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ABSTRACT

Remote sensing has facilitated the techniques used for the mapping, modeling and
understanding of forest parameters. Remote sensing applications usually use information
from either passive optical systems or active radar sensors. These systems have shown
satisfactory results for estimating, for example, aboveground biomass in some biomes.
However, they presented significant limitations for ecological applications, as the
sensitivity from these sensors has been shown to be limited in forests with medium levels
of aboveground biomass. On the other hand, LiIDAR remote sensing has been shown to be
a good technique for the estimation of forest parameters such as canopy heights and above
ground biomass. Whilst airborne LiDAR data are in general very dense but only available
over small areas due to the cost of their acquisition, spaceborne LiDAR data acquired from
the Geoscience Laser Altimeter System (GLAS) have low acquisition density with global
geographical cover. It is therefore valuable to analyze the integration relevance of canopy
heights estimated from LiDAR sensors with ancillary data (geological, meteorological,
slope, vegetation indices etc.) in order to propose a forest canopy height map with good
precision and high spatial resolution. In addition, estimating forest canopy heights from
large-footprint satellite LIDAR waveforms, is challenging given the complex interaction
between LiDAR waveforms, terrain, and vegetation, especially in dense tropical and
equatorial forests. Therefore, the research carried out in this thesis aimed at: 1) estimate,
and validate canopy heights using raw data from airborne LiDAR and then evaluate the
potential of spaceborne LIDAR GLAS data at estimating forest canopy heights. 2) evaluate
the fusion potential of LIDAR (using either sapceborne and airborne data) and ancillary
data for forest canopy height estimation at very large scales. This research work was carried

out over the French Guiana.

The estimation of the canopy heights using the airborne dataset has been carried out using
a simple algorithm, which first extracts the canopy top and ground points, and then
interpolates the canopy height using the ground point and its surrounding canopy top
points. Results indicated an RMSE on the canopy height estimates of 1.6 m. Next, the
potential of GLAS for the estimation of canopy heights was assessed using multiple linear
(ML) and Random Forest (RF) regressions using waveform metrics and principal

component analysis (PCA). Results showed canopy height estimations with similar



precisions using either LIDAR metrics or the principal components (PCs) (RMSE ~ 3.6
m). However, a regression model (ML or RF) based on the PCA of waveform samples is
an interesting alternative for canopy height estimation as it does not require the extraction
of some metrics from LiDAR waveforms that are in general difficult to derive in dense

forests, such as those in French Guiana.

Next, canopy heights extracted from both airborne and spaceborne LiDAR were first used
to map canopy heights from available mapped environmental data (geological,
meteorological, slope, vegetation indices etc.). Results showed an RMSE on the canopy
height estimates of 6.5 m from the GLAS dataset and of 5.8 m from the airborne LiDAR
dataset. Then, in order to improve the precision of the canopy height estimates, regression-
kriging (kriging of random forest regression residuals) was used. Results indicated a decrease
in the RMSE from 6.5 to 4.2 m for the regression-kriging maps from the GLAS dataset, and
from 5.8 to 1.8 m for the regression-kriging map from the airborne LiDAR dataset. Finally, in
order to study the impact of the spatial sampling of future LIDAR missions on the precision of
canopy height estimates, six subsets were derived from the airborne LiDAR dataset with flight
line spacing of 5, 10, 20, 30, 40 and 50 km (corresponding to 0.29, 0.11, 0.08, 0.05, 0.04, and
0.03 points/km?, respectively).

Results indicated that using the regression-kriging approach, the precision on the canopy
height map was 1.8 m with flight line spacing of 5 km and decreased to an RMSE of 4.8 m
for the configuration for the 50 km flight line spacing.



RESUME

La télédétection contribue a la cartographie et a la modélisation des parametres de la forét.
Ce sont les systémes optiques et radars qui sont le plus généralement utilisés pour extraire
des informations utiles a la caractérisation des parametres forestiers. Ces systemes ont
montré des résultats satisfaisants pour estimer, par exemple, la biomasse dans certains
biomes. Cependant, ils présentent des limitations importantes pour des foréts ayant un
niveau de biomasse élevé. En revanche, la télédétection LIDAR s’est avérée étre une bonne
technique pour 1'estimation des parametres forestiers tels que la hauteur de la canopée et la
biomasse. Alors que les LiIDAR aéroportés acquicrent en général des données avec une
forte densité de points mais sur des petites zones en raison du coit de leurs acquisitions,
les données LiDAR satellitaires acquises par le systeme spatial (GLAS) ont une densité
d'acquisition faible mais avec une couverture géographique mondiale. Il est donc utile
d'analyser la pertinence de l'intégration des hauteurs estimées a partir des capteurs LIDAR
et des données auxiliaires (géologiques, météorologiques, pente, indices de végétation,
etc.) afin de proposer une carte de la hauteur des arbres avec une bonne précision et une
résolution spatiale élevée. En outre, I'estimation de la hauteur des arbres a partir des formes
d’onde GLAS avec ses grandes empreintes est difficile compte tenu de l'interaction
complexe entre les formes d'onde LiDAR, le terrain et la végétation, en particulier dans les
foréts tropicales et équatoriales denses. Par conséquent, la recherche menée dans cette thése
vise a: 1) Estimer et valider la hauteur des arbres en utilisant des données acquises par des
LiDAR aéroportés et satellitaire (capteur GLAS). 2) évaluer le potentiel de la fusion des
données LiDAR (avec les données aéroportées ou satellitaires) et des données auxiliaires
pour I'estimation de la hauteur des arbres a une échelle régionale. Ce travail de recherche

a été effectué sur la Guyane francaise.

L'estimation de la hauteur des arbres en utilisant les données aéroportées a été réalisée en
utilisant un algorithme simple, qui extrait d'abord les points haut de la canopée et ceux du
sol, puis interpole la hauteur de la canopée en utilisant les points du sol et les points hauts
de la canopée. Les résultats ont indiqué une EQM sur les estimations de la hauteur de la
canopée de 1,6 m. Ensuite, le potentiel de GLAS pour I'estimation de la hauteur des arbres
a été évalué en utilisant des modeles de régression linéaire (ML) ou Random Forest (RF)

avec des métriques provenant de la forme d'onde et de 1'analyse en composantes principales



(ACP). Les résultats ont montré que les modeles d’estimation des hauteurs des arbres
avaient des précisions semblables en utilisant soit les métriques LiDAR ou les composantes
principales (PC) (EQM ~ 3,6 m). Toutefois, un modele de régression (ML ou RF) basé sur
les composantes principales obtenues a partir des formes d’onde GLAS est une alternative
intéressante pour l'estimation de la hauteur des arbres, car il ne nécessite pas l'extraction
de certaines métriques a partir des formes d'onde LiDAR qui sont en général difficiles a

dériver dans les foréts denses, telle que la Guyane francaise.

Finalement, la hauteur des arbres extraite a la fois des données LiDAR aéroporté et GLAS
a servi tout d'abord a spatialiser la hauteur des arbres en utilisant les données
environnementaux cartographiées disponibles (géologiques, météorologiques, la pente,
indices de végétation, etc.). En utilisant la régression RF, la spatialisation de la hauteur des
arbres a montré une EQM sur les estimations de la hauteur de la canopée de 6,5 m a partir
de GLAS et de 5,8 m a partir du LiDAR aéroporté. Ensuite, afin d'améliorer la précision
de la spatialisation de la hauteur de la canopée, la technique régression-krigeage (krigeage
des résidus de la régression du Random Forest) a été utilisée. Les résultats de la régression-
krigeage indiquent une diminution de l'erreur quadratique moyenne de 6,5 a 4,2 m pour les
cartes de la hauteur de la canopée a partir de GLAS, et de 5,8 a 1,8 m pour les cartes de la
hauteur de la canopée a partir des données LiDAR aéroporté. Enfin, afin d'étudier l'impact
de I'échantillonnage spatial des futures missions LiDAR sur la précision des estimations de
la hauteur de la canopée, six sous-ensembles ont été¢ extraits de de la base LiDAR
acroporté. Ces six sous-ensembles de données LiDAR ont respectivement un espacement
des lignes de vol de 5, 10, 20, 30, 40 et 50 km (correspondant a une densité de 0,29, 0,11,
0,08, 0,05, 0,04, 0,03 points / km?, respectivement).

Finalement, les résultats indiquent qu’en utilisant la technique régression-krigeage, 1’erreur
quadratique moyenne sur la carte des hauteurs de la canopée était de 1,8 m pour le sous-
ensemble ayant des lignes de vol espacés de 5 km, et a augmentée jusqu’a 4,8 m pour le

sous-ensemble ayant des lignes de vol espacés de 50 km
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INTRODUCTION

1.1 General context

1.1.1 Global Carbon Cycle

The carbon cycle is the biogeochemical cycle (total exchange of a chemical element) of
carbon globally. The earth’s carbon cycle is rendered more complex by the existence of
large oceanic water masses and especially by the fact that life (and therefore Carbone
compounds that are the substrate) has an important place. There are mainly four carbon
reservoirs: the hydrosphere, lithosphere, biosphere and the atmosphere. Most of the
terrestrial carbon is trapped in compounds that contribute little to the cycle: rocks as
carbonates and deep oceans. Therefore most of the cycle is between the atmosphere, the
surface layers of soil and oceans, and biosphere (biomass and necromass). Under seas, the
carbon is found mostly as carbonate and planktonic biomass. Over land, the carbon is
mainly the bogs, meadows and forests. In addition, some soil types play a fairly important
role in carbon sequestration or as a carbon sinks. Figure 1.1, shows the global carbon cycle,
as well as the exchange of carbon between the different carbon sinks, and the carbon fluxes.
The carbon cycle is very important to the biosphere, since life is based on the use of carbon-
based compounds: carbon availability is one of the key factors for the development of all

living things on earth. Carbon is also a major component of many minerals, and the carbon
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dioxide (COy) is partly responsible for the greenhouse effect and is the most human-

contributed greenhouse gas ([1]).

Figure 1.1. The global carbon cycle with the movement and exchange of carbon
between land, atmosphere, and oceans.
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1.1.2 Greenhouse gases and climate change

The study of the carbon cycle has recently taken a special relief in the context of the issue
of global warming: Two of the greenhouse gases involved: the carbon dioxide (CO2) and
methane (CH4), participate in the carbon cycle, as they are the main atmospheric carbon
forms. In addition to climate issues, the study of the carbon cycle will allow us to determine

the effects on the release of carbon stored in the form of fossil fuels by human activity.

In fact, the global carbon cycle has been greatly altered by human activity in the past
decades. Indeed, carbon dioxide resulting from human emissions exceeded natural
fluctuations ([ 1]). The changes in the amount of CO; in the atmosphere are altering weather
patterns and oceanic chemistry. Studies have shown that even though global temperatures
can fluctuate without changes in atmospheric COz, the latter cannot change without
affecting the atmospheric temperatures. In addition, CO; levels are rising higher than ever
recorded in the atmosphere ([2]). Therefore it is of high importance to better understand

the carbon cycle and its effects on the global climate ([1]).
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1.1.3 Global carbon cycle’s carbon sinks
The global carbon cycle is divided into four main carbon sinks connected by pathways of
exchange ([3]):
- The lithosphere contains carbon in its carbon and carbonated rocks (30 mGt).
- The hydrosphere contains carbon in its dissolved form (38 000 Gt) and in marine
organisms (3 Gt).
- The biosphere contains 2,300 Gt of carbon in the form of biomass and necromass
and in soils
- The atmosphere contains 700 Gt of carbon as CO2.
The exchanges of carbon between these fours sinks occur as a result of various chemical,
physical, geological, and biological processes. The ocean contains the largest active sink
of carbon near the surface of the earth ([1]). In addition, carbon exchange between the
different compartments is balanced, which makes the carbon levels stable without human

influence ([4]).

The lithosphere contains the largest amounts of carbon in the form of carbonated rocks and
fossil fuel ([1]); it does not exchange a lot of carbon naturally with the other compartments.
This is due to the fossilization rate of living beings or the sedimentation of carbonated
rocks which can take several million years. However, the CO> emissions in the atmosphere

resulting from the use of fossil fuel are the principal flux that concerns this carbon stock.

The hydrosphere and the biosphere are in equilibrium due to the high solubility of the CO»
in water and the important volume of oceans. In fact, oceanic absorption of CO»> is one the
most important forms of carbon sequestering. This high absorption rate limits the carbon
dioxide in the atmosphere caused by human activities. However, this process may make
oceanic waters more acidic due to the increase uptake of carbon, as well as limiting the

ocean uptake of CO2 ([1]).

Finally, the biosphere exchanges up to 60 Gt/year of carbon with the atmosphere. This
exchange has two sources, while the breathing of animals and plants and fermentation of
bacteria releases CO; into the atmosphere; the photosynthesis (especially of green plants)

fixes the carbon in the biomass. The biosphere plays an important role in the carbon cycle,
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as this compartment is directly influenced by human activity. While it is possible to interact
with this compartment, on the one hand, deforestation and land use change can diminish
carbon stocks ([5]). On the other hand, tree planting and the protection of existing forests

increase carbon stocks ([6]).

1.1.4 Humans and climate change

The concentration of atmospheric carbon during the last 100-200 years increased
significantly due to human activities (burning of fossil fuel, natural gas, charcoal, etc.). The
burning of fossil fuels, which accumulated during millions of years, released huge amounts
of COs. Another reason for the increase of CO; in the atmosphere comes from deforestation
and forest fires, especially in tropical regions. This also causes fast release of CO2 sinks
that were also accumulated during a long time (few years to several centuries based on

burnt forest age) ([1]).

By determining the contribution of CO»> to the atmosphere, we can deduce how the carbon
cycle influences the global temperature. The rejection of CO; of anthropogenic origins is
responsible for 70% of the global warming, but in return, the atmospheric concentrations

of COy, the global temperature as well as the precipitation affect greatly the carbon cycle.

1.1.5 The carbon cycle feedback loop

Feedback in general is the process in which output from a system are “fed back” as inputs
as part of a chain of cause-and-effect that forms a loop. For instance, by determining the
contribution of COz to the atmosphere, the carbon cycle influences the global temperature.
But, in return, the atmospheric concentrations of CO», the global temperature as well as the

precipitations influence several key elements of the carbon cycle.

At the oceanic levels, there is a complex feedback linked to the solubility of CO2. This
feedback is negatively correlated to the temperature. In the case of global warming, more
CO; are liberated from oceans into the atmosphere, and therefore contribute to the global
warming. This is called a positive feedback. However, the solubility of CO2 depends on its
concentration in the atmosphere, thus limiting the effect of the feedback. The dissolution

of CO; in the oceans causes water acidification. Temperature changes are therefore
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influencing the activity of the plankton, which increases or decreases the oceanic ability to

capture CO2 ([7]; [8]).

In regards to vegetation and thus forests, if the ratio of photosynthesis increases with
temperature and CO3, the ratio of the respiration will also increase with temperature. This
effect on photosynthesis is generally positive. An increase in terrestrial vegetation has been
observed in response to higher temperatures and CO- levels in the atmosphere (IPCC, 2014
[9]). However, for certain vegetation types, it has been observed that the respiration
increases more as a function of temperature rather than photosynthesis, this makes these

ecosystems more as sources and not sinks of carbon in the long term.

1.1.6 Current issues

Facing these environmental threats, the international community adopted several policies
at the national, international and global level. The first United Nations summit concerning
the environment took place in 1972 in Stockholm. It was during this summit that the United
Nations Environment Program (UNEP) was created in order to debate ecological questions.
The countries participating to this summit agreed to meet once each ten years in order to
review the state of earth’s environment. Following that year, the most notable summits

were as follows:

The Montreal protocol of 1987 which prohibited the chlorofluorocarbons gas use (CFC) as
it can lead to the destructions of the atmosphere was successful as it allowed the decrease
of atmospheric charges of the CFC ([10]). This first success is still limited because of
climate change with the massive injection of greenhouse gases, including firstly CO2,
which could destabilize the stratosphere, and amplify the loss of the ozone layer in the
atmosphere. The changing climates has socio-economic effects and these effects are
already being felt, as they lead to the exodus of some populations worldwide, but also break
the balance governing ecosystems and jeopardize the biodiversity of our planet. This led
to the creation of the UN Framework Convention on Climate Change (UNFCCC), which
came into force in 1994 following the Earth Summit in Rio de Janeiro in 1992. In the Rio
Janeiro summit in 1992, the participants agreed on the necessity to stabilize atmospheric
concentrations of greenhouse gases. The objective was to limit the abrupt changes to

ecosystems, in order to have time to adapt. In 1997, 141 nations signed on the protocol of
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Kyoto, which engaged the committed nations to reduce by 5.2% their emissions of six
greenhouse gases. Recently, the Copenhagen conference which brought together 191
countries, have ratified the UNFCCC. The UNFCCC stressed the importance of forests in

regulating climate change and particularly of atmospheric CO2.

Countries in economic development have no commitments in this protocol along with the
United States and the main carbon emitters who did not sign. Practically, this agreement
allowed the creation of a carbon market. The states which surpass their quota in their carbon
emission, can buy carbon credits from other nations that have not surpassed their carbon
quotas. These credits allow the nations in need to emit more greenhouse gases. The
objective was to motivate the nations to limit their greenhouse gases emissions by giving
a monetary value to these emissions. The agreements of Copenhagen, which were signed
in 2009, were renegotiations of the agreements of Kyoto. However, no binding
commitments were made after the 2012, which marks the end of the Kyoto protocol.
However, the 112 participating nations agreed to try and reduce the global temperatures

rise by 2°C.

1.2 Role of forests in the carbon cycle

In the framework of the international agreements on the limitation of emission of
greenhouse gases and temperature emissions, the case of forests and in tropical forest plays
a major role. Carbon stocks in forests comprise above- and below-ground carbon in both
living and dead organic matter. Globally, forests and soils are estimated to trap around 2.6
GtCl/year. However, there are still many uncertainties about the carbon cycle. Indeed, Food
and Agriculture Organization of the United Nations (FAO, 2008 [11]) estimates that the

amount of carbon absorbed by the forests can vary between 0.9 and 4.3 GtC/year.

1.2.1 Tropical forests and the carbon stock

Carbon Stocks over land are distributed mostly between forests and northern latitudes
(Figure 1.2), but are mostly found in forests, and more precisely in tropical forests. Indeed,
studies suggests that tropical forests play a more important role in absorbing carbon with
an absorption rate reaching as much as 1 GtC/year or about 40% of the total land based

carbon absorption globally. However, tropical forests are principally located in developing
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countries (Amazon basin, Congo Basin, South-East Asia). These countries which are
currently undergoing an economic and demographic growth, and therefore moving from
forested to non-forested areas are causing a significant impact on the accumulation of
greenhouse gases in the atmosphere, as has forest degradation caused by over-exploitation
of forests for timber and wood fuel and intense grazing that is reducing forest regeneration.
Therefore, during the 16 conference of the parties to the agreement of climate change of
Cancun (2010), the United Nations program for Reducing Emissions from Deforestation
and Forest Degradation (UN-REDD) was adopted. This program aims at protecting forests,
preserve and increase forest carbon stocks and sustainable forest management. The REDD
initiative and its three main supplementary activities are called REDD+. The basic principle
of the REDD+ program is that financial compensation be paid by the developed countries
to developing countries that manage to reduce their emissions at the national level. The
REDD program is based on the fact that when a forest is damaged and destroyed, CO3 is
released into the atmosphere. If we manage to reduce the rate of deforestation (complete
disappearance of forests) or degradation (damaged forest due to exploitation), then it is
possible to reduce the amount of released CO>. However, in order to calculate the
magnitude of the reduction in CO:2 emissions, it is necessary to create a baseline or
reference base against which to compare actual emissions. Therefore it is necessary to be

able to quantify the amounts of carbon contained in forests.
Figure 1.2. Forest carbon stock per region. UNEPP, FAO, UNFF, Forest vital

graphics, 2009.
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1.2.2 Link between carbon and forest biomass

Studies have stated that more than 40% of global vegetation carbon stocks are located in
tropical forests ([6]; [12]). However, forest carbon is not limited to trees and is distributed
on average as follows: 45% of carbon is found in the soil, 11% in dead biomass or
necromass, and 44% in biomass (both above- and below-ground) (FAO, 2000 [13]).
Moreover, the above-ground biomass (AGB) is generally the most studied, as it is the most
accessible. AGB is a biological material derived from living organisms, and it most often
refers to plants. Biomass is carbon based and is composed of a mixture of organic
molecules containing hydrogen, oxygen, and small quantities of several other atoms. The
proportion of carbon in AGB varies depending on the forest type, wood composition, or

the environment. However, it ranges between 0.43 and 0.55 ([14]; [15]; [16]; [17]; [18]).

1.2.3 The importance of quantifying forest biomass

The interest in studying the AGB comes from the fact that the carbon in the AGB is
susceptible to be released into the atmosphere by means of deforestation. In addition, land
use change in tropical forests is responsible of 15-20% of global greenhouse emissions
globally ([19]; [20]). In contrast, if trees are to be planted, this means more carbon
sequestration. However, this natural regeneration of the carbon stock will much likely take
several decades ([21]), and a plantation is not, by far, a natural forest. Moreover, even with
forest degradation or regeneration, tropical forest can still undergo changes that affect AGB
levels. For example, under influence of environmental changes, such as the increase of CO>
levels in the atmosphere. This increase of CO2 might increase the photosynthesis of trees
and therefore increase the levels of carbon in trees ([6]; [22]). Other environmental changes
are caused by tree mortality, which can increase the necromass, and therefore affect the

release of carbon in the atmosphere ([23]).

1.3 Biomass estimation

As seen earlier, AGB measurement is an important task for better understanding of the
carbon cycle. However, accurate measurements of biomass require weighing of the trees
after cutting them. This method yields high biomass measurement accuracy however it is
destructive and restrictive. Therefore it is necessary to find other methods for biomass

estimation in a non-destructive manner.
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1.3.1 Biomass estimation with optical and radar data

Currently, existing AGB estimation methods from remote sensing data are either limited
in the vertical domain (sensor saturation at certain biomass levels using mainly radar and
optical data) or in the horizontal domain (limited horizontal coverage using LiDAR data).
Methods using radar and optical data for the estimation of AGB are successful in forests
with low to medium levels of AGB (e.g. [24]; [25]; [26]; [27]; [28]). Indeed, current
techniques based on passive optical sensing have shown limited sensitivity to biomass
using medium to high resolution imagery when the biomass reaches intermediate levels
(150-200 Mg/ha) (e.g. [27]; [28]). This is due to the optical data inability to detect variation
in biomass density after complete closure of the canopy top, which can occur from low or
intermediate biomass values (depending on forest characteristics). In contrast, the Fourier
Transform Textural Ordination (FOTO) using very-high-resolution optical images have
been used for non-saturating estimates of tropical forest biomass estimation. As such, this

approach may provide higher sensitivity to biomass high levels (>600 t/ha) (e.g. [29]; [30];
[31]).

The synthetic aperture radar (SAR) systems such as PALSAR/ALOS, JERS-1 and SIR-C,
as well as airborne SAR such as SETHI and E-SAR were also used as an alternative for
biomass estimation. The radar signal saturation threshold with the biomass increases with
the increase of the radar wavelength. Indeed, L-band SAR systems (wavelength about 25
cm) are limited to low and intermediate biomass levels, with maximum values reaching
150 t/ha (e.g. [24]; [25]; [26]; [32]; [33]; [34]). This saturation threshold of the radar signal
depends on forest characteristics. According to Imhoff ez al. [35]; the saturation levels are
closer to 40 t/ha because the saturation thresholds occur before the regression maxima. In
boreal forests, saturation levels were observed up to 150 t/ha. Baghdadi et al. [32] observed
saturation levels of the ALOS/PALSAR L-band at biomass levels of 50 t’ha when
estimating the biomass for Eucalyptus plantations in Brazil. Luckman et al. ([36]; [37])
found a saturation point of 60 t/ha in the Central Amazon basin. Le Toan et al. [26]; Wu et
al. [33]; and Dobson et al. [34] reported L-band signal saturation levels at 100 t/ha in
coniferous forests. In boreal forests, higher saturation levels were observed reaching up to
150 t/ha using PALSAR (Sandberg et al. [25]). However, with higher radar wavelengths

(P-band for example, wavelength about 70 cm) the use of SAR sensors may allow the
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estimation of biomass at higher biomass levels ([38]). Imhoff ez al. [35] examined AGB
levels in broadleaf evergreen forests in Hawaii and coniferous forests in North America
and Europe and found saturation levels of 100 Mg/ha for the P-band versus 40 Mg/ha for
the L-band. Nizalapur ef al. [38] found that the sensitivity of radar signal to biomass in a
tropical dry deciduous forest increases for approximately 150 t/ha for the L-band to 200
t/ha for the P-band.

Given the limitations of optical (expensive very high resolution images which only cover
small areas) and radar (unavailable global coverage for P-band SAR data, signal saturation
with lower wavelengths) data for biomass estimation, studies generally use allometric
relations for linking the characteristics of a forest (canopy height, diameter at breast height,

wood density) to its biomass (e.g. [39]; [40]; [41]).

1.3.2 Biomass estimation using allometric relations

Allometric relationships linking the characteristics of a forest to its biomass were
developed by several studies (e.g. [40]; [42]; [39]). The reference model in these studies
was developed in the study of Chave et al. [42]. In their study they developed a pantropical
biomass estimation model at the individual tree level. This model was based on the formula

for calculating the mass of a cylinder using stem diameter (D), canopy height (H), and

wood density (p).
D 2
M= n.(—) H.p (1.1)
2
This translates to:
log(M) = log(m) + 2.1og(D) — 2.1og(2) + log(H) + log(p) (1.2)

Using the second formula (2), it is possible to predict a tree mass (M) by adding adjustment

coefficients:

log(M) = B¢+ B1.1og(D) + B,.10g(H) + B3.1og(p) (1.3)
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This model developed by Chave et al. [42] has been shown to produce good biomass

estimation results and fits well with data across different tropical forests ([43]).

1.3.3 Plot aggregate allometry for biomass estimation

Asner et al. [40] proposed a plot aggregate allometry model for tropical areas drawn from
the Chave et al. [42] model, but they replaced in situ canopy height with top-of-canopy
height (TCH), as derived from airborne small-footprint LIDAR measurements, and stem
diameter with plot-averaged basal area (BA). BA and wood density were linked with TCH
using linear relationships in the form of BA =aTCH and p =bTCH + ¢, producing a model
for AGB estimation using only TCH. Results showed a RMSE on AGB estimation of 24.7
Mg/ha for the regional models (model coefficients dependent on region) and 26.4 Mg/ha
for the generalized model (generalized model coefficients for all regions). Drake et al. [39]
used a power function to link top-of-canopy height estimated from airborne LiDAR to
aboveground biomass (4GB = aTCH"). However, this method is considered plot-aggregate
allometry rather than true allometry, as it reflects the whole-plot properties of forest
structures in aggregate and not the properties of each particular tree. This method had an
RMSE of 42.2 Mg/ha when tested in five tropical forests with different vegetation types.
Lefsky et al. [44] linked the maximum canopy height (Hmax) estimated from GLAS data to
AGB using the following linear relationship: AGB = a + bH?nax. Boudreau et al. [45] linked
the GLAS waveform extent (difference between signal start and signal end), the slope (0)
between signal start and the first Gaussian canopy peak and the terrain index (TI) metric
derived from the SRTM-DEM to AGB. Saatchi et al. [46] and Mitchard et al. [24] used
Lorey’s height (basal-area-weighted canopy height) instead of the maximum height for
AGB estimation. In the different studies, it was found that Lorey’s height is broadly related
to canopy height [47]. However, Asner et al. [40] found that Lorey’s height does not
explain any variations in AGB, basal area, or wood density that cannot be explained by

canopy height.

1.4 Forest canopy height in relation to forest biomass

One of the most important variables in the allometric relations which can be estimated from
remote sensing techniques is the canopy height. Several allometries relied on only the

canopy height for biomass estimation ([40]; [42]). In addition, studies have shown that the
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use of canopy height increases significantly the precision of biomass estimation at tree
level (e.g. [14]; [42]). In Chave ef al. [42]; the use of tree height reduced relative error on
the biomass from 19.5 (model using only DBH and wood density) to 12.8% (model using
DBH, wood density and canopy height). In Feldpaush et al. [14]; biomass estimation
models which used canopy heights, DBH and wood density showed a 50% decrease in the
mean relative error in comparison to the models using only DBH and wood density. Other
studies such as Asner et al. [48]; and Mitchard et al. [24] and Lefsky et al. [44] found that
canopy height are strongly related to forest biomass. In addition to the importance of forest
canopy heights in AGB estimation, knowing forest canopy heights is also interesting in
itself for answering ecological questions such as on the determinants of plant and forest
structure, forest dynamics, edaphic and climatic stress. Forest canopy heights are very
important in forest management decisions; as changes in these heights may have direct
effects on microclimatic patterns and processes ([49]). Indeed, the micro climate is
modified first by local weather conditions, and then by vegetation, due to forest height
which amongst the forest structure, controls the quality and quantity, spatial and temporal
distribution of light. It also influences local precipitation and air movements. These factors
combined will eventually determine to some extent the humidity in the air, temperature
and soil moisture. In addition to having less direct effect on the behavior and distribution
of various avian species ([50]; [S1]; [52]). Moreover, forest height is important for
managing resources such as wildlife, hydrologic response, aesthetics, tree growth and yield

([53]), fire hazard, and susceptibility to insects or disease.

