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Résumé  Ce travail de thèse présente un nouveau 
modèle de projection pour les cameras fisheye, qui est 
mathématiquement simple et pourtant montre une haute 
précision une fois appliqué aux caméras réelles. Les 
propriétés géométriques de ce modèle ont été analysées 
en utilisant le concept de surface de projection, introduit 
dans ce travail. En particulier, une inverse analytique de 
ce modèle a été établie, ainsi qu'une équation implicite 
des projections de lignes droites. Cette dernière nous a 
permis de développer une méthode de reconstruction 3D 
directe basée vision pour les caméras fisheye sans 
rectifier les images.  

Cela a été fait grâce à une algorithme de rastérisation de 
courbes implicites. Cet algorithme de 
reconstruction nous permet d'employer le Semi-Global 
Matching pour obtenir une reconstruction 3D précise. 
Tous ces éléments ont été employés dans un système de 
localisation visuelle directe avec deux méthodes de 
recalage d'images : minimisation d'erreur photométrique 
et maximisation d'information mutuelle. L'étalonnage 
intrinsèque et extrinsèque d'un robot mobile équipé de 
caméras fisheye a été considéré et une toolbox 
d'étalonnage a été développée.  
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Abstract :    This thesis presents a novel projection 
model for fisheye cameras, which is mathematically 
simple and yet shows a high precision when applied to 
real cameras. Geometric properties of the model have 
been analyzed using the concept of projection surface, 
introduced in this work. In particular, a closed-form 
inverse mapping and an implicit equation for straight line 
projection have been found. This fact has been used to 
develop a method of direct stereo correspondence on raw 
fisheye images via rasterization of implicit curve. This 
correspondence algorithm allows us to apply the Semi-  

Global Matching algorithm to get an accurate 3D 
reconstruction using fisheye stereo systems. All these 
elements have been shown to be applicable to a direct 
visual localization system with two different methods of 
image registration: direct photometric error minimization 
and mutual information maximization. Intrinsic and 
extrinsic calibration of a mobile robot with fisheye 
cameras has been considered and a toolbox for such a 
calibration has been developed 
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Mobile et Les Véhicules Autonomes

Bogdan Khomutenko

December 26, 2018

1





Abstract

This work lies in the domain of computer vision and autonomous navigation for mobile robots.
The principal subject is the use of fisheye cameras for visual perception.

The first research question covered by this work is geometric modeling of fisheye cameras.
The goal is to make fisheye cameras as easy to use as classical pinhole cameras. Existing models
are either not precise enough or too complicated for analytical analysis of their geometric
properties. We propose a novel projection model based on the Unified Camera Model, also
known as the Spherical Model. Adding one more projection parameter increases the model
expressiveness and makes additional distortion mappings unnecessary. As experiments show,
this model accurately approximates a large variety of different fisheye lenses. The notion of
projection surface, proposed in this work, allowed us to find an analytic inverse of the model
and implicit equations of straight line projections.

An efficient and flexible calibration toolbox for multi-camera systems has been developed.
It has a novel fully-automated subpixel detector of calibration boards, which is significantly
faster than that of OpenCV. A method of calculating optimal trajectories for extrinsic cali-
bration of mobile robots has been proposed and tested. Its effectiveness to reduce the noise
impact has been demonstrated on simulated data. It has been applied to calibrate a complete
system Camera-Odometry, which has been used for localization experiments.

The next research question is how to compute direct stereo correspondence between two
fisheye images. The main goal was to avoid additional filtering such as undistortion and rec-
tification mappings. It was possible thanks to epipolar geometry of fisheye stereo systems
provided by the developed model. After computing epipolar curve equations, we sample im-
age pixelwise along them in order to compute the correspondence cost. This approach allows
us to apply the Semi-Global Matching algorithm to regularize the computed disparity map
and get a more accurate reconstruction. We proposed several techniques of computing the
correspondence cost, which improve the correspondence quality. The proposed stereo algo-
rithm has been tested on both synthetic and real data, using the ground truth for validation
purposes. Experiments show that the reconstruction of planar textured objects is accurate
and precise, which validates the geometric model behind.

The last research question is visual localization. A novel closed-form triangulation method
allows us to significantly reduce the number of unknowns in the visual odometry problem.
Fisheye cameras have been combined with direct visual localization and additional sources
of localization information, such as IMU and wheel odometry. This method was tested on
simulated data and showed high precision. Using Mutual Information as similarity measure for
image registration allowed the system to relocalize itself using real data in a map constructed a
few days earlier with some changes in the environment and in lighting conditions. The method
demonstrated robustness with respect to moving objects, such as cars and pedestrians.

Keywords: fisheye, calibration, stereo, 3D reconstruction, direct localization
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Résumé

Ce travail de thèse s’inscrit dans le domaine de la vision par ordinateur et de la navigation
autonome pour les robot mobiles. Le sujet principal est l’utilisation d’optiques grand angle
pour la perception visuelle.

La première problématique traitée est la modélisation géométrique des cameras fisheye. Le
but est de rendre leur utilisation aussi simple que celle des cameras classiques trou d’épingle.
Les modèles existants manquent de précision ou bien sont trop compliqués pour que l’on puisse
analyser leurs propriétés géométriques analytiquement. Nous proposons un nouveau modèle
de projection basé sur le Modèle Unifié, aussi connu comme Modèle Sphérique. En rajoutant
un paramètre intrinsèque, on augmente l’expressivité du modèle et évite le recours à une
fonction de distorsion supplémentaire. Les expériences effectuées ont démontré la capacité du
modèle à approcher, avec une grande précision, une large gamme d’objectifs fisheye différents.
Le concept de surface de projection, proposé dans ce travail, nous a permis de trouver une
inverse analytique de ce modèle ainsi que d’établir les équations de projections de droites.

Une bôıte à outils d’étalonnage, flexible et efficace, conçue pour les systèmes multi-
cameras, a été développée. Elle contient un nouveau détecteur de mire d’étalonnage, qui
est automatique, a une précision sub-pixelique, et qui est plus rapide que le détecteur fourni
avec OpenCV. Une méthode de calcul de trajectoires optimales pour l’étalonnage extrinsèque
de robots mobiles a été développée et testée. Son aptitude à réduire l’impact du bruit sur
la précision a été démontré sur des données synthétiques. Elle a été utilisée pour étalonner
un système complet Camera-Odométrie, qui a été employé pour tester les algorithmes de
localisation.

La problématique suivante était de calculer la correspondance stéréo directement dans
l’espace d’images fisheye, tout en évitant un filtrage additionnel et la rectification d’images.
Cela a été possible grâce à la géométrie épipolaire des systèmes stéréos fisheye, donnée par le
modèle proposé. Une fois les équations des courbes épipolaires calculées, l’image est échan-
tillonnée, pixel par pixel, le long de celles-ci afin de trouver le coût de correspondance. Cette
approche nous permet d’employer l’algorithme de Semi-Global Matching et d’obtenir une
reconstruction 3D précise. Un certain nombre de techniques, qui améliorent la qualité de
correspondance, ont été proposées. De nombreux essais avec des données synthétiques ainsi
que réelles ont montré que l’algorithme est capable de reconstruire des objets planaires texturés
avec une grande précision.

La localisation visuelle est la dernière problématique traitée dans notre travail. Une nou-
velle méthode de triangulation analytique nous permet de réduire le nombre de paramètres
d’optimisation dans le problème d’odométrie visuelle d’une façon significative. Une méthode
de localisation visuelle directe basée caméras fisheye, qui emploie aussi d’autres sources
d’information de localisation, comme une centrale inertielle ou l’odométrie des roues, a été
développée. Des essais avec des données synthétiques montrent sa précision. L’utilisation
de l’Information Mutuelle en tant que mesure de similarité permet au système de se relo-
caliser avec des données réelles dans une carte construite quelques jours auparavant malgré
des changements dans l’environnement et l’éclairage. Cette méthode se montre robuste par
rapport aux objets mobiles, tels que voitures en marche et piétons.

Mots-clés : fisheye, étalonnage, stéréo, reconstruction 3D, localisation directe
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Greek Letters and Their Use

small capital name possible use
α A alpha intrinsic parameters
β B beta intrinsic parameters
γ Γ gamma intermediate variable
δ ∆ delta variable change, small rotations
ε E epsilon small quantity
ζ Z zeta odometry increment
η H eta projection model denominator
θ ϑ Θ theta rotation angles, thresholds
ι I iota —
κ K kappa intermediate variable
λ Λ lambda various coefficients and quantities
µ M mu mean values
ν N nu —
ξ Ξ xi 6 DoF transformation, intrinsic parameters
o O omicron —
π Π pi 3.14159...
ρ P rho distance origin-point
σ Σ sigma standard deviation
τ T tau —
υ Υ upsilon —
φ ϕ Φ phi angle, scalar function
χ X chi intermediate variable
ψ Ψ psi scalar function
ω Ω omega angular velocity, image domain
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List of Notations

Ω ⊂ R2 domain of an image or its part definition
I : Ω→ R image
D : Ω→ R depth map
p = (u, v)T 2D point, element of R2

X = (x, y, z)T 3D point, element of R3

M normal plane defined by z = 1
m ∈M normalized point
Oi origin of frame i, used to refer to the frame
ξ ∈ SE(3) 6 DoF transformation [tx, ty, tz, rx, ry, rz],
t ∈ R3 translation vector
r = uϑ angle-axis rotation
iξj defines Oj with respect to Oi
iξj(

jX) transforming a 3D point X from Oj to Oi.
ξa ◦ ξb composition of two transformations
R ∈ SO(3) 3D rotation matrix
T ∈ SE(3) homogeneous transformation matrix
f camera projection model
f−1 inverse projection model
α camera intrinsic parameters
in particular
f or fu, fv focal length
u0, v0 coordinates of the image center

K projection matrix, contains intrinsic parameters
F fundamental matrix
E essential matrix

a ∝ b a is proportional to b
a× b a, b ∈ R3 cross product of two vectors
[·]× cross-product skew-symmetric matrix
p× q p, q ∈ R2 is the same as det

[
p q

]
, or z-component of the cross product
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Chapter 1

Introduction

The problem we are addressing in this thesis is how to build a flexible, precise and widely-
applicable wide-angle visual perception system for autonomous mobile robots. The main
purpose of such a system would be to provide the robot with all the needed information to
accomplish the navigation task.

In the following introduction we provide an overview of robotic perception, different modal-
ities, navigation problem description, and also review important bibliographical references on
different localization techniques. Using the presented information, advantages and disadvan-
tages of different hardware and methods, we justify the key choices we have made during the
work.

1 Robotics and Perception

The purpose of a robot is to efficiently interact with an environment and achieve given goals.
In order to do that, it must be able to build certain environmental representation, develop a
sequence of actions, which leads to the desired result. Once it is done, the robot has to use
its actuators to interact with the physical world, that is, to change its own state or states of
other objects around. This Perception-Planning-Acting can be represented as in Fig. 1.1.

Figure 1.1: Perception-Planning-Action.

We can take a chess robot as an example (surprisingly there are no many of them around).
Let’s think of it as a manipulator with one or more cameras. We want it to be able to play
against humans or other chess robots using a wide spectrum of reasonable chess sets. Let’s
analyze its task using this paradigm.

1. Perception. First, the robot needs to detect the chessboard, then detect and recognize all
the pieces on the board. Then, this information must be represented under two forms.
First, it needs a symbolic description of the board state to hand it to the planner.
Second, it needs a 3D representation usable for the manipulation purposes.

2. Planning. In this case the required discrete action is a move. So to compute it, a chess
engine able to process the symbolic description of the board state and to find the needed
move.

13



14 CHAPTER 1. INTRODUCTION

3. Action. Once the desired move is compute, a simple pick-and-place operation is required.

Strictly speaking, the control scheme usually includes another planner, which prepares a
trajectory, and the real boundary between planning and control in this case is fuzzy. What
is important is that the perception is needed for symbolic planner (let’s call it this way),
trajectory planner, and the motor control loop. The symbolic planning part is currently
solved. There are a few challenges in the action part, like grasping objects of different size
and shape. But the most difficult and the least solved problem is perception.

Robotic chess players exist. But they are not playing fairly by using a special chess
set where the chessboard is a sensor, and the chess pieces are marked with radio chips and
whose shapes are precisely known. Once the position of such a board is known in the robot
coordinate system, the task becomes almost trivial, because the robot can do everything while
being completely “blind”. This is not what we want because here the chess set itself is rather
a part of the robot, hence there is no real manipulation with external objects.

Of course, we can facilitate the task by sticking a QR-code on every piece, or mark them
with infrared reflectors. At least we can use the same chess set every time. There is a
continuum of different levels of the chess-play tasks for robots. But intuitively, the majority
of us would agree that what we are looking for is a robot which is as capable of using a real
chess set as humans.

Speaking more generally, the problem of visual perception is not yet solved. All the
contemporary computer vision systems are specific and have a narrow application range with
particular environmental setting and limited functionality. A great advance in computer vision
would be a system capable of solving a large variety of visual perception problems with little
or no changes of its architecture.

Perception System The perception system is composed of different blocks, hardware and
software:

• Sensor — a hardware device, meant to transform physical quantities into electronic
digital codes. For example, a thermometer measures temperature and outputs its value
in binary codes. In the previous example the sensor was a camera, which measures light
brightness on the surface of its retina, where an image of the environment is projected by
a system of lenses. Even though the data acquired by the sensors is treated numerically
regardless of its physical origin, we shall not forget that sensors are the crucial part of
any perception pipeline.

• Low-level data processing — a software block which works with raw data values to
enhance their quality. For instance, in the case of images, it improves the dynamic
range, reduces noise. During this step the data are prepared for further processing.

• High-level processing — at this stage, the data is interpreted, features are detected, the
data is usually represented differently, for instance via symbolic information. Additional
knowledge about geometric constraints, scene setting, priors, symbolic rules is employed.

This division is given as an example. Depending on the system, low-level processing can
be integrated in the sensor, or on the contrary, high-level processing might be combined with
low-level denoising algorithms. But the important point is that the perception system contains
two important blocks: data acquisition block, or a sensor, and processing block, which actually
accomplishes the given task. In the following sections, different sensors are reviewed, their
advantages and disadvantages are discussed. Then the navigation problem, as the case of the
most interest for us, is considered.
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2 Different Sensors and Modalities

Through the evolution process of robotics, various sensors have been developed. None of them
are perfect and able to cover all aspects of environment sensing, and each of them has its own
“blind spots”. Moreover, we have to assume a number of properties of the environment in
order to use a certain sensor.

Since this thesis belongs to the domain of mobile robotics, the sensors and, ultimately, the
perception systems are considered first of all as localization and navigation tools. And the
question we ask regarding each sensor is how to use it for these purposes.

2.1 Proprioceptive Sensors

Proprioception, from Latin proprius, meaning “one’s own”, “individual”, and capio, capere, to
take or grasp, is the sense of the relative position of one’s own parts of the body and strength
of effort being employed in movement, says the Mosby’s Dictionary of Medicine, Nursing &
Health Professions.

Joint Encoders are the most important sensors for industrial robots since the robot’s
mechanical state is fully defined by joint angles and velocities. The so-called direct geometric
model can be applied to compute the 3D pose of all the robot’s links and its end effector.
For most industrial robots it is the only sensing modality, which is sufficient for their tasks in
a fully controlled environment. Encoders give a high angular precision which allows robotic
arms to have an excellent repeatability.

Odometry The word odometry comes from Ancient Greek ὁδός (hodós, “road, path, way”)
+ μέτρον (métron, “measure”). It is a particular type of localization which is based on
integration of motion increments. Classically, it is based on measuring the rotation rate of
robot’s wheels and computing the instantaneous motion using kinematic constraints of the
wheel-ground contact, that is non-skidding and non-slipping. The particularity of this sensing
modality is that the localization it gives is consistent only locally. Since every increment has
an error, integration over the whole path leads to error accumulation and divergence between
the real trajectory and the estimated one.

IMU is usually an integrated circuit, sensitive to gravity, accelerations, and angular velocity.
By integrating the accelerations a velocity estimation can be obtained. To get a position
estimation another integration must be applied. Any bias in the acceleration estimation
causes a drastic divergence of the position estimation, while the orientation is estimated using
only one integration and thus is more accurate.

2.2 Exteroceptive Sensors

Exteroception, on its turn, stands for the environment perception. Such sensors give the
output as a function not only of the robot state, but of the environmental state as well.
Exteroceptive sensors are crucial, since robots are supposed to execute tasks related to the
environment, navigate through the environment and interact with it. Without this kind of
sensors, robots would be blind and not capable of doing anything in an uncontrolled environ-
ment.

The two main categories are passive and active sensors. Passive sensors work only in the
reception mode (for example, cameras, microphones, radio-wave receivers). Among the passive
sensors, cameras are of the most importance for the localization and navigation purposes.
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The active sensors probe the environment with an emitter and receive the “echoes”, or the
reflections of the emitted waves. The examples are lidars, ultrasonic range finder, structured-
light systems (for example, Microsoft Kinect), time-of-flight cameras. Usually, active sensors
directly give us geometric information about the environment. On the other hand, they have
limited range and some of them are sensitive to external radiation sources, like powerful
spotlights and the sun.

Ultrasonic Range Finder It is the cheapest among active sensors, and is capable of
measuring distances within a few meters. It is not precise as the ultrasound beam is not
focused, but rather shaped as a cone. These sensors are used to detect that there is an
obstacle nearby rather than to reconstruct the environment. Its weak point is that some
surfaces are invisible for them because they absorb too much ultrasound, while other surfaces
(mostly flat) reflect the beam completely instead of scattering in all directions, and hence are
also invisible.

Lidar Laser range finders or lidars (LIght Detection And Ranging) emit infra-red laser
pulses and measure the time until the scattered signal is received. Originally lidars measure
distance in only one directions. By combining it with a rotating mirror which changes the
beam direction, we obtain laser scanners, which can be referred to as lidars as well and which
measure the distance to the objects around in multiple directions (usually with 1◦ or 0.5◦

angular step) within a single plane. There are models in which the mirror rotates about two
axes to get quasi-two-dimensional sweep (see Fig. 1.2); There are also models where more
than one beam is used at a time, and so, multiple planes are scanned (Fig. 1.3).

Pros:

• The output is directly geometric data which are generally easy-to-use.

• The precision of distance measures is about 5-10 cm which is relatively high and almost
does not depend on the distance.

• Lidars provide a high resolution in the sweep direction;

• Since lidars are active sensors, they don’t depend on external signal sources.

Cons:

• Lidars have mechanical parts, such as a rotating mirror, which are fragile and expensive.

• The range of lidars is limited. Usually it is about 50 m.

• Some surfaces are invisible because they reflect the beam instead of scattering it.

• As it is a sweep-based sensor, different parts of a scan belong to different time instants,
so if the robot moves fast or there are moving objects in the environment, the motion
distortion effect must be taken into account.

Structured-Light Sensors Another possible way of perceiving the depth information is
via projecting a certain pattern in the visible part of the spectrum or in its infrared part. One
of the most famous and most influential sensors is Microsoft Kinect V1. Microsoft released
a low-cost active 3D sensor, which gives an image along with a depth map (so-called RGB-
D camera). The 3D reconstruction is based on projecting an infrared pseudo-random dot
pattern on the environment. An infrared camera together with the emitter form a stereo
pair. Pseudo-randomness of the pattern makes the matching process efficient and robust, so
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(a) (b)

Figure 1.2: (a) Hokuyo YVT-X002 and its sweep patterns. (b) A laser scan taken with this model.

Figure 1.3: A laser scan taken with Velodyne
HDL-64E

Figure 1.4: A depth map generated with Microsoft
Kinect.

generally the reconstruction quality is good. Unfortunately this sensor is sensitive to sunlight
as it shadows the projected pattern, so the sensor is usable only indoor. One should keep
in mind that this sensor has been developed for gaming purposes, and thus is not perfectly
adapted for scientific research. A depth map example is given in Fig. 1.4.

The concept of structured light can be applied to omnidirectional sensors. For example,
Orghidan et al. (2006) describes a 3D sensor based on a conic-mirror laser projector and a
catadioptric visual sensor, which are aligned with each other. This sensor is able to capture
omnidirectional depth images.

Time-Of-Flight Camera Another type of active visual sensors uses a principle similar to
lidars. It emits a light pulse and measures the time between the emission and reception, or
the time of flight (ToF). The sensor is organized in the same way as classical cameras, that
is it has a retina and a lens. So the output is a depth image with all geometric properties
of images. For contemporary ToF cameras the resolution is lower than for classical ones, for
instance, Microsoft Kinect 2 has a ToF camera with a resolution 512 × 424 px and a range
of 4.5 m. This technology is one of the most recent depth sensors and it seems to be a good
solution for indoor environments, but for outdoors it might have the same problems as any
other active optical sensor, that is, in bright sunlight the depth measurements become noisy
or completely broken.

GPS This modality stands aside because it is not an actual environment sensor, but rather
a giant artificial absolute positioning grid. It has the advantage of global consistency, that is,
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Figure 1.5: Multipath effect. Because of signal reflection the real distance to the satellite is different from the
perceived one.

wherever you are on Earth, you can localize yourself up to few meters, under the condition
that you capture signals from a sufficient number of satellites (at least four).

But this system has a certain number of issues. First, it does not work indoor because the
satellite signals are screened by the building. Second, in urban areas, high buildings reduce
the satellite visibility and cause the so-called multi-path effect (see Fig. 1.5). It significantly
reduces the localization precision and other modalities have to be used in order to make it
possible to navigate. For example, in Kos et al. (2010) it is reported that multipath produces
additional localization error of about 8 m.

Depending on the application, GPS might not be sufficient as a source of localization data.
There is no reason not to use GPS for localization purposes to simplify map-based localization
by giving an initial approximation. But in some cases, it cannot be the primary modality in
the localization and navigation process because of the following reasons:

• This localization does not give any information about the obstacles and navigable space.

• Even if we had an exact map with all the obstacles and roads, which is impossible
because the environment changes over time, the localization is not precise enough. For
instance, 5 m precision allows you to know which street you are in (in most cases), but
does not allow you to know which lane you are driving in.

3 Navigation and Mapping

Even though this work does not treat the problem of navigation directly, its global context
and the ultimate goal is a visual navigation system for mobile robots and self-driving cars.
That is why a brief overview of different navigation techniques is provided.

A common definition of navigation attributes it the following functions:

• Localization

• Path planning

• Path following and obstacle avoidance

Localization is arguably the most important and the most challenging part of the nav-
igation process. That is why we are primarily interested in different mapping techniques.
Bonin-Font et al. (2008) suggests the following navigation taxonomy:

• Map-based — the localization is done using an existing map

• Map-building — the system is capable of building its own maps while exploring the
environment and then reuse the maps for the navigation purposes
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• Map-less — there is not an explicit map and explicit localization, even though in most
cases there is a certain environment representation used for navigation

We would add that since the navigation task is usually defined with respect to a map,
the map-building navigation systems are extensions of map-based ones in the sense that the
map-building systems are able to build a map during the training phase and then operate as
a map-based system.

We can imagine a task where the environment is not known and the goal is defined in
global coordinates. Unless the environment has a simple structure, like a flat area with a
number of convex obstacles, or unless its prior map is given (a street map, for instance) it is
an exploration task, which goes beyond the scope of this work.

3.1 Map-Less and Learning-Based Navigation

Reactive Navigation One of the most basic approaches to navigation is the so-called
reactive navigation. Its objective is to follow a certain structure in the environment, the most
commonly, a corridor. Some systems are biologically-inspired. For example, Santos-Victor
et al. (1995) describes a system based on bees’ flying behavior. It compares the left and right
optic flows to figure out on which side the obstacles are closer. At the center of the corridor
the optic flow is balanced on both sides and if the robot is closer to one of the walls, the
corresponding apparent motion will be faster and the implemented control law will make the
robot go away from it. Such navigation systems must be combined with a higher level planner,
which can change the behavior from “follow the corridor” to “turn to the left” for example.

Learn and Repeat In the case of a more meaningful activity like path following, a usual
approach is “learn and repeat”. One possibility to learn a trajectory is to store visual input
along it. The hypothesis is that the same visual input during the repeat phase corresponds
to the same trajectory. Of course, repeating the exact same trajectory and having the same
input is virtually impossible. But we can try to get as close as possible. This method uses
the so-called vision-based control or visual servoing. Instead of controlling the robot position
directly, we control some features of its visual input. In an early work by Jones et al. (1997),
the zero-normalized cross-correlation (ZNCC) is used to associate a live-stream-video frame
with an image from a database. The control loop drives the cross-correlation peak to the
image center to make sure that the robot moves in the right direction. Once the next image
in the trajectory matches the video stream better than the current one, the system switches
to it and the process continues.

A more elaborate technique is to use different visual features instead of ZNCC. The robot
minimizes the difference between the perceived feature and the ones extracted from the key
frame. Once the perceived features’ parameters are close enough to the desired ones, the
robot takes the next keyframe as the reference. For example, line segments can be used as
visual features, as it is suggested in Raj Bista et al. (2016a). Another option is to use dense
visual information. A system based on the so-called mutual information has been presented
in Raj Bista et al. (2016b). During the learning phase, the robot acquires key images along
the trajectory. During the execution, the robot chooses the key image which has the most
mutual information with the actual perception. Then the control is computed so that the
mutual information between the two images increases. The maximum of mutual information
corresponds to the coincidence of the two viewpoints. This method has the advantage that
the mutual information is robust with respect to lighting changes and small modifications of
the environment.
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Machine-Learning-Based Navigation A method of map-less navigation based on om-
nidirectional vision and neural networks has been proposed by Giovannangeli et al. (2006).
Along with a growing popularity of deep learning and convolutional neural networks, end-
to-end learning has been applied to the navigation problem. An outstanding result of deep
learning has been demonstrated by Mnih et al. (2015), where a neural network learns to play
video games at a super-human level based only on a video input, using the so-called deep
reinforcement learning (DRL). DRL has been applied to the visual navigation problem. For
example, Zhu et al. (2017) applied DRL to the task-driven navigation problem. The input is
the current image and the goal image, the output is a high-level action from the list “move
forward”, “move backward”, “turn left”, “turn right”. Even though there is no explicit map
of an environment, there is an environment-specific layer which has to be pretrained for each
newly seen environment, while the most part of the network remains intact.

An idea of augmenting the learning-based system with a map representation has been
used in Bhatti et al. (2016). The work presents a learning-based artificial intelligence meant
to play Doom, a classical video-game shooter. Even though the environment and the goals
are different from the real world, the results can be generalized for real robotic applications.
The authors combine computer vision for mapping (more exactly, ORB-SLAM by Raúl et al.
(2015)) and deep neural networks for policy learning to create an agent capable of building
and executing a sequence of actions, based only on its visual input.

Another recent work by Gupta et al. (2017) describes an end-to-end-learning-based nav-
igation and mapping system. This system exploits the same idea of building and keeping a
map of the environment in the memory, but uses a fully learning-based approach for its re-
construction instead of visual SLAM techniques. Even though learning-only systems produce
interesting results, it seems to be a better choice to integrate the learning part, which accumu-
lates different experiences and priors about the environment, with existing computer-vision
algorithms to solve certain specific problems, for example geometric modeling of cameras.

3.2 Map-Based Navigation

Map-based techniques require a map for localization and path planning purposes. This map
can be preconstructed by the system itself during the pretrainig or exploration phase. The
navigation system continuously runs its localization loop and, based on the robot’s pose, it
computes and executes a path to the goal, both defined in the map.

Localization Algorithms State-of-the-art methods of map-based metric localization are
based on the probabilistic framework. The robot’s position is represented by a probability
distribution and its update is usually divided into two steps:

1. Prediction — the robot position belief is updated using proprioceptive sensors, control
values, and/or dynamic model.

2. Measurement — the belief is modified in order to maximize the probability of the data
given its prior distribution and measurement noise parameters.

Such an approach has been proven to be efficient and robust to a certain extent. For example,
it has been used by Burgard et al. (1996) for indoor localization of a mobile robot with sonars
as distance sensors. The localization belief is represented using a fine grid in the 3D posture
space (x, y, ϑ).

This system has been improved even further in Fox et al. (1998) by adding an outlier
detection module in order to make it possible for the system to operate in highly crowded
environments like a museum exposition (where this system has been successfully tested).
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More recent approaches use different belief representations. One of them is the so called
particle filter (Dellaert et al. (1999)). Instead of representing the belief by a uniform grid, a
certain number of particle are scattered across the map. At every prediction step each particle
generates several children which evolve according to the probabilistic prediction model. At the
measurement step, the particles are sampled with probabilities defined by the data likelihood.
This method is well-adapted to low-dimensional spaces and is able to represent arbitrary
distributions.

Another method is called extended Kalman filter (EKF), which is a generalization of the
Kalman filter for non-linear systems. In this approach the noises and state belief are modeled
using Gaussian distribution. Even though this method is limited to unimodal distributions,
it is popular because in some cases there is no need of multi-hypotheses approaches, and EKF
is relatively simple to implement and adjust. Also it can be used with high-dimensional data
since its complexity is a polynomial function of the dimension, while the particle filter grows
exponentially.

Simultaneous Localization and Mapping If the environment is unknown, its map has
to be constructed. It can be done via Simultaneous Localization And Mapping (SLAM), a
process which constructs a map from scratch and localizes the agent in it, or more generally
reconstructs the agent’s trajectory with respect to this map. Constructed maps may have
different representations. It can be represented by points or other geometric primitives, all put
in the same local map frame. For example, a map can be represented by a point cloud, which
is a common choice for 3D sensors, like Velodyne. Another popular option is the so-called
occupancy grid, a bitmap which represents free space and occupied space. The occupancy
grid is usually used with 2D laser scanners (for example Wang et al. (2007); Dominguez et al.
(2015)). This kind of maps is a natural choice for active metric sensors, like lidars. A single
lidar scan can be considered as a local metric map, and by combining multiple scans, it is
possible to construct a precise and detailed map.

An efficient algorithm to process point clouds, called iterative closest point (ICP), Besl and
McKay (1992), is usually used to register different scans. Registration means bringing two
datasets to the same reference frame. In other words, registering two scans means “aligning”
them, or finding a transformation between the origins of both scans. ICP works for both 2D
and 3D scans. After registration, the map can be extended. It is done either by adding more
primitives to the map, that is, points, lines, planes; or by changing values in the occupancy
grid.

In the case of vision-based SLAM, the classical approach is to use visual features as
landmarks and construct 3D feature point clouds. Some systems maintain the whole map in a
single coordinate system. For example, Beall and Dellaert (2014) updates the map by adding
new features which correspond to different seasons. It selects only features which can be
observed from the neighborhood of the current position to match them with perceived ones.
Another prominent example of feature-based SLAM, already mentioned before, is ORB-SLAM
by Raúl et al. (2015).

If the map is getting too big, multi-map systems can be used. That is, instead of using one
single coordinate frame for the whole map, instead multiple map patches, each one having its
own frame, are stitched together. A particular case of multi-map system is a keyframe-based
system. In this case a single sensory input is used as a local map. Newly arrived sensory
inputs are registered (that is, brought to the keyframe coordinate system) and then used to
improve the local map precision. Examples of such systems are Engel et al. (2014); Biber and
Duckett (2005).

The concept of semi-dense reconstruction, introduced by Engel et al. (2013) is of a par-
ticular interest for us. Instead of reconstructing a dense depth map (like the ones given by
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Figure 1.6: Semi-dense reconstruction. Only textured regions are processed. Engel et al. (2013)

Kinect — Fig. 1.4), which is computationally expensive and, in the case of passive sensors,
requires strong priors on the texture-less regions, the reconstruction is done only for pixels
with a certain level if image gradient (Fig. 1.6). That way, the maximum amount of image
information is used while the computational cost remains at the level of sparse feature-based
approaches. Still, this approach assumes a static environment and brightness constancy.

Another research direction is related to localization in an environment which changes over
time. These changes are caused primarily by the weather and lighting conditions: cloudy
days, bright sun light which casts sharp and high contrast shadows, nighttime with artificial
lights, snow, rain, and so on. One approach which can address the environmental changes is
presented in Churchill and Newman (2013). The underlying idea is to learn all the possible
place appearances. To do so, every time the vehicle passes by a place, it is trying to localize
itself with respect to all prior experiences, which are stored outputs of a visual odometry
system constantly running on board. If the number of successful localizations with respect
to the existing experiences is less than a certain small threshold, the system assumes that
the current representation of the place is not sufficient and the current experience must be
stored. Some places require much less experiences than others, depending on how much their
appearance changes over time.

One more way to deal with environmental changes, presented in McManus et al. (2015) is to
learn reliable and repeatable mid-level features, specific to a certain place. These features don’t
carry any semantic information, but they are of a higher level than simple point-like features
which, while being a nearly optimal solution in the general case, might not be appropriate at
all for a particular place.

Loop Closure An important aspect of a SLAM system is the so-called loop closure. The
idea is to detect the fact that the robot revisits the same place as before, create a loop in the
map, and re-optimize the map taking the new constraint into account. Loop closure has two
important aspects:

1. Topological. As it is mentioned in Cadena et al. (2016), without loop closure the robot
lives in an infinite corridor. And if we want to reuse the constructed map to go from
point A to point B, the robot will have to follow its original path instead of taking
possible shortcuts.

2. Metric. Such constraints have a great impact on the metric map precision and global
consistency. Accurate loop closure significantly improves the map, while false ones may
completely deteriorate it.

In some cases, loop closure is not necessary. For example, if the robot has to map and to be
able to navigate along just a single path, then the “corridor” model is perfectly suitable. But
generally, for smart autonomous navigation, being able to reconstruct and use the environment
topology is important.



3. NAVIGATION AND MAPPING 23

(a)

(b)

Figure 1.7: Visual place recognition systems must be able to (a) successfully match perceptually different
images while (b) also rejecting incorrect matches between aliased image pairs of different places. Lowry et al.
(2016)

3.3 Topological Maps and Place Recognition

A particular place in the navigation and cartography is taken by the so-called visual place
recognition. The problem is formulated as follows: given a visual input acquired at a certain
spatial location and a set of already visited and mapped locations, determine whether the
perceived location corresponds to one of the previously observed and mapped places or is
observed for the first time. The key point here is that we are not interested in how similar
the visual input is to what we have seen before, but how spatially close the viewpoint to
the viewpoints corresponding to the prior observations. Due to the change in illumination
conditions and weather, the same place may look differently and two different places might
look similar (Fig. 1.7).

An influential paper by Nistér and Stewenius (2006) presents a system which allows us to
retrieve similar images from databases of over one million images in real time with little time
needed to add images to it. The principle is to create a pretrained vocabulary tree to quantize
feature descriptors into binary words and apply inverted-document system to retrieve relevant
images. This system has been reused by the authors to implement vision-based topological
navigation system (Fraundorfer et al. (2007)). Even though the similarity in visual appearance
is taken as the criterion for place matching, the proposed method of data retrieval might be
considered as a breakthrough.

Later, another influential paper on place recognition and topological localization by Cum-
mins and Newman (2008) came out. It presents a localization system called FAB-MAP, which
also uses the concept of vocabulary and descriptor quantization, but adds on top of it a sta-
tistical model to take into account cooccurrences of different binary words and computes the
normalization term to be able to tell whether the perceived image is observed for the first
time or it corresponds to a place from the memory.

Loop closure is done via place recognition in the case of visual SLAM. But any place
recognition system is a mapping system by itself. It has to construct and maintain a certain
world representation, including or not metric and topological information. Hereafter topology
of a map means that for a set of locations (usually finite) represented by this map there is
a set of edges which connect “neighbor” locations. These edges represent reachability of one
locations from the other. Usually it is an integrated part of a bigger navigation and mapping
system. FAB-MAP is de facto the most commonly used visual loop closure system.

Some authors (for example McManus et al. (2015)) use place recognition and topological
localization interchangeably, in the sense that instead of getting precise metric localization
with respect to a local landmark or a global map, the system determines that the robot is
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at a certain “place”, with a vague definition of “place”. We would argue that topological
localization is somewhat more specific system than a place recognition system, because place
recognition does not imply any topology which binds all the places together. In contrast, a
topological map provides a richer information on how the places are related in space. The
most intuitive way to link the locations is via spatial transformations between them. Global
Euclidean consistency here is not an issue. That is, two different topological paths from place
A to place B might not sum up to the same euclidean transformation. But what is important
is that, locally, the transformations have reasonable precision.

One important implication of a topology imposed over a set of places, as it is mentioned
by Cummins and Newman (2008), is that the localization does not have to be done globally
every time. Instead, we can reuse the previous localization belief and a motion prediction
model to reduce the search space of possible current places.

4 Motivation and Manuscript Structure

In this work, we would like to go through different layers of visual perception based on fisheye
cameras and geometric vision, and to establish a solid basis for high-level visual perception
algorithms. First we summarize different aspects of vision systems, their advantages and ex-
isting problems. Then the principal design choices are explained and the manuscript structure
is described.

4.1 Why Vision Is So Attractive

There are a lot of different arguments on why using cameras and images instead of other
sensory modalities. We would mention the following ones:

1. Cameras are practical exteroceptive sensors. They are cheap, small, light, they don’t
have moving parts and thus are mechanically robust. And there is a vast variety of
different models with different frequency, resolution, noise level, field of view, and energy
consumption.

2. Vision provides dense and rich information about the environment. It is an exterocep-
tive modality which can be used for all kinds of robotic tasks, including localization,
navigation, object manipulation.

3. Since we ultimately want to integrate robots into human society, they have to under-
stand our signal systems. A vast infrastructure with visual signs and markups already
exists, and it provides valuable information about how to navigate safely and reach the
destination.

4.2 Why Vision Is Difficult

As it will be described later on, image formation is a complicated process, which includes
multiple unknowns. Let’s consider some of the challenges of computer vision from low- to high-
level. The first of them is the fact that cameras are passive sensors, hence visual perception
depends on lighting conditions. It means that algorithms have to be robust with respect to
lighting changes. Another aspect related to the lighting is the narrow dynamic range that
consumer cameras currently demonstrate. It means that it is virtually impossible to have a
good contrast in shadows during a sunny day, and at the same time keep the objects in the
sunlight unsaturated. But this is more of a hardware issue and, hopefully, sooner or later the
dynamic range of digital cameras will attain or even overtake the one of human eyes.
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One more difficulty is the fact that the environment has to be textured. Actually, even if we
paint everything in white, there still will be different shades and gradients. But what is usually
required by modern algorithms is a high-contrast texture, and moreover particular feature
detectors require particular types of structures, like corners, straight lines, circles, ellipses and
so on. If the environment lacks this king of features, its images become significantly more
difficult to process. Dense and semi-dense techniques which treat pixels individually seem
to be a good solution to handle structure-less scenes. But so far, there is no widely-known
adaptive algorithm which is as good with high-contrast texture as with smooth gradient
shading, which again evokes the problem of a universal perception system able of optimally
selecting different kinds of information from images.

While geometric sensors (for example lidars) measure directly the distance to an obstacle
in a given direction, cameras generate images, tables of numbers which represent the intensity
of light coming from different directions. Geometric information (in this case, distance mea-
surements) is much easier to interpret and use. On the other hand photometric information
is almost useless by itself. Images have to be intensively processed in order to match the
information that they contain, register them, reconstruct the environmental 3D structure, to
obtain semantic segmentation (that is regroup pixels according to the category of the object
they belong to), or to localize the robot based on what it has seen before. This mid- and
high-level processing is currently the bottleneck of vision algorithms.

Yet another difficulty is occlusions and visibility. Actually, occlusions and the fact that
some object can be present on one view but not on the other makes the exact correspondence
problem intractable because it becomes combinatorial, as it is mentioned in Kolmogorov and
Zabih (2001), and thus only approximative algorithms (yet quite efficient for real-world data)
have been proposed in the literature. Perhaps, the problem of occlusions must be solved at
a higher, semantic level, incorporating knowledge about different objects, their structure and
typical behavior.

4.3 Principal Choices

During this work the following ideas were used as guidelines. We repeat and summarize what
has been said before about different vision systems.

Wide-Angle Cameras Omnidirectional and wide-angle images provide much better lo-
calization properties than classical pinhole cameras. They are used in multiple systems and
many authors have mentioned the advantages of wide-angle vision for localization purposes
(for example, Bonin-Font et al. (2008); Milford et al. (2004); Giovannangeli et al. (2006)).
Multiple papers on omnidirectional localization algorithms have been published recently (for
example, Meilland et al. (2015); Caruso et al. (2015)) In the case of omnidirectional images
we are sure to see the same features from the same location even if the orientation is different.
Wide-angle cameras (more specifically fisheye cameras with 180◦ field of view) don’t have this
strong property, but still the same parts of the scene are being observed longer during rota-
tional motions, which allows us to have a wider localization base in such cases. Fisheye images
are also better suited as keyframes, since they include more information and don’t require
close angular alignment of the current view and the keyframe’s view during localization within
sensory maps. Two fisheye cameras are enough to cover almost 360◦ (the vision scheme that
most of herbivores have). But all these advantages come at the cost of a complex geometry
of fisheye images. In order to be able to use fisheye images as easily as classical pinhole ones,
a new model, which is analytically simple and yet expressive enough to approximate a wide
range of wide-angle visual sensors, is required.
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Geometric Vision In our strong belief, direct geometric modeling of cameras is a better
solution than neural-network based projection approximations. Generally speaking, if some-
thing can be solved using a specialized technique, it should be done this way. Deep learning
must be applied in the case of big data and when the model behind is unclear. In the case
of cameras, geometric modeling and geometric constraints greatly increase its precision and
accuracy. Epipolar constraints, for instance, significantly reduce the search space in the case
of stereo correspondence, but also allow us to check whether different data in a dataset are
in consensus with one another. Finally, precise reconstruction requires geometric modeling
along with reliable matching algorithms.

In other words, properly modeled and calibrated cameras become a precise and efficient
metrological tool, which allows us to measure shapes, distances, velocities and other spatial
parameters.

Raw Image Data Classical computer vision and image processing schemes have long fil-
tering pipelines. But since any filtering leads to information loss, we advocate the approach of
direct image processing. It means that the input of computer vision systems is as close to the
original signal as possible. For example, in the case of stereo correspondence, the undistortion
and rectification procedure, which is the standard approach to this problem, leads to breaking
the uniformity of image noise and information distribution across the image. On the other
hand, direct methods require a more complicated geometric processing. So, one of the goals
of this work is to develop a geometric framework which makes direct image processing for
stereo correspondence possible.

