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Résumé

Suite à la découverte du boson de Higgs en Juin 2012 au Large Hadron Collider, l’accélérateur
de particules situé à la frontière franco-suisse, l’étude du secteur scalaire des particules élémen-
taires a connu un regain d’intérêt. En particulier, le boson de Higgs étant une particule clef
au sein du Modèle Standard des particules, les expérimentateurs étudient ses propriétés avec
beaucoup de soin.

Le Modèle Standard, dont le but est de décrire les interactions entre particules élémentaires,
n’est cependant pas une théorie complète. En effet, en plus de quelques problèmes d’ordre
théorique, certains phénomènes observés expérimentalement ne peuvent pas être expliqués par
ce modèle. Les théoriciens en physique des particules cherchent donc à établir une nouvelle
théorie venant le compléter et permettant d’expliquer pleinement les observations expérimen-
tales.

Ma thèse est axée sur l’étude du secteur scalaire de modèles au-delà du Modèle Standard des
particules. J’ai plus particulièrement travaillé sur un modèle à deux doublets de Higgs – modèle
purement effectif mais qui peut être inclus dans d’autres théories plus abouties – ainsi que sur
un modèle construit comme une combinaison entre les théories déjà très proches de techicouleur
et de Higgs composites, et ce dans le cas particulier d’une brisure de symétrie SU(4) → Sp(4).
J’ai étudié ce dernier modèle d’un point de vue effectif mais la théorie complète est capable de
pallier un certain nombre des limitations du Modèle Standard.

Chacun de ces modèles inclut un secteur scalaire plus riche que celui du Modèle Standard
et contient au moins une particule pouvant être assimilée au boson de Higgs découvert au LHC.

J’ai réalisé l’étude phénoménologique de chacun de ces modèles et les ai confrontés à des
contraintes tant théoriques qu’expérimentales – en particulier celles obtenues grâce aux études
les plus récentes, portant sur le boson de Higgs et sur de potentielles particules scalaires ad-
ditionnelles, réalisées par les équipes du LHC. Cela m’a permis de contraindre les paramètres
libres des modèles et en particulier de restreindre les valeurs possibles pour la masse des autres
particules scalaires, permettant de mieux cibler les zones où ces nouvelles particules, si elles
existent, pourraient être détectées au LHC.

Notons également que les deux théories sur lesquelles j’ai travaillé ne sont toujours pas
exclues par les contraintes expérimentales les plus récentes.

Mots clefs :
Boson de Higgs, phénoménologie, LHC, scalaire, Higgs lourd, Higgs léger, Higgs chargé.
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Summary

Following the discovery of the Higgs boson in June 2012 at the Large Hadron Collider, the
particle collider located beneath the France-Switzerland border, interest in the study of the
scalar sector in elementary particle physics significantly increased. In particular, as the Higgs
boson plays a very special role in the Standard Model of particle physics, experimentalists study
its properties with great care.

The goal of the Standard Model is to describe the interactions between elementary parti-
cles. However the theory is not quite complete. Indeed, in addition to some purely theoretical
problems, a number of experimental observations cannot be explained by the Standard Model.
Theorists are therefore looking for a more comprehensive theory able to fully explain the ob-
servations.

This thesis is based on the study of the scalar sector of two different extensions of the Stan-
dard Model of particle physics. I have worked on the Two-Higgs Doublet Model – this model
is purely effective but can be included in more comprehensive theories – as well as on a model
based on a combination of Technicolor and Composite Higgs theories in the framework of the
SU(4) → Sp(4) symmetry breaking pattern. I studied the latter via an effective approach but
the full theory is able to get rid of some of the pitfalls of the Standard Model.

These two models include a scalar sector that is richer than the one found in the Standard
Model and contain at least one particle which can be assimilated to the Higgs boson discovered
at the LHC.

I performed a phenomenological study for these two models and tested them against both
theoretical and experimental constraints. In particular I used the latest studies on the 125 GeV
Higgs boson and on possible additional scalars performed by the ATLAS and CMS collabora-
tions. The application of all these constraints drastically reduced the available parameter space
of the two models. In particular it narrowed the possible mass range of the additional scalars,
allowing to know more accurately where to search them experimentally in order to prove or
rule out their possible existence.

As of today the two theories I worked on are still not excluded by the latest experimental
data.

Key words:
Higgs boson, phenomenology, LHC, scalar particle, heavy Higgs, light Higgs, charged Higgs.
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Introduction

In 2012 the Large Hadron Collider (LHC), a circular particle collider located beneath the
France-Switzerland border, publicly announced the discovery of a new particle with properties
very similar to the ones predicted by the Standard Model (SM) of particle physics for a Higgs
boson with a mass of around 125 GeV. The discovery of this long-awaited particle represented
a new evidence in favor of the SM.

The SM of particle physics is a theory describing the interactions of elementary particles
through the exchange of other particles, called gauge bosons. It has been developed since the
beginning of the XIXth century and has been tested against experimental observations since
then.

All the SM predictions are very well reproduced by experiments. However some observations
cannot be explained by the SM. Hence, although very accurate, the model does not account
for every phenomenon occurring at the level of particle physics and thus needs to be modified
or completed.

Experimentalists are tracking down every deviation between experimental results and theo-
retical predictions in order to bring to light new discrepancies which can help elaborate a new,
more comprehensive theory, whereas theorists are developing new models said to be beyond
the Standard Model (BSM) which encompass the SM as a substructure or as an effective part.

The development of BSM theories is greatly helped by the meticulous study of the newly
discovered Higgs boson. Its properties are very close to the ones predicted by the SM but
divergences may appear. Moreover the precise determination of its properties helps constrain
the BSM theories in a highly effective way.

As the Higgs boson was the first elementary particle ever discovered, the study of the scalar
sector of particle physics increased drastically since its discovery. Experiments are looking for
possible additional scalars both neutral or charged, allowing a better check of the scalar sector
of BSM theories.

During my thesis I worked on the scalar sector linked to the Higgs boson in two distinct
theory frameworks.

The first one is an effective theory called Two-Higgs Doublet Model (2HDM). This model
contains the usual particles of the SM but includes two electroweak Higgs doublets instead of
one. It results in the appearance of three neutral scalars – one of which can be assimilated to
the 125 GeV Higgs boson – and two charged scalars.

This model has six free parameters, i.e. six independent parameters whose numerical value
is not fixed either by theory or experiment. I compared this theory against different constraints
coming from both theoretical requirements and experimental observations in order to reduce
the available parameter space. In particular I used the latest results published by the ATLAS
and CMS collaborations on both 125 GeV Higgs studies and limits on other scalar particles –
lighter or heavier, neutral or charged. These constraints greatly reduce the available parameter
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INTRODUCTION

space but the model is still allowed.

The second theory I worked on is a model based on a combination of Technicolor and Com-
posite Higgs theories. This model, called Fundamental Composite Dynamics (FCD), assumes
that a new strongly coupled gauge interaction exists at high energy. Additional gauge bosons
and elementary fermions are introduced. At low energy the new fermions condense and break
the initial flavor symmetry.

Many condensates appear, the same way as the mesons and baryons in QCD after chiral
symmetry breaking. Among them at least one has the same quantum numbers as the Higgs
boson discovered at the LHC. The lightest one is chosen to be the condensate Higgs candidate.

The breaking also produces Goldstone bosons, which can acquire a small mass due to explicit
symmetry breaking terms arising in the theory. Depending on the symmetry breaking pattern
some of the Goldstone bosons can make appropriate Higgs candidates.

Hence both the Goldstone boson candidate(s) and the condensate candidate mix together
to give rise to the "real" 125 GeV Higgs boson.

As the phenomenological study of such FCD model is strongly dependent on the chosen sym-
metry breaking pattern, I focused on the specific case where an initial SU(4) flavor symmetry
is broken down to an Sp(4) symmetry. This pattern is the minimal one, with three new scalars
arising from the breaking: two (pseudo-)Goldstone bosons – a scalar and a pseudoscalar –
and a scalar condensate. I performed the phenomenological study of these three particles and
compared the properties of the model with theoretical and experimental constraints. As in
the 2HDM case, the constraints allow an important reducing of the available parameter space
without ruling out the model.

In the first part of this thesis I will briefly remind the historical development of particle
physics before summarizing the current mathematical development of the Standard Model.
Then I will introduce the physics of the Higgs boson and the experimental measurement of its
properties and show how they can be used in order to constrain extensions of the Standard
Model.

In a second part I will expose my work on the Two-Higgs Doublet Model. I will introduce
briefly the model, with its particle content and its free parameters, and list the different con-
straints used in my analysis. Then, as there are two possible Higgs candidates in 2HDM – either
the light scalar called h or the heavier scalar H – I will perform my analysis in two different
frameworks: in the first one I will assume that the heavy Higgs boson H is the 125 GeV Higgs
boson discovered at the LHC, and in the second that the light Higgs boson h is the 125 GeV
Higgs boson. In the first hypothesis I will focus on the possibility of detecting the light scalar
h whose mass is less than 125 GeV. In the second one I will work in the alignment limit, that
is, assume that the couplings of the 125 GeV Higgs boson are similar to those of the SM Higgs
boson within 1% of uncertainty.

In a third part I will present my work on the FCD model, first introducing the concepts
of Technicolor and Composite Higgs theories and showing how they can be combine. Second
I will perform a phenomenological study on the three scalars emerging in the SU(4) → Sp(4)
symmetry breaking pattern, looking at the efficiency of the different selected constraints to
reduce the parameter space.

Finally I will conclude on the global work presented in this thesis.
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Part I:

Introduction to particle and

Higgs physics

Particle physics was born slightly more than a century ago. It is a recent
field still in expansion. Since its beginning many elementary particles have
been discovered. But particle physics is not only the inventory of existing
elementary particles but also the search for a theory explaining their behaviors
and interactions.

The theory of particle physics has evolved quickly and has given birth to a
complete theory of elementary particle interactions called the Standard Model
of particle physics. In this model, one particle, called the Higgs boson, plays
a very special role as it is involved in the process which generates mass to
all the other known particles. The Higgs boson was predicted in 1964 but
has only been discovered in 2012 at the LHC. As it was the only particle
predicted by the Standard Model left to be discovered, and due to its key role
within the theory, its discovery was highly celebrated in the physics community.

In this introduction we will first remind the historical construction of the Stan-
dard Model and its current mathematical form. In the second chapter we will
expose the history of the discovery of the Higgs boson, its production and decay
modes at the LHC. Finally we will discuss how we can make use of experimen-
tal data to constrain theories beyond the Standard Model.

3





1 The Standard Model of particle physics

1.1 Historical introduction

The Standard Model of particle physics (SM) is a theory describing the behavior of the elemen-
tary particles – or rather the behavior of particles that we currently believe to be elementary.
In the following I will remind some of the major steps leading to the establishment of the SM.
More details on this historical development can be found in [1, 2, 3, 4, 5].

1.1.1 The beginning of particle physics

The development of particle physics, and especially the construction of the SM, was spread
over several decades. It probably began with the discovery of the electron by J.J. Thomson in
1897. Studying cathode rays emitted by hot filament, he showed that these rays were made of
very light charged particles which he called corpuscles and which were later renamed electrons.
The first elementary particle had been discovered.

Following this discovery Thomson emitted the hypothesis that atoms contain electrons.
At that time the notion of atoms, as chemical elements, was well known, and Mendeleev’s
periodic table well established, but the composition of such objects was still unknown. Thomson
proposed a "plump model": electrons, negatively charged, are suspended in a heavy positively
charged paste, like plums in a pudding. The atom as a whole is therefore globally electrically
neutral, in agreement with experiments.

In 1909 Rutherford lead an experiment to probe the atomic structure and test Thomson’s
model. For this he fired a beam of α particles – i.e. ionized helium – at a thin sheet of gold
foil and observed the distribution of outgoing particles. If Thomson’s model was true the α
particles, positively charged, would have been barely deflected by the gold atoms. However
he observed that, although most of the beam was not deflected at all, some particles were
significantly deviated. Such a deviation was not consistent with Thomson’s model. The only
viable explanation was that the positive charges and the main mass of the gold atoms were
gathered in the center of the atom, as a nucleus, and that the electrons were "orbiting" around
it.

After this great discovery Rutherford called proton the nucleus of the hydrogen atom, giving
a name to what was regarded at that time as a new elementary particle and a new fundamental
piece of the particle jigsaw puzzle.

However this model – protons positively charged inside the nucleus and electrons orbiting
around – was not completely convincing for different reasons.

One of them was that, following the understanding of forces already known, protons should
not have been able to stay together in the nucleus. At that time the only forces we knew of were
gravity and electromagnetism, and the latter imposes the repulsion of two positively – or two
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CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

negatively – charged particles, making a priori the existence of atoms impossible. This problem
was solved many years later with the development of Quantum ChromoDynamics (QCD).

Another problem was the evolution of atomic weights: Helium, with two electrons – and
hence two protons in order to ensure atom’s neutrality – should have weighted twice as much
as the Hydrogen atom. However experiment found a mass four times as much as the Hydrogen
mass; and the same issue occurred for heavier nucleus. The answer appeared in 1932 when
Chadwick discovered a new neutral particle with a mass similar to the proton’s: the neutron.
This new particle, as the second component of the nucleus, solved the problem of missing mass.

1.1.2 The photon

During the same period theorists were struggling with the notion of photon. At the beginning
of the 1900s light was considered as electromagnetic waves and the old theory of light being a
bunch of particles proposed by Newton had long been abandoned.

However Einstein’s theory of photoelectric effect, based on Planck’s theory of quanta, was
reintroducing the notion of photon. He postulated that light carries a certain amount of energy
E = hν, with h the Planck’s constant and ν the wave frequency. When light hits a metal plate,
the whole energy is transmitted to electrons inside the plate, which can then be dislodged
and emitted. Then the energy of the outgoing electrons depends only on the frequency of the
incoming wave and not at all on the beam intensity. Einstein’s theory was in agreement with
experiments already performed but theorists did not like it because it looked too much like a
particle theory of light.

Precise experimental measurements on photoelectric effects were lead in 1916 by Millikan,
who wanted to refute Einstein’s theory. However his results confirmed very precisely Einstein’s
predictions and even lead to the precise measurement of Planck’s constant h. Yet Einstein’s
point of view that light was quantized was still poorly accepted by the community.

It is finally the experiment conducted by Compton in 1923 on light scattering and the per-
fect agreement between experimental results and Einstein’s theory that lead to the general
acceptance of the particle theory of light and the notion of photon.

1.1.3 Antiparticles and the beginning of QED

In the beginning of the 1930s we were aware of four particles that we believed to be elemen-
tary, i.e. with no substructure: the electron, the proton, the neutron and the photon. As we
knew that electrons and photons were interacting together, as in the photoelectric effect, some
physicists – such as Fermi, Pauli, Heisenberg or Born, among others – intended to propose a
theory, called Quantum ElectroDynamics (QED), describing these interactions.

The development of QED was largely based on Dirac’s work. In 1927 he proposed what
is called the Dirac equation, a relativistic formula describing the behavior of massive spin-1

2
particles. However his formula predicted that the states could have negative energy down to
minus infinity. As the stable state of a particle is supposed to be the one of lowest energy, the
electron should de-excitate infinitely to lower energy states, radiating in the process an infinite
amount of energy.

In order to avoid this issue Dirac assumed that the negative energy states were already filled
by an infinite "sea" of electrons. Due to Pauli’s exclusion principle the "physical" electrons could
not de-excitate to negative energy states and were therefore confined to positive ones. Then a
hole in the sea, i.e. a lack of electron with a specific negative energy, was interpreted as the
presence of a real particle with positive energy and charge.
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Dirac’s theory stayed marginal until the discovery by Anderson in 1931 of a new particle
having the same mass as the electron but with positive charge: the positron. This discovery was
the first step to prove Dirac’s theory. However many physicists were uncomfortable with the
idea of an infinite sea of electrons and, despite the discovery of the positron, were still skeptical.

Feynman and Stueckelberg reinterpreted the Dirac equation in the 1940s, introducing, in-
stead of holes and negative energies, the existence of a real new particle with positive energy
called antiparticle. The discomfort about the hole theory hence disappeared and the idea that,
for each particle following Dirac’s equation, there was another one, the antiparticle, with the
same mass but with opposite charge, began to be accepted.

Other antiparticles were discovered subsequently, such as the antiproton in 1955 and the
antineutron in 1956 but the discovery of the positron by itself ensured the success of Dirac’s
theory and validated the notion of antiparticles.

At the same time, and based on Dirac’s studies, many physicists tried to develop the QED
formalism. This approach was really innovative: in a classical point of view, two electric charges
produce an electro-magnetic field; this field is responsible for the action at a distance between
the two particles. In QED, the interaction is made through the exchange of a mediator particle,
or gauge boson, the photon. This concept is generalizable to other interactions, such as the
weak or strong interactions as we will see in the following. The notion of mediator is really a
key idea in the development of particle physics and later theories of new interactions tried to
use this idea.

The development of QED encountered many issues but led to a rather satisfying formulation,
called renormalization theory, which was found independently by three different physicists at
the end of the 1940s: Feynman, Schwinger and Tomonaga. As it described only interactions
between electrons and photons and did not include other particles already known at that time
it was still far from a standard model of all particle physics, but the development of QED had
made a major step in this direction.

1.1.4 The cosmic ray turmoil and the development of the quark model

Since the discovery of the proton and the neutron, the question of how these particles hold
together was still open. We needed a new force strong enough to overcome the repulsive elec-
tric force but with a sufficiently short range to not have any influence on everyday life, unlike
electromagnetism or gravity.

Based on the development of QED and the idea of particles mediating the interactions,
Yukawa proposed in 1934 a model in which a new attractive force, called strong interaction,
was binding together protons and neutrons. Assuming that the range of this interaction was
of the order of the nucleus size, he derived that the mediator needed to be massive and quite
heavy – of the order of 300 times the mass of the electrons, or about a sixth of the mass of the
proton, that is, around 150 MeV.

At the same time, physicists studying cosmic rays – flux of particles coming from the uni-
verse and crossing Earth’s atmosphere – discovered a bunch of new particles. The first ones, the
muon μ and the pion π, were discovered in 1937 but fully identified only in 1947. The heaviest
one, the pion, had properties very similar to the particle predicted by Yukawa. Physicists called
it a meson, as its was "middle-weighted" compared to electrons and protons; the muon, as the
electron, was set in the lepton category due to their low mass, whereas the proton and neutron
were set in the baryon category.

Was it the end of the story? We had a set of particles; electrons, muons, protons, neutrons
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and their antiparticles, and the mediators of two interactions: the photon for electroweak
interaction and the pion for strong interaction.

However a great number of new particles were discovered starting from 1947 by studying
cosmic rays: the neutral kaon K0 in 1947, the charged kaon K+ in 1949, and many others
that extended the meson category – which was no longer made exclusively of "middle-weighted"
particles. From 1950 onwards heavy baryons were also discovered. Two years later the first
modern accelerator, the Brookhaven Cosmotron, was constructed, allowing the production and
the study of these "strange" particles in a laboratory instead of relying only on cosmic rays.
The number of supposedly elementary particles suddenly blew up during that period and no
theory was able to explain such phenomenon.

These new particles were called "strange" not only because they were unexpected but also
because they had a very short rate of creation, typically of the order of 10−23 s, and a much
slower decay rate of the order of 10−10 s, which pointed toward two different types of inter-
actions at the origin of the creation and decay phenomena. At the beginning of the 1900s
physicists were aware of only two forces: electroweak and gravitational interactions. By the
1950s it seemed that there were two additional ones, called strong and weak interactions.

A first attempt to explain theoretically the appearance of new particles was made by Gell-
Mann and Nishijima in 1953, introducing the notion of strangeness – a new conserved quantum
number. In 1961, Gell-Mann proposed a new method to classify these particles inside baryon or
meson categories, called the Eightfold way. This method still did not explain how the strong in-
teraction works but was nonetheless able to predict the existence of still-undiscovered particles.
This was the case for instance for the particle called omega-minus, predicted by Gell-Mann and
discovered experimentally in 1964.

In 1964, intending to explain the mechanism of the strong interaction, Gell-Mann and Zweig
proposed independently to introduce three new elementary particles, the quarks, called respec-
tively up (u), with electric charge +2

3e, and down (d) and strange (s), both with electric charge
−1

3e. According to their theory, each baryon was composed of three quarks, each antibaryon of
three antiquarks and each meson of a quark and an antiquark. Thus the crowd of new particles
was not fundamental ones but bigger structures built from three elementary constituents.

Greenberg added to the theory the existence of three colors: blue, red and green. Each quark
carries a color and each baryon and meson is assumed to be "white". For baryons, it means
that the three quarks gather the three colors, one for each quark; for mesons it means that the
quark carries a color – e.g. blue – and the antiquark carries its anticolor – here, anti-blue.

Nambu and Han introduced colored gauge bosons known as gluons as mediator of the strong
interaction, hence completing the theory and forming the basis of the future Quantum Chro-
modynamic (QCD).

This theory accounted very well for the observed mesons and baryons but the main pitfall
was that no quarks had been observed so far.

In the late 1960s, an experiment was lead at SLAC to probe the structure of the proton in
the same way as Rutherford did for the atom. Again the experiment showed a substructure
inside the proton, providing a good support to the quark model; however physicists were still
very skeptical as experiments were not able to produce isolated quarks. Some of them suggested
that the interaction could be confining, forcing quarks to stay inside mesons and baryons and
explaining why experiments were not able to catch any free quark. However these explana-
tions were not very satisfactory as the confinement hypothesis was not based on any realistic
mechanism.
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1.1.5 Beta decays and electroweak unification

Before continuing the story of QCD we need to come back to the 1930s and to the problem of
beta decay.

This decay is a radioactive phenomenon known since the end of the 1890s and characterized
independently in 1913 by Soddy and Fajans. It corresponds to the decay of a mother nucleus
A into a daughter nucleus B and an electron. The nucleus B has the particularity of being the
element located one place to the right of A in the periodic table. In more modern notations
the beta decay corresponds naively to the equation:

n → p + e−

In a two-body decay the energy of each daughter particle is fixed. However it was observed
experimentally that, in the case of a beta decay, the energy of the resulting electron could
vary inside a continuous range, suggesting that at least one additional daughter particle was
produced during the decay without being detected.

This assumption was first made by Pauli and later by Fermi who proposed a full theory
of beta decay. The third daughter particle, called neutrino, was assumed to be neutral and
to interact very weakly with matter. As was the case for the positron, this new particle was
detected experimentally some years later, in the mid-1950s, confirming that the beta decay
mechanism follows the equation:

n → p + e− + ν̄e (1.1)
The existence of a neutrino associated with each lepton – an electron-neutrino νe, a muon-
neutrino νμ and, later, a tau-neutrino ντ – was experimentally demonstrated in 1962 at Brookhaven.

After the discovery in the cosmic rays of new particles interacting weakly, as the electron
and the neutrino, the theory of beta decay was generalized to the theory of weak interactions.
However Fermi’s theory was valid only at low energy and physicists knew that a full theory of
weak interactions, as for QED, was needed to contain new particles mediating the interaction.

Relying on the work of Yang and Mills on non-abelian Gauge theory published in 1954,
Glashow proposed in 1961 a model of weak interaction containing three gauge bosons: W +,
W − and Z0. He also proposed to add the photon to the theory, hence developing a unification
of electromagnetism and weak interactions.

However, unlike the photon, the W ± and Z0 bosons needed to be massive in order to account
for the short range of the weak interaction, but no viable mechanism producing such additional
mass terms correctly was known at that time.

It is only in 1964 that three independant groups – Englert and Brout, Higgs and Guralnik,
Hagen and Kibble – proposed a way to make the weak bosons massive. This mechanism is
nowadays denoted shortly as the Higgs mechanism.

In 1967, following this discovery, Weinberg and Salam combined Glashow’s model and the
Higgs mechanism to formulate the electroweak theory, one of the main pieces of the current
SM. A young scientist, ’t Hooft, proved in 1971 the renormalizability of the theory. Then the
entire physics of leptons was formulated.

The W ± and Z0 bosons predicted by the electroweak theory were discovered in 1983 at
CERN, extending the set of experimental discoveries in agreement with SM predictions.

1.1.6 Quark model: the November revolution

After the electroweak theory was established, some physicists intended to enlarge it, including
not only leptons – as electrons, muons or neutrinos – but also quarks. At that time, as we
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have already said, the quark model was considering only three different quark flavors: u, d
and s. However, with this quark flavor configuration, the electroweak theory predicts what is
called Flavor Changing Neutral Currents (FCNC): interactions at tree or loop level allowing a
modification of flavor with no variation of the electric charge. However this phenomenon was not
– or barely – observed experimentally. This is the case for instance for the K0 − K̄0 transition
which is observed experimentally although very small. The tree-level phenomenon (see left
panel of figure 1.1) would produce too large a K0 − K̄0 transition compared to experimental
measurements and hence would need to be theoretically suppressed – which is the case in the
SM – whereas the transition at loop level (right panel of figure 1.1) produces small FCNC
consistent with experimental results.

Z0

d

s

s

d

d s

s d

u u

W−

W+

K0
K

0

Figure 1.1: K0 − K̄0 transition in the three-quark flavor scheme at both tree level (left panel) and one-loop level (right
panel).

In order to suppress these processes theoretically Glashow, Iliopoulos and Maiani proposed
in 1970 to introduce a new quark, the charm c with electric charge +2

3e. This new particle,
beside suppressing FCNC at tree level and reducing them drastically at loop level, provided
an additional symmetry between particles when included in the model. Indeed in the lepton
sector, particles can be stored by pairs: (νe, e−), (νμ, μ), (ντ , τ). The c quark can be viewed
as a heavy cousin of the u quark; then one can store the quark sector into two different pairs:
(u,d) and (c,s).

Even with the theoretical success of the FCNC deletion due to the use of the new quark,
this proposal was not recognized before the events of 1974. That year two experimental teams
published in November the discovery of a new particle: the J/ψ. It was an electrically neutral
meson and very heavy whose lifetime was very long as compared to other hadrons in the same
mass range, then probably relying on new physics. Physicists intensively discussed this discov-
ery and it was finally the quark model, which interpreted the J/ψ particle as the cc̄ meson, that
won the debate. Since then, the quark model became the common explanation of the existence
of multiple mesons and baryons.

Experiments kept on discovering new particles. In 1975 the tau lepton, belonging to the
third generation of leptons, was discovered, providing the hint of the existence of a third
generation of quarks. In 1977 a new heavy meson was discovered and proved the existence of
the bottom quark b, heavier equivalent of the strange or the down quarks. In 1979 the DESY
experiment discovered the gluon, gauge boson of the strong interaction. The top quark t, last
quark predicted by the theory in order to complete the third generation of quarks, was only
discovered in 1995 at the Tevatron, hence completing the SM fermion spectrum.

1.1.7 Final piece: the Higgs boson

By the end of the 1980s the SM of particle physics was well established: physicists had con-
structed a model for the strong and electroweak forces which, together, formed the SM. The
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gauge bosons mediating the interactions – namely the W ±, Z0 and γ for the electroweak part,
and the gluon g for the strong part – were all discovered and we were aware of three generations
of quarks and leptons. Physicists kept testing the model against experimental data and, over
the years, found an astonishing agreement between theory and experiment. However one last
piece was missing: the Higgs boson.

This boson is a piece of the theoretical mechanism required to provide a mass to the W ±
and Z0 bosons and to all fermions. But its mass is barely constrained by theory and its lifetime
is too short to be detected directly, making its experimental discovery a very difficult challenge.

After decades of searches during which the Higgs boson was still hiding, the two main
collaborations at CERN based on the ATLAS and CMS detectors finally made the discovery
in 2012, providing the evidence of a new neutral scalar particle with a mass of around 125 GeV
and with properties very similar to the ones predicted by the SM [6, 7].

Experiments are still studying the Higgs boson and physics around it, measuring its prop-
erties with very high accuracy, testing their adequacy with the SM predictions.

But this is not the end of the story: some experiments performed during the last decades have
shed light on phenomena not described at all by the SM (see section 1.3). The work of theorists
is then to modify or to complete the current SM in order to account for these phenomena. In
the meantime experimentalists work hard to get ever more precise measurements to detect
discrepancies between the SM predictions and the experimental data and probe higher and
higher energies in order to, maybe, discover new particles.

1.2 Structure of the Standard Model

1.2.1 Particle content and symmetries

The Standard Model of particle physics is a gauge theory based on the symmetry group GSM =
SU(3)c × SU(2)L × U(1)Y . This theory is able to describe three of the four known interactions:
the strong (through SU(3)c) and the electroweak interactions gathering electromagnetism and
weak interactions (through SU(2)L × U(1)Y ).

The theory contains a set of elementary particles which is split into two groups: the fermions,
with spin-1

2 , which are the basic components of all matter from which we are made, and the
bosons, with integer spin – spin-0 for the Higgs boson, spin-1 for the other bosons – which are
the mediators of the interactions. Figure 1.2 summarizes all the particle content of the model.

1.2.1.1 Bosons

Most of the known bosons are gauge bosons (see fourth column of figure 1.2), that is, particles
being a mediator of a specific interaction.

The different interactions, with their mediators, range of action and relative intensity, are
summarized in table 1.1.

Gluons g are the mediators of the strong interaction, described by Quantum ChromoDy-
namics (QCD) based on the SU(3)c non-abelian gauge group. This force binds quarks together
in order to form hadrons (protons, neutrons, pions...). It is also responsible for the nucleus
cohesion, allowing protons to stay together despite the electromagnetic repulsion. The mass
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Figure 1.2: Particle content of the Standard Model of particle physics.

of common objects around us is mainly generated by the binding energy resulting from this
interaction.

W ± and Z0 bosons are the mediators of the weak interaction, described as a part of the elec-
troweak interaction based on the SU(2)L × U(1)Y gauge group. This interaction is responsible
for radioactive β-decays.

Photons γ are the mediators of the electromagnetic interaction which is, with gravity, the
only force we are directly sensitive to in everyday life. Besides binding electrons with nuclei,
hence allowing the stability of all matter we are made of, photons, as elementary constituents
of light, are essential in most of our daily life, from the microwave to warm up food to telecom-
munication, including our ability to see.

The Higgs boson h plays a very unique role as it takes part in the Higgs mechanism which
gives mass to the elementary particles. Discovered in 2012 at the Large Hadron Collider (LHC),
a circular accelerator located beneath the France-Switzerland border, it was, for more than
fourty years, the last particle predicted by the SM yet undiscovered. Due to its key role inside
the SM theory, its discovery was hoped for and much anticipated. Hence the experimental
proof of its existence was celebrated all around the world.

Interaction Mediator Relative intensity at 10−18 m Range (m)
Strong gluons g 25 10−15

Electromagnetic photons γ 1 ∞
Weak W ±, Z0 0.8 10−18

Gravitation gravitons ? 10−41 ∞

Table 1.1: The four fundamental interactions. Ranges have been taken from [8].
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1.2.1.2 Fermions

Fermions are split into two categories: quarks and leptons. Leptons are only sensitive to the
electroweak interaction whereas quarks are sensitive to both the strong and the electroweak
interactions. They are sorted in three generations, each one corresponding to a column in
figure 1.2.

Quarks, bound together with gluons, form heavier structures called hadrons. These hadrons
are split into two categories: mesons – pions, kaons... – with integer spin, composed of two
valence quarks – one quark and one antiquark –, and baryons – protons, neutrons... – with
half-integer spin, composed of three valence quarks – three quarks or three antiquarks.

Quarks and leptons – especially the first generation including up and down quarks and
electrons – are the building blocks of all matter we are made of (see figure 1.3). Indeed matter
is made up of molecules, themselves composed of atoms. Atoms contain a nucleus made of
protons and neutrons constituted by gluons and up and down quarks – uud and udd respectively.
Around the nucleus electrons are "orbiting".

Atoms stay stable thanks to the strong force, which binds protons and neutrons together in-
side the nucleus, and the electromagnetic interaction which links electrons, negatively charged,
to the positively charged nucleus. Finally atoms interact with each other mostly via the elec-
tromagnetic interaction, creating bigger structures.

The two other generations of quarks – forming heavy baryons and mesons – and leptons,
if not present in ordinary matter, can be found in specific phenomena such as cosmic rays –
beams of very energetic particles coming from space and hitting Earth’s atmosphere – or can
be created in particle accelerators.

matter molecule
~0.4 nm (4x10-10 m)

atom
~0.1 nm (10-10 m)

electron
elementary particle

nucleus
~1 fm (10-15 m)

protons, neutrons
~0.8 fm (8x10-16 m)

u
u

d

d

u d

u
d

c

quarks, gluons
elementary particles

Figure 1.3: Quarks, gluons and electrons as building blocks of matter.

1.2.2 Lagrangian formulation

The mathematical formulation of the SM is based on Quantum Field Theory (QFT) where each
particle is associated with a space-time dependent field ψ(�r, t). Particles and their interactions
are described through a Lagrangian L, which can be split into different sectors:

LSM = Lfermions + Lbosons + LHiggs + LY ukawa (1.2)

Each field ψ(�r, t) will transform in a specific way under the global symmetry
GSM = SU(3)c × SU(2)L × U(1)Y . The quantum numbers of the SM particles associated
with the GSM transformations are summarized in table 1.2. In particular, the electric charge of
each particle – which is the quantum number associated with the U(1)em symmetry included
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in the SU(2)L × U(1)Y symmetry – can be computed from I3 and QY , the quantum numbers
associated with SU(2)L and U(1)Y respectively: Qem = I3 + QY

2 .

Particle type Particle content SU(3)c SU(2)L I3 QY (U(1)Y ) Qem (U(1)em)

Quarks
QL =

(
uL

dL

)
3 2 +1/2

1/3
+2/3

-1/2 -1/3
uR 3̄ 1 0

-4/3 -2/3
dR 2/3 1/3

Leptons LL =

(
νL

el

)
1 2 +1/2

-1
0

-1/2 -1
eR 1 1 0 2 +1

Gauge bosons
g 8 1 0 0 0

Z0, W± 1 3 0, ±1 0 0, ±1
(spin 1) γ 1 1 0 0 0

Higgs doublet
H =

(
G+

h+iG0+v√
2

)
1 2 +1/2

+1
+1

(spin 0) -1/2 0

Table 1.2: Particles quantum numbers under the gauge symmetry GSM .

As we assume the theory to be invariant under GSM , the Lagrangian LSM needs to be
globally and locally invariant under any transformation of GSM . We will see in the following
how this condition can be imposed. The discussion below is based on [2, 9].

1.2.2.1 Fermionic sector Lfermions

A spin-1
2 particle with mass m can be represented by a four-component Dirac spinor ψ, which

can also be decomposed into two Weyl spinors ψL and ψR:

ψ =
(

ψL

ψR

)
, ψL ≡ PLψ, ψR ≡ PRψ (1.3)

with the projectors PL ≡ 1−γ5

2 , PR ≡ 1+γ5

2 and γ5 the fifth Dirac matrix (see Appendix A).
The Lagrangian associated with a Dirac field writes:

L = iψ̄γμ∂μψ︸ ︷︷ ︸
kinetic term

− mψ̄ψ︸ ︷︷ ︸
mass term

(1.4)

with ψ̄ = ψ†γ0 and γμ, μ = {0, 1, 2, 3}, the Dirac matrices (see Appendix A).
However this Lagrangian encounters two pitfalls. First, there is no local invariance under

a U(1) symmetry – and, a fortiori, uner GSM . Indeed, if we assume the Dirac spinors to
transform under some global U(1) symmetry with generator Q such that ψ

U(1)−−→ eiαQψ, then the
Lagrangian L is invariant under U(1). However this is no longer true for a local transformation
ψ

U(1)−−→ eiα(x)Qψ:

L U(1)−−→ L′ = iψ̄γμ∂μψ − mψ̄ψ︸ ︷︷ ︸
=L

−ψ̄γμ (∂μα(x)) Qψ �= L (1.5)
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In order to preserve local invariance one needs to replace the partial derivative ∂μ by a
covariant derivative Dμ defined such that:

Dμψ
U(1)−−→ eiα(x)QDμψ (1.6)

For this, one needs to introduce a gauge field, denoted Aμ, linked to the covariant derivative
and transforming not trivially inder a local U(1) transformation:

Dμ ≡ ∂μ + ieQAμ, Aμ
U(1)−−→ Aμ − 1

e
∂μα(x) (1.7)

where e will be interpreted as the coupling strength of the interaction mediated by the Aμ field.
In order to make the field Aμ physical one needs also to add a kinetic term. The only

possible gauge-invariant and renormalizable term writes:

Lkin = −1
4FμνF μν , Fμν ≡ ∂μAν − ∂νAμ (1.8)

Notice that a mass term for Aμ would break the U(1) symmetry. In order to preserve the U(1)
symmetry in the whole Lagrangian the gauge field has to be massless.

We can now rewrite the Lagrangian (1.4) in a locally invariant form:

L = iψ̄γμDμψ − mψ̄ψ − 1
4FμνF μν (1.9)

= iψ̄γμ∂μψ︸ ︷︷ ︸
fermion kinetic term

− mψ̄ψ︸ ︷︷ ︸
mass term

− eQψ̄γμAμψ︸ ︷︷ ︸
interaction term

− 1
4FμνF μν︸ ︷︷ ︸

gauge boson kinetic term

(1.10)

Hence, the Lagrangian contains a kinetic term for both the fermion ψ and the gauge field Aμ.
In addition, an interaction term between the fermion and the gauge field has appeared.

We can easily generalize this process to a generic symmetry group G instead of U(1). Then
we can conclude that requiring local invariance under some specific symmetry group G imposes
the apparition of an associated gauge field G̃μ and of an interaction term between the Dirac
fermions and the gauge field.

This method can be applied to the whole GSM symmetry, introducing the appropriate
gauge fields and kinetic terms for the strong and electroweak sectors (see equations (1.20)
and (1.21)): we can introduce the gauge field Bμ associated with the hypercharge U(1)Y , the
three gauge fields W a

μ , a = {1, 2, 3}, associated with the isospin SU(2)L, and the eight gauge
fields GA

μ , A = {1, ..., 8}, associated with the strong interaction SU(3)c.

Taking the example of a left-quark spinor ψ = QL, the field will transform under GSM as
(cf. table 1.2):

ψ
GSM−−−→ ei(α(x)QY /2+βa(x)τa+δA(x)T A)ψ (1.11)

with τa = σa

2 , T A = λA

2 , σa the Pauli matrices and λA the Gell-Mann matrices (see Appendix A).
The matrices τa and T A obey the following relations:

[τa, τ b] = εabcτ c, [T A, T B] = fABCT C (1.12)
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with εabc the total antisymmetric tensor. εabc and fABC are called the structure constants of
the SU(2) and SU(3) symmetry group respectively.

Using transformation (1.11) and following the method described above for the U(1) case,
one can define the covariant derivative associated with the transformation (1.11) and the field
transformations:

Dμ ≡ ∂μ + ig′ QY Bμ

2 + igτaW a
μ + igsTAGA

μ

Bμ
GSM−−−→ Bμ − 1

g′ ∂μα(x), W a
μ

GSM−−−→ W a
μ − 1

g
∂μβa(x) + εabcβb(x)Wcμ︸ ︷︷ ︸

non-abelian term

(1.13)

GA
μ

GSM−−−→ GA
μ − 1

gs
∂μγA(x) + fABCγB(x)GCμ︸ ︷︷ ︸

non-abelian term

with g′, g and gs the coupling strengths associated with the hypercharge, isospin and strong
interaction respectively. The third terms in the transformation of the W a

μ and GA
μ fields is due

to the non-abelian nature of the SU(2) and SU(3) groups and are required to ensure local
invariance.

Using these definitions and inserting them in (1.4), one can check that local gauge invariance
under a GSM transformation is now well preserved for the kinetic term.

It is important to notice that the exact definition of the covariant derivative tightly depends
on the quantum numbers of the Dirac spinor considered. The above equations are valid for
a SM left-quark spinor QL. The covariant derivative for the other SM particles are listed in
equation (1.20).

The second pitfall of Lagrangian (1.4) is that, in the case where ψL and ψR do not transform
in the same way under a specific group symmetry, then the mass term is not invariant under
the symmetry considered. This is the case for the SM fermions which transform under SU(2)L

as a doublet for the left component and as a singlet for the right one. One can show this issue
by explicitly rewriting the Lagrangian (1.4) in terms of the Weyl spinors:

L = (ψ̄L + ψ̄R)(iγμ∂μ − m)(ψL + ψR) (1.14)

Using some properties of the Dirac matrices:

{γ5, γμ} = 0, (γ5)2 = 114 (1.15)

one can easily show the following relations:
PLPR = PRPL = 0, PLPL = PL, PRPR = PR

PLγμPL = PRγμPR = 0, PLγμPR = γμPR, PRγμPL = γμPL (1.16)
(1.17)

We then deduce that the only non-zero terms in the Lagrangian (1.14) write:

L = iψ̄Lγμ∂μψL + iψ̄Rγμ∂μψR − m(ψ̄LψR + ψ̄RψL) (1.18)

Considering the SM case, the left and right components do not transform in the same
way under GSM = SU(3)c × SU(2)L × U(1)Y (see table 1.2). Then, although the kinetic
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1.2. STRUCTURE OF THE STANDARD MODEL

term is still invariant under GSM , this is no longer true for the mass term. As local gauge
invariance under GSM is required, the fermionic mass term cannot appear in the Lagrangian.
However, as we observe experimentally that fermions are massive, we need to introduce an-
other mechanism, called Higgs mechanism, in order to give fermions a mass (see section 1.2.2.3).