1.4.1 Canopy height estimation using radar and optical data

Studies have used radar data to estimate canopy height using PolInSAR (polarimetric
interferometric SAR) (e.g. [54]; [55]; [56]) and tomographic techniques (e.g. [57]; [58]).
PolInSAR showed promising results for the estimation of canopy heights. In Neumann et
al. [58]; canopy height estimation using PolInSAR showed an RMSE of 3 m with
maximum canopy heights reaching 40 m when compared to reference canopy height
estimates. Garestier et al. [57] estimated canopy heights using P-band PolInSAR data and
found an RMSE on the canopy height estimation of 2 m for 2 to 25 m forest heights.
However, it was hindered due to several sources of noise (weather changes, atmospheric
heterogeneities, and intrinsic phase noise). SAR tomography is an alternative technique for

using radar data in canopy height estimation. This technique is an imaging approach, which
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generates a fully 3D representation of the imaged scene using coherent combination of a
greater number of images ([59]; [60]). Huang ef al. [59] used the tomography technique
with P-band SAR data for canopy height estimation in a test site in French Guiana. Their
results indicated an RMSE on canopy height estimates of 7.7 m. Mercer et al. [60] reported
a 10% relative error on tree height estimates in comparison to LiDAR canopy height
estimates using SAR tomography with L-band SAR data. SAR tomography is more robust
against various noise sources in comparison to PolInSAR at the expense of the necessity
to require many more flight lines. The BIOMASS Earth Explorer mission selected by ESA
(European Space Agency) in the framework of its living planet program with a P-band
spaceborne SAR satellite will provide strong opportunities for the estimation of both
canopy heights and biomass from SAR images. Furthermore, many studies used medium
and high resolution optical imagery such those available from MODIS, Landsat, Quickbird,
IKONOS and others in order to extrapolate airborne or spaceborne LiDAR derived canopy
height estimates (e.g. [47]; [61]).

1.4.2 Canopy height estimation using LiDAR data

To this date, canopy height estimation over large areas is best achieved using LiDAR data
(either Airborne or Spaceborne). Lidar (Light Detection and Ranging) is an active remote
sensing system well suited to measure specific forest information, including but not limited
to: canopy heights, basal area, leaf area index, and canopy cover. LIDAR measures object
elevation by sending a laser pulse, and measuring the pulse return time, and thus its distance
from the LiDAR system and with the help of an onboard GPS, the system determines the
objects elevation from the ground. Currently, Airborne LiDAR, is the most accurate remote
sensing system to obtain specific site-level data on forest structure. However, wall-to-wall
acquisitions of LIDAR data remain very expensive, therefore the use of spaceborne LiDAR
systems, which produce free data globally becomes viable. Several studies have estimated
canopy height using airborne or spaceborne LiDAR data (e.g. [24]; [44]; [45]; [46]). At
regional and global scales, LiDAR data acquired by the Geoscience Laser Altimeter
System (GLAS) have been widely used (e.g. [44]; [47]). Using GLAS data, maximum
canopy height within each footprint has been successfully estimated with a precision
between 2 and 13 m, depending on forest types and characteristics of the study site (e.g.
[44]; [62]; [63]; [64]). Lefsky et al. [44] applied linear regressions on waveform metrics

and ancillary DEM data for canopy height estimation and obtained site-specific models
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with an RMSE between 4.85 and 12.66 m. Hilbert and Schmullius [62] when estimating
canopy heights obtained an RMSE of 6.39 m on the canopy height estimation regarding all
species and slope classes with a clear negative correlation between accuracy and slope. Lee
et al. [63] applied a slope correction metric to a GLAS estimation model obtained high
correlation between GLAS canopy height estimates and those estimated from a small
footprint LiDAR with an RMSE of 2.2 m. Pang et al. [6] estimated the crown-area-
weighted mean height with airborne LIDAR measurements using linear regression applied
to metrics derived from GLAS waveforms. Their results indicated an RMSE of 3.8 m on
the estimation of canopy heights in several coniferous forest sites in western North

America.

1.4.3 Spatial extrapolation of LIDAR canopy height estimates

Finally, while LiDAR is very precise with canopy height estimates, it is limited in the
horizontal domain (limited spatial coverage for airborne data and limited acquisition
density for satellite data). Indeed, airborne LiDAR data are very expensive to acquire for
very large areas (€135-175/km? with 1m point spacing), and while spaceborne LiDAR
provides global coverage of waveform data they have a relatively low point density (about
0.51 points/km2 over French Guiana for example). Therefore, it is always necessary to
merge LiDAR data (spaceborne or/and airborne) with optical or/and radar data, forest types
data, geological data, meteorological data, etc. in order to create forest canopy heights with

complete land coverage and a good precision(e.g. [47]; [65]; [66]).

Hudak et al. [66] tested one aspatial (linear regression), two spatial (kriging and co-kriging)
and two combined spatial and aspatial methods (kriging and cokriging of regression
residuals) for mapping canopy heights using airborne LiDAR canopy height estimates and
Landsad Enhanced Thematic Mapper (ETM-+) using several sampling strategies (250, 500,
1000 and 2000 m) in a 200 km? study site in western Oregon (USA). Their results showed
that the regression model maintained vegetation pattern, however it was more biased
towards taller and shorter trees (underestimating taller canopy heights while overestimating
shorter ones). Using the regression model, the standard deviation on the canopy height
residuals (reference canopy heights — estimated canopy heights) was in the order of 10 m
regardless of the sampling strategy. The direct kriging or co-kriging of canopy heights were

only slightly more precise than the regression model when predicting canopy heights at
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locations lower than 200 m from the reference canopy heights. Moreover, the co-kriging
method proved to be slightly more precise than the kriging method. Finally, the method
which combined the regression and the kriging and co-kriging of the residuals proved to
be the best method for mapping canopy heights. This method conserved the pattern of the
canopy heights and improved the precision on the canopy height estimates. The standard
deviation on the canopy height estimates varied between 5.5 and 10.9 m for respectively a

sampling pattern of 250 and 2000 m.

Lefsky et al. [47] created a global forest canopy height map using regression analysis of
canopy heights estimated from the GLAS data and 500 m Moderate Resolution Imaging
Spectroradiometer (MODIS) data. The linear regression model which was used to model
MODIS data to the GLAS canopy height estimates in order to map forest canopy heights
globally showed canopy height estimates with a root mean square error on the estimation

of canopy heights of 5.9 m and a coefficient of correlation (R2) of 0.67.

Finally, a more recent study conducted by Simard et al. [65] improved on the work of
Lefsky et al. [47] for global canopy height mapping by replacing the linear regression
model with the Random Forest technique and using other ancillary data such as the annual
mean precipitation, seasonal precipitation, annual mean temperature, seasonal temperature,
data from a digital elevation model (DEM) and the percentage tree cover provided from
MODIS. Their global canopy height map which was validated against in-situ
measurements showed moderate canopy height estimation precision with an RMSE of 6.1

(R? 0f 0.5) on the estimation of canopy heights.

1.5 Forest types in relation to forest biomass

In addition to the role of forest canopy heights in AGB estimation, forest landscape
classification also plays a major role in the methods for estimating AGB. Indeed, many
studies have found that AGB estimation models are more relevant when including forest
types ([24]; [42]; [67]; [68]; [69]). Zheng et al. [67] found that the coupling of tree metrics
acquired from field measurements and various indices derived from Landsat 7 ETM+
substantially improved AGB estimates when separating hardwood from pine forests.

Chave et al. [42] tested several models for AGB estimation in old growth, dry, moist, wet,
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montane and mangrove forests. Their results indicated that one of the most important
factors for AGB estimation is forest type. The results also indicated that the best predictive
models were forest-type dependent. Ni-Meister ef al. [68] developed an AGB estimation
model that uses a fusion of LiDAR and optical sensors (to provide the vegetation type) in
conifer/softwood and deciduous/hardwood forests. Their results indicated that vegetation-
type-dependent models provide better AGB estimates in comparison to vegetation-type-
independent models. Mitchard et al. [24] found a +25% uncertainty in the estimation of
AGB in Lope National Park (Gabon) using LiIDAR data and a vegetation structures map
extracted from radar images. Finally, Addo-Fordjour [69] developed AGB estimation
models for different species of lianas. Their results indicated that forest type has a
significant influence on the allometric relationships used in AGB estimation, which led to

forest-type-specific equations.
1.6 Organization of the dissertation

1.6.1 Objectives

The main objective of this thesis was to create new methodologies for the mapping of large
forested areas, often inaccessible using remote sensing techniques and especially the one
that uses LIDAR. LiDAR remote sensing is an attractive and a complementary technique
used with other remote sensing techniques for mapping forest biomass notably through the
characterization of the height and the vertical structure of the canopy. However, current
missions (satellite or airborne), do not allow the acquisition of LIDAR data with sufficient
spatial density measurements for accurate mapping of tree height and subsequently the
estimation of biomass at a regional scales. The challenge was then to develop methods for
spatial estimation of vegetation height from airborne and satellite LIDAR data and other
data sources. The goal is to produce a wall-to-wall canopy height map of French Guiana.
From this objective stems different sub-objectives:

- develop a procedure for the estimation of canopy heights from mono-echo airborne
LiDAR datasets.

- Evaluate the potential of the LIDAR system ICESat/GLAS to estimate canopy heights in
a tropical forest by developing different statistical methods that uses waveforms provided

by the ICESat/GLAS system.
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- Improve canopy height estimation precision by choosing complementary data issued from
different technologies.

- Develop data fusion methodologies using LiDAR canopy height estimates with ancillary
data (geological, meteorological phenological ...) in order to propose a forest wall-to-wall
canopy height map with good precision and high spatial resolution.

- Analyze the relationship between canopy height estimation precision and the spatial
sampling of LiDAR data.

- Evaluate the potential of the ICESat/GLAS data and data from the shuttle radar

topography mission (SRTM) for the classification of forest landscape types and forest
types.

1.6.2 Dissertation plan

The dissertation contains in total six chapters, including the introduction (chapter 1),
chapter 2 which presents the study area and the datasets used, the sub-objectives mentioned
in section 1.6.1 are represented in chapters 3, 4, and 5, and, finally the conclusion and
perspectives (chapter 6) and the summary of the thesis in French (Chapter 7). In addition,
the chapters were written based on scientific articles which were published or submitted at

the time of this writing. Each article is introduced later-on in its respective chapter.

Chapter 2 introduces the study area, alongside all the used data in our study. Chapter 3
which is based on a published article in a the peer-reviewed international journal “Remote
Sensing” will be dedicated to the introduction of the LiDAR technology (airborne and
spaceborne), as well as detailing the methods and procedures used in this thesis in order to
estimate canopy heights with either airborne- or spaceborne LiDAR. This chapter starts off
with an introduction of the LiDAR datasets used. Next, a detailed description of the
methods used in order to estimate forest canopy heights using airborne LiDAR as well as
a validation of these estimates is shown. Following that, an introduction of spaceborne
LiDAR is presented, as well as the processing of waveforms provided by the ICESat/GLAS
and the extraction of the most useful metrics used for canopy height estimation. The
remaining of the chapter will be dedicated to the presentation of canopy height estimation

methods using ICESat/GLAS with a validation of each method.
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Chapter 4 focuses on using the LiDAR based canopy height estimates obtained in chapter
3 as well as ancillary data in order to produce a validated wall-to-wall canopy height map
of the entire French Guiana. In addition, the effect of spatial sampling of the LiDAR
datasets on the canopy height estimation precision was also studied in this chapter. The
contents of this chapter constitute an article that has already been submitted to the remote

sensing (MDPI) journal.

Chapter 5 is also based on a published article in the peer-reviewed “International Journal
of Applied Earth Observation and Geoinformation”. In this chapter, first, comparisons
between elevations extracted from ICESat/GLAS waveforms and elevations from SRTM
data were used in order to classify French Guiana’s forest landscape classes. Next, several
metrics were extracted from GLAS waveforms in order to classify forest types. Finally,

chapter 6 presents the main conclusions and the perspectives of this thesis
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STUDY AREA AND DATASETS

In this study, different datasets were used over our study area for the estimation and
mapping of canopy heights. These datasets are comprised of LiDAR data and data from
different auxiliary datasets. In order to use the different datasets, filtering, and processing
is required. In this chapter, the study is first presented. Next, all the datasets used in this

study are presented, as well as any required filtering and processing.

2.1 Study area

French Guiana is situated on the northern coast of the South American continent, bordering
the Atlantic Ocean as well as Brazil and Suriname (Figure 2.1). The study site’s area is
approximately 83,534 km?, and forest occupies approximately 80,820 km? or
approximately 96.75% of its total size. The terrain is mostly low-lying, rising occasionally
to small hills and mountains, with an altitude ranging from 0 to 851 m. In addition, 67.8%
of'its slopes are lower than five degrees, 24.0% are between five and ten degrees and 8.2%
are higher than ten degrees (derived from the SRTM elevations). Dense tropical forests
predominate outside the coastal plain and cover more than four-fifths of the land area.

Other vegetation types also exist, such as savannas and agricultural crops. French Guiana
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has an equatorial climate with two main seasons, the dry season, from August to December,

and the rainy or wet season, from December to June.

Figure 2.1. LIDAR datasets acquired for French Guiana (the right image
corresponds to the red rectangle in the left image). The small rectangles represemt
the location of the HD LiDAR dataset
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2.2 Datasets description

2.2.1 Spaceborne LiDAR datasets
LiDAR data were acquired from the GLAS on board the Ice, Cloud, and Land Elevation

Satellite (ICESat) between 2003 and 2009. The GLAS laser footprints have a nearly
circular shape of approximately 80 m in diameter and a footprint spacing of approximately
170 m along their track. The data were acquired during 18 missions using three on-board
lasers with orbit cycles repeating between 57 and 197 days. Over French Guiana, GLAS
data acquisition time coincides with the wet (GLAS acquisition in Feb-March and May-
June) and dry (GLAS acquisition in October-November) seasons.

The horizontal geolocation error of the ground footprints is less than 5 m, on average, for

all ICESat missions (http://nsidc.org/data/icesat/laser op periods.html). Several studies
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(e.g. [59]; [70]) have estimated the vertical accuracy of the GLAS to be between 0 and 3.2

cm over flat surfaces, on average.

From the 15 data products available from the ICESat GLAS, the GLAO1 and GLA14 data
products were used in this study. The GLAO1 comprises the full waveform data, and
GLA14 comprises the global land surface altimetry data. Over flat terrain, the waveforms
acquired over vegetated areas are bimodal distributions, with the first peak representing
reflections from the canopy top and the last peak representing the ground (Figure 2.2). To
exclude unreliable GLAS data (i.e., data affected by atmospheric conditions, clouds, etc.),
several filters were applied. (1) Signals with high noise were removed when the signal to
noise ratio was higher than 15 (e.g. [70]; [71]; and [63]). This filter removed 36.4% of the
data. (2) The GLAS waveforms with delays from either saturation or atmospheric forward
scattering were removed (14.1% of the data). Only cloudless waveforms were kept using
the cloud detection flag (FRir_qaFlag = 15). This filter removed 32.4% of the data.
Saturated signals were identified using the GLAS flag (SatNdx > 0). (3) The waveforms
with a centroid elevation significantly higher or lower than the corresponding SRTM
elevation were removed (|[SRTM - GLAS| > 100 m) ([72]). This filter removed 2% of the
data. (4) The GLAS footprints with SRTM values higher than the GLAS canopy top
elevation and lower than the GLAS ground elevation were also removed, which accounted
for 33.4% of the data. Both the FRir _gaFlag and SatNdx flags were found in the GLA14
product. From the original database of 101312 footprints, 12238 footprints that satisfied
the 4 filters conditions were kept (Figure 2.1). Finally, the GLAS data referenced to the
TOPEX/Poseidon were converted to WGS84 by subtracting 70 cm from the elevation
values. The conversion between the two ellipsoids also depends on latitude; however, as

this change is smaller than the horizontal accuracy of the GLAS, it was omitted.
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Figure 2.2 a typical GLAS waveform acquired over a vegetated area on a flat
terrain. Airborne LiDAR datasets
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2.2.2 Airborne LiDAR datasets

2.2.2.1 Small footprint low density LiDAR dataset

A LiDAR dataset was acquired in 1996 during an airborne geophysical survey that covered
4/5 of French Guiana (northern part, Figure 2.1). Because laser data were acquired for
assessing the quality of the survey, and particularly for flight ground clearance, a low
sampling frequency was used, and only the first pulse was considered [73]. The data
correspond to the elevation of the first obstacle encountered by the laser. The sampling
frequency was 10 Hz with a 905-nm wavelength laser and a footprint size of 35 cm (laser
beam divergence of approximately 3 mrad). The laser measurements are therefore
considered point data. The database contains laser elevations every 7 m on flight lines
spaced 500 m apart and oriented at 30°N, intersected by transverse flight lines spaced 5 km
apart and oriented at 120°N. The mean density of this database is approximately 285.2
points/km?. Bourgine et al. [74] evaluated the quality of this low-density LiDAR dataset

(LD), and the accuracy of the terrain elevation was estimated to be approximately +2 m.
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2.2.2.2 Small footprint high density LiDAR dataset

LiDAR datasets with high points density (HD) acquired during several airborne surveys in
2004, 2007, 2008 and 2009 as part of the Guyafor project by a private contractor, Altoa
(http://www.altoa.fr/), operating a helicopter-borne LiDAR were used in this study (Table
2.1). These data were previously made available to the ESA Tropisar project. The Biomass
project at Jet Propulsion Laboratory (JPL) used this dataset for the evaluation of forest
structure estimation from radar data. The elevations were recorded using two LiDAR
systems: Riegl LMS-Q140i-60 in 2004, 2007 and 2008 and the newer LMS-280i system
in 2009. The elevation data were acquired for several small study sites in French Guiana
(Figure 2.1). The mean acquisition density of the HD datasets is 3.5 points/m? (between 3
and 7 points/m?). The laser wavelength was 905 nm with a mean footprint size of 45 cm
for the first system and 10 cm for the second, and the precision of the elevation was smaller
than 0.1 m. Moreover, the HD, unlike the LD, is a last-return laser elevation measurement,

as using the last return increased the percentage of ground returns [75].

Table 2.1. Description of the HD datasets used in this study.

Site Acquisition Date Location Area (km?) PointDensity
(points/m?)
Paracou 2004 2004 5°15.9'N 52°55.9'W  5.35 4.0
Sinnamary 2004 5°24.7'N 52°56'W  6.52 7.0
St-Elie 2009 5°18.2'N 53°3.3'W  4.50 53
Nouragues07A 2007 4°5.3'N 52°40.77W  7.24 3.2
Nouragues07B 2007 4°2.4'N 52°40.6'W  2.42 3.8
NouraguesO8A 2008 4°5.1'N 52°41.2'W  1.96 4.5
NouraguesO8B 2008 4°3.8'N 52°40.9'W  7.82 3.8
Nouragues08C 2008 4°2.5'N 52°40'W 2.89 4.2
Nouragues08D 2008 4°2.5'N 52°41.0'W  1.08 3.5

Paracou_2009 2009 5°16.1'N 52°55.8'W  12.08 6.0
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2.2.3 Ancillary datasets

In this study, twelve environmental and geographical variable maps were used. These
variables were chosen for their supposed influence on forest characteristics. In addition,
these variables are accessible from available free maps (Table 2.2.) The environmental
variables will be used later in regression models in order to estimate canopy heights over
the entire French Guiana. These variables are: geological map, forest landscape type map,
three variable maps computed from SRTM digital elevation model (at 90 m resolution), six
variable maps derived from vegetation indices issued from MODIS optical images, and
finally one variable map issued from rainfall data.

Table 2.2. Description of the variable maps used for canopy height mapping.

Short name Full name Source Resolution

MIN EVI | Minimum value of EVI time series data
MEAN EVI| Mean value of EVI time series data

Maximum value of EVI time series
MAX EVI
data

Ist principal component of EVI time
PC1 MODIS 250 m
series data

2" principal component of EVI time

PC2 '
series data
3" principal component of EVI time
PC3 p p | p
series data
Slope Terrain slope
Roughness Terrain roughness SRTM 90 m
In_drain Log of drainage surface
GEOL Geological map Delor et al. [76] Vector
1 km
LTs Forest landscape type Gond et al. [77]
(Vector)
Rain mean value of rainfall TRMM 8 km

2.2.3.1 MODerate-resolution Imaging Spectroradiometer (MODIS) data
MODIS sensor mounted on the Terra and Aqua satellites possesses a total of 36 spectral
bands of which seven designed specifically for land applications with spatial resolutions

that range from 250 m to 1 km. The MODIS dataset used in this study includes ten years
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(January 1%, 2003 to December 31, 2012) of the enhanced vegetation index (EVI) time

series data. EVI data effectively characterize biophysical and biochemical states and

processes from vegetated surfaces. The 10 years period was used to synchronize with the

GLAS data (from 2003 to 2009). Using the EVI time series data, six maps were issued:

minimum, mean and maximum values of the EVI time series data (MIN EVI,

MEAN EVI, and MAX EVI respectively) (Figure 2.3), and the three first principal

components issued from the principal component analysis of the EVI time series data (PCl1,

PC2 and PC3).
Figure 2.3. Minimum (a), mean (b), and maximum (c) values of the EVI time series
data.
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2.2.3.2 SRTM digital elevation model data
The Shuttle Radar Topography Mission (SRTM) acquired a digital elevation model of the

earth’s surface on a nearly global scale (50°S to 60°N). The vertical accuracy of the SRTM
90 m DEM is 16 m with a 20 m horizontal accuracy

(http://www?2.jpl.nasa.gov/srtm/datafinaldescriptions.html). In this study, the SRTM 90 m
DEM currently available for French Guiana was used. Over French Guiana, Bourgine and
Baghdadi [73] found that the accuracy of the SRTM DEM was approximately 10 m
(standard deviation of error). The SRTM data are available as orthometric heights, with
WGS84 as the horizontal datum and the Earth Gravitational Model (EGM96) geoid as the
vertical datum. To compare the ICESat/GLAS and SRTM elevations, the SRTM geoidal
heights were converted to ellipsoidal heights by adding the EGM96 geoidal undulations.
The geoidal undulations are available on a 0.1x0.1-degree grid interpolated onto the pixel
coordinates. The SRTM dataset was interpolated onto each ICESat/GLAS footprint using

bilinear interpolation.

From the SRTM DEM data, three derivative maps were created (Figure 2.4):

(1) A slope map (Slope), which is calculated using the maximum change in elevation over
the distance between each cell of the DEM and its eight neighbors in a 3x3 window (Slope)
(Figure 2.4a);
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(2) A surface roughness map (Roughness), where the roughness is the standard deviation
of a 3x3 moving window. Areas with low standard deviation represent areas of low
roughness, while higher standard deviation presents higher surface roughness (Figure
2.4b);

(3) Finally a drainage surface map (In_drain), where the drained area measures the surface
of the hydraulic basin that flows through a cell. A low value indicates cells located at the
border between two hydraulic basins, whereas the highest values indicate cells located

downstream (Figure 2.4c¢).

Figure 2.4. SRTM DEM derived maps: slope map "in degrees” (a), surface
roughness map "in m” (b), and drainage surface map (c).
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2.2.3.3 Geological map
A geological substratum map (GEOL) produced by the French Geological Survey ([76])

was used in this study (Figure 2.5a). The map was simplified in order to retain only the
large five biggest rock formations: recent sediments, volcanic sedimentary rock, granites,
gabbros, and gneiss. This simplification was required in order for each geology class to be

sampled with a satisfying accuracy.

2.2.3.4 Forest landscape types map
A forest landscape types map developed by Gond et al. [77] at 1 km resolution was also

used (Figure 2.5b). In this map, 33 remotely sensed landscape types (LTs) using
VEGETATION/SPOT images were interpreted. Five classes of the total 33 classes were
used in this study, as they occupy more than 78% of the forest in that area. The LTs can be
summarized as follows:

(1) LTS8 represents dense, closed-canopy forest with small crowns of the same canopy
height and small gaps mixed with regular canopies with well-developed crowns of almost
the same canopy height without large gaps interlaced with flooded savannas (10%).

(2) LT9 is a closed canopy forest dominated by well-developed crowns of almost the same
canopy height without large gaps.

(3) LT10 is an irregular and disrupted-canopy forest where the trees have very different
heights and different crown diameters with large gaps mixed with closed-canopy forest
dominated by well-developed crowns at almost the same elevation without large gaps.
LT10 is also interlaced with liana forests.

(4) LT11 is similar to LT10 with more liana forest and non-forest land covers.

(5) LT12 is an open forest associated with wetlands and bamboo thickets.

2.2.3.5 Average rainfall map
In addition, precipitation data from the NASA tropical rainfall measuring mission (TRMM)

which launched in 1997 for the measurement and monitoring of tropical rainfall were used.
TRMM data used in this study are is the average daily precipitation over the last 10 years
(2003-2013) with a resolution of ~25 km (Rain) (Figure 2.5c).
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Figure 2.5. Geological map (a), Forest landscape types map (b), and Average
rainfall map (c).
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CHAPTER 3:

CANOPY HEIGHT ESTIMATION IN FRENCH GUIANA WITH
LIDAR  ICESAT/GLAS DATA  USING  PRINCIPAL
COMPONENT ANALYSIS AND RANDOM  FOREST

REGRESSIONS

3.1 Introduction

Canopy height estimation models based on full waveform data can be divided into two
categories: the direct method and statistical models. The direct method enables canopy
height estimation in low relief areas using the difference in elevation between signal start
and the ground. However, over sloping areas, the direct method overestimates canopy
heights because of the additional height introduced by the slope. To remove the effects of
the slope, statistical models using GLAS and DEM metrics have been developed.
Nevertheless, while the metrics developed in previous studies were very successful in
increasing the precision of the canopy height estimation models (e.g. [44]; [71]; [78]), they
presented their own shortcomings. Indeed, in order to use these metrics for better canopy
height estimation, the exact position of the top-of-canopy and ground peaks is often
required. Over dense vegetated areas such tropical forests, extracting the top-of-canopy
and ground peaks is especially difficult using an automated process, as the LiDAR

waveform does not often present distinctive peaks [24]. The extraction of these metrics
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manually is always possible, but becomes time consuming and inefficient when dealing

with a large number of GLAS waveforms.

The goals of this chapter are to test several commonly used canopy height estimation
models that utilize metrics derived from GLAS waveforms and SRTM-DEM and to test
two techniques, new in the field of forest applied LiDAR: principal component analysis
(PCA) and Random Forest. The purpose of using the PCA approach is to eliminate the
need for metrics extracted from GLAS in canopy height estimation models, as the
extraction of these metrics is error-prone, especially in dense forests, such as those in
French Guiana. For the Random Forest regressions, the same metrics derived from GLAS
footprints will first be used. Then, the principal components from the PCA of the GLAS
waveform will be tested. The results of each model will be validated against canopy height

estimates obtained from an airborne LiDAR dataset.

Section 3.2 is the presentation of methods for forest height estimation using airborne and
satellite LIDAR. The results are shown in in Section 3.3. Finally, Sections 3.4 present the
discussion and section 3.5 represents the conclusions. The chapter is based on the
published article: Fayad. I ef al. (2014) Canopy Height Estimation in French Guiana
with LiDAR ICESat/GLAS Data Using Principal Component Analysis and Random
Forest Regressions. Remote Sensing 6:11883-11914.

3.2 Materials and methods

3.2.1 Lidar data processing and canopy height estimation

3.2.1.1 Processing the LD dataset

To estimate canopy heights using the airborne low-density LIDAR data, several steps were
required. First, the dataset was filtered to remove erroneous elevation measurements. Next,
the canopy-top and the ground points were extracted to estimate the canopy heights. The

process for canopy height estimation is summarized in the following sections.



