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ABSTRACT  
 

Remote sensing has facilitated the techniques used for the mapping, modeling and 

understanding of forest parameters. Remote sensing applications usually use information 

from either passive optical systems or active radar sensors. These systems have shown 

satisfactory results for estimating, for example, aboveground biomass in some biomes. 

However, they presented significant limitations for ecological applications, as the 

sensitivity from these sensors has been shown to be limited in forests with medium levels 

of aboveground biomass. On the other hand, LiDAR remote sensing has been shown to be 

a good technique for the estimation of forest parameters such as canopy heights and above 

ground biomass. Whilst airborne LiDAR data are in general very dense but only available 

over small areas due to the cost of their acquisition, spaceborne LiDAR data acquired from 

the Geoscience Laser Altimeter System (GLAS) have low acquisition density with global 

geographical cover. It is therefore valuable to analyze the integration relevance of canopy 

heights estimated from LiDAR sensors with ancillary data (geological, meteorological, 

slope, vegetation indices etc.) in order to propose a forest canopy height map with good 

precision and high spatial resolution. In addition, estimating forest canopy heights from 

large-footprint satellite LiDAR waveforms, is challenging given the complex interaction 

between LiDAR waveforms, terrain, and vegetation, especially in dense tropical and 

equatorial forests. Therefore, the research carried out in this thesis aimed at: 1) estimate, 

and validate canopy heights using raw data from airborne LiDAR and then evaluate the 

potential of spaceborne LiDAR GLAS data at estimating forest canopy heights. 2) evaluate 

the fusion potential of LiDAR (using either sapceborne and airborne data) and ancillary 

data for forest canopy height estimation at very large scales. This research work was carried 

out over the French Guiana. 

 

The estimation of the canopy heights using the airborne dataset has been carried out using 

a simple algorithm, which first extracts the canopy top and ground points, and then 

interpolates the canopy height using the ground point and its surrounding canopy top 

points. Results indicated an RMSE on the canopy height estimates of 1.6 m. Next, the 

potential of GLAS for the estimation of canopy heights was assessed using multiple linear 

(ML) and Random Forest (RF) regressions using waveform metrics and principal 

component analysis (PCA). Results showed canopy height estimations with similar 



 

precisions using either LiDAR metrics or the principal components (PCs) (RMSE ~ 3.6 

m). However, a regression model (ML or RF) based on the PCA of waveform samples is 

an interesting alternative for canopy height estimation as it does not require the extraction 

of some metrics from LiDAR waveforms that are in general difficult to derive in dense 

forests, such as those in French Guiana.  

 

Next, canopy heights extracted from both airborne and spaceborne LiDAR were first used 

to map canopy heights from available mapped environmental data (geological, 

meteorological, slope, vegetation indices etc.). Results showed an RMSE on the canopy 

height estimates of 6.5 m from the GLAS dataset and of 5.8 m from the airborne LiDAR 

dataset. Then, in order to improve the precision of the canopy height estimates, regression-

kriging (kriging of random forest regression residuals) was used. Results indicated a decrease 

in the RMSE from 6.5 to 4.2 m for the regression-kriging maps from the GLAS dataset, and 

from 5.8 to 1.8 m for the regression-kriging map from the airborne LiDAR dataset. Finally, in 

order to study the impact of the spatial sampling of future LiDAR missions on the precision of 

canopy height estimates, six subsets were derived from the airborne LiDAR dataset with flight 

line spacing of 5, 10, 20, 30, 40 and 50 km (corresponding to 0.29, 0.11, 0.08, 0.05, 0.04, and 

0.03 points/km², respectively).  

 

Results indicated that using the regression-kriging approach, the precision on the canopy 

height map was 1.8 m with flight line spacing of 5 km and decreased to an RMSE of 4.8 m 

for the configuration for the 50 km flight line spacing. 



 

RESUME 
 

La télédétection contribue à la cartographie et à la modélisation des paramètres de la forêt. 

Ce sont les systèmes optiques et radars qui sont le plus généralement utilisés pour extraire 

des informations utiles à la caractérisation des paramètres forestiers. Ces systèmes ont 

montré des résultats satisfaisants pour estimer, par exemple, la biomasse dans certains 

biomes. Cependant, ils présentent des limitations importantes pour des forêts ayant un 

niveau de biomasse élevé. En revanche, la télédétection LiDAR s’est avérée être une bonne 

technique pour l'estimation des paramètres forestiers tels que la hauteur de la canopée et la 

biomasse. Alors que les LiDAR aéroportés acquièrent en général des données avec une 

forte densité de points mais sur des petites zones en raison du coût de leurs acquisitions, 

les données LiDAR satellitaires acquises par le système spatial (GLAS) ont une densité 

d'acquisition faible mais avec une couverture géographique mondiale. Il est donc utile 

d'analyser la pertinence de l'intégration des hauteurs estimées à partir des capteurs LiDAR 

et des données auxiliaires (géologiques, météorologiques, pente, indices de végétation, 

etc.) afin de proposer une carte de la hauteur des arbres avec une bonne précision et une 

résolution spatiale élevée. En outre, l'estimation de la hauteur des arbres à partir des formes 

d’onde GLAS avec ses grandes empreintes est difficile compte tenu de l'interaction 

complexe entre les formes d'onde LiDAR, le terrain et la végétation, en particulier dans les 

forêts tropicales et équatoriales denses. Par conséquent, la recherche menée dans cette thèse 

vise à: 1) Estimer et valider la hauteur des arbres en utilisant des données acquises par des 

LiDAR aéroportés et satellitaire (capteur GLAS). 2) évaluer le potentiel de la fusion des 

données LiDAR (avec les données aéroportées ou satellitaires) et des données auxiliaires 

pour l'estimation de la hauteur des arbres à une échelle régionale. Ce travail de recherche 

a été effectué sur la Guyane française.  

 

L'estimation de la hauteur des arbres en utilisant les données aéroportées a été réalisée en 

utilisant un algorithme simple, qui extrait d'abord les points haut de la canopée et ceux du 

sol, puis interpole la hauteur de la canopée en utilisant les points du sol et les points hauts 

de la canopée. Les résultats ont indiqué une EQM sur les estimations de la hauteur de la 

canopée de 1,6 m. Ensuite, le potentiel de GLAS pour l'estimation de la hauteur des arbres 

a été évalué en utilisant des modèles de régression linéaire (ML) ou Random Forest (RF) 

avec des métriques provenant de la forme d'onde et de l'analyse en composantes principales 



 

(ACP). Les résultats ont montré que les modèles d’estimation des hauteurs des arbres 

avaient des précisions semblables en utilisant soit les métriques LiDAR ou les composantes 

principales (PC) (EQM ~ 3,6 m). Toutefois, un modèle de régression (ML ou RF) basé sur 

les composantes principales  obtenues à partir des formes d’onde GLAS est une alternative 

intéressante pour l'estimation de la hauteur des arbres, car il ne nécessite pas l'extraction 

de certaines métriques à partir des formes d'onde LiDAR qui sont en général difficiles à 

dériver dans les forêts denses, telle que la Guyane française. 

 

Finalement, la hauteur des arbres extraite à la fois des données LiDAR aéroporté et GLAS 

a servi tout d'abord à spatialiser la hauteur des arbres en utilisant les données 

environnementaux cartographiées disponibles (géologiques, météorologiques, la pente, 

indices de végétation, etc.). En utilisant la régression RF, la spatialisation de la hauteur des 

arbres a montré une EQM sur les estimations de la hauteur de la canopée de 6,5 m à partir 

de GLAS et de 5,8 m à partir du LiDAR aéroporté. Ensuite, afin d'améliorer la précision 

de la spatialisation de la hauteur de la canopée, la technique régression-krigeage (krigeage 

des résidus de la régression du Random Forest) a été utilisée. Les résultats de la régression-

krigeage indiquent une diminution de l'erreur quadratique moyenne de 6,5 à 4,2 m pour les 

cartes de la hauteur de la canopée à partir de GLAS, et de 5,8 à 1,8 m pour les cartes de la 

hauteur de la canopée à partir des données LiDAR aéroporté. Enfin, afin d'étudier l'impact 

de l'échantillonnage spatial des futures missions LiDAR sur la précision des estimations de 

la hauteur de la canopée, six sous-ensembles ont été extraits de  de la base LiDAR 

aéroporté. Ces six sous-ensembles de données LiDAR ont respectivement un espacement 

des lignes de vol de 5, 10, 20, 30, 40 et 50 km (correspondant à une densité de 0,29, 0,11, 

0,08, 0,05, 0,04, 0,03 points / km², respectivement).  

 

Finalement, les résultats indiquent qu’en utilisant la technique régression-krigeage, l’erreur 

quadratique moyenne sur la carte des hauteurs de la canopée était de 1,8 m pour le sous-

ensemble ayant des lignes de vol espacés de 5 km, et a augmentée jusqu’à 4,8 m pour le 

sous-ensemble ayant des lignes de vol espacés de 50 km
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1 INTRODUCTION 

1.1 General context 

1.1.1 Global Carbon Cycle 

The carbon cycle is the biogeochemical cycle (total exchange of a chemical element) of 

carbon globally. The earth’s carbon cycle is rendered more complex by the existence of 

large oceanic water masses and especially by the fact that life (and therefore Carbone 

compounds that are the substrate) has an important place. There are mainly four carbon 

reservoirs: the hydrosphere, lithosphere, biosphere and the atmosphere. Most of the 

terrestrial carbon is trapped in compounds that contribute little to the cycle: rocks as 

carbonates and deep oceans. Therefore most of the cycle is between the atmosphere, the 

surface layers of soil and oceans, and biosphere (biomass and necromass). Under seas, the 

carbon is found mostly as carbonate and planktonic biomass. Over land, the carbon is 

mainly the bogs, meadows and forests. In addition, some soil types play a fairly important 

role in carbon sequestration or as a carbon sinks. Figure 1.1, shows the global carbon cycle, 

as well as the exchange of carbon between the different carbon sinks, and the carbon fluxes.  

The carbon cycle is very important to the biosphere, since life is based on the use of carbon-

based compounds: carbon availability is one of the key factors for the development of all 

living things on earth. Carbon is also a major component of many minerals, and the carbon 
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dioxide (CO2) is partly responsible for the greenhouse effect and is the most human-

contributed greenhouse gas ([1]). 

Figure 1.1. The global carbon cycle with the movement and exchange of carbon 
between land, atmosphere, and oceans.  

 

1.1.2 Greenhouse gases and climate change 

The study of the carbon cycle has recently taken a special relief in the context of the issue 

of global warming: Two of the greenhouse gases involved: the carbon dioxide (CO2) and 

methane (CH4), participate in the carbon cycle, as they are the main atmospheric carbon 

forms. In addition to climate issues, the study of the carbon cycle will allow us to determine 

the effects on the release of carbon stored in the form of fossil fuels by human activity. 

 

In fact, the global carbon cycle has been greatly altered by human activity in the past 

decades. Indeed, carbon dioxide resulting from human emissions exceeded natural 

fluctuations ([1]). The changes in the amount of CO2 in the atmosphere are altering weather 

patterns and oceanic chemistry. Studies have shown that even though global temperatures 

can fluctuate without changes in atmospheric CO2, the latter cannot change without 

affecting the atmospheric temperatures. In addition, CO2 levels are rising higher than ever 

recorded in the atmosphere ([2]). Therefore it is of high importance to better understand 

the carbon cycle and its effects on the global climate ([1]).  
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1.1.3 Global carbon cycle’s carbon sinks 

The global carbon cycle is divided into four main carbon sinks connected by pathways of 

exchange ([3]): 

- The lithosphere contains carbon in its carbon and carbonated rocks (30 mGt). 

- The hydrosphere contains carbon in its dissolved form (38 000 Gt) and in marine 

organisms (3 Gt). 

- The biosphere contains 2,300 Gt of carbon in the form of biomass and necromass 

and in soils 

- The atmosphere contains 700 Gt of carbon as CO2. 

The exchanges of carbon between these fours sinks occur as a result of various chemical, 

physical, geological, and biological processes. The ocean contains the largest active sink 

of carbon near the surface of the earth ([1]). In addition, carbon exchange between the 

different compartments is balanced, which makes the carbon levels stable without human 

influence ([4]).  

 

The lithosphere contains the largest amounts of carbon in the form of carbonated rocks and 

fossil fuel ([1]); it does not exchange a lot of carbon naturally with the other compartments. 

This is due to the fossilization rate of living beings or the sedimentation of carbonated 

rocks which can take several million years. However, the CO2 emissions in the atmosphere 

resulting from the use of fossil fuel are the principal flux that concerns this carbon stock.  

 

The hydrosphere and the biosphere are in equilibrium due to the high solubility of the CO2 

in water and the important volume of oceans. In fact, oceanic absorption of CO2 is one the 

most important forms of carbon sequestering. This high absorption rate limits the carbon 

dioxide in the atmosphere caused by human activities. However, this process may make 

oceanic waters more acidic due to the increase uptake of carbon, as well as limiting the 

ocean uptake of CO2 ([1]).  

 

Finally, the biosphere exchanges up to 60 Gt/year of carbon with the atmosphere. This 

exchange has two sources, while the breathing of animals and plants and fermentation of 

bacteria releases CO2 into the atmosphere; the photosynthesis (especially of green plants) 

fixes the carbon in the biomass. The biosphere plays an important role in the carbon cycle, 
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as this compartment is directly influenced by human activity. While it is possible to interact 

with this compartment, on the one hand, deforestation and land use change can diminish 

carbon stocks ([5]). On the other hand, tree planting and the protection of existing forests 

increase carbon stocks ([6]). 

1.1.4 Humans and climate change 

The concentration of atmospheric carbon during the last 100-200 years increased 

significantly due to human activities (burning of fossil fuel, natural gas, charcoal, etc.). The 

burning of fossil fuels, which accumulated during millions of years, released huge amounts 

of CO2. Another reason for the increase of CO2 in the atmosphere comes from deforestation 

and forest fires, especially in tropical regions. This also causes fast release of CO2 sinks 

that were also accumulated during a long time (few years to several centuries based on 

burnt forest age) ([1]). 

 

By determining the contribution of CO2 to the atmosphere, we can deduce how the carbon 

cycle influences the global temperature. The rejection of CO2 of anthropogenic origins is 

responsible for 70% of the global warming, but in return, the atmospheric concentrations 

of CO2, the global temperature as well as the precipitation affect greatly the carbon cycle. 

1.1.5 The carbon cycle feedback loop 

Feedback in general is the process in which output from a system are “fed back” as inputs 

as part of a chain of cause-and-effect that forms a loop. For instance, by determining the 

contribution of CO2 to the atmosphere, the carbon cycle influences the global temperature. 

But, in return, the atmospheric concentrations of CO2, the global temperature as well as the 

precipitations influence several key elements of the carbon cycle.  

 

At the oceanic levels, there is a complex feedback linked to the solubility of CO2. This 

feedback is negatively correlated to the temperature. In the case of global warming, more 

CO2 are liberated from oceans into the atmosphere, and therefore contribute to the global 

warming. This is called a positive feedback. However, the solubility of CO2 depends on its 

concentration in the atmosphere, thus limiting the effect of the feedback.  The dissolution 

of CO2 in the oceans causes water acidification. Temperature changes are therefore 
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influencing the activity of the plankton, which increases or decreases the oceanic ability to 

capture CO2 ([7]; [8]). 

 

In regards to vegetation and thus forests, if the ratio of photosynthesis increases with 

temperature and CO2, the ratio of the respiration will also increase with temperature. This 

effect on photosynthesis is generally positive. An increase in terrestrial vegetation has been 

observed in response to higher temperatures and CO2 levels in the atmosphere (IPCC, 2014 

[9]). However, for certain vegetation types, it has been observed that the respiration 

increases more as a function of temperature rather than photosynthesis, this makes these 

ecosystems more as sources and not sinks of carbon in the long term. 

1.1.6 Current issues 

Facing these environmental threats, the international community adopted several policies 

at the national, international and global level. The first United Nations summit concerning 

the environment took place in 1972 in Stockholm. It was during this summit that the United 

Nations Environment Program (UNEP) was created in order to debate ecological questions. 

The countries participating to this summit agreed to meet once each ten years in order to 

review the state of earth’s environment. Following that year, the most notable summits 

were as follows: 

 

The Montreal protocol of 1987 which prohibited the chlorofluorocarbons gas use (CFC) as 

it can lead to the destructions of the atmosphere was successful as it allowed the decrease 

of atmospheric charges of the CFC ([10]). This first success is still limited because of 

climate change with the massive injection of greenhouse gases, including firstly CO2, 

which could destabilize the stratosphere, and amplify the loss of the ozone layer in the 

atmosphere. The changing climates has socio-economic effects and these effects are 

already being felt, as they lead to the exodus of some populations worldwide, but also break 

the balance governing ecosystems and jeopardize the biodiversity of our planet. This led 

to the creation of the UN Framework Convention on Climate Change (UNFCCC), which 

came into force in 1994 following the Earth Summit in Rio de Janeiro in 1992. In the Rio 

Janeiro summit in 1992, the participants agreed on the necessity to stabilize atmospheric 

concentrations of greenhouse gases. The objective was to limit the abrupt changes to 

ecosystems, in order to have time to adapt.  In 1997, 141 nations signed on the protocol of 



Chapter 1 6 

Kyoto, which engaged the committed nations to reduce by 5.2% their emissions of six 

greenhouse gases. Recently, the Copenhagen conference which brought together 191 

countries, have ratified the UNFCCC. The UNFCCC stressed the importance of forests in 

regulating climate change and particularly of atmospheric CO2. 

 

Countries in economic development have no commitments in this protocol along with the 

United States and the main carbon emitters who did not sign. Practically, this agreement 

allowed the creation of a carbon market. The states which surpass their quota in their carbon 

emission, can buy carbon credits from other nations that have not surpassed their carbon 

quotas. These credits allow the nations in need to emit more greenhouse gases. The 

objective was to motivate the nations to limit their greenhouse gases emissions by giving 

a monetary value to these emissions. The agreements of Copenhagen, which were signed 

in 2009, were renegotiations of the agreements of Kyoto. However, no binding 

commitments were made after the 2012, which marks the end of the Kyoto protocol. 

However, the 112 participating nations agreed to try and reduce the global temperatures 

rise by 2oC. 

1.2 Role of forests in the carbon cycle 

 In the framework of the international agreements on the limitation of emission of 

greenhouse gases and temperature emissions, the case of forests and in tropical forest plays 

a major role. Carbon stocks in forests comprise above- and below-ground carbon in both 

living and dead organic matter. Globally, forests and soils are estimated to trap around 2.6 

GtC/year. However, there are still many uncertainties about the carbon cycle. Indeed, Food 

and Agriculture Organization of the United Nations (FAO, 2008 [11]) estimates that the 

amount of carbon absorbed by the forests can vary between 0.9 and 4.3 GtC/year.  

1.2.1 Tropical forests and the carbon stock 

Carbon Stocks over land are distributed mostly between forests and northern latitudes 

(Figure 1.2), but are mostly found in forests, and more precisely in tropical forests. Indeed, 

studies suggests that tropical forests play a more important role in absorbing carbon with 

an absorption rate reaching as much as 1 GtC/year or about 40% of the total land based 

carbon absorption globally. However, tropical forests are principally located in developing 
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countries (Amazon basin, Congo Basin, South-East Asia). These countries which are 

currently undergoing an economic and demographic growth, and therefore moving from 

forested to non-forested areas are causing a significant impact on the accumulation of 

greenhouse gases in the atmosphere, as has forest degradation caused by over-exploitation 

of forests for timber and wood fuel and intense grazing that is reducing forest regeneration. 

Therefore, during the 16th conference of the parties to the agreement of climate change of 

Cancun (2010), the United Nations program for Reducing Emissions from Deforestation 

and Forest Degradation (UN-REDD) was adopted. This program aims at protecting forests, 

preserve and increase forest carbon stocks and sustainable forest management. The REDD 

initiative and its three main supplementary activities are called REDD+. The basic principle 

of the REDD+ program is that financial compensation be paid by the developed countries 

to developing countries that manage to reduce their emissions at the national level. The 

REDD program is based on the fact that when a forest is damaged and destroyed, CO2 is 

released into the atmosphere. If we manage to reduce the rate of deforestation (complete 

disappearance of forests) or degradation (damaged forest due to exploitation), then it is 

possible to reduce the amount of released CO2. However, in order to calculate the 

magnitude of the reduction in CO2 emissions, it is necessary to create a baseline or 

reference base against which to compare actual emissions. Therefore it is necessary to be 

able to quantify the amounts of carbon contained in forests.  

Figure 1.2. Forest carbon stock per region. UNEPP, FAO, UNFF, Forest vital 
graphics, 2009. 
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1.2.2 Link between carbon and forest biomass 

Studies have stated that more than 40% of global vegetation carbon stocks are located in 

tropical forests ([6]; [12]). However, forest carbon is not limited to trees and is distributed 

on average as follows: 45% of carbon is found in the soil, 11% in dead biomass or 

necromass, and 44% in biomass (both above- and below-ground) (FAO, 2000 [13]). 

Moreover, the above-ground biomass (AGB) is generally the most studied, as it is the most 

accessible. AGB is a biological material derived from living organisms, and it most often 

refers to plants. Biomass is carbon based and is composed of a mixture of organic 

molecules containing hydrogen, oxygen, and small quantities of several other atoms. The 

proportion of carbon in AGB varies depending on the forest type, wood composition, or 

the environment. However, it ranges between 0.43 and 0.55 ([14]; [15]; [16]; [17]; [18]).  

1.2.3 The importance of quantifying forest biomass 

The interest in studying the AGB comes from the fact that the carbon in the AGB is 

susceptible to be released into the atmosphere by means of deforestation. In addition, land 

use change in tropical forests is responsible of 15-20% of global greenhouse emissions 

globally ([19]; [20]). In contrast, if trees are to be planted, this means more carbon 

sequestration. However, this natural regeneration of the carbon stock will much likely take 

several decades ([21]), and a plantation is not, by far, a natural forest. Moreover, even with 

forest degradation or regeneration, tropical forest can still undergo changes that affect AGB 

levels. For example, under influence of environmental changes, such as the increase of CO2 

levels in the atmosphere. This increase of CO2 might increase the photosynthesis of trees 

and therefore increase the levels of carbon in trees ([6]; [22]). Other environmental changes 

are caused by tree mortality, which can increase the necromass, and therefore affect the 

release of carbon in the atmosphere ([23]). 

1.3 Biomass estimation 

As seen earlier, AGB measurement is an important task for better understanding of the 

carbon cycle. However, accurate measurements of biomass require weighing of the trees 

after cutting them. This method yields high biomass measurement accuracy however it is 

destructive and restrictive. Therefore it is necessary to find other methods for biomass 

estimation in a non-destructive manner.  
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1.3.1 Biomass estimation with optical and radar data 

Currently, existing AGB estimation methods from remote sensing data are either limited 

in the vertical domain (sensor saturation at certain biomass levels using mainly radar and 

optical data) or in the horizontal domain (limited horizontal coverage using LiDAR data).  

Methods using radar and optical data for the estimation of AGB are successful in forests 

with low to medium levels of AGB (e.g. [24]; [25]; [26]; [27]; [28]). Indeed, current 

techniques based on passive optical sensing have shown limited sensitivity to biomass 

using medium to high resolution imagery when the biomass reaches intermediate levels 

(150-200 Mg/ha) (e.g. [27]; [28]). This is due to the optical data inability to detect variation 

in biomass density after complete closure of the canopy top, which can occur from low or 

intermediate biomass values (depending on forest characteristics). In contrast, the Fourier 

Transform Textural Ordination (FOTO) using very-high-resolution optical images have 

been used for non-saturating estimates of tropical forest biomass estimation. As such, this 

approach may provide higher sensitivity to biomass high levels (>600 t/ha) (e.g. [29]; [30]; 

[31]). 

 

The synthetic aperture radar (SAR) systems such as PALSAR/ALOS, JERS-1 and SIR-C, 

as well as airborne SAR such as SETHI and E-SAR were also used as an alternative for 

biomass estimation. The radar signal saturation threshold with the biomass increases with 

the increase of the radar wavelength. Indeed, L-band SAR systems (wavelength about 25 

cm) are limited to low and intermediate biomass levels, with maximum values reaching 

150 t/ha (e.g. [24]; [25]; [26]; [32]; [33]; [34]). This saturation threshold of the radar signal 

depends on forest characteristics. According to Imhoff et al. [35]; the saturation levels are 

closer to 40 t/ha because the saturation thresholds occur before the regression maxima. In 

boreal forests, saturation levels were observed up to 150 t/ha. Baghdadi et al. [32] observed 

saturation levels of the ALOS/PALSAR L-band at biomass levels of 50 t/ha when 

estimating the biomass for Eucalyptus plantations in Brazil. Luckman et al. ([36]; [37]) 

found a saturation point of 60 t/ha in the Central Amazon basin. Le Toan et al. [26]; Wu et 

al. [33]; and Dobson et al. [34] reported L-band signal saturation levels at 100 t/ha in 

coniferous forests. In boreal forests, higher saturation levels were observed reaching up to 

150 t/ha using PALSAR (Sandberg et al. [25]). However, with higher radar wavelengths 

(P-band for example, wavelength about 70 cm) the use of SAR sensors may allow the 
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estimation of biomass at higher biomass levels ([38]). Imhoff et al. [35] examined AGB 

levels in broadleaf evergreen forests in Hawaii and coniferous forests in North America 

and Europe and found saturation levels of 100 Mg/ha for the P-band versus 40 Mg/ha for 

the L-band. Nizalapur et al. [38] found that the sensitivity of radar signal to biomass in a 

tropical dry deciduous forest increases for approximately 150 t/ha for the L-band to 200 

t/ha for the P-band.  

 

Given the limitations of optical (expensive very high resolution images which only cover 

small areas) and radar (unavailable global coverage for P-band SAR data, signal saturation 

with lower wavelengths) data for biomass estimation, studies generally use allometric 

relations for linking the characteristics of a forest (canopy height, diameter at breast height, 

wood density) to its biomass (e.g. [39]; [40]; [41]).  

1.3.2 Biomass estimation using allometric relations 

Allometric relationships linking the characteristics of a forest to its biomass were 

developed by several studies (e.g. [40]; [42]; [39]). The reference model in these studies 

was developed in the study of Chave et al. [42]. In their study they developed a pantropical 

biomass estimation model at the individual tree level. This model was based on the formula 

for calculating the mass of a cylinder using stem diameter (D), canopy height (H), and 

wood density (ρ).  

 

! = "#. $%&'& . (. )  (1.1) 

 

This translates to: 

 *+,-!/ = " *+,-#/ 0 &. *+,-D/ 1 "2. *+,- &/ 0 *+,-(/ 0 *+,-)/" (1.2) 

 

Using the second formula (2), it is possible to predict a tree mass (M) by adding adjustment 

coefficients: 

 *+,-!/ = "34 0"35. *+,-%/ 0 3&. *+,-(/ 0 36. *+,-)/" (1.3) 
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This model developed by Chave et al. [42] has been shown to produce good biomass 

estimation results and fits well with data across different tropical forests ([43]).  

1.3.3 Plot aggregate allometry for biomass estimation 

Asner et al. [40] proposed a plot aggregate allometry model for tropical areas drawn from 

the Chave et al. [42] model, but they replaced in situ canopy height with top-of-canopy 

height (TCH), as derived from airborne small-footprint LiDAR measurements, and stem 

diameter with plot-averaged basal area (BA). BA and wood density were linked with TCH 

using linear relationships in the form of BA = aTCH and ρ = bTCH + c, producing a model 

for AGB estimation using only TCH. Results showed a RMSE on AGB estimation of 24.7 

Mg/ha for the regional models (model coefficients dependent on region) and 26.4 Mg/ha 

for the generalized model (generalized model coefficients for all regions). Drake et al. [39] 

used a power function to link top-of-canopy height estimated from airborne LiDAR to 

aboveground biomass (AGB = aTCHb). However, this method is considered plot-aggregate 

allometry rather than true allometry, as it reflects the whole-plot properties of forest 

structures in aggregate and not the properties of each particular tree. This method had an 

RMSE of 42.2 Mg/ha when tested in five tropical forests with different vegetation types. 

Lefsky et al. [44] linked the maximum canopy height (Hmax) estimated from GLAS data to 

AGB using the following linear relationship: AGB = a + bH²max. Boudreau et al. [45] linked 

the GLAS waveform extent (difference between signal start and signal end), the slope (θ) 

between signal start and the first Gaussian canopy peak and the terrain index (TI) metric 

derived from the SRTM-DEM to AGB. Saatchi et al. [46] and Mitchard et al. [24] used 

Lorey’s height (basal-area-weighted canopy height) instead of the maximum height for 

AGB estimation. In the different studies, it was found that Lorey’s height is broadly related 

to canopy height [47]. However, Asner et al. [40] found that Lorey’s height does not 

explain any variations in AGB, basal area, or wood density that cannot be explained by 

canopy height. 