Sensor Fusion Using different modalities and decorrelated measurements reduces noise
impact and increases overall system robustness with respect to outliers. One of the most
popular sensor fusion scheme uses IMU along with cameras. Another interesting option is
fusion between wheel odometry and visual modality. The odometry, while having a worse
rotational precision than IMU, gives a better distance estimation, because only one integration
is needed over two for IMU-based translation estimation. And distance measurements play
a particular role for visual perception since cameras do not provide metric information, so
another modality is needed to estimate the so-called scale factor. On possible solution is to
use a calibrated stereo pair, but almost the same result is achievable with only one camera
and wheel odometry.

4.4 Manuscript Plan

The manuscript structure reflects the bottom-up nature of the work development and the
final system architecture. Once this implementation process is done, it is possible to analyze
the whole structure using the top-down view. The general problem is visual localization.
We use the choices described above and formulate the following requirements: the system
should combines wheel odometry data with direct fisheye image registration. Firstly, the
camera-odometry system must be calibrated. It requires, in turn, a calibration methodology
and a camera model. Secondly, direct registration requires depth computation or, in other
words, stereo processing. As it is stated before, the stereo correspondence should be directly
in the distorted image space to avoid additional image filtering. All these ideas lead us to the
manuscript structure, depicted in Fig. 1.8 and described in more details below. This structure
represents the work in the direction of increasing complexity.

Chapter 2 is dedicated to geometric modeling of wide-angle visual sensors. First, an
overview of visual sensors is provided. Then we introduce the Enhanced Camera Model,



4. MOTIVATION AND MANUSCRIPT STRUCTURE 27

Geometric Modeling
Ch. 2

Direct Fisheye
Stereo, Ch. 4

Direct Image 
Registration, Ch. 5

Calibration
Ch. 3

Visual Localization 
and Mapping, Ch. 5

Figure 1.8: Work structure.

based on the Unified Camera Model, and study its geometric properties. In particular, the
inverse mapping, straight line projection and epipolar geometry.

Chapter 3 is dedicated to the calibration toolbox developed during this work. We de-
scribe the calibration methodology and different aspects of calibration data acquisition. A
description of an efficient calibration board detector is given. Monocular, stereo, and extrin-
sic calibration for mobile robots and wide-angle cameras are addressed. The camera model
introduced in Chapter 2 is used and shown to give precise calibration results for real lenses
with different distortion.

Chapter 4 describes a direct fisheye stereo correspondence algorithm which combines the
epipolar geometry of the Enhanced Camera Model and a rasterization algorithm to compute
pixel-disparity-based correspondence cost. Then the Semi-Global Matching can be applied to
regularize the depth estimation.

Chapter 5 is dedicated to visual localization and mapping. First, a combined use of wheel
odometry and vision to get a better precision and accuracy is advocated. Then we describe
a visual odometry system which uses wheel odometry measurements as a prior estimation,
which in turn allows us to use less feature points for the RANSAC procedure. Also a semi-
dense visual-memory-based localization system is introduced and its performance tested on
simulated and real data.





Chapter 2

Geometric Camera Modeling

1 Introduction

Looking at nature, we can see that vision is, potentially, the most efficient and flexible sensory
modality. It has a high spatial resolution and a sufficient time frequency. On the other hand,
visual information is not usable under its raw form. It has to be intensively processed to
extract both symbolic and numeric information about the environment.

Image formation is a complex process. We can see it by looking at its modeling —
contemporary 3D graphics. The color of a certain pixel depends on which point of which
surface is mapped to this pixel, at which angle the surface is observed, what is the direction
and the strength of the light at the point, what is the color and the material of the observed
object. All these factors define the light wave which passes through a lens and focuses on a
retina (a planar grid of light sensitive elements). The quantity of light passing through the
lens is controlled by the aperture size. The retina integrates the light intensity over a certain
time period, called exposure. Then the integrated value is read out by an electronic circuit
and stored in the memory (Fig. 2.1).
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Figure 2.1: Illustration of image formation process. Szeliski (2010)

The obtained image is a 2D array of values, also called pixels. There is a coordinate
system attached to it. Its origin is in the upper left corner. The horizontal axis is called u,
the vertical one is v (see Fig. 2.2).

In order to produce colored images, colored filters are arranged on the retina in a certain
manner (for example, see Fig. 2.3). But color comes at the cost of a lower resolution. In the
given example, Bayer mosaic, the ratio between elementary light sensors of red, green, and

29



30 CHAPTER 2. GEOMETRIC CAMERA MODELING

u

v

x

y

(u0,  0)v

Figure 2.2: Coordinate system in images. Axes u and v are used to represent position of pixels and points in
the image; (u0, v0)T is the image center, which is usually associated with the normal plane coordinate system
xy, which is metric.

blue colors is 1:2:1, which means that a pure blue object will have 2 times lower resolution as
if it were observed by a grayscale camera (4 times fewer pixels).

Figure 2.3: Bayer filter mosaic.

Different Lenses and Projection Geometries As later we talk about different projec-
tion models and distortions, to give an idea of the subject, a few different real images of a
calibration board are presented in Fig. 2.4. There is a trade-off between distortion and field
of view. Narrow-angle lenses produce images with a simple geometry (Fig. 2.4a). If we in-
crease the field of view, it will necessarily introduce nonlinear distortion. Fig. 2.4b represents
a compromise between the two effects. We can go even further and have a full hemisphere
field of view with a single camera (Fig. 2.4c). It comes at the cost of a high distortion which
makes the geometry processing for such images a non-trivial problem. This chapter addresses
primarily the issue of geometric modeling of such projections.

Another important trade-off is the angular resolution. Since all the presented images have
been taken with the same resolution, the angular resolution is different. If we want the camera
to observe a distant object, then a narrow-angle lens are the way to go. In contrast, fisheye
lenses are better in observing nearby objects and an immediate surrounding.

(a) (b) (c)

Figure 2.4: Images taken with the same camera equipped with different lenses. (a) Narrow angle 8 mm pinhole
lens. A smaller calibration board than in the other images has been used to make it fit into the image.
(b) Wide-angle 6 mm lens. A small distortion is already apparent. (c) Fisheye 1.8 mm lens. All the straight
lines are curved in the image. The field of view is 185◦ .
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2 Projection Geometry

In this section we talk about mathematical camera projection models. These models are
purely geometric, they don’t take into account such properties as color or light intensity, or
wave optics effects.

Viewpoint Usually, when we formulate a projection model, we assume that the system is
single-viewpoint. It means that the whole scene is observed from a single point, and there
is a diffeomorphism (continuous differentiable mapping) between image points and directions
from the viewpoint. The viewpoint is also called center of projection. In other words, all rays
mapped to the image intersect in the same spatial point.

The single-viewpoint constraint is closely respected by perspective narrow-angle cameras.
It gets less and less true, as the field of view gets larger. Baker and Nayar (2001) describes
that it is possible to make a single-viewpoint catadioptric system using a parabolic mirror
and a telecentric camera (that is, a camera whose effective pinhole is infinitely far away), or a
hyperbolic mirror and a perspective camera (Fig. 2.5). But as it is mentioned in Swaminathan
et al. (2001); Schönbein et al. (2014), the single-viewpoint property is sensitive to assembly
precision and reduces the flexibility of the optical system design. On the other hand, relaxing
this constraint allows us to get more freedom in optical system design and get a better field of
view and information distribution in the image. Moreover, none of fisheye cameras are single-
viewpoint. For such systems the notion of viewpoint is replaced by the notion of causitc
surfaces, analyzed in Swaminathan et al. (2001). A caustic surface contains all effective
viewpoints for infinitesimal solid angles around all the observed directions.

(a) (b)

Figure 2.5: Single viewpoint catadioptric systems. (a) Hyperbolic mirror and pinhole camera. (b) Parabolic
mirror and telecentric camera. X is a spatial point, p is its projection onto the image plane M . Baker and
Nayar (2001)

Even though real cameras are not single-viewpoint, this assumption is important and
allows us to come up with simple and yet accurate projection models. Also, it allows us to use
simple two-view geometry assumptions. Hereafter we assume that all the cameras we consider
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are single-viewpoint. Of course, it is just an approximation but, as the practical results show,
a reasonable one.

Image and Space Coordinates Every camera has an optical axis (usually z) which is
associated with the direction perpendicular to the image plane. This axis is defined by the
lens structure, as every simple single lens has one and an assembled lens has all the optical
axes of all its components aligned. Conventionally, x and y axes are aligned with the image
coordinate system u, v where units are pixels (Fig. 2.2). The intersection of the optical axis
and the image is called image center.

Usually the projection is modeled in two steps. First a 3D point is mapped onto the
normal plane M (also called intermediate plane or projection plane), which is perpendicular
to the optical axis and defined by z = 1; Then the normal point m = (xm, ym, 1)T is mapped
into the image coordinate system using an affine transformation, represented by matrix K,
which usually has the following form:

K =

(
fu 0 u0

0 fv v0

)
(2.1)

Here u0 and v0 define the offset between the image center and the origin of the image coordinate
system (Fig. 2.2). fu and fv define the focal length, measured in pixels. Sometimes one more
parameters, the so-called skew factor s, is added:

K =

(
fu s u0

0 fv v0

)
(2.2)

Sometimes, on the contrary, the number of parameters is reduced to three, by assuming that
the pixels are perfectly square and saying that fu = fv = f (all three are measured in pixels):

K =

(
f 0 u0

0 f v0

)
(2.3)

The model should be adapted to a particular camera model. If a simpler version of the model
does not give a sufficient calibration precision, a more complex one should be tried out. In
this work we use K with four parameters but we don’t rely on this fact. Moreover, the results
can be generalized straightforwardly.

2.1 Pinhole Camera Model

The first images during human history have been obtained using so-called pinhole cameras.
It was just a box with a semi-transparent screen on one side and a small hole in the middle
of the opposite side. This system produced dim upside-down images because every point
was getting only as much light as could pass through the pinhole. It was a single-viewpoint
system with the pinhole playing the role of the viewpoint, or the center of projection. Every
ray coming into the pinhole was mapped to a certain point on the image depending on its
direction (Fig. 2.6). Here the pinhole worked as a spatial filter.

The simplest camera model is represented by the following projection relation (see Fig. 2.7):

p =
1

z
KX (2.4)

there are only 4 parameters, the components of matrix K. They are called intrinsic parameters
because they are defined by the geometry of the camera itself and do not change from one
image to another and from one camera position to another. In the context of camera models
we will refer to the intrinsic parameter vector as α.
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Figure 2.6: Pinhole camera.

Figure 2.7: The pinhole model illustration. M is the normal plane defined by z = 1; by normalizing z-
coordinates of spatial points X1 and X2 we project them to m1 and m2, then the normal points are trans-
formed into the image frame using an affine transform. The straight line, defined by the spatial points will be
projected to the straight line defined by the normal points.

You can see that the “perspective” effect is captured by the model. The farther away the
object, the smaller its image, because its size is divided by z.

Even though this model is easy to analyze analytically, it has a certain number of draw-
backs, for example, a limited field of view. Indeed, there is at least a constraint z > 0 to make
a point appear in the normal plane. But an image captures only limited area of M , hence all
normal points with large x and y, do not appear in it. Also, this model does not correctly
approximate wide-angle cameras because such cameras always have a certain non-linear dis-
tortion, which is not taken into account by the pinhole model and is discussed later in this
chapter.

2.1.1 Inverse Model

Since the projection model is a many-to-one mapping, there is no real inverse mapping. But
as it has been mentioned earlier, there is a diffeomorphism between directions coming out of
the viewpoint and points in image. So what we need as an inverse mapping is a R2 → R3

function, which transforms 2D image points into 3D vectors which correspond to the point
direction. Representing directions by 3D vectors is redundant, but it appears to be practical,
since it is easier to compute and to manipulate afterwards.
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In the case of the pinhole model, a normal point is expressed as:

m =


u− u0

fu
v− v0

fv
1

 (2.5)

2.1.2 Jacobian Matrix

Usually, computer vision applications imply the use of non-linear solvers to perform recon-
struction, calibration, or mapping. And solvers which use the Levenberg-Marquardt algorithm
require Jacobian matrices of projection models. There are two types of Jacobian matrices re-
quired.

Projection Jacobian Matrix This matrix is defined as:

JX =
∂p

∂X
(2.6)

In the case of the pinhole model its expression is:

JX =


fu

z
0 −

fux

z2

0
fv

z
−
fvy

z2

 (2.7)

We can express x and y using the image coordinates:

JX =
1

z

(
fu 0 −u
0 fv −v

)
(2.8)

It means that we can compute the projection Jacobian matrix up to an unknown scale factor,
which depends on z. In some applications, like visual servoing, the system may converge even
if the scale factor is unknown.

Parameter Jacobian It is defined as:

Jα =
∂p

∂α
(2.9)

Taking α = (fu, fv, u0, v0)T results in:

Jα =


x

z
0 1 0

0
y

z
0 1

 (2.10)

Again, as in the case of JX , we can use image coordinates:

Jα =


u− u0

fu
0 1 0

0
v− v0

fv
0 1

 (2.11)

Depending on the application one form or the other can be more suitable.
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2.1.3 Straight Line Projection

This model projects 3D straight lines to straight lines in the image. First we can look at point
projection onto the normal plane as the intersection between the plane and the straight line
passing through projection origin O and 3D point X. If we have a 3D line to be projected, we
have to repeat this process for all the points which belong to the line. In fact, it is equivalent
to finding the intersection of normal plane M and the plane which passes through projection
origin O and the 3D line. It is illustrated in Fig. 2.7: the line defined by m1 and m2 is
indeed the intersection of M and plane OX1X2. Since the intersection is a straight line, the
projection in the image will be a straight line as well, since affine transformations project
straight lines to straight lines.

A more general concept of finding projections of straight lines by computing the intersec-
tion of a plane and a surface (not necessarily planar) will be developed later in this chapter.

2.2 Cameras with Distortion

Unfortunately, only narrow-angle cameras are well approximated by the pure pinhole model
described above. On the other hand, wide-angle cameras are better adapted for environment
perception as they cover a larger field of view and make it easier to perceive nearby objects,
in contrast to narrow-angle cameras which are meant to observe remote objects. Different
techniques have been developed to fit these lenses which distort the geometry of the image.
The most intuitive definition of geometric distortion in images is that 3D straight lines don’t
appear straight (for example Fig. 2.4). The following main types of image distortion can be
defined:

1. Radial distortion — acts only along rays coming from the image center. It is covariant
with rotation about the optical axis. That is, rotation of camera about z leads to
rotation of the image about image center, whatever the radial distortion. Covariant
means that no matter whether you first rotate and then apply distortion, or the other
way around, the result is the same.

2. Tangential distortion — appears because the retina is not perfectly perpendicular to the
optical axis.

3. Irregular distortion — caused by low optic quality, these days its effect is negligible for
dioptric systems.

Tangential distortion is included in one of the models reviewed hereafter. The other models
do not take it into account, including the one developed within this work. As shown by the
calibration results given in the corresponding chapter, high-distortion fisheye cameras can still
be modeled and calibrated with sub-pixel precision, even with radial distortion only.

2.2.1 Distortion for Pinhole Cameras

The distortion model is usually added in the following manner. First we project all the points
onto the projection plane:

m = (xm ym 1)T =
X

z
(2.12)

Then we apply radial distortion:

md = D(m) =

D(r)xm
D(r)ym

1

 (2.13)
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Here r =
√
x2
m + y2

m; D : P2 → P2 is a radial distortion mapping, where P2 is a 2-dimensional
projective space on R. In other words, D maps points of the normal plane to points of the
normal plane. It is defined by D : R+0 → R+, that represents the deflection of a ray from its
pinhole trajectory; D(0) = 1. The last step is to apply the projection matrix K.

Theoretically we can model any projection mapping forX with z > 0 using these relations.
But there are two problems. The first one is how to choose the distortion function D. In the
computer vision library OpenCV Bradski (2000) the following form is used:

D(r) =
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
(2.14)

Obviously these models approximate the distortion just in a limited range of r.

This fact is also related to the second problem, which arises when z → 0. In this case the
model is still defined but the farther from the optical axis, the less precise the result, because
of the distortion model limitations and numerical problems. And finally, there are cameras
which have more than 180◦ field of view. For them, applying a single pinhole model with
distortion is simply impossible. In some works (for example Caruso et al. (2015)), multiple
pinhole models are used to model a single fisheye camera. The fisheye image is first projected
onto a cube, each side of which represents a different pinhole camera.

2.2.2 Capture-Ray-Based Model

The authors of Kannala and Brandt (2006) propose to compute the distance from the pro-
jection center to the projected point using a function of the angle between the optical axis
and the ray direction. There are multiple possible models in this context. Let ϑ be the angle
between the optical axis and the direction to a spatial point X. Let f be the focal length
and r the distance from the image center to the projected point p (see Fig. 2.8-b). Then the
following projection models are possible (their plots are represented in Fig. 2.8-a):

(i) Perspective Projection:

r = f tan(ϑ) (2.15)

(ii) Stereographic projection:

r = 2f tan

(
ϑ

2

)
(2.16)

(iii) Equidistance projection:

r = fϑ (2.17)

(iv) Equisolid angle projection:

r = 2f sin

(
ϑ

2

)
(2.18)

(v) Ortogonal projection:

r = f sin(ϑ) (2.19)

Also, in the same paper the authors suggest that using the basic pinhole perspective
projection model for fisheye cameras is not a reasonable choice because as ϑ approaches π/2,
projection coordinates go to infinity.
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Figure 2.8: The ray-capture-based models. (a) plots of different mappings, presented in the main text. (b) an
illustration of the projection modeling process. A ray, captured at angle ϑ, mapped to the image plane using
polar coordinates ϕ, r. Kannala and Brandt (2006)

2.2.3 Unified Camera Model

The so-called unified model is of particular interest to us because our own model is based on
it. Geyer and Daniilidis (2000) introduce the unified model and show that it describes all
central catadioptric systems (as mentioned above, it means lens-mirror systems). Equivalence
between the unified model and the captured-ray-based model as well as the pinhole model has
been shown in Courbon et al. (2007).

This model aims to correctly represent the projection of points with zero and even negative
z. It is needed to model fisheye lenses with more than 180◦ angle of view. This is done by
changing the normalization equation to the following:

m =

xmym
1

 =


x

z + ξρ

y

z + ξρ

1

 (2.20)

where ρ =
√
x2 + y2 + z2; ξ is a projection parameter. When ξ = 0 we are back to the pinhole

model. But the larger we take ξ, the wider the allowed angle between the optical axis and
the point to be projected. The illustration of the projection process is given in Fig. 2.9.

So we expect narrow-angle low-distortion cameras to have this parameter about 0, while
for fisheye cameras it should be somewhere around one. Notice that (2.20) generally does not
map straight lines to straight lines. So it introduces some distortion, which is, in fact, similar
to that of a real fisheye camera.

Distortion Mapping Unfortunately, this distortion is not flexible enough to model real
fisheye cameras. In Mei and Rives (2007) the model has been augmented with an additional
distortion mapping and a calibration technique has been proposed. The distortion is modeled
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Figure 2.9: Illustration of the Unified Camera Model. A spatial point X is projected onto a unit sphere. Then
it is projected onto normal plane M from a projection center, shifted by ξ.

as follows:

xd = D(m) + δ(m)

δ(m) =

2k4xmym + k5(r2 + 2x2
m)

2k5xmym + k4(r2 + 2y2
m)

0

 D(m) =

D(r)xm

D(r)ym

1


D(r) = 1 + k1r

2 + k2r
4 + k3r

6

(2.21)

Where r =
√
x2
m + y2

m; δ models tangential distortion due to a misalignment of the retina
normal and the lens optical axis in the camera; D represents the radial distortion.

Finally we apply matrix K:
p = KXd (2.22)

Overall we have 10 projection parameters: ξ, k1..5, fu, fv, u0, v0.

Distortion Model Issues Even though the model provides high precision, it has some
drawbacks. We can rewrite (2.20) as m = φ(r)Xn, where Xn = X/z, and r =

√
x2
n + y2

n.
Here φ represents the nonlinear part of the projection:

φ(r) =
1

1 + ξ
√

1 + r2
(2.23)

We see that the function φ(r) is even, so its Taylor expansion contains just even degrees of r.
Hence:

φ(r) = φ(0) +
φ′′(0)

2
r2 + o(r2) (2.24)

So, the argument here is that in the neighborhood of the projection center the distortion
caused by the nonlinear projection model is well-approximated by a second order polynomial

with φ∗ = φ(0) + φ′′(0)
2 r2. If we then apply another distortion model that contains a second-

order term, we still get a distortion that is well-approximated by a second-order polynomial.
Hence, the second order term in the distortion model (2.21) is redundant and it does not
improve the model precision.
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2.3 Enhanced Unified Camera Model

Important properties of a distortion model are simplicity and flexibility. That is, the model
should have few parameters but still allow us to model different types of cameras. Also it
is important for a model to have a simple mathematical form, which allows to study the
properties of the model analytically.

Tangential distortion is not considered in this work. Though it can be added easily, we
argue that without it the model is still accurate, which is demonstrated by the calibration of
multiple real fisheye lenses. Maybe, the question of tangential distortion is more important
in the case of catadioptric systems, but these systems are not treated in this work, and this
model has not yet been tested for such systems.

Here are the proposed projection relations:

m =


x

αρ+ (1− α)z
y

αρ+ (1− α)z

1

 ρ =
√
β(x2 + y2) + z2

p = Km

(2.25)

The two parameters are α ∈ [0, 1] and β > 0. They allow us to better approximate
the properties of lenses with high distortion. This model assumes that the denominator
αρ+ (1− α)z > 0. K is the same matrix as in (2.1). Hereafter, γ = 1− α.

2.3.1 Jacobian Matrices

We provide here the Jacobian matrices of the projection function. They are needed for calibra-
tion and for common reconstruction algorithms (such as Bundle Adjustment, see Chapter 3).
Let us write the projection relation in the following way:

m =

(
x

η

y

η

)T
η = γz + αρ

ρ =
√
β(x2 + y2) + z2

(2.26)

Projection Jacobian First let us compute the partial derivatives of ρ:

∂ρ

∂x
=
βx

ρ

∂ρ

∂y
=
βy

ρ

∂ρ

∂z
=
z

ρ
(2.27)

Then by applying the chain rule and noticing that
∂η

∂ρ
= α and

∂η

∂z
= γ we can compute the

Jacobian matrix:

∂m

∂X
=


1

η
−
αβx2

η2ρ
−
αβxy

η2ρ
−
x

η2

(
γ +

αz

ρ

)

−
αβxy

η2ρ

1

η
−
αβy2

η2ρ
−
y

η2

(
γ +

αz

ρ

)


∂p

∂X
=

(
fu 0
0 fv

)
∂m

∂X

(2.28)
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Parameter Jacobian Matrix The variable vector with respect to which we differentiate
the model is:

α = (α, β, fu, fv, u0, v0)T (2.29)

The Jacobian matrix part, corresponding to the projection matrix parameters (the last four)
is almost the same as for the pinhole camera. To get the derivatives with respect to α and β,
let us first differentiate η:

∂η

∂α
= ρ− z

∂η

∂β
=
α(x2 + y2)

ρ
(2.30)

The last thing we need is:
∂u

∂η
= −

fux

η2

∂v
∂η

= −
fvy

η2
(2.31)

Now using the chain rule we can compute the final expression:

∂m

∂α
=

−
fux(ρ− z)

η2
−
fuxα(x2 + y2)

η2ρ

x

η
0 1 0

−
fvy(ρ− z)

η2
−
fvyα(x2 + y2)

η2ρ
0

y

η
0 1

 (2.32)

2.3.2 Projection Surfaces

To analyze the model, let us introduce the notion of projection surface. In Scaramuzza and
Martinelli (2006) the projection is modeled using an intermediate surface. The surface is
defined using a polynomial function of image points. The notion is somewhat similar to the
one we introduce here, but the other way around: the projection surface is defined using an
equation in 3D space and allows to compute projections of spatial points.

This notion can be applied to a wide variety of projection models with different kinds of
distortion. Let η : R3 → R+ be a homogeneous function of degree 1:

∀λ ∈ R+ η(λX) = λη(X) (2.33)

Let the projection relation be defined as follows:

m =


x

η(X)

y

η(X)

1

 (2.34)

Then the projection surface P is defined by the following equation:

η(X) = 1 (2.35)

Every function η defines a different projection model with a different projection surface. How
complex such models can get is yet to be studied.

In this work, we consider projection relations with distortion with radial symmetry only
(or simply, radial distortion). That is:{

x2
1 + y2

1 = x2
2 + y2

2

z1 = z2
=⇒ η(X1) = η(X2) ∀X1,X2 ∈ R3 (2.36)
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This means that η can be represented by a function:

η̂ : R2 → R+ (2.37)

such that:
η(X) = η̂

(√
x2 + y2, z

)
= η̂(r, z) (2.38)

η̂(r, z) = η̂(−r, z), ∀r ∈ R (2.39)

η̂ is a homogeneous function of degree 1, since both r and z are homogeneous functions
of X of degree 1. (2.39) allows us to operate on R2, rather than R+0 × R. In this case
y = 0 =⇒ η(X) = η̂(x, z), or η̂ represents η in xz plane.

The projection surface is a surface of revolution. It is generated by rotating the curve
η̂(x, z) = 1 about z-axis. Let us call this curve a projection curve. The geometric meaning of
(C.4) is that all the points of the projection surface are projected orthogonally to the image
plane. So we can think of the projection process as scaling the point X by η(X) and then
projecting it orthogonally onto m ∈M — the normal plane (see Fig. 2.10):

Xp =
X

η(X)

m = (xp yp 1)

(2.40)

Using (C.2) we can deduce:

η(Xp) = η

(
X

η(X)

)
=
η(X)

η(X)
= 1 (2.41)

Hence, all points Xp belong to the projection surface. In fact, Xp is the intersection between
the projection surface P and ray OX (Fig. 2.10).

X

Xp

m

O

z

P

M

y

x

Figure 2.10: Illustration of the notion of projection surface. z is the optical axis; O is the center of projection;
Xp is obtained by projecting X to P along OX ray. Then this point is transformed into m by projecting it
orthogonally onto an intermediate projection plane M which is defined as z = 1

One convenience of the notion is that it is relatively easy to see for which spatial points
the projection is defined. For example, (2.12) corresponds to η(X) = z. So the projection
surface in this case is defined by z = 1. It is a plane, and all the points with z ≤ 0 do not
define rays that intersect the surface.

Let us apply the notion to the proposed model. In this case:

η(X) = α
√
β(x2 + y2) + z2 + (1− α)z (2.42)

So η(X) = 1 leads to:
α
√
β(x2 + y2) + z2 + (1− α)z = 1 (2.43)
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Let us replace 1− α by γ and x2 + y2 by r2:

α
√
βr2 + z2 = 1− γz (2.44)

By squaring both sides we get:

α2βr2 + α2z2 = 1− 2γz + γ2z2 (2.45)

We should remember that, as we have squared both sides, we may get some solutions that do
not satisfy (2.44). Let us also note that γ2 − α2 = γ − α, hence:

α2βr2 = 1− 2γz + (γ − α)z2 (2.46)

α2βr2 + (α− γ)z2 + 2γz = 1 (2.47)

This equation defines a second-order projection curve. α = 0.5 leads to α = γ and

z = 1− 0.25βr2 (2.48)

That is, the projection curve is a parabola. If α < 0.5, (C.6) defines a hyperbola and if α > 0.5,
it is an ellipse (because the coefficient in front of z2 is negative and positive respectively). We
can see that r = 0, z = 1 always satisfies (2.44). So the projection surface is a surface of
revolution, which is defined by a conic projection curve that passes through (0 0 1)T .

r

z

Figure 2.11: The projection curve is a parabola when α = 0.5. We can see different parabolas for β = 0.5
(blue), 1 (green), and 1.5 (red) (wider parabola corresponds to smaller β).

That is the difference between the proposed model and (2.20). The latter allows to get
just one parabola as a projection curve when ξ = 1, while the former allows to scale this
parabola along the x-axis (Fig. 2.11). In the case when ξ 6= 1 the same is true, but it is just
less obvious. β allows us to adjust the projection surface, while α defines its shape.

2.3.3 Completeness of the Model

In fact, we can show that (C.6) describes all the possible conics that pass through (0 1)T and
are symmetric with respect to z-axis (here we consider rz coordinate plane). To sketch out a
proof, let us consider a general conic equation:

Ar2 +Brz + Cz2 +Dr + Ez = 1 (2.49)
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To make it symmetric with respect to z-axis we have to have B = 0 and D = 0. Then, by
substituting z = 1, r = 0 we get:

C + E = 1 (2.50)

If we check (C.6), we see that all these conditions are satisfied. Indeed:

B = 0
D = 0
C + E = α− γ + 2γ = α+ γ = 1

(2.51)

In total we have 5 parameters, and 3 constraints, which lives us with two degrees of
freedom which, in turn, are represented by projection parameters α and β.

But what if there is a projection curve which does not pass through (0 1)T ? Actually we
can scale it so that it does (using parameters fu and fv — see Fig. 2.12). So we can say that
the proposed model is complete in the sense that it can fit any projection whose projection
curve is a conic section.

r

X

a
bpb

m

O

z
cpc

Q

Figure 2.12: Using projection curve Q, point X is projected to m, the z-coordinate of which is a. If a = 1
and the focal length f = c then the final projection is pc = fm. But if a < 1, let us say that b = 1, then
pb = m

a
and the final projection pc = fpb = f

a
m = f ′m. So we see that the projection defined by Q and f ′ is

equivalent to one defined by f and Q scaled so that it pass through 1. The same argument is true when a > 1.

2.3.4 Inverse Model

Let f : R3\0 → R2 be the projection model defined in (C.1). Let f−1 : R2 → R3 be the right
inverse of f:

f(f−1(m)) = m (2.52)

or, in other words, f ◦ f−1 = I. Again, what we are looking for is a diffeomorphism between
the image points and directions within the camera’s field of view. We know that the points
of the projection surface are projected orthogonally. So f−1 may be defined as:

f−1 :

(
x
y

)
7→

 x
y

z(x, y)

 (2.53)

Where z(x, y) is an explicit solution of (2.44) with r =
√
x2 + y2. To do that we can solve

(C.6) and then choose the proper solution. It is a quadratic equation:

Az2 +Bz + C = 0
A = α− γ
B = 2γ
C = α2βr2 − 1

(2.54)
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This is solved as follows:
D = B2 − 4AC =
= 4

(
γ2 − (α− γ)(α2βr2 − 1)

)
z =
−B ±

√
D

2A
=

=
−γ ±

√
D/4

α− γ

(2.55)

We can choose the solution by using the fact that z(0, 0) = 1. Notice that r = 0 =⇒ D/4 =
α2. Hence, the solution must be defined by:

z =

√
γ2 − (α− γ)(α2βr2 − 1)− γ

α− γ
(2.56)

We see that (2.56) is not defined when α = 0.5. It is so because (C.6) is no longer a quadratic
equation.

We can avoid the singularity by multiplying both numerator and denominator of (2.56)
by: √

γ2 − (α− γ)(α2βr2 − 1) + γ (2.57)

The result is:

z =
γ2 − (α− γ)(α2βr2 − 1)− γ2

(α− γ)
(√

γ2 − (α− γ)(α2βr2 − 1) + γ
) =

=
1− α2βr2√

γ2 − (α− γ)(α2βr2 − 1) + γ

(2.58)

Also let us consider the expression under the square root in the denominator:

γ2 − (α− γ)(α2βr2 − 1) =
= (α− 1)2 + 2α− 1− (α− γ)α2βr2 =
= α2 − 2α+ 1 + 2α− 1− (α− γ)α2βr2 =
= α2(1− (α− γ)βr2)

(2.59)

hence, we can rewrite the solution as:

z =
1− α2βr2

α
√

1− (α− γ)βr2 + γ
(2.60)

We can get rid of γ :

α− γ = 2α− 1 (2.61)

Because of the square root, z is defined as a real value when:

1− (2α− 1)βr2 ≥ 0 (2.62)

If α ≤ 0.5 then 2α − 1 ≤ 0 and (2.62) is always true. Therefore, there is no limit on r. On
the other hand if α > 0.5 then z is defined for:

r2 ≤ 1

(2α− 1)β
(2.63)

It is so because the projection curve for α > 0.5 is an ellipse, so the projection relation is not
surjective (Fig. 2.13). It should be noticed, that it is not a singularity, but it defines limits
on values of r during the reconstruction process.
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O

z

rA B

Figure 2.13: In case of an ellipse as a projection curve all the spatial points are projected in between A and
B, hence, the inverse is not defined beyond [A,B].

Figure 2.14: Straight line a together with projection origin O define plane L. Intersection of L and projection
surface P defines a curve c. By projecting c orthogonally onto the normal plane we get the projection of a.

2.3.5 Straight Line Projection

Using the notion of projection surface, we can show that straight lines are projected as conic
sections. Given straight line a, let us define plane L which passes through a and O (Fig. C.1).
It is defined by the following equation:

Ax+By + Cz = 0 (2.64)

To find the line projection, first we need to project it onto the projection surface. To do that,
we need to find intersection c between surface P and plane L. Combining (C.6) with (C.10)
we get the following system of equations:{

Ax+By + Cz = 0

α2β(x2 + y2) + (α− γ)z2 + 2γz = 1
(2.65)

The next step in the projection process is to project the curve orthogonally onto the
normal plane. It means that we need to exclude z from the equations. If C = 0 then the
projection is a straight line, defined by

Ax+By = 0 (2.66)

This line passes through the image center. There is an intuitive explanation to this fact: the
system has only radial distortions and the only straight lines that are projected into straight
lines are the ones which pass through the optical axis. If C 6= 0 then we can find z from the
first equation:

z = −Ax+By

C
(2.67)
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and substitute it into the second one:

α2β(x2 + y2) + (α− γ)

(
Ax+By

C

)2

− 2γ
Ax+By

C
= 1 (2.68)

As can be seen, we have a second degree polynomial of x and y. This polynomial defines a
conic section.

Notice that using this method, we can compute an equation of a straight line projection
for any projection model defined via a projection surface.

3 Two-Views Geometry

In this section we consider the case when there are two cameras observing the same scene,
or the same camera has been used twice to take images of the same scene. One important
underlying assumption is that the scene geometry remains the same for both observations.
In this case we can assume that all the changes in images are caused only by the viewpoint
change, and perhaps by the difference in camera intrinsic parameters.

3.1 Pinhole Model

Figure 2.15: Epipolar geometry: given two cameras with projection origins O1 and O2, as well the transfor-
mation between the camera frames, represented by rotation matrix 1R2 and translation vector 1t2, for any 3D
point X we can formulate the epipolar constraint. If x1 and x2 are direction vectors towards X from the
camera origins, then vectors t, x1, and x2 are coplanar, because they lie in plane XO1O2.

Essential Matrix As long as two feature points are the projections of the same 3D point,
we can figure out some relations. Fig. 2.15 illustrates the epipolar constraint. Let X be a
3D point, while x1 and x2 be the direction vectors towards X from the first and the second
viewpoints. Note that x1, x2, and the stereo base t are coplanar. It means that their mixed
product is zero. If we project them to the same frame then we can write it down as follows:

1x1 · (1t× 1x2) = 0 (2.69)

We can rewrite this expression using the matrix form:

1xT1 [1t]×
1R2

2x2 = 0 (2.70)

where [t]× is the skew-symmetric matrix. The matrix in the middle [1t]×
1R2 = E is

called essential matrix, It depends only on the cameras relative position and represents the
constraint:

1xT1 E
2x2 = 0 (2.71)

where xii stands for the point projected into camera i, expressed in this camera frame. Note
that this expression must be true for any two projections of the same point X.
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Fundamental Matrix In the case of a pinhole camera, we can express the epipolar con-
straint directly using the image points. (2.71) is true if we use normal points m as a special
case of direction vectors x. Then we can recall the link between normal points and image
points:

p = Kx (2.72)

Let us use homogeneous coordinates for image points:

p = (u, v, 1)T (2.73)

Then K becomes 3× 3 and invertible:

K =

fu 0 u0

0 fv v0

0 0 1

 (2.74)

The reconstructed directions can be expressed as follows:

m = K−1p (2.75)

Substituting (2.75) into (2.71) yelds:

pT1 Fp2 = 0 (2.76)

F is called fundamental matrix :
F = K−T1 EK−1

2 (2.77)

Note that this constraint is valid even if the projection matrix is not the same for the two
cameras. Moreover, we can compute F for uncalibrated cameras (that is, cameras with
unknown intrinsic parameters).

3.2 Two-Views Geometry for Fisheye Lenses

3.2.1 Homography Matrix

In Courbon et al. (2012) it has been shown that the Unified Model allows to use the homog-
raphy matrix to perform 3D reconstruction. The Enhanced Unified Camera Model also alows
us to do it. Suppose that we have a set of points X1..N which belong to the same plane and
we observe it with two calibrated cameras a and b (with projection functions defined by ηa
and ηb respectively). Let us define the plane by the following equation:

an · aX = da (2.78)

Here superscript a stands for the first camera frame. We assume da 6= 0. Then we can apply
the projection model:

aXp =
aX

ηa(aX)
(2.79)

On the other hand we can reconstruct Xp from a point m = (xm ym 1) from the normalized
plane M (see Fig. 2.10) using (C.9):

Xp =

 xm
ym

z(xm, ym)

 (2.80)

By computing the scalar product with an for both sides of (2.79) and applying (2.78) we get:

1

ηa(aX)
=

an · aXp

da
(2.81)
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The transformation between frames a and b is defined as:

bX = bRa
aX + bta (2.82)

By replacing X by Xp and using (2.81) we obtain:

ηb(
bX)

ηa(aX)
bXp = bRa

aXp +
an · aXp

da
bta =

(
bRa +

bta(
an)T

da

)
aXp (2.83)

We can rewrite the last equation as:

bXp ∝ bHa
aXp (2.84)

where bHa = bRa +
bta(an)T

da
is a 3 × 3 homography matrix. Reconstructing Xp1..N for both

cameras a and b we can get the following system of equations:
λ1

bXp1 = bHa
aXp1

...
λN

bXpN = bHa
aXpN

(2.85)

Here λ1..N are unknown scale factors. As matrix bHa is defined up to a scale factor, we have
8 +N unknowns and 3N equations. So we can estimate bHa using just 4 points.

3.2.2 Epipolar Curve Equation

Figure 2.16: A calibrated stereo system. 1R2 and 1t2 define the transformation between the camera frames
(rotation matrix and translation vector); X is a reconstructed point; straight line l passes through it and the
center of projection O1 of the first camera. Plane H passes through O2 and l. Curve c is the intersection
between the plane and projection surface P . To get an epipolar curve we need to exclude the z-coordinate
from the equation of c.

We can get closed-form expressions for the coefficients of epipolar curve equations for a
calibrated stereo system. Consider two cameras with calibrated projection models f1 and f2.
The transformation between them is known and represented by a rotation matrix 1R2 and a
translation vector 1t2 (see Fig. C.2). Hereafter the superscript defines the projection frame.
For a reconstructed point 2x2 = f−1

2 (p2), we can define a plane that passes through it and
both centers of projection, using (2.71):

A 2x2 = 0 (2.86)
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Where A = 1xT1 E. (2.86) is an equation of type (C.10). Hence we can find the equation of
projection of the intersection of this plane with the projection surface of the second camera
using (C.12) or (C.14). The final step is to replace x and y by their expressions as functions
of u and v:

x =
u− u0

fu
y =

v− v0

fv
(2.87)

to get a polynomial of the following form:

kuuu
2 + kuvuv + kvvv2 + kuu+ kvv + k1 = 0 (2.88)

Let us denote this polynomial by h(u, v) or h(p). Except for the epipolar lines that pass close
to the projection center (in which case we can apply (C.12)), the expressions of the polynomial
coefficients in this equation are cumbersome, especially k1:

kuu = A2κ+C2α2β
C2f2u

kuv = 2ABκ
C2fufv

kvv = B2κ+C2α2β
C2f2v

ku = 2−A
2fvu0κ−ABfuv0κ−ACfufvγ−C2α2βfvu0

C2f2ufv

kv = 2−ABfvu0κ−B2fuv0κ−BCfufvγ−C2α2βfuv0
C2fuf2v

k1 =
hA2A2+hABAB+hACAC+hB2B2+hBCBC+hC2C2

C2f2uf
2
v

hA2 = f2
v u

2
0κ

hAB = 2fufvu0v0κ

hAC = 2fuf
2
v γu0

hB2 = f2
uv2

0κ

hBC = 2f2
ufvγv0

hC2 = α2βv2
0(f2

u + f2
v )− f2

uf
2
v

κ = α− γ = 2α− 1

(2.89)

Fortunately, we don’t have to evaluate all of them. If we know the projection of the epipole
e, we can calculate k1 using the fact that h(e) = 0 (since the epipolar curves pass through
it). If we denote the first five terms of h(u, v), defined in (C.17), by h′(u, v) then:

k1 = −h′(e) (2.90)

4 Conclusions

Existing fisheye projection models demonstrated different combinations of advantages and
disadvantages. But none of them is really universal because certain are not precise enough
or suit only for particular types of lenses, while others are to computationally expensive and
are not invertible. In this work we addressed this issue by proposing a novel projection model
and obtained important results on its geometric properties. The description of the Enhanced
Unified Camera Model has been published in Khomutenko et al. (2016a). We summarize the
contributions in the following paragraphs.

The Enhanced Unified Camera Model By augmenting the Unified Model we get a
model which, while keeping its analytical elegance and simplicity, approximates fisheye lenses
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better, due to one more degree of freedom. Quantitative results of calibration are given in
Chapter 3. These results show that the Enhances Unified Camera Model makes an additional
distortion mapping unnecessary even for fisheye cameras with a high distortion.

Projection Surface This notion is a handy tool for analyzing geometric properties of
projection models. Using this concept, a closed-form inversion of the Enhanced model has
been found, its ability to model any second-order radially-symmetric projection surface has
been demonstrated.

There are still a few open questions:

1. Obviously, any surface defined as ρ(φ, ϑ) in spherical coordinates defines a projection
model using this intersection-orthogonal projection paradigm. What kind of such sur-
faces leads to an analytic expression η from (C.3), Which of them would be interesting
for projection modeling?

2. What would be the best way to change the model in order to relax the radial symmetry
condition (2.36)? Will it give any significant benefit in model precision? How would it
affect the inverse mapping?