Based on the above argumentation one can write the fermionic part of the SM Lagrangian:

Lfermions =
3∑

i=1
(L̄i,LγμDμLi,L + ēi,RγμDμei,R)

+ (Q̄i,LγμDμQi,L + ūi,RγμDμui,R + d̄i,RγμDμdi,R) (1.19)

with i indexing the three generations of fermions. The covariant derivatives are defined as:

DμLL,i = (∂μ + igW a
μ τa + ig′ BμQY

2 )LL,i

DμeR,i = (∂μ + ig′ BμQY

2 )eR,i

DμQL,i = (∂μ + igsG
A
μ TA + igW a

μ τa + ig′ BμQY

2 )QL,i (1.20)

DμuR,i = (∂μ + igsG
A
μ TA + ig′ BμQY

2 )uR,i

DμdR,i = (∂μ + igsG
A
μ TA + ig′ BμQY

2 )dR,i

with, as above, Bμ, W a
μ , a = {1, 2, 3} and GA

μ , A = {1, ..., 8} the gauge fields associated with
the hypercharge symmetry group U(1)Y , the isospin symmetry group SU(2)L and the color
symmetry group associated with the strong interaction SU(3)c respectively. The g′, g and gs

constants are their respective coupling strengths.

1.2.2.2 Bosonic sector Lbosons

The bosonic part of the SM Lagrangian corresponds to the gauge bosons kinetic terms as
constructed in equation (1.8). Following the discussion developed in the previous section one
can write the appropriate Lagrangian:

Lbosons = −1
4BμνBμν − 1

4W a
μνW a μν − 1

4GA
μνGA μν (1.21)

with the kinetic term:
Bμν = ∂μBν − ∂νBμ

W a
μν = ∂μW a

ν − ∂νW a
μ − gεabcW b

μW c
ν (1.22)

GA
μν = ∂μGA

ν − ∂νGA
μ − gsf

ABCGB
μ GC

ν

As for equation (1.13), the third term in W a
μν and GA

μν comes from the non-abelian nature of
the SU(2) and SU(3) symmetry groups.
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CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

1.2.2.3 Higgs sector LHiggs – one-Higgs doublet model

In the two previous paragraphs we have introduced kinetic terms for both fermions and gauge
bosons and have established interaction terms between the two. However, as we have shown
explicitly for the fermion sector, we are not able to add a mass term for both fermions and
gauge bosons which is suitably locally invariant under GSM .

As we measure experimentally that the fermions and the W ± and Z0 gauge bosons are
massive, the SM theory needs to introduce an appropriate mechanism to generate mass terms
for these particles.

The solution to this problem has been found by R. Brout, F. Englert and P. Higgs in 1964
and is now known as the "Higgs mechanism". But before exposing how it works we must
introduce first the notion of spontaneous symmetry breaking.

◦ Spontaneous symmetry breaking principle

Let’s consider the following Lagrangian for a real scalar field φ:

L = 1
2∂μφ∂μφ︸ ︷︷ ︸
kinetic term

−
(1

2μ2φ2 + 1
4λφ4

)
︸ ︷︷ ︸
= V(φ), potential term

(1.23)

with λ > 0 in order to have a potential bounded from below and thus ensure the existence of
a minimum. This Lagrangian is symmetric under the parity transformation:

P : φ → −φ (1.24)

In the case where μ2 > 0, the above Lagrangian corresponds to the usual Lagrangian for
a massive real scalar field with mass m = μ. The ground state – or vacuum – i.e. the state
corresponding to the minimum of energy, corresponds to the minimum of the potential V (φ)
and, in the case μ2 > 0, is the trivial solution φ = 0:

dV

dφ
= 0 ⇔ μ2φ + λφ3 = 0 (1.25)

⇔ φ(μ2 + λφ2) = 0 (1.26)
⇒ φ = 0 (1.27)

The left panel of figure 1.4 shows the shape of the potential in the case μ2 > 0.
However if we consider that μ2 < 0 then the potential has three extrema:

dV

dφ
= 0 ⇔

{
φ = 0
φ = ±

√
−μ2

λ

(1.28)

Then the minima occur at φmin = ±
√

−μ2

λ
and the trivial vacuum obtained in the previous case

becomes unstable (see right plot of figure 1.4). Hence, perturbation theory cannot be performed
at φ = 0 as the perturbation series in φ will not converge; we need therefore to proceed to a
change of variable in order to work around one of the real minima. Choosing arbitrarily one of
the ground states, we define:

φ ≡ η + v, v =
√

−μ2

λ
(1.29)

18



1.2. STRUCTURE OF THE STANDARD MODEL

The η field corresponds to fluctuations around the ground state φmin = v, with v called the
vacuum expectation value (vev).

Rewriting Lagrangian (1.23) in terms of η, we obtain:

L = 1
2∂μη∂μη︸ ︷︷ ︸
kinetic term

− λv2η2︸ ︷︷ ︸
mass term

−λvη3 − 1
4λη4 + 1

4λv4 (1.30)

The case where μ < 0, which at first glance seemed unphysical, finally corresponds to the
Lagrangian of a massive scalar particle η with mass m =

√
2λv2.

We can note however that the initial symmetry P : φ → −φ is not valid anymore for η due to
the presence of the η3 term. This phenomenon is called spontaneous symmetry breaking:
the initial symmetry is broken without the intervention of any external term.

Note that the other way to break a symmetry, called explicit symmetry breaking, has already
been illustrated when working on the fermionic sector of the Lagrangian: the mass term mψ̄LψR

is not invariant under a transformation of SU(2)L; then adding this term in the Lagrangian
explicitly breaks the SU(2)L symmetry.

φ

V (φ)

φ

V (φ)

Figure 1.4: Shape of the potential V (φ) = 1
2 μ2φ2 + 1

4 λφ4 in the case where μ2 > 0 (left) and μ2 < 0 (right). In the

second case, the trivial extremum φ = 0 becomes unstable and the true minima are at φmin = ±
√

−μ2
λ

.

The mechanism of spontaneous symmetry breaking seen above can easily be generalized to a
continuous symmetry using this time a complex scalar field φ = 1√

2(φ1 + iφ2). Then the initial
Lagrangian writes:

L = (∂μφ)†(∂μφ) − (μ2φ†φ + λ(φ†φ)2) (1.31)

This time the Lagrangian is globally invariant under a U(1) symmetry: φ
U(1)−−→ eiαQφ.

As above, if μ2 < 0 the potential will have non-trivial minima:
∂V

∂φ
⇔
{

φ = 0
|φ|2 = −μ2

2λ
≡ v2

2
(1.32)

Thus we have an infinity of minima parametrized by an angle θ:

φmin = v√
2

eiθ (1.33)
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CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

In order to be able to conduct perturbative calculations we need to pick one specific mini-
mum, say φmin = v√

2 , that is φ1,min = v, φ2,min = 0 and then perform a change of variables:

φ1 = v + η, φ2 = ξ, φ = 1√
2

(v + η + iξ) (1.34)

As above, the fields η and ξ correspond to excitations around the vacuum φmin.
Rewriting the Lagrangian in terms of η and ξ we obtain:

L =

⎡⎢⎢⎢⎣1
2∂μη∂μη︸ ︷︷ ︸
kinetic term

− λv2η2︸ ︷︷ ︸
mass term

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣1
2∂μξ∂μξ︸ ︷︷ ︸
kinetic term

⎤⎥⎥⎥⎦−
[
λv(η3 + ηξ2) + 1

4λ(η4 + ξ4 + 2η2ξ2)
]
+ 1

4λv4 (1.35)

In addition to the interaction terms between η and ξ, we can see that both fields have
a kinetic term. However only the η field acquires a mass m =

√
2λv2 whereas the ξ field

remains massless. This kind of field ξ is called a Goldstone Boson. Note that, according to
the Goldstone theorem, a spontaneous symmetry breaking generates a number of Goldstone
bosons – i.e. additional massless fields – equal to the number of broken generators of the initial
symmetry group G. Here, the U(1) symmetry group is one-dimensional and is entirely broken.
Hence there is only one Goldstone boson.

◦ The Higgs mechanism

We are still left with the problem of generating mass for the gauge bosons. This is the role
of the Higgs mechanism that we will present in this section.

The Higgs mechanism is based on the notions of both spontaneous symmetry breaking and
local gauge invariance. As seen in the paragraph on the fermionic part of the SM Lagrangian,
imposing local gauge invariance under a specific G group requires the replacement of the partial
derivatives ∂μ by the appropriate covariant derivative Dμ. We will develop in the following the
formalism of the Higgs mechanism in the case of a U(1) symmetry associated with a gauge field
Aμ but it is generalizable to any symmetry group G.

Making the following replacement in (1.31):
∂μ → Dμ = ∂μ + ieQAμ (1.36)

and then doing the change of variables φ = 1√
2(v + η + iξ) in order to work near the chosen

minimum, the Lagrangian becomes:

L =
[1
2∂μη∂μη − λv2η2

]
+
[1
2∂μξ∂μξ

]
−
[
λv(η3 + ηξ2) + 1

4λ(η4 + ξ4 + 2η2ξ2)
]

+ 1
4λv4 (1.37)

+ eQvAμ∂μξ + e2Q2vAμAμη + eQAμ(η∂μξ − ξ∂μη) + 1
2e2Q2(η2 + ξ2)(AμAμ)︸ ︷︷ ︸

interaction terms

+ 1
2e2Q2v2AμAμ︸ ︷︷ ︸

gauge boson mass term

− 1
4FμνF μν︸ ︷︷ ︸
kinetic term
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1.2. STRUCTURE OF THE STANDARD MODEL

The first two lines are identical to the Lagrangian obtained after spontaneous symmetry
breaking (see equation (1.35)).

The third line corresponds to interaction terms between the gauge field Aμ and the fields η
and ξ.

In the fourth line, in addition to the kinetic term for the gauge field Aμ that we have
added by hand in order to make the field physical, there is also the appearance of a mass term
that emerges naturally after symmetry breaking. The field Aμ is then massive, with a mass
m = evQ.

However the term Aμ∂μξ present in the interaction terms is embarrassing: it means that
the gauge field Aμ can turn into the scalar field ξ, that is, that the fields are not well defined,
allowing a mixing between the two. In fact, this problem can be solved by a simple redefinition
of φ in the initial Lagrangian (1.31), which was initially invariant under a U(1) transformation.
We redefine the field in the following way:

φ
U(1)−−→ φ′ ≡ 1√

2
(φ′

1 + iφ′
2) = φeiθ, θ = − tan−1(φ2

φ1
) (1.38)

such that φ′
2 = 0 and φ′ is real. Following the same step as above, that is, introducing the

covariant derivative in equation (1.31) and doing the change of variable φ′ = 1√
2(v + η), the

field ξ is totally eliminated from equation (1.37):

L =
[1
2∂μη∂μη − λv2η2

]
−
[
λvη3 + 1

4λη4
]

+ 1
4λv4

+e2vQ2η(AμAμ) + 1
2e2Q2η2(AμAμ) (1.39)

+1
2e2Q2v2AμAμ − 1

4FμνF μν

This transformation can be better understood when counting the number of degrees of free-
dom: a massless vector field Aμ carries only two degrees of freedom. When it acquires a mass
it gains one additional degree of freedom. This is only possible if it "absorbs" the one contained
into the massless field ξ. The Goldstone boson then plays the role of the longitudinal part of the
field Aμ and, with the appropriate choice of gauge for the initial symmetry G – i.e., in the above
example, with the appropriate choice of θ – the Goldstone boson disappears from the equations.

The Higgs mechanism can then be summarized by the following steps:
• Define the Higgs Lagrangian L = (∂μφ)†(∂μφ) − (μ2φ†φ + λ(φ†φ)2);
• Impose local gauge invariance under a given symmetry group G in the Lagrangian by

replacing partial derivatives ∂μ with the appropriate covariant derivatives Dμ;
• Choose an arbitrary ground state φmin with a vev v and do a change of variables in order

to work around it;
• Eliminate the additional Goldstone bosons if necessary by choosing an appropriate gauge.

◦ Lagrangian of the SM Higgs sector

In the case of the SM, as we want to generate mass for W ± and Z0 gauge bosons only, we
need to break the SU(2)L × U(1)Y symmetry but still preserve the U(1)em group symmetry
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CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

associated with the electromagnetic interaction – and hence with the photon γ. We thus use a
complex scalar field φ which is a doublet of SU(2)L with hypercharge Y = 1. We can write:

φ = 1√
2

(
φ+

1 + iφ+
2

φ0
1 + iφ0

2

)
(1.40)

with φ+
1 , φ+

2 charged scalar fields and φ0
1, φ0

2 neutral scalar fields.
Then the Lagrangian of the Higgs sector writes:

LHiggs = (Dμφ)†(Dμφ) − (μ2φ†φ + λ(φ†φ)2), Dμ = ∂μ + igW a
μ τa + ig′ Bμ

2 (1.41)

Taking μ2 < 0, the SU(2)L × U(1)Y symmetry breaks spontaneously down to a U(1) sym-
metry. As we want the photon to be massless we choose a neutral ground state that preserves
the U(1)em symmetry:

φmin = 1√
2

( 0
v

)
(1.42)

As SU(2)L ×U(1)Y is 3+1=4 dimensional and U(1)em is one-dimensional, we are left, according
to the Goldstone theorem, with three Goldstone bosons.

With the appropriate gauge choice, the three Goldstone bosons are "eaten" by the W ± and
Z0 gauge bosons which acquire a mass whereas the photon remains massless. We are then left
with the field:

φ = 1√
2

( 0
v + h

)
(1.43)

with h a massive neutral scalar field with m =
√

2λv2 called the Higgs boson.

◦ Computing the mass of the gauge bosons

The last step in the Higgs mechanism is to compute the mass of the physical gauge bosons
W ±, Z0. For that we need to bring out from the Lagrangian mass terms of the form:

m2
W W +

μ W −μ,
1
2m2

ZZ0
μZ0μ (1.44)

These terms are hidden in the kinetic term (Dμφ)†(Dμφ) of equation (1.41), where the gauge
fields W a

μ , a = {1, 2, 3} and Bμ are included in the covariant derivative Dμ. Developing only
the part of the kinetic term containing gauge fields and substituting φ by the vacuum φmin one
finds:

∣∣∣∣(igW a
μ τa + ig′ Bμ

2

)
φmin

∣∣∣∣2 =
∣∣∣∣∣∣
⎛⎝ig

W 3
μ

2 + ig′ Bμ

2 ig
W 1

μ−iW 2
μ

2

ig
W 1

μ+iW 2
μ

2 −ig
W 3

μ

2 + ig′ Bμ

2

⎞⎠( 0
v√
2

)∣∣∣∣∣∣
2

=1
8v2g2

(
W 1

μ − iW 2
μ

) (
W 1μ + iW 2μ

)
(1.45)

+ 1
8v2

(
g′Bμ − gW 3

μ

) (
g′Bμ − gW 3μ

)
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1.2. STRUCTURE OF THE STANDARD MODEL

From equation (1.45) one can clearly see that the fields W a
μ and Bμ are not mass eigenstates.

After diagonalisation and proper normalization we deduce the expression of the mass eigenstates
W ±

μ , Z0
μ and Aμ:

W +
μ =

W 1
μ − iW 2

μ√
2

, W +
μ =

W 1
μ + iW 2

μ√
2

, (1.46)

Z0
μ =

g′Bμ − gW 3
μ√

g2 + g′2
, Aμ =

g′Bμ + gW 3
μ√

g2 + g′2
, (1.47)

Re-injecting these expressions into equation (1.45) and comparing to equation (1.44), we deduce
the mass of the gauge bosons:

mW ± = vg

2 , mZ0 = v

2

√
g2 + g′2, mγ = 0 (1.48)

As expected we find that the W ± and Z0 are massive whereas the photon remains massless.

1.2.2.4 Yukawa sector LY ukawa

As for the gauge bosons, a mass term of the form mψ̄LψR breaks explicitly the SU(2)L sym-
metry. However we can construct a gauge invariant term based on the Higgs doublet φ:

LY ukawa =
3∑

i,j=1
−yl

ijL̄i,Lφ ej,R − yd
ijQ̄i,Lφ dj,R − yu

ijQ̄i,Lφ̃ uj,R + h.c. (1.49)

with i, j indexing the three generations of fermions, Li,L =
(

νi,L

ei,L

)
, Qi,L =

(
ui,L

di,L

)
as defined in

table 1.2, yij the 3 × 3 coupling matrices of the fermions to the Higgs doublet φ, which we will
call Yukawa matrices, and φ̃ = iσ2φ∗ the Higgs doublet charge conjugate, with σ2 the second
Pauli matrix (see Appendix A).

Notice that the third term is needed in order to give mass to the up-type quarks, as we will
see just below.

After symmetry breaking we need to replace the Higgs doublet by its correct expression:

φ = 1√
2

( 0
v + h

)
, φ̃ = 1√

2

(
v + h

0
)

(1.50)

Equation (1.49) becomes:

LY ukawa =
3∑

i,j=1
−yl

i,j√
2

(v + h)ēi,Lej,R − yd
i,j√
2

(v + h)d̄i,Ldj,R (1.51)

− yu
i,j√
2

(v + h)ūi,Luj,R + h.c (1.52)

The mass terms are of the form Mf
i,j = yf

i,jv√
2 . In order to get the mass eigenstates one

needs to diagonalize the Mf
i,j matrices – or, equivalently, the yf

i,j matrices – via a unitary
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transformation in the generation space:

L̃′
L,R ≡

⎛⎝e1
e2
e3

⎞⎠
L,R

= AL,R

⎛⎝em

μm

τm

⎞⎠
L,R

≡ AL,R L̃L,R,

Ũ ′
L,R ≡

⎛⎝u1
u2
u3

⎞⎠
L,R

= BL,R

⎛⎝um

cm

tm

⎞⎠
L,R

≡ BL,R ŨL,R, (1.53)

D̃′
L,R ≡

⎛⎝d1
d2
d3

⎞⎠
L,R

= CL,R

⎛⎝dm

sm

bm

⎞⎠
L,R

≡ CL,R D̃L,R

where em, μm, τm, um, dm, cm, sm, tm, bm are the mass eigenstates and AL,R, BL,R and CL,R

are six unitary matrices such that:

A†
LMlAR =

⎛⎝me 0 0
0 mμ 0
0 0 mτ

⎞⎠ = v√
2

⎛⎝ye 0 0
0 yμ 0
0 0 yτ

⎞⎠ ,

B†
LMuBR =

⎛⎝mu 0 0
0 mc 0
0 0 mt

⎞⎠ = v√
2

⎛⎝yu 0 0
0 yc 0
0 0 yt

⎞⎠ , (1.54)

C†
LMdCR =

⎛⎝md 0 0
0 ms 0
0 0 mb

⎞⎠ = v√
2

⎛⎝yd 0 0
0 ys 0
0 0 yb

⎞⎠
Then the Yukawa Lagrangian becomes:

LY ukawa =
3∑

i=1
− yl

i√
2

(v + h)ēm
i,Lem

i,R − yd
i√
2

(v + h)d̄m
i,Ldm

i,R (1.55)

− yu
i√
2

(v + h)ūm
i,Lum

i,R + h.c

with em
i , um

i and dm
i corresponding to the three generations of mass eigenstates defined above.

We deduce the fermion masses and the couplings between fermions and the Higgs boson:

mf = yfv√
2

, Chff̄ = yf√
2

= mf

v
(1.56)

However, as yf are free parameters in the SM, the masses are not fixed at all by the model
and thus cannot be predicted. We then have to rely on experimental data to know the value
of the fermion masses (see table 1.3).

◦ The CKM matrix

The unitary transformations defined in equations (1.53), though useful to go to the mass
eigenstates basis, is problematic when looking at weak interactions with the W ± boson, called
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me mμ mτ mu md ms m̄c(m̄c) m̄b(m̄b) mt

0.51 105.66 177.682 2.2 4.7 96 1.28×103 4.18×103 174.2×103

Table 1.3: Masses of the SM fermions in MeV. The quark masses are taken in the MS scheme except for the top mass
taken as the pole mass. Data taken from [10].

charged currents, in the quark sector as it breaks the link between up- and down-type quarks
of a same generation.

Developing the fermion Lagrangian (1.19) one find the charged current part for the quark
sector:

− Lquark
cc ⊃ g

2
√

2
[ ¯̃U ′

Lγμ(1 − γ5)D̃′
LW +

μ + h.c.
]

(1.57)

Rewriting this equation in terms of the mass eigenstates one finds:

−Lquark
cc ⊃ g

2
√

2
[ ¯̃ULγμ(1 − γ5)B†

LCLD̃LW +
μ + h.c.

]

= g

2
√

2

⎡⎣ 3∑
i,j=1

ūm
i,Lγμ(1 − γ5)V CKM

ij dm
j,LW +

μ + h.c.

⎤⎦ (1.58)

with V CKM ≡ B†
LCL, called the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and um

i , dm
j the

quark mass eigenstates.
Equation (1.58) shows that the quark mass eigenstates um

i , dm
i are not eigenstates of the

weak interactions. Then the charged currents perform not only an interchange between up-
type and down-type quarks of a same generation, but also an interchange between two different
generations (see for instance figure 1.5).

d d

s
V CKM
us

u

νe

e+

W+

K0 π−

Figure 1.5: K0 → π−e+νe decay made possible by the CKM matrix.

Note that we can show, because of CP-conservation required by the Lagrangian and because
of the definition of V CKM , that the CKM-matrix is real and unitary.

In the case of neutral currents the interaction does not change as it involves couplings with
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two up-type quarks or two down-type quarks:

−Lnc ⊃ − g

4cW

[ ¯̃U ′
Lγμ

(
I3 − s2

W Qem − γ5

)
Ũ ′

LZ0
μ

]
= − g

4cW

[ ¯̃ULγμ
(
I3 − s2

W Qem − γ5

)
B†

LBLŨLZ0
μ

]
(1.59)

= − g

4cW

⎡⎣ 3∑
i,j=1

ūm
i,Lγμ

(
I3 − s2

W Qem − γ5

)
um

i,LZ0
μ

⎤⎦
with sW ≡ sin θW and Qem the electric charge of the particle considered.

Hence, there is no interchange at tree level between two different generations of up-type or
down-type quarks. This result is well verified by experiments.

Note that, in the lepton sector, as the neutrinos are massless in the SM, the unitary matrix

AL can be reabsorbed by an arbitrary redefinition of the vector Ñ ′ ≡
⎛⎝ν1

ν2
ν3

⎞⎠ = AL

⎛⎜⎝νm
e

νm
μ

νm
τ

⎞⎟⎠.

Hence, as long as the neutrinos are massless, the charged and neutral currents in the lepton
sector occur only with particles of a same generation. However if the neutrinos are assumed
to be massive – which is the case experimentally, see section 1.3 – one needs to introduce the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix which is the equivalent of the CKM matrix
in the lepton sector, allowing charged currents between different generations of leptons.

1.3 The limitations of the Standard Model

The SM has known many successes during and after its final elaboration. It was able to predict
the existence of particles such as the charm and top quarks or the W ± and Z0 bosons which
were discovered some years later.

Current experiments are measuring the values of the SM parameters with a very high ac-
curacy, searching for a deviation from theoretical predictions. As the experiments are ever
more accurate, the theoretical measurements need to include higher-order computation – at
next-to-leading order or beyond. However theoretical and experimental measurements of the
SM parameters are in very good agreement (see figure 1.6), confirming the success of the SM.

The final discovery of the Higgs boson in 2012, forty eight years after its prediction by
R. Brout, F. Englert, P. Higgs and others, marked the SM apogee. Now all the SM particles
have been discovered and there is still no hint of new unknown particles. However different
issues, both in theoretical and experimental aspects, point toward the existence of physics
beyond the SM. Some of them are summarized below.

◦ Theoretical issues

Gravitation: The first and the most obvious pitfall is that SM does not include the fourth
fundamental force, gravity. Although many theorists are working on the problem to reconcile
strong and electroweak interactions with general relativity, much work has to be done before
obtaining a full theory.

Hierarchy problem: Another theoretical problem is called the hierarchy problem and
gathers several aspects.
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Figure 1.6: Comparison of the results of the theoretical fit with direct measurments in units of the experimental
uncertainty. Figure taken from [11].

First, the SM does not explain the wide difference between the intensities of the four funda-
mental interactions. Moreover, although it includes three generations of fermions, there is no
mechanism explaining the huge splitting of masses we observe experimentally (see table 1.3).
As the masses are generated after the electroweak symmetry breaking that occurs at scale v,
one can expect that all fermion masses are of order v. However only the top mass (mt � v√

2)
verifies this assumption. Instead, fermion masses spread out over a large range of values: from
0.51 MeV for the electron to 1776.82 MeV for the tau in the lepton sector, and from 2.2 MeV
for the up quark to 174.2 GeV for the top quark in the quark sector, that is, a variation of
more than three – for the lepton sector – and almost five – for the quark sector – orders of
magnitude.

The last aspect that the hierarchy problem covers is the corrections to the Higgs mass.
Although its bare mass mh appears in the SM Lagrangian, one needs to add radiative correc-
tions at next-to-leading order (NLO) or beyond to account for finer processes (see figure 1.7).
Computing these corrections at NLO, one finds [12]:

Δm2
h ∝ α

π

⎡⎣3
4
(
m2

W + m2
Z + m2

h

)
−∑

f

m2
f

⎤⎦( Λ2

m2
W

)
(1.60)

with Λ an energy cut-off which is assumed to tend to infinity.
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The main contribution comes from the fermionic sector, especially from the top quark,
where the corrections grow quadratically with the fermion mass. If we choose a specific value
for the cut-off Λ, say the Planck mass scale MP = 2.435 × 1018 GeV, then the Higgs mass
should be of order mh ∼ 1016 GeV, which is not coherent with the very light Higgs mass of
125 GeV measured experimentally. Again, there is no way in the SM theory to cancel these
huge corrections in order to get a light Higgs boson in agreement with experiment.

f

f

h h

W±, Z0, h

W±, Z0, h

h h

W±, Z0, h

h h

Figure 1.7: One-loop corrections to the Higgs mass.

◦ Experimental issues

Beyond the theoretical issues, experiments have discovered phenomena that were not
predicted nor explained by the SM, bringing new evidence that the SM is not a complete
theory. Examples of such experimental issues are presented below.

The Dark Matter (DM) problem [13]: One of the first times the Dark Matter term
appeared was in 1933, when Swiss astrophysicist Fritz Zwicky measured the velocity dispersion
of the Coma cluster. He deduced the dynamical mass MD of the cluster that he compared to
its luminous mass ML, that is, to the mass inferred from the amount of luminosity emitted by
the cluster. He discovered that the dynamical mass was four hundred times larger than the
luminous one, which could mean that there were invisible matter inside the cluster.

This result was not taken into account by the community at that time, partly because of the
great uncertainties of the measurements. It is only in the 70s that the problem came back to the
point, when American astronomer Vera Rubin studied the rotation curve of galaxies. Looking
at the galaxy velocity as a function of the distance to the center r, it appears that, instead
of decreasing as 1√

r
as predicted by Newton’s laws, the velocity remains broadly constant (see

figure 1.8). One possible explanation of this phenomenon was that galaxies are immersed in a
huge halo of invisible matter, called Dark Matter.

Figure 1.8: Galaxy velocity as a function of the distance to the center. The dashed blue curve represents the theoretical
prediction based on Newton’s laws if the whole mass of the galaxy is gathered in a small radius. The solid red curve is
what is experimentally observed.
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Other later experiments supported the theory of DM, such as the study of gravitational
lenses, which highlights that the distribution of mass inside clusters is significantly different from
the distribution of luminous matter, or the study of the cosmological microwave background by
WMAP and Planck experiments which confirms the existence of 26.6% of non-baryonic matter
in the total amount of energy in the Universe (against 4.9% for ordinary matter [14]).

Nowadays the existence of DM is rather well established; however its nature is still myste-
rious. Many theories had proposed different candidates (white dwarfs or brown dwarfs, light
neutrinos...) but most of them are now ruled out. The currently most popular theory is the
Weakly Interactive Massive Particle (WIMP), which gathers numerous candidates proposed by
particle physicists. The WIMP (or other DM candidates) needs to follow some requirements
coming from experiment: it needs to be a non-relativistic particle – hence, sufficiently massive
to be so – to be stable in order to be still observed nowadays in the Universe, to be neutral in
order to be insensitive to electromagnetic interaction, to interact very weakly with ordinary
matter – else it would have been already detected – and have a relic density – i.e. a current
stable density – compatible with the Planck measurements. However, except for these points,
little is known about these particles.

Many experiments are currently working on the direct or indirect detection of DM.
Direct detection consists of measuring precisely the nuclear recoil due to the elastic scattering

of a WIMP on a SM nucleus. However, as the WIMPs are assumed to interact very weakly
with ordinary matter, these experiments need to get rid of numerous sources of noise such as
solar muons and neutrons.

Direct detection then provides upper limits on the WIMP diffusion cross-section as a function
of its mass. The main actors in this field are Xenon-1T or LUX for the study of heavy WIMP –
masses above ∼10 GeV – and CDMS or EDELWEISS for the low-mass range – below ∼10 GeV.

Indirect detection consists of measuring the particle content of cosmic beams reaching Earth
and comparing the experimental data to theoretical predictions. As two particles of DM can
annihilate and give birth to SM particles, an excess in the experimental flux of incoming SM
particles can be interpreted as a DM contribution.

The major actors in this field are AMS-02, Fermi-LAT and HESS. The first experiment
is searching for excesses in the detected flux of particles such as positrons or anti-protons.
However some sources of astroparticles, such as pulsars, are not well known; in addition the
propagation of particles inside the galaxy suffers from many uncertainties, making it difficult
to interpret an excess in the data as a clear proof of a DM contribution.

The last two experiments focus on the detection of gamma rays coming from the center of
the galaxy or from other specific galaxies. The advantage of gamma rays is that they propagate
in a straight line, getting rid of most of the propagation problem cited above. However there
are still uncertainties due to the modeling of the DM halo.

Both experiments are able to put upper limits on the DM annihilation cross-section as a
function of its mass.

So far none of these experiments, through either direct or indirect searches, have found
a clear hint of DM; but, similarly to the Higgs hunting, it may take several decades before
discovery.

The neutrino mass [15]: In the late 60s an experiment lead by Davis and Bahcall was
conducted to count the number of electron-neutrinos emitted by the Sun and reaching the
earth. However the experiment detected only one third of the expected rate. This unexpected
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deficit was called the solar neutrino problem.
Other experiments such as Super-Kamiokande in 1998, which provided the first model-

independent evidence of neutrino oscillations, and later KamLAND, Solar Neutrino or Minos
experiments, confirmed this discrepancy between theory and experiment which could not be
explained by large uncertainties.

We will illustrate this discovery by giving some details on the Solar Neutrino Experiment
(SNO), turned on in 1999 and off in 2006, and which also provided the proof of neutrino
oscillations. Using a tank of 1000 tons of heavy water, this experiment was able to count both
the number of solar electron-neutrinos and the total number of solar neutrinos reaching Earth.

They measured that the total flux of solar neutrinos reaching Earth totally agreed with
the SM theoretical flux of electron-neutrinos emitted by the sun, whereas the flux of electron-
neutrinos on Earth corresponded to one third of the measured total flux of neutrinos. This
means that the electron-neutrinos emitted by the sun are "converted" during their travel into
muon- or tau-neutrinos. The total flux of neutrinos is therefore constant but some electron-
neutrinos oscillate into another flavor of neutrino, leading to the decrease of the effective
electron-neutrino flux.

This oscillation is theoretically possible only if neutrinos have masses - albeit very small -
which is not predicted at all by the SM.

Many experiments are currently running to detect neutrino oscillations and to measure
the mass difference between the three neutrinos – as the value of their mass is not directly
measurable – such as KamLAND and Super-Kamiokande in Japan, MINOS+ near Chicago
– shut down in 2016 – or OPERA, between Switzerland and Italy. However the theoretical
explanation beyond the SM to account for massive neutrinos is still under study. The most
successful theory is probably the seesaw mechanism [16], which introduces right-handed
neutrinos νR in order to generate low mass for the left-handed SM neutrinos νL, but with νR
sufficiently heavy to explain why they have not been detected yet.

Baryon asymmetry [17]: In the early Universe the Big Bang should have produced an
equal amount of matter and antimatter. However our present Universe seems to be essentially
made of matter. Some theories suggest that there could exist galaxies made of anti-matter, but
current observations seem to refute these assumptions. We then say that there is a matter-
antimatter asymmetry – or a baryon asymmetry.

However, as particle physics processes involving both particles and antiparticles create or
destroy them by pair, the initial equal amount of matter and anti-matter should have been
preserved since the Big Bang, giving rise to a cohabitation of matter and anti-matter or a total
annihilation between the two. The current observations of our Universe tend to show that, at
one point of its expansion, a mechanism would have allowed an asymmetry between the number
of particles and antiparticles – maybe a very small difference, but sufficient to preserve some
matter from annihilation.

If the SM predicts a small CP-violation in the baryon sector, which is necessary to explain
a baryon asymmetry, it is not large enough to be fully responsible of the current matter-
antimatter asymmetry. Many theories beyond the SM (BSM) are developed in order to answer
this question, but only a few are experimentally testable. One, amongst others, is the theory
of sterile neutrinos, introduced via the seesaw mechanism, which could explain the observed
baryon asymmetry.
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2 The Higgs boson

2.1 History of the Higgs boson discovery

The Higgs boson has been introduced in the SM theory as a way to give mass to gauge bosons
and fermions. Since then many experiments have been searching for it using particle colliders.

There are basically two main types of colliders: linear ones, where a beam of particles is sent
on a target, and circular ones, where two beams of particles are spinning in opposite directions
inside a ring. In the first case the detector is placed at the level of the target; in the second
case, it is located around a specific position of the beam.

In both types of colliders the beam of particles is accelerated using an electromagnetic field
and can be deflected from its straight path by a magnetic field.

The advantage of a circular collider is that the beam can reach higher energies – depending
on the number of revolutions inside the ring – than in a linear one which is limited by its
total length. Then a circular collider is able to produce heavier particles. However a spinning
charged particle will radiate energy, which causes energy losses. Hence, the process or the
specific particle one wants to study will determine the required shape of the accelerator and
the nature of the beam particles.

In their search for the Higgs boson, physicists are confronted with two main issues. As the
Higgs boson has a very short lifetime, we can only observe its decay products and not the
Higgs boson itself. Designing an appropriate detector is then a difficult task as it needs to be
sensitive to several different particles. Moreover, as the theory did not predict the Higgs mass,
experimenters needed to probe a large range of possible masses, which explains why the search
of the Higgs boson took almost fifty years.

The history of the discovery of the Higgs boson is quickly summarized in the following
sections. For more details, see for instance [18].

2.1.1 The beginning of the hunt – 1980s

In the 1980s different accelerators began to search for the Higgs boson. As they were not very
powerful, the mass range they probed was very low – of the order of a few GeV.

During this period, a first signal was detected by the DORIS electron-positron circular
accelerator, at DESY in Germany. They studied the decay of the upsilon meson Υ (bb̄) into a
Higgs boson and a photon following the Feynman diagrams of figure (2.1).

The excess in the data was found by the collaboration in 1984, with a significance of 5σ
at a mass of 8.32 GeV, which is generally considered as a discovery. However the CUSB
Collaboration at CESR of Cornwell University, which were working on the same decay on their
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Figure 2.1: Decay of an upsilon meson into a Higgs boson and a photon studied at DORIS accelerator.

own accelerator, did not confirm this excess. Even more, the 5σ excess in DORIS results
vanished by itself after acquiring more data. This false discovery is a good example illustrating
the necessity of always being very careful with excesses appearing in the data and of always
cross-checking the results.

Other experiments were also working on the Higgs search, such as the SINDRUM collabora-
tion which worked on a proton cyclotron and looked at the process π+ → e+νeh or the CLEO
collaboration, also at CESR and looking at B → Kh. However the Higgs boson was still hiding
and the different collaborations could only give a lower bound on the Higgs mass: mh > 9 GeV.

2.1.2 The Large Electron Positron (LEP) – 1989-2000

With its 27 km in circumference, the LEP was the largest electron-positron collider ever con-
structed. It was designed to reach 100 GeV per beam, which corresponds to an energy of 200
GeV in the center of mass. There were four detectors searching for the Higgs boson around the
ring: ALEPH, DELPHI, L3 and OPAL.

The searches at LEP were conducted in two stages, called LEP1 and LEP2. In both of
them, the search was conducted on a process where the electron and the positron produced a
Z0 boson – on-shell for LEP1, off-shell for LEP2 – which decayed into a Higgs boson and an
off-shell or on-shell Z0 boson (see figure (2.2)).

Z
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Figure 2.2: Processes studied at LEP1 (left) and LEP2 (right). The l symbol stands for both electrons and muons.

◦ LEP1 – 1989-1995

The first phase was conducted at a center of mass energy of 91.18 GeV, corresponding to
the mass of the Z0 boson. This specific energy allowed the massive production of Z0 bosons
and hence the increase of the number of interesting events (see left panel of figure (2.2)). In
addition to the Higgs boson search, this phase allowed physicists to perform precise tests of the
SM.
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As no excess appeared in the data during this phase, the LEP excluded a SM Higgs particle
with a mass up to mh = 65 GeV.

◦ LEP2 – 1995-2000

In the second phase the accelerator was pushed to its designed energy of 200 GeV in the
center of mass. This time the electron-positron collisions were able to create off-shell Z0 bosons
(see right panel of figure (2.2)).

As there were no evidence of a new particle by the year 1999, the LEP was upgraded in
order to reach an energy of 209 GeV in the center of mass. After the upgrade some excesses
with low significance began to appear in the data at masses around 110-120 GeV. However,
despite these exciting signs, the LEP did not obtain additional running time and had to shut
down at the beginning of November 2000. It was however able to exclude a SM Higgs particle
with a mass up to 107.9 GeV.

2.1.3 The Tevatron – 1987-2011

Once the LEP was shut down the Tevatron took over the Higgs search. Situated near Chicago,
it was a proton-antiproton collider of 1 km in diameter reaching a center of mass energy of
1.96 TeV. The experiments were led by two detectors: CDF and DØ.

Although no evidence of the Higgs boson was found during its operation period, the Tevatron
succeeded in excluding large possible SM Higgs mass regions. In 2012, at the end of its run, it
had ruled out the existence of a SM Higgs boson with a mass between 100 GeV and 103 GeV
and between 147 GeV and 180 GeV. Moreover, some 3σ excesses had appeared in the data
between 115 GeV and 140 GeV, maybe a first hint of the particle which would be detected
during the same year at the LHC.

Unfortunately the luminosity was not sufficient to detect the Higgs boson with more accu-
racy. The accelerator was finally shut down in 2011, after 24 years of operation.

2.1.4 The Large Hadron Collider (LHC) – 2008-2035?

The LHC is a circular proton-proton collider located beneath the France-Switzerland border
and is currently the largest and more powerful particle collider in the world. It was built in the
same tunnel as the LEP, its predecessor.

Designed to reach a center of mass energy up to 14 TeV, it was first launched at half of its
maximum energy from 2010 to 2011. In 2012 the energy went up to 8 TeV in the center of mass
and was finally increased in 2015 up to 13 TeV.

Four detectors are placed around the ring: ATLAS, CMS, ALICE and LHCb (see fig-
ure (2.3)); but only the first two focus their studies on the Higgs search.

The choice of the type of particles spinning in a circular collider is crucial and highly depends
on what we want to study. A spinning particle will radiate an energy ΔE ∝ E4

beam

m4R
with Ebeam

the energy of the beam particle, R the accelerator radius and m the mass of the beam particle.
Then, as probing higher mass regions than LEP did requires a higher Ebeam, one has to use
heavier beam particles, such as protons, in order to limit the energy lost by radiation.