1.4 Forest canopy height in relation to forest biomass 

One of the most important variables in the allometric relations which can be estimated from 

remote sensing techniques is the canopy height. Several allometries relied on only the 

canopy height for biomass estimation ([40]; [42]). In addition, studies have shown that the 
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use of canopy height increases significantly the precision of biomass estimation at tree 

level (e.g. [14]; [42]). In Chave et al. [42]; the use of tree height reduced relative error on 

the biomass from 19.5 (model using only DBH and wood density) to 12.8% (model using 

DBH, wood density and canopy height). In Feldpaush et al. [14]; biomass estimation 

models which used canopy heights, DBH and wood density showed a 50% decrease in the 

mean relative error in comparison to the models using only DBH and wood density. Other 

studies such as Asner et al. [48]; and Mitchard et al. [24] and Lefsky et al. [44] found that 

canopy height are strongly related to forest biomass. In addition to the importance of forest 

canopy heights in AGB estimation, knowing forest canopy heights is also interesting in 

itself for answering ecological questions such as on the determinants of plant and forest 

structure, forest dynamics, edaphic and climatic stress. Forest canopy heights are very 

important in forest management decisions; as changes in these heights may have direct 

effects on microclimatic patterns and processes ([49]). Indeed, the micro climate is 

modified first by local weather conditions, and then by vegetation, due to forest height 

which amongst the forest structure, controls the quality and quantity, spatial and temporal 

distribution of light. It also influences local precipitation and air movements. These factors 

combined will eventually determine to some extent the humidity in the air, temperature 

and soil moisture.  In addition to having less direct effect on the behavior and distribution 

of various avian species ([50]; [51]; [52]). Moreover, forest height is important for 

managing resources such as wildlife, hydrologic response, aesthetics, tree growth and yield 

([53]), fire hazard, and susceptibility to insects or disease. 

1.4.1 Canopy height estimation using radar and optical data 

Studies have used radar data to estimate canopy height using PolInSAR (polarimetric 

interferometric SAR) (e.g. [54]; [55]; [56]) and tomographic techniques (e.g. [57]; [58]). 

PolInSAR showed promising results for the estimation of canopy heights. In Neumann et 

al. [58]; canopy height estimation using PolInSAR showed an RMSE of 3 m with 

maximum canopy heights reaching 40 m when compared to reference canopy height 

estimates. Garestier et al. [57] estimated canopy heights using P-band PolInSAR data and 

found an RMSE on the canopy height estimation of 2 m for 2 to 25 m forest heights. 

However, it was hindered due to several sources of noise (weather changes, atmospheric 

heterogeneities, and intrinsic phase noise). SAR tomography is an alternative technique for 

using radar data in canopy height estimation. This technique is an imaging approach, which 
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generates a fully 3D representation of the imaged scene using coherent combination of a 

greater number of images ([59]; [60]). Huang et al. [59] used the tomography technique 

with P-band SAR data for canopy height estimation in a test site in French Guiana. Their 

results indicated an RMSE on canopy height estimates of 7.7 m. Mercer et al. [60] reported 

a 10% relative error on tree height estimates in comparison to LiDAR canopy height 

estimates using SAR tomography with L-band SAR data. SAR tomography is more robust 

against various noise sources in comparison to PolInSAR at the expense of the necessity 

to require many more flight lines. The BIOMASS Earth Explorer mission selected by ESA 

(European Space Agency) in the framework of its living planet program with a P-band 

spaceborne SAR satellite will provide strong opportunities for the estimation of both 

canopy heights and biomass from SAR images. Furthermore, many studies used medium 

and high resolution optical imagery such those available from MODIS, Landsat, Quickbird, 

IKONOS and others in order to extrapolate airborne or spaceborne LiDAR derived canopy 

height estimates (e.g. [47]; [61]). 

1.4.2 Canopy height estimation using LiDAR data 

To this date, canopy height estimation over large areas is best achieved using LiDAR data 

(either Airborne or Spaceborne). Lidar (Light Detection and Ranging) is an active remote 

sensing system well suited to measure specific forest information, including but not limited 

to: canopy heights, basal area, leaf area index, and canopy cover. LiDAR measures object 

elevation by sending a laser pulse, and measuring the pulse return time, and thus its distance 

from the LiDAR system and with the help of an onboard GPS, the system determines the 

objects elevation from the ground. Currently, Airborne LiDAR, is the most accurate remote 

sensing system to obtain specific site-level data on forest structure. However, wall-to-wall 

acquisitions of LiDAR data remain very expensive, therefore the use of spaceborne LiDAR 

systems, which produce free data globally becomes viable. Several studies have estimated 

canopy height using airborne or spaceborne LiDAR data (e.g. [24]; [44]; [45]; [46]). At 

regional and global scales, LiDAR data acquired by the Geoscience Laser Altimeter 

System (GLAS) have been widely used (e.g. [44]; [47]). Using GLAS data, maximum 

canopy height within each footprint has been successfully estimated with a precision 

between 2 and 13 m, depending on forest types and characteristics of the study site (e.g. 

[44]; [62]; [63]; [64]). Lefsky et al. [44] applied linear regressions on waveform metrics 

and ancillary DEM data for canopy height estimation and obtained site-specific models 
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with an RMSE between 4.85 and 12.66 m. Hilbert and Schmullius [62] when estimating 

canopy heights obtained an RMSE of 6.39 m on the canopy height estimation regarding all 

species and slope classes with a clear negative correlation between accuracy and slope. Lee 

et al. [63] applied a slope correction metric to a GLAS estimation model obtained high 

correlation between GLAS canopy height estimates and those estimated from a small 

footprint LiDAR with an RMSE of 2.2 m. Pang et al. [6] estimated the crown-area-

weighted mean height with airborne LiDAR measurements using linear regression applied 

to metrics derived from GLAS waveforms. Their results indicated an RMSE of 3.8 m on 

the estimation of canopy heights in several coniferous forest sites in western North 

America.  

1.4.3 Spatial extrapolation of LiDAR canopy height estimates 

Finally, while LiDAR is very precise with canopy height estimates, it is limited in the 

horizontal domain (limited spatial coverage for airborne data and limited acquisition 

density for satellite data). Indeed, airborne LiDAR data are very expensive to acquire for 

very large areas (€135-175/km2 with 1m point spacing), and while spaceborne LiDAR 

provides global coverage of waveform data they have a relatively low point density (about 

0.51 points/km2 over French Guiana for example). Therefore, it is always necessary to 

merge LiDAR data (spaceborne or/and airborne) with optical or/and radar data, forest types 

data, geological data, meteorological data, etc. in order to create forest canopy heights with 

complete land coverage and a good precision(e.g. [47]; [65]; [66]). 

 

Hudak et al. [66] tested one aspatial (linear regression), two spatial (kriging and co-kriging) 

and two combined spatial and aspatial methods (kriging and cokriging of regression 

residuals) for mapping canopy heights using airborne LiDAR canopy height estimates and 

Landsad Enhanced Thematic Mapper (ETM+) using several sampling strategies (250, 500, 

1000 and 2000 m) in a 200 km² study site in western Oregon (USA). Their results showed 

that the regression model maintained vegetation pattern, however it was more biased 

towards taller and shorter trees (underestimating taller canopy heights while overestimating 

shorter ones). Using the regression model, the standard deviation on the canopy height 

residuals (reference canopy heights – estimated canopy heights) was in the order of 10 m 

regardless of the sampling strategy. The direct kriging or co-kriging of canopy heights were 

only slightly more precise than the regression model when predicting canopy heights at 
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locations lower than 200 m from the reference canopy heights. Moreover, the co-kriging 

method proved to be slightly more precise than the kriging method. Finally, the method 

which combined the regression and the kriging and co-kriging of the residuals proved to 

be the best method for mapping canopy heights. This method conserved the pattern of the 

canopy heights and improved the precision on the canopy height estimates. The standard 

deviation on the canopy height estimates varied between 5.5 and 10.9 m for respectively a 

sampling pattern of 250 and 2000 m.  

 

Lefsky et al. [47] created a global forest canopy height map using regression analysis of 

canopy heights estimated from the GLAS data and 500 m Moderate Resolution Imaging 

Spectroradiometer (MODIS) data. The linear regression model which was used to model 

MODIS data to the GLAS canopy height estimates in order to map forest canopy heights 

globally showed canopy height estimates with a root mean square error on the estimation 

of canopy heights of 5.9 m and a coefficient of correlation (R2) of 0.67.  

 

Finally, a more recent study conducted by Simard et al. [65] improved on the work of 

Lefsky et al. [47] for global canopy height mapping by replacing the linear regression 

model with the Random Forest technique and using other ancillary data such as the annual 

mean precipitation, seasonal precipitation, annual mean temperature, seasonal temperature, 

data from a digital elevation model (DEM) and the percentage tree cover provided from 

MODIS. Their global canopy height map which was validated against in-situ 

measurements showed moderate canopy height estimation precision with an RMSE of 6.1 

(R² of 0.5) on the estimation of canopy heights. 

1.5 Forest types in relation to forest biomass 

In addition to the role of forest canopy heights in AGB estimation, forest landscape 

classification also plays a major role in the methods for estimating AGB. Indeed, many 

studies have found that AGB estimation models are more relevant when including forest 

types ([24]; [42]; [67]; [68]; [69]). Zheng et al. [67] found that the coupling of tree metrics 

acquired from field measurements and various indices derived from Landsat 7 ETM± 

substantially improved AGB estimates when separating hardwood from pine forests. 

Chave et al. [42] tested several models for AGB estimation in old growth, dry, moist, wet, 
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montane and mangrove forests. Their results indicated that one of the most important 

factors for AGB estimation is forest type. The results also indicated that the best predictive 

models were forest-type dependent. Ni-Meister et al. [68] developed an AGB estimation 

model that uses a fusion of LiDAR and optical sensors (to provide the vegetation type) in 

conifer/softwood and deciduous/hardwood forests. Their results indicated that vegetation-

type-dependent models provide better AGB estimates in comparison to vegetation-type-

independent models. Mitchard et al. [24] found a ±25% uncertainty in the estimation of 

AGB in Lope National Park (Gabon) using LiDAR data and a vegetation structures map 

extracted from radar images. Finally, Addo-Fordjour [69] developed AGB estimation 

models for different species of lianas. Their results indicated that forest type has a 

significant influence on the allometric relationships used in AGB estimation, which led to 

forest-type-specific equations. 

1.6 Organization of the dissertation 

1.6.1 Objectives 

The main objective of this thesis was to create new methodologies for the mapping of large 

forested areas, often inaccessible using remote sensing techniques and especially the one 

that uses LiDAR. LiDAR remote sensing is an attractive and a complementary technique 

used with other remote sensing techniques for mapping forest biomass notably through the 

characterization of the height and the vertical structure of the canopy. However, current 

missions (satellite or airborne), do not allow the acquisition of LiDAR data with sufficient 

spatial density measurements for accurate mapping of tree height and subsequently the 

estimation of biomass at a regional scales. The challenge was then to develop methods for 

spatial estimation of vegetation height from airborne and satellite LiDAR data and other 

data sources. The goal is to produce a wall-to-wall canopy height map of French Guiana. 

From this objective stems different sub-objectives: 

- develop a procedure for the estimation of canopy heights from mono-echo airborne 

LiDAR datasets. 

- Evaluate the potential of the LiDAR system ICESat/GLAS to estimate canopy heights in 

a tropical forest by developing different statistical methods that uses waveforms provided 

by the ICESat/GLAS system. 
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- Improve canopy height estimation precision by choosing complementary data issued from 

different technologies. 

- Develop data fusion methodologies using LiDAR canopy height estimates with ancillary 

data (geological, meteorological phenological ...) in order to propose a forest wall-to-wall 

canopy height map with good precision and high spatial resolution.    

- Analyze the relationship between canopy height estimation precision and the spatial 

sampling of LiDAR data. 

- Evaluate the potential of the ICESat/GLAS data and data from the shuttle radar 

topography mission (SRTM) for the classification of forest landscape types and forest 

types. 

1.6.2 Dissertation plan 

The dissertation contains in total six chapters, including the introduction (chapter 1), 

chapter 2 which presents the study area and the datasets used, the sub-objectives mentioned 

in section 1.6.1 are represented in chapters 3, 4, and 5, and, finally the conclusion and 

perspectives (chapter 6) and the summary of the thesis in French (Chapter 7). In addition, 

the chapters were written based on scientific articles which were published or submitted at 

the time of this writing. Each article is introduced later-on in its respective chapter. 

 

Chapter 2 introduces the study area, alongside all the used data in our study. Chapter 3 

which is based on a published article in a the peer-reviewed international journal “Remote 

Sensing” will be dedicated to the introduction of the LiDAR technology (airborne and 

spaceborne), as well as detailing the methods and procedures used in this thesis in order to 

estimate canopy heights with either airborne- or spaceborne LiDAR. This chapter starts off 

with an introduction of the LiDAR datasets used. Next, a detailed description of the 

methods used in order to estimate forest canopy heights using airborne LiDAR as well as 

a validation of these estimates is shown. Following that, an introduction of spaceborne 

LiDAR is presented, as well as the processing of waveforms provided by the ICESat/GLAS 

and the extraction of the most useful metrics used for canopy height estimation. The 

remaining of the chapter will be dedicated to the presentation of canopy height estimation 

methods using ICESat/GLAS with a validation of each method. 
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Chapter 4 focuses on using the LiDAR based canopy height estimates obtained in chapter 

3 as well as ancillary data in order to produce a validated wall-to-wall canopy height map 

of the entire French Guiana. In addition, the effect of spatial sampling of the LiDAR 

datasets on the canopy height estimation precision was also studied in this chapter. The 

contents of this chapter constitute an article that has already been submitted to the remote 

sensing (MDPI) journal. 

 

Chapter 5 is also based on a published article in the peer-reviewed “International Journal 

of Applied Earth Observation and Geoinformation”. In this chapter, first, comparisons 

between elevations extracted from ICESat/GLAS waveforms and elevations from SRTM 

data were used in order to classify French Guiana’s forest landscape classes. Next, several 

metrics were extracted from GLAS waveforms in order to classify forest types. Finally, 

chapter 6 presents the main conclusions and the perspectives of this thesis



 

2 CHAPTER 2:                       

STUDY AREA AND DATASETS  

In this study, different datasets were used over our study area for the estimation and 

mapping of canopy heights. These datasets are comprised of LiDAR data and data from 

different auxiliary datasets. In order to use the different datasets, filtering, and processing 

is required. In this chapter, the study is first presented. Next, all the datasets used in this 

study are presented, as well as any required filtering and processing. 

2.1 Study area 

French Guiana is situated on the northern coast of the South American continent, bordering 

the Atlantic Ocean as well as Brazil and Suriname (Figure 2.1). The study site’s area is 

approximately 83,534 km2, and forest occupies approximately 80,820 km2 or 

approximately 96.75% of its total size. The terrain is mostly low-lying, rising occasionally 

to small hills and mountains, with an altitude ranging from 0 to 851 m. In addition, 67.8% 

of its slopes are lower than five degrees, 24.0% are between five and ten degrees and 8.2% 

are higher than ten degrees (derived from the SRTM elevations). Dense tropical forests 

predominate outside the coastal plain and cover more than four-fifths of the land area. 

Other vegetation types also exist, such as savannas and agricultural crops. French Guiana 
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has an equatorial climate with two main seasons, the dry season, from August to December, 

and the rainy or wet season, from December to June. 

Figure 2.1. LiDAR datasets acquired for French Guiana (the right image 
corresponds to the red rectangle in the left image). The small rectangles represemt 

the location of the HD LiDAR dataset 

 

2.2 Datasets description 

2.2.1 Spaceborne LiDAR datasets 

LiDAR data were acquired from the GLAS on board the Ice, Cloud, and Land Elevation 

Satellite (ICESat) between 2003 and 2009. The GLAS laser footprints have a nearly 

circular shape of approximately 80 m in diameter and a footprint spacing of approximately 

170 m along their track. The data were acquired during 18 missions using three on-board 

lasers with orbit cycles repeating between 57 and 197 days. Over French Guiana, GLAS 

data acquisition time coincides with the wet (GLAS acquisition in Feb-March and May-

June) and dry (GLAS acquisition in October-November) seasons.   

The horizontal geolocation error of the ground footprints is less than 5 m, on average, for 

all ICESat missions (http://nsidc.org/data/icesat/laser_op_periods.html). Several studies 
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(e.g. [59]; [70]) have estimated the vertical accuracy of the GLAS to be between 0 and 3.2 

cm over flat surfaces, on average. 

 

From the 15 data products available from the ICESat GLAS, the GLA01 and GLA14 data 

products were used in this study. The GLA01 comprises the full waveform data, and 

GLA14 comprises the global land surface altimetry data. Over flat terrain, the waveforms 

acquired over vegetated areas are bimodal distributions, with the first peak representing 

reflections from the canopy top and the last peak representing the ground (Figure 2.2). To 

exclude unreliable GLAS data (i.e., data affected by atmospheric conditions, clouds, etc.), 

several filters were applied. (1) Signals with high noise were removed when the signal to 

noise ratio was higher than 15 (e.g. [70]; [71]; and [63]). This filter removed 36.4% of the 

data. (2) The GLAS waveforms with delays from either saturation or atmospheric forward 

scattering were removed (14.1% of the data). Only cloudless waveforms were kept using 

the cloud detection flag (FRir_qaFlag = 15). This filter removed 32.4% of the data. 

Saturated signals were identified using the GLAS flag (SatNdx > 0). (3) The waveforms 

with a centroid elevation significantly higher or lower than the corresponding SRTM 

elevation were removed (|SRTM - GLAS| > 100 m) ([72]). This filter removed 2% of the 

data. (4) The GLAS footprints with SRTM values higher than the GLAS canopy top 

elevation and lower than the GLAS ground elevation were also removed, which accounted 

for 33.4% of the data. Both the FRir_qaFlag and SatNdx flags were found in the GLA14 

product. From the original database of 101312 footprints, 12238 footprints that satisfied 

the 4 filters conditions were kept (Figure 2.1). Finally, the GLAS data referenced to the 

TOPEX/Poseidon were converted to WGS84 by subtracting 70 cm from the elevation 

values. The conversion between the two ellipsoids also depends on latitude; however, as 

this change is smaller than the horizontal accuracy of the GLAS, it was omitted. 
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Figure 2.2 a typical GLAS waveform acquired over a vegetated area on a flat 
terrain. Airborne LiDAR datasets 

 

2.2.2 Airborne LiDAR datasets 

2.2.2.1 Small footprint low density LiDAR dataset 

A LiDAR dataset was acquired in 1996 during an airborne geophysical survey that covered 

4/5 of French Guiana (northern part, Figure 2.1). Because laser data were acquired for 

assessing the quality of the survey, and particularly for flight ground clearance, a low 

sampling frequency was used, and only the first pulse was considered [73]. The data 

correspond to the elevation of the first obstacle encountered by the laser. The sampling 

frequency was 10 Hz with a 905-nm wavelength laser and a footprint size of 35 cm (laser 

beam divergence of approximately 3 mrad). The laser measurements are therefore 

considered point data. The database contains laser elevations every 7 m on flight lines 

spaced 500 m apart and oriented at 30°N, intersected by transverse flight lines spaced 5 km 

apart and oriented at 120°N. The mean density of this database is approximately 285.2 

points/km2. Bourgine et al. [74] evaluated the quality of this low-density LiDAR dataset 

(LD), and the accuracy of the terrain elevation was estimated to be approximately ±2 m. 
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2.2.2.2 Small footprint high density LiDAR dataset 

LiDAR datasets with high points density (HD) acquired during several airborne surveys in 

2004, 2007, 2008 and 2009 as part of the Guyafor project by a private contractor, Altoa 

(http://www.altoa.fr/), operating a helicopter-borne LiDAR were used in this study (Table 

2.1). These data were previously made available to the ESA Tropisar project. The Biomass 

project at Jet Propulsion Laboratory (JPL) used this dataset for the evaluation of forest 

structure estimation from radar data. The elevations were recorded using two LiDAR 

systems: Riegl LMS-Q140i-60 in 2004, 2007 and 2008 and the newer LMS-280i system 

in 2009. The elevation data were acquired for several small study sites in French Guiana 

(Figure 2.1). The mean acquisition density of the HD datasets is 3.5 points/m2 (between 3 

and 7 points/m2). The laser wavelength was 905 nm with a mean footprint size of 45 cm 

for the first system and 10 cm for the second, and the precision of the elevation was smaller 

than 0.1 m. Moreover, the HD, unlike the LD, is a last-return laser elevation measurement, 

as using the last return increased the percentage of ground returns [75]. 

Table 2.1. Description of the HD datasets used in this study. 

Site Acquisition Date Location Area (km2) 
PointDensity  

(points/m2) 

Paracou_2004 2004 5°15.9ʹN 52°55.9ʹW 5.35 4.0 

Sinnamary 2004 5°24.7ʹN 52°56ʹW 6.52 7.0 

St-Elie 2009 5°18.2ʹN 53°3.3ʹW 4.50 5.3 

Nouragues07A 2007 4°5.3ʹN 52°40.7ʹW 7.24 3.2 

Nouragues07B 2007 4°2.4ʹN 52°40.6ʹW 2.42 3.8 

Nouragues08A 2008 4°5.1ʹN 52°41.2ʹW 1.96 4.5 

Nouragues08B 2008 4°3.8ʹN 52°40.9ʹW 7.82 3.8 

Nouragues08C 2008 4°2.5ʹN 52°40ʹW 2.89 4.2 

Nouragues08D 2008 4°2.5ʹN 52°41.0ʹW 1.08 3.5 

Paracou_2009 2009 5°16.1ʹN 52°55.8ʹW 12.08 6.0 
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2.2.3 Ancillary datasets 

In this study, twelve environmental and geographical variable maps were used. These 

variables were chosen for their supposed influence on forest characteristics. In addition, 

these variables are accessible from available free maps (Table 2.2.) The environmental 

variables will be used later in regression models in order to estimate canopy heights over 

the entire French Guiana. These variables are: geological map, forest landscape type map, 

three variable maps computed from SRTM digital elevation model (at 90 m resolution), six 

variable maps derived from vegetation indices issued from MODIS optical images, and 

finally one variable map issued from rainfall data. 

Table 2.2. Description of the variable maps used for canopy height mapping. 

Short name Full name Source Resolution 

MIN_EVI Minimum value of EVI time series data 

MODIS 250 m 

MEAN_EVI Mean value of EVI time series data 

MAX_EVI 
Maximum value of EVI time series 

data 

PC1 
1st principal component of EVI time 

series data 

PC2 
2nd  principal component of EVI time 

series data 

PC3 
3rd  principal component of EVI time 

series data 

Slope Terrain slope 

SRTM 90 m Roughness Terrain roughness 

ln_drain Log of drainage surface 

GEOL Geological map Delor et al. [76] Vector 

LTs Forest landscape type Gond et al. [77] 
1 km 

(Vector) 

Rain mean value of rainfall TRMM 8 km 

2.2.3.1 MODerate-resolution Imaging Spectroradiometer (MODIS) data 

MODIS sensor mounted on the Terra and Aqua satellites possesses a total of 36 spectral 

bands of which seven designed specifically for land applications with spatial resolutions 

that range from 250 m to 1 km. The MODIS dataset used in this study includes ten years 
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(January 1st, 2003 to December 31st, 2012) of the enhanced vegetation index (EVI) time 

series data. EVI data effectively characterize biophysical and biochemical states and 

processes from vegetated surfaces. The 10 years period was used to synchronize with the 

GLAS data (from 2003 to 2009). Using the EVI time series data, six maps were issued: 

minimum, mean and maximum values of the EVI time series data (MIN_EVI, 

MEAN_EVI, and MAX_EVI respectively) (Figure 2.3), and the three first principal 

components issued from the principal component analysis of the EVI time series data (PC1, 

PC2 and PC3). 

Figure 2.3. Minimum (a), mean (b), and maximum (c) values of the EVI time series 
data. 

 

(a) 

 

(b) 
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(c) 

 

2.2.3.2 SRTM digital elevation model data  

The Shuttle Radar Topography Mission (SRTM) acquired a digital elevation model of the 

earth’s surface on a nearly global scale (50oS to 60oN). The vertical accuracy of the SRTM 

90 m DEM is 16 m with a 20 m horizontal accuracy 

 (http://www2.jpl.nasa.gov/srtm/datafinaldescriptions.html). In this study, the SRTM 90 m 

DEM currently available for French Guiana was used. Over French Guiana, Bourgine and 

Baghdadi [73] found that the accuracy of the SRTM DEM was approximately 10 m 

(standard deviation of error). The SRTM data are available as orthometric heights, with 

WGS84 as the horizontal datum and the Earth Gravitational Model (EGM96) geoid as the 

vertical datum. To compare the ICESat/GLAS and SRTM elevations, the SRTM geoidal 

heights were converted to ellipsoidal heights by adding the EGM96 geoidal undulations. 

The geoidal undulations are available on a 0.1x0.1-degree grid interpolated onto the pixel 

coordinates. The SRTM dataset was interpolated onto each ICESat/GLAS footprint using 

bilinear interpolation. 

 

From the SRTM DEM data, three derivative maps were created (Figure 2.4): 

(1) A slope map (Slope), which is calculated using the maximum change in elevation over 

the distance between each cell of the DEM and its eight neighbors in a 3x3 window (Slope) 

(Figure 2.4a); 
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(2) A surface roughness map (Roughness), where the roughness is the standard deviation 

of a 3x3 moving window. Areas with low standard deviation represent areas of low 

roughness, while higher standard deviation presents higher surface roughness (Figure 

2.4b); 

(3) Finally a drainage surface map (ln_drain), where the drained area measures the surface 

of the hydraulic basin that flows through a cell. A low value indicates cells located at the 

border between two hydraulic basins, whereas the highest values indicate cells located 

downstream (Figure 2.4c). 

Figure 2.4. SRTM DEM derived maps: slope map ²in degrees² (a), surface 
roughness map ²in m² (b), and drainage surface map (c).  

 

(a) 

 

(b) 

 

(c) 
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2.2.3.3 Geological map 

A geological substratum map (GEOL) produced by the French Geological Survey ([76]) 

was used in this study (Figure 2.5a). The map was simplified in order to retain only the 

large five biggest rock formations: recent sediments, volcanic sedimentary rock, granites, 

gabbros, and gneiss. This simplification was required in order for each geology class to be 

sampled with a satisfying accuracy. 

2.2.3.4 Forest landscape types map 

A forest landscape types map developed by Gond et al. [77] at 1 km resolution was also 

used (Figure 2.5b). In this map, 33 remotely sensed landscape types (LTs) using 

VEGETATION/SPOT images were interpreted. Five classes of the total 33 classes were 

used in this study, as they occupy more than 78% of the forest in that area. The LTs can be 

summarized as follows:  

(1) LT8 represents dense, closed-canopy forest with small crowns of the same canopy 

height and small gaps mixed with regular canopies with well-developed crowns of almost 

the same canopy height without large gaps interlaced with flooded savannas (10%).  

 (2) LT9 is a closed canopy forest dominated by well-developed crowns of almost the same 

canopy height without large gaps.  

(3) LT10 is an irregular and disrupted-canopy forest where the trees have very different 

heights and different crown diameters with large gaps mixed with closed-canopy forest 

dominated by well-developed crowns at almost the same elevation without large gaps. 

LT10 is also interlaced with liana forests.  

(4) LT11 is similar to LT10 with more liana forest and non-forest land covers.  

(5) LT12 is an open forest associated with wetlands and bamboo thickets. 

2.2.3.5 Average rainfall map  

In addition, precipitation data from the NASA tropical rainfall measuring mission (TRMM) 

which launched in 1997 for the measurement and monitoring of tropical rainfall were used. 

TRMM data used in this study are is the average daily precipitation over the last 10 years 

(2003-2013) with a resolution of ~25 km (Rain) (Figure 2.5c). 
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Figure 2.5. Geological map (a), Forest landscape types map (b), and Average 
rainfall map (c).     

 

(a) 

 

(b) 

 

(c) 

 



 

 

 



 

 

3 CHAPTER 3:                     

CANOPY HEIGHT ESTIMATION IN FRENCH GUIANA WITH 

LIDAR ICESAT/GLAS DATA USING PRINCIPAL 

COMPONENT ANALYSIS AND RANDOM FOREST 

REGRESSIONS 

3.1 Introduction 

Canopy height estimation models based on full waveform data can be divided into two 

categories: the direct method and statistical models. The direct method enables canopy 

height estimation in low relief areas using the difference in elevation between signal start 

and the ground. However, over sloping areas, the direct method overestimates canopy 

heights because of the additional height introduced by the slope. To remove the effects of 

the slope, statistical models using GLAS and DEM metrics have been developed. 

Nevertheless, while the metrics developed in previous studies were very successful in 

increasing the precision of the canopy height estimation models (e.g. [44]; [71]; [78]), they 

presented their own shortcomings. Indeed, in order to use these metrics for better canopy 

height estimation, the exact position of the top-of-canopy and ground peaks is often 

required. Over dense vegetated areas such tropical forests, extracting the top-of-canopy 

and ground peaks is especially difficult using an automated process, as the LiDAR 

waveform does not often present distinctive peaks [24]. The extraction of these metrics 
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manually is always possible, but becomes time consuming and inefficient when dealing 

with a large number of GLAS waveforms. 

 

The goals of this chapter are to test several commonly used canopy height estimation 

models that utilize metrics derived from GLAS waveforms and SRTM-DEM and to test 

two techniques, new in the field of forest applied LiDAR: principal component analysis 

(PCA) and Random Forest. The purpose of using the PCA approach is to eliminate the 

need for metrics extracted from GLAS in canopy height estimation models, as the 

extraction of these metrics is error-prone, especially in dense forests, such as those in 

French Guiana. For the Random Forest regressions, the same metrics derived from GLAS 

footprints will first be used. Then, the principal components from the PCA of the GLAS 

waveform will be tested. The results of each model will be validated against canopy height 

estimates obtained from an airborne LiDAR dataset. 

 

Section 3.2 is the presentation of methods for forest height estimation using airborne and 

satellite LiDAR. The results are shown in in Section 3.3. Finally, Sections 3.4 present the 

discussion and section 3.5 represents the conclusions. The chapter is based on the 

published article: Fayad. I et al. (2014) Canopy Height Estimation in French Guiana 

with LiDAR ICESat/GLAS Data Using Principal Component Analysis and Random 

Forest Regressions. Remote Sensing 6:11883-11914. 