33 Chapter 3

— Data filtering
Airborne LD LiDAR data showed local-scale fluctuations according to whether the point

corresponded to a treetop, a branch at intermediate level, or even a stream or the ground.
The analysis of LIDAR data showed important differences due to measurement errors in
LiDAR elevations (Z) between two neighboring points (a distance of 7 m in the LD
dataset). Elevation differences up to 150 m were observed. LIDAR points with a difference
in Z greater than 60 m were discarded (less than 3% of the total dataset was removed). This
threshold of 60 m was chosen considering the extreme case in which one laser point
represents the top of a tree and its neighboring point reaches the ground, giving an

approximate maximum canopy height of 60 m.

— Canopy top identification
Next, airborne LIDAR data were filtered to select the points that most likely corresponded

to canopy tops. This was achieved by selecting the local maximum in a sliding window of
n points (n being odd numbers). In each window, the local maximum was selected as the
point with the maximum amplitude with respect to the line segment joining the boundaries
of each window (Figure 3.1a). The window size was selected so that the variogram of
LiDAR elevations (Z) no longer displayed an apparent nugget effect. Figure 3.1b shows
that the nugget effect disappears when windows are larger than seven points and that a
window of nine points (i.e., 56 m) gives a nearly linear variogram. Windows of a larger
size did not improve the results and tended to decrease the number of available points.
With a nine-point window, more than a quarter of the filtered LD LiDAR points were
conserved (a point every 42 m, on average, along the flight lines), making a total of

3,289,076 top-of-canopy points available over French Guiana (49.21 pts/km?).
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Figure 3.1. (a) Points selected as top of canopy (local maximum); (b) Variogram of
airborne LiDAR elevations from the LD dataset with local maximum points as a
function of the size of the filtering window; (c) Canopy height calculation; (d)
Ground points selected from a 1000-m window.

.-- 15 Local max.

- 4th Local max.

Elevation (m)

© pom'ts\ X Top of canopy

Distance along flight line (m)

(a)
100 —o—1 point (no filtering)

—*—5 points

—-&-7 points
. 75 -+-9 points
E —+—11 points
E 50
=14}
=
.
S 25

0
0 20 40 60 80 100 120
Distance (m)

(b)



35 Chapter 3

Figure 3.1 (cont.)
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— Identification of ground points

Few LiDAR returns reach the ground in tropical forests. Vincent ef al. [75] estimated that,
in last-return mode, only 1% of all laser returns are ground measurements. Bourgine et al.
[74] estimated the ground returns in the LD dataset to be several hundred meters apart. To
select the ground points from the LD dataset, the following procedure was attempted (e.g.
[74]; [79]):

(1)Between two successive points identified as top of canopy, identify the local minimum,
i.e., the point that gives the maximum canopy height (Figure 3.1c). For all points situated
between the two top-of-canopy points, the canopy height is calculated as the difference
between the elevation of each point (Z) and the top-of-canopy elevation (ZTOP). ZTOP is
obtained using a linear interpolation between the elevations of two canopy tops.

(2)Among the local minimum points selected in the previous step, retain the lowest one
inside a non-overlapping moving window (point corresponding to the greatest canopy

height) (Figure 3.1d). With the use of a small window size, the selected ground points are
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often located above the ground, leading to an underestimation of the canopy height. For
too-large windows, too many ground points are eliminated, leading to an excessive
smoothing of the estimated canopy height during the subsequent interpolation. Bourgine
et al. [74] demonstrated that the best window size for this LD dataset is 1000 m. The

number of ground points available for French Guiana is 105438 (1.59 pts/km?).

— Canopy height estimation
Canopy heights were calculated for the LD dataset using points identified as top of canopy

and ground (Figure 3.1d). The estimation of the canopy height was performed at the level
of the 105,438 ground points using linear interpolation between the elevations of the top-
of-canopy points (spaced 42 m apart, on average). Canopy height estimation cannot be
conducted at the canopy-top level by interpolating the ground points because the distance
between ground points (1000 m, on average) is too great to assume a linear trend between

the elevations of ground points.

The estimation of canopy height using the LD dataset showed that canopy heights reached
a maximum of 69 m with a mean height of approximately 30.4 m. The lower canopy
heights (maximum of 20 m) were observed in the coastal marsh areas, situated in the

northeastern part of French Guiana (Figure 3.2).
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Figure 3.2. Map of canopy heights calculated from the airborne LiDAR dataset LD
for (a) French Guiana and (b) a portion of the coastal marsh. Only 1% of canopy
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Figure 3.2 (cont.)
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3.2.1.2 Processing the HD dataset

The estimation of canopy height from the airborne high-density (HD) dataset used a

similar procedure. However, as the density of points is higher (on average 3.5 pts/m?) than

that of the LD dataset (on average 285.2 pts/km?), several changes were made to account

for the difference between the tw

o datasets:

(1) The procedure described in Section 3.2.1.1 requires flight lines for top-of-canopy and

ground point extraction. From the HD dataset, a grid of 1 m % 1 m was created over the
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study sites. Then, two datasets were created: the first contained the point with the highest

elevation in each square of the grid, and the second contained the lowest elevations.

(2) Using the grid of the highest elevations, the procedure developed in Section 3.2.1.1 for
canopy top extraction was applied to extract canopy-top points along the East-West and
North-South directions. The window size for the canopy top extraction differed between

datasets according to their point density (between 20 and 50 m).

(3) Using the lowest elevations grid, the ground point’s extraction procedure detailed in
Section 3.2.1.1 was performed along the horizontal and vertical lines of the grid. However,
unlike with the LD dataset, the window sizes used in the selection of ground points were
much smaller (between 70 and 120 m, according to the HD dataset). The window sizes of

the HD dataset were also determined using an analysis of variograms.

(4) Finally, as the distances between ground points and between canopy-top points were
small, the estimation of canopy height was calculated at each canopy-top and ground point.
However, unlike the LD dataset, the canopy heights were not estimated using linear
interpolation but rather using bilinear interpolation. First, Delaunay triangulations were
computed separately for the canopy-top and the ground points. Next, the triangle
containing each ground point in the lat/lon plane of the top-of-canopy mesh was identified,
and the ground point was projected on this triangle. Finally, the canopy height was
calculated as the difference between the elevation of the projected ground point on the top-
of-canopy mesh and the elevation of the actual ground point. A similar procedure was
carried out for canopy height estimation at each canopy-top point using the projection of

canopy-top points on the Delaunay triangles of the ground points’ mesh.

3.2.1.3 Comparison of canopy height estimates from the HD dataset using different
estimation methods

In this section the HD canopy height estimates obtained by our method were compared to
the HD canopy height estimates obtained by the method used in Vincent et al. [80]. This
comparison was conducted in order to: (1) Analyze the pertinence of the method used in

our study to estimate the canopy heights; (2) assess the quality of these estimates. The
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comparison was conducted on two sites in Nouragues, French Guiana. The results
presented in Figure 3.3 indicate a good correlation between the canopy heights estimates
from each method. The mean heights obtained from the two methods were similar with a
mean difference about 1 m. This difference is due to the different methods used for the
estimation of canopy heights. In this study, from the HD dataset, two datasets were created,
one containing the top of canopy points and one containing the ground points. The canopy
heights were estimated at the level of each ground and top of canopy point by projecting
each ground point onto the top of canopy points and vice versa. However, for Vincent et
al. [80], after identifying the canopy tops and ground points, the ground points were
interpolated in order to create an evenly distributed digital elevation model. The same was
done to the canopy tops to create a canopy surface model. Finally, the canopy heights are

estimated by subtracting the canopy surface model and the digital elevation model.

Figure 3.3. Comparison between canopy height estimates from the LD dataset over
two sites in Nouragues (French Guiana) using the algorithm proposed by Vincent ef
al. [80] (a and b) and our algorithm (c and d)
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3.2.1.4 Comparison of canopy height estimates from the LD and HD datasets

The canopy height estimates from the HD dataset are considered near-terrain
measurements because of their small footprint size and high density. Unfortunately, the
HD dataset does not intersect with the GLAS footprints. To use the LD dataset as reference
data for GLAS’s canopy height estimation models, the accuracy of the canopy heights of
the LD dataset was assessed against the estimates from the HD dataset. For each LD
canopy height estimate, the nearest point from the HD dataset, at a maximum distance of
10 m, was chosen. The results of the comparison between canopy heights from the LD and
HD datasets showed a mean difference of 0.22 m, an RMSE of 1.57 m, and an R? of 93%
(Figure 3.4).
Figure 3.4. Comparison between canopy height estimates from the LD and HD

datasets.
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3.2.1.5 Glas data processing

— GLAS waveform metrics extraction

Several canopy height estimation models from GLAS waveforms have been developed in
recent years (e.g. [44]; [47]; [72]; [81]; [71]; [78]). They depend on several parameters
extracted from waveforms (primarily signal start and end, waveform extent, and leading
and trailing edges) and on ancillary data such as DEMs (slope or terrain index).

Signal start and end are defined as the first and last locations where the waveform intensity
exceeds a certain threshold level (n.ob, ob is the standard deviation of the background
noise) above the mean background noise (ub) (Figure 2.2) [44]. Both ub and ob are found
in the GLA 14 product. The difference between the signal end and signal start is called the
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waveform extent. However, there are no consistent optimal thresholds that can be used for
every study area. Different thresholds have been used in different studies, including 3cb
[82]; 3.50b [81]; 40b [44] and 4.56b [78]. The difficulty in identifying the noise threshold
could be explained by the difficulty in consistently identifying signal start and signal end.

The Gaussian peaks resulting from the decomposition of the GLAS waveform represent
canopy features such as canopy top, canopy trunks, ground or a mix of these elements. The
last Gaussian peak does not necessarily represent the ground return. Moreover, there is no
general rule to determine the ground peak (e.g. [81]; [71]; [82]; [83]). Duong et al. [83]
and Sun et al. [82] identified the ground as the last peak. Rosette et al. [81] and Chen [71]
found that the elevation of the stronger of the last two Gaussian peaks has a better
correspondence to the ground. In this study, the stronger of the last two Gaussian peaks
was selected as the ground return.

The leading edge is defined as the difference between signal start and the first bin that is at
half the maximum intensity (Figure 2.2). The trailing edge corresponds to the difference
between signal end and the last bin that is at half the maximum intensity [78] (Figure 2.2).
However, some LiDAR waveforms have a large difference in the intensity between the
canopy and the ground peaks. If the ground peak return is significantly lower than the
canopy peak, an overestimation of the trailing edge could be observed using Lefsky’s
metrics. Conversely, with a low intensity return from the canopy peak and a high intensity
return from the ground peak, an overestimation of the leading edge could be observed using
Lefsky’s metrics [44]. Hence, Hilbert and Schmullius [62] proposed modified leading edge
and trailing edge definitions. The modified leading edge is defined as the elevation
difference between signal start and the canopy peak’s center, and the modified trailing edge
is the difference between signal end and the ground peak’s center (Figure 2.2). These
modified metrics better represent the characteristics of the canopy top and the ground
surface. This study used the modified leading and trailing edges.

— Principal Component Analysis of GLAS waveforms
PCA (and other types of dimensionality reduction) is a technique used to emphasize

variation and bring out strong patterns in a dataset. It's often used to make data easy to
explore and visualize. Looking at all the samples from a GLAS return signal, it is very
difficult to see any relationships or natural groupings among the data. The actual samples
are more than 450 per GLAS return signal, but using PCA, it is easier to find the dimensions

that are the most informative about the ways in which those measurements differ. The
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identified principal components are then analyzed in order to find how they relate (if they
do) to properties of the canopies (e.g. canopy heights).

PCA of LiDAR waveforms has been conducted in a handful of studies. Allouis et al. [84]
used PCA to estimate the water depth in shallow water using airborne LiDAR waveforms.
Principal components were then used to perform a regression model between the principal
components and water depth. The model relying on PCA for water depth estimation
provided the lowest mean error and had the lowest detectable water depth in comparison
to other models (mathematical approximation, Heuristic methods, statistical approaches,
and convolution methods). However, to convert waveform samples into principal
components, further processing of the GLAS waveforms was required. First, the parts of
the waveforms useful for canopy height estimation corresponding to the waveform extent
were extracted. Next, because not all the waveforms have the same waveform extent, the
waveform with the largest extent was identified, and waveforms with shorter waveform
extents were padded with the remaining waveform samples after the signal end to give
them the same length as the largest waveform extent (same sample count). Note that the
first sample of the extracted waveform now corresponds to signal start. In this study, the
largest waveform extent had 470 samples. Next, the extracted waveform samples were
converted into principal components (PCs), and the number of PCs to be used in the
regression model for dominant canopy height estimation (Hmax) was calculated. The
number of PCs used in the regression model has a major impact on the performance of the
model, as choosing too many PCs will include noise from the sampling fluctuations in the
analysis and by choosing too few, relevant information will be lost. A vast literature has
developed methods to choose the statistically significant PCs. In this study, the number of
statistically significant PCs was determined using a statistical process based on the study
by Karlis et al. [85]. The PCs with eigenvalues higher than a certain threshold were
selected. The threshold (L) was defined as follows:

A=1+2 |2 (3.1)
n
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where p is the number of variables (PCs) and 7 is the number of observations (waveforms).
For our dataset composed of 470 variables and 474 observations, the threshold (1) was
determined at 2.99. Thus, the first 13 PCs were selected.

3.2.2 Background on GLAS canopy height estimation

3.2.2.1 Direct method
The estimation of the canopy height using the direct method is simply the difference
between the waveform signal start (canopy top) (Hp) and the ground peak (Hy):

Hyax = Hy — Hy (3.2)

The direct method estimates the canopy height with good precision over flat areas. An
average difference between GLAS and airborne LiDAR data lower than 3 m was observed

in several studies (e.g. [72]; [86]).

3.2.2.2 Multiple regression models using GLAS and DEM metrics

Over sloping areas, both the ground and vegetation peaks are broader and lower in intensity
(e.g. [64]; [63]). The peak identified as the ground peak will no longer represent only the
ground but a mix of ground and terrain objects (e.g. [71]; [70]). In fact, over sloped terrain,
waveform extent will increase with the terrain slope and the footprint size [70]. This
increase will lead to an earlier detection of the signal start and this will lead to an
overestimation of the canopy height [87].

To correct for the effect of terrain slope on the GLAS signal, several studies have developed
models to better estimate canopy heights. Lefsky et al. [78]; Pang et al. [64]; Duncanson
et al. [87]; and Chen [71] developed models based on parameters derived from the
waveforms themselves (waveform extent “Wext”, leading edge “Lead” and trailing edge
“Trail”). Lefsky et al. [44] and Rosette et al. [81] developed models based on the waveform
extent and terrain index. The terrain index as defined by Lefsky ef al. [44] is the difference
between the maximum and minimum elevations in an m x m sampling window applied to
a DEM at the GLAS footprint location. The window size depends on the resolution of the
DEM. A 3x3 window has been deemed best for a 90-m-resolution DEM [44].

The first model was developed by Lefsky et al. [44] for the estimation of the tallest canopy
within a footprint:
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Hmax=aWext_ b'TI (33)

This model is based on the waveform extent (Wext) and the terrain index (TI). The
incorporation by Lefsky et al. [44] of the waveform leading edge extent in equation (3.3)

resulted in a slight improvement in the canopy height estimation:

Hmax = aWext - b'TI + CLead (34)

Pang et al. [64] introduced a model to estimate forest canopy height by using metrics
derived from the waveforms themselves:

Hax = aWext — (b(Lead + Trail))* (3.5)

Chen [71] introduced the following model to show how a linear model compares to
equation 3.5:

Hyox = aWex — b(Lead + Trail) (3.6)

Finally, Lefsky et al. [47] proposed a modification of the Lefsky et al. [78] model to

produce a better estimation when the leading and trailing edges are small:

Hyyox= aWexs — bLead — cTrail (3.7)

In addition, to quantify the contribution of Lead and Trail in the canopy height estimation
models, two additional models were analyzed: one that replaces Lead with Trail in equation
3.4 and one that removes Lead in equation 3.6 (model IDs 7 and 8, respectively, Table 3.1).
Finally, each of the eight models was tested with an added intercept (the bis models, Table
3.1). The coefficients of the different models were fitted with least squares regressions
using the canopy height estimates from the LD dataset. The reference LD canopy height
estimate for model calibration were chosen as the closest points to GLAS footprints, with
a distance not exceeding 50 m (near to the 35 m average radius of the GLAS footprints).
The least squares regression is an approach for modeling the relationship between a
dependent variable (i.e. canopy height) and one or more explanatory variables (i.e. Lead,
Trail, Wext, TI, etc.). The technique is based on fitting a straight line (regression line or
line of best fit) to the observed data (plotted as a scatter plot) this technique aims to derive
a good relationship (the best fit) that may be used to predict future values of one variable
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when the value of the other is known. It is named as such because, in its computation, the
sum of the squared deviations of the computed (future) values from the observed (past)
values of the variables is minimized. Devised by the French mathematician Adrien-Marie
Legendre (1752-1833), this technique is applicable to single line functions with any
number of independent variables and, under certain assumptions, is the best statistical
estimator.

The best regression model was selected based on the Akaike information criterion (AIC)
[88]; the coefficient of determination (R?), and the root mean square error (RMSE). AIC is
a measure of the relative quality of statistical models for a given set of data. Given a
collection of models for the data, AIC estimates the quality of each model, relative to each
of the other models. Hence, AIC provides a means for model selection. However, AIC does
not provide a test of a model in the sense of testing a null hypothesis; i.e. AIC can tell
nothing about the quality of the model in an absolute sense. If the entire candidate models
fit poorly, AIC will not give any warning of that. R?, is a statistical method that explains
how much of the variability of a factor can be caused or explained by its relationship to
another factor. Coefficient of determination is used in trend analysis. It is computed as a
value between 0 (0 percent) and 1 (100 percent). The higher the value, the better the fit.
Coefficient of determination is symbolized by R? because it is square of the coefficient of
correlation symbolized by R or r. The coefficient of determination is an important tool in
determining the degree of linear-correlation of variables ('goodness of fit') in regression
analysis. The RMSE is square-root of the sum of the squared of all the rows in the error
vector divided by the number of observations. And this error vector is obtained by doing e
=y - Yest; Where ‘e’ is the residual vector, y is a vector of measured dependent vector, and
Vest 18 the vector of the estimated values. Finally, to assess how the model results will
generalize to an independent data set, a 10-fold cross validation was used. Large k-fold
values mean less bias towards overestimating the true expected error (as training folds will
be closer to the total dataset). Cross validation is a model validation technique for assessing
how the results of a statistical analysis will generalize to an independent data set. It is
mainly used in settings where the goal is prediction, and one wants to estimate how
accurately a predictive model will perform in practice. In a prediction problem, a model is
usually given a dataset of known data on which training is run (training dataset), and a
dataset of unknown data (or first seen data) against which the model is tested (testing
dataset).
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Table 3.1. Regression models’ fitting statistics calculated with 10-fold cross
validation for estimating forest height. R = root mean square error, AIC = Akaike

information criterion.

Model ID R* RMSE(m) AIC
Hyax = Hy — Hy 1 0.50 7.9 3126
H,,. =0.6527W,, —0.01847T] 2 0.72 4.9 2221
H,,. =0.5405W, , —0.0262T1 +6.427 2bis  0.73 4.4 2185
H,,. =0.6682W,, —0.002971 —0.0261Lead 3 0.73 4.7 2223
H,, =0.5395W,, —0.2557T1 —0.0115Lead + 6.8876 3bis  0.73 4.6 2187
Hypy, = 0.7555W,,, —{0.0994( Lead + Trail)} ™" 4 0.80 3.9 2084
iy, = 0.6908W,,, —{0.1315(Lead + Trail)} " +3.3309 4bis  0.80 3.9 2081
H, . =0.7965W,,, —0.2707(Lead + Trail ) 5 0.79 3.9 2096
H oy, = 0.6972W,,, —0.2461(Lead + Trail ) + 4.1452 5bis  0.79 3.9 2083
H,, =0.6739W,, —0.0751Lead —0.2959Trail 6 0.85 4.0 2064
H_,. =0.6739W,,, —0.0751Lead —0.2959Trail +4.1823 6bis 0.85 3.9 2056
H,_.. =0.7377W,,, +0.0235T —0.3192Trail 7 0.81 3.8 2063
H,. =0.6656,,, —0.0026T7 —0.28899Trail +3.679 Tbis  0.81 3.7 2051
H,, =0.7494, , —0.3184Trail 8 0.81 3.8 2064
H_.. =0.6654W, , —0.2904Trail +3.6344 8bis 0.81 3.8 2056
Hpax = a1PCy + ayPCy + -+ a13PCy3 9 0.52 59 2373
Most important PCs (PCI1, PC2, PC4, PCI11) from ID 9 9bis 0.47 6.2 2478
Hpax = Weye + a1 PCy + a,PC, ...+ a13PCy3 10 0.80 3.8 2047
Most important PCs (PCI1, PC2, PC4, PC11) from ID 10 10bis 0.79 3.9 2075
Hpax = 0.63Weye — 0.10PC; + 0.05PC, + 0.02PC3 + 1.3 11 0.73 4.4 2174
Hpax = WC; + a1 PC; + a,PC, ...+ a43PCy3 12 0.78 4.0 2064
Random Forest using: Wext + Lead + Trail + TI 13 0.82 3.4 -

Random Forest using: Wext + Lead + TI 14 0.80 3.6 -
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Random Forest using: Wext + Lead 15 0.80 3.6 -
Random Forest using: Wext + Tl 16 0.82 3.6 -
Random Forest using: Wext 17 0.73 4.4 -
Random Forest using: First 13 PC 18 0.70 4.7 -
Random Forest using: PC1 + PC2 + PC4 + PC11 18bis 0.69 4.8 -
Random Forest using: Wext and the first 13 PC 19 0.83 3.6 -
Random Forest using: Wext +PC1 + PC2 + PC4 + PCl1 19bis  0.82 3.6 -
Random Forest using: WC and the first 13 PC 20 0.81 3.7 -
Random Forest using: WC +PCI + PC2 + PC4 + PCl1 20bis  0.81 3.7 -

3.2.2.3 Proposed techniques for canopy height estimation
— Multiple regression models using principal components

The previous section introduced a number of regression models developed in various
studies for the estimation of canopy height. However, these models require several metrics
derived from GLAS footprints, such as ground peak, canopy-top peak, leading and trailing
edge extents, and metrics derived from ancillary data (SRTM DEM), such as terrain index.
Moreover, the extraction of some metrics from GLAS waveforms, such as the location of
the ground peak, is error-prone, especially in dense forests, such as those in French Guiana.
Processing the GLAS data revealed that a considerable number of waveforms taken only
over dense forests had the canopy-top location easily identified. In fact, canopy penetration
of the waveform in densely vegetated areas was sometimes insufficient to reach the
ground; thus, either the ground peak was unidentifiable or the waveform did in fact reach
the ground but the return signal was not strong enough for reliable detection. These
difficulties in the detection of the ground peak affect the estimation of the trailing edge
extent and, ultimately, the estimation of the canopy height. Therefore, a statistical model
for canopy height estimation based only on the waveform samples might be an interesting
alternative. In this section, a principal component analysis of GLAS waveforms was
conducted. A stepwise linear regression model was built for canopy height estimation

using the principal components (PCs). A regression model using PCs takes advantage of
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model building on orthogonal variables. The regression model using the 13 first PCs for

canopy height estimation could be written as follows:

Hmax = alPC1 + a2PCZ + -+ a13PC13 (38)

where PC; are the principal components, and a; are the coefficients to be applied to the

principal components.
This model based on principal component analysis for canopy height estimation will be

compared to the regression models developed in the previous section to quantify the
benefits of using waveform data (PCA model) instead of metrics extracted from the

waveform.

— Random forest regressions using GLAS and DEM metrics
In Section 3.2.2.2, linear regressions were developed to estimate the canopy height for

each GLAS footprint. These regressions linked the canopy height estimated from the LD
data to the GLAS and SRTM metrics (waveform extent, leading edge, trailing edge, and
terrain index). In this section, the Random Forest (RF) technique was evaluated using the

following different configurations:

(1) All the metrics were used to estimate the canopy height (waveform extent “Wext”,

leading edge extent “Lead”, trailing edge extent “Trail”, and terrain index “TI”);

(2) The Trail metric was removed because in densely forested areas, such as tropical
forests, the LIDAR echo seldom reaches the ground, making the ground peak difficult to

identify; thus, the Trail metric is often inaccurate;

(3) To study the effects of Trail and TI on the canopy height estimates, the T1 and Trail
metrics were removed (only the Wext and Lead were used). This case shows promise in

the use of the SRTM DEM in a low relief area;

(4) Only Wext and TI were used to assess the impact of the Lead and Trail metrics on the

performance of Random Forest for canopy height estimates;
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(5) Only Wext was used. This case evaluated the impact of using Lead, Trail, and TI with
Wext for canopy height estimates. The relative importance of the different metrics used in
Random Forest for the canopy height estimates was also analyzed. Variable importance is
based on two measures. The first is a measure of accuracy obtained by quantifying the
mean squared error increase in the model by the removal of a variable. The other
importance measure is the Gini index, which quantifies the degree to which a variable
produces terminal nodes in the classification forest. Finally, to validate the generalization
performance of the Random Forest regressions, the error in the estimation of the canopy
height was assessed using a 10-fold cross validation. The performance of the different
configurations was assessed by comparing the canopy height estimates from Random
Forest regressions and the canopy heights extracted from the LD dataset, which were used

as the reference data.

Several studies have shown that, for many applications, the Random Forest technique is
extremely powerful in estimating biophysical parameters (e.g. [89]; [90]; [91]; [92)]).
Random Forest can be used as a classifier or a regression algorithm consisting of an
ensemble of regression or decision trees but takes a different approach [93]. A decision
tree is a graph-like structure that uses a branching method to illustrate every possible
outcome of a decision. The tree elements are called nodes (starting at a root node). The
lines connecting elements are called branches. A node extending from another node is
called a child node. Nodes without children are called leaf nodes, end-nodes, or leaves.
Nodes with children nodes, are also called internal nodes. At each internal node, one
feature is selected to make a separating decision. That is, the feature that separates
instances to classes with the best possible purity is selected. This purity is measured by
entropy, Gini index or information gain. Each branch represents the outcome of the test
and each leaf node represents a class label (decision taken after computing all features).
The paths from root to leaf represents classification rules. However the problem about the
decision tree algorithm, it is sensitive to slight changes of the data since these changes are
able to change the tree drastically (Decision trees resemble deterministic structures).
Therefore, the final structure, and as such, the final decisions are bugled. Random Forest
uses decision trees, but takes a different approach. Random Forests, rather than growing a

single, very deep tree that is carefully overseen by an analyst, Random Forest relies on
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aggregating the output from many shallow trees that are tuned and pruned without much
oversight. Some of these trees may have been grown from samples that said a certain
variable was the more important feature. Other trees may find completely different features
to be relevant. The idea is that the errors from many shallow trees will wash out when

aggregated and lead to a more accurate prediction.

3.2.2.4 Random forest regressions using principal components

Similar to the previous section, the first 13 principal components were used in the Random
Forest regression to link the canopy heights estimated from LD data to these PCs. This
model based on principal component analysis and Random Forest regressions was

compared to other the models performed in this study.

3.3 Results

3.3.1 Direct method

The comparison between the canopy height estimates from GLAS waveforms using the
direct method and the canopy height estimates from the LD dataset showed a high RMSE
of 7.9 m for the estimation of the GLAS canopy height and a low R? of 0.50 (Figure 3.5a).
This result can be explained by the fact that most of the footprints were in an area with a

slope between 5° and 10°.

3.3.2 Multiple regression models

3.3.2.1 Using GLAS and DEM metrics

The results of the regression models with 10-fold cross validation showed that the
regression models using the trailing edge extent (model IDs 4 to 8, Table 3.1) provided
slightly better estimations of canopy height. For these models, AIC ranged between 2051
and 2096, RMSE ranged between 3.7 and 4.0 m, and R? between 0.79 and 0.81. The best
results in estimating forest height were obtained with model ID 7bis (Table 3.1, Figure
3.5b). The contribution of the leading edge extent appeared to be weak in comparison to
the trailing edge extent when estimating the maximum canopy height. Indeed, model IDs
7 and 7bis, which used Trail, had better results than model IDs 3 and 3bis (Table 3.1),

which used Lead. Moreover, the use of information calculated from a DEM (terrain index)
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alone in the regression models had the lowest estimation accuracy for the canopy height

(model ID 2, Table 3.1, Figure 3.5¢) (RMSE of 4.9 m and R? of 0.72).

