ)-differentially private.

E.3. Differentially-private tree-based clustering 157

E.2.2 Differentially-private clustering

Differentially-private clustering for unstructured datasets has been first discussed
in work from Nissim et al. [2007]. The latter introduced the first method for
differentially-private clustering based on the k-means algorithm. Since then, most
of the work in the field focused on adaptation of this method [Blum et al., 2008,
McSherry, 2009, Dwork, 2011]. The main drawback of this work is that it is not
able to deal with arbitrary-shaped clusters. This issue has been recently investigated
by Ho and Ruan [2013] and Chen et al. [2015]. They proposed two new methods to
find arbitrary-shaped clusters in unstructured datasets respectively based on density
clustering and wavelet decomposition. Even though both of them allow one to pro-
duce non-convex clusters, they only deal with unstructured datasets and thus are not
applicable to node clustering in a graph.

Our work focuses on node clustering in a graph under weight-differential privacy.
Graph clustering has already been investigated in a topology-based privacy frame-
work [Mülle et al., 2015, Nguyen et al., 2016], however, this work does not consider
weight-differential privacy.

Our work is, to the best of our knowledge, the first attempt to define node
clustering in a graph under weight-differential privacy.

E.3 Differentially-private tree-based clustering

We aim at producing a private clustering method while providing bounds on the
accuracy loss. Our method is an adaptation of an existing clustering algorithm DB-
MSTClu.

This Section presents our new node clustering algorithm PTClust for weight-
differential privacy. It relies on a mixed adaptation of PAMST algorithm [Pinot,
2018] for recovering a differentially-private MST of a graph and DBMSTClu (see
Chapter 5).

E.3.1 PAMST algorithm

Given a simple undirected weighted graph G = (V,E,w), PAMST outputs an almost
minimal weight spanning tree topology under differential privacy constraints. It relies
on a Prim-like MST algorithm, and an iterative use of the graph-based Exponential
mechanism. PAMST takes as an input a weighted graph, and a utility function. It
outputs the topology of a spanning tree whose weight is almost minimal. Algorithm 10
presents this new method, with illustrative Figure E.1, using the following utility
function:

uG : WE ×R → R
(w, r) 7→ −|w(r)− min

r′∈R
w(r′)|. (E.4)

PAMST starts by choosing an arbitrary node to construct iteratively the tree topol-
ogy. At every iteration, it uses the Exponential mechanism to find the next edge to be
added to the current tree topology while keeping the weights private. This algorithm
is the state of the art to find a spanning tree topology under differential privacy. For
readability, let us introduce some additional notations. Let S be a set of nodes from
G, and RS the set of edges that are incident to one and only one node in S (also
denoted xor-incident). For any edge r in such a set, the incident node to r that is
not in S is denoted r→. Finally, the restriction of the weight function to an edge set
R is denoted w|R.

158 Appendix E. Graph-based clustering under differential privacy

Algorithm 10 PAMST(G, uG, w, ε)
1: Input: G = (V,E,w) a weighted graph (separately the topology G and the weight

function w), ε a degree of privacy and uG utility function.
2: Pick v ∈ V at random
3: SV ← {v}
4: SE ← ∅
5: while SV 6= V do
6: r =MExp(G, w, uG,RSV , ε

|V |−1)
7: SV ← SV ∪ {r→}
8: SE ← SE ∪ {r}
9: return SE

I: G = (V,E,w)
Pick v ∈ V
at random,

SV ← {v}, SE ← ∅
. SV = V ?

Use the Exp.
mechanism to get
the next edge e.

update SV and SE

Return SE

no

yes

Figure E.1: PAMST algorithm from Pinot [2018]. I: Input.

E.3. Differentially-private tree-based clustering 159

Theorem E.3.1 states that using PAMST to get an almost MST topology preserves
weight-differential privacy.

Theorem E.3.1. Let G = (V,E) be the topology of a simple undirected graph, then
∀ε > 0, PAMST(G, uG, •, ε) is ε-differentially-private on G.

E.3.2 Differentially-private clustering

The overall goal of this Section is to show that one can obtain a differentially-private
clustering algorithm by combining PAMST and DBMSTClu algorithms. However,
PAMST does not output a weighted tree which is inappropriate for clustering pur-
poses. To overcome this, one could rely on a sanitizing mechanism such as the Laplace
mechanism. Moreover, since DBMSTClu only takes weights from (0, 1], two normaliz-
ing parameters τ and p are introduced, respectively to ensure lower and upper bounds
to the weights that fit within DBMSTClu needs. This sanitizing mechanism is called
the Weight-Release mechanism. Coupled with PAMST, it will allows us to produce a
weighted spanning tree with differential privacy, that will be exploited in our private
graph clustering.

Definition E.3.1 (Weight-Release mechanism). Let G = (G,w) be a weighted graph,
ε > 0 a privacy parameter, s a scaling parameter, τ ≥ 0, and p ≥ 1 two normalization
parameters. The Weight-Release mechanism is defined as

Mw.r(G,w, s, τ, p) :=
(
G,w′ =

w + (Y1, ..., Y|E|) + τ

p

)
(E.5)

where Yi are i.i.d. random variables drawn from Lap (0, s). With w + (Y1, ..., Y|E|)
meaning that if one gives an arbitrary order to the edges E = (ei)i∈[|E|], one has
∀i ∈ [|E|], w′(ei) = w(ei) + Yi.

The following Theorem presents the privacy guarantees of the Weight-Release
mechanism.

Theorem E.3.2. Let G = (V,E) be the topology of a simple undirected graph, τ ≥ 0,
p ≥ 1, then ∀ε > 0,Mw.r

(
G, •, µε , τ, p

)
is ε- differentially private on G.

Proof. Given τ ≥ 0, p ≥ 1, and ε > 0, the Weight release mechanism scaled to µ
ε

can be break down into a Laplace mechanism and a post-processing consisting in
adding τ to every edge and dividing them by p. Using Theorems E.2.1 and E.2.5,
one gets the expected result.

So far we have presented DBMSTClu and PAMST algorithms, and the Weight-
Release mechanism. Let us now introduce how to compose those blocks to obtain a
Private node clustering in a graph, called PTClust (see Algorithm 11 and Figure E.2).
The algorithm takes as an input a weighted graph (dissociated topology and weight
function), a utility function, a privacy degree and two normalization parameters.
It outputs a clustering partition. To do so, a spanning tree topology is produced
using PAMST. Afterward a randomized and normalized version of the associated
weight function is released using the Weight-release mechanism. Finally the obtained
weighted tree is given as an input to DBMSTClu that performs a clustering partition.
The following Theorem ensures that our method preserves ε-differential privacy.

Theorem E.3.3. Let G = (V,E) be the topology of a simple undirected graph, τ ≥ 0,
and p ≥ 1, then ∀ε > 0, PTClust(G, •, uG, ε, τ, p) is ε-differentially private on G.

160 Appendix E. Graph-based clustering under differential privacy

Algorithm 11 PTClust(G,w, uG, ε, τ, p)
1: Input: G = (V,E,w) a weighted graph (separately the topology G and the weight

function w), ε a degree of privacy and uG utility function.
2: T = PAMST (G,w, uG, ε/2)
3: T ′ =Mw.r(T,w|E(T),

2µ
ε , τ, p)

4: return DBMSTClu(T ′)

I: G = (V,E,w)

Compute an
MST structure
T with DP

using PAMST

Compute
the weight

function of T
using Laplace

mechanism

Π =
DBMSTClu(T)

O: Π under weight DP
T

Figure E.2: Our new method: PTClust returning a clustering par-
tition Π under weight Differential Privacy (DP). I: Input, O: Output.

Proof. Using Theorem E.3.1 one has that T is produced with ε/2-differential pri-
vacy, and using Theorem E.3.2 one has that w′ is obtained with ε/2-differential
privacy as well. Therefore using Theorem E.2.4, T ′ is released with ε-differential
privacy. Using the post-processing property (Theorem E.2.5) one gets the ex-
pected result.

E.3.3 Differential privacy trade-off of clustering

The results stated in this Section present the security/accuracy trade-off of our new
method in the differentially-private framework. PTClust relies on two differentially-
private mechanisms, namely PAMST and the Weight-Release mechanism. Evalu-
ating the accuracy of PTClust amounts to check whether using PAMST and the
Weight-Release mechanism for ensuring privacy does not deteriorate the final clus-
tering partition. The accuracy is preserved if PAMST outputs the same topology
as the MST-based clustering and if the Weight-Release mechanism preserves enough
the weight function. According to Definition 5.4.2 p.103, if a tree has a partitioning
topology, then it fits the tree-based clustering. Theorem E.3.4 states that with high
probability PAMST outputs a tree with a partitioning topology.

While the accuracy of DBMSTClu (in the deterministic setting) was proved un-
der the weak homogeneity condition (cf. Definition 5.4.4 p.103 on clusters), The-
orem E.3.4 gives accuracy of its differentially-private version under the strong ho-
mogeneity condition. Strong homogeneity condition appears to be naturally more
constraining on the edge weights than the weak one.

Definition E.3.2 (Strong homogeneity condition of a Cluster). Let us consider a
graph G = (V,E,w) with K clusters C∗1 , . . . , C∗K . A given cluster C∗i , i ∈ [K], C∗i
is strongly homogeneous if: for all T a spanning tree (ST) of G, and ∀j ∈ [K],
j 6= i, s.t. e(ij) ∈ CutG(T), HT|C∗

i
(e(ij)) is verified. For simplicity, one denote

ᾱi := max
T ST of G

αT|C∗
i
.

We show that the weak homogeneity condition is implied by the strong homo-
geneity condition.

E.3. Differentially-private tree-based clustering 161

Proposition E.3.1. Let us consider a graph G = (V,E,w) with K clusters
C∗1 , . . . , C

∗
K . If a given cluster C∗i , i ∈ [K] is strongly homogeneous, then, it is weakly

homogeneous.

Proof. If T a spanning tree of G, and ∀j ∈ [K], j 6= i, s.t. e(ij) ∈
CutG(T), HT|C∗

i
(e(ij)) is verified, then in particular, it is true for any MST.

Theorem E.3.4. Let us consider a graph G = (V,E,w) with K strongly homogeneous
clusters C∗1 , . . . , C∗K and T = PAMST (G, uG , w, ε), ε > 0. T has a partitioning
topology with probability at least

1−
K∑
i=1

(|C∗i | − 1) exp
(
− A

2∆uG(|V | − 1)

)
(E.6)

with A = ε

ᾱimax(w(e))
e∈E

(
G|C∗

i

) −min (w(e))
e∈E

(
G|C∗

i

)
+ ln |E|.

Proof. Let T = PAMST(G, uG , w, ε), {R1, ...,R|V |−1} denotes the ranges used in
the successive calls of the Exponential mechanism in PAMST(G, uG , w, ε),
rk = MExp(G, w, uG ,Rk,

ε

|V | − 1︸ ︷︷ ︸
ε′

), and Steps(C∗i) the set of steps k of the algo-

rithm were Rk contains at least one edge from G|C∗i . Finally for readability we
denote uk = uG(w, rk). Then,

P[T has a partitioning topology]
=P[∀i, j ∈ [K], i 6= j, |{(u, v) ∈ E(T), u ∈ C∗i , v ∈ C∗j }| = 1︸ ︷︷ ︸

A

] = 1− P[¬A]

(E.7)

If we denote B = “∀i ∈ [K], ∀k > 1 ∈ Steps(C∗i), if rk−1 ∈ E(G|C∗i) then rk ∈
E(G|C∗i)”. One easily has: B =⇒ A, therefore P[¬A] ≤ P(¬B). Moreover, by
using the privacy/accuracy trade-off of the Exponential mechanism, one has:

∀t ∈ R,∀i ∈ [K],∀k ∈ Steps(C∗i) P

uk ≤ −2∆uG
ε′

(t+ ln |Rk|)︸ ︷︷ ︸
Ak(t)

 ≤ exp(−t).

(E.8)
Moreover one can major P[¬B] as follows:

P
[
∃i ∈ [K],∃k ∈ Steps(C∗i) s.t rk−1 ∈ E(G|C∗i) and rk /∈ E(G|C∗i)

]
(E.9)

By using the union bound, one gets:

≤
∑
i∈[K]

P
[
∃k ∈ Steps(C∗i) s.t rk−1 ∈ E(G|C∗i) and rk /∈ E(G|C∗i)

]
(E.10)

162 Appendix E. Graph-based clustering under differential privacy

Using the strong homogeneity of the clusters, one has:

=
∑
i∈[K]

P

∃k ∈ Steps(C∗i) s.t uk ≤ −|ᾱimaxw(e)
e∈E(G|C∗

i
)
−minw(r)

r∈Rk
|

 (E.11)

≤
∑
i∈[K]

P

∃k ∈ Steps(C∗i) s.t uk ≤ −|ᾱimaxw(e)
e∈E(G|C∗

i
)
−minw(e)

e∈E(G|C∗
i

)
|

 (E.12)

By setting tk,i = ε′

2∆uG (ᾱimax(w(e))
e∈E(G|C∗

i
)
−min (w(e))

e∈E(G|C∗
i

)
) + ln(|Rk|), one gets:

=
∑
i∈[K]

P [∃k ∈ Steps(C∗i) s.t Ak(tk,i)] (E.13)

Since for all i ∈ [K], and k ∈ Steps(C∗i), |Rk| ≤ |E|, and using a union bound,
one gets:

≤
∑
i∈[K]

∑
P

k∈Steps(C∗i)
[Ak(tk,i)] ≤

∑
i∈[K]

∑
exp

k∈Steps(C∗i)
(−ti,k) (E.14)

≤
K∑
i=1

(|C∗i | − 1) exp

− ε

2∆uG(|V | − 1)

ᾱimaxw(e)
e∈E(G|C∗

i
)
−minw(e)

e∈E(G|C∗
i

)

+ ln(|E|)

(E.15)

Finally, Theorem E.3.5 states that given a tree T under the strong homogeneity
condition, if the subtree associated to a cluster respects Definition 5.4.3, then it still
holds after applying the Weight-Release mechanism to this tree.