3.2 Materials and methods 

3.2.1 Lidar data processing and canopy height estimation 

3.2.1.1 Processing the LD dataset 

To estimate canopy heights using the airborne low-density LiDAR data, several steps were 

required. First, the dataset was filtered to remove erroneous elevation measurements. Next, 

the canopy-top and the ground points were extracted to estimate the canopy heights. The 

process for canopy height estimation is summarized in the following sections.  
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- Data filtering 

Airborne LD LiDAR data showed local-scale fluctuations according to whether the point 

corresponded to a treetop, a branch at intermediate level, or even a stream or the ground. 

The analysis of LiDAR data showed important differences due to measurement errors in 

LiDAR elevations (Z) between two neighboring points (a distance of 7 m in the LD 

dataset). Elevation differences up to 150 m were observed. LiDAR points with a difference 

in Z greater than 60 m were discarded (less than 3% of the total dataset was removed). This 

threshold of 60 m was chosen considering the extreme case in which one laser point 

represents the top of a tree and its neighboring point reaches the ground, giving an 

approximate maximum canopy height of 60 m. 

 

- Canopy top identification 

Next, airborne LiDAR data were filtered to select the points that most likely corresponded 

to canopy tops. This was achieved by selecting the local maximum in a sliding window of 

n points (n being odd numbers). In each window, the local maximum was selected as the 

point with the maximum amplitude with respect to the line segment joining the boundaries 

of each window (Figure 3.1a). The window size was selected so that the variogram of 

LiDAR elevations (Z) no longer displayed an apparent nugget effect. Figure 3.1b shows 

that the nugget effect disappears when windows are larger than seven points and that a 

window of nine points (i.e., 56 m) gives a nearly linear variogram. Windows of a larger 

size did not improve the results and tended to decrease the number of available points. 

With a nine-point window, more than a quarter of the filtered LD LiDAR points were 

conserved (a point every 42 m, on average, along the flight lines), making a total of 

3,289,076 top-of-canopy points available over French Guiana (49.21 pts/km2). 
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Figure 3.1. (a) Points selected as top of canopy (local maximum); (b) Variogram of 
airborne LiDAR elevations from the LD dataset with local maximum points as a 

function of the size of the filtering window; (c) Canopy height calculation; (d) 
Ground points selected from a 1000-m window. 

 

(a) 

 

(b) 
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Figure 3.1 (cont.) 

 

(c) 

 

(d) 

- Identification of ground points 

Few LiDAR returns reach the ground in tropical forests. Vincent et al. [75] estimated that, 

in last-return mode, only 1% of all laser returns are ground measurements. Bourgine et al. 

[74] estimated the ground returns in the LD dataset to be several hundred meters apart. To 

select the ground points from the LD dataset, the following procedure was attempted (e.g. 

[74]; [79]): 

 

(1)Between two successive points identified as top of canopy, identify the local minimum, 

i.e., the point that gives the maximum canopy height (Figure 3.1c). For all points situated 

between the two top-of-canopy points, the canopy height is calculated as the difference 

between the elevation of each point (Z) and the top-of-canopy elevation (ZTOP). ZTOP is 

obtained using a linear interpolation between the elevations of two canopy tops. 

 

(2)Among the local minimum points selected in the previous step, retain the lowest one 

inside a non-overlapping moving window (point corresponding to the greatest canopy 

height) (Figure 3.1d). With the use of a small window size, the selected ground points are 
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often located above the ground, leading to an underestimation of the canopy height. For 

too-large windows, too many ground points are eliminated, leading to an excessive 

smoothing of the estimated canopy height during the subsequent interpolation. Bourgine 

et al. [74] demonstrated that the best window size for this LD dataset is 1000 m. The 

number of ground points available for French Guiana is 105438 (1.59 pts/km2). 

- Canopy height estimation 

Canopy heights were calculated for the LD dataset using points identified as top of canopy 

and ground (Figure 3.1d). The estimation of the canopy height was performed at the level 

of the 105,438 ground points using linear interpolation between the elevations of the top-

of-canopy points (spaced 42 m apart, on average). Canopy height estimation cannot be 

conducted at the canopy-top level by interpolating the ground points because the distance 

between ground points (1000 m, on average) is too great to assume a linear trend between 

the elevations of ground points. 

 

The estimation of canopy height using the LD dataset showed that canopy heights reached 

a maximum of 69 m with a mean height of approximately 30.4 m. The lower canopy 

heights (maximum of 20 m) were observed in the coastal marsh areas, situated in the 

northeastern part of French Guiana (Figure 3.2). 
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Figure 3.2. Map of canopy heights calculated from the airborne LiDAR dataset LD 
for (a) French Guiana and (b) a portion of the coastal marsh. Only 1% of canopy 

heights were higher than 50 m in all of French Guiana. 

 

(a) 
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Figure 3.2 (cont.) 

 

(b) 

3.2.1.2 Processing the HD dataset 

The estimation of canopy height from the airborne high-density (HD) dataset used a 

similar procedure. However, as the density of points is higher (on average 3.5 pts/m2) than 

that of the LD dataset (on average 285.2 pts/km2), several changes were made to account 

for the difference between the two datasets: 

 

(1) The procedure described in Section 3.2.1.1 requires flight lines for top-of-canopy and 

ground point extraction. From the HD dataset, a grid of 1 m × 1 m was created over the 
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study sites. Then, two datasets were created: the first contained the point with the highest 

elevation in each square of the grid, and the second contained the lowest elevations. 

 

(2) Using the grid of the highest elevations, the procedure developed in Section 3.2.1.1 for 

canopy top extraction was applied to extract canopy-top points along the East-West and 

North-South directions. The window size for the canopy top extraction differed between 

datasets according to their point density (between 20 and 50 m). 

 

(3) Using the lowest elevations grid, the ground point’s extraction procedure detailed in 

Section 3.2.1.1 was performed along the horizontal and vertical lines of the grid. However, 

unlike with the LD dataset, the window sizes used in the selection of ground points were 

much smaller (between 70 and 120 m, according to the HD dataset). The window sizes of 

the HD dataset were also determined using an analysis of variograms. 

 

(4) Finally, as the distances between ground points and between canopy-top points were 

small, the estimation of canopy height was calculated at each canopy-top and ground point. 

However, unlike the LD dataset, the canopy heights were not estimated using linear 

interpolation but rather using bilinear interpolation. First, Delaunay triangulations were 

computed separately for the canopy-top and the ground points. Next, the triangle 

containing each ground point in the lat/lon plane of the top-of-canopy mesh was identified, 

and the ground point was projected on this triangle. Finally, the canopy height was 

calculated as the difference between the elevation of the projected ground point on the top-

of-canopy mesh and the elevation of the actual ground point. A similar procedure was 

carried out for canopy height estimation at each canopy-top point using the projection of 

canopy-top points on the Delaunay triangles of the ground points’ mesh. 

3.2.1.3 Comparison of canopy height estimates from the HD dataset using different 

estimation methods 

In this section the HD canopy height estimates obtained by our method were compared to 

the HD canopy height estimates obtained by the method used in Vincent et al. [80]. This 

comparison was conducted in order to: (1) Analyze the pertinence of the method used in 

our study to estimate the canopy heights; (2) assess the quality of these estimates. The 
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comparison was conducted on two sites in Nouragues, French Guiana. The results 

presented in Figure 3.3 indicate a good correlation between the canopy heights estimates 

from each method. The mean heights obtained from the two methods were similar with a 

mean difference about 1 m. This difference is due to the different methods used for the 

estimation of canopy heights. In this study, from the HD dataset, two datasets were created, 

one containing the top of canopy points and one containing the ground points. The canopy 

heights were estimated at the level of each ground and top of canopy point by projecting 

each ground point onto the top of canopy points and vice versa. However, for Vincent et 

al. [80], after identifying the canopy tops and ground points, the ground points were 

interpolated in order to create an evenly distributed digital elevation model. The same was 

done to the canopy tops to create a canopy surface model. Finally, the canopy heights are 

estimated by subtracting the canopy surface model and the digital elevation model.   

Figure 3.3. Comparison between canopy height estimates from the LD dataset over 
two sites in Nouragues (French Guiana) using the algorithm proposed by Vincent et 

al. [80] (a and b) and our algorithm (c and d) 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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3.2.1.4 Comparison of canopy height estimates from the LD and HD datasets 

The canopy height estimates from the HD dataset are considered near-terrain 

measurements because of their small footprint size and high density. Unfortunately, the 

HD dataset does not intersect with the GLAS footprints. To use the LD dataset as reference 

data for GLAS’s canopy height estimation models, the accuracy of the canopy heights of 

the LD dataset was assessed against the estimates from the HD dataset. For each LD 

canopy height estimate, the nearest point from the HD dataset, at a maximum distance of 

10 m, was chosen. The results of the comparison between canopy heights from the LD and 

HD datasets showed a mean difference of 0.22 m, an RMSE of 1.57 m, and an R2 of 93% 

(Figure 3.4). 

Figure 3.4. Comparison between canopy height estimates from the LD and HD 
datasets. 

 

3.2.1.5 Glas data processing 

- GLAS waveform metrics extraction 

Several canopy height estimation models from GLAS waveforms have been developed in 

recent years (e.g. [44]; [47]; [72]; [81]; [71]; [78]). They depend on several parameters 

extracted from waveforms (primarily signal start and end, waveform extent, and leading 

and trailing edges) and on ancillary data such as DEMs (slope or terrain index).  

 

Signal start and end are defined as the first and last locations where the waveform intensity 

exceeds a certain threshold level (n.σb, σb is the standard deviation of the background 

noise) above the mean background noise (µb) (Figure 2.2) [44]. Both µb and σb are found 

in the GLA14 product. The difference between the signal end and signal start is called the 
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waveform extent. However, there are no consistent optimal thresholds that can be used for 

every study area. Different thresholds have been used in different studies, including 3σb 

[82]; 3.5σb [81]; 4σb [44] and 4.5σb [78]. The difficulty in identifying the noise threshold 

could be explained by the difficulty in consistently identifying signal start and signal end. 

 

The Gaussian peaks resulting from the decomposition of the GLAS waveform represent 

canopy features such as canopy top, canopy trunks, ground or a mix of these elements. The 

last Gaussian peak does not necessarily represent the ground return. Moreover, there is no 

general rule to determine the ground peak (e.g. [81]; [71]; [82]; [83]). Duong et al. [83] 

and Sun et al. [82] identified the ground as the last peak. Rosette et al. [81] and Chen [71] 

found that the elevation of the stronger of the last two Gaussian peaks has a better 

correspondence to the ground. In this study, the stronger of the last two Gaussian peaks 

was selected as the ground return. 

 

The leading edge is defined as the difference between signal start and the first bin that is at 

half the maximum intensity (Figure 2.2). The trailing edge corresponds to the difference 

between signal end and the last bin that is at half the maximum intensity [78] (Figure 2.2). 

However, some LiDAR waveforms have a large difference in the intensity between the 

canopy and the ground peaks. If the ground peak return is significantly lower than the 

canopy peak, an overestimation of the trailing edge could be observed using Lefsky’s 

metrics. Conversely, with a low intensity return from the canopy peak and a high intensity 

return from the ground peak, an overestimation of the leading edge could be observed using 

Lefsky’s metrics [44]. Hence, Hilbert and Schmullius [62] proposed modified leading edge 

and trailing edge definitions. The modified leading edge is defined as the elevation 

difference between signal start and the canopy peak’s center, and the modified trailing edge 

is the difference between signal end and the ground peak’s center (Figure 2.2). These 

modified metrics better represent the characteristics of the canopy top and the ground 

surface. This study used the modified leading and trailing edges. 

 

- Principal Component Analysis of GLAS waveforms 

PCA (and other types of dimensionality reduction) is a technique used to emphasize 

variation and bring out strong patterns in a dataset. It's often used to make data easy to 

explore and visualize. Looking at all the samples from a GLAS return signal, it is very 

difficult to see any relationships or natural groupings among the data. The actual samples 

are more than 450 per GLAS return signal, but using PCA, it is easier to find the dimensions 

that are the most informative about the ways in which those measurements differ. The 
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identified principal components are then analyzed in order to find how they relate (if they 

do) to properties of the canopies (e.g. canopy heights). 

PCA of LiDAR waveforms has been conducted in a handful of studies. Allouis et al. [84] 

used PCA to estimate the water depth in shallow water using airborne LiDAR waveforms. 

Principal components were then used to perform a regression model between the principal 

components and water depth. The model relying on PCA for water depth estimation 

provided the lowest mean error and had the lowest detectable water depth in comparison 

to other models (mathematical approximation, Heuristic methods, statistical approaches, 

and convolution methods). However, to convert waveform samples into principal 

components, further processing of the GLAS waveforms was required. First, the parts of 

the waveforms useful for canopy height estimation corresponding to the waveform extent 

were extracted. Next, because not all the waveforms have the same waveform extent, the 

waveform with the largest extent was identified, and waveforms with shorter waveform 

extents were padded with the remaining waveform samples after the signal end to give 

them the same length as the largest waveform extent (same sample count). Note that the 

first sample of the extracted waveform now corresponds to signal start. In this study, the 

largest waveform extent had 470 samples. Next, the extracted waveform samples were 

converted into principal components (PCs), and the number of PCs to be used in the 

regression model for dominant canopy height estimation (Hmax) was calculated. The 

number of PCs used in the regression model has a major impact on the performance of the 

model, as choosing too many PCs will include noise from the sampling fluctuations in the 

analysis and by choosing too few, relevant information will be lost. A vast literature has 

developed methods to choose the statistically significant PCs. In this study, the number of 

statistically significant PCs was determined using a statistical process based on the study 

by Karlis et al. [85]. The PCs with eigenvalues higher than a certain threshold were 

selected. The threshold (λ) was defined as follows: 

 

7 = 5 0 &89 1 5: 1 5 (3.1) 
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where p is the number of variables (PCs) and n is the number of observations (waveforms). 

For our dataset composed of 470 variables and 474 observations, the threshold (λ) was 

determined at 2.99. Thus, the first 13 PCs were selected. 

3.2.2 Background on GLAS canopy height estimation 

3.2.2.1 Direct method 

The estimation of the canopy height using the direct method is simply the difference 

between the waveform signal start (canopy top) (Hb) and the ground peak (Hg): 

 

Hmax = Hb − Hg (3.2) 

  

The direct method estimates the canopy height with good precision over flat areas. An 

average difference between GLAS and airborne LiDAR data lower than 3 m was observed 

in several studies (e.g. [72]; [86]). 

3.2.2.2 Multiple regression models using GLAS and DEM metrics 

Over sloping areas, both the ground and vegetation peaks are broader and lower in intensity 

(e.g. [64]; [63]). The peak identified as the ground peak will no longer represent only the 

ground but a mix of ground and terrain objects (e.g. [71]; [70]). In fact, over sloped terrain, 

waveform extent will increase with the terrain slope and the footprint size [70]. This 

increase will lead to an earlier detection of the signal start and this will lead to an 

overestimation of the canopy height [87].  

 

To correct for the effect of terrain slope on the GLAS signal, several studies have developed 

models to better estimate canopy heights. Lefsky et al. [78]; Pang et al. [64]; Duncanson 

et al. [87]; and Chen [71] developed models based on parameters derived from the 

waveforms themselves (waveform extent “Wext”, leading edge “Lead” and trailing edge 

“Trail”). Lefsky et al. [44] and Rosette et al. [81] developed models based on the waveform 

extent and terrain index. The terrain index as defined by Lefsky et al. [44] is the difference 

between the maximum and minimum elevations in an m x m sampling window applied to 

a DEM at the GLAS footprint location. The window size depends on the resolution of the 

DEM. A 3x3 window has been deemed best for a 90-m-resolution DEM [44].  

 

The first model was developed by Lefsky et al. [44] for the estimation of the tallest canopy 

within a footprint: 
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Hmax = aWext − b·TI (3.3) 

  

This model is based on the waveform extent (Wext) and the terrain index (TI). The 

incorporation by Lefsky et al. [44] of the waveform leading edge extent in equation (3.3) 

resulted in a slight improvement in the canopy height estimation: 

 

Hmax = aWext − b·TI + cLead (3.4) 

  

Pang et al. [64] introduced a model to estimate forest canopy height by using metrics 

derived from the waveforms themselves:   

 

Hmax = aWext − (b(Lead + Trail))c (3.5) 

  

Chen [71] introduced the following model to show how a linear model compares to 

equation 3.5: 

 

Hmax = aWext − b(Lead + Trail) (3.6) 

  

Finally, Lefsky et al. [47] proposed a modification of the Lefsky et al. [78] model to 

produce a better estimation when the leading and trailing edges are small: 

 

Hmax = aWext − bLead − cTrail (3.7) 

  

In addition, to quantify the contribution of Lead and Trail in the canopy height estimation 

models, two additional models were analyzed: one that replaces Lead with Trail in equation 

3.4 and one that removes Lead in equation 3.6 (model IDs 7 and 8, respectively, Table 3.1). 

Finally, each of the eight models was tested with an added intercept (the bis models, Table 

3.1). The coefficients of the different models were fitted with least squares regressions 

using the canopy height estimates from the LD dataset. The reference LD canopy height 

estimate for model calibration were chosen as the closest points to GLAS footprints, with 

a distance not exceeding 50 m (near to the 35 m average radius of the GLAS footprints). 

The least squares regression is an approach for modeling the relationship between a 

dependent variable (i.e. canopy height) and one or more explanatory variables (i.e. Lead, 

Trail, Wext, TI, etc.). The technique is based on fitting a straight line (regression line or 

line of best fit) to the observed data (plotted as a scatter plot) this technique aims to derive 

a good relationship (the best fit) that may be used to predict future values of one variable 
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when the value of the other is known. It is named as such because, in its computation, the 

sum of the squared deviations of the computed (future) values from the observed (past) 

values of the variables is minimized. Devised by the French mathematician Adrien-Marie 

Legendre (1752-1833), this technique is applicable to single line functions with any 

number of independent variables and, under certain assumptions, is the best statistical 

estimator. 

 

The best regression model was selected based on the Akaike information criterion (AIC) 

[88]; the coefficient of determination (R²), and the root mean square error (RMSE). AIC is 

a measure of the relative quality of statistical models for a given set of data. Given a 

collection of models for the data, AIC estimates the quality of each model, relative to each 

of the other models. Hence, AIC provides a means for model selection. However, AIC does 

not provide a test of a model in the sense of testing a null hypothesis; i.e. AIC can tell 

nothing about the quality of the model in an absolute sense. If the entire candidate models 

fit poorly, AIC will not give any warning of that. R2, is a statistical method that explains 

how much of the variability of a factor can be caused or explained by its relationship to 

another factor. Coefficient of determination is used in trend analysis. It is computed as a 

value between 0 (0 percent) and 1 (100 percent). The higher the value, the better the fit. 

Coefficient of determination is symbolized by R2 because it is square of the coefficient of 

correlation symbolized by R or r. The coefficient of determination is an important tool in 

determining the degree of linear-correlation of variables ('goodness of fit') in regression 

analysis. The RMSE is square-root of the sum of the squared of all the rows in the error 

vector divided by the number of observations. And this error vector is obtained by doing e 

= y - yest; where ‘e’ is the residual vector, y is a vector of measured dependent vector, and 

yest is the vector of the estimated values. Finally, to assess how the model results will 

generalize to an independent data set, a 10-fold cross validation was used. Large k-fold 

values mean less bias towards overestimating the true expected error (as training folds will 

be closer to the total dataset). Cross validation is a model validation technique for assessing 

how the results of a statistical analysis will generalize to an independent data set. It is 

mainly used in settings where the goal is prediction, and one wants to estimate how 

accurately a predictive model will perform in practice. In a prediction problem, a model is 

usually given a dataset of known data on which training is run (training dataset), and a 

dataset of unknown data (or first seen data) against which the model is tested (testing 

dataset).  
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Table 3.1. Regression models’ fitting statistics calculated with 10-fold cross 
validation for estimating forest height. R = root mean square error, AIC = Akaike 

information criterion. 

Model ID R2 RMSE (m) AIC 

Hmax = Hb − Hg 1 0.50 7.9 3126 

max 0.6527 0.0184extH W TI= -  2 0.72 4.9 2221 

max 0.5405 0.0262 6.427extH W TI= - +  2bis 0.73 4.4 2185 

max 0.6682 0.0029 0.0261extH W TI Lead= - -  3 0.73 4.7 2223 

max 0.5395 0.2557 0.0115 6.8876extH W TI Lead= - - +  3bis 0.73 4.6 2187 

( ){ }
1.5903

max 0.7555 0.0994extH W Lead Trail= - +  4 0.80 3.9 2084 

( ){ }
1.3109

max 0.6908 0.1315 3.3309extH W Lead Trail= - + +  4bis 0.80 3.9 2081 

( )max 0.7965 0.2707extH W Lead Trail= - +  5 0.79 3.9 2096 

( )max 0.6972 0.2461 4.1452extH W Lead Trail= - + +  5bis 0.79 3.9 2083 

max 0.6739 0.0751 0.2959extH W Lead Trail= - -  6 0.85 4.0 2064 

max 0.6739 0.0751 0.2959 4.1823extH W Lead Trail= - - +  6bis 0.85 3.9 2056 

max 0.7377 0.0235 0.3192extH W TI Trail= + -  7 0.81 3.8 2063 

max 0.6656 0.0026 0.28899 3.679extH W TI Trail= - - +  7bis 0.81 3.7 2051 

max 0.7494 0.3184extH W Trail= -  8 0.81 3.8 2064 

max 0.6654 0.2904 3.6344extH W Trail= - +  8bis 0.81 3.8 2056 

;<>? = @ABCA 0 @EBCE 0F0 @AGBCAG 9 0.52 5.9 2373 

Most important PCs (PC1, PC2, PC4, PC11) from ID 9 9bis 0.47 6.2 2478 

;<>? = HI?J 0 @ABCA 0 @EBCE�0 @AGBCAG 10 0.80 3.8 2047 

Most important PCs (PC1, PC2, PC4, PC11) from ID 10 10bis 0.79 3.9 2075 

;<>? = K.LMHI?J 1 K.NKBCA 0"K.KOBCE 0"K.K2BCG 0 N.M 11 0.73 4.4 2174 

;<>? = HCP 0 @ABCA 0 @EBCE�0 @AGBCAG 12 0.78 4.0 2064 

Random Forest using: Wext + Lead + Trail + TI 13 0.82 3.4 - 

Random Forest using: Wext + Lead + TI 14 0.80 3.6 - 
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Random Forest using: Wext + Lead 15 0.80 3.6 - 

Random Forest using: Wext + TI 16 0.82 3.6 - 

Random Forest using: Wext 17 0.73 4.4 - 

Random Forest using: First 13 PC 18 0.70 4.7 - 

Random Forest using: PC1 + PC2 + PC4 + PC11 18bis 0.69 4.8 - 

Random Forest using: Wext and the first 13 PC 19 0.83 3.6 - 

Random Forest using: Wext +PC1 + PC2 + PC4 + PC11  19bis 0.82 3.6 - 

Random Forest using: WC and the first 13 PC 20 0.81 3.7 - 

Random Forest using: WC +PC1 + PC2 + PC4 + PC11 20bis 0.81 3.7 - 

3.2.2.3 Proposed techniques for canopy height estimation 

- Multiple regression models using principal components 

The previous section introduced a number of regression models developed in various 

studies for the estimation of canopy height. However, these models require several metrics 

derived from GLAS footprints, such as ground peak, canopy-top peak, leading and trailing 

edge extents, and metrics derived from ancillary data (SRTM DEM), such as terrain index. 

Moreover, the extraction of some metrics from GLAS waveforms, such as the location of 

the ground peak, is error-prone, especially in dense forests, such as those in French Guiana. 

Processing the GLAS data revealed that a considerable number of waveforms taken only 

over dense forests had the canopy-top location easily identified. In fact, canopy penetration 

of the waveform in densely vegetated areas was sometimes insufficient to reach the 

ground; thus, either the ground peak was unidentifiable or the waveform did in fact reach 

the ground but the return signal was not strong enough for reliable detection. These 

difficulties in the detection of the ground peak affect the estimation of the trailing edge 

extent and, ultimately, the estimation of the canopy height. Therefore, a statistical model 

for canopy height estimation based only on the waveform samples might be an interesting 

alternative. In this section, a principal component analysis of GLAS waveforms was 

conducted. A stepwise linear regression model was built for canopy height estimation 

using the principal components (PCs). A regression model using PCs takes advantage of 
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model building on orthogonal variables. The regression model using the 13 first PCs for 

canopy height estimation could be written as follows: 

 (QRS = R5TU5 0 R&TU& 0F0 R56TU56 (3.8) 

  

where PCi are the principal components, and ai are the coefficients to be applied to the 

principal components. 
This model based on principal component analysis for canopy height estimation will be 

compared to the regression models developed in the previous section to quantify the 

benefits of using waveform data (PCA model) instead of metrics extracted from the 

waveform. 

- Random forest regressions using GLAS and DEM metrics  

In Section 3.2.2.2, linear regressions were developed to estimate the canopy height for 

each GLAS footprint. These regressions linked the canopy height estimated from the LD 

data to the GLAS and SRTM metrics (waveform extent, leading edge, trailing edge, and 

terrain index). In this section, the Random Forest (RF) technique was evaluated using the 

following different configurations: 

 

(1) All the metrics were used to estimate the canopy height (waveform extent “Wext”, 

leading edge extent “Lead”, trailing edge extent “Trail”, and terrain index “TI”);  

 

(2) The Trail metric was removed because in densely forested areas, such as tropical 

forests, the LiDAR echo seldom reaches the ground, making the ground peak difficult to 

identify; thus, the Trail metric is often inaccurate; 

 

(3) To study the effects of Trail and TI on the canopy height estimates, the TI and Trail 

metrics were removed (only the Wext and Lead were used). This case shows promise in 

the use of the SRTM DEM in a low relief area; 

 

(4) Only Wext and TI were used to assess the impact of the Lead and Trail metrics on the 

performance of Random Forest for canopy height estimates; 
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(5) Only Wext was used. This case evaluated the impact of using Lead, Trail, and TI with 

Wext for canopy height estimates. The relative importance of the different metrics used in 

Random Forest for the canopy height estimates was also analyzed. Variable importance is 

based on two measures. The first is a measure of accuracy obtained by quantifying the 

mean squared error increase in the model by the removal of a variable. The other 

importance measure is the Gini index, which quantifies the degree to which a variable 

produces terminal nodes in the classification forest. Finally, to validate the generalization 

performance of the Random Forest regressions, the error in the estimation of the canopy 

height was assessed using a 10-fold cross validation. The performance of the different 

configurations was assessed by comparing the canopy height estimates from Random 

Forest regressions and the canopy heights extracted from the LD dataset, which were used 

as the reference data. 

 

Several studies have shown that, for many applications, the Random Forest technique is 

extremely powerful in estimating biophysical parameters (e.g. [89]; [90]; [91]; [92]). 

Random Forest can be used as a classifier or a regression algorithm consisting of an 

ensemble of regression or decision trees but takes a different approach [93]. A decision 

tree is a graph-like structure that uses a branching method to illustrate every possible 

outcome of a decision. The tree elements are called nodes (starting at a root node). The 

lines connecting elements are called branches. A node extending from another node is 

called a child node. Nodes without children are called leaf nodes, end-nodes, or leaves. 

Nodes with children nodes, are also called internal nodes. At each internal node, one 

feature is selected to make a separating decision. That is, the feature that separates 

instances to classes with the best possible purity is selected. This purity is measured by 

entropy, Gini index or information gain. Each branch represents the outcome of the test 

and each leaf node represents a class label (decision taken after computing all features). 

The paths from root to leaf represents classification rules. However the problem about the 

decision tree algorithm, it is sensitive to slight changes of the data since these changes are 

able to change the tree drastically (Decision trees resemble deterministic structures). 

Therefore, the final structure, and as such, the final decisions are bugled. Random Forest 

uses decision trees, but takes a different approach. Random Forests, rather than growing a 

single, very deep tree that is carefully overseen by an analyst, Random Forest relies on 
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aggregating the output from many shallow trees that are tuned and pruned without much 

oversight. Some of these trees may have been grown from samples that said a certain 

variable was the more important feature. Other trees may find completely different features 

to be relevant. The idea is that the errors from many shallow trees will wash out when 

aggregated and lead to a more accurate prediction. 

3.2.2.4 Random forest regressions using principal components 

Similar to the previous section, the first 13 principal components were used in the Random 

Forest regression to link the canopy heights estimated from LD data to these PCs. This 

model based on principal component analysis and Random Forest regressions was 

compared to other the models performed in this study. 

3.3 Results 

3.3.1 Direct method 

The comparison between the canopy height estimates from GLAS waveforms using the 

direct method and the canopy height estimates from the LD dataset showed a high RMSE 

of 7.9 m for the estimation of the GLAS canopy height and a low R2 of 0.50 (Figure 3.5a). 

This result can be explained by the fact that most of the footprints were in an area with a 

slope between 5° and 10°. 

3.3.2 Multiple regression models 

3.3.2.1 Using GLAS and DEM metrics 

The results of the regression models with 10-fold cross validation showed that the 

regression models using the trailing edge extent (model IDs 4 to 8, Table 3.1) provided 

slightly better estimations of canopy height. For these models, AIC ranged between 2051 

and 2096, RMSE ranged between 3.7 and 4.0 m, and R2 between 0.79 and 0.81. The best 

results in estimating forest height were obtained with model ID 7bis (Table 3.1, Figure 

3.5b). The contribution of the leading edge extent appeared to be weak in comparison to 

the trailing edge extent when estimating the maximum canopy height. Indeed, model IDs 

7 and 7bis, which used Trail, had better results than model IDs 3 and 3bis (Table 3.1), 

which used Lead. Moreover, the use of information calculated from a DEM (terrain index) 
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alone in the regression models had the lowest estimation accuracy for the canopy height 

(model ID 2, Table 3.1, Figure 3.5c) (RMSE of 4.9 m and R2 of 0.72). 