Figure 3.5. Canopy height estimates from GLAS data in comparison to estimated
canopy heights from the LD dataset: (a) using the direct method (model ID 1, Table
3.1), (b) using the model with Wext, TI and Trail (model ID 7bis, Table 3.1), and (c)

using the model with Wext and TI (model ID 2, Table 3.1).
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Figure 3.5 (cont.)
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3.3.2.2 Using principal components

The results of the PCA model for canopy height estimation showed an estimation accuracy
with an R? of 0.52 and an RMSE of 5.9 m (Figure 3.6a). To reduce the number of PCs
involved in the PCA model, stepwise regression was used to extract the most important
principal components. The resulting model, which used 6 principal components containing
76.3% of the waveforms’ inertia, showed an R? of 0.47 and an RMSE of 6.2 m. Figure
3.6a shows that the PCA model appeared to overestimate canopy heights for canopies with
heights lower than 20 m. To improve height estimation of these canopies, a regression
model incorporating both the first 13 principal components and the waveform extent was

performed:

Hmax = Wext + a]_PCl + a2PCZ + -+ a13PC13 (39)

The new PCA regression model for canopy height estimation accounting for the waveform
extent showed better canopy height estimation results in comparison to the PCA model
without information on the waveform extent, with an RMSE of 3.8 m and an R? of 0.80
(Figure 3.6b). Using only the seven most important components from the stepwise
regression, the R? decreased to 0.79 and the RMSE increased to 3.9 m. Furthermore, using
only the first three principal components with the waveform extent, the R? decreased to

0.73, and the RMSE increased to 4.4 m.
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Next, the waveform extent was replaced by a waveform extent factor class (WC): (1) WC;
for waveform extents lower than 20 m, (2) WC> for waveform extents between 20 and 40
m, and (3) WC;s for waveform extents higher than 40 m. The resulting regression model

using all the principal components and the WC has the following form:

Hmax= WC,-+a1PC'1+---+a13PC13 (310)

Where WC; is the intercept to be applied to the model depending on the waveform extent
(i =1, 2, or 3). The values of WC; are 7.78, 25.83 and 32.01 for WCi, WC,, and WCs,
respectively.

The new PCA regression model for canopy height estimation with information on the
waveform extent showed slightly less canopy height estimation accuracy in comparison to
model ID 9 (Table 3.1), with an RMSE of 4.0 m and an R? of 0.78 (Figure 3.6c¢).

Figure 3.6. Comparison between canopy height estimates using the PCA regression
models and those estimated from low-density airborne LiDAR data (LD) (a) using
the first 13 PCs, (b) using the first 13 PCs with the waveform extent, and (c) using

the first three PCs with the waveform extent.
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Figure 3.6 (cont.)
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Like previously, stepwise regression was used to extract the most important PCs. The
resulting model using using PCs and containing 76.3% of the waveforms’ inertia showed
slightly lower performance in comparison to the PCA model that used all the PCs and the
WC factor, with an RMSE of 4.2 m and an R? of 0.76. Figure 3.7 shows the canopy height
estimates from the LD and GLAS datasets. Good agreement was observed between the

two canopy height maps.
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Figure 3.7. (a) Map of canopy heights estimated from the LD dataset; (b) Map of
canopy heights estimated from the GLAS dataset using the PCA model; (c)
Overlapping of the two maps over a small area of French Guiana.
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Figure 3.7 (cont.)
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3.3.3 Random forest regressions

3.3.3.1 Using GLAS and DEM metrics

To analyze the precision of the canopy height estimation using Random Forest, several

configurations were tested, and the results reveal that the best configuration for canopy

height estimation is the one that uses all the metrics: waveform extent, leading edge,

trailing edge, and terrain index (model ID 13, Table 3.1). The difference between the

GLAS canopy height estimates and those estimated from the LD (reference data) in the

first configuration had an RMSE of 3.4 m and a coefficient of determination R? of 0.82
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(Figure 3.8.a). Moreover, the variable importance test of the metrics showed that the
GLAS canopy height is best explained using Wext, with an importance factor almost three
times higher than those for the other three metrics; meanwhile, the other metrics (Trail,
Lead, and TI) had almost the same importance. Other configurations using Wext, Lead,
and TI (Figure 3.8.b); Wext and Lead; and Wext and TI (model IDs 10, 11 and 12,
respectively, Table 3.1) showed a slightly lower precision in the canopy height estimation
(RMSE) (approximately 3.6 m). The estimation of the GLAS canopy height using only
Wext had an RMSE of 4.4 m with an R? of 0.73 (Figure 3.8.c). These results show that, in
a low relief area, the use of other metrics in addition to the waveform extent only slightly
improved the precision of the estimation of canopy height regardless of which metric was
used. The use of one metric (among Trail, Lead and TI) in addition to Wext improved the
estimation of canopy heights by approximately 1 m. Moreover, the use of more than one
of these metrics in addition to Wext did not improve the estimation of canopy heights.

Figure 3.8. Comparison of estimated canopy heights using Random Forest
regressions and estimated canopy heights from the LD dataset for three metrics
configurations: (a) Wext + Lead + Trail + TIL; (b) Wext + Lead + TI; and (c) Wext.
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Figure 3.8 (cont.)
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3.3.3.2 Using principal components

In this section, canopy height estimations with Random Forest regressions using PCs were
performed with different configurations. Using the first 13 PCs in the Random Forest
regression resulted in better canopy height estimation precision (RMSE =4.7 m, R?=0.7)
in comparison to the linear regression model that used the first 13 PCs in Section 3.3.31
(RMSE = 5.9 m, R? = 0.52). The variable importance test showed that GLAS canopy
height is best explained using PC1, PC2, PC4, and PC11 (variance 62.38%). Using only
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these four PCs in the Random Forest model had a similar result (RMSE = 4.8 m, R? =
0.69). Next, the incorporation of the waveform extent in addition to the first 13 principal
components greatly improved the precision of the canopy height estimation (RMSE = 3.6
m, R? = 0.83) in comparison to the RF regressions without Wext. In addition, this result is
slightly better to the one obtained using a linear multiple regression with the first 13 PCs
and Wext (RMSE = 3.8 m). Using the most important variables (Wext, PCI, PC2, PC4,
and PCI11) in the RF regression yielded similar results, with an RMSE of 3.6 m and an R?
of 0.82. Finally, replacing the waveform extent by the waveform extent factor class (WC)
in addition to the first 13 PCs in the Random Forest regression for canopy height estimation
showed similar results (RMSE = 3.7 m, R? = 0.81). Similar findings were noted when
retaining only the most important variables (WC, PCI, PC2, PC4, and PCI1), with an
RMSE of 3.7 m and an R? of 0.81. Figure 3.9 shows examples of the comparison between
the GLAS canopy heights using PCs and the Random Forest technique and the reference

canopy heights estimated from the LD dataset.

3.3.4 Model performance in different forest conditions

In previous sections, different models were applied on GLAS footprints over French
Guiana in order to estimate forest canopy heights. Most models performed well, with an
estimation precision lower than 4.5 m on the estimation of canopy heights. In this section,
the two best models (model 7bis and 19, Table 3.1) were tested for different slopes and

forest types, in order to analyze how the models would adapt in different forest conditions.



Chapter 3 62

Figure 3.9. Comparison between canopy height estimates using the most important
PCs in Random Forest regression models and those estimated from Low Density
airborne LiDAR data (LD) using (a) the most important PCs (PC1, PC2, PC4, and
PC11) and (b) the most important PCs with the waveform extent.
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In our study site, the distribution of the slopes shows that 80% are lower than five degrees,
17% between five and 10 degrees and 3% higher than 10 degrees. Based on these results,
GLAS footprints were divided into two slope categories: GLAS footprints that fall on
slopes lower than five degrees and GLAS footprints that fall on slopes higher than five

degrees. Because the slopes are relatively weak in French Guiana, model validation for
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high slopes was not possible. Model validation over these two slope categories showed
that the RMSE on the estimation of canopy heights slightly increased from 3.3 to 4.0 m
and from 3.5 to 4.8 m for PCA and the linear regression model, respectively (models 7bis
and 19, Table 3.1). However, the PCA model is slightly better at correcting the effects of
the slopes in comparison to the linear regression model with a 0.7 m increase in the RMSE

vs. 1.3 m for the linear model.

Forest landscape classes in French Guiana were defined in a previous study carried out by
Gond et al. [77]. Gond et al. [77] interpreted 33 remotely sensed landscape types (LTs)
using VEGETATION/SPOT images. Five of the 33 classes occupied 78% of the forests in
the area. The method utilized in their study used a multivariate analysis of remote sensing
data, field observations and environmental data. The defined LTs were LT8, LT9, LT10,
LTI11 and LT12. Model application over the different LTs showed that the RMSE on the
estimation of canopy is consistent across the four LTs (LTS8 to LT11). The RMSE ranged
between 2.8 and 3.6 m for the PCA model (model 19, Table 3.1), and between 3.5 and 3.9

m for the linear regression model (model 7bis, Table 3.1).

3.3.5 Error on the estimation of biomass

The objective of this section is to analyze the impact of the canopy height estimation precision
on the Above ground Carbon Density (ACD) and Above Ground Biomass (AGB) estimation
precision. Asner et al. [48] proposed a general plot aggregate allometry in order to estimate

the above ground carbon density (ACD):

ACD = aH* .BA*. Wy (3.11)

Were H is the LiDAR derived top-of-canopy height, BA the basal area and Wp the wood
density. Moreover, Asner et al. [40] showed that the basal area (BA) and the wood density
(Wp) were dependent on the LiDAR derived top-of-canopy height for all the studied tropical
forests (Hawaii, Madagascar, Peru, Panama, and Colombia). Hence, according to their study

the previous allometric relation could be written as:

ACD = aH*(b.H)*(c+d.H)" (3.12)
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The relationship between the precision on the estimation of canopy heights and the precision

on the estimation of ACD and AGB can be written as:

AAGB _aACD | o dy )lan s
AGB ~ AcD _ |“TP a+ <)M G-13)

Where AAGB/AGB is the relative precision on the estimation of above ground biomass,
AACD/ACD is the relative error on the estimation of the above ground carbon density. The
coefficients a, B, and y were estimated by Anser et al. [40] using 754 field plots across five
tropical countries (Hawaii, Madagascar, Peru, Panama, and Colombia) and many vegetation
types. The coefficients ¢ and d were also estimated by Anser et al. [40] for different regional
forests. In our analysis of the canopy height estimation precision impact on the AGB and
ACD estimation precision, the chosen coefficients ¢ and d were those estimated from the
moist Colombian forest [40]. These coefficients were chosen due to the fact that the French
Guiana’s forest is a moist tropical forest and close in location to the Colombian forest.
Finally, accuracy on the estimation of canopy heights of 3.6 m will lead to a relative error on
the estimation of the ACD and AGB of about 14.1% (for a mean canopy height of 30 m). The
United Nations Program on Reducing Emissions from Deforestation and forest Degradation
(REDD) recommends biomass errors within 20 Mg/ha or 20% of field estimates for evaluating
forest carbon stocks, but should not exceed errors of 50 Mg/ha for a global biomass map at a
resolution of 1 ha ([94]; [95]). Finally, in the case of high relief, where the precision on the
estimation of canopy height exceeds 5 m, the precision on the estimation of biomass will be at

best 20%.

3.4 Discussion

Our findings regarding the strong correlation between the waveform extent and the in-situ
canopy heights are in accordance with the studies of Lefsky et al. [44]; Hilbert and
Schmullius [62]; and Baghdadi et al. [72]. They found that this metric is one of the most
important metrics used in canopy height estimation models. However, waveform extent is
not the sole metric used for canopy height estimation, as it can be affected by external

sources such as terrain relief. Thus, in order to obtain more precise canopy height
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estimation results, additional metrics are required. Previous studies developed metrics such
as the trail, lead, and the terrain index (TI) in order to increase the canopy height estimation
precision. The TI index was first developed by Lefsky et al. [62] and the lead and trail were
first introduced in Lefsky ef al. [78]. These metrics were later used in many other studies
like Hilbert et al. [62]; Pang et al. [64]; Chen et al. [71] and Baghdadi et al. [72]. These
metrics which were mainly used for the correction of the slope, proved to be very useful,
as they increased significantly the precision on the estimation of canopy height models
([44]; [71]; [62]). Moreover, the waveform extent and the trail metrics proved to be very
successful in estimating canopy heights even in low relief areas like our study site. Indeed,
the linear regression models which used the waveform extent and the trail metric showed
a decrease in RMSE of at least 3.9 m in comparison to the direct method (for example,
RMSE reaches 3.7 m in using the linear model with Wext, Trail and TI in comparison to
RMSE of 7.9 m for the direct method). In contrast, the contribution of the lead in the canopy
height estimation models seemed to be weak in this study. Similar findings were noted in
the study of Baghdadi e al. [72] which also estimated canopy heights over flat terrain.

Our results also demonstrated that canopy height estimation using random forest
regressions is better in comparison to the linear models, even when using the same metrics.
Indeed, the random forest model which uses only the waveform extent and the terrain index
(TT) showed a 1.3 m decrease in RMSE in comparison to the linear model which uses the
same metrics. This is probably due to the fact that the relation between the GLAS metrics

and canopy heights is not strictly linear.

The metric based estimation methods applied in this study include some potential error
sources. These error sources are related to the precision of the extracted GLAS metrics
especially metrics extracted using vegetation or ground information such as the lead and
trail. Indeed, over dense vegetated areas, the precision on the localization of the ground
peak decreases significantly, and this will lead to lower precisions on the estimation of the
trail metric and ultimately on the canopy height estimation. To solve this issue, another
technique used in this study for canopy height estimation was the principal component
analysis (PCA) of the waveform. This technique does not require metrics to be extracted
from the GLAS waveform in order to estimate canopy heights, as it works using the
principal components of the raw LiDAR waveforms. The results of the PCA based models

for canopy height estimation showed promising results when estimating canopy heights
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using either linear regressions or random forest regressions, with an RMSE of 5.9 and 4.7
m for the linear regressions and RF models, respectively. In addition, adding the waveform
extent metric to these models showed slightly better estimation results in comparison to
the metric based methods, with an RMSE ranging between 3.8 to 4.4 m for the linear

regression models and around 3.6 m for the random forest models.

Other sources of error on the estimation of canopy heights are terrain slopes. Indeed over
sloping areas, canopy height estimation precision decreases with the increase of the slope
([631; [72]; [71]). In our study area of low relief, an increase in RMSE of 0.7 m for the best
PCA model and 1.3 m on for the best metric based model were noted in 5° to 10° slope
areas in comparison to flat areas (0 to 5° slopes). However, over higher slopes (> 10°), the
error on the estimation of canopy heights is expected to be higher. In this study, the SRTM
90 m DEM was used, which is the only available DEM over large areas. The future
availability of finer DEMs such as the SRTM 30 m or the TanDEM-X 12 m might improve

the estimation of canopy heights.

Results showed that the canopy height estimation error using ICESat/GLAS (RMSE about
3.6 m in this study) leads to a relative error on the estimation of aboveground biomass of
about 20%. This relative error will increase to more than 34% for canopy height estimation
precision of 5 m or higher. Thus, the United Nations Program on Reducing Emissions from
Deforestation and forest Degradation (REDD) recommendations may not be satisfied over
forested areas with steep slopes because the canopy height estimation precision will be

higher than those estimated in this study.

3.5 Conclusions

Estimating forest canopy height from large-footprint satellite LiDAR waveforms is
challenging given the complex interaction between LiDAR waveforms, terrain, and
vegetation, especially in dense tropical and equatorial forests. In this Chapter, canopy
height in French Guiana was estimated using multiple linear regression models and the
Random Forest technique (RF). This analysis was either based on LiDAR waveform
metrics extracted from the GLAS (Geoscience Laser Altimeter System) spaceborne

LiDAR data and terrain information derived from the SRTM (Shuttle Radar Topography
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Mission) DEM (Digital Elevation Model) or on Principal Component Analysis (PCA) of
GLAS waveforms. Results show that the best statistical model for estimating forest height
based on waveform metrics and digital elevation data is a linear regression of waveform
extent, trailing edge extent, and terrain index (RMSE of 3.7 m). For the PCA based models,
better canopy height estimation results were observed using a regression model that
incorporated both the first 13 principal components (PCs) and the waveform extent (RMSE
= 3.8 m). Random Forest regressions revealed that the best configuration for canopy height
estimation used all the following metrics: waveform extent, leading edge, trailing edge,
and terrain index (RMSE = 3.4 m). Waveform extent was the variable that best explained
canopy height, with an importance factor almost three times higher than those for the other
three metrics (leading edge, trailing edge, and terrain index). Furthermore, the Random
Forest regression incorporating the first 13 PCs and the waveform extent had slightly-
improved canopy height estimation in comparison to the linear model, with an RMSE of
3.6 m. In conclusion, multiple linear regressions and RF regressions provided canopy
height estimations with similar precision using either LIDAR metrics or PCs. However, a
regression model (linear regression or RF) based on the PCA of waveform samples with
waveform extent information is an interesting alternative for canopy height estimation as
it does not require several metrics that are difficult to derive from GLAS waveforms in
dense forests, such as those in French Guiana. Nevertheless, such approach was only
applied on a terrain with weak slopes (<5°), and should be tested over sloping areas to test

its effectiveness.






CHAPTER 4:

FOREST CANOPY HEIGHT MAPPING OVER FRENCH

GUIANA USING SPACE AND AIRBORNE LIDAR DATA

4.1 Introduction

In this chapter, airborne and spaceborne LiDAR canopy height estimates in combination
to ancillary data were used to create a canopy height map covering the entire French
Guiana. The LiDAR canopy height datasets used were the airborne LiDAR canopy height
estimates covering 4/5 of French Guiana, as well as GLAS canopy height estimates. For
the ancillary datasets, globally available datasets of vegetation indices, precipitation,
terrain indices, geological, and forest landscape types were selected. The vegetation indices
were derived from the Enhanced Vegetation Index (EVI) product. The precipitation data
were provided from the NASA Tropical Rainfall Measuring Mission (TRMM). The terrain
indices were derived from the Shuttle Radar Topography Mission (SRTM) data. The
geological and the forest landscape type maps were provided by Delor et al. [76] and Gond
et al. [77] respectively.

For the creation of the wall-to-wall canopy height maps, a two-step procedure was
implemented using well established techniques. First, the ancillary data were modelled to
the reference datasets using the Random Forest (RF) regression. Next, the regression-
kriging technique was used, first in order to krige the canopy height residuals (reference

canopy heights — RF estimated canopy heights) and then to add the results to the wall-to-
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wall maps obtained from the RF regressions. Finally, all the created maps were validated
using an independent dataset of airborne LiIDAR canopy heights estimates. A description
of the methodology used for the creation of the wall-to-wall canopy height maps is given
in Section 4.2, followed in Section 4.3 by the results. Finally, the discussion is presented

in section 4.4 and the conclusions in section 4.5.

4.2 Materials and methods

In order to estimate canopy heights at un-sampled locations by LiDAR data (GLAS or LD
datasets) a two-step procedure was conducted based on the statistical and spatial
relationship between the LiIDAR canopy height estimates and the ancillary variable datasets
(GEOL, LT, Rain, Slope ...) using widely used empirical estimation methods: Random
forest regressions and ordinary kriging (e.g. [66]; [65]; [96]; [97]). The LD and GLAS
datasets will not be used conjointly in the canopy height mapping procedure (a map using
each dataset will be produced). This is due to two main reasons: (1) To be able to compare
the precision of the maps obtained by using airborne LiDAR to those obtained using
spaceborne LiDAR; (2) The LD dataset is denser, and more precise in comparison to the
GLAS dataset, therefore, adding the GLAS dataset to the LD dataset will not improve the
precision of the obtained map. Finally, for the validation of the models, the canopy heights
estimated from the transverse lines from LD datasets (about 7% of the LD dataset, named
LD val), and the canopy height estimates from the HD dataset will be used. The remainder
of the LD canopy height estimates (93% of the LD dataset, named LD _cal), and the canopy
height estimates from the GLAS dataset will be used for model building. The datasets for

model building will be used separately.

4.2.1 Canopy height mapping using regression-kriging

We mapped canopy height from LiDAR data at a 250 m resolution using the regression-
kriging technique (RK). RK is a spatial prediction technique which combines the regression
value of explanatory variables (ancillary datasets) and the kriging of the regression
residuals (reference canopy heights — RF estimated canopy heights) ([98]). This technique
was developed primarily to account for the correlation between environmental variables
and the unsatisfactory goodness of fit of the spatial variance model of the dataset ([99])

thus preventing the stationarity of the studied autocorrelated variables, like the RF residuals
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that are centred at 0. Finally, regression kriging or RK, is the technique which fits
separately the trend and the residuals and then sum them ([100]; [101]). RK can be

expressed as follows:

(s0) = Mlso) + &(s0) = Mlsg) + ) A e(s0) @)
i=1

Where m(s,) is the fitted trend, é(s,) is the kriged residual, Ai are the kriging weights
determined by the spatial dependence structure of the residual and e(s;) is the residual at

location s;.

4.2.2 Canopy height trend mapping using Random Forest regressions

For the m(s,) component from equation 4.1 we used the Random Forest regression
technique (RF). RF which was developed by Breiman [93] was employed to estimate
canopy heights over a regular grid with a 250 m resolution in French Guiana. The Random
Forest (RF) technique is known to be a performant regression method that is becoming
widely used by the remote sensing community for, among other, canopy height estimation
(e.g. [65]; [102]), and biomass estimation ([32]; [96]; [97]). The main advantages of
random forest are its incorporation of continuous or qualitative predictors without making

assumptions about their statistical distribution or covariance structure [93].

First the 12 predictors described in section 2.2.3 were used in the RF model in an attempt
to explain the canopy height estimates from either the LD cal dataset or the GLAS dataset
(Figure 4.1). Next, to select the best predictors for explaining canopy height, the algorithm
of Genuer et al. [103] which is a two-step procedure was used. The first step is to sort the
variables based on their initial scores of importance, and remove the variables of small
importance. The variable score of importance is evaluated based on the increase of error in
the prediction when removing a certain variable. The second step consists of building the
nested collection of RF models involving the k variables (k=1 to m where m is the number
of remaining variables with the highest score of importance), and selects the variables in
the model giving the smallest out-of-bag error. After selecting the best variables, the RF

model was calibrated, and applied to all of the study area in order to create a wall-to-wall
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canopy heights trend map (Figure 4.1). Random Forest is called an ensemble classifier
because it uses a tree-based classifier multiple times and aggregates the results. Each tree
is grown using a randomized subset of predictors. This procedure is expected to decrease
the correlation among the trees, which improves model accuracy ([93]). The final
prediction decision is based on a voting system of all the predictions from the decision trees

that have been created.

4.2.3 Ordinary krigging of regression residuals

The wall-to-wall map created in the previous section using RF does not take into account
the spatial correlation between the canopy heights, as it is a non-spatial method and
assumes spatial independence of the predictors and the predicted variables. However, some
of the unexplained variance in the RF predictions could be due to some sort of spatial
correlation between the canopy heights. Thus, a spatial prediction model is required when
data are spatially dependent. In this study we used the ordinary kriging (OK, Figure 4.1)
model which allows the interpolation of un-sampled data based solely on a linear model of
regionalization known as the semivariogram (the semivariogram is a weighing function
and is required for the kriging). The semivariogram plots the semivariance y as a function

of the distance between samples / using the following function:

N(h)
1
Y = Guas Z [2(5) — 2(5: + W2 42)

Where y(h) is the semivariance as a function of the lag distance /4, N(k) is the number of
pairs of data separated by /4, and z is the estimated canopy height at locations u, and (u.+h)
([104]). Semivariograms have three main parameters: (1) the nugget which is the
semivariance at a lag distance of zero, (2) the sill is the semivariance where there is no
spatial correlation; (3) the range is the distance at which the sil/l is reached. After plotting
the sample semivariogram which describes the spatial autocorrelation of a given dataset, a
mathematical function is fitted to this semivariogram in order to represent the range, the
sill and the nugget. Thus, the datasets sample variogram can now be represented using a
function. After model fitting of the sample semivariogram, ordinary krigging is then used,

which estimates values Z" at location u using the following equation:
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Z'So) = ) 2:2(5) (43)
i=1

Where z is the data, in this case the canopy height at location S; A;i are the weights of n
neighbouring samples [104]. The number of n neighbouring points is user defined. The
weights A depends on the fitted semivariogram function, the distance to the prediction
location, and the spatial relationships among the measured values around the prediction

location.

4.2.4 Effects of LIDAR sampling density on precision of the mapped
canopy heights.

The purpose of the current analysis was to measure how the canopy height maps accuracy
are affected by the spatial sampling of LiDAR data. Several subsets of LiDAR data
densities were built from the LD cal dataset in order to study the impact of the spatial
sampling of future spaceborne LiDAR systems on the precision of the created canopy

height map.

In total, six configurations corresponding to flight-line spacings of 5, 10, 20, 30, 40 and 50
km were considered (with respect to the flight plan of the LD cal dataset). For each
configuration, a subset was extracted from the LD _cal dataset where the flight-line spacing
of the subset met the criterion of the configuration. For example, for the configuration with
a flight line spacing of 5 km, the first selected flight line is the first available flight line
from the LD_cal dataset starting from the west. Next, all flight lines with a distance of a
multiple of about 5 km from the first selected flight line were selected. Finally, using each
of the LD _cal subsets obtained and named respectively LD 5 (0.29 pts/km?), LD 10 (0.11
pts/km?), LD 20 (0.08 pts/km?), LD 30 (0.05 pts/km?), LD 40 (0.04 pts/km?), and LD 50
(0.03 pts/km?), a corresponding canopy height map was created. The canopy height maps
were created using the same procedure described in sections 3.1, and 3.2 which consists at
first, creating a canopy height map using Random Forest regressions with each one of the
LD cal subsets as reference data and the ancillary variables as predictor variables for the
model, next each canopy height residual from each model were kriged and added to the

corresponding canopy height map.
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Precision of the resulting kriged canopy height maps using the low-density LiDAR datasets
was estimated for each LD cal subet by comparing these canopy height maps to the
validation datasets (HD and LD _val).

Figure 4.1. The procedure used in order to create a wall-to-wall map of canopy

heights over French Guiana.
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4.3 Results

4.3.1 Canopy height mapping using Random Forest regressions

A Random Forest regression model was built for each one of the two calibration datasets
(GLAS, LD cal) with all the twelve predictors (Table 2.2). The first calibration dataset
used in the Random Forest regression contains the canopy height estimates obtained from
GLAS waveforms using the PCA and RF based canopy height estimation model [105].
After creating the Random Forest regression models using the twelve predictors, only the
predictors that best explained the canopy heights were selected using the variable selector
test. Results showed that the best predictors were the same for both calibration datasets.
The best variables according to their importance are respectively: the roughness, the mean
value of the EVI time series data, the geology, the mean value of the rainfall, and the slope.
Next, each calibration dataset (GLAS, LD cal) and the best predictors were used to fit a
RF model. Then each fitted RF model was used to create wall-to-wall canopy height maps
of the entire French Guiana forest (Figure 4.2). Finally, each wall-to-wall canopy height
map was validated against both, the LD val and the HD datasets. Results showed that the
precision of the maps was almost the same when using different calibration datasets (Figure
4.3, Table 4.1). Indeed, when using the RF model with the GLAS dataset, the RMSE for
the canopy height estimates was 6.5 m (R? of 0.55). The precision of the estimates slightly
increased when using the RF model with the LD cal dataset, with an RMSE on the canopy
height estimates of 5.8 m (R? of 0.62). Finally, the bias (mean (validation canopy heights
— estimated canopy heights)) for both the GLAS and LD cal datasets was very low (<
0.2m).
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Figure 4.2. Wall-to-wall map of French Guiana with Random Forest regressions
using as reference data the canopy height estimates from: (a) GLAS dataset; (b)
LD_cal dataset.
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Figure 4.2 (cont.)
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Figure 4.3. Comparison between the reference canopy heights of the validation
datasets and the canopy height estimates using Random Forest regressions: (a)
GLAS dataset; (b) LD_cal dataset.
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4.3.2 Canopy height estimation using regression-kriging

After creating the wall-to-wall maps using the Random Forest regression models, the
canopy height residuals (reference canopy height — estimated canopy height) were kriged
from each model in an attempt to increase the precision of the canopy height estimates
using the Random Forest regressions for both the GLAS and LD cal datasets. For each
canopy height residual map issued from the GLAS dataset or the LD cal dataset, a
semivariogram was generated. Results showed that semivariograms issued from each of
the two height residual map presented similar patterns that could be best-fitted using an

exponential model:

y(h) = §? + o? [1 —exp (%)] 4.4)
Where S? is the nugget, o° the sill, and ‘a’ the range of the semivariogram (y). For the
different canopy height residual datasets, the fitted semivariograms presented similar
nuggets, sills, and ranges, which ranged respectively between 15 and 18 m?, 28 and 32 m?
and 4421 and 4823 m. Next, the fitted semivariograms were used in the kriging of the
canopy height residuals for each of the GLAS and LD _cal datasets. . In total, two residual
maps were obtained. Then, each residual-kriged map was added to the wall-to-wall map
corresponding to that model (Figure 4.4). These maps were then validated using the
validation datasets (LD val and HD) (Figure 4.5, Table 4.1). Results showed that using the
regression-kriging technique increased the estimation precision of these maps. Indeed, for
the canopy heights map obtained using the GLAS dataset, the RMSE on the canopy height
estimation decreased from 6.5 m with random forest regression to 3.6 m (R? of 0.76) with
regression-kriging. For the canopy heights map obtained using the LD cal dataset, the
RMSE on the canopy height estimation decreased from 5.8 to 1.8 m (R? of 0.95) with
regression-kriging. Moreover, the bias for the two datasets was very low (< 0.2 m). These
results show that the maps derived from the LD cal datasets and using regression-kriging
clearly captured finer local variations when estimating canopy heights. Finally, the canopy
height estimates uncertainty from both maps appears to be correlated with the location of
the reference dataset measurements (Figure 4.6). For the GLAS dataset, the standard
deviation of the canopy height estimates uncertainty ranged between 4 and 7 m (Figure

4.6a). In addition, the standard deviation values appear to be lower near the location of the
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GLAS canopy height estimates, and increases with increasing distance until they reach 7
m. Similar results appear for the LD cal dataset (Figure 4.6b). With lower standard
deviations in areas with denser LiDAR acquisitions (i.e. north of French Guiana) and
higher standard deviations with sparser LIDAR acquisitions (i.e. center of French Guiana).
However, due to the generally denser dataset in comparison to the GLAS dataset, the
standard deviation of the canopy height estimates uncertainty ranged between 1 and 4 m
(Figure 4.6b).