The choice of using proton-proton instead of electron-positron beams at the LHC leads to
additional difficulties: as protons are composite objects, the collision involves two elements of
their substructure – either quark-quark, gluon-gluon or gluon-quark collisions. Each of these
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Figure 2.3: Drawing of the LHC structure with the different detectors around the main ring. The two detectors studying
the Higgs boson properties are CMS and ATLAS.

collisions owns an unknown fraction of the total momentum of the two incoming protons –
contrary to the electron-positron accelerators where the momentum is precisely known. Hence,
this makes the study of the outgoing particles and jets even more difficult.

Using a proton-proton circular collider instead of a proton-antiproton one is technically more
difficult since, in the first case, two particles with identical charge need to spin in opposite
directions. It then requires two different tubes, one for each spinning direction, so that each
proton is bathed in its specific magnetic field with opposite directions. However the reachable
luminosity, i.e. the number of events by unit of time divided by the cross-section, is higher in a
proton-proton collider than a proton-antiproton one, hence the advantage of the LHC compared
to Tevatron.

After a proton-proton collision, many particles are created – potentially including Higgs
bosons – which can themselves decay. The work of the ATLAS and CMS detectors is then to
identify the resulting particles coming from the collisions using multiple layers of complementary
detectors (see for instance the different slices of the CMS detector represented in figure (2.4))
and to measure their energy, charge and direction. Then one needs to reconstruct each event,
that is, determine for each collision occurring inside the detector the chain of events, from the
initial colliding particles to the different daughter particles and their own decays, observed in
the detector.

The beginning of the LHC did not go well because an electric fault a few days after its start
forced to shut down the accelerator for more than a year. However the beam was restarted in
November 2009 and data collection could finally start.

The Higgs search was performed in three main decay channels (see section 2.2.2): H → WW ,
H → ZZ → 4l and H → γγ. By the summer of 2011 a first indication of a new particle was
observed by both ATLAS and CMS in the channel H → WW at a mass of 145 GeV and
120 GeV respectively; the excess was around 2σ, so not sufficient to claim a discovery, but this
first hint created excitement in the scientific community.

Excesses in the two other decay channels H → ZZ → 4l and H → γγ started to appear in
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Figure 2.4: Slice of CMS detector with the different detector layers [19]. The path of different particle types is
symbolized by the colored lines. The silicon tracker, bathed in a magnetic field, allows the distinction between neutral,
positively charged and negatively charged particle. Then, depending on its nature, the particle will create a shower in
a specific detector – in the electromagnetic calorimeter for the photons and the electrons, in the hadron calorimeter for
the hadrons – allowing their precise identification.

the following months. However, in order to avoid any bias, the two experiments continued to
accumulate data before analyzing them and revealing them publicly.

On July 4, 2012, CERN organized a special symposium presenting the ATLAS and CMS
results on the Higgs search. Both experiments presented data with an excess of 5σ for ATLAS [6]
and 4.9σ for CMS [7] located at a mass of mh = 126.5 GeV and 125 GeV respectively, that was
sufficiently high to claim the discovery of a new particle (see for instance figure (2.5)).

Additional studies lead by the two collaborations confirmed the scalar nature of the new
particle, as expected by the SM, and measured its properties with accuracy, showing that the
particle discovered at the LHC had a behavior very similar to the SM Higgs boson (see for
instance figure (2.6)). Hence, the discovery of the Higgs particle is a brillant example of the
success of the SM.

Figures (2.5) and (2.6) illustrate the Higgs boson discovery.
In the left panel of figure (2.5), the search is performed by the CMS collaboration in the

h → γγ decay channel [7]. The black dots represent the number of events – number of detected
photon pairs supposed to be produced by a unique particle of mass mγγ , called invariant
mass – over the number of signal plus background – the background being photon pairs not
originating from a unique particle – as a function of the invariant mass mγγ. The theoretical
rate, computed in the SM framework without Higgs boson, is represented by the red dashed
line. The experimental data around mγγ � 125 GeV is clearly above the theoretical expectation.
This excess of events is a sign of the presence of an unknown particle, later interpreted as the
Higgs boson, decaying into a pair of photons.

In the right panel of figure (2.5), the local p-value (see Appendix B) coming from the
combination of the search in the h → γγ and h → ZZ decay channels by the CMS collaboration
is shown as a function of the new particle mass mH [7]. The p-value represents the probability,
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depending on the invariant mass mH and under the hypothesis that no new particle exists, for
a signal rate higher than the one measured experimentally to occur. In concrete terms, the
lower the p-value, the higher the probability that the excess corresponds to a new unknown
particle. In the plot, the combined p-value, represented by the solid black line, is really low
around mH = 125 GeV. It corresponds to a 5σ excess, that is, there is a 99.99994% chance that
the excess is due to a new unknown particle. This plot is clearly a proof of the existence of a
new particle, later assimilated to the Higgs boson.
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Figure 2.5: Plots originating from the first CMS paper following the Higgs discovery [7]. The two plots, in two different
manners, are proofs of the new particle existence.

Some properties of the new particle are shown in figure (2.6), coming from an ATLAS
analysis following the Higgs discovery [6]. It shows the value of the signal strength μ (see
section 2.2.3 for more details) with 1σ uncertainty for the different decay channels h → bb,
h → ττ , h → WW , h → γγ and h → ZZ. The signal strength measures the deviation
between the new particle properties and those expected for a SM Higgs boson. If μ = 1, then
the properties are the same as in the SM; else they are different. We can see that the signal
strength’s central value is close to 1 and that the value μ = 1 is inside the 2σ uncertainty for
all five decay channels, showing that the new particle’s properties are very close to those of the
SM Higgs boson.

At the end of LHC Run I, ATLAS and CMS collaborations combined their data in order
to constrain the Higgs boson’s properties as accurately as possible [20, 21]. The Higgs boson’s
mass was therefore fixed at mh = 125.09 ± 0.21 ± 0.11 GeV. We will use this value as the Higgs
mass for the following of this thesis.
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Figure 2.6: Signal strength μ = σexp(pp→H→XX)
σSM(pp→H→XX) of the discovered particle for different decay channels

XX = {bb, ττ, W W, ZZ, γγ}. The signal strength is equal to 1 if the properties of the new particle correspond
to those of the SM Higgs boson. The Higgs boson discovered at LHC is then very similar to the SM Higgs boson.
Plot originating from the first ATLAS paper following the Higgs discovery [6].

2.2 Higgs boson production and decay at the LHC

2.2.1 Production at the LHC

The production of a particle – and in particular of the SM Higgs boson – in an accelerator
depends on the particles used in the beams.
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Figure 2.7: Four main production channels of the SM Higgs boson at the LHC.

At the LHC – a proton-proton collider – there are four main Higgs boson production modes,
called gluon fusion (ggF), vector boson fusion (VBF), associated production with a vector
boson (VH) and associated production with heavy quarks (tth, bbh). The Feynman diagram
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associated with these different production modes are summarized in figure (2.7). The value
of the theoretical production cross-section for a SM Higgs at 8 TeV depending on its mass is
shown in the left panel of figure (2.8).
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Figure 2.8: Production cross-section at 8 TeV (left) and branching ratios (right) of the SM Higgs boson for its different
decay channels as a function of its mass. Source: [22].

As we can see in the left panel of figure (2.8), the gluon fusion production mode, represented
by the blue curve, is the dominant one for the whole range of masses. The other production
modes are significantly smaller. Note that the cross-section value for each production mode
varies depending on the beam center of mass energy.

The values of the SM Higgs cross-section at the LHC for a beam center of mass energy of
E = 8 TeV and 13 TeV and for a mass mh = 125.09 GeV are summarized in table 2.1.

Energy

Production mode
ggF (pb) VBF (pb) WH (pb) ZH (pb) ttH (pb) bbH (pb)

8 TeV 21.392 1.6 0.7009 0.4199 0.1326 0.2015
13 TeV 48.517 3.779 1.369 0.8824 0.5065 0.4863

Table 2.1: Theoretical values of the production cross-section at the LHC for a SM Higgs boson with a mass of
mh = 125.09 GeV. The values are given for a center of mass energy of 8 TeV and 13 TeV. The gluon fusion cross-section
is computed at N3LO; the other cross-sections are computed at NNLO [23].

2.2.2 SM Higgs boson decays

Once a SM Higgs boson is produced it decays very quickly into other particles. It is these
daugther particles that ATLAS and CMS detectors need to identify in order to characterize
the Higgs boson.

The SM predicts the value of the decay width Γh→XX of a SM Higgs boson into a specific
decay channel XX (XX = WW , ZZ, γγ...) as a function of its mass. Then one can compute
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the branching ratio (BR) of each decay channel as a function of the Higgs mass:

BRSM
h→XX(mh) ≡ ΓSM

h→XX(mh)
ΓSM

tot (mh) (2.1)

with ΓSM
tot (mh) the total width of a SM Higgs boson with mass mh.

The branching ratios of the SM Higgs boson as a function of its mass are represented in the
right panel of figure (2.8).

Contrary to the production modes, where the gluon fusion production stays dominant for
the whole range of mass, the main decay channel varies with the mass of the Higgs boson. At
mh = 125.09 GeV, which corresponds to the mass of the Higgs boson discovered at the LHC,
the SM Higgs boson decays mainly into bb̄. The WW decay is the next significant channel
whereas the γγ channel is one of the lowest contributions.

ATLAS and CMS collaborations perform their studies in five specific decay channels: WW ,
ZZ, γγ, ττ and bb. The values of the BR for a SM Higgs boson at mh = 125.09 GeV for these
five decay channels are summarized in table 2.2.

WW ZZ γγ ττ bb Total decay width (GeV)
BR 0.2152 0.02641 0.002270 0.06256 0.5809 4.100×10−3

Table 2.2: BR values for a SM Higgs boson at mh = 125.09 GeV [23].

Although the decay into two photons has a low branching ratio value, this channel has very
little background – that is, very few SM events that can be taken to be a H → γγ decay event.
Moreover both ATLAS and CMS detectors can identify photons very clearly and measure their
energy precisely, which allows with very high accuracy the computation of the mass of the
particle – supposedly the Higgs boson – having emitted two photons.

The channel H → ZZ → 4l, with l standing for e or μ, suffers from a lack of events.
However the background of such processes is very well under control and the final particles –
four leptons – are very well detected, making it one of the most interesting channels for the
discovery, and then the study, of the Higgs boson.

The decay channel H → WW , with at least one of the W decaying leptonically, has the
highest branching ratio. However there is at least one neutrino present among the daughter
particles. As the neutrino cannot be detected by ATLAS or by CMS detectors, then the total
amount of energy implied in the decay cannot be computed. Hence, the Higgs mass cannot
be accurately measured in this channel. We then say that the decay process has a low mass
resolution.

The last two decay channels of interest, H → ττ and H → bb̄, are both with a low mass
resolution. For the first one, the τ can decay leptonically or hadronically. In both cases there
is at least one neutrino, giving rise, as for the WW case, to missing energy.

In the case of H → bb̄, despite the large branching ratio, there is a large background due
to QCD production of bottom quarks which covers the signal. Hence, one needs to work only
with events issued from associated production with vector boson, which reduces the statistics.

2.2.3 LHC results: signal strength and upper limits

As we have seen in section 2.1.4, a new scalar particle has been discovered in 2012 by the
ATLAS and CMS collaborations. The properties of this new particle are quite close to those
expected for a SM Higgs boson (see for instance figure (2.6), or [20] for the most recent results
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on LHC Run I); that is why it is usually called "the Higgs boson".

The agreement between SM expected properties and experimentally measured properties of
the new particle is often computed using the signal strength.

The experimental signal strength μexp of the new particle h in a specific production mode
XX and decay channel Y Y is defined by:

μexp
XX→h→Y Y = σexp

XX→h × BRexp
h→Y Y

σSM
XX→h × BRSM

h→Y Y

(2.2)

where the exponent exp stands for experimentally measured quantities and SM for quantities
theoretically computed in the SM framework. Hence, the signal strength value is close to one
if the new particle’s experimentally measured properties are similar to the SM predictions.

Although the Higgs boson detected at the LHC has properties very similar to those of the
SM Higgs boson, it is important to measure them ever more accurately, either to discover
possible discrepancy between experiment and SM prediction or to constrain BSM theories
more precisely. We will see in section 2.3 how we can use precise Higgs boson property
measurements to constrain models of new physics.

ATLAS and CMS collaborations supply signal strength values for different production
modes and decay channels together with uncertainties at 1σ, or similarly with 68.27% of
confidence level (C.L.) – which means there is a 68.27% chance that the signal strength’s true
value is inside the interval defined by the central value and the uncertainty. The link between
n σ and the C.L. value is recalled in table 2.3. For more details about statistics in particle
physics, see Appendix B.

nσ 1 2 3 4 5
C.L. (%) 68.27 95.45 99.73 99.994 99.99994

Table 2.3: Link between the uncertainty level – in terms of σ – and the C.L. value.

However, for a given decay channel Y Y , there are correlations between the different signal
strengths which need to be taken into account. That is why the collaborations also provide
exclusion limits at 1 and 2σ in the plane (μggh,tth→Y Y , μV BF,V H→Y Y ) using the method of max-
imum likelihood.

In most BSM theories, the Higgs couplings to W and Z bosons are rescaled in the same
way. Hence, one can easily group the VBF, WH and ZH production modes in a unique signal
strength, assuming that there is no correlation between them. The merging of ggF and ttH
production modes is more difficult to justify but, as σttH � σggF (see figure (2.8)) one can
safely assume that μggh,tth→Y Y � μggh→Y Y , justifying the merging.

The combined results of ATLAS and CMS collaborations for LHC Run I is shown in
figure (2.9). We will see in section 2.3 how we can make use of such plots.

Even though a Higgs boson with properties similar to those of the SM Higgs boson has been
discovered, it is still possible that other scalar particles are hidden and still undiscovered. Lots
of BSM models predict scalar particles arising through symmetry breaking, in a similar way as
in the SM. These additional scalars, charged or neutral, CP-even or CP-odd, will also be called
Higgs bosons in the following.

ATLAS and CMS collaborations are also searching for such new scalars. So far there is no
hint of new particles in experimental data. However the absence of signal makes it possible to
put upper limits on the cross-section of specific processes involving these hypothetical particles.
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Figure 2.9: Exclusion contours at 68% C.L. in the (μggh,tth→Y Y , μV BF,V H→Y Y ) plane coming from the combination of
ATLAS and CMS data for LHC Run I. The five colors correspond to the following five decay channels: h → γγ, h → ZZ,
h → W W , h → ττ and h → bb. Plot coming from [20].

A simple example is shown in figure (2.10). The experimental upper limit on the process
gg → H → ZZ, given at 95% C.L. and depending on the mass of a heavy scalar resonance
H, is shown as a solid black line. Thus a BSM model predicting a heavy scalar Higgs with a
given mass mH and with a value of σ(gg → H) × BR(H → ZZ) above the experimental upper
limit at this specific mass mH is excluded at 95% C.L. Such upper limits are therefore very
important in order to constrain models of new physics.

Figure 2.10: Upper limit on the process gg → H → ZZ depending on the mass of a heavy scalar Higgs H. The dashed
black line corresponds to the expected upper limit. The green (yellow) band corresponds to the expected upper limit
uncertainty at 1 σ (2 σ). The solid black line corresponds to the observed upper limit obtained by ATLAS collaboration.
Plot coming from [24].
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2.3 Consequences of LHC results on the 125 GeV Higgs boson

As a Higgs boson has been discovered experimentally, all BSM models need to include a particle
with similar properties. Furthermore many BSM models include additional scalars in the Higgs
sector. In order to constrain the Higgs sector of such theories optimally one needs to make use
of the experimental data probing this sector.

We have seen that ATLAS and CMS collaborations supply two kinds of information on
the Higgs sector: constraints on the properties of the 125 GeV Higgs boson experimentally
discovered via the signal strength, and constraints on other hypothetical Higgs bosons via
upper limits.

The latter is quite easy to implement if the BSM theory under study is sufficiently predictive.
One needs only to compute the cross section of the process considered as a function of the scalar
mass in the framework of the BSM theory and check if it is below the experimental upper limit.

The first type of constraint is more difficult to use. We will see below how we can exploit
plots such as the one in figure (2.9).

2.3.1 Theoretical signal strength

Considering a theory containing a scalar particle which can be assimilated to the 125 GeV
Higgs boson h, one can define the signal strength for a specific production mode XX and decay
channel Y Y as follows:

μXX→h→Y Y = σBSM
XX→h × BRBSM

h→Y Y

σSM
XX→h × BRSM

h→Y Y

(2.3)

where the exponent BSM stands for quantities computed in the framework of a specific BSM
theory and SM for quantities computed in the SM framework.

If one is able to compute the cross section σBSM
XX→h and the branching ratio BRBSM

h→Y Y in
the BSM theory framework then, using tabulated SM data to compute the denominator, one
can obtain the numerical value of the whole signal strength μXX→h→Y Y . More details on the
computation will be given in the following parts as we work on a specific model.

However, as we have seen in section 2.2.3, there are correlations between the different signal
strengths. Hence, comparing one theoretical signal strength value to the experimental one and
its uncertainty is too restrictive as correlations are not taken into account.

Working for now with a specific decay channel Y Y one can take into account the corre-
lations between the signal strengths issued from different production modes, say ggh and tth
on one hand and V BF and V H on the other hand, as explained in section 2.2.3. Then, in
order to apply the 2D-signal strength constraints, one needs to compute theoretically the pair
(μggh,tth→Y Y , μV BF,V H→Y Y ) and check if the point lies inside the 95% C.L. exclusion contour
associated with the Y Y decay channel. Otherwise, the point is excluded.

In order to perform this check numerically we need to have access to the exclusion contour
equation. However we only have access to plots similar to figure (2.9); neither ATLAS nor CMS
collaborations supply publicly the likelihood function giving rise to the exclusion contours.
Hence, we need to perform some statistical assumptions in order to get back to the initial
information.
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2.3.2 Extraction of the 1σ exclusion contour

2.3.2.1 Likelihood and Wilks’ theorem

Note that more details about statistics are given in Appendix B.
The exclusion contours supplied by the ATLAS and CMS collaborations are based on the

maximum likelihood or profile likelihood method (see for instance [20] for more details).
The basic method is the following [20, 25, 26]: we consider a likelihood function L(�θ)

depending on a set of n parameters of interest that we want to determine �θ = (θ1, ..., θn).
Then, according to the maximum likelihood method, an estimate of the true value of the �θ

parameters is obtained by maximizing the likelihood function. This estimate, denoted �̂θ, is
also called best fit.

The best fit can be found with a second method providing that the number of independent
measurements N is sufficiently high. Indeed, according to Wilks’ theorem, for a set of N
independent measurements of l physical quantities �y = (y1, ..., yl) which depends theoretically
on the n independent parameters of interest �θ, if N → ∞ then the function −2 ln L(�θ) is
distributed as a chi-squared function with n degrees of freedom. The hypothesis N → ∞
is also called the Gaussian approximation. Then maximizing the profile likelihood L(�θ) is
equivalent to minimizing the chi-squared function χ2

n(�θ) with n degrees of freedom.
In this approximation one can rewrite the log-likelihood as:

χ2
n(�θ) = −2 ln L(�θ) + C = (�y − �ybf (�θ))T · V −1 · (�y − �ybf (�θ)) (2.4)

with C a constant, V −1 =
(

a b
b c

)
the inverse of the covariant matrix, �y the measured physical

quantities and �ybf (�θ) the corresponding vector of predicted values depending on the parameters
�θ.

Hence, minimizing χ2(�θ) makes it possible to find the best fit values �̂θ and then the associated
values �̂ybf = �ybf (�̂θ).

2.3.2.2 Application to the case of signal strengths

In the case of signal strengths, looking at only one specific decay channel Y Y , the measured
physical quantities are the signal strengths μggh,tth→Y Y and μV BF,V H→Y Y , renamed in the fol-
lowing μ1,Y and μ2,Y for simplicity. The parameters of interest are the estimates of their true
values, denotted μ̂1,Y and μ̂2,Y respectively. Hence equation (2.4) becomes:

χ2
2(μ̂1,Y , μ̂2,Y ) = −2 ln LY (μ̂1,Y , μ̂2,Y ) + C =

(
μ1,Y − μ̂1,Y

μ2,Y − μ̂2,Y

)T

· V −1 ·
(

μ1,Y − μ̂1,Y

μ2,Y − μ̂2,Y

)
(2.5)

Minimizing equation (2.5) makes it possible to obtain the best fit values μ̂1,Y and μ̂2,Y .
Then the confidence region at D% of C.L. – or, equivalently, at mσ – on this estimation

is given by the contour containing μ1,Y and μ2,Y true value with a probability of D%. For a
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chi-squared distribution function, this corresponds to the area defined by:

Δχ2(μ1,Y , μ2,Y ) ≡ χ2(μ1,Y , μ2,Y ) − χ2
min < bmσ

2 (2.6)

with χ2
min the minimum value of the chi-squared distribution and bmσ

2 an upper bound depending
on the value of the C.L. – or equivalently on the mσ level – and on the number of degrees of
freedom n of the chi-squared distribution – here, n = 2. The values taken by this upper bound
are reminded in table 2.4. The link with the C.L. can be made using table 2.3.

mσ n=2 n=3 n=4 n=5 n=6
1 2.30 3.53 4.72 5.89 7.04
2 6.18 8.02 9.72 11.3 12.8
3 11.8 14.2 16.3 18.2 29.1

Table 2.4: Value of the upper bound bmσ
n depending on the number of degrees of freedom n of the chi-squared function

and on the C.L. considered, written in terms of number of σ.

In the Gaussian approximation the contour equation at mσ based on the log-likelihood ratio
−2Δ ln LY = −2 ln LY − min(−2 ln LY ) is then defined by the equation:

(μ1,Y − μ̂1,Y , μ2,Y − μ̂2,Y ) ·
(

aY bY

bY cY

)
·
(

μ1,Y − μ̂1,Y

μ2,Y − μ̂2,Y

)
= bmσ

2 (2.7)

with μ̂1,Y , μ̂2,Y , aY , bY and cY fixed.
In the signal strength plane (μ1,Y , μ2,Y ) the exclusion contour, in the Gaussian approx-

imation, is therefore an ellipse defined by five parameters: μ̂1,Y , μ̂2,Y , aY , bY and cY , with
(μ̂1,Y , μ̂2,Y ) its center coordinates.

However one needs to be very careful: these results have been derived in the Gaussian ap-
proximation, yet public exclusion contours published by ATLAS and CMS were not necessarily
obtained using it. In particular, as we will see below, the number of events in the h → ZZ decay
channel is low and the Gaussian approximation is not well verified. But, as the log-likelihood
function is not publicly provided, using this approximation is the easiest way to get back to a
rough estimate of the log-likelihood.

2.3.2.3 Extraction of the ellipse parameters

Even though the ATLAS and CMS collaborations do not provide the ellipse parameters or the
log-likelihood function for each decay channel Y Y considered, the 1σ exclusion contours they
supply provide however enough information to derive the ellipse parameters defined above and,
hence, an approximation of the log-likelihood function.

After extracting from the plots the numerical values of the pairs (μ1,Y , μ2,Y ) for each point of
the ellipse at 1σ for a specific decay channel Y Y , one can obtain, using a simple minimization
method, the numerical value of the five ellipse parameters μ̂1,Y , μ̂2,Y , aY , bY and cY which
generate, via equation (2.7), the ellipse closest to the experimental 1σ exclusion contour.

The ellipse parameters I extracted from 8 TeV data [20] in the decay channels
h → WW, ZZ, γγ, bb̄, ττ and 13 TeV data in the decay channels h → ZZ [27, 28],
h → γγ [29, 30], h → WW [31] (CMS only) and h → ττ [32] (CMS only) are summarized
in table 2.5 and 2.6.
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Channel Y Y aY bY cY μ̂1,Y μ̂2,Y

WW 24.25 2.524 7.097 0.9950 1.410
ZZ 11.86 1.935 1.086 1.413 0.8074
γγ 17.36 3.213 6.285 1.180 1.074
bb 1.094 9.283×10−3 11.61 1.182 0.6606
ττ 3.716 2.700 9.810 1.093 1.140

Table 2.5: Values of the extracted ellipse parameters for the h → W W, ZZ, γγ, bb, ττ decay channels at 8 TeV from
the combined ATLAS and CMS collaborations data [20].

Experiment Channel Y Y aY bY cY μ̂1,Y μ̂2,Y

ATLAS
ZZ 23.8206 1.28247 0.460612 1.15032 4.34646
γγ 35.3171 3.37995 3.221 0.803742 2.25022

CMS

ZZ 22.8785 2.5419 1.0565 1.2525 -0.3465
γγ 32.4490 4.7594 4.1469 1.2037 1.0642

WW 11.69 0.8911 1.103 1.029 1.577
ττ 5.093 1.012 8.675 1.401 0.9345

Table 2.6: Values of the extracted ellipse parameters for the h → ZZ and h → γγ decay channels at 13 TeV from both
ATLAS [27, 29] and CMS [28, 30] analysis and for the h → W W [31] and h → ττ [32] decay channels at 13 TeV from
CMS analysis.
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Figure 2.11: Experimental exclusions at 1σ (dashed red contour) and 2σ (solid red contour) and reconstructed exclusions
with Gaussian approximation at 1σ (dark green) and 2σ (light green) in the signal strength plane for the h → γγ decay
channel at 13 TeV by ATLAS [29] (right panel) and CMS [30] (left panel). The red (green) dot represents the experimental
(reconstructed) best fit. The triangle corresponds to the signal strength SM value.

Some ATLAS and CMS studies provide also the 2σ exclusion contour, allowing a check of
the Gaussian approximation and of the reconstruction method.

The comparison is done for the two decay channels h → γγ (figure (2.11)) and h → ZZ
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(figure (2.12)) with both ALTAS (right panel) and CMS (left panel) data at 13 TeV. The
dashed red line (solid red line) corresponds to the exclusion contour at 1σ (2σ) given by the
collaborations. The green (light green) area corresponds to the reconstructed 1σ (2σ) exclusion
zone obtained using the extracted parameters μ̂1,Y , μ̂2,Y , aY , bY and cY and equation (2.7).
The red (green) dot represents the experimental (reconstructed) best fit. The black triangle
corresponds to the SM value. The Gaussian approximation is considered as valid when the
reconstructed 1 and 2σ contours fit well with the experimental ones.
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Figure 2.12: Same as figure (2.11) in the h → ZZ decay channel at 13 TeV using ATLAS [27] (right panel) and
CMS [28] (left panel) data.

Reconstructed exclusion areas in the h → γγ decay channel (see figure (2.11)) fit quite well
the experimental contours. The reconstructed 2σ exclusion is better in the case of ATLAS than
CMS data, but in the two cases the reconstruction is very good.

In the case of the h → ZZ decay channel (see figure (2.12)), the number of events is lower
and hence the Gaussian approximation is less valid. Then the reconstruction, even at 1σ, is
less good than in the h → γγ case but it remains a good approximation. The reconstructed
2σ contours, although not in perfect agreement with experimental data, are still good enough
to be used as exclusion contours in a posterior analysis.

In the left panel of figure (2.12) experimental exclusion contours are mainly in the negative-
μV BF,V H→h→ZZ region and the reconstructed best fit has a negative μV BF,V H→h→ZZ value. This
is probably due to a lack of events in the V BF + V H production mode in this special decay
channel. With more luminosity, exclusion contours should go up and be similar to ATLAS
exclusion contours (right panel of figure (2.12)).

However this configuration raises a problem in the exclusion method of theoretical models.
Indeed one method is to compute the theoretical signal strength in the ggh+tth and V BF +V H
production modes for a given Y Y decay channel following equation (2.3) and compare it to
the reconstructed exclusion contours at 2σ. Then, if the point (μggh,tth→Y Y , μV BF,V H→Y Y ) is
outside the 2σ contour for one specific decay channel Y Y , the model is excluded.

However it can happen that the point (μggh,tth→Y Y , μV BF,V H→Y Y ) is near but outside the
exclusion contour for only one specific decay channel Y Y , and inside the contours for the four
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other decay channels under study. With the "decay by decay" method exposed above the model
should be excluded. Hence, this method may exclude too many models and is therefore too
restrictive.

Another method is to combine the exclusion contours coming from the different decay chan-
nels. The statistical method is explained below.

The likelihood for independent measurements can be combined as follows:

Ltot(μ1,Y1 , μ2,Y1 , μ1,Y2 , μ2,Y2 , ...) =
∏
Yi

LYi
(μ1,Yi

, μ2,Yi
) (2.8)

Hence, one can construct the Δχ2
n function defined as:

Δχ2
n(μ1,Y1 , μ2,Y1 , μ1,Y2 , μ2,Y2 , ...) = − 2 ln Ltot(μ1,Y1 , μ2,Y1 , μ1,Y2 , μ2,Y2 , ...) (2.9)

− min
{μi,Yj

}
(−2 ln Ltot(μ1,Y1 , μ2,Y1 , μ1,Y2 , μ2,Y2 , ...))

The function Δχ2
n is distributed as a chi-squared function with n degrees of freedom, n

corresponding to the number of independent parameters in the set of signal strength {μi,Yj
}.

Hence, we can define the combined confidence region at 2σ as:

Δχ2
n ≤ b2σ

n (2.10)

Since some of the signal strengths are not independent – for instance μ1,W W and μ1,ZZ are
linked in many BSM theories – the number of independent parameters n is not necessarily equal
to the number of signal strengths involved in the log-likelihood computation. It is important
to keep in mind that the parameter n is model-dependent.

This method is less restrictive than the "decay by decay" method as the exclusion is, this
time, applied with the total log-likelihood resulting from the combination of all decay channels
under study.

We will prefer this latter method in the following. As the complete derivation of the Δχ2
n

function is model-dependent we stop here the discussion on the exclusion method of theoretical
models. More details on the derivation of 2σ contours depending on the model under study
will be given in the two following parts of this thesis.
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Part II:

Two-Higgs Doublet Model

In the previous part we have seen how the Standard Model works and what its
strengths and limitations are. We have also highlighted the need to extend this
theory to a larger and more complete one.

In this part we will study the Two-Higgs Doublet Model, which corresponds
to the Standard Model extended with an additional Higgs doublet. This
extension is very simple and does not claim to address all the Standard Model
limitations. However many theories beyond the Standard Model have a Higgs
sector structure identical to that of the Two-Higgs Doublet Model. Hence,
the phenomenology and constraints obtained in the Two-Higgs Doublet Model
can be applied to larger and more comprehensive models such as the Minimal
Supersymmetric extension of the Standard Model. Hence the importance of
the following studies.

In a first chapter we will remind the construction and behavior of the
Two-Higgs Doublet Model in a CP-conserving case. Then, as the model
contains two CP-even scalars, we will study two different cases: first the case
where the heavier CP-even scalar H is assimilated to the 125 GeV Higgs
boson discovered at LHC, and second the case where the lightest CP-even
scalar h is assimilated to the 125 GeV Higgs boson.

In both cases we will study the influence of theoretical and experimental con-
straints on the parameter space of the 2HDM. In the mH = 125 GeV hypothesis
we will in addition focus on the possible detection of the light Higgs boson h at
LHC. In the mh = 125 GeV hypothesis we will work in the particular frame-
work of the alignment limit.
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3 Introduction to Two-Higgs Doublet Models

3.1 Motivations of the model

For decades the Higgs boson has been the missing piece of the SM. Its discovery in 2012 by
the ATLAS [6] and CMS [7] collaborations brought a great enthusiasm in the particle physics
community. However, as we have discussed in chapter 1, the Higgs discovery was not the end
of the story: many experimental observations were not predicted by the SM and had to be
included in another or bigger theory. Fortunately the discovery of the Higgs boson and the
study of its properties have opened new doors for the search of physics beyond the Standard
Model.

One idea among others to extend the SM is to enlarge the scalar sector by adding a second
Higgs doublet to the initial theory. In such a scenario the two doublets can acquire a vacuum
expectation value (vev) and break the electroweak symmetry. Moreover, if the SM contains
four real fields – φ0

1, φ0
2, φ+

1 and φ+
2 , see equation (1.40) – due to its unique Higgs doublet, the

extension with a second Higgs doublet contains a total of eight real fields.
As in the SM, three Goldstone bosons are needed in order to generate the mass of the W ±

and Z0 bosons (see section 1.2.2.3). After getting rid of these three degrees of freedom, we are
left with five physical fields: two neutral (CP-even) scalar Higgs bosons h and H, one neutral
(CP-odd) pseudoscalar Higgs boson A and two charged Higgs bosons H±.

This extension, called Two-Higgs Doublet Model (2HDM), although rather simple, allows a
more extensive phenomenology in the scalar sector.

It is important to understand that the 2HDM by itself is only an effective theory without UV
completion and hence does not solve most of the problems mentioned in section 1.3. However
this theory can be a very useful toy model and its development has been motivated by different
aspects.

The first one and probably most well known is Supersymmetry – which answers numerous
SM problems such as the hierarchy problem and supplies credible DM candidates. Indeed all
supersymmetric theories need at least two Higgs doublets in order to give a mass to all fermions
and their supersymmetric partners, and to cancel anomalies [33, 34]. More generally, as many
BSM theories contain a Higgs sector with two Higgs doublets, the 2HDM is often present as a
substructure of such more generic theories.

Another motivation is that the 2HDM, contrary to the SM, is able to produce baryon
assymetry using new CP-violating terms [35, 36].

Hence, although the 2HDM is very simple, the study of such a theory makes it possible to
constrain bigger and more comprehensive BSM theories and can give clues to understand other
models and phenomena.
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In this chapter we will first remind the basics of a CP-conserving 2HDM. Second, we will
enumerate the different constraints later used in analyses and explain how they are implemented
in the special case of a 2HDM. Their practical application will be done in the two following
chapters.

3.2 Two-Higgs Doublet Models: some theory

3.2.1 Generic model

A great number of books and articles make a complete theoretical study of the 2HDM (see for
instance [37, 38, 39]). The main lines of the theory are reminded below.

The 2HDM takes over the SM Lagrangian and adds a second Higgs doublet φ2 in addition
to the original one, here called φ1.

Hence, the theory contains two complex fields φ1 and φ2 with hypercharge one which act
as singlets under SU(3)c and doublets under SU(2)L, exactly as the SM Higgs doublet. Each
doublet can acquire a non-zero vev defined by:

〈φ1〉 = v1√
2

, 〈φ2〉 = v2√
2

, (3.1)√
v2

1 + v2
2 ≡ v = 246 GeV (3.2)

with v the value of the SM vev.
Hence, the two doublets can be written as:

φ1 =
(

φ+
1

1√
2 (v1 + φ0

1 + iη1)

)
, φ2 =

(
φ+

2
1√
2 (v2 + φ0

2 + iη2)

)
(3.3)

with φ0
i , ηi real fields and φ+

i complex fields.

The most general scalar potential for the 2HDM takes the form [38]:

V =m2
11φ

†
1φ1 + m2

22φ
†
2φ2 −

(
m2

12φ
†
1φ2 + h.c.

)
+ λ1

2
(
φ†

1φ1

)2
+ λ2

2
(
φ†

2φ2

)2
+ λ3

(
φ†

1φ1

) (
φ†

2φ2

)
+ λ4

(
φ†

1φ2

) (
φ†

2φ1

)
(3.4)

+
{

λ5

2
(
φ†

1φ2

)2
+
[
λ6

(
φ†

1φ1

)
+ λ7

(
φ†

2φ2

)] (
φ†

1φ2

)
+ h.c.

}

with m2
ij and λi complex parameters. However one can simplify this Lagrangian if additional

hypotheses are imposed.

As we want to work in the following with well-defined CP-odd and CP-even states one needs
to avoid explicit and spontaneous CP-violation. In order to do so, one needs the parameters
m2

ij and λi to be real, as well as the vevs v1 and v2 to be real and positive [35, 37].

52



3.2. TWO-HIGGS DOUBLET MODELS: SOME THEORY

Without any other assumption on the model each doublet φ1 and φ2 couples with all the
fermions. Then, by analogy with equation (1.49), the Yukawa interactions take the form [40]:

LY ukawa =
2∑

i=1

3∑
j,k=1

−y
l(i)
jk L̄j,Lφiek,R − y

d(i)
jk Q̄j,Lφidk,R − y

u(i)
jk Q̄j,Lφ̃iuk,R + h.c. (3.5)

with i ∈ {1, 2} indexing the two Higgs doublets, j, k ∈ {1, 2, 3} indexing the three generations of
fermions, y(i) the 3×3 Yukawa coupling matrices linked to the Higgs doublet φi and φ̃i = iσ2φ∗

i
the φi charge conjugate.

After symmetry breaking the Yukawa Lagrangian gives rise to the fermion mass terms. As
in the SM case they need to be diagonalized in order to extract the mass eigenstates. However,
in the 2HDM case, there are two Yukawa coupling matrices y

f(1)
jk and y

f(2)
jk for each fermion type

– leptons, up- and down-type quarks – instead of one. In general these two matrices cannot
be diagonalized simultaneously. This gives rise to large FCNC mediated by the three neutral
Higgs bosons (see for instance figure 3.1).

h,H,A

d

s

s

d

Figure 3.1: K0 − K̄0 at tree level in the 2HDM with FCNC. The h, H and A scalars correspond respectively to the
two CP-even and the CP-odd Higgs bosons present in the 2HDM theory.

We know that, experimentally, the FCNC are highly suppressed. Hence, one needs to find
a way to eliminate them in 2HDM.

A simple solution to get rid of this problem is to require that all fermions of a given electric
charge couple to at most one Higgs doublet, either φ1 or φ2.

This condition is satisfied when introducing a Z2 symmetry with the two doublets transform-
ing as (φ1, φ2) → (φ1, −φ2) and with the fermion fields transforming as (fL, fR) → (fL, ±fR).

Hence, if a fermion type – say the down-type quarks – transforms as (dL, dR) → (dL, +dR)
then the only term in the Yukawa Lagrangian respecting the Z2 symmetry is −y

d(1)
jk Q̄j,Lφ1dk,R

and we say that the down-type quarks couple only to φ1.
On the contrary, if they transform as (dL, dR) → (dL, −dR) then the only surviving Yukawa

term is −y
d(2)
jk Q̄j,Lφ2dk,R and we say that the down-type quarks couple only to φ2.

In both cases, only one of the two Yukawa matrices y
d(i)
jk now appears in the Yukawa La-

grangian, this for each type of fermions; hence it can be entirely diagonalized and the FCNC
similar to the one shown in figure 3.1 are suppressed.

In the following we will always use the Z2 symmetry solution in order to suppress FCNC.

When applying the Z2 symmetry, there are only four different ways to couple the three types
of fermions to the two Higgs doublets. Each of them has a specific name – Type I, Type II,
Flipped type and Lepton-Specific type (see table 3.1 for more details).

It is important to note that the Type II couplings are equivalent to the fermion cou-
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Type I Type II Flipped Lepton-Specific
(Type Y) (Type X)

Up-type quark φ2 φ2 φ2 φ2

Down-type quark φ2 φ1 φ1 φ2

Leptons φ2 φ1 φ2 φ1

Table 3.1: The four different possible ways to couple the SM fermions to the two Higgs doublets in 2HDM associated
with their names.

plings to the two Higgs doublets in the Minimal Supersymmetric Standard Model (MSSM).
Hence studying 2HDM Type II can give very useful informations about the MSSM Higgs sector.

As a consequence of the Z2 symmetry, the coefficients λ6, λ7 and m2
12 present in the Higgs

potential need to be taken to zero; else the Z2 symmetry is explicitly broken. However one can
allow a soft Z2-breaking by maintaining m2

12 �= 0.
In the following we will always assume a softly broken Z2 symmetry, that is, λ6 = λ7 = 0

but m2
12 �= 0.

In conclusion, assuming CP-conservation and softly broken Z2 symmetry, the 2HDM Higgs
potential (3.4) can be rewritten as:

V =m2
11φ

†
1φ1 + m2

22φ
†
2φ2 −

(
m2

12φ
†
1φ2 + h.c.

)
+ λ1

2
(
φ†

1φ1

)2
+ λ2

2
(
φ†

2φ2

)2
+ λ3

(
φ†

1φ1

) (
φ†

2φ2

)
+ λ4

(
φ†

1φ2

) (
φ†

2φ1

)
(3.6)

+ λ5

2
(
φ†

1φ2

)2
+ h.c.

with m2
ij and λi real parameters.

The 2HDM Higgs potential has ten degrees of freedom: three real m2
ij, five real λi and

two real vevs v1 and v2. However the two vevs are linked together by equation (3.2) and the
minimization of the potential with respect to both φ1 and φ2 leads to two additional conditions,
which reduce the number of degrees of freedom.

Hence, the CP-conserving 2HDM with softly broken Z2 symmetry has seven free parameters.

3.2.2 The Higgs basis and physical basis

The 2HDM Higgs potential can be expressed in different bases which have different physical
meanings. The one used in equation (3.6) is called Z2-basis. Two other possible bases are the
Higgs basis and the physical basis.