Figure 3.5. Canopy height estimates from GLAS data in comparison to estimated 
canopy heights from the LD dataset: (a) using the direct method (model ID 1, Table 
3.1), (b) using the model with Wext, TI and Trail (model ID 7bis, Table 3.1), and (c) 

using the model with Wext and TI (model ID 2, Table 3.1). 

 

(a) 

 

 

(b) 
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Figure 3.5 (cont.) 

 

(c) 

3.3.2.2 Using principal components 

The results of the PCA model for canopy height estimation showed an estimation accuracy 

with an R2 of 0.52 and an RMSE of 5.9 m (Figure 3.6a). To reduce the number of PCs 

involved in the PCA model, stepwise regression was used to extract the most important 

principal components. The resulting model, which used 6 principal components containing 

76.3% of the waveforms’ inertia, showed an R2 of 0.47 and an RMSE of 6.2 m. Figure 

3.6a shows that the PCA model appeared to overestimate canopy heights for canopies with 

heights lower than 20 m. To improve height estimation of these canopies, a regression 

model incorporating both the first 13 principal components and the waveform extent was 

performed: 

 (QRS ="VWSX 0 R5TU5 0 R&TU& 0F0 R56TU56 (3.9) 

  

The new PCA regression model for canopy height estimation accounting for the waveform 

extent showed better canopy height estimation results in comparison to the PCA model 

without information on the waveform extent, with an RMSE of 3.8 m and an R2 of 0.80 

(Figure 3.6b). Using only the seven most important components from the stepwise 

regression, the R2 decreased to 0.79 and the RMSE increased to 3.9 m. Furthermore, using 

only the first three principal components with the waveform extent, the R2 decreased to 

0.73, and the RMSE increased to 4.4 m. 
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Next, the waveform extent was replaced by a waveform extent factor class (WC): (1) WC1 

for waveform extents lower than 20 m, (2) WC2 for waveform extents between 20 and 40 

m, and (3) WC3 for waveform extents higher than 40 m. The resulting regression model 

using all the principal components and the WC has the following form: 

 (QRS ="VUY 0 R5TU5 0F0 R56TU56 (3.10) 

  

Where WCi is the intercept to be applied to the model depending on the waveform extent 

(i = 1, 2, or 3). The values of WCi are 7.78, 25.83 and 32.01 for WC1, WC2, and WC3, 

respectively. 

 

The new PCA regression model for canopy height estimation with information on the 

waveform extent showed slightly less canopy height estimation accuracy in comparison to 

model ID 9 (Table 3.1), with an RMSE of 4.0 m and an R2 of 0.78 (Figure 3.6c). 

 
Figure 3.6. Comparison between canopy height estimates using the PCA regression 
models and those estimated from low-density airborne LiDAR data (LD) (a) using 
the first 13 PCs, (b) using the first 13 PCs with the waveform extent, and (c) using 

the first three PCs with the waveform extent. 

 

(a) 
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Figure 3.6 (cont.) 

 

(b) 

 

 

(c) 

 

Like previously, stepwise regression was used to extract the most important PCs. The 

resulting model using using PCs and containing 76.3% of the waveforms’ inertia showed 

slightly lower performance in comparison to the PCA model that used all the PCs and the 

WC factor, with an RMSE of 4.2 m and an R2 of 0.76. Figure 3.7 shows the canopy height 

estimates from the LD and GLAS datasets. Good agreement was observed between the 

two canopy height maps.  
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Figure 3.7. (a) Map of canopy heights estimated from the LD dataset; (b) Map of 
canopy heights estimated from the GLAS dataset using the PCA model; (c) 

Overlapping of the two maps over a small area of French Guiana. 

 

(a) 
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Figure 3.7 (cont.) 

 

(b) 
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Figure 3.7 (cont.) 

 

(c) 

3.3.3 Random forest regressions 

3.3.3.1 Using GLAS and DEM metrics 

To analyze the precision of the canopy height estimation using Random Forest, several 

configurations were tested, and the results reveal that the best configuration for canopy 

height estimation is the one that uses all the metrics: waveform extent, leading edge, 

trailing edge, and terrain index (model ID 13, Table 3.1). The difference between the 

GLAS canopy height estimates and those estimated from the LD (reference data) in the 

first configuration had an RMSE of 3.4 m and a coefficient of determination R2 of 0.82 
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(Figure 3.8.a). Moreover, the variable importance test of the metrics showed that the 

GLAS canopy height is best explained using Wext, with an importance factor almost three 

times higher than those for the other three metrics; meanwhile, the other metrics (Trail, 

Lead, and TI) had almost the same importance. Other configurations using Wext, Lead, 

and TI (Figure 3.8.b); Wext and Lead; and Wext and TI (model IDs 10, 11 and 12, 

respectively, Table 3.1) showed a slightly lower precision in the canopy height estimation 

(RMSE) (approximately 3.6 m). The estimation of the GLAS canopy height using only 

Wext had an RMSE of 4.4 m with an R2 of 0.73 (Figure 3.8.c). These results show that, in 

a low relief area, the use of other metrics in addition to the waveform extent only slightly 

improved the precision of the estimation of canopy height regardless of which metric was 

used. The use of one metric (among Trail, Lead and TI) in addition to Wext improved the 

estimation of canopy heights by approximately 1 m. Moreover, the use of more than one 

of these metrics in addition to Wext did not improve the estimation of canopy heights. 

Figure 3.8. Comparison of estimated canopy heights using Random Forest 
regressions and estimated canopy heights from the LD dataset for three metrics 

configurations: (a) Wext + Lead + Trail + TI; (b) Wext + Lead + TI; and (c) Wext. 

 

(a) 
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Figure 3.8 (cont.) 

 

(b) 

 

 

(c) 

3.3.3.2 Using principal components 

In this section, canopy height estimations with Random Forest regressions using PCs were 

performed with different configurations. Using the first 13 PCs in the Random Forest 

regression resulted in better canopy height estimation precision (RMSE = 4.7 m, R2 = 0.7) 

in comparison to the linear regression model that used the first 13 PCs in Section 3.3.31 

(RMSE = 5.9 m, R2 = 0.52). The variable importance test showed that GLAS canopy 

height is best explained using PC1, PC2, PC4, and PC11 (variance 62.38%). Using only 



61  Chapter 3 

these four PCs in the Random Forest model had a similar result (RMSE = 4.8 m, R2 = 

0.69). Next, the incorporation of the waveform extent in addition to the first 13 principal 

components greatly improved the precision of the canopy height estimation (RMSE = 3.6 

m, R2 = 0.83) in comparison to the RF regressions without Wext. In addition, this result is 

slightly better to the one obtained using a linear multiple regression with the first 13 PCs 

and Wext (RMSE = 3.8 m). Using the most important variables (Wext, PC1, PC2, PC4, 

and PC11) in the RF regression yielded similar results, with an RMSE of 3.6 m and an R2 

of 0.82. Finally, replacing the waveform extent by the waveform extent factor class (WC) 

in addition to the first 13 PCs in the Random Forest regression for canopy height estimation 

showed similar results (RMSE = 3.7 m, R2 = 0.81). Similar findings were noted when 

retaining only the most important variables (WC, PC1, PC2, PC4, and PC11), with an 

RMSE of 3.7 m and an R2 of 0.81. Figure 3.9 shows examples of the comparison between 

the GLAS canopy heights using PCs and the Random Forest technique and the reference 

canopy heights estimated from the LD dataset. 

3.3.4 Model performance in different forest conditions 

In previous sections, different models were applied on GLAS footprints over French 

Guiana in order to estimate forest canopy heights. Most models performed well, with an 

estimation precision lower than 4.5 m on the estimation of canopy heights. In this section, 

the two best models (model 7bis and 19, Table 3.1) were tested for different slopes and 

forest types, in order to analyze how the models would adapt in different forest conditions. 

  



Chapter 3 62 

Figure 3.9. Comparison between canopy height estimates using the most important 
PCs in Random Forest regression models and those estimated from Low Density 

airborne LiDAR data (LD) using (a) the most important PCs (PC1, PC2, PC4, and 
PC11) and (b) the most important PCs with the waveform extent. 

 

(a) 

 

 

(b) 

 

In our study site, the distribution of the slopes shows that 80% are lower than five degrees, 

17% between five and 10 degrees and 3% higher than 10 degrees. Based on these results, 

GLAS footprints were divided into two slope categories: GLAS footprints that fall on 

slopes lower than five degrees and GLAS footprints that fall on slopes higher than five 

degrees. Because the slopes are relatively weak in French Guiana, model validation for 
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high slopes was not possible. Model validation over these two slope categories showed 

that the RMSE on the estimation of canopy heights slightly increased from 3.3 to 4.0 m 

and from 3.5 to 4.8 m for PCA and the linear regression model, respectively (models 7bis 

and 19, Table 3.1). However, the PCA model is slightly better at correcting the effects of 

the slopes in comparison to the linear regression model with a 0.7 m increase in the RMSE 

vs. 1.3 m for the linear model. 

 

Forest landscape classes in French Guiana were defined in a previous study carried out by 

Gond et al. [77]. Gond et al. [77] interpreted 33 remotely sensed landscape types (LTs) 

using VEGETATION/SPOT images. Five of the 33 classes occupied 78% of the forests in 

the area. The method utilized in their study used a multivariate analysis of remote sensing 

data, field observations and environmental data. The defined LTs were LT8, LT9, LT10, 

LT11 and LT12. Model application over the different LTs showed that the RMSE on the 

estimation of canopy is consistent across the four LTs (LT8 to LT11). The RMSE ranged 

between 2.8 and 3.6 m for the PCA model (model 19, Table 3.1), and between 3.5 and 3.9 

m for the linear regression model (model 7bis, Table 3.1). 

3.3.5 Error on the estimation of biomass 

The objective of this section is to analyze the impact of the canopy height estimation precision 

on the Above ground Carbon Density (ACD) and Above Ground Biomass (AGB) estimation 

precision. Asner et al. [48] proposed a general plot aggregate allometry in order to estimate 

the above ground carbon density (ACD): 

 

ACD = aHα .BAβ.WD
γ (3.11) 

  

Were H is the LiDAR derived top-of-canopy height, BA the basal area and WD the wood 

density. Moreover, Asner et al. [40] showed that the basal area (BA) and the wood density 

(WD) were dependent on the LiDAR derived top-of-canopy height for all the studied tropical 

forests (Hawaii, Madagascar, Peru, Panama, and Colombia). Hence, according to their study 

the previous allometric relation could be written as: 

 

ACD = aHα(b.H)β(c+d.H)γ (3.12) 
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The relationship between the precision on the estimation of canopy heights and the precision 

on the estimation of ACD and AGB can be written as: 

 

Z[\][\] = Z[^_[^_ = " `-a0 b/ 0"c d. ed 0" fghi
Zgg  (3.13) 

  

Where ∆AGB/AGB is the relative precision on the estimation of above ground biomass, 

∆ACD/ACD is the relative error on the estimation of the above ground carbon density. The 

coefficients α, β, and γ were estimated by Anser et al. [40] using 754 field plots across five 

tropical countries (Hawaii, Madagascar, Peru, Panama, and Colombia) and many vegetation 

types. The coefficients c and d were also estimated by Anser et al. [40] for different regional 

forests. In our analysis of the canopy height estimation precision impact on the AGB and 

ACD estimation precision, the chosen coefficients c and d were those estimated from the 

moist Colombian forest [40]. These coefficients were chosen due to the fact that the French 

Guiana’s forest is a moist tropical forest and close in location to the Colombian forest. 

Finally, accuracy on the estimation of canopy heights of 3.6 m will lead to a relative error on 

the estimation of the ACD and AGB of about 14.1% (for a mean canopy height of 30 m). The 

United Nations Program on Reducing Emissions from Deforestation and forest Degradation 

(REDD) recommends biomass errors within 20 Mg/ha or 20% of field estimates for evaluating 

forest carbon stocks, but should not exceed errors of 50 Mg/ha for a global biomass map at a 

resolution of 1 ha ([94]; [95]). Finally, in the case of high relief, where the precision on the 

estimation of canopy height exceeds 5 m, the precision on the estimation of biomass will be at 

best 20%. 

3.4 Discussion 

Our findings regarding the strong correlation between the waveform extent and the in-situ 

canopy heights are in accordance with the studies of Lefsky et al. [44]; Hilbert and 

Schmullius [62]; and Baghdadi et al. [72]. They found that this metric is one of the most 

important metrics used in canopy height estimation models. However, waveform extent is 

not the sole metric used for canopy height estimation, as it can be affected by external 

sources such as terrain relief. Thus, in order to obtain more precise canopy height 
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estimation results, additional metrics are required. Previous studies developed metrics such 

as the trail, lead, and the terrain index (TI) in order to increase the canopy height estimation 

precision. The TI index was first developed by Lefsky et al. [62] and the lead and trail were 

first introduced in Lefsky et al. [78]. These metrics were later used in many other studies 

like Hilbert et al. [62]; Pang et al. [64]; Chen et al. [71] and Baghdadi et al. [72]. These 

metrics which were mainly used for the correction of the slope, proved to be very useful, 

as they increased significantly the precision on the estimation of canopy height models 

([44]; [71]; [62]). Moreover, the waveform extent and the trail metrics proved to be very 

successful in estimating canopy heights even in low relief areas like our study site. Indeed, 

the linear regression models which used the waveform extent and the trail metric showed 

a decrease in RMSE of at least 3.9 m in comparison to the direct method (for example, 

RMSE reaches 3.7 m in using the linear model with Wext, Trail and TI in comparison to 

RMSE of 7.9 m for the direct method). In contrast, the contribution of the lead in the canopy 

height estimation models seemed to be weak in this study. Similar findings were noted in 

the study of Baghdadi et al. [72] which also estimated canopy heights over flat terrain. 

Our results also demonstrated that canopy height estimation using random forest 

regressions is better in comparison to the linear models, even when using the same metrics. 

Indeed, the random forest model which uses only the waveform extent and the terrain index 

(TI) showed a 1.3 m decrease in RMSE in comparison to the linear model which uses the 

same metrics. This is probably due to the fact that the relation between the GLAS metrics 

and canopy heights is not strictly linear. 

 

The metric based estimation methods applied in this study include some potential error 

sources. These error sources are related to the precision of the extracted GLAS metrics 

especially metrics extracted using vegetation or ground information such as the lead and 

trail. Indeed, over dense vegetated areas, the precision on the localization of the ground 

peak decreases significantly, and this will lead to lower precisions on the estimation of the 

trail metric and ultimately on the canopy height estimation. To solve this issue, another 

technique used in this study for canopy height estimation was the principal component 

analysis (PCA) of the waveform. This technique does not require metrics to be extracted 

from the GLAS waveform in order to estimate canopy heights, as it works using the 

principal components of the raw LiDAR waveforms. The results of the PCA based models 

for canopy height estimation showed promising results when estimating canopy heights 
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using either linear regressions or random forest regressions, with an RMSE of 5.9 and 4.7 

m for the linear regressions and RF models, respectively. In addition, adding the waveform 

extent metric to these models showed slightly better estimation results in comparison to 

the metric based methods, with an RMSE ranging between 3.8 to 4.4 m for the linear 

regression models and around 3.6 m for the random forest models.  

 

Other sources of error on the estimation of canopy heights are terrain slopes. Indeed over 

sloping areas, canopy height estimation precision decreases with the increase of the slope 

([63]; [72]; [71]). In our study area of low relief, an increase in RMSE of 0.7 m for the best 

PCA model and 1.3 m on for the best metric based model were noted in 5° to 10o slope 

areas in comparison to flat areas (0 to 5o slopes). However, over higher slopes (> 10o), the 

error on the estimation of canopy heights is expected to be higher. In this study, the SRTM 

90 m DEM was used, which is the only available DEM over large areas. The future 

availability of finer DEMs such as the SRTM 30 m or the TanDEM-X 12 m might improve 

the estimation of canopy heights. 

 

Results showed that the canopy height estimation error using ICESat/GLAS (RMSE about 

3.6 m in this study) leads to a relative error on the estimation of aboveground biomass of 

about 20%. This relative error will increase to more than 34% for canopy height estimation 

precision of 5 m or higher. Thus, the United Nations Program on Reducing Emissions from 

Deforestation and forest Degradation (REDD) recommendations may not be satisfied over 

forested areas with steep slopes because the canopy height estimation precision will be 

higher than those estimated in this study.  

3.5 Conclusions 

Estimating forest canopy height from large-footprint satellite LiDAR waveforms is 

challenging given the complex interaction between LiDAR waveforms, terrain, and 

vegetation, especially in dense tropical and equatorial forests. In this Chapter, canopy 

height in French Guiana was estimated using multiple linear regression models and the 

Random Forest technique (RF). This analysis was either based on LiDAR waveform 

metrics extracted from the GLAS (Geoscience Laser Altimeter System) spaceborne 

LiDAR data and terrain information derived from the SRTM (Shuttle Radar Topography 
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Mission) DEM (Digital Elevation Model) or on Principal Component Analysis (PCA) of 

GLAS waveforms. Results show that the best statistical model for estimating forest height 

based on waveform metrics and digital elevation data is a linear regression of waveform 

extent, trailing edge extent, and terrain index (RMSE of 3.7 m). For the PCA based models, 

better canopy height estimation results were observed using a regression model that 

incorporated both the first 13 principal components (PCs) and the waveform extent (RMSE 

= 3.8 m). Random Forest regressions revealed that the best configuration for canopy height 

estimation used all the following metrics: waveform extent, leading edge, trailing edge, 

and terrain index (RMSE = 3.4 m). Waveform extent was the variable that best explained 

canopy height, with an importance factor almost three times higher than those for the other 

three metrics (leading edge, trailing edge, and terrain index). Furthermore, the Random 

Forest regression incorporating the first 13 PCs and the waveform extent had slightly-

improved canopy height estimation in comparison to the linear model, with an RMSE of 

3.6 m. In conclusion, multiple linear regressions and RF regressions provided canopy 

height estimations with similar precision using either LiDAR metrics or PCs. However, a 

regression model (linear regression or RF) based on the PCA of waveform samples with 

waveform extent information is an interesting alternative for canopy height estimation as 

it does not require several metrics that are difficult to derive from GLAS waveforms in 

dense forests, such as those in French Guiana. Nevertheless, such approach was only 

applied on a terrain with weak slopes (<5o), and should be tested over sloping areas to test 

its effectiveness.



 

 

 

 



 

 

4 CHAPTER 4:                     

FOREST CANOPY HEIGHT MAPPING OVER FRENCH 

GUIANA USING SPACE AND AIRBORNE LIDAR DATA 

4.1 Introduction 

In this chapter, airborne and spaceborne LiDAR canopy height estimates in combination 

to ancillary data were used to create a canopy height map covering the entire French 

Guiana. The LiDAR canopy height datasets used were the airborne LiDAR canopy height 

estimates covering 4/5 of French Guiana, as well as GLAS canopy height estimates. For 

the ancillary datasets, globally available datasets of vegetation indices, precipitation, 

terrain indices, geological, and forest landscape types were selected. The vegetation indices 

were derived from the Enhanced Vegetation Index (EVI) product. The precipitation data 

were provided from the NASA Tropical Rainfall Measuring Mission (TRMM). The terrain 

indices were derived from the Shuttle Radar Topography Mission (SRTM) data. The 

geological and the forest landscape type maps were provided by Delor et al. [76] and Gond 

et al. [77] respectively. 

 

For the creation of the wall-to-wall canopy height maps, a two-step procedure was 

implemented using well established techniques. First, the ancillary data were modelled to 

the reference datasets using the Random Forest (RF) regression. Next, the regression-

kriging technique was used, first in order to krige the canopy height residuals (reference 

canopy heights – RF estimated canopy heights) and then to add the results to the wall-to-
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wall maps obtained from the RF regressions. Finally, all the created maps were validated 

using an independent dataset of airborne LiDAR canopy heights estimates. A description 

of the methodology used for the creation of the wall-to-wall canopy height maps is given 

in Section 4.2, followed in Section 4.3 by the results. Finally, the discussion is presented 

in section 4.4 and the conclusions in section 4.5. 

4.2 Materials and methods 

In order to estimate canopy heights at un-sampled locations by LiDAR data (GLAS or LD 

datasets) a two-step procedure was conducted based on the statistical and spatial 

relationship between the LiDAR canopy height estimates and the ancillary variable datasets 

(GEOL, LT, Rain, Slope …) using widely used empirical estimation methods: Random 

forest regressions and ordinary kriging (e.g. [66]; [65]; [96]; [97]). The LD and GLAS 

datasets will not be used conjointly in the canopy height mapping procedure (a map using 

each dataset will be produced). This is due to two main reasons: (1) To be able to compare 

the precision of the maps obtained by using airborne LiDAR to those obtained using 

spaceborne LiDAR; (2) The LD dataset is denser, and more precise in comparison to the 

GLAS dataset, therefore, adding the GLAS dataset to the LD dataset will not improve the 

precision of the obtained map. Finally, for the validation of the models, the canopy heights 

estimated from the transverse lines from LD datasets (about 7% of the LD dataset, named 

LD_val), and the canopy height estimates from the HD dataset will be used. The remainder 

of the LD canopy height estimates (93% of the LD dataset, named LD_cal), and the canopy 

height estimates from the GLAS dataset will be used for model building. The datasets for 

model building will be used separately. 

4.2.1 Canopy height mapping using regression-kriging  

We mapped canopy height from LiDAR data at a 250 m resolution using the regression-

kriging technique (RK). RK is a spatial prediction technique which combines the regression 

value of explanatory variables (ancillary datasets) and the kriging of the regression 

residuals (reference canopy heights – RF estimated canopy heights) ([98]). This technique 

was developed primarily to account for the correlation between environmental variables 

and the unsatisfactory goodness of fit of the spatial variance model of the dataset ([99]) 

thus preventing the stationarity of the studied autocorrelated variables, like the RF residuals 
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that are centred at 0. Finally, regression kriging or RK, is the technique which fits 

separately the trend and the residuals and then sum them ([100]; [101]). RK can be 

expressed as follows: 

 

j-k4/ = "Ql -k4/ 0 "ê-k4/ = "Ql -k4/ 0"mnY.o
Yp5 W-kY/ (4.1) 

 

Where ql-rs/ is the fitted trend, ê-rs/"is the kriged residual, λi are the kriging weights 

determined by the spatial dependence structure of the residual and e(si) is the residual at 

location si. 

4.2.2 Canopy height trend mapping using Random Forest regressions 

 For the ql-rs/ component from equation 4.1 we used the Random Forest regression 

technique (RF). RF which was developed by Breiman [93] was employed to estimate 

canopy heights over a regular grid with a 250 m resolution in French Guiana. The Random 

Forest (RF) technique is known to be a performant regression method that is becoming 

widely used by the remote sensing community for, among other, canopy height estimation 

(e.g. [65]; [102]), and biomass estimation ([32]; [96]; [97]). The main advantages of 

random forest are its incorporation of continuous or qualitative predictors without making 

assumptions about their statistical distribution or covariance structure [93].  

 

First the 12 predictors described in section 2.2.3 were used in the RF model in an attempt 

to explain the canopy height estimates from either the LD_cal dataset or the GLAS dataset 

(Figure 4.1). Next, to select the best predictors for explaining canopy height, the algorithm 

of Genuer et al. [103] which is a two-step procedure was used. The first step is to sort the 

variables based on their initial scores of importance, and remove the variables of small 

importance. The variable score of importance is evaluated based on the increase of error in 

the prediction when removing a certain variable. The second step consists of building the 

nested collection of RF models involving the k variables (k=1 to m where m is the number 

of remaining variables with the highest score of importance), and selects the variables in 

the model giving the smallest out-of-bag error. After selecting the best variables, the RF 

model was calibrated, and applied to all of the study area in order to create a wall-to-wall 
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canopy heights trend map (Figure 4.1). Random Forest is called an ensemble classifier 

because it uses a tree-based classifier multiple times and aggregates the results. Each tree 

is grown using a randomized subset of predictors. This procedure is expected to decrease 

the correlation among the trees, which improves model accuracy ([93]). The final 

prediction decision is based on a voting system of all the predictions from the decision trees 

that have been created. 

4.2.3 Ordinary krigging of regression residuals 

The wall-to-wall map created in the previous section using RF does not take into account 

the spatial correlation between the canopy heights, as it is a non-spatial method and 

assumes spatial independence of the predictors and the predicted variables. However, some 

of the unexplained variance in the RF predictions could be due to some sort of spatial 

correlation between the canopy heights. Thus, a spatial prediction model is required when 

data are spatially dependent. In this study we used the ordinary kriging (OK, Figure 4.1) 

model which allows the interpolation of un-sampled data based solely on a linear model of 

regionalization known as the semivariogram (the semivariogram is a weighing function 

and is required for the kriging). The semivariogram plots the semivariance γ as a function 

of the distance between samples h using the following function: 

 

t-u/ = " 5&v-u/ mwx-yY/ 1 x-yY 0 u/z&v-u/
Yp5  (4.2) 

 

Where γ(h) is the semivariance as a function of the lag distance h, N(h) is the number of 

pairs of data separated by h, and z is the estimated canopy height at locations uα and (uα+h) 

([104]). Semivariograms have three main parameters: (1) the nugget which is the 

semivariance at a lag distance of zero, (2) the sill is the semivariance where there is no 

spatial correlation; (3) the range is the distance at which the sill is reached. After plotting 

the sample semivariogram which describes the spatial autocorrelation of a given dataset, a 

mathematical function is fitted to this semivariogram in order to represent the range, the 

sill and the nugget. Thus, the datasets sample variogram can now be represented using a 

function. After model fitting of the sample semivariogram, ordinary krigging is then used, 

which estimates values Z* at location u using the following equation: 
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{|-y4/ = "mnYx-yY/o
Yp5  (4.3) 

 

Where z is the data, in this case the canopy height at location Si, λi are the weights of n 

neighbouring samples [104]. The number of n neighbouring points is user defined. The 

weights λi depends on the fitted semivariogram function, the distance to the prediction 

location, and the spatial relationships among the measured values around the prediction 

location.  

4.2.4 Effects of LiDAR sampling density on precision of the mapped 

canopy heights. 

The purpose of the current analysis was to measure how the canopy height maps accuracy 

are affected by the spatial sampling of LiDAR data. Several subsets of LiDAR data 

densities were built from the LD_cal dataset in order to study the impact of the spatial 

sampling of future spaceborne LiDAR systems on the precision of the created canopy 

height map. 

 

In total, six configurations corresponding to flight-line spacings of 5, 10, 20, 30, 40 and 50 

km were considered (with respect to the flight plan of the LD_cal dataset). For each 

configuration, a subset was extracted from the LD_cal dataset where the flight-line spacing 

of the subset met the criterion of the configuration. For example, for the configuration with 

a flight line spacing of 5 km, the first selected flight line is the first available flight line 

from the LD_cal dataset starting from the west. Next, all flight lines with a distance of a 

multiple of about 5 km from the first selected flight line were selected. Finally, using each 

of the LD_cal subsets obtained and named respectively LD_5 (0.29 pts/km2), LD_10 (0.11 

pts/km2), LD_20 (0.08 pts/km2), LD_30 (0.05 pts/km2), LD_40 (0.04 pts/km2), and LD_50 

(0.03 pts/km2), a corresponding canopy height map was created. The canopy height maps 

were created using the same procedure described in sections 3.1, and 3.2 which consists at 

first, creating a canopy height map using Random Forest regressions with each one of the 

LD_cal subsets as reference data and the ancillary variables as predictor variables for the 

model, next each canopy height residual from each model were kriged and added to the 

corresponding canopy height map. 
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Precision of the resulting kriged canopy height maps using the low-density LiDAR datasets 

was estimated for each LD_cal subet by comparing these canopy height maps to the 

validation datasets (HD and LD_val). 

Figure 4.1. The procedure used in order to create a wall-to-wall map of canopy 

heights over French Guiana. 
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4.3 Results 

4.3.1 Canopy height mapping using Random Forest regressions 

A Random Forest regression model was built for each one of the two calibration datasets 

(GLAS, LD_cal) with all the twelve predictors (Table 2.2). The first calibration dataset 

used in the Random Forest regression contains the canopy height estimates obtained from 

GLAS waveforms using the PCA and RF based canopy height estimation model [105].  

After creating the Random Forest regression models using the twelve predictors, only the 

predictors that best explained the canopy heights were selected using the variable selector 

test. Results showed that the best predictors were the same for both calibration datasets. 

The best variables according to their importance are respectively: the roughness, the mean 

value of the EVI time series data, the geology, the mean value of the rainfall, and the slope. 

Next, each calibration dataset (GLAS, LD_cal) and the best predictors were used to fit a 

RF model. Then each fitted RF model was used to create wall-to-wall canopy height maps 

of the entire French Guiana forest (Figure 4.2). Finally, each wall-to-wall canopy height 

map was validated against both, the LD_val and the HD datasets. Results showed that the 

precision of the maps was almost the same when using different calibration datasets (Figure 

4.3, Table 4.1). Indeed, when using the RF model with the GLAS dataset, the RMSE for 

the canopy height estimates was 6.5 m (R2 of 0.55). The precision of the estimates slightly 

increased when using the RF model with the LD_cal dataset, with an RMSE on the canopy 

height estimates of 5.8 m (R2 of 0.62). Finally, the bias (mean (validation canopy heights 

– estimated canopy heights)) for both the GLAS and LD_cal datasets was very low (< 

0.2m). 
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Figure 4.2. Wall-to-wall map of French Guiana with Random Forest regressions 
using as reference data the canopy height estimates from: (a) GLAS dataset; (b) 

LD_cal dataset. 

 

(a) 
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Figure 4.2 (cont.) 

