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Equations de Hamilton-Jacobi et jeux a
champ moyen sur les réseaux
Resumé

Cette theése porte sur 'etude de problémes des équations de Hamilton-Jacobi-Bellman (HJB)
associées a des problemes de controle optimal et jeux a champ moyen sur les réseaux, c’est-a-dire,
des ensembles constitués d’arétes connectées a des sommets. Différentes dynamiques et cofits
sont autorisés dans chaque aréte du réseau. Sur la Figure 0.1, on présente deux exemples de
réseall.

V3
Vs Iy I's

I't
Vo V4 Vg 0

Vi I's Ty

Figure 0.1: A gauche un réseau géneral I'; & droite, une jonction G.

Dans le chapitre 2, on considére un probléme de contrdle optimal sur les réseaux dans ’esprit
des travaux d’Achdou, Camilli, Cutri & Tchou [5] et Imbert, Moneau & Zidani [73]. Plus
précisément, nous considérons un probleme de controle optimal dans lequel nous ajoutons des
cotits d’entrée (ou de sortie) aux sommets du réseau et étudions les équations HJB associeés.
L’effet des cotits d’entrée/sortie est de rendre discontinue la fonction valeur du probléme. Pour
simplifier le probléeme, nous étudions seulement le cas de la jonction, c¢’est-a-dire, un réseau de
la forme G = ui]\ilf‘i avec N arétes I'; et un seul sommet O. Nos hypotheéses a propos de la
dynamique et des cofits sont similaires a ceux faits dans le travail de Achdou, Oudet & Tchou [§],
avec des colits supplémentaires ¢; pour entrer dans 'aréte I'; a partir de O ou d; pour quitter
I'; en O. La fonction valeur est continue sur G\ {O}, mais est en général discontinue en O.
Par conséquent, au lieu de considérer la fonction valeur v, nous la remplagons par la collection
(vi)1<i<n> OU v; est la restriction de v a 'aréte I';\ {O} prolongée par continuité en O. Dans le
cas des coiits d’entrée par exemple, notre premier résultat principal est de trouver la relation
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entre v (0), v; (O) et vj (O)+c¢;j pour 1 < i,j < N. Nous en déduisons que les fonctions (v;)1<i<n
sont solutions de viscosité du systeéme suivant

s (2) + Hy (x ZZZ (:c)> 0 §iz e\ {0},

dui

(0.0.1)
Au; (O) + max {—/\ m;n {uj (O) +¢;}, HY <O, T (O)) ,Hg} =0 siz =0,
J#i i

ou H; est le hamiltonien correspondant l'aréte I';. Le point important est I’expression du hamil-
tonien en O, qui prend en compte toutes les stratégiés possibles dans voisinage de O. Plus
précisément, si la trajectoire est proche de O et appartient a I'; alors:

e Le terme min;.; {u; (O) + ¢;} prend en compte les situations dans lesquelles la trajectoire
entre dans I';; ot u;, (O) + ¢, = min;x; {u; (O) + ¢;}.

dui

dwi

e Le terme H;r <O, (O)) prend en compte les situations dans lesquelles la trajectoire

ne sort pas de I';.

e Le terme H:OF prend en compte les situations dans lesquelles la trajectoire reste en O.

La partie la plus importante est consacrée a deux preuves différentes d’un principe de comparai-
son conduisant & 'unicité d’une solution de viscosité pour (0.0.1) ce qui permet de caratériser la
fonction valeur du problémes: la premiere utilise des arguments de la théorie du controle optimal
provenant de Barles, Briani & Chasseigne [19, 20] et [8]; la seconde est inspirée par Lions &
Souganidis [86] et utilise des arguments de la théorie des EDP.

Dans le chapitre 3, nous étendons le travail de Camilli & Marchi [32]. Nous étudions des jeux
a champ moyen stochastiques (MFG) dans le cas ergodique pour lequel I'espace d’état est un
réseau:

—pi0%v + H (z,0v) +p =
wid*m + 0 (ma,H (z,0v))
N

Z Yipioiv (O) = 0,
1= 1

X Z [uzﬁ m( ( ) (O)] =0, (0.0.2)

div (1) = 0, pioim (v;) + 0pH; <1/1,6 v(v, ))mZ (v;) =0,
(O) _ mj (0)

¥ [m], reT\{0},i=T,N,
0, xEFi\{O},izm,

I
=

I
=

) Z’

vi (0) = v; (0),

Jv Jm m = 0.
\JG

Ici {7;} est un ensemble de constantes positives et {y;} est une constante de viscosité correspon-
dant a I';. Commentons le systeme MFG (0.0.2).

e Les constantes positives (v;) sont reliées aux probabilités d’entrée dans les arrétes du pro-
cessus stochastique sous-jacent sur le réseau qui décrit la dynamique d’un joueur "moyen".

e Les constantes positives (u;) sont les coefficients de diffusion dun processus stochastique
dans les arétes.
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e Les EDP de la premiere ligne sont les équations de Hamilton-Jacobi-Bellman (HJB) er-
godiques dans les arétes, associées au probléme de contrdle optimal du joueur typique du
probleme MFG. Les hypothéses principales sont que nous considerons des Hamiltoniens
sous-quadratiques par rapport au gradient et un couplage V tres général. Ce dernier peut
étre local, seulement borné inférieurement et strictement croissant (pour obtenir I'unicité).

e Les EDP de la deuxieme ligne sont des équations de Fokker-Planck (FP) dans les arétes
qui décrivent la distribution m de I’ensemble de joueurs du probleme MFG.

e La troisieme ligne est une condition de Kirchhoff pour la fonction valeur du probleme de
controle au sommet.

e La quatrieme équation est une condition de transmission pour m au sommet.

e La cinquieme ligne traduit les conditions de Kirchhoff pour v aux bords du réseau (qui
se réduisent a des conditions de Neumann) et les conditions de transmission pour m aux
bords du réseau (qui se réduisent & des conditions de Robin). Ici, dans le cas de la jonction,
le bord du réseau est constitué du but des arétes qui ne contiennent pas O.

e La sixieme ligne du systeme exprime les conditions de continuité pour v et les conditions
de saut pour m (ces derniéres représentant une des originalité et difficulté du probléme).

e La dernieére ligne contient des conditions de normalisation pour v et m (qui est une densité
de probabilité).

Le premier résultat est de poser le probleme et d’expliquer I'obtention du systeme d’EDP et des
conditions de jonctions. Ensuite, nous montrons quelques résultats préliminaires utiles, d’abord
sur certains problemes aux limites linéaires elliptiques équations, puis pour deux d’équations
linéaires de Kolmogorov et de Fokker-Planck en dualité. L’existence de solutions faibles est
obtenue en appliquant le théoréeme de Banach-Necas-Babuska a une paire spéciale d’espaces
Sobolev appelés V' et W ci-dessous et 'alternative de Fredholm. L’unicité vient d’un principe
maximum. A l'aide de cas résultats nous prouvons que le systéme (0.0.2) est bien posé par des
arguments de point fixe.

Dans le dernier chapitre, nous considérons le systeme MFG a horizon fini sur les réseaux
suivant:

—0p — p;0%v + H (x,0v) = ¥ [m], te(0,7), zeT;\{O}, i=1,N,
orm — p;0*m + 0 (moyH (z,0v)) = 0, te (0,T), zeT;\{O}, i=1,N,
N

2 "Yi/ii&iv (O, t) = O, te (0, T),

i

3 [ui(%m (0,t) + 8,H; (0, @iv(O,t))mi (o,t)] —0, te(0,T),

i=1

0w (i, t) = 0, psdym (v, t) + 8pHi(Vi,é’iv(yi,t)>mi (i,t) =0, te(0,T), i=T,

mi (0,1) _ m; (0,1) te(0,T), i,j =1, N

=

v (0.1) = v, (0,1),

Vi Vi
v(z,T) =vr(z), m(z,0) = mo(z), f mo(x)dx =1, regq.
g

(0.0.3)




La description et I'interprétation de ce systeme est semblable au cas du chapitre précédent pour
un probléme en horizon fini, ce qui se traduit par des équations d’évolution a la place d’'un
probleme stationnaire. Les principales différences dans les hypothéses concernent les équations
d’HJB. Nous devons ici considérer des hamiltoniens H qui sont globalement lipschitzien par
rapport au gradient (et donc sous-linéaires) et un couplage qui est régularisant (et donc non-
local).

Le premier résultat est de pose le probleme et d’expliquer ’obtention du systeme d’EDP aisin
que les conditions aux jonctions. Ensuite, nous montrons quelques résultats utiles pour une
équation de la chaleur modifiée avec des conditions de Kirchhoff générales et pour des équations
de FP avec des conditions de transmission spéciales. Ces résutat utilisent des méthodes de
Galerkin type. Notons que les solutions faibles sont définies en utilisant une paire appropriée
d’espaces de fonctions Sobolev V' et W définis sur le réseau. La principale difficulté dans ce
travail est comment d’obtenir la régularité pour la fonction valeur v sur le réseau. L’idée est
de dériver 1’équation HJB pour v et de prouver une estimation de régularité parabolique pour
la solution du probleme dérivé. Enfin, nous donnons les preuves des principaux résultats de
I’existence et 1'unicité du systéeme MFG des EDP en utilisont la aussi des théoremes de point
fixe.

Mots clés: Problemes de contréle optimal, équation de Hamilton-Jacobi, équations
aux dérivées partielles elliptiques et paraboliques, solutions de viscosité, solutions
faibles, réseaux, jeux a champ moyen, condition de Kirchhoff.

vi



Contents

1 Introduction

1.1

1.2

1.3

2.3

2.4
2.5
2.6
2.7

General introduction . . . . . .. ..o
1.1.1 Hamilton-Jacobi equations and optimal control problems . . ... .. ..
1.1.2 Mean field games . . . . . . . . . ...
Optimal control problems on networks and Hamilton-Jacobi equations on networks
1.2.1 State constrained optimal control problems . . . ... .. .. ... ....
1.2.2  HJB approach for problems with discontinuity in state . . . . . . . . . ..
1.2.3 Hamilton-Jacobi equations and optimal control on networks . . . . . . ..
1.2.4 Results in Chapter 2: Hamilton-Jacobi equation on networks with switch-
ingcosts . . . . . . L
Mean field games on networks . . . . . . .. ... L L
1.3.1 Derivation of Mean field games system on networks . . . . . . .. ... ..
1.3.2  Results in Chapter 3: A Class of Infinite Horizon Mean Field Games on

Networks . . . . . . . . . e
1.3.3 Results in Chapter 4: A Class of Finite Horizon Mean Field Games on
Networks . . . . . . . . . e
2 Hamilton-Jacobi equations for optimal control on networks with entry or exit
costs
2.1 Introduction . . . . . . . . . . . . e
2.2 Optimal control problem on junction with entry/exit costs . . . . . . . ... ...

2.2.1 Thegeometry . . . . . . . . . e
2.2.2  The optimal control problem . . . . . .. ... ... . 00,
2.2.3 Some properties of value function at the vertex . . . . . .. .. ... ...
The Hamilton-Jacobi systems. Viscosity solutions . . . . . . ... ... ... ...
2.3.1 Test-functions . . . . . . . . ...
2.3.2  Definition of viscosity solution . . . . . . ... ... oL
Connections between the value functions and the Hamilton-Jacobi systems.

Comparison Principle and Uniqueness . . . . . . . . . . ... ... . .......
A more general optimal control problem . . . . . ... ... ... ... ......
Appendix . . . . . L e

A Class of Mean Field Games on Networks.

Part One: the Ergodic Case

3.1

Introduction and main results . . . . . . . . .. ... L
3.1.1 Networks and function spaces . . . . . . . . .. .. ... ...
The geometry . . . . . . . . .
Function spaces . . . . . . . . . . L
3.1.2 A class of stochastic processeson I'. . . . . . . . ... ... ... ...,
3.1.3 Formal derivation of the MFG systemon " . . . . . .. ... ... ....
3.1.4 Assumptions and main results . . . . ... .. ...
Assumptions . . . . . ... e

O R N ke e

57
o7
o8
o8
60
61
64
66
66

vii



Contents

Function spaces related to the Kirchhoff conditions . . . . . . . ... ... 66
Main result . . . . . . . . . e 67
3.2  Preliminary: A class of linear boundary value problems . . . .. ... ... ... 67
3.2.1 Afirst classof problems . . . . . ... Lo 68
3.2.2 The Kolmogorov equation . . . . . . . .. .. ... L oL 71
3.2.3 The dual Fokker-Planck equation . . . . . . .. ... ... ... .. .... 72
3.3 Hamilton-Jacobi equation and the ergodic problem . . . . . ... ... ... ... 76
3.3.1 The Hamilton-Jacobi equation . . . . .. ... ... .. ... ... .... 76
3.3.2 Theergodic problem . . . . . . . .. ... 80
3.4 Proof of the mainresult . . ... ... ... ... ... .. ... .. ... ... 82
4 A Class of Mean Field Games on Networks.

Part two: Finite Horizon Games 89
4.1 Introduction and main results . . . . . . .. .. L Lo oo L 89
4.1.1 Networks and function spaces . . . . . . . . .. ... ... . 90
The geometry . . . . . . . . L L 90
Function spaces related to the space variable . . . . .. . ... ... ... 91
Some space-time function spaces . . . . . . . ... ... ... ... 92
4.1.2 A class of stochastic processeson I". . . . . . . .. ... ... ... ... 93
4.1.3 Formal derivation of the MFG systemon I" . . . . . ... ... ... ... 95
4.1.4 Assumptions and main results . . . . ... ..o L 97
Function spaces related to the Kirchhoff conditions . . . . . . .. ... .. 97
Running assumptions . . . . . . . ... L L oo 97
Stronger assumptions on the coupling operator . . . . . .. ... ... .. 98
Definition of solutions and main result . . . . . . ... .. ... ... ... 98

4.2 Preliminary: a modified heat equation on the network with general Kirchhoff
conditions . . . . . .. L 99
4.3 The Fokker-Planck equation . . . . . . . .. ... .. . o o 104
4.4 The Hamilton-Jacobi equation . . . . . .. ... . ... ... .. ... . .... 106
4.4.1 Existence and uniqueness for the Hamilton-Jacobi equation . . . . . . .. 107
4.4.2 Regularity for the Hamilton-Jacobi equation . . . . ... ... ... ... 110
4.5 Existence, uniqueness and regularity for the MFG system (Proof of Theorem 4.1.11)119
4.6 Appendix: Some continuous and compact embeddings . . . . .. ... ... ... 121
Bibliography 123

viii



1 Introduction

1.1 General introduction

The aim of this dissertation is to study Hamilton-Jacobi equations associated with optimal
control problems and mean field games problems in the case when the state space is a network.

1.1.1 Hamilton-Jacobi equations and optimal control problems

In this section, we recall general optimal control problems, and their connection to Hamilton-
Jacobi equations.

First of all, we consider a classical problem in calculus of variation, in which a single agent tries
to optimize his path in space time with respect to a fixed cost function. Specifically, suppose
that the agent is at x € R™ at time t = 0 and moves with a given velocity (or dynamic) f,
possibly subject to some random noise. The trajectory of the agent is solution to a controlled
ordinary differential equation (when p = 0) or stochastic differential equation (when p > 0),
namely

dy (s) = f (y(s) ,a(s)) ds + /2u dWs, y(0) =z, (1.1.1)

where W, is a Fi—adapted Wiener process in a reference probability system (€2, (F¢)i=0, P). The
Fi—progressively measurable function « : [0,+00) — A is called the control and the set of
all admissible control functions is denoted by 7. Under mild hypotheses, for a given control
a, (1.1.1) has a unique solution y = ¥y, o, which is an absolutely continuous function (when
i = 0) or a continuous simple path (when p > 0).

Depending on the situation, we will consider several costs associated to a given trajectory.
The first one is related to the so-called infinite horizon control problem, for which

J(z,0) = E, [Lwe(yx,a(t),a(t» e_’\tdt} , (1.1.2)

with £ is a given running cost and A is a positive constant. The case of finite horizon control
problem is when one runs the trajectory for a finite range of time T — ¢, starting at x at time ¢

701:0) 1= B [{ [ 0000 )00 d5 4 0r (1)}, (113)

where v is called the terminal cost. In the deterministic case p = 0, there is no expectation.

The optimal control problem is to find an optimal control o € 7 such that the total cost is min-
imized. In 1950s, to study these problems, Bellman [21] developed a Dynamical Programming
approach. The first step is to introduce the value function of the problem

v(z) = Oé(i'lr)l(;_J(ac,oz), or v(x,t)= a(ilr)liTJ(x,t,a), (1.1.4)

which is the optimal cost of the optimization problem.
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Then the key idea is that v satisfies a functional equation, called the Dynamical Programming
Principle (DPP), from which we obtain that v is a solution of a Hamilton-Jacobi-Bellman (HJB)
equation, namely

M (x) — pAu+ H (z, Vo (x)) =0, (1.1.5)

in the infinite horizon case, and

{ —0w (z,t) — pAu + H (2, 0v) = 0, (1.1.6)

U(.I‘,T) = UT(:C)a
in the finite horizon case. The Hamiltonian H is defined by
H (z,p) = Sug{—p-f(:r,a) —L(z,a)}.
ae

We can see that the HIJB equations (1.1.5) and (1.1.6) contain all the relevant information to
compute the value function and to design the optimal control strategy.

Unfortunately, the value function is not differentiable in general and therefore to make rigorous
the previous approach, solutions to the HJB equations need to be considered in a weak sense.
In this thesis, we will consider viscosity solutions (Chapter 2) and classical weak solutions
(Chapters 3 and Chapter 4).

Weak solutions are well-known and we refer to classical books of Lions [83], Brezis [29] and
Evans [49] for details. As far as viscosity solutions are concerned, the history is more recent.
From the 1970’s, there are considerable breakthroughs dealing with non-smooth value functions.
We refer the reader to the books of Aubin & Cellina [12], Aubin & Frankowska [13], Clarke
[40, 41, 42] and references therein. At the beginning of the 1980’s, Crandall & Lions [46] and
Crandall, Evans & Lions [44] introduced viscosity solutions, which appear to be well-adapted
to solve PDEs like (1.1.5) and (1.1.6). Main references on the subject are Lions [85], Crandall,
Ishii & Lions [45], Barles [17], Bardi & Capuzzo-Dolcetta [14], Fleming & Soner [50], Bardi,
Crandall, Evans & Soner [15], Achdou, Barles, Ishii & Litvinov [3].

1.1.2 Mean field games

In this section, we shall give an overview introduction to the mean field games.

Recently, an important research activity on mean field games (MFG for short) has been
initiated since the pioneering works [79, 80, 81] of Lasry & Lions. Related ideas have been
developed independently in the engineering literature by Huang, Caines & Malhamé, see for
example [70, 69, 68]. It aims at studying the asymptotic behavior of stochastic differential
games (Nash equilibria) as the number N of agents tends to infinity. Previously, the concept
was developed in economic literature under the terminology of heterogeneous agent models, see
[10, 23, 71, 77]. In the asymptotic behavior of stochastic differential games, it is assumed that
the agents are all identical and that an individual agent can hardly influence the outcome of
the game. Moreover, each individual strategy is influenced by some averages of functions of the
states of the other agents. In the limit when N — 400, a given agent feels the presence of the
others through the statistical distribution of the states. Since perturbations of the strategy of a
single agent do not influence the statistical states distribution, the latter acts as a parameter in
the control problem to be solved by each agent. The delicate question of the passage to the limit
is one of the main topics of the book of Carmona & Delarue [38]. When the dynamics of the
agents are independent stochastic processes, MFGs naturally lead to a coupled system of two
partial differential equations (PDEs for short), a forward in time Kolmogorov or Fokker-Planck
(FP) equation and a backward HJB equation. The unknown of this system is a pair of two
functions:
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e the value function of the stochastic optimal control problem solved by a representative
agent. The associated SDE is (1.1.1) with f = «, namely

dy = a(s)ds + +/2p dWs,

e the density of the distribution of states.

In the infinite horizon limit, one obtains a system of two stationary PDEs. In classical control
problems as described in Section 1.1.1, a single agent has his/her own fixed cost to minimize. In
MFG, the model is generalized by allowing the cost of the representative agent to also depends on
an interaction term between the agents: the cost functional depends on the probability density
function m of all agents. More precisely, an typical agent controls the SDE (1.1.1) and we aim
to minimize the following cost functional

T
7t.0) = Bar | [ (0 (5.0 (9) [ (9] ) ds 4 07 (e (). T).
The interaction term ¥ may have different meanings. If ¥ is increasing, then the model means
that the agent prefers to be away from the other agents, which leads to a repulsive effect.
Conversely, a decreasing ¥ leads to an attractive effect.

Let v be the value function of the problem. From Section 1.1.1, if v is smooth enough, then
v is a solution of a viscous HJB equation

— 0w — pAv+ H (x,Vv) =¥ [m], v(z,T)=uvp(z). (1.1.7)

The equation (1.1.7) is a backward equation since the agents’ decisions are based on their
goals in the future. The optimal control is heuristically given in feedback form a* (z,t) =
—0pH (z, Vv (z,t)). Now if all agents argue in this way, their repartition will move with a
velocity which is due, on the one hand, to the diffusion, and, one the other hand, on the drift
term —0pH (x, Vv (x,t)). This leads to the FP equation

— 0im 4+ pAm + div (0pH (x,Vv)m) =0, m(z,0) = my. (1.1.8)

The forward equation (1.1.8) represents where the agents actually end up, based on their initial
distribution. To summarize, the non-stationary mean field games equation becomes

—0w — pAv + H (x, Vo) =¥ [m] in R" x (0,7),
—oym + pAm + div (0pH (z,Vv)m) =0 in R" x (0,7, (1.1.9)
m(0) = mo, v(z,T) =vr (z).

Let us discuss the coupling term ¥ in MFG system (1.1.9). When the coupling ¥ is such that
there is F' : RT — 0 with ¥[m](z,t) = F(m(z,t)), we say that ¥ is a local coupling. But
the coupling may also be nonlocal, for instance when ¥ [m](z,t) = [m(-,t) * g(-,t)](x) where x
stands for the space convolution.