Theorem E.3.5. Let us consider a graph G = (V,E,w) with K strongly homo-
geneous clusters C∗1 , . . . , C

∗
K and T = PAMST (G, uG , w, ε), T = (T,w|T) and

T ′ = Mw.r(T,w|T , s, τ, p) with s � p, τ . Given some cluster C∗i , and j 6= i s.t
e(ij) ∈ CutG(T), if HT|C∗

i
(e(ij)) is verified, then HT ′|C∗

i
(e(ij)) is verified with probabil-

ity at least
1− V(ϕ)

V(ϕ) + E(ϕ)2 (E.16)

with the following notations :

• ϕ = (max Yj)2

j∈[|C∗i |−1]
− minZj
j∈[|C∗i |−1]

×Xout

• Yj ∼
iid
Lap

(max
e∈E(T)

w(e)+τ

p , sp

)

• Zj ∼
iid
Lap

(min
e∈E(T)

w(e)+τ

p , sp

)

• Xout ∼ Lap
(
w(e(ij)+τ

p , sp

)
,

The proof of Theorem E.3.5 uses the result from S. Kotz on the Laplace distribu-
tion and generalizations (2001):

E.3. Differentially-private tree-based clustering 163

Theorem E.3.6. Let n ∈ N, (Xi)i∈[n] ∼
iid
Lap(θ, s), denoting Xr:n the order statistic

of rank r one has for all k ∈ N,

E
[
(Xr:n − θ)k

]
= sk

n!Γ(k + 1)
(r − 1)!(n− r)!

(−1)k
n−r∑
j=0

aj,r,k +
r−1∑
j=0

bj,r,k

︸ ︷︷ ︸

α(n,k)

(E.17)

Here is the proof of Theorem E.3.5.

Proof. Let τ > 0 and p > 1, according to the weight-release mechanism,
all the randomized edge weights w′(e) with e ∈ E(T ′) are sampled from in-
dependents Laplace distributions Lap(w(e)+τ

p , sp). Given some cluster C∗i , and
j 6= i s.t e(ij) ∈ CutG(T), HT|C∗

i
(e(ij)) is verified. Finding the probability that

HT ′|C∗
i
(e(ij)) is verified is equivalent to find the probability P

(maxXe)2

e∈E(C∗i)
minXe
e∈E(C∗i)

< Xout

with Xe ∼

indep
Lap(w(e)+τ

p , sp) and Xout ∼ Lap(w(e(ij))+τ
p , sp). Denoting with

Yi ∼
iid

Lap (θmax, δ) , Zi ∼
iid

Lap (θmin, δ) and Xout ∼ Lap(θ(ij), δ), one can lower

bounded this probability by P

 (max Yi)2

i∈[|C∗
i
|−1]

minZi
i∈[|C∗

i
|−1]

< Xout

. Choosing τ big enough s.t

minZi
i∈[|C∗i |−1]

< 0 is negligible, one has:

P

(max Yi)2

i∈[|C∗i |−1]

minZi
i∈[|C∗i |−1]

< Xout

 = P

(max Yi)2

i∈[|C∗i |−1]
− minZi
i∈[|C∗i |−1]

×Xout

︸ ︷︷ ︸
ϕ

< 0

 . (E.18)

Moreover since τ , p � s, one has E(ϕ) ≤ 0. Therefore,

P [ϕ < 0] =P

ϕ− E(ϕ) < −E(ϕ)︸ ︷︷ ︸
≥0

 (E.19)

=1− P [ϕ− E(ϕ) > −E(ϕ)] (E.20)

Using the one-sided Chebytchev inequality, one gets:

≥1− V(ϕ)
V(ϕ) + E(ϕ)2 = 1− V(ϕ)

E(ϕ2) (E.21)

Moreover, by giving an analytic form to E(ϕ) and V(ϕ), and using Theorem E.3.6
one gets the more precise result:

1− V(ϕ)
E(ϕ2) = 1−

Λ1 + (θ2
(ij) + δ)Λ2 − (Λ2

3 + θ2
(ij)Λ

2
4)

Λ1 + (θ2
(ij) + δ)Λ2 + 2Λ3Λ4

(E.22)

with the following notations:

164 Appendix E. Graph-based clustering under differential privacy

• δ = s
p , θmin =

min
e∈E(T)

w(e)+τ

p

• θmax =
max

e∈E(T)
w(e)+τ

p , θ(ij) = w(e(ij)+τ
p

• Λ1 = 24δ4(|V | − 1)α(|V | − 1, 4) + 12θmaxδ
3(|V | − 1)α(|V | − 1, 3) +

12θ2
maxδ

2(|V | − 1)α(|V | − 1, 2) + 4θ3
maxδ(|V | − 1)α(|V | − 1, 1) + θ4

max

• Λ2 = 2δ2(|V | − 1)α(1, 2) + 2θminδ(|V | − 1)α(1, 1) + θ2
min

• Λ3 = 2δ2(|V | − 1)α(|V | − 1, 2) + 2θmaxδ(|V | − 1)α(|V | − 1, 1) + θ2
max

• Λ4 = δ(|V | − 1)α(1, 1) + θmin

E.4 Experiments

So far we have exhibited the trade-off between clustering accuracy and privacy. We
experimentally illustrate it now with some qualitative results. Let us discuss hereafter
the quantitative performances of our algorithm.

E.4.1 Synthetic datasets

We have performed experiments on two classical synthetic graph datasets for clus-
tering with non-convex shapes: two concentric circles and two moons, both in their
noisy versions. For the sake of readability and for visualization purposes, both graph
datasets are embedded into a two dimensional Euclidean space. Each dataset con-
tains N = 100 data nodes that are represented by a point of two coordinates. Both
graphs have been built with respect to the strong homogeneity condition: edge weights
within clusters are between wmin = 0.1 and wmax = 0.3 while edges between clus-
ters have a weight strictly above w2

max/wmin = 0.9. In practice, the complete graph
has trimmed from its irrelevant edges (i.e. not respecting the strong homogeneity
condition). Hence, those graphs are not necessarily Euclidean since close nodes in
the visual representation may not be connected in the graph. Finally, weights are
normalized between 0 and 1.

Figures E.3 and E.4 (best viewed in color) show for each dataset (a) the original
homogeneous graph G built by respecting the homogeneity condition, (b) the cluster-
ing partition3 of DBMSTClu with the used underlying MST, the clustering partitions
for PTClust with µ = 0.1 obtained respectively with different privacy degrees4 : (c)
ε = 0.5, (d) ε = 0.7 and (e) ε = 1.0. The utility function uG corresponds to the
graph weight. Each experiment is carried out independently and the tree topology
obtained by PAMST will eventually be different. This explains why the edge between
clusters may not be the same when the experiment is repeated with a different level
of privacy. However, this will marginally affect the overall quality of the clustering.

As expected, DBMSTClu recovers automatically the right partition and the results
are shown here for comparison with PTClust. For PTClust, the true MST is replaced
with a private approximate MST obtained for suitable τ and p ensuring final weights
between 0 and 1.

3For the sake of clarity, the edges in those Figures are represented based on the original weights
and not on the privately released weights.

4Note that, although the range of ε is in R?+, it is usually chosen in practice in (0, 1] [Dwork and
Roth, 2013, Chap 1&2].

E.4. Experiments 165

When the privacy degree is moderate (ε ∈ {1.0, 0.7}), it appears that the clustering
result is slightly affected. More precisely, in Figures E.3c and E.3d the two main
clusters are recovered while one point is isolated as a singleton. This is due to the
randomization involved in determining the edge weights for the topology returned by
PAMST. In Figure E.4c, the clustering is identical to the one from DBMSTClu in
Figure E.4b. In Figure E.3d, the clustering is very similar to the DBMSTClu one,
with the exception of an isolated singleton. However, as expected from our theoretical
results, when ε is decreasing, the clustering quality deteriorates, as DBMSTClu is
sensitive to severe changes in the MST (cf. Figure E.3e, E.4e).

E.4.2 NYC "Taxi & Limousine Commission Trip Record" dataset

Both in private and non-private settings, another successful experiment has been
conducted on the real NYC "Taxi & Limousine Commission Trip Record"5 dataset
taking the yellow and green taxis.

Experimental setup

From the dataset is built a graph, taking locations for vertices, trips for edges, and
setting the weights by the number of trips between the locations. Some preprocessing
is made on the graph. Edges with strictly less than 140 trips are removed in order
to sparsify the graph. Self-loops are removed since they are not supported by the
clustering algorithm. Two points belonging to the same airport are also merged
because the goal is to distinguish airport places from Manhattan and it was considered
as noise. Finally, only the biggest connected component is kept since it is more
relevant to perform the clustering on it. As a result, the considered connected graph
contains N = 162 nodes andm = 236 edges. For our clustering algorithm, the weights
on the edges should represent a dissimilarity between two vertices. So the following
softmax-like transformation taken from the R package6, representing a dissimilarity
function, is made on the weights of the graph:

∀i ∈ [m], wi ← f(wi − wmin) ∈ (0, 1] (E.23)

where wmin = 140 is the minimum weight in the graph and f is defined such that for
all weight w:

f(w) = 1
1 + exp

(
w−µ
σ×π/2

) (E.24)

where µ is the average weight of the edges before, namely the average number of trips
on the edges between the vertices and σ the standard deviation.

In this framework, the graph topology is public, and the private information is
carried by the weights. In fact, what an individual would want to be kept private is
rather if he/she participated or not to a trip (thus keeping his/her location/moves
private).

5http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.
6https://www.rdocumentation.org/packages/DMwR/versions/0.4.1/topics/SoftMax

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.
https://www.rdocumentation.org/packages/DMwR/versions/0.4.1/topics/SoftMax

166 Appendix E. Graph-based clustering under differential privacy

Results

Figure E.5 shows an exact MST that has been given as input to DBMSTClu al-
gorithm. The results of the latter are demonstrated in Figure E.6. Finally, Fig-
ures E.7a, E.7b and E.7c exhibit the visualization results for PTClust algorithm with
ε ∈ {1.0, 0.7, 0.5}.

From only the number of trips made by the yellow and green taxis between two
locations (but not the GPS coordinates), the private and non-private clustering al-
gorithms (respectively PTClust and DBMSTClu) separate Manhattan’s island from
the two neighboring airports. Even if the softmax-like function helps a lot, it is really
important to emphasize that geographical information have never been used to obtain
these clustering partitions, which is an unusual, but meaningful way of considering
this kind of datasets.

E.5 Conclusion

In this Appendix, we introduced PTClust, a novel graph clustering algorithm able to
recover arbitrarily-shaped clusters while preserving differential privacy on the weights
of the graph. It is based on the release of a private approximate Minimum Spanning
Tree (MST) of the graph of the dataset, by performing suitable cuts to reveal the
clusters.

To the best of our knowledge, this is the first differential private graph-based
clustering algorithm adapted to non-convex clusters.

The theoretical analysis exhibited a trade-off between the degree of privacy and
the accuracy of the clustering result. This work suits to applications where privacy
is a critical issue and it could pave the way to metagenomics and genes classification
using individual gene maps while protecting patient privacy. Future work will be
devoted to deeply investigate these applications.

E.5. Conclusion 167

(a) (b)

(c) (d)

(e)

Figure E.3: Circles experiments for N = 100. Figure E.3a repre-
sents the homogeneous graph. Figure E.3b shows the results of the
DBMSTClu algorithm. Remaining Figures illustrate results of PT-
Clust for parameters wmin = 0.1, wmax = 0.3, µ = 0.1 for all and
respectively ε = 1.0, ε = 0.7 and ε = 0.5 for Figures E.3c, E.3d and

E.3e.

168 Appendix E. Graph-based clustering under differential privacy

(a) (b)

(c) (d)

(e)

Figure E.4: Moons experiments for N = 100. Figure E.4a repre-
sents the homogeneous graph. Figure E.4b shows the results of the
DBMSTClu algorithm. Remaining Figures illustrate results of PT-
Clust for parameters wmin = 0.1, wmax = 0.3, µ = 0.1 for all and
respectively ε = 1.0, ε = 0.7 and ε = 0.5 for Figures E.4c, E.4d and

E.4e.

E.5. Conclusion 169

Figure E.5: An exact MST before DBMSTClu cuts on the NYC
dataset.

Figure E.6: DBMSTClu results on the NYC dataset.

170 Appendix E. Graph-based clustering under differential privacy

(a) PTClust, ε = 1.0

(b) PTClust, ε = 0.7

(c) PTClust, ε = 0.5

Figure E.7: NYC taxis experiments, PTClust results.