3.2.2.1 The Higgs basis

In the Z2-basis, the two doublets φ1 and φ2 acquire a non-zero vev v1 and v2 respectively. Using
a rotation of angle β one can define two new doublets H1 and H2 so that only the first doublet
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H1 acquires a non-zero vev:(
H1
H2

)
≡
( cos β sin β

− sin β cos β

)(
φ1
φ2

)
, 〈H1〉 = v√

2
, 〈H2〉 = 0 (3.7)

Using this definition one can link the vevs v1 and v2 to the vev v and the angle β:

v1 = v cos β, v2 = v sin β, tan β = v2

v1
(3.8)

In the CP-conserving case the Higgs basis has the special property of diagonalizing the
charged and pseudoscalar sectors. This means that the doublets H1 and H2 take the form:

H1 =
(

G±
1√
2 (h0

1 + iG0 + v)

)
, H2 =

(
H±

1√
2 (h0

2 + iA)

)
(3.9)

with G± and G0 the Goldstone fields absorbed by the W ± and the Z0 bosons to give them
a mass, H± the charged Higgs bosons with mass mH± , A the pseudoscalar Higgs boson with
mass mA and h0

1 and h0
2 neutral scalar fields which are not mass eigenstates.

3.2.2.2 The physical basis

If the Higgs basis allows us to work with the physical charged and pseudoscalar Higgs bosons,
the two scalar states h0

1 and h0
2 are not mass eigenstates and hence not physical fields.

In order to obtain the scalar mass eigenstates – denoted h and H with, by definition,
mh < mH – one needs to perform another rotation with angle α.(

H
h

)
=
( cos α sin α

− sin α cos α

)(
φ0

1
φ0

2

)
=
(

cβ−α −sβ−α

sβ−α cβ−α

)(
h0

1
h0

2

)
(3.10)

with cβ−α ≡ cos(β − α) and sβ−α ≡ sin(β − α).
This new basis is called the physical basis as we work this time with the five physical Higgs

fields h, H, A and H±.
Using all the above equations one can show that the seven free parameters of the 2HDM in

the Z2-basis can be converted into the seven free parameters of the physical basis:

λ1, λ2, λ3, λ4, λ5, m2
22, m2

12 (3.11)
�

mh, mH , mA, mH± , tan β, sβ−α, m2
12 (3.12)

with mh the mass of the light scalar h, mH the mass of the heavy scalar H, mA the mass of
the pseudoscalar A and mH± the mass of the charged Higgs bosons H±.

In the following we will work in this basis associated with these seven free parameters.

3.2.3 Scalar and pseudoscalar Higgs couplings

The couplings between the Higgs bosons and the fermions come from the Yukawa terms de-
scribed in section 3.2.1. Their couplings to the gauge bosons appear, in analogy with the SM,
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when developing the 2HDM Higgs kinetic term:

Lkinetic
Higgs = (Dμφ1)†(Dμφ1) + (Dμφ2)†(Dμφ2), Dμ = ∂μ + igW a

μ τa + ig′ Bμ

2 (3.13)

and then applying the appropriate transformations defined above in order to express the La-
grangian in terms of the mass eigenstates.

The couplings of the neutral scalar and pseudoscalar Higgs bosons normalized by their SM
values are summarized in Table 3.2. Note that the normalization used for the couplings of the

pseudoscalar Higgs boson to fermions is taken as yf(2)
√

2
= mf

v
.

Type I Type II Flipped Lepton-Specific

Up-Type quark
h cos α

sin β

H sin α
sin β

A cot β

Down-Type quark
h cos α

sin β − sin α
cos β − sin α

cos β
cos α
sin β

H sin α
sin β

cos α
cos β

cos α
cos β

sin α
sin β

A cot β tan β tan β cot β

Lepton
h cos α

sin β − sin α
cos β

cos α
sin β − sin α

cos β

H sin α
sin β

cos α
cos β

sin α
sin β

cos α
cos β

A cot β tan β cot β tan β

WW and ZZ
h sin(β − α)
H cos(β − α)
A 0

Table 3.2: Tree-level couplings between the neutral Higgs bosons and the gauge bosons and fermions normalized to
their SM value for the different 2HDM types.

3.3 Constraints on Two-Higgs Doublet Models

In section 3.2 we have presented the 2HDM framework in which we will work in the following.
We have seen that the model contains, in addition to the usual SM fermions and gauge

bosons, five physical Higgs fields: two scalars h and H, a pseudoscalar particle A and two
charged Higgs bosons H±. The Higgs sector is therefore richer than that of the SM.

We have also seen that the model contains seven free parameters. The ones we will consider
in the following are those associated with the physical basis and listed in equation (3.12).
Note that, due to the experimental evidence of the existence of a Higgs boson with a mass of
125 GeV, one of the two masses mh and mH has to be taken to 125 GeV, leaving only six real
free parameters.

However, with six free unconstrained parameters, the theory is not very predictive. It is
then important to restrict the parameter space using both theoretical requirements and available
experimental results.

We have already mentioned schematically in sections 2.2.3 and 2.3 how we can constrain
BSM theories using LHC results. However there are a lot of other theoretical and experimental
requirements.
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First we will look at purely theoretical constraints – stability, unitarity and perturbativity
requirements – then we will consider indirect experimental limitations via electroweak precision
tests and flavor physics, and finally we will take into account constraints coming from direct
searches from LEP and LHC.

3.3.1 Theoretical constraints

We have essentially three theoretical requirements in 2HDM: the stability of the 2HDM Higgs
potential, the unitarity of the scattering matrix S and the perturbativity of the calculations.

◦ Stability constraint

As we want the vacuum of the theory to be stable we have to check the stability of the
potential.

The 2HDM Higgs potential is assumed to be stable if there is no direction in the field space
along which the potential tends to minus infinity. In the special case where λ6 = λ7 = 0, the
necessary and sufficient condition for the vacuum to be bounded from below is that the quartic
part of the potential be strictly positive for any value of the fields [37]. This condition can be
translated into constraints on the λi [37, 41]:

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ −
√

λ1λ2, (3.14)

λ3 + λ4 − |λ5| ≥ −
√

λ1λ2

◦ Unitarity constraint

The theoretical computation of the Higgs-Higgs scattering – and in a general way the compu-
tation of identical particle-particle scattering – can lead to arbitrarily high cross-section values
for increasing center of mass energy. In order to avoid this problem one has to impose unitar-
ity constraint on the scattering matrices, i.e. require that the eigenvalues Li of the tree-level
scattering matrices verify [37, 42, 43]:

|Li| < 8π (3.15)
As the Li can be expressed as a function of the λi – and, a fortiori, in terms of the physical
basis parameters – this condition adds a constraint on the free parameters.

◦ Perturbativity constraint

As the calculations performed are conducted in a perturbative framework one must make
sure that the perturbativity of the theory is still satisfied [44]. This condition can be precisely
checked by computing higher-order corrections and checking the convergence of the perturbative
series. However this task is very difficult to achieve.

Yet one can perform a rough check requiring that the quartic Higgs couplings Chihjhkhl
are

not too high:
|Chihjhkhl

| ≤ 4π (3.16)

These three constraints are checked using the program 2HDMC v1.7.0 [41] whose behavior will
be described in section 3.4.1.2.
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3.3.2 Electroweak precision tests

The SM has numerous parameters whose values are not explicitly determined by the model.
However, choosing a subset of appropriate parameters and fixing their values allows the deter-
mination of the numerical value of all the other SM parameters.

In addition, these parameters are measured experimentally as precisely as possible.
Hence, a consistency check between predicted and measured can be performed [11, 45, 46].

For this, one first need to compute the theoretical value of the chosen subset of parameters using
experimental measurements. In the electroweak sector, the theoretical parameters are usually
taken as the electric charge e, the Z0 boson mass mZ and the weak mixing angle sin2 θW and
their values are obtained using the experimental measurement of the fine structure constant
αe, the Fermi coupling constant GF and the Z0 boson mass mZ . Then the other electroweak
parameters are computed theoretically using the above subset and compared to experimental
measurements (see for instance figure 1.6).

Theoretical calculations need to be very precise. In particular, they need to include
higher-order corrections in order to be as accurate as possible. In the electroweak sector,
the largest corrections for two-point functions come from loops arising in the gauge boson
propagators. These corrections are called oblique corrections.

If new physics beyond the SM exists and contains new particles, as in the 2HDM, then these
additional particles can take part in loop phenomena and hence can have a great impact on
the theoretical values of the oblique corrections.

This is why M. Peskin and T. Takeuchi developed three parameters, called S, T and
U , based on the oblique corrections, in order to highlight the potential influence of new
physics [47, 48]. The experimental value of these three parameters can be derived using the
electroweak fit described above and their model-dependent theoretical values can be computed
using analytical formulas, reminded for instance in [46]. Note that they are constructed such
that they are equal to zero in the SM framework.

Hence, the S, T and U parameters, also called oblique parameters, are a good experimental
tool to detect new physics. However their current experimental value is close to zero, which
means that the SM is not questioned by the oblique parameters (see for instance figure 3.2
showing a plot performed by the GFitter collaboration which illustrates the derivation of
the experimental S and T values, assuming U = 0). Yet they still represent an important
constraint that any BSM theory has to verify.

In concrete terms, in order to check the consistency of a given BSM theory with the oblique
parameters, one has to compute the theoretical value of the S, T and U parameters in the
theory framework. Then, using experimental data reminded in table 3.3, one need to check
that the theoretical values of the oblique parameters are in the experimentally allowed region,
i.e. that the theoretical values S, T and U verify the following equation:

χ2
S,T,U(S, T, U) =

⎛⎜⎝S − Ŝ

T − T̂

U − Û

⎞⎟⎠
T

· V −1 ·
⎛⎜⎝S − Ŝ

T − T̂

U − Û

⎞⎟⎠ < b2σ
3 (3.17)

with Ŝ, T̂ and Û the experimental best fit of the oblique parameters, S, T and U their theoretical
values in the 2HDM framework and V −1 the inverse of their 3 × 3 covariant matrix defined by:

Vij = Cijσiσj, i, j ∈ {1, 2, 3} (3.18)

58



3.3. CONSTRAINTS ON TWO-HIGGS DOUBLET MODELS

θ

Γ

±
±

Figure 3.2: Constraints on the oblique parameters S and T with U set to zero using all SM observables (in blue). The
SM prediction with uncertainties is indicated by the black segment and is still included in the allowed region. Figure
taken from [11].

with C the 3 × 3 correlation matrix between the oblique parameters and σi their corresponding
uncertainties. All the experimental values are given in table 3.3.

Experimental best fit Uncertainty σi

Ŝ 0.05 0.11
T̂ 0.09 0.13
Û 0.01 0.11

C=

S T U⎛⎝ ⎞⎠1 0.90 -0.59 S

0.90 1 -0.83 T

-0.59 -0.83 1 U

Table 3.3: Experimental values of the oblique parameters with 1σ uncertainty and their correlation matrix C [11].

Due to its construction, the S parameter is very sensitive to the presence of new heavy
fermions in the BSM theory under study. Therefore it may constrain very strongly theories
such as Composite models that we will study in the last part of this thesis.

The T parameter measures the violation of the custodial symmetry, which is a residual
symmetry of the Higgs sector. Hence, it will be sensitive to additional Higgs particles present
in the model.

Finally the U parameter is only sensitive to changes in the W ± boson width and hence is
generally less constraining than the two other oblique parameters.

The theoretical values of the S, T and U parameters are computed with 2HDMC in the
2HDM framework. Then the test of the oblique parameters is performed by my own C++
program using equation (3.17) and the numerical values reminded in table 3.3.

Note that, as S, T and U are model-dependent their check in the 2HDM framework against
experimental data is only meaningful in this specific model and is only a broad guideline for
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bigger models having two Higgs doublets in their Higgs sector.

3.3.3 Flavor constraints

As we have seen for the oblique parameters, hints of the existence of new particles can be found
indirectly via processes involving loops of particles. In particular this can happen in some flavor
physics processes.

As the BR of such processes are measured experimentally with great accuracy, the compu-
tation of the theoretical BR and their comparison to experimental data is an efficient manner
to constrain a BSM theory.

The most relevant processes that can contribute to constrain a 2HDM are described below.

3.3.3.1 B → Xsγ decay

In the SM the B meson can decay into a photon and a hadron containing a s quark via the
exchange of a W − boson and a top quark.

In the 2HDM the charged Higgs boson H− can take the place of the W − boson, modifying the
BR of the process. Note that this modification depends on the couplings of the charged Higgs
bosons to fermions, and hence on the 2HDM type considered. In particular, the tb̄H− coupling
will be enhanced in Type II and Flipped type with respect to Type I and Lepton-Specific type.

The leading-order Feynman diagram for the b → sγ process is shown in figure 3.3.

t t

W−, H−

b s

γ

Figure 3.3: Leading-order Feynman diagram of the b → sγ process.

3.3.3.2 B0
s → μ+μ− decay

In the SM the W ± and Z0 bosons take part in the decay process B0
s → μ+μ−. In the 2HDM

both the charged Higgs bosons H± and the neutral scalars h and H can contribute to the BR
(see figure 3.4).

3.3.3.3 The isospin asymmetry Δ0

The isospin asymmetry for the decay B → K∗γ is defined as:

Δ0(B → K∗γ) = Γ(B̄0 → K̄∗0 γ) − Γ(B± → K∗± γ)
Γ(B̄0 → K̄∗0 γ) + Γ(B± → K∗± γ)

(3.19)
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s μ−

b μ+

t νμ

W−, H−

W+, H+

B0
s t

W−, H−

W+, H+

Z0, h,H

s

b

μ−

μ+

Figure 3.4: Leading-order Feynman diagrams of the B0
s → μ+μ− process.

If the isospin was not a broken symmetry then we would have Δ0(B → K∗γ) = 0. However,
experimentally, this number is non-zero.

The B → K∗γ process involves a b → s transition as shown in figure 3.3. Then the
theoretical value of the isospin is sensitive to the presence of charged Higgs bosons.

3.3.3.4 Enforcing the constraints

Experimental values for the three processes enumerated above are written in table 3.4. We
computed theoretical values in a 2HDM framework using the program Superiso v3.6 [49, 50].

In order to check the validity of the model we need to check that numerical values given by
SuperIso in the 2HDM framework are consistent with experimental values within two sigma
uncertainties – a check that is done in my C++ program.

However, as SuperIso does not evaluate the uncertainties on its computations, we decided to
combine the experimental uncertainty σexp of a specific process with the theoretical uncertainty
σth coming from precise theoretical computation performed in the SM framework and use this
combined uncertainty together with the experimental central value to constrain the 2HDM.

Both experimental and theoretical values of the BR processes computed in the SM framework
with 1σ uncertainty are summarized in table 3.4. The combined uncertainty σcomb is defined
as:

σcomb =
√

σ2
exp + σ2

th (3.20)

In the special case of the process B̄ → Xsγ the evaluation of the combined uncertainty is
particularly crucial (see section 4.2.3). In order to be as accurate as possible we slightly modify
the computation of σcomb for this specific process, rescaling the theoretical uncertainty by the
ratio of the BR in the 2HDM framework over the BR in the SM framework:

σcomb =

√√√√σ2
exp +

(
σth × BR2HDM(B̄ → Xsγ)

BRSM(B̄ → Xsγ)

)2

(3.21)

Numerical values of the combined uncertainties at 1σ – except for the B̄ → Xsγ process
which does not have a fixed value – are summarized in table 3.4.

Hence, denoting BRexp the central value of the experimental branching ratios, the model
passes the flavor constraints if, for each process, the 2HDM BR check the following relation:

BR2HDM ∈ [BRexp − 2σcomb; BRexp + 2σcomb] (3.22)
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Process Experimental values Theoretical computation Combined error at 1σ

BR(B → Xsγ) (3.32 ± 0.16) × 10−4[51] (3.36 ± 0.23) × 10−4 [52] /
BR(Bs → μ+μ−) (2.9 ± 0.7) × 10−9 [53, 54] (3.54 ± 0.27) × 10−9 [55] 0.8 × 10−9

Δ0(B → K∗γ) (5.2 ± 2.6) × 10−2 [10] (5.1 ± 1.5) × 10−2 [55] 3.0 × 10−2

Table 3.4: Values of the experimental and theoretical flavor constraints.

3.3.4 LEP constraints

Up to now we have only considered theoretical and indirect constraints on 2HDM. However, we
also have accelerator data available to help us constrain the model directly using upper limits,
as presented in section 2.2.3.

As mentioned in section 2.1.2, the LEP searched for the SM Higgs boson for many
years. Hence, LEP experiments published many upper limits on processes involving possible
light scalars, pseudoscalars and charged Higgs bosons – light meaning with a mass below
110 GeV. In particular, it were able to give a lower bound on the charged Higgs mass in
a 2HDM scenario: mH± > 80 GeV for a Type II and mH± > 72.5 GeV if mA > 12 GeV
for a Type I [10, 56]. Hence, it is important to take into account LEP results to constrain 2HDM.

In order to do so we used the program HiggsBounds v5.1.0 beta [57, 58, 59, 60] which
includes, among others, all published LEP analyses. HiggsBounds uses the output of 2HDMC
computed for specific values of the free parameters and check the results against LEP experi-
mental data. The result, given as a boolean return value, specifies wether the 2HDM point is
excluded at 95% C.L.

3.3.5 LHC constraints

As mentioned in section 2.2.3 LHC analyses give rise to two main ways of constraining BSM
theories: the first one is based on the use of direct information on the 125 GeV Higgs boson
experimentally discovered and the second one uses upper limits on processes involving hypo-
thetical new particles.

As the methods employed to apply the constraints in the 2HDM framework are quite com-
plex, we will describe them in a specific section.

3.4 Focus on the practical application of LHC constraints

3.4.1 Constraints from the 125 GeV Higgs boson

As a new particle very similar to the SM Higgs boson has been discovered experimentally, all
BSM theories need to identify one of their particles to this new boson.

In the 2HDM case, there are two possible candidates: the two neutral scalars h and H with,
by convention, mh < mH .

The choice of the particle identified with the 125 GeV Higgs boson will influence the resulting
constraints. Indeed, looking at table 3.2, one can see that if we impose mh = 125 GeV, then
the hWW coupling needs to be close to that of the SM, which means that sβ−α ∼ 1, hence
cβ−α ∼ 0. Conversely, if we choose mH = 125 GeV, then we will have sβ−α ∼ 0 and cβ−α ∼ 1.
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In order to impose constraints from the 125 GeV Higgs boson’s properties we have already
seen in section 2.3 that we can use theoretical signal strengths, computed via equation (2.3),
together with exclusion contours as shown in figure 2.9.

In order to do so we need to follow these steps:
• We extract the exclusion contours provided by ATLAS and CMS as presented in sec-

tion 2.3.2.3 and obtain, in the Gaussian approximation and for a given decay channel Y Y ,
the analytical expression of the log-likelihood function −2 ln LY depending on the signal
strengths μggh,tth→Y Y and μV BF,V H→Y Y . The numerical values obtained for the ellipse
parameters are summarized in tables 2.5 and 2.6;

• We construct two separate total log-likelihood −2 ln Ltot, one with the 8 TeV data and the
other with the 13 TeV data. We remind that total log-likelihood can be defined by (see
also equation (2.8)):

− 2 ln Ltot(μ1,Y1 , μ2,Y1 , μ1,Y2 , μ2,Y2 , ...) =
∑
Yi

−2 ln LYi
(μ1,Yi

, μ2,Yi
) (3.23)

with Yi the different decay channels considered in ATLAS and CMS studies;
• We identify the n independent parameters generating the different signal strengths μj,Yi

;
• We find the minimum of the total log-likelihood: min

{indep. param.}
−2 ln Ltot;

• We construct the chi-squared function Δχ2
n defined as – cf equation (2.9):

Δχ2
n(μ1,Y1 , μ2,Y1 , μ1,Y2 , μ2,Y2 , ...) = − 2 ln Ltot(μ1,Y1 , μ2,Y1 , μ1,Y2 , μ2,Y2 , ...) (3.24)

− min
{indep. param.}

(−2 ln Ltot)

depending on the value of the different signal strengths μj,Yi
;

• We derive, for a given set of the seven free parameters of the 2HDM – reminded in equa-
tion (3.12) – the theoretical value of each signal strength μj,Yi

, deduce the value of Δχ2
n

and compare it to the upper bound b2σ
n . If Δχ2

n > b2σ
n then the point is excluded at 95%

C.L.; else, we say that the point passes the 125 GeV Higgs constraints.
The two main difficulties in this process are first the identification of the independent param-

eters and the subsequent minimization of the total log-likelihood, and second the computation
of the signal strength in the 2HDM framework.

3.4.1.1 Determination of the independent parameters

In order to identify the independent parameters generating the signal strengths one needs to
look closer to their construction.

We remind that the signal strength for a specific production mode XX and decay channel
Y Y can be written as – see equation (2.3):

μXX→h125→Y Y =
σ2HDM

XX→h125 × BR2HDM
h125→Y Y

σSM
XX→h125 × BRSM

h125→Y Y

(3.25)

with h125 standing for the 2HDM particle identified with the 125 GeV Higgs boson.

As the couplings of the neutral scalar Higgs bosons to SM particles are simply rescaled
with respect to thos of the SM Higgs boson, then, at LO, the values of the 2HDM production

63



CHAPTER 3. INTRODUCTION TO TWO-HIGGS DOUBLET MODELS

cross-sections and decay widths are approximately equal to those of the SM rescaled by an
appropriate factor κX , called scaling factor, defined as:

κ2
X ≡ Γ2HDM

h125→XX

ΓSM
h125→XX

(3.26)

In the following we will call this approximation the kappa trick. Hence, one can rewrite
equation (3.25) in this approximation as:

μXX→h125→Y Y =
κ2

XσSM
XX→h125

σSM
XX→h125

× κ2
Y ΓSM

h125→Y Y

Γ2HDM
tot︸ ︷︷ ︸

=BR2HDM
h125→Y Y

× ΓSM
tot

ΓSM
h125→Y Y︸ ︷︷ ︸

=(BRSM
h125→Y Y

)−1

= κ2
Xκ2

Y × ΓSM
tot

Γ2HDM
tot

(3.27)

Note that we have assumed that scaling factors for production and decay are identical at LO.
In the case where Γ2HDM

tot does not include any new decay channel – which is the case as long
as mA > 125

2 GeV and, if mH = 125 GeV, mh > 125
2 GeV – then we can rewrite equation (3.27)

as:
μXX→h125→Y Y = κ2

Xκ2
Y × 1∑

Z
κ2

ZBRSM
h125→ZZ

(3.28)

Then finding the dependence of the signal strengths is equivalent to finding the dependence
of the scaling factors κX .

We can also define reduced couplings directly in the Lagrangian as:

CXX =
C2HDM

h125XX

CSM
h125XX

, CH+ = C2HDM
h125H+H−

v

2m2
H+

(3.29)

with CSM
h125XX , C2HDM

h125XX the coupling between the 125 GeV Higgs boson and two X particles
(XX = W +W −, ZZ, t̄t...) in the SM and 2HDM framework respectively, and C2HDM

h125H+H− the
coupling between the 125 GeV Higgs boson and two charged Higgs bosons defined as:

C2HDM
h125H+H− =

⎧⎨⎩− 1
2v

[
c2β

s2β
cβ−α

(
4m2

h − 8m2
12

s2β

)
+ sβ−α

(
2m2

h + 4m2
H+ − 8m2

12
s2β

)]
, mh = 125 GeV

1
2v

[
c2β

s2β
sβ−α

(
4m2

H − 8m2
12

s2β

)
− cβ−α

(
2m2

H + 4m2
H+ − 8m2

12
s2β

)]
, mH = 125 GeV

(3.30)
with s2β ≡ sin 2β, c2β ≡ cos 2β.

At LO one can relate most of the scaling factors to the reduced couplings:

κ2
W = C2

W W , κ2
Z = C2

ZZ , κ2
f = C2

ff (3.31)

with f standing for a SM fermion.
Looking at the 2HDM couplings reminded in table 3.2 one can see, after some simple math-

ematical transformations, that the reduced couplings – and hence the scaling factors κX – of
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the two neutral scalar Higgs bosons to fermions and W ± and Z0 bosons depend only on two
parameters, namely sβ−α and tan β:

h case:

⎧⎪⎪⎨⎪⎪⎩
Ch

tt = cos α
sin β

= sβ−α +
√

1 − s2
β−α × 1

tan β
,

Ch
bb = − sin α

cos β
= sβ−α −

√
1 − s2

β−α × tan β, (Type II)
Ch

W W = CZZ = sβ−α.

(3.32)

H case:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CH

tt = sin α
sin β

=
√

1 − s2
β−α − sβ−α × 1

tan β
,

CH
bb = cos α

cos β
=
√

1 − s2
β−α + sβ−α × tan β, (Type II)

CH
W W = CZZ =

√
1 − s2

β−α.

(3.33)

However the scaling factors κg, κγ and κZγ, linked to the h125 decaying respectively into
two gluons, two photons and a photon and a Z0 boson, appearing in the denominator of equa-
tion (3.28), have a more complicated shape as the decays occur through a loop (see figure 3.5
for the Feynman diagram of the h125 → γγ decay). As the decay is not reduced to a unique
vertex, the scaling factor will be a complex combination of the reduced couplings linked to the
different particles running in the loop.

t, b, τ, W±, H±h125

γ

γ

Figure 3.5: Feynman diagram of the decay of the 125 GeV Higgs boson into two photons involving a loop of fermions
– mainly top quarks – or W ± bosons. In the 2HDM, the charged Higgs bosons are also involved in the loop.

One can obtain the analytical expression of the scaling factors using the expression of the
decay width at LO. Their expressions can be found in Appendix C. Using these formulas one
can express the dependence of the scaling factors in terms of the free parameters of the model
in order to deduce the minimal set of independent parameters generating them:

κg = f(Ctt, Cbb, Ccc) = f(sβα, tβ) (3.34)
κγ = f(Ctt, Cbb, Ccc, Cττ , CW W , CH+) = f(sβα, tβ, m2

12, mH+) (3.35)
κZγ = f(Ctt, Cbb, Ccc, Cττ , CW W , CH+) = f(sβα, tβ, m2

12, mH±) (3.36)

This time, in addition to sβ−α and tan β, the scaling factors depend also on m2
12 and mH± .

This new dependence comes entirely from the presence of the charged Higgs boson in the
loop which induces the appearance of a term proportional to the reduced coupling CH+ in the
analytical expression of the decay width.

So far we have only looked at the case where mA > 125
2 GeV and mh > 125

2 GeV.
If mA < 125

2 GeV then new decay channels are open: h125 → AA and h125 → ZA. Hence
equation (3.28) becomes:

μXX→h125→Y Y = κ2
Xκ2

Y × 1
Γ2HDM

h125→AA
+Γ2HDM

h125→ZA

ΓSM
tot

+∑
Z

κ2
ZBRSM

h125→ZZ

(3.37)
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with the value of Γ2HDM
h125→AA and Γ2HDM

h125→ZA depending on mA. Therefore the signal strength will
depend on five independent parameters this time, namely sβ−α, tan β, m2

12, mH± and mA.
In the area mh < 125

2 GeV – and hence mH = 125 GeV – the decays H → hh and H → Zh
are possible. Hence, following the above discussion, the signal strengths will depend on an
additional independent parameter, namely mh.

In conclusion, in the case where mA > 125
2 GeV and mh > 125

2 GeV the signal strengths
depend on four independent parameters, namely sβ−α, tan β, m2

12 and mH± . It follows that
the log-likelihood function depends only on these four parameters and that the resulting Δχ2

function will have four degrees of freedom.
In the case where mA < 125

2 GeV and/or mh < 125
2 GeV the signal strengths depend also on

mA and/or mh. Then the log-likelihood function depends on these five or six parameters and
the resulting Δχ2 function will have five or six degrees of freedom.

3.4.1.2 Computation of the signal strengths in the 2HDM framework

Now that the independent parameters generating the signal strengths in the 2HDM framework
have been identified we can search for the minimum of the total log-likelihood function.

The first step is to compute the numerical value of the signal strength for a given set of
2HDM free parameters; then, using equations (2.5) and (3.23), one can compute the numerical
value of the total log-likelihood.

For this we used the program 2HDMC which takes as input numerical values for the seven
free parameters of the model and computes, for this specific set of parameters, the numerical
values of the couplings, branching ratios and total decay width of the different Higgs bosons in
the 2HDM framework. Combining branching ratios and total decay width makes it possible to
derive the partial decay widths.

We compute the numerical value of the signal strength using the following formulas:⎧⎪⎪⎪⎨⎪⎪⎪⎩
μgg→h125→Y Y = κ2

g × BR2HDM
h125→Y Y

BRSM
h125→Y Y

, κ2
g ≡ Γ2HDM

h125→gg

ΓSM
h125→gg

μV BF,V H→h125→Y Y = κ2
V × BR2HDM

h125→Y Y

BRSM
h125→Y Y

, κ2
V ≡

{
s2

β−α, mh = 125 GeV
c2

β−α, mH = 125 GeV
(3.38)

As mentioned above, the numerical values of the branching ratios and partial decay widths in
the 2HDM framework are obtained using the program 2HDMC. The corresponding values in the
SM framework are taken from [23] (see also table 2.2).

Using both 2HDM and SM results one can compute the scaling factors κg and κV numeri-
cally and hence the two signal strengths μgg→h125→Y Y and μV BF,V H→h125→Y Y in a specific decay
channel Y Y following equation (3.38).

Finally, using equations (2.5) and (3.23) one has access to the numerical value of the total
log-likelihood −2 ln Ltot for a given set of the free parameters.

3.4.1.3 Minimization of the log-likelihood

We have shown in section 3.4.1.2 how to derive the numerical values of the signal strengths
and of the total log-likelihood function −2 ln Ltot in the 2HDM framework. The next step is
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to compute the minimum of this function. For this we used the program Minuit2.

Minuit2 is a Root package which is dedicated to the search of the global minimum of a
given function. The user can choose from several minimization methods. Then one needs to
supply the program with a function that takes a number npar of input parameters and specify
if these parameters are fixed to a specific value or if they vary, either freely or inside a given
range. For each variable parameter the user needs to provide an initial value inside the search
interval.

Once launched, Minuit2 uses the above information and the selected numerical method to
find the minimum of the function.

In our case, the function to be minimized by Minuit2 is the total log-likelihood function.
However, instead of giving an analytical expression of the log-likelihood at LO, which is possible
using the formulas reminded in Appendix C but has the drawback of omitting all QCD correc-
tions available in 2HDMC, we decided to compute it via 2HDMC, as explained in section 3.4.1.2.

For each 2HDM type we performed a minimization of the 8 TeV and 13 TeV total log-
likelihood for both 125 GeV Higgs boson candidates h and H in each of the four areas defined
by:

A1 = {mA ≥ 125
2 GeV, mh ≥ 125

2 GeV}, A2 = {mA <
125
2 GeV, mh ≥ 125

2 GeV},

A3 = {mA ≥ 125
2 GeV, mh <

125
2 GeV}, A4 = {mA <

125
2 GeV, mh <

125
2 GeV} (3.39)

Note that, in the case where mh = 125 GeV, the last two areas A3 and A4 are empty and hence
are not considered.

The numerical values of the fixed and free input parameters are summarized in tables 3.5,
3.6 and 3.7.

Fixed mh mH mA (GeV)
parameters (GeV) (GeV) mA ≥ 125

2
Value 125 300 300

Table 3.5: Value of the three (two) fixed parameters im-
plemented in Minuit2 in the case where mh = 125 GeV. In
this case, mA can be fixed – if mA ≥ 125

2 GeV – or can vary.

Fixed mh (GeV) mH mA (GeV)
parameters mh ≥ 125

2 (GeV) mA ≥ 125
2

Value 80 125 300

Table 3.6: Value of the three (two, one) fixed parameters
implemented in Minuit2 in the case where mH = 125 GeV.
In this case, mA can be fixed – if mA ≥ 125

2 GeV – or can
vary and mh can be fixed – if mh ≥ 125

2 GeV – or can vary.

Free parameters sin(β − α) tan β
m12 mH+ mh (GeV) mA (GeV)

(GeV) (GeV) mh < 125
2 mA < 125

2
Range of variation [-1;1] [0.5;50] [-2000;2000] [75; 2000] [2; 62.5] [2; 62.5]

Initial value

{
1, mh = 125 GeV
0, mH = 125 GeV

20 0 1000 30 30

Table 3.7: Range of variation of the four (five, six) free parameters and their initial value implemented in Minuit2.

The minima of the total log-likelihood functions found by Minuit2 for all these cases are
written in table 3.8 for the 8 TeV data and in table 3.9 for the 13 TeV data.
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mh = 125 GeV mH = 125 GeV
Type I II Y X I II Y X
A1 6.01616 3.13212 1.95256 6.01617 6.01613 3.31005 1.95235 5.74596
A2 6.42363 3.28603 1.87369 8.07468 9.08227 3.30589 2.37654 5.78563
A3 / / / / 8.09083 3.56058 2.37627 25.6556
A4 / / / / 6.31839 3.30193 2.40931 23.4568

Table 3.8: Minima of the total log-likelihoods at 8 TeV found by Minuit2 in the four different 2HDM types based on
experimental data at 8 TeV [20].

mh = 125 GeV mH = 125 GeV
Type I II Y X I II Y X
A1 17.1627 13.6382 12.6642 17.1628 17.1626 13.6379 12.6641 17.0813
A2 17.3405 14.529 13.0788 17.7384 17.3196 14.0232 12.6647 17.745
A3 / / / / 21.4669 16.6657 12.9247 21.385
A4 / / / / 20.0162 14.0909 13.0214 20.8334

Table 3.9: Minima of the total log-likelihood at 13 TeV found by Minuit2 in the four different 2HDM types. The
computation uses the following 13 TeV results: ATLAS analyses on ZZ [27] and γγ [29] decay channels and CMS
analyses on ZZ [28], γγ [30], W W [31] and ττ [32] decay channels.

3.4.1.4 Enforcing the LHC 125 GeV Higgs constraint

Once the minima are found, one can compute the numerical value of
Δχ2

n = −2 ln Ltot − min(−2 ln Ltot) for a given set of 2HDM free parameters: using equa-
tions (3.38), (2.5) and (3.23) one can compute the numerical value of the total log-likelihood
function and the minima are listed in tables 3.8 and 3.9.

From the numerical value of Δχ2
n one is able to exclude or not the considered point.

Indeed, as explained in the last point of section 3.4.1, the point is excluded at 95% C.L. if
Δχ2

n > b2σ
n with n the number of independent parameters – that is, n = 4 in A1, n = 5 in A2

and A3 and n = 6 in A4. The numerical values of b2σ
n are reminded in table 2.4.

We are therefore able to apply two sets of constraints: the 125 GeV Higgs constraints at
8 TeV and the 125 GeV Higgs constraints at 13 TeV.

Note that all the steps described above are performed by different subroutines of my own
program.

3.4.1.5 Check of the kappa trick consistency

In the derivation of the signal strengths we have assumed that the 2HDM production cross-
section in a production mode X could be obtained by a simple rescaling by a factor κ2

X of the SM
cross-section in the same production mode (see equation (3.38)). We called this approximation
the kappa trick. In particular, we have in this approximation:

σ2HDM
gg→h125 � κ2

g σSM
gg→h125 , σ2HDM

V BF,V H→h125 � κ2
V σSM

V BF,V H→h125 (3.40)
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Although this approximation is quite good at LO in VBF and VH production modes as the
process involves direct couplings between the 125 GeV Higgs boson and a pair of W ± or Z0

bosons, it may be quite incorrect in gluon fusion production mode as the process involves a
loop of quarks and not a simple vertex between the 125 GeV Higgs boson and the two gluons.

In order to check the consistency of the kappa trick we tested the numerical value of the
cross-section in gluon fusion production mode obtained with this method against the results
given by SusHi v1.6.0 [61].

The SusHi program computes numerically the production cross-section of a neutral scalar
or pseudoscalar Higgs boson in the 2HDM or MSSM framework using numerical Monte Carlo
integration.

In the 2HDM case, SusHi takes as input a numerical value for each of the seven free pa-
rameters of the model and returns the production cross-section in gluon fusion mode and/or bb̄
production mode.

The level of accuracy, from LO to N3LO in the QCD corrections and from LO to NLO
for electroweak corrections, can be set by the user. As 2HDMC includes some NLO QCD and
electroweak corrections we decided to work at NLO with SusHi in order to have comparable
results.

The parton distribution functions used in SusHi were MMHT201468cl for LO and
PDF4LHC15_mc for NLO and NNLO [62]. The renormalization and factorization scales μR

and μF for the gluon fusion process were set to μR = μF = mφ/2 with φ = {h, H, A} [63]. As
we wanted to compare cross-sections in gluon fusion production mode, the computation in bb̄
production mode proposed by SusHi was turned off.

One can also specify the value of some SM parameters. The values we used for both SusHi
and 2HDMC are summarized in table 3.10.

mW (GeV) ΓW (GeV) mZ (GeV) ΓZ (GeV) m̄b(mb) (GeV) mt(pole) (GeV)
80.385 2.085 91.1876 2.4952 4.18 174.2

mc(pole) (GeV) αEM α αs GF (GeV)−2

1.76 1/127.934 1/137.0359991 0.118 1.16637×10−5

Table 3.10: SM input parameters implemented in SusHi and 2HDMC [10].

In order to compare the results obtained from the kappa trick and from SusHi we define the
deviation between the two methods as:

Δ ≡ σkappa trick
gg→h125 − σSusHi

gg→h125

σSusHi
gg→h125

× 100 (3.41)

◦ Check of the kappa trick consistency for the 125 GeV Higgs boson

In order to check the consistency of the kappa trick approximation in the case of a 2HDM
125 GeV Higgs boson we computed the value of the gluon fusion production cross-section via
SusHi and the kappa trick for the two separate cases mh = 125 GeV and mH = 125 GeV, the
other six free parameters being set to a fixed arbitrary value. The results at 13 TeV for three
different sets of parameters are written in table 3.11 for the mh = 125 GeV case and table 3.12
for the mH = 125 GeV case. The deviation between the two methods defined by equation (3.41)
is written in the last column.
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mh mH mA mH± m12
sβ−α tan β

σkappa trick
gg→h125

σSusHi
gg→h125

Δ
(GeV) (GeV) (GeV) (GeV) (GeV) (pb) (pb) (%)

125 700 60 250 10 0.999 10 38.023 37.385 1.72
125 200 250 120 200 -0.999 20 37.521 36.887 1.72
125 300 800 800 0 0.999 2 39.396 38.729 1.72

Table 3.11: Comparison between the cross-section of the 2HDM 125 GeV Higgs boson in gluon production mode at
13 TeV obtained with the kappa trick and SusHi. The light Higgs boson h is here assimilated with the 125 GeV Higgs
boson and the six other free parameters are fixed to a specific value. The deviation between the two methods is indicated
in the last column.

mh mH mA mH± m12
sβ−α tan β

σkappa trick
gg→h125

σSusHi
gg→h125

Δ
(GeV) (GeV) (GeV) (GeV) (GeV) (pb) (pb) (%)

80 125 60 250 10 -0.2 5 39.275 38.612 1.72
30 125 300 400 300 -0.4 20 33.123 32.563 1.72
110 125 130 70 0 -0.1 10 38.143 37.498 1.72

Table 3.12: Comparison between the cross-section of the 2HDM 125 GeV Higgs boson in gluon production mode at
13 TeV obtained with the kappa trick and SusHi. The heavy Higgs boson H is here assimilated with the 125 GeV Higgs
boson and the six other free parameters are fixed to a specific value. The deviation between the two methods is indicated
in the last column.

The deviation between the two methods for a production at 13 TeV are less than 2%,which
is a very good result knowing that the uncertainty for such computations at NLO in the SM
framework stands around 15-20% (see for instance [22]). Note that the deviation in the case of
a production at 8 TeV is similar to the 13 TeV results.

These results hence validate the use of the kappa trick for gluon fusion production mode
and, by extension, for V BF + V H production mode for the 2HDM 125 GeV Higgs boson.

◦ Check of the kappa trick consistency at low and high mass

The SusHi program computes with a good accuracy the cross-section production of a scalar
or pseudoscalar Higgs boson in the 2HDM framework for gluon fusion production and bb̄ pro-
duction. However the V BF + V H production mode, which is present in some ATLAS or CMS
analyses on light or heavy additional scalars, are not available via this program.

The kappa trick may be a good way to obtain the cross-section in V BF + V H production
mode. In order to check the validity of the method, and as we do not have any program giving
the cross-section production in V BF +V H mode in the 2HDM framework, we performed again
a check against SusHi results in gluon fusion production mode for the 2HDM non-125 GeV Higgs
boson.

For this, we fixed the mass of one of the neutral scalar Higgs bosons at 125 GeV and let the
mass of the other scalar vary freely. The five other free parameters are fixed to an arbitrary
value.