Figure 4.4. Wall-to-wall map of French Guiana with Random Forest regressions
and residual kriging using as reference data the canopy height estimates from: (a)
GLAS dataset; (b) LD dataset.
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Figure 4.4 (cont.)
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Figure 4.5. Comparison between the reference canopy heights of the validation
datasets and the canopy height estimates using Random Forest regressions and
residual-kriging: (a) GLAS dataset; (b) LD _cal dataset.
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Figure 4.6. Wall-to-wall standard deviation map (STD_DEYV) of the the canopy
height estimates uncertainty for: (a) GLAS dataset; (b) LD_cal dataset.

3°0N 3°30N 4°0N 4°30'N 5°0'N 5°30'N

2°30'N

e Km

0

(m)

STD_DEV

4

50

100

54°30'W 54°0'W 53°30'W 53°0'W 52°30'W

(@)

52°0'W

51°30'W

51°0'W



Chapter 4 84

5°30'N

4°3|0'N 5°0'N

4°0'N

3°30'N
(m)

3°0'N

STD_DEV

-_—

2°30'N

Km
0 50 100

54°30'W 54°0'W 53°30'W 53°0'W 52°30'W 52°0'W 51°30'W 51°0'W

(b)

4.3.3 Relationship between LiDAR flight lines spacing and the accuracy
on the kriged canopy height

The analysis performed in the previous section showed a significant improvement of the
canopy height estimation precision when adding the kriged residuals. This improvement
was observed for the two calibration datasets. In the case of the LD cal dataset, the
improvement was the highest from 5.8 m without the height residual kriging to 1.8 m with
the residual kriging. This is due to the high density of the canopy height estimates in this
dataset. Indeed, for the LD cal dataset, canopy height estimates are distributed over flight
lines with an average distance of about 500 m, while the canopy height estimates for the

GLAS dataset are distributed over flight lines with an average distance of 20 km.
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Therefore, in this section the precision of the kriged canopy height maps with different
LiDAR densities was assessed. The purpose was to analyse the impact of the LiDAR flight
line spacing from the LD _cal dataset on the precision of the kriged canopy height map. In
order to create canopy height maps using the LD cal subsets, first the best predictor
variables to be used in the Random Forest regressions were selected using the procedure
mentioned in section 3.1. Results indicated that for the LD cal subsets, the predictor
variables that best explained canopy heights were the same as those for the GLAS and
LD cal datasets. The predictor variables were namely the roughness, the mean value of the
EVI time series data, the geology, the mean annual rainfall, and the terrain slope. Results
showed that the precision of the produced canopy height maps using RF regressions with
the LD cal subsets without kriging of the residuals was in the same order as the canopy
height maps obtained with the two calibration datasets (GLAS and LD cal) (Table 4.1).
For these subsets, the RMSE on the canopy height estimates ranged between 5.7 and 6.2
m (R? between 0.60 and 0.65). In order to add the kriged height residuals to the canopy
height maps, the semivariograms of the canopy height residuals for each LD cal subset
were fitted. Similar nuggets (~30 m?) sill (~8 m?), range (~4500 m) were obtained as those
from the canopy height residuals from the GLAS and LD _cal datasets (Figure 4.7). When
adding the kriged residuals corresponding to each of the LD cal subsets (Figure 4.8), the
precision on the canopy height estimate maps increased as expected (Table 4.1). This
increase in the precision on the canopy height estimation was found to be negatively
correlated with the LiDAR flight lines spacing of the LD subsets. For the LD 5and LD 10
subsets, the precision on the canopy height estimates were similar to the results obtained
with the LD cal dataset (RMSE=1.8 m, R?>=0.94). However, for the LD 20, LD 30,
LD 40, and LD 50 subsets, the precision on the canopy height estimates decreased from
RMSE=3.3 m for LD 20 to RMSE=4.8 m for LD 50.
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Figure 4.7. Examples of fitted semivariograms of the canopy height residuals from:

(a) LD_5; (b); LD _20; (¢) LD_50.
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Figure 4.8. Examples of wall-to-wall maps of French Guiana with Random Forest
regressions and residual kriging using as reference data the canopy height estimates
from: (a) LD_5; (b) LD_20; (¢) LD_50.
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Figure 4.8 (cont.)
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Figure 4.8 (cont.)
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Figure 4.8 (cont.)
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Figure 4.8 (cont.)
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Table 4.1. Comparison between the canopy heights of the validation datasets
(LD_val and HD) and the canopy height estimates using Random Forest regressions
and residual-kriging.

Using RF Using regression-kriging

Dataset | Bias (m) | RMSE (m) | R*> | Bias (m) | RMSE (m) | R?

GLAS |0.14 6.5 0.5510.09 4.2 0.75
LD cal | 0.15 5.8 0.62]0.12 1.8 0.94
LD 5 |0.06 5.7 0.65]0.12 1.8 0.94
LD _10 | 0.09 6.0 0.61 | 0.07 1.8 0.94
LD _20 | 0.09 6.0 0.63 | 0.14 3.3 0.75
LD 30 |0.14 6.2 0.60 | 0.05 3.9 0.75
LD 40 |0.11 6.1 0.62 ] 0.09 3.9 0.74
LD_50 | 0.07 6.2 0.60 | 0.13 4.8 0.66

4.4 Discussion

For the first time, airborne and space borne Lidar data were used separately to predict and
map (potential) forest heights at the scale of a tropical country. Our approach is based on
the merging of LiIDAR canopy height estimates (airborne and spaceborne) with ancillary
environmental and geographical data and using and regression-kriging. Because of this
approach, both calibration and validation are way more robust than in previous studies.
Error and bias were also lower than previous studies. Indeed, using random forest
regressions instead of linear models such as the one presented in studies like Hudak et al.
[66] produced canopy height estimates with no bias regardless of the LiDAR dataset
density used, nor the type of LIDAR data (airborne or spaceborne). High bias estimates are
due to the nature of the linear regression models that are high-bias/low-variance models,
and therefore the problem facing these types of models is reducing the bias especially with
larger datasets. This problem is non-existent in RF model due to their opposite nature (low-

bias/high-variance).

Moreover, our canopy height estimates using random forests show precisions slightly
higher comparable to a recent study ([65]). The study of Simard et al. [65]; which estimated
canopy heights globally and obtained a precision on the canopy height estimates of 6.1 m

(RMSE) using a RF regression with GLAS data and some common predictor variables
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used in this study. Comparing their global canopy height map with our validation dataset
(LD_val and HD) showed a slightly higher RMSE of 7.3 m (Figure 4.9). Our slightly better
results can be attributed to: (1) using variables better correlated with canopy heights, and
(2), our canopy height estimates used for model calibration, especially those obtained from
airborne LiDAR are more precise in comparison to their spaceborne counterparts. In
addition, the canopy height maps estimated in this study were also compared to the global
canopy height map produced in the study of Lefsky et al. [47]. The comparison showed
very poor correlations with an RMSE of 12.4 m (R? insignificant). This is mainly due to
the canopy heights obtained in the study of Lefsky et al. [47] representing Lorey’s height
while the canopy heights in our study represent maximum canopy height. Lorey’s heights

are generally expected to be lower than maximum canopy heights ([65]).

However, neither our approach, nor the approaches used in Simard et al. [65] or Lefsky et
al. [47] was able to produce wall-to-wall canopy height maps explaining more than 62%
of the total variation of canopy heights (R?) (Table 4.1). The last 38% should be related to
forest dynamic endogeneous processes (i.e. gap processes). In addition, while our canopy
height mapping using only RF regressions provides a good canopy height estimates (RMSE
about 6 m) at large scales with a medium spatial resolution (250 m), such precision is not
optimal when estimating forest biomass with allometries that only use canopy heights (e.g.
[39]; [40]). Indeed, an RMSE of about 6 m using only the RF regressions leads to a relative
error on the estimation of biomass of about 25%. This precision on the estimation of
biomass is higher than the recommended relative error of 20% by the United Nations
program on Reducing Emissions from Deforestation and Forest Degradation (REDD) ([95]
; [94]). Hence, to satisty the UN REDD recommendations on the precision of biomass,
improved canopy height estimates are required. Therefore, the canopy height estimation
residuals (reference canopy heights — estimated canopy heights by RF) were kriged and

used.

This approach proved very efficient, although highly sensitive to the spatial sampling of
the reference LiDAR dataset (flight line spacing). Indeed for the French Guiana, the
semivariograms indicated that the autocorrelation in the canopy height residuals did not go
beyond 5 km, beyond this distance their contribution to the precision of the final canopy

height maps started to decrease. In contrast, kriging only the LiDAR canopy heights
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without using the predictor variables with RF did not yield satisfactory results. For
instance, by kriging directly the LD cal canopy heights, we obtained a RMSE on the
canopy height estimates of 5.1 m in comparison to the validation datasets against an RMSE
of 5.8 for the RF technique with the LD cal and 1.8 m for the regression-kriging technique.
For the kriged GLAS canopy heights, the precision on the estimated canopy heights was
7.3 m in comparison to the validation datasets. The low precision of the kriged canopy
heights from the GLAS dataset is due to the fact that the distance between the available
canopy height estimates (~20 km) is higher than the range of their spatial autocorrelation
(5 km), so a high smoothing occurred. This also explains the difference between the kriged
canopy height estimates and the estimates from the validation datasets (bias of -4 m). To
analyse the contribution of the regression-kriging technique on the canopy height precision,
the kriging of the height residuals were replaced by the mean value of the height residuals
in a 5 km radius. Results showed that for the LD cal using the mean of the residuals, the
R? decreases from 0.94 to 0.85 and the RMSE increases to 2.4 m in comparison to the

kriging method (RMSE=1.8 m).

Finally, the 250 m resolution of the canopy height map was chosen for different reasons.
First, it was set initially because half of the used predictors had a resolution of 250 m. Three
out of twelve predictors had a resolution of 90 m, and the rest had a resolution of more than
250 m. After the variable importance test was carried, the predictor with the highest
importance was identified as the MEAN EVI (250 m resolution). The importance of the
predictors with a 90 m resolution was far behind. Therefore, a 250 m product was deemed
best, as using a lower resolution product will produce smoother canopy height maps with
less local canopy height variations, while maps with higher resolution (90 m) won’t

necessarily capture finer local canopy height variations than the 250 m product.

Given the low error level obtained from our canopy height wall-to-wall map, our approach
can be used to create valuable forest height maps that can be fed in biomass estimation
efforts, either at the tree, plot or landscape level (e.g. for calibrating local H-DBH
relationships or for inverting AGB directly from H). In addition, the unique combination
of data available here allowed testing different models and sampling strategies (sensitivity
study). This will help future mapping efforts over other regions were airborne datasets

might not be available, as well as for dimensioning future LiDAR spaceborne missions.
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Figure 4.9. Comparison between the canopy heights of our validation datasets
(LD_val and HD) and the canopy height estimates from the study of Simard ef al.
[65].
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4.5 Conclusions

LiDAR (Light Detection And Ranging) remote sensing has been shown to be a good
technique for the estimation of forest parameters such as canopy heights and above ground
biomass. Whilst airborne LiDAR data are in general very dense but only available over
small areas due to the cost of their acquisition, spaceborne LiDAR data acquired from the
Geoscience Laser Altimeter System (GLAS) have low acquisition density with global
geographical cover. It is therefore valuable to analyse the integration relevance of canopy
heights estimated from LiDAR sensors with ancillary data (geological, meteorological
phenological etc.) in order to propose a forest canopy height map with good precision and
high spatial resolution. In this study, canopy heights extracted from both airborne and
spaceborne LiDAR, were first estimated from available mapped environmental data (e.g.
geology, slope, vegetation indices, etc.). The estimated canopy height maps using random
forest (RF) regression with either the airborne (LD cal) or GLAS calibration datasets
showed similar precisions (RMSE better than 6.5 m). In order to improve the precision of
the canopy height estimates regression-kriging (kriging of random forest regression
residuals) was used. Results indicated a decrease in the RMSE from 6.5 to 4.2 m for the
regression-kriging maps from the GLAS dataset, and from 5.8 to 1.8 m for the regression-

kriging map from the airborne LiDAR dataset. Finally, in order to study the impact of the
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spatial sampling of future LiIDAR missions on the precision of canopy height estimates, six
subsets were derived from the initial airborne LiDAR dataset with flight line spacing of 5,
10, 20, 30, 40 and 50 km (corresponding to 0.29, 0.11, 0.08, 0.05, 0.04, and 0.03 points
/km? respectively). Results indicated that using the regression-kriging approach, the
precision on the canopy height map was 1.8 m with flight line spacing of 5 km and
decreased to an RMSE of 4.8m for the configuration for the 50 km flight line spacing.






CHAPTER 5:

COUPLING POTENTIAL OF ICESAT/GLAS AND SRTM FOR
THE DISCRIMINATION OF FOREST LANDSCAPE TYPES IN

FRENCH GUIANA

5.1 Introduction

Currently, land and forest cover classifications over large areas are made using high
temporal frequency data provided by moderate spatial resolution sensors with a spatial
resolution ranging from a few hundred meters (MODIS) to one kilometre
(VEGETATION/SPOT). Nevertheless, the characterization and quantification of broad-
scale forest land cover remains a major challenge for remote sensing scientists ([106]).
Mayaux et al. [107] produced a land-cover map of Africa using the spectral response and
the temporal profile of the vegetation cover. In their study, radar data and thermal sensors
were also used for specific land-cover classes. In the Guiana Shield, Gond et al. [77]
interpreted 33 remotely sensed landscape types (LTs) using VEGETATION/SPOT. Five
of the 33 classes occupied 78% of the forests in the area. The method used by Gond et al.
[77] used a multivariate analysis of remote sensing data, field observations and
environmental data. However, due to LIDAR’s ability to provide detailed information on
the vertical structure of forests (canopy height, tree crown, etc.) in comparison to optical
sensors, LIDAR appears to be one of the most applicable remote sensing techniques for

forest monitoring ([108]; [109]; [110]). Conversely, optical sensors provide extensive
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coverage of forests on the horizontal plane but are less sensitive to forest vertical structure
variations ([111]). Generally, to better classify forest structures, canopy information on
both the horizontal and vertical planes are required. In fact, studies that use LIDAR datasets
in conjunction with optical data show better classification accuracy of forest structures
([111]; [112]; [113]). Indeed, in Mundt ef al. [112]; the fusion of LIDAR and multispectral
data provided an increase in the detection of sagebrush by 15% in comparison to using
multispectral data alone. Dalponte ef al. [113] used a fusion of LiDAR and hyperspectral
data to classify complex forest areas with more than 20 tree species, with several similar
tree species and with no preordered spatial distribution of trees. In their study, an increase
of up to 9% in the classification accuracy was noted when adding LiDAR data. Finally, Ali
et al. [111] fused LiDAR and multispectral data for the classification of three Eucalyptus
types. Their results indicated an increase of 23% in the classification accuracy when using

LiDAR data.

Our study uses the interaction between the Shuttle Radar Topography Mission (SRTM)
data and vegetation in the five forest landscape types in French Guiana to assess the
potential of the SRTM to identify these five forest types. This was accomplished by
comparing SRTM elevations with elevations extracted from NASA’s Geoscience Laser
Altimeter System (GLAS) full waveform data, namely, the highest (most likely canopy

top) and centroid (distance-weighted average) elevations.

Comparisons between the GLAS and SRTM elevations have been investigated in
numerous studies, mainly for studying the SRTM penetration levels over different
landscape types and using different elevation levels within the GLAS waveforms (highest,
centroid and lowest) (e.g. [114]; [115]; [116]; [117]; and [70]). Calculating the bias (the
difference between the SRTM elevations and the GLAS centroid elevations), Bhang et al.
[114] found that elevation bias is dependent on the landscape type and the terrain relief.
Bias increased from -1.5 m for bare terrain to -1 m for agricultural areas and 0.9 m for
forested areas. Rodriguez et al. [115] compared the SRTM elevations with field
measurements in different regions around the globe and found an elevation bias between
the SRTM and field measurements that varied with each location. In their study, they
compared the difference between the SRTM and the Land, Vegetation, and Ice Sensor
(LVIS) canopy top elevations across five different regions in the USA (Maine, Maryland,
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Massachusetts, New Hampshire, and Costa Rica) and found a maximum elevation bias
difference of 54% between two regions (Costa Rica and Maryland). Becek [117] found a
linear relationship between the magnitude of the elevation bias of the SRTM in comparison
to reference field data and the percentage of tree cover. The bias increased from 4.8 m for
0% tree cover to 11 m for 100% tree cover. Carabajal and Harding [70] compared the
highest, centroid and lowest GLAS elevations with the SRTM for different regions around
the world (Amazon, Africa, Asia, Australia, and Western USA) and found different
elevation biases (difference between GLAS highest and SRTM) that varied with region (a

maximum difference of 16.6 m was found between Australia and Western USA).

In addition, bias appeared to be correlated with the GLAS waveform extent and the
roughness index (bias increases with increasing waveform extent and roughness index).
The GLAS waveform extent represents the distance between the laser signal start and the
signal end. In vegetated areas, laser signal start corresponds to the highest canopy surface
large enough to yield a return signal. Signal end corresponds to the lowest detected ground
elevation. In vegetated areas, roughness represents the combined effect of topographic

relief (top of canopy) and the interaction of the C-band microwaves with the vegetation

([70D).

Seasonal changes in the GLAS signal over different forest types have also been studied.
Duong et al. [83] used the differences between overlapping pairs of GLAS footprints in
different seasons (winter and summer) to differentiate between different forest structures.
Their study showed promising results for identifying conifer, deciduous and mixed

conifer/deciduous forests.

The objective of this study was to analyse the potential for forest landscape type mapping
using the coupling of GLAS and SRTM data in French Guiana. First, the penetration depth
of the SRTM radar wave corresponding to the difference between the GLAS highest
elevations and the SRTM elevations, as well as the difference between the GLAS centroid
elevations and the SRTM elevations, was analysed over the different forest landscape types
obtained in the study of Gond et al. [77]. Next, the behaviour of these two variables was
studied for the different LTs as a function of the GLAS canopy height and the SRTM

roughness index. The classification potential for the five forest landscape types (LTs) using
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the coupling of GLAS and SRTM was assessed using the Random Forest algorithm. This
classification was conducted using the penetration depth, the difference between the GLAS
centroid elevations and the SRTM elevations, the GLAS canopy height and the SRTM
roughness index. Finally, using the changes in the GLAS signal in different seasons, the

potential for LT discrimination using these changes was studied.

The processing of the GLAS waveforms and the methodology used to assess the potential
of GLAS and SRTM in the discrimination of forest landscape types are shown in section
5.2. The results and discussion are given in section 5.3 and the conclusions in section 4.4.
This chapter is based on the following published paper: Fayad I et al. (2014) Coupling
potential of ICESat/GLAS and SRTM for the discrimination of forest landscape types
in French Guiana. International Journal of Applied Earth Observation and

Geoinformation 33:21-31.

5.2 Materials and methods

5.2.1 Methodology

To assess the potential of the GLAS and SRTM data to discriminate the five main forest
landscape types in French Guiana, the difference between the GLAS highest elevations and
the SRTM elevations was investigated, as well as the difference between the GLAS
centroid elevations and the SRTM elevations. First, the differences between the GLAS
(highest and centroid) and SRTM elevations were analysed for each forest landscape type.
Next, because of the influence of canopy height (Hc) and the roughness index (R) on the
penetration depth of the SRTM radar wave in the canopy, the differences between the
GLAS and SRTM elevations were studied according to the classes of canopy height and
the roughness index. Four canopy height classes (Hc < 10 m, 10 m < Hc <20 m, 20 m <
Hc <30 m, and He > 30 m) and three roughness index classes (R <5m,5m<R <10 m,
R > 10 m) were chosen for each forest landscape type.

To analyse the potential for discrimination of the five main forest landscape types (LTs)
using the coupling of the GLAS and SRTM data, a classification of the GLAS footprints

based on the Random Forest algorithm was conducted using the penetration depth, the
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difference between the GLAS centroid elevations and the SRTM elevations, the GLAS
canopy height and the SRTM roughness index.

Several classifiers, such as CART (Classification And Regression Trees), SVM (Support
Vector Machines), logistic regression, and the Random Forest classifier, were tested in this
study. However, Random Forest represents the statistical mode of many classification and
regression trees (CART); hence, it is a more robust model than a single tree ([93]). In
addition, Random Forest does not over-fit, even if more trees are added, it always
converges, it produces error estimates of the predictions and of the importance of the
variables, and it handles weak explanatory variables. The variable importance index it
produces is very important, as it allows an understanding of the relative values of the
predictors used in the classification and therefore removes unnecessary predictors. Variable
importance is based on two measures ([ 118]). The first is a measure of accuracy obtained
by quantifying the mean squared error increase in the model by the removal of a variable.
The other importance measure is the Gini index, which quantifies the degree to which a
variable produces terminal nodes in the classification forest. Finally, the Random Forest
classifier is less sensitive to outliers and noise (the 10 m vertical accuracy of the SRTM

data in our case) in comparison to other classification routines ([93]).

The Random Forest (RF) algorithm is also known to be a powerful classification method
that is becoming widely used by the remote sensing community for land-cover
classification (e.g. [119]; [120]; and, [90]). RF is designed to produce accurate and robust
predications without over-fitting the data while being insensitive to outliers and noise in
comparison to single classifiers ([93]). Random Forest is called an ensemble classifier
because it uses a tree-based classifier multiple times and aggregates the results. However,
each tree is grown using a randomized subset of predictors. The final prediction decision
is based on a voting system of all the predictions from the decision trees that have been
created. Furthermore, because of the inability to examine the decision trees directly,
Random Forest is considered more of a “black box™ approach. However, several metrics
are available to aid in the interpretation, one of which is the variable importance, which is
evaluated based on the increase in the error in the prediction when removing a certain

variable.
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Finally, a comparison between the GLAS waveforms acquired at the same location in the
dry and wet seasons was carried out to analyse its potential in the discrimination between
the different forest LTs. The overlapping GLAS footprints, one from the wet season and
one from the dry season, were compared against their corresponding SRTM elevations.
However, to quantify the changes between the dry-wet season pairs, further processing of
the waveforms was required. The first step was to obtain the waveform pairs. This was
based on the geographic coordinates of each footprint (ellipse centre) found in the GLA14
product. Two footprints from the wet/dry seasons, according to Duong et al. [83]; were
considered a pair if the distance between their centres was equal to or less than the sum of
the footprints’ radii divided by 2 (the two footprints were partly overlapping). Next, due to
the different intensity returns caused by the laser output and/or different atmospheric
conditions, the waveform pairs were normalized to enable comparison between them
([83]). The normalization procedure requires the division of each received bin voltage (V)
by the total energy of the waveform Vi, where V, = YN, V;, with N being the number of
waveform bins (544 or 1000 bins, depending on the GLAS mission). Finally, due to
technicalities with the receiver, the recording of a pair of waveforms did not start at the
same local time, even if they were similar in structure, thus producing a time lag, and hence,
a shifting operation was needed. According to Hofton and Blair [121]; the shift operation

can be performed on the complete waveform.

The time shift needed to match a pair of coincident waveforms was determined by the

maximum of the cross correlation R(m) defined by (m=1,...,2N-1):

N-m-1
R(m) ZO W,(OW4(i+m) form=0

t (5.1)
R(—m) form< 0

Wy, and Wy represent the normalized signals from the wet and dry season, respectively.

The results of the shifting algorithm are shown in Figure 5.1. As illustrated in Figure 5.1,
two waveforms recorded in different seasons (wet and dry) and at approximately the same
location do not match. The waveform from the dry season was shifted 43 ns to the right of

the waveform from the wet season. Therefore, using the cross-correlation technique
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described above, it was possible to match them for further comparisons. The flowchart
summarizing the processing of the SRTM and GLAS data is shown in Figure 5.2.

Figure 5.1. Typical GLAS waveform acquired during the wet season (grey) used as a
reference for the shifting of the same waveform acquired during the dry (dashed),
and the shifted waveform from the dry season (black).
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Figure 5.2. Flowchart of the processing steps for the GLAS and SRTM DEM data
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5.2.2 GLAS waveform processing
To conduct a full comparison between the GLAS and SRTM elevations, several parameters
needed to be extracted from the GLAS waveforms: signal start and end, ground peak

position, highest, centroid and lowest elevations, and tree heights.

GLAS’s signal start and end are defined as the first and last locations where the waveform
intensity exceeds a certain threshold level (n.cb, where ob is the standard deviation of the
background noise) above the mean background noise (ub) (e.g. [44]; [71]). Both ub and
ob are found in the GLA14 product. However, there are no consistent optimal thresholds
that can be used for all study areas ([71]). Different thresholds have been used in different
studies, including 3cb in [82]; 40b in [44] and 4.56b in [72]. In this study, a threshold of
4.56b was used. The difference between the signal end and signal start is called the
waveform extent. The ground peak is identified using either the last peak (e.g. [82]) or the
strongest in amplitude between the last two peaks (e.g. [81]; [121]). After close
examination of the GLAS waveforms in French Guiana, the ground peak was identified

using the Gaussian peak representing the highest amplitude from the last two peaks.

The GLAS product only provides the centroid elevation in a footprint. To estimate the
highest and lowest elevations, the following approach was used. First, the position of the
centroid within the waveform over the relative time axis was determined. Then, to
determine the highest elevation, the difference between the position of the centroid and the
signal start was added to the centroid elevation. Similarly, the lowest elevation was
determined by subtracting the difference between the position of the centroid and the
ground peak from the centroid elevation. The lowest elevation is less accurate than the top
elevation because the identification of the ground peak is more error prone than the

identification of the signal start.

5.2.3 Canopy height and roughness index estimations
The GLAS canopy heights (Hc) were estimated using the most commonly used method in
areas of low relief, introduced by Lefsky et al. [44]; which uses the difference between the

signal start (Hs) and the ground peak (Hg).
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Hc=Hg - Hs (5.2)

The roughness index (R), according to Carabajal and Harding [70]; was defined as the

standard deviation of the values of the SRTM elevation data in a 3x3 window.

5.3 Results and discussion

In this section, we analyse the possibility for the discrimination of the different forest
landscape types using the GLAS and SRTM data. First, in section 5.3.1, the discrimination
potential for the different forest LTs is analysed using the SRTM penetration in the
canopies (GLAS highest - SRTM). Then, section 5.3.2 analyses the discrimination
potential according to two added parameters, canopy height (Hc) and the roughness index
(R). The differences between the GLAS and SRTM elevations are grouped for each LT
into four canopy height classes and three roughness index classes. Next, in section 5.3.3,
all the parameters (Hc, R and the differences between the GLAS and SRTM elevations)
are used in the Random Forest classifier to classify the GLAS footprints into the five
different forest LTs. Finally, section 5.3.4 uses the variation in the GLAS waveforms

captured from two seasons (wet and dry) to classify the different forest LTs.