171

Appendix F

Publications

In this Appendix, we enumerate publications made during this PhD thesis.

The joint work described in Chapter 3 and Appendix C has been published at the
Artificial Intelligence and Statistics (AISTATS) conference 2017:

• Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, Francois Fa-
gan, Cédric Gouy-Pailler, Anne Morvan, Nouri Sakr, Tamás Sarlós, Jamal Atif,
Structured adaptive and random spinners for fast machine learning computa-
tions, Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics (AISTATS’17), 54, pp.1020-1029, Fort Lauderdale, FL, USA, 20-
22 Apr.

The work explained in Chapter 4 and Appendix D has been published at the
International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2018:

• Anne Morvan, Antoine Souloumiac, Cédric Gouy-Pailler, Jamal Atif, Streaming
Binary Sketching based on Subspace Tracking and Diagonal Uniformization,
Proceedings of the 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP 2018), Calgary, Alberta, Canada, 15-20 Apr.

The contribution from Chapter 5 has been published at SIAM Data Mining con-
ference (SDM) 2018. Extended work with further theoretical guarantees and appli-
cation to privacy-preserving clustering (see Appendix E) has been published at the
International conference on Uncertainty in Artificial Intelligence (UAI) 2018.

• Anne Morvan, Krzysztof Choromanski, Cédric Gouy-Pailler, Jamal Atif, Graph
sketching-based Space-efficient Data Clustering, Proceedings of the SIAM Inter-
national Conference on DATA MINING (SDM’18), pp.10-18, San Diego, CA,
USA, 3-4 May.

• Rafaël Pinot, Anne Morvan, Florian Yger, Cédric Gouy-Pailler, Jamal Atif,
Graph-based Clustering under Differential Privacy, Proceedings of the Interna-
tional Conference on Uncertainty in Artificial Intelligence (UAI 2018), Mon-
terey, CA, USA, 6-10 Aug.

All these publications can be found on the personal webpage:

https://annemorvan.github.io/

with some code available on:

https://github.com/annemorvan

https://annemorvan.github.io/
https://github.com/annemorvan

173

Appendix G

Résumé de la thèse en français

Contents
G.1 Introduction . 174

G.1.1 Contexte et motivation . 174
Ère du Big Data et le besoin d’un traitement adapté 174
Problèmes d’apprentissage artificiel non surpervisé 175
Représentation compacte et approximation 176

G.1.2 Contributions . 177
Des matrices aléatoires structurées, une approche pour de

l’apprentissage à grande échelle 177
Apprentissage de codes compacts binaires de flux de don-

nées massives via le hashing hypercubique pour la
recherche des plus proches voisins 178

Clustering de données massives à partir d’un arbre couvrant
minimum . 178

G.2 Des matrices aléatoires structurées, une approche pour
de l’apprentissage à grande échelle 179

G.2.1 Principe . 179
G.2.2 Expérience . 180

G.3 Apprentissage de codes compacts binaires de flux de
données massives via le hashing hypercubique pour la
recherche des plus proches voisins 182

G.3.1 Principe . 182
G.3.2 Expériences . 182

G.4 Clustering de données massives à partir d’un arbre cou-
vrant minimum . 185

G.4.1 Principe . 185
G.4.2 Expériences . 186

Sécurité de l’usage du sketching de graphe 186
Passage à l’échelle de l’algorithme 187

G.5 Conclusion . 190
G.5.1 Rappel des contributions et inscription dans le sujet 190
G.5.2 Perspectives . 191

G.6 Publications . 192

This Appendix written in French gives in few pages an overview of the motivation
of this thesis and its main contributions.

174 Appendix G. Résumé de la thèse en français

Note au lecteur: Cette annexe présente un résumé en français de cette thèse
qui a été rédigée en anglais. La motivation du sujet, les grandes lignes de chacune
des contributions sont exposées ainsi que quelques résultats expérimentaux à titre
d’illustration. Nous invitons cependant le lecteur à lire le corps de ce manuscrit
en anglais pour une vision plus détaillée:

• des modèles utilisés,

• des concepts invoqués,

• des protocoles d’expérience,

• des résultats expérimentaux,

• et de leur analyse.

G.1 Introduction

G.1.1 Contexte et motivation

Ère du Big Data et le besoin d’un traitement adapté

Aujourd’hui, tous les composants électroniques sont conçus pour produire un volume
gigantesque de données brutes dans l’espoir de les transformer en de l’information
de valeur. Cette dernière permet de prendre des décisions stratégiques à travers des
algorithmes d’apprentissage artificiel. Un nombre important d’applications émergeant
aujourd’hui produisent et/ou utilisent des données en quantité massive. Par exemple,
on notera:

• les observations des capteurs de l’Internet des Objets,

• les cookies liés au flux de clics des web-utilisateurs,

• les larges ensembles de pages web,

• les données multimédia,

• les transactions financières,

• etc.

Ces données amassées représentent une source de revenu colossale pour les entreprises
lorsqu’elles sont analysées. Ainsi, d’importantes quantités de données doivent être
traitées. Dans la pratique, à cause de l’énorme volume de données à gérer, des
difficultés apparaissent et font échouer les méthodes d’analyse classiques. Ces défis
sont les suivants:

1. Les bases de données comportent un grand nombre d’instances, encore appelées
enregistrements.
On distinguera deux cas:

• D’un côté, les données peuvent ne pas tenir entièrement en mémoire.
• De l’autre, même s’il est possible de centraliser ces données, leur nombre
est tel que les algorithmes classiques ne peuvent plus y être appliqués.
Par exemple, un algorithme de complexité temporelle O(N2), pour N le

G.1. Introduction 175

nombre d’instances dans la base de données, est impraticable à partir de
quelques milliers voire centaines de milliers de points.

2. Ces données sont potentiellement en grande dimension.
Cela signifie que chaque enregistrement est décrit par un grand ensem-
ble d’attributs. Cela peut être problématique à plus d’un titre. En plus
d’augmenter le coût en complexité, les algorithmes d’analyse peuvent également
souffrir de ce que l’on appelle la malédiction de la dimension. Cette expression
traduit le fait qu’il est très difficile d’apprendre dans un espace de grande di-
mension puisque un plus grand nombre de données est nécessaire pour éviter le
sur-apprentissage.
Plus important, dans un espace de grande dimension, tous les points sont
éloignés les uns des autres ce qui rend plus ardue la tâche de trouver des simi-
larités ou des différences entre eux.

3. Les données peuvent également être intrinsèquement sous la forme d’un flux
(potentiellement infini).
Ainsi, les données sont collectées au vol au fur et à mesure de leur calcul (par
exemple par les capteurs de l’Internet des objets) et doivent être traitées di-
rectement. De plus, même si les données ne sont pas par nature un flux, comme
tout juste expliqué, elles peuvent être stockées sur des sources distribuées dans
une quantité telle qu’il est alors impossible de les charger dans une mémoire
centrale. Le seul moyen de les lire peut-être est sous la forme d’un flux.
Pour ces deux cas de figure, un algorithme en ligne, online ou streaming (on
utilisera indifféremment ces termes dans la suite) est nécessaire pour procéder à
l’analyse de données, soit parce que les données sont par essence sous la forme
d’un flux, ou parce que le seul moyen de respecter les contraintes d’espace est
de les traiter comme un flux.
La particularité des algorithmes online est de ne pouvoir lire qu’une seule donnée
à la fois. Une décision doit être prise sans avoir accès aux données suivantes, en
ayant à disposition qu’un résumé compact des données précédemment vues. La
taille de cette représentation compressée est souvent une fonction sous-linéaire
de la taille du dataset en entrée.

4. Enfin, la vaste quantité de données disponibles rend leur étiquetage pénible.
Ainsi, la plupart du temps, l’analyse sur de telles données doit être effectuée de
manière non supervisée. Sans étiquette, l’information à extraire est la distance
(ou à l’opposé la similarité) entre les individus, soit également la structure des
données.

Problèmes d’apprentissage artificiel non surpervisé

En particulier, la recherche des plus proches voisins et le clustering sont les deux
problèmes d’apprentissage artificiel non supervisé considérés dans cette thèse.

En effet, la recherche des plus proches voisins et le clustering sont deux outils
fondamentaux d’analyse exploratoire des données. Ils ont en commun la capacité
à segmenter des données en groupes avec des propriétés similaires en appliquant
une transformation sur les données qui préserve approximativement la distance ou la
structure de celles-ci. De plus, les algorithmes de recherche des plus proches voisins et

176 Appendix G. Résumé de la thèse en français

de clustering consituent de fait des règles de classification en apprentissage des plus
évidentes. En pratique, ces méthodes aident à:

• identifier des clients avec un comportement similaire pour de la segmentation
de marché,

• exhiber des communautés dans les réseaux sociaux,

• ou à partir du génome séquencé d’un nouvel organisme, trouver les gènes qui
sont similaires à ceux déjà répertoriés dans les bases de données,

pour ne citer que quelques applications concrètes.
Par ailleurs, ces méthodes sont très utiles pour le cas de figure majoritaire où

l’étiquetage des données est trop coûteux. En effet, à partir de quelques données
manuellement étiquetées, ces méthodes d’apprentissage non supervisé permettent
d’étendre les propriétés d’un point à tous les autres contenus dans le même clus-
ter ou voisinage. L’étiquetage des données est ensuite facilité s’il est fait directement
sur des clusters de données ou des voisinages de points pré-sélectionnés.

Représentation compacte et approximation

Pour proposer des algorithmes efficaces en temps et en espace pour la recherche
des plus proches voisins et le clustering, le traitement des données est facilité en
travaillant plutôt directement sur des représentations compactes des données, qui
maintiennent un résumé du flux au fur et à mesure que les données sont collectées. Ces
représentations compactes sont obtenues par des méthodes de réduction de dimension
et/ou d’échantillonnage. Parmi elles, on peut citer les sketches, particulièrement
adaptés à des données en flux. De manière générale, ces représentations compactes
permettent:

• évidemment de réduire le coût spatial des algorithmes de traitement,

• mais également la complexité temporelle des opérations effectuées,

ce qui de fait augmente fortement le débit de traitement.
La compression des données a cependant un coût, celui de l’approximation

du résultat puisque celle-ci engendre une perte d’information. Mais dans bien
d’applications, une approximation est suffisante: par exemple, quand on veut con-
naître l’ordre de grandeur du nombre de vues pour une page parmi le corpus Wikipédia
qui en contient environ 35 millions, le chiffre exact n’est pas plus utile.

Ainsi, cette thèse se concentre sur la conception d’algorithmes efficaces en temps
et en espace pour répondre à des problèmes d’apprentissage non supervisé en
s’appuyant sur des représentations compactes des données qui préservent ap-
proximativement les propriétés d’intérêt comme la distance ou la structure des
données.

Compromis Pour ce faire, il est important de se rappeler que construire un algo-
rithme autour d’une bonne représentation compacte des données est un compromis
entre :

• le coût spatial de la structure de données,

• le débit de traitement des données,

G.1. Introduction 177

• et la précision du résultat de l’algorithme,

le tout étant paramétré en fonction des besoins et des contraintes de l’utilisateur.
Nous présentons dans cette thèse, après revue de l’état de l’art - à consulter

directement dans le corps de ce manuscrit - trois contributions au domaine.

G.1.2 Contributions

La revue de l’état de l’art a permis d’identifier trois types d’approches qui préservent
approximativement la distance et la structure des données pour l’apprentissage non
supervisé:

• les méthodes indépendantes des données,

• ou au contraire adaptées aux données,

• et enfin fondées sur les graphes.

Les méthodes indépendantes des données pour la réduction de dimension sont évidem-
ment les moins coûteuses et permettent un traitement directement en ligne. La théorie
des projections aléatoires pour la préservation des distances garantie une certaine pré-
cision du résultat.

Toutefois, cette précision peut ne pas être suffisante pour certaines applications.
Ainsi, la construction des représentations compactes peut être adaptée aux données:
la transformation de réduction de dimension étant apprise, la distance entre les points
est mieux préservée. Les algorithmes de cette famille sont plus gourmands en temps
et en espace et plus difficiles à adapter en ligne: ils doivent dépendre des données,
mais dans le cadre streaming, ne peuvent pas toutes les stocker pour apprendre les
paramètres de leur modèle!

Enfin, une approche graphe permet non seulement de conserver les distances mais
aussi la structure des données en représentant le dataset comme un graphe, ce graphe
exprimant les dissimilarités ou les similarités entre les points sous la forme de poids sur
les arêtes les reliant. La difficulté est alors de rendre ce graphe le plus parcimonieux
possible pour en réduire le coût de stockage.

Ces trois familles de méthodes ont toutes leurs avantages et leurs inconvénients.
Les contributions dans cette thèse reflètent cette taxonomie puisque chacune d’elles
appartient à une de ces différentes catégories.

