Developing physical models to understand the growth of plants in reduced gravity environments for applications in life-support systems - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2018

Developing physical models to understand the growth of plants in reduced gravity environments for applications in life-support systems

Développement de modèles physiques pour comprendre la croissance des plantes en environnement de gravité réduite pour des apllications dans les systèmes support-vie

Lucie Poulet

Résumé

Challenges triggered by human space exploration of the solar system are different from those of the International Space Station because distances and time frames are of a different scale, preventing frequent resupplies. Bioregenerative life-support systems based on higher plants and microorganisms, such as the ESA Micro-Ecological Life Support System Alternative (MELiSSA) project will enable crews to be autonomous in food production, air revitalization, and water recycling, while closing cycles for water, oxygen, nitrogen, and carbon, during long-duration missions and will thus become necessary.The growth and development of higher plants and other biological organisms are strongly influenced by environmental conditions (e.g. gravity, pressure, temperature, relative humidity, partial pressure of O2 or CO2). To predict plant growth in these non-standard conditions, it is crucial to develop mechanistic models of plant growth, enabling multi-scale study of different phenomena, as well as gaining thorough understanding on all processes involved in plant development in low gravity environment and identifying knowledge gaps.Especially gas exchanges at the leaf surface are altered in reduced gravity, which could reduce plant growth in space. Thus, we studied the intricate relationships between forced convection, gravity levels and biomass production and found that the inclusion of gravity as a parameter in plant gas exchanges models requires accurate mass and heat transfer descriptions in the boundary layer. We introduced an energy coupling to the already existing mass balance model of plant growth and this introduced time-dependent variations of the leaf surface temperature.This variable can be measured using infra-red cameras and we implemented a parabolic flight experiment, which enabled us to validate local gas transfer models in 0g and 2g without ventilation.Finally, sap transport needs to be studied in reduced gravity environments, along with root absorption and leaf senescence. This would enable to link our gas exchanges model to plant morphology and resources allocations, and achieve a complete mechanistic model of plant growth in low gravity environments.
Les challenges posés par les missions d’exploration du système solaire sont très différents de ceux de la Station Spatiale Internationale, puisque les distances sont beaucoup plus importantes, limitant la possibilité de ravitaillements réguliers. Les systèmes support-vie basés sur des plantes supérieures et des micro-organismes, comme le projet de l’Agence Spatiale Européenne (ESA) MELiSSA (Micro Ecological Life Support System Alternative) permettront aux équipages d’être autonomes en termes de production de nourriture, revitalisation de l’air et de recyclage d’eau, tout en fermant les cycles de l’eau, de l’oxygène, de l’azote et du carbone, pendant les missions longue durée, et deviendront donc essentiels.La croissance et le développement des plantes et autres organismes biologiques sont fortement influencés par les conditions environnementales (par exemple la gravité, la pression, la température, l’humidité relative, les pressions partielles en O2 et CO2). Pour prédire la croissance des plantes dans ces conditions non-standard, il est crucial de développer des modèles de croissance mécanistiques, permettant une étude multi-échelle des différents phénomènes, ainsi que d’acquérir une compréhension approfondie de tous les processus impliqués dans le développement des plantes en environnement de gravité réduite et d’identifier les lacunes de connaissance.En particulier, les échanges gazeux à la surface de la feuille sont altérés en gravité réduite, ce qui pourrait diminuer la croissance des plantes dans l’espace. Ainsi, nous avons étudié les relations complexes entre convection forcée, niveau de gravité et production de biomasse et avons trouvé que l’inclusion de la gravité comme paramètre dans les modèles d’échanges gazeux des plantes nécessite une description précise des transferts de matière et d’énergie dans la couche limite. Nous avons ajouté un bilan d’énergie au bilan de masse du modèle de croissance de plante déjà existant et cela a ajouté des variations temporelles sur la température de surface des feuilles.Cette variable peut être mesurée à l’aide de caméras infra-rouges et nous avons réalisé une expérience en vol parabolique et cela nous a permis de valider des modèles de transferts gazeux locaux en 0g et 2g, sans ventilation.Enfin, le transport de sève, la croissance racinaire et la sénescence des feuilles doivent être étudiés en conditions de gravité réduite. Cela permettrait de lier notre modèle d’échanges gazeux à la morphologie des plantes et aux allocations de ressources dans une plante et ainsi arriver à un modèle mécanistique complet de la croissance des plantes en environnement de gravité réduite.
Fichier principal
Vignette du fichier
2018CLFAC026_POULET.pdf (49.35 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01983345 , version 1 (16-01-2019)

Identifiants

  • HAL Id : tel-01983345 , version 1

Citer

Lucie Poulet. Developing physical models to understand the growth of plants in reduced gravity environments for applications in life-support systems. Chemical and Process Engineering. Université Clermont Auvergne [2017-2020], 2018. English. ⟨NNT : 2018CLFAC026⟩. ⟨tel-01983345⟩
268 Consultations
142 Téléchargements

Partager

Gmail Facebook X LinkedIn More