Since the seminal works of Lasry & Lions and Caines, Huang & Malhamé, the subject has
been growing quickly. A very nice introduction to the theory of MFGs is supplied in the notes of
Cardaliaguet [37] and Achdou [1]. We also refer to the survey paper of Gomes & Satide [66] and
the books of Bensoussan, Frehse & Yam [22], Gomes, Pimentel & Voskanyan [65] and Carmona
& Delarue [39] for a general presentation.
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1.2 Optimal control problems on networks and Hamilton-Jacobi
equations on networks

In this section, we consider optimal control problems and HJ equations on networks and state the
results obtained in Chapter 2. There are two main challenges that we have not encountered yet.
Firstly, a network is a somewhat complicated space and we shall define the set of admissible
controls which make the trajectories remained on networks. Secondly, the Hamiltonian on
networks is generally defined branch by branch and so, it may be discontinuous at the vertices,
which inhibits us from applying directly the classical techniques to deal with the HJ equations.

The first issue already appears in state constraints control problem and the second one is a
natural issue in the case of Hamilton-Jacobi equations with discontinuities in space. We describe
now these two cases before tackling the issue of Hamilton-Jacobi equations on networks, which
is our main interest in Chapter 2.

1.2.1 State constrained optimal control problems

In optimal control problems with state constraints, we study the trajectories of the controlled
dynamical system which are confined in a given set. More specifically, we add the following
constraint to the problem (1.1.4):

Yra(t) € IC, forallte[0,7] in the deterministic case u =0,

and
Yz,a(t) € IC, forall t € [0,T],P-a.e. in Q in the stochastic case p > 0,

where K = R? is a given closed subset. It means the set of admissible controls « : [0,7] — A
has to be restricted to the subset 7, which keeps the solution of (1.1.1) in K. The value function
becomes

v(z) = inf J(x,«).
@)= it J(.0)
This induces a serious additional difficulty. For instance in the classical problem (1.1.4), the
continuity of the value function is generally easy to obtain by the straightforward computation

v(z) —v(y) < inf J(z,a)— inf J(y,a) < sup {J(z,a)— J(y,a)}, (1.2.1)
a()eT a()eT al)eT

assuming classical continuity assumptions on J. Now, since 7 depends on the starting point of
the trajectory, the above computation is not true anymore and continuity of v is more involved.
The value function is no longer continuous unless a special controllability assumption is added
to modify the dynamics on the boundary of state constraints.

The characterization of the value function as the unique solution of a HJB equation is also
another big issue. In [95, 96], Soner characterized the value function of optimal control problems
with state constraints as the unique constrained viscosity solutions of the related HJ equation,
i.e., viscosity solution "inside K" and viscosity supersolution on the boundary of IC. It was then
developed by Capuzzo-Dolcetta & Lions [36] and Ishii & Koike [76]. As noted above, we need a
special controllability assumption to ensure the continuity of the value function, like the "inward
pointing qualification condition (IQ)" in [95]. It means that at each point of I, there exists a
control such that the dynamic points inward K.

In such a case, the value function is the unique continuous viscosity solution to an appropriate
HJB equation, see [95, 96, 76, 36] and the work of Motta [88]. However, in some cases, we do
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not have the condition IQ and hence the continuity of the value function is no longer ensured.
The "outward pointing qualification condition (OQ)" was therefore introduced by Blanc [24],
Frankowska & Plaskacz [54], which assume that every point on the boundary of K can be reached
by a trajectory coming from the interior of K. Under this assumption, one can characterize
the value function as the discontinuous bilateral viscosity solution of a HJB equation. There
are other works dealing with such kind of problems under weaker conditions, see Bokanowski,
Forcadel & Zidani [27], Frankowska & Mazzola [52, 53].

1.2.2 HJB approach for problems with discontinuity in state

This section is concerned with optimal control problems and HJB equations on multi-domains,
which means that the control problems and the corresponding Hamiltonians in each domains
are different. In the interior of each domain, we have a classical HJB equation like (1.1.5)
and (1.1.6). The point is to determine the relevant conditions at the interfaces, as in the state
constraints problems at the boundary.

To explain more precisely the problem, we consider a simple example

M (z)+ H (z,Vv(x)) =0, zeR, (1.2.2)

where A is a positive constant and the Hamiltonian H : R x R — R is defined by

Hy(p), ifz<0,
HQ(p)7 lf$>07

H(z,p) = (1.2.3)

where Hi, Ho are convex and coercive. The Hamiltonian H is definitely discontinuous at z = 0
if Hy # Hy. In [74], Ishii introduces discontinuous viscosity solutions to solves this problem.
A locally bounded function u is a discontinuous viscosity solution of (1.2.2) provided u™* is a
subsolution and u, is a supersolution in the following sense!. For all z € R and ¢ € C(R) such
that z is a maximum (resp. minimum) point of u* — ¢ (resp. us — ), then

Mt (z) + Hy (¢ () <0 (resp. Auy (z) + Hy (¢ (2)) =0), 2 <0,
M (z) + Ha (¢ (2)) <0 (resp. Auy (z) + Ha (¢ (2)) =0), x>0,

and, if x = 0 then

M (z) + min {H; (¢'(0)) , Hz (¢’ (0)) }
(resp. Auy (x) + max {H; (¢'(0)) , Ha (¢’ (0))}

Note that the first conditions are classical viscosity inequalities in the open sets {x < 0} and
{x > 0}, whereas the last condition is a mixed condition at the interface. Here it means that at
least one of the left or right inequality has to hold at x = 0.

To see the difficulty to obtain uniqueness, let us try to prove a comparison principle, i.e., to
prove that any USC subsolution u is below any LSC supersolution v (uniqueness follows easily
from such a result). Assuming by contradiction that (u — v)(z¢) > 0 for some zg, we use the
"doubling variable technique" (e.g., [3]), which consists in considering

’ r=U,

<0
>0, x =0),

2
r—1y
0< sup gu(a,), where @.(a.y) = u(e) - oly) — LY.
z,yeR £

Lu¥(z) = lim sup,_,, u(y) is the upper-semicontinuous (USC) envelope of u and ux(z) = liminfy_. u(y) is

the lower-semicontinous (LSC) envelope of u.
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We assume here for simplicity that the supremum is achieved at (x.,y.). By the choice of the
penalization term in ¢., it follows that z. and y. tend to the same z as ¢ — 0.

In the easy case, when x % 0, both z. and y. are in the same branch for small €, for instance
Ze,ye > 0. Applying the definition of viscosity solution, we get

2 — 2 —

0 < Au(ze) — M(ye) = Au(x:) — M(y:) + Ha <(x€€2y€)) — Hy <(33€€2y5)) <0,
which is a contradiction. But, if £ = 0 (meaning that 0 is a maximum point of u — v), then it
may happen that z. and y. are in different branches for all ¢, let us say x. < 0 and y. > 0. In
this case, the definition of viscosity solution gives only

Au(ze) — M(ye) + Hy (W) — H, (W) <0,

and we cannot conclude since H; (@) + Hy (@)

In this thesis, the problem is not specific to this example, but appears when the Hamiltonian
is discontinuous with respect to the state variable. Hence, although a comparison principle for
viscosity sub and supersolution is proved in [74], we will see later that a viscosity solution in the
sense of Ishii is not enough to characterize a value function of an optimal control problem on
networks. To overcome this difficulty, it is necessary to impose certain transmission conditions
on the interfaces, which will lead to new notions of viscosity solutions.

Soravia [97, 98] and Soravia & Garavello [58, 59] were among the first to tackle this issue in
the framework of viscosity solutions both from the HJB and optimal control point of view. In
[58], the authors study an optimal control with a discontinuous cost with respect to the state
variable, which leads to HJB equations with discontinuity in state. However, their value function
is not the unique solution of this HJB equation. They can only characterize the minimal and the
maximal solution of the HJB equation, using some sub- and super-optimality principles from
the optimal control problem. Note that some sub- and super-optimality principles together with
additional transmission conditions were later used in a fruitful way in [19, 20, 8] and in Chapter 2
(see below for details).

Some transmission conditions appear in the work of Bressan & Hong [28] about HJB equations
in stratified domains. They introduce HJB tangential equations on the interfaces, which allow
them to prove a comparison principle using control arguments.

After that, Barles, Briani & Chasseigne [19, 20] solve the problem (1.2.2)-(1.2.3) in general two-
domains regional control problems. They consider two transmission conditions on the interface,
so-called singular and regular dynamics, according to the behavior of dynamics on the interface.
More precisely, let f; and A; be the dynamic and the control set corresponding to €2; (21 =
(—0,0] = Rtey and Q5 = [0,+00) = Rtes). Then the singular case means f;(0,a;) < 0, while
the regular case means f;(0,a;) = 0 for all a; € A;. Then, there are two different value functions
U~ and U*t. The first one is obtained when allowing all kind of controlled strategies (with
singular and regular dynamic) while the last one is obtained by forbidding singular dynamics.
The authors use the Ishii’s notion of solutions and prove that U~ and U™ are , respectively, the
minimal and maximal solution of (1.2.2)-(1.2.3). Hence, they consider additional properties to
obtain the characterization result. A comparison principle and a stability results for both value
functions are also established. The idea for uniqueness comes from the fact that, in some senses
the singular strategies are not encoded in the equations (1.2.2)-(1.2.3), while it is the case for
the regular ones.

The article of Rao & Zidani [93] and Rao, Siconolfi & Zidani [92] are also in line with [28]. The
problems studied are also close to those considered in [19, 20]. Indeed, the authors are interested
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Figure 1.1: On left, a general network I'; on right, a junction G.

in problems where they consider different HJB equations in each region €2; of space instead of
studying the equations at the junction. The authors propose a junction condition involving a
Hamiltonian H¥ which is called essential Hamiltonian. The equation with the essential Hamil-
tonian are stronger for the characterization of sub and supersolutions, but the value function
satisfies this equation on the interfaces. Finally, in their work, the comparison principle between
USC subsolutions and LSC supersolutions (they are continuous on the interface) is obtained.

Let us also mention some works dealing with HJ equations without using control arguments.
In [34, 35], Camilli & Siconolfi propose a theory of HJ equations with Hamiltonians H(x, p) only
measurable with respect to the state variable, convex (or quasi-convex in the autonomous case)
and coercive respect to p. Another important work is [43] in which Coclite & Risebro study
the discontinuous HJ equations that may appear in 3-dimension reconstruction problems from
shadows or the "shape from shading". Finally, in [60], Giga & Hamamuki study HJ equations
with intermittent source term, which appears for example in training models of crystals.

1.2.3 Hamilton-Jacobi equations and optimal control on networks

In this section, we consider the optimal control problems on networks and the associated HJ
equations. A network (or a graph) is a set of items, referred to as vertices (or nodes/crosspoints)
which are denoted in this work by v; (in general case), or O (in junction case-a network has only
one vertex). The connections between them referred to as edges, which are denoted by Ty, see
example in Figure 1.1.

As explained in Section 1.2.2; to characterize the value function of the optimal control problem
on network as the unique viscosity solution of a suitable HJB equation, one needs to find the
right transition conditions at the vertices.

One of the first articles about optimal control problems on networks appeared in 2013. Achdou,
Camilli, Cutri & Tchou [5] derived the HJB equation associated to an infinite horizon optimal
control on a network and proposed a suitable notion of viscosity solution. At the same time,
Imbert, Monneau & Zidani [73] proposed an equivalent notion of viscosity solution for studying a
Hamilton-Jacobi approach to junction problems and traffic flows. Both [5] and [73] contain first
results on comparison principles which were fundamental for several developments that follow.
It is also worth mentioning the work by Schieborn & Camilli [94], in which the authors focus on
eikonal equations on networks and on a less general notion of viscosity solution. We also refer
to the work [33] where Camilli, Marchi & Schieborn study elliptic equations on the edges with
Kirchhoff-type conditions at the vertices; after that, they prove the definition of solutions, which
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is defined in [94], is consistent with the vanishing viscosity method. In the particular case of
eikonal equations, Camilli & Marchi [31] establish the equivalence between the definitions given
in [5, 73, 94].

Since 2012, several proofs of comparison principles for HJB equations on networks, giving
uniqueness of the solution, have been proposed.

1. Following [5], Achdou, Oudet & Tchou [8] prove the comparison principle for a stationary
HJB equation arising from an optimal control with infinite horizon, by mixing arguments
from the theory of optimal control and PDE techniques. Their proof was inspired by the
works of Barles, Briani & Chasseigne [20, 19] on regional optimal control problems with
discontinuous dynamics and costs.

2. A different and more general proof, using only arguments from the theory of PDEs was
obtained by Imbert & Monneau in [72]. The proof works for quasi-convex Hamiltonians,
and for stationary and time-dependent HJB equations. It relies on the construction of suit-
able vertex test functions which are designed to take into account the transition condition
at the vertices.

3. A simple and elegant proof, working for non convex Hamiltonians, has been very recently
given by Lions & Souganidis [86, 87].

The works [8] and [86, 87] have been particularly influential in our work in Chapter 2 and we
will give more details in Section 1.2.4.

1.2.4 Results in Chapter 2: Hamilton-Jacobi equation on networks with
switching costs

In Chapter 2, we consider an optimal control problem on a network the setting of which is close
to [8]. In addition to this work, we suppose that there are entry (or exit) costs at the boundary
of each edge of the network. Our goal is to characterize the value solution as the unique viscosity
solution of an appropriate HJB equation.

For simplicity, we only consider a network with only one vertex from which start N semi-
infinite straight edges. We call such a network G a junction. The edges are denoted by (Fi>i:1, e

See Figure 1.1 for an example of junction on RZ.

We consider infinite horizon optimal control problems which have different dynamics and run-
ning costs in each edge. For i = 1, N, the control sets, dynamics and running cost corresponding
to I'; are, respectively, denoted by A;, f; and ¢;. This means that, if a trajectory moves inside
I';, we use a control taking values in A;, the velocity is f; and we pay the running cost ¢;.
Interestingly, if we come to O, it is possible to use a control taking values in all A;.

Precise assumptions are a little technical so we refer the reader to the set of assumptions [H]
in Chapter 2 for details. We prefer to give a flavour of the model.

We consider the infinite horizon optimal control problems (1.1.1) on the junction G with p = 0.
Moving on G, beside paying the cost as in [8], one has to pay the additional entry cost c;e™ ik,
Here ¢; is a positive entry costs corresponding to I'; and t;, € K; is the time the trajectory enters
I\ {O}. We define a cost functional with entry costs:

+00 N
J(x,a) = J C(Yra (€), (€)) e Mdt + Z Z cie Mk (cost functional with entry cost).
0 i=1keK;cN
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Here 7, is the set of admissible controlled trajectories starting from x € I" (it depends on z for
the same reason as in Section 1.2.1). The value function of the infinite horizon optimal control
problem with entry costs is defined by:

v(z) = ;&f; J (z,a) (value function with entry cost).

We only focus on the case with entry costs here, but it is also possible to consider the case
with exit costs, see Chapter 2. By the definition of the value function, we are only interested
in control laws « such that J (z,a) < +o0. Hence, we only consider the case such that the
state cannot switch edges infinitely many times in finite time, otherwise the cost functional is
obviously infinite.

As noted above, our definition of the value function is similar to one made in [8] except
the additional costs ¢; for entering the edge I'; at O. This makes the value function possibly
discontinuous contrary to [8] where it is continuous. For a better illustration, let us give the
following simple example.

FEzample 1.2.1. Consider the same junction as in problem (1.2.2), G = T';y UT'y where I'; = Rteg
and 'y = Rtes where ey = —1 and es = 1. The control sets are A; = [—1,1] x {i} with i € {1,2}.
Set f; (z,(a;,i)) = a; and €1 = 1,09 (z, (a2,2)) = 1 — az. An easy computation gives the explicit
formula for the value function u without entry cost,
0, in Fg,
u(@) =191_ ¢l .
——— il

Note that u is continuous. Now, if we add some positive entry costs ¢; and co in the edges, the
value function can again be computed:

1
1. If ¢ = % then

0 ifSUEFQ\{O},
YEENL e er
A b
2. If <l th
. C9 )\, en
0 if 7 € Ty\ {O},
v(z) =19 1_ ¢l
ercge*A'f‘ if zely.

In this case, v is discontinuous, see Figure 1.2. From the above formulas, since £; > {5, if the
trajectory starts at x € I'o, the bad strategy is moving to O, paying entry cost and entering I';.
Hence, ¢; does not appear in the formula for the value function v.

Before stating the main results, let us have a quick look at our assumption [H]. In this
assumption, the control sets A; are disjoint; the dynamics are bounded, Lipschitz continuous; the
running cost are bounded uniformly continuous. Additionally, we suppose that a controllability
assumption holds near O. It means that it is always possible to find a trajectory connecting two
points sufficiently close to O. It follows that the restriction v|p,\ (o} of v is Lipschitz continuous
and therefore it may be extended to O in each edge. This extension is denoted by v;. Note that
v;(0) may not be equal to v;(0) if ¢ + j since, in general, v is not continuous at O.

We are ready to introduce the first theorem.
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Figure 1.2: Left: The value function u with A = 1/4. Right: The value function v with entry
cost cg =2 and A\ = 1/4.

Theorem 1.2.2 (Theorem 2.2.9 and Lemma 2.2.11). Under assumption [H],

T
max {v; (0)} < v (0) = min{ min {v; (0) + ¢}, _Ho } , (1.2.4)
i=1,N i=1,N A
where
HE = max max {—¢; (0,a;)} = — min_min {¢; (O, a;)}. (1.2.5)
i=1,N a;€AY i=1,N a;€AY

This theorem makes the link between the value of the original value function v and the values
of the extensions v; at the junction. The equality in (1.2.4) means that if the trajectory begins
at O, the optimal strategy is either to stay at O for all time or to enter immediately the edge
I'; that has the lowest possible cost.

Theorem 1.2.3. (Theorem 2.6.7) Let v be a value function with entry cost. Then (vi,...,vN)
s a viscosity solution of the following Hamilton-Jacobi system

A (z) + Hi (:c,‘jl“i (x)) ~0 ifxeT\{O},i=T1,N,
€i
Au; (O) + max {—Amin{uj (0) +¢;}, H (0, ZZZ' (0)> ,Hg’} =0 ifzx=0.
J7 i

(1.2.6)

Inside every edge I';\{O}, we recognize a classical Hamilton-Jacobi with a Hamiltonian H;
corresponding to the edge I';, namely

Hz(xap) = max{_pfi(xv a’) - gl(xa a)} .
aeAi
Here, the Hamiltonian at O with respect to 7 is defined by

H;"(O,p) = max {—pfi(z,a) — l;i(z,a)},

acAF

%

where A = {a€ A;: f;(O,a) = 0}. At the vertex O, there is a special Hamiltonian or trans-
mission condition, which takes into account all the possible strategies near the vertex:

e The term minj.; {u; (O) + ¢;} accounts for situations in which the trajectory enters I'y;,
where u;, (O) + ¢, = minj.; {u; (O) + ¢;}.

10
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dui
’ dxi

e The term H; <O (O)) accounts for situations in which the trajectory does not leave

7.

e The term Hg accounts for situations in which the trajectory stays at O.

Sketch of proof of Theorem 1.2.3. From (1.2.4) and (1.2.5), it suffices to prove that v;(O) satis-

fies
dvi

’ dxi

Mv; (O) + Hif <O (O)) < 0, in the viscosity sense.
Let a € A; such that f;(O,a) > 0. For all x € I'; and near O, using the strong controllability at

0O, we get

d .
M (x) — filx, a)d—g(x, a) — li(x,a) <0, in the viscosity sense,
7

Let £ — O and the proof for subsolution is done.

The characterization for supersolutions is more difficult. We need to prove the following
property (which is Lemma 2.4.3 in Chapter 2): if

T
v; (O) < min {1}1#1{1}] (O) +cj},—h;0}, (1.2.7)

then there exist a fixed time 7 > 0 such that for any x € (I';\ {O}) and near O, we can find
an "almost optimal" control which makes the cost functional close to v(O). Moreover, with this
control, the trajectory starts at « still remains on I';\ {O} in the time interval [0, 7]. Using this
property and applying [89, the proof of Lemma 2.2], we deduce the viscosity super-inequality
for v(x) and H; (z,p) where z € I';\ {O} is near O. Let  — O and the proof for supersolution
is done. O

The main result of Chapter 2 is

Theorem 1.2.4 (Comparison Principle, Theorem 2.5.6). Under the hypothesis [H], let u =
(u1,...,un) be a bounded viscosity subsolution of (1.2.6) and w = (w1, ..., wyN) be a bounded
viscosity supersolution of (1.2.6); then u < w in G, namely u; < w; in T'; for alli =1, N.

We provide two different proofs of this theorem, see a sketch of proof below. The first proof
is inspired from [8]. The authors focus on optimal control problems with independent dynamics
and running costs in the edges, and after that they show that some arguments of [19] can be
adapted to yield a simple proof of a comparison principle. The second proof is based on the
work of Lions & Souganidis [86] and uses only PDEs tools. More specifically, the authors build
a simple but very useful test-function on networks, and adapt it to doubling variable technique.

Let us mention that the existence of a unique viscosity solution follows directly from the
comparison principle and Theorem 2.6.7. It is also possible to build a viscosity solution directly
from the comparison principle and Perron’s method, as in [86].

To prove the comparison principle, we start as in the example in Section 1.2.2. We assume by
contradiction that u;(xg) — w;(xo) > 0 for some i and xg. If the u; — w; attains the supremum
inside I';, the proof is done by classical arguments. Hence, we only focus on the case

u; (0O) —w; (0) = max {u; () — w; ()} > 0, (1.2.8)

zel’;

for some 1.

11
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A sketch of proof of Theorem 1.2.4 inspired by Achdou, Oudet € Tchou [8] . The main idea is
that: from (1.2.4), for all j, u; is a viscosity subsolution of the following equations

\vj (x) + Hj (x, ;l% (m)) =0 ifzxeI;\{O}, ( |
j 1.2.9
i (0) + Hf (0, ZZJ (0)) -0 ifz=0.

and the comparison principle for (1.2.9) is proved in [8]. Thus, to obtain the contradiction with
(1.2.8), it suffices to prove that w; is a viscosity supersolution of (1.2.9) with j replaced by i.
Now, since Au; (0) + HY < 0, we have \w; (O) + H} < 0. We now consider the two following
cases.

Case 1: If w; (O) < minj,; {w; (O) + ¢;}, by (1.2.6), then w is a viscosity supersolution
of (1.2.9) and it leads us to a contradiction.