Des matrices aléatoires structurées, une approche pour de l’apprentissage
à grande échelle

En ce qui concerne la recherche des plus proches voisins de manière efficace, l’approche
la moins coûteuse est indépendante des données. Il s’agit des méthodes de type LSH
pour Locality-Sensitive Hashing [Indyk and Motwani, 1998, Charikar, 2002, Terasawa
and Tanaka, 2007, Sundaram et al., 2013, Andoni et al., 2015a]. Brièvement, elles
s’appuient sur des projections aléatoires pour réduire la dimension des données et
faciliter la recherche par similarité en l’effectuant directement dans le nouvel espace
de redesription de plus petite dimension. Dans le cadre du Cross-polytope LSH [Tera-
sawa and Tanaka, 2007] qui est l’approche état de l’art pour le LSH, de nombreux
calculs consistent en le produit d’une matrice aléatoire avec la donnée d’entrée en
grande dimension (il s’agit de la procédure de hashing). Pour en réduire le coût,
qui devient vite prohibitif en grande dimension, Andoni et al. [2015a] proposent de
remplacer cette matrice aléatoire par trois blocs de transformées de Hadamard aléa-
toirisés. Les gains en temps de calcul et en coût de stockage de la matrice sont

178 Appendix G. Résumé de la thèse en français

significatifs. Les résultats expérimentaux montrent par ailleurs que la qualité des
fonctions de hachage reste importante par rapport à celles avec une matrice aléatoire.

Nous proposons ici pour la première fois, un nouveau cadre théorique que l’on
nomme Pivoteurs structurés (Structured spinners en anglais) pour expliquer cette
performance. De manière générale, ce cadre propose de compresser par structura-
tion des matrices apprises ou aléatoires gaussiennes dans de nombreux problèmes
d’apprentissage s’appuyant sur des produits entre matrices et vecteurs. Cette struc-
turation incorpore des rotations et implique des matrices structurées classiques comme
les matrices circulantes, de Toeplitz, de Hankel, de Hadamard etc. Des expériences
dans de nombreux domaines d’application comme la recherche approximative des plus
proches voisins, l’approximation de noyaux, l’optimisation convexe avec les sketches
de Newton ou les réseaux de neurones confirment l’utilité des Pivoteurs structurés
dont l’usage n’entraîne presque aucune perte de précision en comparaison avec leurs
homologues non structurés.

Apprentissage de codes compacts binaires de flux de données massives via
le hashing hypercubique pour la recherche des plus proches voisins

En deuxième lieu, pour les applications qui le nécessitent, une méthode originale a
été conçue pour apprendre - la méthode est donc adaptée aux données - en une seule
passe sur le flux des codes compacts binaires de données en grande dimension.

De la famille des méthodes de hachage (ou hashing en anglais) hypercubique [Gong
et al., 2013, Kong and Li, 2012, Leng et al., 2015a], elle s’appuie sur une méthode re-
connue de réduction de dimension pour préserver la distance entre les points, l’Analyse
en Composantes Principales (ACP). L’état de l’art fait le constat que la qualité de la
fonction de hachage est améliorée si on applique à la suite de l’ACP une rotation qui
tend à uniformiser la variance.

Nous mettons donc en place une version online de ce type d’approche. Nous
apportons également une preuve de l’optimalité de cette rotation en posant quelques
conditions. En plus de certaines garanties théoriques, la qualité des codes binaires
obtenus est ensuite mesurée dans le cadre de la recherche approximative des plus
proches voisins.

Clustering de données massives à partir d’un arbre couvrant minimum

Enfin pour cette dernière contribution, nous proposons un nouvel algorithme de clus-
tering nommé DBMSTClu d’approche de type graphe pour préserver la structure des
données. Un ensemble de données peut en effet être représenté par un graphe de
dissimilarité mais pour les applications à grande échelle, ce dernier est trop large
pour tenir entièrement en mémoire. En conséquence, l’information contenue dans le
dataset est compressée sous la forme d’un arbre couvrant minimum du graphe de dis-
similarité. En s’appuyant uniquement sur cet arbre, l’algorithme permet de respecter
les contraintes de complexité en temps et en espace linéaire en le nombre de données.
DBMSTClu est une solution sans paramètre, efficace en terme de coût de stockage et
temps computationnel, capable de détecter automatiquement des clusters de forme
arbitraire dans des données massives. Pour ce faire, DBMSTClu coupe des arêtes
selon un critère à maximiser.

Pour obtenir efficacement un arbre couvrant minimum, nous proposons d’utiliser
une technique récente de sketching de graphe [Ahn et al., 2012a]. Une application au
clustering préservant la vie privée différentielle est également démontrée.

G.2. Des matrices aléatoires structurées, une approche pour de l’apprentissage à
grande échelle 179

Des questions restées ouvertes et des perspectives de recherche future concluent
enfin ce travail.

G.2 Des matrices aléatoires structurées, une approche
pour de l’apprentissage à grande échelle

G.2.1 Principe

Cette première contribution propose une technique de structuration pour ac-
célérer les schémas fondés sur la méthode indépendante des données LSH pour la
recherche des plus proches voisins.

Les méthodes de type LSH [Indyk and Motwani, 1998, Charikar, 2002, Terasawa
and Tanaka, 2007, Sundaram et al., 2013, Andoni et al., 2015a] consistent à réduire
la dimension des données de grande dimension en entrée avec des projections aléa-
toires. C’est ensuite sur ces vecteurs de redescription plus petits que la recherche
par similarité est effectuée, et ceci beaucoup plus rapidement. Quand les dimen-
sions de la matrice de projection et des vecteurs sont élevées, le calcul de ce produit
matrice-vecteur peut être très coûteux.

Pour remédier au problème, il est suggéré de remplacer les matrices aléatoires par
des structurées choisies parmi la famille du modèle présenté des Pivoteurs structurés
(Structured spinners). Les matrices de la famille des Pivoteurs structurés sont con-
struites comme des produits de trois blocs de matrices structurées qui incorporent
des rotations et suivent certaines conditions. Les matrices structurées pour constituer
ces blocs peuvent être par exemple les matrices circulantes, de Toeplitz, de Hankel,
de Hadamard etc.

Utiliser ces matrices conduit à la fois à la réduction du coût spatial et l’accélération
du calcul du produit matrice-vecteur grâce à des transformées de Fourier ou de
Hadamard rapides qui sont appliquées à la place du produit matrice-vecteur clas-
sique. Par exemple, dans le cas du matrice carrée, on passe d’un coût temporel de
O(n2) à O(n logn) pour n la dimension de la matrice et du vecteur.

Des garanties théoriques sont fournies pour caractériser la capacité du modèle
structuré en référence à son homologue non structuré.

Ces dernières s’appuient essentiellement sur des théorèmes de concentration comme
le Théorème Central Limite de type Berry-Esseen [Bentkus, 2003] ou l’inégalité
d’Azuma [Azuma, 1967]. Elles démontrent qu’il n’y a presque aucune perte de préci-
sion dans les applications considérées, ce qui est confirmé par la partie expérimentale.

En particulier, ces garanties théoriques sont les premières à expliquer la perfor-
mance de la matrice structurée HD3HD2HD1 proposée par [Andoni et al., 2015a]
pour la variante état de l’art de LSH, le Cross-polytope LSH [Terasawa and Tanaka,
2007].

Comme sous-produit, la technique proposée est généralisable à beaucoup
d’applications d’apprentissage s’appuyant sur des produits matrice-vecteur où les
paramètres de la matrice sont aléatoires1 ou appris (voir Annexe E). Quelques ex-
emples incluent l’approximation de noyaux, l’optimisation convexe avec les Newton
sketches, la quantification de vecteurs ou les réseaux de neurones.

1Typiquement, chaque coefficient de la matrice est tiré aléatoirement d’une distribution gaussi-
enne.

180 Appendix G. Résumé de la thèse en français

G.2.2 Expérience

Dans cette expérience, on mesure la qualité de la fonction de hachage dans le Cross-
polytope LSH [Terasawa and Tanaka, 2007] en comparant les probabilités de collision.
Il s’agit de vérifier que:

• les données similaires ont une forte probabilité d’avoir le même hash (c’est
le résultat de la fonction de hachage) et une faible probabilité d’en avoir un
différent,

• tandis que pour des données très différentes, la probabilité d’avoir un hash
identique ou proche est être faible et la probabilité d’avoir des hashes différents,
élevée.

Les données initiales sont 20000 points de dimension 256 aléatoirement tirés de
manière à avoir approximativement autant de données par intervalle de distance entre
0 et

√
2 car les vecteurs ont été normalisés. La Figure G.1 reporte les résultats

(moyennés sur 100 lancers) pour une seule fonction de hachage en comparant une
matrice aléatoire gaussienne G de taille 256×64 et cinq autres types de matrices de la
famille des Pivoteurs structurés (avec un ordre descendant du nombre de paramètres):

• GcircK2K1,

• GToeplitzD2HD1,

• Gskew−circD2HD1,

• HDg1,...,gnHD2HD1,

• et HD3HD2HD1,

où Ki, GToeplitz, et Gskew−circ sont respectivement une matrice de Kronecker avec des
entrées discrètes, une matrice de Toeplitz gaussienne et une matrice skew-circulant
gaussienne. On remarque que toutes ces matrices ont bien une grande probabilité
de collision pour des distances faibles et une faible probabilité pour des distances
élevées. Toutes les matrices considérées donnent des résultats presque identiques.
Ceci confirme la théorie que l’usage des Pivoteurs structurés ne conduit pas à une
perte significative dans la précision du résultat.

D’autres expériences ont été conduites pour les différentes applications nommées
plus haut et leurs résultats sont présentés en Annexe C.

G.2. Des matrices aléatoires structurées, une approche pour de l’apprentissage à
grande échelle 181

+ + +
+

+
+

+
+

+
+

+

+

+

+

Collision probabilities with cross−polytope LSH

Distance

C
ol

lis
io

n
pr

ob
ab

ili
ty

+ + + +
+

+
+

+
+

+
+

+

+

+

+ + +
+

+
+

+
+

+
+

+

+

+

+

+ + + +
+

+
+

+
+

+
+

+

+

+

+ + +
+

+
+

+
+

+
+

+

+

+

+

+ + + +
+

+
+

+
+

+
+

+

+

+

0.
01

0.
05

0.
20

0.
50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 2

G
GcircK2K1
GToeplitzD2HD1

Gskew−circD2HD1
HDg1, g2, …, gn

HD2HD1

HD3HD2HD1

(a)

+

+

+

+

Distance

C
ol

lis
io

n
pr

ob
ab

ili
ty

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0.
01

0.
02

0.
05

0.
10

1.1 1.2 1.3 1.4

G
GcircK2K1
GToeplitzD2HD1

Gskew−circD2HD1
HDg1, g2, …, gn

HD2HD1

HD3HD2HD1

(b)

Figure G.1: Cross-polytope LSH - (a) Probabilités de collision pour
des distances comprises entre 0 et

√
2. (b) Un zoom sur les distances

les plus élevées permet de distinguer les courbes qui sont presque su-
perposées.

182 Appendix G. Résumé de la thèse en français

G.3 Apprentissage de codes compacts binaires de flux de
données massives via le hashing hypercubique pour
la recherche des plus proches voisins

G.3.1 Principe

La seconde contribution adaptée aux données permet d’apprendre des représen-
tations compactes binaires en ligne préservant la similarité pour des données
massives en grande dimension.

Le but est de pouvoir effectuer une recherche par similarité efficace. A partir
d’une longueur de code désirée c et des points en grande dimension, nous proposons
un algorithme streaming qui fournit un code binaire de c bits préservant les distances
entre les points dans l’espace d’origine de grande dimension.

La méthode s’inspire de la famille de hachage hypercubique dont font partie par ex-
emple les méthodes offline ITerative Quantization (ITQ) [Gong et al., 2013], Isotropic
Hashing (IsoHash) [Kong and Li, 2012] et la méthode Online Sketching Hashing
(OSH) [Leng et al., 2015a]. Elle s’appuie sur une projection des données sur les c
premières composantes principales de la matrice de covariance. Sur les données pro-
jetées est ensuite appliquée une rotation R ∈ Rc×c de manière à équilibrer la variance
sur les différentes directions. Pour obtenir un code binaire, la fonction signe est ap-
pliquée coefficient par coefficient, tel que: un coefficient négatif est mis à −1 et un
coefficient positif ou nul à +1.

Les c composantes principales sont mises à jour en ligne au moyen de l’algorithme
existant OPAST [Abed-Meraim et al., 2000]. Puis, une rotation R est calculée comme
le produit de c−1 rotations de Givens Gr(ir, jr, θr) pour r ∈ [c−1] et ir, jr, θr étant les
paramètres déterminant une matrice de Givens (cf. Definition 4.4.1, p. 81). Soit ΣY
la matrice de covariance des données après la rotation par R, chacune des rotations
de Givens Gr(ir, jr, θr) permet de forcer la valeur du coefficient diagonal ir de ΣY
à une valeur désirée τ [Golub and van der Vorst, 2000] en préservant la trace. Le
lecteur est invité à se référer au Chapitre 4 pour une description plus détaillée du
modèle.

IsoHash [Kong and Li, 2012] propose également une manière de définir une ro-
tation uniformisant la variance mais c’est seulement dans ce travail qu’une première
tentative de justification de l’optimalité de telles rotations est présentée.

L’algorithme calculant la rotation R, appelé UnifDiag, possède des garanties de
convergence (contrairement à ITQ) et constitue de similaires ou meilleures perfor-
mances que l’état de l’art du hachage hypercubique concernant la complexité tem-
porelle et la qualité des codes courts binaires.