Straight Line Projection Using the notion of projection surface, it has been shown that
the straight lines are projected into conic sections by the Enhanced Model, and a method to
compute an equation of a straight line projection has been proposed. For a calibrated stereo
system, it is possible to compute the epipolar curve equations, which is used further in this
work for a direct fisheye stereo correspondence algorithm.



Chapter 3

Calibration of Visual Perception
Systems

1 Introduction

The majority of real-world applications rely on a certain kind of model, usually task-specific.
In our case the modeled object is a physical camera, which transforms light waves into digital
images. Any model contains parameters which must be identified before its application.

Generally, the identification can be viewed as a supervised machine-learning problem. In
order to identify system parameters, a learning dataset must be collected and then a non-
linear optimization is solved to find the model parameters which make it fit the learning data
the best (Fig. 3.1).

Figure 3.1: General scheme for identification problems.

The methodology described here is applied to calibration of visual systems for mobile
robots, and in particular for self-driving cars. The described methods are mostly based on
classical calibration approaches with some modifications and improvements. These calibra-
tion tools have been successfully applied for extrinsic calibration of a camera attached to a
robotic arm, and the toolbox can face a broad variety of calibration applications, with certain
adjustments according to the context.

1.1 Camera Calibration Pipeline

In the case of cameras, the calibration is usually done via a calibration object, that is an
object, which is easy to detect in images and whose geometric model is precisely known.
The most common type of calibration object is the calibration board, a flat surface with a
high-contrast regular pattern (Fig. 3.2).

The general method includes the following steps:

1. Collect calibration data, that is images of the calibration board.

51
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Figure 3.2: Two common calibration patterns: checkerboard and circle grid. The features are the inner corners
for the former and circle barycenters for the latter.

2. Extract geometric data from images by detecting the board and expressing the positions
of its feature projections in image coordinates.

3. Initialize unknown parameters.

4. Solve a global optimization problem.

These steps are discussed in details in this chapter.

Global Optimization Formulation In this work we advocate a general nonlinear-optimization-
based calibration method. Even though we have to do some specific calculations to get initial
values of the variables, the problem is still solved globally and all the parameters are computed
simultaneously in the optimization loop.

Let us first consider monocular camera calibration.

• Let α ∈ RK be camera intrinsic parameters.

• Let X = {X1..XM} ⊂ R3 be the calibration board geometric model, that is 3D coordi-
nates of its corners in its own frame (Fig. 3.3a).

• Let f : R3×RK → R2 be a projection function. Its arguments are X ∈ R3 and α ∈ RK .

• Let Ξ = {ξ1..ξN} ⊂ SE(3) be the set of transformations between camera projection
frame Oc and board frame Ob (Fig. 3.3b).

Then the model prediction is defined as follows:

P̂(Ξ) = {P̂(ξ) | ξ ∈ Ξ} P̂(ξ) = {f(ξ(X),α) |X ∈ X} (3.1)

Ξ is unknown, so it must be included into the model parameters (so-called extrinsic parame-
ters).

On the other hand we have the images acquired with the real camera. Let P = {P1..PN}
be the set of observations where each Pi = {p1..pM} ⊂ R2 is the set of detected corners
coordinates. It should be noted that Ξ and P are homologous, that is, elements in these two
sets associated with the set of calibration images. Hence they should be treated in parallel.
The following convention is used hereafter: if two sets A and B are homologous then for a
certain function φ: ∑

a∈A
b∈B

φ(a, b) =

‖A‖∑
i=1

φ (A[i], B[i]) (3.2)
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(a) (b)

Figure 3.3: (a) Frame and geometric model of calibration board with K = 40 corners.(b) Acquisition of
calibration board images with a camera.

It means that the summation is done once by iterating simultaneously over both sets.

It shall be noted that P and X are also homologous because elements of P represent
detected via image processing projections of 3D points of the calibration model, defined in X .
The cost function is defined as follows:

E (α,Ξ,X ,P) =
∑
ξ∈Ξ
P∈P

∑
p∈P
X∈X

‖p− f(ξ(X),α)‖2 (3.3)

And the optimization problem is defined as:

{α∗,Ξ∗} = argmin
α,Ξ

E (α,Ξ,X ,P) (3.4)

In other words, the objective is to minimize the sum of squared differences between the
detected calibration board features P and their modeled projections P̂(Ξ). The structure of
this problem allows us to apply the Levenberg-Marquardt algorithm, which is one of the most
efficient nonlinear optimization algorithms.

Strictly speaking, corner detector is a part of the real system, as it introduces some
measurement noise. But we assume that this noise distribution does not depend on image
coordinates of the extracted corner and is small. In other words, we assume that the camera
gives us geometric information directly, even though it is not quite true. Theoretically, it is
possible to calibrate the camera using the photometric information, but it has not been done
in this work.

1.2 Data Acquisition

In the case of monocular calibration, a dataset is just a set of images of a calibration board
taken with the same camera with the same hardware and software parameters. By hardware
parameters we mean aperture and focus of the lens. Software parameters include resolution
and image offset. Of course, the images should not undergo any geometric transformation.
Calibration of cameras with autofocus and adaptive aperture is not in the scope of this work.

It is possible to calibrate a camera with a single image. But to make the calibration more
robust and precise, it is recommended to acquire more images. In this work, it is usually
between 50 and 200 images per camera.
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Image Quality The chessboard pattern must be clear. Evidently we cannot expect the
black squares to have image value 0 and that white squares to be saturated, but the contrast
should be high. The more uniform the brightness across the squares of the same color, the
better (compare Fig. 3.4abc against Fig. 3.4d). Image sharpness is of great importance, a
blurred image is equivalent to an image of a lower resolution, hence the precision of parameters
identified with blurred images is intrinsically lower.

One of the main drawbacks of this pattern is that overexposure deforms the features
(Fig. 3.4e), that is the white squares dilate and fuse with one another. So the exposure and
lighting must be adjusted so that the corners be acute and well-defined. Any kind of corner
distortion leads to a drop in calibration quality. Reflections of bright light sources may lead
to deterioration of the calibration pattern in the image (Fig. 3.4f) and must be avoided.

Usually, the acquisition is done with a fixed camera and moving calibration board (espe-
cially if the camera is attached to a car). In this case one should take care not to move the
calibration board too fast as it might cause motion distortion. Another possible type of dis-
tortion is a nonlinear pattern deformation because of the rolling-shutter effect. Some cameras
have this effect, other do not. Another motion effect is a simple motion blur (Fig. 3.5). One
should take special care in the case of indoor acquisition, as artificial light is weaker, and to
have a proper image dynamics (that is, difference between dark and light pixels) the exposure
is longer.

Geometric Layout The layout of the calibration board in the images in the calibration
dataset is important. The more uniformly the board is spread across the field of view, the
better the intrinsic parameters are defined. The apparent board size in images matters as
well. If the board is far away, its shape is close to rectangular for any distortion parameters
(compare Fig. 3.4a and b). To make the distortion well-defined, we should have it appear
within a single image. That is, it is better to have fewer images with large and distorted
board rather than a lot of images with small boards.

It may be possible to compute the optimal board layout, but usually the board is hand-
held and it would be difficult to follow exactly the precomputed layout. On the other hand,
it is not much of a problem to acquire more images to avoid overfitting.

It is mentioned in Sturm and Maybank (1999) that, in the case of a pinhole camera, only
the board orientation matters for calibration singularities, and two images of a calibration
board parallel to itself do not provide more information than only one of them, except that
we have more features and it makes the algorithm more robust. Also it is mentioned that, if
the calibration board is parallel to the normal plane, then it is a singular configuration. It
means that the model is not fully identifiable and some of its parameters become dependent.
In the case of the enhanced model, the dependence is non-linear and more complicated, but
it is still a singularity. That is why it is important to have images with the board rotated
about x and y axes.

The problem of the singularity is that in its neighborhood the noise gets amplified a lot.
That is, if we have the board perfectly perpendicular to the optical axis, then the parameters
are not defined. But in practice it is almost impossible, and even if we tried to align the camera
and the board, there still would be some error, and the solution would be found. But the
impact of the noise (detection noise mostly) in this case would be so strong, that the identified
parameters could be quite far away from their real values. To summarize this paragraph about
the geometric layout, the farther away from the singular configurations described above, the
better the precision and the weaker the noise impact.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Calibration images. (a),(b) Fair image quality, dark squares are uniform, the contrast is high.
(c) Calibration board somewhat too dark, yet still usable in calibration. (d) Some reflections make the dark
squares non uniform, which may cause slight corner displacement; also it makes the detection more challenging,
since it is easier to adjust the detector to detect either clear sharp corners like on the bottom left, or slightly
overexposed, like on the top right, but not both of them simultaneously. (e) A strong overexposure significantly
decreases the corner detection precision. (f) strong reflections lead to saturation within dark squares which
makes the corner detection completely impossible.
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Figure 3.5: Motion blur.

2 Board Detection

The board detector is an essential part of a camera calibration system. Its ability to detect
the board in challenging distorted images removes undesirable constraints on calibration data
and facilitates the acquisition. Its precision has a direct impact on the calibration quality. In
terms of robustness to distortion, the checkerboard seems to be the best solution, since for
any kind of continuous distortion it is possible to reconstruct the grid using image gradient
information.

At first, the OpenCV detector has been used for calibration purposes. But it has been
found that this detector was a significant limitation since it did not manage to detect the
pattern in many fisheye images, and when the pattern had been detected globally, local
corner detection precision was poor as the detector is sensitive to overexposure.

The first step was to replace the OpenCV subpixel detector with a new one, while still
using its global board detector for initialization purposes. Later this part has been replaced
by a custom detector, adapted to fisheye images with high distortion. Let us proceed to its
detailed description.

2.1 Detection

The first step is to detect pixels which correspond to the pattern corners. In order to do that,
we follow these steps:

1. By means of a response function, find all pixels which are possible corner projections.

2. Discard unlikely candidates by analyzing the point neighborhood.

3. For the rest of candidates, using an algorithm of pixel search along strong brightness
transitions, construct a graph of possible point connections.

4. Select a subgraph which corresponds to the pattern parameters.

Some intermediate steps are illustrated in Fig. 3.6.
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2.1.1 Response Function

The calibration board corners are in fact saddle points of the brightness function. Saddle
points of functions like R2 → R have a sufficient condition which is a combination of two
necessary conditions:

1. ∇I(p) = 0 — the extremum necessary condition.

2. detH < 0 — a condition to check whether the Hessian matrix is indefinite. detH =
λ1λ2, hence detH < 0 =⇒ signλ1 6= signλ2

We can integrate both conditions in the following response function F :

F = −detH − k ‖∇I‖4 = −IuuIvv + I2
uv − k(I2

u + I2
v )2 (3.5)

If the image gradient is substantial in p, F is negative. But if it is negligible we can consider
the point as an extremum. Then the Hessian determinant comes into play: if it is negative,
F becomes positive. There is an adjustment parameter k which defines the balance between
the two criteria. In our application k = 0.001. The fourth power of gradient is necessary to
have the same units for both terms: 1/px4.

Let Ωr define a punctured disc of radius r:

Ωr : {q ∈ R2 | 0 < ‖q‖ <= r} (3.6)

The set P of all local maximum locations of F is defined as follows:

P = {p | F (p) > F (p+ q) ∀q ∈ Ωr} (3.7)

In our case r = 3.

2.1.2 Reducing the Number of Candidates

To simplify the step of finding the grid among the detected local maxima, we check some
necessary conditions for a detected point to be a board inner corner.

Number of Brightness Transitions If we sample an image around a calibration board
inner corner, we will find in the sample sequence two strong positive and two strong negative
transitions (“steps”). Moreover, the distance between two transitions of the same type is one
half of the circle length. We can check the both of these facts for the potential candidates.
The sampling to get a sequence of image values {I1..IL} is done using the curve rasterization
algorithm described in Chapter 4.

The properties are checked for a range of circle radii. the test must be successful for all
the radii within the range to accept the point. But sometimes the pattern is so small that
a radius of 8 px gets to the neighbor square, and the test fails. On the other hand, in some
conditions (especially overexposure, Fig. 3.8), taking this radius too small also leads to the
test failure. That is why the test is done as follows:

1. Minimum radius rmin is taken from 1 to 6

2. Maximum radius rmax = rmin + max(3, rmin)

3. The test must be successful for at least one pair of rmin, rmax
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Board detection steps. (a) Input image. (b) Corner detector response. (c) Detected maxima; final
candidates are marked with larger crosses. (d) Pixel search, performed along strong properly oriented edges.
(e) Constructed graph. Small crosses on edges mark edge directions. (f) Result after graph analysis.
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To test the transition property we differentiate the sample sequence using the central
differences:

∆i = Ii+1 − Ii−1 i = 1..L (3.8)

keeping in mind that actually it is a loop, so the last sample is followed by the first. Then
we take the three strongest local maxima ∆max1 > ∆max2 > ∆max3 and check the following
property:

∆max2 > α1∆max1 ∆max3 < α2∆max2 (3.9)

Where α1, α2 ∈]0, 1[ are algorithm parameters.
A similar test is done for the three strongest local minima. The radial symmetry implies

that the circular distance between the two strongest maxima should be L/2. Sometimes the
maximum is shifted by a pixel due to the discrete nature of the response function, and hence
the distance between the transitions can be different from the half of the sample vector length.
We have chosen a threshold of L/2 − 2, where L is the number of samples. Let i1, i2 be the
indices of the two maxima. Then the condition is the following:

L/2− 2 < |i1 − i2| < L/2 + 2 (3.10)

In Fig. 3.6c, small black crosses represent the points filtered out by the described method.

Scale Invariance In OpenCV the scale invariance property is used to do the subpixel
detection. It is formulated as follows:

p∗ = argmin
p

∑
q∈Ωr

w(q)∇I(p+ q) · q (3.11)

Here w is a weight function, Ωr is defined in (3.6). Since all q ∈ Ωr are predefined, w
includes the normalization factor ‖q‖−1. The meaning of this cost function is that the gradient
should be perpendicular to the rays which come from p. In other words, it means that the
neighborhood of p must be scale-invariant.

Later we describe yet another subpixel corner detector. However, such a response appears
to be an efficient criterion to discard false-positive detections. For each candidate p ∈ P the
following cost function is computed:

E(p) =
∑
q∈Ω

w(q)(∇I(p+ q) · q)2 (3.12)

Fig. 3.6c shows that most false positives are filtered out using the two simple techniques
described above.

2.1.3 Graph Construction and Grid Selection

Once we have the corner candidates, the next step is to assemble them into a graph. As it has
been mentioned before, the task is facilitated thanks to the edges which connect the corners
on the image. By following the strong gradient via breath-first search we find which points are
interconnected. (Fig. 3.6d,e) the graph is represented as a directed graph with two arcs per
edge (one in either direction). Each arc has a sign, depending on how the gradient is oriented
along it. For example, if while traversing an arc, we see the black square on the left then the
arc is positive. This property will be important for the following step, subgraph selection.

Each point is then checked whether it can be the origin and whether we can select a
subgraph with a grid structure. Generally we want to start with the upper left corner, so
the points are checked in the order of increasing u + v. Let the grid be Nu × Nv. For each
potential pattern origin, first we are looking for two sequences U1 ⊂ R2 and V1 ⊂ R2 of
connected corners with the following properties:
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1. Arcs in each sequences have alternate signs.

2. The first arcs of U1 and V1 have opposite signs.

3. U1 has at least Nu corners (including the origin)

4. V1 has at least Nv corners

5. If a = U1[2]− U1[1] and b = V1[2]− V1[1], then:

0 < ε <
aubv − avbu

‖a‖ ‖b‖
(3.13)

where ε is a small threshold to make sure that a and b are not parallel.

Property 5 assures that the two “base” arcs are properly oriented. Based only on the first
four properties, we can select the inverted version of the pattern starting from the upper right
corner, for example.

If such sequences have been found, then we discard all the “excess” points, if there are
any, to make ‖U1‖ = Nu and ‖V1‖ = Nv. Then we try to select a sequence Ui which starts
from V1[i], i = 2..Nv and has similar properties as above:

1. Arcs in the sequences have alternate signs.

2. Ui has at least Nu corners (including the origin)

3. a = Ui[2]− Ui[1] and b = V1[i]− V1[i− 1] should satisfy (3.13).

Once U2..UNv have been detected, the last step is to validate the grid. In order to do that,
a similar process is done: find sequences Vj , j = 2..Nu which start from Uj with similar
properties as above. The grid is validated if Ui[j] = Vj [i] ∀i = 2..Nv, j = 2..Nu

If a subgraph with such properties has been found, then the algorithm returns it. If not,
the algorithm reports that it has failed to find the pattern.

2.2 Subpixel Refinement

The detection step finds the pattern corners with pixel precision. Yet the image provides
enough information to make the estimation more accurate. The idea is to fit two segments
along square edges to maximize the gradient flow. The objective function to maximize is
defined as follows:

E =

∫
S1\p

s⊗∇I
‖s‖

ds−
∫

S2\p

s⊗∇I
‖s‖

ds (3.14)

where S1 and S2 are the two segments; s is the vector relating intersection p with the
actual point; by ⊗ we mean the following operation:

a⊗ b = aubv − avbu (3.15)

We exclude p to avoid division by zero in the definition. The subtract the second term from
the first because for one segment the transition dark-bright happens clockwise, while for the
other it is counterclockwise. Fig. 3.7 illustrates a presumably optimal configuration.
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Figure 3.7: An illustration of the optimal subpixel corner detector

Figure 3.8: Because of an overexposure the black squares are separated and traditional detectors, based on
local image filtering, fail to detect the corner in the middle of the white separation strip. This example is
exaggerated, but even a slight overexposure, not visible to the bare eye, gives a characteristic noise pattern
after the calibration.

Figure 3.9: An illustration of the initialization process. p0 is the initial guess. By looking for the brightness
transitions along a circle and connecting them we find the initial approximation of the point position p and
the segments’ orientation.

Initialization We assume that the initial approximation of the corner position is in the
neighborhood of the real one. The size of this neighborhood is chosen depending on the image
resolution, expected square size, and the level of overexposure. The latter appears to be the
main source of non-Gaussian noise. The initialization of the segments is done in the spirit
of FAST corner detector Rosten and Drummond (2006). By iterating along a circular path
around the initial point we look for brightness transitions.

Four strong transitions must be found. Moreover we expect them to have a particular
geometric configuration. Brightness increases must be located diametrically in the ideal case.
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To find the correct transitions we add a constraint that the transitions of the same sign (see
Fig. 3.9). are separated at least by π/2 along the circle. The algorithm goes as follows:

1. Sample the image along a circular path around the initial guess, given by another de-
tector.

2. Estimate the transition strength by using the central differences.

3. Find the largest increase.

4. Find the largest increase within the opposite semicircle.

5. Repeat the procedure for the decreases.

6. Find the intersection between the segment relating the increase points and the one,
relating the decrease points. It is the initial corner position for the optimization loop.

7. Find the segments’ orientation and use it as the initial orientation in the optimization
process.

Optimization The corner is parametrized as follows (see Fig. 3.10):

• p = (u, v) — the corner’s position.

• ϑ1, ϑ2 — the segments’ orientation.

• h — shift in gradient due to the blur and overexposure.

Figure 3.10: Parametrization for the subpixel corner detector. The gradient flow is computed along the solid
lines.

The segments used in the optimization are not exactly the same as the ones used in the
initialization. They inherit their orientation, but their length is fixed and they are centered
at p. The discretized version of the cost function is expressed as follows:

E =
2∑
i=1

M∑
j=1

(−1)i
(
∇I(p+ ∆pij)⊗ ri −∇I(p−∆pij)⊗ ri

)
(3.16)

where ri = (cosϑi, sinϑi) is the segment direction vector; ∆uij and ∆vij define the displace-
ment:

∆pij =

(
j cosϑi + (−1)ih sinϑi
j sinϑi − (−1)ih cosϑi

)
(3.17)

Fig. 3.11 shows how the proposed detector improves the corner position in comparison
to the OpenCV subpixel detector. The comparison of the error distribution after calibrating
cameras will be given in the next section.
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Table 3.1: Detector temporal performance — average time per image. Failed detections are taken into account
for the average time.

Dataset OpenCV Proposed Detector

Resolution Images Detected T, s Detected T, s

640× 480 284 115 0.111113 257 0.0313478

640× 480 276 112 0.117382 202 0.035969

1280× 960 552 311 0.251513 407 0.0929256

One of the advantages of the proposed method is its performance, represented in Table 3.1.
The proposed detector finds more patterns and does it quicker than the OpenCV detector.

We have tested the time performance of another existing detector from Schönbein et al.
(2014), implemented in MATLAB. It processed a dataset of 54 640×480 images in 572 seconds,
or about 10 seconds per image, which is much slower than C++ detectors compared here.
Such a difference in performance may be due to the interpreted nature of MATLAB, though it
is difficult to say how much this time can be improved by using a different language. For real
applications, the proposed algorithm with its current implementation is a good alternative
when large datasets have to be treated or real-time performance is required.

Figure 3.11: An example of corner detection improvement (image is zoomed). Blue — corners given by the
OpenCV detector, Red — improved corners.

3 Parameter Initialization

Intrinsic Parameter Initialization This calibration technique seems to be quite robust
with respect to the intrinsic parameter initialization. Yet it is better to have reasonable initial
values. If the camera to be calibrated is fisheye, then the distortion parameters can be chosen
as α = 0.5 and β = 1.

Concerning the projection matrix, these parameters must be chosen so that the projection
center be in the middle of the image and that the horizontal field of view be about 180◦ . It
is easy to achieve if we look at the Enhanced model projection properties for α = 0.5, when
the directions at 90◦ with respect to the optical axis are mapped to a circle of radius 2 on the
normal plane. So, we suggest the following initialization:
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1. u0 = umax/2

2. v0 = vmax/2

3. fv = fu = u0/2

Of course, for low-distortion narrow-angle cameras the initial parameters might be quite
different.

3.1 Local Minimum of Calibration Board Pose

Unfortunately, the experiments show that the calibration problem has multiple local minima.
The scheme of a possible local minimum is given in Fig. 3.12. The practice shows that without
an appropriate initialization, this configuration occurs quite frequently. An example of such
a local minimum is shown in Fig. 3.13. Notice that the cost function and the data, that is
the extracted grid, are the same in both cases.

Figure 3.12: An illustration of reprojection error local minimum (view from the top): a is the real board
position, b is the computed position; O is the camera origin.

3.2 Calibration Board Pose Initialization

The initialization is done using the initial intrinsic parameters. These parameters may be
quite different from their true values. Fig. 3.15 shows that the corner reprojections don’t
actually fit the detected corners. As long as initial projection parameters are arbitrary, the
position estimation is also poor and cannot be considered as a real estimation. But it brings
the initial parameters of the global optimization problem to a “valley” from where they will
converge to the global optimum.

Direct Initial Pose Computation This procedure is necessary to avoid the local minimum
described above. Hence, the main goal is to get the initial orientation right. We use a simple
heuristics: if one of two parallel edges has a smaller angular size, it is farther away from the
camera. Knowing the model size and assuming that the edges are close to perpendicular to
the camera direction, we can directly estimate the distance to them. Let us first define the
necessary notation (Fig. 3.14).

• Subscripts T, B, L, R correspond to “top”, “bottom”, “left”, “right” respectively (for
example TL means “top-left”).

• Let XTL ∈ R3 be a calibration board corner.

• Let dTL ∈ S2 be a reconstructed unit direction vector towards a calibration board corner.
Initial guess for intrinsic parameters is used in the reconstruction.

dTL =
XTL

‖XTL‖
(3.18)
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a)

b)

Figure 3.13: The impact of initialization on convergence. On the left we have a precomputed pose estimation.
On the right the result of reprojection error minimization over the board pose. Notice that the intrinsic
parameters are arbitrary since the calibration has not yet been done. (a) a poor initialization may lead to a
local minimum. (b) a better initialization makes it possible to find the global solution.

• Let eT , eB, eL, eR be calibration board edge vectors. They are defined as follows:

eT = dTR − dTL eB = dBR − dBL

eL = dBL − dTL eR = dBR − dTR

(3.19)

• Let Lu = ‖XTR −XTL‖ and Lv = ‖XBL −XTL‖ be the board dimensions.

Let us compute the direction scales:

λT =
Lu
‖eT ‖

λB =
Lu
‖eB‖

λL =
Lv

‖eL‖
λR =

Lv

‖eR‖

(3.20)

Now we can estimate the board position:

X̂TL = dTL min(λT , λL) (3.21)

Using min is a heuristics. We can illustrate the idea behind with an example. Let us assume
that the calibration board is rotated about its x-axis, and XTL is farther away from the
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Figure 3.14: Definition of notation for initial pose computation.

camera than XBL (Fig. 3.14). It means that the top edge appears smaller than the bottom
edge because it is still parallel to the image plane but just farther away. On the other hand,
the left edge appears smaller because it is twisted and its apparent size is roughly proportional
to the cosine of the rotation angle about x-axis. Since the change in apparent size due to the
distance is generally smaller than the one due to the rotation, we take the minimum scale
factor. If there is more rotation about y than x, then λL will be preferred over λT , and vice
versa.

We estimate the positions of TR and BL corners in a similar way:

X̂TR = dTR min(λT , λR)

X̂BL = dBL min(λB, λL)
(3.22)

Then let us construct a local basis. xb is aligned with the estimated board top edge:

xb = normalize
(
X̂TR − X̂TL

)
(3.23)

yb is the component of the reconstructed left edge, orthogonal to xb:

yb = normalize
((
I3 − xbx

T
b

) (
X̂BL − X̂TL

))
(3.24)

The definition of zb is straight-forward:

zb = xb × yb (3.25)

The board transformation then is defined as follows:

cTb =

(
xb yb zb X̂TL

0 0 0 1

)
(3.26)

Pose Refinement The initialization described above improves chances that the board is
in the basin of attraction of the global minimum. Then we can refine it to get as close to the
optimization valley as possible. To do that we just solve the optimization problem described
in (3.4) individually for each board while fixing α:

Einit (α, ξ,X ,P) =
∑
p∈P
X∈X

‖p− f(ξ(X),α)‖2 (3.27)

ξinit,i = argmin
ξ

Einit (α, ξ,X ,Pi) (3.28)

The initial value of ξ is defined by (3.26). The results of both initialization steps are presented
in Fig. 3.15
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Figure 3.15: Extrinsic initialization for guessed intrinsic parameters. Left — direct pose calculation. Right —
after optimization.
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4 Calibration Using the Enhanced Camera Model

4.1 Monocular Calibration

Here we present some results related to monocular calibration. First, a comparison of board
detectors is done. Then a comparison between different fisheye camera models is presented.
For solving we use a C++ library called Ceres-Solver from Agarwal et al. (2010).

4.1.1 Detection Comparison

To compare different corner detectors, the same raw dataset of 436 images has been used for
calibration. The OpenCV detector detected the pattern in 142 of them, whereas the proposed
detector detected the board in 320 of them. Concerning the images in which the pattern
has not been detected by the latter detector, the board there was either partially invisible or
contained strong reflections. The resulting residual distribution is presented in Fig. 3.16. The
figure shows that, for the OpenCV detector the error spread is much wider, which means that
the proposed detector is more robust.

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4

6

8

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4

6

8

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4

6

8

Figure 3.16: Calibration results for different detectors — final reprojection error distribution. From left to
right: OpenCV detector, the proposed detector, and the proposed detector with subpixel refinement. The
novel detector detects the board in more images with no evident outliers.
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Figure 3.17: Subpixel detection, the two right plots from Fig. 3.16. Left — pixel detector; right — subpixel
refinement. Notice the squarish shape of the left distribution which fits a 1× 1 px area.

If we actually discard images which the OpenCV detector fails to process accurately, and
which generate large errors, the error distribution will be narrower than the one, given by the
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new detector (0.12 vs 0.14 px standard deviation). But we should remember the fact that
OpenCV discarded right away the most challenging distorted images while processing only
relatively “easy” cases.

After we have discarded problematic images, which are slightly blurred or distorted because
of the motion or, perhaps, because of the calibration board slight bending, the resulting error
distribution became even more compact (Fig. 3.17). The number of images used for this
calibration is 260. You can see on the left that the noise pattern is squarish. It happens because
the measurement noise in the absence of subpixel refinement has a uniform distribution with
a square support 1× 1 px. This distribution disappears once the subpixel detector is applied,
and the standard deviation of the distribution goes down from 0.30 to 0.14 px.

4.1.2 Model Comparison

Six lenses have been calibrated using the Enhanced Unified Model: four fisheye lenses of two
different models and two perspective lenses. Their aliases, models, focal lengths and fields of
view are given in Table 3.2.

Table 3.2: Monocular calibration results. Second and third lines represent different lenses of the same model.
σx and σy represent the reprojection error distribution after the calibration.

Lens alias Lens model focal length, mm horizontal field of view, deg

fisheye 1
CF5M1414 1.4 182

fisheye 2

fisheye 3
FE185C057HA-1 1.8 185

fisheye 4

perspective 1 DF6HA-1B 6 56

perspective 2 COMP-M0814-MP 8 42

The image resolution in all cases is 1296×966. The standard deviations of the reprojection
errors along x and y axes as well as the number of images used in the calibration are given in
Table 3.3. The first four fisheye lenses have large α. Lenses of the same model demonstrate
the same intrinsic parameters. The last two lenses are low-distortion, narrow-angle, and their
values of α are significantly smaller than for fisheye. Fig. 3.18 shows the projection curves
corresponding to the calibrated lenses.

r

z

Figure 3.18: Projection curves for the calibrated lenses. Blue — fisheye 1 and 2, green — fisheye 3 and 4, red
— perspective 1, cyan — perspective 2.

Fig. 3.19 is the reprojection of the grid after the calibration. Fig. 3.20–3.21 show the
undistortion using the model. Fig. 3.21 shows the undistortion of a region on the border of
the image: lines that are straight on the calibration board appear straight. To perform this
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undistortion we have to rotate the virtual camera with respect to the real camera. Otherwise
the region would not be in the field of view of the virtual pinhole camera.

The Enhanced Model (EUCM) has been compared to the Unified Model, with (UCM-D)
and without (UCM) the distortion layer described in Mei and Rives (2007). The resulting
reprojection error values are given in Table C.3. The first thing that we see is that the change
in σ from EUCM to UCM-D is negligible. On the other hand the computation time increases
by an order of magnitude. If we compare UCM and EUCM, then we see that there is no
significant change in computation time. But there is a significant improvement of precision
for fisheye 1 and 2, while the performance of either model is almost the same for fisheye 3
and 4. It becomes clear by looking at Table 3.3 where for fisheye 3 and 4 β is close to 1.0,
while for fisheye 1 and 2 it is not the case. And β is the parameter that makes the difference
between two models. We can see a certain improvement for perspective 1 (σ changes from
0.24 to 0.11).

Another criterion that we can use to compare different lenses is the computed pose. We
took the pose computed with UCM-D as a reference and compared it to poses computed using
UCM and EUCM. The result is presented in Fig. C.4. The error is measured in millimeters
and milliradians. The average distance camera-board and rotation angle for poses computed
using UCM-D are about 1 m and 1 rad respectively. For fisheye 1 and 2 we can see that the
difference between UCM and UCM-D is significantly larger than between EUCM and UCM-
D. For fisheye 3, 4 and perspective 1 all three models give close results with little difference.
For perspective 2, however, we see that both UCM and EUCM are quite far from UCM-D.
Moreover, if we compute the error between UCM and EUCM we get 3.0 mm and 1.6 mrad.
In the absence of ground truth, we cannot make an ultimate conclusion, but it seems like the
complex model overfits data, since UCM-D has 10 parameters and the data closely follows
the Pinhole model. So, UCM and EUCM give better precision.

Table 3.3: Monocular calibration results. σx and σy represent the reprojection error distribution after the
calibration.

Lens Images σx, px σy, px α β

fisheye 1 142 0.128 0.121 0.569 1.19

fisheye 2 105 0.114 0.118 0.571 1.18

fisheye 3 143 0.079 0.064 0.629 1.02

fisheye 4 87 0.084 0.075 0.626 1.02

perspective 1 50 0.111 0.078 0.076 6.08

perspective 2 82 0.120 0.142 0.019 10.0

4.2 Stereo Calibration

4.2.1 Extrinsic Calibration Approach

Using a calibration board, we can calibrate not only intrinsic parameters of cameras, but
extrinsic parameters of stereo systems as well. For that we need to couple the cameras’
positions via images of the calibration board taken simultaneously.

We can decouple the extrinsic and intrinsic calibrations, that is calibrate the cameras’
intrinsics separately, and then calibrate the stereo transformation. But a better way is to
calibrate the whole system simultaneously and unify three calibration problems (two intrinsic
and one extrinsic) into one.
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Figure 3.19: Grid projection after calibration.

Figure 3.20: Undistortion using the calibrated model — all the straight lines after undistortion become straight.
Here the board is in the middle of the image.

Figure 3.21: Undistortion using the calibrated model. The virtual camera is rotated by about 60◦ . The model
works well even on the very border of projection.
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Figure 3.22: Monocular calibration results — model comparison.
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Figure 3.23: Monocular calibration results — pose reconstruction comparison.The reference model is the Unified
Camera Model with Distortion (10 parameters).
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Since there is a visibility constraint on stereo images (that is, the board should be com-
pletely visible in both images) it is better to acquire two additional monocular datasets, which
are coupled with the stereo calibration only via the cameras’ intrinsics. We can represent this
scheme via the diagram from Fig. 3.24.

Figure 3.24: Stereo calibration coupling graph.α1,2 are the intrinsic paramters; ξs is the stereo transformation.

For the particular case of stereo calibration, the following formal definition can be used.
We have the following data and variables:

• Let α1,α2 ∈ RK be the intrinsic parameters for the 1st and 2nd cameras.

• Let Ξ1,Ξ2 ⊂ SE(3) be the sets of board positions for the first and the second camera’s
monocular calibration datasets.

• Let Ξs ⊂ SE(3) be the set of board positions in the first camera frame for the stereo
calibration dataset.

• Let ξs define the 2nd camera frame in the 1st camera frame.

• Let P1,P2 be the detected board corner data for the monocular calibration.

• Let Ps,1,Ps,2 be the detected board corner data for the stereo calibration.

Let us define one more cost function for the stereo coupling:

Es (α,Ξ, ξs,X ,P) =
∑
ξ∈Ξ
P∈P

∑
p∈P
X∈X

∥∥p− f(ξ−1
s ◦ ξ(X),α)

∥∥2
(3.29)

Then the optimization problem will be defined as follows using both (3.3) and (3.29):

{α∗1,α∗2,Ξ∗1,Ξ∗2,Ξ∗s, ξ∗s} = argmin
α1,α2,
Ξ1,Ξ2,
Ξs,ξs

E (α1,Ξ1,X ,P1) + E (α2,Ξ2,X ,P2) +

E (α1,Ξs,X ,Ps,1) + Es (α2,Ξs, ξs,X ,Ps,2)
(3.30)

In fact this method can be extended to any number of cameras and transformations, under
the condition that all the transformations can be actually identified. For example, instead
of ξ−1

s ◦ ξ in (3.29) it can be any other transformation combination. The calibration toolbox
developed in this work can handle arbitrary transformation chains.

4.2.2 Results

A vertical stereo system has been calibrated using the described method. The first camera
is at the bottom. The error distribution is shown in Fig. 3.25. The distribution standard
deviation is given in Table 3.4.

A smaller reprojection error for stereo dataset can be explained by the fact that the board
is generally farther away from the cameras to be completely visible, hence the distortion is
smaller and it is easier to fit.
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Such a small reprojection error for the stereo data means that the stereo calibration is
actually precise, because both cameras use the same board transformation and, since they fit
almost perfectly all the images from the dataset, this is the best extrinsic calibration quality
assessment.

Table 3.4: Calibration results for a stereo system — standard deviation of the error distribution.

Camera/Dataset Num. images Num. detections σx, px σy, px

bottom/mono 284 246 0.16 0.14

top/mono 207 179 0.20 0.19

bottom/stereo 319 314 0.083 0.086

top/stereo 319 313 0.093 0.088
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Figure 3.25: Error distribution for calibration result of a vertical stereo system.
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5 Odometry Extrinsic Calibration

The problem of extrinsic calibration has been addressed in multiple papers; first for manipu-
lators equipped with eye-in-hand cameras (for example, Daniilidis (1998)), and more recently
for mobile robots by Antonelli et al. (2010); Censi et al. (2013); Heng et al. (2013). Censi
et al. (2013) mentions an impact of the trajectories on the calibration quality, and a method to
compute optimal trajectories for solving the linear part of the calibration, the wheel odometry
intrinsic calibration, is proposed. Concerning the nonlinear part (which includes the camera
extrinsic parameters) the authors give some intuitive guidelines. In particular, a straight tra-
jectory does not give any information on the relative position of the camera with respect to
the base, whereas a pure rotation makes the orientation of the sensor not fully observable.

We suggest a method to improve the calibration quality and its robustness with respect
to the noise by computing the optimal trajectories. They provide the best possible definition
of the calibration problem, which is formulated, in most cases, as a nonlinear optimization
problem. The idea of generating exciting trajectories comes from the robotic arm community.
It has been successfully applied to perform dynamic identification Armstrong (1989); Gautier
and Khalil (1991). In Renaud et al. (2003), trajectory optimization for the extrinsic calibration
of an eye-in-hand camera-manipulator system has been done. We present a framework which
allows us to evaluate the quality of a given trajectory or of a set of trajectories for the extrinsic
calibration. In this work the odometry is supposed to be calibrated and its output to be the
integrated trajectory with the uncertainty.

The demonstration goes as follows. First, we formulate the calibration problem in the case
of a mobile robot equipped with a single camera, without addressing trajectory properties.
Second, we discuss how to choose trajectories to make the problem better defined. In order
to do that, a criterion is proposed. Finally, we show the impact of the trajectory choice on
the calibration quality.

5.1 Odometry Calibration Formulation

The extrinsic transformation between the odometry origin and the camera frame can be found
as follows:

1. Collect the data, that is odometry measurements and calibration board images for,
generally speaking, several trajectories.

2. Fit all the unknowns which are the extrinsic camera parameters, the board position with
respect to the world origin for each trajectory, and the exact trajectories.

Here we assume that the camera is calibrated and intrinsic parameters α are known and
fixed. It is possible to integrate camera intrinsic calibration into this process, but we don’t
do it here for the sake of simplicity. Since α is not involved in the demonstrations, we omit it
everywhere. As in the case of stereo calibration we have to redefine the cost functions here.

• Let O be the world frame origin.

• Let Oo be the odometry frame origin.

• Let Ξk ⊂ SE(3) be the k-th set of robot base poses in O. Generally there are more than
one of them.

• Let ξi ∈ Ξ be the i-th base pose in O.

• Let ξb,k ∈ SE(3) define the board frame Ob,k in O. Each ξb,k is associated with Ξk.
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• Let ξc ∈ SE(3) define the camera frame Oc in Oo.

• Let ζ ∈ SE(3) be a wheel odometry increment.

• Let Zk = {ζ1..ζNk} ⊂ SE(3) be the set of wheel odometry increments.

• Let Cζ,k = {Cζ,1..Cζ,Nk} ⊂ R6×6 be a set of covariance matrices, defining the uncertainties
of Zk.

The reprojection cost function is defined as follows:

Eb (Ξ, ξc, ξb,X ,P) =
∑
ξ∈Ξ
P∈P

∑
p∈P
X∈X

∥∥p− f(ξ−1
c ◦ ξ ◦ ξb(X))

∥∥2
(3.31)

This cost function is similar to (3.3) and (3.29), except that in this case the transformation
chain is ξ−1

c ◦ ξ ◦ ξb

In the case of odometry prior, we have to treat robot poses by pairs ξi, ξi+ 1. To do so
we use the following notation:

∑
ai,ai+1∈A

φai, ai+1 ,
‖A‖∑
i=1

φai, ai+1 (3.32)

Where φ is a function of two elements from A. Odometry prior cost function is defined in the
following way:

Eo (Ξ, Z,Cζ) =
∑

ξi,ξi+1∈Ξ
ζi∈Z
Cζ,i∈Cζ

∥∥ζ−1
i ◦ ξ

−1
i ◦ ξi+1

∥∥2

Cζ,i
(3.33)

It penalizes the difference between the odometry measurement and the computed trajectory
increment. In other words, it tends to close the loop ζ−1

i ◦ξ
−1
i ◦ξi+1 (Fig. 3.26). The “flexibility”

of the trajectory depends on the odometry prior precision defined by Cζ .
The setup is illustrated in Fig. 3.26. Let us use k for indexing datasets, corresponding to

different trajectories. The problem is formulated as follows:{
ξ∗c , {ξ∗b,k}, {Ξ∗k}

}
= argmin

ξc,{ξb,k},{Ξk}

∑
k

Eb (Ξk, ξc, ξb,k,X ,Pk) + Eo (Ξk, Zk,Cζ,k) (3.34)

5.2 Optimal Trajectory for the Extrinsic Calibration

To assess how well the optimization problem defined in (3.34) is determined, we reformulate
the problem.

• Let ξ̂c ∈ SE(3) be the base-camera transformation prior.

• Let Cξ̂c ∈ R6×6 be the covariance of ξ̂c.

• Let Ξo ⊂ SE(3) represent odometry base poses obtained by odometry integration.

• Let Co ⊂ R6×6 be the set of covariance matrices which define uncertainties of camera
position, induced by errors in Ξo.

• Let Ξv ⊂ SE(3) be the set of camera positions computed via visual localization.

• Let Cv ⊂ R6×6 be the set of covariance matrices which define uncertainties of Ξv.
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Figure 3.26: A scheme of the calibration process. The unknowns are {ξi}, ξc, ξb.

Instead of considering the coupled solution of the visual localization and odometry integration,
which can be viewed as a SLAM problem, we say that the integrated odometry Ξo and the
visual localization Ξv are given, as well as their covariance matrices. It reduces the number
of variables to ξc, but the uncertainty introduced by the calculation of the other variables is
taken into account. The reformulated problem is as follows:

ξ∗c = argmin
ξc

E∗(ξc) (3.35)

E∗(ξc) =
∥∥∥ξ̂−1

c ◦ ξc

∥∥∥2

Cξ̂c
+

∑
ξo∈Ξo Co∈Co
ξv∈Ξv Cv∈Cv

∥∥ξ−1
c ◦ ξ−1

o ◦ ξc ◦ ξv

∥∥
Cv+Co (3.36)

The second term means that, as shown in Fig. 3.27, we want:

ξo ◦ ξc = ξc ◦ ξv (3.37)

We want to analyze the properties of the energy function E∗ from (3.36) in the neigh-
borhood of the solution. To improve the problem stability properties we can minimize the
following criterion:

F = −
6∑
i=1

log σi

(
∂2

∂ξ2
c

E

)
(3.38)

where σi(·) is the ith singular value of a matrix. Basically, it is equivalent to the maximization
of the Hessian matrix determinant det(H) =

∏6
i=1 σi(H). In Renaud et al. (2003) they suggest

the matrix condition number as a criterion instead of the determinant, in Armstrong (1989) the
inverse the minimum singular values is proposed. But in our case one degree of freedom is not
observable, hence the corresponding singular value is defined only via the prior transformation
estimation and does not depend on the trajectory. In fact, the condition number will be just
proportional to the maximum singular value. Yet, there might be a better criterion than
(3.38), like a different function of the singular values; it is still an open question.