In the case where mH = 125 GeV the mass of the light Higgs boson is incremented, by
steps of 2 GeV, from 20 GeV to 110 GeV. For each value of mh, its production cross-section
at 13 TeV in gluon fusion production mode is computed via the kappa trick – represented by
the dashed blue curve in figure 3.6a – and SusHi – represented by the dashed red line. The
deviation between the two results is represented by the solid green line.
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The deviation between the two methods for a light Higgs – with mh < 110 GeV – is less
than 4%, which is very good. Hence, the kappa trick can be used in this mass range.

In the case where mh = 125 GeV the mass of the heavy Higgs boson is incremented from
130 GeV to 1000 GeV, with a step of 10 GeV for mH < 500 and 50 GeV elsewhere. As for
the low-mass case, its production cross-section at 13 TeV in gluon fusion production mode is
computed via the kappa trick – represented by the dashed blue curve in figure 3.6b – and SusHi
– represented by the dashed red line. The deviation between the two results is represented by
the solid green line.

This time the deviation is larger and goes up to 22% around mH ∼ 300 − 400 GeV. This is
due to the QCD corrections which are taken in the top quark infinite mass approximation in
the 2HDMC program. This approximation, quite good at masses mH < mt, does not reflect any
more the real corrections for intermediate masses, where the decay H → tt̄ becomes possible.
However the approximation is still good for "low"-mass ranges – mH � 125 GeV – and high-mass
ranges – mH > 700 GeV.

Hence, the only solution to obtain the production cross-section in gluon-fusion mode with
a good accuracy in the whole range of mass is to use SusHi.

(a) Cross-section in gluon fusion production mode for the
2HDM light Higgs boson h depending on its mass, the six
other 2HDM free parameters being fixed.

(b) Cross-section in gluon fusion production mode for the
2HDM heavy Higgs boson H depending on its mass, the six
other 2HDM free parameters being fixed.

Figure 3.6: Comparison between the cross-section in gluon fusion production mode obtained using the kappa trick
method and SusHi. The dashed blue lines correspond to the cross-section computed with the kappa trick, the dashed
red lines correspond to those computed with SusHi and the solid green lines correspond to the deviation between the
two methods. The value taken for the six free parameters are indicated above the graph.

3.4.2 LHC constraints on other scalars

In addition to the constraints on the 125 GeV Higgs boson coming from the LHC, one can also
constrain the other particles of the Higgs sector using ATLAS and CMS studies, as explained
in section 2.2.3.

The constraints are gathered in different subgroups that we enumerate below.
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3.4.2.1 Heavy Higgs constraints

Heavy Higgs constraints gather upper limits on processes involving either heavy scalar Higgs
bosons [64, 65, 66, 67, 68, 24, 69, 70, 71, 72, 73], both heavy scalar and pseudoscalar Higgs
bosons [74, 75, 76, 77] or pseudoscalar Higgs bosons only [78, 79].

Experimental upper limits are given in terms of production cross-section of a scalar or
pseudoscalar Higgs boson times its branching ratio in a specific decay channel. As we have seen
above, we choose not to use the kappa trick at high masses; then the theoretical value of the
scalar and pseudoscalar production cross-sections in the 2HDM framework is obtained using
SusHi. The branching ratios are obtained with 2HDMC. We will therefore restrict ourselves to
processes involving gluon fusion and bb̄ production modes.

These analyses, and in particular the following three, will be useful to constrain the 2HDM
parameter space in the case where mh = 125 GeV:

• ATLAS study at 13 TeV with 36.1 fb−1 of the process σ(gg → H) × BR(H → ZZ) [24],
• ATLAS study at 13 TeV with 36.1 fb−1 of the process σ(gg → A) × BR(A → ττ) [77],
• ATLAS study at 13 TeV with 36.1 fb−1 of the process σ(gg → A) × BR(A → Zh) ×

BR(h → bb̄) [79], with h the 2HDM light Higgs.
Note that, in the case where both the scalar H and the pseudoscalar A can contribute to
the process under study, we compute the cross-section times branching ratio values for both
particles and check if they are both below the observed upper limit. However if the masses of the
two particles are separated by less than 10 GeV, we also compare the sum of their cross-section
times branching ratio to the experimental upper limit at a mass m = mH+mA

2 .

3.4.2.2 Light Higgs constraints

Light Higgs constraints gather upper limits on processes involving direct production of light
scalars or pseudoscalars [80] or production of a pair of light scalars or pseudoscalars through
the decay of a 125 GeV Higgs boson [81, 82, 83].

When gluon fusion or bb̄ production mode of the light scalar or pseudoscalar Higgs boson
is involved we use SusHi to compute the production cross-section. When VBF production
is under study we use the kappa trick to obtain the cross-section. Moreover, when the light
scalar or pseudo scalar is produced through the decay of a 125 GeV Higgs boson, production
cross-sections of the latter is also computed using the kappa trick, regardless its production
mode.

As for the heavy Higgs case, when both the scalar h and the pseudoscalar A can contribute
to the same process and if their masses differ from less than 10 GeV, then their cross-sections
times branching ratios are summed before being checked against the experimental upper limit.

As this set of constraints includes light pseudoscalar Higgs it can usefully constrain both
mh = 125 GeV and mH = 125 GeV cases.

3.4.2.3 Charged Higgs constraints

Charged Higgs constraints gather upper limits on processes involving the production and decay
of a charged Higgs boson. The analysis can be made for two distinct ranges of masses: light
charged Higgs masses, i.e. mH± < mt � 173 GeV, and heavy charged Higgs masses, i.e.
mH± > mt.

In the low-mass region, the charged Higgs boson is mainly produced through the decay of
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a top quark. Then the experimental upper limits are given in terms of a product of branching
ratios:

BR(t → H+b) × BR(H+ → τν) (3.42)

This product can easily be computed theoretically using 2HDMC.
Note that, so far, the 8 TeV [84, 85] and 13 TeV [86] upper limits are still equivalent.

In the high-mass region the charged Higgs boson is produced essentially through associated
production with a top quark:

pp → tH+b̄ + X (3.43)
Hence, experimental upper limits are given in terms of charged Higgs production cross-section
σ(pp → tH+b̄) times branching ratio for the decay H+ → tb̄ or H+ → τν [87, 88, 86].

The branching ratios can be obtained with 2HDMC. However we cannot use SusHi to com-
pute the charged Higgs production cross-section as it is available only for neutral scalars or
pseudoscalars. However the LHC Higgs Cross-Section Working Group (LHCHXSWG) provides
a table containing the heavy charged Higgs production cross-section values at NLO for 2HDM
Type II in the range mH± ∈ [200; 2000] GeV and tan β ∈ [0.1; 60]. Hence, using an interpo-
lation, we can compute the cross-section production of a charged Higgs in 2HDM Type II for
any mass and any tan β value included in the ranges mentioned above.

In order to compute this quantity in the three other 2HDM types we followed the prescription
described in [89]. We outline the idea in the following.

In the 2HDM the coupling between a charged Higgs boson, a top quark and a bottom quark
is as follows:

gType II
tb̄H− =

√
2
(

mt

v
PR cot β + mb

v
PL tan β

)
= gFlipped

tb̄H− (3.44)

gType I
tb̄H− =

√
2
(

mt

v
PR cot β − mb

v
PL cot β

)
= gLepton-Specific

tb̄H− (3.45)

with PR/L = 1±γ5

2 the chirality projectors. Then we deduce that the charged Higgs cross-section
production through the process (3.43) will be exactly the same in Type II and in Flipped type.

Moreover, in Type II, the mt and mb terms are enhanced respectively by a factor cot β and
tan β, whereas in Type I and Lepton-Specific type mt and mb terms have are both enhanced
by the same cot β factor. Hence, as mb � mt, we have:

gType I
tb̄H− = gLepton-Specific

tb̄H− � √
2mt

v
PR cot β (3.46)

Then we can approximate the production cross-section of the charged Higgs boson as:

σType II(pp → t̄H+b)| tan β=1 ∝ 2m2
t

v2

σType I, Lepton-Specific(pp → t̄H+b) ∝ 2m2
t

v2 cot2 β

� σType II(pp → t̄H+b)| tan β=1 cot2 β (3.47)

This means that the charged Higgs production cross-section in Type I and Lepton-Specific type
for a given pair (mH+ , tan β) is simply the charged Higgs production cross-section in Type II
for a pair (mH+ , 1) rescaled by a factor cot2 β.
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Then, using the cross-section values given by the LHCHXSWG, we can easily compute the
charged Higgs production cross-section for a 2HDM Type I and Lepton-Specific type, and hence
compare theoretical cross-section times branching ratio to experimental upper limits in the four
different 2HDM type frameworks.
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4 Study of the light Higgs h – mH = 125 GeV

4.1 Introduction

The goal of this chapter is to constrain the 2HDM parameter space under the hypothesis that
the heavy scalar Higgs boson H is assimilated to the 125 GeV particle discovered at the LHC.
Therefore, for this whole chapter, we fix mH = 125 GeV.

In order to visualize the effect of the different constraints listed in chapter 3 we allow the
six free parameters to vary in a given range, summarized in table 4.1 and then generate a large
amount of random "points", each "point" corresponding to a set of fixed values for the six free
parameters of the model.

mh (GeV) mH (GeV) mA (GeV) mH± (GeV) sβ−α tan β m2
12 (GeV)2

[2 ; 110] 125 [2 ; 1000] [43 ; 1000] [-1 ; 1] [0.5 ; 60] [-(2000)2 ; +(2000)2]

Table 4.1: Range of variation for the free parameters used in the analysis.

Once the set of points is generated we check, for each of them, if they pass the different
constraints listed in section 3.3.

We will study the influence of the different types of constraint on the parameter space in
section 4.2. Then we will examine more specifically the light Higgs boson h in light of two
analyses perfomed by CMS [80, 90] and study its possible detection at the LHC.

Note that, as the results obtained in the Lepton-Specific and Flipped type frameworks are
very similar to ones obtained in Type I and Type II respectively, the figures for these two cases
will not be presented in the main text of this thesis but can be found in Appendix D.

4.2 Influence of the different constraints

4.2.1 Theoretical constraints

We have seen in section 3.3.1 that we need to impose stability, unitarity and perturbativity
constraints.

These constraints have a direct influence on the parameters λi present in the Lagrangian of
the Z2-basis, imposing both a lower and an upper bound on them. This property is illustrated
in figure 4.1a where the generated points are plotted in the plane mA vs λ1. The random
points passing the unitarity constraint are drawn in violet, the ones passing, in addition, the
perturbativity constraint are drawn in red and the ones passing, in addition, the stability
constraint are drawn in orange.

We can see that, if we apply the three constraints of unitarity, perturbativity and stability,
the parameter λ1 is restricted to values between 0 and 10. The four other λi are constrained
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in a similar way.
We can also note that, although the generated points used in figure 4.1 are generated in the

Type I framework, the constraints on the λi – and hence on the free parameters of the physical
basis – coming from the theoretical constraints are exactly the same in the four different 2HDM
types.

(a) Upper and lower bounds on λ1 parameter due to the
theoretical constraints.

(b) Upper and lower bound on the m̄2 ≡ m2
12

sβcβ
parameter

due to the theoretical constraints.

Figure 4.1: Theoretical constraints applied on the generated points. The points passing the unitarity constraint are
drawn in violet, the ones passing, in addition, the perturbativity constraint are drawn in red and the ones passing, in
addition, the stability constraint are drawn in orange.

The theoretical constraints also impose an upper bound on parameters mA and mH± . In
order to understand where this bound is coming from, we can look at figure 4.1b. The combi-
nation of the three theoretical constraints imposes an upper and a lower bound on m̄2 = m2

12
sβcβ

.
Moreover we have the following relations between the parameters of the physical basis and the
Z2-basis:

m2
A = m̄2 − λ5v

2, m2
H± = m̄2 − 1

2v2(λ4 + λ5), m̄2 = m2
12

sβcβ

(4.1)

As m̄2 is bounded from above – m̄2 < 2.5 104 GeV2 – and λ4 and λ5 are bounded from below
– λ4v

2 > −1.4 106 GeV2 and λ5v
2 > −7.5 105 GeV2 – hence mA and mH± are bounded from

above. Using equation (4.1) and the estimate of the upper and lower bounds on m̄2, λ4 and λ5,
one can find that mA < 880 GeV and mH± < 1000 GeV, which is in agreement with the upper
bounds visible on figure 4.2a.

Note that the lowest value allowed for m̄2 − λ5v
2 and m̄2 − 1

2v2(λ4 + λ5) is negative; hence
there is no lower bound on mA and mH± .

One last effect of the theoretical constraints on the free parameters is the correlation which
appears between mA and sβ−α (see figure 4.2b). The highest mA values are obtained for
|sβ−α| ∼ 0.7.
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(a) Upper bounds on both mA and mH± due to the the-
oretical constraints.

(b) Correlation between mA and sβ−α due to the theoret-
ical constraints.

Figure 4.2: Theoretical constraints applied on the generated points. The color code is the same as in figure 4.1.

4.2.2 Constraints from the oblique parameters

In the following we will consider that all the generated points are at least passing the three
theoretical constraints.

Enforcing oblique parameter constraints in the way described in section 3.3.2 has conse-
quences on the generated points illustrated by figure 4.3. The points passing the theoretical
constraints are drawn in pink and the points passing oblique parameter constraints are drawn
in light blue. The solid black line corresponds to mH± = mA.

Note that the points drawn in figure 4.3 have been generated in the Type I framework, but
the results are exactly similar in the three other 2HDM types.

Figure 4.3: Influence of the oblique parameter constraints on the generated points in the plane mH± vs mA. The points
passing the theoretical constraints are drawn in pink and the points passing, in addition, oblique parameter constraints
are drawn in light blue. The solid black line corresponds to mH± = mA. The oblique parameter constraints impose an
important correlation between mA and mH± .

We can see that oblique parameter constraints impose a strong correlation between the
pseudoscalar mass mA and the charged Higgs mass mH± . This is due to the T parameter which
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is, as we have seen in section 3.3.2, sensitive to additional – heavy – particles in the Higgs
sector. Hence, in order to keep the value of the T parameter around 0, the additional terms
arising because of the presence of the pseudoscalar and the charged Higgs bosons need to cancel
each other out, which is the case if the two particles have similar masses. This requirement is
especially true when at least the charged Higgs boson is heavy but is relaxed when both the
charged and pseudoscalar Higgs bosons are light.

4.2.3 Flavor constraints

First, in order to visualize the full influence of the flavor constraints, we will impose them
on the random points passing the three theoretical constraints but not necessarily the oblique
parameter constraints.

(a) Type I (b) Type II

Figure 4.4: Constraints due to flavor requirements in the plane tan β vs mH± . The points passing the theoretical
constraints are drawn in pink, the ones passing, in addition, the isospin asymmetry constraint are drawn in light blue,
the ones passing, in addition, the constraint on BR(Bs → μ+μ−) are drawn in dark red and the ones passing, in addition,
the constraint on BR(B̄ → Xsγ) are drawn in yellow.

Contrary to the theoretical and oblique parameter constraints the influence of the flavor
bounds on the parameter space will greatly depend on the 2HDM type considered. The results
are drawn in the plane tan β vs mH± in figure 4.4a for the Type I framework and figure 4.4b for
the Type II framework. The figures illustrating the results for Flipped type and Lepton-Specific
type can be found in Appendix D, in figures D.1a and D.1b respectively.

The points passing the theoretical constraints are drawn in pink, the ones passing, in addi-
tion, the isospin asymmetry constraint are drawn in light blue, the ones passing, in addition,
the constraint on BR(Bs → μ+μ−) are drawn in dark red and the ones passing, in addition,
the constraint on BR(B̄ → Xsγ) are drawn in yellow.

In Type I and Lepton-Specific type frameworks the flavor constraints have a very small
influence on the available parameter space. They essentially impose a lower bound on tan β
going from tan βmin ∼ 0.6 at high mH± to tan βmin ∼ 2 at low mH± , but the rejected region is
very small.

In Type II and Flipped type frameworks the constraint on BR(Bs → μ+μ−) rules out the low
tan β values as in Type I and Lepton-Specific type; however the constraint on BR(B̄ → Xsγ)
imposes a very strong constraint on mH± : the charged Higgs mass is bounded from below and,
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for almost all tan β values, this lower bound is mH±,min � 610 GeV.
The lower bound we obtain is higher than the one determined in [91], in which it is evaluated

to mH±,min = 583 GeV for tan β > 2 but it is coherent with the bound found in [92]. Note
that this lower bound strongly depends on the evaluation of the theoretical uncertainties, which
explains the discrepancy between the different papers.

(a) Type I (b) Type II

Figure 4.5: Constraints on the parameter space due to theoretical, oblique parameter and flavor constraints. The
points passing theoretical constraints are drawn in violet, the ones passing, in addition, oblique parameter constraints
are drawn in light blue, and the ones passing, in addition, flavor constraints are drawn in dark green.

We show in figure 4.5 (and in Appendix figure D.2) the influence of the flavor constraints
together with the theoretical constraints and the oblique parameter constraints.

In these figures the points passing theoretical constraints are drawn in pink, the ones passing,
in addition, oblique parameter constraints are drawn in light blue and the ones passing, in
addition, flavor constraints are drawn in dark green.

We can see that, in Type II and Flipped type, due to the correlation between mA and
mH± imposed by the oblique parameter constraints, the application of both oblique parameter
and flavor constraints imposes a lower bound on mA of around 590 GeV. Hence in these two
frameworks the pseudoscalar and charged Higgs masses are greatly constrained.

4.2.4 LEP constraints

LEP analyses [56, 93] have ruled out possible charged Higgs bosons with masses between
43 GeV < mH± < 80 GeV in a 2HDM Type II framework and 43 GeV < mH± < 72.5 GeV
if mA > 12 GeV in a 2HDM Type I framework. However these analyses had been made with
the assumption that there were no neutral scalar Higgs boson with a mass below 82 GeV.
Indeed the LEP excluded the possibility of such light neutral scalar Higgs boson in the SM
framework but in other frameworks, such as a 2HDM with the heavy Higgs H assimilated with
the 125 GeV Higgs boson, we will see that one can have a neutral scalar Higgs boson with mass
mh < 82 GeV which passes LEP constraints. Hence, the above lower bounds will not apply in
this specific chapter.

First, in order to see the effect of LEP constraints on the parameter space, we will consider
the set of points passing the theoretical constraints and check if they also pass LEP constraints.
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(a) Type I, mh > 83 GeV. (b) Type I, generic case.

Figure 4.6: Constraints on the parameter space due to LEP constraints. The points passing theoretical constraints are
drawn in violet and the ones passing, in addition, LEP constraints, are drawn in blue.

The results are presented in figures 4.6a and 4.6b for 2HDM Type I. As LEP constraints
at low mH± are not relevant in Type II because this range of mass is already ruled out by
flavor constraints, the results for Type II are only given in Appendix D (see figure D.3). In
these figures the points passing theoretical constraints are drawn in violet and those passing,
in addition, LEP constraints are drawn in blue.

In the left panel of figure 4.6 we follow reference [56] and hence require that the
blue points check also the condition mh > 82 GeV. Furthermore we focus on the region
12 GeV < mA < 70 GeV corresponding to the mass range used in [56]. In the right panel
of figure 4.6, there is no mass restriction on the light scalar.

With the restriction mh > 82 GeV on the light scalar mass the lower bound on mH± obtained
after the enforcement of LEP constraints is coherent with the LEP results [56] reminded at the
beginning of this section. However, when this restriction is removed (see figure 4.6b) the LEP
lower bound on mH± is no longer valid.

Hence, in the case of a 2HDM Type I or Lepton-Specific type, it is important to notice
that, under the assumption that mH = 125 GeV, the limit given by LEP on the charged Higgs
mass is not valid and that we need to take into account possible charged Higgs bosons with
masses below 72.5 GeV. However, as there is no LEP analysis studying charged Higgs bosons
with mass below 43 GeV we decided to impose in our study mH± > 43 GeV (see table 4.1)
even though this last condition is not fully general.

When applying all the constraints up to LEP ones, the parameter space is greatly reduced.
This is illustrated in figures 4.7 and 4.9 (and in Appendix D, figures D.4 and D.6) where green
points pass theoretical, oblique parameter and flavor constraints and blue, red and orange
points pass LEP constraints.

In figures 4.7 and D.4 one can see that important parts of the plane mh vs sβ−α are now
excluded, even though the full range of both mh and sβ−α is still available in Type I and
Lepton-Specific type. In Type II and Flipped type, the restriction is even better as the allowed
range of sβ−α is reduced by LEP constraints.

In figure 4.9 and D.6 one can see that the area passing LEP constraints in the plane mH± vs
mA is even more restricted, especially in Type I and Lepton-Specific type with the apparition
of a lower bound on mH± around 85 GeV for mA > 120 GeV.
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4.2.5 LHC constraints on 125 GeV Higgs boson

Now we look at the influence of the LHC 125 GeV Higgs boson constraints.
In the figures below, the points passing theoretical, oblique parameter and flavor constraints

are drawn in green, the ones passing, in addition, LEP constraints, are drawn in blue, the ones
passing, in addition, the 125 GeV Higgs constraints from 8 TeV data are drawn in red and
the ones passing, in addition, the 125 GeV Higgs constraints from 13 TeV data are drawn in
orange. Therefore, the most constrained points are those in orange.

We show the results in the plane mh vs sβ−α in figures 4.7 and D.4, in the plane mA vs sβ−α

in figures 4.8 and D.5 and in the plane mH± vs mA in figures 4.9 and D.6.

(a) Type I (b) Type II

Figure 4.7: Constraints on the parameter space due to LHC constraints. The points passing theoretical, oblique
parameter and flavor constraints are drawn in green. The ones passing, in addition, LEP constraints, are drawn in blue.
The ones passing, in addition, the 125 GeV Higgs constraints at 8 TeV are drawn in red and the ones passing, in addition,
the 125 GeV Higgs constraints at 13 TeV, are drawn in orange.

We can see in figure 4.7 that the range of the sβ−α parameter is greatly reduced by
the 125 GeV Higgs constraints. These constraints impose sβ−α ∈ [−0.5; 0.5] in Type I and
sβ−α ∈ [−0.4; 0.25] in Lepton-Specific type. In Type II and Flipped type the positive values of
sβ−α are almost entirely ruled out and sβ−α ∈ [−0.55; 0.05].

Moreover we can see that very few points with mh < 62.5 GeV pass the 125 GeV Higgs
constraints. This is due to the fact that the decay channel H → hh is open for mh < 62.5 GeV,
which contributes to the signal strength computation (see equation (3.37)). Hence, the signal
strength value moves away from the SM expectation value, increasing the log-likelihood. This
increase is too important to be counterbalanced by the increase of the upper bound b2σ

n due to
the additional degree of freedom gained by the chi-squared function. This explains why most
of the points in this area are ruled out by the 125 GeV Higgs constraints.

Note that, in the Type II case, as very few generated points pass LHC 125 GeV Higgs
constraints, the apparent lower bound on mh can be due to a lack of statistics, thus, with a
finer scan, some points with mh < 62.5 GeV may be able to pass these constraints.

The same phenomenon happens for the pseudoscalar in Type I and Lepton-Specific type,
illustrated by figures 4.8a and D.5. Once again, for mA < 62.5 GeV, the decay H → AA is
possible. For the same reasons as in the light scalar case, most of the points with mA < 62.5 GeV
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(a) Type I (b) Type II

Figure 4.8: Constraints on the parameter space due to LHC constraints. The color code is the same as in figure 4.7.

are hence excluded.
We can also see that, due to the 125 GeV Higgs constraints on the parameter sβ−α and the

particular shape of the allowed points in the plane mA vs sβ−α due to theoretical constraints,
mA has an upper bound around 700 GeV in Type I, 720 GeV in Type II and Flipped type and
550 GeV in Lepton-Specific type. Moreover, if future and more constraining results on 125 GeV
Higgs bosons stay around SM values, then the allowed range of sβ−α will be even more reduced
near 0, leading to the lowering of the upper bound on mA. This can be particularly interesting
in the case of Type II and Flipped type as the allowed range for mA is already considerably
reduced.

(a) Type I (b) Type II

Figure 4.9: Constraints on the parameter space due to LHC constraints. The color code is the same as in figure 4.7.

We can also note that the upper bound on mA also leads to an upper bound on mH± as the
two masses are strongly correlated (see figure 4.9 and D.6).
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4.2.6 LHC constraints on other hypothetical scalars

We have listed in section 3.4.2 the different constraints on other hypothetical scalars we con-
sidered. We will briefly summarize the consequences of each set of constraints.

4.2.6.1 Heavy Higgs constraints

The only analysis involving a neutral scalar or pseudoscalar able to constrain the gen-
erated points is the ATLAS analysis at 13 TeV giving an upper limit on the process
gg → A → Zh125 → Zbb̄ [79] – with, in this chapter, h125 = H. In figures 4.10 and D.7
the generated points passing all the constraints up to 125 GeV Higgs constraints at 13 GeV are
drawn in orange against the observed upper limit (solid black line). The points passing heavy
Higgs constraints are drawn in violet.

(a) Type I (b) Type II

Figure 4.10: Comparison between the generated 2HDM points passing all the constraints up to 125 GeV Higgs boson
constraints at 13 TeV (orange points) and the observed upper limit on the process gg → A → Zh125 → Zbb̄ at 13 TeV [79]
(solid black line). The points also passing heavy Higgs constraints are drawn in violet.

The constraint essentially excludes points with low tan β in both Type I and Type II (see
figures 4.11 and D.8). If this behavior is not theoretically obvious in Type I, it is easier to
understand in the Type II case: considering Cbb given in equation (3.33) and knowing that the
available sβ−α values are mainly negative, Cbb – and consequently the decay width – is enhanced
for low values of tan β, leading to an enhancement of the exclusion in the low tan β region.

4.2.6.2 Light Higgs constraints

Here we briefly mention the light Higgs constraints, knowing that we focus here only on the
processes involving the production of a pair of light scalar or pseudoscalar Higgs bosons. The
analyses implying the direct production of light scalar or pseudoscalar Higgs bosons [80, 90]
will be used in a more detailed study developped in section 4.3.

For the moment the observed upper limits provided by the ATLAS and CMS collaborations
are far from being able to constrain the 2HDM-generated points. Hence we will not elaborate
any further on these constraints.

83



CHAPTER 4. STUDY OF THE LIGHT HIGGS H

(a) Type I (b) Type II

Figure 4.11: Constraints on the parameter space due to heavy Higgs constraints. Same color code as in figure 4.10.

4.2.6.3 Charged Higgs constraints

The charged Higgs constraints are split into two categories: one where the search is performed
at low mH± and one where the search is done for high mH± – respectively below and above
the top mass. Note that, as low mH± values are ruled out by flavor constraints in Type II and
Flipped type frameworks, the first category of analyses cannot constrain them.

The three analyses at low mH± [84, 85, 86] allow the suppression of a great number of
generated points. Figures 4.12a and D.9a show the generated points passing all the constraints
up to 125 GeV Higgs constraints at 13 TeV in orange together with the more constraining
experimental upper limit, that is, the one given by CMS with 8 TeV data [85] (solid black line).
Points passing, in addition, all the charged Higgs constraints, are drawn in light blue.

(a) Comparison between the 2HDM
points generated in Type I framework
and the observed upper limit on the
process t → bH+ → bτντ at 8 TeV [85]
(solid black line).

(b) Consequences of the charged Higgs
constraints in the plane mH± vs tan β.

(c) Consequences of the charged Higgs
constraints in the plane mH± vs mA.

Figure 4.12: Charged Higgs constraints in the 2HDM Type I framework. The points passing all the implemented
constraints up to the LHC 125 GeV Higgs boson constraints at 13 TeV are drawn in orange and the points passing, in
addition, all the charged Higgs constraints are drawn in light blue.

In 2HDM Type I and Lepton-Specific type, the points suppressed by the low-mass charged
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Higgs constraints have mainly low tan β values (see figures 4.12b and D.9b). Indeed the cou-
plings of charged Higgs bosons to t and b quarks and to τ and ντ are both proportional to cot β
in Type I and Lepton-Specific type (see equation (3.45)). Hence, the process t → bH+ → bτντ

is enhanced by low tan β values.
Light charged Higgs constraints also have an influence on available mA values. Figures 4.12c

and D.9c show the generated points in the plane mH± vs mA with the same color code as
figure 4.12a. We can see in these plots that, in Type I, as many points with low mH± are
ruled out, the "lower leg" visible for 43 GeV < mH± < 150 GeV is depopulated. This effect
is even more visible for Lepton-Specific type. Hence, when upper limits on the process
t → bH+ → bτντ improve, we should be able to rule out the entire lower leg.

For the moment the analyses at high mH± are still far from being able to constrain 2HDM
parameter space. Hence, if charged Higgs constraints have consequences in Type I and Lepton-
Specific type using the low-mass analyses, they have no influence at all on Type II and Flipped
type frameworks.

4.2.6.4 Summary on the LHC constraints on other scalars

In order to illustrate the consequences on the 2HDM parameter space of the enforcement of
the constraints listed in section 3.4.2 and described individually above, we drew the generated
points in different planes. In these figures (figures 4.13, 4.14, D.10 and D.11) the points passing
all the constraints up to 125 GeV Higgs boson at 13 TeV are drawn in orange and the ones
passing, in addition, the LHC constraints on other scalars are drawn in dark green.

The whole parameter space is greatly reduced compared to the one we implemented initially
(see table 4.1). We can then define the range of variation for the 2HDM free parameters still
allowed by the constraints we imposed. They are summarized in table 4.2. The values written
in red correspond to bounds that have been modified with respect to table 4.1 due to the
application of the constraints.

Note that light scalars and pseudoscalars below 62.5 GeV are almost entirely ruled out
by LHC constraints on 125 GeV Higgs bosons. Updates on 13 TeV data, especially with the
publication of log-likelihood exclusion limits for WW , bb and ττ decay channels may constrain
this region and even more maybe rule it out entirely.

mh mH mA mH±
sβ−α tan β

m2
12

(GeV) (GeV) (GeV) (GeV) (GeV)2

Type I [2 ; 110] 125 [2 ; 700] [43 ; 700] [-0.5 ; 0.5] [0.5 ; 60] [-(400)2 ; +(150)2]
Type II [2 ; 110] 125 [580 ; 710] [610 ; 720] [-0.55 ; 0.05] [0.5 ; 60] [-(80)2 ; +(100)2]
Flipped [2 ; 110] 125 [580 ; 700] [610 ; 720] [-0.5 ; 0.05] [0.5 ; 60] [-(80)2 ; +(80)2]

Lepton-Specific [2 ; 110] 125 [2 ; 650] [43 ; 650] [-0.35 ; 0.2] [0.5 ; 60] [-(400)2 ; +(150)2]

Table 4.2: Reduced range of variation for the free parameters obtained after enforcing the constraints.
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(a) mA vs mh (Type I) (b) mA vs mH± (Type I) (c) m12 vs mA (Type I)

(d) mA vs mh (Type II) (e) mA vs mH± (Type II) (f) m12 vs mA (Type II)

Figure 4.13: Points passing all the constraints up to 125 GeV Higgs constraints at 13 TeV (orange) and points passing,
in addition, the LHC constraints on other hypothetical scalars (green) in different planes in the Type I (upper panel)
and Type II (lower panel) frameworks.

4.3 Study of a light neutral scalar h

Most research on additional neutral scalars is made in the heavy-mass range, i.e. at masses
above 125 GeV. The search for a possible light Higgs with a mass below 125 GeV has lost its
appeal since the ruling-out of SM Higgs bosons below 107.9 GeV by LEP [18]. However, as we
have seen above, if the light scalar under study does not have the same couplings as those of
the SM Higgs boson, it can easily pass LEP constraints. Hence, models such as 2HDM with
H assimilated to the 125 GeV Higgs boson and h a light Higgs of unknown mass, are still viable.

One important question remains. If the model with a light Higgs boson h is not ruled out,
would it be possible to detect this light particle at LHC or would it be totally out of reach?

We answered this question in a previous paper [94] based on a CMS study of a possible
light resonance in the diphoton decay channel at 8 TeV [80]. As the same analysis using
13 TeV data has been published since then [90] this question will be answered in this thesis
using these two analyses.

The CMS analysis at 13 TeV [90] presents a small local excess of 2.9 σ around 95.3 GeV.
Even though the excess is very small, it can be the hint of the presence of a new particle with
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(a) mH± vs tan β (Type I) (b) mh vs sβ−α (Type I)

(c) mH± vs tan β (Type II) (d) mh vs sβ−α (Type II)

Figure 4.14: Same as figure 4.13.

mass mh ≈ 95.3 GeV decaying into two photons. Hence I will assume in a second analysis that
this excess corresponds to a light scalar particle and will study the possibility that a 2HDM
light Higgs h is able to explain such an excess.

4.3.1 Search for a possible resonance in the γγ decay channel

In this section we study the possibility that a 2HDM light Higgs boson h may be detected
at LHC. For this, we used CMS analyses on a light scalar with mass between 70 GeV and
110 GeV decaying into two photons based on 8 TeV data [80] and 13 TeV data [90].

The CMS analyses provide upper limits on cross-section times branching ratio in ggH + ttH
production mode and V BF + V H production mode, both in diphoton decay channel. We then
need to compute the cross-section of the light Higgs boson h in the 2HDM framework for these
two production modes.

The SM cross-section production of a Higgs in ttH production mode is around two orders of
magnitude lower than the one in ggH production mode. Moreover the scaling factor κt of the
light Higgs h cannot compensate the difference in a 2HDM: indeed it is approximately cot β
(see equation (3.32)), whose value is bounded from above due to flavor constraints (cot β < 1.7,
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see section 4.2.3). Then the 2HDM production cross-section in tth production mode can be
neglected compared to the one in ggH production mode.

The cross-section in ggH production mode is computed with SusHi and the one in V BF +
V H production mode is computed using the kappa trick (see right formula of equation (3.40)).

Using the set of random points generated for the study developped in section 4.2, we found
that the cross-section times branching ratio in both Type II, Flipped type and Lepton-Specific
type frameworks are extremely low compared to the CMS upper limit in both ggH and
V BF + V H production modes, and this for both 8 TeV and 13 TeV cases (see figures D.12,
D.13 and D.14). Therefore we will only study 2HDM Type I in the following.

We generated a new set of random points using the bounds on the free parameters
found in the analysis performed in section 4.2 and imposed in addition the restriction
mh ∈ [70 ; 110] GeV in order to stay within the mass range studied by CMS.

We study two different cases: a generic one, which we call the general case, where the only
restrictions on the free parameters are the ones found in the previous study, and a second one
where the light scalar h and the pseudoscalar A are assumed to be degenerate. In this latter
case, the pseudoscalar’s mass is allowed to vary within the interval [mh − 0.5 ; mh + 0.5] GeV.

The available range of variation for the 2HDM free parameters are recalled in tables 4.3
and 4.4 for the general case and the degenerate case respectively. Note that, due to the re-
striction on the range of variation of mA and the correlation between mA and mH± because of
the oblique parameters, the upper bound on mH± in the degenerate case is lower than in the
general case (see middle panel of figure 4.13 for instance).

mh (GeV) mH (GeV) mA (GeV) mH± (GeV) sβ−α tan β m2
12 (GeV)2

[70 ; 110] 125 [2 ; 700] [43 ; 700] [-0.5 ; 0.5] [0.5 ; 60] [-(400)2 ; +(150)2]

Table 4.3: Reduced range of variation of the 2HDM free parameters used in the general case.

mh (GeV) mH (GeV) mA (GeV) mH± (GeV) sβ−α tan β m2
12 (GeV)2

[70 ; 110] 125 [mh − 0.5 ; mh + 0.5] [43 ; 220] [-0.5 ; 0.5] [0.5 ; 60] [-(400)2 ; +(150)2]

Table 4.4: Reduced range of variation of the 2HDM free parameters used in the degenerate case.

One can find the detailed results for 8 TeV data in [94]. As the main difference between the
analyses at 8 TeV and 13 TeV is that the 2HDM cross-section times branching ratio is higher
and that the experimental limit is slightly lower in the 13 TeV case than in the 8 TeV case, we
will show here only the results for 13 TeV data.

In the following figures the generated points passing all the constraints we implemented are
drawn in dark green and the ones passing, in addition, the CMS light Higgs constraints at both
8 TeV and 13 TeV are drawn in pink.

4.3.1.1 General case

We present in this section the results obtained using the general scan (see table 4.3 for details
on the allowed range for the 2HDM free parameters).

The generated points drawn against the experimental upper limit on σgg→s × BRs→γγ,
s = {h, A}, and σV BF,V H→h × BRh→γγ are shown in figures 4.15a, 4.15b and 4.15c respec-

88



4.3. STUDY OF A LIGHT NEUTRAL SCALAR H

tively.
Note that, as the 2HDM pseudoscalar A does not have tree-level coupling to W +W − nor

Z0Z0 we consider that the A production through V BF + V H production is negligible. Hence
only the light scalar h will be studied in the V BF + V H production case.

(a) Light h case in gluon fusion produc-
tion mode.

(b) Light A case in gluon fusion produc-
tion mode.

(c) Light h case in V BF + V H pro-
duction mode.

Figure 4.15: Comparison between the generated 2HDM points and the observed upper limit on the process
pp → h/A → γγ at 13 TeV [90] (solid black line). The points passing all the implemented constraints are drawn in
dark green, the ones passing in addition CMS light Higgs constraints at both 8 TeV and 13 TeV are drawn in pink.

Looking first at figures 4.15a and 4.15b we can see that the production cross-section in gluon
fusion times branching ratio is higher in the h case than the A case. Moreover the generated
points passing all the constraints we implemented are very close to the observed upper limit
obtained in the gluon fusion production mode. First, this means that, if a light Higgs similar to
a 2HDM h in Type I actually exists, then it begins to reach the sensitivity of the CMS detector
and thus could be detected. This also means that, if no excess is observed, then the analysis
in gluon fusion production mode is close to be able to constrain the 2HDM parameter space.
These two positive conclusions are a real improvement compared to the ones obtained using
only 8 TeV data [94].

Also note that, although the production cross-section times branching ratio of the pseu-
doscalar A is closer to the 13 TeV upper limit than to the 8 TeV one [94], it is still too low to
hope for a possible detection by the CMS detector.

Turning now to the V BF + V H production mode (see figure 4.15c) we can see that the
CMS detector is already fully sensitive to a possible light 2HDM Higgs boson h. Once again,
this can lead to a potential discovery if such a light particle exists and, if not, it leads to the
deletion of a great number of generated points.

Considering that the analyses do not present any excess, we can use the observed upper
limit to constrain the 2HDM generated points. This leads to a small restriction in the plane
tan β vs sβ−α and m12 vs sβ−α (see figure 4.16).

Moreover, for some parameters we can identify ranges where the cross-section times branch-
ing ratio is higher than in other regions. Note that, as A is not yet reachable by the CMS
detector, we will only look at the light scalar h cross-section times BR.

First of all, there is no privileged value of mA nor mH± where the cross-section times branch-
ing ratio values are higher than elsewhere, and this for both gluon fusion and V BF + V H
production modes. However this is not the case for the three other free parameters sβ−α, tan β
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(a) tan β vs sβ−α. (b) m12 vs sβ−α.

Figure 4.16: Restriction of the parameter space due to the CMS light Higgs constraints in the general case. Same color
code as in figure 4.15.

and m12.

(a) Influence of sβ−α. (b) Influence of tan β. (c) Influence of m12.

Figure 4.17: Value of σgg→h × BRh→γγ at 13 TeV as a function of different 2HDM free parameters in the general case.
The dashed red line corresponds to the lowest value of the observed upper limit in gluon fusion production mode. The
color code is the same as in figure 4.15.

Figures 4.17 and 4.18 show the cross-section times branching ratio values, for gluon fusion
and V BF + V H production mode respectively, of the generated points depending on sβ−α (left
panel), tan β (middle panel) and m12 (right panel). The color code is the same as the one
in figure 4.15. The dashed red line corresponds to the lowest σ × BR value of the observed
upper limit. Hence, although the points above this line are not systematically excluded by
CMS analysis, the line can nevertheless be used as a landmark representing a very rough
approximation of the observed upper limit.

We can clearly see that the high values of σ × BR are obtained for specific ranges of both
sβ−α, tan β and m12. These regions are more pronounced in the case of the V BF + V H
production mode.

We will come back to these results in section 4.3.2.
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(a) Influence of sβ−α. (b) Influence of tan β. (c) Influence of m12.

Figure 4.18: Value of σV BF,V H→h × BRh→γγ at 13 TeV as a function of different 2HDM free parameters in the general
case. The dashed red line corresponds to the lowest value of the observed upper limit in V BF + V H production mode.
The color code is the same as in figure 4.15.