G.3.2 Expériences

La qualité des codes binaires compacts obtenus est mesurée dans le cadre de la
recherche des plus proches voisins. Les plus proches voisins, obtenus en comparant les
codes binaires de taille c, sont comparés avec les vrais voisins, issus de la comparaison
des distances euclidiennes entre les points de l’espace de dimension initiale d.

Le Mean Average Precision (MAP) est utilisé pour mesurer la précision du résul-
tat en tenant compte du nombre de vrais voisins correctement retournés et de leur
rang. Dans le contexte streaming, l’algorithme UnifDiag est comparé avec différentes
méthodes de l’état de l’art en ligne (se référer à la Section 2.3 et au Chapitre 4 pour

G.3. Apprentissage de codes compacts binaires de flux de données massives via le
hashing hypercubique pour la recherche des plus proches voisins 183

0 500 1000 1500 2000 2500 3000
Data

0.12

0.14

0.16

0.18
M

AP
@

20
00

randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(a)

0 500 1000 1500 2000 2500 3000
Data

0.14

0.16

0.18

0.20

0.22

M
AP

@
20

00

randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(b)

0 500 1000 1500 2000 2500 3000
Data

0.18

0.20

0.22

0.24

0.26

M
AP

@
20

00

randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(c)

0 500 1000 1500 2000 2500 3000
Data

0.22

0.24

0.26

0.28

0.30

M
AP

@
20

00
randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(d)

Figure G.2: MAP@2000 dans le cadre streaming pour différentes
tailles de code et le dataset CIFAR: (a) c = 8, (b) c = 16, (c) c = 32,

(d) c = 64.

une description du fonctionnement de ces méthodes). Les tests sont conduits sur deux
bases de données: CIFAR-102 et GIST1M3.

• CIFAR-10 (CIFAR) contient 60000 images colorées de taille 32×32, distribuées
de manière égale en 10 classes. Des descripteurs GIST de dimension 960 sont
extraits de ces données.

• GIST1M (GIST) contient 60000 descripteurs GIST de dimension 960.

1000 requêtes sont tirées aléatoirement et les 59000 points restant sont utilisés
comme base d’apprentissage. La vérité terrain déterminant les voisins des non-voisins
pour chacun des points-requête dépend d’un seuil calculé choisi arbitrairement. Après
application de la fonction de hashing binaire sur les points de l’ensemble de requête
et d’apprentissage, le MAP à 2000 est calculé sur les 2000 voisins retournés à partir
du tri des distances de Hamming évaluées sur les codes binaires.

Les Figures G.2 et G.3 reportent les résultats respectivement pour les datasets
CIFAR et GIST pour différentes longueurs de code. On remarque que pour des codes
courts, notre méthode fonctionne aussi bien - sinon mieux - que l’état de l’art pour des
méthodes de hashing binaire en streaming, tout en étant plus simple conceptuellement
et avec une complexité temporelle plus faible.

2http://www.cs.toronto.edu/~kriz/cifar.html
3http://corpus-texmex.irisa.fr/

http://www.cs.toronto.edu/~kriz/cifar.html
http://corpus-texmex.irisa.fr/

184 Appendix G. Résumé de la thèse en français

0 500 1000 1500 2000 2500 3000
Data

0.12

0.14

0.16

0.18

0.20

0.22

M
AP

@
20

00

randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(a)

0 500 1000 1500 2000 2500 3000
Data

0.16

0.18

0.20

0.22

0.24

0.26

0.28

M
AP

@
20

00
randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(b)

0 500 1000 1500 2000 2500 3000
Data

0.22

0.24

0.26

0.28

0.30

0.32

M
AP

@
20

00

randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(c)

0 500 1000 1500 2000 2500 3000
Data

0.28

0.30

0.32

0.34

M
AP

@
20

00

randRotOPAST
IsoHashOPAST
UnifDiagOPAST
OSH

(d)

Figure G.3: MAP@2000 dans le cadre streaming pour différentes
tailles de code et le dataset GIST: (a) c = 8, (b) c = 16, (c) c = 32,

(d) c = 64.

G.4. Clustering de données massives à partir d’un arbre couvrant minimum 185

G.4 Clustering de données massives à partir d’un arbre
couvrant minimum

G.4.1 Principe

DBMSTClu est un nouvel algorithme sans paramètre qui retrouve automatique-
ment des clusters de données de forme arbitraire à partir d’un arbre couvrant
minimum du graphe de dissimilarité des données.

Optimalité des approches à base d’arbre couvrant minimum Pour justifier
cette approche, nous démontrons tout d’abord l’optimalité en général des méthodes de
clustering s’appuyant sur un arbre couvrant minimum, en définissant soigneusement
la notion de cluster.

Critère de coupe A partir d’un arbre couvrant minimum, l’algorithme DBMST-
Clu coupe des arêtes bien choisies faisant apparaître des composantes connexes qui
seront considérées ensuite comme des clusters. Le critère de coupe, appelé DBCVI
pour Density-Based Clustering Validation Index s’appuie sur le concept de séparation
et de dispersion des clusters.

La séparation est le poids minimum des arêtes incidentes au cluster qui ont été
précédemment coupées.

La dispersion est le poids maximum des arêtes internes au cluster.
Intuitivement, la séparation mesure à quel point deux clusters sont éloignés et

la dispersion, le niveau de densité d’un cluster. Par exemple, une dispersion faible
traduit un cluster dense avec peu de "vide" entre les points. Naturellement, le but de
cet algorithme de clustering est de maximiser la séparation entre les clusters, tout en
pénalisant les clusters à haute dispersion.

Etapes de l’algorithme Pour maximiser le critère DBCVI construit à partir
de la séparation et de la dispersion pour chaque cluster, l’algorithme conçu est
glouton. Cela signifie qu’à chaque étape, le DBCVI est calculé pour chacune des
coupes possibles. Si l’algorithme trouve une arête qui, une fois coupée, maximise le
critère de manière à augmenter (ou égaliser) la valeur de ce dernier par rapport à
la partition précédente, l’arête est coupée. On continue ce processus jusqu’à ce que
plus aucune amélioration du DBCVI ne soit possible. La Figure G.4 résume cette
procédure.

Des garanties théoriques sur la qualité de la partition obtenue sont apportées et
les résultats expérimentaux montrent l’intérêt de la méthode.

Notes sur l’implémentation A noter qu’un effort d’implémentation a été effectué
pour assurer une complexité linéaire en temps et en espace en le nombre de noeuds.
En effet, une implémentation naïve de l’algorithme a un complexité quadratique.
L’implémentation efficace s’appuie ici deux observations:

1. Une coupe ne modifie la séparation et la dispersion associées à d’autres arêtes
que si elles étaient précédemment dans le même cluster que l’arête de coupe.
Ceci permet d’économiser un certain nombre de calculs. A une nouvelle étape,
il n’est donc pas nécessaire de recalculer le DBCVI associé à une arête si elle
est présente dans un cluster qui n’a pas été touché à l’étape précédente par une
coupe.

186 Appendix G. Résumé de la thèse en français

Entrée: T

Calcul du
DBCV I

pour
chaque
coupe

Appliquer
la

meilleure
coupe
sur T

La
meilleure

coupe
améliore
t-elle le

DBCV I?

Retourne
la partition

de
clustering

oui

non

Figure G.4: Schéma basique de fonctionnement de l’algorithme DB-
MSTClu où T désigne un arbre couvrant minimum (approché ou non).
Initialement, le DBCVI est égal à une valeur arbitraire la plus faible

possible pour forcer une première coupe.

2. Lorsque l’on connaît la dispersion et la séparation associée à une arête, il est
possible de déduire ces deux quantités pour des arêtes avoisinantes grâce à une
relation de récursion.

La mise en place d’un parcours en profondeur d’abord double, à gauche et à droite
d’une arête considérée pour une coupe, permet de ne parcourir qu’une seule fois l’arbre
en entier.

Recouvrer efficacement un arbre couvrant minimum Pour répondre au be-
soin d’extraire efficacement un arbre couvrant minimum du graphe de dissimilarité,
sans avoir à stocker en mémoire vive le graphe en entier s’il est trop large, nous pro-
posons de traiter le graphe de dissimilarité sous la forme d’un flux d’arêtes pour en
créer une représentation compacte, dite sketch, à partir de la méthode de Ahn et al.
[2012a]. Cette dernière technique nécessite un espace mémoire en O(N polylogN) au
lieu du O(N2) initial où N est le nombre de noeuds. Un arbre couvrant minimum
approché peut être recouvré en O(N polylogN) de temps.

Application à la vie privée différentielle Enfin, nous présentons une application
de cet algorithme dans le cadre du respect de la vie privée différentielle (Annexe E)
où les poids des arêtes correspondent à l’information sensible à préserver.

G.4.2 Expériences

Sécurité de l’usage du sketching de graphe

Dans cette expérience, on montre qu’il n’y a pas de préjudice à la qualité de la
partition de clustering résultante, en prenant comme entrée de DBMSTClu à la place
d’un arbre couvrant minimum exact, une version approchée, obtenue par la technique
de sketching du graphe de dissimilarité. Notre méthode est comparée avec:

G.4. Clustering de données massives à partir d’un arbre couvrant minimum 187

• SEMST [Asano et al., 1988, Xu et al., 2002] une méthode naïve qui pour un
nombre de clusters souhaité K, effectue K − 1 coupes parmi les arêtes de poids
le plus élevé dans l’arbre couvrant minimum,

• DBSCAN [Ester et al., 1996], une méthode classique de clustering recouvrant
des clusters non convexes, qui n’est pas de type graphe et nécessite deux
paramètres à optimiser.

Les Figures G.5, G.6 et G.7 présentent les résultats obtenus pour des données en
dimension 20. Les deux premières dimensions modélisent la forme des clusters (boules,
cercles ou bananes bruités) tandis que les 18 dimensions restantes sont du bruit. Les
données ont été projetées sur les 2 premières dimensions par soucis de visualisation.
Le Tableau G.1 donne les résultats quantitatifs associés.

Pour une analyse complète des résultats se référer au Chapitre 5.
Ce qui peut être retenu ici c’est que non seulement la qualité du clustering n’est pas

détériorée dans les cas présents par l’usage d’un arbre couvrant minimum approché,
mais l’algorithme semble être aussi capable de détecter des anomalies représentées
par les points qui sont - visiblement sur les Figures G.6 et G.7 - dans des clusters
singletons.

20 15 10 5 0 5 10 15 20 25
15

10

5

0

5

10

15

20 15 10 5 0 5 10 15 20 25
15

10

5

0

5

10

15

20 15 10 5 0 5 10 15 20 25
15

10

5

0

5

10

15

Figure G.5: Trois boules: SEMST, DBSCAN (ε = 1.4,minPts = 5),
DBMSTClu avec un arbre couvrant minimum approché.

Silhouette coefficient Adjusted Rand Index DBCVI
SEMST 0.84 0.16 −0.12 1 0 0 0.84 0.001 0.06
DBSCAN 0.84 0.02 0.26 1 0.99 0.99 0.84 −0.26 0.15
DBMSTClu 0.84 −0.26 0.26 1 0.99 0.99 0.84 0.18 0.15

Table G.1: Coefficients de Silhouette, Adjusted Rand Index et
DBCVI pour les boules, les cercles et bananes bruités avec SEMST,

DBSCAN et DBMSTClu.

Passage à l’échelle de l’algorithme

Nous invitons le lecteur à lire le Chapitre 5 en anglais pour découvrir les détails de
l’implémentation de l’algorithme DBMSTClu qui permet de garantir une complexité
temporelle linéaire en le nombre de noeuds.

Le coût temporel de l’algorithme est véritablement avantageux pour un grand
nombre de clusters. Par exemple, sur le jeu de données réelles des champignons4 qui
contient 8124 enregistrements correspondant à 23 espèces de champignons, le temps
nécessaire pour retrouver les 23 clusters est de 3.36s pour DBSMTClu tandis que
DBSCAN nécessite 9.00s.

4https://archive.ics.uci.edu/ml/datasets/mushroom

https://archive.ics.uci.edu/ml/datasets/mushroom

188 Appendix G. Résumé de la thèse en français

2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure G.6: Cercles bruités: SEMST, DBSCAN (ε = 0.15,
minPts = 5), DBMSTClu avec un arbre couvrant minimum approché.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

Figure G.7: Bananes bruitées: SEMST, DBSCAN (ε = 0.16,
minPts = 5), DBMSTClu avec un arbre couvrant minimum approché.

Pour montrer le passage à l’échelle de l’algorithme sur des gros graphes, des ex-
périences ont été faites en utilisant le modèle stochastique par blocs. K clusters de
taille égale sont créés pour un nombre de noeuds donné N . Les temps de calcul
associés pour retrouver exactement les K clusters sont donnés dans la Figure G.8
et la Table G.2. En particulier, la Figure G.8 montre bien la complexité temporelle
linéaire en N . Des graphes d’un million de noeuds avec 100 clusters sont facilement
recouvrés.

0 200000 400000 600000 800000 1000000

Number of points

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
 (

s)

K=5

K=20

K=100

Figure G.8: Temps d’exécution de DBMSTClu avec N ∈
{1K, 10K, 50K, 100K, 250K, 500K, 750K, 1M}.