5.3.1 Global analysis of the differences between the GLAS and SRTM
elevations

Several studies, such as Bhang et al. [114]; Rodriguez et al. [115]; and Hofton et al. [121];
have demonstrated that the penetration depth of the SRTM wave (GLAS highest — SRTM
elevation) is affected by the type of surface it interacts with (forest, agricultural areas, etc.).
In this section, the differences between the GLAS (highest and centroid) and SRTM
elevations are tested for each forest landscape type (LT) to ascertain the potential of the

SRTM to discriminate between these five LTs.

Table 5.1 shows that using either the penetration depth of the SRTM radar signal or the
difference between the GLAS centroid elevations and the SRTM elevations alone is not
sufficient for discriminating the five forest landscape types (LTs). Indeed, penetration is
similar for LT8 and LT10 (approximately 11.0 m) and for LT9 and LT11 (12.5 m).

However, the characterization of these two classes (LTS8 and LT10) is very different in
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terms of structure. LTS is closed, regular canopy, and LT10 is composed of high canopy
with large emergent trees making it very irregular. Moreover, forest LT12 has a slightly
lower penetration, with an average of 9.3 m. The difference between the GLAS centroid
elevations and the SRTM clevations is also of the same order for LTS, LT9, LT10 and
LT11 (approximately -5 m) and is lower for LT12 (-7.1 m). The same order of penetration
for all LTs can be attributed, according to Carabajal and Harding (2006), to the following
reasons: (1) the penetration of the SRTM varies with canopy height, which is not the same
for all forest LTs, and (2) the roughness index plays a major role in the variability of the
SRTM penetration. In the next section, the differences between the GLAS and SRTM
elevations will be analysed according to the GLAS canopy height (Hc) and the SRTM
roughness index (R) to investigate if the use of additional metrics improves the
discrimination between the different forest LTs.

Table 5.1. Statistics (mean =+ standard deviation) of the difference between GLAS
highest and SRTM elevations for each of the five forest landscape types (LT).

LT Highest — SRTM (m) Centroid — SRTM (m) Count
8 11.0£12.3 -4.2+12.1 1421
9 12.2+13.0 -5.0+13.1 7151
10 11.0+9.4 -5.5+11.4 1195
11 12.8£12.2 -5.1+12.0 2228
12 9.3+7.4 -7.1+£7.2 243

5.3.2 Analysis of the differences between the GLAS and SRTM
according to Hc and R

Section 5.3.1 showed that it was impossible to discriminate the five forest landscape types
using the differences between the GLAS and SRTM elevations alone. According to some
studies, other variables, such as canopy height (Hc) and the roughness index (R), might
contribute to the variability in the SRTM signal’s penetration depth. Carabajal and Harding
[70]; Bhang et al. [114]; and Huang et al. [59] studied the penetration depth of the SRTM
as a function of canopy height, and their results showed that penetration depth is dependent
on canopy height (increases with an increase in Hc). Carabajal and Harding [70] and Bhang
et al. [114] also studied the behaviour of penetration depth as a function of the roughness
index, which appear to be positively correlated. To better analyse the effect of canopy

height and roughness index on the discrimination of different LTs, the GLAS footprints
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were regrouped for each LT, first into four canopy height classes and then into three

roughness index classes.

5.3.2.1 Differences between the GLAS and SRTM according to He

The results indicate that the discrimination of the five forest LTs is not possible using only
canopy height in the analysis of the difference between the GLAS highest elevations and
the SRTM elevations (same penetration of the SRTM signal for the five forest LTs in each
Hc class). Figure 5.3a shows that the difference between the GLAS highest elevations and
the SRTM elevations increased with increasing He. This difference increased in LTS8, LT9,
LT11 and LT12 from approximately 3 m when Hc was less than 10 m to approximately 14
m when Hc was greater than 30 m. LT10 showed an increase in the SRTM penetration
from 4.4 m when He < 10 m to approximately 14 m when Hc > 30 m. This slightly higher
SRTM penetration for LT10 with Hc < 10 m was due to the mean canopy height being
greater than that in the other LTs (8.5 m versus 5.5 m). The increase in the SRTM
penetration with the increase in canopy height was due to the C-band phase centre (the
position of the dominant backscattering level), which, on average, becomes increasingly
biased below the canopy top with increasing waveform extent ([117]). These results
comply with the study by Carabajal and Harding [70]. Similar findings were observed in
the analysis of the difference between the GLAS centroid elevations and the SRTM

elevations according to Hc.

Figures 5.4a and 5.4b show, respectively, the spatial distributions of the canopy height (Hc)
and the penetration percentage (penetration depth divided by canopy height) in French
Guiana. Figure 5.4a shows that over the coastal area, canopy heights tend to be no higher
than 20 m (mangrove forest). The highest canopies are concentrated in the centre of French
Guiana, with heights mostly above 30 m. In the south of French Guiana, canopy heights
are shorter, ranging between 20 and 30 m, and are mostly classified as LT11 and LT12.
Figure 5.4b shows that the penetration percentage is the highest (> 30%) in the centre of
French Guiana, which mostly contains classes LT8, LT9 and LT10. For the coastal area
and the south of French Guiana (mostly LT11 and LT12), the lowest penetration percentage

(< 30%) was observed.
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5.3.2.2 Differences between the GLAS and SRTM according to R

In addition, the results also show that it is possible to discriminate LT10 from LTS8, LT9
and LT11 when R > 10 m (no available data for LT12 with R > 10 m). It is also possible
to discriminate LT12 from the other classes when R < 5 m. This ability to discriminate
LT12 from the other LTs is due to the fact that LT12 is structurally different from the other
LTs (open forest with shorter canopy heights, on average). Figure 5.3b, which represents
the difference between the GLAS highest elevations and the SRTM elevations as a function
of the roughness index, shows that LT12 presents the lowest SRTM penetration when R is
less than 5 m (4.9 m versus ~8 m for the other LTs). This can be explained by the denser
and relatively shorter canopy forest represented within the fragmented horizontal structure

of LT12 in comparison to other forest LTs.

Furthermore, the difference between the GLAS highest elevations and the SRTM
elevations increased significantly with increasing R for all forest LTs. For LTS8, LT9 and
LT11, the mean difference between the GLAS highest elevations and the SRTM elevations
increased as a function of R from approximately 8 m when R was less than 5 m to
approximately 16 m when R was greater than 10 m. For LT10, the average difference
between the GLAS highest elevations and the SRTM elevations increased from
approximately 8 m when R was less than 5 m to approximately 12 m when R was greater
than 10 m. This is most likely due to the irregular heights of the canopies in this forest LT
(high forest with disrupted canopy). Moreover, the average difference between the GLAS
centroid elevations and the SRTM elevations showed low dependency on the roughness

index, with an average between -4 m and -7 m for different R classes and forest LTs.

The spatial distribution of the roughness index presented in Figure 5.4c shows that the
lowest roughness index values were observed on the coastal area, ranging mostly below 5
m, where they are attributed mostly to LTS8 (very regular canopy roof). Low to moderate
roughness index values, ranging between 0 and 10 m, were located in the south, where they
are attributed to LT11 and LT12. The centre of French Guiana presents the highest values

of the roughness index (> 10 m).

In conclusion, these results confirm that the discrimination between the five forest LTs

requires the combination of several variables. Using the difference between the GLAS and
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SRTM elevations, it was not possible to classify the different LTs as a function of Hc
because of the effects of the roughness index. The same thing applies when attempting to

classify different LTs as a function of R because of the effects of canopy height.

Figure 5.3. Differences between GLAS elevations (highest and centroid) and SRTM
elevations for each forest landscape type (LT) according to four canopy height (Hc)
classes (a) and three roughness index (R) classes (b). Only statistics with a count
greater than 20 were used.
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Figure 5.4. Spatial distribution of canopy heights (a), penetration percentage (b),
and roughness index (c¢) over French Guiana.
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Figure 5.4 (cont.)
=z
21 §
o
-
=8 i
w
z
[=3 -
b
-
z
= L
£
=
& i
b4
o«
Penetration
Percentage (PP) (%)
g_ ® PP<15 i
26 e 15sPP<30
& 30sPP<45
e PPz45
=z
08. L
2 L —1 ()
¢] 50 100
54°30'W 54°0'W 53°30'W 53°0'W 52°30'W 52°0W 51°30W  51°0W

(b)



115 Chapter 5

Figure 5.4 (cont.)
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5.3.3 Random Forest classification results

The results of sections 5.3.2.1 and 5.3.2.2 showed that in order to discriminate between the
five forest LTs, it is necessary to combine several variables, as it was not possible to
classify the different Lts as a function of Hc or R alone. Therefore, in this section, the
discrimination of the different LTs will be attempted using He, R, GLAS (highest and
centroid) and the SRTM elevations with the Random Forest (RF) classification. The results
show that all forest LTs were well classified with good accuracy, according to the map by
Gond et al. [77]. The Random Forest classification results summarized in Table 5.2 show
an overall accuracy of 83.3% (kappa coefficient of 0.75). Moreover, the producer’s

accuracies ranged between 78.4% (LT11) and 97.5% (LT12), and the user’s accuracies
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ranged between 77.3% (LT9) and 96.3% (LT12). The results show that the coupling
between the GLAS and SRTM elevations allows better distinction between forests that are
quite different (LTS8, LT10, and LT12), and the most misclassifications were observed
between LT9 and LT11 (approximately 12%).

The observed misclassifications between LT9 and LT11 could be explained by their similar
characteristics and proximity and by the LT spatial distribution map used as a reference in
our analysis ([77]), which has a sample size of 1 square-kilometre, whereas the GLAS
footprints are, at most, 100 m in diameter. This difference in spatial scale could have had

an effect on the classification results.

Our dataset contained forest LTs with uneven sample counts (LT9 represents more than
58% of the total dataset). The use of a dataset with uneven class sizes will result in a
classifier biased towards the majority class ([122]). Therefore, a random under-sampling
technique is often used ([123]). This technique balances the dataset by removing samples
randomly from the majority class. However, the elimination of samples from a class could
eliminate useful samples. Thus, it is recommended that the majority class be under-sampled
into several subsets ([124]). Then, the classifier is trained and validated using each of the
subsets, and the results of all the classifiers are averaged. In this study, the majority class

LT9 was under-sampled into four subsets (each with 1788 points).

After the sub-setting, the subsets were each randomly divided into 90% training and 10%
validation data samples. The prediction error based on a 10-fold cross-validation was
estimated to validate the generalization performance of the Random Forest algorithm. The
importance of the variables used in the Random Forest algorithm was also assessed. The
results show that the difference between the GLAS highest elevations and the SRTM
elevations was the most important variable, followed by canopy height and the roughness
index. The difference between the GLAS centroid and the SRTM showed the lowest

importance.

The influence of the size of the training dataset on the behaviour of the Random Forest
classifier was subsequently assessed using three cases: (1) only 20 samples were used for

each forest LT (the draw of the 20 random samples for each LT was repeated 100 times),
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(2) 243 samples were used for each forest LT, corresponding to the lowest class size in our
dataset (LT12), and (3) all samples available in our dataset were used with uneven class
sizes between the LTs, with 243 samples from LT12 and 7151 samples from LT9. The
results show that RF has a low sensitivity to the training dataset size reduction, with an
overall classification accuracy slightly lower for the case with 20 samples for each LT (case
1) in comparison to the other two cases (approximately 78.0% for case 1 and 84% for cases
2 and 3). The kappa coefficient was also of the same order for the three cases, with values
of approximately 0.7 for cases 1 and 3 and 0.8 for case 2. In addition, the producer’s and
user’s accuracies were similar for all forest LTs, except for LT10 and LT11, where the
accuracies were lower by approximately 20% for case 1 in comparison to cases 2 and 3
(approximately 64% for case 1 and 84% for cases 2 and 3). This result shows that LT10
and LT11 most likely have high intra-class variability, and for this reason, it is necessary

to use a larger number of training samples for these forest LTs ([119]).

Finally, to ensure that RF is not over-fitting, an additional test was carried out. First, for
each of the three cases described above, the explanatory variables (differences between the
GLAS and SRTM elevations, the roughness index, and canopy height) were randomly
permuted. Then, the classifier was trained and tested on the new dataset. Next, the
predictions obtained from the 1000 datasets resulting from the permutation allowed the
calculation of the 95% confidence interval for the different elements in a confusion matrix.
The results show that at a 95% confidence interval, the user’s and producer’s accuracies
were less than 25%, except for LT9 in case 3, where the user’s and producer’s accuracies
were approximately 54%, and 91%, respectively. Classifiers trained with unequal class
sizes have a tendency to classify the majority of the samples in the majority class to lower
the classifier’s error rate ([124]). In this study, LT9 contains approximately 58% of all the
samples, so the classifier, in order to obtain the lowest classification error rate, classified

most of the samples in LT9. The classification results are shown in Figure 5.5.
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Table 5.2. Random Forest classification results for the five forest landscape types.

Reference Classes

Producer’s

Classified Classification accuracy

Classes LTS LT LT LT LT overall (Omission
error)
LTS8 1166 79 53 123 0 1421 82.1%
LT9 78 1382 58 267 3 1788 77.3%
LT10 52 77 966 99 1 1195 80.8%
LT11 100 221 66 1839 2 2228 82.5%
LTI12 0 3 1 5 234 243 96.3%

Truth overall 1396 1762 1144 2333 240 6875

User’s accuracy
(Commission  83.5% 78.4% 84.4% 78.8% 97.5%

error)

Overall classification accuracy = 81.3% and kappa « = 0.75
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Figure 5.5. Classification of GLAS footprints into five forest landscape types using
Random Forest algorithm.
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5.3.4 Effect of the GLAS acquisition season

A study by Duong et al. [83] demonstrated the potential to classify broad-leaved, mixed
and needle-leaved trees using GLAS footprint pairs taken from two seasons (dry and wet
seasons). Two waveforms, one from the dry season and one from the wet season, were
considered a pair if the distance between the footprint centres was less than or equal to the
sum of their radii divided by 2. In this section, waveform pairs from the wet (December to
June) and dry (August to December) seasons are compared to show the potential for
discriminating different forest LTs using five criteria: (1) difference between the GLAS
highest elevations and the SRTM elevations, (2) difference between the GLAS centroid

elevations and the SRTM elevations, (3) penetration percentage in each season, (4) ratio of
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the canopy top energy in the wet season to the canopy top energy in the dry season, and (5)
ratio of the ground energy in the wet season to the ground energy in the dry season. The
canopy top energy is defined by Duong et al. [83] as the energy from signal start to end
from the vegetated part of the canopy, and the ground energy corresponds to the energy

from the ground peak.

The analysis of the difference between the GLAS (highest and centroid) and the SRTM
elevations, conducted separately for the GLAS footprints acquired during the wet and the
dry seasons, showed similar differences for both seasons (Table 5.3). The difference
between the GLAS highest elevations and the SRTM elevations for all LTs varied from 9.1
to 12.3 m in the wet season and from 9.6 to 12.9 m in the dry season. The difference
between the GLAS centroid elevations and the SRTM elevations varied between -3.1 and
-6.7 m in the wet season and between -4.7 and -7.7 m in the dry season. This slight
difference between the two seasons could be due to some trees losing leaves in the dry
season, meaning the GLAS waveform penetrates more into the canopy in the dry season

compared to the same canopy in the wet season.

The waveform pairs were next separated into two categories. The first, called leaf-on
corresponds to the waveforms without changes between the two seasons (trees with leaves
in both seasons). The second category, called leaf-off, represents trees that shed their leaves
in the dry season. Leaf-off trees were identified from the GLAS waveform pairs that
showed changes in the amplitudes of the canopy top and ground peaks from one season to
another (the distance between footprint pairs should be lower than half the sum of their
radii). The threshold was set to be half of the reference top and ground peaks. In general,
when trees shed their leaves in the dry season, the GLAS waveform reflections from the
ground are more prominent. This causes an increase in the amplitude of the ground peak
with a decrease in the amplitude of the canopy top in comparison to the waveforms from
the wet season. In total, 71 waveform pairs were identified for LTS8 (all leaf-on), 62 pairs

for LT10 (all leaf-on), and 70 pairs from LT12 (7 leaf-on and 33 leaf-off) (Table 5.4).
The ratio of the energies from the canopy tops in the wet and dry seasons (%), as well
d

. . . Ground,,
as the ratio of the energies from the ground in both seasons (%), were calculated

Groundg

(Table 5.4). On average, the largest change was detected in the leaf-off pairs of LT12, with
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a (%) of 2.4, as opposed to 1.1 for LTS, 0.9 for LT10, and 1.2 for the leaf-on LT12.
d

Groundy,

Moreover, Table 5.4 shows that the ratio ( ) is similar for LT8, LT10 and the leaf-

Groundy
on LT12, with a value of approximately 1.1. A lower ratio value was obtained for the leaf-
off LT12 (0.7) because canopies in the leaf-off class of LT12 appear to shed their leaves in
the dry season, allowing a greater reflection from the ground surface. Table 5.4 also
quantifies the changes in the waveform centroid elevations in comparison with the SRTM.
For the pairs in LTS, LT10 and the leaf-on LT12, the difference between the GLAS
centroid elevations and the SRTM elevations is similar for the data in both the dry and wet
seasons, with values between -4.3 and -6.3 m for the wet season and between -4.7 and -5.8
m for the dry season. Conversely, this difference increases for the leaf-off pairs of LT12,
from -5.8 m in the wet season to -9.6 m in the dry season. This difference means that the
GLAS is able to penetrate the forest to a deeper depth in the dry season if the forest
characteristics (leaves) change between the seasons. In conclusion, LT12, a deciduous
forest type, could efficiently be discriminated based on the seasonal variation of the GLAS
signal. Pennec et al. [153] found that in comparison to other LT types, LT12 has the highest
enhanced vegetation index (EVI) all year round. This high EVI could be caused by under-
canopy activity. This result is very important because it shows the utility of multi-season
LiDAR data for mapping forest types that lose their leaves in the dry season, which is not
possible with the optical imagery typically used. Figure 5.6 shows the locations of the leaf-
on and leaf-off pairs in French Guiana, revealing that the majority of the leaf-off pairs are

located in the same area in the south of French Guiana.
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Table 5.3. Statistics (mean + standard deviation) of the difference between GLAS
(highest and centroid) and SRTM elevations for each of the forest landscape type
(LT) in each season.

Wet season
LT Highest — SRTM (m) Centroid — SRTM (m) Count
8 11.4+12.1 -3.1+11.1 430
9 11.8+12.7 -4.7+12.7 1885
10 10.949.8 -5.3+49.4 374
11 12.3+11.7 -4.8+11.7 584
12 9.1+7.5 -6.7£8.0 152
Dry season
LT Highest — SRTM (m) Centroid — SRTM (m) Count
8 10.9+12.4 -4.7+12.4 991
9 12.3+£13.0 -5.1+13.2 5266
10 10.9+10.3 -6.0+11.1 821
11 12.9+12.4 -5.2+12.1 1644
12 9.6+£7.4 -7.7£5.4 91

Table 5.4. Comparison between wet and dry seasons for different forest LTs (no
data for LT9 and LT11). Topw and Topad represent the energy of the signal reflected
from the canopy top for the wet and dry seasons, respectively. Groundw and
Groundd represent the energy of the signal reflected from the ground for the wet
and dry seasons, respectively.

Pairs Highest — Centroid — Top,, Ground,,
LT Season
number SRTM (m) SRTM (m) Topg Groundgy
Wet 11.5£15.0 -4.3£14.9
8 1.1£0.5 1.2+0.6
Dry 11.2+£14.4 -4.7+14.6
Wet 10.9+14.3 -6.3+13.9
10 0.9+0.5 1.14£0.5
Dry 11.0£14.7 -5.8+£14.3
12 (leaf- Wet 9.5+13.3 -5.5+13.0
1.2+£0.4  1.1£0.7
on) Dry 9.9+15.2 4.9£15.3
12 (leaf- Wet 9.3+12.3 -5.8+12.1
2.4+1.2  0.7£0.5
off) Dry 9.7+£14.4 -9.6t14.7
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Figure 5.6. Spatial location of leaf-on and leaf-off GLAS footprint pairs over French

Guiana.
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5.4 Conclusions

The Shuttle Radar Topography Mission (SRTM) has produced the most accurate nearly
global elevation dataset to date. Over vegetated areas, the measured SRTM elevations are
the result of a complex interaction between radar waves and tree crowns. In this study,
waveforms acquired by the Geoscience Laser Altimeter System (GLAS) were combined
with SRTM elevations to discriminate the five forest landscape types (LTs) in French
Guiana. Two differences were calculated: (1) penetration depth, defined as the GLAS
highest elevations minus the SRTM elevations, and (2) the GLAS centroid elevations

minus the SRTM elevations. The results show that these differences were similar for the
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five LTs, and they increased as a function of the GLAS canopy height and of the SRTM
roughness index. Next, a Random Forest (RF) classifier was used to analyse the coupling
potential of GLAS and SRTM in the discrimination of forest landscape types in French
Guiana. The parameters used in the RF classification were the GLAS canopy height, the
SRTM roughness index, the difference between the GLAS highest elevations and the
SRTM elevations and the difference between the GLAS centroid elevations and the SRTM
elevations. Discrimination of the five forest landscape types in French Guiana was
possible, with an overall classification accuracy of 81.3% and a kappa coefficient of 0.75.

All forest LTs were well classified with an accuracy varying from 78.4% to 97.5%.

Finally, differences of near coincident GLAS waveforms, one from the wet season and one
from the dry season, were analysed. The results showed that the open forest LT (LT12), in
some locations, contains trees that lose leaves during the dry season. These trees allow
LTI12 to be easily discriminated from the other LTs that retain their leaves using the
following three criteria: (1) difference between the GLAS centroid elevations and the
SRTM elevations, (2) ratio of top energy in the wet season to top energy in the dry season,

or (3) ratio of ground energy in the wet season to ground energy in the dry season.



GENERAL CONCLUSIONS

AND PERSPECTIVES

6.1 Conclusions

With the ending of the fifth chapter, it was clear that all the objectives set at the beginning
of the thesis have been met. First, waveforms from GLAS have been used to estimate
canopy heights. Next, canopy heights estimated from GLAS and airborne LiDAR have
been used with environmental predictors to map canopy heights on the entire French
Guiana. Finally, due to the role of forest landscape types in AGB estimation methods,
forest landscape types have been predicted using information from GLAS waveforms and

SRTM data. The main conclusions can be summarized as follows:

In chapter 3, the performance of the most frequently used linear regression models for
canopy height estimation, which use metrics extracted from GLAS waveforms, was first
evaluated. Then, models based on two seldom-used techniques for canopy height
estimation from GLAS waveforms were introduced. The first included regression models
using the principal component analysis (PCA) of GLAS waveforms. The second was based
on the Random Forest technique. The Random Forest technique first used the metrics
derived from the GLAS waveforms and then used PCs. The evaluation of these different
models was performed with a large database consisting of GLAS data and canopy heights

estimated from small-footprint airborne LiDAR measurements. Within the GLAS
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footprints, which fell mostly on flat and sometimes moderately sloping terrain (slope <
15°), the direct method based on the difference between the ground peak and signal start

showed an accuracy precision of 7.9 m (RMSE).

The linear regression models that used a combination of waveform extent (Wext),
modified trailing and leading edge extents (Trail and Lead) [44] and terrain index (TT)
showed better accuracies for canopy height estimation in comparison to the direct method,
with an RMSE between 3.7 (using Wext, TI, and Trail ) and 4.9 (using Wext and TI) m.
In addition, the results reveal that the most relevant metrics in the estimation of forest
heights are the waveform extent (Wext) and trailing edge extents (Trail). The linear
regression model based on Wext and Trail estimated canopy height with an RMSE of 3.8
m. However, this model requires the Trail metric, which is difficult to extract with good
accuracy in densely vegetated forests, such as those in French Guiana, affecting canopy
height estimation due to the large contribution of the Trail metric to the linear regression
models. The contribution of the leading edge extent (Lead) and TI calculated from the

SRTM DEM appears to be very weak.

The linear regression model using the first 13 PCs and incorporating the waveform extent
provided canopy height estimates with an RMSE of 3.8 m. The PCA regression models
appear to be better in comparison to the other linear regression models using the GLAS
waveform metrics with the same precision, as they do not use difficult-to-extract metrics,
such as the Trail metric. The PCA model only requires the determination for each GLAS
waveform, the class to which the Wext belong to (Wext lower than 20 m, Wext between
20 m and 40 m, or Wext higher than 40 m). Thus, even if the estimation of Wext depends
on the signal start and signal end metrics, which are sometimes difficult to calculate with
certainty, the error in the estimation of Wext does not affect the estimation of canopy

height because the Wext classes are defined in large intervals (20 m).

The Random Forest model using all metrics (Wext, Trail, Lead, and T1) had an RMSE of
3.4 m. Using only one of the Trail, Lead or TI metrics in addition to Wext slightly
increased the RMSE to 3.6 m. Using only Wext, which has a relative importance factor
almost three times higher than those for the other metrics, produced canopy height

estimates with a precision of 4.4 m. Finally, using the first 13 PCs in the Random Forest
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regressions showed similar canopy height estimation results in comparison to using the
PCs in the linear regression models, with an RMSE of 3.7 m when using the waveform

extent and the four most important PCs.

In conclusion, the random forest regression models using the GLAS metrics did not show
and improvements in terms of precision on the canopy height estimation in comparison to
the linear regression models using the same metrics. In addition, the PCA based approach
produced similar precisions on the canopy height estimation in comparison to the metric
based approach. However, the advantage of using the PCA based approach is its
independence to GLAS metrics that are difficult to extract in dense vegetated areas such

as the Trail.

In chapter 4 an approach for canopy heights mapping over French Guiana was presented ,
given the limited coverage of LIDAR datasets (either airborne of spaceborne). It is based
on the merging of LIDAR canopy height estimates (airborne and spaceborne) with ancillary
data. To create the canopy height maps, the predictor variables (ancillary variables) that
best explained the canopy heights were firstly chosen. The best predictor variables
happened to be the same for all the canopy height datasets: The roughness, the mean value
of the EVI time series data, the geology, the mean value of the annual rainfall, and the
terrain slope. Random forest (RF) regressions, which was used to fit the best predictors to
the LiDAR canopy height datasets showed moderate canopy height estimation precision

when using either airborne or spaceborne LiIDAR (RMSE better than 6 m).

To improve the precision of the obtained canopy height maps, regression-kriging (RK) was
used. The height residuals (reference canopy heights — estimated canopy heights by RF)
obtained from each reference LiDAR dataset were kriged and added to the canopy height
estimates obtained from RF regressions. An improvement on the precision of the canopy
height maps was observed. For the GLAS dataset the RMSE on the canopy height estimates
was improved to 4.2 m and for the airborne LiDAR dataset the RMSE on canopy height
estimates was improved to 1.8 m. However, this improvement is positively correlated with
the point density of the calibration datasets used. Indeed, the GLAS dataset has a very large
flight line spacing (~30 km on average) in comparison to the airborne LiDAR dataset (~0.5
km) Further investigation shows that for the airborne LiDAR subsets (subsets of the
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original airborne LiDAR dataset with different flight line spacing) with flight lines spacing
below the range of the spatial autocorrelation of the height residuals (5 km lines spacing),
the precision of the canopy height estimates was at its highest (RMSE of 1.8 m), and
decreases with the increase of the flight line spacing until it reached 4.8 m for a flight line

spacing of 50 km.

The procedure presented in chapter 4 which uses the regression-kriging has strong
prospects for application to other tropical forests. In comparison, studies such as Simard et
al. [65] which used only the Random forest regressions were only been able to estimate
canopy height at a precision of 6.1 m with a lower resolution maps (1 km). In comparison,
our 250 m forest height map with regression-kriging and using GLAS the RMSE on the

canopy height estimate was 4.8 m

Finally in chapter 5, the coupling of the GLAS and SRTM DEM elevations (GLAS highest
— SRTM and GLAS centroid - SRTM) was assessed in order to analyse the potential of
discriminating different forest landscape types in French Guiana. A dataset of 12238 GLAS
elevations over French Guiana calculated from GLAS waveforms, namely the highest and
centroid elevations was compared to SRTM elevations. Based on VEGETATION-SPOT
derived forest landscape types by Gond et al. [77]; GLAS footprints and their

corresponding SRTM elevations were analysed according to the five forest landscape

types.

Results showed that the mean differences between GLAS and SRTM elevations were of
the same order for all forest landscape types (LTs). Furthermore, these differences
increased as a function of GLAS canopy height, and SRTM roughness index in all forest
landscape types (LT). Hence, the discrimination between the different forest LTs requires
in addition to the differences between GLAS and SRTM elevations, other variables such

as canopy height and roughness index.