 

(b) 
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Figure 4.3. Comparison between the reference canopy heights of the validation 
datasets and the canopy height estimates using Random Forest regressions:  (a) 

GLAS dataset; (b) LD_cal dataset. 

 

(a) 

 

 

(b) 
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4.3.2 Canopy height estimation using regression-kriging 

After creating the wall-to-wall maps using the Random Forest regression models, the 

canopy height residuals (reference canopy height – estimated canopy height) were kriged 

from each model in an attempt to increase the precision of the canopy height estimates 

using the Random Forest regressions for both the GLAS and LD_cal datasets. For each 

canopy height residual map issued from the GLAS dataset or the LD_cal dataset, a 

semivariogram was generated. Results showed that semivariograms issued from each of 

the two height residual map presented similar patterns that could be best-fitted using an 

exponential model: 

 

t-u/ = y& 0 }& ~5 1 WS� $1uR '� (4.4) 

 

Where S2 is the nugget, σ2 the sill, and ‘a’ the range of the semivariogram (g). For the 

different canopy height residual datasets, the fitted semivariograms presented similar 

nuggets, sills, and ranges, which ranged respectively between 15 and 18 m2, 28 and 32 m2 

and 4421 and 4823 m. Next, the fitted semivariograms were used in the kriging of the 

canopy height residuals for each of the GLAS and LD_cal datasets. . In total, two residual 

maps were obtained. Then, each residual-kriged map was added to the wall-to-wall map 

corresponding to that model (Figure 4.4). These maps were then validated using the 

validation datasets (LD_val and HD) (Figure 4.5, Table 4.1). Results showed that using the 

regression-kriging technique increased the estimation precision of these maps. Indeed, for 

the canopy heights map obtained using the GLAS dataset, the RMSE on the canopy height 

estimation decreased from 6.5 m with random forest regression to 3.6 m (R2 of 0.76) with 

regression-kriging. For the canopy heights map obtained using the LD_cal dataset, the 

RMSE on the canopy height estimation decreased from 5.8 to 1.8 m (R2 of 0.95) with 

regression-kriging. Moreover, the bias for the two datasets was very low (< 0.2 m). These 

results show that the maps derived from the LD_cal datasets and using regression-kriging 

clearly captured finer local variations when estimating canopy heights. Finally, the canopy 

height estimates uncertainty from both maps appears to be correlated with the location of 

the reference dataset measurements (Figure 4.6). For the GLAS dataset, the standard 

deviation of the canopy height estimates uncertainty ranged between 4 and 7 m (Figure 

4.6a). In addition, the standard deviation values appear to be lower near the location of the 
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GLAS canopy height estimates, and increases with increasing distance until they reach 7 

m. Similar results appear for the LD_cal dataset (Figure 4.6b). With lower standard 

deviations in areas with denser LiDAR acquisitions (i.e. north of French Guiana) and 

higher standard deviations with sparser LiDAR acquisitions (i.e. center of French Guiana). 

However, due to the generally denser dataset in comparison to the GLAS dataset, the 

standard deviation of the canopy height estimates uncertainty ranged between 1 and 4 m 

(Figure 4.6b). 

Figure 4.4. Wall-to-wall map of French Guiana with Random Forest regressions 
and residual kriging using as reference data the canopy height estimates from: (a) 

GLAS dataset; (b) LD dataset. 

 

(a) 
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Figure 4.4 (cont.) 

 

(b) 
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Figure 4.5. Comparison between the reference canopy heights of the validation 
datasets and the canopy height estimates using Random Forest regressions and 

residual-kriging: (a) GLAS dataset; (b) LD_cal dataset. 

 

(a) 

 

 

(b) 
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Figure 4.6. Wall-to-wall standard deviation map (STD_DEV) of the the canopy 
height estimates uncertainty for: (a) GLAS dataset; (b) LD_cal dataset. 

 

(a) 
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Figure 4.6 (cont.) 

 

(b) 

4.3.3 Relationship between LiDAR flight lines spacing and the accuracy 

on the kriged canopy height 

The analysis performed in the previous section showed a significant improvement of the 

canopy height estimation precision when adding the kriged residuals. This improvement 

was observed for the two calibration datasets.  In the case of the LD_cal dataset, the 

improvement was the highest from 5.8 m without the height residual kriging to 1.8 m with 

the residual kriging. This is due to the high density of the canopy height estimates in this 

dataset. Indeed, for the LD_cal dataset, canopy height estimates are distributed over flight 

lines with an average distance of about 500 m, while the canopy height estimates for the 

GLAS dataset are distributed over flight lines with an average distance of 20 km. 
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Therefore, in this section the precision of the kriged canopy height maps with different 

LiDAR densities was assessed. The purpose was to analyse the impact of the LiDAR flight 

line spacing from the LD_cal dataset on the precision of the kriged canopy height map. In 

order to create canopy height maps using the LD_cal subsets, first the best predictor 

variables to be used in the Random Forest regressions were selected using the procedure 

mentioned in section 3.1. Results indicated that for the LD_cal subsets, the predictor 

variables that best explained canopy heights were the same as those for the GLAS and 

LD_cal datasets. The predictor variables were namely the roughness, the mean value of the 

EVI time series data, the geology, the mean annual rainfall, and the terrain slope. Results 

showed that the precision of the produced canopy height maps using RF regressions with 

the LD_cal subsets without kriging of the residuals was in the same order as the canopy 

height maps obtained with the two calibration datasets (GLAS and LD_cal)  (Table 4.1). 

For these subsets, the RMSE on the canopy height estimates ranged between 5.7 and 6.2 

m (R2 between 0.60 and 0.65). In order to add the kriged height residuals to the canopy 

height maps, the semivariograms of the canopy height residuals for each LD_cal subset 

were fitted. Similar nuggets (~30 m2) sill (~8 m2), range (~4500 m) were obtained as those 

from the canopy height residuals from the GLAS and LD_cal datasets (Figure 4.7). When 

adding the kriged residuals corresponding to each of the LD_cal subsets (Figure 4.8), the 

precision on the canopy height estimate maps increased as expected (Table 4.1). This 

increase in the precision on the canopy height estimation was found to be negatively 

correlated with the LiDAR flight lines spacing of the LD subsets. For the LD_5 and LD_10 

subsets, the precision on the canopy height estimates were similar to the results obtained 

with the LD_cal dataset (RMSE=1.8 m, R2=0.94). However, for the LD_20, LD_30, 

LD_40, and LD_50 subsets, the precision on the canopy height estimates decreased from 

RMSE=3.3 m for LD_20 to RMSE=4.8 m for LD_50.  

 

 

 

 

 

 

 



Chapter 4 86 

Figure 4.7. Examples of fitted semivariograms of the canopy height residuals from: 

(a) LD_5; (b); LD_20; (c) LD_50. 

 

(a) 

 

(b) 

 

(c) 
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Figure 4.8. Examples of wall-to-wall maps of French Guiana with Random Forest 
regressions and residual kriging using as reference data the canopy height estimates 

from: (a) LD_5; (b) LD_20; (c) LD_50. 
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Figure 4.8 (cont.) 

 

(a) 
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Figure 4.8 (cont.) 
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Figure 4.8 (cont.) 

 

(b) 
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Figure 4.8 (cont.) 
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Figure 4.8 (cont.) 

 

(c) 
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Table 4.1. Comparison between the canopy heights of the validation datasets 
(LD_val and HD) and the canopy height estimates using Random Forest regressions 

and residual-kriging. 

 Using RF Using regression-kriging 

Dataset Bias (m) RMSE (m) R² Bias (m) RMSE (m) R² 

GLAS 0.14 6.5 0.55 0.09 4.2 0.75 

LD_cal 0.15 5.8 0.62 0.12 1.8 0.94 

LD_5 0.06 5.7 0.65 0.12 1.8 0.94 

LD_10 0.09 6.0 0.61 0.07 1.8 0.94 

LD_20 0.09 6.0 0.63 0.14 3.3 0.75 

LD_30 0.14 6.2 0.60 0.05 3.9 0.75 

LD_40 0.11 6.1 0.62 0.09 3.9 0.74 

LD_50 0.07 6.2 0.60 0.13 4.8 0.66 

4.4 Discussion 

For the first time, airborne and space borne Lidar data were used separately to predict and 

map (potential) forest heights at the scale of a tropical country. Our approach is based on 

the merging of LiDAR canopy height estimates (airborne and spaceborne) with ancillary 

environmental and geographical data and using and regression-kriging. Because of this 

approach, both calibration and validation are way more robust than in previous studies. 

Error and bias were also lower than previous studies. Indeed, using random forest 

regressions instead of linear models such as the one presented in studies like Hudak et al. 

[66] produced canopy height estimates with no bias regardless of the LiDAR dataset 

density used, nor the type of LiDAR data (airborne or spaceborne). High bias estimates are 

due to the nature of the linear regression models that are high-bias/low-variance models, 

and therefore the problem facing these types of models is reducing the bias especially with 

larger datasets. This problem is non-existent in RF model due to their opposite nature (low-

bias/high-variance).  

 

Moreover, our canopy height estimates using random forests show precisions slightly 

higher comparable to a recent study ([65]). The study of Simard et al. [65]; which estimated 

canopy heights globally and obtained a precision on the canopy height estimates of 6.1 m 

(RMSE) using a RF regression with GLAS data and some common predictor variables 



Chapter 4 94 

used in this study. Comparing their global canopy height map with our validation dataset 

(LD_val and HD) showed a slightly higher RMSE of 7.3 m (Figure 4.9). Our slightly better 

results can be attributed to: (1) using variables better correlated with canopy heights, and 

(2), our canopy height estimates used for model calibration, especially those obtained from 

airborne LiDAR are more precise in comparison to their spaceborne counterparts. In 

addition, the canopy height maps estimated in this study were also compared to the global 

canopy height map produced in the study of Lefsky et al. [47]. The comparison showed 

very poor correlations with an RMSE of 12.4 m (R2 insignificant). This is mainly due to 

the canopy heights obtained in the study of Lefsky et al. [47] representing Lorey’s height 

while the canopy heights in our study represent maximum canopy height. Lorey’s heights 

are generally expected to be lower than maximum canopy heights ([65]).  

 

However, neither our approach, nor the approaches used in Simard et al. [65] or Lefsky et 

al. [47] was able to produce wall-to-wall canopy height maps explaining more than 62% 

of the total variation of canopy heights (R2) (Table 4.1). The last 38% should be related to 

forest dynamic endogeneous processes (i.e. gap processes). In addition, while our canopy 

height mapping using only RF regressions provides a good canopy height estimates (RMSE 

about 6 m) at large scales with a medium spatial resolution (250 m), such precision is not 

optimal when estimating forest biomass with allometries that only use canopy heights (e.g. 

[39]; [40]). Indeed, an RMSE of about 6 m using only the RF regressions leads to a relative 

error on the estimation of biomass of about 25%. This precision on the estimation of 

biomass is higher than the recommended relative error of 20% by the United Nations 

program on Reducing Emissions from Deforestation and Forest Degradation (REDD) ([95] 

; [94]). Hence, to satisfy the UN REDD recommendations on the precision of biomass, 

improved canopy height estimates are required. Therefore, the canopy height estimation 

residuals (reference canopy heights – estimated canopy heights by RF) were kriged and 

used.  

 

This approach proved very efficient, although highly sensitive to the spatial sampling of 

the reference LiDAR dataset (flight line spacing). Indeed for the French Guiana, the 

semivariograms indicated that the autocorrelation in the canopy height residuals did not go 

beyond 5 km, beyond this distance their contribution to the precision of the final canopy 

height maps started to decrease. In contrast, kriging only the LiDAR canopy heights 
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without using the predictor variables with RF did not yield satisfactory results. For 

instance, by kriging directly the LD_cal canopy heights, we obtained a RMSE on the 

canopy height estimates of 5.1 m in comparison to the validation datasets against an RMSE 

of 5.8 for the RF technique with the LD_cal and 1.8 m for the regression-kriging technique. 

For the kriged GLAS canopy heights, the precision on the estimated canopy heights was 

7.3 m in comparison to the validation datasets. The low precision of the kriged canopy 

heights from the GLAS dataset is due to the fact that the distance between the available 

canopy height estimates (~20 km) is higher than the range of their spatial autocorrelation 

(5 km), so a high smoothing occurred. This also explains the difference between the kriged 

canopy height estimates and the estimates from the validation datasets (bias of -4 m). To 

analyse the contribution of the regression-kriging technique on the canopy height precision, 

the kriging of the height residuals were replaced by the mean value of the height residuals 

in a 5 km radius. Results showed that for the LD_cal using the mean of the residuals, the 

R² decreases from 0.94 to 0.85 and the RMSE increases to 2.4 m in comparison to the 

kriging method (RMSE=1.8 m). 

 

Finally, the 250 m resolution of the canopy height map was chosen for different reasons. 

First, it was set initially because half of the used predictors had a resolution of 250 m. Three 

out of twelve predictors had a resolution of 90 m, and the rest had a resolution of more than 

250 m. After the variable importance test was carried, the predictor with the highest 

importance was identified as the MEAN_EVI (250 m resolution). The importance of the 

predictors with a 90 m resolution was far behind. Therefore, a 250 m product was deemed 

best, as using a lower resolution product will produce smoother canopy height maps with 

less local canopy height variations, while maps with higher resolution (90 m) won’t 

necessarily capture finer local canopy height variations than the 250 m product. 

    

Given the low error level obtained from our canopy height wall-to-wall map, our approach 

can be used to create valuable forest height maps that can be fed in biomass estimation  

efforts, either at the tree, plot or landscape level (e.g. for calibrating local H-DBH 

relationships or for inverting AGB directly from H). In addition, the unique combination 

of data available here allowed testing different models and sampling strategies (sensitivity 

study). This will help future mapping efforts over other regions were airborne datasets 

might not be available, as well as for dimensioning future LiDAR spaceborne missions.  
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Figure 4.9. Comparison between the canopy heights of our validation datasets 
(LD_val and HD) and the canopy height estimates from the study of Simard et al. 

[65]. 

 

4.5 Conclusions 

LiDAR (Light Detection And Ranging) remote sensing has been shown to be a good 

technique for the estimation of forest parameters such as canopy heights and above ground 

biomass. Whilst airborne LiDAR data are in general very dense but only available over 

small areas due to the cost of their acquisition, spaceborne LiDAR data acquired from the 

Geoscience Laser Altimeter System (GLAS) have low acquisition density with global 

geographical cover. It is therefore valuable to analyse the integration relevance of canopy 

heights estimated from LiDAR sensors with ancillary data (geological, meteorological 

phenological etc.) in order to propose a forest canopy height map with good precision and 

high spatial resolution. In this study, canopy heights extracted from both airborne and 

spaceborne LiDAR, were first estimated from available mapped environmental data (e.g. 

geology, slope, vegetation indices, etc.). The estimated canopy height maps using random 

forest (RF) regression with either the airborne (LD_cal) or GLAS calibration datasets 

showed similar precisions (RMSE better than 6.5 m). In order to improve the precision of 

the canopy height estimates regression-kriging (kriging of random forest regression 

residuals) was used. Results indicated a decrease in the RMSE from 6.5 to 4.2 m for the 

regression-kriging maps from the GLAS dataset, and from 5.8 to 1.8 m for the regression-

kriging map from the airborne LiDAR dataset. Finally, in order to study the impact of the 
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spatial sampling of future LiDAR missions on the precision of canopy height estimates, six 

subsets were derived from the initial airborne LiDAR dataset with flight line spacing of 5, 

10, 20, 30, 40 and 50 km (corresponding to 0.29, 0.11, 0.08, 0.05, 0.04, and 0.03 points 

/km² respectively). Results indicated that using the regression-kriging approach, the 

precision on the canopy height map was 1.8 m with flight line spacing of 5 km and 

decreased to an RMSE of 4.8m for the configuration for the 50 km flight line spacing.



 

 

 



 

 

5 CHAPTER 5:                    

COUPLING POTENTIAL OF ICESAT/GLAS AND SRTM FOR 

THE DISCRIMINATION  OF FOREST LANDSCAPE TYPES IN 

FRENCH GUIANA               

5.1 Introduction 

Currently, land and forest cover classifications over large areas are made using high 

temporal frequency data provided by moderate spatial resolution sensors with a spatial 

resolution ranging from a few hundred meters (MODIS) to one kilometre 

(VEGETATION/SPOT). Nevertheless, the characterization and quantification of broad-

scale forest land cover remains a major challenge for remote sensing scientists ([106]). 

Mayaux et al. [107] produced a land-cover map of Africa using the spectral response and 

the temporal profile of the vegetation cover. In their study, radar data and thermal sensors 

were also used for specific land-cover classes. In the Guiana Shield, Gond et al. [77] 

interpreted 33 remotely sensed landscape types (LTs) using VEGETATION/SPOT. Five 

of the 33 classes occupied 78% of the forests in the area. The method used by Gond et al. 

[77] used a multivariate analysis of remote sensing data, field observations and 

environmental data. However, due to LiDAR’s ability to provide detailed information on 

the vertical structure of forests (canopy height, tree crown, etc.) in comparison to optical 

sensors, LiDAR appears to be one of the most applicable remote sensing techniques for 

forest monitoring ([108]; [109]; [110]). Conversely, optical sensors provide extensive 
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coverage of forests on the horizontal plane but are less sensitive to forest vertical structure 

variations ([111]). Generally, to better classify forest structures, canopy information on 

both the horizontal and vertical planes are required. In fact, studies that use LiDAR datasets 

in conjunction with optical data show better classification accuracy of forest structures 

([111]; [112]; [113]). Indeed, in Mundt et al. [112]; the fusion of LiDAR and multispectral 

data provided an increase in the detection of sagebrush by 15% in comparison to using 

multispectral data alone. Dalponte et al. [113] used a fusion of LiDAR and hyperspectral 

data to classify complex forest areas with more than 20 tree species, with several similar 

tree species and with no preordered spatial distribution of trees. In their study, an increase 

of up to 9% in the classification accuracy was noted when adding LiDAR data. Finally, Ali 

et al. [111] fused LiDAR and multispectral data for the classification of three Eucalyptus 

types. Their results indicated an increase of 23% in the classification accuracy when using 

LiDAR data. 

 

Our study uses the interaction between the Shuttle Radar Topography Mission (SRTM) 

data and vegetation in the five forest landscape types in French Guiana to assess the 

potential of the SRTM to identify these five forest types. This was accomplished by 

comparing SRTM elevations with elevations extracted from NASA’s Geoscience Laser 

Altimeter System (GLAS) full waveform data, namely, the highest (most likely canopy 

top) and centroid (distance-weighted average) elevations.  

 

Comparisons between the GLAS and SRTM elevations have been investigated in 

numerous studies, mainly for studying the SRTM penetration levels over different 

landscape types and using different elevation levels within the GLAS waveforms (highest, 

centroid and lowest) (e.g. [114]; [115]; [116]; [117]; and [70]). Calculating the bias (the 

difference between the SRTM elevations and the GLAS centroid elevations), Bhang et al. 

[114] found that elevation bias is dependent on the landscape type and the terrain relief. 

Bias increased from -1.5 m for bare terrain to -1 m for agricultural areas and 0.9 m for 

forested areas. Rodriguez et al. [115] compared the SRTM elevations with field 

measurements in different regions around the globe and found an elevation bias between 

the SRTM and field measurements that varied with each location. In their study, they 

compared the difference between the SRTM and the Land, Vegetation, and Ice Sensor 

(LVIS) canopy top elevations across five different regions in the USA (Maine, Maryland, 
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Massachusetts, New Hampshire, and Costa Rica) and found a maximum elevation bias 

difference of 54% between two regions (Costa Rica and Maryland). Becek [117] found a 

linear relationship between the magnitude of the elevation bias of the SRTM in comparison 

to reference field data and the percentage of tree cover. The bias increased from 4.8 m for 

0% tree cover to 11 m for 100% tree cover. Carabajal and Harding [70] compared the 

highest, centroid and lowest GLAS elevations with the SRTM for different regions around 

the world (Amazon, Africa, Asia, Australia, and Western USA) and found different 

elevation biases (difference between GLAS highest and SRTM) that varied with region (a 

maximum difference of 16.6 m was found between Australia and Western USA). 

 

In addition, bias appeared to be correlated with the GLAS waveform extent and the 

roughness index (bias increases with increasing waveform extent and roughness index). 

The GLAS waveform extent represents the distance between the laser signal start and the 

signal end. In vegetated areas, laser signal start corresponds to the highest canopy surface 

large enough to yield a return signal. Signal end corresponds to the lowest detected ground 

elevation. In vegetated areas, roughness represents the combined effect of topographic 

relief (top of canopy) and the interaction of the C-band microwaves with the vegetation 

([70]). 

 

Seasonal changes in the GLAS signal over different forest types have also been studied. 

Duong et al. [83] used the differences between overlapping pairs of GLAS footprints in 

different seasons (winter and summer) to differentiate between different forest structures. 

Their study showed promising results for identifying conifer, deciduous and mixed 

conifer/deciduous forests.  

 

The objective of this study was to analyse the potential for forest landscape type mapping 

using the coupling of GLAS and SRTM data in French Guiana. First, the penetration depth 

of the SRTM radar wave corresponding to the difference between the GLAS highest 

elevations and the SRTM elevations, as well as the difference between the GLAS centroid 

elevations and the SRTM elevations, was analysed over the different forest landscape types 

obtained in the study of Gond et al. [77]. Next, the behaviour of these two variables was 

studied for the different LTs as a function of the GLAS canopy height and the SRTM 

roughness index. The classification potential for the five forest landscape types (LTs) using 
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the coupling of GLAS and SRTM was assessed using the Random Forest algorithm. This 

classification was conducted using the penetration depth, the difference between the GLAS 

centroid elevations and the SRTM elevations, the GLAS canopy height and the SRTM 

roughness index. Finally, using the changes in the GLAS signal in different seasons, the 

potential for LT discrimination using these changes was studied.  

 

The processing of the GLAS waveforms and the methodology used to assess the potential 

of GLAS and SRTM in the discrimination of forest landscape types are shown in section 

5.2. The results and discussion are given in section 5.3 and the conclusions in section 4.4. 

This chapter is based on the following published paper: Fayad I et al. (2014) Coupling 

potential of ICESat/GLAS and SRTM for the discrimination of forest landscape types 

in French Guiana. International Journal of Applied Earth Observation and 

Geoinformation 33:21-31. 

 

5.2 Materials and methods 

5.2.1 Methodology 

To assess the potential of the GLAS and SRTM data to discriminate the five main forest 

landscape types in French Guiana, the difference between the GLAS highest elevations and 

the SRTM elevations was investigated, as well as the difference between the GLAS 

centroid elevations and the SRTM elevations. First, the differences between the GLAS 

(highest and centroid) and SRTM elevations were analysed for each forest landscape type. 

Next, because of the influence of canopy height (Hc) and the roughness index (R) on the 

penetration depth of the SRTM radar wave in the canopy, the differences between the 

GLAS and SRTM elevations were studied according to the classes of canopy height and 

the roughness index. Four canopy height classes (Hc < 10 m, 10 m ≤ Hc < 20 m, 20 m ≤ 

Hc < 30 m, and Hc ≥ 30 m) and three roughness index classes (R < 5 m, 5 m ≤ R < 10 m, 

R ≥ 10 m) were chosen for each forest landscape type. 

To analyse the potential for discrimination of the five main forest landscape types (LTs) 

using the coupling of the GLAS and SRTM data, a classification of the GLAS footprints 

based on the Random Forest algorithm was conducted using the penetration depth, the 
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difference between the GLAS centroid elevations and the SRTM elevations, the GLAS 

canopy height and the SRTM roughness index.  

 

Several classifiers, such as CART (Classification And Regression Trees), SVM (Support 

Vector Machines), logistic regression, and the Random Forest classifier, were tested in this 

study. However, Random Forest represents the statistical mode of many classification and 

regression trees (CART); hence, it is a more robust model than a single tree ([93]). In 

addition, Random Forest does not over-fit, even if more trees are added, it always 

converges, it produces error estimates of the predictions and of the importance of the 

variables, and it handles weak explanatory variables. The variable importance index it 

produces is very important, as it allows an understanding of the relative values of the 

predictors used in the classification and therefore removes unnecessary predictors. Variable 

importance is based on two measures ([118]). The first is a measure of accuracy obtained 

by quantifying the mean squared error increase in the model by the removal of a variable. 

The other importance measure is the Gini index, which quantifies the degree to which a 

variable produces terminal nodes in the classification forest. Finally, the Random Forest 

classifier is less sensitive to outliers and noise (the 10 m vertical accuracy of the SRTM 

data in our case) in comparison to other classification routines ([93]). 

 

The Random Forest (RF) algorithm is also known to be a powerful classification method 

that is becoming widely used by the remote sensing community for land-cover 

classification (e.g. [119]; [120]; and, [90]). RF is designed to produce accurate and robust 

predications without over-fitting the data while being insensitive to outliers and noise in 

comparison to single classifiers ([93]). Random Forest is called an ensemble classifier 

because it uses a tree-based classifier multiple times and aggregates the results. However, 

each tree is grown using a randomized subset of predictors. The final prediction decision 

is based on a voting system of all the predictions from the decision trees that have been 

created. Furthermore, because of the inability to examine the decision trees directly, 

Random Forest is considered more of a “black box” approach. However, several metrics 

are available to aid in the interpretation, one of which is the variable importance, which is 

evaluated based on the increase in the error in the prediction when removing a certain 

variable.  
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Finally, a comparison between the GLAS waveforms acquired at the same location in the 

dry and wet seasons was carried out to analyse its potential in the discrimination between 

the different forest LTs. The overlapping GLAS footprints, one from the wet season and 

one from the dry season, were compared against their corresponding SRTM elevations. 

However, to quantify the changes between the dry-wet season pairs, further processing of 

the waveforms was required. The first step was to obtain the waveform pairs. This was 

based on the geographic coordinates of each footprint (ellipse centre) found in the GLA14 

product. Two footprints from the wet/dry seasons, according to Duong et al. [83]; were 

considered a pair if the distance between their centres was equal to or less than the sum of 

the footprints’ radii divided by 2 (the two footprints were partly overlapping). Next, due to 

the different intensity returns caused by the laser output and/or different atmospheric 

conditions, the waveform pairs were normalized to enable comparison between them 

([83]). The normalization procedure requires the division of each received bin voltage (Vi) 

by the total energy of the waveform Vt, where"�J = � �P�PpA , with N being the number of 

waveform bins (544 or 1000 bins, depending on the GLAS mission). Finally, due to 

technicalities with the receiver, the recording of a pair of waveforms did not start at the 

same local time, even if they were similar in structure, thus producing a time lag, and hence, 

a shifting operation was needed. According to Hofton and Blair [121]; the shift operation 

can be performed on the complete waveform. 

  

The time shift needed to match a pair of coincident waveforms was determined by the 

maximum of the cross correlation ��-�/ defined by (m=1,...,2N-1): 

 

��-Q/ = � m V�-Y/V�-Y 0Q/v�Q�5
Yp4 """"""""���"Q � 4
��-1Q/""""""""""""""""""""""""""""""""""""""���"Q � K  

 

(5.1) 

 

Ww and Wd represent the normalized signals from the wet and dry season, respectively. 

The results of the shifting algorithm are shown in Figure 5.1. As illustrated in Figure 5.1, 

two waveforms recorded in different seasons (wet and dry) and at approximately the same 

location do not match. The waveform from the dry season was shifted 43 ns to the right of 

the waveform from the wet season. Therefore, using the cross-correlation technique 
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described above, it was possible to match them for further comparisons. The flowchart 

summarizing the processing of the SRTM and GLAS data is shown in Figure 5.2. 

Figure 5.1. Typical GLAS waveform acquired during the wet season (grey) used as a 
reference for the shifting of the same waveform acquired during the dry (dashed), 

and the shifted waveform from the dry season (black). 
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Figure 5.2. Flowchart of the processing steps for the GLAS and SRTM DEM data 
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5.2.2 GLAS waveform processing 

To conduct a full comparison between the GLAS and SRTM elevations, several parameters 

needed to be extracted from the GLAS waveforms: signal start and end, ground peak 

position, highest, centroid and lowest elevations, and tree heights. 

 

 GLAS’s signal start and end are defined as the first and last locations where the waveform 

intensity exceeds a certain threshold level (n.σb, where σb is the standard deviation of the 

background noise) above the mean background noise (µb) (e.g. [44]; [71]). Both µb and 

σb are found in the GLA14 product. However, there are no consistent optimal thresholds 

that can be used for all study areas ([71]). Different thresholds have been used in different 

studies, including 3σb in [82]; 4σb in [44] and 4.5σb in [72]. In this study, a threshold of 

4.5σb was used. The difference between the signal end and signal start is called the 

waveform extent. The ground peak is identified using either the last peak (e.g. [82]) or the 

strongest in amplitude between the last two peaks (e.g. [81]; [121]). After close 

examination of the GLAS waveforms in French Guiana, the ground peak was identified 

using the Gaussian peak representing the highest amplitude from the last two peaks.  

 

The GLAS product only provides the centroid elevation in a footprint. To estimate the 

highest and lowest elevations, the following approach was used. First, the position of the 

centroid within the waveform over the relative time axis was determined. Then, to 

determine the highest elevation, the difference between the position of the centroid and the 

signal start was added to the centroid elevation. Similarly, the lowest elevation was 

determined by subtracting the difference between the position of the centroid and the 

ground peak from the centroid elevation. The lowest elevation is less accurate than the top 

elevation because the identification of the ground peak is more error prone than the 

identification of the signal start.  