G.4. Clustering de données massives à partir d’un arbre couvrant minimum 189

K\N 1000 10000 50000 100000 250000 500000 750000 1000000
5 0.34 2.96 14.37 28.91 73.04 148.85 218.11 292.25
20 0.95 8.73 43.71 88.51 223.18 449.37 669.29 889.88
100 4.36 40.25 201.76 398.41 995.42 2011.79 3015.61 4016.13
"100/5" 12.82 13.60 14.04 13.78 13.63 13.52 13.83 13.74

Table G.2: Valeurs numériques pour le temps d’exécution de DB-
MSTClu (en s) en faisant varier N et K (moyenné sur 5 lancers).
La dernière ligne montre le ratio de temps d’exécution entre le cas

K = 100 et K = 5.

190 Appendix G. Résumé de la thèse en français

G.5 Conclusion

G.5.1 Rappel des contributions et inscription dans le sujet

Rappelons que les objectifs de la thèse sont de concevoir des algorithmes efficaces
d’approximation en temps et en espace pour deux problèmes fondamentaux de
l’apprentissage non supervisé: la recherche des plus proches voisins et le clustering
lorsqu’il faut faire face à des flux de données massives.

Ces algorithmes d’approximation, s’appuient sur des résumés minimalistes pour
faciliter le traitement de ces flux de données massives et doivent satisfaire au mieux
le compromis entre:

1. la précision du résultat,

2. le coût en espace mémoire,

3. et le débit des données traitées (streaming).

La première contribution (Section G.2) appartenant à la catégorie des méthodes
indépendantes des données offre entre autres un cadre théorique à la version courante
la plus rapide du Cross-polytope LSH [Terasawa and Tanaka, 2007] pour la recherche
des plus proches voisins. Cette dernière consiste à construire les fonctions de hachage
de la méthode Cross-polytope LSH en remplaçant les matrices aléatoires gaussiennes
par la matrice structurée HD3HD2HD1 où H est la transformée de Hadamard et les
Di pour i ∈ {1, 2, 3} sont des matrices diagonales aléatoires indépendantes prenant
pour valeur de coefficients +1 ou −1. Ce cadre théorique est plus général et s’applique
à la fois à d’autres matrices structurées et d’autres applications d’apprentissage. Les
applications concernées impliquent des produits matrice-vecteur où la matrice est
apprise ou aléatoire. Le coût en espace et en temps de ces produits peut être consid-
érablement réduit (typiquement en passant de O(n2) à O(n logn)), tout en préservant
une certaine précision du résultat de l’application. Ce travail respecte donc parfaite-
ment le cadre imposé.

La deuxième contribution (Section G.3) correspond également en tout point au
cahier des charges en proposant d’apprendre (méthode adaptée aux données) des codes
binaires compacts de données en grande dimension.

La dernière contribution concernant la méthode de clustering DBMSTCLu (Sec-
tion G.4) respecte la contrainte mémoire et temporelle puisque l’algorithme ne
s’appuie que sur un arbre couvrant minimum, extrait à partir d’un sketch du graphe
de dissimilarité, pour effectuer des coupes pertinentes dont résultent les clusters. Ceci
assure une complexité spatiale et temporelle linéaire en le nombre de noeuds dans le
graphe. De plus, la précision du résultat est garantie par deux choses:

1. la théorie proposée,

• d’une part, qui justifie l’optimalité d’une méthode de clustering fondée sur
un arbre couvrant minimum,
• d’autre part, qui donne des résultats théoriques spécifiques à l’algorithme
DBMSTClu sur le bon recouvrement de la partition de clustering,

2. les expériences présentées avec un arbre couvrant minimum approché à la place
d’un exact comme entrée de l’algorithme. Cet arbre couvrant approché est:

• soit retrouvé à partir du sketch du graphe des données considérées,

G.5. Conclusion 191

• soit délivré par un algorithme respectant la vie privée différentielle.

Néanmoins, il peut être objecté que l’algorithme de clustering DBMSTClu n’est
pas intrinsèquement streaming. En effet, si le sketch du graphe est bien mis à jour
au fur et à mesure qu’une nouvelle arête est lue du flux, il n’en est pas de même
pour l’arbre couvrant minimum et la partition de clustering sous-jacente. En effet,
supposons que l’on fige le flux et le sketch, puis que l’on construit à partir de ce
sketch un arbre couvrant minimum et la partition de clustering sous-jacente grâce
à DBMSTClu. Alors, à l’arrivée d’une nouvelle arête du flux, il n’y a pas d’autre
moyen pour l’instant que de reconstruire l’arbre couvrant minimum et la partition de
clustering.

G.5.2 Perspectives

Cette partie est mieux développée dans le Chapitre 6 en anglais. Nous n’en disons ici
que les grandes lignes.

Une perspective d’amélioration évidente serait donc d’adapter complètement en
ligne l’algorithme DBMSTClu. A noter toutefois que la conception d’un algorithme
en ligne pour construire un arbre couvrant minimum avec un coût de stockage limité
est un sujet de recherche en soi.

Par ailleurs, un travail supplémentaire pourrait être effectué pour déterminer en
ligne une rotation optimale, pas nécessairement uniformisant la variance, pour la
méthode de hashing hypercubique présentée en Section G.3. Sinon, n’ayant pas unic-
ité de la rotation uniformisant la variance, serait-il possible de déterminer parmi
celles-ci une optimale? Selon quel critère?

Enfin, d’autres développements possibles seraient de travailler sur l’aspect implé-
mentation des méthodes dans des frameworks connus pour le streaming (ex: Hadoop,
Spark, Redis) ce qui permettrait le déploiement de la méthode pour des applications
plus concrètes comme l’analyse de données génomiques.

192 Appendix G. Résumé de la thèse en français

G.6 Publications

Ce travail de thèse a donné lieu, au moment de l’écriture de ce document, à quatre
publications dans des conférences internationales. Elles sont les suivantes:

• Le travail en collaboration décrit en Section G.2 à propos du sketching de ma-
trices via structuration a été publié à la Conférence Internationale d’Intelligence
Artificielle et de Statistiques (AISTATS) 2017.

Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, Francois
Fagan, Cédric Gouy-Pailler, Anne Morvan, Nouri Sakr, Tamás Sarlós, Ja-
mal Atif.
Structured adaptive and random spinners for fast machine learning compu-
tations
Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics (AISTATS’17), 54, pp.1020-1029, Fort Lauderdale, FL, USA,
20-22 Apr.

• La contribution de la Section G.3 sur l’apprentissage de codes binaires compacts
pour des données en grande dimension a été publiée à la Conférence Interna-
tionale de l’Acoutisque, de la Parole et du Traitement du Signal (ICASSP)
2018.

Anne Morvan, Antoine Souloumiac, Cédric Gouy-Pailler, Jamal Atif.
Streaming Binary Sketching based on Subspace Tracking and Diagonal Uni-
formization
Proceedings of the 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP 2018), Calgary, Alberta, Canada,
15-20 Apr.

• L’approche sketching de graphe pour du clustering de flux de données massives a
été publiée à la Conférence SIAMData Mining (SDM) 2018. Une extension de ce
travail présentant des garanties théoriques supplémentaires avec une application
au clustering préservant la vie privée différentielle a été publiée à la Conférence
Internationale de l’Incertitude en Intelligence Artificielle (UAI) 2018.

Anne Morvan, Krzysztof Choromanski, Cédric Gouy-Pailler, Jamal Atif.
Graph sketching-based Space-efficient Data Clustering
Proceedings of the SIAM International Conference on DATA MINING
(SDM’18), pp.10-18, San Diego, CA, USA, 3-4 May.

Rafaël Pinot, Anne Morvan, Florian Yger, Cédric Gouy-Pailler, Jamal Atif.
Graph-based Clustering under Differential Privacy
Proceedings of the International Conference on Uncertainty in Artificial
Intelligence (UAI 2018), Monterey, CA, USA, 6-10 Aug.

193

Bibliography

K. Abed-Meraim, A. Chkeif, and Y. Hua. Fast Orthonormal PAST Algorithm. IEEE
Signal Processing Letters, (3):60 – 62, 2000. 32, 33, 81, 182

D. Achlioptas. Database-friendly Random Projections: Johnson-Lindenstrauss with
Binary Coins. J. Comput. Syst. Sci., 66(4):671–687, June 2003. ISSN 0022-0000.
25

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A Framework for Clustering Evolving
Data Streams. In Proceedings of the 29th International Conference on Very Large
Data Bases - Volume 29, VLDB ’03, pages 81–92. VLDB Endowment, 2003. ISBN
0-12-722442-4. 37, 38

R. Agrawal and A. Swami. A One-Pass Space-Efficient Algorithm for Finding Quan-
tiles. In IN PROC. 7TH INTL. CONF. MANAGEMENT OF DATA (COMAD-95),
1995. 9

K. J. Ahn, S. Guha, and A. McGregor. Analyzing Graph Structure via Linear Mea-
surements. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’12, pages 459–467, Philadelphia, PA, USA, 2012a. So-
ciety for Industrial and Applied Mathematics. 41, 45, 46, 49, 51, 96, 115, 116, 125,
178, 186

K. J. Ahn, S. Guha, and A. McGregor. Graph Sketches: Sparsification, Spanners, and
Subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS ’12, pages 5–14, New York, NY, USA,
2012b. ACM. 45

K. J. Ahn, S. Guha, and A. McGregor. Spectral Sparsification in Dynamic Graph
Streams, pages 1–10. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. 45

N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. In Proceedings of the 38th STOC, pages 557–563. ACM,
2006. 6, 25, 54, 57, 58

N. Ailon and E. Liberty. An almost optimal unrestricted fast Johnson-Lindenstrauss
transform. In SODA, 2011. 54

N. Ailon, R. Jaiswal, and C. Monteleoni. Streaming k-means approximation. In
Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, edi-
tors, Advances in Neural Information Processing Systems 22, pages 10–18. Curran
Associates, Inc., 2009. 36, 37

N. Ailon, Y. Chen, and H. Xu. Breaking the Small Cluster Barrier of Graph Clus-
tering. CoRR, abs/1302.4549, 2013. 41

N. Alon, Y. Matias, and M. Szegedy. The Space Complexity of Approximating the
Frequency Moments. In Proceedings of the Twenty-eighth Annual ACM Symposium

194 BIBLIOGRAPHY

on Theory of Computing, STOC ’96, pages 20–29, New York, NY, USA, 1996. ACM.
9

A. Andoni and P. Indyk. Near-optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions. Commun. ACM, (1):117–122, 2008. 22, 74

A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt. Practical
and Optimal LSH for Angular Distance. In Proceedings of the 28th International
Conference on Neural Information Processing Systems, NIPS’15, pages 1225–1233,
Cambridge, MA, USA, 2015a. MIT Press. 5, 6, 11, 22, 23, 24, 51, 123, 129, 177,
179

A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt. Practical and
Optimal LSH for Angular Distance. In NIPS, pages 1225–1233, 2015b. 54, 55, 56,
67, 68, 69, 70, 74

D. Arthur and S. Vassilvitskii. K-means++: The Advantages of Careful Seeding.
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’07, pages 1027–1035, Philadelphia, PA, USA, 2007. Society for
Industrial and Applied Mathematics. 36

T. Asano, B. Bhattacharya, M. Keil, and F. Yao. Clustering Algorithms Based on
Minimum and Maximum Spanning Trees. In Proceedings of the Fourth Annual
Symposium on Computational Geometry, SCG ’88, pages 252–257, New York, NY,
USA, 1988. ACM. 43, 44, 154, 187

F. Aurenhammer. Voronoi Diagrams&Mdash;a Survey of a Fundamental Geometric
Data Structure. ACM Comput. Surv., 23(3):345–405, Sept. 1991. ISSN 0360-0300.
5

K. Azuma. Weighted sums of certain dependent random variables. Tohoku Math. J.
(2), 19(3):357–367, 1967. doi: 10.2748/tmj/1178243286. 11, 57, 151, 179

B. Bandyopadhyay, D. Fuhry, A. Chakrabarti, and S. Parthasarathy. Topological
Graph Sketching for Incremental and Scalable Analytics. In Proceedings of the 25th
ACM International on Conference on Information and Knowledge Management,
CIKM ’16, pages 1231–1240, New York, NY, USA, 2016. ACM. 45

A. Bellet, A. Habrard, and M. Sebban. A survey on metric learning for feature vectors
and structured data. arXiv preprint arXiv:1306.6709, 2013. 33, 35

V. Bentkus. On the dependence of the Berry–Esseen bound on dimension. Journal
of Statistical Planning and Inference, 113(2):385–402, 2003. 11, 65, 179

J. L. Bentley. Multidimensional Binary Search Trees Used for Associative Searching.
Commun. ACM, 18(9):509–517, Sept. 1975. 5, 37

S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. Tsourakakis. Space- and
Time-Efficient Algorithm for Maintaining Dense Subgraphs on One-Pass Dynamic
Streams. In Proceedings of the Forty-seventh Annual ACM Symposium on Theory
of Computing, STOC ’15, pages 173–182, New York, NY, USA, 2015. ACM. 45

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. 3

BIBLIOGRAPHY 195

A. Blum, K. Ligett, and A. Roth. A Learning Theory Approach to Non-interactive
Database Privacy. In Proceedings of the Fortieth Annual ACM Symposium on
Theory of Computing, STOC ’08, pages 609–618, New York, NY, USA, 2008. ACM.
154, 157