Case 2: If w; (O) = minj.; {w; (O) + ¢;}, then there exists jo # ¢ such that

wjo (0) + ¢jop = min_{w; (0) + ¢j} = min {w; (0) + ¢;} < w; (0).

j=1,N J#i
Therefore, wj, (O) < min,.j, {w; (O) + ¢;}. We also have Au; (O) — Aminj.; {u; (O) + ¢;} < 0.
Thus wj, (O) < uj, (O). Repeating the proof of Case 1 with jy, we reach a contradiction. [

A sketch of proof of Theorem 1.2.} inspired by Lions & Souganidis [86]. As in the example in
Section 1.2.2, the key idea of this proof is building an admissible test-function ¢. such that
u(z) — w(y) — pe(x,y) attains a maximum point (z.,y.) € I'; x I';, then using the viscosity
inequalities to obtain the contradiction. We consider the function

\I/ivazl“ixl“z-—>R

() — wi 2) = wi () — o [~ lal + Iyl + (L + DR = (Jal + Iyl

This implies that ¥; . attains its maximum at (z,y) € I'; x I';. Using the viscosity inequality

wi () — wi (y) < Hi <y w + 'y> _H, <x w - 7> . (1.2.10)

Let € tend to 0 and v tend to 0, we obtain that u; (O) —w; (O) < 0, the desired contradiction. [

1.3 Mean field games on networks

The section is devoted to the introduction of our works on infinite horizon (Chapter 3) and finite
horizon (Chapter 4) Mean Field Games on general bounded networks. For simplicity, in this
section, we only consider the model case of the junction G with N bounded edges. The other
endpoint of I'; is denoted by v; and the edges I'; are oriented from v; to O.

Similarly to the problems in Section 1.2.3, what makes the MFG on networks more challenging
comparing to classical MFG (Section 1.1.2) is stochastic optimal control problems with state
constraints and discontinuity in states. To deal with this, one needs to answer the important
question: What is a suitable transition condition at the vertices?

Camilli & Marchi [32] is one of the first articles on infinite horizon MFGs on networks. They
consider a particular type of Kirchhoff condition at the vertices for the value function. This
condition comes from an assumption which can be informally stated as follows: if, at time T,

12



1.3. Mean field games on networks

the controlled stochastic process X; associated to a given agent hits O, then the probability that
X+ belongs to I'; is proportional to the diffusion coefficient in I';. Under this assumption, it
can be seen that the density of the distribution of states m is continuous at O. In our work,
the assumption mentioned above is no longer valid. Therefore, it will be seen later that the
value function v satisfies more general Kirchhoff conditions, and accordingly, the density of the
distribution of states m is no longer continuous at O; the continuity condition is then replaced
by suitable compatibility conditions on the jumps across the vertex. Accordingly, the weak
solutions spaces V and W of the uncoupled HJB and FP equations (see (1.3.19)-(1.3.20)) are
not the same. To overcome this difficulty, it is essential to consider an isomorphism from V to
W, which is then used to build a suitable test-function for each uncoupled equation. See more
details in Section 3.1.4.

Finally, under suitable assumptions, we will prove the existence, uniqueness and regularity for
the both MFG systems. See Section 3.4 and Section 4.4.1.

1.3.1 Derivation of Mean field games system on networks

In this section, we consider the derivations of both cases: infinite horizon and finite horizon
MFG systems on G. The main ideas for both systems are quite similar. However, the technique
for finite horizon MFG system is more difficult than the other one. Hence, in this section, we
mainly focus on the derivation of finite horizon MFG system.

Consider a real valued function a € PC(G), where PC(G) contains all piecewise functions on
G which are continuous except at O where it can be extended by continuity. Let us consider the
linear partial differential operator:

Lu(x) = Lou(z) = pid*u () +a; (2) ou(z), ifzely, (1.3.1)
with domain
N —_—
D(L):= {u e C*(G) : Z YittiOu (0) = 0, for all i = 1,N} . (1.3.2)
i=1

Freidlin and Sheu proved in [55] that the operator £ is the infinitesimal generator of a Feller-
Markov process on G with continuous sample paths. The operators £; and the transmission
conditions at the vertices

N
> Yipidiu(0) = 0 (1.3.3)
=1

define such a process in a unique way, see also [56, Theorem 3.1]. The process can be written
(Xt, 1) where X; € I';,. Moreover, there exist

1. a one dimensional Wiener process W7,

2. continuous non-decreasing processes ¢;;, ©« = 1, N, which are measurable with respect to
the o-field generated by (Xy,1;),

3. continuous non-increasing processes h;¢, ¢+ = 1, N, which are measurable with respect to
the o-field generated by (Xy,14;), such that

dzy = /203, AWy + a;, (z)dt + dl;p + dhi g, (1.3.4)
¢; + increases only when X; = O,

h;+ decreases only when X; = v;,

13



Chapter 1. Introduction

and for all function v € C%! (G x [0,T]) such that

N
D piadiv (0,8) =0, O (v, t) =0, i

=1,N,te[0,T],
i=1
the process
¢
My = v( X4, t) — J (Orv(Xs,s) + i, 0*0(Xs, 5) + ai, (X, s)ov(Xs, s)) ds (1.3.5)
0
is a martingale, namely
E (M| Xs) =M, forall0<s<t<T. (1.3.6)

The goal is to derive the boundary value problem satisfied by the law of the stochastic process
X;. Since the derivation here is formal, we assume that the law of the stochastic process X; is a
measure which is absolutely continuous with respect to the Lebesgue measure on G and regular
enough so that the following computations make sense. Let m (x,t) be its density. We have

E[v(X,,1)] = L v (@, t)m (z,8) dz, for all v e PC (G x [0,T7]). (1.3.7)

Consider u € C%1 (G x [0,T]) such that for all ¢ € [0,7], u(-,t) € D(L). Then from (1.3.5)-
(1.3.6), we see that

E [u(X¢,t)] = E[u(Xo,0)] + E {J: (Oru(Xs, s) + i, 0*u(Xs, s) + a;, (Xt,t)ﬁu(Xt,t))] .
Taking the time-derivative of each member of (1.3.7), we obtain
L 0, (um) (2, 1) dz = E (Spu(Xe, ) + i, u(Xe, 1) + ag, (Xo, )0u(X, 1)) -
Using again (1.3.7), we get
J;; (né*u(z,t) + a(z, t)ou(w, t)) m(z, t)dx = Jg u(z,t)opm (x,t) dx.

By integration by parts, we get

(6ym(z,t) — pid*m(z,t) + d(am)(z,t)) u(z, t)dz

o

I
1=
-

-
Il
—

.

lalr, (vi, t)m|r, (v, t) — pidym (v, t)] ulr, (v4, t)

_|_

,\q
Il
—

Mz

[alr; (O, t)m|r;(O, ) + pidim (0, )] ulr, (O, t)

@
Il
—

'MZ

@
Il
—_

wim|r, (O, t)0;u(0,t). (1.3.8)

14



1.3. Mean field games on networks

We choose first, for i = 1, N, a smooth function u which is compactly supported in (I';\ {O, v;}) x
[0, T]. Hence ulr,(vi,t) = u|r,(O,t) = 0 and dju(v;,t) = d;u(O,t) = 0 for i = 1, N. Notice that
u(-,t) € D(L). It follows that m satisfies

(6m — pid*m + 0 (ma)) (z,t) =0, for z e ;)\ {0}, te(0,T),i=1,N. (1.3.9)

For a smooth function x : [0,7] — R compactly supported in (0,7"), we may choose for every
ie{l,...,N}, asmooth function u such that u(v;,t) = x(¢)d; ; and u(O,t) = 0 for all t € [0,T],
j=1,N and d;u(O,t) =0 for all t € [0,T], j = 1, N, we infer a boundary condition for m

alr, (vi, t)m|r, (vi, t) — pidim(vs, t) = 0, i=1,N, te(0,T).

Next, we choose a smooth function u such that d;u(O,t) = 0 for all t € [0,T], j = 1, N, we infer
a condition for m at O:

N
D alr, (0,t)mIr, (0,t) + pid;m(0,1) =0, te (0,T).
=1

Finally, for a smooth function x : [0,7"] — R compactly supported in (0,7"), we choose u such
that

e u(-,t)e D(L)
e 0;u(0O,t) = x(t)/pi, 0ju(0,t) = —x(t)/pj, dku(O,t) = 0if k # 4, 5.
Using such a test-function in (1.3.8) yields a jump condition for m,

m|F¢ (O,t) _ m|Fj (Ovt)

) i7j:17N7 te<07T)7
Vi i

in which v; = p;/p.
Summarizing, we get the following boundary value problem for m:
(

drm — Mian +7 (ma) =0, (l‘,t) € (Fz\ {O}) X (07T)7 L= 177N7

N
> idim (0,1) + alr, (0, t)mlr, (O,t) =0,  te (0,T),

i=1
\ widim (vi,t) — alr, (vi, t)mlr, (vi,t) =0,  te (0,T),i=1,N, (1.3.10)
. (0,1
mlr, (0,) _ mlr, ( ), te(0,7), 4,j=1,N,
Vi Vi
m(x,0) = mo(x), req.

Consider a continuum of indistinguishable agents moving on the network G. Under suitable
assumptions, the theory of MFGs asserts that the distribution of states is absolutely continuous
with respect to Lebesgue measure on G. Hereafter, m stands for the density of the distribution
of states: m > 0 and Sg m(x,t)dr =1 for t € [0,T].

The state of a representative agent at time ¢ is a time-continuous controlled stochastic process
X; in G, as defined previously, where the control is the drift a;, supposed to be of the form
ay = G(Xt, t).

For a representative agent, the optimal control problem is of the form

v(x,t) =inf Eyy [J
@ t

T
(L (Xy,as) + ¥ [m(-, )] (X)) ds + v (XT)] : (1.3.11)

15



Chapter 1. Introduction

where E.; stands for the expectation conditioned by the event X; = x. The functions and
operators involved in (1.3.11) will be described below.

Let us assume that there is an optimal feedback law, i.e., a function a* defined on G x [0,T]
which is sufficiently regular in the edges of G such that the optimal control at time ¢ is given
by a;j = a*(X4,t). An informal way to describe the behavior of the process at the vertices is as
follows: if X; hits O, then it enters I';, i = 1, N with probability p; > 0.

Let us discuss the ingredients in (1.3.11). The running cost depends separately on the control
and on the distribution of states. The contribution of the distribution of states involves the
coupling cost operator 7, which may be either nonlocal and regularizing, i.e., 7 : P (G) — C?(G)
for example, or local, i.e. ¥[m](z) = F(m(z)) where F': RT — R is a continuous function.

The contribution of the control involves the Lagrangian L, i.e., a real valued function defined
on (Uieali\V) xR, If z € T;\V and a € R, L(x,a) = L;(x,a), where L; is a continuous real
valued function defined on I'; x R. We assume that lim|,_, infzer, L"‘(f’a) = +00. The last one
is the terminal cost vy. Further assumptions on L, ¥ and vy will be made below.

Under suitable assumptions, Ito calculus as in [56, 55] and the dynamic programming principle
lead to the following HJB equation on G, more precisely the following boundary value problem:

—0tv — Mz‘a% +H (CC,&’U) = ”V[m(,t)](x), in (P’L\ {O}) x (OvT) yi=1,N,
vlr, (0,t) = vlr, (O, 1) te(0,T)i,j=1,N,
N
$ > vt (0, ) = 0, te (0,7), (1.3.12)
i=1
;v (Vi,t) =0, te (0,T>,i = 1,7]\7,
v(x,T) =vr (), reQg.

We refer to [79, 81] for the interpretation of the value function v. Let us comment the different
equations in (1.3.12):

1. The Hamiltonian H is a real valued function defined on (U ;T;\ {O}) xR. For z € I';\ {O}
and p € R,
H (xap> = Sl;p {_ap - LZ (l’, a’)} 9

The Hamiltonians H|r,xr are supposed to be C' and coercive with respect to p uniformly
in x.

2. The second condition means in particular that v is continuous at the vertices.

3. The third equation in (1.3.12) is a Kirchhoff transmission condition (or Neumann boundary
condition if v; € 0G); it is the consequence of the assumption on the behavior of X at
vertices.

If (1.3.11) has a smooth solution, it provides a feedback law for the optimal control problem,
i.e.,

a*(xz,t) = —0pH (z,0v (z,t)) .

According to the previous part, the density m(x,t) of the law of the optimal stochastic pro-
cess X satisfies (1.3.10) (where a is replaced by a*). Finally, replacing a*(x,t) by the value

16



1.3. Mean field games on networks

—0pH (z,0v (z,t)), we obtain the system

-

—0pv — pi0*v + H (z,00) = ¥ [m], te(0,7), xe;\{O}, i=
atm 1id*m + 0 (md,H (z,0v)) = 0, te (0,7), xeT;\{O}, i=
Z%m&-v (O,t) =0, te (0,7),
i= 1
<Z[mam (0,1) +aH(0 0,0(0, t))mi(O,t)]zo, te(0,7),
0;V (Vi, ) =0, M,ﬁim (I/,;,t) + &,,Hi (V@&{U(lﬁ,i))ﬂ% (l/i,t) =0, te (O,T), i=1,N,
(% (O7t) = Uy (Oat)7 i (O’t) = ke (O’t)7 te (OuT)v /Lv.] = 17N7
Vi g
v(z,T) =vr(z), m(z,0) =mo(z), f mo(x)dx =1, reg.
\ g
(1.3.13)

At a vertex O, the transmission conditions for both v and m consist of IV linear relations, which
is the appropriate number of relations to have a well posed problem. If v; € 0G, there is of course
only one condition.

To end this part, we introduce the infinite horizon MFG system. Since the idea and the
technique for derivation of this system are similar to (even simpler than) the finite case, we shall
not explain them in details.

The first goal is also to derive the boundary value problem satisfying the law of the stochastic
process X;. Consider the invariant measure associated with the process X; and assume that it
is absolutely continuous with respect to the Lebesgue measure on G. Let m be its density:

E[u(X,)] i L w(@)m(z)dz, for all ue PC(G). (1.3.14)

Taking the time-derivative of each member of (1.3.14), choosing appropriate test-functions u €
D(L) « PC(G) step by step as in the finite case, we get the following boundary value problem
for m

—pi0*m — 0 (bm) = 0, in I';\ {O},
Vi V5
I~ ! (1.3.15)
Z [b(0) mr, (0) + pidim (0)] =0,
u,& m (v;) + OpH; (Z/Z, 0; v(uﬁ)mi (vi) =0, i=1,N,
In the ergodic case, we aim to minimize the average cost
1 T
p = infliminf —E, [J L(Xs,as)+ 7 [m(-,s)(Xs)] ds], (1.3.16)
as T—+wn T’ 0

where [E, stands for the expectation conditioned by the event Xg = z. The functions and
operators involved in (1.3.16) were described in the derivation for finite horizon MFG system
above. Under suitable assumptions, the Ito calculus and the dynamic programming principle

17
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Chapter 1. Introduction

lead to the following ergodic HJ equation on G
—p;0%v + H (z,00) + p = f, if x € I\ {O},
vi(0) = v;(0), ,j=1N, (1.3.17)

N
Z fyi,u,-&iv (O) = O, (%"U (Vz) = 0, 1= 1, N.
i=1

If (1.3.16) has a smooth solution, then it provides a feedback law for the optimal control problem,
ie., a*(zr) = —0pH(x,0v(x)). At the MFG equilibrium, m is the density of the invariant measure
associated with the optimal control feedback law, so it satisfies (1.3.15), where a is replaced by
a*. To summarize, we get the following system

—pi0%v + H (z,00) + p =¥ [m], rel\{O},i=1 N,
wid*m + 0 (ma,H (z,0v)) = 0, xel;\{0O},i=1,N,

N
> vitidiv (0) = 0,

=1
N
;1 [uiﬁim (O) + 0, H; (o, ﬁiv(0)>mi (0)] —0, (1.3.18)

c%v (Vz) = 0, /J,iaim (Vz) + (7pHZ- (I/i, 0m(m)>mz (Vz) = O, 1= 1, N

’UZ(O)ZUJ(O),mZ(O> :mj(O), i,j=1,N,

Vi Vi
fv(x)dx=0, Jm(x)daczl, m = 0.
g g

1.3.2 Results in Chapter 3: A Class of Infinite Horizon Mean Field Games
on Networks

After obtaining the transmission conditions at the O for both the value function and the density,
we shall define a weak solution for MF'G system in suitable Sobolev spaces on networks as follows:

V:=H1(g)={veC(g):vieHl(Fi) fori=1,N}, (1.3.19)
wi(0) w;(0)
Vi Vi

W= {w e PC(G) : w; € H' (I';) and for all 4,5 = 1,N} : (1.3.20)

These functions spaces are indeed suitable since if we multiply the first equation in (1.3.18) with
w € W, integrate over G and use integration by part for each I';, one gets

N N N
2 f (ui0vow + H; (x,0v) w + pw) dx — 2 wiw; (1) 0v (1) + Z piw; (0) 0w (0) = 0.
i=1YT%

i=1 i=1
(1.3.21)
The second term is 0 because of Neumann boundary condition. By the property of the functions
space W, the last term becomes

N N
i (O (0]
Z Py ( )(%‘v (0) = w1 (9) Zﬂi%‘aiv (0),
iz Vi 4 S

18



1.3. Mean field games on networks

and it also vanishes by the Kirchhoff condition. Thus, from (1.3.21), one gets
N
> f (i0vdw + Hy (z,0v) w + pw) dx = 0. (1.3.22)
=11

Similarly, multiply the second equation in (1.3.18) with w € V| integrate over G, use integration
by part for each I';, apply the boundary conditions, transition conditions for m and the continuity
of u, one gets

N
Z J (pi0mow + 0pH; (x, 0v) wou) dx = 0. (1.3.23)
i=1T%

These computations motivate the following definition of weak solutions for the MFG system on
networks.

Definition 1.3.1. The triple (v,m, p) € Vx W xR is a weak solution of (1.3.18) if (v, p) satisfies
(1.3.22) for all w e W and m satisfies (1.3.23) for all u e V.

We introduce our assumption in Chapter 3

(Hamiltonian) We assume that

HieCl(Fi XR);
H; (x,-)is convex in p for each z € ['y;
H; (z,p) = Cy|p|? — Cy for (z,p) e x R;

0 Hi (@,p)] < Ca ([pl™" +1) for (@,p) €Ty x .

for some constants Cy, C7 and Cs.

(Coupling term) We assume that
¥ [m] (x) = F (m(x)) with F e C([0,4x);R), (1.3.28)

for all m which are absolutely continuous with respect to the Lebesgue measure and such
that dm (x) = m (z)dx. We shall also suppose that F' is bounded from below, i.e., there
exists a positive constant M such that

F(r)=—-M, forallre]l0,+o0). (1.3.29)

Theorem 1.3.2. Under assumption (1.3.24)-(1.3.29), there exists a weak solution of (1.3.18)
(v,m, p) € V. x W x R. Moreover, ve C?(G) and m; € C1(T';) for all i. Finally, the uniqueness
of (1.3.18) holds under assumption strictly increasing of F'.

Let us give a sketch of proof for this theorem. First of all, we study the well-posedness for
weak solution of the uncoupled HJB and FP equations in suitable Sobolev spaces V' and W.
More precisely, we study some linear boundary value problems with elliptic equations (Step
1), then on a pair of linear Kolmogorov and Fokker-Planck equations in duality (Step 1 and
Step 2). By and large, the existence of weak solutions is obtained by applying Banach-Necas-
Babuska theorem to the Sobolev spaces V and W and Fredholm’s alternative. Uniqueness comes
from a maximum principle. In [32], the authors apply Lax-Milgram lemma instead of Banach-
Necas-Babuska theorem to get existence and uniqueness. However, it is impossible to apply
Lax-Milgram lemma in our work since our solution space and the test-function space are not
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Chapter 1. Introduction

the same, which results from the "jump condition". Using Step 1, we obtain the well-posedness
for classical solution of the HJB (Step 3) and apply it to prove the well-posedness for classical
solution of the ergodic problem (Step 4). Then, using the well-posedness for weak solution of
the uncoupled ergodic equation and FP equation, we establish the existence result for the MFG
system by a fixed point argument and a truncation technique (Step 5). Uniqueness is proved
when the coupling is increasing, i.e., the function F' in (1.3.18) is increasing for local couplings
(in the case of nonlocal coupling, the increasing condition is replaced by (1.3.42)). Finally,
classical arguments will then lead to the regularity and uniqueness of the solutions.

Step 1: [Section 3.2.1, Section 3.2.2 and a part of Section 3.2.3] Consider a Kolmogorov’s equation,

Step 2:

for be PC(T'), ge W and A = 0:

—pi0%v 4+ bdv + v =g, in I\ {0},

v;(0) = v;(0), i,j=1,N,
N
Z ’}/iuiaﬂ) (O) = 0.

i=1

(1.3.30)

A weak solution of (1.3.30) is a function v € V such that

N
A* (v,w) = Z fr (1i0v0w + bovw) dx = Jg gwdz, for all we W.
i=1v41

If A >0, (1.3.30) has a unique weak solution. If A = 0 and g = 0, the set of solutions of
(1.3.30) is the set of constant functions on I'.

[Section 3.2.3] Let A9 > 0 and h € V', we consider the following problem

Aom — p;0*m — 0 (bm) = h, in I\ {O},
Vi Vi
! N ’ (1.3.31)
2. [b(0)mr, (0) + wid;m (0)] =0,
i=1
pidim (v;) + OpH; (Vi7 aiv(’/i)>mi (1) =0, i=1N,
m =0, J mdz = 1. (1.3.32)
g

A weak solution of (1.3.31) is a function m € W such that

N
Ay, (m,v) := Z L [Aomv + (pidm + bm) dv] dx = thdm, for all v e V.
=191

For Ao large enough, we prove that there exists a constant C such that

A A
inf sup 200 o e g A @V o
weW pev 0]y |w]y veV wew [wly [vlly

by Babuska’s lemma (or inf sup lemma), we obtain the well-posedness for (1.3.31).
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1.3. Mean field games on networks

Step 3:

Step 4:

Step 5:

Next, we prove the well-posedness for Fokker-Planck equation on G, namely (1.3.31) with
Ao = 0. Step 2 allows us to define a linear operator:

T :L*G) — W — L*(G), T(m)=m,

where m is the solution of (1.3.31)—(1.3.32) with h = Agm. Using the uniformly estimate
for (1.3.31) and applying the fixed point theory, there exists a solution m for FP equation.
Next, from Step 1, the set of solutions of (1.3.30), with A\g = 0 and g = 0, is the set of
constant functions on G. Hence, applying the Fredholm alternative, the set of solutions
of FP equation is 1-dimensional. By the normalization condition (1.3.32), we obtain the
uniqueness for FP equation. Moreover, by the comparison principle, m is strictly positive.