5.2.3 Canopy height and roughness index estimations 

The GLAS canopy heights (Hc) were estimated using the most commonly used method in 

areas of low relief, introduced by Lefsky et al. [44]; which uses the difference between the 

signal start (Hs) and the ground peak (Hg).  
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Hc = Hg – Hs (5.2) 

 

The roughness index (R), according to Carabajal and Harding [70]; was defined as the 

standard deviation of the values of the SRTM elevation data in a 3x3 window. 

5.3 Results and discussion 

In this section, we analyse the possibility for the discrimination of the different forest 

landscape types using the GLAS and SRTM data. First, in section 5.3.1, the discrimination 

potential for the different forest LTs is analysed using the SRTM penetration in the 

canopies (GLAS highest - SRTM). Then, section 5.3.2 analyses the discrimination 

potential according to two added parameters, canopy height (Hc) and the roughness index 

(R). The differences between the GLAS and SRTM elevations are grouped for each LT 

into four canopy height classes and three roughness index classes. Next, in section 5.3.3, 

all the parameters (Hc, R and the differences between the GLAS and SRTM elevations) 

are used in the Random Forest classifier to classify the GLAS footprints into the five 

different forest LTs. Finally, section 5.3.4 uses the variation in the GLAS waveforms 

captured from two seasons (wet and dry) to classify the different forest LTs. 

5.3.1 Global analysis of the differences between the GLAS and SRTM 

elevations 

Several studies, such as Bhang et al. [114]; Rodriguez et al. [115]; and Hofton et al. [121]; 

have demonstrated that the penetration depth of the SRTM wave (GLAS highest – SRTM 

elevation) is affected by the type of surface it interacts with (forest, agricultural areas, etc.). 

In this section, the differences between the GLAS (highest and centroid) and SRTM 

elevations are tested for each forest landscape type (LT) to ascertain the potential of the 

SRTM to discriminate between these five LTs. 

 

Table 5.1 shows that using either the penetration depth of the SRTM radar signal or the 

difference between the GLAS centroid elevations and the SRTM elevations alone is not 

sufficient for discriminating the five forest landscape types (LTs). Indeed, penetration is 

similar for LT8 and LT10 (approximately 11.0 m) and for LT9 and LT11 (12.5 m). 

However, the characterization of these two classes (LT8 and LT10) is very different in 
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terms of structure. LT8 is closed, regular canopy, and LT10 is composed of high canopy 

with large emergent trees making it very irregular. Moreover, forest LT12 has a slightly 

lower penetration, with an average of 9.3 m. The difference between the GLAS centroid 

elevations and the SRTM elevations is also of the same order for LT8, LT9, LT10 and 

LT11 (approximately -5 m) and is lower for LT12 (-7.1 m). The same order of penetration 

for all LTs can be attributed, according to Carabajal and Harding (2006), to the following 

reasons: (1) the penetration of the SRTM varies with canopy height, which is not the same 

for all forest LTs, and (2) the roughness index plays a major role in the variability of the 

SRTM penetration. In the next section, the differences between the GLAS and SRTM 

elevations will be analysed according to the GLAS canopy height (Hc) and the SRTM 

roughness index (R) to investigate if the use of additional metrics improves the 

discrimination between the different forest LTs. 

Table 5.1. Statistics (mean ± standard deviation) of the difference between GLAS 
highest and SRTM elevations for each of the five forest landscape types (LT). 

LT Highest – SRTM (m) Centroid – SRTM (m) Count 

8 11.0±12.3 -4.2±12.1 1421 

9 12.2±13.0 -5.0±13.1 7151 

10 11.0±9.4 -5.5±11.4 1195 

11 12.8±12.2 -5.1±12.0 2228 

12 9.3±7.4 -7.1±7.2 243 

5.3.2 Analysis of the differences between the GLAS and SRTM 

according to Hc and R 

Section 5.3.1 showed that it was impossible to discriminate the five forest landscape types 

using the differences between the GLAS and SRTM elevations alone. According to some 

studies, other variables, such as canopy height (Hc) and the roughness index (R), might 

contribute to the variability in the SRTM signal’s penetration depth. Carabajal and Harding 

[70]; Bhang et al. [114]; and Huang et al. [59] studied the penetration depth of the SRTM 

as a function of canopy height, and their results showed that penetration depth is dependent 

on canopy height (increases with an increase in Hc). Carabajal and Harding [70] and Bhang 

et al. [114] also studied the behaviour of penetration depth as a function of the roughness 

index, which appear to be positively correlated. To better analyse the effect of canopy 

height and roughness index on the discrimination of different LTs, the GLAS footprints 
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were regrouped for each LT, first into four canopy height classes and then into three 

roughness index classes. 

 

5.3.2.1 Differences between the GLAS and SRTM according to Hc 

The results indicate that the discrimination of the five forest LTs is not possible using only 

canopy height in the analysis of the difference between the GLAS highest elevations and 

the SRTM elevations (same penetration of the SRTM signal for the five forest LTs in each 

Hc class). Figure 5.3a shows that the difference between the GLAS highest elevations and 

the SRTM elevations increased with increasing Hc. This difference increased in LT8, LT9, 

LT11 and LT12 from approximately 3 m when Hc was less than 10 m to approximately 14 

m when Hc was greater than 30 m. LT10 showed an increase in the SRTM penetration 

from 4.4 m when Hc < 10 m to approximately 14 m when Hc > 30 m. This slightly higher 

SRTM penetration for LT10 with Hc < 10 m was due to the mean canopy height being 

greater than that in the other LTs (8.5 m versus 5.5 m). The increase in the SRTM 

penetration with the increase in canopy height was due to the C-band phase centre (the 

position of the dominant backscattering level), which, on average, becomes increasingly 

biased below the canopy top with increasing waveform extent ([117]). These results 

comply with the study by Carabajal and Harding [70]. Similar findings were observed in 

the analysis of the difference between the GLAS centroid elevations and the SRTM 

elevations according to Hc. 

 

Figures 5.4a and 5.4b show, respectively, the spatial distributions of the canopy height (Hc) 

and the penetration percentage (penetration depth divided by canopy height) in French 

Guiana. Figure 5.4a shows that over the coastal area, canopy heights tend to be no higher 

than 20 m (mangrove forest). The highest canopies are concentrated in the centre of French 

Guiana, with heights mostly above 30 m. In the south of French Guiana, canopy heights 

are shorter, ranging between 20 and 30 m, and are mostly classified as LT11 and LT12. 

Figure 5.4b shows that the penetration percentage is the highest (> 30%) in the centre of 

French Guiana, which mostly contains classes LT8, LT9 and LT10. For the coastal area 

and the south of French Guiana (mostly LT11 and LT12), the lowest penetration percentage 

(< 30%) was observed. 
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5.3.2.2 Differences between the GLAS and SRTM according to R 

In addition, the results also show that it is possible to discriminate LT10 from LT8, LT9 

and LT11 when R > 10 m (no available data for LT12 with R > 10 m). It is also possible 

to discriminate LT12 from the other classes when R < 5 m. This ability to discriminate 

LT12 from the other LTs is due to the fact that LT12 is structurally different from the other 

LTs (open forest with shorter canopy heights, on average). Figure 5.3b, which represents 

the difference between the GLAS highest elevations and the SRTM elevations as a function 

of the roughness index, shows that LT12 presents the lowest SRTM penetration when R is 

less than 5 m (4.9 m versus ~8 m for the other LTs). This can be explained by the denser 

and relatively shorter canopy forest represented within the fragmented horizontal structure 

of LT12 in comparison to other forest LTs. 

 

Furthermore, the difference between the GLAS highest elevations and the SRTM 

elevations increased significantly with increasing R for all forest LTs. For LT8, LT9 and 

LT11, the mean difference between the GLAS highest elevations and the SRTM elevations 

increased as a function of R from approximately 8 m when R was less than 5 m to 

approximately 16 m when R was greater than 10 m. For LT10, the average difference 

between the GLAS highest elevations and the SRTM elevations increased from 

approximately 8 m when R was less than 5 m to approximately 12 m when R was greater 

than 10 m. This is most likely due to the irregular heights of the canopies in this forest LT 

(high forest with disrupted canopy). Moreover, the average difference between the GLAS 

centroid elevations and the SRTM elevations showed low dependency on the roughness 

index, with an average between -4 m and -7 m for different R classes and forest LTs. 

 

The spatial distribution of the roughness index presented in Figure 5.4c shows that the 

lowest roughness index values were observed on the coastal area, ranging mostly below 5 

m, where they are attributed mostly to LT8 (very regular canopy roof). Low to moderate 

roughness index values, ranging between 0 and 10 m, were located in the south, where they 

are attributed to LT11 and LT12. The centre of French Guiana presents the highest values 

of the roughness index (> 10 m).  

 

In conclusion, these results confirm that the discrimination between the five forest LTs 

requires the combination of several variables. Using the difference between the GLAS and 
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SRTM elevations, it was not possible to classify the different LTs as a function of Hc 

because of the effects of the roughness index. The same thing applies when attempting to 

classify different LTs as a function of R because of the effects of canopy height.   

Figure 5.3. Differences between GLAS elevations (highest and centroid) and SRTM 
elevations for each forest landscape type (LT) according to four canopy height (Hc) 

classes (a) and three roughness index (R) classes (b). Only statistics with a count 
greater than 20 were used. 

 

(a) 
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Figure 5.4. Spatial distribution of canopy heights (a), penetration percentage (b), 
and roughness index (c) over French Guiana. 
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Figure 5.4 (cont.) 

 

(b) 
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Figure 5.4 (cont.) 

 

(c) 

5.3.3 Random Forest classification results 

The results of sections 5.3.2.1 and 5.3.2.2 showed that in order to discriminate between the 

five forest LTs, it is necessary to combine several variables, as it was not possible to 

classify the different Lts as a function of Hc or R alone. Therefore, in this section, the 

discrimination of the different LTs will be attempted using Hc, R, GLAS (highest and 

centroid) and the SRTM elevations with the Random Forest (RF) classification. The results 

show that all forest LTs were well classified with good accuracy, according to the map by 

Gond et al. [77]. The Random Forest classification results summarized in Table 5.2 show 

an overall accuracy of 83.3% (kappa coefficient of 0.75). Moreover, the producer’s 

accuracies ranged between 78.4% (LT11) and 97.5% (LT12), and the user’s accuracies 
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ranged between 77.3% (LT9) and 96.3% (LT12). The results show that the coupling 

between the GLAS and SRTM elevations allows better distinction between forests that are 

quite different (LT8, LT10, and LT12), and the most misclassifications were observed 

between LT9 and LT11 (approximately 12%).  

 

The observed misclassifications between LT9 and LT11 could be explained by their similar 

characteristics and proximity and by the LT spatial distribution map used as a reference in 

our analysis ([77]), which has a sample size of 1 square-kilometre, whereas the GLAS 

footprints are, at most, 100 m in diameter. This difference in spatial scale could have had 

an effect on the classification results.  

 

Our dataset contained forest LTs with uneven sample counts (LT9 represents more than 

58% of the total dataset). The use of a dataset with uneven class sizes will result in a 

classifier biased towards the majority class ([122]). Therefore, a random under-sampling 

technique is often used ([123]). This technique balances the dataset by removing samples 

randomly from the majority class. However, the elimination of samples from a class could 

eliminate useful samples. Thus, it is recommended that the majority class be under-sampled 

into several subsets ([124]). Then, the classifier is trained and validated using each of the 

subsets, and the results of all the classifiers are averaged. In this study, the majority class 

LT9 was under-sampled into four subsets (each with 1788 points).  

 

After the sub-setting, the subsets were each randomly divided into 90% training and 10% 

validation data samples. The prediction error based on a 10-fold cross-validation was 

estimated to validate the generalization performance of the Random Forest algorithm. The 

importance of the variables used in the Random Forest algorithm was also assessed. The 

results show that the difference between the GLAS highest elevations and the SRTM 

elevations was the most important variable, followed by canopy height and the roughness 

index. The difference between the GLAS centroid and the SRTM showed the lowest 

importance. 

 

The influence of the size of the training dataset on the behaviour of the Random Forest 

classifier was subsequently assessed using three cases: (1) only 20 samples were used for 

each forest LT (the draw of the 20 random samples for each LT was repeated 100 times), 
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(2) 243 samples were used for each forest LT, corresponding to the lowest class size in our 

dataset (LT12), and (3) all samples available in our dataset were used with uneven class 

sizes between the LTs, with 243 samples from LT12 and 7151 samples from LT9. The 

results show that RF has a low sensitivity to the training dataset size reduction, with an 

overall classification accuracy slightly lower for the case with 20 samples for each LT (case 

1) in comparison to the other two cases (approximately 78.0% for case 1 and 84% for cases 

2 and 3). The kappa coefficient was also of the same order for the three cases, with values 

of approximately 0.7 for cases 1 and 3 and 0.8 for case 2. In addition, the producer’s and 

user’s accuracies were similar for all forest LTs, except for LT10 and LT11, where the 

accuracies were lower by approximately 20% for case 1 in comparison to cases 2 and 3 

(approximately 64% for case 1 and 84% for cases 2 and 3). This result shows that LT10 

and LT11 most likely have high intra-class variability, and for this reason, it is necessary 

to use a larger number of training samples for these forest LTs ([119]).  

 

Finally, to ensure that RF is not over-fitting, an additional test was carried out. First, for 

each of the three cases described above, the explanatory variables (differences between the 

GLAS and SRTM elevations, the roughness index, and canopy height) were randomly 

permuted. Then, the classifier was trained and tested on the new dataset. Next, the 

predictions obtained from the 1000 datasets resulting from the permutation allowed the 

calculation of the 95% confidence interval for the different elements in a confusion matrix. 

The results show that at a 95% confidence interval, the user’s and producer’s accuracies 

were less than 25%, except for LT9 in case 3, where the user’s and producer’s accuracies 

were approximately 54%, and 91%, respectively. Classifiers trained with unequal class 

sizes have a tendency to classify the majority of the samples in the majority class to lower 

the classifier’s error rate ([124]). In this study, LT9 contains approximately 58% of all the 

samples, so the classifier, in order to obtain the lowest classification error rate, classified 

most of the samples in LT9. The classification results are shown in Figure 5.5. 
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Table 5.2. Random Forest classification results for the five forest landscape types. 

 Reference Classes  

Classified 

Classes 
LT8 LT9 LT10 LT11 LT12 

Classification 

overall 

Producer’s 

accuracy 

(Omission 

error) 

LT8 1166 79 53 123 0 1421 82.1% 

LT9 78 1382 58 267 3 1788 77.3% 

LT10 52 77 966 99 1 1195 80.8% 

LT11 100 221 66 1839 2 2228 82.5% 

LT12 0 3 1 5 234 243 96.3% 

Truth overall 1396 1762 1144 2333 240 6875  

User’s accuracy 

(Commission 

error) 

83.5% 78.4% 84.4% 78.8% 97.5%  

Overall classification accuracy = 81.3% and kappa κ = 0.75  
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Figure 5.5. Classification of GLAS footprints into five forest landscape types using 
Random Forest algorithm. 

 

5.3.4 Effect of the GLAS acquisition season 

A study by Duong et al. [83] demonstrated the potential to classify broad-leaved, mixed 

and needle-leaved trees using GLAS footprint pairs taken from two seasons (dry and wet 

seasons). Two waveforms, one from the dry season and one from the wet season, were 

considered a pair if the distance between the footprint centres was less than or equal to the 

sum of their radii divided by 2. In this section, waveform pairs from the wet (December to 

June) and dry (August to December) seasons are compared to show the potential for 

discriminating different forest LTs using five criteria: (1) difference between the GLAS 

highest elevations and the SRTM elevations, (2) difference between the GLAS centroid 

elevations and the SRTM elevations, (3) penetration percentage in each season, (4) ratio of 
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the canopy top energy in the wet season to the canopy top energy in the dry season, and (5) 

ratio of the ground energy in the wet season to the ground energy in the dry season. The 

canopy top energy is defined by Duong et al. [83] as the energy from signal start to end 

from the vegetated part of the canopy, and the ground energy corresponds to the energy 

from the ground peak. 

 

The analysis of the difference between the GLAS (highest and centroid) and the SRTM 

elevations, conducted separately for the GLAS footprints acquired during the wet and the 

dry seasons, showed similar differences for both seasons (Table 5.3). The difference 

between the GLAS highest elevations and the SRTM elevations for all LTs varied from 9.1 

to 12.3 m in the wet season and from 9.6 to 12.9 m in the dry season. The difference 

between the GLAS centroid elevations and the SRTM elevations varied between -3.1 and 

-6.7 m in the wet season and between -4.7 and -7.7 m in the dry season. This slight 

difference between the two seasons could be due to some trees losing leaves in the dry 

season, meaning the GLAS waveform penetrates more into the canopy in the dry season 

compared to the same canopy in the wet season. 

 

The waveform pairs were next separated into two categories. The first, called leaf-on 

corresponds to the waveforms without changes between the two seasons (trees with leaves 

in both seasons). The second category, called leaf-off, represents trees that shed their leaves 

in the dry season. Leaf-off trees were identified from the GLAS waveform pairs that 

showed changes in the amplitudes of the canopy top and ground peaks from one season to 

another (the distance between footprint pairs should be lower than half the sum of their 

radii). The threshold was set to be half of the reference top and ground peaks. In general, 

when trees shed their leaves in the dry season, the GLAS waveform reflections from the 

ground are more prominent. This causes an increase in the amplitude of the ground peak 

with a decrease in the amplitude of the canopy top in comparison to the waveforms from 

the wet season. In total, 71 waveform pairs were identified for LT8 (all leaf-on), 62 pairs 

for LT10 (all leaf-on), and 70 pairs from LT12 (7 leaf-on and 33 leaf-off) (Table 5.4).  

The ratio of the energies from the canopy tops in the wet and dry seasons ����������, as well 

as the ratio of the energies from the ground in both seasons ����������������, were calculated 

(Table 5.4). On average, the largest change was detected in the leaf-off pairs of LT12, with 
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a ���������� of 2.4, as opposed to 1.1 for LT8, 0.9 for LT10, and 1.2 for the leaf-on LT12. 

Moreover, Table 5.4 shows that the ratio ���������������� is similar for LT8, LT10 and the leaf-

on LT12, with a value of approximately 1.1. A lower ratio value was obtained for the leaf-

off LT12 (0.7) because canopies in the leaf-off class of LT12 appear to shed their leaves in 

the dry season, allowing a greater reflection from the ground surface. Table 5.4 also 

quantifies the changes in the waveform centroid elevations in comparison with the SRTM. 

For the pairs in LT8, LT10 and the leaf-on LT12, the difference between the GLAS 

centroid elevations and the SRTM elevations is similar for the data in both the dry and wet 

seasons, with values between -4.3 and -6.3 m for the wet season and between -4.7 and -5.8 

m for the dry season. Conversely, this difference increases for the leaf-off pairs of LT12, 

from -5.8 m in the wet season to -9.6 m in the dry season. This difference means that the 

GLAS is able to penetrate the forest to a deeper depth in the dry season if the forest 

characteristics (leaves) change between the seasons. In conclusion, LT12, a deciduous 

forest type, could efficiently be discriminated based on the seasonal variation of the GLAS 

signal. Pennec et al. [153] found that in comparison to other LT types, LT12 has the highest 

enhanced vegetation index (EVI) all year round. This high EVI could be caused by under-

canopy activity. This result is very important because it shows the utility of multi-season 

LiDAR data for mapping forest types that lose their leaves in the dry season, which is not 

possible with the optical imagery typically used. Figure 5.6 shows the locations of the leaf-

on and leaf-off pairs in French Guiana, revealing that the majority of the leaf-off pairs are 

located in the same area in the south of French Guiana. 
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Table 5.3. Statistics (mean ± standard deviation) of the difference between GLAS 
(highest and centroid) and SRTM elevations for each of the forest landscape type 

(LT) in each season. 

Wet season 

LT Highest – SRTM (m) Centroid – SRTM (m) Count 

8 11.4±12.1 -3.1±11.1 430 

9 11.8±12.7 -4.7±12.7 1885 

10 10.9±9.8 -5.3±9.4 374 

11 12.3±11.7 -4.8±11.7 584 

12 9.1±7.5 -6.7±8.0 152 

Dry season 

LT Highest – SRTM (m) Centroid – SRTM (m) Count 

8 10.9±12.4 -4.7±12.4 991 

9 12.3±13.0 -5.1±13.2 5266 

10 10.9±10.3 -6.0±11.1 821 

11 12.9±12.4 -5.2±12.1 1644 

12 9.6±7.4 -7.7±5.4 91 

 

Table 5.4. Comparison between wet and dry seasons for different forest LTs (no 
data for LT9 and LT11). Topw and Topd represent the energy of the signal reflected 

from the canopy top for the wet and dry seasons, respectively. Groundw and 
Groundd represent the energy of the signal reflected from the ground for the wet 

and dry seasons, respectively. 

LT 
Pairs 

number 
Season 

Highest – 

SRTM (m) 

Centroid – 

SRTM (m) 

� ¡¢� ¡�  
£¤ ¥¦§¢£¤ ¥¦§�  

8 71 
Wet 11.5±15.0 -4.3±14.9 

1.1±0.5 1.2±0.6 
Dry 11.2±14.4 -4.7±14.6 

10 62 
Wet 10.9±14.3 -6.3±13.9 

0.9±0.5 1.1±0.5 
Dry 11.0±14.7 -5.8±14.3 

12 (leaf-

on) 
7 

Wet 9.5±13.3 -5.5±13.0 
1.2±0.4 1.1±0.7 

Dry 9.9±15.2 -4.9±15.3 

12 (leaf-

off) 
33 

Wet 9.3±12.3 -5.8±12.1 
2.4±1.2 0.7±0.5 

Dry 9.7±14.4 -9.6±14.7 
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Figure 5.6. Spatial location of leaf-on and leaf-off GLAS footprint pairs over French 
Guiana. 

 

5.4 Conclusions 

The Shuttle Radar Topography Mission (SRTM) has produced the most accurate nearly 

global elevation dataset to date. Over vegetated areas, the measured SRTM elevations are 

the result of a complex interaction between radar waves and tree crowns. In this study, 

waveforms acquired by the Geoscience Laser Altimeter System (GLAS) were combined 

with SRTM elevations to discriminate the five forest landscape types (LTs) in French 

Guiana. Two differences were calculated: (1) penetration depth, defined as the GLAS 

highest elevations minus the SRTM elevations, and (2) the GLAS centroid elevations 

minus the SRTM elevations. The results show that these differences were similar for the 
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five LTs, and they increased as a function of the GLAS canopy height and of the SRTM 

roughness index. Next, a Random Forest (RF) classifier was used to analyse the coupling 

potential of GLAS and SRTM in the discrimination of forest landscape types in French 

Guiana. The parameters used in the RF classification were the GLAS canopy height, the 

SRTM roughness index, the difference between the GLAS highest elevations and the 

SRTM elevations and the difference between the GLAS centroid elevations and the SRTM 

elevations. Discrimination of the five forest landscape types in French Guiana was 

possible, with an overall classification accuracy of 81.3% and a kappa coefficient of 0.75. 

All forest LTs were well classified with an accuracy varying from 78.4% to 97.5%. 

 

Finally, differences of near coincident GLAS waveforms, one from the wet season and one 

from the dry season, were analysed. The results showed that the open forest LT (LT12), in 

some locations, contains trees that lose leaves during the dry season. These trees allow 

LT12 to be easily discriminated from the other LTs that retain their leaves using the 

following three criteria: (1) difference between the GLAS centroid elevations and the 

SRTM elevations, (2) ratio of top energy in the wet season to top energy in the dry season, 

or (3) ratio of ground energy in the wet season to ground energy in the dry season.  



 

 

6 GENERAL CONCLUSIONS 

AND PERSPECTIVES 

6.1 Conclusions 

With the ending of the fifth chapter, it was clear that all the objectives set at the beginning 

of the thesis have been met. First, waveforms from GLAS have been used to estimate 

canopy heights. Next, canopy heights estimated from GLAS and airborne LiDAR have 

been used with environmental predictors to map canopy heights on the entire French 

Guiana. Finally, due to the role of forest landscape types in AGB estimation methods, 

forest landscape types have been predicted using information from GLAS waveforms and 

SRTM data. The main conclusions can be summarized as follows: 

 

In chapter 3, the performance of the most frequently used linear regression models for 

canopy height estimation, which use metrics extracted from GLAS waveforms, was first 

evaluated. Then, models based on two seldom-used techniques for canopy height 

estimation from GLAS waveforms were introduced. The first included regression models 

using the principal component analysis (PCA) of GLAS waveforms. The second was based 

on the Random Forest technique. The Random Forest technique first used the metrics 

derived from the GLAS waveforms and then used PCs. The evaluation of these different 

models was performed with a large database consisting of GLAS data and canopy heights 

estimated from small-footprint airborne LiDAR measurements. Within the GLAS 
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footprints, which fell mostly on flat and sometimes moderately sloping terrain (slope < 

15°), the direct method based on the difference between the ground peak and signal start 

showed an accuracy precision of 7.9 m (RMSE). 

 

The linear regression models that used a combination of waveform extent (Wext), 

modified trailing and leading edge extents (Trail and Lead) [44] and terrain index (TI) 

showed better accuracies for canopy height estimation in comparison to the direct method, 

with an RMSE between 3.7 (using Wext, TI, and Trail ) and 4.9 (using Wext and TI) m. 

In addition, the results reveal that the most relevant metrics in the estimation of forest 

heights are the waveform extent (Wext) and trailing edge extents (Trail). The linear 

regression model based on Wext and Trail estimated canopy height with an RMSE of 3.8 

m. However, this model requires the Trail metric, which is difficult to extract with good 

accuracy in densely vegetated forests, such as those in French Guiana, affecting canopy 

height estimation due to the large contribution of the Trail metric to the linear regression 

models. The contribution of the leading edge extent (Lead) and TI calculated from the 

SRTM DEM appears to be very weak.  

 

The linear regression model using the first 13 PCs and incorporating the waveform extent 

provided canopy height estimates with an RMSE of 3.8 m. The PCA regression models 

appear to be better in comparison to the other linear regression models using the GLAS 

waveform metrics with the same precision, as they do not use difficult-to-extract metrics, 

such as the Trail metric. The PCA model only requires the determination for each GLAS 

waveform, the class to which the Wext belong to (Wext lower than 20 m, Wext between 

20 m and 40 m, or Wext higher than 40 m). Thus, even if the estimation of Wext depends 

on the signal start and signal end metrics, which are sometimes difficult to calculate with 

certainty, the error in the estimation of Wext does not affect the estimation of canopy 

height because the Wext classes are defined in large intervals (20 m). 

 

The Random Forest model using all metrics (Wext, Trail, Lead, and TI) had an RMSE of 

3.4 m. Using only one of the Trail, Lead or TI metrics in addition to Wext slightly 

increased the RMSE to 3.6 m. Using only Wext, which has a relative importance factor 

almost three times higher than those for the other metrics, produced canopy height 

estimates with a precision of 4.4 m. Finally, using the first 13 PCs in the Random Forest 
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regressions showed similar canopy height estimation results in comparison to using the 

PCs in the linear regression models, with an RMSE of 3.7 m when using the waveform 

extent and the four most important PCs. 

 

In conclusion, the random forest regression models using the GLAS metrics did not show 

and improvements in terms of precision on the canopy height estimation in comparison to 

the linear regression models using the same metrics. In addition, the PCA based approach 

produced similar precisions on the canopy height estimation in comparison to the metric 

based approach. However, the advantage of using the PCA based approach is its 

independence to GLAS metrics that are difficult to extract in dense vegetated areas such 

as the Trail. 

 

In chapter 4 an approach for canopy heights mapping over French Guiana was presented , 

given the limited coverage of LIDAR datasets (either airborne of spaceborne). It is based 

on the merging of LiDAR canopy height estimates (airborne and spaceborne) with ancillary 

data. To create the canopy height maps, the predictor variables (ancillary variables) that 

best explained the canopy heights were firstly chosen. The best predictor variables 

happened to be the same for all the canopy height datasets: The roughness, the mean value 

of the EVI time series data, the geology, the mean value of the annual rainfall, and the 

terrain slope. Random forest (RF) regressions, which was used to fit the best predictors to 

the LiDAR canopy height datasets showed moderate canopy height estimation precision 

when using either airborne or spaceborne LiDAR (RMSE better than 6 m). 

 

To improve the precision of the obtained canopy height maps, regression-kriging (RK) was 

used. The height residuals (reference canopy heights – estimated canopy heights by RF) 

obtained from each reference LiDAR dataset were kriged and added to the canopy height 

estimates obtained from RF regressions. An improvement on the precision of the canopy 

height maps was observed. For the GLAS dataset the RMSE on the canopy height estimates 

was improved to 4.2 m and for the airborne LiDAR dataset the RMSE on canopy height 

estimates was improved to 1.8 m. However, this improvement is positively correlated with 

the point density of the calibration datasets used. Indeed, the GLAS dataset has a very large 

flight line spacing (~30 km on average) in comparison to the airborne LiDAR dataset (~0.5 

km) Further investigation shows that for the airborne LiDAR subsets (subsets of the 
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original airborne LiDAR dataset with different flight line spacing) with flight lines spacing 

below the range of the spatial autocorrelation of the height residuals (5 km lines spacing), 

the precision of the canopy height estimates was at its highest (RMSE of 1.8 m), and 

decreases with the increase of the flight line spacing until it reached 4.8 m for a flight line 

spacing of 50 km.  