The Hessian matrix itself ∂2

∂ξ2c
E can be used to analyze the observability of different degrees

of freedom. Its singular decomposition and singular vectors corresponding to small or zero
singular values tell us which degrees of freedom of the extrinsic transformation cannot be
observed.

In our case (3 DoF mobile robot) the only rotation is about z-axis, hence z-component of
the translation of ξc is not observable (as it is mentioned in Heng et al. (2013)), and its value
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is defined by the prior transformation estimation. But x, y, and uϑ are observable, and the
larger the singular values, the better the final numerical estimation.

Figure 3.27: δc is an infinitesimal increment of ξc, notice that δc appears twice since ξc is present twice in the
transformation chain; δv is increment δc transformed into the terminal frame; δ = δv− δc would be the residual
which appears when we modify the solution ξc by δc.

If covariances are defined for the infinitesimal motions of the terminal frame, then we need
to transform the infinitesimal increments δc of ξc into the terminal frame (Fig. 3.27):

δv = v,iT v,1δc (3.39)

v,iT v,1 =

(
R−1

v,i −R
−1
v,i [tv,i]×

0 R−1
v,i

)
(3.40)

where iT j is a twist transformation matrix, Rv,i and tv,i is another representation of ξv,i.
Another way of writing the residual in energy expression (3.36) is:

δ = δv − δc ≈ ξ−1
c ◦ ξ−1

o,i ◦ ξc ◦ ξv,i (3.41)

5.2.1 Covariance for the Visual Localization

Here we assume that the visual localization is done using a calibration board. Any other visual
localization can be used to compute the trajectory of the camera, but similar precision analysis
must be done in this case. The covariance of the visual localization, assuming the camera
intrinsic parameters exactly known, comes from the uncertainty in the corner detections of
the calibration board. The localization is computed as non-linear least squares. The cost
function is defined similar to (3.3):

Ev(ξ) =
∑
p∈P
X∈X

‖p− f(ξ(X))‖2Cp (3.42)

Here Cp is a 2 × 2 corner detection covariance matrix. We assume that u and v of detected
feature points are decorrelated and have equal uncertainties:

Cp =

(
σ2
p 0

0 σ2
p

)
= σ2

pI (3.43)

For practical purposes we can assume that σp = 1, unless we have a better prior estimation
of corner detector precision.

The whole least-squares problem for all points together is defined as follows:

JTC−1
∆p∆p = 0 (3.44)
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where J is a concatenation of Jacobian matrices for individual points:

J =


∂f(ξ(X1))

∂ξ
...

∂f(ξ(XM ))

∂ξ

 =

 J1
...
JM

 (3.45)

∆p is the concatenation of reprojection errors:

∆p =

 p1 − f(X1, ξ)
...

pM − f(XM , ξ)

 (3.46)

C−1
∆p is the covariance matrix of ∆p:

C−1
∆p =


C−1
p 0 . . . 0

0 C−1
p . . . 0

...
...

. . .
...

0 0 . . . C−1
p

 (3.47)

Let us consider that the solution for (3.44) is found by using the iterative Newton-Gauss
optimization. The solution looks as follows (for the last iteration, Lourakis and Argyros
(2004)):

∆ξ = (JTC−1
∆pJ)−1JTC−1

∆p︸ ︷︷ ︸
J+
C

∆p (3.48)

Here, J+
C is the weighted generalized inverse of J . We know that if a linear mapping is applied

to a random Gaussian vector:

y = Ax (3.49)

Then the covariance of the result is computed as:

Cy = ACxAT (3.50)

In our case:

Cv = J+
C C
−1
∆pJ

+T
C

= (JTC−1
∆pJ)−1JTC−1

∆pC∆pC−1
∆pJ(JTC−1

∆pJ)−1

= (JTC−1
∆pJ)−1JTC−1

∆pJ(JTC−1
∆pJ)−1

= (JTC−1
∆pJ)−1

(3.51)

This general form, which is an interesting theoretical result by itself, can be simplified even
further, if we recall that C−1

∆p = σ−2
p I:

Cv = σ2
p(JTJ)−1 (3.52)



80 CHAPTER 3. CALIBRATION OF VISUAL PERCEPTION SYSTEMS

5.2.2 Odometry Covariance Matrix

We are interested in Cζ,i, the covariance which characterizes the error distribution of the
odometry increment measurement in its local frame. It can be computed as follows:

Cζ,i =
∂ζi,local

∂ζi

∂ζi

∂u
Cu,i

(
∂ζi,local

∂ζi

∂ζi

∂u

)T
(3.53)

Its expression has been obtained in Chapter 5 and is given in (5.33).
We need to integrate the covariance matrix along the trajectory to get its actual value at

a given point:
o,iCo,i = Cζ,i + iT i−1

o,i−1Co,i−1
iT Ti−1 (3.54)

T is a twist transformation matrix, like in (3.40). The given expression gives a 3× 3 matrix;
three more rows and columns are to be added to make it 6× 6. We also add a small constant
covariance matrix C̃ to it, to introduce some uncertainty in the other 3 directions, then the
frame must be changed from i-th odometry frame to i-th camera frame:

Co,i = v,iT o,i(
o,iCo,i + C̃)v,iT To,i (3.55)

5.3 Practical constraints and details

As it is mentioned in Censi et al. (2013), in any experimental setup there are some practical
constraints which are not necessarily represented by the cost function (3.38). It is possible to
augment it by adding terms to find the best of practical and feasible trajectories.

Visibility Constraint To make sure that the images contain the calibration board along
the trajectory, we reinforce the visibility constraint by adding a term to (3.38):

F = −
6∑
i=1

log σi

(
∂2

∂ξ2
c

E

)
+
∑
ξ∈Ξ

∑
X∈X

ρr(f(ξ
−1
c ◦ ξ−1 ◦ ξb(X))) (3.56)

here ρr : R2 → R is the penalty function, defined as follows:

ρr(p) =

{
0 if ‖p− p0‖ < r
λ(‖p− p0‖ − r)2 otherwise

(3.57)

where p0 is the image center; r is a certain radius. We can divide the image into three zones,
as shown in Fig. 3.28. All the feature points of the calibration board in the first zone are not
penalized (and its radius is r), but once a point approaches zone 2, the additional cost starts
growing quadratically, which means, considering that the data term is a logarithm of singular
values, that all the points will rather stay in zone 1 after the optimization.

Figure 3.28: Every image is divided into three concentric zones: 1) the additional cost for the points there is
0; 2) the additional cost for points grows quadratically with respect to the distance from the projection center;
3) there are no points projected into this zone because of the fact that we are using fisheye cameras.

This method is adapted for fisheye optics. For pinhole cameras it may be interesting to
use a different regularization term.
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Constraints on the Trajectory Curvature For certain types of mobile robots (such as
ones with steerable wheels) there are limits on the trajectory curvature. This constraint can
be taken into account by adding the following term to the cost function:

Ecurvature = λκ

N−1∑
i=1

max

(
ϕi

li
− κmax, 0

)2

(3.58)

Where ϕ is the elementary rotation, l is the elementary translation length.

Trajectory Parametrization It appears that a trajectory which is a single arc of a con-
stant curvature is not enough to do the extrinsic identification. It has a simple explanation:
for such a trajectory the camera’s trajectory will also be an arc of a different radius. If we
rotate the camera’s initial position and the calibration board about the center of the circular
trajectory, then the camera’s motion will be the same with respect to the calibration board.
It means that such a trajectory will define a circle with the center at the trajectory’s center,
on which lies the camera. If we take two distinct arcs with different curvature as a trajectory,
it will define two circles, and the camera has to be at one of the intersections, since two circles
generate two intersections. If the camera’s prior position is accurate enough, the optimization
will converge to its real position, that is why the trajectory is represented by two arcs. It is
parametrized by their initial point along x, initial orientation, linear and angular speed of the
robot. It makes 8 optimization parameters in total. ”The optimal trajectory” refers to the
solution of the optimization problem with such a parametrization.

Optimization Initialization A good initialization is important to make the problem con-
verge to the global optimum. In order to do that, the initialization is carried out as follows:

1. The prior on the camera extrinsic ξc must be provided by the user. Generally, its position
can be measured with reasonable precision, the orientation prior can be approximate.

2. Transformations {Ξi} are initialized using the odometry measurements, which is straight-
forward.

3. {ξb,i} are initialized in a few steps:

a) Using first image of a sequence, compute cξb as it has been explained before.

b) Compute ξ̂b = ξ1 ◦ ξc ◦ cξb.

c) Using all the images of the sequence, minimize the reprojection residual over ξb,
using ξ̂b as the initialization. Basically we minimize (3.34) fixing all the variables,
except for ξb.

5.4 Results

The concept has been tested using synthetic data 1. It allows us to compare the results to
the true values. For a generated trajectory, a set of images of the calibration board has been
generated, using the camera model (30 images per trajectory piece). These images have been
used to perform the calibration. Even though the images are synthetic, the image processing
part still introduces a certain error in the calibration due to the imperfection of the pattern
detection. The extrinsic calibration has been done twice: once using the optimal trajectory,
and one more time using a suboptimal one. The suboptimal trajectory has been obtained by
stopping the optimization process before convergence, but after the visibility and curvature
constraints have been satisfied. Both trajectories are given in Fig. C.5.

1Technical details of image rendering are given in Appendix B
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Figure 3.29: Generated trajectories: Cyan – the initial trajectory, E = 688, the curvature constraint is not
satisfied; green – a suboptimal trajectory, E = −29.6; Blue – the optimal trajectory, E = −37.4. E is the cost
function.

To check the extrinsic calibration robustness, some noise has been added to the odometry
measurements. The absolute value of the noise and the resulting calibration error are summa-
rized in Table 3.5. The results are also visualized in Fig. C.6. The true values of the extrinsic
parameters are ξc = [3.5, 0.35, 0,−1.2092, 1.2092,−1.2092]. The errors are computed in the
following way:

δ = ξ−1
c ◦ ξ̂c

et = ‖tδ‖
eϑ = ϑδ

(3.59)

where ξ̂c is the estimated extrinsic parameters; tδ is their translational part; ϑ is the norm of
the rotation vector of δ.

The results show that the optimal trajectory is significantly more resistant to noise in
the odometry measurements. The noise in the test has zero mean, and in our strong belief
odometry bias would have a negative effect on this calibration. It must be eliminated during
the preceding odometry calibration.

We can perform simultaneous calibration of extrinsic parameters for a stereo system. For
that we define the transformation between the board and the cameras as follows:

c1ξb = (ξo,i ◦ ξc)
−1 ◦ ξb

c2ξb = (ξo,i ◦ ξc ◦ c1ξc2)−1 ◦ ξb
(3.60)

The extrinsic parameters for the first camera are the same. For the second:

ξc2 = [3.5,−0.35, 0,−1.2092, 1.2092,−1.2092]

Since extrinsic transformations for the two cameras are different, different trajectories have
to be used for the optimal calibration. The trajectories are represented in Fig. 3.31. In the
optimization problem we have the following cost function blocks:

1. The first camera optimal trajectory — 60 images.

2. The second camera optimal trajectory — 60 images.

3. The stereo calibration — two times 27 images.

The results are presented in Table 3.6. For stronger noise, the stereo version gives a slightly
better orientation estimation, but generally speaking, the order of precision is the same as for
the monocular calibration. It should be noted that we generated the calibration trajectories
regardless of the fact that the two cameras’ extrinsics are coupled via the stereo calibration.
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Table 3.5: Comparison between extrinsic calibration quality for two trajectories. The numbers in the last four
columns represent the error in the extrinsic transformation estimation.

Odometry noise, ab-
solute value

Optimal trajectory Suboptimal trajec-
tory

t, m uϑ, rad et, m eϑ, rad et, m eϑ, rad

0 0 0.00935 0.000665 0.0166 0.00181

0.002 0.01 0.0101 0.00302 0.0431 0.0143

0.004 0.02 0.0164 0.00727 0.199 0.0507

0.006 0.03 0.0628 0.0149 0.436 0.105

0.008 0.04 0.13 0.0238 0.739 0.17

Figure 3.30: Visualization of the calibration results as a function of the odometry noise. Blue – ground truth,
green – optimal trajectory, red – suboptimal trajectory. The camera wire model is a pyramid 0.4× 0.4× 0.4m.
The stronger the noise, the farther away the estimated extrinsics from the real values. For the optimal trajectory
(on the left) the sensitivity to the noise is significantly smaller than for the suboptimal one.

Figure 3.31: Generated trajectories for the stereo extrinsic calibration. Blue – the optimal trajectory for the left
camera, green – the optimal trajectory for the right camera, red – the calibration board position. Considering
the symmetry of the stereo system, it is logical that the two trajectory sets are symmetrical.
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Table 3.6: Comparison between extrinsic calibration quality for monocular and stereo systems. The numbers
in the last four columns represent the error in the extrinsic transformation estimation. The transformation is
the same in both cases.

Odometry noise, ab-
solute value

Monocular Stereo

t, m uϑ, rad et, m eϑ, rad et, m eϑ, rad

0 0 0.00935 0.000665 0.0172 0.00123

0.002 0.01 0.0101 0.00302 0.0102 0.00331

0.004 0.02 0.0164 0.00727 0.0173 0.00506

0.006 0.03 0.0628 0.0149 0.0565 0.00804

0.008 0.04 0.13 0.0238 0.116 0.0131

Table 3.7: Calibration results for the same system for two datasets — extrinsic parameters of the camera
(transformation ξc).

Dataset tx, m ty, m tz, m rx, rad ry, rad rz, rad

1 0.391324 1.57821 1.16095 -1.6013 -0.003233 0.017913

2 0.388454 1.59595 1.16045 -1.6035 -0.004753 0.018170

Real Data Test This method has been successfully used to calibrate a real car equipped
with cameras. The calibration has been done twice using two similar, but distinct, datasets.
The reprojection error distributions are shown in Fig. 3.32–3.33. The calibrated extrinsic
parameters are given in Table 3.7. The results of both calibrations are quite close, which
means that the experiment is repeatable. A good way to validate the calibration would be to
use the system for visual odometry.
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Figure 3.32: Error distribution for the bottom and the top camera — dataset 1.
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Figure 3.33: Error distribution for the bottom and the top camera — dataset 2.

6 Conclusions

An efficient and flexible calibration toolbox for multi-camera systems has been developed.
It has a novel fully-automated subpixel detector of calibration boards, which is significantly
faster than that of OpenCV. It allows us to use large datasets for calibration purposes while
keeping the computation time reasonably short.

The Enhanced Unified Camera Model has been intensively tested. The model’s precision,
evaluated using the reprojection error after the calibration, is close to the one provided by the
model described in Mei and Rives (2007), The time needed for solving the calibration problem
for the Enhanced Unified Model is close to the one for classical Spherical Model. Moreover,
only two distortion parameters eliminate any possibility of overfit, which makes the model
suitable for both high- and low-distortion lenses.

A method of calculating optimal trajectories for extrinsic calibration of mobile robots has
been proposed and tested. Its effectiveness to reduce the noise impact has been demonstrated
on simulated data. It has been applied to calibrate a complete system Camera-Odometry,
which has been used for localization experiments, described in Chapter 5.

Intermediate monocular calibration results have been published in Khomutenko et al.
(2016a). Extrinsic calibration technique has been published in Khomutenko et al. (2017). Be-
low we summarize the main contributions and novelties described in this chapter and propose
some ideas on how to continue and extend the present work.

6.1 Contributions

Board Detector As it has been stated, a reliable and robust board detector is one of
the most important calibration tools. Any limitations imposed by it, like necessity to do
interactive detection with the user involved in the process, or inability to detect the board
in certain conditions for high contrast background and high distortion, seriously complicates
the calibration process and makes it more time-consuming.

The developed board detector has proven to be robust and to efficiently detect the board
in virtually all images where a human could do it. It works both for images where the board
is close to the camera and strongly distorted, and for images where the board is quite far
away and its squares have apparent size of 6-10 px. This detector has been compared to the
one from OpenCV library and demonstrates both better detection rate (that is, number of
images where the calibration board has been detected) and accuracy.
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Subpixel Refinement Since the corner detector is a part of the system to be calibrated, we
want its impact be as small as possible, even negligible. It is almost the case with the proposed
subpixel detector, which uses the most valuable gradient information along calibration pattern
edges to estimate the corner position as accurately as possible. The detector takes into account
the overexposure effect, which keeps the corner measurements precise even if the lighting
conditions are not perfect.

Generic Calibration Framework The calibration toolbox developed during this work is
a flexible tool which allows us to calibrate different assemblies involving cameras and wheel
odometry. The whole calibration problem and calibration data are defined in a separate .json
file. Different types of cameras, as well as arbitrary transformation chains are allowed. The
source code of the project can be found at https://github.com/BKhomutenko/visgeom.

Optimal Trajectories for Camera-Odometry Calibration A planned data acquisition
improves the calibration precision. The developed methodology lets us evaluate a trajectory’s
quality for the extrinsic calibration, taking into account the odometry noise properties and
image-based localization uncertainty. The global optimization problem allows us to include
additional constraints, such as space limitations, size of the calibration board in the image and
so on. The synthetic data have allowed us to test the concept in a fully controlled environment.
Calibration using real data has been done and has given consistent repeatable results. Also,
the computed extrinsic parameters are used in visual localization applications described in
Chapter 5.

Covariance of a Least-Squares Solution Another small and yet interesting theoretical
result is (3.51). It is the expression for covariance matrix of an output of a weighted least-
square problem.

6.2 Future Work

Extrinsic Calibration Validation Accurate extrinsic calibration validation is not a trivial
problem since it cannot be verified by directly re-using a calibration dataset for validation,
since the trajectory of the robot is not precisely known and the odometry is noisy and biased.
Moreover, because of the suspension, the transformation between the odometry frame and
the camera is not constant and changes while the car accelerates, brakes, turns.

One way to validate the parameter values is to use them for visual mapping and localiza-
tion. If such a system outputs precise localization, then the calibration is rather accurate. On
the other hand, poor localization may be related to the internal localization system problems.

Camera-Odometry-GPS-IMU Calibration An interesting extension of the calibration
toolbox would be the complete sensor calibration for a mobile robot. It would include also
GPS sensor position and IMU pose with respect to the odometry frame. Intrinsic odometry
calibration also can be done.

Accurate Suspension Modeling To improve the calibration quality, the suspension can
be modeled explicitly. The car body changes its orientation because of accelerations. The
stiffness of this system can be estimated. And since IMUs give us accurate acceleration
information, we can predict the instant car body position and not treat this transformation
as noise.
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Trajectory Planning for Localization The criterion on the trajectory quality for the
extrinsic calibration can be applied for any kind of visual localization, whether they use
the calibration board or not. Here we suggest a methodology to estimate the localization
precision using the calibration board, but any visual odometry system can replace it. The
only requirement is to be able to estimate the localization covariance matrix. For natural
features, doing it precisely is a challenging problem. A possible research track would be to
estimate the average visual localization precision statistically. Another option is to do it in
two steps. First use any kind of trajectory to build a metric map, then use similar calculations
as for the calibration board model to get the localization covariance estimation, based on the
environmental structure. Yet, feature visibility has to be treated and analyzed. The method
can also be used to analyze the observability properties of extrinsic parameters for a given
trajectory.





Chapter 4

Direct Stereo Correspondence for
Fisheye Cameras

1 Introduction

Human perception proves that two passive visual sensors are enough for a robust and accurate
3-dimensional reconstruction of the environment. But still, the stereo correspondence and
vision-based 3D reconstruction are not considered as “solved” problems. This chapter is
dedicated to an algorithm of direct fisheye stereo correspondence, as well as to a number of
techniques which improve the stereo correspondence results in the context of fisheye distortion.

First, let’s have a look at the concept of dense stereo correspondence. Reconstruction
using two views is called triangulation. The intuitive understanding of the triangulation is
the following: as a camera moves left, all the object in the image move right; the farther
the spatial point from the camera, the smaller its apparent motion in the image. Hence, by
measuring the apparent motion of the point we can deduce its distance to the camera. To be
able to measure a point’s motion and triangulate it we have to find it in both images. That is
to say, to reconstruct a point in one image, we need to find the point, to which it corresponds
in the other image. For both correspondence search and matching we need to know the
geometric transformation between the two camera positions with a high precision, as well
as the intrinsic camera parameters. In other words, the stereo system has to be calibrated.
Throughout this chapter, we assume that it is the case.

The transformation is needed for the matching process, because it introduces geometric
constraints reducing the search space a lot. That is, instead of looking for the correspondence
across the whole image, we search a small area. More precisely, the search is to be done along
epipolar lines (which become curves in the case of fisheye projection). Intuitively, the concept
of epipolar lines can be explained as follows. If we take a sequence of points, aligned along a
straight line which passes through the center of projection of a camera, and observe them with
another camera, they will lie on a line, called epipolar, or on a curve in the case of cameras
with strong distortion (Fig. 4.1). Since all the points are projected to the same 2D point on
the first image, we know that the corresponding 2D point on the second image necessarily
lies on this line. The way to compute the epipolar curve equations for the Enhanced Unified
Model is given in Chapter 2.

Once correspondence between pixels from both images is established, the reconstruction
is a relatively simple step, even though it might be quite technical. That is why stereo cor-
respondence and stereo reconstruction are usually synonyms. Another terminological remark,
in the context of perspective projection and pinhole camera, the output of 3D reconstruction
is usually a depth value associated with each reconstructed pixel. By depth we mean its z
coordinate, as it allows to reconstruct 3D coordinates from image coordinates. In the case
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of fisheye camera, instead of z coordinate, the output is the distance between the projection
origin and the 3D point, since for more than 180◦ field of view, z might be 0 all along the
direction, associated with a pixel to be reconstructed. In Caruso et al. (2015), it is suggested
that the term “depth map” should be replaced by “distance map”. Throughout this text,
we still use depth to refer, depending on the context, either to z or to the distance between
the projection origin and the reconstruction point, since just distance might be ambiguous.
Consequently, the stereo reconstruction algorithm’s output is called depth map.

Generally, correspondence search, even boosted up by the epipolar constraints, is subject to
mismatches. Independent pixel matching generally gives noisy results. There exist a number of
different regularization techniques to reduce this effect of mismatching. For example, in Geiger
et al. (2011) it is proposed to compute first so-called reliable matches, which are correct with
a high probability, and then use these values to reconstruct the depth around. In this work
we use an efficient depth regularization technique, called the Semi-Global Matching algorithm
Hirschmuller (2005). Regularization consists in introducing some prior knowledge about the
environment to improve the matching. The classical model for the stereo correspondence
problem is that the depth is a piecewise continuous function, hence neighbor pixels are likely
to have similar depth value.

1.1 Pixel Sweep vs Space Sweep

We can distinguish two main dense stereo correspondence paradigms : pixel-sweep and space-
sweep. By pixel-sweep we mean that the method is looking for the correspondence by iterating
over pixels, like classical rectified pinhole stereo, where the iteration is done along the image
rows or columns Geiger et al. (2011); Hirschmuller (2005) or, for example, the semi-dense
odometry Engel et al. (2013), where it is done along epipolar lines, which are still straight
lines. Hereafter we will use the term disparity to refer to the displacement of the corresponding
pixels along the epipolar line, measured in pixel steps.

A stereo correspondence algorithm, which is called Plane Sweep and represents the other
paradigm, originally proposed in Collins (1996), has been applied to fisheye cameras in Häne
et al. (2014) to get the direct stereo correspondence (Fig. 4.1). The difference is that instead
of iterating over pixels, we iterate over a finite set of spatial planes. That is, to find a potential
correspondence on the second image, we reproject a point from the first image onto one of
the planes, and then project it onto the second image.

Another example of a space-sweep approach is the one presented in Caruso et al. (2015),
where the sampling is performed along the direction corresponding to a pixel of the reference
image. But the step along the spatial line in this method is chosen in a way such that it
approximates as closely as possible the pixel based method of Engel et al. (2013). To do so
the authors use the projection Jacobian matrix of the camera model to adapt the spatial step.
They mention that this approach is computationally expensive.

We suggest that the pixel-sweep approach has the following advantages over the space
sweep in the context of fisheye cameras:

1. Iterating over pixels of an image is computationally more efficient than projecting 3D
points, since there is no need in computing a non-linear projection model and interpo-
lating image values.

2. For fisheye cameras, space-sweep methods don’t give a uniform sampling along epipolar
curves. But in the case when no prior information about the 3D scene is provided, there
is no reason to use different sampling steps across the image.

3. Pixel-wise sampling is a natural solution for image processing which also allows us to
apply directly the Semi-Global Matching as a regularizer.
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Figure 4.1: Plane-sweep stereo. To find potential matching points in the second image for point 1p, first it
is reconstructed into direction e; then intersections between the ray and a set of planes {Fi} is found. The
last step is to project each intersection into the second image to get a correspondence candidate 2pi. It is
also depicted here that a uniform space sampling (the distance between the planes is the same) leads to a
non-uniform image sampling (the distance between projected points is different). So the space sampling has
to be adapted to achieve a more uniform sampling in the image space.

The pixel-sweep technique aligns with the philosophy of direct stereo correspondence and
direct image processing in general. Image resampling, as well as any other image filtering,
leads to information loss and distortion.

1.2 Direct vs Rectified

In Häne et al. (2014) the advantages of the direct fisheye correspondence over rectified, pinhole-
based version are mentioned. Applying the distortion-rectification mapping inevitably reduces
the field of view, and the image part further away from the projection center gets stretched,
while the middle part usually gets compressed (Fig. 4.2). All these effects distort the original
information provided by the sensors. In contrast, the direct methods use raw images, and by
doing so the field of view is not reduced, neither is the uniformity of the original information
broken. The latter matters when it comes to the matching cost computation. The stretched
regions have spectra with a lower frequency content than the rest, hence we have to use a
larger neighborhood to extract pixel descriptors. On the other hand, certain works show that
it is possible to adapt the matching methods to curved geometry of omnidirectional images.
For example in Radgui et al. (2011), in order to compute optic flow in fisheye images, the
shape of patch descriptors and geometric constraints have been adapted to the geometry of
spherical projection.

Since fisheye stereo is such an attractive tool for 3D perception, there have been several
techniques of fisheye rectification proposed. In Caruso et al. (2015) an Array of Pinhole Models
has been used to represent wide-angle images. The fisheye image is projected onto a cube,
each face of which corresponds to a pinhole camera model. The advantage is that the epipolar
lines remain straight, yet the projection mapping in this case is only piecewise differentiable
(if an epipolar line crosses a border between two pinhole projections, it changes its direction).
This approach is convenient and efficient when the displacement between the two points of
view which form the stereo system is not known, which is the case in the mentioned article.
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Figure 4.2: From left to right: Original fisheye image and two undistorted versions. In the second image the
scale of the neighborhood of the projection center is preserved, in the third one it is compressed in order to
capture a wider field of view.

If the transformation between the two cameras is known and fixed, a more efficient technique
can be applied. That is, the rectification is not based on a projection plane, like in the pinhole
model. In Roy et al. (1997), the rectified images are reprojected onto cylinders, aligned with
the stereo base, to minimize the rectification stretching effect. In Arican and Frossard (2007),
a method to rectify spherical images has been proposed. In order to do that, the image sphere
must be rotated so that the epipole coincide with the coordinate pole. In Abraham and
Förstner (2005), each pixel on the rectified images corresponds to two angles, one of which
defines the orientation of a corresponding epipolar plane, while the other defines the ray’s
direction within this plane. With this modeling, all epipolar lines are straight and horizontal,
even though a projection of a general straight line is a curve.

The notion of Projection Surface, presented earlier, allows us to find a convenient way
to sample fisheye images along epipolar curves, which in turn enables using a pixel-sweep
technique without any rectification. Geyer and Daniilidis (2000) have showed that the Uni-
fied Camera Model projects straight lines into conics. In Chapter 2, we demonstrated that
the same is true for the Enhanced Unified Camera Model, and then suggested a method to
compute implicit equations of epipolar curves. It allows us to efficiently sample an image
along the curve, using an implicit curve rasterization algorithm, which is a modification of
one suggested in Hobby (1990).

1.3 Stereo Matching Regularization

Let us assume that for each image point we have a range of possible correspondences, and
moreover for each correspondence we can compute a certain matching cost. The simplest
similarity measure can be a simple difference in brightness between two pixels. But usually
there are multiple pixels on the second image which satisfy the epipolar constraint and which
have the same brightness or a brightness which is close to that of the original pixel. To make
the matching more robust, we can use so-called descriptors to compute the matching cost,
which makes points more unique. Usually, the descriptor of a point is computed using a small
image patch around it. The simplest descriptor is just the patch itself (for example 3 × 3
pixels large).

The results of stereo matching using the simplest strategy “winner takes all” are shown in
Fig. 4.3. Even though the descriptor-based method gives a better result, it is still not good
enough. There is a fact which we are not using in this approach: the disparity of neighbor
pixels are strongly correlated. The world we live in has a certain structure. Usually what we
observe is not a random chaos of small particles floating in space, but a set of “large” objects,
usually smooth. It means that two neighbor pixels are likely to belong to the same object,
hence they are likely to have the same or at least similar disparity. So we can inject this
prior knowledge into the correspondence problem by penalizing the difference in disparity for
neighbor pixels.
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Figure 4.3: An example of a naive approach to stereo correspondence. From left to right: reference image,
disparity based on a single pixel brightness, disparity computed using 3×3 pixel descriptors. The stereo image
is taken from Scharstein and Szeliski (2003).

We suggest that the technique, proposed in Hirschmuller (2005), which is called Semi-
Global Matching (SGM), is suitable for our case and gives good results (for example, Fig. 4.4).
It is based on the dynamic-programming algorithm for the approximate string matching. The
assumption is made that along any continuous path the disparity mostly does not change.
Sometimes it makes “steps”, that is changes by one, and even more rarely it makes “jumps”,
that is, changes by more than one. With a complexity O(NMDmax), where N and M are the
disparity map dimensions, and Dmax is the maximum disparity value, that is being as time-
consuming as a simple brute-force matching with the winner-takes-all strategy, SGM gives
some of the best dense stereo reconstruction results. In should be noted that this regularizer
can be naturally applied to compute the disparity map, not the depth map, because it assumes
a finite (and rather small) number of possible values. On the other hand, if any kind of space-
sweep technique is applied and the depth is computed directly, then it is still possible to apply
it, even though a certain number of additional assumptions have to be made and it will not be
as natural as in the case of a disparity map. We consider that the main virtue of the present
work is that it enables the natural application of such an efficient regularizer to the fisheye
stereo reconstruction problem. Let us describe the Semi-Global Matching algorithm.

Figure 4.4: Semi-Global Matching (image from Hirschmuller (2008)). The result is much more regular than
the ones presented in Fig. 4.3.

Error Accumulation The regularization algorithm requires a table of matching costs for
all pixels and all possible disparity values. It means that we need to fill up a table E of size
N ×M ×D, where N and M are the image dimensions, and Dmax is the maximum allowed
disparity. For a rectified pair of images the equation is written as:

E[u, v, k] = ‖I[u, v]− J [u− d, v]‖ v ∈ 1..N, u ∈ Dmax..M, d ∈ 0..Dmax (4.1)

Here I is the left image, J is the right image. The left image is usually used as the reference
image. As the second camera position is on the right of the first one, everything in the image
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moves left. That is why we subtract disparity d from the column index u. Another comment:
for u < Dmax the disparity cannot be computed for all values of d, because u − d becomes
negative. so usually a band of Dmax columns is skipped. Typical values of Dmax lie between
30 and 100 depending on the stereo base (that is, the distance between cameras), the image
resolution (the higher it is, the larger Dmax may get), and the distance to the nearest objects.

Dynamic Programming The error buffer E has two spatial coordinates u, v and one
disparity coordinate d. To regularize the disparity map we compute the final cost of a pixel
(u, v) having a disparity value d as a sum of costs of cheapest paths through uvd space,
whose footprint in uv is a straight line and passing through (u, v, d). To ensure the latter, we
compute the path cost as a sum of costs of two parts: one on either side of the point. Hence
the algorithm is applied twice to each path orientation: forward and backward (see Fig. 4.5).

a b c
Figure 4.5: Semi-Global Matching. (a) the regularization is computed for two paths, or 4 different directions.
In order to compute the cost for every point and every disparity value, the algorithm has to be applied four
times: twice for every path. (b) Five directions: two complete paths and one diagonal path processed only in
one sense. Even though the total length of regularization paths is different for different pixels is does not break
the algorithm, since the cost is compared for different disparity along paths for the same pixel. Comparing the
cost of two different pixels in this case would be meaningless. (c) four regularization paths for each pixel. The
same as for (b), the total length of paths depends on pixels. The time and space complexity of the algorithm
grows linearly with the number of directions.

A path’s cost is defined as a sum of all errors along the path plus λS times the number
of disparity changes by 1 (number of steps) plus λJ times the number of disparity changes
by more than 1 (number of jumps); λS and λJ are the algorithm’s parameters, and generally
the output is stable with respect to them. The number of paths defines how regular we want
the result to be. In the OpenCV library, two-and-a-half (Fig. 4.5b) and four (Fig. 4.5c) paths
regularizations are implemented. In the original paper, it has been proposed to use 8 paths.

LetK be the number of directions (which are twice as many as the number of regularization
paths). We need to solve the dynamic programming problem for each line in each of K
directions. Let Ci be a table N×M×Dmax which represents the cost of paths in ith direction.
Let c[t, d] be an iterator for a certain line in Ci along the ith direction, parametrized with t,
that is, c[t, d] = Ci[ut, vt, d]. For example, for a horizontal direction from left to right, ut = t,
vt = v0. First, we need to initialize the first value:

c[0, d] = E[u0, v0, d] (4.2)

Suppose that for a certain t, c[t, d] contains the cost of the optimal path from (u0, v0) to
(ut, vt), then let c∗[t] be min

d
c[t, d], then the following recursive relation is true (Hirschmuller

(2005)):
c[t+ 1, d] = E[ut+1, vt+1, d] + min(c[t, d], c[t, d− 1] + λS ,

c[t, d+ 1] + λS , c
∗[t] + λJ)

(4.3)

Once all Ci are filled up, the final matching cost F can be computed:

F [u, v, d] =
K∑
i=1

Ci[u, v, d] (4.4)
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The disparity map D is defined as an image N ×M with integer values in 0..Dmax − 1. It is
filled up as follows:

D[u, v] = argmin
d

F [u, v, d] (4.5)

2 Direct Fisheye Stereo Matching

The first stage of most matching algorithms is the matching cost computation. That is for
every pixel and every possible matching candidate the cost has to be computed. In this
approach, candidates are the pixels which lie on the epipolar curve within a certain range.
Then the regularization strategy comes in to select the final stereo matches.

Here we adapt the technique used in Engel et al. (2013); Caruso et al. (2015), which
consists in describing a pixel by a sequence of samples along the epipolar line passing through
it on the first image. For a particular pixel the pipeline is as follows:

1. Using the inverse camera model, reconstruct the direction corresponding to the pixel.

2. Compute the epipolar curve equation for both first and second cameras.

3. By sampling the first image along the epipolar curve, compute a pixel’s descriptor
D = {D1..DM} (Gothic D).

4. By sampling the second image along the epipolar curve, compute a sample sequence
S = {S1..SN} (Gothic S).

5. For each disparity value compute the matching cost.

Here the curve rasterization is done with a step of one pixel (in 8-neighbor system), and
the disparity here means the number of steps along the curve. The descriptor D is a small
sampling sequence along the epipolar curve, centered at the pixel in question.

Disparity Scale In order to accelerate the algorithm, we don’t compute the disparity for
every pixel. Since we assume that the objects on the image are bigger than one pixel, using
the same sampling frequency for the depth map is redundant. On the other hand the semi-
global matching algorithm requires a regular lattice to apply the dynamic-programming based
regularization. We choose to reduce the depth estimation frequency by an integer factor,
typically 2 or 3. Since we use pixel descriptors, which somehow encode the information
about its neighborhood, the photometric information is not lost, but rather integrated in the
computed disparity value. Yet this algorithm can work when the disparity scale and the image
scale are the same.

2.1 Curve Rasterization

To be able to use the pixel-sweep approach, the first step is to rasterize epipolar curves for a
stereo system, which have been computed in Chapter 2. Following a curve pixel by pixel as
closely and accurately as possible is equivalent to its rasterization. The following rasterization
algorithm is inspired by Hobby (1990). Let φ : R2 → R be a level function. The algorithm
requires that the curve be defined as the zero-level of the level function:

φ(u, v) = 0 (4.6)

Let ∇φ = (φu, φv)
T be the level function gradient; ∇φ evaluated on the curve defined by φ

and treated as a vector corresponds to its normal. Also the algorithm requires a starting
pixel ps = (us, vs)

T and a goal pg = (ug, vg)T (see Fig. 4.6). Since the image is discrete, we
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cannot require that φ(ps) = 0. But at least we can assume that the starting point and the
goal are close to the curve. That is, the distance from the nearest solution of (4.6) to either
point is less than 1. We assume that ps ∈ Z2 and it might be the case that pg ∈ Z2, but it is
not necessary. Among the two possible directions of the curve starting at ps, the algorithm
chooses the one which leads towards the goal pg. More formally, if the chosen direction is
defined by a tangent vector τ , then:

τ · (pg − ps) > 0 (4.7)

Figure 4.6: A curve rasterization process. We start from ps and make step ∆u towards pg, because tangential
vector τ is closer to u-axis, than to v-axis. Then we use the perpendicular direction to compensate the error
by making step ∆v.

We assume that the angle between τ and the desired direction is small, so the singular
configuration when τ · (pg− ps) = 0 is supposed to never happen. τ is calculated by rotating
gradient vector ∇φ by π/2 clockwise or counterclockwise depending on the goal condition.
Then we retain the rotation direction in a variable ε and use it until end of rasterization
process. ε = 1 means counterclockwise, while ε = −1 means clockwise. It shall be noted that:

∀q ∈ R2 τ · q ∝ ε∇φ× q (4.8)

Now we can describe Algorithm 1. The goal is to get Nmax samples of a rasterized algebraic
curve, starting from a certain initial point ps, which we know belongs to the curve, towards
another curve point pg (let us call it the goal point).

The idea is that, in order to follow the curve as closely as possible, at every step, we check
which direction, u or v, is closer to the actual tangential direction of the curve. To do it, we
compare components of ∇φ by absolute value. Let us say, |φv| > |φu|. It means that τ is
closer to u-direction. So we change u by ±1 depending on the sign of φv and the rotation
direction that has been defined. Then we check what is the actual error of (4.6) and apply a
simple proportional control law to decrease it:

∆v = −round

(
φ(p)

φv(p)

)
(4.9)

The described algorithm is general and works for any φ given that it does not contain
features too fine to be properly depicted with the image’s sampling step.
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Algorithm 1 Algebraic curve rasterization

1: Let f : R2 → R be an implicit curve
2: Let ∇φ = (φu, φv)

T be its gradient
3: Let p = (u, v)T be an image point
4: Let ps be the initial point
5: Let pg be the goal point
6: p← ps

7: if det
[
∇φ(ps) (pg − ps)

]
> 0 then

8: ε← 1 . The rotation is counterclockwise
9: else

10: ε← −1 . The rotation is clockwise
11: end if
12: for n = 1..Nmax do . We need only Nmax samples
13: if |φu(p)| > |φv(p)| then . τ is closer to v
14: v← v + εsign(φu(p))
15: u← u− round(φ(p)/φu(p))
16: else . τ is closer to u
17: u← u− εsign(φv(p))
18: v← v− round(φ(p)/φv(p))
19: end if
20: Process(p)
21: end for

Second Order Curves In our case φ(u, v) is a polynomial function of degree 2. It means
that:

• φu and φv are easier to calculate than φ itself

• φ(u+ 1, v) = φ(u, v) +
φu(u, v) + φu(u+ 1, v)

2

• φ(u, v + 1) = φ(u, v) +
φv(u, v) + φv(u, v + 1)

2

These facts lead us to a better version of the algorithm. Instead of calculating φ on each
step we can calculate it once at the beginning of the process, and then using only φu and
φv to refresh the value. The general structure of this version of the algorithm is the same as
before, but every time after we change u or v we have to perform the additional sequence (see
Algorithm 2).

An implementation of both algorithms has been tested and the second one runs faster by
30%. But it is exact only when φ is a polynomial function of degree 2. In any other case, it
will slowly diverge. Again, in case of stereo correspondence the curve part to be rasterized is
rarely longer then 100 px, and for smooth curves, the divergence can be neglected. On the
other hand the speedup is based on the fact that φu is easier to evaluate than φ. If it is not
the case, the second version will actually run slower because it evaluates φu and φv in total
4 times per iteration, while the simpler version calls φ once per iteration and φu and/or φv 3
times. So the difference is exactly one φ against one φu.

2.2 Epipolar Curve Precomputation

The naive way of computing correspondence cost would be to compute the epipolar curve for
every pixel. But since the same epipolar curve passes through multiple pixels, that approach



98 CHAPTER 4. DIRECT STEREO CORRESPONDENCE FOR FISHEYE CAMERAS

Algorithm 2 Algebraic curve rasterization — computation optimization by incremental error
estimation

1: Let f : R2 → R be an implicit curve
2: Let ∇φ = (φu, φv)

T be its gradient
3: Let p = (u, v)T be an image point
4: Let ps be the initial point
5: Let pg be the final point
6: δ ← φ(ps) . Initial error
7: (gu, gv)

T ← ∇φ(ps) . Initial gradient
8: p← ps

9: if det
[
∇φ(ps) (pg − ps)

]
> 0 then

10: ε← 1 . The rotation is counterclockwise
11: else
12: ε← −1 . The rotation is clockwise
13: end if
14: for n = 1..Nmax do
15: if |gu| > |gv| then . τ is closer to v
16: changeV(εsign(gu))
17: changeU(−round(δ/gu))
18: else . τ is closer to u
19: changeU(−εsign(gv))
20: changeV(−round(δ/gv))
21: end if
22: Process(p)
23: end for
24: procedure changeU(s)
25: u← u+ s
26: hu ← φu(p)
27: δ ← δ + 0.5s(gu + hu)
28: gu = hu
29: gv ← φv(p)
30: end procedure
31: procedure changeV(s)
32: v← v + s
33: hv ← φv(p)
34: δ ← δ + 0.5s(gv + hv)
35: gv = hv

36: gu ← φu(p)
37: end procedure
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would be redundant. Moreover, computing an epipolar curve equation for every pixel takes
significant time. We suggest to precompute epipolar curves for a certain number of angles,
and then for any given pixel just fetch the corresponding curve coefficients. To make fetching
curves efficient we should avoid calling computationally intensive functions like arcsin or
arctan.