C. Boutsidis, D. Garber, Z. S. Karnin, and E. Liberty. Online Principal Components
Analysis. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages
887–901, 2015. 32

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
New York, NY, USA, 2004. ISBN 0521833787. 142

R. S. Boyer and J. S. Moore. MJRTY - A Fast Majority Vote Algorithm, pages
105–117. Springer Netherlands, Dordrecht, 1991. 9

R. P. Brent, J. H. Osborn, and W. D. Smith. Bounds on determinants of perturbed
diagonal matrices. arXiv:1401.7084, 2014. 141

F. Cakir and S. Sclaroff. Adaptive Hashing for Fast Similarity Search. In ICCV,
December 2015. 26, 33

F. Cakir, K. He, S. Bargal, and S. Sclaroff. MIHash: Online Hashing With Mutual
Information. In ICCV, Oct 2017. 26, 33

F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving
data stream with noise. In In 2006 SIAM Conference on Data Mining, pages
328–339, 2006. 37, 38, 39

M. Charikar. Similarity estimation techniques from rounding algorithms. In STOC,
2002. 5, 11, 22, 23, 51, 54, 150, 177, 179

L. Chen, T. Yu, and R. Chirkova. WaveCluster with Differential Privacy. In Proceed-
ings of the 24th ACM International on Conference on Information and Knowledge
Management, CIKM ’15, pages 1011–1020, New York, NY, USA, 2015. ACM. 154,
157

X. Chen, I. King, and M. R. Lyu. FROSH: FasteR Online Sketching Hashing. In
UAI, 2017. 28, 74

Y. Chen, S. Sanghavi, and H. Xu. Clustering Sparse Graphs. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 2204–2212. Curran Associates, Inc., 2012a. 41

Y. Chen, S. Sanghavi, and H. Xu. Clustering Sparse Graphs. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 2204–2212. Curran Associates, Inc., 2012b. 41

Y. Chen, A. Jalali, S. Sanghavi, and H. Xu. Clustering Partially Observed Graphs
via Convex Optimization. J. Mach. Learn. Res., 15(1):2213–2238, Jan. 2014a. 41

Y. Chen, S. H. Lim, and H. Xu. Weighted Graph Clustering with Non-uniform
Uncertainties. In Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32, ICML’14, pages II–1566–II–1574.
JMLR.org, 2014b. 41

196 BIBLIOGRAPHY

A. Choromanska, K. Choromanski, M. Bojarski, T. Jebara, S. Kumar, and Y. LeCun.
Binary embeddings with structured hashed projections. In ICML, 2016. 135, 136

K. Choromanski and V. Sindhwani. Recycling Randomness with Structure for Sub-
linear time Kernel Expansions. In ICML, 2016. 56, 57, 135, 136, 141, 142

A. Condon and R. M. Karp. Algorithms for Graph Partitioning on the Planted
Partition Model. Random Struct. Algorithms, 18(2):116–140, Mar. 2001. 41

J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation, 19(90):297–301, 1965. 131

G. Cormode and D. Firmani. A unifying framework for l0-sampling algorithms. Dis-
tributed and Parallel Databases, 32(3):315–335, 2014. Special issue on Data Sum-
marization on Big Data. 47, 116

G. Cormode and S. Muthukrishnan. An Improved Data Stream Summary: The
Count-min Sketch and Its Applications. J. Algorithms, 55(1):58–75, Apr. 2005.
ISSN 0196-6774. 9

G. Cormode and S. Muthukrishnan. Approximating Data with the Count-Min Sketch.
IEEE Software, 29(1):64–69, 2012. 9

G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for Massive Data:
Samples, Histograms, Wavelets, Sketches. Found. Trends databases, 4:1–294, Jan.
2012. 9

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online Passive-
Aggressive Algorithms. J. Mach. Learn. Res., 7:551–585, Dec. 2006. 26

B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F. Balcan, and L. Song. Scalable Kernel
Methods via Doubly Stochastic Gradients. In NIPS, 2014. 137

A. Dasgupta, R. Kumar, and T. Sarlos. A Sparse Johnson: Lindenstrauss Transform.
2010. 54

S. Dasgupta and Y. Freund. Random projection trees and low dimensional manifolds.
In STOC, 2008. 135

S. Dasgupta and A. Gupta. An elementary proof of the Johnson-Lindenstrauss
Lemma. Technical report, UC Berkeley, 1999. 25

P. J. Davis. Circulant Matrices. Wiley, 1970. 131

W. H. E. Day and H. Edelsbrunner. Efficient algorithms for agglomerative hierarchical
clustering methods. Journal of Classification, 1(1):7–24, Dec 1984. 7

D. Defays. An efficient algorithm for a complete link method. The Computer Journal,
20(4):364–366, 1977. 7

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977. 7

M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. D. Freitas. Predicting Parameters
in Deep Learning. In NIPS. 2013. 137

BIBLIOGRAPHY 197

T.-T. Do, A.-D. Doan, and N.-M. Cheung. Learning to Hash with Binary Deep Neural
Network. In ECCV, 2016. 26

M. Durand and P. Flajolet. Loglog Counting of Large Cardinalities. In In ESA, pages
605–617, 2003. 9

C. Dwork. A Firm Foundation for Private Data Analysis. Commun. ACM, 54(1):
86–95, Jan. 2011. 154, 157

C. Dwork and A. Roth. The Algorithmic Foundations of Differential Privacy. Foun-
dations and Trends R© in Theoretical Computer Science, 9(3-4):211–407, 2013. 156,
164

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our Data, Our-
selves: Privacy Via Distributed Noise Generation. In Eurocrypt, volume 4004, pages
486–503. Springer, 2006a. 156

C. Dwork, F. McSherry, K. Nissim, and A.Smith. Calibrating Noise to Sensitivity in
Private Data Analysis. In Theory of Cryptography, pages 265–284. Springer Berlin
Heidelberg, 2006b. 154, 155, 156

M. Ester, H. peter Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. pages 226–231. AAAI
Press, 1996. 8, 40, 96, 117, 187

T. Falkowski, A. Barth, and M. Spiliopoulou. DENGRAPH: A Density-based Com-
munity Detection Algorithm. In Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence, WI ’07, pages 112–115, Washington, DC, USA,
2007. IEEE Computer Society. 41

C. Feng, Q. Hu, and S. Liao. Random Feature Mapping with Signed Circulant Matrix
Projection. In IJCAI, 2015. 136

B. J. Fino and V. R. Algazi. Unified Matrix Treatment of the Fast Walsh-Hadamard
Transform. IEEE Trans. Comput., 25(11):1142–1146, Nov. 1976. 129

P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base appli-
cations. Journal of Computer and System Sciences, 31(2):182 – 209, 1985. 9

P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. HyperLogLog: the analysis
of a near-optimal cardinality estimation algorithm. In P. Jacquet, editor, AofA:
Analysis of Algorithms, volume DMTCS Proceedings vol. AH, 2007 Conference on
Analysis of Algorithms (AofA 07) of DMTCS Proceedings, pages 137–156, Juan les
Pins, France, June 2007. Discrete Mathematics and Theoretical Computer Science.
9

P. Frankl and H. Maehara. The Johnson-Lindenstrauss Lemma and the Sphericity of
Some Graphs. J. Comb. Theory Ser. A, 44(3):355–362, June 1987. 24

M. L. Fredman and D. E. Willard. Trans-dichotomous Algorithms for Minimum
Spanning Trees and Shortest Paths. J. Comput. Syst. Sci., 48(3):533–551, June
1994. ISSN 0022-0000. 45

H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan. Efficient Algorithms for Finding
Minimum Spanning Trees in Undirected and Directed Graphs. Combinatorica, 6
(2):109–122, Jan. 1986. ISSN 0209-9683. 45

198 BIBLIOGRAPHY

A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimensions via
Hashing. In Proceedings of the 25th International Conference on Very Large Data
Bases, VLDB ’99, pages 518–529, San Francisco, CA, USA, 1999. Morgan Kauf-
mann Publishers Inc. ISBN 1-55860-615-7. 5

G. H. Golub and H. A. van der Vorst. Eigenvalue computation in the 20th century.
Journal of Computational and Applied Mathematics, (1–2):35 – 65, 2000. Numerical
Analysis 2000. Vol. III: Linear Algebra. 32, 82, 182

Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative Quantization: A Pro-
crustean Approach to Learning Binary Codes for Large-Scale Image Retrieval.
IEEE Transactions on Pattern Analysis and Machine Intelligence, (12):2916–2929,
2013. 6, 17, 26, 28, 29, 74, 76, 126, 178, 182

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Book in preparation for
MIT Press, 2016. 136

K. Grauman and B. Kulis. Kernelized Locality-Sensitive Hashing. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1092–1104, 2011. 22

O. Grygorash, Y. Zhou, and Z. Jorgensen. Minimum Spanning Tree Based Clustering
Algorithms. In 2006 18th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’06), pages 73–81, 2006. 43, 44, 154

S. Guha, R. Rastogi, and K. Shim. Cure: An Efficient Clustering Algorithm for Large
Databases. Inf. Syst., 26(1):35–58, 2001. 37

S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering Data
Streams: Theory and Practice. IEEE Trans. on Knowl. and Data Eng., 15(3):
515–528, Mar. 2003. 36, 37

I. Guyon and A. Elisseeff. An Introduction to Variable and Feature Selection. J.
Mach. Learn. Res., 3:1157–1182, Mar. 2003. ISSN 1532-4435. 3

S. Har-Peled, P. Indyk, and R. Motwani. Approximate Nearest Neighbor: Towards
Removing the Curse of Dimensionality. Theory of Computing, 8(14):321–350, 2012.
54

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.
3

M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate Estimation of the Degree Dis-
tribution of Private Networks. In 2009 Ninth IEEE International Conference on
Data Mining, pages 169–178, Dec 2009. 155

M. R. Henzinger, P. Raghavan, and S. Rajagopalan. External Memory Algorithms.
chapter Computing on Data Streams, pages 107–118. American Mathematical So-
ciety, Boston, MA, USA, 1999. ISBN 0-8218-1184-3. 9

J. Herault and B. Ans. Neuronal network with modifiable synapses: decoding of
composite sensory messages under unsupervised and permanent learning. 299:525–
8, 02 1984. 3

A. Hinrichs and J. Vybíral. Johnson-Lindenstrauss lemma for circulant matrices.
Random Struct. Algorithms, 39(3):391–398, 2011. 54, 129

BIBLIOGRAPHY 199

S.-S. Ho and S. Ruan. Preserving Privacy for Interesting Location Pattern Mining
from Trajectory Data. Trans. Data Privacy, 6(1):87–106, Apr. 2013. 154, 157

P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps.
Social Networks, 5(2):109–137, June 1983. 41

H. Hotelling. Analysis of a complex of statistical variables into principal components.
J. Educ. Psych., 24, 1933. 3, 27

L.-K. Huang, Q. Yang, and W.-S. Zheng. Online Hashing. In IJCAI, pages 1422–1428,
2013. 26, 33

P.-S. Huang, H. Avron, T. Sainath, V. Sindhwani, and B. Ramabhadran. Kernel
Methods match Deep Neural Networks on TIMIT. In ICASSP, 2014. 135, 137

Z. Huang and P. Peng. Dynamic Graph Stream Algorithms in o(n) Space. CoRR,
abs/1605.00089, 2016. 45

M. Huhtanen and A. Perämäki. Factoring Matrices into the Product of Circulant and
Diagonal Matrices. Journal of Fourier Analysis and Applications, 21(5):1018–1033,
2015. 137

P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC ’98, pages 604–613, New York, NY, USA, 1998.
ACM. 5, 11, 18, 21, 25, 33, 177, 179

A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1988. 7, 96

W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. In Conference in modern analysis and probability (New Haven, Conn., 1982),
volume 26 of Contemporary Mathematics, pages 189–206. American Mathematical
Society, 1984. 24, 54

I. Jolliffe. Principal Component Analysis. Springer Verlag, 1986. 30

H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a
compact image representation. In CVPR, pages 3304–3311, 2010. 28, 74

T. Kailath and A. Sayed. Fast Reliable Algorithms for Matrices with Structure. Society
for Industrial and Applied Mathematics, 1999. 131, 132

D. M. Kane and J. Nelson. A Sparser Johnson-Lindenstrauss Transform. 2010. 25

D. R. Karger, P. N. Klein, and R. E. Tarjan. A Randomized Linear-time Algorithm
to Find Minimum Spanning Trees. J. ACM, 42(2):321–328, Mar. 1995. ISSN 0004-
5411. 45

Z. Karnin and E. Liberty. Online PCA with Spectral Bounds. In COLT, 2015. 32

S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith. Analyzing
Graphs with Node Differential Privacy. In Proceedings of the 10th Theory of Cryp-
tography Conference on Theory of Cryptography, TCC’13, pages 457–476, Berlin,
Heidelberg, 2013. Springer-Verlag. 155

200 BIBLIOGRAPHY

L. Kaufman and P. J. Rousseeuw. Clustering by means of medoids. Statistical Data
Analysis Based on the L1–Norm and Related Methods, pages 405–416, 1987. 7, 96