[Section 3.3.1] We study the Hamilton-Jacobi equation for all A > 0

—pi0®ux + H (x,0ux) + duy = f, in T;\ {0},
’U,Z)\(O) = U])\(O), Z?J = 17N7

(1.3.33)

N
Z 'yiuiﬁiv (O) = 0, 6w (1/1) = 0, 1= 1, N.
i=1

We first deal with the bounded Hamiltonian. From Step 1, this allows us to define a linear

operator
T:V—V, T(u)=uov,

with b = 0 and ¢ = H(x,du). Using the fixed point theory, we obtain the existence
of (1.3.33). The uniqueness is a consequence of the comparison principle. Now, to deal
with quadratic Hamiltonian, we use the truncation technique combining with the previous
process (with bounded Hamiltonian). This step is adapted the classical proof of Boccardo,
Murat & Puel [26].

[Section 3.3.2] We are ready to solve the ergodic problem
—pi0%v + H (z,00) +p = f, if x € I\ {O},
vi(0) = v;(0), “j=1N, (1.3.34)
N
Z %,ui&‘iv (O) = 0, é’iv (I/l) = 0, 1= 1,N,
i=1
and
f vdx = 0. (1.3.35)
g

From Step 3 and the quadratic Hamiltonian (1.3.27), we can obtain some uniform estimate
for (1.3.33). Hence, the existence of (1.3.34) is deduced by letting A to 0. The uniqueness
results from the maximum principle of the classical equations on 1 dimension and the
normalization condition (1.3.35).

[Section 3.4] In the last step, using the well-posedness for weak solution of the uncoupled
FP equation (Step 2) and ergodic equation (Step 4), we establish the existence for the
MFG system with the bounded coupling term F. Then using the truncation technique
based on the energy estimate, the existence with the general coupling term F' is obtained.
Finally, the uniqueness is deduced by using the increasing coupling term.
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1.3.3 Results in Chapter 4: A Class of Finite Horizon Mean Field Games on
Networks

Camilli & Marchi [32] introduce the MFG systems on networks in the finite time horizon
case (1.3.13) from two different points of view: either as the characterization of a Pareto equi-
librium for dynamic games with a large number of indistinguishable players or as the optimality
conditions for optimal control problems whose dynamic is governed by a PDE. They also show
that two models lead to the same transition conditions. However, they only study for the infinite
horizon MFG system (1.3.18) without jump condition of density m.

The first result in Chapter 4 also explains where the MFG system (1.3.13) comes from, see
Section 1.3.1 or Sections 4.1.2—4.1.3.

Let us introduce our assumptions in Chapter 4.

(Hamiltonian) We assume that

H;e C*(T; x R), (1.3.36)
H; (z,-)is convex in p, for any x € I';, (1.3.37)
H; (z,p) < Co(lp| + 1), for any (z,p) e I'; x R, (1.3.38)
|0pH; (z,p)| < Co, for any (x,p) e I'i x R, (1.3.39)
|0xH; (x,p)| < Co(|p| + 1), for any (x,p) ey x R, (1.3.40)

for a constant Cy independent of 1.

(Coupling operator) We assume that # is a continuous map from L?(G) to L?(G), such
that for all m e L?(G),
17 Imllc2g) < Cllmlz2gy + 1)- (1.3.41)

Note that such an assumption is satisfied by local operators of the form #[m](z) =
F(m(x)) where F is a Lipschitz-continuous function.

(Initial and terminal data) vy € H*(G) and mg € L%(G).

(Stronger assumption for Hamiltonian and coupling term) For i = 1,N, d,H;(x,p) is
Lipschitz continuous on I'; x R and the coupling ¥ maps the topological dual of W to
H}(T); more precisely, ¥ defines a Lipschitz map from W’ to H}(I'). Note that such an
assumption is not satisfied by local operators.

The above set of assumptions, except the last one, is referred to as [A], will be the running
assumptions hereafter. We will also say that the coupling ¥ is strictly increasing if, for any
my,me € M n L2(G),

L(m1 — o) (¥ [ma] = ¥ [ma])da > 0 (1.3.42)

and equality implies m1 = mo.
Definition 1.3.3. (solutions of the MFG system) A weak solution of the MFG system (1.3.13)
is a pair (v, m) such that

ve L? (0,T; H*(G)) n C([0,T]; V), dw e L* (0,15 L* (G)),

me L*(0,T;W) n C((0,T); L*(G) n M), éym e L* (0,T;V"),
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1.3. Mean field games on networks

and v satisfies
N

- Z L [0 (x,t)w (x) + pidv (x,t) Ow (z,t) + H (x,0v (x,t)) w (x)] dz
i=1 T

= f Vm(-,t)](x)w (z)dx, forallwe W, ae. te (0,7T),
g

v(z,T) =vrp(x) forae xzeg,

|

and m satisfies

( N
Z f [Oem (z,t) v (x) dz + piom (z,t) Ov (z) + OpH (z, 0v (z,t)) m (x,t) ov (z)] dx
i=1L%

=0, forallveV, ae. te(0,7),

L m(z,0) = mg(z) for a.e. z€gq,
where V and W are introduced in Section 1.3.2.

We ready to introduce the main theorem of Chapter 4.
Theorem 1.3.4 (Theorem 4.1.11). Under assumptions [A],

(i) (Existence) There exists a weak solution (v,m) of (1.3.13).

(7i) (Uniqueness) If ¥ is strictly increasing, then the solution is unique.

(iii) (Regularity) If V satisfies furthermore the stronger assumptions for coupling term then
ve C?H(G x [0,T]).
Moreover, if the Hamiltonian H; satisfies the stronger assumptions for Hamiltonians, and
if mo € W, then m e C([0,T]; W) n WH2(0,T; L*(G)) n L*(0,T; HZ(G)).

Let us give the idea of the proof for Theorem 1.3.4. We first study a modified heat equation
and FP equation on G, whose existence results are obtained by using the Galerkin’s method
to construct solutions of certain finite-dimensional approximations to these equations. The
uniqueness is a direct consequence of the energy estimate. Next, we shall establish the existence
result for weak solutions of MFG system (1.3.13) by a fixed point argument. Uniqueness will
also be proved for strictly increasing couplings.

Step 1: [Section 4.2] Consider a modified heat equation on G with general Kirchhoff condition

(00— w?v="h, i (D)\{0}) x (0,T),i =L, N,
vi(0,t) =v;(0,t),  te(0,T), i,j=1,N,
N
3 yipidw (0,8) =0, te(0,7), (1.3.43)
i=1
o (v, t) =0, te(0,7),i=1,N,
L’U(qu> :UT(J})? er?

for h € L?(0,T;W’) and vy € L*(G). A weak solution of (1.3.43) is a function v €
L%(0,T;V) n C([0,t]; L*(G)) such that ¢,v € L?(0,T; W’) and

N
— O (t) , Wiy + Z f pidvowdz = (h,wyyy y, for allw e W and ace. te (0,7),
i=11%

v(z,T) = vp(z).
(1.3.44)
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Step 2:

Step 3:

Step 4:

We use the Galerkin’s method, namely we construct solutions of some finite-dimensional
approximations to (1.3.44), to prove the existence of (1.3.44). Moreover, if vy € V', we get
more regularity for v: v € L2(0,T; H*(G)) n C([0,T];V) and o € L*(0,T; L*(G)). The
uniqueness and stability is a direct consequence of the energy estimate.

[Section 4.3] In this step, we study a boundary value problem including a Fokker-Planck
equation

(6, — jué®m — @ (bm) =0, in T\ {O}) x (0,T), i = T, ,
ml(07t) :mj(07t>7 tG(O,T), Z.mj:l?iNv
Vi Vi
N
$ idim (0, 8) = b (0,t)m; (0,t) =0, te (0,T), (1.3.45)
i=1
Z i Oim (I/Z',t) +b; (Vi,t) m; (I/i,t) =0, te (O,T), i=1,N,
1i€A;
[ (2,0) =mg (x), x€eg,

where b € PC (G x [0,T]) and mg € L*(G). A weak solution of (1.3.45) is a function
me L2 (0,T;W) n C([0,T]; L*(G)) such that oym € L?(0,T;V’) and

N
Om, )y v + Z f wiomaovdr + f bmdvdr =0 for all ve V and a.e. t € (0,T),
i=1v9 g

m (-,0) = myg.
(1.3.46)
Similarly to Step 1, the existence is deduced from the Galerkin’s method and the uniqueness
and stability is a consequence of the energy estimate. If b; is Lipschitz continuous on I';, we
get more regularity for m: m e L?(0,T; HZ(G)) n C([0,T]; W) and dym € L*(0,T; L*(G)).

[Section 4.4.1] We consider the boundary value problem including a HJ equation on G,
namely (1.3.43) with h = f — H(x,0v), where f € L?(0,T; L?*(G)) and the Hamiltonian
H satisfies the running assumption [A]. We first work on bounded H. From Step 1, this
allows us to define a linear operator

T :L*0,T;V) — L*(0,T;V), T(u) =,

with h = f — H(x,0u). The existence is obtained by using the fixed point theory,. The
uniqueness is a consequence of the comparison principle. Next, to deal with sublinear
Hamiltonian, we use the truncation technique combining with the previous process (with
bounded Hamiltonian).

[Section 4.4.2] The main difficulty in this work is how to obtain the regularity for the
boundary value problem including a HJ equation on G. Let us explain formally the idea.
We derive the HJB equation for v and prove some regularity estimate for the solution of
the derived problem. More precisely, u := dv satisfies the following PDE

—0pu — pi0%u + 0 (H(z,u)) = f,

with terminal condition u(z,T") = dvr(x). From the Kirchhoff conditions in the uncoupled
HJ equations, we obtain a transition condition of Dirichlet type for wu,

N
Z wiviulr, (0, t) =0, te(0,T).
=1
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1.3. Mean field games on networks

Now, by extending continuously the HJB uncoupled until the vertex O in the branches I';
and I';, 7,7 = 1, N and using the continuity condition of v, one gets

_Mi82v|ri + H|Fi (Vi7 aU‘Fi(Viﬂt)) - f|Fi(Vivt) = _Mj52v‘f‘j + H‘Fj (Viﬂ av‘rj (Vivt)) - f|Fj (Vivt)'
This gives a second transition condition for u

pidulr; (Vi t)—H|r, (vi, ulr, (vi, 1)+ fIr, (vi, t) = pioulr; (vi, t)—H|r; (vi, ulr; (vi, )+ flr; (vi, ).

Hence, we shall study the following nonlinear boundary value problem for u = dv,

(—o,u — pid®u + OpH (z,u) 0u = G (z,1), (Ii\{0}) x (0,T), i =1,N,
Z ’Yl:u“Lu|F1 (Ovt) =0, te (OaT) )
i€A;

Y idulr, (0,) — H|r, (0, ulr, (0, 1)) + flr, (0, 1)
= Mjauh"j (Out) - H|F]- (O,Uh"j (Ovt)) + f|Fj (Ozt)’ te (O’T)v i,j=1,N,
Lu (2, T) = ur (x), zeg,

(1.3.47)
where G € L? (0,T;L*(G)) and ur € H} (G). After obtaining the existence, uniqueness
and regularity for (1.3.47) (by using also the Galerkin’s method and energy estimate), the
regularity of the HJB equations will follow by proving u = dv in case G = 0f — 0, H(x, 0v)
and up = Jvr.

Step 5: [Section 4.5] In the last step, using Step 2 and Step 3 and the fixed point theory, we can
obtain the existence for weak solution (v, m) of MFG system (1.3.13). The uniqueness is
a consequence of the increasing coupling term. Finally, we get the regularity of (1.3.13)
from Step 4 and the stronger assumptions for Hamiltonian and coupling term.

We end by comparing the results in the stationary and the non-stationary case. Assumptions
in the non-stationary case are more restrictive. We only focus on the more basic assumptions,
globally Lipschitz Hamiltonian, instead of subquadratic ones in the stationary case, and rather
strong assumptions on the coupling cost. This will allow us to concentrate on the difficulties
induced by the Kirchhoff conditions. Therefore, this work should be seen as a first and necessary
step to deal with more difficult situations, for example with quadratic or subquadratic Hamil-
tonians. We believe that treating such cases will possible by combining the results contained in
the present work with methods that can be found in [78, 82].
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2 Hamilton-Jacobi equations for optimal
control on networks with entry or exit
costs

Abstract:  We consider an optimal control on networks in the spirit of the works of Achdou,
Camilli, Cutrl & Tchou [5] and Imbert, Monneau & Zidani [73]. The main new feature is that
there are entry (or exit) costs at the edges of the network leading to a possible discontinuous
value function. We characterize the value function as the unique viscosity solution of a new
Hamilton-Jacobi system. The uniqueness is a consequence of a comparison principle for which
we give two different proofs, one with arguments from the theory of optimal control inspired by
Achdou, Oudet & Tchou [8] and one based on partial differential equations techniques inspired
by a recent work of Lions & Souganidis [87].

2.1 Introduction

A network (or a graph) is a set of items, referred to as vertices or nodes, which are connected
by edges (see Figure 2.1 for example). Recently, several research projects have been devoted
to dynamical systems and differential equations on networks, in general or more particularly in
connection with problems of data transmission or traffic management (see for example Garavello
& Piccoli [57] and Engel, Fijavvz, Nagelm & Sikolya [47]).

An optimal control problem is an optimization problem where an agent tries to minimize a
cost which depends on the solution of a controlled ordinary differential equation (ODE). The
ODE is controlled in the sense that it depends on a function called the control. The goal is
to find the best control in order to minimize the given cost. In many situations, the optimal
value of the problem as a function of the initial state (and possibly of the initial time when
the horizon of the problem is finite) is a viscosity solution of a Hamilton-Jacobi-Bellman partial
differential equation (HJB equation). Under appropriate conditions, the HJB equation has a
unique viscosity solution characterizing by this way the value function. Moreover, the optimal
control may be recovered from the solution of the HJB equation, at least if the latter is smooth
enough.

The first articles about optimal control problems in which the set of admissible states is a
network (therefore the state variable is a continuous one) appeared in 2012: in [5], Achdou,
Camilli, Cutri & Tchou derived the HJB equation associated to an infinite horizon optimal
control on a network and proposed a suitable notion of viscosity solution. Obviously, the main
difficulties arise at the vertices where the network does not have a regular differential structure.
As a result, the new admissible test-functions whose restriction to each edge is C' are applied.
Independently and at the same time, Imbert, Monneau & Zidani [73] proposed an equivalent
notion of viscosity solution for studying a Hamilton-Jacobi approach to junction problems and
traffic flows. Both [5] and [73] contain first results on comparison principles which were improved

9This chapter is accepted: Manh-Khang Dao, Hamilton-Jacobi equations for optimal control on networks with
entry or exit costs, ESAIM: Control, Optimisation and Calculus of Variations.
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later. It is also worth mentioning the work by Schieborn & Camilli [94], in which the authors
focus on eikonal equations on networks and on a less general notion of viscosity solution. In
the particular case of eikonal equations, Camilli & Marchi established in [31] the equivalence
between the definitions given in [5, 73, 94].

Since 2012, several proofs of comparison principles for HJB equations on networks, giving
uniqueness of the solution, have been proposed.

1. In [8], Achdou, Oudet & Tchou give a proof of a comparison principle for a stationary HJB
equation arising from an optimal control with infinite horizon, (therefore the Hamiltonian
is convex) by mixing arguments from the theory of optimal control and PDE techniques.
Such a proof was much inspired by works of Barles, Briani & Chasseigne [20, 19], on
regional optimal control problems in R?, (with discontinuous dynamics and costs).

2. A different and more general proof, using only arguments from the theory of PDEs was
obtained by Imbert & Monneau in [72]. The proof works for quasi-convex Hamiltonians,
and for stationary and time-dependent HJB equations. It relies on the construction of
suitable vertex test functions.

3. A very simple and elegant proof, working for non convex Hamiltonians, has been very
recently given by Lions & Souganidis [86, 87].

The goal of this paper is to consider an optimal control problem on a network in which there
are entry (or exit) costs at each edge of the network and to study the related HJB equations.
The effect of the entry/exit costs is to make the value function of the problem discontinuous.
Discontinuous solutions of Hamilton-Jacobi equation have been studied by various authors, see
for example Barles [16], Frankowska & Mazzola [52], and in particular Graber, Hermosilla &
Zidani [67] for different HJB equations on networks with discontinuous solutions.

To simplify the problem, we first study the case of junction, i.e., a network of the form
G = UN,I; with N edges I'; (I'; is the closed half line R*e;) and only one vertex O, where
{O} = AN.T;. This can be easily generalized into networks with an arbitrary number of
vertices. In the case of the junction described above, our assumptions about the dynamics and
the running costs are similar to those made in [8], except that additional costs ¢; for entering the
edge I'; at O or d; for exiting I['; at O are added in the cost functional. Accordingly, the value
function is continuous on G, but is in general discontinuous at the vertex O. Hence, instead of
considering the value function v, we split it into the collection (v;)1<i<n, where v; is continuous
function defined on the edge I';. More precisely,

(2) v () if z e T;\{O},
R lim v (de;) ifz=0.
§—0+

Our approach is therefore reminiscent of optimal switching problems (impulsional control): in
the present case the switches can only occur at the vertex O. Note that our assumptions will
ensure that v|p, (o is Lipschitz continuous near O and that lims_,+ v (de;) does exist. In the
case of entry costs for example, our first main result will be to find the relation between v (O),
v; (0) and v; (O) + ¢; for i,j = 1, N.

This will show that the functions (v;)1<i<ny are (suitably defined) viscosity solutions of the
following system

Au; (x) + H; (m, % (x)) =0 if z € I';\ {0},
T
dui

(2.1.1)
Au; (O) + max {—)\m;n {uj (O) +¢;}, H <O, T (O)) 7Hg} =0 if x = O.
J# i
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Iy I's

I'

I's )

Figure 2.1: The junction G with 5 edges on R?

Here H; is the Hamiltonian corresponding to edge I';. At vertex O, the definition of the Hamil-
tonian has to be particular, in order to consider all the possibilities when z is close to O. More
specifically, if = is close to O and belongs to I'; then:

e The term minj.; {u; (O) + ¢;} accounts for situations in which the trajectory enters I'y,
where u;, (O) + ¢, = minj.; {u; (O) + ¢;}.

dui

dl’i

e The term H; <O,
L.

(O)) accounts for situations in which the trajectory does not leave

e The term Hg accounts for situations in which the trajectory stays at O.

The most important part of the paper will be devoted to two different proofs of a comparison
principle leading to the well-posedness of (2.1.1): the first one uses arguments from optimal
control theory coming from [19, 20] and [8]; the second one is inspired by Lions & Souganidis [86]
and uses arguments from the theory of PDEs.

The paper is organized as follows: Section 2.2 deals with the optimal control problems with
entry and exit costs: we give a simple example in which the value function is discontinuous at
the vertex O, and also prove results on the structure of the value function near O. In Section 2.3,
the new system of (2.1.1) is defined and a suitable notion of viscosity solutions is proposed. In
Section 2.4, we prove our value functions are viscosity solutions of the above mentioned system.
In Section 2.5, some properties of viscosity sub and supersolution are given and used to obtain
the comparison principle. Finally, optimal control problems with entry costs which may be zero
and related HJB equations are considered in Section 2.6.

2.2 Optimal control problem on junction with entry/exit costs

2.2.1 The geometry

We consider the model case of the junction in R? with N semi-infinite straight edges, N > 1.
The edges are denoted by (I‘Z-)Z.ZL—N where T'; is the closed half-line R*e;. The vectors e; are
two by two distinct unit vectors in R?. The half-lines I'; are glued at the vertex O to form the
junction G
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The geodetic distance d (z,y) between two points z,y of G is

d(z,y) = |r —y| if x,y belong to the same egde T,
|z| + |y| if z,y belong to different edges I'; and T';.

2.2.2 The optimal control problem

We consider infinite horizon optimal control problems which have different dynamic and running
costs for each and every edge. For i = 1, N,

e the set of control on I'; is denoted by A;
e the system is driven by a dynamics f;
e there is a running cost /;.
Our main assumptions, referred to as [H] hereafter, are as follows:

[H0] (Control sets) Let A be a metric space (one can take A = R%). For i = 1, N, A; is a
nonempty compact subset of A and the sets A; are disjoint.

[H1] (Dynamics) For i = 1, N, the function f; : I'; x A; — R is continuous and bounded by
M. Moreover, there exists L > 0 such that

|fi (z,a) — fi(y,a)| < L|x—y| forall z,yeTl; acA,.
Hereafter, we will use the notation F; (z) for the set {f; (z,a)e; : a € A;}.

[H2] (Running costs) For i = 1, N, the function ¢; : I'; x A; — R is a continuous function
bounded by M > (0. There exists a modulus of continuity w such that

|l (z,a) —4; (y,a)] Sw (lx —y|) forall z,yely ac A,.

[H3] (Convexity of dynamic and costs) For x € T';, the following set
FL; (z) = {(fi (z,a) e;, 4 (x,a)) : a € A;}
is non-empty, closed and convex.

[H4] (Strong controllability) There exists a real number § > 0 such that

[—de;,dei] < F; (O) ={fi(O,a)e; :ae A;}.

Remark 2.2.1. The assumption that the sets A; are disjoint is not restrictive. Indeed, if A;
are not disjoint, then we define 4; = A; x {i} and f; (z,a) = fi (z,a),4; (x,a) = ¥; (z,a) with
a = (a,i) with a € A;. The assumption [H3] is made to avoid the use of relaxed control. With
assumption [H4], one gets that the Hamiltonian which will appear later is coercive for z close
to the O. Moreover, [H4] is an important assumption to prove Lemma 2.2.7 and Lemma 2.5.3.
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2.2. Optimal control problem on junction with entry/exit costs

Let
M= {(z,a):x€G,ac A; if e T)\{O}, and ae UY 4; if z = O}.