Another thing to notice is that a plane, rotated about the stereo base by π, defines the
same epipolar equation. So only planes within π radians are to be computed. This range can
be divided into two sectors: −π/2 to π/2 and π/2 to 3π/2. The equations are precomputed
uniformly with respect to the tangent within the first sector, and to the cotangent within the
second one.

To compute tangent or cotangent we need to compute unnormalized cosine c̃ and sine s̃.
In order to do it, we project a point X that belongs to the plane in question onto x- and
y-axes respectively. For that, we need to construct a stereo basis ex, ey, ez. Its z-axis must be
aligned with the translation part of the transformation between the two cameras. Then the
orientation of the plane containing a given direction from the first camera can be defined as
the angle between x-axis of the stereo frame and the projection of the direction vector onto
the xy-plane.

Figure 4.7: The stereo frame. z-axis passes through the other camera’s projection center. The plane that
intersects the xy-plane along (a) is indexed according to the cotangent, or the intersection between cot-axis
and (a), the plane corresponding (b) is indexed according to the tangent.

The algorithm to query the plane data structure is:

1. Compute c̃ = X · ex and s̃ = X · ey.

2. If |c̃| + |s̃| < ε, then the direction is almost aligned with the epipole, and the plane is
ill-defined. Return any plane.

3. If |c̃| > |s̃|, then we can compute the plane index based on tan(ϑ) = s/c

4. If |s̃| > |c̃|, then we can compute the plane index based on cot(ϑ) = c/s

5. The index is computed from the previously computed value v (either tan or cot) as
round

(
λ−1(1− v)

)
. Where λ−1 is the inverted sampling step, precomputed to speedup

the computation.

Even though the distribution of the curves will not be uniform with respect to angles, by
generating 2000 curves we are almost sure that every pixel has its own curve for 1 Mpx images.
It takes little time (much less than computing a new curve for every pixel), and the query



100 CHAPTER 4. DIRECT STEREO CORRESPONDENCE FOR FISHEYE CAMERAS

procedure creates little overhead: two dot-products, one division and one multiplication. It is
much more important for monocular applications, where we have to recompute the epipolar
geometry at every time step, than for a calibrated stereo system.

2.3 Point Descriptor Scale

Another way of speeding up the algorithm is to vary the descriptor scale as a function of its
content. That is, if after computing the descriptor we see that the value variation that it
contains is of the same order as the expected image noise, then we can increase the sampling
step without loosing much information, since the frequency content of the image in the pixel’s
neighborhood is poor. Lower frequency of the descriptor sampling has the following effects:

1. The second image can be sampled with the same frequency change, which leads to a
lower computation time.

2. Since the semi-global matching requires a matching cost for every disparity value, the
matching cost must be interpolated to “fill the gaps”.

3. The estimated depth uncertainty will be larger, because it is related to the sampling
step. But it does not mean that this approach makes the precision worse. It rather
estimates the uncertainty in a more fair way, because we cannot expect a pixel-level
precision in a textureless region.

To do that for a given pixel a basic descriptor D with 1 px sampling step is extracted.
Then its total variation is computed:

TVD =
M−1∑
i=1

|Di+1 −Di| (4.10)

Here, M is the size of D. If TVD is lower than a certain threshold (which should depend on the
noise level of the image), then the descriptor is recomputed with a larger sampling step. You
can see an example of this approach in Fig. 4.8. If we know that the patch around the pixel
is “flat”, then we can assume that it will be the case on the other image as well, so there is no
need for fine sampling. It means that, for the same disparity range fewer samples are drawn
from the second image. For example, if the descriptor with sampling step 3 is good enough,
then the number of samples is 3 times less. Then, depending on the stereo correspondence
mode, one can either take the best correspondence as the disparity estimation, but with a
larger uncertainty number; or another option (which is used in our SGM implementation) is
to linearly interpolate the matching cost for missing disparity values.
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Figure 4.8: Left image of a stereo image pair (left) with its saliency estimation (right). The brighter a pixel on
the saliency image, the smaller the sampling step for its descriptor. As shown by the right image, a significant
part of the image has low saliency.

3 Reconstruction and Uncertainty Estimation

After the stereo correspondence has been established, the next step is to reconstruct the
depth and to estimate the uncertainty of the reconstruction. A proper uncertainty estimation
is crucial for any metrological application. And we consider this 3D reconstruction as a
measurement tool which can be reliably used for real world application in future developments.

3.1 Reconstruction

A scheme of input data for the triangulation is shown in Fig. 4.9. Intuitively, the triangu-
lated point lies on the intersection of the two rays. But generally, in the real world, two rays
represented by a pair of corresponding pixels and the transformation between cameras don’t
intersect because of discretization errors and uncertainties in the extrinsic and intrinsic pa-
rameters. One approach to this problem is to find the point nearest to both rays. Such a point
lies in the middle of the common perpendicular. Then, if the real spatial point is far away
in comparison to the distance between cameras, it might be the case that the rays actually
diverge, so the nearest point is behind the camera. In this work we propose an alternative
way of triangulation, the so-called regularized triangulation, which is described in Chapter 5.
Here, we just mention that the method reconstructs the point in front of the camera even for
diverging rays. And this method is used for the stereo reconstruction.

Figure 4.9: The triangulation consists in finding a spatial point which best fits both observation directions a
and b for a given stereo base t. In the perfect scenario, both rays intersect. In the real world, because of the
noise, they do not.

Let us introduce some formalism. Let h : Ω × Ω → R be the reconstruction function.
It takes a point p1 from the base image and corresponding point p2 from the second image,
which is computed using its disparity value d computed during the matching step, and outputs
the distance λ from the base camera’s projection center to the presumed 3D point. Let
a = normalize(f−1(p1)) be the normalized reconstructed direction vector corresponding to
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p1. then the reconstructed point is defined as follows:

X = λa (4.11)

Then λ is computed for each p ∈ Ω1 and stored in D, the depth map, also defined on Ω.

3.2 Uncertainty Estimation

We base the uncertainty estimation on the following assumption. If the correspondence is
correct, then the actual correspondence lies on the epipolar line within ±1 px from the found
position, because of the discretization error. Let s : Ω→ Ω be a shift function, which shifts an
image point along its epipolar curve by one step towards the epipole. The first try to estimate
the uncertainty was to reconstruct the point twice (Fig. 4.10a):

λ0 = h(p1,p2)

λ1 = h (p, s2 (p2))

σ = λ0 − λ1

(4.12)

λ1 is less than λ0, as it is computed for a greater disparity. Then we assumed that λ0 was the
depth estimation which was stored in D(p1). σ is stored in uncertainty map Σ(p1).

Then we found out that this way of uncertainty estimation tends to underestimate the
uncertainty for certain configurations (see Fig. 4.10b). For example when the patch around
the pixel gets stretched or compressed because of the change in the angle between the object’s
surface and the view line, one pixel on the first image may correspond to 3-4 pixels on the
other. In order to avoid this underestimation, we assume that there is a correspondence
uncertainty which is the maximum between the error induced by an error in disparity of one
pixel on either image. That is, if a step of one pixel in the left image changes the depth
estimation as much as a step of three pixels in the right image, then that is the best precision
we can expect from the system. The final uncertainty estimation method is illustrated in
Fig. 4.10c. Formally, it is:

λ0 = h(p1,p2)

λ1 = h (s1 (p1) , s2 (p2))

σ = λ0 − λ1

(4.13)

Here s1 and s2 are the shift functions for the first and second camera respectively.
There is another source of uncertainty, related to the discretization error in the direction

perpendicular to the epipolar curves. A way to approximate this uncertainty has been de-
scribed in Engel et al. (2013). Even though the underlying error source for that demonstration
is the error in the extrinsic parameters, the concept can be applied to our algorithm with a
constant error of ±1 px in the epipolar line position. The complication comes from the fact,
that in order to estimate this uncertainty, we have to use image data, not only the geometric
properties of the system, as the error depends on the gradient in the neighborhood of the
point under consideration. We don’t take into account this source of uncertainty, yet it is a
feasible task.

3.3 Reconstruction Using Tracking

In case of a sequence of images of the same scene taken from known positions, we can achieve a
significant speedup by using the semi-global matching regularization only once, for the shortest
stereo base. A small base, combined with SGM, gives us high accuracy. The precision can be
improved by using other images from the sequence and predictive search. The reconstruction
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Figure 4.10: The uncertainty estimation: (a) the first try to estimate the uncertainty, after triangulating the
point twice, for the corresponding direction bd and for the direction bd+1, shifted along its epipolar curve
towards the epipole by one pixel. (b) illustration of a case when the described method fails. Point 1 is the
triangulation using the corresponding directions. Then, if the left camera is the base one, the uncertainty is
estimated as the distance between points 1 and 2. On the other hand if the right camera were the base one,
the uncertainty would be the distance between points 1 and 3. The angles between two rays are the same for
both viewpoints. As illustrated, this approach to uncertainty estimation is not symmetric. (c) A symmetric
version of the method. the point reconstructed first for the corresponding directions a and bd, then for the
directions a′ and bd+1 shifted along the epipolar curve towards the epipole by 1 px. The uncertainty σ is the
difference in the distances for both reconstructions

from the first two images gives us the estimation of the epipolar curve span, where to look
for the correspondence. And the search span for larger bases is small enough to avoid most
ambiguous matches. In addition, due to the increase in the stereo base, it improves the depth
estimation precision. The method is illustrated in Fig. 4.11.

Figure 4.11: Predictive stereo matching using a prior depth estimation. If we want to match pixel 1p, then
first we compute the direction vector e, then find the corresponding epipolar curves C1 and C2. We use C1 to
compute the descriptor. Then we compute the uncertainty interval on the second image by reconstructing the
3D point twice using the lower and upper bounds on the depth uncertainty, which gives us Xmin and Xmax.
By projecting them we get the limits on the search interval on the second image (2pmin and 2pmax). Disparity
is counted starting from 2pmax.
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Regularization This basic strategy treats each depth pixel independently without using
the fact that neighbor pixels are correlated. To make use of this fact, we can apply a basic
regularization technique. For each pixel p ∈ Ω a subset of neighbors which match it is selected:

Q = {q | q ∈ Np and D(q) ∈ [D(p)− 2Σ(p),D(p) + 2Σ(p)]} (4.14)

where Np is the neighborhood of p; Ω is the domain of depth value definition. Then if
|Q| < tmin, then p is rejected as an outlier and D(p) is set to 0. Otherwise the value is
filtered:

D′(p) =
λD(p) +

∑
q∈QD(q)

λ+ |Q|
(4.15)

This simple regularization strategy, similar to one used in Engel et al. (2013), is efficient,
as the experimental results show.

Pixel Reinitialization If a pixel does not have a prior depth estimation and yet it is
classified as salient, that is its descriptor has a lot of variation, the algorithm will try to
initialize through a brute-force search along the whole range of possible disparity values. If
a mismatch occurs, it is likely that it will be filtered out by the regularizer. But if the
measurement is consistent with its neighbor values, it will be used on the next iteration, and
so the depth map is slowly re-populated with depth measurements.

4 Improvement Techniques

Here we propose two techniques to improve the stereo matching. Both of them are related to
the matching cost computation during the search along epipolar lines. The first one allows us
to take into account the descriptor deformation because of the viewpoint change. The second
one aims to treat more precisely sharp brightness transitions in the context of spatial discrete
sampling. An experimental validation of the proposed techniques is given in the following
section “Experimental Results”.

4.1 Dynamic Programming Matching Cost

We know that in the absence of occlusions all the points will appear on the other image on the
epipolar line. In case of pinhole camera and narrow-angle fields of view, the distance between
the points remains close to the one on the original image. Hence, just a simple comparison of
the original descriptor with each subsequence of the same length sampled along the epipolar
line allows us to do the matching with good precision, except for vertical surfaces which are
observed at sharp angles. But in case of fisheye optics, the motion of objects far from the
optical axis causes significant distortions and direct comparison of patches of two images,
sampled with the same step, is not accurate anymore. A solution would be to look for an
affine transformation of the descriptor, as has been done in Shi and Tomasi (1993). But
doing so directly would significantly increase the algorithm’s complexity and time constants,
because the transformation has to be found for every pixel and for every disparity value.

We propose a dynamic-programming algorithm to approach this problem efficiently. The
algorithm is based on the optimal sequence alignment algorithm Needleman and Wunsch
(1970), a slight modification of which is used in the Semi-Global Matching algorithm. The
problem formulation is the following: for each disparity value, compute the matching cost
given that the points of the descriptor on the first image might correspond to the same point
on the second image, or might have an additional unmatched pixel in between (see Fig. 4.12).
This formulation includes most of the nonlinear deformation of the descriptor starting from
extension by a factor of 2 to the complete collapse of the descriptor into a single pixel.
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Figure 4.12: Examples of possible alignments of descriptors D1, D2, D3 with sample sequence S. A circle
represents a gap, the white cells are the middles of the descriptors, their position in the alignment defines the
disparity value which the alignment cost is associated to.

The algorithm’s complexity remains the same as that of brute-force matching of a descrip-
tor against a sequence of samples for different disparity values, that is O(NM), but with a
slightly worth constant. Here N is the sample sequence length, M is the descriptor size.

To clarify the algorithm, the main three operations are illustrated on Fig. 4.13.

Figure 4.13: An illustration of the dynamic programming algorithm (here the descriptor is 5 pixels long). Each
column of the table corresponds to a disparity value, each row corresponds to a pixel in the descriptor. (1)
The algorithm accumulates cost for the first half of the descriptor; it goes from the first row to the middle row
(a). (2) Then it computes the cost for the second half of the descriptor; it goes from the last row up to the row
after the middle one (b). (3) The algorithm “stitches together” rows a and b. This is similar to an iteration of
(2), except for the error for row a. After that, row a contains the optimal cost of every disparity value.

4.2 Correspondence Cost for Pixels

In Algorithm 3 the simple absolute difference in brightness is used as the cost of matching
two pixels. We propose another measure, which works particularly well in case of high-
contrast transitions. First let us suppose that we sample a continuous signal, which contains
a smoothed step (Fig. 4.14a), two times with the same sampling rate but with a small shift.
Even though the samples are close to each other, if we try to match these two sequences,
using the absolute difference as the similarity measure, we will find out that the minimum
error is high for any correspondence. This example is a simplified model of what happens
when we are matching two real sequences if they represent a brightness transition on the
image. If the sequence of samples from the second image contains multiple transitions, even
though the limit brightnesses from the left and from the right might be different from the limit
brightnesses of the transition represented by the descriptor, the final error can be significantly
lower because the samples are “better” distributed (Fig. 4.14b).

To deal with this kind of situations, the following measure φ can be used:

Θi = max(Di,
Di+Di−1

2 , Di+Di+1

2 )

ϑi = min(Di,
Di+Di−1

2 , Di+Di+1

2 )

φi(Sj) = max(0, ϑi −Sj ,Sj −Θi)

(4.16)
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Figure 4.14: Sampling a continuous signal. Dark circles are sample sequences, light circles represent the
descriptors. In case of a sharp value change, a small shift in sampling phase leads to large errors in measuring
similarity using simple absolute difference. Even though on (a) both sample sequences represent exactly the
same signal (assuming that it satisfies the Shannon-Nyquist frequency condition), the least error after the
alignment will be greater than ε1 or ε2. On the other hand the same descriptor would give a smaller matching
error with a sequence, representing a different signal on (b).

Here Di is a descriptor element, Sj is a sample from the sequence.
Also, for the first and the last descriptor elements we have to take care of the fact that

there is neither D0, nor DM+1. The cost concept is illustrated on Fig. 4.15. Let us call it
cutoff cost. Such a strategy provides that if a sample value is in between two consecutive
descriptor values, it will give a zero cost for at least one of them.

Figure 4.15: The visualization of the pixel matching cost function φ. The darker circle is the descriptor sample
for which the matching cost is to be computed. Lighter circles are its neighbors. Value span (b) corresponds
to 0 cost. Spans (a) and (c) correspond to the linear cost growth, as the value gets farther away from the
descriptor sample.
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Algorithm 3 Dynamic programming algorithm for the descriptor matching cost computation.
For the sake of clarity, here we assume that all the values beyond the array limits are ∞

1: Let D = [D1..DM ] be a descriptor
2: Let S = [S1..SN ] be a sample sequence
3: Let λ be the flaw cost
4: H ← floor(M/2) . The half length
5: A← Array(N)
6: B ← Array(N)
7: for j = 1..N do . Process the first half
8: Aj ← |Sj −D1|
9: end for

10: for i = 2..H + 1 do
11: for j = 1..N do
12: Bj ← min(Aj−2 + λ,Aj−1, Aj + λ) + |Sj −Di|
13: end for
14: Swap(A,B)
15: end for
16: C ← Array(N)
17: Swap(A,C)
18: for j = 1..N do . Process the second half
19: Aj ← |Dj −DM |
20: end for
21: for i = N − 1..H + 2 do
22: for j = 1..N do
23: Bj ← min(Aj+2 + λ,Aj+1, Aj + λ) + |Sj −Di|
24: end for
25: Swap(A,B)
26: end for
27: for j = 1..N − 2 do . Stitch the two halves together
28: Cj ← Cj + min(Aj+2 + λ,Aj+1, Aj + λ)
29: end for
30: CN−1 ← CN−1 + min(AN , AN−1 + λ)
31: CN ← CN +AN + λ
32: return C
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5 Experimental Results

A brief experimental validation for matching techniques is given in this section, to justify their
use. Then a more thorough testing of the algorithm is provided.

5.1 Testing Setup

The algorithms are tested using sequences of synthetic images 1. The ground truth depth D∗
is available.

Quality Criteria For each image sequence the following two quantities are computed:

• Inliers rate — how many depth values actually conform to the predicted uncertainty.
The criterion is simple:

|D(p)−D∗(p)| < Σ(p) p ∈ Ω (4.17)

• The error standard deviation:

σerr =

√√√√√ ∑
p∈Ω′

(D (p)−D∗ (p))2

|Ω′|
(4.18)

Where Ω′ is the set of all p ∈ Ω for which (4.17) is satisfied.

Of course, σerr is not exactly the error distribution characteristic, but the mean value of
D(p) − D∗(p) is significantly smaller than σerr, hence the latter represents well the overall
reconstruction precision.

Matching Techniques Validation The two techniques are tested on sequences of images
of a plane on a white background, as it is shown in Fig. 4.16. The initial distance between
the plane and the camera is 90 cm, the stereo base goes up to 120 cm. Such a stereo base
is exaggerated to show the algorithms limits. The algorithm has been tested for 5 different
camera trajectories (including rotation about different axes and translation) and for 5 different
object orientations (25 tests in total). All the tests gave consistent results, that is why we do
not show all the curves, but only a few of them. The two criteria, the inlier rate and the error
standard deviation, are compared for the cases when the technique is applied and when it is
not.

Complete Stereo Correspondence Testing Four different short trajectories of ten frames
with a distance increment of about 2 cm have been generated. The scene is the same for all
the sequences. Its layout is represented in Fig. C.9a. The camera moves in different directions
with different rotation. The main advantage of synthetic data is that we have the depth
ground truth D∗, and also that we can isolate the algorithm performance from calibration
uncertainties, lighting conditions and other real world factors. The base image and its depth
map are given in Fig. C.7. The type of motion for each sequence is illustrated by the final
images of the sequences, (the first column of Fig. C.8).

SGM is tested independently for each image with the first image as the base, no information
is propagated from the previous iterations. On the other hand, the tracking stereo is initialized
using the second image pair, which corresponds to a stereo base of ≈ 4 cm. Then, for the
following images, the predictive matching strategy is used and the simple regularizer described
above is applied.

1Technical details of image rendering are given in Appendix B
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5.2 Matching Techniques validation

Dynamic Programming Matching Cost Below, we demonstrate the improvement of
the results in terms of precision and accuracy due to the dynamic programming algorithm for
the pixel matching cost computation. As illustrated by Fig. 4.18, all the curves start together
and then diverge. It means that when the stereo base is small, the distortion of the descriptor
along the epipolar curve is not large enough to show the distinction between the algorithms.
Moreover, in case of noisy images, if λflaw is not well adjusted, the dynamic-programming
version may give overfit, while the simpler version of the algorithm has some kind of internal
regularizer. The bottom row of Fig. 4.18 shows the result for noisy images, and to attain this
result we had to increase λflaw.

Correspondence Cost for Pixels For this test we have chosen to use a texture with
a higher contrast, because the method shows a lot of improvement for image regions with
strong brightness transition. Fig. 4.16 shows some test images, Fig. 4.17 shows the disparity
computed for them. A simple visual analysis of it already gives an idea of the effectiveness of
the cutoff cost. The inlier and error deviation plots for the illustrated sequence, as well as for
another one, can be seen on Fig. 4.19. There is not much change in precision, as it was the
case of the dynamic-programming descriptor alignment algorithm. On the other hand, the
inlier rate changes a lot. There is a logical explanation to this fact. This cost does not improve
the matching locally, within few pixels, but rather helps to avoid complete mismatches.

Figure 4.16: Synthetic images for basic tests of matching techniques (with photographic texture). From left
to right: the base image, 0.1 m stereo base, and 0.5 m stereo base. The distance from camera to the plane is
0.9 m.

5.3 Results

Depth Map Analysis Fig. C.8 shows the last images from each sequence, as well as two
reconstruction results for either method: for the stereo bases of ≈ 6 cm and ≈ 18 cm. For
some depth maps certain areas are not filled up because for these areas the epipolar search
for the given maximum disparity would exceed the image limits. The reconstruction succeeds
no matter what the camera motion is. Yet for different kinds of motion we have different
artifacts.

For example, in sequence (a) the camera moves to the right with no rotation. Because of
the texture of the background wall, which has a lot of horizontal lines, which coincide with
the epipolar lines, the depth is not regular for it.

In sequence (c), the camera moves forwards and turns right. The black circle in the middle
corresponds to the epipole, which represents a singularity for the stereo reconstruction, so it
is avoided with a certain neighborhood around it.

For SGM, the quantization effect is particularly visible. Since we have a discrete spectrum
of possible disparity values, some discontinuities in the depth estimation are inevitable. For
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the tracking method, the quantization effect is reduced because it integrates the information
across multiple images and has a denser spectrum of possible depth values.

As the stereo base gets larger, the depth value spectrum gets denser and the reconstruction
becomes smoother and more precise.

Criteria Analysis Fig. 4.23 shows the criteria as a function of the stereo base for the four
data sequences. Two methods are compared: the prediction based matching and the SGM.
You can see that both methods demonstrate a similar performance with no clear winner.

Apart from the values for the shortest stereo base, the curves are consistent. The inlier
rate goes to a certain value and then stabilizes. It means that the uncertainty estimation
approach described above is valid, given that the inlier rate stabilizes at 97–99%. As the
stereo base gets wider, σerr goes down, as it is approximately proportional to the inverted
stereo base.

Real Data Tests The algorithm has been tested using a calibrated camera attached to a
robotic arm. This setup allows us to know precisely the transformation between two camera
poses. Fig. C.10 shows an example of the algorithm’s result an image and its disparity map.

To quantify the result, 3D reconstruction of a planar object was performed and compared
with ground truth (see Fig. C.11). To obtain the ground truth, the transformation between
the robot’s base and the plane was measured. Knowing the robot’s pose it is possible to
compute the transformation between the plane and the camera. Then, using the calibrated
camera model, the ground truth for distance maps was generated for 6 different camera poses.
The planar object does not cover the image entirely, so multiple datasets were acquired to
test the approach in different parts of the images. To get the numeric results, disparity maps
generated by the algorithm were transformed into distance maps; then the difference between
the obtained maps and the ground truth was computed and analyzed. The pixels outside the
planar object are ignored. All pixels, whose distance value is off by more than 100 mm, are
considered as outliers and rejected.

Table 4.1 represents the error distribution of the distance reconstruction as a function
of the stereo base. Results show that a larger stereo base consistently leads to a decrease
in the mean and standard deviation of the error distribution. Table 4.2 shows the results
for different datasets. Average distances from the camera to the plane are given to give a
better idea about the reconstruction precision The error distribution is relatively narrow with
respect to the actual distance values. Also, the inlier rate is high, which means that overall
this algorithm is efficient and accurate in plane reconstruction.

Table 4.1: Plane reconstruction error as a function of the stereo base.

Stereo Base, mm Mean Error, mm σerror, mm Inliers, %

10 -7.50 23.4 97.8

15 -4.41 18.1 98.8

20 -4.07 15.4 98.7

25 -2.40 13.6 99.0

30 -1.79 12.4 99.1

35 -1.70 11.7 99.1

40 -0.98 11.2 99.0

45 0.09 10.1 98.7
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Figure 4.17: The first row — the computed depth for the simple absolute difference pixel matching cost. Second
row — the depth computed using the cutoff cost. On the left the stereo base is 0.1 m, on the right 0.5 m. The
cutoff cost reduces the number of strong outliers.

Table 4.2: Plane reconstruction error for different datasets. The stereo base is 35mm.

Dataset Avg Distance, mm Mean Error, mm σerror, mm Inliers, %

1 552 1.00 15.0 99.3

2 381 -1.70 11.7 99.1

3 490 -0.83 15.1 99.7

4 423 -1.29 13.4 98.7

5 356 -2.42 14.1 99.5

6 433 1.61 22.0 98.4
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Figure 4.18: At the top: the standard deviation of the reconstruction error and the inlier rate for two different
camera motions and initial object positions. The green curves represent the dynamic-programming-based
matching, the blue curves represent the brute-force descriptor comparison. At the bottom: the same curves
for images with uniform noise added. The dynamic programming improves both accuracy (represented by the
inlier rate) and precision (represented by the error).
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Figure 4.19: The experimental comparison of two ways of computing the pixel matching cost. The plots on the
left and on the right correspond to two different camera trajectories. Green curve — cutoff cost, blue curve —
absolute-difference cost. The precision remains almost the same, while the inlier rate significantly improves.
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Figure 4.20: The base image and the reference depth map.

a)

b)

c)

d)

Figure 4.21: Examples of depth maps computed for this scene for different camera motions. The first column is
the final image from the sequence; the second and third columns show the results of SGM; the fourth and fifth
ones show the output of the predictive reconstruction algorithm. The second and fourth columns correspond to
≈ 8 cm stereo base, the third and fifth ones correspond to ≈ 20 cm stereo base. (a) camera moves to the right
with no rotation. The background wall gives a lot of noise in the depth estimation because some features of its
texture are parallel to the epipolar lines. (b) camera moves downwards and turns upwards, the background wall
reconstruction is much more regular. (c) camera moves forwards and turns right, the black area on the border
is due to the fact that, with a forward motion everything on the border disappears from the field of view, the
black circle in the middle is the epipole with its neighborhood, which represent a reconstruction singularity.
(d) camera moves rightwards and slightly forwards and turns about its optical axis. This is a demonstration
of one of the most interesting advantages of the method, the camera rotation about the optical axis does not
affect the reconstruction quality.
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a)

b)

c)

d)

Figure 4.22: The reconstruction examples. In each case, the point cloud is truncated before being projected,
so that the ground plane is not included. Sequence d from Fig. C.8 is used for the reconstruction. That is, the
camera moves rightwards and slightly forwards, and rotates about its optical axis. The red dots represent the
camera positions for the stereo computation. (a) The virtual scene layout with the initial camera position, the
top view. (b) The reconstruction with SGM for a stereo base of about 10 cm; (c) the same configuration as (b),
but this time the predictive matching is used. The result is slightly better, because the algorithm assimilates
the information from all the previous steps; (d) the prediction-based reconstruction for the base of 20 cm.
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Figure 4.23: The error standard deviation and inlier’s rates for four different datasets. Blue curves represent
the prediction-based method, red curves represent SGM. Depending on data, the prediction based method may
outperform the SGM.

Figure 4.24: Original images (left) and the corresponding disparity maps (right) for 10, 20, 30 mm stereo bases.
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a b c d

Figure 4.25: An illustration of the evaluation methodology. Each row corresponds to a different dataset (from
the top: 3, 5, 6); a — the reference image; b — the ground truth of the newspaper plane distance map; c
— the reconstruction result using disparity maps, which were computed using the camera’s intrinsics and the
robot poses as extrinsic parameters of stereo; d — the absolute difference between the ground truth and the
reconstruction using the stereo.

6 Conclusions

The Enhanced Unified Camera Model has analytic properties which allow it to be used in
modeling of stereo systems. The epipolar curve equations computed using the model can be
used to compute the direct stereo correspondence, once they are properly rasterized. The
disparity-based direct stereo correspondence gives an accurate 3D reconstruction along with
a simple, and yet efficient method to estimate the reconstruction error. If we compare it to
another 3D sensor — Velodyne, we see that it has some advantages and disadvantages.

The advantages of fisheye-based stereo correspondence:

• Better vertical resolution

• No temporal disparity in depth measurements caused by the sweep effects

• Much lower cost

The disadvantages of fisheye-based stereo correspondence:

• Lower precision, decreasing with distance

• Requires external light sources and textured environment

We argue that by integrating the stereo algorithm in a larger localization and mapping
system we can attain the level of reconstruction precision necessary for safe and robust au-
tonomous navigation. Some of the results presented in this chapter have been published in
Khomutenko et al. (2016b).
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6.1 Main Contributions

Semi-Global Matching Adaptation The results in geometric modeling, described in
Chapter 2, allowed us to combine the Enhanced Unified Camera Model with the Semi-Global
Matching. Analytic epipolar-curve equations are computed and then passed to the described
rasterization algorithm with a special modification to work faster with implicit curves defined
by a second-degree polynomial. The pixel-based sampling allows us to use the notion of
disparity, which is the number of steps along a curve, and thus enables the Semi-Global
Matching.

Matching Cost Computation We propose two methods to improve the matching re-
sults by improving the matching cost computation. The dynamic-programming algorithm
for descriptor matching allows us to take into account the descriptor deformation due to the
viewpoint change. The cutoff matching cost accounts for the difference in sample values due
to strong gradients.

Epipolar Curve Precomputation Since one epipolar curve passes through multiple pix-
els, there is no need in computing one curve per pixel, but rather sample the epipolar curve
space, which has only one dimension (rotation angle about the stereo base). We suggest a
way to efficiently access precomputed curves without calling any non-linear functions. This
operation is done for every pixel, so it is important to make it less computationally expensive.

6.2 Future Development

Algorithm Adjustment Modifying the following aspects of the algorithm may improve
its performance. A different number of regularization directions should be tested. The actual
implementation uses only two of them. Other numeric parameters of the algorithm, like
dynamic programming step cost and jump cost must be adjusted according to the image
noise. During the descriptor matching step, it may be interesting to apply certain weights to
the descriptor value to make the central pixel more important for the matching. To adjust
the descriptor scale, a rigorous criterion based on the frequency content of the image patch
should be used.

Disparity Postprocessing So far, only a basic depth map postprocessing has been done,
that is the local regularization. But the community has already developed different tech-
niques to postprocess disparity maps. For example, removing speckle noise by detecting small
“islands” of disparity which don’t match their surrounding. Another aspect is treating tex-
tureless areas. Techniques for solving both of these issues have already been implemented and
tested (Hirschmuller (2008)).

Parallelization The algorithm is fully parallelizable, hence an efficient GPGPU-based im-
plementation is possible for both matching cost calculation and Semi-Global regularization
(for the latter, see Zhu et al. (2012)).

Temporal Filtering In theory it is possible to detect mismatches based on the matching
cost. We can keep pixel matching cost at the previous iteration and reject a match if its
matching cost is much higher than the previous time. The underlying hypothesis is that, for
a given camera, the noise level should remain the same and the matching cost for a certain
pixel may change, but not too much, and at least it should do it continuously. So we can try
to build an adaptive cost model for each individual pixel with a prior estimation based again
on the pixel’s neighborhood frequency content.
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Explicit Occlusion Treatment So far the algorithm is looking for a correspondence for
every pixel in the base image. It is possible to modify the Semi-Global regularizer to add the
option “occluded” for pixel matching. Like this the algorithm will be able to automatically
detect occluded areas. The problem here is to adjust the cost, because the “no match” option
must be more expensive than actual match

Different Sampling Patterns The actual depth sampling pattern is a regular rectangular
grid. It is not necessarily the best choice. A hexagonal grid may give interesting results.
Another option is an adaptive pseudo-random sampling pattern, which can greatly improve
the performance as it would require much fewer samples. On the other hand, the application
of the dynamic-programming regularizer becomes a non-trivial problem for irregular grids.

6.3 Applications

This algorithm can be applied when we need a wide-angle 3D reconstruction. The most
appealing application is visual perception systems for mobile robots and autonomous vehicles.

Localization and Navigation 3D perception allows us to build up localization systems,
such as visual odometry or visual SLAM (Meilland et al. (2015); Caruso et al. (2015)). A
slight extension of these localization and mapping systems can lead to a navigation system,
that is a system capable of planning the path and guiding the vehicle from location A to
location B.

Obstacle Avoidance and Pedestrian Detection Depth sensors are crucial in obstacle
detection. In contrast with laser scanners, visual 3D perception sees obstacles at all possible
heights, not only at the level of the sensor, which may be important in some cases. It can
be used to detect both static and moving obstacles (for example, parked or moving cars). As
this system provides a wide-angle 3D perception, it can be used to detect pedestrians which
are about to cross the street.

Object Manipulation Another interesting application is a perception system for robot
manipulators for object detection, manipulation and recognition. Usually robot manipulators
have a highly precise relative localization of the end-effector. If a camera is attached to it,
it means that the robot can do two tasks with a so-called eye-in-hand configuration: provide
the stereo extrinsic calibration for a 3D reconstruction and manipulate the objects.



Chapter 5

Vision-Based Localization and
Mapping

1 Introduction

This chapter is dedicated to different methods of vision-based localization for mobile robots.
A fisheye camera and wheel odometry constitute the necessary setup. First some necessary
general concepts of mapping and localization are reviewed. Then we consider the classical
feature-based visual odometry and the bundle adjustment algorithm. Then an alternative
visual odometry with wheel odometry prior is described. Finally, two methods of direct image
registration analyzed. One of them, photometric-based, is used to register consecutive frames
from the same video sequence. The other, based on the concept called Mutual Information,
is used to register two images of the same place, taken in two different moments of time.

1.1 Different Maps and Localization Algorithms

Depending on application, available sensors and structure and properties of the environment,
different kinds of maps and localization algorithms can be used. Obviously, exteroceptive
sensors must be used for the mapping and localization. Let us discuss which options we have.

Topological Maps If the map is represented by a set of abstract locations connected with
edges which represent a possibility to go from one location to another (Fig. 5.1), then the
localization is called “topological”. Examples: in which room are you? in which street are
you? in which city are you? Only topological localization is not sufficient for many robotic
tasks, so it has to be combined with some other localization systems. But if the robot knows
in which location it currently is, it can upload a map of the location and apply a local metric
localization, which we will talk about in a moment.

You may notice that the global localization and topological localization are doing somehow
similar jobs. Indeed, a robot can find out in which street it is by checking its global coordinates.
on the other hand, when the robot enters a building, GPS is not operational anymore and it
has to rely on other sensory modalities to localize itself.

The most common topological localization approach, called FAB-MAP and described in
Cummins and Newman (2008), is based on vision and visual features. The concept of features
is described later on. By now, let us say that features are some, generally small, image areas
which are easily detectable and recognizable. Given an image of a place to be localized, the
system is looking for visual features, and then recalls which places with similar visual features
it has seen so far.

119
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Figure 5.1: A metric map which represents walls, with a topological map overlaid, represented by circles and
possible transitions. Since topological maps are usually constructed automatically, they are not always regular.

Once candidates are found, the geometric consistency can be checked (how to do it is also
described later). If there is a place which has a set of features similar to the observed ones, and
these features are geometrically consistent, then localization is considered to be successful.

Local Metric Maps The surroundings can be described directly in terms of 3D space.
They can be represented by points or other geometric primitives, all put in the same local
map frame. For example a map can be represented by a point cloud, which is a common
choice for 3D sensors, like Velodyne. Another popular option is the so-called occupancy grid,
a bitmap which represents free space and occupied space. The occupancy grid is usually used
with 2D laser scanners (for example Wang et al. (2007)).

These kinds of maps are the natural choice for active metric sensors, like lidars. A single
lidar scan (image) already can be considered as a local metric map, and by combining multiple
scans, it is possible to construct a precise and detailed map.

An efficient algorithm to process point clouds, called ICP, is usually used to register
different scans. Registration means bringing two datasets to the same reference frame. In
other words registering two scans means “aligning” them, or finding a transformation between
the origins of both scans. ICP works for both 2D and 3D scans. After registration, the map
can be extended. It is done either by adding more primitives to the map, that is, points, lines,
planes; or by changing values in the occupancy grid.

Sensory Maps Another way of representing maps is to keep the data in the sensory space.
For example, in the case of laser scanners, the actual output is not directly a point cloud
but rather a function which maps the angle to a distance value. This representation can be
used for a map as well. In Biber and Duckett (2005) this representation has been used for an
environment which is changing over time.

But for some sensors, in particular cameras, where the sensory output does not contain
any geometric data, it may be the best representation. Let us talk about it in more details.
An image is a mapping which associates a brightness value to each direction associated with
pixels. To extract geometric data, as it has been discussed in Chapter 2, we need to process
multiple images, establish correspondences and solve a reconstruction problem. Finally, we
can get something similar to what laser scanners provide, that is, a correspondence direction-
distance. But there is an important difference between these two geometric measures, which
consists in differences in measurement noises. In the case of lidars, the distance measurement
noise does not depend on the distance, but only on the sensor design. On the other hand,
vision-based 3D reconstruction gives a non-uniform noise, which depends on the depth value,
the precision of the transformation between the two camera positions, and even on the texture
of the image region in question.
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In the ideal case, when there is no noise, all the representations are equivalent. But in
the presence of noise, it is generally better to keep the representation as close to the actual
perception as possible.

An example of sensory localization is described in Courbon et al. (2009), where visual
paths are represented by sequences of key images. Other examples are the recent direct visual
SLAM systems Meilland et al. (2015); Engel et al. (2014), where the map is represented by a
network of keyframes with depth estimation and photometric information, associated to each
of them. We can go about the localization within this map as follows. First assume that
we know which of the keyframes is closest to our actual position. This assumption is not
too strong because either we know where we start the localization or we can try to localize
ourselves globally by using, for instance, FAB-MAP (Cummins and Newman (2008)). Via the
robot’s motion we can observe the depth of a certain set of image points (either a dense depth
estimation as it has been described in Chapter 2, or the depth for a number of keypoints).
Then it is possible to compute the transformation between the keyframe and the current
camera pose. The most part of this chapter is dedicated to the question “How to compute
it?”. Then eventually the keyframe content may be updated or the robot may switch to the
following keyframe.

Odometry is a particular type of localization which is based on integration of motion
increments. It can be based on either proprioceptive (IMU or wheel rotation in the case of
wheeled robots) or exteroceptive sensors — cameras. In both cases the particularity of this
method is that the localization it gives is consistent only locally. Since every increment has
an error, integration over the whole path leads to error accumulation and divergence between
the real trajectory and the estimated one.

Both wheel and visual odometries are described later in this chapter. For now, let us say
that odometry, especially the proprioception-based one, is an essential perception modality for
mobile robots. Since it is locally consistent and quite precise, it allows the system to accurately
predict its current position since the last exteroceptive input, which, on its turn, improves
the localization system robustness and accuracy. Indeed, the job of a map-based localization
in this case is just to correct the small incremental error, which is usually proportional to
the traveled distance and is in the order of a few percents of it, instead of looking across the
whole area where the robot could have got during the elapsed time since the last localization
iteration.

Mapping Mapping is an essential function of perception. As it has been stated above, a
map is a representation of the environment. Whatever an agent is doing, it requires a certain
kind of map. If it is navigating through space, it has to know where the obstacles are, and
where the free space is. If the robot is a manipulator, it needs to know where the obstacles are
and where the objects to be manipulated are. Whenever it comes to the question “where?”,
the map is what is needed.

The exact way of constructing maps depends on the kind of map we need. If we knew the
robot’s motion precisely, reconstruction of the map would be a simple task, and vice versa,
knowing the map, localizing the robot is a simple task. But in the case of SLAM, we have to
estimate both things simultaneously.

At the beginning of the process, the environment is completely unknown. The robot,
through its motion, observes the surroundings from different positions, that is, it gets a set
of noisy observations. The problem is formulated using the probabilistic framework (for
example Wang et al. (2007)): find the map and the trajectory which together maximize the
probability of observations. Usually, solving hard optimization problems requires a good
initial approximation, which can be obtained using proprioceptive sensors.



122 CHAPTER 5. VISION-BASED LOCALIZATION AND MAPPING

Sometimes some prior knowledge about the map is added. That is, we have some models
of the environment. An example of a prior model is the stereo correspondence regularization,
described in Chapter 2. Another example is to assume that the environment is a set of flat
surfaces, which is generally not true, but can be a valid model for some special cases. Any
prior knowledge simplifies the mapping problem. Humans have a lot of it, so for us building
local maps is almost trivial. We operate with such landmarks as furniture, plants, buildings
and so on. But integrating such priors into robotic mapping systems is a huge research subject
on its own.

1.2 Visual Localization

The mathematical aspects of visual localization are considered in the corresponding sections
of this chapter. Here, let us just discuss certain conceptual aspects of visual localization. It
is a hard problem, because instead of measuring the geometry of the environment directly,
cameras provide data which are an entangled combination of camera parameters, environment
geometry, textures of surrounding objects, light sources.

Even the direct problem, that is, given the complete environment state, simulate the image,
is computationally expensive if we want to take into account all the effects, like reflections,
shadows, speckle light etc. And still it is not possible to generate photo-realistic images in real
time. So, in order to use vision for localization, a certain number of assumptions has to be
made. Depending on exact approach, these assumptions may be different, and are described
in corresponding sections.