 

The procedure presented in chapter 4 which uses the regression-kriging has strong 

prospects for application to other tropical forests. In comparison, studies such as Simard et 

al. [65] which used only the Random forest regressions were only been able to estimate 

canopy height at a precision of 6.1 m with a lower resolution maps (1 km). In comparison, 

our 250 m forest height map with regression-kriging and using GLAS the RMSE on the 

canopy height estimate was 4.8 m 

 

Finally in chapter 5, the coupling of the GLAS and SRTM DEM elevations (GLAS highest 

– SRTM and GLAS centroid - SRTM) was assessed in order to analyse the potential of 

discriminating different forest landscape types in French Guiana. A dataset of 12238 GLAS 

elevations over French Guiana calculated from GLAS waveforms, namely the highest and 

centroid elevations was compared to SRTM elevations. Based on VEGETATION-SPOT 

derived forest landscape types by Gond et al. [77]; GLAS footprints and their 

corresponding SRTM elevations were analysed according to the five forest landscape 

types. 

 

Results showed that the mean differences between GLAS and SRTM elevations were of 

the same order for all forest landscape types (LTs). Furthermore, these differences 

increased as a function of GLAS canopy height, and SRTM roughness index in all forest 

landscape types (LT). Hence, the discrimination between the different forest LTs requires 

in addition to the differences between GLAS and SRTM elevations, other variables such 

as canopy height and roughness index. 

 

A classification based on the Random Forest technique using the differences between 

GLAS and SRTM elevations as well as the canopy height and the roughness index was 

conducted. All forest LTs were well classified with accuracies between 78.4% à 97.5%. 
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Furthermore, the classification was achieved with an overall accuracy of 81.3% (Kappa 

coefficient of 0.75).  

 

Coinciding GLAS footprints, with one from the wet season and one from the dry season 

were analysed to study the potential of discriminating different forest LTs according to the 

changes occurring between the GLAS waveforms pairs. Results show that the open forest 

(LT12), which is known to be mostly deciduous, was discriminable from other forest LTs 

using one of the following three criteria: (1) difference between GLAS centroid and SRTM 

elevations, or (2) ratio of energy from canopy top from the wet season to energy from 

canopy top in the dry season, or (3) ratio of ground energy from the wet season to the 

ground energy from the dry season. 

6.2 Perspectives 

This research opens on a number of perspectives cited below. They encompass subjects 

from canopy height model improvements to biomass estimation. 

6.2.1 Canopy height estimation using GLAS 

In chapter 3 a new technique using PCA was presented that allowed the estimation of 

canopy heights without using metrics extracted from GLAS waveforms. This was 

beneficial since a lot of GLAS metrics are difficult to estimate in dense vegetated areas. 

Our approach allowed the estimation of canopy heights with a precision comparable to 

models requiring the incorporation of GLAS metrics presented in other studies. However, 

our approach was tested and validated in French Guiana, which is mostly over flat terrain. 

Generally in sloping areas, the value of the slope must be taken into account with canopy 

height estimation models that uses GLAS waveforms in order to avoid overestimation of 

canopy heights. Therefore, it is necessary to test the PCA technique in different forested 

areas and with different terrain reliefs. If the presence of the slope will affect negatively 

the canopy height estimates with the use of the PCA technique, several improvements must 

then be made, such as the incorporation of information on the slope, terrain roughness or 

relief.  
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Moreover, given that GLAS is a large footprint satellite LiDAR that aims to map canopy 

heights at the regional and global scales. Therefore is its necessary to study the 

generalizability of the PCA approach, both at inter-site and intra-site levels. The inter-site 

refers how the model calibrated in one site would behave in another site, while intra-site 

refers how the model would behave when calibrated with one forest community and tested 

in another forest community within the same site. The generalizability of a model is crucial 

since every model should be calibrated using in-situ or airborne LIDAR measurements. 

While we had a large database of airborne LIDAR measurements for our study area, this 

might not be the case in other study sites. 

6.2.2 LiDAR canopy height mapping 

In chapter 4, forest canopy height mapping has been carried out with regression-kriging 

and using airborne and spaceborne LiDAR datasets. While the canopy height estimation 

results were satisfying, several aspects still need further study.  

6.2.2.1 Non-spatial canopy height mapping 

For the non-spatial canopy height mapping method, we used the random forest regression. 

However, since most of the predictors are correlated with canopy heights, inversion 

regression models ([125]) could be used instead of RF and their performance analysed. In 

addition, there exist many other predictors other than those used in chapter 4, which also 

are dependent on canopy heights (i.e. surface radiance) that might be interesting to include 

in the non-spatial model. Finally, all remotely sensed data including airborne LiDAR are 

subject to error sources such as, sensor calibration, sensor drift, signal digitization, 

atmospheric attenuation, etc. An alternative regression model that can be used instead of 

RF and that accounts for errors in both the predictors and dependent variables is reduced 

major axis (RMA) regression ([125]; [126]).  

6.2.2.2 Spatial canopy height mapping 

With regard to the spatial estimation methods, in extrapolation situations such as in this 

study, the use of universal kriging ([127]; [128]) or ordinary kriging with an external drift 

or regression-kriging ([129]) are advised. However, in cases where anisotropy exists in the 

landscape which was not studied in chapter 4, anisotropic kriging models having a 
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directional component are employed. Therefore, this point should be addressed in future 

studies. 

6.2.2.3 Canopy height map resolution 

The final canopy height product produced in chapter 4 had a resolution of 250 m. This was 

due to the resolution of the most important predictor according to the RF regression. 

However, several maps with different resolutions should be produced and studied; because, 

even though, the most important predictor has a resolution of 250 m, three less important 

predictors with 90 m resolution are also used in the final regression model. Maps with 

higher resolution allow the capture of finer local canopy height variations. 

6.2.2.4 Canopy height mapping sampling scheme 

Finally, we found that the sampling scheme plays a crucial role on the precision of canopy 

height mapping. In addition, over our study site, forest structure varies at the scale of 

individual stands at a distance of less than 5000 m. This distance poses problems for GLAS 

which has a sampling scheme in the tens of kilometres. Therefore, it would be beneficial if 

future spaceborne LiDAR can increase it sampling frequency. ICESat-2 which is estimated 

to launch in 2017 will have a higher sampling frequency, as it will use a 6 beams laser, 

arranged into 3 pairs with a distance of 3.3 km between each pair. The laser will also take 

measurements every 140 m along the track. The system will also feature denser cross-track 

sampling in comparison to ICESat-1. 

6.2.3 Above-ground biomass estimation 

The main objective of this thesis was to map forest canopy heights across French Guiana. 

This objective was met with interesting results. However, canopy heights can be used to 

estimate other important forest resources such as above-ground carbon stocks (ACD) or 

above-ground biomass (AGB), either directly or indirectly. In General, AGB is estimated 

by applying allometric relations for each individual tree by using information about the 

stand structure, such as its height, diameter at breast height (DBH), and wood density 

(WD). However, in this study canopy height estimates refer to the maximum canopy height 

of plots and not individual trees. In addition, parameters such as DBH and WD are not 

possible to extract directly with LiDAR measurements. While many studies have 

demonstrated the strong correlation between AGB and LiDAR canopy height estimates 
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([44]; [39]) and thus developed relations to incur aboveground biomass from LiDAR 

canopy height estimates. The relations developed presented large uncertainties in large-

scale AGB estimation since AGB estimation is not only related to tree height and is site 

dependent. Therefore in order to estimate plot aggregated AGB, several approaches that 

account for ancillary variables other than LiDAR canopy height estimates should be used.  

 

Drake et al. [39] found that biomass estimates are more related to canopy height at medium 

energy of the LiDAR waveform (RH50) than it is related to the height at full energy, due 

to RH50 being more sensitive to changes in both canopy density and vertical arrangement 

of canopy elements. However, Ni-Meister et al. [68] found that RH75 is more correlated 

to biomass than RH50 in their study area. According to Ni-Meister et al. [68] this might be 

due to topography. Therefore it is worth studying the relation between LiDAR canopy 

heights at different energies and their correlation to biomass in our study area. Surface 

topography parameters could also be added to the AGB estimation model in an attempt to 

improve the estimation precision.  

 

In addition, since biomass correlation with canopy heights is site dependent, the inclusion 

of forest types in the biomass estimation might be beneficial. Forest type information can 

be easily extracted from the existing land cover maps derived from optical remote sensing 

data. Tree cover, could also be used to improve the precision of biomass estimates. Indeed, 

according to Ni-Meister et al. [68]; models using RH100 or RH50 with forest cover 

perform better than using only RH50. This is due to RH50 with tree cover being highly 

related to wood volume. Moreover, allometric equations are also dependent on stand age 

([130]; [131]; [132]). Therefore, information on stand age should also be used in the 

biomass estimation models to obtain optimal results. 

 

Asner et al. [40]; proposed Plot-aggregate allometry for the estimation of aggregate ACD 

or AGB using LiDAR canopy height estimates. In their study they postulated that if forest 

structure and biomass organization follow consistent scaling patterns, simple plot level 

variables could capture the same information about AGB in comparison to field 

inventories. Next, since parameters such as DBH and WD are not directly estimated by 

LiDAR, relations were found between LiDAR canopy heights and these parameters. 
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Therefore, plot AGB can now be estimated using plot aggregate allometry and using only 

LiDAR canopy height estimates.   

 

Finally, further investigation is required to have a better understanding of the links between 

AGB, ancillary variables (forest cover, forest type, forest topography) and other variables 

such those used in chapter 4 for canopy height mapping, and the allometric relations used 

in Asner et al. [40];  in order to develop a more improved aboveground biomass estimates 

from LiDAR. Ideally, an approach similar to the one used in chapter 4 should be 

approached. 



 

 



 

 

7 RESUME 

7.1 Introduction 

Le changement climatique attire l’attention de la communauté scientifique depuis les 

dernières décennies. Cette attention a été suivie par un intérêt pour la quantification de la 

biomasse terrestre (Above Ground Biomass - AGB), non seulement pour comprendre ses 

effets sur le cycle global du carbone, mais pour atténuer les effets du réchauffement global 

par l'intermédiaire de la conservation des stocks et des puits de carbone. Actuellement, les 

méthodes d'estimation d’AGB existantes à partir des données de télédétection sont limitées 

soit en termes de leur sensibilité à des niveaux d’AGB élevés (saturation du signal de 

télédétection à un faible niveau de biomasse en utilisant principalement les données radar 

et optiques), soit en termes de couverture spatiale  (couverture horizontale limitée en 

utilisant les données LiDAR). 

 

Compte tenu de ces limitations, les études utilisent généralement les relations allométriques 

pour relier les caractéristiques d'une forêt (la hauteur de l'arbre, le diamètre à hauteur de 

poitrine, et la densité du bois) à sa biomasse (par exemple [39]; [40]; [42]; [133]). 

Cependant, l'une des variables les plus importantes dans les relations allométriques et qui 

peut être estimée à partir des techniques de télédétection est la hauteur de la canopée. En 

effet, plusieurs allométries reposent uniquement sur la hauteur de la canopée pour 
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l’estimation de la biomasse ([39]; [40]). En outre, des études ont montrées que l'utilisation 

de la hauteur de la canopée augmente la précision de l'estimation de la biomasse (par 

exemple [42]; [41]; [40]; [44]; [24]). 

 

En plus de l'importance de la hauteur des arbres dans l’estimation d’AGB, la hauteur des 

arbres est également intéressante elle-même pour répondre aux questions écologiques sur 

les déterminants de la plante, la structure de la forêt, et la dynamique forestière. La hauteur 

des arbres est importante dans les décisions d'aménagement forestière et d'évaluer les 

ressources en bois. En outre, la hauteur des arbres peut avoir des effets directs sur les 

modèles et processus microclimatiques ([49]). En effet, le microclimat est modifié non 

seulement par les conditions météorologiques locales, mais aussi par la végétation elle-

même. La hauteur de la forêt contrôle la qualité, la quantité, la distribution spatiale et 

temporelle de la lumière et de l'énergie atteignant les sous-étages de la canopée et le sol. 

Elle influence également les précipitations locales et le mouvement de l'air. Ces facteurs 

combinés déterminent jusqu'à un certain point l'humidité de l’air et la température. 

 

Actuellement, la meilleure technique pour l'estimation de la hauteur de la canopée par 

télédétection est l'utilisation de la technologie LiDAR. Comme l'utilisation d'autres 

technologies telles que le radar ne donne pas des résultats satisfaisants (Tableau 1). De 

nombreuses études utilisent le LiDAR aérien ou satellitaire pour l'estimation de la hauteur 

de la canopée (par exemple [24]; [44]; [45]; [46]; [65]; [72]). Tandis que l’estimation de la 

hauteur de la canopée à partir des données de LiDAR aéroportés peut être très précises 

(erreur quadratique moyenne EQM mieux que 2 m [134]), le LiDAR satellitaire a une 

précision inférieure sur l'estimation de la hauteur de la canopée comprise entre 2 m et 10 

m variant en fonction des caractéristiques de la forêt (par exemple, [44]; [62]; [63]; [64]; 

[65]; [72]). Cependant, le LiDAR aéroporté est limité dans le domaine horizontal 

(couverture spatiale limitée), alors que le LiDAR satellitaire offre une couverture mondiale, 

mais avec une densité relativement faible (environ 0,51 points/ km² sur la Guyane française 

par exemple) avec un échantillonnage spatial inhomogène (lignes d'échantillonnage le long 

des orbites du satellite). Par conséquent, la fusion des données LiDAR (spatiaux et/ou 

aéroportés) avec une autre source de données est essentielle afin de créer des carte de 

hauteurs avec une couverture complète et une bonne précision (par exemple, [47]; [65]; 

[66]). 
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Hudak et al. [66] ont testé différents modèles non-spatiales et spatiales (linéaire, krigeage, 

et co-krigeage) et différentes stratégies d'échantillonnage pour cartographier les hauteurs 

de la canopée à partir d’estimations de hauteurs issues de données LiDAR aéroporté et de 

données optiques LANDSAT Enhanced Thematic Mapper (ETM +) sur un site d'étude de 

200 km2 dans l'ouest de l'Oregon (USA). Dans leur étude, les modèles de régression ont 

maintenu la structure de la hauteur des arbres, mais ont montré un biais pour les arbres les 

plus petits et les plus grands. En revanche, le krigeage et les modèles de co-krigeage 

présentent de meilleurs résultats en termes de précision par rapport au modèle de 

régression. Néanmoins, la meilleure méthode pour l’estimation de la hauteur de la canopée 

est la méthode appelée régression-krigeage (Hengl et al. [98]). Cette méthode conserve la 

structure de la hauteur des arbres tout-en améliorant la précision. Enfin, la stratégie 

d'échantillonnage joue un rôle majeur sur la précision de l'estimation puisque l'écart-type 

sur l’estimation de la hauteur de la canopée varie de 5,5 m à 10,0 m respectivement pour 

un échantillonnage de 250 et 2000 m. 

 

Lefsky et al. [47] ont créé une carte de la hauteur de la canopée estimée à partir du 

radiomètre spectral de moyenne résolution MODIS et du LiDAR satellitaire GLAS. Leur 

technique a montré une estimation de la hauteur de la canopée avec une erreur quadratique 

moyenne (EQM) sur l'estimation des hauteurs de la canopée de 5,9 m et un coefficient de 

corrélation (R2) de 0,67. Enfin, une étude plus récente menée par Simard et al. [65] a 

amélioré les résultats de Lefsky et al. [47] pour la cartographie mondiale de la hauteur de 

la canopée en utilisant d'autres données auxiliaires tels que la moyenne de la précipitation 

annuelle, les précipitations saisonnières, la moyenne annuelle de la température, la 

température saisonnières, les données à partir d'un modèle numérique de terrain (MNT) et 

le pourcentage du couvert forestier à partir de MODIS. Leur carte mondiale de la hauteur 

de la canopée validée par des mesures in-situ a montré une précision sur l’estimation de la 

hauteur avec une EQM de 6,1 m (R2 de 0,5). 

 

Jusqu'à présent, les approches utilisant les méthodes d'interpolation et les données LiDAR 

(satellitaires et aéroportées) pour la spatialisation de la hauteur de la canopée à l'échelle 

régionale n'ont pas été pleinement étudiées. Etant donné que les cartes de la hauteur de la 

canopée existantes ont besoin d'être plus précises pour être plus bénéfiques pour les 

écologues forestiers et les gestionnaires des ressources de la forêt. 
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La plupart des études ont utilisé une technique d'interpolation unique pour la production 

de leur carte de hauteurs de la canopée. Par conséquent, la première question est: serait-il 

avantageux de mélanger différentes techniques d'interpolation, avec les deux aspects non-

spatiaux et spatiaux pour améliorer la précision de la cartographie de la hauteur de la 

canopée? 

 

Deuxièmement, la question du coût d'acquisition des données LiDAR aéroporté sur une 

échelle régionale, et la disponibilité globale des données LiDAR satellitaire avec une 

densité inférieure posent une nouvelle question. Quel est l'impact de la densité  

d'échantillonnage spatial (en particulier pour le LiDAR satellitaire) sur la précision des 

cartes de hauteurs de la canopée? 

 

Dans la présente étude, la hauteur de la canopée à partir du LiDAR aéroporté et satellitaire 

en combinaison avec des données auxiliaires ont été utilisées pour créer une carte de 

hauteur de la canopée avec une résolution de 250 m couvrant toute la Guyane française 

(superficie de 83.534 km2). Les données utilisées sont les estimations de hauteur de la 

canopée à partir du LiDAR aéroporté couvrant les 4/5 de la Guyane française, ainsi que les 

estimations de la hauteur de la canopée à partir du LiDAR satellitaire GLAS/ICESat. Les 

données auxiliaires, disponibles au niveau mondial comme l'indice d’activité 

photosynthétique de végétation (données EVI – Enhanced Vegetation Index du capteur 

MODIS), les précipitations, la topographie (calculés à partir du Modèle Numérique de 

Terrain - MNT du Shuttle Radar Topographic Mission), la géologie et les différents types 

de paysage forestier, ont été utilisées. En outre, comme en témoigne Hudak et al. [66] sur 

la corrélation entre la stratégie d'échantillonnage et la précision sur les hauteurs de la 

canopée, les effets de l'échantillonnage spatial des ensembles de données de référence 

LiDAR utilisés dans cette étude ont été analysés. Enfin, toutes les cartes de hauteur créées 

ont été validées à l'aide des estimations de la hauteur de la canopée obtenues à partir d’une 

base LiDAR aéroporté indépendante. 

 

En plus du rôle de la hauteur des arbres dans l'estimation de la biomasse, la classification 

des paysages forestiers jouent un rôle important dans les méthodes d'estimation de la 

biomasse. En effet, de nombreuses études ont montré que les modèles pour l'estimation de 
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la biomasse sont plus pertinents si l'on inclut les types de forêts ([24]; [42]; [67]; [68]; 

[69]).  

 

Zheng et al. [67] ont constaté que le couplage des métriques forestières acquises à partir 

des mesures terrain et divers indices dérivés des données Landsat 7 ETM a sensiblement 

amélioré l'estimation de la biomasse lors de la séparation des forêts hardwood et les forêts 

de pins. Chave et al. [42] ont testé plusieurs modèles pour l'estimation de la biomasse dans 

les forêts anciennes, sèches, humides, montagneuses, et les forêts de mangroves. Leurs 

résultats indiquent que l'un des facteurs les plus importants pour l'estimation de la biomasse 

est le type de forêt. Les résultats ont également indiqués que les meilleurs modèles 

prédictifs sont aussi dépendants du type de forêt. Ni-Meister et al. [68] ont développé un 

modèle pour l'estimation de la biomasse qui utilise une fusion de données des capteurs 

LiDAR et optique, et intégrant le type de forêts conifères/feuillus et 

décidues/sempervirentes. Leurs résultats indiquent que les modèles qui intègrent le type de 

forêt ont fourni une meilleure estimation de la biomasse par rapport aux modèles qui 

n’utilisent pas cette variable. 

 

Une description des ensembles des données LiDAR aéroporté et satellitaire utilisées dans 

cette étude est donnée dans la section 1.2. La section 1.3 présente les méthodes d'estimation 

de la hauteur des arbres en utilisant le lidar GLAS. La méthodologie utilisée pour la 

création d’une carte des hauteurs sur  toute la Guyane française est décrite dans la section 

1.4. La classification des paysages forestiers est présentée dans la section 1.5. Enfin les 

conclusions et perspectives sont présentées dans la section 1.6. 

7.2 Description des jeux de données 

7.2.1 Site d'étude 

La Guyane française est située sur la côte nord du continent sud-américain; face à l'Océan 

Atlantique. Elle est bordée par le Brésil à l’est et par le Suriname à l’ouest (cf. Figure 2.1). 

La superficie de la Guyane française est de 83.534 km2. La forêt occupe environ 97%, soit 

environ 80.820 km2 de sa superficie totale. Le terrain est en grande partie de faible altitude, 

s’élevant parfois en petites collines et montagnes, avec une altitude maximale de 851 m. 
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Soixante-huit pourcent (68%) des pentes sont inférieures à cinq degrés, 24% entre cinq et 

dix degrés et 8,2% plus de dix degrés (dérivés des élévations MNT SRTM à 90 m). Une 

forêt tropicale dense domine la Guyane en dehors de la plaine côtière et couvre plus des 

quatre cinquième de la superficie totale. D’autres types de végétation existent aussi comme 

les savanes, les marais et l’agriculture (pâturages, manioc, maraîchage). La Guyane 

française a un climat équatorial avec deux saisons principales, la saison sèche, de août à 

décembre, et la saison des pluies ou humide de décembre à juin. 

7.2.2 Base de données LiDAR satellitaire 

Les formes d'ondes LiDAR provenant du système GLAS/ICESat acquises dans le proche 

infrarouge à 1064 nm, de 2003 à 2009, sur la Guyane française ont été utilisées dans cette 

étude. Au cours de ses années de fonctionnement (2003-2009), GLAS a fonctionné avec 

des cycles orbitaux qui se répétaient tous les 57 à 197 jours pour un total de 18 missions. 

La surface mesurées par GLAS (l'empreinte) a un diamètre compris entre 50 et 100 m 

(moyenne de 70 m), et les formes d'onde ont été acquises tous les 175 m le long de la trace. 

Les formes d'onde GLAS ont été numérisées en 544 ou 1000 échantillons avec une 

résolution verticale de 1 ns (15 cm). Par conséquent, elles peuvent mesurer des structures 

verticales jusqu'à 81,6 m et 150 m, respectivement. La précision verticale de GLAS a été 

estimée à environ 3,2 cm en moyenne sur les zones plates [70]. 

 

En Guyane française, GLAS a acquis plus de 100 000 formes d'onde entre 2003 et 2009 

(cf. Figure 2.1). Cependant, toutes ces formes d’onde ne sont pas adaptées pour l'estimation 

de la hauteur des arbres. Certaines d'entre elles sont perturbées par la diffusion 

atmosphérique, les nuages, etc. Pour supprimer ces formes d’onde, plusieurs filtres ont été 

appliqués [72]. Après le filtrage, 47 348 formes d’onde ont été conservées pour la suite de 

l’étude 

7.2.3 Données du radiomètre spectral à moyenne résolution  MODIS 

Le capteur MODIS embarqué sur les satellites Terra et Aqua possède un total de 36 bandes 

spectrales dont sept prévues spécifiquement pour les applications terrestres avec des 

résolutions spatiales qui vont de 250 m à 1 km. Le jeu de données MODIS utilisé dans cette 

étude comprend dix années (du 1er janvier 2003 au 31 décembre 2012) d'indice de 

végétation amélioré (EVI, MOD13A1). Les données EVI caractérisent efficacement les 
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états et processus biophysiques et biochimiques des surfaces végétalisées. Une période de 

10 ans a été utilisée pour une meilleure synchronisation avec les données GLAS (2003-

2009). 

 

En utilisant les séries temporelles EVI, six cartes ont été préparées: les valeurs minimales, 

moyennes et maximales des données EVI (MIN_EVI, MEAN_EVI et MAX_EVI 

respectivement) (cf. Figure 2.3), ainsi que les trois premières composantes issues de 

l'analyse en composantes principales des données EVI (PC1, PC2 et PC3). L’indice de 

végétation normalisé (NDVI) et l'indice de végétation amélioré (EVI) sont souvent utilisés 

dans de nombreuses applications qui étudient les paramètres biophysiques. Cependant, la 

relation entre eux varie en fonction des caractéristiques de la zone d'étude. Une forte 

corrélation entre les indices de végétation et de la biomasse verte a été rapportée par 

Hardisky et al. [135]; en revanche, d'autres études ont rapportées peu de corrélation entre 

les deux ([136]). Enfin, Freitas et al. [137] et Pascual et al. [138] ont constaté une forte 

relation entre la hauteur de la canopée et les indices de végétation. C’est pourquoi, il 

pourrait être intéressant d'inclure l'EVI dans les modèles d'estimation de hauteur de la 

canopée. 

7.2.4 Données issues du Modèle Numérique de Terrain MNT SRTM  

Le modèle numérique de terrain (MNT) acquis par la NASA (SRTM) a également été 

utilisé dans cette étude. C’est le produit avec une résolution de 90 m à l’échelle du Globe 

qui a été utilisée. Bourgine et Baghdadi [73] ont trouvé que la précision des données 

d'élévation SRTM a été évaluée à environ 10 m (écart type d'erreur) en Guyane française. 

Le jeu de données MNT SRTM et ses cartes dérivées ont été analysés puisque la 

topographie locale et le drainage sont importants pour l'ancrage des arbres et la dynamique 

de la forêt. 

 

 D'après le MNT SRTM, trois produits ont été dérivés: 

(1) Une carte de pente (Slope) (cf. Figure 2.4a), qui est calculée en utilisant la variation 

maximale d’élévation de la distance entre chaque cellule du MNT et ses huit voisins dans 

une fenêtre de 3x3. La pente a été largement utilisée dans de nombreuses études pour la 

correction des estimations de la hauteur des arbres à partir des données LiDAR aéroporté 

et satellitaire ([44]; [63]; [71]). L’intégration de la pente du sol dans les modèles 
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d’estimation de la canopée augmente la précision des estimations car elle élimine une partie 

de la hauteur ajoutée par la pente ([63]). 

 

(2) Une carte de la rugosité de la surface (Roughness) (cf. Figure 2.4b). La rugosité 

correspond à l'écart type des élévations dans une fenêtre 3x3. Les zones ayant un faible 

écart type représentent des zones des hauteurs d’arbres plus homogènes, tandis qu’un écart-

type fort représente des hauteurs d’arbres plus hétérogènes. L'indice de rugosité a été utilisé 

dans les études de Carabajal et Harding [70] et Fayad et al. [105] et les résultats montraient 

une bonne corrélation avec la métrique LiDAR Wext des formes d'onde GLAS (mesure 

représentant une estimation de la hauteur des arbres). 

(3) Enfin, une carte de la zone de drainage en échelle logarithmique (ln_drain) (cf. Figure 

2.4c). La zone drainée mesure la surface du bassin hydraulique qui s’écoule à travers une 

cellule en utilisant le modèle D8. Une valeur faible indique des cellules situées sur une 

crête en amont, tandis que les valeurs les plus élevées indiquent des cellules situées en aval 

dans les vallées. 

7.2.5 Carte géologique 

La géologie est un déterminant important de la formation du sol, conditionnant ses 

propriétés chimiques et physiques, qui affecte la croissance des arbres et d'autres 

paramètres forestiers. Une carte de substrat géologique (GEOL) produite par le BRGM 

([76]) a été donc utilisée dans cette étude (cf. Figure 2.5a). La carte a été simplifiée pour 

retenir seulement les cinq plus grandes formations de roche: sédiments récents, roche 

sédimentaire volcanique, granites, gabbros et gneiss. 

7.2.6 Carte des types de paysage forestier 

Une carte des types de paysage forestier développée par Gond et al. [77] avec une 

résolution d’un km a été utilisée (cf. Figure 2.5b). Dans cette carte, 33 types de paysage 

forestier (LTs) utilisant des images SPOT-VEGETATION ont été interprétés. Cinq classes 

du total des 33 classes ont été utilisées dans cette étude puisqu’elles occupent environ 78% 

de la forêt dans cette zone. Les LTs peuvent être décrites comme suit:  

(1) LT8 représente une forêt dense avec un couvert fermé La forêt y est composée de petites 

couronnes et de petites ouvertures mélangées dans un couvert régulier avec des arbres 

ayants sensiblement la même hauteur.  
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 (2) LT9 est une forêt avec un couvert fermé d’arbres de même hauteur dominée par des 

émergents bien développées sans grandes ouvertures.  

(3) LT10 est une forêt irrégulière où les arbres ont des hauteurs et des diamètres de 

couronne différents avec de grandes ouvertures. Cette forêt irrégulière est mélangée avec 

une forêt ayant un couvert fermé et dominé par des couronnes bien développées sans 

grandes ouvertures. LT10 est aussi mélangé avec des forêts de liane.  

(4) LT11 est semblable à LT10 avec plus de forêts de liane et des couverts non-forestier.  

(5) LT12 est une forêt ouverte associée aux marécages et la forêt de bambou.  

L’ensemble de données de LTs a été choisi pour sa corrélation avec la hauteur des arbres. 

7.2.7 Carte de précipitation 

Les données de précipitations de la mission de la NASA pour la mesure des précipitations 

tropicales (TRMM) ont été utilisées (cf. Figure 2.5c). Cette mission a été lancée en 1997 

pour la mesure et le suivi des pluies tropicales. Les données TRMM utilisées dans cette 

étude représentent la précipitation moyenne quotidienne au cours des 10 dernières années 

(2003 à 2013) avec une résolution de 8 km (Rain). Des études récentes suggèrent une 

relation entre la hauteur de la canopée maximale dans les vieux peuplements et le cumul 

des précipitations annuelles ([139]). Lorsque le rapport des précipitations augmente, la 

hauteur maximale des arbres augmente aussi. 