W. Kong and W.-j. Li. Isotropic Hashing. In NIPS, pages 1646–1654. 2012. 26, 28,
29, 30, 74, 76, 81, 86, 126, 178, 182

H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature learning and hash coding
with deep neural networks. In CVPR, pages 3270–3278, 2015. 26, 34

Q. Le, T. Sarlós, and A. Smola. Fastfood-computing hilbert space expansions in
loglinear time. In ICML, 2013. 135, 137

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,
2015. 136

Y. Lee. Spherical Hashing. In CVPR, pages 2957–2964, 2012. 26

C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu. Online sketching hashing. In CVPR,
pages 2503–2511, 2015a. 6, 26, 28, 32, 74, 75, 77, 84, 89, 149, 178, 182

C. Leng, J. Wu, J. Cheng, X. Zhang, and H. Lu. Hashing for Distributed Data. In
ICML, pages 1642–1650, 2015b. 26

J. Li. Restructuring of Deep Neural Network Acoustic Models with Singular Value
Decomposition. In Interspeech, 2013. 137

E. Liberty. Simple and Deterministic Matrix Sketching. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’13, pages 581–588, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
2174-7. 30, 31, 32

E. Liberty, N. Ailon, and A. Singer. Dense fast random projections and lean Walsh
transforms. In RANDOM, 2008. 54

V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou. Deep hashing for compact
binary codes learning. In CVPR, pages 2475–2483, June 2015. 26

W. Liu, J. Wang, and S. fu Chang. Hashing with graphs. In ICML, 2011. 26

W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised hashing with
kernels. In CVPR, pages 2074–2081, 2012. 26

W. Liu, C. Mu, S. Kumar, and S.-F. Chang. Discrete Graph Hashing. In NIPS, pages
3419–3427. 2014. 26

S. Lloyd. Least Squares Quantization in PCM. IEEE Trans. Inf. Theor., 28(2):
129–137, Sept. 1982. 7, 35, 96

U. Luxburg. A Tutorial on Spectral Clustering. Statistics and Computing, 17(4):
395–416, Dec. 2007. 41

U. v. Luxburg and O. Bousquet. Distance–Based Classification with Lipschitz Func-
tions. J. Mach. Learn. Res., 5:669–695, Dec. 2004. ISSN 1532-4435. 3

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe LSH: Efficient
Indexing for High-dimensional Similarity Search. In Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases, VLDB ’07, pages 950–961. VLDB
Endowment, 2007. ISBN 978-1-59593-649-3. 22, 23

BIBLIOGRAPHY 201

Q. Ma, S. Muthukrishnan, and M. Sandler. Frugal Streaming for Estimating Quan-
tiles, pages 77–96. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. 9

J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional Kernel Networks.
In NIPS, 2014. 137

J. Matoušek. On Variants of the Johnson-Lindenstrauss Lemma. Random Struct.
Algorithms, 33(2):142–156, Sept. 2008. 25

A. McGregor. Graph Stream Algorithms: A Survey. SIGMOD Rec., 43(1):9–20, May
2014. 9, 45

F. McSherry. Privacy Integrated Queries, booktitle = Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data (SIGMOD). Associa-
tion for Computing Machinery, Inc., June 2009. 154, 157

F. McSherry and K. Talwar. Mechanism Design via Differential Privacy. In Annual
IEEE Symposium on Foundations of Computer Science (FOCS), Providence, RI,
October 2007. IEEE. 156

M. Moczulski, M. Denil, J. Appleyard, and N. de Freitas. ACDC: A Structured
Efficient Linear Layer. In ICLR, 2016. 137

D. Moulavi, P. A. Jaskowiak, R. J. G. B. Campello, A. Zimek, and J. Sander.
Density-Based Clustering Validation. In Proceedings of the 2014 SIAM Interna-
tional Conference on Data Mining, Philadelphia, Pennsylvania, USA, April 24-26,
2014, pages 839–847, 2014. 101

Y. Mülle, C. Clifton, and K. Böhm. Privacy-Integrated Graph Clustering Through
Differential Privacy. In EDBT/ICDT Workshops, 2015. 157

J. Munro and M. Paterson. Selection and sorting with limited storage. Theoretical
Computer Science, 12(3):315 – 323, 1980. 9

S. Muthukrishnan. Data Streams: Algorithms and Applications. Found. Trends
Theor. Comput. Sci., 1(2):117–236, Aug. 2005. 9, 96, 115

M. C. Nascimento and A. C. de Carvalho. Spectral methods for graph clustering - A
survey. European Journal of Operational Research, 211(2):221–231, 2011. 96

National Security Agency. FIPS 180-1. Secure Hash Standard. Technical report, US
Department of Commerce, Apr. 1995. 19

A. Y. Ng, M. I. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an
algorithm. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances
in Neural Information Processing Systems 14, pages 849–856. MIT Press, 2002. 43

H. H. Nguyen, A. Imine, and M. Rusinowitch. Detecting Communities Under Differ-
ential Privacy. In Proceedings of the 2016 ACM on Workshop on Privacy in the
Electronic Society, WPES ’16, pages 83–93, New York, NY, USA, 2016. ACM. 157

K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in
private data analysis. In Proceedings of the thirty-ninth annual ACM symposium
on Theory of computing - STOC. ACM Press, 2007. 154, 157

M. Norouzi and D. J. Fleet. Cartesian K-Means. In CVPR, pages 3017–3024, June
2013. 26

202 BIBLIOGRAPHY

S. Oymak and B. Hassibi. Finding Dense Clusters via "Low Rank + Sparse" Decom-
position. CoRR, abs/1104.5186, 2011. 41

V. Y. Pan. Structured Matrices and Polynomials: Unified Superfast Algorithms.
Springer-Verlag, Berlin, Heidelberg, 2001. 131

K. Pearson. On Lines and Planes of Closest Fit to Systems of Points in Space.
Philosophical Magazine, 2:559–572, 1901. 3, 27

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. 117

M. Pilanci and M. J. Wainwright. Randomized sketches of convex programs with
sharp guarantees. In ISIT, 2014. 135, 136

M. Pilanci and M. J. Wainwright. Newton Sketch: A Linear-time Optimization
Algorithm with Linear-Quadratic Convergence. CoRR, abs/1505.02250, 2015. 135,
136, 142, 143

R. Pinot. Minimum spanning tree release under differential privacy constraints. ArXiv
e-prints, Jan. 2018. xvii, 125, 155, 157, 158

M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from shift-invariant
kernels. In NIPS, pages 1509–1517. 2009. 22

A. Rahimi and B. Recht. Random Features for Large-Scale Kernel Machines. In
NIPS, 2007. 135

W. Rand. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association, 66(336):846–850, 1971. 120

R. Raziperchikolaei and M. Á. Carreira-Perpiñán. Optimizing affinity-based binary
hashing using auxiliary coordinates. In NIPS, pages 640–648, 2016. 26

K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional
stochastic blockmodel. Ann. Statist., 39(4):1878–1915, 08 2011. 41

P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20:53 – 65,
1987. 101, 120

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. SCIENCE, 290:2323–2326, 2000. 3

T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-
rank matrix factorization for Deep Neural Network training with high-dimensional
output targets. In ICASSP, 2013. 137

S. E. Schaeffer. Survey: Graph Clustering. Comput. Sci. Rev., 1(1):27–64, Aug. 2007.
41, 154

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear Component Analysis As a
Kernel Eigenvalue Problem. Neural Comput., 10(5):1299–1319, July 1998. 3

BIBLIOGRAPHY 203

A. Sealfon. Shortest Paths and Distances with Differential Privacy. In Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems - PODS. ACM Press, 2016. 155

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905, Aug 2000. 43

R. Sibson. SLINK: An optimally efficient algorithm for the single-link cluster method.
The Computer Journal, 16(1):30–34, 1973. 7

V. Sindhwani, T. N. Sainath, and S. Kumar. Structured Transforms for Small-
Footprint Deep Learning. In Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 3088–3096, 2015. 137

N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk, S. Madden,
and P. Dubey. Streaming Similarity Search over One Billion Tweets Using Paral-
lel Locality-sensitive Hashing. Proc. VLDB Endow., 6(14):1930–1941, Sept. 2013.
ISSN 2150-8097. 11, 23, 177, 179

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A Global Geometric Framework
for Nonlinear Dimensionality Reduction. Science, 290(5500):2319, 2000. 3

K. Terasawa and Y. Tanaka. Spherical LSH for Approximate Nearest Neighbor Search
on Unit Hypersphere. In WADS, pages 27–38, 2007. 5, 11, 22, 23, 51, 54, 55, 74,
123, 177, 179, 180, 190

C. F. van Loan. The Ubiquitous Kronecker Product. J. Comput. Appl. Math., 123
(1-2):85–100, Nov. 2000. ISSN 0377-0427. 133

J. S. Vitter. Random Sampling with a Reservoir. ACM Trans. Math. Softw., 11(1):
37–57, Mar. 1985. 9, 37

J. Vybíral. A variant of the Johnson-Lindenstrauss lemma for circulant matrices.
Journal of Functional Analysis, 260(4):1096–1105, 2011. 54, 129

J. Wang, S. Kumar, and S.-F. Chang. Semi-Supervised Hashing for Large-Scale
Search. IEEE Trans. Pattern Anal. Mach. Intell., (12):2393–2406, 2012. 26

J. Wang, W. Liu, S. Kumar, and S.-F. Chang. Learning to Hash for Indexing Big
Data - A Survey. Proceedings of the IEEE, (1):34–57, 2016. 52

J. Wang, T. Zhang, j. song, N. Sebe, and H. T. Shen. A Survey on Learning to Hash.
IEEE Trans. on Pattern Anal. and Mach. Intell., PP(99):1–1, 2018. 26, 74

Y. Weiss, A. Torralba, and R. Fergus. Spectral Hashing. In NIPS, pages 1753–1760,
2008. 26

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance Metric Learning, with
Application to Clustering with Side-information. In Proceedings of the 15th In-
ternational Conference on Neural Information Processing Systems, NIPS’02, pages
521–528, Cambridge, MA, USA, 2002. MIT Press. 34

Y. Xu, V. Olman, and D. Xu. Clustering gene expression data using a graph-theoretic
approach: an application of minimum spanning trees. 18(4):536–545, 2002. 43, 44,
187

204 BIBLIOGRAPHY

Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola, L. Song, and Z. Wang.
Deep Fried Convnets. In ICCV, 2015. 137

F. Yu, S. Kumar, Y. Gong, and S.-F. Chang. Circulant Binary Embedding. In ICML,
2014. 26, 74

C. T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clus-
ters. IEEE Trans. Comput., 20(1):68–86, Jan. 1971. 43, 44, 117, 154

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data Clustering
Method for Very Large Databases. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’96, pages 103–114,
New York, NY, USA, 1996. ACM. 38

X. Zhang, F. X. Yu, R. Guo, S. Kumar, S. Wang, and S.-F. Chang. Fast Orthogonal
Projection Based on Kronecker Product. 2015 IEEE International Conference on
Computer Vision (ICCV), pages 2929–2937, 2015. 129, 133

Résumé

Cette thèse étudie deux tâches fon-
damentales d’apprentissage non su-
pervisé : la recherche des plus
proches voisins et le clustering de
données massives en grande dimen-
sion pour respecter d’importantes
contraintes de temps et d’espace.

Tout d’abord, un nouveau cadre
théorique permet de réduire le coût
spatial et d’augmenter le débit de
traitement du Cross-polytope LSH
pour la recherche du plus proche
voisin presque sans aucune perte de
précision.

Ensuite, une méthode est conçue
pour apprendre en une seule passe
sur des données en grande dimen-
sion des codes compacts binaires.
En plus de garanties théoriques, la
qualité des représentations obtenues
est mesurée dans le cadre de la
recherche approximative des plus
proches voisins.

Puis, un algorithme de clustering
sans paramètre et efficace en termes
de coût de stockage est développé
en s’appuyant sur l’extraction d’un ar-
bre couvrant minimal approché du
graphe de dissimilarité compressé
auquel des coupes bien choisies sont
effectuées.

Mots Clés

Apprentissage non supervisé,
Recherche des plus proches voisins,
Clustering, Approximation, Flux,
Réduction de dimension, Hachage,
Résumés minimalistes.

Abstract

This thesis focuses on how to per-
form efficiently unsupervised ma-
chine learning such as the fun-
damentally linked nearest neighbor
search and clustering task, under
time and space constraints for high-
dimensional datasets.

First, a new theoretical framework re-
duces the space cost and increases
the rate of flow of data-independent
Cross-polytope LSH for the approxi-
mative nearest neighbor search with
almost no loss of accuracy.

Second, a novel streaming data-
dependent method is designed to
learn compact binary codes from
high-dimensional data points in only
one pass. Besides some theoreti-
cal guarantees, the quality of the ob-
tained embeddings is evaluated on
the approximate nearest neighbors
search task.

Finally, a space-efficient parameter-
free clustering algorithm is con-
ceived, based on the recovery of
an approximate minimum spanning
tree of the sketched data dissimilar-
ity graph on which suitable cuts are
performed.

Keywords

Unsupervised learning, Nearest
neighbors search, Clustering, Ap-
proximation, Streaming, Dimension-
ality reduction, Hashing, Sketching.