From Brightness to Geometry Usually, the image-based localization is done in two steps:

1. Extract geometric information from the image.

2. Solve a geometric-vision problem.

We should notice that with recent, so-called direct methods, this pipeline changes. The
bottleneck of this approach is the first step. What kind of geometric information do we want?
Usually, it is the correspondence between image points. Suppose that we have two images. If
we knew for sure what are the corresponding points in the second image for a certain number
of points in the first image, then we could already estimate the camera motion between the
two images with the translation known up to a scale factor.

Another kind of geometric information that we might want to get is the distance from the
camera to every observed points. Given the distances, we can use another method to compute
the camera motion, or some other geometric characteristics of the environment.

Short-Term Localization If we want to localize the robot in a certain place within a few
minutes, then we usually make following assumptions:

• The lighting conditions do not change. That is, the sun remains in the same place, the
artificial light does not go off or on, shadows do not move and so on.

• Static objects in the map likely do not move. For example chairs, tables, doors remain
as they were at the beginning.

These assumptions are obviously false, the sun moves, a small cloud may change the
lighting a lot within a few seconds, and the doors and other furniture change position and
state. Sure, but even under these assumptions the problem is not easy to solve.

There is an even stronger set of assumptions, called static environments. It includes the
fact that there are no moving objects around. In this case a pure vision-based localization
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system can be implemented. But if not all the objects in the environment are static, then a
general vision based localization may fail badly. A simple example, a train passing in front of
a robot and covering almost the whole field of view may make the visual localization system
think that it is actually the robot which is moving, not the train. A few more words will be
said about this issue in the discussion of multi-modal perception.

Long-Term Localization What if the robot has to visit again a place it has visited before
and has constructed a map of. The map has been based on a particular lighting condition
and a layout of movable objects. Both may have changed since the last time. Is the map still
reusable? If not all the landmarks and features in it have been destroyed, then yes. But as
the changes in the environment are more significant than ones that occur within few minutes,
the localization algorithm must explicitly include possible changes into the model.

One method is to construct multiple sensory maps, as has been done in Churchill and
Newman (2013). Every time the robot is revisiting a place, it tries to localize itself with
respect to all the maps of this place that it has constructed previously. If none of them give
consistent results, a new map is instantiated. Each map is called “experience” and represents
a different possible appearance of the place.

Another possible approach in the context of sensory maps is to use a similarity measure
to compare and register map frames and current images, which is robust with respect to such
changes. The so-called mutual information can be such a measure. It has been successfully
used for image tracking and vision-based control of mobile robots to make them follow a path
similar to one which is represented by a sensory map, that is, a sequence of images (Dame
and Marchand (2012); Raj Bista et al. (2016b)).

1.3 Visual Features

Here we provide an overview of point-like visual features, which are a recipe for solving non-
local problems of computer vision. That is, for a particular point in one image we do not have
any guess where the corresponding point is in the other image.

There are other types of visual features, like lines, curves, ellipses and so on. But point
features are the simplest to work with.

1.3.1 Feature Detection

A keypoint or feature point is a point in an image which is well-localized, in the sense that there
exists a function of the image, such that the point coordinates correspond to an extremum
of this function and small noise in the image leads to small changes in the coordinates of the
extremum. Such function is called response function; extrema of this function correspond
to the feature points. This function should be designed in a such way that if the image
undergoes some transformations (for example, we take the picture of the same object but
from a different prospective) extrema of this function will still correspond to the projection of
the same 3D point. Usual types of well-localized points are corners and blobs (that is, small
textured area different in some way from the background). In contrast, points on edges or
inside uniform regions are badly localized. It is called aperture problem. In the first case we
may have difficulty with localization along edge direction, in the second, completely uncertain
position.

Blob Detectors Common blob detectors are SIFT, Lowe (2004), and its modification
SURF, Bay et al. (2008). The concept of blob detection is that blobs are brighter or darker
than the background. The response function is the difference of Gaussians, which approxi-
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mates Laplacian of Gaussian, in the case of SIFT, while SURF approximates it with so-called
box filters to speed up the computation.

Harris Corner Detector Here we would like to give a more detailed overview of another
classical detector by Harris and Stephens (1988). It is mathematically elegant and demon-
strates well the concept of feature detection. Actually this detector responds not only to
corner-like features, but to any image patch which is not invariant with respect to transla-
tion. To detect a corner we must figure out how much the original patch that surrounds a
point differs from a shifted version of itself, which can be measured using the sum of squared
differences (SSD):

S(ζ, η) =
∑
u,v

w(u, v)(I(u+ ζ, v + η)− I(u, v))2 (5.1)

Where I(u, v) is an image value that has coordinates u, v; w is a weight function to select just
the region of interest around a point, ζ and η are shift parameters. We can approximate the
shift of an image by a Taylor expansion:

I(u+ ζ, v + η)− I(u, v) = Iu(u, v)ζ + Iv(u, v)η (5.2)

where Iu denotes the partial derivative of the image with respect to u, the same for Iv. And
then the SSD criterion can be written in matrix form:

S(ζ, η) =
(
ζ η

)
A

(
ζ
η

)
(5.3)

where A is called structure tensor :

A =
∑
u,v

w(u, v)

(
I2
u IuIv

IuIv I2
v

)
(5.4)

If both eigenvalues of matrix A are small, then the patch is almost invariant to a shift, it is
almost homogeneous. If just one eigenvalue is large enough, it means that the patch is an edge
and it is invariant with respect to translation along the edge direction. If both eigenvalues of
A are large and positive, it means that a corner is detected. The Harris response function is:

Mc = λ1λ2 − κ(λ1 + λ2)2 = detA− κ trace2A (5.5)

Where λ1 and λ2 are the eigenvalues of A, and κ is a coefficient that can be tuned.
Another possible response function is :

Mc =
λ1λ2

(λ1 + λ2)
=

detA

traceA
(5.6)

It is always less than the smallest λ, so it provides information on the lower boundary of the
worst direction in terms of stability.

FAST Corner Detector Another popular corner detector is called FAST (Rosten and
Drummond (2006)). Its idea is to compare every pixel, a potential corner, to pixels which
lie on a small circle around it (of radius about 3 px). A certain number of contiguous pixels
among the pixels on the circle must be either darker than the central pixel minus threshold
t, or brighter than the central pixel plus t. In this case the central pixel is classified as a
corner. If there are many neighbor pixels which are classified as corners, the one which has
the greatest t is kept, and the rest is discarded. It is called non-maximum suppression. The
advantage of FAST is that there is an efficient way of rejecting candidates without checking
all the 16 pixels on the circle. Modifications of this detector are used in such detectors as
ORB by Rublee et al. (2011) and BRISK by Leutenegger et al. (2011).
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1.3.2 Feature Descriptors and Matching

The idea behind the feature descriptors is that we want to encode the neighborhood of the
feature point, in order to be able to compare it to other detected feature points and tell which
one of them is the most likely match for the given point. Descriptors of point-like features
may have some of the following properties:

• Scale invariance. The keypoint is detected on two images with different zoom (for
example, because of changed distance to the object), but the descriptor remains the
same (or nearly the same). Scale invariance is provided by looking for features not
in the original image but in scale-space. Scale-space is a 3D space with coordinates
(u, v, σ). σ corresponds to the degree of Gaussian blur. From the information point of
view, it is the same as scaling images down.

• Rotation invariance. Rotation invariance with respect to the optical axis can be achieved
by choosing the dominant orientation (or feature direction) of the feature and prerotating
the feature neighborhood to align it with the dominant direction before constructing the
descriptor.

• Full affine invariance. This can be done by constructing the Hessian matrix, computing
its eigenvectors and rectifying the region with respect to these directions.

Actually, for the purposes of visual odometry, there is no need for rotation invariance,
since we do not expect the robot to perform significant rotations about the optical axis. But
even if it did, the rotation done between two consecutive images should be within robustness
limits of the descriptor.

The most basic descriptor for a point p is a weighted patch. Let ΩD ⊂ R2 be a set of
points which define the neighborhood, then let D : ΩD → R be a descriptor Usually, ΩD is just
a square centered at the origin. Let w : R2 → R+ be a weight function. Then the descriptor
Dp of a point p is defined as follows:

Dp(q) = w(q)I(p+ q) q ∈ ΩD (5.7)

To provide invariance with respect to the exposure and light intensity, the descriptor can be
normalized:

Dp(q) = w(q)
I(p+ q)− Ī(p)

σI(p)
q ∈ ΩD (5.8)

where Ī(p) and σI(p) are normalization terms:

Ī(p) =

∑
q∈ΩD

w(q)I(p+ q)∑
q∈ΩD

w(q)

σI(p) =

√√√√√√
∑
q∈ΩD

w(q)
(
I(p+ q)− Ī (p)

)2
∑
q∈ΩD

w(q)

(5.9)

Usually, w decreases rapidly with the norm of its argument. It is usually a Gaussian kernel:

w(q) = exp

(
‖q‖2

2σ2

)
(5.10)
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Another type of descriptors has been proposed in Calonder et al. (2010) and modified
in Leutenegger et al. (2011). The keypoint neighborhood is sampled according to a pseudo-
random pattern. Samples are compared according to the same pregenerated pattern, and the
result of the comparison is stored as a binary descriptor. Another kind of distance measure,
called Hamming distance, must be used for these descriptors. It counts how many bits are
different in two descriptors.

To match two sets of descriptors, usually for each descriptor in the first set we are looking
for the closest descriptor in the other set. Then we repeat the procedure in the opposite
direction. If two descriptors “choose” each other, then the match is considered as successful.
Also different thresholds can be set up to automatically reject matches of descriptors which
are too far away.

It is impossible to guarantee exact matching between two keypoint sets, based purely on
descriptors. Firstly, because of viewpoint changes, image discretization and noise, descriptors
of the same keypoint in two different images will be slightly different. Secondly, especially in
artificial environment, there are plenty of repetitive structures, in which we can find multiple
keypoints with similar neighborhoods. That is why geometric consistency must be checked to
ensure that the matches are correct.

1.4 Feature-Based Visual Odometry

Visual odometry consists in computing a camera’s motion between two frames. At first, we
assume that we have N point-like features detected in both images and perfectly matched.
The question is how to use this information to compute the motion. Then we take into
account mismatches between features, which generate outliers, that is, data samples which
do not follow the presumed noise distribution. Finally, we explain how to integrate the wheel
odometry data into visual odometry to improve its accuracy and robustness.

Since cameras do not provide any information about the distance, the translation can be
computed only up to a scale factor. It means that if we want to reconstruct a path based
only on visual odometry, we shall use some special technique to avoid so-called scale-factor
drift. In this work, the problem is addressed by simply using the wheel odometry to correct
the scale.

1.4.1 Motion Estimation for Pinhole Cameras, Closed-Form Solution

Motion estimation can be done by decomposing the essential matrix E, introduced in Chap-
ter 1. This matrix, as well as the fundamental matrix F can be estimated as described below.
We would argue that this method, though mathematically elegant, has a number of draw-
backs, for example it requires the camera to follow the pinhole projection model. On the other
hand optimization-based techniques are well developed and contemporary non-linear solvers
run fast and don’t represent the algorithm bottleneck anymore.

Estimation of the Fundamental matrix The following methodology has been overviewed
in Szeliski (2010). Estimation techniques for F and E are similar, but generally matrix F is
more practical, because it does not require the conversion of the image points into points on
the normalized plane (that is, p to m). On the other hand, F has meaning only in the case
of pinhole cameras. For cameras with distortion, E is the only option. To estimate F we can
develop (2.76) rewriting it in the scalar form:

u0u1f11 + u0v1f12 + u0f13 +
v0u1f21 + v0v1f22 + u0f23 +

v1f31 + v1f32 + f33 = 0
(5.11)
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Hence, we have the following equation, linear with respect to the components of matrix F :

Af = 0 (5.12)

A =

u
1
0u

1
1 u1

0v1
1 u1

0 v1
0u

1
1 v1

0v1
1 u1

0 v1
1 v1

1 1
...

...
...

...
...

...
...

...
...

un0u
n
1 un0 vn1 un0 vn0u

n
1 vn0 vn1 un0 vn1 vn1 1

 (5.13)

f =
(
f11 f12 f13 f21 f22 f23 f31 f32 f33

)T
(5.14)

where upper index of uj0, v
j
0 stands for the feature number. Since this equation is defined up to

arbitrary scale, we need n = 8 equations to estimate the fij coefficients (by fixing f33 = 1). If
we have more points, we can estimate F in a more precise way from a statistical point of view.
To do this we must construct matrix A and perform its singular value decomposition (SVD).
The right singular vector that corresponds to the smallest singular value is the estimation of
f . Because of noises and errors, matrix A, which in theory is of rank 8, may be full column
rank. If we know the uncertainties in the feature positions, we can weight the equations with
respect to the reciprocal of them. That is, use B = C−1A instead of A in (5.11), where C is a
diagonal matrix with elements representing the variance of feature locations.

Another issue is that if u, v are large, which is usually the case since they are measured in
pixels, then, for example, uncertainty in u0 will be amplified by u1 in term uj0u

j
1 of A, while in

term u1
0 uncertainty will stay the same. It is better to normalize all points p for each image

using a linear transformation so that the mean of p be 0 and the standard deviation along
each axis be 1. This transformation is:

T =


1

σu
0 −µu

σu

0
1

σv
−µv

σv
0 0 1

 (5.15)

where µu, µv are the means of u and v respectively, while σu, σv are their standard deviations.
If x̃i = Tixi then (2.76) becomes:

x̃Tproj0T
−T
0 FT−1

1 x̃proj1 = 0 (5.16)

We can denote F̃ = T−T0 FT−1
1 , estimate it using normalized points and then recover original

F = T T0 F̃ T1

Equations (2.71) and (2.76) can be used to discard outliers. If the left part of the equation
is larger than some threshold, it means that the feature is badly localized or the matching is
wrong.

In case of pure rotation, E and F are impossible to estimate. If such a case may appear
(for example, for some wheel configurations pure rotation is virtually impossible), it is a good
idea to try to compute the rotation only, assuming that the translation is zero. Then compute
the residual and only if it is non negligible, compute matrix E.

Motion Extraction from the Essential Matrix The rotation and translation part (up
to a scale factor) can be estimated from matrix E using SVD. If the camera is calibrated,
then E can be easily calculated from F as E = KTFK, where K is the camera projection
matrix. Here we assume that the camera is the same in both camera positions (generally this
technique can be applied for two different cameras with different K matrices, but for visual
odometry application, the case with one camera is of greater interest).
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To estimate the direction t̂ we may notice that E = [̂t]×R and t̂
T
E = 0. So, applying

SVD we obtain:

E = [̂t]×R = UΣV T =
(
u1 u2 t̂

)1 0 0
0 1 0
0 0 0

vT1
vT2
vT3

 (5.17)

The translation direction corresponds to the left singular vector with the least singular
value. Two other singular values must be similar, but because E is known up to scale, they
may be different from 1. Exploiting the fact that [̂t]× projects the vector onto the plane
orthogonal to t and rotates it by π

2 we can rewrite it as:

[̂t]× = UZRπ/2U
T =

(
u1 u2 t̂

)1 0 0
0 1 0
0 0 0

0 −1 0
1 0 0
0 0 1

uT1uT2
t̂
T

 (5.18)

That is, we project the vector into basis U , rotate it around t and zero this component, then
we go back to the old basis. Now we can restore the R matrix:

E = UZRπ/2U
TR = UΣV T =⇒ R = URTπ/2V

T (5.19)

assuming that Z = Σ as it should be in theory. Unfortunately we know E and t̂ up to
sign. It means that we have to try 4 different matrices R = ±URT±π/2V

T and keep the two

that have the determinant det(R) equal to 1. To choose the correct one we must try all the
combinations ±t̂ and R1,2 and take the one that provides maximum points in the field of view
for both cameras.

1.4.2 Bundle Adjustment

Bundle Adjustment (BA) is a problem of reconstruction of a 3D environment and camera’s
positions by minimizing the error between modeled projections of 3D primitives and their
detected projections. This problem is solved by means of global nonlinear optimization. It
is a better solution to estimate the motion in a statistically correct way using redundant
measurements, than the estimation of E and its decomposition. Also, it is a basic method to
construct metric maps with point features (see for example Beall and Dellaert (2014)).

Assume that we have N 3D points and M positions, for each of one them we grab an
image with a calibrated camera.

• Let {Xj} ⊂ R3 be a set of observed 3D landmarks.

• Let {ξi} ⊂ SE(3) be a set of pose parametrization.

• Let {pij} ⊂ R2 be the set of projections of the j-th landmark onto the i-th image.

• Let f be the camera projection model.

Bundle Adjustment minimizes the reprojection error with respect to all the camera and 3D
point positions:

argmin
ξi,Xj

n∑
i=1

m∑
j=1

∥∥f(ξ−1
i (Xj))− pij

∥∥
2

(5.20)

This optimization problem is solved using the Levenberg-Marquardt algorithm. The Jaco-
bian which appears in the problem of bundle adjustment is sparse and has regular structure.
Exploiting this fact, an efficient sparse bundle adjustment algorithm is proposed in Lourakis
and Argyros (2004) as well as open-source implementation.
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1.4.3 Outliers and Random Sample Consensus

Inliers and Outliers The term outlier often appears model fitting problems. Suppose that
we have a set of data samples which follow a certain model but have some additive noise. For
example, a set of detected feature points on two images with correspondences is generated by
a certain geometric model (camera projection model, coordinate transformation, and so on)
and a detection noise. We can reasonably assume that the detection noise is of a few pixels.
More generally, we assume that the measurement noise follows a certain Gaussian distribution
with known σ (which is, of course, an approximation) and also that there are no samples with
noise stronger than a certain threshold, which depends on data dimension. For example, for
a one-dimensional space traditionally this threshold is set to 3σ.

Let us suppose that we know the model parameters and find that some samples have
fitting error much larger than 3σ, for example, in the case of visual features, an error of 20
pixels cannot be explained by the detection noise. A better explanation is that the matching
process failed to find a proper correspondence. Let’s define the notion of outliers formally.

• Let {xi} and {yi} be two observation datasets.

• Let λ be a set of numeric parameters.

• Let y = f(x, λ) be the prediction model.

• Let N (0, σ) be a normal distribution with zero mean and σ standard deviation.

• Let ỹi = f(xi, λ) +N (0, σ)

Inliers are data points for which the following is true:

yi − ỹi ∼ N (0, σ) (5.21)

An outlier is a data sample which violates this distribution law. Usually, to state that a data
sample is an outlier a threshold θ is chosen:

P (‖N (0, σ)‖ > θ) < ε 0 < ε� 1 (5.22)

And if ‖yi − ỹi‖ > θ, then an outlier is detected. ε = 0.05 is the most common choice.
Outliers, if they are used as data samples in model fitting, may lead to significant parameter

estimation errors. A standard pipeline for registration of a pair of datasets is as follows:

1. Detect features for both datasets and match them against each other. A certain number
of mismatches will inevitably occur.

2. Discard outliers and get an initial approximation using robust transformation estima-
tion.

3. Refine the transformation using local search techniques

Random Sample Consensus (RANSAC) An algorithm has been proposed by Fischler
and Bolles (1981) to fit a model in the presence of outliers. The algorithm repetitively takes
random set of s points, where s is the minimum number of data points necessary to fit the
model. Then it fits the model and counts inliers. After several iterations it takes the largest
set of inliers among all the tries and fits the model using all of them.

The needed number of iterations to fit the model with inliers only at least once with
probability P is:

N ≥ log(1− P )

log(1− (1− ε)s)
(5.23)
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Where ε is the fraction of outliers in the dataset. So we can see that a small s leads to a high
algorithm efficiency. In the case of the fundamental matrix estimation, s = 8. The minimum
number of keypoints needed to estimate the motion by means of BA is 5. Actually, the fact
that the model is fitted with inliers only does not guarantee that all the other inliers will
be detected. For example, if we use 5 points which are close on the image, just because of
the noise, the inliers from the other parts of the image might produce significant reprojection
errors.

If there is a prior estimation of the parameters, or any other additional information source,
like current position prediction given by a filter or a wheel odometry measurement in the case
of a localization problem, it is possible to use less points, and so perform less RANSAC
iterations. The so-called 1-point RANSAC has been proposed by Civera et al. (2009).

2 Wheel and Visual Odometry Fusion

2.1 Multimodal Perception for Mobile Robotics

Let us recall what are the main features of proprioceptive and exteroceptive sensors. Proprio-
ceptive sensors are locally consistent and generate a local prediction, which can be used later
to facilitate the registration and matching process for other modalities. They require integra-
tion, hence the position estimation continuously diverges and another modality is required to
correct the accumulated error.

Exteroceptive sensors allow the robot to construct a map and localize itself with respect
to it later on. Such sensors provide the necessary connection between the robot and the
environment and thus are absolutely necessary.

The concept of Multimodal Perception is to combine different modalities to attain a better
performance. Human perception is based on local predictions and anticipation. We model
the world around us as a continuous flow of states where the next state is determined by
the previous one, and the multimodal perception allows us to predict the next state better.
Intuitively, when we move, we know what kind of motion we perform, so we anticipate how
the world perception image will change because of this motion.

In this context, two important terms must be defined. Detection is selection of information
that belongs to an object pertinent to a given task, based on models and prior knowledge
about the object class, the task and environment. An example of detection of keypoints is
described above. Other examples are detecting straight lines, circles, pedestrians, cars in a
street, buildings, parking lots and so on. It means select a set of pixels which presumably
picture an object to be detected. The complexity of this task is rather obvious. Pedestrians
is a vast class and its instances in images can be of different size, shape, and color.

Tracking is re-selection of information which belongs to an object previously detected in
data of the same origin. This task is intrinsically easier than detection because here we have
to find a concrete object with concrete properties, which narrows the search space. Moreover,
due to the world continuity, we can reduce the search space even more by predicting the
object’s position and orientation based on previous observations.

We can go even further into abstractions and talk about local and global problems. In the
case of a global problem, one has to scan the whole search space to find the exact solution.
Local problems imply that the search space is significantly reduced and there are efficient
techniques of local optimization which solve this problem. And our goal is to make as many
problems as possible local.

Some of the most challenging problems which arise during a mapping process are matching
and registration. By matching we mean finding one-to-one correspondence for two sets of
features. Registration is a process of transforming data into the same coordinate system. And
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generally these are global problems. Since each newly arrived dataset needs to be registered,
detection and matching have to be done every time. There is an alternative: use another
modality to get an approximate transformation and, as a result, reduce search complexity
and avoid the detection part of the process.

To be more concrete, let’s take vision as an exteroceptive modality, and wheel odometry
as a proprioceptive one. Pure vision-based mapping systems exist (for example, Raúl et al.
(2015); Engel et al. (2014)) and they solve the following problem: using only a video sequence
filmed with a moving calibrated camera, reconstruct the camera’s trajectory and build an
environmental map. The problem becomes significantly simpler once we introduce another
source of information, which directly gives us a motion estimation. Not only improves it pre-
cision by giving presumably decorrelated measurements but also it facilitates the registration
process by providing an initial motion approximation.

Another issue addressed by a multimodal system is a non-static surrounding. The main
assumption used in the design of robust estimators is that outliers don’t follow any particular
distribution and are decorrelated from one another. This assumption may be false since any
moving object generates a particular set of outliers which gives an estimation of relative motion
between the camera and the object, while we need an estimation of camera motion with respect
to the ground. In some cases, such estimations can be rejected based on dynamic modeling
and a hypothesis of limited acceleration. But it does not guarantee a correct estimation, if
we consider the following example. The system observes a parked car that starting moving.
There is no way for the system to know whether the robot itself is decelerating or the observed
car is accelerating since both objects have the same acceleration limits. That is the system
might consider that the accelerating car, not the rest of the objects around, represents the
static environment.

On the other hand, proprioceptive sensors are much less influenced by the surrounding. In
the case of wheel odometry, if the ground is not whet or dirty and its contact with the wheels
closely follows the non-slipping and non-skidding model, the odometry gives very accurate
local motion estimations. In this way we can choose among all the consistent sets of inliers
the one which is in the best consensus with the odometry and make the system even more
robust with respect to possible outliers.

2.2 Formal Definition

Let us define the visual odometry as an optimization problem with only 6 parameters: the
unknown transformation. The feature point reconstruction is done implicitly, that is there
are no parameters for 3D point reconstruction, as in typical bundle adjustment. For that,
a special triangulation algorithm has been developed, as the classical midpoint triangulation
has a singularity in whose neighborhood the most points actually lie.

Frame Configuration Let us first discuss the frame layout and transformation notation
used throughout this section (see the illustration in Fig. 5.2). Frames are referred to by their
origin, which is in fact just a 3D point. But the frame is also attributed a certain orientation.
Frames are defined via transformations from SE(3). In the problem of visual odometry we
consider only two frames at a time. Let us call them frames 1 and 2. To make the indexing
general we just need to replace 1 by i − 1 and 2 by i. The following frames are relevant for
the localization purposes:

• O0 — local map origin. The localization is done with respect to it.

• Ob,1 and Ob,2 — mobile base frames, or odometry frames defined via ξ1 and ξ2.

• Oc — camera frame, defined in Ob via ξc.
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• ζb, or ζ — transformation between two consecutive poses of the mobile base frame. It
is equivalent to 1ξ2.

• ζo — odometry measurement between frames Ob,1 and Ob,2.

• ζv — camera motion.

ζv is not an independent variable, since the camera is rigidly linked to the base. It is
defined as follows:

ζv = ξ−1
c ◦ ζ ◦ ξc (5.24)

Figure 5.2: Frame configuration. O0 is the local map origin; Ob the mobile base frames, or odometry frames;
Oc is the camera frame; ξ define base frames in the map frame; ξc represents the camera’s extrinsic parameters;
ζb, ζ is the transformation between two consecutive poses of the base frame; ζv is the camera motion.

Optimization Problem First, let us introduce necessary notations:

• Let P1 ⊂ R2 be a set of detected features on the first image.

• Let P2 ⊂ R2 be a set of corresponding features on the second image. It is homologous
to P1.

• Let h : R2 × R2 × SE(3)→ R2 be a reprojection function.

h takes both detected points and the transformation, triangulates and projects the triangu-
lated point from the first camera onto the second image. The odometry problem is formulated
as a non-linear optimization problem:

ζ∗ = argmin
ζ

∑
p∈P1
q∈P2

‖q − h(p, q, ζv)‖2 + (ζ−1
o ◦ ζ)T

C−1
o

2
ζ−1

o ◦ ζ (5.25)

The first term contains visual data. Because of the feature detection noise and errors in ζ
(remember that ζv is a function of ζ), the triangulation is not perfect and the reprojection
error is not zero. Assuming that we use wheel odometry ζo to initialize ζ, the triangulation
error should not be large and in this case h(p, q, ζo) should output a point relatively close to
q. We want h to be continuous and differentiable, in order to apply a second-order non-linear
optimization algorithm and minimize this reprojection error. In the following subsections we
figure out what kind of triangulation can be used for this purpose.

The second term in (5.25) is a wheel odometry prior. Co is a covariance matrix, which
represents the wheel odometry uncertainty. There are two advantages of such a formulation.
Firstly, the wheel and visual odometries are tightly integrated; secondly, the dimension of
the problem is 6, and it means that it is efficiently solvable using non-linear least squares, no
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matter how many feature points are used. Also, it is easy to change the number of points in
RANSAC and use, for example, one-point RANSAC algorithm Civera et al. (2009), or any
other number (3 must be sufficient to fully constrain the 6 DoF transformation).

Odometry Covariance Matrix We assume the unicycle kinematic model and locally cir-
cular motion. It means that we assume non-slipping and non-skidding constraints. The
uncertainty in odometry measurements is mainly due to:

• Violation of these constraints

• Errors in odometry calibration

For a different kind of kinematic scheme, strictly speaking, it may be necessary to do a
similar analysis. But in our belief, it will not make much difference. Let ζ be a 3 DoF motion
increment.

ζi =

xy
ϕ

 =


l cos

ϕ

2

l sin
ϕ

2

ϕ

 (5.26)

where l is the elementary distance and ϕ is the elementary rotation (Fig. 5.3). Together they
form a control vector u = (l, ϕ)T .

Figure 5.3: The circular motion model. ϕ is the turning angle; l is the distance. There are two frames: xy —
the starting frame, x2y2 — the terminal local frame. The motion here is exaggerated to illustrate the geometry,
but in reality the model is applied for small translations and rotations.

We are interested in Cζ , the covariance which characterizes the error distribution of the
odometry increment measurement in its local frame. It can be computed as follows:

Cζ =
∂ζlocal

∂ζ

∂ζ

∂u
Cu

(
∂ζlocal

∂ζ

∂ζ

∂u

)T
(5.27)

Here ζlocal is the elementary motion expressed in the terminal frame. Cu is the covariance of
the control vector:

Cu =

(
σ2
l 0

0 σ2
ϕ

)
(5.28)

We assume that the uncertainty, which is usually generated by small odometry intrinsic pa-
rameter errors, grows linearly with traveled distance. So, we propose to compute it as:

σl = λll
σϕ = λϕl

(5.29)
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The transformation between the root frame and the local frame is:

∂ζlocal

∂ζ
=

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 (5.30)

The Jacobian matrix of the motion:

∂ζ

∂u
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2
− l

2
sin

ϕ

2

sin
ϕ

2

l

2
cos

ϕ

2

0 1

 (5.31)

Multiplying the two matrices yields:

∂ζlocal

∂u
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2

l

2
sin

ϕ
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2
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 (5.32)

And the final covariance matrix has the following form:

Cζ =
∂ζlocal
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(5.33)

Here we replaced sin
ϕ

2
and cos

ϕ

2
by sϕ/2 and cϕ/2 respectively. Now we need to bring it back

to 6 DoF by replacing the untouched terms by zeros:

C∗ζ =



Cζ(1, 1) Cζ(1, 2) 0 0 0 Cζ(1, 3)
Cζ(2, 1) Cζ(2, 2) 0 0 0 Cζ(2, 3)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Cζ(3, 1) Cζ(3, 2) 0 0 0 Cζ(3, 3)

 (5.34)

We also add a small constant diagonal covariance matrix C̃ to the final result to introduce
some uncertainty in the other 3 directions. If the mobile platform has a suspension, then
rotations about x and y as well as translation along z may have greater uncertainties.

Co = C∗ζ + C̃ (5.35)

2.3 Middle Point Triangulation

Let t be the translation between the two camera positions; let a and b be the direction
vectors from the first and the second viewpoints respectively to a 3D point, which has to be
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Figure 5.4: a and b are reconstructed directions towards a feature; t is the translation vector between the two
positions.

triangulated (see Fig. 5.4). In the ideal case the two rays defined by the directions intersect
and there exist λa and λb such that:

λaa− λbb− t = 0 (5.36)

But, due to errors in the feature detection and in the transformation estimation between
the two camera poses, (5.36) is almost never true. To tackle this problem the least squares
solution is usually applied: {

a · (λaa− λbb− t) = 0
b · (λaa− λbb− t) = 0

(5.37)

The meaning of (5.37) is that the residual c is perpendicular to both a and b (Fig. 5.5).

Figure 5.5: c is the residual after solving the least squares. It is perpendicular to both a and b, so its length
is minimized over λa and λb.

{
λaa

2 − λba·b = a·t

λaa·b− λbb2 = b·t
(5.38)

Let us apply Cramer’s rule to find the closed-form solution:

∆ = −a2b2 + (a·b)2

∆a = −a·tb2 + b·ta·b

∆b = a2b·t− a·ba·t

λa =
∆a

∆

λb =
∆b

∆

(5.39)

Reconstruction Behind The Camera If a ·b > 0, which is true when the point is far
away and the two vectors are close, the following is true:{

a·t < 0
b·t > 0

⇒
{

∆a > 0
∆b > 0

⇒
{
λa < 0
λb < 0

(5.40)

since ∆ ≤ 0 for any a, b. The situation is illustrated on Fig. 5.6. So, just because of the
detection noise we may have the point reconstructed behind the camera. What we would like
to have, though, is a point far away in front.
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Figure 5.6: In case of diverging a and b, the point is reconstructed behind the cameras.

Attempt to Regularize We can try a naive approach to prevent points from being recon-
structed behind. The following approach is explained for a:

1. Compute ∆ and ∆a

2. if −∆ > −ε∆a, λa =
∆a

∆

3. else if ∆a = 0, λa =
2

ε

4. else λa =
2

ε
−

∆

ε2∆a

∀a, b it gives a reconstruction in front of the camera.

Jacobian Singularity The regularization does not remove the Jacobian singularity in case
of a = b. To verify this we can try to compute the following limit:

lim
a→b

∆

∆a
(5.41)

Let us say that a is approaching b and the angle between them is δ. For the sake of
simplicity let us say that hereafter ||a|| = ||b|| = ||t|| = 1; it does not change the properties
of the triangulation because a and b are just direction vectors and they can be renormalized
according to t. Then the following is true:

a·b = cos δ
a·t = cosϕ
b·t = cos(ϕ+ aδ)

(5.42)

where a ∈ [−1, 1] is a function of δ, and it quickly converges to its limit value as δ → 0; it is
-1 if δ and ϕ are antialigned; if they are aligned, a = 1; if they are orthogonal, a = 0. First,
let’s find Cramer’s determinants:

∆ = −a2b2 + (a·b)2 = cos2 δ − 1 = − sin2 δ (5.43)

∆a = −a·tb2 + b·ta·b =
− cosϕ+ cos(ϕ+ aδ) cos δ =
− cosϕ+ (cosϕ cos aδ − sinϕ sin aδ) cos δ =
cosϕ(cos aδ cos δ − 1)− sinϕ sin aδ cos δ

(5.44)
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By plugging the values of ∆ and ∆a we can now compute the limit value:

lim
δ→0

∆

∆a
= lim

δ→0

− sin2 δ

(cos aδ cos δ − 1) cosϕ− sin aδ cos δ sinϕ
=

lim
δ→0

− δ2

(1− a2+1
2 δ2 + a2

4 δ
4 − 1) cosϕ− aδ(1− δ2

2 ) sinϕ
=

lim
δ→0

δ

a sinϕ

(5.45)

We don’t consider the case sinϕ = 0 which corresponds to the triangulation of the epipole,
since it is impossible. So, depending on a, the value will approach its limit in different ways.
It will approach 0 from the left, if a < 0, and from the right, if a > 0. Finally, if a = 0, the
limit changes its value:

lim
δ→0

∆

∆a
= lim

δ→0

− sin2 δ

(cos δ − 1) cosϕ
= lim

δ→0

− δ2

(1− 1
2δ

2 − 1) cosϕ
=

2

cosϕ
(5.46)

This phenomenon has an intuitive explanation. a = 0 corresponds to rotation δ about an
axis, perpendicular to a × t. When δ = 0, a = b and the value is not defined (even though
we assume that the point is at +∞). But if we rotate b infinitesimally about t, λa and λb
immediately become defined and finite, because the common perpendicular to a and b passes
near the camera origins (in fact, λa = 0.5 cosϕ and λb = −0.5 cosϕ). All these facts mean
that the singularity cannot be eliminated and the Jacobian matrix of the reconstructed point
is not well defined in the neighborhood of the singularity.

2.4 Regularized Triangulation

We want the regularized triangulation to have the following properties:

• It is defined even for diverging direction vectors, so it does not prevent the optimization
process from converging.

• Its Jacobian matrix is well-defined in the neighborhood of a = b.

• For close points and correct motion estimation it gives accurate point reconstruction.

We propose the following triangulation formulation:{
(a+ b) · (λaa− λbb− t) = 0
t · (λaa− λbb− t) = 0

(5.47)

The residual is perpendicular to t and to a + b. Let us denote a + b by r. The solution
given by the Cramer rule is:

∆ = a·tb·r − b·ta·r

∆a = t2b·r − r ·tb·t

∆b = t2a·r − r ·ta·t
(5.48)

In this case:
∆a ≥ 0

∆b ≥ 0
(5.49)
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With the equality in the case when b = t for ∆a and a = t for ∆b. On the other hand
∆ = 0⇒ a = b.

It means that λ−1
a = ∆

∆a
is defined almost everywhere. So, the regularized reconstruction

goes as follows (for λa):

1. Compute λ−1
a = ∆

∆a

2. if λ−1
a > ε, λa =

1

λ−1
a

3. else λa =
2

ε
−
λ−1
a

ε2

where ε is a small constant. Let us call this function ψε:

ψε(x, y) =


x

y
if εx < y

2

ε
−

y

ε2x
otherwise

(5.50)

Its schematic plot is depicted on Fig. 5.7. It is differentiable:

∂ψε

∂x
=


1

y
if εx < y

y

ε2x2
otherwise

∂ψε

∂y
=


−
x

y2
if εx < y

−
1

ε2x
otherwise

(5.51)

In the case when εx = y the derivatives from both sides are the same.

Figure 5.7: Solid curve is the regularized inverse y = ψε(1, x); dashed curve is just y = x−1; ε is the stitching
point. Instead of going to +∞ and coming back from −∞ when the argument crosses 0 from right to left, the
function continues to get higher and higher.

Using ψ the triangulation is defined as follows:

λa = ψ(∆a,∆)

λb = ψ(∆b,∆)
(5.52)

2.5 Reprojection Mapping and Jacobian Matrix

Now it is possible to define h from (5.25):

λa = ψε(∆a,∆)

X = ζ−1
v (λaa)

ŝ = f (X)

(5.53)
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f is the projection function of the second camera; ŝ is the projected point, the output of h. To
avoid unnecessary superscripts, we omit the projection frame of X (which is actually c,2X),
as it is the same across the section. The Jacobian matrix of h can be expressed using the
chain rule:

∂ŝ

∂ζ
=

∂ŝ

∂X

(
∂X

∂ζ
+
∂X

∂λa

∂λa

∂ζ

)
(5.54)

Let’s break it down:

1.
∂ŝ

∂X
is the projection Jacobian matrix.

2.
∂X

∂ζ
is the part responsible for the 3D point motion directly related to the transformation

change.

3.
∂X

∂λa
is the point motion caused by change in triangulation.

4.
∂λa

∂ζ
is the triangulation dependence on the transformation

While 1 is given by the camera model and 3 is trivial, 2 and 4 are more involved. We show
below how to express them.

3D Point Jacobian Matrix The Jacobian matrix we are looking for is equivalent to the
kinematic Jacobian matrix. We remind that the we use 1 and 2 instead of i−1 and i for frame
indices, since we have only two of them. To compute it, let us assume that Ob,2 is moving
with respect to Ob,1 because ζ̇ 6= 0. Then, the following is true:

Ẋ =
∂X

∂ζ
ζ̇ (5.55)

We remind that X is c,2X. To figure out what are the expressions for
∂X

∂ζ
, we need to express

Ẋ through ζ̇. In this case the 3D point is static and the camera is moving. Hence, the relative
motion of the point with respect to the camera can be written as follows:

Ẋ =
(
−I [X]×

)( vc

ωc

)
(5.56)

Here (vc,ωc) define the camera’s motion in Oc,2 robot’s position, and it is related to the
motion of the base frame: (

vc

ωc

)
=

(
cRb −cRb[tc]×
0 cRb

)(
vb

ωb

)
(5.57)

cRb is the rotation matrix from ξ−1
c ; tc is its translational part. (vb,ωb) is the kinematic

screw of Ob,2. Let us first compute it in the root frame of ζ, that is, in Ob,1:(
1vb
1ωb

)
=

(
I 0
0 Mr

)
ζ̇ (5.58)

Here Mr is the interaction matrix which converts ṙ into ω. For r = uϑ it has the following
form:

Mr = I +
ϑ

2
sinc2

(
ϑ

2

)
[u]× + (1− sincϑ)[u]2× (5.59)
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Projecting the vectors into Ob,2 gives:(
vb

ωb

)
=

(
2R1 0
0 2R1Mr

)
ζ̇ (5.60)

2R1 is the rotation matrix associated with ζ−1. Putting (5.56), (5.57), and (5.60) together
yields:

∂X

∂ζ
=
(
−I [X]×

)(cRb
2R1 −cRb[tc]×

2R1Mr

0 cRb
2R1Mr

)
(5.61)

The advantage of this form of the Jacobian matrix is that the second matrix does not depend
on X, so it can be computed only once for each ζ and reused for multiple points.

Triangulation Jacobian Matrix The definition of λa is given in (5.53), while ∆a and ∆
are defined in (5.48). The chain rule gives the following expression:

∂λa

∂ζ
=
∂λa

∂∆

∂∆

∂ζ
+
∂λa

∂∆a

∂∆a

∂ζ
(5.62)

To find ∂∆
∂ζ and ∂∆a

∂ζ , let us use the same method and assume that Oc,2 moves with respect

to Oc,1 with v and ω due to nonzero ζ̇ (in this paragraph, if a vector’s projection frame is not
specified, it is Oc,1); t is the translation part of ζv and its time derivative ṫ = v; b is bound to
the second camera and it is changing due to the rotation:

ḃ = ω × b = −[b]×ω (5.63)

Keeping in mind that r = a+ b and d
dtb

2 = 0:

∆̇ = (b·ra− a·rb) · ṫ+ (a·ta− b·ta− a·rt) · ḃ (5.64)

Hence:
∂∆

∂ζ
=
(

(b·ra− a·rb)T − ((a·t− b·t)a− a·rt)T [b]×

)
L (5.65)

Here L is the interaction matrix. It is defined via the following general relation between the
transformation time derivative and the kinematic screw:(

1v2
1ω2

)
= L 1ξ̇2 (5.66)

L should be expressed in O1, the base frame of 1ξ2, and the kinematic screw
( 1v2
1ω2

)
corresponds

to the motion of O2 with respect to O1 projected into O1.