Then M is closed. We also define the function on M by

fi(z,a)e; if v e '\ {O} and a € A4,
fi (O,a)e; ifx =0 and a € A;.

for all (z,a) e M, f(x,a) =

The function f is continuous on M since the sets A; are disjoint.

Definition 2.2.2 (The speed set and the admissible control set). The set F (x) which contains
all the "possible speeds" at x is defined by

P-4 |
Ui, Fi (O) if x = O.

For x € G, the set of admissible trajectories starting from x is

Y, = {yx € Lip (RT;G)

Js (t) € F (y5 (1)) for ae. t>0 }
Yz (0) = z. '

According to [8, Theorem 1.2], a solution y, can be associated with several control laws. We
introduce the set of admissible controlled trajectories starting from x

Te = {(yx,a) € Lig, (R"; M) : y, € Lip (R";G) and y, (¢) = = + fo I (yz (s),a(s))ds}.

Notice that, if (y,,«) € T, then y, € Y. Hereafter, we will denote y, by ygz.o if (yz, @) € Ty
For any vy, we can define the closed set Tp = {t € R* : y, o (t) = O} and the open set T; in
R* = [0,+0) by T; = {t e RT : y o (t) € T;\ {O}}. The set T; is a countable union of disjoint
open intervals

T — U Ty = [0, mi0) L UkeKicN* (tiks ik if z e I\ {O},
keK;cN UkEKiCN* (tik’ Wik) ifz¢ Fi\ {O} )

where K; = {1,...,n} if the trajectory y, o enters I'; n times and K; = N if the trajectory yz o
enters I'; infinite times.

Remark 2.2.3. From the above definition, one can see that t;; is an entry time in I';\ {O} and
Nik is an exit time from I';\ {O} . Hence

Yz, (tzk) = Yz, (nzk) = 0.

Let C = {c1,c2,...,cn} be a set of entry costs and D = {di,ds,...,dN} be a set of exit
costs. We underline that, except in Section 2.6, entry and exist costs are positive.

In the sequel, we define two different cost functionals (the first one corresponds to the case
when there is a cost for entering the edges and the second one corresponds to the case when
there is a cost for exiting the edges):
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Definition 2.2.4 (The cost functionals and value functions with entry/exit costs).
The costs associated to trajectory (Y, ) € T, are defined by

+00 N
J (5 (Yo, @) = f C(Yza (t), () e_Atdt—FZ Z cie M+ (cost functional with entry cost),
0 i=1kekK;

and

+00 N
J (5 (Yz,a, @) = J C(Ypa (t),a(t)) e_)‘tdt—i—Z Z die™"k  (cost functional with exit cost),
0 i=1kekK;

where the running cost £: M — R is

li(x,a) if x € '\ {O} and a € A4,

l(z,a) =
4 (0,a) if x =0and ae A,
Hereafter, to simplify the notation, we will use J (x,) and J (z, ) instead of J (2; (Yz.a, @))
and J (2; (Yg,a, @), respectively.
The value functions of the infinite horizon optimal control problem are defined by:

v(z) = inf  J(2;(Ypa,a)) (value function with entry cost),
(Y, 00,0)E Tz
and
V()= inf  J(%;(Ypa,a)) (value function with exit cost).
(yx,a7a)e7—ac

Remark 2.2.5. By the definition of the value function, we are mainly interested in a control law
a such that J (z,a) < 400. In such a case, if |K;| = +0, then we can order {t;x,nir : k € N}
such that

bin <min <tig <Mig < ... <tipxg <Mig < ...,

and
lim ¢ = lim n;, = +o0.
k—ao0 k—o0

Indeed, assuming if limg_,o t;, = t < +00, then

M 3 M 3,
J(@a) = ——+ > e Mre=——= +¢ ) e Mk = o,
(z, ) 5 kzle 1 3 C; kzle

in contradiction with J (z,«) < +00. This means that the state cannot switch edges infinitely
many times in finite time, otherwise the cost functional is obviously infinite.

The following example shows that the value function with entry costs is possibly discontinuous
(The same holds for the value function with exit costs).

Ezample 2.2.6. Consider the network G = 'y UT's where I'; = Rte; = (—00,0] and I'y = Rtey =
[0,4+00). The control sets are A; = [—1,1] x {i} with i € {1,2}. Set

(fi (z,(ai, 1)) e, b (z,(a;,i))) if xelT\{O} and a = (a;,7) € A;,
(fi (O, (ai, 7)) e, € (O, (ai,i))) if = O and a = (a;,7) € A,

(f (ZL‘,CL), f(x,a)) =
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where f; (z,(a;,i)) = a; and {1 = 1, ls(x,(a2,2)) = 1 — ag. For x € T'9\ {O}, then v (z) =
vg (x) = 0 with optimal strategy consists in choosing a (t) = (1,2). For z € I'1, we can check

1 1—e Al
that v (z) = min {)\, + + cpe M=l } More precisely, for all 2 € I';, we have
1 . 1 .
X if g > Y with the optimal control «a (t) = (—1,1),
v(z) =1 1 _ oAl 1 1,1) ift<
° + cge Mol if ¢y < =, with the optimal control o (t) = (L,1) i et
A A (1,2) ift > |al.

Summarizing, we have the two following cases

1. If co = 1/, then

if z € ['9\ {0},
V(@) = 01 € '\ {0}

h\ ifxe Fl.
The graph of the value function with entry costs co > 1/\ = 1 is plotted in the left of
Figure 2.2.
2. If ¢ < 1/, then
0 if z € T'9\ {0},
V() =41 _ oAl
 t e ifrel.

A

The graph of the value function with entry costs co = 1/2 < 1 = 1/ is plotted in the right
of Figure 2.2.

v(z)

Fl O F2 Fl O FQ

Figure 2.2: Left: The value function v with entry cost co = 1/\ = 4. Right: The value function
v with entry cost co =2 < 1/\ = 4.

Lemma 2.2.7. Under assumptions [H1] and [H4], there exist two positive numbers ro and
C' such that for all x1,29 € B(O,r9) n G, there exists (yxl,aml’m,amm) € Toy and Ty, 4, <
Cd(x1,z2) such that Yy, (Tay 20) = Z2.

Proof of Lemma 2.2.7. This proof is classical. It is sufficient to consider the case when z1 and z2
belong to same edge I';, since in the other cases, we will use O as a connecting point between x;
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and 5. According to Assumption [H4], there exists a € A; such that f; (O,a) = 6. Additionally,
by the Lipschitz continuity of f;,

/i (0,a) = fi(z,a)] < Lzl

hence, if we choose ¢ := 0/2L > 0, then f; (z,a) > §/2 for all x € B(O,r9) nT';. Let z1,z2 be
in B(O,rg) nI; with |z;| < |z2|: there exist a control law « and 75, 5, > 0 such that « (t) = a
if 0 <t < 7y 2 and yg, o (Tey 20) = 2. Moreover, since the velocity fi (yz,.q (t), a (t)) is always
greater than 6/2 when t < 7, 4,, then 7, », < 2/dd (21, 22). If |x1| > |x2|, the proof is achieved
by replacing a € A; by @ € A; such that f; (O,a) = —d and applying the same argument as
above. O

2.2.3 Some properties of value function at the vertex

Lemma 2.2.8. Under assumption [H], v|r, (o3 and V|r,qoy are continuous for any i = 1, N.
Moreover, there exists e > 0 such that v|r,\ (o} and Y|\ (0} are Lipschitz continuous in (I';\ {O})n
B (0,¢). Hence, it is possible to extend v|p,\ 0y and V|, o0y at O into Lipschitz continuous func-
tions in I'; n B (O, €). Hereafter, v; and 0; denote these extensions.

Proof of Lemma 2.2.8. The proof of continuity inside the edge is classical by using [ H4], see [4]
for more details. The proof of Lipschitz continuity is a consequence of Lemma 2.2.7. Indeed, for
x,y belong to I'; n B (0,¢), by Lemma 2.2.7 and the definition of value function, we have

V(@) =V (2) = i (2) ~ vi (2) < fo T (i ()00 (1) Mt s (2) (67 1))

Since ¢; is bounded by M from [H?2], v; is bounded in T'; n B (O,¢) and e~*"=* — 1 is bounded
by T4, there exists a constant C such that

vi (z) —v; (2) < C1p, < CC |z — 2.

The last inequality follows from the Lemma 2.2.7. The inequality v; (z) — v; (z) < CC |z — 2] is
obtained in a similar way. The proof is done. O

Let us define the tangential Hamiltonian H} at vertex O by

HY = max max {—¢; (0,a;)} = — min_min_{¢; (O, a;)}, (2.2.1)
i=1,N a;eA9 i=1,N a;eA9

where A9 = {a; € A; : i (O, a;) = 0}. The relation between the values v(0), v; (O) and H}, will
be given in the next theorem. Hereafter, the proofs of the results will be supplied only for the
value function with entry costs v, the proofs concerning the value function with exit costs v are
totally similar.

Theorem 2.2.9. Under assumption [H], the value functions v and V satisfy

HT
v (O) = min { min {v; (O) + ¢}, —O} ,
i=1,N A

and

(0) = min{ in {5, (0)}, Hg}.

i=1,N A
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Remark 2.2.10. Theorem 2.2.9 gives us the characterization of the value function at vertex O.
The proof of Theorem 2.2.9, makes use of Lemma 2.2.11 and Lemma 2.2.12 below.
Lemma 2.2.11 (Value functions v and v at O). Under assumption [H], then
max {v; (0)} <v(0) < min {v; (0) + ¢},
i=T, i=1,N

and

max {0; (O) — d;} <V (0) < min {7; (0)}.
i=1,N i=1,N

Proof of Lemma 2.2.11. We divide the proof into two parts.

Prove that max,_7 {v; (O)} < v (O). First, we fix i € {1,..., N} and any control law @ such
that (yo.a,@) € To. Let z € I';\ {O} such that |z| is small. From Lemma 2.2.7, there exists a
control law o o connecting x and O and we consider

Q2.0 (S) if s < Tx,05
a(s) =
a(s—140) if s > 7,.0.
It means that the trajectory goes from x to O with the control law «, o and then proceeds with
the control law a. Therefore

v(z) =v(z) <J(z,a) = f:’o Ui (Yz,a (8),a(s)) e Mds + e N0 J (O,@).

Since @ is chosen arbitrarily and ¢; is bounded by M, we get
vi () < MT1p0 + e M0y (0).

Let z tend to O then 7,0 tend to 0 from Lemma 2.2.7. Therefore, v; (O) < v(O). Since the
above inequality holds for ¢ = 1, N, we obtain that

max {v; (O)} <v(0).

i=1,N
Prove that v (0) < min,_g5 {vi (O) + ¢;}. For i = 1,N; we claim that v(0) < v; (O) + ¢;.
Consider z € I';\ {O} with |z| small enough and any control law &, such that (y;a,,0) € Tz
From Lemma 2.2.7, there exists a control law ap , connecting O and z and we consider

Q@ s it s < 704,
Qg (s —T0.4) if s > 705

It means that the trajectory goes from O to x using the control law oo, then proceeds with

the control law ay. Therefore

TO,x
v(0) < J(0,a) =c¢ + f Ui (Yo, (s),a(s)) e Mds + e A0 ] (z,ay) .
0

Since @, is chosen arbitrarily and ¢; is bounded by M, we get
v(0) < ¢; + M7o 4 + e 0w, ()

Let x tend to O then 7o, tends to 0 from Lemma 2.2.7, then v (O) < ¢; + v; (O) . Since the
above inequality holds for i = 1, N, we obtain that

v(0) < min {v; (O) + ¢}.

i=1,N
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Lemma 2.2.12. The value functions v and v satisfy

Hf

v(0),9%(0) < 3

(2.2.2)
where HY is defined in (2.2.1).
Proof of Lemma 2.2.12. From (2.2.1), there exists j € {1,...,N} and a; € Ajo such that

HE = — min min {4 (0,a;)} = —£; (0, a;)
i=1,N a;€A?

Let the control law « be defined by « (s) = a; for all s, then

+00 0. . HT
v(0) < J(0,a) = f 0 (0,aj) e *ds = £10.9)) =-—=9
0 A A
O
We are ready to prove Theorem 2.2.9.
Proof of Theorem 2.2.9. According to Lemma 2.2.11 and Lemma 2.2.12,
. : H)
v(0) < min< min {v; (O) + ¢}, ——=¢.
i=1,N A
Assuming that
Y (O) < mg{vz (O) + Ci} s (2.2.3)
i=1,N
HT
it is sufficient to prove that v (O) = _TO' By (2.2.3), there exists a sequence {e,}, . such that

e, — 0 and
v(0O) +en, < min {v; (0O) +¢;} forallneN.
i=1,N
On the other hand, there exists an e,-optimal control a,,, v (0) + &, > J (O, a,). Let us define
the first time that the trajectory yo.q, leaves O

ty = inf T}',
i=1,N

where 77" is the set of times ¢ for which yo q, () belongs to I';\ {O}. Notice that ¢, is possibly
+00, in which case yo,q,, (s) = O for all s € [0,+00). Extracting a subsequence if necessary, we
may assume that ¢, tends to t € [0, +00] when &, tends to 0.

If there exists a subsequence of {t,}, . (which is still noted {¢,},.y) such that ¢, = +oo for
all n € N, then for a.e. s € [0, +x0)

f (yO,an (3) ) On, (8)) =f <O7an (5)) =0,
¢ (yO,an (.S’) y O (5)) =/ (07 Qp (5)) .

In this case, oy, (s) € UN A9 for a.e. s € [0, +00). Therefore, for a.e. s € [0, +0)

4 (yo,an (8) » On (S)) =/ (0,0én (8)) > —Hg,
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and

+00 +00 HT
v(O)+en>J(0,ap) = J 0(0, ay (s)) e ds > j (—Hg) e Mds = —TO.
0 0
By letting n tend to o0, we get v (O) = —HA/X. On the other hand, since v (0) < —H}/\ by
Lemma 2.2.12, this implies that v (O) = —HJ /.
Let us now assume that 0 < ¢, < 400 for all n large enough. Then, for a fixed n and for
any positive § < 0, where d,, small enough, Yo a,, (s) still belongs to some I';,)\ {O} for all
s € (tn,ty + 0]. We have

v(O)+e, > J(O,an)
tn+0

in
= J ¢ (yO,an (5) y On (S)) e_ASdS + Ci(n)e_M” + f ‘ez(n) (yO,an (‘9) y Oy (5)) 6_>\st
0 tn

+e AT T (o o, (b +0) (- + Ly + 6))
tn tn+9d
¢ (y07an (3) ; On (3)) eiAsds + ci(n)ei)\tn + j Ez(n) (y0,0én (S) » On (3)) ei/\sds
0 n

+e M (yo 4, (tn + 6))
tn

tn+9
= C(Yo,an (8) ;0 (s)) e Mds + ci(n)e_’\t" + f Citny (YO,0n (8), an (8)) e Mds
0 tn

+67>‘(t”+5)vi(n) (Yo,an (tn +9)) .

\%

By letting d tend to 0,

tn
v(0)+e, = L C(Yo,an (5) ,an (5)) e Mds + ci(n)e*)‘t" + e”‘t"vi(n) (0).

Note that yo,q, (s) = O for all s € [0,t,], i.e., f(O,a,(s)) =0 a.e. se0,t,). Hence

tn
v(O)+e, = 0(0, o (5)) e Mds + ci(n)e_’\t" + e_)‘t"vi(n) (0)
0

t’VL
> J (—H:OF) e Mds + cl-(n)e_”” + e_’\t"Ui(n) (0)
0

1 — e A T —Xt —Xt
= N (_HO) T Cimye T e Ty (O) .
Choose a subsequence {ep, };cx Of {€n},cn such that for some ig € {1,..., N}, ¢i(n,) = ¢, for all
k. By letting k tend to oo, recall that limy_, t,, = t, we have three possible cases
_ HT HT
1. If t = 40, then v (0) = —TO. By Lemma 2.2.12, we obtain v (O) = —TO.

2. If t = 0, then v (0) = ¢, + v4, (O). By (2.2.3), we obtain a contradiction.

_ 1—e M .
3. Ift € (0, +00), thenv (O) > % (—HE)+[cio + viy (0)] ™. By (2.2.3), ¢;y+vi, (O) >
v (0), so .
1—e ™ T N
v(0)> ——— (=Hp) +v(0) e,

A
This yields v (O) > —H} /A, and finally obtain a contradiction by Lemma 2.2.12.
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2.3 The Hamilton-Jacobi systems. Viscosity solutions

2.3.1 Test-functions

Definition 2.3.1. A function ¢ : ' x ... x 'y — RY is an admissible test-function if there
exists (¢;);_77v, »i € C'(Iy), such that ¢ (z1,...,2n) = (o1 (21),...,on (zn)). The set of
admissible test-function is denoted by R (G).

2.3.2 Definition of viscosity solution

Definition 2.3.2 (Hamiltonian). We define the Hamiltonian H; : I'; x R — R by
Hi (z,p) = max {~pfi (z,a) ~ i (z, )}
and the Hamiltonian H;'(O,-) : R — R by
H; (0,p) = max {~pf; (0,a) — £ (0,a)}

OLGA;r

where A7 = {a; € 4;: f;(O,a;) = 0}. Recall that the tangential Hamiltonian at O, HJY, has
been defined in (2.2.1).

We now introduce the Hamilton-Jacobi system for the case with entry costs

du;
\u; (z) + H; |z, ot ()) =0 if x e T\ {O},
dzi . (2.3.1)
Au; (O) + max {—)\ m;n {uj (O) +¢;}, H <O, da:z (O)) ,Hg} =0 ifx =0,
J# i
for all ¢ = 1, N and the Hamilton-Jacobi system with exit costs
N dil; .
Mi; (z) + H; <a?, T (w)) =0 if x e T\ {O},
T

du;

’ d[L‘l

At; (O) + max {—)\min {t; (0) +d;}, H (O (O)> JHE — )\d,} =0 ifz=0,
VES)
(2.3.2)

for all ¢ = 1, N and their viscosity solutions.

Definition 2.3.3 (Viscosity solution with entry costs).

e A function u := (u1,...,uyn) where u; € USC (I';;R) for all i = 1, N, is called a viscosity
subsolution of (2.3.1) if for any (¢1,...,0n) € R(G), any i = 1, N and any z; € I; such that
u; — ; has a local maximum point on I'; at x;, then

dl’i
Au; (O) + max {—)\ m;n {uj (0) +¢;}, HY (O, dpi
j#i

d{L‘Z’

(0)> ,Hg} <0 ifx = 0.

e A function u := (uy,...,uy) where u; € LSC (I';;R) for all i = 1, N, is called a wviscosity
supersolution of (2.3.1) if for any (¢1,...,on) € R(G), any i = 1, N and any z; € I'; such that
u; — ; has a local minimum point on I'; at x;, then

Nt (1) + i (xff (@) =0 if 2; € T;\ {0},
X
s (0) + max { ~Amin {15 0) + i) 117 (0,57 (0)) HB} =0 it = 0.
JF 7
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e A functions u := (uj,...,uy) where u; € C (I';;R) for all i« = 1, N, is called a wviscosity
solution of (2.3.1) if it is both a viscosity subsolution and a viscosity supersolution of (2.3.1).

Definition 2.3.4 (Viscosity solution with exit costs).

e A function 4 := (@1, ...,4y) where 4; € USC (I';;R) for all i = 1, N, is called a wiscosity
subsolution of (2.3.2) if for any (1,...,%n) € R(G), any i = 1, N and any y; € I'; such that
; — ; has a local mazimum point on I'; at y;, then

N (ys) + H; (ym s (yi)) <0 if y; € ')\ {0},

diL‘i

dip;
Ai - i i - 5 H+ )
\i; (O) + max{ )\1}1;121 {a; (0)} — \d;, H; <O dr

(0)> ,Hg—Adi} <0 ify; = O.

e A function @ := (41,...,4UyN) where 4; € LSC (T';;R) for all i = 1, N, is called a wiscosity
supersolution of (2.3.2) if for any (¢1,...,¢¥n) € R(G), any ¢ = 1, N and any y; € I'; such that
u; — Y; has a local minimum point on I'; at y;, then

dip;
i (yi) + H; (yi, di

Ly

<yz->) =0 if g € T {O),

dip;
dl’i

A; (O) + max {—)\ m;n {a; (0)} — Xd;, H; <O, (O)> JHE — )\di} >0 if y; = O.
j#i

e A functions 4 := (dy,...,0y) where 4; € C (I';;R) for all ¢ = 1, N, is called a wiscosity
solution of (2.3.2) if it is both a viscosity subsolution and a viscosity supersolution of (2.3.2).

Remark 2.3.5. This notion of viscosity solution is consitent with the one of [8]. It can be seen
in Section 2.6 when all the switching costs are zero, our definition and the one of [8] coincide.

2.4 Connections between the value functions and the
Hamilton-Jacobi systems.

Let v be the value function of the optimal control problem with entry costs and v be a value
function of the optimal control problem with exit costs. Recall that v;,?; : I'; & R are defined
in Lemma 2.2.8 by

v (z) =v(z) ifzel)\{0}, d 0; (z) =¥ (x) if xeT)\{O},
an
v; (O) = limp\ (0}52—0 V () , 0; (0) = limp,\ (0}50—0 ¥ (T) -

We wish to prove that v := (vi,v,...,vx) and ¥ := (01,...,0x) are respectively viscosity
solutions of (2.3.1) and (2.3.2). In fact, since G\ {O} is a finite union of open intervals in which
the classical theory can be applied, we obtain that v; and 9; are viscosity solutions of

M (x) + Hy (x, Du(z)) =0 in I';\{O}.
Therefore, we can restrict ourselves to prove the following theorem.

Theorem 2.4.1. Fori =1, N, the function v; satisfies

Av; (O) + max {—)\ m}én {v; (O) +¢;}, Hf <O, ;l;)f (O)) ,Hg} =0
J#i i
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in the viscosity sense. The function ¥; satisfies

26:(0) 4 max { - (6, (0) + 4 117 (0.5 (0)) 15 = s} =0
J#i i

in the viscosity sense.

The proof of Theorem 2.4.1 follows from Lemmas 2.4.2 and 2.4.5 below. We focus on v; since
the proof for ¥; is similar.

Lemma 2.4.2. Fori =1, N, the function v; is a viscosity subsolution of (2.3.1) at O.