A classification based on the Random Forest technique using the differences between
GLAS and SRTM elevations as well as the canopy height and the roughness index was

conducted. All forest LTs were well classified with accuracies between 78.4% a 97.5%.
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Furthermore, the classification was achieved with an overall accuracy of 81.3% (Kappa

coefficient of 0.75).

Coinciding GLAS footprints, with one from the wet season and one from the dry season
were analysed to study the potential of discriminating different forest LTs according to the
changes occurring between the GLAS waveforms pairs. Results show that the open forest
(LT12), which is known to be mostly deciduous, was discriminable from other forest LTs
using one of the following three criteria: (1) difference between GLAS centroid and SRTM
elevations, or (2) ratio of energy from canopy top from the wet season to energy from
canopy top in the dry season, or (3) ratio of ground energy from the wet season to the

ground energy from the dry season.

6.2 Perspectives

This research opens on a number of perspectives cited below. They encompass subjects

from canopy height model improvements to biomass estimation.

6.2.1 Canopy height estimation using GLAS

In chapter 3 a new technique using PCA was presented that allowed the estimation of
canopy heights without using metrics extracted from GLAS waveforms. This was
beneficial since a lot of GLAS metrics are difficult to estimate in dense vegetated areas.
Our approach allowed the estimation of canopy heights with a precision comparable to
models requiring the incorporation of GLAS metrics presented in other studies. However,
our approach was tested and validated in French Guiana, which is mostly over flat terrain.
Generally in sloping areas, the value of the slope must be taken into account with canopy
height estimation models that uses GLAS waveforms in order to avoid overestimation of
canopy heights. Therefore, it is necessary to test the PCA technique in different forested
areas and with different terrain reliefs. If the presence of the slope will affect negatively
the canopy height estimates with the use of the PCA technique, several improvements must
then be made, such as the incorporation of information on the slope, terrain roughness or

relief.
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Moreover, given that GLAS is a large footprint satellite LIDAR that aims to map canopy
heights at the regional and global scales. Therefore is its necessary to study the
generalizability of the PCA approach, both at inter-site and intra-site levels. The inter-site
refers how the model calibrated in one site would behave in another site, while intra-site
refers how the model would behave when calibrated with one forest community and tested
in another forest community within the same site. The generalizability of a model is crucial
since every model should be calibrated using in-situ or airborne LIDAR measurements.
While we had a large database of airborne LIDAR measurements for our study area, this

might not be the case in other study sites.

6.2.2 LiDAR canopy height mapping
In chapter 4, forest canopy height mapping has been carried out with regression-kriging
and using airborne and spaceborne LiDAR datasets. While the canopy height estimation

results were satisfying, several aspects still need further study.

6.2.2.1 Non-spatial canopy height mapping

For the non-spatial canopy height mapping method, we used the random forest regression.
However, since most of the predictors are correlated with canopy heights, inversion
regression models ([125]) could be used instead of RF and their performance analysed. In
addition, there exist many other predictors other than those used in chapter 4, which also
are dependent on canopy heights (i.e. surface radiance) that might be interesting to include
in the non-spatial model. Finally, all remotely sensed data including airborne LiDAR are
subject to error sources such as, sensor calibration, sensor drift, signal digitization,
atmospheric attenuation, etc. An alternative regression model that can be used instead of
RF and that accounts for errors in both the predictors and dependent variables is reduced

major axis (RMA) regression ([125]; [126]).

6.2.2.2 Spatial canopy height mapping

With regard to the spatial estimation methods, in extrapolation situations such as in this
study, the use of universal kriging ([127]; [128]) or ordinary kriging with an external drift
or regression-kriging ([ 129]) are advised. However, in cases where anisotropy exists in the

landscape which was not studied in chapter 4, anisotropic kriging models having a
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directional component are employed. Therefore, this point should be addressed in future

studies.

6.2.2.3 Canopy height map resolution

The final canopy height product produced in chapter 4 had a resolution of 250 m. This was
due to the resolution of the most important predictor according to the RF regression.
However, several maps with different resolutions should be produced and studied; because,
even though, the most important predictor has a resolution of 250 m, three less important
predictors with 90 m resolution are also used in the final regression model. Maps with

higher resolution allow the capture of finer local canopy height variations.

6.2.2.4 Canopy height mapping sampling scheme

Finally, we found that the sampling scheme plays a crucial role on the precision of canopy
height mapping. In addition, over our study site, forest structure varies at the scale of
individual stands at a distance of less than 5000 m. This distance poses problems for GLAS
which has a sampling scheme in the tens of kilometres. Therefore, it would be beneficial if
future spaceborne LiDAR can increase it sampling frequency. ICESat-2 which is estimated
to launch in 2017 will have a higher sampling frequency, as it will use a 6 beams laser,
arranged into 3 pairs with a distance of 3.3 km between each pair. The laser will also take
measurements every 140 m along the track. The system will also feature denser cross-track

sampling in comparison to ICESat-1.

6.2.3 Above-ground biomass estimation

The main objective of this thesis was to map forest canopy heights across French Guiana.
This objective was met with interesting results. However, canopy heights can be used to
estimate other important forest resources such as above-ground carbon stocks (ACD) or
above-ground biomass (AGB), either directly or indirectly. In General, AGB is estimated
by applying allometric relations for each individual tree by using information about the
stand structure, such as its height, diameter at breast height (DBH), and wood density
(WD). However, in this study canopy height estimates refer to the maximum canopy height
of plots and not individual trees. In addition, parameters such as DBH and WD are not
possible to extract directly with LiDAR measurements. While many studies have

demonstrated the strong correlation between AGB and LiDAR canopy height estimates
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([44]; [39]) and thus developed relations to incur aboveground biomass from LiDAR
canopy height estimates. The relations developed presented large uncertainties in large-
scale AGB estimation since AGB estimation is not only related to tree height and is site
dependent. Therefore in order to estimate plot aggregated AGB, several approaches that

account for ancillary variables other than LiDAR canopy height estimates should be used.

Drake et al. [39] found that biomass estimates are more related to canopy height at medium
energy of the LIDAR waveform (RH50) than it is related to the height at full energy, due
to RH50 being more sensitive to changes in both canopy density and vertical arrangement
of canopy elements. However, Ni-Meister ef al. [68] found that RH75 is more correlated
to biomass than RH50 in their study area. According to Ni-Meister ef al. [68] this might be
due to topography. Therefore it is worth studying the relation between LiDAR canopy
heights at different energies and their correlation to biomass in our study area. Surface
topography parameters could also be added to the AGB estimation model in an attempt to

improve the estimation precision.

In addition, since biomass correlation with canopy heights is site dependent, the inclusion
of forest types in the biomass estimation might be beneficial. Forest type information can
be easily extracted from the existing land cover maps derived from optical remote sensing
data. Tree cover, could also be used to improve the precision of biomass estimates. Indeed,
according to Ni-Meister et al. [68]; models using RH100 or RH50 with forest cover
perform better than using only RH50. This is due to RH50 with tree cover being highly
related to wood volume. Moreover, allometric equations are also dependent on stand age
([130]; [131]; [132]). Therefore, information on stand age should also be used in the

biomass estimation models to obtain optimal results.

Asner et al. [40]; proposed Plot-aggregate allometry for the estimation of aggregate ACD
or AGB using LiDAR canopy height estimates. In their study they postulated that if forest
structure and biomass organization follow consistent scaling patterns, simple plot level
variables could capture the same information about AGB in comparison to field
inventories. Next, since parameters such as DBH and WD are not directly estimated by

LiDAR, relations were found between LiDAR canopy heights and these parameters.
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Therefore, plot AGB can now be estimated using plot aggregate allometry and using only

LiDAR canopy height estimates.

Finally, further investigation is required to have a better understanding of the links between
AGB, ancillary variables (forest cover, forest type, forest topography) and other variables
such those used in chapter 4 for canopy height mapping, and the allometric relations used
in Asner et al. [40]; in order to develop a more improved aboveground biomass estimates
from LiDAR. Ideally, an approach similar to the one used in chapter 4 should be
approached.






RESUME

7.1 Introduction

Le changement climatique attire 1’attention de la communauté scientifique depuis les
derniéres décennies. Cette attention a été suivie par un intérét pour la quantification de la
biomasse terrestre (Above Ground Biomass - AGB), non seulement pour comprendre ses
effets sur le cycle global du carbone, mais pour atténuer les effets du réchauffement global
par l'intermédiaire de la conservation des stocks et des puits de carbone. Actuellement, les
méthodes d'estimation d’ AGB existantes a partir des données de télédétection sont limitées
soit en termes de leur sensibilité¢ a des niveaux d’AGB élevés (saturation du signal de
télédétection a un faible niveau de biomasse en utilisant principalement les données radar
et optiques), soit en termes de couverture spatiale (couverture horizontale limitée en

utilisant les données LiDAR).

Compte tenu de ces limitations, les études utilisent généralement les relations allométriques
pour relier les caractéristiques d'une forét (la hauteur de I'arbre, le diametre a hauteur de
poitrine, et la densité du bois) a sa biomasse (par exemple [39]; [40]; [42]; [133])).
Cependant, I'une des variables les plus importantes dans les relations allométriques et qui
peut étre estimée a partir des techniques de télédétection est la hauteur de la canopée. En

effet, plusieurs allométries reposent uniquement sur la hauteur de la canopée pour



Chapter 7 136

I’estimation de la biomasse ([39]; [40]). En outre, des études ont montrées que 1'utilisation
de la hauteur de la canopée augmente la précision de l'estimation de la biomasse (par

exemple [42]; [41]; [40]; [44]; [24]).

En plus de l'importance de la hauteur des arbres dans 1’estimation d’AGB, la hauteur des
arbres est également intéressante elle-méme pour répondre aux questions écologiques sur
les déterminants de la plante, la structure de la forét, et la dynamique forestieére. La hauteur
des arbres est importante dans les décisions d'aménagement forestiere et d'évaluer les
ressources en bois. En outre, la hauteur des arbres peut avoir des effets directs sur les
modeles et processus microclimatiques ([49]). En effet, le microclimat est modifié non
seulement par les conditions météorologiques locales, mais aussi par la végétation elle-
méme. La hauteur de la forét controle la qualité, la quantité, la distribution spatiale et
temporelle de la lumiére et de I'énergie atteignant les sous-étages de la canopée et le sol.
Elle influence également les précipitations locales et le mouvement de l'air. Ces facteurs

combinés déterminent jusqu'a un certain point I'humidité de ’air et la température.

Actuellement, la meilleure technique pour l'estimation de la hauteur de la canopée par
télédétection est l'utilisation de la technologie LiDAR. Comme ['utilisation d'autres
technologies telles que le radar ne donne pas des résultats satisfaisants (Tableau 1). De
nombreuses études utilisent le LIDAR aérien ou satellitaire pour I'estimation de la hauteur
de la canopée (par exemple [24]; [44]; [45]; [46]; [65]; [72]). Tandis que I’estimation de la
hauteur de la canopée a partir des données de LiDAR aéroportés peut étre treés précises
(erreur quadratique moyenne EQM mieux que 2 m [134]), le LiDAR satellitaire a une
précision inférieure sur I'estimation de la hauteur de la canopée comprise entre 2 m et 10
m variant en fonction des caractéristiques de la forét (par exemple, [44]; [62]; [63]; [64];
[65]; [72]). Cependant, le LiDAR aéroporté¢ est limité dans le domaine horizontal
(couverture spatiale limitée), alors que le LIDAR satellitaire offre une couverture mondiale,
mais avec une densité relativement faible (environ 0,51 points/ km? sur la Guyane frangaise
par exemple) avec un échantillonnage spatial inhomogene (lignes d'échantillonnage le long
des orbites du satellite). Par conséquent, la fusion des données LiDAR (spatiaux et/ou
acéroportés) avec une autre source de données est essentielle afin de créer des carte de

hauteurs avec une couverture compléte et une bonne précision (par exemple, [47]; [65];

[66]).
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Hudak et al. [66] ont testé différents modeles non-spatiales et spatiales (linéaire, krigeage,
et co-krigeage) et différentes stratégies d'échantillonnage pour cartographier les hauteurs
de la canopée a partir d’estimations de hauteurs issues de données LiDAR aéroporté et de
données optiques LANDSAT Enhanced Thematic Mapper (ETM +) sur un site d'étude de
200 km? dans I'ouest de 1'Oregon (USA). Dans leur étude, les modeles de régression ont
maintenu la structure de la hauteur des arbres, mais ont montré un biais pour les arbres les
plus petits et les plus grands. En revanche, le krigeage et les modéles de co-krigeage
présentent de meilleurs résultats en termes de précision par rapport au modele de
régression. Néanmoins, la meilleure méthode pour I’estimation de la hauteur de la canopée
est la méthode appelée régression-krigeage (Hengl et al. [98]). Cette méthode conserve la
structure de la hauteur des arbres tout-en améliorant la précision. Enfin, la stratégie
d'échantillonnage joue un réle majeur sur la précision de 1'estimation puisque 1'écart-type
sur I’estimation de la hauteur de la canopée varie de 5,5 m a 10,0 m respectivement pour

un échantillonnage de 250 et 2000 m.

Lefsky et al. [47] ont créé une carte de la hauteur de la canopée estimée a partir du
radiométre spectral de moyenne résolution MODIS et du LiDAR satellitaire GLAS. Leur
technique a montré une estimation de la hauteur de la canopée avec une erreur quadratique
moyenne (EQM) sur I'estimation des hauteurs de la canopée de 5,9 m et un coefficient de
corrélation (R?) de 0,67. Enfin, une étude plus récente menée par Simard et al. [65] a
amélioré les résultats de Lefsky et al. [47] pour la cartographie mondiale de la hauteur de
la canopée en utilisant d'autres données auxiliaires tels que la moyenne de la précipitation
annuelle, les précipitations saisonnieres, la moyenne annuelle de la température, la
température saisonniéres, les données a partir d'un modele numérique de terrain (MNT) et
le pourcentage du couvert forestier a partir de MODIS. Leur carte mondiale de la hauteur
de la canopée validée par des mesures in-sifu a montré une précision sur 1’estimation de la

hauteur avec une EQM de 6,1 m (R? de 0,5).

Jusqu'a présent, les approches utilisant les méthodes d'interpolation et les données LiDAR
(satellitaires et aéroportées) pour la spatialisation de la hauteur de la canopée a 1'échelle
régionale n'ont pas été pleinement étudi¢es. Etant donné que les cartes de la hauteur de la
canopée existantes ont besoin d'étre plus précises pour €tre plus bénéfiques pour les

¢cologues forestiers et les gestionnaires des ressources de la forét.
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La plupart des études ont utilis¢ une technique d'interpolation unique pour la production
de leur carte de hauteurs de la canopée. Par conséquent, la premiére question est: serait-il
avantageux de mélanger différentes techniques d'interpolation, avec les deux aspects non-
spatiaux et spatiaux pour améliorer la précision de la cartographie de la hauteur de la

canopée?

Deuxiémement, la question du colit d'acquisition des données LiDAR aéroporté sur une
échelle régionale, et la disponibilité globale des données LiDAR satellitaire avec une
densité inférieure posent une nouvelle question. Quel est l'impact de la densité
d'échantillonnage spatial (en particulier pour le LiDAR satellitaire) sur la précision des

cartes de hauteurs de la canopée?

Dans la présente étude, la hauteur de la canopée a partir du LiDAR aéroporté et satellitaire
en combinaison avec des données auxiliaires ont été utilisées pour créer une carte de
hauteur de la canopée avec une résolution de 250 m couvrant toute la Guyane francaise
(superficie de 83.534 km?). Les données utilisées sont les estimations de hauteur de la
canopée a partir du LIDAR aéroporté couvrant les 4/5 de la Guyane frangaise, ainsi que les
estimations de la hauteur de la canopée a partir du LiDAR satellitaire GLAS/ICESat. Les
données auxiliaires, disponibles au niveau mondial comme l'indice d’activité
photosynthétique de végétation (données EVI — Enhanced Vegetation Index du capteur
MODIS), les précipitations, la topographie (calculés a partir du Modele Numérique de
Terrain - MNT du Shuttle Radar Topographic Mission), la géologie et les différents types
de paysage forestier, ont été utilisées. En outre, comme en témoigne Hudak ef al. [66] sur
la corrélation entre la stratégie d'échantillonnage et la précision sur les hauteurs de la
canopée, les effets de I'échantillonnage spatial des ensembles de données de référence
LiDAR utilisés dans cette ¢tude ont été analysés. Enfin, toutes les cartes de hauteur créées
ont été validées a l'aide des estimations de la hauteur de la canopée obtenues a partir d’une

base LiDAR aéroporté indépendante.

En plus du role de la hauteur des arbres dans l'estimation de la biomasse, la classification
des paysages forestiers jouent un role important dans les méthodes d'estimation de la

biomasse. En effet, de nombreuses études ont montré que les modeles pour I'estimation de
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la biomasse sont plus pertinents si I'on inclut les types de foréts ([24]; [42]; [67]; [68];
[69]).

Zheng et al. [67] ont constaté que le couplage des métriques forestieres acquises a partir
des mesures terrain et divers indices dérivés des données Landsat 7 ETM a sensiblement
amélioré I'estimation de la biomasse lors de la séparation des foréts hardwood et les foréts
de pins. Chave et al. [42] ont testé plusieurs modeles pour I'estimation de la biomasse dans
les foréts anciennes, seéches, humides, montagneuses, et les foréts de mangroves. Leurs
résultats indiquent que 1'un des facteurs les plus importants pour l'estimation de la biomasse
est le type de forét. Les résultats ont également indiqués que les meilleurs modéles
prédictifs sont aussi dépendants du type de forét. Ni-Meister et al. [68] ont développé un
modele pour I'estimation de la biomasse qui utilise une fusion de données des capteurs
LiDAR et optique, et intégrant le type de foréts coniféres/feuillus et
décidues/sempervirentes. Leurs résultats indiquent que les modeles qui intégrent le type de
forét ont fourni une meilleure estimation de la biomasse par rapport aux modeles qui

n’utilisent pas cette variable.

Une description des ensembles des données LiDAR aéroporté et satellitaire utilisées dans
cette étude est donnée dans la section 1.2. La section 1.3 présente les méthodes d'estimation
de la hauteur des arbres en utilisant le lidar GLAS. La méthodologie utilisée pour la
création d’une carte des hauteurs sur toute la Guyane frangaise est décrite dans la section
1.4. La classification des paysages forestiers est présentée dans la section 1.5. Enfin les

conclusions et perspectives sont présentées dans la section 1.6.
7.2 Description des jeux de données

7.2.1 Site d'étude

La Guyane francaise est située sur la cote nord du continent sud-américain; face a I'Océan
Atlantique. Elle est bordée par le Brésil a I’est et par le Suriname a I’ouest (cf. Figure 2.1).
La superficie de la Guyane francaise est de 83.534 km?. La forét occupe environ 97%, soit
environ 80.820 km? de sa superficie totale. Le terrain est en grande partie de faible altitude,

s’¢levant parfois en petites collines et montagnes, avec une altitude maximale de 851 m.
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Soixante-huit pourcent (68%) des pentes sont inférieures a cinq degrés, 24% entre cinq et
dix degrés et 8,2% plus de dix degrés (dérivés des élévations MNT SRTM a 90 m). Une
forét tropicale dense domine la Guyane en dehors de la plaine cotiere et couvre plus des
quatre cinquieme de la superficie totale. D’autres types de végétation existent aussi comme
les savanes, les marais et 1’agriculture (paturages, manioc, maraichage). La Guyane
francaise a un climat équatorial avec deux saisons principales, la saison séche, de aolt a

décembre, et la saison des pluies ou humide de décembre a juin.

7.2.2 Base de données LiDAR satellitaire

Les formes d'ondes LiDAR provenant du systéme GLAS/ICESat acquises dans le proche
infrarouge a 1064 nm, de 2003 a 2009, sur la Guyane francaise ont été utilisées dans cette
¢tude. Au cours de ses années de fonctionnement (2003-2009), GLAS a fonctionné avec
des cycles orbitaux qui se répétaient tous les 57 a 197 jours pour un total de 18 missions.
La surface mesurées par GLAS (I'empreinte) a un diamétre compris entre 50 et 100 m
(moyenne de 70 m), et les formes d'onde ont été acquises tous les 175 m le long de la trace.
Les formes d'onde GLAS ont ét¢é numérisées en 544 ou 1000 échantillons avec une
résolution verticale de 1 ns (15 cm). Par conséquent, elles peuvent mesurer des structures
verticales jusqu'a 81,6 m et 150 m, respectivement. La précision verticale de GLAS a été

estimée a environ 3,2 cm en moyenne sur les zones plates [70].

En Guyane francaise, GLAS a acquis plus de 100 000 formes d'onde entre 2003 et 2009
(cf. Figure 2.1). Cependant, toutes ces formes d’onde ne sont pas adaptées pour I'estimation
de la hauteur des arbres. Certaines d'entre elles sont perturbées par la diffusion
atmosphérique, les nuages, etc. Pour supprimer ces formes d’onde, plusieurs filtres ont été
appliqués [72]. Apres le filtrage, 47 348 formes d’onde ont été conservées pour la suite de

I’étude

7.2.3 Données du radiometre spectral 8 moyenne résolution MODIS

Le capteur MODIS embarqué sur les satellites Terra et Aqua possede un total de 36 bandes
spectrales dont sept prévues spécifiquement pour les applications terrestres avec des
résolutions spatiales qui vont de 250 m a 1 km. Le jeu de données MODIS utilisé dans cette
¢tude comprend dix années (du ler janvier 2003 au 31 décembre 2012) d'indice de

végétation amélioré (EVI, MODI13A1). Les données EVI caractérisent efficacement les
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¢tats et processus biophysiques et biochimiques des surfaces végétalisées. Une période de
10 ans a été utilisée pour une meilleure synchronisation avec les données GLAS (2003-

2009).

En utilisant les séries temporelles EVI, six cartes ont été préparées: les valeurs minimales,
moyennes et maximales des données EVI (MIN EVI, MEAN EVI et MAX EVI
respectivement) (cf. Figure 2.3), ainsi que les trois premieéres composantes issues de
l'analyse en composantes principales des données EVI (PCI1, PC2 et PC3). L’indice de
végétation normalis¢ (NDVI) et I'indice de végétation amélioré (EVI) sont souvent utilisés
dans de nombreuses applications qui étudient les paramétres biophysiques. Cependant, la
relation entre eux varie en fonction des caractéristiques de la zone d'étude. Une forte
corré¢lation entre les indices de végétation et de la biomasse verte a été rapportée par
Hardisky et al. [135]; en revanche, d'autres études ont rapportées peu de corrélation entre
les deux ([136]). Enfin, Freitas et al. [137] et Pascual ef al. [138] ont constaté une forte
relation entre la hauteur de la canopée et les indices de végétation. C’est pourquoi, il
pourrait étre intéressant d'inclure 'EVI dans les modeles d'estimation de hauteur de la

canopée.

7.2.4 Données issues du Modéle Numérique de Terrain MNT SRTM

Le modéle numérique de terrain (MNT) acquis par la NASA (SRTM) a également été
utilisé dans cette étude. C’est le produit avec une résolution de 90 m a I’échelle du Globe
qui a été utilisée. Bourgine et Baghdadi [73] ont trouvé que la précision des données
d'¢lévation SRTM a été évaluée a environ 10 m (€cart type d'erreur) en Guyane frangaise.
Le jeu de données MNT SRTM et ses cartes dérivées ont €t€¢ analysés puisque la
topographie locale et le drainage sont importants pour l'ancrage des arbres et la dynamique

de la forét.

D'apres le MNT SRTM, trois produits ont été dérivés:

(1) Une carte de pente (Slope) (cf. Figure 2.4a), qui est calculée en utilisant la variation
maximale d’¢élévation de la distance entre chaque cellule du MNT et ses huit voisins dans
une fenétre de 3x3. La pente a été largement utilisée dans de nombreuses études pour la
correction des estimations de la hauteur des arbres a partir des données LiDAR aéroporté

et satellitaire ([44]; [63];[71]). L’intégration de la pente du sol dans les mod¢les
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d’estimation de la canopée augmente la précision des estimations car elle €limine une partie

de la hauteur ajoutée par la pente ([63]).

(2) Une carte de la rugosité de la surface (Roughness) (cf. Figure 2.4b). La rugosité
correspond a I'écart type des €lévations dans une fenétre 3x3. Les zones ayant un faible
¢écart type représentent des zones des hauteurs d’arbres plus homogenes, tandis qu’un écart-
type fort représente des hauteurs d’arbres plus hétérogenes. L'indice de rugosité a été utilisé
dans les études de Carabajal et Harding [70] et Fayad et al. [105] et les résultats montraient
une bonne corrélation avec la métrique LiDAR Wext des formes d'onde GLAS (mesure
représentant une estimation de la hauteur des arbres).

(3) Enfin, une carte de la zone de drainage en échelle logarithmique (In_drain) (cf. Figure
2.4c). La zone drainée mesure la surface du bassin hydraulique qui s’écoule a travers une
cellule en utilisant le modele D8. Une valeur faible indique des cellules situées sur une
créte en amont, tandis que les valeurs les plus élevées indiquent des cellules situées en aval

dans les vallées.

7.2.5 Carte géologique

La géologie est un déterminant important de la formation du sol, conditionnant ses
propriétés chimiques et physiques, qui affecte la croissance des arbres et d'autres
parametres forestiers. Une carte de substrat géologique (GEOL) produite par le BRGM
([76]) a été donc utilisée dans cette étude (cf. Figure 2.5a). La carte a été simplifiée pour
retenir seulement les cinq plus grandes formations de roche: sédiments récents, roche

sédimentaire volcanique, granites, gabbros et gneiss.

7.2.6 Carte des types de paysage forestier

Une carte des types de paysage forestier développée par Gond et al. [77] avec une
résolution d’un km a été utilisée (cf. Figure 2.5b). Dans cette carte, 33 types de paysage
forestier (LTs) utilisant des images SPOT-VEGETATION ont été interprétés. Cing classes
du total des 33 classes ont été utilisées dans cette ¢tude puisqu’elles occupent environ 78%
de la forét dans cette zone. Les LTs peuvent étre décrites comme suit:

(1) LTS8 représente une forét dense avec un couvert fermé La forét y est composée de petites
couronnes et de petites ouvertures mélangées dans un couvert régulier avec des arbres

ayants sensiblement la méme hauteur.
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(2) LTI est une forét avec un couvert fermé d’arbres de méme hauteur dominée par des
émergents bien développées sans grandes ouvertures.

(3) LT10 est une forét irréguliere ou les arbres ont des hauteurs et des diametres de
couronne différents avec de grandes ouvertures. Cette forét irréguliere est mélangée avec
une forét ayant un couvert fermé et dominé par des couronnes bien développées sans
grandes ouvertures. LT10 est aussi mélangé avec des foréts de liane.

(4) LT11 est semblable a LT10 avec plus de foréts de liane et des couverts non-forestier.
(5) LT12 est une forét ouverte associée aux marécages et la forét de bambou.

L’ensemble de données de LTs a été choisi pour sa corrélation avec la hauteur des arbres.

7.2.7 Carte de précipitation

Les données de précipitations de la mission de la NASA pour la mesure des précipitations
tropicales (TRMM) ont été utilisées (cf. Figure 2.5c). Cette mission a été lancée en 1997
pour la mesure et le suivi des pluies tropicales. Les données TRMM utilisées dans cette
¢tude représentent la précipitation moyenne quotidienne au cours des 10 dernicres années
(2003 a 2013) avec une résolution de 8 km (Rain). Des études récentes suggerent une
relation entre la hauteur de la canopée maximale dans les vieux peuplements et le cumul
des précipitations annuelles ([139]). Lorsque le rapport des précipitations augmente, la

hauteur maximale des arbres augmente aussi.

7.3 Estimation de la hauteur des arbres a partir des données

GLAS

Les modeles d'estimation de la hauteur des arbres basés sur les données de formes d'ondes
LiDAR GLAS peuvent étre divisés en deux catégories: la méthode directe et les modéles
statistiques. La méthode directe permet d’estimer la hauteur de la canopée dans les zones
avec un faible relief en utilisant la différence d'altitude entre le début du signal GLAS et le
pic du sol. Cependant, sur les zones en pente, la méthode directe surestime la hauteur des
arbres en raison de la hauteur supplémentaire introduite par la pente. Pour supprimer les
effets de la pente, des modeles statistiques ont été¢ développés en utilisant des métriques
extraient de GLAS et d’un MNT. Tandis que les métriques développées dans des études
précédentes ont réussi a augmenter la précision des mod¢les d'estimation de la hauteur des

arbres (par exemple, [44]; [62]; [64]; [71]), ces mod¢les avaient leurs propres problémes.
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En effet, afin d'utiliser ces métriques pour une meilleure estimation de la hauteur des arbres,
la position exacte du pic du sommet de la canopée et le pic du sol est souvent nécessaire.
Sur les zones avec une végétation dense comme les foréts tropicales, l'extraction de la
position exacte du pic du sommet de la canopée et le pic du sol est particulierement difficile
en utilisant un processus automatis¢ car les formes d'onde LiDAR ne présentent pas
souvent des pics distinctifs [62]. L'extraction de ces métriques manuellement est toujours
possible, mais devient inefficace lorsqu'il s’agit d'un grand nombre de formes d'onde

GLAS.