4.3.1.2 Degenerate case

Now we turn to a specific case where we assume that A and h are degenerated (see table 4.4
for details on the allowed range for the 2HDM free parameters).

In the γγ decay channel we are not able to identify the scalar or pseudoscalar nature of
the decaying particle. Hence, if both h and A are degenerated, that is, if mh � mA, the
experimental number of measured events will be approximately the sum of the events produced
by the h decay and those produced by the A decay.

Note that, as production and decay modes are identical for both A and h particles in gluon
fusion production mode, interferences between decays involving A or h can happen in the
term of the total decay amplitude. We here make the naive assumption that the interference
term is zero and that we can simply add the two squared amplitudes – and hence sum the two
σ × BR. If interferences actually occur, a specific processing has to be performed. This will
not be developed in this thesis.

We therefore compute a total σgg,tot × BRγγ as:

σgg,tot × BRγγ = σgg→h × BRh→γγ + σgg→A × BRA→γγ (4.2)

We also assume that we can compare the total cross-section times branching ratio to the
observed upper limit taken at a mass m = mh+mA

2 .
Note that, as the pseudoscalar production via V BF + V H mode is negligible compared

to the scalar production, the cross-section times branching ratio in this production mode will
simply be the one corresponding to the scalar h.

The results are drawn in figure 4.19. As in the previous case, the σ × BR values in gluon
fusion production mode are very close to the observed upper limit and some generated points
can already be eliminated by experimental analysis. The σ ×BR are higher than in the general
case due to the degeneracy of h and A, increasing the chance to detect them in the CMS
detector.

In the case of a V BF + V H production mode many points are well above the experimental
upper limit, leading to the elimination of a large amount of generated points.

As in the general case, some exclusion in the parameter space can be performed in the plane
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(a) σgg,tot × BRγγ as a function of mh+mA
2 . (b) σV BF,V H→h × BRγγ as a function of mh.

Figure 4.19: Comparison between the generated 2HDM points and the observed upper limit on the process
pp → h/A → γγ at 13 TeV [90] (solid black line) in the degenerated hypothesis. The color code is the same as in
figure 4.15.

tan β vs sβ−α and m12 vs sβ−α (see figure 4.20). We can also identify regions with high values
of σ × BR for some specific ranges of sβ−α, tan β and m12 (see respectively figures 4.21a, 4.21b
and 4.21c for the gluon fusion production case and 4.22a, 4.22b and 4.22c for the V BF + V H
production case).

4.3.1.3 Summary of the two analyses

The two studies show that a light Higgs boson h may be within reach of the LHC. In particular,
the degenerate case where mA ∼ mh presents an enhancement of the total σ × BR in the gluon
fusion production mode compared to the one in the general case, making a potential discovery
more likely in this scenario.

In both cases, the 13 TeV data are able to constrain the generated points in 2HDM Type I.
Although this was already the case with the 8 TeV data in the V BF + V H production mode,
this was not true for the gluon fusion production mode. This is very promising and shows that
the effort on the experimental side in the low-mass regions needs to continue.

4.3.2 The 2.9σ (local) excess in the γγ decay channel

One important change between the 8 TeV and 13 TeV CMS analyses is that a small excess
appears in the 13 TeV data. Combining both 8 TeV and 13 TeV data, the excess has a local
(global) significance of 2.9σ (1.47σ) [90] at a hypothetical mass of mh = 95.3 GeV.

This excess is very small and will probably disappear after more data collection, as many
other excesses did in the past. Note however that a broad excess was already found at LEP
when combining the results of the four detectors, with a local significance of 2.3σ around
mh ≈ 98 GeV [95].

In this section we will assume that the excess corresponds actually to the presence of a
new scalar (or pseudoscalar) particle with a mass of around mh = 95 GeV decaying into two
photons. Hence, the goal of this section is to see if a 2HDM Type I would be able to explain
such an excess.
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(a) tan β vs sβ−α. (b) m12 vs sβ−α.

Figure 4.20: Restriction of the parameter space due to the CMS light Higgs constraints in the degenerate case. Same
color code as in figure 4.15.

(a) Influence of sβ−α. (b) Influence of tan β. (c) Influence of m12.

Figure 4.21: Value of σgg→h × BRh→γγ at 13 TeV as a function of different 2HDM free parameters in the degenerate
case. The dashed red line corresponds to the lowest value of the observed upper limit in gluon fusion production mode.
The color code is the same as in figure 4.15.

As we have seen in the previous section, the 2HDM Type I can generate points with
sufficiently high σV BF,V H→h × BRh→γγ values to be consistent with the excess. However high
values of σgg→h × BRh→γγ are harder to generate in this framework. Figures 4.15 and 4.19
do not show any generated points consistent with the excess in the gluon fusion production
mode for both the degenerate case and the general case, but the scans performed are quite
broad. Another scan focused on the region of interest, with the parameters sβ−α, tan β and
m12 restricted to the region where the σ × BR via gluon fusion is high (see figures 4.17 and
4.21) may generate rarer points with potentially even higher values of σ × BR.

For this, and using figures 4.17 and 4.21 to constrain the parameters sβ−α, tan β and m12
adequately, we define new ranges of variation for the 2HDM free parameters in table 4.5. Once
again, we split the analysis into two cases: the general case and the degenerated one.

As in the previous section we apply the constraints we implemented and compare the re-
sulting points with the observed CMS upper limit. The results are drawn in figure 4.23 for the
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(a) Influence of sβ−α. (b) Influence of tan β. (c) Influence of m12.

Figure 4.22: Value of σV BF,V H→h×BRh→γγ at 13 TeV as a function of different 2HDM free parameters in the degenerate
case. The dashed red line corresponds to the lowest value of the observed upper limit in V BF + V H production mode.
The color code is the same as in figure 4.15.

mh (GeV) mH (GeV) mA (GeV) mH± (GeV) sβ−α tan β m2
12 (GeV)2

[92 ; 100] 125 [2 ; 700] [43 ; 700] [-0.47 ; -0.27] [0.5 ; 2] [-(180)2 ; +(100)2]
[92 ; 100] 125 [mh − 0.5 ; mh + 0.5] [43 ; 220] [-0.5 ; -0.1] [0.5 ; 2] [-(160)2 ; +(90)2]

Table 4.5: Reduced range of variation of the 2HDM free parameters used in the general case (first line) and the
degenerate case (second line) when searching for a resonance around 95 GeV.

(a) σgg→h × BRh→γγ as a function of mh. (b) σV BF +V H→h × BRh→γγ as a function of mh.

Figure 4.23: Comparison between the generated 2HDM points generated around mh = 95.3 GeV in the general case
and the observed upper limit on the process pp → h/A → γγ at 13 TeV [90] (solid black line). Same color code as in
figure 4.15.

general case and figure 4.24 for the degenerate case.
We can see that, if the slight excess present in the CMS data in the V BF + V H production

mode can easily be explained by a 2HDM light h in Type I framework, this is not the case for the
gluon fusion production mode where no generated point has sufficiently high σgg→h × BRh→γγ

values, even in the degenerate case. Hence, if the excess is confirmed by future analyses, the
four types of 2HDM would be excluded.
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(a) σgg,tot × BRγγ as a function of mh+mA
2 . (b) σV BF +V H→h × BRh→γγ as a function of mh.

Figure 4.24: Comparison between the generated 2HDM points generated with a mass of around mh = 95.3 GeV in the
degenerate case and the observed upper limit on the process pp → h → γγ at 13 TeV [90] (solid black line). Same color
code as in figure 4.15.

4.4 Conclusion

In this part I have studied the four possible CP-conserving types of 2HDM under the hypothesis
that the heavier Higgs H is assimilated to the 125 GeV Higgs boson discovered at the LHC.
With this assumption, the mass of the 2HDM light Higgs boson h is lower than 125 GeV.

Such a light particle is often thought to have been ruled out by LEP analyses; however,
if LEP experiment has excluded SM Higgs boson below 107.9 GeV [18], a light scalar with
couplings different from those of the SM Higgs boson can still pass LEP constraints successfully.
Hence, it is still very interesting to probe the low-mass region as light scalars could still exist
there.

I have shown carefully the influence of each constraint listed in section 3.3 on the allowed
parameter space, including LHC constraints on 125 GeV Higgs boson and on other hypothet-
ical scalars. These constraints, taken together, provide an important restriction on the free
parameters of the model.

Figures 4.13 and 4.14 show, in dark green, the parameter space still allowed in 2HDM
Type I and II after imposing the constraints. The allowed regions are drastically reduced,
especially in Type II which is very sensitive to flavor constraints. The region where h and
A are simultaneously very light – below mh,A = 125

2 GeV – is extremely constrained by LHC
125 GeV Higgs constraints and may be entirely ruled out by the end of LHC Run II.

In a second part I have studied specifically the constraints on the light Higgs h using two
CMS studies [80, 90] working on the process pp → h, A → γγ for light h or A. For this I worked
in two different scenarios: the first one, called general case, where h has to be light but A does
not have to be, and a second one, called degenerate case, where h is light and the mass of A is
within ±0.5 GeV around the mass of h such that the two particles are degenerated.

We have seen that the currently observed upper limits are unable to constrain either 2HDM
Type II, Flipped or Lepton-Specific types. However, in Type I only, the 13 TeV analysis is
able to constrain the parameter space in both ggh and V BF + V H production mode. This is
a great improvement as, with the 8 TeV data, only the analysis performed in the V BF + V H
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production mode was able to constrain the generated points. This also means that a light
2HDM scalar or pseudoscalar is now within the reach of the LHC and that such a particle, if
it exists, can possibly be detected.

Still using the CMS study at 13 TeV [90] I assumed next that the small excess present in
the data was the sign of a new particle with a mass of around 95.3 GeV and checked if a light
scalar h and/or a light pseudoscalar A in a 2HDM Type I framework were able to produce such
a signal. I performed this study in the two scenarios – general and degenerate cases – described
above.

I have shown that such an excess around 95.3 GeV can be produced in the V BF + V H
production mode but not in the gluon fusion production mode. Hence, if such a particle is
confirmed, the 2HDM would not be able to produce a suitable candidate and would be ruled
out.
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5 Study of the heavy Higgs H – mh = 125 GeV

5.1 Introduction

The goal of this chapter is to constrain the 2HDM parameter space under the hypothesis
that the light scalar Higgs boson h is assimilated to the 125 GeV particle discovered at LHC.
Therefore, in this whole chapter, we fix mh = 125 GeV.

In addition we will work during all this chapter in the alignment limit, defined as
the assumption that the couplings of the 2HDM 125 GeV Higgs boson have to be SM-like
within 1% uncertainty. As a consequence, the parameter sβ−α has to be very close to unity:
|sβ−α| ∈ [0.99; 1].

The framework of alignment limit, although not totally general, gathers most of the valid
2HDM points as the LHC constraints on 125 GeV Higgs boson impose that the couplings of
the 2HDM neutral scalar assimilated to the 125 GeV Higgs boson have couplings close to the
SM Higgs boson ones.

As in the previous chapter we allow the 2HDM free parameters to vary inside a given range
(see table 5.1). We generate a large amount of random points before applying the different
constraints listed in section 3.3.

Only Type I and Type II 2HDM frameworks will be studied in this chapter as we have seen
in chapter 4 that the Lepton-Specific and Flipped types are similar to Type I and Type II
respectively.

mh (GeV) mH (GeV) mA (GeV) mH± (GeV) | sin(β − α)| tan β m2
12 (GeV)2

125 [129;2000] [2;2000] [min∗;2000] [0.99;1] [0.5;60] [-(2000)2;+(2000)2]

Table 5.1: Allowed range of variation for the free parameters in the alignment limit. The min∗ is taken to 70 GeV for
Type I and 580 GeV for Type II.

Note that, under the assumption that mh = 125 GeV, the decoupling limit, i.e. the limit
where mH , mA, mH± → ∞, is reachable [96, 97], contrary to the case where mH = 125 GeV, as
we have seen in the previous chapter. Hence, the available parameter space is much larger. We
choose to impose an upper bound of 2000 GeV on both mH , mA and mH± as we have to work
with finite ranges to generate random points, but this bound is arbitrary and could be set to a
higher value.

In order to generate points everywhere in the parameter space, especially in the high-mass
regions, we decided to split the parameter space into five subregions. The allowed ranges of
variation for the 2HDM free parameters in each of these regions are summarized in table 5.2.

The minimum value for mH± is taken to min∗ = 70 GeV for Type I and min∗ = 580 GeV
for Type II. The lower bound in Type I is a consequence of LEP constraints (see section 5.2.4)
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whereas the one for Type II is due to flavor constraints and is taken according to [91] (see
section 5.2.3 for further informations). The different allowed ranges, especially for m2

12, will be
justified in the following sections.

We will remind quickly the influence of the theoretical, oblique, flavor and LEP constraints
on the parameter space as they have broadly the same effect as in the mH = 125 GeV hypothesis
developped in chapter 4. Then we will study in more details the consequences of the LHC
constraints, both due to the 125 GeV Higgs boson and to additional hypothetical scalars.
Finally we will summarize the effects of all these constraints in section 5.2.7.

no
mh mH mA mH± |sβ−α| tan β

m2
12

(GeV) (GeV) (GeV) (GeV) (GeV)2

0

125

[129;700] [2;62.5] [min∗;640]

[0.99;1] [0.5;60]

{
[−(500)2; +(200)2], Type I
[−200; 200], Type II

1 [129;750] [62.5;400] [min∗;750]

{
[−(500)2; +(0.706 mA + 94)2], Type I
[−(200)2; +(0.706 mA + 94)2, Type II

2 [129;1000] [400;750] [min∗;1000]

{
[−(500)2; +(0.706 mA + 94)2], Type I
[−(200)2; +(0.706 mA + 94)2, Type II

3 mA ± 350 [750;1000] mA ± 350 [(0.706 mA − 506)2 ; (0.706 mA + 94)2]
4 mA ± 250 [1000;2000] mA ± 250 [(0.706 mA − 506)2 ; (0.706 mA + 94)2]

Table 5.2: The different scans actually used to probe the parameter space. The min∗ is taken to 70 GeV for Type I
and 580 GeV for Type II.

5.2 Influence of the different constraints

5.2.1 Theoretical constraints

As in the previous chapter the theoretical constraints impose lower and upper bounds on the λi
present in the Lagrangian of the Z2-basis. However, contrary to the mH = 125 GeV hypothesis,
the decoupling limit where mH , mA, mH± → ∞ is not ruled out [96, 97].

Figure 5.1: Points passing the three theoretical constraints in the plane m12 vs mA.

The theoretical constraints also impose a correlation between mA and m2
12 due to equa-

tion (4.1), which is also a new consequence compared to the mH = 125 GeV hypothesis. This
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behaviour can be visualize in figure 5.1 where points passing theoretical constraints are drawn
in violet. We can see that, as mA grows, available m12 value grows as well.

Indeed, as m2
A = m̄2 − λ5v

2 and as λ5 is bounded from below, high values of mA require
high values of m̄. Moreover, we have:

m̄2 ≡ m2
12

sβcβ

= m2
12 × 1 + tan2 β

tan β
(5.1)

As tan β will be bounded from below due to flavor constraints (see section 5.2.3), hence
high m̄2 values imply either large tan β with positive m12 values or smaller tan β with large
(positive) m12 values. This reasoning explains the rise of the available m12 values for increasing
mA which can be seen in figure 5.1.

Moreover, for a given value of mA, the fact that λ5 is bounded from above and below due to
theoretical constraints implies, via equations (4.1) and (5.1) that m12 is bounded from above
and below as well. Using these results and with the help of figure 5.1 we are able to estimate
the upper and lower bounds on m12 as a function of mA. The result is summarized in the last
column of table 5.2.

5.2.2 Constraints from the oblique parameters

As in chapter 4 the oblique parameter constraints impose strong correlations between the masses
of the different Higgs bosons. However, in the mh = 125 GeV hypothesis, H can also be heavy,
not just A and H±.

Hence, the oblique parameters, in addition to enforcing a correlation between mA and mH± ,
also impose a correlation between mH and the masses of the pseudoscalar and charged Higgs
bosons.

This behavior is shown in figure 5.2 where the points drawn in the plane mH vs mA pass
both theoretical and oblique parameter constraints. Note that this last constraint does not
depend on the 2HDM type but, as the lower bound on mH± due to flavor constraints in 2HDM
Type II is implemented directly in the scans (see table 5.1) we show the results for both Type I
– left panel of figure 5.2 – and Type II – right panel.

The color of the points in figure 5.2 depends on the value of mH± . One can see that mA and
mH are strongly correlated, with mH − mA → 0 for high-mass values, and that, as mH and mA
grow, the allowed mH± values grow as well.

5.2.3 Flavor constraints

The influence of flavor constraints in Type I and II is exactly similar to the one obtained in
section 4.2.3 in the mH = 125 GeV hypothesis.

However the constraint due to the B̄ → Xsγ process, besides imposing a lower bound on
mH± in 2HDM Type II, also rules out a very large amount of points spread out in the whole
parameter space without suppressing a precise region. For that reason, it becomes technically
difficult to work with a representative amount of points after the imposition of the flavor
constraint.

One solution would be to generate more points initially in order to still have a substantial
random set after imposing flavor constraints, but it would be too time-consuming.

We choose instead not to use SuperIso to impose the constraints due to the B̄ → Xsγ
process but instead to impose in Type II a fixed lower bound on mH± set to 580 GeV according
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(a) Type I (b) Type II

Figure 5.2: Points passing the theoretical and oblique parameter constraints in the plane mH vs mA. The color depends
on the mH± value.

to [91]. This value will not be very accurate in the low tan β region as the lower bound
increases drastically (see figure 4.4b), but still makes it possible to roughly take into account
this important bound.

5.2.4 LEP constraints

LEP constraints in the mh = 125 GeV hypothesis are still important to constrain both possible
light pseudoscalar A and light charged Higgs H±. Note that, under this hypothesis, no CP-
even scalar can have a mass below 82 GeV. Hence, LEP constraints given on mH± , that is,
mH± > 72.5 GeV if mA > 12 GeV in 2HDM Type I, are actually verified. This justifies the
lower bound chosen for mH± in Type I scans (see table 5.1).

5.2.5 LHC constraints on the 125 GeV Higgs boson

In the following we show a selection of figures illustrating the effect of the 125 GeV Higgs
constraints at 8 and 13 TeV on the parameter space.

The points passing all the constraints up to LEP ones are drawn in dark blue, the ones
passing, in addition, LHC constraints on the 125 GeV Higgs boson at 8 TeV (and 13 TeV) are
drawn in red (orange).

The main effect of these constraints is to greatly constrain the pseudoscalar at low mass
– mA < 62.5 GeV and to reduce significantly the available range of negative sβ−α in 2HDM
Type II.

The first effect is visible in figure 5.3 which shows the generated points in the plane m12 vs
mA. The explanation for this phenomenon is the same as in chapter 4: the h → AA decay
is open for mA < 62.5 GeV, which moves the signal strength value away from 1. Hence, the
log-likelihood increases, leading to a larger deletion of the generated points in this area.

The second effect is illustrated in figure 5.4 where the points generated in the 2HDM Type II
framework are drawn in the plane mH vs sβ−α. The similar plots in Type I framework are in
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(a) Type I (b) Type II

Figure 5.3: Generated points in the plane m12 vs mA. The points passing all the constraints up to LEP ones are drawn
in blue. The ones passing, in addition, the LHC 125 GeV Higgs constraints at 8 TeV are drawn in red and the ones
passing, in addition, the LHC 125 GeV Higgs constraints at 13 TeV are drawn in orange.

(a) Type II, negative sβ−α values. (b) Type II, positive sβ−α values.

Figure 5.4: Generated points in the plane mH vs sβ−α. The color code is the same as in figure 5.3.

Appendix E, figure E.1. Note that, if the sign of sβ−α has no influence on κ2
V and hence on

the computation of σ2HDM
V BF,V H→h125 in the kappa trick approximation (see equation (3.40)), it

will however influence the computation of Ctt and Cbb (see equation (3.32)) and, by exten-
sion, the loop amplitudes and branching ratios for the decays h125 → γγ and h125 → gg (see
equation (C.1)).

5.2.6 LHC constraints on other hypothetical scalars

5.2.6.1 Heavy Higgs constraints

We have seen in section 3.4.2.1 the different constraints on heavy scalar and pseudoscalar Higgs
bosons coming from ATLAS and CMS collaborations that we apply on the generated set of
points. The most constraining ones are [24, 77, 79]. We show as an example the generated
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points passing all the constraints up to 125 GeV Higgs bosons at 13 TeV in orange together
with the observed upper limit on the process gg → A → ττ coming from [77] in figure 5.5.
Violet points are passing in addition all the heavy Higgs constraints.

Note that the figures for the two other analyses mentioned above are shown in appendix E,
figures E.2 and E.3. We used the same color code as in figure 5.5.

(a) Type I (b) Type II

Figure 5.5: Comparison between generated 2HDM points and ATLAS observed upper limit on the process
σ(gg → A) × BR(A → ττ) [77] (black solid line). Orange points are passing all the constraints up to 125 GeV Higgs
boson constraints at 13 TeV. Violet point are passing, in addition, all the heavy Higgs constraints.

Figure 5.6 shows the 2HDM generated points in the plane mH vs mA and the consequences
of heavy Higgs constraints in this plane. The color code is the same as in figure 5.5.

(a) Type I (b) Type II

Figure 5.6: Constraints on the parameter space due to heavy Higgs constraints. The color code is the same as in
figure 5.5.

We can see that heavy Higgs constraints provide important cuts in the mH vs mA plane,
in particular in Type II (see figure 5.6b): the range mA ∈ [200; 330] GeV is totally excluded
by heavy Higgs constraints. This exclusion is essentially due to the upper limit on the process
gg → A → ττ [77] (see figure 5.5b).
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5.2.6.2 Light Higgs constraints

As in chapter 4 the constraints coming from the study of di-scalar or pseudoscalar production
is unable to constrain the generated points. However the CMS studies on direct production of
a light scalar or pseudoscalar [80, 90] are able to do so.

As h is assumed to have a mass of 125 GeV, only the pseudoscalar A can be light. Figure 5.7
shows the comparison between the generated points passing all the constraints up to LHC
125 GeV Higgs constraints at 13 TeV in orange and the observed upper limit at 13 TeV in gluon
fusion production mode (solid black line) [90]. Points passing in addition all the light Higgs
constraints are drawn in dark red.

(a) Type I (b) Type II

Figure 5.7: Comparison between generated 2HDM points and CMS observed upper limit on the process
σ(gg → A) × BR(A → γγ) [90] (black solid line). Orange points are passing all the constraints up to 125 GeV Higgs
boson constraints at 13 TeV. Dark red point are passing, in addition, all the light Higgs constraints.

Contrary to the mH = 125 GeV hypothesis the light pseudoscalar A can have values of
σgg→A × BRA→γγ sufficiently high to be above the observed upper limit in both Type I and
Type II. The CMS analysis [90] is then able to suppress some points.

In chapter 4 we made the assumption that the slight excess observed in CMS 13 TeV data in
both gluon fusion and V BF + V H production mode could be due to a spin-0 particle decaying
into two photons and we studied whether the 2HDM light Higgs h could explain it. However,
in the mh = 125 GeV hypothesis only the pseudoscalar A can be light and, if figure 5.7 shows
that the pseudoscalar may be a good candidate to explain the excess in gluon fusion production
mode, especially in Type II, the absence of V BF or V H production at tree level prevents A
from explaining the excess in the V BF + V H channel. Hence we will not reproduce the study
performed in section 4.3.2.

5.2.6.3 Charged Higgs constraints

The current constraints on charged Higgs bosons only constrain 2HDM at low mH± and hence
only in 2HDM Type I. Figure 5.8a shows the most constraining observed upper limit [85]
together with the generated points. The points passing all the constraints up to 125 GeV Higgs
boson constraints at 13 TeV are drawn in orange and the ones passing, in addition, charged
Higgs constraints are drawn in light blue. Note that heavy Higgs and light Higgs constraints
are not applied in this plot.
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(a) Comparison between the 2HDM points generated in
Type I framework and the observed upper limit on the pro-
cess t → bH+ → bτντ at 8 TeV [85] (solid black line).

(b) Consequences of the charged Higgs constraints in a
2HDM Type I.

Figure 5.8: Charged Higgs constraints in Type I. Orange points are passing all the constraints up to 125 GeV Higgs
boson constraints at 13 TeV. Blue points are passing, in addition, the light charged Higgs constraints.

Although analyses at high mH± are still not able to exclude points in 2HDM Type I and II,
the upper limit is very close to the generated points, especially in the channel pp → H+ → tb̄
(see figure 5.9). It is hence very important to continue to study these channels as, with more
luminosity, they will probably be able to constrain the 2HDM parameter space.

(a) Type I (b) Type II

Figure 5.9: Constraints on a heavy 2HDM charged Higgs together with the upper limit coming from [87]. The color
code is the same as figure 5.8a.

We can summarize this section by saying that the charged Higgs constraints have no influence
on 2HDM Type II and only slightly constrain the 2HDM parameter space in Type I, reducing
the number of available points with low charged Higgs mass. Figure 5.8b summarize this
property by showing the generated points in 2HDM Type I in the plane mH± vs mA. The color
code is the same as in figure 5.8a.
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5.2.7 Summary of the constraints

(a) mA vs mH (Type I) (b) mA vs mH± (Type I) (c) m12 vs mA (TypeI)

(d) mA vs mH (Type II) (e) mA vs mH± (Type II) (f) m12 vs mA (Type II)

Figure 5.10: Points passing all the constraints up to 125 GeV Higgs constraints at 13 TeV (orange) and points passing,
in addition, the LHC constraints on other hypothetical scalars (green) in different planes in the Type I (upper panel)
and Type II (lower panel) frameworks.

So far we have studied the influence of the different sets of constraints. In this section we
will apply all the constraints together and summarize their influence on the parameter space.

We present figures in different planes, showing for both of them the points passing all the
constraints up to LHC 125 GeV Higgs constraints at 13 TeV in orange and the ones passing, in
addition, the LHC constraints on other hypothetical scalars in dark green.

The parameter sβ−α in 2HDM Type II is the most affected by these constraints. Indeed, due
to LHC 125 GeV Higgs constraints at 13 TeV, the parameter is restricted to sβ−α ∈ [−1; −0.999]
in the negative region.

Furthermore entire mass regions in both Type I and Type II are ruled out by the different
constraints. This is particularly true in Type II, where the possible existence of a pseudoscalar
with mass mA ∈ [200; 325] GeV is totally eliminated.

Up to now studies on light di-Higgs production and heavy charged Higgs have been unable
to constrain the 2HDM parameter space, but we hope that, with more luminosity, at least the
upper limits on processes including heavy charged Higgs bosons will be relevant to put harder
exclusions on it.
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(a) mA vs tan β (Type I) (b) mH vs sβ−α, negative values
(Type I)

(c) mH vs sβ−α, positive values
(Type I)

(d) mA vs tan β (Type II) (e) mH vs sβ−α, negative values
(Type II)

(f) mH vs sβ−α, positive values
(Type II)

Figure 5.11: Same as figure 5.10.

5.3 Conclusion

In this chapter I have studied the CP-conserving 2HDM Type I and II under the hypothesis
that the lighter Higgs h is assimilated to the 125 GeV Higgs boson discovered at the LHC and
in the alignment limit framework, that is, the assumption that the couplings of the 125 GeV
2HDM Higgs boson are the same as those of the SM Higgs boson within a deviation of less
than 1%.

I have shown the influence of the different constraints on the parameter space, in particular
the LHC 125 GeV Higgs boson constraints at 8 and 13 TeV which significantly restrict the free
parameters, and particularly the sβ−α parameter in 2HDM Type II.

I have also shown that the heavy Higgs constraints, and particularly the one on the process
gg → A → ττ , are very efficient at ruling out entire parts of the parameter space in the plane
mH vs mA (see figure 5.6).

The charged Higgs constraints are currently only giving poor restrictions on the model: only
the light charged Higgs studies are able to constrain the generated points, whereas the upper
limits involving heavy charged Higgs bosons are still too high to rule out any point.

The parameter space is however greatly reduced by all the constraints and 13 TeV results
on both 125 GeV Higgs boson and other possible additional scalar resonances have greatly
improved the restrictions.
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Part III:

Composite Higgs model

The Two-Higgs Doublet model studied in the previous part of this thesis is a
theory beyond the Standard Model of particle physics but that does not answer
the issues that have been raised in section 1.3. Its main interest is that it can
be taken as an effective model describing the Higgs sector of larger and more
comprehensive theories.

In this part we will study another model called Fundamental Composite
Dynamics (FCD), based on the combination of Technicolor and Composite
Higgs theories. Both of them postulate that a new strongly coupled interaction
is acting at high energy. New gauge bosons – the so called technigluons – and
fermions – called techniquarks – come with it. Inspired by the chiral symmetry
breaking mechanism which occurs in QCD, the FCD theory assumes that,
below a certain scale ΛF CD, the global symmetry acting on the techniquarks
breaks due to a condensate, leading to the emergence of composite (pseudo-)
Goldstone bosons – similar to the QCD pions – and to heavier composite
particles corresponding to the QCD mesons and baryons.

In a first part we will recall the main properties and mechanisms of both
Technicolor and Composite Higgs theories and show how one can combine
them into a more general FCD theory. Then we will study the specific
symmetry breaking pattern SU(4) → Sp(4), which corresponds to the minimal
FCD symmetry breaking pattern.

This breaking gives rise to two scalar particles h1 and h2 and a pseudoscalar
η. We will study the phenomenology of the model and test it against oblique
parameter constraints and LHC measurements assuming the light scalar state
h1 being the 125 GeV Higgs boson and the heavier state h2 being a heavy Higgs.
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6 Fundamental Composite Electroweak
Dynamics

6.1 Introduction to Technicolor and Composite Higgs theories

We have seen in section 1.3 that the SM has pitfalls and that a complete theory of particle
physics would be needed to solve them.

The first model we studied, the Two-Higgs Doublet Model, is an extension of the SM that
has to be taken as an effective model which should ultimately be part of a more comprehensive
model. In this part we will work in the framework of one such theory that intends to address
some of the limitations of the SM.

We will study a combination of two theories, namely Technicolor (TC) and Composite Higgs
models. These two theories, based on the assumption that a new strongly coupling interaction
exists at high energy beyond the SM, have both been developed in order to solve the hierarchy
problem and to provide a dynamical explanation to electroweak symmetry breaking. They
operate on very similar principles – in particular, if all TC theories do not admit a Composite
Higgs limit, the reverse is true – explaining why their unification is so easy.

In this section we will briefly review the generic construction and behavior of both TC and
Composite Higgs models. The implementation of their combination in a specific symmetry
breaking pattern will be exposed in section 6.2 and the phenomenology of such a breaking will
be developed in section 6.3.

6.1.1 Technicolor

The TC theory was introduced by Weinberg [98] and Susskind [99] in the late 1970’s [100].
At that time the heaviest known fermion was the b quark, with a mass of around 4.18 GeV.
The W ± and Z0 bosons were still not discovered but their masses were predicted to be around
80 GeV and 90 GeV respectively.

At that time one of the challenges was to find a theory able to generate massive gauge
bosons. One possible solution was found to be the Higgs mechanism. Another one, called TC,
postulates the existence of an additional strong interaction at high energy associated with new
gauge bosons and fermions. The global flavor symmetry of these new fermions is assumed to
break at low energy in a similar way as QCD.

As SM fermions seemed almost massless at that time compared to the expected mass of W ±
and Z0 gauge bosons – the top was not yet discovered – they could be reasonably let out of the
mass generation mechanism. The question of generating large masses of fermions, such as the
top one, in TC models came later.

The idea behind TC theories is to consider a new strongly interacting gauge theory associ-
ated with a gauge group GT C = SU(NT )T C hence providing N2

T −1 new technigluons. Then one
can introduce new chiral fermions, called techniquarks, sensitive to this new strongly coupled
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interaction and transforming under a specific flavor symmetry Gf which contains at least the
electroweak symmetry SU(2)L × U(1)Y . Ordinary fermions are assumed to be singlets under
GT C but not necessarily under Gf .

In analogy with QCD [101] a technifermion condensate can appear, breaking the initial flavor
symmetry Gf into a subgroup H ⊂ Gf which has to preserve U(1)em but not SU(2)L × U(1)Y .

According to the Goldstone theorem, this breaking generates n = dim(Gf ) − dim(H) Gold-
stone bosons. Three of them remain massless and are absorbed by the W ± and Z0 gauge
bosons to give them masses. The others can remain massless or acquire a mass – and hence
become pseudo-Goldstone bosons, or pGBs – via corrections due to explicit breaking terms in
the Lagrangian of the theory.

A first pitfall of the theory is that without any additional condition it leads to correc-
tions to the ρ parameter – ρ ≡ m2

W

c2
W m2

Z
– that move drastically away from its measured value

ρ = 1.00037 ± 0.00023 [10].
In order to preserve the ρ parameter the model needs to contain a custodial symmetry, that

is, the flavor symmetry Gf must contain SU(2)L × SU(2)R which breaks to SU(2)V ⊂ H.
The flavor symmetry breaking gives rise to numerous composite particles composed of tech-

niquarks and/or anti-techniquarks. In analogy with QCD, we will call them technimesons for
integer-spin particles and technibaryons for half-interger-spin particles. All these particles have
masses M of the order of the symmetry breaking scale ΛT C : M ∼ ΛT C

4π
. The exact particle

spectrum of a given TC theory is usually found using extensive lattice computations.
In such models scalar particle singlets under H arise after symmetry breaking. The lightest

one is assimilated to the Higgs boson discovered at the LHC. We will call it σ, in analogy with
the σ/f0(500) from QCD.

The main problem with this particle is that it is rather heavy – as we have seen above,
Mσ ∼ ΛT C

4π
. As we now know, the Higgs boson is very light compared to the TC scale, and

hence the theory needs additional corrections to Mσ in order to lower it down to 125 GeV. How-
ever the appropriate corrections are difficult to obtain, often requiring important fine-tuning.

Although gauge boson masses are generated in TC theories by the dynamical electroweak
symmetry breaking, ordinary quarks and leptons are still massless and TC needs to supply a
reliable mechanism to replace the Yukawa terms of the SM Lagrangian.

One solution is to introduce, in a scenario called extended Technicolor (ETC), an additional
broken gauge interaction which allows couplings between the technifermions and the ordinary
fermions. Hence, at low energy, this interaction can be viewed as a local four-fermion interaction
of the form [102, 103]:

g2
ET C

M2
ET C

(Q̄Q)(ψ̄ψ) (6.1)

with Q a technifermion, ψ an ordinary fermion, gET C the ETC coupling strength and MET C
the characteristic mass of an ETC gauge boson. Note that the above formula is assumed to be
at low energy compared to MET C .

TC breaking leads to a non-zero value of the condensate term
〈
Q̄Q

〉
, giving rise to a fermion

mass term:
mf ≈ g2

ET C

M2
ET C

〈
Q̄Q

〉
ET C

(6.2)
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where
〈
Q̄Q

〉
ET C

is the value of the technifermion condensate evaluated at the ETC scale ∼ MET C .
In such a scenario, the different mass scales of each fermion generation would be due to

multiple breakings of the ETC gauge group, each one generating the mass of one generation
of fermions. Hence ETC would provide a dynamical explanation to the fermion masses and to
the mass splitting between generations.

However ETC theories encounter a number of shortcomings, including the cause of the
different breakings of the ETC and TC flavor symmetries, the derivation of the exact condensate
spectrum after TC breaking and the deletion of possible Flavor-Changing Neutral Currents
(FCNC) naturally arising in every ETC theory.

These FCNC are difficult to avoid or reduce. One solution to solve this problem is called
walking Technicolor, in which the evolution of the coupling constant αT C of the TC theory
depending on the energy is almost flat for a large range of energy before decreasing to zero in
the UV regime (see figure 10 in [103]).

There are obviously more requirements to obtain viable ETC/TC theories but we will not
go into further detail here. For more information on the subject, see for instance [102, 103, 104].

The TC theory was very attractive during many decades as it was able to give a dynamical
explanation to the electroweak symmetry breaking and to the gauge boson masses.

In the meantime the Higgs boson has been discovered at LHC at a mass of 125 GeV, which
is very light compared to the mass of the condensates predicted by TC theories. Lattice results
predict masses around the TeV scale for the lightest resonances [105], meaning that the theory
needs important fine-tuning to include a viable Higgs candidate with a mass comparable to the
one of the discovered Higgs boson. Hence, the initial theory has known many modifications in
order to adjust to experimental results. One of the possible modifications is to unify it with
Composite Higgs models by creating a continuous link between pure TC models and Composite
ones (see in particular section 6.2.2).

6.1.2 Composite Higgs theory

Another approach close to the TC theories is the Composite Higgs models. In these theories a
strongly interacting gauge symmetry associated with a global flavor symmetry Gf acting on the
new fermion sector also acts at high energy. The flavor symmetry Gf is broken at a scale Λ down
to a subgroup H which, contrary to TC, includes the electroweak symmetry SU(2)L × U(1)Y .

The symmetry breaking gives rise to n = dim(Gf ) − dim(H) Goldstone bosons. The Com-
posite Higgs theory requires there be at least one SU(2)L doublet amongst them that can
be identified with the SM Higgs doublet. Then another mechanism is required to break the
electroweak symmetry, giving rise to massive gauge bosons in a similar way as in the SM.

In such models additional terms break the global symmetry Gf at tree or loop level, leading
to the generation of a mass for the Goldstone bosons, and in particular for the Higgs candidate.

The great advantage of identifying the Higgs boson discovered at the LHC with a pGB is
that the pGBs are naturally light compared to the technimeson and technibaryon condensates
– which also emerge in Composite Higgs theory in a similar way as in TC – allowing the Higgs
candidate to have a mass of around 125 GeV without fine-tuning. Moreover the hierarchy
problem is also solved as corrections to the pGB Higgs candidate can only go up to the Λ scale
and no longer up to the Planck scale as it is the case for the SM Higgs boson. Hence, the
corrections to the Higgs mass are much smaller than in the SM case.
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In Composite Higgs theory the fermion masses are often obtained through partial com-
positness [106], where SM fermions mix with the new heavy fermions – which we will call
techniquarks in analogy with TC. At energy scales below Λ the techniquarks condense, giving
rise to the fermion mass terms. The hierarchy between the generations is obtained varying the
degree of coupling: light fermions will be essentially elementary whereas the heavy fermions
of the third generation will be obtained through a strong mixing with the heavy techniquark
states.

Note however that, although ETC-like and partial compositness mechanisms are the most
popular fermion mass generation mechanisms for TC and Composite Higgs frameworks re-
spectively, both ETC-like and partial compositness mechanisms can be used for either TC or
Composite Higgs theories.

6.1.3 Combining the two theories

We have seen that both TC and Composite Higgs theories are based on a strongly coupled
interaction with new particles, called techniquarks, transforming under a global flavor symmetry
Gf . This symmetry breaks at a specific scale Λ, producing technimesons and technihadrons
resulting from the condensation of the techniquarks. The symmetry breaking also generates
Goldstone bosons which can acquire a mass, albeit small compared to other condensates.

There are two main differences between these theories. First, in TC, the electroweak sym-
metry is entirely broken during the breaking of Gf whereas in Composite Higgs models, the
electroweak symmetry is preserved after Gf breaking, and another mechanism needs to be re-
sponsible for the SU(2)L × U(1)Y breaking. Second, the Higgs candidate is assimilated to the
lightest neutral scalar condensate in the TC theories and to a neutral scalar pGB being part of
a doublet of SU(2)L in the Composite Higgs theories.

A simple way to combine these two theories at an effective level is to consider a ground state
– or, equivalently, a vacuum – Σ0 which is a mixing between the TC ground state(s) ΣT C and
the Composite Higgs ground state(s) ΣC . Hence, the most general vacuum Σ0 will partially
break the electroweak symmetry. One also needs to impose that the Goldstone bosons resulting
from the Gf breaking contain a SU(2)L doublet.

Hence, in such unified theories the Higgs candidate will be a mixing between the pGB
candidate arising from the Composite Higgs part of the theory and the lightest neutral scalar
condensate, called σ, inherited from the TC theory.

6.2 The SU(4) → Sp(4) breaking: set up

We have exposed in the previous section the main aspects of the general theory we will be
working with. Now we will expose with more details the mechanism and phenomenology of
the combined theory, called Fundamental Composite Dynamics (FCD), for the specific global
flavor symmetry breaking SU(4) → Sp(4). This breaking is the minimal possible pattern.