Proof of Lemma 2.4.2. From Theorem 2.2.9,
Av; (O) + max {—)\ m;n {v; (0) + ¢}, Hg} <0.
)7
It is thus sufficient to prove that

dv;
; HY (0, <
Av; (0) + H; <o i (0)> 0

in the viscosity sense. Let a; € A; be such that f; (O,a;) > 0. Setting « (t) = a; then (ygz.q, ) €
T, for all x € T';. Moreover, for all € I';\ {O}, yz.o (t) € T;\ {O} (the trajectory cannot approach
O since the speed pushes it away from O for y, o € I' 0 B (O, r)). Note that it is not sufficient
to choose a; € A; such that f(O,a;) = 0 since it can lead to f (z,a;) < 0 for all z € I';\ {O}.
Next, for 7 > 0 fixed and any z € I';, if we choose

(2.4.1)

t)=a; 0<t<
e O

a(t—r) T,

where & is arbitrary, then y, o, (t) € I';\ {O} for all t € [0, 7]. Tt yields
T
v (z) < J (2, 04) = f Ui (Yoo (5),a:) € ds + €T (Yoo (1), G) .
0
Since this holds for any & (« is arbitrary for ¢ > 7), we deduce that

v; (z) < LT Ui Yoy (5), i) € ¥ds + €03 (Y, (7)) - (2.4.2)

Since f; (-, a) is Lipschitz continuous by [H1], we also have for all t € [0, 7],

t t
o, (1) — Yoag ()] = |z + jo £ (9o (5) s i) exds — fo Ji (900 (5) i) exds

t
< |$| + Lj |y:p,a (5) — Y0,a (5)| ds,
0
where aq satisfies (2.4.1) with x = O. According to Gronwall’s inequality,

‘yx,am (t) — Y0,a0 (t)’ < |I” eLtv
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for t € [0, 7], yielding that y, o, () tends to yo a, (t) when x tends to O. Hence, from (2.4.2),
by letting x — O, we obtain

v (0) < f 0 o (5),a5) e~ ds + e~ 03 (yo.ag (7).

0
Let ¢ be a function in C! (T';) such that 0 = v; (O) — ¢ (O) = maxr, (v; — ). This yields
_ o 1 (7 —AT __ 1 ’ o
SD(O) QoiyO, o (T)) < Tf ¢ (yO,ao (8) ;ai) e~ ds + (6 )’l; (yO, o (T))
0

By letting 7 tend to 0, we obtain that

d
— £ (0, ) dfi (0) < 4; (0, a;) — \v; (O).

Hence,

d%i

in the viscosity sense. Finally, from Corollary 2.7.2 in Appendix, we have

Av; (O) + sup {—fi (O,a)

(0) - 4, (O,a)} <0
acA;:f;(0,a)>0

sup )>O{—fi(o,a)d90?(0)—&(0,@)}: max {—fi(o,a)d“’?(0)—&(0,@)}.

acA;:fi(0,a dx; acA;:fi(0,a)=0 dx;
The proof is complete. O
Lemma 2.4.3. If
HT
v; (O) < min {m;n {vj (0) + ¢}, —)\O}, (2.4.3)
J#L

then there exist 7 > 0,7 > 0 and g9 > 0 such that for any z € (I';\{O}) n B(O,r), any € < &o
and any e—optimal control law o , for x,

Yrae, (5) € TN\{O},  for all s € [0,7].

dv
Remark 2.4.4. Roughly speaking, this lemma takes into account the case Av;+H;" (x, dUZ (O)) <
€L

0, i.e., the situation when the trajectory does not leave I';, see introduction.

Proof of Lemma 2.4.3. Suppose by contradiction that there exist sequences {e,},{m,} < R"
and {z,} < I';\ {O} such that ¢, \, 0, z, — O, 7, \, 0 and a control law «,, such that «,, is
ep-optimal control law and v, «, (7,) = O. This implies that

Vi (Tn) +en > J (T, ap) = J ! C( Yz am (8) s 0n (8)) e Mds + e A g (O,an (-+1)). (2.4.4)
0

Since /£ is bounded by M by [H1], then v; (z,) + &, = —7, M + e~ v (O). By letting n tend
to o0, we obtain

v; (0) = v (0). (2.4.5)
From (2.4.3), it follows that
. _ HY
min { min {v; (O) + ¢}, ——= ¢ > v (0).
VE) A

However, v(O) = min {min; {v; (O) + ¢;},—H§/A} by Theorem 2.2.9. Therefore, v (0) =
v; (0) + ¢; > v; (0), which is a contradiction with (2.4.5). O
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Lemma 2.4.5. The function v; is a viscosity supersolution of (2.3.1) at O.

Proof of Lemma 2.4.5. We adapt the proof of Oudet [89] and start by assuming that

v; (O) < min { min {v; (O) + ¢;} _Hig
' j#i Y AN

We need to prove that
i (0) + Hif <0, Zz? (0)) >0

in the viscosity sense. Let ¢ € C! (T';) be such that

0=v,(0)—¢(0) <vi(x)—¢(x) forallzely, (2.4.6)

and {z.} < I';\ {O} be any sequence such that z. tends to O when ¢ tends to 0. From the
dynamic programming principle and Lemma 2.4.3, there exists 7 such that for any € > 0, there
exists (Ye, @) := (Ya.,ac» @) € Ty, such that y. (1) € T;\ {O} for any 7 € [0, 7] and

i)+ 2> | 9)ac(s)) € Nds + e o (7).
0
Then, according to (2.4.6)

vi(2) —vi (0) + e = JOT li (y= (5) , 0z (s) e ds + e [ (e (7)) — ¢ (O)]

—4; (0) (1 - e_)”') . (2.4.7)
Next,
| ) acope s = G0 @) ds+o(r),
o (5 (1) — 9 (O™ = (e (1)) = 9(0) + 0. (1) + 0 (1),
and

v; (xe) — v; (O) =0 (1),

v; (O) (1 — e_)‘7> =o (1) + 7 v; (O),
where the notation o, (1) is used for a quantity which is independent on 7 and tends to 0 as ¢
tends to 0. For a positive integer k, the notation o(7*) is used for a quantity that is independent

on ¢ and such that o(7%)/7% — 0 as 7 — 0. Finally, O(7¥) stands for a quantity independent on
e such that O(7%)/7* remains bounded as 7 — 0. From (2.4.7), we obtain that

i (0) > jo Tl (e (5) 00 (5)) ds + 9 (5 (1) — 9 (0) + 0. (1) + 0(7) + 0. (1), (2.48)

Since y. (7) € I'; for all €, one has

T

o (e (1)~ ¢ (@) = | D2 e () e (5) ds = | "0 () i (e (5) e (5)) ds.

0 dIZ 0 diUrL

Hence, from (2.4.8)

T

A0 (0) — J

0 (902 90+ 57 (0 60) 0 (9) v 6 ds = 7o (1) 0 ) 02 (1),

(2.4.9)
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2.5. Comparison Principle and Uniqueness

Moreover, ¢ (z:) — ¢ (O) = o- (1) and that dy (y= (5)) = de (O) 4+ 0-(1) + O(s). Thus

dx;  day
1" d 0 o (1
2 (0) = {60 (902 () + 52 (0) £ e (9) o) [ @5 > 0o (1) + 207 4 210,
TJo dx; T T
(2.4.10)
Let ¢, > 0 as n — o0 and 7,,, — 0 as m — o0 such that
1 (™ 1 (™
(@ bynn,) = (TJ fi (e, (8), e, (5)) eids, — i (e, (s), e, (s)) ds) —> (a,b) € Re; xR
m JO m JO

as n,m — o0. By [H1] and [H2]

fi (Wen (8),0e, () ei = fi (O, ae, () + Llye, (s)| = fi (O, e, () ei + 0n (1) + om (1),
i (Ye, (5), e, (s)) €i =4i (0, 0e, () + w (|ye, (5)]) = £i (O, e, (5)) € + 0n (1) + 0 (1) -

It follows that

(s byon) = (1 me £ (O, ae, () esds,— [ 4 (0, . (5))d5> +on (1) + o (1)

Tmo Tmo

e FL; (O) + 0, (1) + 01n (1),

since FL; (O) is closed and convex. Sending n,m — o0, we obtain (a,b) € FL; (O) so there exists
a € A; such that

) 1 Tm 1 Tm . .
i, ([ e 90 @D s, [T bl ()00, ()5 ) = (50140,
m,n— T™m Jo Tm Jo

(2.4.11)
On the other hand, from Lemma 2.4.3, y., (s) € I';\ {O} for all s € [0, 7,,]. This yields

e ) = | [ 100 (900, 6D 5 -4,

Since |ye,, (Tm)| > 0, then

Lfm @<, |
J— . d > ——n

— | e (9.0, o) s >

Let &, tend to 0, then let 7,,, tend to 0, one gets f; (O,@) = 0, so @ € A]. Hence, from (2.4.10)

and (2.4.11), replacing € by &, and 7 by 7, let &, tend to 0, then let 7, tend to 0, we finally

obtain

Avi (0) + max {—fi 0.0) % 0y~ 1, (o,a>} > 2 (0) + [—fi 0.9 % 0) -1, <o,a>} >0,

acA} d; d;

O]

2.5 Comparison Principle and Uniqueness

Inspired by [19, 20], we begin by proving some properties of sub and super viscosity solutions
of (2.3.1). The following three lemmas are reminiscent of Lemma 3.4, Theorem 3.1 and Lemma
3.5 in [8].
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Chapter 2. Hamilton-Jacobi equations for optimal control on networks with entry or exit costs

Lemma 2.5.1. Let w = (wy,...,wN) be a viscosity supersolution of (2.3.1). Let x € T';\ {O}
and assume that

T
w; (0) < min{r]n;gl {w; (0) + ¢;} —H;O} (2.5.1)

Then for allt > 0,
N ) )
w; (x) = i(n)fg <J 4; (y;C (s), (s)) e Mds + w; (y; (t A 91)) e_’\(“ei)> ,
a;(-),0; 0
where o; € L (0,005 A;), 4& is the solution of yi (t) = = + [Sé fi (Y2 (s), a5 (s)) ds] e; and 6;
satisfies y'. (0;) = 0 and 0; lies in [1;,7;], where 7; is the exit time of y'. from T';\ {O} and 7 is
the exit time of y&. from T).

Proof of Lemma 2.5.1. According to (2.5.1), the function wj; is a viscosity supersolution of the
following problem in T';

dwi

dwi
’ dl‘i

Aw; (z) + H; <ZL‘,
(2.5.2)

w; (O) + H;f (O (O)) =0 ifz=0.
Hence, we can apply the result in [8, Lemma 3.4]. We refer to [19] for a detailed proof. The
main point of that proof uses the results of Blanc [24, 25] on minimal supersolutions of exit time
control problems. O

Lemma 2.5.2 (Super-optimality). Under assumption [H], let w = (w1,...,wy) be a viscosity
supersolution of (2.3.1) that satisfies (2.5.1); then there exists a sequence {ng},cn of strictly
positive real numbers such that limg_omx = n > 0 and a sequence xy, € T';\{O} such that
limy, o0 2 = O, limg_o0 w; (2) = w; (O) and for each k, there exists a control law of such that
the corresponding trajectory yz, (s) € I'; for all s € [0,n;] and

Mk

w; (xg) = J

£ (e, ()0 (5)) €™+ i (e () €
0

Proof of Lemma 2.5.2. According to (2.5.1) w; (O) < —H}/X. Hence, this proof is complete by
applying the proof of in [8, Theorem 3.1]. O

Lemma 2.5.3. Under assumption [H], let u = (u1,...,un) be a viscosity subsolution of (2.3.1).
Then w; is Lipschitz continuous in B (O,r) nT';. Therefore, there exists a test function p; €
C1 (Ty) which touches u; from above at O.

Proof of Lemma 2.5.3. Since u is a viscosity subsolution of (2.3.1), u; is a viscosity subsolution
of (2.5.2). Recal that H; (x,-) is coercive for any x € I'; n B (O, ), we can apply the proof in [8,
Lemma 3.2], which is based on arguments due to Ishii and contained in [75]. O

Lemma 2.5.4 (Sub-optimality). Under assumption [H], let u = (u1,...,un) be a viscosity
subsolution of (2.3.1). Consideri =1, N,z € I';\{O} and a; € L* (0,00; A;). Let T > 0 be such

that y, (t) = + [SS fi (yz (8), a4 (5)) ds] e; belongs to T'; for any t € [0,T], then

T
u; (x) < Jo 4 (yz (8), 0 (s)) e ds + u; (yz (T)) e
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2.5. Comparison Principle and Uniqueness

Proof of Lemma 2.5.4. Since w is a viscosity subsolution of (2.3.1), u; is a viscosity subsolution
of (2.5.2) and satisfies u; (O) < —HJ/A. Hence, we can apply the proof in [8, Lemma 3.5]. O

Remark 2.5.5. Under assumption [H], Lemmas 2.5.1, 2.5.2, 2.5.3 and 2.5.4 hold for vicosity sub
and supersolution 4 and @ respectively, of the exit cost control problem if (2.5.1) replaced by

T
(0 < min {min {0 (0) + s~ 0 + i}
j#i

Theorem 2.5.6 (Comparison Principle). Under assumption [H], let u be a bounded viscosity
subsolution of (2.3.1) and w be a bounded viscosity supersolution of (2.3.1); then u < w compo-
nentwise. This theorem also holds for viscosity sub and supersolution 4 and W, respectively, of
the exit cost control problem (2.3.2).

We give two proofs of Theorem 2.5.6. The first one is inspired by [8] and uses the previously
stated lemmas. The second one uses the elegant arguments proposed in [86].

Proof of Theorem 2.5.6 inspired by [8] . We focus on u and w, the arguments used for the com-
parison of & and w are totally similar. Suppose by contradiction that there exists = € I'; such
that u; (x) — w; () > 0. By classical comparison arguments for the boundary value problem,
see [18], supgp, {u; — v;}" = supp, {u; — v;} ", so we have

u; (0) — w; (0) = max {u; (z) — w; (z)} > 0.

zel’;

By definition of viscosity subsolution
Mu; (0) + HE < 0. (2.5.3)
This implies Aw; (O) + HE < 0. We now consider the two following cases.

Case 1: If w; (O) < minj; {w; (O) + ¢;}, from Lemma 2.5.2 (using the same notations),
s

w; (1) = f

b (1 (), 0f (3)) € s + wi (g, () €
0

Moreover, according to Lemma 2.5.4, we also have

T k A by
G (o (), 0f (5)) €7 ds + i (g, (1)) €77,

u; (Tx) < f
0
This yields
wi (1) — wi (2g) < (i (Y (1)) = wi (Yo, ()] € < [ (0) = w; (0)] e,
By letting k tend to oo, one gets
u; (0) — w; (0) < [u; (0) — w; (0)] e M.

This implies that u; (O) — w; (O) < 0 and leads to a contradiction.
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Case 2: If w; (O) = minj; {w; (O) + ¢;}, then there exists jo # ¢ such that

wij, (O) + ¢j, = jglliLN{wj (O) + ¢} = IJD;? {w; (0) + ¢;} < w; (0),

because ¢; > 0. Since cj, is positive

wj, (0) < %% {w; (0) + ¢;}. (2.5.4)

Next, by Lemma 2.5.3, there exists a test function ¢; in ct (J;) that touches u; from above
at O, it yields

Au; (O) — )u;n;rzl {u; (O) + ¢}

< Ay (O) 4+ max {—)\ m;n {u; (O) + ¢;}, HY (O, doi (O)> ,Hg}
JF

dl’i
< 0.
Therefore
wjo (0) + ¢jp < w;i (0) < i (0) < min{u; (0) + ¢} < ujo (0) + cjo-
j#i

Thus

Wiy (O) < Ujg (O) . (2.5.5)
Replacing index ¢ by jo in (2.5.3), we get

dwj, (0) + HY < 0. (2.5.6)

By (2.5.4) and (2.5.6), (2.5.1) holds true. Repeating the proof of Case 1 with jy, we reach
a contradiction with (2.5.5). It ends the proof.

O]

The comparison principle can also be obtained alternatively, using the arguments which were
very recently proposed by Lions & Souganidis in [86]. This new proof is self-combined and the
arguments do not rely at all on optimal control theory, but are deeply connected to the ideas
used by Soner [95, 96] and Capuzzo-Dolcetta & Lions [36] for proving comparison principles for
state-constrained Hamilton-Jacobi equations.

Proof of Theorem 2.5.6 inspired by [86]. We start as in first proof. We argue by contradiction
without loss of generality, assuming that there exists ¢ such that

u; (0) —w; (0) = max {u; () —w; (z)} > 0.

Therefore w; (O) < —HA/X. We now consider the two following cases.

Case 1: If w; (O) < minjx; {w; (O) + ¢;}, then w; is a viscosity supersolution of (2.5.2). Recall
that by Lemma 2.5.3, there exists a positive number L such that for i = 1, N, u; is Lipschitz
continuous with Lipschitz constant L in I'; n B(0,7). We consider the function

\I/Z-’E:I‘ixI‘i—>R

(#,y) — ui (2) —wi (y) — % [= || + [yl + 6 ()] = (] + |yl) ,
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2.5. Comparison Principle and Uniqueness

where 0 (¢) = (L +1)e and v € (0,1/2). It is clear that ¥; . attains its maximum M,
at (Tz,Yey) € I'i x I';. By classical techniques, we check that z. ,y., — O and that
(Tery — Yery)® /e — 0 as € — 0. Indeed, one has

[ [2en] + lyenl + 0 ()]

Uq (ma,'y) — w; (ya,'y) - -7 (|‘T€,’Y| + |?/877D

2¢e

2 £
> ma s (2) — s (2) — 27 ol — 2 (2.5.7)
> u; (0) —w; (0) — (L—;l)Qs. (2.5.8)

Since u; (O) — v; (O) > 0, the term in (2.5.8) is positive when ¢ is small enough. We also
deduce from the above inequality and from the boundedness of u; and w; that, maybe after
the extraction of a subsequence, z. ., ., — x, as € — 0, for some z., € I';. From (2.5.7),

—1enl)? (= lzenl + lyes)) 5 ()
2e €

(|~’Us,7

Ui (Tey) Wi (Yey) — > max {u; (x) —w; () — 27 |z[}.
Taking the lim sup on both sides of this inequality when ¢ — 0,

2
(’m&"f‘ - ’Zl/s,wD
2e

i (2) = wi (o) = 29 |os | > max {us (@) — wi (2) - 2y fol} + limsup
' E—
2
u; (O) — w; (O) + lim sup <|xm| ‘ya,'y‘)
e—0 2e

2
(|xs,w| - |ys,7‘)
2e

\Y

\Y

U (O) — W; (O) + lim iglf

Recalling that u; (O) — w; (O) = maxr, (u; — w;), we obtain from the inequalities above
that z, = O and that

o (el = 19ea)” _ (2.5.9)
e—0 2e o -

We claim that if € > 0, then z., # O. Indeed, assume by contradiction that z., = O:

1. if y. 5 > 0, then

1
Mey = ui(0) = wi () = o [ven| +0 )] =7 [Yerr
62 (e
> Ui (Yery) — Wi (Yery) — 2(5) =29 |Ye ] -

Since w; is Lipschitz continuous in B (O,r) n T';, we see that for e small enough

—’y\y ‘> |y€77|5(€)
el =

2
> ’ya,'y| n |ya,'y| J (¢)
2e € €

L ‘3/6-7’ = u; (0) — u; (yan/) = -7 ‘y&"{‘ .

Therefore, if y. 4 + O, then L > L+1—+ which gives a contradiction since v € (0, 1/2).
2. Otherwise, if y. , = O, then

52 (¢) > u; (ce;) — w; (O) — 1 [—e + 5(8)]2 — "e.

My =i (0) = i (0) = =5 -
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Since u; is Lipschitz continuous in B (O, r) n I';, we see that for £ small enough,

‘ye.v’ J (5)
13

2
. ~|d (e
Le > uy (O) — Uy (5€i) = ’ys'y’ + ’ys 'y|€ ( ) — 2y |ys.7| = — 2y |y€.'y| .

2e
This implies that L > —1/2+ L + 1 —~, which gives a contradiction since y € (0,1/2).

Therefore the claim is proved. It follows that we can apply the viscosity inequality for w;
at x. . Moreover, notice that the viscosity supersolution inequality (2.5.2) holds also for
Ye, = 0 since H; (O,p) < H;" (O, p) for any p. Therefore

—Ten + + 6 (e

ui (e ) + H; (xsm £y Z/Ee,v (e) n 7) <0,
~Zeny +Yey +0 (€

(3 (ys,fy) + H; <y5,'yv =1 ;'y ( ) - ’7) = 0.

Subtracting the two inequalities,

Ty + Yoy 0 (€) I ’Y) _H (x —Tery + Yoy 0 (€)
7 £,

Ui (Te y) =i (Ye y) < H; <y<€m

-
5 €
(2.5.10)
Using [H1] and [H?2], it is easy to see that there exists M; > 0 such that for any x,y € T;

and p,q e R

|H; (x,p) — H; (y,q)| < |H; (x,p) — H; (y,p)| + |H; (y,p) — H; (y, )|
< Mile =yl (1+|p]) + Mi|p—ql.

It yields

_ Ty + Yy 0 (€
U (xeﬁ) — w; (ysﬁ) < M; [‘xsﬁ - yar)/‘ <1 +‘ =~ ;A/ ©) _'YD +2 ’7‘]

- 0 (e Ter — Yery|?
gMi[|$aﬁ_yaﬁ|<’Y+1+ (5)>+| 5’”5 2T+ 204

Applying (2.5.9), let € tend to 0 and 7 tend to 0, we obtain that u; (O) —w; (O) < 0, the
desired contradiction.

Case 2: w; (O) = minj; {w; (O) + ¢} = wj, (O) + ¢j,. Using the same arguments as in Case

2 of the first proof, we get

HT
iy < min {min {0 (0) + ¢}, -2}
J#Jo A

and wj, (O) < uj, (O). Repeating Case 1, replacing the index i by jo, implies that
wj, (O) = uj, (O), the desired contradiction.

O
Corollary 2.5.7 (Uniqueness). If v is the value function (with entry costs) and (vi,...,vnN) is
defined by
oi (z) = v () if x € I\ {O},
limg g+ v (0e;) ifx =0,
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then (vi,...,vn) is the unique bounded viscosity solution of (2.3.1).
Similarly, if ¥ is the value function (with exit costs) and (01,...,0y) is defined by
R v(x), if x e I;\{O},
lim5H0+ v (561) s if x = O,
then (01,...,0n) is the unique bounded viscosity solution of (2.3.2).