Les objectifs de cette section sont de tester plusieurs modeles couramment utilisés pour
l'estimation de la hauteur des arbres, qui utilisent des métriques dérivées des formes d'onde
GLAS et du MNT-SRTM, et de tester deux techniques nouvelles dans le domaine LiDAR
appliqué a la forét: I'analyse en composantes principales (ACP) des formes d’onde et la
technique Random Forest (RF) qui va servir comme modele de régression pour estimer la
hauteur des arbres. Le but d’utiliser I'approche ACP est d'é¢liminer la nécessité d’utiliser les
métriques extraites de GLAS dans les modeles d'estimation de la hauteur des arbres. En
effet, I'extraction de certaines métriques peut présenter des erreurs, en particulier dans les
foréts tres denses, comme dans le Guyane frangaise a cause de la difficulté a identifier la
position du sol. Pour la régression RF, les mémes métriques que celles utilisées dans les
modeles de régression GLAS seront tout d'abord utilisées. Les résultats de tous les modeles
testés dans cette section seront validés par rapport aux estimations de la hauteur des arbres

obtenus a partir d'un ensemble de données de LiDAR aéroporté indépendant.

7.3.1 Contexte de l'estimation de la hauteur des arbres en utilisant
GLAS

L'estimation de la hauteur des arbres en utilisant la méthode directe est effectuée en
utilisant tout simplement la différence entre le début du signal de la forme d'onde (Hb) et
le pic du sol (Hg). La méthode directe estime la hauteur des arbres avec une bonne précision
sur les zones plates (par exemple [72]). Cependant, sur les zones en pente, a la fois le pic
du sol et celui de la végétation s’élargissent et diminuent en intensité. Le pic identifié
comme le pic du sol ne représentera plus seulement le sol, mais un mélange d'objets et du
terrain ([71]; [70]). En fait, sur un terrain en pente 1’étendu de la forme d’onde ‘Wext’ va

augmenter en fonction de la pente et de la taille de I'empreinte [10]. Cette augmentation
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se traduira par une détection plus précoce du début du signal et cela provoquera une
surestimation de la hauteur des arbres. Pour corriger 1'effet de la pente sur le signal GLAS,
plusieurs études ont développés des modeles qui utilisent des parameétres issus des signaux
GLAS (I'¢tendue de la forme d'onde "Wext", I'é¢tendue du bord antérieur "Lead" et I'étendue
du bord postérieur "Trail") (cf. Figure 2.2) afin de mieux estimer la hauteur des arbres (par
exemple : [44]; [62]; [71]; [70]). Finalement, afin d'analyser la précision de I'estimation de
la hauteur des arbres a I'aide du modéle ‘Random Forest’, plusieurs configurations de
métriques ont €té testées. Dans cette étude, les principaux modéles testés sont résumés dans

le tableau (cf. Tableau 3.1).

La comparaison entre les estimations de la hauteur des arbres a partir des formes d'onde
GLAS en utilisant la méthode directe et les estimations de la hauteur des arbres de
l'ensemble de données du LiDAR aéroporté a montré une forte erreur quadratique moyenne
(EQM) sur l'estimation de la hauteur des arbres (7,9 m) et un faible R? de 1’ordre de 0,50
(cf. mod¢le Id 1, Tableau 3.1, Figure 3.5a). Ce résultat peut étre expliqué par le fait que la
plupart des empreintes GLAS tombent sur une zone avec une pente entre 5° et 10°. En
outre, les résultats des modéles de régression avec validation croisée ont montré que les
modeles de régression qui utilisent le Trail (cf. modele Id 4-8, Tableau 3.1, Figure 3.5b)
fournissent une estimation de la hauteur des arbres légerement meilleure en comparaison
aux modeles qui utilisent soit le Lead, I’indice de terrain a partir du MNT-SRTM (TI) ou
le Lead et TI (EQM compris entre 3,7 et 4,0 m, R? entre 0,79 et 0,81). La contribution du
Lead semble étre faible par rapport au Trail lorsqu’on estime la hauteur maximale des
arbres. En effet, le modele Id 7 qui utilise le Trail avait de meilleurs résultats par rapport
aux modeles Id 3 qui utilisent le Lead (cf. Tableau 3.1). En outre, 'utilisation du ‘Terrain
Index’ (TT) calculé a partir du MNT dans les modeles de régression produit une précision

sur l'estimation de la hauteur des arbres plus basse (EQM =4,9 m et R =0,72).

Les résultats de 1’estimation de la hauteur des arbres en utilisant les métriques a partir de
GLAS et le RF, ont montrés que la meilleure configuration pour estimer la hauteur de la
canopée est la configuration qui utilise toutes les métriques: Wext, Lead, Trail, et TI (cf.
modele Id 13, tableau 3.1). La différence entre les estimations de la hauteur des arbres de
GLAS et les hauteurs obtenues a partir des données LiDAR aéroporté (données de

référence) pour la configuration utilisant toutes les métriques, a montré une EQM de 3,4
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m, et un coefficient de détermination R? de 0,82. En outre, le test de l'importance des
variables a montré que la hauteur des arbres provenant de GLAS est mieux expliquée en
utilisant la Wext avec un facteur d'importance presque trois fois plus élevé en comparaison
avec les trois autres métriques (Trail, Lead, TI), qui ont presque la méme importance.
D'autres modeles de régression qui utilisaient Wext, Lead, et TI ou Wext et Lead ou Wext
et TT (cf. modeles Id 14, 15, 16, Tableau 3.1) ont montré des précisions semblables sur
l'estimation de la hauteur des arbres (EQM environ 3,6 m). L'estimation de la hauteur
d'arbres provenant de GLAS et utilisant uniquement la Wext a montré une EQM de 4,4 m
avec un R? de 0,73. Figue 3.6 montre des exemples de la comparaison entre les estimations
de la hauteur des arbres a partir de GLAS et les estimations de référence de la hauteur

obtenues a partir de données LiDAR aéroporté.

7.3.2 Techniques proposées pour l'estimation de la hauteur des arbres

La section précédente a présenté un certain nombre de modeles de régression ¢laborés dans
plusieurs études pour I'estimation de la hauteur des arbres. Cependant, ces modéles exigent
plusieurs métriques dérivées des empreintes GLAS, comme le pic du sol, pic du sommet,
Lead, Trail, et les métriques dérivées du MNT SRTM, tels que 1'indice de terrain (TI). En
outre, l'extraction de certaines métriques a partir des formes d'onde GLAS, tels que la
position du pic du sol, peut étre erronée, en particulier dans les foréts denses. En fait, la
pénétration de la forme d’onde dans la canopée dans les zones de végétation dense est
parfois insuffisante pour atteindre le sol. Ainsi, soit le signal LiIDAR n’a pas attient le sol
ou bien il a atteint le sol mais le retour est trop faible pour une détection fiable. Ces
difficultés dans la détection du pic sol affectent l'estimation du Wext, et par conséquent,
l'estimation de la hauteur des arbres. Ainsi, un mode¢le statistique pour I’estimation de la
hauteur basé uniquement sur les valeurs de la forme d'onde peut étre une alternative
intéressante. Une analyse en composantes principales des formes d'onde GLAS a été
menée. Ensuite des modeles de régression lin€aire et la technique ‘Random Forest” ont étés
construits pour l'estimation de la hauteur de la canopée avec les composantes principales

(PC).

L'estimation de la hauteur des arbres en utilisant le RF avec les PCs a été effectuée en
utilisant différentes configurations des PCs utilisées. En utilisant les 13 premiers PCs avec

la technique ‘Random Forest’ a abouti a une meilleure précision de l'estimation de la
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hauteur des arbres (EQM = 4,7 m, R? = 0,7) par rapport au modeéle de régression linéaire
qui a utilisé les 13 premiers PCs (EQM = 5,9 m, R? = 0,52). Le test de I'importance des
variables a montré que la hauteur des arbres GLAS est mieux expliquée en utilisant PC1,
PC2, PC4 et PCI11 (variance 62,4%). La seule utilisation de ces quatre PCs dans RF a
montré un résultat similaire (EQM = 4,8 m, R?> = 0,69). Ensuite, l'incorporation de la Wext
avec les 13 premicres composantes principales a considérablement amélioré la précision
de I'estimation de la hauteur des arbres (EQM = 3,6 m, R? = 0,83) en comparaison avec les
régressions RF sans Wext. En plus, ce résultat est du méme ordre que celui obtenu en
utilisant une régression linéaire avec les 13 premieres PCs et Wext (EQM = 3,8 m).
L’utilisation des variables les plus importantes (Wext, PC1, PC2, PC4 et PC11) dans la
régression RF, a donné des résultats similaires, avec une erreur quadratique moyenne de
3,6 m et un R? de 0,82. Enfin, en remplagant la Wext par la classe de Wext (WC, avec
WCI1 pour Wext < 20m ; WC2 pour Wext entre 20 et 40 m et WC3 pour Wext > 40 m)
avec les 13 premicres PCs dans RF, I’estimation de la hauteur des arbres a montré des
résultats similaires (EQM = 3,7 m, R? = 0,81). Des résultats similaires ont été observés
lorsque 1’on ne retient que les variables les plus importantes avec la classe de Wext (WC,
PC1, PC2, PC4 et PC11), avec une erreur quadratique moyenne de 3,7 m et un R? de 0,81.
La Figure 3.9 montre la comparaison entre les hauteurs de la canopée a partir de GLAS en
utilisant la technique de RF sur les PCs, Wext et WC et les hauteurs de référence obtenues

a partir des données LiDAR aéroporté.

7.4 La spatialisation de la hauteur des arbres LiDAR

Afin d'estimer la hauteur des arbres sur une grille réguliere de 250 m x 250 m et non plus
au niveau des formes d’onde LiDAR (GLAS ou LiDAR aéroporté) une procédure en cinq
¢tapes a été menée, en se basant sur la relation statistique et spatiale entre les estimations
de la hauteur des arbres a partir du LiDAR et des variables auxiliaires (GEOL, LT, Rain,
Slope ...) en utilisant des méthodes d'estimation empiriques largement utilisées: régressions
par Random Forest, krigeage ordinaire, et régression krigeage (par exemple [65]; [66];
[96]; [97]; [98]). Les cartes produites ont une résolution de 250 m x 250 m correspondant

a la résolution de la majorité des variables auxiliaires utilisées.
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7.4.1 Contexte sur la technique régression-krigeage

Nous avons cartographi¢ la hauteur des arbres a partir de données LiDAR a une résolution
de 250 m en utilisant la technique de régression krigeage (RK). RK est une technique
spatiale de prédiction qui combine la valeur de régression des prédicteurs (variables
auxiliaires) et le krigeage des résidus de régression (hauteurs de référence de la canopée -
hauteurs de la canopée estimée par RF) ([98]). Cette technique a été¢ développée
principalement pour tenir compte de la corrélation entre les variables environnementales
et la qualité du fitting insatisfaisante du modele de variance spatiale de l'ensemble de
données ([99]) empéchant ainsi la stationnarité des variables auto corrélées étudiés. Pour
le modele de régression, nous allons utiliser la technique RF, et pour la régression des

résidus nous allons utiliser le krigeage ordinaire.

7.4.2 La cartographie de la hauteur des arbres en utilisant la régression
krigeage

Pour créer les cartes de la hauteur des arbres, les variables prédictives qui expliquent le
mieux la hauteur des arbres ont d'abord été choisies. Deux ensembles de données de
référence pour la hauteur des arbres a partir du LiDAR ont été utilisés séparément:
I'ensemble de données GLAS, et I'ensemble des données LiDAR aéroportés (AD). Les
résultats ont montré que les prédicteurs qui expliquent le mieux la hauteur des arbres sont
les mémes pour les deux jeux de données de référence. Les prédicteurs sont les suivants:
La rugosité du terrain (Rug), la valeur moyenne de 'EVI (EVI_AVGQ), la carte géologique
(Geo), la valeur moyenne des précipitations (Rain), et la pente du terrain (Slope). Ensuite,
la technique de régression RF a été utilisée pour modéliser la hauteur des arbres a 1'aide
des variables prédictives les plus pertinentes. Un modéele de régression RF a été¢ développé
pour chaque ensemble de données LiDAR afin de créer des cartes spatialisées pour la
hauteur de la canopée pour toute la Guyane. Les résultats ont montré que toutes les cartes
de la hauteur des arbres ont présentées une précision semblable quelle que soit la précision
des hauteurs d'arbres de référence utilisées (cf. Figure 4.2, EQM environ 6 m). Afin
d'améliorer la précision des cartes obtenues pour la hauteur des arbres, les résidus (la
hauteur de référence des arbres — la hauteur estimée des arbres) obtenus a partir de chaque
ensemble de données LiDAR ont été krigés. Afin de kriger les résidus, le semivariogramme
des résidus des deux jeux de données (GLAS et LiDAR aéroporté) a été ajusté. Le palier,

la portée et la pépite obtenus ont été similaires. Ensuite, chaque carte de résidu krigé a été
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ajoutée a la carte de hauteur des arbres correspondante obtenue a partir du modele de
régression RF. Les résultats ont montré une amélioration de la précision des cartes de la
hauteur des arbres. Cependant, cette amélioration de la précision varie entre la carte de
hauteur de la canopée utilisant le résidu de hauteur provenant des données GLAS (EQM
de 4,2 m avec RK, cf. Figure 4.5a) et celle obtenue en utilisant I'ensemble de données AD
(EQM de 1,8 m avec RK) (cf. Figure 4.5b). Cette différence de précision entre GLAS et
AD est due a la densité des points, et I'espacement des lignes de vol pour chaque jeu de
données. En effet, pour 'ensemble de données AD, les estimations de la hauteur des arbres
sont réparties sur des lignes de vol avec une distance moyenne d'environ 500 m, tandis que
les estimations de la hauteur des arbres pour I'ensemble de données GLAS sont répartis sur

les lignes de vol avec une distance moyenne de 20 km

7.4.3 Relation entre I’espacement des lignes de vol LiDAR et la précision
de la hauteur des arbres krigée

Dans cette section la précision des cartes de la hauteur des arbres obtenues par krigeage
des données LiDAR a différentes densités de points LiDAR a été évaluée. Le but est
d'analyser 1'impact de I'espacement des lignes de vol LiDAR sur la précision de la carte des
hauteurs des arbres, en créant a partir du jeu de données d'origine AD plusieurs sous-
ensembles de données LiDAR avec différents espacements de lignes de vol (espacement
de 5, 10, 20, 30, 40, et 50 km). Afin de créer les cartes pour la hauteur des arbres en utilisant
les sous-ensembles de la base AD, les meilleures variables prédictives ont tout d'abord été
sélectionnées pour étre utilisées dans les régressions RF. Les résultats indiquent que pour
les sous-ensembles AD, les variables prédictives qui expliquent le mieux la hauteur des
arbres étaient les mémes que celles utilisées avec les jeux de données GLAS et AD. En
plus, les résultats ont également montré que la précision des cartes produites pour la hauteur
des arbres a I'aide des régressions RF avec les sous-ensembles AD était dans le méme ordre
de grandeur que les cartes de hauteur de la canopée obtenues avec les deux ensembles de
données de référence (GLAS et AD) (cf. Tableau 4.1). Pour ces sous-ensembles, l'erreur
quadratique moyenne sur 1’estimation de la hauteur des arbres se situe entre 5,7 et 6,2 m
(R? entre 0,60 et 0,65). Afin d'ajouter les résidus krigés aux cartes de la hauteur des arbres
par RF, le semivariogramme des résidus pour chaque sous-ensemble AD a été ajusté (cf.
Figure 4.7). Le palier, la portée et la pépite obtenus ont été similaires a ceux obtenus avec

les jeux de données GLAS et AD. En y ajoutant les résidus krigés correspondant a chacun
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des sous-ensembles AD, la précision sur les cartes de la hauteur des arbres a augmentée
comme prévu (cf. Tableau 4.1). Cette amélioration de la précision semble étre corrélée
négativement avec l'espacement des lignes de vol des sous-ensembles AD. Pour les sous-
ensembles AD 5 et AD 10 (espacement de 5 et 10 km respectivement), la précision sur
l'estimation de la hauteur des arbres était similaire aux résultats obtenus avec 1'ensemble
de données AD (EQM = 1,8 m, R? = 0,94). Toutefois, pour les sous-ensembles AD 20,
AD 30, AD 40 et Ad 50, la précision sur l'estimation de la hauteur des arbres a diminué

d’une erreur EQM = 3,3 m pour LD 20 a une erreur de 4,8 m pour LD 50.

7.5 Le potentiel du couplage GLAS et SRTM pour la

discrimination des types de paysage forestier

Dans cette section, les formes d'ondes acquises par GLAS ont été utilisées pour analyser la
différence entre les élévations GLAS et celles du MNT SRTM, dans le but de discriminer
les cinq principaux types du paysage forestiers (LTs) de la Guyane. Les LTs ont été
délimités par Gond et al. [77] en utilisant un processus d'experts mélangeant des analyses
terrain et d'images a basse résolution [77]. Tout d'abord, deux différences ont été calculées:
(1) la profondeur de pénétration définie comme la différence entre 1’¢lévation du pic du
sommet a partir d’une forme d’onde GLAS et I’¢lévation du MNT, et (2) la différence entre
1'¢lévation du centroide d’une forme d’onde GLAS et I’¢lévation du MNT. La classification
des cinqg types de paysage forestiers (LTs) en utilisant les données GLAS et MNT a été
¢valuée en utilisant la technique RF. Cette classification a été réalisée selon la profondeur
de pénétration, la différence entre 1’élévation du centroide d’une forme d’onde GLAS et
I’¢1évation du MNT, et la hauteur des arbres a partir de GLAS (Hc) (différence entre le pic
du sol et le début du signal), et I'indice de rugosité issu du MNT (R). Enfin, en utilisant les
changements qui se produisent au signal GLAS a différentes saisons, le potentiel de

discrimination des LTs en utilisant ces changements a été étudié.

7.5.1 Classifications des empreintes GLAS

Une classification des empreintes GLAS basées sur la technique Random Forest (RF) a ét¢
réalisée en utilisant la profondeur de pénétration (la différence entre 1’élévation du pic du
sommet a partir de GLAS et I’¢lévation du MNT), la différence entre 1’¢lévation du

centroide de la forme d’onde GLAS et 1’élévation du MNT, la hauteur de la canopée (Hc)
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et I'indice de rugosité (R). La technique ‘Random Forest’ est connue pour s'adapter a des
problémes de classification ayant des caractéristiques spatiaux complexes et est de plus en
plus utilisée par la communauté de la télédétection pour la classification de 1'occupation
des sols [119]. Les résultats de la discrimination ont montrés que tous les LTs ont été bien
classés avec une précision entre 78,4% a 97,5% et la discrimination a été réalisée avec une

précision globale de 81,3% (coefficient Kappa de 0,75) (cf. Tableau 5.2). Le test

d'importance des variables a montré que la différence entre I’¢lévation du pic du sommet a
partir de GLAS et 1’¢lévation du MNT était la variable la plus importante, suivie par la

hauteur des arbres (Hc) et I'indice de rugosité (R).

7.5.2 Les effets de la saison sur les acquisitions GLAS

Le potentiel de discrimination des différents LTs en utilisant les formes d’onde GLAS
ayants des empreintes GLAS coincidentes, avec une forme d’onde pendant la saison
humide et une forme d’onde pendant la saison se¢che, a été analysé. Premierement, les
paires des formes d'onde ont été séparées en deux catégories. La premicre appelée leaf-on
et correspond a des formes d'onde sans modifications des formes d’onde entre les deux
saisons (arbres avec des feuilles dans les deux saisons). La seconde catégorie appelée leaf-
off représente les arbres qui perdent leurs feuilles pendant la saison seéche. Les arbres leaf-
off ont été identifiées a partir des paires de formes d'onde GLAS qui ont montrés des
changements dans 'amplitude des pics du sommet de la canopée et du sol d'une saison a

'autre.

Les résultats montrent que la forét ouverte (LT12), qui est connue pour étre décidue, a
présenté¢ un rapport des énergies des sommets de canopées dans les saisons seches et
humides (Topwet / Topary) de 2,4 vs ~1,1 pour LTS8, LT09 et LT10, et 1,2 pour la leaf-on
des LT12 (cf. Tableau 5.4). En outre, le rapport des énergies du pic du sol des formes
d’ondes dans les saisons seches et humides (Groundwe:/ Groundary) est similaire pour LTS,
LT10 et les leaf-on des LT12 d'une valeur d'environ 1,1. Un rapport inférieur a été obtenu
pour la leaf-off de LT12 (0,7) (cf. Tableau 5.4). La différence entre les élévations du
centroide de la forme d’onde GLAS et les élévations SRTM est similaire pour les données
dans les deux saisons seéches et humides avec des valeurs comprises entre -4,3 et -6.3 m

pour la saison humide et entre -4,7 et -5,8 m pour la saison séche. Inversement, cette
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différence augmente pour les paires leaf-off de LT12 de -5.8 m dans la saison humide
jusqu’a -9.6 m pendant la saison séche (cf. Tableau 5.4). La Figure 5.6 montre les
emplacements des paires leaf-off et leaf-on en Guyane frangaise, révélant que la majorité

des paires leaf-off sont situés dans la méme zone dans le sud de la Guyane frangaise.
7.6 Conclusions et perspectives

7.6.1 Conclusions

Dans cette étude, la hauteur des arbres a partir des données GLAS en Guyane frangaise a
¢été estimée a I'aide de multiples modeles de régression linéaire et de la technique ‘Random
Forest” (RF). Cette analyse est basée soit sur les métriques extraites des formes d’ondes
GLAS et des informations sur le terrain issu du MNT SRTM ou sur l'analyse en
composantes principales (PCA) des formes d’onde GLAS. Les régressions linéaires et les
régressions RF ont fournies des estimations de la hauteur des arbres avec une précision
similaire en utilisant soit les métriques GLAS ou les composantes principales (EQM ~ 3.6
m). Toutefois, un modele de régression (régression linéaire ou RF) basé sur I'ACP et les
¢chantillons de la forme d'onde avec une information sur la Wext est une alternative
intéressante pour estimer la hauteur des arbres car il ne nécessite pas d’autres métriques
difficiles a obtenir a partir des formes d'onde GLAS dans les foréts denses, telles qu’en

Guyane francaise.

Sachant que les données acquises a partir de GLAS ont une densité d'acquisition faible,
mais une couverture géographique mondiale, il est donc utile de proposer une méthode
pour cartographier la hauteur des arbres avec une bonne précision et a une résolution
spatiale ¢levée. Dans cette étude, la hauteur des arbres extraites des deux capteurs LiDAR
acroporté et satellitaire, a été estimée a partir des données environnementales disponibles
(par exemple, la géologie, de la pente, des indices de végétation, etc.) et utilisant la
technique de régression-krigeage (krigeage des résidus de la régression du RF). Les cartes
de la hauteur des arbres estimées en utilisant la régression-krigeage ont montrées une EQM
sur I’estimation de la hauteur des arbres de 4,2 m en utilisant les données de calibration
GLAS et de 1,8 en utilisant les donnes LiDAR aéroporté. Enfin, I'impact de

I'échantillonnage spatial sur la précision des estimations de la hauteur des arbres a été
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¢tudié. Les résultats indiquent qu’en utilisant l'approche de régression-krigeage, la
précision sur la carte des hauteurs d’arbres était de 1,8 m avec un espacement des lignes de
vol de 5 km et a évoluée pour atteindre un EQM de 4,8 m avec la configuration d’un

espacement des lignes de vol de 50 km.

Finalement, dans cette étude, les formes d'ondes acquises par GLAS ont été utilisées pour
analyser la différence entre les ¢lévations de GLAS et du SRTM, dans le but de discriminer
les cinq types de paysage forestier (LTs) en Guyane frangaise. Les résultats ont montrés
que la discrimination des cinq LTs en Guyane frangaise est désormais possible avec un
taux de classification de 81,3% et un coefficient kappa de 0,75. Finalement, les différences
entre les formes d'onde GLAS coincidentes (une en saison humide et l'autre en saison
seche) ont montrées que les arbres de LT12 pouvaient étre facilement distingués des autres
LTs qui conservent leurs feuilles en utilisant seulement trois critéres: (1) la différence entre
I'¢élévation du centroide de la forme d’onde GLAS et I'¢1évation du SRTM, (2) Le ratio de
I'énergie du sommet de la forme d’onde de la saison humides a 1'énergie du sommet de la
forme d’onde de la saison séche, et (3) le rapport de I'énergie du sol de la forme d’onde de

la saison humide a I'énergie du sol de la forme d’onde de la saison séche.

7.6.2 Perspectives
Cette recherche ouvre un certain nombre de perspectives. Elles ouvrent de nombreux sujets
sur I'amélioration des modeles d’estimations de la hauteur des canopées afin d’améliorer

I’estimation de la biomasse.

7.6.2.1 La spatialisation de la hauteur des arbres a partir du LIDAR

Dans la section 1.4, la spatialisation de la hauteur de la canopée a été réalisée avec la
régression-krigeage et l'utilisation des ensembles de données LiDAR aéroportés et
satellitaire. Tandis que les résultats de l'estimation de la hauteur de la canopée ont été
satisfaisants, plusieurs aspects doivent étre poursuivis. Pour la méthode de cartographie de
la hauteur de la canopée non-spatiale, nous avons utilisé la régression RF. Cependant,
plusieurs autres modeles de régression tels que les modeles de régression inversés ([125])
ou, les modeles de régression a axe majeur réduit (AMR) ([126]; [125]) pourraient &tre
utilisés a la place de RF, et leurs performances analysées. En ce qui concerne les méthodes

de spatialisation, des modeles de krigeage anisotrope ayant une composante directionnel
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doivent étre testés. Enfin, les cartes créées dans cette étude pour I'estimation de la hauteur
de la canopée ont une résolution de 250x250 m. Par conséquent d'autres cartes avec

différentes résolutions pourraient étre réalisées et analysées.

7.6.2.2 L’estimation de la biomasse

L'objectif principal de cette theése était de spatialiser la hauteur de la canopée sur toute la
Guyane francaise. Cet objectif a ét¢ atteint avec des résultats intéressants. Cependant, la
hauteur de la canopée peut étre utilisée pour estimer d’autres ressources forestiéres
importantes, telles que les stocks de carbone (ACD) ou la biomasse (AGB), soit
directement ou indirectement. Dans ce cadre, il serait intéressant d'étudier la relation entre
la hauteur de la canopée a partir du LiDAR a différents niveaux d'énergie (RH100, RH75,
et RH50) et leur corrélation a la biomasse dans notre zone d'étude. Des parameétres sur la
topographie de la surface, le pourcentage du couvert forestier, les types de foréts, et 'age
du peuplement, pourraient également étre ajoutés au modele d'estimation de la biomasse
dans une tentative d'améliorer la précision de l'estimation. Idéalement, une approche
similaire a celle utilisée dans section 1.4 devrait étre abordée. Finalement, 1’approche
présentée par Asner et al. [40]; pour l'estimation de I’ACD ou ’AGB en utilisant les
estimations de la hauteur de la canopée a partir du LiDAR doit étre analysée. Asner ef al.
[40]; ont proposé une allométrie des parcelles agrégées pour I'estimation de I'ACD ou
I’AGB en utilisant des estimations de hauteur de la canopée par LiDAR. Dans leur étude,
ils ont émis I'hypothese que si la structure de la forét et de I'organisation de la biomasse
suivent des modeles de graduation constants, les variables au niveau de la parcelle
pourraient capturer les mémes informations sur AGB par rapport aux inventaires de terrain.
Ensuite, puisque les paramétres tels que DBH et WD ne sont pas directement estimés par
LiDAR, des relations ont été trouvées entre les hauteurs de la canopée par LiDAR et ces
parametres. Par conséquent, I’AGB peut maintenant étre estimée a 1'aide d’une allométrie
des parcelles agrégées et en utilisant seulement les estimations de la hauteur de la canopée

par LiDAR.
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