We will assume that a condensate breaking the initial SU(4) symmetry actually exists –
which is confirmed by lattice computations [108] – but, as we keep an effective approach in
the following, we will not consider details about the initial strongly coupled interaction nor its
extensions allowing the generation of fermion masses.
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6.2.1 Preliminaries

We assume that the model relies on a strongly coupled gauge group SU(2)F CD with just two
Dirac techniquarks U and D transforming according to the fundamental representation of the
underlying gauge group. In this case the representation is pseudo-real [109], which means that
each new fermion can be described as two Weyl fermions: Qi = (UL, DL, UR, DR). Hence, the
technifermion sector in the vanishing mass limit has a SU(4) global symmetry.

The Lagrangian underlying the new sector reads (see sections 1.2.2.1 and 1.2.2.2):

L = −1
4F a

μνF aμν + Q̄j (iγμDμ) Qj − M ij
Q QiQj (6.3)

with F a
μν the field strength of the new gauge bosons associated with the SU(2)F CD gauge group,

Dμ the appropriate covariant derivative and M ij
Q a general mass matrix.

Lattice computations [108] confirm that a condensate forms in the chiral limit, breaking the
global symmetry SU(4) down to Sp(4). Then, using group theory [110], one can show that,
as the technifermions transform in the fundamental representation of SU(4), that is, acting as
a 4SU(4), then the vacuum 〈QiQj〉 breaking the symmetry acts as a 6SU(4). After symmetry
breaking, it acts as 5Sp(4)⊕1Sp(4). The 5Sp(4) corresponds to the five Goldstone bosons arising
from the breaking.

Note that the σ condensate issued from the TC part of the theory is a singlet under Sp(4)
and hence may be assimilated to the 1Sp(4) obtained above. However there are many ways
to obtain scalar singlets in FCD theories, for instance by considering condensates of the form〈
QiQjQkQl

〉
, and only lattice computations can settle which one will corresponds to the light-

est one.

In order to embed the electroweak sector in the largest SU(4) symmetry we choose to assign
the first two Weyl fermions UL and DL to a doublet of SU(2)L and the other two UR and DR

to a doublet of SU(2)R.
The resulting quantum numbers of the techniquarks and SM fermions under SU(2)F CD and

the SM gauge group SU(3)c × SU(2)L × U(1)Y are summarized in table 6.1.

SU(2)F CD SU(3)c SU(2)L QY (U(1)Y )
QT C

L = (UL, DL) 2 1 2 0
UR 2̄ 1 1 −1
DR 2̄ 1 1 1

QSM
L = (uL, dL) 1 3 2 1/3

uR 1 3̄ 1 -4/3
dR 1 3̄ 1 2/3

Table 6.1: Quantum numbers of the FCD techniquarks and the SM quarks under the new gauge group SU(2)F CD and
the SM gauge group.
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6.2.2 Vacua and generators

Now that the electroweak symmetry is embedded into SU(4) we can define two distinct vacua
breaking the SU(4) global symmetry but preserving a Sp(4) symmetry, namely:

ΣC =
(

iσ2 0
0 −iσ2

)
, ΣT C =

( 0 11
−11 0

)
(6.4)

with ΣC the vacuum leaving the electroweak symmetry unbroken, hence related to the Com-
posite Higgs theory, and ΣT C fully breaking the electroweak symmetry and hence related to
the TC models. The two matrices are therefore two viable vacua for the symmetry breaking,
each one preserving a different Sp(4) subgroup of the initial SU(4) flavor symmetry.

Moreover, group theory tells us that the unbroken generators T a of SU(4) for a given vacuum
Σ must obey the following equation:

T a · Σ + Σ · (T a)T = 0 (6.5)

which is exactly the definition of an Sp(4) Lie algebra. This relation allows the determination
of the explicit expression of the unbroken generators associated with the chosen vacuum Σ.

The unbroken generators associated with the ΣC vacuum are [109]:

Si=1,2,3 = 1
2

(
σi 0
0 0

)
, Si=4,5,6 = 1

2

(
0 0
0 −σT

i−3

)
(6.6)

Si=7,8,9 = 1
2
√

2

( 0 iσi−6
−iσi−6 0

)
, S10 = 1

2
√

2

(0 1
1 0

)
(6.7)

and the broken ones are:

X1 = 1
2
√

2

( 0 σ3
σ3 0

)
, X2 = 1

2
√

2

( 0 i112
−i112 0

)
, X3 = 1

2
√

2

( 0 σ1
σ1 0

)
, (6.8)

X4 = 1
2
√

2

( 0 σ2
σ2 0

)
, X5 = 1

2
√

2

(112 0
0 −112

)
(6.9)

The first three unbroken matrices can be thought of as the generators of the embedded
SU(2)L and the following three can be assimilated to the SU(2)R generators with, in particular,
S6 the generator of U(1)Y . Hence, the electroweak symmetry is not broken, as expected in a
Composite Higgs framework, and the custodial symmetry due to the presence of an initial
SU(2)L × SU(2)R symmetry is preserved.

Note that, in this case, the five Goldstone bosons act under SU(2)L × SU(2)R ⊂ Sp(4) as
a singlet and a bi-doublet [111]. The bi-doublet can be assimilated to the SM Higgs doublet
containing the Composite Higgs candidate h and three other fields which are absorbed by the
W ± and Z0 bosons after electroweak symmetry breaking. The singlet is a pseudoscalar state
which we will call η and which can be seen as a possible DM candidate (see section 6.3.5 for
more details).

The unbroken generators associated with the ΣT C vacuum are:

S1 + S4, S2 + S5, S3 + S6, S7,9,10, X1,2,3,5 (6.10)
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and the broken ones are:
S1 − S4, S2 − S5, S3 − S6, S8, X4 (6.11)

This time, as Si, i ∈ {1, ..., 6}, are not preserved, the electroweak symmetry SU(2)L ×U(1)Y

is broken but the charge generator Q ≡ I3 + QY

2 = S3 + S6 is still unbroken. Hence, the sym-
metry breaking preserves U(1)em as expected.

In order to unify Composite and TC approaches we define the general vacuum Σ0 as a
superposition of the two vacua above:

Σ0 = cos θ ΣC + sin θ ΣT C (6.12)

Angle θ ∈ [0; π
2 ] represents the mixing between the two theories and is a free parameter of this

FCD model. Hence, the model is similar to a Composite Higgs theory when θ → 0 and to a
TC one if θ → π

2 .

The broken generators associated with the general vacuum Σ0 are therefore:

Y 1 = cθX
1 − sθ

S1 − S4
√

2
, Y 2 = cθX

2 + sθ
S2 − S5

√
2

, Y 3 = cθX
3 + sθ

S3 − S6
√

2
, (6.13)

Y 4 = X4, Y 5 = cθX
5 − sθS

8

with cθ ≡ cos θ and sθ = sin θ.
These matrices will be used to derive the dynamical behavior of the Goldstone bosons.

6.2.3 Effective Lagrangian

The dynamical behavior of the Goldstone bosons can be obtained using the Callan-Coleman-
Wess-Zumino (CCWZ) formalism [112, 113]. For this we need to define the Σ field containing
the Goldstone boson fields:

Σ = e

i
f

5∑
j=1

φjY j

· Σ0 (6.14)
with φj, j ∈ {1, ..., 5}, the Goldstone boson fields associated with the broken generators Y i and
f the decay constant of the Goldstone bosons, similar to the decay constant fπ of the pion in
QCD.

Hence, the dynamical part of the Goldstone boson Lagrangian at the lowest order in the
chiral expansion is given by:

Ldyn = f 2Tr[(DμΣ)†DμΣ] (6.15)
with Dμ the covariant derivative:

DμΣ = ∂μΣ −
[
igW a

μ (SaΣ + ΣSaT ) + ig′Bμ(S6Σ + ΣS6T )
]

(6.16)

with Sa, a = 1...3 and S6 the generators associated with SU(2)L and U(1)Y respectively.
Developing the above Lagrangian and performing the appropriate rotation as in the SM case

make it possible to get rid of the first three Goldstone fields φ1,2,3 which are absorbed by the
W ± and Z0 bosons to give them mass.
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We are then left with only two physical fields: the Higgs candidate h which comes from the
bi-doublet of the broken SU(2)L ×SU(2)R symmetry and the pseudoscalar η, singlet under the
broken SU(2)L × SU(2)R. The Lagrangian (6.15) thus reads:

Ldyn =1
2(∂μh)2 + 1

2(∂μη)2

− 1
48f 2 (h∂μη − η∂μh)2 + O(f−3)

+
(
2g2W +

μ W −μ + (g2 + g′2)ZμZμ
) [

f 2s2
θ + s2θf

2
√

2
h

(
1 − 1

12f 2 (h2 + η2)
)

+1
8(c2θh

2 − s2
θη

2)
(

1 − 1
24f 2 (h2 + η2)

)
+ O(f−3)

]
(6.17)

In the above Lagrangian one can see that mass terms and couplings to the h and η particles
arise for the W ± and Z0 gauge bosons.

As we work in an effective theory and hence do not have an established theory of flavor
to work with, the mass terms and couplings to the Goldstone bosons for the SM fermions are
harder to implement. We will however assume, following [109], that the fermion masses are
generated via the following effective Yukawa interactions:

Lyuk = f
(
y′ i,j

u (QL,iũR,j)†
α + y′ i,j

d (QL,id̃R,j)α + y′ i,j
l (LL,il̃R,j)†

α

)
Tr[P αΣ] + h.c. (6.18)

with α = {1, 2} an SU(2)L index, i, j ∈ {1, 2, 3} generation indexes, ũR,j the charged conjugate
of the SM up-type quarks, QL,i and LL,i the SM quark and lepton left doublets respectively
and P α 4 × 4 matrices that project out of Σ the components acting as a doublet of SU(2)L.

Note that this term comes from a hypothetical four-fermion interaction term such as the
one introduced in equation (6.1).

Developing the Lagrangian (6.18) in the top sector, one finds:

fy′
t(QLt̃R)†

αTr[P αΣ] ∼ −y′
t

(
fsθ + 1

2
√

2
cθh − 1

16f
sθ(h2 + η2) + ...

)
tLt̃R (6.19)

which contains, as expected, a mass term in addition to terms describing the top couplings to
the scalar h and pseudoscalar η.

We have now almost all the pieces of the new Yukawa and Higgs Lagrangian. However,
until now, we have only focused on the Goldstone bosons coming from the SU(4) symmetry
breaking. We also have to consider the influence of the neutral composite scalar called σ, singlet
under Sp(4), that emerges naturally [114], on the above Lagrangians (6.15) and (6.18). For
this, as σ is a singlet, we simply add its kinetic term and an appropriate factor ξ(σ) depending
on the σ field in front of each term of the above Lagrangians.

116



6.2. THE SU(4) → SP (4) BREAKING: SET UP

Finally one can write the full Lagrangian as:
L = ξG(σ)f 2Tr[(DμΣ)†DμΣ]

+ 1
2∂μσ∂μσ − 1

2M2ξM(σ)σ2 (6.20)

+ f
(
ξt(σ)y′ i,j

u (QL,iũR,j)†
α + ξd(σ)y′ i,j

d (QL,id̃R,j)α + ξl(σ)y′ i,j
l (LL,il̃R,j)†

α

)
Tr[P αΣ] + h.c.

The first line corresponds to the kinetic term of the Goldstone bosons together with the
ξG(σ) correction coming from the scalar singlet σ. This term gives rise to the W ± and Z0 mass
terms, to couplings between h, η, σ and a pair of gauge bosons W +W − or Z0Z0 and to trilinear
(dynamical) couplings between the three scalars.

The second line corresponds to the kinetic and dynamical mass term of the σ field.
Finally, the last line gives rise to the fermion mass terms and to couplings between h, η, σ

and a pair of fermions. Note that, as all the Yukawa terms have the same 4-fermion origin,
one may expect that ξt(σ) = ξb(σ) = ξl(σ). We will assume this hypothesis to be true in the
remainder of this thesis.

The ξ(σ) functions introduced in the Lagrangian (6.20) can be obtained theoretically by
performing extensive lattice computations. These results do not exist yet but one can expand
the ξ functions as follows [109]:

ξG,M,t(σ) � 1 +
ξ

(1)
G,M,t

4πf
σ + 1

2
ξ

(2)
G,M,t

(4πf)2 σ2 + ... (6.21)

with ξ(1), ξ(2), additional unknown constant parameters of order unity and f the Goldstone
boson decay constant already introduced.

Hence, using the different equations developed above, one can expand the Lagrangian (6.20)
in order to obtain the gauge and fermion masses [109]:

m2
W = 2g2f 2s2

θ, m2
Z = m2

W

cos2 θW

, (6.22)

yfv√
2

≡ mf = y′
ffsθ ⇒ yf =

y′
f

2 (6.23)

with yf the SM Yukawa couplings.
Note that the expression of mW leads to a relation between the SM vev v = 245 GeV and

the Goldstone bosons decay constant f :

v ≡ 2mW

g
= 2

√
2fsθ (6.24)

The development of Lagrangian (6.20) also gives us access to the explicit expression of the
couplings involving at least one h, η or σ particle [109]. These couplings normalized to their
SM values are summarized in table 6.2.

Using the results in table 6.2, we can note that the η cannot decay at tree level into a pair
of gauge bosons nor into a pair of fermions. Indeed we can see that the full Lagrangian (6.20)
is invariant under the symmetry:

η → −η (6.25)
which prevents the η particle from decaying. It is then stable and can potentially be a DM
candidate. We will further study this hypothesis in section 6.3.5.
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V V = WW , ZZ ff̄

h cθ cθ

σ ξ̃Gsθ ≡ ξ
(1)
G

2
√

2π
sθ ξ̃f sθ ≡ ξ

(1)
f√
2π

sθ

η - -

Table 6.2: Coupling of h, σ and η to the gauge bosons and fermions normalized to the SM value.

6.2.4 Mass generation of the pseudo-Goldstone bosons

We have established how the W ± and Z0 gauge bosons and the SM fermions acquire a mass
and found the tree-level coupling between the scalars of the theory and the gauge bosons and
fermions. However we still need to look at how the Goldstone bosons h and η acquire a mass
and hence become pGBs.

We have seen that the initial SU(4) symmetry is dynamically broken down to Sp(4) by the
appearance of a condensate, as in QCD. However there are terms in the Lagrangian which break
explicitly the SU(4) symmetry. The corrections coming from these terms will generate a small
mass for the two pGBs and modify the mass of the σ which was initially a pure dynamical M
term.

The most obvious explicit symmetry breaking term comes from the techniquark mass term
−M ij

Q QiQj (see equation (6.3)) if the mass MQ is aligned with the vacuum ΣC : MQ ∝ ΣC .
Performing an infinitesimal SU(4) transformation, one can check that the mass term stays
invariant if and only if the SU(4) generators check equation (6.5), that is, if they are unbroken
under the Sp(4) symmetry related to the Σ vacuum [109]. The other generators are thus broken
by this term.

Corrections will also arise due to the embedding of the partially broken SU(2)L × U(1)Y

symmetry and to top couplings to the vacuum [109].
The potential term which needs to be added to the Lagrangian in order to take into account

these corrections is of the form:

Vcorr = ξG(σ)Vgauge + ξ2
t (σ)Vtop + ξm(σ)Vm (6.26)

where the ξ(σ) factors have been added to take into account the influence of the σ particle.
As the corrections coming from the gauge sector are small compared to the ones from the

top sector [109] we will neglect the Vgauge term in the following.
Based on the formalism developed in [115] one can deduce the expression of the resulting

radiative corrections. Their general shapes have been computed in [116, 117] and developed in
our notations in [109]:

ξ2
t (σ)Vtop ∼ −ξ2

t (σ)Cty
′2
t

(
f 4s2

θ + 1√
2

f 3cθsθh + 1
8f 2(c2θh

2 − s2
θη

2) + ...

)

ξm(σ)Vm ∼ ξm(σ)Cm

(
−4f 4cθ +

√
2f 3sθh + 1

4f 2cθ(h2 + η2) + ...
)

(6.27)

with Ct and Cm order 1 coefficients determined by the dynamics.
Using the two above equations and setting all fields to zero, one can deduce that the mini-
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mization condition of the potential Vcorr(θ) writes:

cos θ|min = 2Cm

y′2
t Ct

, y′2
t Ct > 2|Cm| (6.28)

This condition allows the substitution of Cm in the expression of Vcorr.
From equation (6.27) one can deduce the mass of the pseudoscalar η:

m2
η = y′2

t Ctf
2

4 (6.29)

We can also see that, due to the ξ(σ) factors added to the loop corrections the scalar h is
not a mass eigenstate and mixes with the σ field. Hence we introduce the mass eigenstates h1
and h2, with mh1 < mh2 , defined as the rotation by an angle α of composite states h and σ:(

h1
h2

)
=
(

cα sα

−sα cα

)(
h
σ

)
(6.30)

The mass matrix in the (h, σ) basis writes [109]:

M =
(

m2
h m2

hσ

m2
hσ m2

σ

)
,

m2
h = m2

ηs2
θ, m2

σ = M2 − m2
η

[(
ξ̃2

t + ξ̃
(2)
t

)
s2

θ + ξ̃(2)
m c2

θ

]
(6.31)

m2
hσ = −1

2m2
ηs2θ

(
2ξ̃t − ξ̃m

)
with the ξ̃ defined for simplicity as:

ξ̃G = ξ
(1)
G

2
√

2π
, ξ̃t = ξ

(1)
t√
2π

, ξ̃m = ξ(1)
m√
2π

,

ξ̃
(2)
G = ξ

(2)
G

4π2 , ξ̃
(2)
t = ξ

(2)
t

2π2 , ξ̃(2)
m = ξ(2)

m

2π2 (6.32)

From the above equations we can deduce the mass eigenvalues mh1 and mh2 [109]:

m2
h1,2 =1

2
[
M2 − m2

η

(
ξ̃(2)

m c2
θ + (ξ̃2

t + ξ̃
(2)
t − 1)s2

θ

)
∓
√[

M2 − m2
η

(
ξ̃

(2)
m c2

θ + (ξ̃2
t + ξ̃

(2)
t + 1)s2

θ

)]2
+ m4

ηs2
2θ(2ξ̃t − ξ̃m)2

]
(6.33)

constructed such that mh1 < mh2 . In addition, one can show [109] that the following bound
stands:

mh1 ≤ mηsθ (6.34)
Hence, the light Higgs h1, which will be assimilated to the 125 GeV Higgs, will be lighter than
η. Therefore, there will not be any new decay such as h1 → ηη nor h1 → h2h2.
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6.2.4.1 Scalar trilinear couplings

The potential term Vcorr together with the Lagrangian (6.20) allow the extraction of the tree-
level trilinear couplings between the scalars h, η and σ. In particular one can find:

gσhh = −m2
h

vsθ

(
ξ̃mc2

θ − 2ξ̃tc2θ

)
− ξ̃Gsθ

v
m2

σ

(
1 − 2m2

h

m2
σ

)
(6.35)

gσηη = −m2
h

vsθ

(
ξ̃mc2

θ + 2ξ̃ts
2
θ

)
− ξ̃Gsθ

v
m2

σ

(
1 − 2m2

η

m2
σ

)
(6.36)

The first term in equations (6.35) and (6.36) comes from Vcorr. We will call it the potential
part of the coupling. The second term of these equations comes from the Lagrangian (6.20)
itself, and more precisely from the dynamical term ξG(σ)Ldyn (see equations (6.17) and (6.20))
where a term ξ

(1)
G

4πf
σ
(

1
2(∂μh)2 + 1

2(∂μη)2
)

arises. This last term will be called the dynamical part
of the coupling.

These relations will be useful when studying the heavy Higgs h2 in the limit α → 0 in
section 6.3.4.

6.3 SU(4) → Sp(4) breaking: phenomenology

6.3.1 Particles and free parameters

We have seen in section 6.2.1 that the breaking pattern SU(4) → Sp(4) leads to the emergence
of pGB scalar and pseudoscalar h and η respectively and heavier condensates similar to the
QCD mesons and baryons. One of them, the scalar singlet σ, can be sufficiently light to be a
125 GeV Higgs boson candidate.

As the h and σ have the same quantum numbers they mix and give rise to the mass eigen-
states h1 and h2, with, by definition, mh1 < mh2 . The lightest state h1 is assimilated to the
125 GeV Higgs boson and the heaviest h2 to an additional heavy Higgs boson.

Even with only three additional particles compared to the SM case, the FCD model has ten
free and unknown parameters, namely:

mh1 = 125 GeV, mh2 , M, θ, α, ξ̃t, ξ̃
(2)
t , ξ̃G, ξ̃

(2)
G , ξ̃m, ξ̃(2)

m (6.37)

However they do not play simultaneously a role in the different constraints we will impose on
the FCD model. We then need to carefully specify which parameters influence each constraint.

6.3.2 Constraints on the model

In order to constrain the model we take into account the constraints coming from oblique
parameters and the ones coming from LHC experiments, both on the 125 GeV Higgs boson and
a possible heavy Higgs.

Note that, as we have seen in section 6.1.1, the implementation of a comprehensive theory
of flavor without FCNC is not an easy task, so we will not consider any flavor constraints in the
following. Moreover the LEP constraints do not have any influence on this FCD model since
h1, the lightest particle of the model, is set at mh1 = 125 GeV, hence far beyond the reach of
LEP data.
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6.3.2.1 Oblique parameters in FCD

The precise determination of the oblique parameters in FCD models is a very delicate problem.
The first issue is to identify precisely which contribution comes from the SM and which one
comes from the strong dynamics. Then one needs to compute the latter numerically, through
lattice computations for instance.

Such lattice results are not yet available but one can however roughly approximate the S
and T parameters by [94]:

S = 1
6π

[
(1 − k2

h1) ln Λ
mh1

− k2
h2 ln Λ

mh2

+ NDs2
θ

]
(6.38)

T = − 3
8π cos2 θW

[
(1 − k2

h1) ln Λ
mh1

− k2
h2 ln Λ

mh2

]

with ND the number of technifermion doublets – here, ND = 2 – kh1 and kh2 the h1 and h2
couplings to W ± and Z0 gauge bosons normalized to the SM coupling:

kh1 =
gF CD

h1V V

gSM
h125V V

= cθ−α + (ξ̃G − 1)sθsα, kh2 =
gF CD

h2V V

gSM
hV V (mh2) = sθ−α + (ξ̃G − 1)sθcα (6.39)

and Λ the physical cutoff of the order of the mass of the spin-1 resonances, that is:

Λ ∼ 4πf =
√

2πv

sθ

(6.40)

The terms (1 − k2
hi

) ln Λ
mhi

, i = {1, 2}, stand for the contribution of the scalars h and σ

respectively and the term NDs2
θ stands for the contribution of the fundamental fermions to the

oblique parameters.
As FCD models do not change the U parameter, we used the data coming from [11] in the

two-dimensional case, where U is assumed to be zero. These values are given in table 6.3.

Experimental best fit Uncertainty σi

Ŝ|U=0 0.06 0.09
T̂|U=0 0.10 0.07

C=

S T( )
1 0.91 S

0.91 1 T

Table 6.3: Experimental values of the S and T oblique parameters with 1σ uncertainty and their correlation matrix
C [11].

Hence, one can compute the chi-squared function associated with the oblique parameters:

χ2
S,T =

(
S − Ŝ|U=0

T − T̂|U=0

)T

· V −1 ·
(

S − Ŝ|U=0

T − T̂|U=0

)
(6.41)

with Ŝ|U=0 and T̂|U=0 the experimental best fit values of the S and T parameters assuming
U = 0 and V −1 the inverse of their 2 × 2 covariant matrix defined by:

Vij = Cijσiσj, i, j ∈ {1, 2, 3} (6.42)
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with C the 2 × 2 correlation matrix between the oblique parameters and σi their corresponding
uncertainty.

Looking at equation (6.38) we deduce that the S and T parameters depend on the indepen-
dent parameters θ, α, ξ̃G and mh2 – as mh1 is fixed at 125 GeV. Hence, the chi-squared function
related to the oblique parameters will rely on these four degrees of freedom:

χ2
S,T = f(θ, α, ξ̃G, mh2) (6.43)

6.3.2.2 LHC 125 GeV Higgs constraints on FCD

The light Higgs h1 emerging in the FCD model is assimilated to the 125 GeV Higgs boson
discovered at LHC. We can hence apply the LHC 125 GeV Higgs constraints in a similar way
as in the 2HDM case.

One first needs to compute the signal strength of h1 in the gluon fusion and V BF + V H
production modes for different decay channels Y Y . As all the new particles are heavier than
the 125 GeV Higgs boson h1 no additional channels will be open compared to the SM case.
Hence we can use equation (3.28) and apply it to the FCD case:

μXX→h1→Y Y = κ2
Xκ2

Y × 1∑
Z

κ2
ZBRSM

h125→ZZ

, κX ≡ gF CD
h1XX

gSM
h125XX

(6.44)

Here the κ factors are assimilated to the reduced couplings instead of the scaling factors as in
the 2HDM case (see section 3.4.1.1), but the approach is entirely similar.

The κ related to both W ±, Z0 boson and fermion couplings can be easily obtained using
table 6.2 and knowing that, due to the mixing between h and σ, we have:

gF CD
h1XX = cα gF CD

hXX + sα gF CD
σXX (6.45)

with gF CD
h1XX the couping between h1 and two bosons or fermions and similarly for gF CD

hXX and
gF CD

σXX . Hence, the κ factors will depend on θ, α, ξ̃G and ξ̃t (see table 6.2).

The κ involving loop processes and hence which can only be defined by κ2
X = ΓF CD

h1→XX

ΓSM
h125→XX

are
more difficult to compute. We used the analytic expression of the decay width at one-loop level
for the processes h1 → gg, γγ or Zγ (see equation (C.1) in Appendix C with the amplitude
due to a possible charged Higgs boson set to zero). These κ factors will depend on κt, κb, κτ

and κV defined above, and hence will have the same dependence on the model’s free parameters.

Then, using the ellipse parameters found using LHC 8 TeV data (see table 2.5) and 13 TeV
data (see table 2.6), one can compute the total log-likelihood for each of these two data sets.
Hence, one has to minimize the log-likelihood function and to determine the number of free
parameters in order to impose the LHC constraints on 125 GeV Higgs boson.

We have shown that the κ factors depend on θ, α, ξ̃G and ξ̃t. Hence, the LHC log-likelihood
function will depend on these four independent parameters:

χ2
LHC = −2 log Ltot − min (−2 log Ltot) = f(θ, α, ξ̃G, ξ̃t) (6.46)
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6.3.2.3 LHC heavy Higgs constraints

The last type of constraints we impose in our study is the constraints coming from LHC
studies on possible heavy Higgs bosons. We will illustrate their influence by picking the most
constraining ones, namely the two CMS studies on di-Higgs production through the decay of a
heavier Higgs pp → h2 → h125h125 → bb̄ττ [68] and pp → h2 → h125h125 → bb̄γγ [70] and the
ATLAS study on a heavy Higgs boson produced through gluon fusion and decaying into a pair
of Z0 bosons [24]. In order to use them one needs to compute the cross-section and branching
ratios of the heavy Higgs h2.

◦ Decay width computation

Knowing the tree-level coupling gh2Y Y of h2 to two other particles Y Y one can easily compute
the tree-level decay width for this specific decay channel cited above using the tree-level two-
body decay formula:

dΓh2→Y Y = 1
32π2 |Mh2Y Y |2 |−→ph2|

m2
h2

dΩ (6.47)

with |Mh2Y Y |2 the squared matrix element computed using the tree-level Feynman diagram of
the h2 → Y Y decay, |−→ph2 | the norm of the three-vector momentum of h2 and dΩ the solid angle
associated with h2.

This formula allows the computation of decays such as h2 → h1h1 or h2 → ηη that do not
exist in the SM.

◦ Production cross-section computation

We choose to use the kappa trick method developed in section 3.4.1.5 to compute the pro-
duction cross-section of the heavy Higgs boson h2. We have seen that the method is not very
accurate at intermediate masses, especially around twice the top mass, but it makes it possible
to obtain a rough estimate of the production cross-section.

In this approximation we have, for any production mode XX:

σF CD
XX→h2 � κ2

XσSM
XX→h2(mh2) (6.48)

with σSM
XX→h2(mh2) the SM production cross-section value taken at a mass equal to mh2 and κX

the κ factor associated with the production mode – κV in the V BF or V H production mode,
κg in the gluon fusion production mode.

As in section 6.3.2.2 we can define the κ of tree-level processes as the ratio between FCD
coupling and SM coupling taken at the same mh2 mass. Hence, for V BF or V H production
modes, we find:

κV =
gF CD

h2W W

gSM
hW W (mh2) = kh2 (6.49)

In the gluon fusion production case, the κg factor has to be computed using the analytic
expression of the width at loop level (see equation (C.1) in Appendix C with the amplitude
due to a possible charged Higgs boson set to zero) and is hence defined as:

κ2
g =

ΓF CD
h2→gg

ΓSM
h→gg(mh2) (6.50)
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With the above definitions we are able to compute the cross-section times branching ratios
of the heavy Higgs h2. We will specify in section 6.3.4 which free parameters they rely on.

6.3.3 Constraints on the light Higgs state h1

In this section we will only consider the oblique parameter constraints and the LHC 125 GeV
Higgs constraints. The influence of the heavy Higgs constraints will be treated in section 6.3.4.

We will first look at two limiting scenarios: the Composite pGB limit, where α → 0 and
h1 → h, and the TC limit, where α → π

2 and h1 → σ.
Finally we will look at a more general case where both α and θ are left free and hence, where

the 125 GeV Higgs boson is a mixing between the h and the σ states.
Note that the following results are an update of the ones published in [118]. Hence, all the

results implying LHC studies at 13 TeV are performed with the latest results and are entirely
new.

6.3.3.1 Composite pseudo-Goldstone boson limit

The Composite pseudo-Goldstone boson limit corresponds to the case where the σ particle
totally decouples, that is, where α = 0 and ξ̃G = ξ̃t = 0. Under this assumption the Higgs
candidate h1 is assimilated to the pGB h and h2 to the σ particle.

Moreover σ – or equivalently h2 – is assumed to be heavy compared to h1 in the decoupling
limit. We will hence fix mh2 ∼ 1 TeV. However the value of mh2 will have no influence at all
as the LHC log-likelihood function depends only on h1 and, under the hypotheses α = 0 and
ξ̃G = 0 the h2 = σ does not couple to gauge bosons and hence, does not contribute to S and T .

Looking at equations (6.43) and (6.46), one can see that, under the pGB limit hypothesis,
the oblique parameters S and T and the LHC log-likelihood function depend only on θ. Hence,
both oblique parameter and LHC constraints will provide an upper bound at 3σ on θ, given by
the condition that χ2

S,T (θ), χ2
LHC(θ) < b3σ

1 – with b3σ
1 the 3σ bound for a chi-squared function

with one degree of freedom (see table 2.4).
The upper bounds at 3σ on θ are summarized in table 6.4.

LHC (8 TeV data) LHC (13 TeV data) Oblique parameters
θ upper bound 0.46 0.39 0.25

Table 6.4: Upper bound on θ obtained in the pGB limit using LHC 125 GeV Higgs constraints at 8 TeV and 13 TeV
and using oblique parameter constraints.

We can see that the oblique parameter constraints set a more restrictive bound on θ than
the LHC constraints. However the bound coming from the 13 TeV LHC data is significantly
lower than the one obtained with 8 TeV data. We can expect that, by the end of LHC Run II,
this bound will be even lower and may be very close to the one coming from oblique parameter
constraints.

One can imagine a situation where α ∼ 0, i.e. where we still have h1 = h, but where ξ̃G �= 0,
that is, where σ is not totally decoupled. Although this will not affect the LHC log-likelihood
function, which is only influenced by the 125 GeV Higgs boson h1, it will modify the oblique
parameters as S and T are both sensitive to scalar Higgs-type particles coupling to a pair of
W ± or Z0 bosons.
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Therefore, for a fixed non-zero ξ̃G value, we can derive an upper bound at 3σ on θ depending
on mσ = mh2 , given by the condition that χ2

S,T (θ, mh2) < b3σ
2 .
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Figure 6.1: Upper bound on θ as a function of the mass mσ = mh2 in the pGB hypothesis α → 0 with partial σ
decoupling. The red solid line corresponds to the bound coming from oblique parameter constraints at 3σ in the total
decoupling limit – ξ̃G = ξ̃t = 0 – the black solid lines correspond to partial decoupling cases with ξ̃G=0.5, 1 and 1.2 and
the dashed blue (dotted dashed green) line corresponds to the upper limit due to LHC 125 GeV Higgs constraints at
8 TeV (13 TeV).

These upper bounds are drawn in figure 6.1. The bound coming from the oblique parameter
constraints in the total decoupling hypothesis is drawn as a red solid line, the ones obtained
in the partial decoupling hypothesis are drawn as black solid lines – bottom from top: ξ̃G =
0.5, 1, 1.2 – and the bound coming from LHC 125 GeV Higgs constraints at 8 TeV (13 TeV)
is drawn as a dashed blue (dotted dashed green) line.

We can see that when the decoupling hypothesis is partially lifted the upper bound on θ
coming from oblique parameter constraints is relaxed, especially for low mh2 values. In this
region, and depending on the ξ̃G value, the LHC constraints can become more restrictive than
the oblique parameter ones.

Note that additional constraints can arise from heavy Higgs LHC analyses. This will be
studied in section 6.3.4.

6.3.3.2 Technicolor limit

Another interesting limit is the case where the Higgs candidate corresponds to the σ particle.
This may be achieved via cancellations between the dynamical mass M , of the order of a
TeV, and loop contributions from explicit breaking of the global flavor symmetry, such as top
loops [119].

In this limit θ = π
2 and α = π

2 , which means that h1 = σ and h2 = h. Moreover, due to
the θ = π

2 hypothesis, the pGB h does not couple any more to pairs of W ±, Z0 bosons nor to
pairs of fermions (see table 6.2). Hence in this limit the scalar h and the pseudoscalar η are
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degenerate and can both play the role of a DM candidate [109] with a mass:

m2
DM = m2

h = m2
η = Cty

′2
t f 2

4 (6.51)

As h does not couple any more to pairs of weak bosons, oblique parameters will no longer
depend on it. This intuition can be checked mathematically. Indeed the parameters kh1 and
kh2 involved in the computation of the oblique parameters become in the Technicolor limit:

kh1 = ξ̃G, kh2 = 0 (6.52)

Hence, the S and T parameters will only depend on ξ̃G and the related limit at 3σ will be given
by the condition χ2

S,T (ξ̃G) < b3σ
1 .

As the LHC log-likelihood function depends on ξ̃G and ξ̃t in this limit, then the LHC 125 GeV
Higgs boson constraints will be given by the condition χ2

LHC(ξ̃G, ξ̃t) < bnσ
2 , leading to exclusion

contours at nσ on these two parameters.
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(b) 13 TeV data.

Figure 6.2: Exclusion contours obtained from the LHC 125 GeV Higgs constraints in the TC limit – θ = α = π
2 – at

1, 2 and 3σ. The black triangle corresponds to the LHC log-likelihood best-fit whereas the star corresponds to the SM
value. The light grey area represents the region not excluded by oblique parameter constraints at 3σ.

The exclusion contours at 1, 2 and 3σ obtained using the LHC 125 GeV Higgs constraints
are drawn in figure 6.2 using 8 TeV data (left panel) and 13 TeV data (right panel). That
obtained at 3σ with oblique parameter constraints is drawn in light gray. The colored areas
correspond to the regions that are not excluded.

We can see that a large region around the SM value – ξ̃G = ξ̃t = 1, represented in the figures
by a black star – is still not excluded by LHC data. Moreover the overlap between the region
allowed by oblique parameter constraints and the ones allowed by LHC at both 8 TeV and
13 TeV is quite large.

It shows that, provided that such light composite state σ exists, the Technicolor limit is not
yet excluded.
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6.3.3.3 General case

We now consider the general case where the values of θ and α are not determined. Hence, the
physical 125 GeV Higgs boson will be a mix between the Composite Higgs particle h and the
TC condensate σ.

In order to reduce the number of unknown parameters we are working with, we decide to
fix ξ̃G = ξ̃t ≡ ξ̃. Moreover we fix the mass of the heavy Higgs h2 at mh2 = 1 TeV. Note that
mh2 will only affect the limit given by the oblique parameter constraints and its exact value
has little influence on the exclusion bound at 3σ.

In this case both the oblique parameter constraints and the LHC constraints depend on two
degrees of freedom, namely θ and α. Hence, the bounds are given by:

χ2
S,T (θ, α) < b3σ

2 , χ2
LHC(θ, α) < bnσ

2 , n = 1, 2, 3 (6.53)

We show the exclusions obtained for three different values of ξ̃: ξ̃ = 1 (figure 6.3), ξ̃ = 1.1
(figure 6.4) and ξ̃ = 0.8 (figure 6.5). The colored areas correspond to the not-excluded zones
at 1, 2 and 3σ using 8 TeV LHC data (left panel) or 13 TeV LHC data (right panel). The
dashed grey contour corresponds to the exclusion contour at 3σ due to the oblique parameter
constraints.
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Figure 6.3: Exclusion contours obtained from the LHC 125 GeV constraints at 1, 2 and 3σ assuming ξ̃G = ξ̃t = 1 and
using 8 TeV data (left panel) and 13 TeV data (right panel). The triangle corresponds to the LHC log-likelihood best-fit.
The inside of the dashed grey contour represents the not-excluded region by oblique parameter constraints at 3σ.

In figure 6.3 the region allowed by LHC constraints is around the line α = θ. Indeed, looking
at table 6.2, and under the hypothesis that ξ̃G = ξ̃t = ξ̃, one can see that the coupling gh1XX

between h1 and two gauge bosons or a pair of fermions writes:

gh1XX = kh1gSM
h125XX =

(
cθ−α + (ξ̃ − 1)sθsα

)
gh125XX (6.54)

Hence, if ξ̃ = 1, the second term disappears and we are left with:
gh1XX = cθ−αgh125XX (6.55)

As LHC constraints favor gh1XX ∼ gh125XX this leads to θ ∼ α.
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Figure 6.4: Same as figure 6.3 with ξ̃G = ξ̃t = 1.1.
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Figure 6.5: Same as figure 6.3 with ξ̃G = ξ̃t = 0.8.

In the case where ξ̃ �= 1 the α ∼ θ condition is no longer true. If ξ̃ > 1 (see figure 6.4) then
the second term in equation (6.54) – (ξ̃ − 1)sθsα – is positive for α > 0 and can compensate a
decrease of the first term due to a divergence between α and θ values. The higher α and θ are,
the larger the divergence between them can be. This behavior is visible in figure 6.4.

If ξ̃ < 1 (see figure 6.5), as θ ∈ [0; 2π] by definition, the second term can be positive only if
α < 0. Hence, at large – positive – value of θ and α, a decrease of cθ−α cannot be counterbal-
anced by an increase of the second term. That is why the region at high θ and α is excluded
in this case.

Note that the exclusions obtained using 8 TeV and 13 TeV data are quite similar. The
allowed area is simply shrunk around the α = θ line in the 13 TeV case compared to the 8 TeV
one.

Also note that the 3σ exclusion contour due to oblique parameter constraints is consistent
with those due to the LHC constraints. Although it is still the most constraining, the LHC
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exclusions at 13 TeV data are very close to it. By the end of LHC Run II they can be expect
to be more constraining than the oblique parameter constraints.

6.3.4 Constraints on the heavy Higgs state h2

Although we have used LHC data constraining the 125 GeV Higgs boson h1 until now we have
not considered yet LHC constraints on the heavier Higgs boson h2. This will be the goal of this
section.

In order to simplify the analysis we will restrict ourselves to the case where α → 0. Hence
h1 corresponds to the Composite Higgs h and h2 corresponds to the σ particle.

Under this hypothesis h2 will decay essentially into a pair of W ± or Z0 bosons or into tt̄,
h1h1 or ηη. The decays into other fermions or into a pair of gluons or photons via loop processes
are negligible compared to the ones cited above.

Using table 6.2 and equations (6.35), (6.36) and (6.47), one can compute the tree-level decay
width for the five decay channels cited above.

As the decay channels other than those cited above are negligible, we can assume that the
total decay width Γh2

tot is essentially:

Γh2
tot � Γh2→W +W − + Γh2→Z0Z0 + Γh2→tt̄ + Γh2→h1h1 + Γh2→ηη (6.56)

Hence we can deduce the value of the branching ratio for the five main decay channels.
Using table 6.2 and equations (6.35) and (6.36), and knowing that α ≈ 0,

mh = mh1 = 125 GeV, mσ = mh2 and mη = mh

sθ
, we can deduce the dependence of the to-

tal decay width, and hence of the branching ratios, on the free parameters of the model:

Γh2
tot, BRh2→Y Y = f(θ, ξ̃G, ξ̃t, ξ̃m, mh2) (6.57)

We show a typical plot of the branching ratios in figure 6.6. We set θ = 0.2, ξ̃G = ξ̃t = 1
and ξ̃m = 0 and compute the value of the different branching ratios as a function of mh2 .
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Figure 6.6: Branching ratios of h2 as a function of its mass in the limit α → 0. We have chosen θ = 0.2, ξ̃G = ξ̃t = 1
and ξ̃m = 0.