Remark 2.5.8. From Corollary 2.5.7, we see that in order to characterize the original value
function with entry costs, we need to solve first the Hamilton-Jacobi system (2.3.1) and find the
unique viscosity solution (vi,...,vy). The original value function v with entry costs satisfies

v; (), if x € T;\ {O},

v(z) =
min {mini:m {vi (O) + ¢}, —H:OF/)\} , ifx=0.

The characterization of v (O) follows from Theorem 2.2.9. The characterization of the original
value function with exit costs V is similar.

2.6 A more general optimal control problem

In what follows, we generalize the control problem studied in the previous sections by allowing
some of the entry (or exit) costs to be zero. The situation can be viewed as intermediary between
the one studied in [8] when all the entry (or exit) costs were zero, and that studied above when
all the entry or exit costs were positive. Accordingly, every result presented below will mainly
be obtained by combining the arguments proposed above with those used in [8]. Hence, we will
present the results and omit the proofs.

To be more specific, we consider the optimal control problems with non-negative entry cost
C = {¢1,..-Cm,Cm+1,-.-cN} where ¢; = 0 if i« < m and ¢; > 0 if i > m, keeping all the
assumptions and definitions of Section 2.2 unchanged. The value function associated to C' will
be denoted by V. Similarly to Lemma 2.2.8, V\ri\{o} is continuous and Lipschitz continuous near
O: therefore, it is possible to extend V|r, (0} at O. This extension will be noted V;. Moreover,
one can check that V; (O) = V; (O) for all 4,57 < m, which means that V|,» r, is a continuous
function which will be noted V. hereafter.

Combining the arguments in [8] and in Section 2.2 leads us to the following theorem.

Theorem 2.6.1. The value function V satisfies

T
max  {V;(0)} <V(0)=V.(0) < min{ min _{V; (0) + ¢}, —HO} .
i=m+1,N i=m+ LN A

Remark 2.6.2. In the case when ¢; = 0 for ¢ = 1, N, V is continuous on G and it is exactly the
value function of the problem studied in [8].

We now define a set of admissible test-function and the Hamilton-Jacobi equation that will
characterize V.

Definition 2.6.3. A function ¢ : (U™ T;) x Tpyy1 x ... x Dy — RY=™FL of the form

' (x67$m+17 s 7‘751\7) = (@c (xc) y Pm+1 («Tm-i-l) yoo s PN (xN))

is an admissible test-function if
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e (. is continuous and for i < m, @.|r, belongs to C* (T;),
e for i > m, ; belongs to C* (I;),
e the space of admissible test-function is noted R (G).

Definition 2.6.4. A function U = (U.,Up41,...,Un) where U, € USC (u}":lfj;R) ,U; €
USC (I';;R) is called a wviscosity subsolution of the Hamilton-Jacobi system if for any test-

function (@¢, m+1,---,9nN) € R(G):
1. if U, — ¢ has a local maximum at x. € vy and if

e z. € I';\ {O} for some j < m, then

dp
AU, (xc) + H;j (a:, chj (:Bc)> <0,

e 2. = O, then

N
o

. _ d@c
AU. (O) + max {)\jrrilnr; {U; (O) +¢;} , Iax {H;r <O, d; (O)) } ,Hg}
2. if U; — ; has a local maximum point at x; € I'; for ¢ > m, and if
® I; € Fl\ {O}, then

dp;
AU (x;) + Hi | @, — (x;) | <0,
Ui (x;) + (m e (x)) 0

e z; = O, then

dp;
AUL(0) +max { =X min_ (U (0) + &) -\ (0). 1! (0,57 (0)) 1B} <0,
J>m,j#i dx;

A function U = (U, Upp41,- .., Un) where U, € LSC (u;-”:lfj;]R) ,U; € LSC (T';;R) is called a
viscosity supersolution of the Hamilton-Jacobi system if for any (¢¢, ¢m+1,---,9n) € R(G):
1. if U, — ¢, has a local maximum at x. € uznzlfj and if

e z. € I';\{O} for some j < m, then

dee
AU, (z¢) + H; (ac Le (xc)> >0,
dl‘j

e .= O, then

\%
o

. _ dec
AU, (O) + max {—)\jrrilrg {U; (O) +¢;} , Tax {H;r <O, a; (O)> } ,Hg}
2. if U; — ; has a local minimum point at x; € I'; for ¢ > m, and if
e z; € I\ {O}, then
dp;
AU; (SL‘@) + H; (IL‘ &pi (l‘l)> =0,

’ d.l‘i
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e z; = O for i > m then

AU; (O) + max {—/\ . minﬁ{Uj (0) + ¢}, =AU (O),H; (O, Z? (O)) ,Hg} > 0.
j>m,j#i i

A function U = (U, Uy, ...,Uy) where U, € C (Uj<mI'j;R) and U; € C (I'y; R) for all i > m is
called a wviscosity solution of the Hamilton-Jacobi system if it is both a viscosity subsolution and
a viscosity supersolution of the Hamilton-Jacobi system.

Remark 2.6.5. The term —AH¢ (O) in the above definition accounts for the situation in which

d
the trajectory enters UL I'j. The term max;<m, {H;” 0, dgoc (O)) } accounts for the situation
Lj

d d
in which the trajectory enters I';, where H, (O, d<,0c (O)) = maXj<m {H;r <O, dSOc (O)) }
Ty g
Remark 2.6.6. In the case when¢; = 0 for i = 1, N, i,e., m = N, the term —Amin;~,, U; (O) +¢;
vanishes. This implies that

. _ dpe dpe
max {—)\jrr;%{Uj (0) + ¢} ) max {H;’ (O, i, (O)) } ,Hg} = max{H;r (O, i, (O))}

j=1,N

. dSDC d(Pc
~tio (4£(0).. 522(0))).

where Hp (p1,...,pn) is defined in [8, page 6]. This means that, in the case when all the entry
costs ¢; vanish, we recover the notion of viscosity solution proposed in [8].

We now study the relation between the value function V and the Hamilton-Jacobi system.

Theorem 2.6.7. Let V be the value function corresponding to the entry costs C, then the
vector-valued function (Ve, V41, - ., VN) S a viscosity solution of the Hamilton-Jacobi system.

Let us state the comparison principle for the Hamilton-Jacobi system.

Theorem 2.6.8. Let U = (Uy,Upi1,...,Un) and W = (We, Wi, ..., Wn) be a bounded
viscosity subsolution and a viscosity supersolution, respectively, of the Hamilton-Jacobi system.
The following holds: U < W in G, i.e., U. < W, on VL L', and U; < Wy in I'; for all t > m.

Proof of Theorem 2.6.8. Suppose by contradiction that there exists i € {1,...,N} and =z € T;
such that

Ue(x) = We(x) >0, ifi<m,
Ui (x) = W; (z) >0, ifi>m,
then
Uc.(0) =W, (0) = maxym {U.—W.} >0, ifi<m,
Ui (O) — W; (O) = maxp, {U; — W;} > 0, if i > m,
since the case where the positive maximum is achieved outside the junction leads to a contradi-

tion by classical comparison results.

Case 1: U. (0) = W, (0) = max (U.—W,) >0

Vi=1t1d
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Sub-case 1-a: W, (0) < minj=m, {W; (0) +¢;}. Since W, (0) < U.(0) < —HF/A, the
function W, is a viscosity supersolution of

AWc(a:)vLHi(a:,(Zm(x) =0 ifi<m,zel;\{0},
Ly

dW, dW, e
AWC(O)+HC<d$1 (0),...,dxm(0)> —0 ifz=0.

where H. (p1, ..., pm) = max;<m H; (O,p;). Applying Lemma 2.7.3 in the Appendix,
we obtain that U, (O) < W, (O) in contradiction with the assumption.

Sub-case 1-b: W, (0) = minjs., {W; (O) +¢;} = Wi, (O) + ¢;,. Since ¢;, > 0, we first
see that Wy, (O) < min {minj~., {W; (O) +¢;}, W, (0),—H}/A}. Hence, Wj, is a
viscosity supersolution of (2.5.2) replacing i by ig. Moreover, since

Uio (O) + Gy = H;in (Uj (O) + @j) > U, (O) > W, (O) > Wio (O) + Cig,

J=m

then U;, (O) > W;, (0O). Applying the same argument as Case I in the second
proof of Theorem 2.5.6 replacing ¢ by ig, we obtain that U;, (O) < W, (O), which is
contradictory.

Case 2: U; (O) — W; (0) = max (U; — W;) > 0 for some ¢ > m. Using the definition of viscosity
subsolutions and Case 1,lwe see that W; (0) < U; (O) < U, (0) < W.(O).

Sub-case 2-a: W; (O) < minj=., {W; (O) +¢;}. Since U; (O) < —HA/), we first see that
W; (0) < min{minjs,, {W; (0) + ¢}, W.(0),—H}/A}. Hence, W; is a viscosity
supersolution of (2.5.2). Applying the same argument as in Case I in the second
proof of Theorem 2.5.6, we see that U; (O) < W; (O), which is contradictory.

Sub-case 2-b: W; (O) = minjs, {W; (0) + ¢} = Wj, (O) + ¢,. Since ¢;, > 0, we can
check that W;, (O) < min {minj, {W; (0) +¢;} , W, (0),—H,/A}. Hence, Wj, is a
viscosity supersolution of (2.5.2) replacing i by ig. Moreover, since

Ui, (O) + Cijy = ]H;l?%l (Uj (0) + Ej) = U, (0) > W; (O) > Wi, (O) + Cig»
then U;, (O) > W;, (0O). Applying the same argument as Case I in the second

proof of Theorem 2.5.6 replacing i by iy, we obtain that U;, (O) < W;, (O) which is
contradictory.

2.7 Appendix

Lemma 2.7.1. For any a € A;r, there exists a sequence {a,} such that a, € A; and

)
fi (Oyan) = E > 0,
2M
‘fz (O7an)_fl(07a)’ < T,
2M
|€l (Ovan) —{; (O,CL)| < 7
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Proof of Lemma 2.7.1. From assumption [H4], there exists a; € A; such that f; (O,as) = 0
Since FL; (O) is convex (by assumption [H3]), for any n € N,a € A}

1 1
E (fz (O, CL(;) €, fz (0, CL(s)) + (1 — 7’L> (fz (O, CL) ,fi (O, a) 61') e FL; (O) .
Then, there exists a sequence {a,} such that a, € A4; and
1 1
E (f’L (Ov a5) 7£i (Oa (15)) + (1 - TL) (f’L (Ov (I) 7& (Ov (1)) = (fl (O’ an) ’Zi (07 an)) e FL; (O) .
(2.7.1)
Notice that f; (O,a) > 0 since a € A, this yields

£(0,ay) > 111090 9
n mn

From (2.7.1), we also have

11:(0,00) = f:(0,0)| = — 1f: (0,5) — fi (00| <

and )
= - K’L ) 751 ; < .
L 16(0.05) ~ 10,0 < 2

16; (0, an) —¥4; (0O,a)| =

We can state the following corollary of Lemma 2.7.1:

Corollary 2.7.2. For i =1, N and p; € R,
max {=fi(0,a)pi — £; (0,a)} = sup {=fi(0,a)pi — £; (0,a)}.
agA; s.t. fi(O,a)>0

agA; s.t. £i(0,a)=0

Lemma 2.7.3. If U. and W, are respectively viscosity sub and supersolution of

U, () + H; <x % (m)) <0 ifz e\ {0},

du, dU, L
AU, (O) + H, <dxl(0),...,dxm (0)> <0ifz=0,

and

A, A, L
)\WC(O)—&—HC(dml (O),...,dxm (O)> >0ifz=0,

then U, (x) < We (x) for all x € | i~ T;.
Proof of Lemma 2.7.3. Assume that there exists £ € I'; where 1 < ¢ < mand U, (2)—-W, (2) >0
By classical comparison principle for the boundary problem on I';, one gets

U.(O)—W.(0) = mF&p({UC () = We(x)} > 0.

k3
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Chapter 2. Hamilton-Jacobi equations for optimal control on networks with entry or exit costs

Applying again classical comparison principle for the boundary problem for each edge I';

Uc(O) =W, (0) = max {U. () — W, (z)} > 0.

=111
For j = 1, N, we consider the function

1\ ZFjXFj—>R

(#,y) — Ue (x) = We (y) — 2% [ lal + Iyl + 6 ()] = (=] + [y,

JEY

1
where 6 (¢) = (L +1)e, v € <O, 2).
The function V¥, . attains its maximum at (¢, ¥je~) € I'; x I';. Applying the same argument

2
(Tjer = Yjen)

as in the second proof of Theorem 2.5.6, we have ;. ,yj~ — O and — 0 as

. €
e — 0. Moreover, for any j = 1,m, ;. # O. We claim that y;., must be O for ¢ small
enough . Indeed, if there exists a sequence &, such that y; ., ~ € I';\ {O}, then applying viscosity
inequalities, we have

_xJ}Em’Y + yjafnfy + 5 (€n)
En

Ue (Tjeny) + Hj (‘ijfnﬂ/’

_x} nsy +y7 nsy +5 6
We (Yjenny) + Hj (yj,en,'ya 2ot ;5 1+ 9 (En) —7) > 0.
n

Subtracting the two inequalities and using (2.5.10) with Hj;, we obtain

<1 + ’_%}%ﬁ + Yjeny 0 (n)

Ue (Tjenn) = We Wenry) < Mjl%jenny = Yienn - -5 D + M;2y.
n

2
(Tjeny = Yienr)

Recall that we already have

€
0 then we obtain U, (O) — W, (0) < 0. It leads us to a contradiction. So this claim is proved.
Define the function ¥ : [ Ji, T'; — R by

— 0 as n — o0. Let n tend to oo and v tend to

\P’Fi (y) = 2%,5 Z {[_ |xi,e,'y

J#i

1yl + 8 ()47 (= [wien| + ly])-

1
F3EP = Vlaieq | 45 [ lvics

We can see that U is continuous on U;n=1 I'; and belongs to C* (I';) for j = 1, m. Moreover, for
j = 1,m and for € small enough, y;.,=0 then the function ¥ + W, has a minimum point at

O. Tt yields
AW, (0) + H. (‘“5” tOE) | TEmen ! (E)> > 0.

€ €
By definition of H., there exists jp € {1,...,m} such that

AW, (0) + Hj. <0, W) >0,

This implies

AW, (0) + Hj, <O, W) >0
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On the other hand, since xj, .~ € I';,\ {O}, we have

_ —T; +d(e
AU, (xjoﬂfﬂ/) + Hj, <$j0,€,’y’ w> <0.

Subtracting the two inequalities and using properties of Hamiltonian H),, let ¢ tend to 0 then
v tend to 0, we obtain that U. (O) — W, (O) < 0, which is contradictory. O
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3 A Class of Mean Field Games on
Networks.
Part One: the Ergodic Case

Abstract:  We consider stochastic mean field games for which the state space is a network. In
the ergodic case, they are described by a system coupling a Hamilton-Jacobi-Bellman equation
and a Fokker-Planck equation, whose unknowns are the invariant measure m, a value function
v, and the ergodic constant p. The function v is continuous and satisfies general Kirchhoff
conditions at the vertices. The invariant measure m satisfies dual transmission conditions: in
particular, m is discontinuous across the vertices in general, and the values of m on each side
of the vertices satisfy special compatibility conditions. Existence and uniqueness are proven,
under suitable assumptions.

3.1 Introduction and main results

Recently, an important research activity on mean field games (MFGs for short) has been initiated
since the pioneering works [79, 80, 81] of Lasry & Lions (related ideas have been developed
independently in the engineering literature by Huang, Caines & Malhamé, see for example
[70, 69, 68]): it aims at studying the asymptotic behavior of stochastic differential games (Nash
equilibria) as the number N of agents tends to infinity. In these models, it is assumed that
the agents are all identical and that an individual agent can hardly influence the outcome of
the game. Moreover, each individual strategy is influenced by some averages of functions of the
states of the other agents. In the limit when N — 400, a given agent feels the presence of the
others through the statistical distribution of the states. Since perturbations of the strategy of a
single agent do not influence the statistical states distribution, the latter acts as a parameter in
the control problem to be solved by each agent. The delicate question of the passage to the limit
is one of the main topics of the book of Carmona & Delarue, [38]. When the dynamics of the
agents are independent stochastic processes, MFGs naturally lead to a coupled system of two
partial differential equations (PDEs for short), a forward in time Kolmogorov or Fokker-Planck
(FP) equation and a backward Hamilton-Jacobi-Bellman (HJB) equation. The unknown of this
system is a pair of functions: the value function of the stochastic optimal control problem solved
by a representative agent and the density of the distribution of states. In the infinite horizon
limit, one obtains a system of two stationary PDEs.

A very nice introduction to the theory of MFGs is supplied in the notes of Cardaliaguet [37].
Theoretical results on the existence of classical solutions to the previously mentioned system of
PDEs can be found in [79, 80, 81, 62, 64, 63]. Weak solutions have been studied in [81, 90, 91, 9].
The numerical approximation of these systems of PDEs has been discussed in [6, 2, 9].

A network (or a graph) is a set of items, referred to as vertices (or nodes/crosspoints), with
connections between them referred to as edges. In the recent years, there has been an increasing

Othis chapter is submitted and a preprint is available: Yves Achdou, Manh-Khang Dao, Olivier Ley and
Nicoletta Tchou, A Class of Infinite Horizon Mean Field Games on Networks, hal-01802120.
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Chapter 3. A Class of Mean Field Games on Networks.
Part One: the Ergodic Case

interest in the investigation of dynamical systems and differential equations on networks, in
particular in connection with problems of data transmission and traffic management (see for ex-
ample [57, 47, 51]). The literature on optimal control in which the state variable takes its values
on a network is recent: deterministic control problems and related Hamilton-Jacobi equations
were studied in [5, 73, 8, 72, 86, 87]. Stochastic processes on networks and related Kirchhoff
conditions at the vertices were studied in [56, 55].

The present work is devoted to infinite horizon stochastic mean field games taking place on
networks. The most important difficulty will be to deal with the transition conditions at the
vertices. The latter are obtained from the theory of stochastic control in [56, 55], see Section 3.1.3
below. In [32], the first article on MFGs on networks, Camilli & Marchi consider a particular
type of Kirchhoff condition at the vertices for the value function: this condition comes from an
assumption which can be informally stated as follows: consider a vertex v of the network and
assume that it is the intersection of p edges I'1,...,I'p, ; if, at time 7, the controlled stochastic
process X; associated to a given agent hits v, then the probability that X .+ belongs to I'; is
proportional to the diffusion coefficient in I';. Under this assumption, it can be seen that the
density of the distribution of states is continuous at the vertices of the network. In the present
work, the above mentioned assumption is not made any longer. Therefore, it will be seen
below that the value function satisfies more general Kirchhoff conditions, and accordingly, that
the density of the distribution of states is no longer continuous at the vertices; the continuity
condition is then replaced by suitable compatibility conditions on the jumps across the vertex.
Moreover, as it will be explained in Remark 3.1.14 below, more general assumptions on the
coupling costs will be made. Mean field games on networks with finite horizon will be considered
in Chapter 4.

After obtaining the transmission conditions at the vertices for both the value function and the
density, we shall prove existence and uniqueness of weak solutions of the uncoupled HJB and
FP equations (in suitable Sobolev spaces). We have chosen to work with weak solutions because
it is a convenient way to deal with existence and uniqueness in the stationary regime, but also
because it is difficult to avoid it in the nonstationary case, see Chapter 4 for finite horizon MFGs.
Classical arguments will then lead to the regularity of the solutions. Next, we shall establish
the existence result for the MFG system by a fixed point argument and a truncation technique.
Uniqueness will also be proved under suitable assumptions.

The present work is organized as follows: the remainder of Section 3.1 is devoted to setting
the problem and obtaining the system of PDEs and the transmission conditions at the vertices.
Section 3.2 contains useful results, first about some linear boundary value problems with elliptic
equations, then on a pair of linear Kolmogorov and Fokker-Planck equations in duality. By and
large, the existence of weak solutions is obtained by applying Banach-Necas-Babuska theorem
to a special pair of Sobolev spaces referred to as V' and W below and Fredholm’s alternative,
and uniqueness comes from a maximum principle. Section 3.3 is devoted to the HJB equation
associated with an ergodic problem. Finally, the proofs of the main results of existence and
uniqueness for the MFG system of PDEs are completed in Section 3.1.

3.1.1 Networks and function spaces
The geometry

A bounded network I' (or a bounded connected graph) is a connected subset of R” made of a
finite number of bounded non-intersecting straight segments, referred to as edges, which connect
nodes referred to as vertices. The finite collection of vertices and the finite set of closed edges
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3.1. Introduction and main results

are respectively denoted by V := {v;,i € I} and € := {I'y,a € A}, where I and A are finite sets
of indices contained in N. We assume that for o, 8 € A, if a # 3, then I', n I'g is either empty
or made of a single vertex. The length of I',, is denoted by ¢,. Given v; € V, the set of indices
of edges that are adjacent to the vertex v; is denoted by A; = {a € A:v; €T}, A vertex y;
is named a boundary vertex if §(A;) = 1, otherwise it is named a transition vertex. The set
containing all the boundary vertices is named the boundary of the network and is denoted by
oI hereafter.

The edges I', € £ are oriented in an arbitrary manner. In most of what follows, we shall make
the following arbitrary choice that an edge I'y, € £ connecting two vertices v; and v}, with ¢ < j
is oriented from v; toward v;: this induces a natural parametrization 7, : [0,40] — I'a = [v3, v4]:

Ta(y) = vt %Vj for y € [0, 4] (3.1.1)
For a function v : I' - R and « € A, we define v, : (0,4,) — R by
vo(x) :=v|p, o me(x), for all x € (0,4,).

Remark 3.1.1. In what precedes, the edges have been arbitrarily oriented from the vertex with
the smaller index toward the vertex with the larger one. Other choices are of course possible.
In particular, by possibly dividing a single edge into two, adding thereby new artificial vertices,
it is always possible to assume that for all vertices v; € V,

either 7, (v;) = 0, for all a € A; or 7w (v;) = £y, for all a € A;. (3.1.2)

This idea was used by Von Below in [99]: some edges of I" are cut into two by adding artificial
vertices so that the new oriented network I' has the property (3.1.2), see Figure 3.1 for an
example.