Similarly, we can compute ∂∆a
∂ζ :

∆̇a = (2b·rt− b·tr − r ·tb) · ṫ+ (t2a− b·tt− r ·tt) · ḃ (5.67)

∂∆a

∂ζ
=
(

(2b·rt− b·tr − r ·tb)T −
(
t2a− (b·t+ r ·t)t

)T
[b]×

)
L (5.68)

If we recall that v is c,1vc,2 and ω is c,1ωc,2, then L is defined similarly to what we have
seen in the previous paragraph. Reusing (5.57) and (5.58) we obtain:(

c,2vc,2
c,2ωc,2

)
=

(
cRb

2R1 −cRb[tc]×
2R1Mr

0 cRb
2R1Mr

)
ζ̇ (5.69)
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By simply projecting the vectors into Oc,i we get:

L =

(
c,1Rc,2 0

0 c,1Rc,2

)(
cRb

2R1 −cRb[tc]×
2R1Mr

0 cRb
2R1Mr

)
=

(
cRb −c,1Rb,2[tc]×

2R1Mr

0 cRbMr

)
(5.70)

It can be simplified even further:

[tc]×
2R1 = 2R1[1R2tc]×

1R2
2R1 = 2R1[1R2tc]× (5.71)

Which produces:

L =

(
cRb −cRb[1R2tc]×Mr

0 cRbMr

)
(5.72)

2.6 Results

The overall architecture of the tested visual odometry is depicted in Fig. C.12. To test this
odometry, a synthetic sequence has been used 1. The trajectories have been generated as
follows:

1. A smooth trajectory is defined via a sequence of straight lines and arcs.

2. The wheel odometry bias is simulated by adding a small rotation to every trajectory
increments.

3. The Ground Truth, which is used as the camera position for image rendering, is obtained
by adding some noise to the smooth trajectory. It is done to model the suspension effect.

Figure 5.8: Architecture of the visual odometry. Ii and ξo,i are the inputs: current image and odometry
measurements; Pi is the detected feature set; P̃i,i−1 is the inlier set, computed by the RANSAC.

Two-point RANSAC with the wheel odometry prior is used. It demonstrates high ef-
ficiency. The resulting trajectory is presented in Fig. C.14. The wheel odometry diverges
quickly because of a strong rotation bias, while the visual odometry follows the real trajec-
tory much closer.

Possible Improvements

• Use epipolar constraint with the transformation provided by the wheel odometry to
improve the matching accuracy.

• Keep the depth estimation for the next step to make the matching even more robust.
It would even be possible to track the features.

• In the context of mobile platforms with suspension, like cars, an IMU installed onto
the same rigid body as the camera can improve the motion estimation precision and
make the system even more resistant to outliers, since IMUs give an accurate rotation
estimation, which not only complements the z rotation given by the wheel odometry,
but also provides the information about the suspension state.

1Technical details of image rendering are given in Appendix B
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Figure 5.9: An image from the synthetic sequence.
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Figure 5.10: Visual odometry test with simulated data.
Wheel odometry has a strong orientation bias, never-
theless, the divergence of visual odometry trajectory is
less than a half a meter for two laps with total length
of 114 m.

3 Direct Visual Odometry

We can try to imagine a system where the step of feature detection is completely omitted. The
advantage of the feature-based methods is that the problem becomes purely geometric, once
the features are detected. On the other hand, if the environment does not contain enough
features of the needed type, then the system gets lost, even though images may contain a lot
of different textures. A simple example to show the advantage of direct methods: two black
circles on white background have zero point-like features, and yet it is sufficient to localize
the camera.

A possible way of egomotion estimation is via dense optical flow, as it has been done for
fisheye cameras in Radgui et al. (2011). Another approach consists in applying virtual visual
servoing for image registration. Photometric visual servoing has been applied to vision-based
robot navigation (For example Caron et al. (2013)). For virtual visual servoing, a 3D model
of the environment is required. At first, the direct methods have been applied together with
RGB-D sensors (for example Izadi et al. (2011); Kerl et al. (2013)). In the case of RGB-D, 3D
reconstruction is directly available, which makes the overall problem easier. In Meilland et al.
(2015) stereo vision is used to perceive the depth independently of the motion estimation.
But in the case of a single camera, depth and motion cannot be decoupled and have to be
computed simultaneously. Such system has been proposed first as odometry Engel et al.
(2013), and then as a SLAM system (Engel et al. (2014)).

In this section we describe a possible way of applying the Enhanced Unified Model and the
direct stereo correspondence algorithm to the direct visual localization. Also we try Mutual
Information as a similarity measure between two images instead of photometric error.

3.1 Photometric Registration

In this context registration means, given two images of the same scene taken with a small time
interval and a direct 3D reconstruction for one of them, to find the transformation between
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the two viewpoints which minimizes the photometric reprojection error. By photometric error
we mean the difference in pixel brightnesses.

Brightness Constancy Hereafter we imply the following hypothesis: an observed surface
point produces the same pixel brightness, whatever the distance, the observation angle and the
time moment.

Obviously, this statement is not true for the following reasons:

• Each pixel does not observe a single point, but rather a small patch of the surface and
its resulting intensity is the average intensity of that patch. Brightness of pixels which
represent a border of an object is an even more complicated matter.

• This assumption also implies so-called Lambertian reflectance, which is a model of a
perfect matte surface. It means that the light is dissipated by it uniformly in all di-
rections. This is an idealized model because generally the brightness depends on the
observation angle. Moreover, if a surface is glossy then its brightness may vary a lot:
from black, when the reflections are not observed, to white when the surface is reflecting
a light source.

• The lighting changes over time. Outdoors lighting can change rapidly due to irregular
clouds, and it changes slowly and steadily during the day because of the earth rotation.
Indoor lighting is more stable, but it can also change when additional light sources are
turned on or off. Fluorescent light produces flickering at 50 or 60 Hz depending on the
network frequency. Incandescent light reacts to the network tension. Even opening and
closing doors and just passing by affects the lighting (a red object, for example, brought
closely to a white surface, will make it reddish).

But taking all these effects into account is, so far, impossible. Rapid-dynamics effects must
be handled by robust properties of the localization, while slow-dynamics effects (such as day-
night changes) don’t affect the system as it is supposed to work at much higher frequencies.
For long-term localization, other techniques, not sensitive to lighting changes, can be applied.
For example, mutual-information-based localization, which we describe later on.

Mathematical Formulation The frame and transformation notations are the same as in
the previous section (see Fig. 5.2). Let us define I1 and I2 as the images taken from Oc,1 and
Oc,2 respectively. The error function is defined as follows:

E(ζ) =
1

2

∑
p∈Ω

[I2 (w(p, ζv))− I1(p)]2 (5.73)

Here, ζv = ξ−1
c ◦ ζ ◦ ξc, as in the previous section; w : Ω × SE(3) → R2 is a wrap function,

which depends on camera’s intrinsic parameters and on depth mapping:

D : Ω ⊂ R2 → R (5.74)

This mapping is usually represented by a depth map, that is an array of values which represent
the depth of pixels in the original image. Generally this map is obtained using a stereo
reconstruction algorithm. For now let us just assume that we are given the depth map.

The wrap function is computed as follows:

1. Reconstruct p into a 3D direction e = f−1(p) using (C.9).

2. Using D, reconstruct 3D point 1X = D(p)e.
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3. Compute 2X = ζ−1
v (1X)

4. Project the point : w(p, ξ) = f(2X)

Also, while p has integer coordinates because it is related to a particular pixel, w(p, ξ)
is not generally speaking integer, hence I2 (w(p, ξ)) does not have exactly the same meaning
as I1(p). While the latter represents just the value stored in the image matrix, the former
requires a certain interpolation technique. In this work, the bicubic interpolation is used. The
localization problem is defined as follows:

ζ∗ = argmin
ζ

E(ζ) (5.75)

Taking into account extrinsic transformation ξc, we can optimize the wrapping process by
precomputing the point cloud in Ob,1 for all pi ∈ Ω:

1. ei ← f−1(pi) — reconstruct the direction

2. c,1Xi ← D(pi)ei — compute the spatial point in the camera frame

3. b,1Xi ← ξ−1
c (c,1Xi) — transform it into the base frame

This point cloud remains the same during the whole optimization process. Let us agree that
if there is no projection frame specified for spatial points X, they are projected into Oc,2. So
the cost function becomes:

E(ζ) =
1

2

∑
i

[I2 (f (Xi))− I1(pi)]
2 (5.76)

Where Xi = (ζ ◦ ξc)
−1(b,1Xi). Since monocular odometry deals with only one camera, the

projection mapping f is the same for both camera positions.

Solution To solve this problem, we can use non-linear least squares approach, more pre-
cisely, Levenberg-Marquardt optimization technique (Lourakis and Argyros (2004)). This
method becomes efficient if we can compute the analytic Jacobian matrix expressions, which
can be computed using the chain rule. Let g : SE(3)→ RN be the model prediction function.
In this case it is defined as:

gi = I2 ◦ f (Xi) (5.77)

The objective is to minimize the norm of the error vector:

ζ∗ = argmin
ζ
‖gi − I1(pi)‖ (5.78)

The Jacobian matrix we are looking for is the following one:

∂gi

∂ζ
=
∂I2

∂f

∂f

∂Xi

∂Xi

∂ζ
(5.79)

Let us brake it down:

1.
∂I2

∂f
is the image gradient.

2.
∂f

∂Xi
is the projection Jacobian matrix, known for the camera model.

3.
∂Xi

∂ζ
defines how the point moves with respect to the second camera when the transfor-

mation changes. It has been derived in the previous section, its expression is given in
(5.61)
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3.2 Mutual-Information-Based Registration

To make the system more robust with respect to changes in object position and light condi-
tions, we suggest to use the mutual-information-based image registration, rather than photo-
metric error minimization. To the best of our knowledge, it has been applied to registration
of images of planar objects in Dame and Marchand (2012) and to image-based mobile robot
navigation in Raj Bista et al. (2016b).

Here we propose to combine it with dense vision-based reconstruction for SLAM purposes.
Image registration is done via MI maximization:

ξ∗ = argmin
ξ
−MI(I1, I2,D, ξ) (5.80)

MI-based image registration has the following advantages:

• MI is almost insensitive to outliers

• MI is quite robust with respect to lighting changes

By definition, MI between two random variables A and B is computed as follows:

MI(A,B) =
∑
a∈A

∑
b∈B

P (a, b) log

(
P (a, b)

P (a)P (b)

)
(5.81)

That is, the sum is done over all possible values of A and B; P (a) is the probability that
the random variable A takes the value a; P (a, b) is the joint probability. MI measures how
much information one variable conveys about the other. In our case, random variables are
pixel brightness values. And we want the two pixel sets, the target image and the wrapped
reference image, to be consistent. That is, if two pixels of the reference image have close
brightness values, then it is likely that the corresponding pixels on the target image also have
close brightness values. It does not imply that the brightness does not change from one image
to another, but rather that it changes consistently.

The main challenge is to be able to compute MI itself and the gradient with respect to ζ.
Generally, MI for images is computed via histograms

3.2.1 Histogram and MI Computation

In our case, A is the brightness of the target image, while B is the brightness of reprojected
pixels from the base image. The first step is to compute the values of the pixels under
consideration. It is done in the same manner as in the photometric approach: wrap function
w is computed and the brightness values for the reprojected points are computed via the
bicubic interpolation.

Now suppose that we have two sets A = {aj} and B = {bj} of brightness samples from
the first and the second image respectively; j ∈ 1..M . In order to compute MI we have to
construct a 2D histogram.

Let us first consider a 1D histogram and some of its aspects. Generally, a histogram H
has N bins delimited by a sequence of thresholds {ti} i ∈ 0..N and for a given sample set,
it counts how many of them lie inside each bin. The number of samples lying between ti−1

and ti is denoted by hi.
There is an important constraint on the histogram computation, imposed by this appli-

cation: MI must be a continuous and differentiable function of ζ, hence the histogram values
must have the same properties. The brightness values of pixels from the first image are con-
stant. Only the brightness values sampled from the second image are changing. And they are
continuous functions of transformation ζ since they are interpolated.
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Figure 5.11: Histogram computation via sample response function φ. For each sample, a histogram bin
increment is calculated as an integral of φ between the corresponding bin’s limits. φδ is the function defined
in (5.86).

To make the histogram a continuous function, the following simple technique, illustrated
in Fig. 5.11, can be applied. Let φ : R→ R be a sample response function if it has following
properties:

1. φ(x) ≥ 0 ∀x

2.
∞∫
−∞

φ(x)dx = 1

For example it can be defined as follows for a certain parameter δ:

φδ(x) =


1

δ
if −

δ

2
≤ x ≤

δ

2

0 otherwise

(5.82)

Then, the histogram is computed as follows:

hi =
∑
a∈A

∫ ti

ti−1

φ(x− a)dx (5.83)

To keep the total count constant, we must compute the edge bins in a slightly different manner:

h1 =
∑
a∈A

∫ t1

−∞
φ(x− a)dx hN =

∑
a∈A

∫ ∞
tN−1

φ(x− a)dx (5.84)

This way of computing the histogram makes it a continuous and differentiable function of
A. We do the differentiation later on in this section. Also, for some applications it may be
interesting to compute a non-uniform histogram. In our case, a uniform histogram is used:

ti = iδ (5.85)

Where δ is the bin size. The sample response is defined as follows (Fig. 5.11):

φδ =



2 + 4x

δ
if −

δ

2
≤ x < 0

2− 4x

δ
if 0 ≤ x <

δ

2

0 otherwise

(5.86)



3. DIRECT VISUAL ODOMETRY 147

This form has the advantage that its derivative exists, even though it is not continuous.
Existence of its derivative makes the second order optimization of MI more consistent. We
tried functions of a higher order differentiability for this purpose, but it did not provide any
significant improvement in either the convergence properties or the localization precision.

Fig. 5.11 illustrates the histogram computation process. The support of φ has length δ, so
in the case of 1D histogram generally every sample contributes to two histogram bins, unless
it is perfectly aligned with one of their centers.

2D histogram computation is done as follows:

hij =
M∑
k=1

ti∫
ti−1

φ(x− ak)dx
tj∫

tj−1

φ(y − bk)dy (5.87)

The edges must be handled in a similar manner as (5.84).

To compute MI, we need three histograms: HA, HB, and HAB. Since we have three
histograms here, let us denote by hAi and hBj the elements of the 1D histograms; elements hij
of HAB can be distinguished thanks to their double subscript indices. HA is constant; HAB

must be computed at every step. HB is obtained by marginalizing HAB:

hBj =
N∑
i=1

hij (5.88)

Once normalized, the histograms provide the necessary probabilities:

P
(
a ∈ [ti−1, ti[

)
=
hAi
M

P
(
b ∈ [tj−1, tj [

)
=
hBj
M

P
(
a ∈ [ti−1, ti[, b ∈ [tj−1, tj [

)
=
hij

M

(5.89)

We remind that M is the total number of samples. MI is computed as follows:

MI(A,B) =
N∑
i=1

N∑
j=1

hij log

(
Mhij

hAi h
B
j

)
(5.90)

The gradient can be written as follows, according to the chain rule:

∂MI

∂ξ
=
∂MI

∂B

∂B

∂ξ
(5.91)

Here
∂B

∂ξ
is the same thing as (5.79). Now we need to figure out how MI changes if we

change one of values in B:

∂MI

∂bk
=

N∑
i=1

N∑
j=1

∂MI

∂hij

∂hij

∂bk
(5.92)

We may notice that most of terms that contain
∂hij

∂bk
are zero, because generally bk contributes

to only four bins. So we assume that the programmed version correctly selects necessary hij
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Figure 5.12: Direct visual odometry with keyframes. (a) The first keyframe with origin O1 is instantiated, it
has a certain orientation and distance limits (A and B). There is a depth map D1 and an image I1 associated
with this frame. (b) While the robot stays within the keyframe limits, its localization ζ with respect to O1 is
computed and used to improve D1. (c) Once the robot leaves the keyframe limits, a new keyframe is instantiated
with origin O2 and an image I2, D1 is projected onto it and is merged with a new depth D(I1, I2,

2ξ1).

to avoid unnecessary computations. Here, on the other hand, we will keep it under this form
since it is formally correct and easy to use for demonstration purposes.

∂MI

∂hij
= log

(
Mhij

hAi h
B
j

)
+ 1− hij

hBj
(5.93)

Finally, by differentiating (5.87) we get:

∂hij

∂bk
= [φ (tj−1 − bk)− φ (tj − bk)]

ti∫
ti−1

φ(x− ak)dx (5.94)

3.3 The Complete Localization Loop

A localization loop outline for both registration techniques is the following:

1. Sparse visual odometry is used to initialize the first transformation and a depth map.

2. Using the computed depth map, the next image is registered. The wheel odometry is
used as the initial transformation approximation and as scale factor reference.

3. Compute a new depth map using the computed transformation and merge it with the
previous one. Go to step 2.

There are multiple ways of implementing such a system. A simplistic experimental system
setup has been used in this work. Its purpose is just to demonstrate the practical value of all
the theoretical results. The approach is illustrated in Fig. C.15

At any moment, there is an active keyframe which has an associated depth map. All the
newly arrived images are registered with respect to it. Then, the depth map is refined using
the tracking stereo algorithm. When the robot gets too far away from the active keyframe, a
new keyframe is instantiated and the depth map is projected into it. Two thresholds are used:
one is for distance, the other is for direction difference, since the camera does not provide 360◦

view. Then the semi-global-matching algorithm is used to compute a new depth map which
is merged with the reprojected one afterwards.
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There is an issue of the scale factor drift. In contrast to sparse visual odometry, which does
not have any internal state, dense visual odometry keeps the estimation of the depth map. It
means that if the depth map is biased, for example all the measurements are underestimated
by 10%, then a simple tight coupling with the wheel odometry will not be sufficient, since
the translation length is defined by both wheel odometry measurement and the depth map
scale. We applied here another solution, based on the assumption that the length estimation
given by the wheel odometry is not biased and does not drift over time. It is generally not
the case, but it is a fair approximation, since wheel odometry is the only source of scale factor
information.

Then the computed motion increment length (not the orientation) is normalized according
to the wheel odometry measurement (hard scale-factor normalization).

Another, more involved solution is to include the scale factor into the optimization as
an independent variable along with the odometry prior, and correct the depth map at every
iteration. This is a particular case of a more general global optimization where the depth
map and the motion parameters are estimated simultaneously. In the current implementation,
depth estimation and localization are separated.

The results of direct visual localization testing on synthetic data are presented in Fig. C.16.
The same data, as for the sparse visual odometry have been used, but the trajectory is twice
as long (four laps instead of two), to make the drift visible. Yet the vertical drift, which
does not appear in the plot, is about 1 m, which is a significant value. So far, we don’t have
an ultimate explanation why the vertical drift is much larger. We strongly believe that it
is related to the questions of direct SLAM stability, and its relation to the environmental
structure and the trajectory. The results of MI-based localization are given in Fig. 5.14.
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Figure 5.13: Direct visual odometry test with photometric registration. Left — No scale normalization.
Right — Hard scale normalization, four 8-shaped laps.

3.4 Stability of Direct Visual Localization

In the original papers (for example Engel et al. (2014)), the direct localization system has been
proposed and experimentally validated. During our study, we discovered that, depending on
numeric parameters and thresholds, the system either converges or diverges. It is important
to prove theoretically at least local stability of direct localization methods.
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Figure 5.14: Direct visual odometry test with MI-based registration — four 8-shaped laps.

An important difference between feature-based localization and direct localization is that
in the first case two images are enough to estimate both feature position and transformation,
while in the second case we need at least three images. If we count the number of unknowns
and the number of equations we will see the following figures:

• In the case of point-like features, every point gives 2 equations: the reprojection error on
the second image along u and v, while it requires only one parameter: the depth in the
first image. Hence we need only 5 points to reconstruct the motion up to a translation
scale factor.

• The direct method gives a single equation per point for every image beyond the first
one: its photometric reprojection error, while the number of unknowns is still one per
point. So, if we have only two images the number of unknowns is N+6 for N equations,
where N is the number of salient points.

We can artificially make the system overdetermined by adding regularization terms, as
we did for the stereo reconstruction. Regularization works well in the case when the stereo
system is calibrated and the transformation between the cameras is known. In this case,
while it introduces a certain bias in the depth estimation, the overall result is so much better
with the regularization than without, that we accept the bias as a necessary evil. But the
important question is how would this bias interact with the localization part?

Another important question is how the transformation estimation error is propagated. In
our system as well as in Engel et al. (2014) a feature-based odometry is used to initialize
the first transformation. The estimation inevitably contains a certain error. If we use this
estimation to compute the depth map, and then use the depth map to compute the next
transformation, will this error be amplified or attenuated? In other words, will the error
remain bounded?

3.5 Mapping and Localization

The proposed direct visual odometry can be extended to a mapping system. All we need to
do is store the keyframes along a trajectory. If the robot is going along a trajectory which is
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close to the one used to build the map, it can use the key images to localize itself with respect
to the corresponding camera positions. Even though errors in keyframe positions lead to an
error in the localization, it is locally consistent with respect to the previous trajectory.

Such a localization can be applied for repeating learned trajectories. For example, an
autonomous vehicle should follow a predefined path. This path can be defined by a sensory
topological map. If the localization error within each keyframe remains bounded and the
keyframes are traversed in the right order, then the robot will arrive to the desired location
in the real world even though its own global localization with respect to the starting point
will be wrong.

The SLAM system operates in the following way. After the depth map initialization, which
takes a certain distance, the system is looking for keyframes. If there are no keyframes in
the map so far, or the existing keyframes are too far away, it enters the SLAM mode, which
is in fact the direct photometric odometry which stores the keyframes and their absolute
coordinates. If the system detects that there is an existing keyframe which is close enough
(if there are more than one, it takes the closest one), the system switches to the localization
mode. In this mode, the system localizes itself with respect to the keyframe using the MI
registration and checks whether it is necessary to change the keyframe or switch to the SLAM
mode.

The results obtained for the simulated data are given in Fig. 5.15. The map is built during
the first lap, and along the four other laps the system localizes itself with respect to it. The
loop closure is not in the scope of this work. For the simulated data, the divergence in the
odometry mode is so small, that the last keyframe of a lap and the first one are close enough
that the system be able to localize itself with respect to the first keyframe after getting too
far away from the last one (Fig. 5.15b).
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Figure 5.15: Direct SLAM system test on simulated data — five laps. (a) Global trajectory view: the system
stably localizes itself within a sensory map that it has built during the first lap. (b) Zoomed view at the origin:
at this scale it is visible that both the GT and VO trajectories are not exactly the same, and are noisy. Also,
there is a visible transition between the last and the first keyframe which appears because of small odometry
divergence.

3.6 Localization Tests with Real Data

To test the precision and robustness of the developed localization technique, the localization
scheme has been tested on real data in the following manner:
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1. A visual sensory map is constructed using ground truth localization.

2. The localization algorithm is used to localize the vehicle in this map using different
recordings along the same trajectory.

3. The localization output is compared to the ground truth.

Data and Environmental Conditions The acquisition was done in a residential area on
November 20, 2017 (the map and the first localization datasets) and on November 30, 2017
(the second localization dataset). The mutual-information measure allows us to use a map
constructed during a different day with slightly different lighting conditions and other minor
changes in the environment, like dead leafs on the ground, differently parked cars, and so on.

The traffic was not dense but there were multiple cars passing by. The speed of the vehicle
during the acquisition is between 30 and 50 km/h. The camera frame rate is 20 Hz at 640×480
resolution. Examples of the dataset images are presented in Fig. 5.16. The trajectories are
represented in Fig. C.17.

Map Construction The map, as in the previous case, is a sequence of images with associ-
ated robot poses in the global frame. The ground truth measurements are obtained using fused
odometry, IMU, and RTK GPS at 1 Hz. The map is constructed using three datasets. The
construction algorithm is straightforward. For every new image, the system checks whether
there is already a keyframe close enough. If not, a new keyframe is instantiated. Thus, the
overlapping areas of different datasets are mapped only once. The process is illustrated in
Fig. C.18. The resulting map structure is sketched in Fig. 5.18.

Localization The localization pipeline is illustrated in Fig. C.19. The system is initialized
with the GT position. The first transformation between camera positions is computed using
classical keypoint-based visual odometry. Then this transformation is used to compute the
first depth map.

Dense visual odometry (illustrated in Fig. C.15) is constantly used to compute the local
motion and to refine the depth map. The local pose with respect to the active keyframe is
computed using photometric virtual visual servoing. Then the depth map is used in MI-based
virtual visual servoing to compute the relative pose of the active keyframe with respect to the
nearest map frame. Two approaches have been used: with and without trajectory smoothing
using odometry prior. In the first case, the current pose ξprior is included into the MI-based
localization process as a part of the cost function:

ξ∗ = argmin
ξ

−MI(ξ) + λ
∥∥∥ξ−1

prior ◦ ξ
∥∥∥ (5.95)

In the second case ξprior is used only for initialization. We have to use λ to equalize the
two terms in the cost function because their units are not the same and there is no obvious
formally correct way to deal with it. So, λ has been adjusted manually.

The error plots and computed trajectories for different datasets are given in Fig. 5.22–C.21.
Fig. 5.22 represents the localization results with the data acquired just after the map data
acquisition. Fig. 5.23 contains the results for a different dataset acquired on a different day.
Fig. 5.24 and C.21 represent the same thing but with the odometry prior applied for trajectory
smoothing. The average errors are summarized in Fig. C.20. The figures demonstrate that
precision goes down when we use a sequence from a different day for the localization.

In the case of non-smoothed trajectory, once the system switches the keyframe, the tra-
jectory may undergo a jump because the prior position is not included as an optimization
criterion. The absence of smoothing shows the system intrinsic precision and convergence
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a)

b)

c)

d)

e)

f)

Figure 5.16: Sample images from the map dataset from 20/11 (a, d), the test datasets from 20/11 (b, e), and
the test datasets from 30/11 (c, f). All the three datasets contain moving objects.
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Figure 5.17: Trajectories used for the experiment. The approximate lengths are: blue — 650 m, green —
520 m, red — 740 m.
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Figure 5.18: The built map. 3 different datasets were used. Colors indicate which dataset the keyframes have
been taken from.

Figure 5.19: Map construction process. Ii and ξGT,i are measurements: the current image and the Ground
Truth localization measurement. ∆t and ∆r are scalar rotation and translation thresholds for map construction.
In our application they are 1.5 m and 1 rad respectively.
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Figure 5.20: Localization pipeline. Ii and ζGT,i are the current image and the odometry increment since the
last image.
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Figure 5.21: Average error comparison for different datasets. 20/11 and 30/11 are the acquisition dates; ”-S”
stands for odometry prior smoothing. ”lat” — lateral error, ”long” — longitudinal error.

limits. Even though in some cases the error goes as high as 1.5 m, the system does not get
lost and manages to recover and return the actual trajectory.

Trajectory smoothing, on the other hand, obviously improves the localization results in
almost all the cases. It removes error spikes and makes the trajectory less noisy. The error
standard deviation remains about 10-15 cm, which is a good precision for an absolute visual
localization system.

We insist once again on the fact that there is neither explicit feature detection and match-
ing, nor explicit moving object detection. The latter can improve the robustness and local-
ization quality even further.
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Figure 5.22: Localization results — Reconstructed trajectories and the corresponding localization errors in the
robot’s frame. Localization data has been acquired within a half hour after the map data acquisition. Poor
quality at the end of the third dataset is due to a drop in GT precision (GPS in “float” mode).
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Figure 5.23: Localization results — reconstructed trajectories and the corresponding localization errors in the
robot’s frame. Localization data has been acquired 10 days after the map data acquisition.
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Figure 5.24: Localization results — reconstructed trajectories and the corresponding localization errors in the
robot’s frame using trajectory smoothing. Localization data has been acquired within a half hour after the
map data acquisition. Poor quality at the end of the third dataset is due to a drop in GT precision (GPS in
“float” mode).
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Figure 5.25: Localization results — reconstructed trajectories and the corresponding localization errors in the
robot’s frame using trajectory smoothing. Localization data has been acquired 10 days after the map data
acquisition.
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4 Conclusions

Several different localization systems based on fisheye cameras and wheel odometry have been
implemented and tested using synthetic data. The main accent is made on the use of direct
image registration with photometric and Mutual-Information-based criteria.

A visual localization system, which uses virtually all the concepts introduced in the thesis,
has been implemented and tested on real data. It showed robustness with respect to environ-
mental changes, since the localization has been done using data acquired 10 days after the
map data acquisition. Moreover, it is robust with respect to moving objects, such as cars and
pedestrians.

Photometric registration appears to be more computationally efficient, but it can be ap-
plied only when the images to be registered are taken within a short period of time in very
similar lighting conditions. On the other hand the MI criterion allows us to register images
taken on different days.

Below, we discuss the main contributions in more details and suggest some ideas about
possible system improvements.

4.1 Contributions

Regular Triangulation The proposed approach avoids the reconstruction singularities in
the case when the point is far away and the direction vectors are close to parallel. It leads
to a significant reduction of the number of unknowns from 6 +N , where N is the number of
keypoints, to six, or just a single transformation.

Tight Wheel and Visual Odometry Coupling We included the wheel odometry into
the optimization loop during RANSAC. This improves the convergence since we start close
to the true minimum. In addition, we reduce the number of keypoints needed to fit the
model, since the wheel odometry already constrains certain degrees of freedom. It works in a
similar way to the 1-point RANSAC algorithm (Civera et al. (2009)), but instead of using an
Extended Kalman Filter, the odometry measurement is used as a prediction. Moreover, the
system becomes more resistant to moving objects. Even though the visual localization might
stick to a moving object, like a bus or a tram, coupled with wheel odometry it has to choose
features static with respect to the ground. Finally, combining the two sources of information
in the same optimization loop gives us an optimal state estimation using all the information
available.

Direct Visual Localization using Fisheye Cameras It is demonstrated that the En-
hanced Unified Camera Model can be successfully used to implement a fisheye-based direct
localization system. Its advantages are its simple analytical form and simple projection Jaco-
bian matrix, which make it computationally efficient for both registration and stereo matching.

MI for Vision-Based Localization Mutual information has been successfully used for
visual servoing and mobile robot navigation before. But there is a major difference between
those applications and the one proposed here:

• In image-based visual servoing only the Jacobian matrix depends on the 3D model, but
not the error. Moreover, pixel depth values only scale the Jacobian’s part that relates
the translational motion with the reprojection change.

• In the case of visual localization and image registration the final error depends on 3D
reconstruction. If the depth estimation is wrong, then zero photometric residual or MI
maximum does not imply zero error in the estimated transformation.
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We have demonstrated that it is possible to use MI for dense visual odometry. In the real-
data tests a hybrid system has been used. The photometric registration has been used for
image registration with respect to the local keyframe for the visual odometry purposes, while
MI-based registration has been used for localization with respect to a previously built map.

4.2 Future Development

Topological Mapping The mapping system presented in this work is just a sketch of a
real topological mapping system. To make it fully operational, a few things must be added:

• The keyframes must be stored as a graph with neighbor nodes localized with respect to
one another, not just as a collection of robot poses with associated images. Like that,
when we are using one keyframe for the localization, we know that we should look for
the next keyframe among its neighbors, not among all keyframes.

• The keyframe radius must be increased. For that, both the reconstruction and registra-
tion algorithms must be improved and better adjusted.

• The system must be able to automatically connect close keyframes which have not been
marked as topological neighbors at their construction.

Loop Closure To make a mapping system complete, the loop closure is necessary. The
classical FAB-MAP Cummins and Newman (2008) would be sufficient. It remains to be
integrated with the rest of the system. In contrast to metric localization systems, here loop
closure is necessary for topological consistency, rather than for metric precision improvement,
since loop closure generally does not change relative transformations between frames much.

Stability Analysis During simulation tests, it has been observed that the depth estimation
and the motion increment either remained bounded and consistent, with a certain increment
error, or diverge up to complete depth map deterioration and practically random motion
estimation. The stability depends, in particular, on the following factors:

• distance threshold for new keyframe instantiation

• uncertainty increment for the depth map when it is projected into another frame

• localization cost function robust norms

Stability analysis is the most fundamental question about the subject of direct visual local-
ization and mapping.

Moving Object Detection and Tracking For localization and mapping systems, it is
highly important to be able to deal with motion in the environment and do it explicitly (like
in Wang et al. (2007)). State-of-the-art direct localization systems, to our best knowledge, still
do not handle the environmental dynamics explicitly and assume the static-world hypothesis.
Though outlier rejection paradigm is robust to environmental dynamics to a certain extent,
an explicit motion tracking is necessary for robotic applications such as self-driving cars.





Chapter 6

Conclusions

This thesis presents a novel projection model for fisheye cameras, which is mathematically
simple and yet shows high precision when applied to real cameras. Geometric properties of the
model have been analyzed using the concept of projection surface, introduced in this work. In
particular, a closed-form inverse mapping and an implicit equation for straight line projection
have been found. This fact has been used to develop a method of direct stereo correspondence
on raw fisheye images via implicit curve rasterization. This correspondence algorithm allow us
to apply the Semi-Global Matching algorithm to get accurate and regular 3D reconstruction
using fisheye stereo systems. All these elements have been shown to be applicable to a direct
visual localization system with two different methods of image registration: direct photometric
error minimization and mutual information maximization. Intrinsic and extrinsic calibration
of a mobile robot with fisheye cameras has been considered and a toolbox for such a calibration
has been developed.

In this conclusion, the main contributions of this work are summarized and a few research
tracks are proposed. Then, a few more words are said about a more global vision of a visual
localization system.

1 Main Contributions

In this work, the motivation was to find a way to model fisheye cameras so that it would be
possible to treat raw fisheye images without rectification. We would like a camera model to
have the following properties:

1. Simple analytical form to make it computationally efficient.

2. Precision in modeling real wide-angle cameras.

3. Closed-form inverse mapping.

4. Straight line projection equation.

The proposed model combines all these properties, which makes it possible to apply it in
different contexts. In particular, the epipolar constraint can be expressed directly in the
image space for fisheye cameras.

The next step was to develop an algorithm of direct fisheye stereo correspondence using
the novel model. It has been done via rasterization of epipolar curves directly in the image
space. This approach shows precise metric results for both simulated and real data, which
validates simultaneously the theoretical foundation of the algorithm and calibration quality
attained with the Enhanced Unified Model. This algorithm is adapted for both dense and
semi-dense stereo correspondence.
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Visual Localization Regularized reconstruction for efficient robust visual odometry has
been developed. In turn, it allows us to develop a feature-based odometry with implicit
reconstruction. Instead of explicitly optimizing the 3D feature point position, only the trans-
formation between the two camera positions is computed. It reduces the number of variables
to 6. Another important concept is to combine the wheel odometry and visual odometry to
speed up and robustify RANSAC. The concept of 1-point RANSAC has been used and the
number of data points used in RANSAC has been reduced to 2.

Two types of direct registration (that is, without feature detection) based on semi-dense
3D reconstruction have been implemented. Photometric registration is used to register con-
secutive frames of a video sequence. Mutual-information-based registration is used to register
two images taken on different days. These techniques have been used to develop a visual
SLAM system, which combines all the theoretical results developed before and shows a good
performance on synthetic data.

The localization technique has been tested on real data acquired in a residential area.
The system is able to compute the localization using a map constructed on a different day. It
demonstrates robustness with respect to moving objects (cars, pedestrians) and environmental
changes (slightly different lighting, displaced trash cans, opened/closed windows, differently
parked cars and so on).

Calibration Toolbox All along this thesis, a calibration toolbox has been developed. So
far it includes the following possibilities:

1. Monocular camera calibration.

2. Multiple-cameras system (usually stereo) extrinsic calibration.

3. Odometry-cameras extrinsic calibration based on odometry measurements and observa-
tion of a static calibration board only.

The toolbox is implemented in such a way that any combination of these calibration
problems can be solved, once they are properly described in a calibration configuration file.
The performance of this calibration allows its use in real time. For example, a problem with
789 images, 4736 parameters and 88160 residuals is solved in 0.91 s. It is possible thanks to
Ceres Solver by Agarwal et al. (2010). The most time-consuming part is the image board
detection. It takes 34.8 s to detect board images for the same problem (or about 20 images
per second).

2 Limitations and Future Developments

Direct Fisheye Stereo

1. There are multiple different depth map regularization techniques based on image infor-
mation and some other models like minimum object size. Applying them can provide
us with a better depth estimation.

2. Image driven weights in the dynamic programming part can improve depth map con-
sistency. But this question is yet to be studied to quantify the effect. An experimental
version is used in the actual implementation, but the current model is based on pure
intuition, while it would be better to base it on a statistical analysis of ground truth
images and the correlation between image gradient and depth transitions.

3. Every step of the algorithm is completely parallelizable, so CUDA implementation would
make it more practical as it would be possible to use it in real time.
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Mapping

1. Data structures to manage topological maps are missing, so far all the frames are stored
in absolute coordinates, and it is not what we want.

2. Keyframe radius, which defines the width of the map along the path, must be in-
creased. It would facilitate localization and relocalization, as well as topological map
construction. On the other hand it requires accurate analysis of localization convergence
properties for different distances from the current keyframe origin.

3. A smarter criterion for switching to a new keyframe, instead of a simple distance thresh-
old, should be applied. For example, the singular values of the Hessian matrix of the
cost function at the optimum give us some information about localization precision.

4. A loop closure system must be added to enforce topological consistency of constructed
maps.

5. The Stability of dense and semi-dense localization systems has to be studied and stability
conditions (at least local) must be found in order to be able to apply this type of
algorithms in the real world.

Calibration Toolbox The following improvements can be done:

1. Automatically select calibration images or weight data samples to equalize the data
point distribution across the image space.

2. Provide metric analysis for the final error by projecting it back onto the calibration
board.

3. Add IMU and GPS calibration to the toolbox.

4. Calibrate wheel odometry intrinsic parameters, such as wheels’ radii and track gauge.

5. Calibrate measurement noises for all the sensors.

3 Ideas About a Complete System

Let’s try to imagine what a complete vision-based localization system could look like. This
system should be able to perform the following tasks simultaneously:

1. Wide-angle vision for a better surrounding perception

2. 3D reconstruction of the environment

3. Metric localization with respect to local maps

4. Detection and Recognition of navigable space, obstacles, road signs

5. Detection and tracking of moving objects

6. Topological map construction, topological localization and navigation

7. Loop closure based on distinctive mid- and high-level features
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It can be done by integration of geometric computer vision with deep learning. The main
advantage of geometric vision is that projection models are relatively simple in comparison to
models used in machine learning. They have much fewer parameters (about ten, in contrast to
approximately sixty million parameters of the famous AlexNet by Krizhevsky et al. (2012)),
which allows us to identify them with high precision and be sure about the performance
across the whole space. Such techniques as bundle adjustment and dense stereo reconstruc-
tion require simple and precise analytical projection models. The stereo reconstruction and
localization algorithms presented in this work intensively use geometric modeling. Bundle
adjustment is, so far, the most precise way of environment reconstruction. A recent paper by
Engel et al. (2018) presents a localization algorithm, where bundle adjustment is done on a
sparse set of points using directly photometric information.

The weakness of geometric vision is that it requires geometric information, while images
provide us with photometric information. And the conversion from photometric to geometric
is the source of most errors. Even though direct methods address this problem, there will
always be ambiguous data where accurate solution using general methods is impossible given
no prior assumptions.

Machine learning (and in particular, deep learning), on the other hand, provide us with
the possibility to generalize data, acquired in the real world, to extract some ”experience”,
prior knowledge. Some problems are relatively easy in the presence of such prior knowledge,
while being quite ambiguous and complex from the general point of view. If we take 3D
reconstruction as an example, general regularizers favor depth maps with as few depth transi-
tions as possible. And yet, for some cases (for example a metal grid fence), this regularization
assumption is not the best one. But if only we could recognize the grid and apply a different
regularizer, adapted for this particular case, the result would be much better.

Another example is moving object detection, which can be done based only on geometric
constraints. But there are objects which are likely to be moving (cars, pedestrians), and there
are ones which are expected to be static (trees, light posts, road signs). Also, there are some
singular configurations when the motion of the object, its size and position become dependent,
and it is not possible anymore to estimate all three quantities simultaneously. Again, prior
knowledge about some of these values can improve the reconstruction quality.

Unfortunately, there is a tendency in the community to stick to one or the other approach.
Either to use simple analytical models, or to rely on model-free deep learning architectures.
Reconciling both seems to promise a lot of benefits. A recent example of such reconciliation is
presented by Tateno et al. (2017), who has combined a dense direct SLAM algorithm with a
machine-learning-based 3D reconstruction prior. Another example has been mentioned in the
introduction, Bhatti et al. (2016) combined deep reinforcement learning with classical SLAM
technologies and neural-network-based object recognition.

We believe that these two approaches are not in competition but rather complementary,
and each of them should take its place in solving hard computer vision problems.



Appendix A

Spatial Transformations and Motion

Mathematical description of rigid body motion and position is one of the theoretical founda-
tions of robotics. The principal notations and definitions for this subsection are illustrated in
Fig. A.1.

Figure A.1: Frames and relations between them.

1 Frame Definition

A coordinate frame is defined by its origin position Oi and three orthonormal vectors xi,yi, zi.
Let us refer to different frames by its origin’s name. Let X be a spatial 3D point. Then
iX ∈ R3 is its coordinates or its projection into Oi. We say that Oi is the projection frame of
iX. The latter is defined as follows:

iX =

(X −Oi) · xi
(X −Oi) · yi
(X −Oi) · zi

 (A.1)

If the projection frame is not precised, then the result is invariant with respect to the projection
frame. Sometimes across the text X may mean coordinate expression in a particular frame,
which is omitted since it is clear which one it is. It allows us to keep the equations liter.

2 Homogeneous Transformation Matrix

Frames are defined with respect to other frames via spatial transformations, which allow
us to change projection frames of spatial points. These transformations have 6 degrees of
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freedom: three translational and three rotational. One possible way of parameterizing spatial
transformations is by a rotation matrix and a translation vector. Let O1 and O2 be two
coordinate frames in R3 and let x1,y1, z1 and x2,y2, z2 be their basis vectors.

Translation Let 1t2 ∈ R3 be the position of O2 with respect to O1, it is defined as in (A.1):

1t2 =

(O2 −O1) · x1

(O2 −O1) · y1

(O2 −O1) · z1

 (A.2)

Rotation Matrix Let R be an element of the special orthogonal group SO(3). It is a 3× 3
matrix with the following property:

RRT = RTR = I (A.3)

R defines a rotation of a rigid body about the origin of 3D Euclidean space. Rotation matrix
1R2, which defines the rotation between two frames O1 and O2 is defined as follows:

1R2 =
(

1x2
1y2

1z2

)
=

x1 · x2 x1 · y2 x1 · z2

y1 · x2 y1 · y2 y1 · z2

z1 · x2 z1 · y2 z1 · z2

 (A.4)

In other words, columns of 1R2 are basis vectors of O2 expressed in O1.