7.3 Estimation de la hauteur des arbres à partir des données 

GLAS 

Les modèles d'estimation de la hauteur des arbres basés sur les données de formes d'ondes 

LiDAR GLAS peuvent être divisés en deux catégories: la méthode directe et les modèles 

statistiques. La méthode directe permet d’estimer la hauteur de la canopée dans les zones 

avec un faible relief en utilisant la différence d'altitude entre le début du signal GLAS et le 

pic du sol. Cependant, sur les zones en pente, la méthode directe surestime la hauteur des 

arbres en raison de la hauteur supplémentaire introduite par la pente. Pour supprimer les 

effets de la pente, des modèles statistiques ont été développés en utilisant des métriques 

extraient de GLAS et d’un MNT.  Tandis que les métriques développées dans des études 

précédentes ont réussi à augmenter la précision des modèles d'estimation de la hauteur des 

arbres (par exemple, [44]; [62]; [64]; [71]), ces modèles avaient leurs propres problèmes. 
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En effet, afin d'utiliser ces métriques pour une meilleure estimation de la hauteur des arbres, 

la position exacte du pic du sommet de la canopée et le pic du sol est souvent nécessaire. 

Sur les zones avec une végétation dense comme les forêts tropicales, l'extraction de la 

position exacte du pic du sommet de la canopée et le pic du sol est particulièrement difficile 

en utilisant un processus automatisé car les formes d'onde LiDAR ne présentent pas 

souvent des pics distinctifs [62]. L'extraction de ces métriques manuellement est toujours 

possible, mais devient inefficace lorsqu'il s’agit d'un grand nombre de formes d'onde 

GLAS. 

 

Les objectifs de cette section sont de tester plusieurs modèles couramment utilisés pour 

l'estimation de la hauteur des arbres, qui utilisent des métriques dérivées des formes d'onde 

GLAS et du MNT-SRTM, et de tester deux techniques nouvelles dans le domaine LiDAR 

appliqué à la forêt: l'analyse en composantes principales (ACP) des formes d’onde et la 

technique Random Forest (RF) qui va servir comme modèle de régression pour estimer la 

hauteur des arbres. Le but d’utiliser l'approche ACP est d'éliminer la nécessité d’utiliser les 

métriques extraites de GLAS dans les modèles d'estimation de la hauteur des arbres. En 

effet, l'extraction de certaines métriques peut présenter des erreurs, en particulier dans les 

forêts très denses, comme dans le Guyane française à cause de la difficulté à identifier la 

position du sol. Pour la régression RF, les mêmes métriques que celles utilisées dans les 

modèles de régression GLAS seront tout d'abord utilisées. Les résultats de tous les modèles 

testés dans cette section seront validés par rapport aux estimations de la hauteur des arbres 

obtenus à partir d'un ensemble de données de LiDAR aéroporté indépendant. 

7.3.1 Contexte de l'estimation de la hauteur des arbres en utilisant 

GLAS 

L'estimation de la hauteur des arbres en utilisant la méthode directe est effectuée en 

utilisant tout simplement la différence entre le début du signal de la forme d'onde (Hb) et 

le pic du sol (Hg). La méthode directe estime la hauteur des arbres avec une bonne précision 

sur les zones plates (par exemple [72]). Cependant, sur les zones en pente, à la fois le pic 

du sol et celui de la végétation s’élargissent et diminuent en intensité. Le pic identifié 

comme le pic du sol ne représentera plus seulement le sol, mais un mélange d'objets et du 

terrain ([71]; [70]). En fait, sur un terrain en pente l’étendu de la forme d’onde ‘Wext’ va 

augmenter  en fonction de la pente et de la taille de l'empreinte [10]. Cette augmentation 
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se traduira par une détection plus précoce du début du signal et cela provoquera une 

surestimation de la hauteur des arbres. Pour corriger l'effet de la pente sur le signal GLAS, 

plusieurs études ont développés des modèles qui utilisent des paramètres issus des signaux 

GLAS (l'étendue de la forme d'onde "Wext", l'étendue du bord antérieur "Lead" et l'étendue 

du bord postérieur "Trail") (cf. Figure 2.2) afin de mieux estimer la hauteur des arbres (par 

exemple : [44]; [62]; [71]; [70]). Finalement, afin d'analyser la précision de l'estimation de 

la hauteur des arbres à l'aide du modèle ‘Random Forest’, plusieurs configurations de 

métriques ont été testées. Dans cette étude, les principaux modèles testés sont résumés dans 

le tableau (cf. Tableau 3.1). 

 

La comparaison entre les estimations de la hauteur des arbres à partir des formes d'onde 

GLAS en utilisant la méthode directe et les estimations de la hauteur des arbres de 

l'ensemble de données du LiDAR aéroporté a montré une forte erreur quadratique moyenne 

(EQM) sur l'estimation de la hauteur des arbres (7,9 m) et un faible R² de l’ordre de 0,50 

(cf. modèle Id 1, Tableau 3.1, Figure 3.5a). Ce résultat peut être expliqué par le fait que la 

plupart des empreintes GLAS tombent sur une zone avec une pente entre 5o et 10o. En 

outre, les résultats des modèles de régression avec validation croisée ont montré que les 

modèles de régression qui utilisent le Trail (cf. modèle Id 4-8, Tableau 3.1, Figure 3.5b) 

fournissent une estimation de la hauteur des arbres légèrement meilleure en comparaison 

aux modèles qui utilisent soit le Lead, l’indice de terrain à partir du MNT-SRTM (TI) ou 

le Lead et TI (EQM compris entre 3,7 et 4,0 m, R² entre 0,79 et 0,81). La contribution du 

Lead semble être faible par rapport au Trail lorsqu’on estime la hauteur maximale des 

arbres. En effet, le modèle Id 7 qui utilise le Trail avait de meilleurs résultats par rapport 

aux modèles Id 3 qui utilisent le Lead (cf. Tableau 3.1). En outre, l'utilisation du ‘Terrain 

Index’ (TI) calculé à partir du MNT dans les modèles de régression produit une précision 

sur l'estimation de la hauteur des arbres plus basse (EQM = 4,9 m et R² = 0,72).  

 

Les résultats de l’estimation de la hauteur des arbres en utilisant les métriques à partir de 

GLAS et le RF, ont montrés que la meilleure configuration pour estimer la hauteur de la 

canopée est la configuration qui utilise toutes les métriques: Wext, Lead, Trail, et TI (cf. 

modèle Id 13, tableau 3.1). La différence entre les estimations de la hauteur des arbres de 

GLAS et les hauteurs obtenues à partir des données LiDAR aéroporté (données de 

référence) pour la configuration utilisant toutes les métriques, a montré une EQM de 3,4 
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m, et un coefficient de détermination R² de 0,82. En outre, le test de l'importance des 

variables a montré que la hauteur des arbres provenant de GLAS est mieux expliquée en 

utilisant la Wext avec un facteur d'importance presque trois fois plus élevé en comparaison 

avec les trois autres métriques (Trail, Lead, TI), qui ont presque la même importance. 

D'autres modèles de régression  qui utilisaient Wext, Lead, et TI ou Wext et Lead ou Wext 

et TI (cf. modèles Id 14, 15, 16, Tableau 3.1) ont montré des précisions semblables sur 

l'estimation de la hauteur des arbres (EQM environ 3,6 m). L'estimation de la hauteur 

d'arbres provenant de GLAS et utilisant uniquement la Wext a montré une EQM de 4,4 m 

avec un R² de 0,73. Figue 3.6 montre des exemples de la comparaison entre les estimations 

de la hauteur des arbres à partir de GLAS et les estimations de référence de la hauteur 

obtenues à partir de données LiDAR aéroporté. 

7.3.2 Techniques proposées pour l'estimation de la hauteur des arbres 

La section précédente a présenté un certain nombre de modèles de régression élaborés dans 

plusieurs études pour l'estimation de la hauteur des arbres. Cependant, ces modèles exigent 

plusieurs métriques dérivées des empreintes GLAS, comme le pic du sol, pic du sommet, 

Lead, Trail, et les métriques dérivées du MNT SRTM, tels que l'indice de terrain (TI). En 

outre, l'extraction de certaines métriques à partir des formes d'onde GLAS, tels que la 

position du pic du sol, peut être erronée, en particulier dans les forêts denses. En fait, la 

pénétration de la forme d’onde dans la canopée dans les zones de végétation dense est 

parfois insuffisante pour atteindre le sol. Ainsi, soit le signal LiDAR n’a pas attient le sol 

ou bien il a atteint le sol mais le retour est trop faible pour une détection fiable. Ces 

difficultés dans la détection du pic sol affectent l'estimation du Wext, et par conséquent, 

l'estimation de la hauteur des arbres. Ainsi, un modèle statistique pour l’estimation de la 

hauteur basé uniquement sur les valeurs de la forme d'onde peut être une alternative 

intéressante. Une analyse en composantes principales des formes d'onde GLAS a été 

menée. Ensuite des modèles de régression linéaire et la technique ‘Random Forest’ ont étés 

construits pour l'estimation de la hauteur de la canopée avec les composantes principales 

(PC). 

 

L'estimation de la hauteur des arbres en utilisant le RF avec les PCs a été effectuée en 

utilisant différentes configurations des PCs utilisées. En utilisant les 13 premiers PCs avec 

la technique ‘Random Forest’ a abouti à une meilleure précision de l'estimation de la 
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hauteur des arbres (EQM = 4,7 m, R2 = 0,7) par rapport au modèle de régression linéaire 

qui a utilisé les 13 premiers PCs (EQM = 5,9 m, R2 = 0,52). Le test de l'importance des 

variables a montré que la hauteur des arbres GLAS est mieux expliquée en utilisant PC1, 

PC2, PC4 et PC11 (variance 62,4%). La seule utilisation de ces quatre PCs dans RF a 

montré un résultat similaire (EQM = 4,8 m, R2 = 0,69). Ensuite, l'incorporation de la Wext 

avec les 13 premières composantes principales a considérablement amélioré la précision 

de l'estimation de la hauteur des arbres (EQM = 3,6 m, R2 = 0,83) en comparaison avec les 

régressions RF sans Wext. En plus, ce résultat est du même ordre que celui obtenu en 

utilisant une régression linéaire avec les 13 premières PCs et Wext (EQM = 3,8 m). 

L’utilisation des variables les plus importantes (Wext, PC1, PC2, PC4 et PC11) dans la 

régression RF, a donné des résultats similaires, avec une erreur quadratique moyenne de 

3,6 m et un R2 de 0,82. Enfin, en remplaçant la Wext par la classe de Wext (WC, avec 

WC1 pour Wext < 20m ; WC2 pour Wext entre 20 et 40 m et WC3 pour Wext > 40 m) 

avec les 13 premières PCs dans RF, l’estimation de la hauteur des arbres a montré des 

résultats similaires (EQM = 3,7 m, R2 = 0,81). Des résultats similaires ont été observés 

lorsque l’on ne retient que les variables les plus importantes avec la classe de Wext (WC, 

PC1, PC2, PC4 et PC11), avec une erreur quadratique moyenne de 3,7 m et un R2 de 0,81. 

La Figure 3.9 montre la comparaison entre les hauteurs de la canopée à partir de GLAS en 

utilisant la technique de RF sur les PCs, Wext et WC et les hauteurs de référence obtenues 

à partir des données LiDAR aéroporté. 

7.4 La spatialisation de la hauteur des arbres LiDAR 

Afin d'estimer la hauteur des arbres sur une grille régulière de 250 m x 250 m et non plus 

au niveau des formes d’onde LiDAR (GLAS ou LiDAR aéroporté) une procédure en cinq 

étapes a été menée, en se basant sur la relation statistique et spatiale entre les estimations 

de la hauteur des arbres à partir du LiDAR et des variables auxiliaires (GEOL, LT, Rain, 

Slope ...) en utilisant des méthodes d'estimation empiriques largement utilisées: régressions 

par Random Forest, krigeage ordinaire, et régression krigeage (par exemple [65]; [66]; 

[96]; [97]; [98]). Les cartes produites ont une résolution de 250 m x 250 m correspondant 

à la résolution de la majorité des variables auxiliaires utilisées. 
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7.4.1 Contexte sur la technique régression-krigeage 

Nous avons cartographié la hauteur des arbres à partir de données LiDAR à une résolution 

de 250 m en utilisant la technique de régression krigeage (RK). RK est une technique 

spatiale de prédiction qui combine la valeur de régression des prédicteurs (variables 

auxiliaires) et le krigeage des résidus de régression (hauteurs de référence de la canopée - 

hauteurs de la canopée estimée par RF) ([98]). Cette technique a été développée 

principalement pour tenir compte de la corrélation entre les variables environnementales 

et la qualité du fitting insatisfaisante du modèle de variance spatiale de l'ensemble de 

données ([99]) empêchant ainsi la stationnarité des variables auto corrélées étudiés. Pour 

le modèle de régression, nous allons utiliser la technique RF, et pour la régression des 

résidus nous allons utiliser le krigeage ordinaire. 

7.4.2 La cartographie de la hauteur des arbres en utilisant la régression 

krigeage 

Pour créer les cartes de la hauteur des arbres, les variables prédictives qui expliquent le 

mieux la hauteur des arbres ont d'abord été choisies. Deux ensembles de données de 

référence pour la hauteur des arbres à partir du LiDAR ont été utilisés séparément: 

l'ensemble de données GLAS, et l'ensemble des données LiDAR aéroportés (AD). Les 

résultats ont montré que les prédicteurs qui expliquent le mieux la hauteur des arbres sont 

les mêmes pour les deux jeux de données de référence. Les prédicteurs sont les suivants: 

La rugosité du terrain (Rug), la valeur moyenne de l'EVI (EVI_AVG), la carte géologique 

(Geo), la valeur moyenne des précipitations (Rain), et la pente du terrain (Slope). Ensuite, 

la technique de régression RF a été utilisée pour modéliser la hauteur des arbres à l'aide 

des variables prédictives les plus pertinentes. Un modèle de régression RF a été développé 

pour chaque ensemble de données LiDAR afin de créer des cartes spatialisées pour la 

hauteur de la canopée pour toute la Guyane. Les résultats ont montré que toutes les cartes 

de la hauteur des arbres ont présentées une précision semblable quelle que soit la précision 

des hauteurs d'arbres de référence utilisées (cf. Figure 4.2, EQM environ 6 m). Afin 

d'améliorer la précision des cartes obtenues pour la hauteur des arbres, les résidus (la 

hauteur de référence des arbres – la hauteur estimée des arbres) obtenus à partir de chaque 

ensemble de données LiDAR ont été krigés. Afin de kriger les résidus, le semivariogramme 

des résidus des deux jeux de données (GLAS et LiDAR aéroporté) a été ajusté. Le palier, 

la portée et la pépite obtenus ont été similaires. Ensuite, chaque carte de résidu krigé a été 
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ajoutée à la carte de hauteur des arbres correspondante obtenue à partir du modèle de 

régression RF. Les résultats ont montré une amélioration de la précision des cartes de la 

hauteur des arbres. Cependant, cette amélioration de la précision varie entre la carte de 

hauteur de la canopée utilisant le résidu de hauteur provenant des données GLAS (EQM 

de 4,2 m avec RK, cf. Figure 4.5a) et celle obtenue en utilisant l'ensemble de données AD 

(EQM de 1,8 m avec RK) (cf. Figure 4.5b). Cette différence de précision entre GLAS et 

AD est due à la densité des points, et l'espacement des lignes de vol pour chaque jeu de 

données. En effet, pour l'ensemble de données AD, les estimations de la hauteur des arbres 

sont réparties sur des lignes de vol avec une distance moyenne d'environ 500 m, tandis que 

les estimations de la hauteur des arbres pour l'ensemble de données GLAS sont répartis sur 

les lignes de vol avec une distance moyenne de 20 km 

7.4.3 Relation entre l’espacement des lignes de vol LiDAR et la précision 

de la hauteur des arbres krigée 

Dans cette section la précision des cartes de la hauteur des arbres obtenues par krigeage 

des données LiDAR à différentes densités de points LiDAR a été évaluée. Le but est 

d'analyser l'impact de l'espacement des lignes de vol LiDAR sur la précision de la carte des 

hauteurs des arbres, en créant à partir du jeu de données d'origine AD plusieurs sous-

ensembles de données LiDAR avec différents espacements de lignes de vol (espacement 

de 5, 10, 20, 30, 40, et 50 km). Afin de créer les cartes pour la hauteur des arbres en utilisant 

les sous-ensembles de la base AD, les meilleures variables prédictives ont tout d'abord été 

sélectionnées pour être utilisées dans les régressions RF. Les résultats indiquent que pour 

les sous-ensembles AD, les variables prédictives qui expliquent le mieux la hauteur des 

arbres étaient les mêmes que celles utilisées avec les jeux de données GLAS et AD. En 

plus, les résultats ont également montré que la précision des cartes produites pour la hauteur 

des arbres à l'aide des régressions RF avec les sous-ensembles AD était dans le même ordre 

de grandeur que les cartes de hauteur de la canopée obtenues avec les deux ensembles de 

données de référence (GLAS et AD) (cf. Tableau 4.1). Pour ces sous-ensembles, l'erreur 

quadratique moyenne sur l’estimation de la hauteur des arbres se situe entre 5,7 et 6,2 m 

(R2 entre 0,60 et 0,65). Afin d'ajouter les résidus krigés aux cartes de la hauteur des arbres 

par RF, le semivariogramme des résidus pour chaque sous-ensemble AD a été ajusté (cf. 

Figure 4.7). Le palier, la portée et la pépite obtenus ont été similaires à ceux obtenus avec 

les jeux de données GLAS et AD. En y ajoutant les résidus krigés correspondant à chacun 
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des sous-ensembles AD, la précision sur les cartes de la hauteur des arbres a augmentée 

comme prévu (cf. Tableau 4.1). Cette amélioration de la précision semble être corrélée 

négativement avec l'espacement des lignes de vol des sous-ensembles AD. Pour les sous-

ensembles AD_5 et AD_10 (espacement de 5 et 10 km respectivement), la précision sur 

l'estimation de la hauteur des arbres était similaire aux résultats obtenus avec l'ensemble 

de données AD (EQM = 1,8 m, R2 = 0,94). Toutefois, pour les sous-ensembles AD_20, 

AD_30, AD_40 et Ad_50, la précision sur l'estimation de la hauteur des arbres a diminué 

d’une erreur EQM = 3,3 m pour LD_20 à une erreur de 4,8 m pour LD_50. 

7.5 Le potentiel du couplage GLAS et SRTM pour la 

discrimination des types de paysage forestier 

Dans cette section, les formes d'ondes acquises par GLAS ont été utilisées pour analyser la 

différence entre les élévations GLAS et celles du MNT SRTM, dans le but de discriminer 

les cinq principaux types du paysage forestiers (LTs) de la Guyane. Les LTs ont été 

délimités par Gond et al. [77] en utilisant un processus d'experts mélangeant des analyses 

terrain et d'images à basse résolution [77]. Tout d'abord, deux différences ont été calculées: 

(1) la profondeur de pénétration définie comme la différence entre l’élévation du pic du 

sommet à partir d’une forme d’onde GLAS et l’élévation du MNT, et (2) la différence entre 

l'élévation du centroïde d’une forme d’onde GLAS et l’élévation du MNT. La classification 

des cinq types de paysage forestiers (LTs) en utilisant les données GLAS et MNT a été 

évaluée en utilisant la technique RF. Cette classification a été réalisée selon la profondeur 

de pénétration, la différence entre l’élévation du centroïde d’une forme d’onde GLAS et 

l’élévation du MNT, et la hauteur des arbres à partir de GLAS (Hc) (différence entre le pic 

du sol et le début du signal), et l'indice de rugosité issu du MNT (R). Enfin, en utilisant les 

changements qui se produisent au signal GLAS à différentes saisons, le potentiel de 

discrimination des LTs en utilisant ces changements a été étudié. 

7.5.1 Classifications des empreintes GLAS 

Une classification des empreintes GLAS basées sur la technique Random Forest (RF) a été 

réalisée en utilisant la profondeur de pénétration (la différence entre l’élévation du pic du 

sommet à partir de GLAS et l’élévation du MNT), la différence entre l’élévation du 

centroïde de la forme d’onde GLAS et l’élévation du MNT, la hauteur de la canopée (Hc) 
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et l'indice de rugosité (R). La technique ‘Random Forest’ est connue pour s'adapter à des 

problèmes de classification ayant des caractéristiques spatiaux complexes et est de plus en 

plus utilisée par la communauté de la télédétection pour la classification de l'occupation 

des sols [119]. Les résultats de la discrimination ont montrés que tous les LTs ont été bien 

classés avec une précision entre 78,4% à 97,5% et la discrimination a été réalisée avec une 

précision globale de 81,3% (coefficient Kappa de 0,75) (cf. Tableau 5.2). Le test 

d'importance des variables a montré que la différence entre l’élévation du pic du sommet à 

partir de GLAS et l’élévation du MNT était la variable la plus importante, suivie par la 

hauteur des arbres (Hc) et l'indice de rugosité (R).   

7.5.2 Les effets de la saison sur les acquisitions GLAS 

Le potentiel de discrimination des différents LTs en utilisant les formes d’onde GLAS 

ayants des empreintes GLAS coïncidentes, avec une forme d’onde pendant la saison 

humide et une forme d’onde pendant la saison sèche, a été analysé. Premièrement, les 

paires des formes d'onde ont été séparées en deux catégories. La première appelée leaf-on 

et correspond à des formes d'onde sans modifications des formes d’onde entre les deux 

saisons (arbres avec des feuilles dans les deux saisons). La seconde catégorie appelée leaf-

off représente les arbres qui perdent leurs feuilles pendant la saison sèche. Les arbres leaf-

off ont été identifiées à partir des paires de formes d'onde GLAS qui ont montrés des 

changements dans l'amplitude des pics du sommet de la canopée et du sol d'une saison à 

l'autre. 

 

Les résultats montrent que la forêt ouverte (LT12), qui est connue pour être décidue, a 

présenté un rapport des énergies des sommets de canopées dans les saisons sèches et 

humides (Topwet / Topdry) de 2,4 vs ~1,1 pour LT8, LT09 et LT10, et 1,2 pour la leaf-on 

des LT12 (cf. Tableau 5.4). En outre, le rapport  des énergies du pic du sol des formes 

d’ondes dans les saisons sèches et humides (Groundwet / Grounddry) est similaire pour LT8, 

LT10 et les leaf-on des LT12 d'une valeur d'environ 1,1. Un rapport inférieur a été obtenu 

pour la leaf-off de LT12 (0,7) (cf. Tableau 5.4). La différence entre les élévations du 

centroïde de la forme d’onde GLAS et les élévations SRTM est similaire pour les données 

dans les deux saisons sèches et humides avec des valeurs comprises entre -4,3 et -6.3 m 

pour la saison humide et entre -4,7 et -5,8 m pour la saison sèche. Inversement, cette 
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différence augmente pour les paires leaf-off de LT12 de -5.8 m dans la saison humide 

jusqu’à -9.6 m pendant la saison sèche (cf. Tableau 5.4). La Figure 5.6 montre les 

emplacements des paires leaf-off et leaf-on en Guyane française, révélant que la majorité 

des paires leaf-off sont situés dans la même zone dans le sud de la Guyane française. 

7.6 Conclusions et perspectives 

7.6.1 Conclusions 

Dans cette étude, la hauteur des arbres à partir des données GLAS en Guyane française a 

été estimée à l'aide de multiples modèles de régression linéaire et de la technique ‘Random 

Forest’ (RF). Cette analyse est basée soit sur les métriques extraites des formes d’ondes 

GLAS et des informations sur le terrain issu du MNT SRTM ou sur l'analyse en 

composantes principales (PCA) des formes d’onde GLAS. Les régressions linéaires et les 

régressions RF ont fournies des estimations de la hauteur des arbres avec une précision 

similaire en utilisant soit les métriques GLAS ou les composantes principales (EQM ~ 3.6 

m). Toutefois, un modèle de régression (régression linéaire ou RF) basé sur l'ACP et les 

échantillons de la forme d'onde avec une information sur la Wext est une alternative 

intéressante pour estimer la hauteur des arbres car il ne nécessite pas d’autres métriques 

difficiles à obtenir à partir des formes d'onde GLAS dans les forêts denses, telles qu’en 

Guyane française. 

 

Sachant que les données acquises à partir de GLAS ont une densité d'acquisition faible, 

mais une couverture géographique mondiale, il est donc utile de proposer une méthode 

pour cartographier la hauteur des arbres avec une bonne précision et à une résolution 

spatiale élevée. Dans cette étude, la hauteur des arbres extraites des deux capteurs LiDAR 

aéroporté et satellitaire, a été estimée à partir des données environnementales disponibles 

(par exemple, la géologie, de la pente, des indices de végétation, etc.) et utilisant la 

technique de régression-krigeage (krigeage des résidus de la régression du RF). Les cartes 

de la hauteur des arbres estimées en utilisant la régression-krigeage ont montrées une EQM 

sur l’estimation de la hauteur des arbres de 4,2 m en utilisant les données de calibration 

GLAS et de 1,8 en utilisant les donnes LiDAR aéroporté. Enfin, l'impact de 

l'échantillonnage spatial sur la précision des estimations de la hauteur des arbres a été 
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étudié. Les résultats indiquent qu’en utilisant l'approche de régression-krigeage, la 

précision sur la carte des hauteurs d’arbres était de 1,8 m avec un espacement des lignes de 

vol de 5 km et a évoluée pour atteindre un EQM de 4,8 m avec la configuration d’un 

espacement des lignes de vol de 50 km.  

 

Finalement, dans cette étude, les formes d'ondes acquises par GLAS ont été utilisées pour 

analyser la différence entre les élévations de GLAS et du SRTM, dans le but de discriminer 

les cinq types de paysage forestier (LTs) en Guyane française. Les résultats ont montrés 

que la discrimination des cinq LTs en Guyane française est désormais possible avec un 

taux de classification de 81,3% et un coefficient kappa de 0,75. Finalement, les différences 

entre les formes d'onde GLAS coïncidentes (une en saison humide et l'autre en saison 

sèche) ont montrées que les arbres de LT12 pouvaient être facilement distingués des autres 

LTs qui conservent leurs feuilles en utilisant seulement trois critères: (1) la différence entre 

l'élévation du centroïde de la forme d’onde GLAS et l'élévation du SRTM, (2) Le ratio de 

l'énergie du sommet de la forme d’onde de la saison humides à l'énergie du sommet de la 

forme d’onde de la saison sèche, et (3) le rapport de l'énergie du sol de la forme d’onde de 

la saison humide à l'énergie du sol de la forme d’onde de la saison sèche. 

7.6.2 Perspectives 

Cette recherche ouvre un certain nombre de perspectives. Elles ouvrent de nombreux sujets 

sur l'amélioration des modèles d’estimations de la hauteur des canopées afin d’améliorer 

l’estimation de la biomasse. 

7.6.2.1 La spatialisation de la hauteur des arbres à partir du LiDAR 

Dans la section 1.4, la spatialisation de la hauteur de la canopée a été réalisée avec la 

régression-krigeage et l'utilisation des ensembles de données LiDAR aéroportés et 

satellitaire. Tandis que les résultats de l'estimation de la hauteur de la canopée ont été 

satisfaisants, plusieurs aspects doivent être poursuivis. Pour la méthode de cartographie de 

la hauteur de la canopée non-spatiale, nous avons utilisé la régression RF. Cependant, 

plusieurs autres modèles de régression tels que les modèles de régression inversés ([125]) 

ou, les modèles de régression à axe majeur réduit (AMR) ([126]; [125]) pourraient être 

utilisés à la place de RF, et leurs performances analysées. En ce qui concerne les méthodes 

de spatialisation, des modèles de krigeage anisotrope ayant une composante directionnel 
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doivent être testés. Enfin, les cartes créées dans cette étude pour l'estimation de la hauteur 

de la canopée ont une résolution de 250x250 m. Par conséquent d'autres cartes avec 

différentes résolutions pourraient être réalisées et analysées. 

7.6.2.2 L’estimation de la biomasse 

L'objectif principal de cette thèse était de spatialiser la hauteur de la canopée sur toute la 

Guyane française. Cet objectif a été atteint avec des résultats intéressants. Cependant, la 

hauteur de la canopée peut être utilisée pour estimer d’autres ressources forestières 

importantes, telles que les stocks de carbone (ACD) ou la biomasse (AGB), soit 

directement ou indirectement. Dans ce cadre, il serait intéressant d'étudier la relation entre 

la hauteur de la canopée à partir du LiDAR à différents niveaux d'énergie (RH100, RH75, 

et RH50) et leur corrélation à la biomasse dans notre zone d'étude. Des paramètres sur la 

topographie de la surface, le pourcentage du couvert forestier, les types de forêts, et l'âge 

du peuplement, pourraient également être ajoutés au modèle d'estimation de la biomasse 

dans une tentative d'améliorer la précision de l'estimation. Idéalement, une approche 

similaire à celle utilisée dans section 1.4 devrait être abordée. Finalement, l’approche 

présentée par Asner et al. [40]; pour l'estimation de l’ACD ou l’AGB en utilisant les 

estimations de la hauteur de la canopée à partir du LiDAR doit être analysée. Asner et al. 

[40]; ont proposé une allométrie des parcelles agrégées pour l'estimation de l'ACD ou 

l’AGB en utilisant des estimations de hauteur de la canopée par LiDAR. Dans leur étude, 

ils ont émis l'hypothèse que si la structure de la forêt et de l'organisation de la biomasse 

suivent des modèles de graduation constants, les variables au niveau de la parcelle 

pourraient capturer les mêmes informations sur AGB par rapport aux inventaires de terrain. 

Ensuite, puisque les paramètres tels que DBH et WD ne sont pas directement estimés par 

LiDAR, des relations ont été trouvées entre les hauteurs de la canopée par LiDAR et ces 

paramètres. Par conséquent, l’AGB peut maintenant être estimée à l'aide d’une allométrie 

des parcelles agrégées et en utilisant seulement les estimations de la hauteur de la canopée 

par LiDAR. 
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