The variation of the four fixed parameters has little influence on the shape of the figure.
We can notice that the branching ratio of h2 → h1h1 process goes to zero for a specific value
of mh2 . This is due to the cancellation between the potential part and the dynamical part of
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the gσhh coupling (see equation (6.35)). This cancellation will be present as long as ξ̃G �= 0 and
will occur at a precise value of mh2 which depends on the value chosen for ξ̃G, ξ̃t, ξ̃m and θ.

We can also note that the value of the branching ratios in the W +W −, Z0Z0, h1h1 and ηη
decay channels stabilize at high mh2 around 40% for W +W − and 20% for the others. This is
due to the fact that, in the high-mass limit, the σ couples essentially to the Goldstone bosons,
and this in a similar way. Hence, the σ will decay into h1h1, ηη and Z0Z0 with the same
amount – as the coupling to Z0Z0 involves the Z0 longitudinal component, which is one of the
five original Goldstone bosons – and into W +W − with a ratio of 2 with respect to the ZZ
decay – as the W + and W − involve two Goldston bosons instead of one. Hence the W +W −

decay width is 2
5 of the total decay width and the Z0Z0, h1h1 and ηη are all 1

5 of the total decay
width. This behavior is visible in figure 6.6.

A mathematical development of the above explanation is performed in Appendix F.

The method for computing the production cross-section has been described in section 6.3.2.3.
Hence, using the production cross-section and the branching ratio computations described above
we can now constrain the FCD model using heavy Higgs constraints. We have listed the three
analyses which impose the most severe constraints in section 6.3.2.3. Note that the selected
studies are different from those used in our published paper [118] as I used for this thesis the
latest LHC results at 13 TeV, which are more constraining than the ones at 8 TeV used in [118].

In order to simplify the study, we will fix the value of ξ̃G, ξ̃t and ξ̃m and draw the upper
limit on θ depending on mh2 obtained using the heavy Higgs constraints, in a similar way to
what was done in section 6.3.3.1.
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(a) ξ̃G = 1.2, ξ̃m = 0; ξ̃t = 1 (solid lines), ξ̃t = 2 (dashed
lines).
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(b) ξ̃t = 1; ξ̃G = 3, ξ̃m = 0 (solid lines), ξ̃G = 1.2, ξ̃m = 3
(dashed lines).

Figure 6.7: Upper bound on θ due to heavy Higgs constraints. The colored areas are excluded at 2σ using the process
h2 → h1h1 [68, 70] (red areas) and h2 → ZZ [24] (blue areas). The dashed black line in the left panel corresponds to
the upper limit on θ using oblique parameter constraints with ξ̃G = 1.2. The dotted dashed green line corresponds to
the upper limit on θ given by the LHC 125 GeV Higgs boson constraints at 3σ.

The upper bounds on θ depending on mh2 are shown in figure 6.7, where the colored areas
are, this time, excluded at 2σ by the heavy Higgs constraints. The red zones are excluded by
h2 → h1h1 studies [68, 70] whereas the blue ones are excluded by h2 → ZZ study [24].

Also included in the same figure as a dashed black line is the upper limit on θ obtained using

130



6.3. SU(4) → SP (4) BREAKING: PHENOMENOLOGY

the oblique parameter constraints in the same way as in section 6.3.3.1 – where χ2
S,T , once ξ̃G

is fixed, depends only on θ and mh2 .
As we have seen in section 6.3.3.1, in the limit α → 0, the LHC log-likelihood function

depends only on θ. Hence, the upper bound obtained using the LHC 125 GeV Higgs boson
constraints at 13 TeV is drawn in figure 6.7 as a horizontal dotted dashed green line.

In figure 6.7a the parameters are set to ξ̃G = 1.2 and ξ̃m = 0 for the four curves but ξ̃t = 1
for the solid lines and ξ̃t = 2 for the dashed lines. In figure 6.7b the parameters are set to ξ̃t = 1
for the four curves and ξ̃G = 3, ξ̃m = 0 for the solid lines and ξ̃G = 1.2, ξ̃m = 3 for the dashed
lines.

We can see that the heavy Higgs constraint on the process h2 → ZZ, represented by the blue
lines, is very competitive compared to both oblique parameter and 125 GeV Higgs constraints,
especially in the case ξ̃t = 2 (see dashed blue line of figure 6.7a). This is less true above 1 TeV,
where the bound on θ increases a lot.

The upper bound on θ obtained using the process h2 → h1h1 is essentially less constrain-
ing than the others but is still interesting as an excluded island appears in the low-mass
region of figure 6.7a. The island in the case ξ̃t = 1 (solid red line) is barely visible and ex-
cludes θ ∈ [ π

16 ; π
8 ] around mh2 ∼ 250 GeV. The island for ξ̃t = 2 (dashed red line) is much larger.

The influence of the ξ̃t parameter can be seen on figure 6.7a. The upper bound on θ lowers
for both h2 → ZZ and h2 → h1h1 when ξ̃t grows.

We can see that the ξ̃G parameter has little influence on the upper limit on θ by comparing
the solid lines of figure 6.7b to the solid lines of figure 6.7a. The upper bound at low mh2 is
slightly lower when ξ̃G increases, but the influence is quite small.

The influence of ξ̃m is much more important: comparing the dashed lines from figure 6.7b
and the solid lines from figure 6.7a one can see that the upper bound on θ given by h2 → h1h1
process is much lower when ξ̃m increases. The upper limit given by h2 → ZZ process is
however slightly higher than in the case ξ̃m = 0.

We can conclude that the heavy Higgs constraints are very useful to constrain FCD models
as they are very competitive with the other constraints, and, depending on the value of the ξ̃
parameters, can even be better than oblique parameter and 125 GeV Higgs constraints.

6.3.5 Study of the pseudoscalar η

In the naive development of the effective Lagrangian performed in sections 6.2.3 and 6.2.4 we
have seen that it is invariant under the symmetry η → −η, thus preserving η to decay.

However this property is no longer true in the fermionic sector if one looks at higher-order
operators: one can show [118] that η has tree-level couplings to pairs of fermions. Note that,
as it is not part of my own work, I will not go into details and just summarize the concept.

The main idea of this development is to construct invariant operators under SU(4) symmetry
using the spurions already introduced such as the techniquark mass MQ, the projectors P α

(α = {1, 2}) or the Si generators (i ∈ {1, 2, 3, 6}) associated with the SM gauge bosons. Then,
developing these operators – as done in equation (6.19) for instance – terms involving one η
and a pair of fermions appear. Some of these terms can be set to zero by a simple rotation with
no physical meaning, but others cannot be canceled, thus allowing the η to decay into pairs of
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fermions.
Although the η does not couple to a pair of gauge bosons at tree level, the coupling can

be generated through the Wess-Zumino-Witten anomaly term [120, 121]. Computing it in the
FCD framework, one can show that the couplings to a pair of gluons or photons are canceled
but the couplings to W +W −, ZZ or Zγ are non-zero [117]. Note however that the gluon gluon
and gamma gamma couplings are probably non-zero when looking at higher-order operators,
in a similar way to what was done in the fermion case.

Using all these results one can compute the width and the branching ratios of the η particle
(see figure 2 in [117]). The conclusion is that, regardless of the mass of η, it is always able to
decay into at least Zγ. Hence this is not a viable DM candidate as the latter is assumed to be
stable.

In [118] the production cross-section of η in a pp collider is computed in order to estimate
if it can be detected at the LHC. The simulation is made using Madgraph [122] with the
MSTW2008NLO PDF set [123]. The production cross-section is unfortunately very low – at
most 1 fb – and decreases as mη increases. Hence it would be very difficult to detect it at the
LHC.

For completeness [118] also calculated the production cross-section at a linear electron-
positron collider such as the ILC. They are also very low – at most ∼ 10−3 fb – meaning that
discovering this particle would require an enormous amount of luminosity.

We can conclude that the η particle is neither a good DM candidate nor a useful particle to
probe this FCD model in existing accelerators. However it may have a sizable production rate
if produced from the decay of heavier resonances, such as spin-1 or spin-1

2 condensates (see for
instance [124]).

6.4 Conclusion

We have exposed in this part the mechanism of Technicolor and Composite Higgs theories, both
relying on a new strongly coupled interaction and on related new fermions, called techniquarks.
In both theories, the global flavor symmetry occurring in the techniquark sector is broken at
low energy by the presence of a condensate, leading to the appearance of Goldstone bosons and
heavy condensates similar to the QCD pions and heavier hadrons respectively.

We have seen how these two theories could be gathered into an intermediate one, called
Fundamental Composite Dynamics, and have studied the phenomenology of the specific
symmetry breaking SU(4) → Sp(4) under this unified theory.

The SU(4) → Sp(4) breaking gives rise to two pseudo-Goldstone bosons, the scalar h and
pseudo-scalar η. Moreover heavy condensates appear after the breaking. In our study we
consider the lightest scalar state singlet under the Sp(4) symmetry, called σ. As its quantum
numbers are identical to those of the h, the two particles will mix and form the two mass
eigenstates h1 and h2. The lightest one, h1, is assumed to be the 125 GeV Higgs boson
discovered at LHC.

We have shown that, using at the same time rough estimate of oblique parameter constraints,
LHC 125 GeV Higgs boson constraints and LHC heavy Higgs constraints, we are able to suppress
large parts of the parameter space. In particular, the heavy Higgs constraints on the processes
h2 → ZZ and h2 → h1h1 at 13 TeV are very competitive with the oblique parameter constraints.
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6.4. CONCLUSION

More generally, the 13 TeV results substantially improve the constraints on the different
free parameters but this FCD model is still viable, even when confronted with experimental
data.

For completeness we also mentioned the phenomenological study of the pseudoscalar η
performed in [118]. As the particle is eventually always able to decay into Zγ through anomaly
diagrams, the particle is not a viable candidate for DM. Moreover its production cross-section
in pp colliders such as LHC or e+e− colliders such as ILC is lower than 1 fb; hence its possible
study in colliders seems very unlikely.

The SU(4) → Sp(4) breaking is the minimal symmetry breaking pattern which can occur
in a FCD scenario. Many other symmetry breakings can be chosen, such as SU(6) → Sp(6).
Other breakings will provide additional Goldstone bosons, making the phenomenology of the
model richer, with the possible appearance of charged scalars for instance.

In this study we have only focused on scalar particles. However one can also study non-
scalar resonances – spin-one condensates for instance. This is done via lattice computation
in [108, 125].
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General conclusion

In this thesis I have exposed my work on the scalar sector of two distinct theories beyond
the Standard Model.

The study of the first theory, the CP-conserving Two-Higgs Doublet Model, was performed
in two different frameworks: the first one assuming the heavier Higgs boson of the theory to
be the 125 GeV Higgs boson discovered at the LHC, and the second one assuming the lighter
Higgs boson to be the 125 GeV Higgs boson. In this latter case I assumed in addition to be in
the alignment limit, i.e. that the couplings of the light Higgs boson deviate from those of the
SM Higgs boson with less than 1%.

For both frameworks I have checked the model against different theoretical and experimental
constraints. I exposed carefully the influence of each constraint on the parameter space before
showing the parameter space finally available after having applied all constraints.

This work has been done in the four different available CP-conserving 2HDM types – types
I, II, Flipped and Lepton-Specific – for the mH = 125 GeV hypothesis. I have been able to
conclude that Lepton-Specific and Flipped types were very similar to Type I and II respectively.
Hence, the similar study has only been done in Type I and II for the mh = 125 GeV hypothesis.

The constraints applied on the model proved very efficient at reducing the available param-
eter space, yet not excluding the model. The free parameters still have large ranges of variation
but the possible masses of the scalars have been considerably narrowed.

Up to now the most effective constraints have been the ones coming from the signal strengths
on the 125 GeV Higgs boson. Some studies on additional scalars are beginning to be useful
for constraining the parameters, such as studies on light Higgs boson for the mH = 125 GeV
hypothesis and studies on heavy Higgs boson for the mh = 125 GeV hypothesis, but others like
heavy charged Higgs boson studies or light di-Higgs production are still unable to constrain the
parameter space. The increase in luminosity by the end of LHC Run II should help improve
these constraints.

In the mH = 125 GeV hypothesis I also looked at the possibility for the 2HDM light h to be
detected at the LHC. This study was first performed [94] using 8 TeV data [80] and was updated
with the latest CMS results using 13 TeV data [90]. I have shown that only 2HDM Type I
can generate points reaching the sensitivity of the CMS detector. Furthermore, assuming the
existence of a 2HDM Type I light h, this particle would be easier to detect in the V BF + V H
production channel; but at 13 TeV the CMS detector begins to be sensitive to such a particle
even in the gluon fusion production mode.

As the CMS analysis at 13 TeV [90] presents a very small excess around a mass of 95.3 GeV
in both gluon fusion and V BF + V H production mode I performed a quick study to see, as-
suming that the excess was confirmed and a new neutral scalar particle discovered at this mass
range, if the 2HDM Type I was able to explain such an excess. Unfortunately, if it provides
plenty of suitable particles to explain an excess in the V BF +V H production mode, the model
cannot reproduce an excess in gluon fusion production mode. Hence, if such a light particle
were to be discovered, it would rule out the four CP-conserving 2HDM types.
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GENERAL CONCLUSION

I worked on a second theory, called Fundamental Composite Dynamics, based on the com-
bination of Technicolor and Composite Higgs theories. I focused on the SU(4) → Sp(4) flavor
symmetry breaking, where three neutral scalars emerge: two pseudo-Goldstone bosons – a CP-
even h and a CP-odd η – and a condensate σ. The h and σ mix together to give the two mass
eigenstates h1 and h2, with mh1 < mh2 .

I performed the phenomenological study of this model using both constraints coming from
the oblique parameters and constraints from scalar studies from the LHC.

I have shown that the 13 TeV constraints on 125 GeV Higgs boson were very efficient at
constraining the free parameters and that the derived upper limits were very close to – but still
above – those given by the oblique parameter constraints. Moreover some studies on additional
scalars, in particular the study on a possible heavy Higgs boson decaying into two Z0 bosons
and the one on a possible heavy Higgs boson decaying into two 125 GeV Higgs bosons are very
constraining and, depending on the value of the different free parameters of the model, can be
more efficient than both the oblique parameter and the 125 GeV Higgs constraints.

We have seen that, despite the efficiency of the constraints, the model is still not ruled out.
In particular the limits giving back either the Technicolor or the Composite Higgs frameworks
are not ruled out by the current constraints.

We have also briefly seen that the pseudoscalar η present in the theory is not a good Dark
Matter candidate as it is able to decay, and has too low a production cross-section to be de-
tected in current proton-proton or positron-electron accelerators.

I have worked on two different BSM theories but many other models are being developed
and are just as viable in light of the latest experimental studies. Hence, despite the growing
efficiency of experimental analyses to constrain BSM theories, no model is clearly favored. We
are hoping for the discovery of a new particle which could help rule out many BSM models and
accelerate the development of a viable extension of the Standard Model.
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A Pauli, Dirac and Gell-Mann matrices

A.1 Pauli matrices

The Pauli matrices are a set of three 2×2 complex matrices which are hermitian, unitary and
traceless:

σx =
(0 1

1 0
)

, σy =
(0 −i

i 0
)

, σz =
(1 0

0 −1
)

(A.1)

The matrices iσx, iσy, iσz form a basis of the su(2) Lie algebra of the SU(2) symmetry
group.

They obey to the following commutation and anticommutation relations:

[σi, σj] = 2iεijkσk, {σi, σj} = 2δij112 (A.2)

The Levi-Civita tensor εijk corresponds to the structure constant of the group.

A.2 Gamma matrices

The Gamma matrices, also known as the Dirac matrices, are a set of four 4×4 complex matrices
with specific commutation rules. Different representations of these matrices exist. We only
mention here the Dirac representation:

γ0 =
(112 0

0 −112

)
, γi =

(
0 σi

−σi 0

)
(A.3)

with σi, i=1,2,3, the three Pauli matrices.
They have the following properties:

{γμ, γν} = 2gμν114,

(γ0)† = γ0, (γ0)2 = 114, (A.4)
(γk)† = −γk, (γk)2 = −114

with k=1,2,3.
In addition one can construct a fifth Gamma matrix:

γ5 ≡ iγ0γ1γ2γ3 =
( 0 112

112 0
)

, (γ5)† = γ5, (γ5)2 = 114 (A.5)
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A.3 Gell-Mann matrices

The Gell-Mann matrices are a set of eight 3×3 complex matrices which are hermitian and
traceless:

λ1 =
⎛⎝0 1 0

1 0 0
0 0 0

⎞⎠ , λ2 =
⎛⎝0 −i 0

i 0 0
0 0 0

⎞⎠ , λ3 =
⎛⎝1 0 0

0 −1 0
0 0 0

⎞⎠ , (A.6)

λ4 =
⎛⎝0 0 1

0 0 0
1 0 0

⎞⎠ , λ5 =
⎛⎝0 0 −i

0 0 0
i 0 0

⎞⎠ , (A.7)

λ6 =
⎛⎝0 0 0

0 0 1
0 1 0

⎞⎠ , λ7 =
⎛⎝0 0 0

0 0 −i
0 i 0

⎞⎠ , λ8 = 1√
3

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠ (A.8)

They form a basis of the su(3) Lie algebra of the SU(3) symmetry group. They obey to the
following commutation relations:

[λi, λj] = 2ifijkλk (A.9)
where fijk is the structure constant of the group.
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B Complementary material on statistics

This appendix presents a quick overview of the basic tools in statistics useful for particle physics.
For a more comprehensive review, see for instance [25, 26, 126, 127].

B.1 Frequentist and bayesian approaches

There are different ways of interpreting a probability. There are two main approaches: the
frequentist and the bayesian interpretations.

In the frequentist approach, the probability of an event A is, basically, the fraction of times
the event A occurs in a set of N trials, assuming N → ∞:

P (A) = lim
N→∞

Number of times A occurs
N

(B.1)

This interpretation is then well suited for repeatable observations, but is not well adapted for
hypotheses such as "Is this theory true?", which is either true or false, no matter the number
of times you test it.

In the bayesian approach, the probability of an assertion A represents the degree of belief
that A is true. Coming back to the hypothesis "Is this theory true?", the related bayesian
probability P (A) will not account for whether this assertion is true or false but how seriously
one can think it is true or false.

In the following we will work essentially in the frequentist framework.

B.2 Probability density functions

Considering a discrete random variable X, that is, the outcome x of a repeatable experiment
which can take different possible values x1, ..., xn. For each possible value xi there is a proba-
bility P (xi) of getting the xi value as outcome of the experiment.

If the random variable is continuous then, assuming that the possible outcome values take
place inside an interval [xi; xf ], one can introduce the probability density function (PDF) f(x)
defined on the interval [xi; xf ]. Hence, the probability to get an outcome value between xa and
xb, ∀xa, xb ∈ [xi; xf ], is:

P ([xa; xb]) =
xb∫

xa

f(x)dx (B.2)

Particularly, P ([xi; xf ]) = 1 and ∀x ∈ [xi; xf ], P (x) = 0.
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APPENDIX B. COMPLEMENTARY MATERIAL ON STATISTICS

The PDF function f(x) can have various forms depending on the problem we are looking for.
Here we will present only two different PDF, the Gaussian and the Poissonian distributions, as
they are very useful in particle physics; but many other distributions exist (see for instance [26]).

B.2.1 Poissonian distribution

A Poissonian distribution is used when we know exactly how much times an event is supposed
to occur in a given period of time – for instance the average number λ of photon pairs supposed
to be produced by a SM mechanism at the LHC during a fixed time Δt.

Then the probability to actually measure exactly n events during the period Δt is given by
the Poissonian distribution:

P (n; λ) = λn

n! e−λ (B.3)

One can show that λ corresponds to both the average and the standard deviation of the
distribution. The shape of the distributions for λ = 2 and 5 are shown in figure B.1.

0 5 10 15

n

f(n;λ = 2), f(n;λ = 5)

Figure B.1: Poissonian distribution with λ = 2 (in blue) and λ = 5 (in red).

This distribution is very often used in particle physics as the number of events λ expected
to be detected in an accelerator is well determined by theory and must be compared to the
number of events n actually observed.

Note that, for large λ – that is, for a large number of expected events – the Poissonian
distribution with parameter λ tends to a Gaussian distribution with mean value μ = λ and
standard deviation σ =

√
λ. Many other PDF also tend to the Gaussian distribution, hence

the usefulness of this distribution.

B.2.2 Gaussian distribution

The PDF of a continuous random variable x following a Gaussian – or Normal – distribution
with parameters μ and σ reads:

f(x; μ, σ) = 1√
2πσ

e− (x−μ)2

2σ2 (B.4)

One can show that μ corresponds to the mean value of the distribution and σ to its standard
deviation. The shape of the PDF is shown in figure B.2.

142



B.3. DETERMINATION OF UNKNOWN PARAMETERS

−5σ −4σ −3σ −2σ −σ σ 2σ 3σ 4σ 5σ

x

f(x;μ = 0, σ = 1)

0

Figure B.2: Gaussian distribution with μ = 0, σ = 1. The grey areas correspond to the confidence level said at 1, 2 or
3σ, which corresponds to the integrated probability covering respectively 65.3%, 95.5% and 99.7% of the distribution.

B.3 Determination of unknown parameters

In particle physics we use statistics to come back to unknown parameters θ that we hope to
determine with the help of experiments.

We say that the parameter θ has a true value θ0, which is its real value we are looking for,
but which we cannot access directly. However the parameter θ will influence the value of the
PDF function. Hence, using experimental results and choosing a PDF distribution well-suited
to the experimental data, one can infer an estimate of the θ value, also called central value or
best fit and usually denotted θ̂.

This estimate is always given together with an uncertainty δθ, which corresponds to a
confidence level: we assume that the true value θ is within the interval [θ̂ − δθ; θ̂ + δθ] with
65.3% of probability.

There are different methods to infer the estimate of the relevant unknown parameters. We
will only expose here the method called maximum likelihood method.

B.3.1 The maximum likelihood method

For a given set �x = (x1, ..., xn) of n random variables depending on m unknown parameters
�θ = (θ1, ..., θm), the likelihood function is defined as:

L(x1, ..., xn; θ1, ..., θm) = f(x1, ..., xn; θ1, ..., θm) (B.5)

with f the PDF of the random variable �x.
For N independent measurements �x1, ..., �xN of the random variable �x, the total likelihood

reads:

Ltot(θ1, ...θm) =
N∏

i=1
f(xi

1, ..., xi
n; θ1, ..., θm) (B.6)

Then the best estimate of the parameter �θ corresponds to the value of �θ maximizing the
total likelihood Ltot.

An equivalent method is to use the log-likelihood function. In this case, the best fit of �θ is
found by minimizing the function −2 ln Ltot.
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We have mentioned before that many PDF distributions tend to the Gaussian distribution
when the number of measurements is high. Hence, considering a random variable x follow-
ing a Gaussian distribution which depends on the unknown parameter �θ and N independent
measurements x1, ..., xN of this random variable, one finds:

− 2 ln Ltot =
N∑

i=1

(xi − μ(�θ))2

σ2︸ ︷︷ ︸
=χ2(�θ)

+N ln(2π) + 2N ln σ (B.7)

The first term corresponds to what is called a chi-square distribution, denoted χ2. Hence,
maximizing Ltot with respect to �θ is equivalent to minimizing the χ2 function with respect to
�θ.

Note that the above formula is obtained considering only one random variable at play. A
more generic formula for the χ2 function with n random variables is:

χ2 =
N∑

i=1
(�xi − �μ(�θ))T · V −1 · (�xi − �μ(�θ)) (B.8)

with �xi = (xi
1, ..., xi

n) the values of the n random variables for the ith measurement and V their
n × n covariant matrix.

B.3.2 Confidence level and confidence intervals

Once we have extracted an estimator θ̂ of the true value θ0, we still need to estimate a confidence
interval on θ̂. The idea is to find an interval [θa; θb] around θ̂ in which P ([θa ≤ θ0 ≤ θb]) = β,
that is, an interval [θa; θb] in which we have a probability β to find the true value.

The β parameter is a fixed number called the confidence level and often taken to 68.3% or
95.5% – values often said at 1 and 2σ respectively in reference to the Gaussian distribution.
The corresponding interval [θa; θb] is called the confidence interval.

Hence, we can write:
θ0 = θ̂+θb−θ̂

−(θ̂−θa) (B.9)

There are different methods to determine the confidence interval at a given confidence level
β depending on the PDF used.

In the case of the Gaussian distribution, one can show that there is a bound bnσ
d , depending

only on the number of degrees of freedom d of the related χ2 function and on the chosen
confidence level nσ, which defines completely the confidence interval:

P (χ2(�θ) ≤ bnσ
d ) = β (B.10)

That is, �θ is in the confidence interval if and only if χ2(�θ) ≤ bnσ
d .

The numerical values of the bnσ
d bounds are summarized in table 2.4.

The area where χ2(�θ) ≤ bnσ
d is an hyperellipsoid in dimension d. The line or (hyper)surface

defined by χ2(�θ) = bnσ
d corresponds to the upper bound on �θ at a confidence level of nσ.
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B.4. HYPOTHESIS TESTING AND P -VALUE

B.4 Hypothesis testing and p-value

Another challenge in experimental particle physics is to test an hypothesis against data in order
to check if it is rejected or not by the experiment. This is essential to test the validity of an
excess and hence, whether claiming a discovery.

The idea is to look at the expected distribution of the random variable �x under study, which
is assumed, under an hypothesis H0, to follow a given PDF f(�x).

Once the experiment is done we have access to the experimental value �xobs of the random
variable �x.

In order to test the hypothesis H0 in light of the experimental observation �xobs one will define
an appropriate region, called critical region, where the values of �x have, under the hypothesis
H0, an equal or greater incompatibility with the observed data �xobs.

Then one can compute the p-value of H0, which is the probability, under H0, to find data in
this critical region. Hence, the lower the p-value is, the less compatible are the observed data
�xobs with the H0 hypothesis.

The p-value is compared to a pre-defined bound α – often taken such that 1 − α=65.3% or
95.5%. If p < α then the H0 hypothesis is rejected.

We can also convert the p-value into significance Z, based on an analogy with the Gaussian
distribution:

Z = Φ−1(1 − p) (B.11)
with Φ the cumulative standard Gaussian distribution – with zero mean value and unit variance.
The conversion between the two is shown in figure B.3.
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Figure B.3: Correspondence between the p-value and the significance Z defined in equation (B.11). The 5σ value and
its corresponding p-value, often taken to claim a discovery, are highlighted by the dashed red lines.
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C Complementary material on the 125 GeV
Higgs boson decays through loop processes

The decay of a SM Higgs boson with mass mh into a pair of gluons, photons or in Z0γ only
takes place at loop level. Different particles may run into the loops – quarks, fermions or W ±
gauge bosons depending on which decay we are looking for (see figure C.1).

t, b, ch

g

g

t, b, c, τ, W±, H±±h

γ

γ

t, b, c, τ, W±, H±±h

Z0

γ

Figure C.1: Decay of a SM Higgs boson into a pair of gluons (left), a pair of photons (middle) and into Z0γ (right)
with the appropriate particles running in the loop. The contribution of the charged Higgs boson from the 2HDM is also
mentioned.

The analytical expression of the widths is well known at one-loop level and includes ampli-
tude terms AX taking into account the effect of the different X particles which may contribute.

Assuming a BSM Higgs boson, that is, a neutral scalar particle with couplings to a pair
XX of SM fermions or gauge bosons rescaled by a factor CXX compared to those of the SM
Higgs boson, one can deduce the analytical expression of its decay width at loop level by
simply rescaling the amplitudes AX by the appropriate factor CXX and by adding the missing
amplitudes AY involving non-SM Y particles.

In the case of the 2HDM, besides the SM particle contributions, only the charged Higgs
bosons H± can contribute to the h → γγ and h → Zγ processes.

We can hence deduce the expression of the scaling factors κg and κγ whose squared values are,
by definition, the ratio of the 2HDM width over the SM width for the decay considered [128, 41]:

κ2
g =

Γ2HDM
h→gg

ΓSM
h→gg

=

∣∣∣∣∣ ∑f=t,b,c
CffA 1

2
(τf )

∣∣∣∣∣
2

∣∣∣∣∣ ∑f=t,b,c
A 1

2
(τf )

∣∣∣∣∣
2

κ2
γ =

Γ2HDM
h→γγ

ΓSM
h→γγ

=

∣∣∣∣∣ ∑
f=t,b,c,τ

Nc,fQ2
fCffA 1

2
(τf ) + CW W A1(τW ) − CH+A0(τH+)

∣∣∣∣∣
2

∣∣∣∣∣ ∑
f=t,b,c,τ

Nc,fQ2
fA 1

2
(τf ) + A1(τW )

∣∣∣∣∣
2 (C.1)

with τx = m2
h

4m2
x
, mx the mass of the x particle, Nc the number of colors of the fermion considered,

Qf its charge, and A(τx) the different amplitude terms depending on the nature of the x particle

147



APPENDIX C. COMPLEMENTARY MATERIAL ON THE 125 GEV HIGGS BOSON
DECAYS THROUGH LOOP PROCESSES

running in the loop:

A 1
2
(τ) = 2

τ 2 (τ + (τ − 1)f(τ))

A1(τ) = − 1
τ 2 (2τ 2 + 3τ + 3(2τ − 1)f(τ)) (C.2)

A0(τ) = 1
τ 2 (f(τ) − τ)

and the f(τ) function:

f(τ) =

⎧⎪⎨⎪⎩
arcsin2(

√
τ), τ ≤ 1

−1
4

[
log
(

1+
√

1−1/τ

1−
√

1−1/τ

)
− iπ

]2
, τ > 1 (C.3)

The expression for the third scaling factor κZγ is slightly more complicated [129]:

κZγ =
Γ2HDM

h→Zγ

ΓSM
h→Zγ

=

∣∣∣∣∣ ∑
f=t,b,c,τ

CffAZγ
1
2

(τf , λf ) + CW W AZγ
1 (τW , λW ) + CH+AZγ

0 (τH+ , λH+)
∣∣∣∣∣
2

∣∣∣∣∣ ∑
f=t,b,c,τ

AZγ
1
2

(τf , λf ) + AZγ
1 (τW , λW )

∣∣∣∣∣
2 (C.4)

with, again, τx = m2
h

4m2
x
, mx the mass of the x particle, λx = m2

Z

4m2
x

and AZγ(τx, λx) the different
amplitude terms depending on the nature of the x particle running in the loop and specific to
the h → Zγ decay:

AZγ
1
2

(τf , λf ) = 2NcQf
I3f − 2s2

θwQf

cθw

×
[
I1

(
1
τf

,
1
λf

)
− I2

(
1
τf

,
1
λf

)]

AZγ
1 (τW , λW ) = −cθw

[
4
(

3 − s2
θw

c2
θw

)
I2

( 1
τW

,
1

λW

)
+
{

(1 + 2τW ) s2
θw

c2
θw

− (5 + 2τW )
}

I1

( 1
τW

,
1

λW

)]

AZγ
0 = −

(
2cθw − 1

cθw

)
I1

( 1
τH+

,
1

λH+

)
(C.5)

with sθw ≡ sin(θw), Nc the number of colors of the fermion considered, Qf its charge, I3f its
weak isospin and the I1 and I2 functions defined as:

I1(α, β) = αβ

2(α − β) + α2β2

2(α − β)2

[
f
( 1

α

)
− f

(
1
β

)]
+ α2β

(α − β)2

[
g
( 1

α

)
− g

(
1
β

)]
(C.6)

I2(α, β) = − αβ

2(α − β)

[
f
( 1

α

)
− f

(
1
β

)]
(C.7)

with f(τ) defined above and g(τ):

g(τ) =

⎧⎪⎨⎪⎩
√

1/τ − 1 arcsin(
√

τ), τ ≤ 1
1
2

√
1 − 1/τ

[
log
(

1+
√

1−1/τ

1−
√

1−1/τ

)
− iπ

]
, τ > 1

(C.8)
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D
Complementary material on the study of

the light Higgs boson – figures for Flipped
and Lepton-Specific types

This section contains the figures completing the ones of chapter 4.

(a) Flipped type (b) Lepton-Specific type

Figure D.1: Constraints due to flavor requirements in the plane tan β vs mH± . Same color code as in figure 4.4.

(a) Flipped type (b) Lepton-Specific type

Figure D.2: Constraints on the parameter space due to theoretical, oblique parameters and flavor constraints. Same
color code as in figure 4.5.
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(a) Type II, mh > 83 GeV. (b) Type II, generic case.

Figure D.3: Constraints on the parameter space due to LEP constraints in 2HDM Type II. Same color code as in
figure 4.6.

(a) Flipped type (b) Lepton-Specific type

Figure D.4: Constraints on the parameter space due to LHC constraints. Same color code as in figure 4.7.

(a) Flipped type (b) Lepton-Specific type

Figure D.5: Constraints on the parameter space due to LHC constraints. Same color code as in figure 4.7.
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(a) Flipped type (b) Lepton-Specific type

Figure D.6: Constraints on the parameter space due to LHC constraints. Same color code as in figure 4.7.

(a) Flipped type (b) Lepton-Specific type

Figure D.7: Constraints on the parameter space due to heavy Higgs constraints. Same color code as in figure 4.10.

(a) Flipped type (b) Lepton-Specific type

Figure D.8: Constraints on the parameter space due to heavy Higgs constraints. Same color code as in figure 4.10.

151
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(a) Comparison with the process
t → bH+ → bτντ at 8 TeV [85].

(b) mH± vs tan β. (c) mH± vs mA.

Figure D.9: Constraints on the parameter space due to charged Higgs constraints for the Lepton-Specific type. Same
color code as in figure 4.12.

(a) mA vs mh (Flipped type) (b) mA vs mH± (Flipped type) (c) m12 vs mA (Flipped type)

(d) mA vs mh (Lepton-Specific type) (e) mA vs mH± (Lepton-Specific type) (f) m12 vs mA (Lepton-Specific type)

Figure D.10: Consequences of all the constraints in the Flipped type (upper panel) and Lepton-Specific type (lower
panel) frameworks. Same color code as in figure 4.13.
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(a) mH± vs tan β (Flipped type) (b) mh vs sβ−α (Flipped type)

(c) mH± vs tan β (Lepton-Specific type) (d) mh vs sβ−α (Lepton-Specific type)

Figure D.11: Same as figure D.10.

(a) Light h case in gluon fusion produc-
tion mode.

(b) Light A case in gluon fusion produc-
tion mode.

(c) Light h case in V BF + V H pro-
duction mode.

Figure D.12: Comparison between the generated 2HDM points in Type II framework and the observed upper limit on
the process pp → h/A → γγ at 13 TeV [90] (solid black line). Same color code as in figure 4.13.
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(a) Light h case in gluon fusion produc-
tion mode.

(b) Light A case in gluon fusion produc-
tion mode.

(c) Light h case in V BF + V H pro-
duction mode.

Figure D.13: Same as figure D.12 in the Flipped type framework.

(a) Light h case in gluon fusion produc-
tion mode.

(b) Light A case in gluon fusion produc-
tion mode.

(c) Light h case in V BF + V H pro-
duction mode.

Figure D.14: Same as figure D.12 in the Lepton-Specific type framework.
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E Complementary material on the study of
the heavy Higgs boson

(a) Type I, negative sβ−α values. (b) Type I, positive sβ−α values.

Figure E.1: Generated points in the plane mH vs sβ−α. Same color code as in figure 5.3.

(a) Type I (b) Type II

Figure E.2: Comparison between generated 2HDM points and ATLAS observed upper limit on the process σ(gg →
H) × BR(H → ZZ) [24] (black solid line). Same color code as in figure 5.5

155
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(a) Type I (b) Type II

Figure E.3: Comparison between generated 2HDM points and ATLAS observed upper limit on the process σ(gg →
A) × BR(A → Zh) × BR(h → bb̄) [79] (black solid line). Same color code as figure 5.5.
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F The σ decay width in the FCD model

We summarize in this appendix the obtention of the decay widths of the σ particle in the FCD
model based on the breaking SU(4) → Sp(4).

F.1 W +W −
and ZZ decays

The couplings at tree level of the σ particle with a pair of W ± gauge bosons is gσW W = ξ̃G sθ gSM
hW W

with gSM
hW W the coupling of a SM Higgs boson with mass mh = mσ with a pair of W ± gauge

bosons (see table 6.2).

σ

W+

W−

Figure F.1: Feynman diagram of the tree-level decay of the σ particle into a pair of W ± gauge bosons. The decay into
a pair of Z0, h, η or fermions has a similar Feynman diagram.

Using the tree-level Feynman diagram (see figure F.1) one can derive the expression of the
squared matrix element averaged on the possible W ± polarizations:

∑
polarizations

|MσW +W −|2 = g2
σW W ×

[
3 + m4

σ

4m4
W

− m2
σ

m2
W

]
(F.1)

Using the two-body decay formulas reminded in equation (6.47) and integrating over the
solid angle dΩ one finds:

Γσ→W +W − = g2
σW W

16πmσ

[
3 + m4

σ

4m4
W

− m2
σ

m2
W

]√√√√1 − 4m2
W

m2
σ

(F.2)

The derivation of the partial width for the decay σ → ZZ is exactly similar except for the
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additional 1
2 factor as the two Z0 bosons are indiscernible:

Γσ→W +W − = g2
σZZ

32πmσ

[
3 + m4

σ

4m4
Z

− m2
σ

m2
Z

]√√√√1 − 4m2
Z

m2
σ

(F.3)

F.2 Fermionic decays

The coupling between the σ particle and a pair of fermions ff̄ with mass mf is gσff = ξ̃fsθg
SM
hff

with gSM
hff the coupling of a SM Higgs boson with mass mh = mσ with a pair of fermions ff̄ .

We first compute the squared matrix element for the decay σ → ff̄ – for a SM fermion f
with mass mf – averaged on the possible spin states. One finds:

∑
spin

|Mσff̄ |2 = g2
σff̄ × 2Ncm

2
σ

[
1 − 4m2

f

m2
σ

]
(F.4)

with Nc the number of colors (Nc = 1 for leptons, Nc = 3 for quarks).
Using the partial width formula for two-body decays and integrating on the solid angle dΩ

one finds:

Γσ→ff̄ = g2
σff̄

Ncmσ

8π

(
1 − 4m2

f

m2
σ

)3/2

(F.5)

F.3 Decay into hh and ηη

The couplings between the σ particle and a pair of pseudo-Goldstone bosons – either hh or
ηη – are (see equations (6.35) and (6.36)):

gσhh = −m2
h

vsθ

(
ξ̃mc2

θ − 2ξ̃tc2θ

)
− ξ̃Gsθ

v
m2

σ

(
1 − 2m2

h

m2
σ

)

gσηη = −m2
h

vsθ

(
ξ̃mc2

θ + 2ξ̃ts
2
θ

)
− ξ̃Gsθ

v
m2

σ

(
1 − 2m2

η

m2
σ

)

As both h, σ and η are scalars we can deduce directly the partial decay widths:

Γσ→hh = 1
32π

g2
σhh

mσ

√√√√1 − 4m2
h

m2
σ

, Γσ→ηη = 1
32π

g2
σηη

mσ

√√√√1 − 4m2
η

m2
σ

(F.6)
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F.4 Decay widths in the limit mσ → ∞
Using the formulas derived above one can derive the expression of the different partial decay
width in the limit mσ → ∞:

Γσ→W +W − −−−−→
mσ→∞

g2
σW W

16π
× m3

σ

4m4
W

=
(

ξ̃Gsθ

v

)2

× m3
σ

16π
(F.7)

Γσ→ZZ −−−−→
mσ→∞

g2
σZZ

32π
× m3

σ

4m4
Z

=
(

ξ̃Gsθ

v

)2

× m3
σ

32π
= 1

2Γσ→W +W − (F.8)

Γσ→ff̄ −−−−→
mσ→∞ g2

σff × Ncmσ

8π
� Γσ→W +W − (F.9)

For the decays into hh and ηη one needs first to obtain the limit of the couplings:

gσhh −−−−→
mσ→∞ − ξ̃Gsθ

v
m2

σ, gσηη −−−−→
mσ→∞ − ξ̃Gsθ

v
m2

σ (F.10)

Hence, we deduce:

Γσ→hh −−−−→
mσ→∞

(
ξ̃Gsθ

v

)2

× m3
σ

32π
= 1

2Γσ→W +W − , (F.11)

Γσ→ηη −−−−→
mσ→∞

(
ξ̃Gsθ

v

)2

× m3
σ

32π
= 1

2Γσ→W +W − (F.12)

These results represent a mathematical proof of the discussion on the heavy Higgs branching
ratios at the beginning of section 6.3.4.
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