Homogeneous Transformation Matrix Let T be an element of the special Euclidean
group SE(3). It defines a transformation between two frames with different origins and different
axes’ orientation. For two frames O1 and O2 it is defined as follows, using (A.2) and (A.4):

1T2 =

(
1R2

1t2
0 0 0 1

)
(A.5)

Transformation matrices can be combined as follows:

1T2
2T3 = 1T3 (A.6)

T is used to change the projection frame of spatial points:

1T2
2X = 1X (A.7)

In order to make (A.7) possible we must use homogeneous coordinates of 2X which is the
three normal coordinates and a 1 concatenated to them which looks like (x, y, z, 1)T . It makes
(A.7) equivalent to the following form:

1X = 1R2
2X + 1t2 (A.8)

Usually, a special notation is used to distinguish homogeneous form and normal 3-components
form of vectors. But in this text the homogeneous form is not used, so we do not have a specific
symbol for it. Instead we use 1ξ2 to denote a transformation, referring to a non-redundant
transformation parametrization with 6 numbers:

1ξ2 =

(
1t2
1r2

)
(A.9)

Here t is the translation and r refers to a rotation parametrized with 3 numbers. And we use
1ξ2(2X) to denote the projection frame change. The simplest way to compute transformed
points is via transformation matrix 1T2 computed from 1ξ2.
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3 Angle-Axis Parametrization

Since the main numeric tool in this work is nonlinear optimization, having a non-redundant
rotation parametrization is absolutely necessary. If the parametrization is redundant, there
are some additional constraints, violating which leads to a non-valid rotation. Examples of
redundant representation are unitary quaternions with one constraint and rotation matrices
with six constraints. In this case, if these constraints are not respected during the optimiza-
tion, the whole process might break down, since its rotation-ness is used in the cost function
calculation. Respecting them, on the other hand, requires extra cost functions, which would
lead to a worse performance.

Another solution is just using non-redundant parametrization. In this case, the optimizer
may change the parameter values as it wants without any risk of divergence.

There are multiple different non-redundant rotation parametrizations. In this work, we
use only the so-called angle-axis parametrization r = uϑ. u is a unitary vector which defines
the axis of rotation and ϑ is the rotation angle in radians. We may refer to r as “rotation
vector”, even though it is not a vector in the exact sense of this word because generally r1 +r2

is meaningless. The best way of thinking of r is a set of three real numbers which parametrize
the rotation.

This parametrization does not have singularities and it is not unique only when ϑ = π. It
can be converted into rotation matrix via the matrix exponent of its cross-product matrix:

R = exp ([r]×) (A.10)

In the case of an exponent of a cross-product matrix, using its definition we can find a different,
simpler form, which is called the Rodrigues’ rotation formula:

R = I + sinϑ[u]× + (1− cosϑ)[u]2× (A.11)

4 Kinematic Screw and Transformation Time Derivative

If frame O2 moves with respect to frame O1, its motion can be parametrize with two vectors:
linear velocity v2 and angular velocity ω2. Together they form the so-called kinematic screw.
These two vectors can be expressed in either frame, and during any mathematical demonstra-
tion one should take a particular care to make sure that the projection frames of all vectors
and kinematic screws are clear.

If linear velocity v2 is expressed in the frame with respect to which O2 moves (in this case
in O1), it can be integrated directly to get the frame origin position:

1t2(t) = 1t2(0) +

t∫
0

1v2(τ)dτ (A.12)

On the other hand integration of ω does not give any meaningful value. What can be inte-
grated is rotation vector time derivative ṙ. There is a linear transformation between ṙ and
ω:

1ṙ2 = Mω(1r2)1ω2 (A.13)

Notice that all ṙ, r, and ω are projected to the same frame, with respect to which the moving
frame moves. The expression for Mω is the following one:

Mω(r) = I − ϑ

2
[u]× +

(
1− sincϑ

sinc2(ϑ/2)

)
[u]2× (A.14)
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However, usually we are interested in the inverse mapping since we want to know what
would be ω if we start changing r:

1ω2 = Mr(
1r2)1ṙ2 (A.15)

Mr(r) = I +
ϑ

2
sinc2

(
ϑ

2

)
[u]× + (1− sincϑ)[u]2× (A.16)

In the text the argument r can be omitted to avoid unnecessary parentheses.
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Image Rendering

Synthetic images are used to validate different algorithms across this work. That is why
we provide a short description of the image rendering pipeline. It consists of two stages:
geometric processing and texture processing.

This system is quite simple, there is no light modeling, no normal processing; the constant
brightness constraint is perfectly respected. All the objects are rectangular planes with a
certain texture. The main feature is an anisotropic anti-aliasing filter.

1 Geometric Processing

At this step, for each pixel, it is computed which point of which plane is observed. Two buffers
are computed: depth buffer and plane index buffer.

Figure B.1: Computation of the intersection between a given direction ray, represented by vector d, and an
arbitrary plane with position ctp and orientation defined by its frame Op

For each pixel, the direction ray is computed. Then for every object, it is checked, whether
the ray intersects it. It is done by first checking whether the ray is directed towards the plane.
Then the intersection coordinates are computed. If they lie within the rectangular textured
area, then the depth is checked. If the depth is less than the one stored in the depth buffer,
then the new depth value, object index, and the intersection coordinates are stored.

To find the intersection coordinates, first the distance to the plane in a given direction d
must be computed:

λd · ez = ctp · ez (B.1)

where ctp is the plane’s position in the camera’s frame; ex,y,z is the plane frame basis (defines
the orientation); d is a given direction (see Fig. B.1). We can solve this equation with respect
to λ. We should check whether λ > 0, otherwise the plane is actually in the direction defined
by −d. To do so we check:

d · ezctp · ez > ε (B.2)
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where ε is a small positive value. If it is true, then λ is computed as follows:

λ =
d · ez

ctp · ez
(B.3)

Then we can compute the texture coordinates of the intersection:

p =

(
fu(λd− ctp) · ex + u0

fv(λd− ctp) · ey + v0

)
(B.4)

fu, fv, u0, and v0 define the transformation between texture image and the plane coordinates.

2 Texture Processing

Once the intersection coordinates are found, the brightness value must be computed. If we
just take the nearest pixel’s value on the texture, a very strong aliasing will appear. You can
compare the original texture and the rendering result in Fig. B.2.

Our AA-filter is based on what is described in Chen et al. (2004). We can view the
anti-aliasing problem in the following way: a continuous signal (texture) is projected using a
diffeomorphism (projection mapping) into the image space; how to filter the texture before
sampling in the image space to reduce the aliasing effect? A low-pass filter (for example, a
Gaussian filter) should be used. And its kernel size is defined by the image sampling frequency.
According to the sampling theorem, the texture should not contain any frequencies higher that
0.5 px−1. A perfect low-pass filter requires an infinite-size kernel, while Gaussian filter, even
though is does not have a clear cut-off frequency, approximates a low-pass filter well enough.
We used the fact that the Gaussian’s frequency response is a Gaussian and the following
identity is true:

σxσf =
1

2π
(B.5)

Where σf and σx are respectively frequency and spatial standard deviations. We choose
σf = 0.3, which is, in case of Gaussians, a good trade-off between cutting high frequencies,
and preserving the low ones. From the identity we get σx ≈ 0.5. We choose the kernel radius
as 3σx = 1.5. Then, we need to choose the minimal number of samples to take along x and
y. Again we have to use the sampling theorem, this time for the texture. Let us assume that
the texture does not contain frequencies higher than 0.5 px−1 in its own space. It means that
the texture image adequately represents the underlying continuous texture signal. Also we
assume that the texture is isotropic, that is we need to use the same sampling frequency in
every direction. So, we sample it with a step of one pixel.

The basis vectors (1, 0)T and (0, 1)T are mapped to the texture space. to do so we just
map the top and the left neighbor pixels to the texture space by the same procedure, as
the one applied to the pixel under consideration. Of course, the process can be sped up by
precomputing the intersection coordinates for all the pixels to avoid redundant computations.

Kernel is an outer product of two 1D kernels. According to length of the mapped basis
vectors we choose an appropriate 1D kernel in either direction. Then we generate a grid in
the texture space and sample the texture using the bilinear interpolation:

I(x, y) =

N∑
i=1

M∑
i=1

wN [i]wM [j]J(pi,j) (B.6)

here N and M are the required kernel sample numbers in x and y directions respectively;
wN , wM are corresponding precomputed kernels. J is the texture, interpolated bilinearly; pi,j
represents the grid in the texture space. The latter is just an approximation because even
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if the hypothesis about its frequency content is true, bilinear interpolation is not the way to
reconstruct the intermediate values. Nevertheless this approximation works and provides a
significant speedup.

(a) (b)

(c)

Figure B.2: (a) test texture, (b) images rendered without AA-filter applied, (c) anisotropic AA-filter is applied.
A large scale of the image is necessary to avoid aliasing during the document viewing and printing. As you
can see the AA-filter does not suppress the aliasing completely, yet increases the rendering quality a lot.
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Résumé étendu en français

1 Introduction

Le but de ce travail est d’étudier des couches différentes de la perception visuelle basée cameras
fisheye, ainsi que d’établir une base solide pour les algorithmes de perception de haut niveau.
Dans cette introduction, nous évoquons des aspects différents de la vision par ordinateur, ses
avantages et inconvenances. Puis nous décrivons les choix principales faites au cours de ce
travail ainsi que sa structure.

1.1 Pourquoi la vision est-elle si attirante ?

Les cameras ont de nombreux avantages par rapport aux autres modalités de perception. Les
principales sont les suivants:

1. Cameras sont moins chères que la plupart d’autres capteurs extéroceptifs, elle sont
petite et légères, elles n’ont pas de pièces mobiles, donc elle sont mécaniquement plus
résistantes.

2. Il existe une vaste variété de cameras avec un large choix de fréquences, de résolutions,
de niveaux de bruit, de champs de vision et de consommation d’énergie.

3. La vision fournit des informations denses et riches sur l’environnement. C’est une
modalité de perception extéroceptive, qui peut avoir plusieurs application différentes,
comme la localisation, la navigation, la manipulation avec des objets.

4. Sachant que le but ultime est d’intégrer les robot dans la société humaine, ces derniers
doivent pouvoir comprendre notre système de signaux et de communication. Or l’infrastructure
qui est mise en place utilise une signalisation visuelle pour donner des information sur
les direction et la sécurité de navigation.

1.2 Pourquoi la vision est-elle difficile

La formation d’images est un processus complexe, qui inclut de nombreux facteurs. Nous
allons voir quelles difficultés proviennent de là. Le premier défi est que les cameras sont des
capteurs passif, c’est à dire elles n’ont pas d’émetteurs et elle captent seulement la lumière
déjà présente dans l’environnement. Alors les algorithmes de traitement doivent être robustes
par rapport au changement d’éclairage, qui en général n’est pas contrôlé. Certains problèmes,
comme la gamme dynamique, doivent être résolues au niveau du matériel.

Une autre difficulté est que la vision a besoin d’un environnement texturé. En fait,
même si toutes les surfaces étaient peintes en blanc, il y aurait des nuances et des gradi-
ents. Mais habituellement, les algorithmes existant requierent des textures de haut contraste,
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des lignes, des coins, des cercles, des ellipses etc. Si ce genre de caractéristiques manque
à l’environnement, les images de ce dernier sont considérablement plus dur à traiter. Les
techniques denses et semi-denses, qui traitent les images pixel par pixel, semblent une bonne
solution à ce problème. Mais actuellement, il n’y a pas d’algorithme bien connu qui serait
adaptatif et qui traiterait aussi bien les parties d’images de haut contraste que les parties plus
lisses et floutées. Cela évoque le problème de la système de perception universelle qui serait
capable d’intégrer toutes sortes d’information d’une façon optimale.

Les lidars mesurent directement la distance jusqu’un obstacle dans une direction donnée,
tandis que les cameras génèrent des images, c’est à dire des tableaux numériques qui représentent
l’intensité de lumière dans des direction différentes. L’information géométrique dans ce cas
est plus facile à utiliser et à interpréter. D’autre part l’information photométrique est presque
inutile en soi. Les images doivent être traitées d’une façon intensive afin de trouver des
correspondances et reconstruire l’environnement 3D. Le traitement de haut niveau est pour
l’instant le goulot d’étranglement des systèmes basées vision.

Encore une autre difficulté est causée par les occlusions et la manque de visibilité. Le
problème de correspondance en presence des occlusions est NP-dur, donc la solution exacte
est introuvable. Des algorithmes approximatives et pourtant efficaces pour dans le cas des
application réelles ont été proposée.

1.3 Choix principaux

Au cours de ce travail, les idées expliquées ci-dessous nous ont servi de lignes directrices

Cameras grand angle Images omnidirectionnelles et grand angle nous fournissent de
meilleurs propriétés de localisation que celles obtenues avec des cameras classiques. Grâce
à un champ de vision plus large, l’environnement est observé plus longtemps pendant les
virages, ce qui nous permet de le reconstruire et nous localiser plus précisément. Les images
fisheye sont aussi meilleurs en tant que repères clés, car elles incluent plus d’information et
imposent des contraintes angulaires moins rigoureuses que celles des images petit angle. Deux
images fisheye nous suffisent pour couvrir 360◦ de vue.

Mais tous ces avantages vont avec la géométrie complexe des optiques fisheye. Pour que
l’on puisse utiliser les images fisheye avec la même facilité que les images ordinaire, on a besoin
d’un nouveau modèle, analytiquement simple et pourtant assez expressif pour approcher une
large gamme d’optiques fisheye.

Vision géométrique Dans le cas des images prises avec une cameras, la modélisation
géométrique peut faciliter leur traitement, améliorer la précision de reconstruction Les con-
traintes épipolaires réduisent par exemple l’espace de recherche de correspondances stéréo,
ainsi que permettent de vérifier la consistance géométrique des données. Finalement, la re-
construction de l’environnement requiert un modèle géométrique ainsi qu’un algorithme de
correspondance fiable.

Traitement d’image directe Les application de vision par ordinateur classiques avaient de
longues châınes de traitement d’images. Nous défendons le point de vue que tout traitement
d’image modifie l’information originale et donc il vaut mieux être aussi proche de la source
que possible. C’est à dire de traiter des images sous la forme sous laquelle elles sont acquises
et nous fournies par les capteurs.

Par exemple, dans le cas de reconstruction stéréo, la rectification des images est une
façon courante d’éviter le problème de modélisation géométrique et de transformer les courbe
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épipolaires en droites. Pourtant, cette procédure casse l’uniformité de bruit et d’information
dans l’image a cause d’une dilatation de certaines parties et d’une contraction des autres.

Donc notre bute est de développer une approche à la modélisation géométrique, telle qui
nous permet de traiter avec facilitée des images d’une géométrie complexe.

Fusion des capteurs L’utilisation de modalités différentes et de mesures décorrélées réduit
l’impact du bruit et augmente la robustesse générale du système. Les deux modalités les plus
utilisées avec des cameras sont la centrale inertielle et l’odométrie des roues, s’il s’agit d’un
robot mobile. L’odométrie a une plus mauvaise précision angulaire et une meilleure précision
de mesure de distance que la centrale inertielle. La mesure de distance a un rôle particulier
pour la perception visuelle car dans le cas monoculaire, la vision ne donne pas de mesures de
longueur et donc il faut avoir une autre source de référence métrique.

1.4 Structure du document

Ce résumé étendu est censé d’éclairer les résultats principales de ce travail. Sa structure est
la suivante.

Modélisation géométrique Le nouveau modèle est présente et sep propriétés géométriques
sont analysées. Le modèle inverse analytique est décrite. Finalement la projection des droites
est analysé et les équations implicites des courbes épipolaires sont montrées.

Étalonnage Principalement, les résultats numériques d’étalonnage de ce modèle sont présentés.
Le modèle est compare avec d’autres modèles de l’état de l’art pour des optiques différentes.
Aussi, la problématique d’étalonnage extrinsèque des robots mobiles équipés d’une camera est
traitée.

Correspondance stéréo directe Les équations des courbes épipolaires sont employées
pour calculer la correspondance stéréo entre deux images fisheye sans les rectifier.Des testes
quantitatives sur des données synthétiques ainsi que réelles sont données.

Localisation visuelle Des méthodes de recalage d’images directes sont utiliser pour compléter
le système de localisation visuelle. En faisant le recalage et la reconstruction alternativement,
on obtient un système de odométrie visuelle. Un système de localisation et le résultats de ses
testes avec des données réelles sont présontés.

2 Modelisation geometrique de cameras grand angle

La première étape pour monter un système de perception visuelle serait de modéliser les
camera. Comme nous avons choisi les cameras fisheye comme matériel, il nous faut un modèle
qui capte bien les distorsion géométriques, introduites par l’optique, et qui en même temps
soit analytiquement simple. Nous avons proposé un modèle qui est base sur le modèle unifies
(aussi dit modèle sphérique). Le nouveau modèle est défini par les équations suivantes:

m =


x

αρ+ (1− α)z
y

αρ+ (1− α)z

1

 ρ =
√
β(x2 + y2) + z2

p = Km

(C.1)
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Les deux paramètres de distorsion sont α ∈ [0, 1] et β > 0. Il est requis que αρ+(1−α)z >
0. K est la matrice de projection qui contient les paramètres intrinsèques fu, fv, u0, v0.

2.1 Surface de projection

Pour analyser ce modèle, on introduit la notion de surface de projection. Cette surface est
définie par une équation avec les coordonnées 3D.

Cette notion peut être appliquée à une grande variété de modèles de projection avec de
types de distorsion différents. Soit η : R3 → R+ une fonction homogène de degré 1:

∀λ ∈ R+ η(λX) = λη(X) (C.2)

Le modèle de projection est défini de la façon suivante:

m =


x

η(X)

y

η(X)

1

 (C.3)

Alors, la surface de projection est défini comme:

η(X) = 1 (C.4)

N’importe quelle fonction η defini un modèle de projection avec de propriétés différentes.
Pour le modèle proposé, η(X) = 1 mène à:

α
√
β(x2 + y2) + z2 + (1− α)z = 1 (C.5)

En remplaçant 1− α par γ et x2 + y2 par r2, on peut arriver à la forme suivante:

α2βr2 + (α− γ)z2 + 2γz = 1 (C.6)

Cette équation sera utile pour calculer le modèle inverse et des équations de droites projetées.

2.2 Modèle inverse

Soit f : R3\0 → R2 le modèle de projection défini par (C.1). Soit f−1 : R2 → R3 l’inverse de
droite de f:

f(f−1(m)) = m (C.7)

ou, autrement dit, f ◦ f−1 = I. On cherche un difféomorphisme entre les points de l’image et
les directions dans le champ visuel de la camera. Or, les points sur la surface de projection
se projettent sur l’image orthogonalement. Alors, f−1 peut être défini comme:

f−1 :

(
x
y

)
7→

 x
y

z(x, y)

 (C.8)

On obtient z(x, y) en résolvant (C.6) et en choisissant la bonne solution parmi deux. Le
résulta est (avec r =

√
x2 + y2):

z =
1− α2βr2

α
√

1− (α− γ)βr2 + γ
(C.9)
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Figure C.1: Droite a avec l’origine de projection O définissent plan L. L’intersection entre L et P définissent
courbe c. En projetant c orthogonalement sur le plan normal on obtient la projection de a.

2.3 Straight Line Projection

Avec la notion de surface de projection, on peut montrer que les droites se projettent comme
des sections coniques. Étant donné droite a, soit L le plan défini par a et O (Fig. C.1).
L’équation de L est de la forme suivante:

Ax+By + Cz = 0 (C.10)

Pour trouver l’image de la droite, d’abord on doit projeter celle-dernière sur la surface de
projection. Pour ça, on cherche l’intersection c entre L et P . En prenant (C.6) et (C.10) on
obtient le système d’équations suivant:{

Ax+By + Cz = 0

α2β(x2 + y2) + (α− γ)z2 + 2γz = 1
(C.11)

L’étape suivant est de projeter c orthogonalement sur le plan normal. C’est à dire, on doit
exclure la coordonnée z du système d’équations. Si C = 0, alors l’image de la droite est une
droite qui passe par le centre d’image:

Ax+By = 0 (C.12)

Si C 6= 0, alors on peut exprimer z de la première équation:

z = −Ax+By

C
(C.13)

et le substituer dans la deuxième:

α2β(x2 + y2) + (α− γ)

(
Ax+By

C

)2

− 2γ
Ax+By

C
= 1 (C.14)

Donc, on a un polynôme en x et y de degré deux, qui défini une section conique.

Epipolar Curve Equation On peut calculer analytiquement les expressions pour les co-
efficients des équations de courbes épipolaires dans le cas d’un système stéréo calibré. Con-
sidérons deux cameras avec les modèles de projection étalonnés f1 et f2. La transformation
entre ces deux cameras est connue et est représentée par une matrice de rotation 1R2 et un
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Figure C.2: Un système stéréo étalonné. 1R2 et 1t2 définissent la transformation entre les repères des cameras
(une matrice de rotation et un vecteur de translation); X est un point reconstruit; la droite l est définie par X
et le center de projection O1 de la première camera. Le plan H passe par O2 et l. La courbe c est l’intersection
entre H et la surface de projection P . Pour obtenir la courbe épipolaire, on doit exclure la coordonnée z de
l’équation de c.

vecteur de translation 1t2 (voir Fig. C.2). Le plan épipolaire H dans le repère O2 est défini
par l’équation suivante:

1XT
1 [1t2]×

1R2X = 0 (C.15)

L’étape finale est de remplacer x et y par leurs expressions en fonction de u et v:

x =
u− u0

fu
y =

v− v0

fv
(C.16)

pour produire un polynôme de la forme suivante:

kuuu
2 + kuvuv + kvvv2 + kuu+ kvv + k1 = 0 (C.17)

2.4 Conclusions

Les modèles de projection fisheye existants montrent des combinaisons différentes d’avantages
et d’inconvenances. Mais aucun d’entre eux n’est pas complètement universel car certains ne
sont pas assez précis ou ne vont que pour une famille d’optique limitée, pendant que d’autres
ne sont pas analytiquement inversibles et coûteux du point de vue computationnel. Dans
ce travail, nous proposons un nouveau modèle de projection ainsi qu’obtenons des résultats
important sur les propriétés géométriques de ce modèle. Le contributions principales sont
décrites ci-dessous.

Modèle unifié amélioré En augmentant le Modèle Unifié, on obtien un modèle, qui est
analytiquement élégant et simple, et pourtant approche plus précisément les vraies optiques
fisheye, grâce à un degré de liberté supplémentaire. Les résultat quantitatives, décrits dans
la section 3, montrent que le modèle proposé rend une fonction de distorsion additionnelle
inutile même pour les optiques fisheye avec une distorsion importante.

Surface de projection Cette notion est un outil efficace d’analyse des propriétés géométriques
des modèles de projection. En utilisant ce concept, nous avons trouvé les expressions analy-
tiques du modèle inverse, ainsi que montré que ce modèle de projection est capable d’approcher
toute surface de projection de degré deux.
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Image des droites Nous avons également montré que les droites se projettent comme des
sections coniques. Une méthode de calcule des équations de ces courbes a été trouvé. Pour
un système stéréo étalonné, il est possible de trouver des expressions analytiques de courbes
épipolaires. Le dernier fait est utiliser dans ce travail pour le calcul stéréo.

3 Étalonnage des systèmes de perception visuelle

Une toolbox d’étalonnage de cameras fisheye a été développée. Elle contient un détecteur
de mire d’étalonnage, qui est plus efficace et plus rapide que celui fourni avec OpenCV. Ce
détecteur nous permet d’utiliser des centaines d’images pour le processus d’étalonnage.

3.1 Étalonnage du modèle unifié amelioré

Les résultats d’étalonnage sont présentés sur les Fig. C.3–C.4. Six optiques ont été étalonnées,
y compris quatre optiques fisheye, une optique grand angle et une optique trou d’épingle. Trois
modèles ont été testés : modèle unifié (UCM, 5 parametres), modèle unifié amélioré (EUCM,
6 parametres), modèle unifié avec des distorsion (UCM-D, 10 parametres).

Fig. C.3 montre que la précision de l’EUCM est plus proche de celle de UCM-D plut que
de UCM. Donc en rajoutant un seul paramètre de plus, on gagne en précision d’une façon
significative. Par ailleurs, le temps d’étalonnage de EUCM est plus petit que celui de UCMD,
et tend vers celui de UCM, ce qui nous dit que EUCM est presque aussi simple du point de
vu du calcul que UCM.
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Figure C.3: Résultats d’étalonnage monoculaire.

3.2 Étalonnage extrinsèque de l’odométrie

Nous avons proposé une méthode de calcul des trajectoires optimales pour l’étalonnage des
systèmes de perceptions visuelle des robots mobiles. L’idée est de trouver les trajectoires qui
maximisent le déterminant de la matrice Hessienne du problème d’étalonnage.

Ce concept a été testé avec des données synthétiques. Cela nous permet de comparer
les résultats d’étalonnage avec les vrais valeurs. Pour que les paramètres extrinsèques soient
identifiables, la courbure de la trajectoire ne doit pas être constante. Nous avons choisi
comme trajectoire deux arcs avec des courbures différentes. Une fois les trajectoires optimales
générées, un ensemble d’images correspondantes est synthétisé. Ces images ont été utilisées
pour étalonner la cameras ainsi que la transformation entre la base du robot mobile et la
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Figure C.4: Résultats d’étalonnage monoculaire — une comparaison de reconstruction de pose.Les poses
calculées avec le modèle UCM-D sont prises comme une référence (10 paramètres).

camera. Bien que les images soient synthétiques, le traitement d’images introduit une certaine
erreur dans le processus, car la détéction de la mire n’est pas parfaite (quoique relativement
précise)

Les résultats d’étalonnage ont été comparés avec ceux d’un étalonnage fait avec des trajec-
toires suboptimales. Ces trajectoires suboptimales ont été obtenues en arrêtant le processus
d’optimisation des trajectoires avant que la convergence soit atteint. Les deux ensembles de
trajectoires son donnés sur Fig. C.5.

Figure C.5: Trajectoires générées ainsi que leur coût pendant l’étalonnage E: Cyan – trajectoires initiales,
E = 688, la contrainte sur la courbure n’est pas satisfaite; vert – trajectoires suboptimales, E = −29.6; bleu –
trajectoires optimales, E = −37.4.

Pour évaluer la robustesse de l’étalonnage, un bruit a été ajouté aux mesures d’odométrie.
Le résultat d’étalonnage extrinsèque en présence de bruit sont visualisés sur Fig. C.6.

Éssais avec des données réelles Cette méthode d’étalonnage a été utilisé avec succès
pour étalonner un véhicule équipé d’une camera. L’étalonnage a été fait deux fois pour deux
jeux de données, similaires mais distinct. Le résultat dés deux étalonnages sont très proches,
ce qui nous montre la répétabilité de cette expérimentation. Les résultats de cet étalonnage
ont ensuit été utiliser pour faire de la localisation basée vision et odométrie des roues.
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Figure C.6: Visualisation de l’étalonnage sous influence du bruit. Bleu — la vraie position, vert — trajectoires
optimales, rouge — trajectoires suboptimales. Le modèle de camera est une pyramise de taille 0.4×0.4×0.4 m.
Plus fort est le bruit, plus importante est l’erreur d’estimation. Pourtant la trajectoire optimale (à gauche)
parâıt plus résistante au bruit.

3.3 Conclusions

Une toolbox d’étalonnage flexible et efficace pour les systèmes multi-camera a été développé.
Cette toolbox contient un nouveau détecteur de la mire d’étalonnage de type échiquier. Le
détecteur est plus efficace et plus rapide que celui, fourni avec OpenCV. Il nous permet
d’utiliser de grand jeux de données pour faire l’étalonnage en gardant le temps d’étalonnage
relativement petit.

Le modèle unifié amélioré a été testé intensivement. La précision de ce modèle, évaluée
avec l’erreur de reprojection après l’étalonnage, est proche à celle du Modèle Unifié avec la
distorsion. Pourtant le temps d’étalonnage du modèle amélioré correspond plutôt à celui
du modèle sphérique. En ayant deux paramètres de distorsion seulement, nous évitons tout
risque de surapprentissage (overfittig en anglais). Ce fait rend le modèle aussi utilisable pour
les cameras faibles distorsions.

Nous avons aussi proposé et testé une méthode de calcul des trajectoires optimales pour
l’étalonnage extrinsèque de robots mobiles. La robustesse de cette méthode à l’égard du bruit
de bruit de mesure a été démontrée avec des donnée synthétiques. Un véhicule équipé d’une
camera a été étalonné avec cette méthode et les résultats de cet étalonnage ont été utilisé
pour faire de la localisation basée vision et odométrie des roues.

4 Direct Stereo Correspondence for Fisheye Cameras

La correspondance stéréo est la base du système de perception développé dans le cadre de
ce projet. L’idée de l’algorithme de correspondance est d’éviter la rectification des images
fisheye et les traiter directement. Le modèle de caméra propose nous permet de calculer les
équations des courbes épipolaires et d’utiliser la notion de disparité, c’est à dire, la distance
parcouru le long d’une courbe épipolaire mesurée en pixels. Tout cela nous permet d’utiliser
l’algorithme de correspondance stéréo qui s’appelle Semi-Global Matching.

Une autre option est d’utiliser une image de profondeur calculée pour une base stéréo plus
petite comme valeurs initiales pour le calcul avec une base plus large. Comme ça, on réduit
significativement l’intervalle de recherche de correspondance ainsi que la probabilité de trouver
une correspondance erronée (à cause d’une ambigüıté). Cet algorithme est particulièrement
utile dans le cas d’une séquence vidéo. Pour initialiser l’image de profondeur on utilise SGM
avec une base stéréo petite.
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4.1 Results

L’algorithm a été testé avec des données synthétiques, ce qui nous a permis d’évaluer sa
précision. Nous avons testé les deux algorithmes sur les même séquences, qui représentent la
même scène avec la transformation stéréo différente. La première image de chaque séquence
est la même (Fig. C.7).

Les deux montrent une performance similaire. Fig. C.8 nous montre la dernière image
de chaque séquence ainsi que deux images de profondeur pour chaque des deux méthodes:
avec la base stéréo ≈ 6 cm et ≈ 18 cm. Certaines parties de la carte de profondeur sont
vides parce que pour les limites de disparité données, pour ce pixels la recherche le long des
courbes épipolaires excéderais les limites de l’images. On peut voir que dans toit les cas,
l’algorithme parvient à reconstruire la scène, bien que la transformation aie un impacte sur
la reconstruction.

Pour SGM, l’effet de quantification est particulièrement remarquable à cause du fait que
le spectre de profondeur est discret. Donc les discontinuité en profondeur sont inévitables. Au
contraire, la reconstruction faite par l’algorithme prédictif parait plus lisse car cet algorithme
accumule des informations provenantes des images différentes, ce qui lui permet d’avoir un
spectre plus dense.

À mesure que la base stéréo s’élargit, le spectre de profondeur devient de plus en plus
dense et la reconstruction devient plus lisse et précise.

Real Data Tests L’algorithme a été également testé avec des données réelles. Les images
ont été prises avec une camera fisheye étalonnée attachée à un bras robotique, ce qui nous a
permis de calculer la transformation stéréo pour toutes les paires d’images. Fig. C.10 montre
quelques exemples d’images et les images de disparité calculé.

Pour avoir une évaluation quantitative de l’algorithme, la reconstruction 3D d’un objet
planaire à été faite et comparée avec les valeurs de référence (see Fig. C.11). La réalité de
terrain a été obtenu de la façon suivante:

1. La transformations entre la base du robot et le plan a été mesurée.

2. En sachant la configuration du robot, il es possible de calculer la transformation camera-
plan.

3. L’image de profondeur a été générée avec les paramètres intrinsèques de la camera.

L’objet planaire ne couvrait pas l’images entière, donc plusieurs jeux de données ont été
acquis pour tester la méthode dans les parties différentes de l’image. Les images de disparité,
c’est à dire la sortie directe de l’algorithme de stéréo, ont ensuit été converties en images de
profondeur. Puis, l’erreur a été calculé et analysé. Seules les pixels appartenant au plan ont
été pris en compte. Tous les pixels avec une erreur de reconstruction supérieure à 100 mm
sont considérés comme outliers et rejetés.

Les résultats montrent que plus la base stéréo est large, plus l’erreur est petite. La distri-
bution d’erreur est relativement fine par rapport aux valeurs de distance actuelles. Aussi, le
taux de inliers est élevé, ce qui veut dire que globalement cet algorithme est efficace et précis
pour la reconstruction d’objets planaires.

4.2 Conclusions

Le propriété du Modèle Unifié Amélioré nous permettent de modéliser les systèmes fisheye
stéréo. Les équations de courbes épipolaires calculé avec ce modèle, une fois rasterisées,
peuvent être utiliser pour calculer la correspondance stéréo directe.
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Figure C.7: L’image de base et la profondeur de référence.

a)

b)

c)

d)

Figure C.8: Exemples d’images de profondeur calculés pour des mouvements de camera différents. La première
colonne montre les images finales de chaque séquence. Deuxième et troisième colonnes montrent les résultats de
reconstruction par SGM. Quatrième et cinquième colonnes montrent les résultats pour l’algorithme prédictif.
Deuxième et quatrième colonnes correspondent à une base stéréo de ≈ 8 cm. Troisième et cinquième colonnes
correspondent à une base stéréo de ≈ 20 cm. (a) mouvement à droite, pas de rotations. Le mur de l’arrière-
plan donne beaucoup de bruit de reconstruction car certaines de ses caractéristiques sont parallèles aux courbes
épipolaires. (b) mouvement vers le bas avec une rotations vers le haut. Le mur de l’arrière-plan est reconstruite
d’une façon plus régulière. (c) mouvement en avant avec une rotation à droite, L’aire noire sur le bord de l’image
apparâıt parce que quand la camera va en avant, tout ce qui est sur le bord de l’image disparâıt. Le cercle noir
au milieu est autour de l’épipole, ou la reconstruction 3D rencontre une singularité. (d) mouvement à droites
et en avant avec une rotation autour de l’axe optique. Cela nous montre l’un des avantages les plus intéressants
de cette méthode, la rotation autour de l’axe optique n’ab̂ıme pas les résultats de reconstruction.
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a)

b)

c)

d)

Figure C.9: Exmemples de reconstruction. Seul la partie du nuage de points au-dessus du sol est afficher. La
sequence (d) de Fig. C.8 est utilisé. La camera se déplace à gauche et vers l’avant en tournant autour de l’axe
optique. Les points rouges représentent les positions de la camera utilisées pour le calcul stéréo. (a) Le schéma
de la scène, position de la camera initiale, vue de dessus. (b) Reconstruction avec SGM, la base stéréo est de
10 cm environ. (c) La même configuration que (b), mais avec la méthode prédictive : le résultat est légèrement
meilleur parce que l’algorithme fusionne les information de toutes les itération précédentes. (d) Reconstruction
basée prédiction pour la base de 20 cm.
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Figure C.10: Images originales (à gauche) et les images de disparité correspondantes (à droite) pur les bases
stéréo 10, 20, 30 mm.

a b c d

Figure C.11: Illustration de la methodologie d’évaluation. (a) l’image de base. (b) la vraie image de profondeur
du plan du journal. (c) les résultats de reconstruction stéréo. (d) la difference absolue entre la réalité de terrain
et la reconsrtuction calculée.
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La correspondance stéréo basée disparité nous donne une reconstruction 3D précise, ainsi
qu’une méthode d’estimation d’erreur de reconstruction.

Comme cela est montré dans ce travail, l’algorithme stéréo fisheye peut être la base d’un
système de localisation basée vision. Nous suggérons que cet algorithme peut potentiellement
atteindre le niveau de précision nécessaire pour la navigation autonome sécurisée et robuste.

5 Vision-Based Localization and Mapping

Un modèle de camera fisheye étalonné et un algorithme de reconstruction stéréo sont le
ingrédient nécessaires pour mettre en place un système de localisation visuelle directe. La
seule chose manquante est la méthode de calcul de transformation entre deux positions basée
vision. S’il s’agit d’une méthode directe, on utilise le terme ”recalage d’images”. En faisant
alternativement le calcul de profondeur et le recalage d’images on arrive à faire la localisation
visuelle.

5.1 Odométrie basée points caractéristiques

Le point fort des points caractéristiques c’est que L’architecture de l’odométrie basée points
caractéristiques est représentée sur Fig. C.12. Cet odométrie utilise une méthode de recon-
struction 3D régularisée ce qui nous permet d’utiliser l’optimisation non-linéaire et les mesures
d’odométrie des roues Une séquence synthétisée a été utilisée pour tester cet algorithme. Un
bruit à été ajouté aux mesures d’odométrie des roues.

Figure C.12: L’architecture de l’odométrie visuelle. Ii et ξo,i sont les entrées: l’image courante et la mesure
d’odométrie des roues; Pi est l’ensemble des caractéristiques détectées; P̃i,i−1 est l’ensemble d’inliers calculé
par RANSAC.

Nous utilisons RANSAC à deux points avec l’odométrie des roues en tant que valeur a
priori. La trajectoire reconstruite est présenter sur Fig. C.14 L’odométrie des roues dérive
très vite a cause d’un biais d’orientation très fort. Et pourtant l’odométrie visuelle suit la
vraie trajectoire beaucoup plus précisément.

5.2 Odométrie visuelle directe

L’odométrie visuelle directe est basée sur la minimisation de l’erreur photométrique. Cette
odométrie est basée sur le principe de repères clés, illustré sur Fig. C.15.

(a) Le premier repère clé avec l’origine O1 est créé. Il a certaines limites d’orientation et de
distance (A et B). Il y a une image de profondeur D1 et une image I1 associée avec ce
repère.

(b) Tant que le robot reste dans les limites du repère, il se localise par rapport à O1. Cette
transformation ζ est puis utilisée pour raffiner D1.

(c) Dès que le robot sort des limites, un nouveau repère clé est créé, avec l’origine O2 et
l’image I2. D1 est projeté dans O2 et fusionné avec une nouvelle image de profondeur
D(I1, I2,

2ξ1).
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Figure C.13: Une image de la séquence synthétique.
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Figure C.14: L’odométrie visuelle testée sur des
données synthétiques.

Figure C.15: L’odometrie visuelle directe.

Pour résoudre le problème d’échelle, on normalise la distance de l’incrément de mouvement
selon la mesure de l’odométrie des roues. C’est à dire, l’odométrie des roues nous fournit la
référence d’échelle.

Le resultat de reconstruction de trajectoire est montré sur Fig. C.16. On peut voir
l’impacte de la normalisation d’échelle.

5.3 Localization avec des données réelles

Pour tester la précision et la robustesse de la technique de localisation proposée, nous avons
fait le suivant:

1. Une carte sensorielle visuelle a été construite en utilisant la réalité de terrain.

2. L’algorithme de localisation a été utilisé pour reconstruire la trajectoire absolue du
véhicule.

3. La sortie a été comparée avec la réalité de terrain.
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Figure C.16: Odometrie visuelle directe avec le recollage d’images photométrique. quatre tours en forme d’un
8. À gauche : pas de normalisation d’échelle, à droite : la normalisation d’échelle dure.

L’acquisition a été faite dans un quartier résidentiel le 20 novembre 2017 (la carte et le
premier jeu de donnée) et le 30 novembre 2017 (le deuxième jeu de donnée). L’information
mutuelle est utilisée pour se localiser avec une carte construite dix jours plus tôt. La trajectoire
est présentée sur Fig. C.17.

Figure C.17: Les trajectoires utilisées dans l’expérience. Les longueurs approximatives: bleu — 650 m, vert —
520 m, rouge — 740 m.

Map Construction La carte est une séquence d’images avec une position de camera dans le
repère global associée à chaque d’entre elles. La réalité de terrain a été obtenue en fusionnant
les mesures de l’odométrie des roues, de la centrale inertielle, et de GPS RTK haute précision.
Le processus de construction de la carte est illustré sur Fig. C.18.

Localization Le schéma du système de localisation est montré sur Fig. C.19 La position est
initialisée avec la réalité de terrain, la première transformation est calculée avec l’odométrie
basée points caractéristiques. Cela nous permet de calculer l’image de profondeur et ensuit
utiliser la localisation visuelle directe.
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Figure C.18: Le processus de construction de la carte. Ii et ξGT,i sont des mesures : l’image courante et la
réalité de terrain pour de la position du véhicule. ∆t et ∆r sont les seuils de la translation et de la rotation
pour la construction de carte. Dans notre cas ils sont 1.5 m et 1 rad respectivement.

Deux approches ont été testées. Dans la première, sans lissage de trajectoire, quand on
change de repère de référence, on n’utilise la position actuelle que pour initialiser le processus
d’optimisation. Dans la deuxième approche, on inclut la position courante comme critère
d’optimisation.

Figure C.19: Le schéma de localisation. Ii et ζGT,i sont l’image courante et l’incrément d’odométrie depuis
l’image précédente.

Des exemples des graphes d’erreur et les trajectoires calculées sont sur Fig. C.21. Les
erreurs moyennes sont résumées sur Fig. C.20. Le lissage de trajectoire augmente la précision
presque dans tous les cas. Il enlève les épines d’erreur et rend la trajectoire moins bruitée.
L’écart-type de l’erreur reste autour de 10-15 cm, ce qui est une précision suffisante pour la
localisation et navigation des véhicules autonomes.
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Figure C.20: Comparaison des erreurs pour des jeux de données différents. 20/11 et 30/11 correspondent aux
dates d’acquisition. ”-S” correspond à ”lissage” (smoothing en anglais). ”lat” — erreur latérale, ”long” —
erreur longitudinale.
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Figure C.21: Resultats de localisation — les trajectoires reconstruites et l’erreur correspondante dans le repère
du robot. a) Les données de localisation datent du même jour que celle utilisées pour construire la carte
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5.4 Conclusions

Des systèmes différents de localisation visuelle basée camera fisheye et odométrie des roues
ont été implémentés et testés avec des données synthétisées. On met l’accent sur l’utilisation
de recalage d’images directe photométrique ou basé information mutuelle.

Un système de localisation visuelle, qui utilise les concepts principales développés dans le
cadre de ce travail, a été implémenté et testé sur des données réelles. Il s’est montré robuste
par rapport aux changements environnementaux, qui étaient apparus au cours des 10 jours,
qui séparaient la construction de la carte et la localisation. En plus, le système est robuste
par rapport aux objets mobiles, tels que les voitures, les piétonnes.

Le recalage photométrique s’avère être plus efficace du point de vue du calcul, mais il ne
peut être employé que dans le cas où les images à recaler sont acquises pendant une durée
courte, dans les mêmes conditions d’éclairage. En revanche, l’information mutuelle nous
permet de recaler des images acquise sur deux jours différents.
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