I
Ve 19
I's
ryY
V3 vy
F4 1_‘4

Figure 3.1: Left: the network I' in which the edges are oriented toward the vertex with larger
index (4 vertices and 4 edges). Right: a new network ' obtained by adding an
artificial vertex (5 vertices and 5 edges): the oriented edges sharing a given vertex v
either have all their starting point equal v, or have all their terminal point equal v.

In Sections 3.1.2 and 3.1.3 below, especially when dealing with stochastic calculus, it will be
convenient to assume that property (3.1.2) holds. In the remaining part of the paper, it will be
convenient to work with the original network, i.e. without the additional artificial vertices and
with the orientation of the edges that has been chosen initially.
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Function spaces

The set of continuous functions on I' is denoted by C(I') and we set

PC(T):=qv:T >R : forallae A, va € C(0,4a) '
v can be extended by continuity to [0, 4,].

By the definition of piecewise continuous functions v € PC(T'), for all « € A, it is possible to
extend v|r, by continuity at the endpoints of I'y: if I'y = [14, 5], we set

Vo (T3 (), if x e Ty\V,
vlr, (@) = { Ve (0= T va(y), ifw =i, (3.1.3)
Vo (bo) = lim v, (y), ifx=v;.
y—La

For m € N, the space of m-times continuously differentiable functions on I' is defined by
C"(T):={veC(T):v,€C™([0,£,]) for all « € A},

and is endowed with the norm

[leme == %, 25 |0

acA k<m

e 0,60)

For ¢ € (0,1), the space C"™7 (I'), contains the functions v € C™(I') such that 0"v, €
C% ([0,44]) for all a € A; it is endowed with the norm

om —om
[0l gmo py 1= l0llgmry + sup sup 0™ 04 (y) "o ()|
Yy#z |y — Z|
y z€[0,£a]

For a positive integer m and a function v € C™ (I'), we set for k < m
kv (z) = Fvg (! (z)) if z e T\V. (3.1.4)

Notice that v € C*(T) is continuous on I' but that the derivatives d'v, 0 < I < k are not
defined at the vertices. For a vertex v, we define d,v () as the outward directional derivative
of v|r, at v as follows:

Vo (0) — vg (R)

hlin([)1+ . ) if v =7, (0),
OV (V) := "™ _ B (3.1.5)
lim 22 (fa) = va (fa h>, if v=mq(ly).
h—0+ h
For all i € I and a € A;, setting
Nija = 1 ity = Wa(ﬂa), (3.1.6)
=1 if v; = 1, (0),
we have
Oav(V3) = Nia V|1, (V) = Nia OVa (7, (1)) (3.1.7)

Remark 3.1.2. Note that in (3.1.5), changing the orientation of the edge does not change the
value of dav(v).
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If for all « € A, v, is Lebesgue-integrable on (0, ¢,), then the integral of v on I' is defined by

f dm—%feava(y)dy

LP(T):={v:vq€ LP(0,4,) forall « € A} = {v:v|p, € LP (Ty) for all « € A},

For p e [1, 0],

is endowed with the norm

|UHL:D(F (();4 Hva”Lp (0,00 ) ; if 1< p<+o0, and max HUCMHLOO(O,EQ) , if p = 0.

We shall also need to deal with functions on I' whose restrictions to the edges are weakly-
differentiable: we shall use the same notations for the weak derivatives. Let us introduce Sobolev
spaces on I'.

Definition 3.1.3. For any integer s > 1 and any real number p > 1, the Sobolev space W*P(T")
is defined as follows:

W3P(T) :={ve C(T): v, € WP (0,4,) for all « € A},

1
P
’U‘gp(r)) :

and endowed with the norm

[olhwerry (2 3 [

We also set H*(T") = W*2(I').

3.1.2 A class of stochastic processes on I’

After rescaling the edges, it may be assumed that ¢, = 1 for all @ € A. Let po, € A and
Pia,t € I, o0 € A; be positive constants such that >, . 4, Pia = 1. Consider also a real valued
function a € PC(T).
As in Remark 3.1.1, we make the assumption (3.1.2) by possibly adding artificial nodes: if v; is
such an artificial node, then £(.A4;) = 2, and we assume that p;, = 1/2 for a € A;. The diffusion
parameter p has the same value on the two sides of an artificial vertex. Similarly, the function
a does not have jumps across an artificial vertex.

Let us consider the linear differential operator:

Lu(x) = Lou () = pod®u(z) +alr, (z)ou(z), ifzel,, (3.1.8)
with domain
D (L) := {u e C*(T Z Dialau (v;) =0, forallie I} (3.1.9)
acA;

Remark 3.1.4. Note that in the definition of D (L), the condition at boundary vertices boils
down to a Neumann condition.

Freidlin & Sheu proved in [55] that
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1. The operator L is the infinitesimal generator of a Feller-Markov process on I' with contin-
uous sample paths. The operators L, and the transmission conditions at the vertices

> Piabau(v;) =0 (3.1.10)
aEAi

define such a process in a unique way, see also [56, Theorem 3.1]. The process can be
written (Xy, ) where X; € T'y,. If Xy = v;, 1 € I, oy is arbitrarily chosen as the smallest
index in A;. Setting x; = m,,(X;) defines the process xz; with values in [0, 1].
2. There exist
a) a one dimensional Wiener process W,

b) continuous non-decreasing processes ¢; ¢, i € I, which are measurable with respect to
the o-field generated by (X3, ay),

c) continuous non-increasing processes h; ¢, i € I, which are measurable with respect to
the o-field generated by (Xy, o),

such that

dr; = «/Matth + aq, (l‘t)dt + dfz‘,t + dhi,t, (3111)
¢; + increases only when X; = v; and x; = 0,

hi s decreases only when X; = v; and x; = 1.

3. The following Ito formula holds: for any real valued function u € C?(I):
u(Xy) =u(Xo)

¢
+ Z L Tix,era\v} <ua02u(Xs) + a(Xs)ou(Xs)ds + «/2ua6u(Xs)dWs)

acA

+ 7 D) Pialatu(vi)(lis + hig).

el acA;

(3.1.12)

Remark 3.1.5. The assumption that all the edges have unit length is not restrictive, because we
can always rescale the constants u, and the piecewise continuous function a. The Ito formula
in (3.1.12) holds when this assumption is not satisfied.

Consider the invariant measure associated with the process X;. We may assume that it is
absolutely continuous with respect to the Lebesgue measure on I'. Let m be its density:

E[u(Xy)] := Lu (x)m (x)dz, forall ue PC(T). (3.1.13)

We focus on functions u € D (£). Taking the time-derivative of each member of (3.1.13), Ito’s
formula (3.1.12) and (3.1.10) lead to:

E []I{Xt@/} (a&u(Xt) + ,u,82u(Xt))] =0.

This implies that
L (a(z)ou(z) + po*u(x)) m(z)de = 0. (3.1.14)
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Since for a € A, any smooth function on I" compactly supported in I',\V clearly belongs to
D(L), (3.1.14) implies that m satisfies

— pa0*m + 0 (ma) =0 (3.1.15)

in the sense of distributions in the edges I',\V, a € A. This implies that there exists a real
number ¢, such that
— uaOmlp, = —mlr alr, + ca- (3.1.16)

So m|r, is C! regular, and (3.1.16) is true pointwise. Using this information and (3.1.14), we
find that, for all u € D(L),

2 Z pamlr, (V) Oqu (Vi) Z oulr, (z < psom|r, (z) + alr, (:c)m]pﬁ(x)>da: =0.
el aeA; BeA Tp
This and (3.1.16) imply that
- Z Z tam|r, (Vi) Oqu (V) + Z cg | Oulry(z)dr = 0. (3.1.17)
i€l aeA; BeA Lg
For all i € I, it is possible to choose a function u € D(L) such that
1. u(l/j) = 61’,]’ for all jel;
2. Oqu(vj) =0 for all je I and a € A;.
Using such a test-function in (3.1.17) implies that for all i € I,
0= Z Cgf dulr,(z)dr = Z Z Canjollr, (V) = Z NiaCa (3.1.18)
BeA Lp jel aeA; acA;

where n;q is defined in (3.1.6).
For all i € I and «, 8 € A;, it is possible to choose a function v € D(L) such that

1. u takes the same value at each vertex of I', which implies that SF5 dulrs(x)dz = 0 for all

0 € A,

2. Oau(v3) = 1/pia, Ogu(v;) = —1/p;g and all the other first order directional derivatives of u
at the vertices are 0.

Using such a test-function in (3.1.17) yields

mir, (vi) _ mlr, ()
Yia ViB

, foralla,Be A;,v; €V,

in which '
vio = 2% forallieI,ae A (3.1.19)
[ia
Next, for ¢ € I, multiplying (3.1.16) at x = v; by n;, for all @ € A;, then summing over all
a € A;, we get
> tadam (4) = nia (mlr, W) alr, (%) = ca) =0,
aEAi
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and using (3.1.18), we obtain that

Z talam (Vi) — nigalp, (v;) mlp, (v;) =0, foralliel. (3.1.20)
aE.A»L‘

Summarizing, we get the following boundary value problem for m (recalling that the coeffi-
cients nj, are defined in (3.1.6)):

—la0*m + @ (ma) = 0, ze (T\V), ae A,

Z taOam (Vi) — nigalr, (vi)m|r, (v;) =0, v, €V,

acd, (3.1.21)
mlra () = mlr; (Vi), a,Be A, v; €V

Vi YiB
3.1.3 Formal derivation of the MFG system on I’

Consider a continuum of indistinguishable agents moving on the network I'. The set of Borel
probability measure on I' is denoted by P (I'). Under suitable assumptions, the theory of MFGs
asserts that the distribution of states is absolutely continuous with respect to Lebesgue measure
on I'. Hereafter, m stands for the density of the distribution of states: m > 0 and {, m(z)dx = 1.

The state of a representative agent at time ¢ is a time-continuous controlled stochastic process
X, in T, as defined in Section 3.1.2, where the control is the drift a;, supposed to be of the form
a; = a(X;). The function X — a(X) is the feedback.

For a representative agent, the optimal control problem is of the form:

1 T
p = infliminf —E, [J L(Xs,as) + 7 [m(-,s)(Xs)] ds], (3.1.22)
as T——+00 0
where [E, stands for the expectation conditioned by the event Xg = z. The functions and
operators involved in (3.1.22) will be described below.
Let us assume that there is an optimal feedback law, i.e. a function a* defined on I' which is

sufficiently regular in the edges of the network, such that the optimal control at time ¢ is given
by a; = a*(X¢). Then, almost surely if X; € T',\V,

Ayt (Xe) = ab(my H(Xe))dt + A/ 2pad W

An informal way to describe the behavior of the process at the vertices is as follows: if X; hits
v; € V, then it enters 'y, a € A; with probability p;q > 0.

Let us discuss the ingredients in (3.1.22): the running cost depends separately on the control
and on the distribution of states. The contribution of the distribution of states involves the
coupling cost operator, which can either be nonlocal, i.e. V : P(I') — C?(I'), or local, i.e.
V[m](z) = F(m(x)) assuming that m is absolutely continuous with respect to the Lebesgue
measure, where F': RT — R is a continuous function.

The contribution of the control involves the Lagrangian L, i.e. a real valued function defined
on (Uaeal'a\V) xR. If z € T,\V and a € R, L(x,a) = Lo(7,'(x),a), where L, is a continuous

Lo(y,a) _
lal = +00.

real valued function defined on [0,£,] x R. We assume that lim,_,q infyer,
Further assumptions on L and V will be made below.

Under suitable assumptions, the Ito calculus recalled in Section 3.1.2 and the dynamic pro-
gramming principle lead to the following ergodic Hamilton-Jacobi equation on I', more precisely
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the following boundary value problem:

—1160%v + H (z,00) + p = ¥ [m] (z), ze (T, \V),acA,
Z YiakaOav (Vi) = 0, v, €V,
q acdi (3.1.23)
vlr, (vi) = vlr, (1), a,Be A, v eV,
v(z)dr = 0.
\JT

We refer to [79, 81] for the interpretation of the value function v and the ergodic cost p.
Let us comment the different equations in (3.1.23):

1. The Hamiltonian H is a real valued function defined on (Uaeal'a\V) x R. For x € T',\V
and p e R,
H (z,p) = sup {—ap — L (r;' (), a)} ,
a

The Hamiltonian is supposed to be C'! and coercive with respect to p uniformly in .

2. The second equation in (3.1.23) is a Kirchhoff transmission condition (or Neumann bound-
ary condition if v; € dT'); it is the consequence of the assumption on the behavior of X at
vertices. It involves the positive constants 7;, defined in (3.1.19).

3. The third condition means in particular that v is continuous at the vertices.
4. The fourth equation is a normalization condition.

If (3.1.23) has a smooth solution, then it provides a feedback law for the optimal control problem,
i.e.

a*(xz) = —0pH (x,0v (z)).

At the MFG equilibrium, m is the density of the invariant measure associated with the optimal
feedback law, so, according to Section 3.1.2, it satisfies (3.1.21) (where a is replaced by a*).
Finally, replacing a*(z) by the value —0,H (z,dv (x)), we get the system

(—ua82v+H(5L‘,6v)—|—,0=”//([m]), rzel\V,ae A,
tad?m + 0 (md,H (z,0v)) = 0, rzel\V,ae A,
Z ’Yiaﬂaava (Vz) = 07 v; € V,
acA;

) 2}4 [,uaﬁam (V) + niaOpHy (z/i, 8U|Fa(Vi)>m’Fa (I/z)] =0, eV, (3.1.24)
QEA;
vlr,, (vi) = vlr, (1) o, e A, v €V,
m|Fa (Vl) = m|FB (Vi)v «, B € A’ia v € Vv

Yia YiB

Jv(:c)daszO, Jm(m)dl‘:l, m = 0.
r r

At a vertex v;, i € I, the transmission conditions for both v and m consist of d,, = #(.A;) linear
relations, which is the appropriate number of relations to have a well posed problem. If v; € 0T,
there is of course only one Neumann like condition for v and for m.

Remark 3.1.6. In [32], the authors assume that ;o = ;3 for all i € I, , § € A;. Therefore, the
density m does not have jumps across the transition vertices.
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3.1.4 Assumptions and main results
Assumptions

Let (fta)aea be a family of positive numbers, and for each i € I let (Vin)aca, be a family of
positive numbers such that )] . A; Yiatta = 1.

Consider the Hamiltonian H : T' x R - R, with H|p, : I', x R — R. We assume that, for some
positive constants Cy, C1,C> and q € (1, 2],

He € CF([0,4a] x R);
H, (z,-)is convex in p for each z € [0,4,] ;
H, (l‘,p) = Co |p|q — (1 for (l‘,p) € [nga] x ]Ra

|0pHy (2, p)| < Co (]p|q_1 - 1> for (z,p) € [0,44] x R.
Remark 3.1.7. From (3.1.28), there exists a positive constant C, such that

|Ho (2,p)] < Cy(Ip|T+ 1), forall (z,p) € [0,0] x R. (3.1.29)

Below, we shall focus on local coupling operators ¥, namely
¥ [m] (z) = F (m(x)) with F e C([0,+w0);R), (3.1.30)

for all m which are absolutely continuous with respect to the Lebesgue measure and such that
dm (x) = m(x)dx. We shall also suppose that F' is bounded from below, i.e., there exists a
positive constant M such that

F(r)=—-M, forallre]l0,+0). (3.1.31)

Function spaces related to the Kirchhoff conditions

Let us introduce two function spaces on I'; which will be the key ingredients in order to build
weak solutions of (3.1.24).

Definition 3.1.8. We define two Sobolev spaces:
V.= HYD), (3.1.32)

see definition 3.1.3, and

wlr, (i) wlps ()

sz{w:FHR:waeHl(O,fa) for all « € A, and = for all i € I, a,ﬁeAi}
Yia Yip
(3.1.33)

which is also a Hilbert space, endowed with the norm |wl|y;, = (ZaeA HwaH?{l(oja)) z
Definition 3.1.9. Let the function ¢ € W and ¢ € PC(I") be defined as follows:
4 is affine on (0,4,),

Ylr, (Vi) = Yia, f v € A;, (3.1.34)
1) is constant on the edges I', which touch the boundary of I'.
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¢q is affine on (0,4,),
1
Plr, (vi) = e if v e A;, (3.1.35)

(283

¢ is constant on the edges I', which touch the boundary of I'.
Note that both functions 1, ¢ are positive and bounded. We set 1) = maxr 1), 1 = minr ¥,
¢ = maxr ¢, ¢ = minr ¢.

Remark 3.1.10. One can see that v € V —— w01 is an isomorphism from V onto W and w €
W —— w¢ is the inverse isomorphism.

Definition 3.1.11. Let the function space W < W be defined as follows:

mir, (vi) _ mlr, (1)
Yia Yip

W = {m:F—»R:maeCl([O,Ea]) and forallie[,a,ﬁeAi}.

(3.1.36)

Main result

Definition 3.1.12. A solution of the Mean Field Games system (3.1.24) is a triple (v, p,m) €
C? (') x R x W such that (v, p) is a classical solution of

—11a0%0 + H (z,00) + p= F (m), inT,\V,aeA,

. 3.1.37
2 Viaﬂaﬁav (Vz) =0, if v; eV, ( )
aG.A»L'
(note that v is continuous at the vertices from the definition of C%(T")), and m satisfies
Z f [pa0mou + 0 (mopH (x,0v))u]dx =0, forallueV, (3.1.38)
ac AVt

where V' is defined in (3.1.32).
We are ready to state the main result:

Theorem 3.1.13. If assumptions (3.1.25)-(3.1.28) and (3.1.30)-(3.1.31) are satisfied, then there
exists a solution (v,m,p) € C?>(I') x W x R of (3.1.24). If F is locally Lipschitz continuous,
then v e C2Y(T). Moreover if F is strictly increasing, then the solution is unique.

Remark 3.1.14. The proof of the existence result in [32] is valid only in the case when the
coupling cost F' is bounded.

Remark 3.1.15. The existence result in Theorem 3.1.13 holds if we assume that the coupling
operator V is non local and regularizing, i.e., V is a continuous map from P to a bounded subset
of F, with

F={f:T>R: flr, eC" (I'y)}.

The proof, omitted in what follows, is similar to that of Theorem 3.4.1 below.

3.2 Preliminary: A class of linear boundary value problems

This section contains elementary results on the solvability of some linear boundary value prob-
lems on I'. To the best of our knowledge, these results are not available in the literature.
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3.2.1 A first class of problems

We recall that the constants p, and 7; o are defined in Section 3.1.2. Let A be a positive number.
We start with very simple linear boundary value problems, in which the only difficulty is the
Kirchhoff condition:

— 10?0 4+ v = f, in Do\V,a € A,

U|Fa(Vi) = U|F5 (Vi)v a,feA, i€l (3.2.1)
2 ’Yia/iaaozv (Vz) =0, i€el,

acA;

where f € W', W’ is the topological dual of W.

Remark 3.2.1. We have already noticed that, if v; € 0T, the last condition in (3.2.1) boils down
to a standard Neumann boundary condition dqv (1) = 0, in which « is the unique element of
A;. Otherwise, if v; € V\JT', the last condition in (3.2.1) is the Kirchhoff condition discussed
above.

Definition 3.2.2. A weak solution of (3.2.1) is a function v € V' such that
B (v,w) = (fywyyyy, forallweW, (3.2.2)

where &) : V x W — R is the bilinear form defined as follows:

B (v,w) = Z f (HaOvow + Avw) dx.
aeAV @

Remark 3.2.3. Formally, (3.2.2) is obtained by testing the first line of (3.2.1) by w € W, inte-
grating by part the left hand side on each I', and summing over a € A. There is no contribution
from the vertices, because of the Kirchhoff condition and the transmission condition satisfied by
the elements of W.

Remark 3.2.4. By using classical elliptic regularity (see [61]), or by using the fact that 'y, are
line segments, i.e. one dimensional sets and solving the ODE, we see that if v is a weak solution
of (3.2.1) with f € PC (T), then v e C?(I).

Let us first study the homogeneous case, i.e. f = 0.

Lemma 3.2.5. The following linear boundary value problem

—0%v + M =0, inTo\V,a€ A,

e, (i) = vlpg (i), e, feAi el (3.2.3)
Z VialalaV (Vi) =0, i€,

OcE.Ai

has a unique solution: v = 0.

Proof. Let Z; := {keI: k % i; v, €T, for some o € A;} be the set of indices of the vertices
which are connected to v;. By Remark 3.1.1, it is not restrictive to assume (in the remainder of
the proof) that for all k € Z;, T'y = Ty, = [, k] is oriented from v; to vy.
For k € Z;, ' = [vi, k], using the parametrization (3.1.1), the linear ODE (3.2.3) in the
branch T',, is
—v" (y) + Mg (y) =0, in (0,44),
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whose solution is
Vo (y) = (o cosh (\F/\y) + &, sinh (ﬁy) , (3.2.4)
with
Ca = a (0) = v (),
Cacosh (VML) + & sinh (VL) = v (Ca) = v (vk) .

It follows that 0,v (1) = VA = ¢ [v (k) — v () cosh (v/ALy)]. Hence, the trans-

sinh (VAly)

mission condition in (3.2.3) becomes: for all i € I,
\/Xfy- M,
0= 1o’ ocaoz i) = ik Sk - ) h \/Xga-
2 vamedav () = 3 SO |0 () = v () cosh (Vi) |
_ Z _\/X'Yiai'k:“aik cosh (\/Xgaik) v (i) + Z '\/X'Yiaikﬂaik v () .
sinh (ﬁfaik) sinh (ﬁﬁaik)

k‘EIi

k‘EIL‘
Therefore, we obtain a system of linear equations of the form MU = 0 with M = (M;;), ;
N =#(I),and U = (v (11),...,v (vn))", where M is defined by

( cosh (VM)
M, = E s L > (),
: keZ; et sinh (\/Xzaik)

4 ~Yicig Mo
My, =—"™>""""-<0, kel
sinh (VMa,,)

My, =0, ké¢I,.

JEN?

For all i € I, since cosh (\ﬂﬁaik) > 1 for all k € Z;, the sum of the entries on each row is positive
and M is diagonal dominant. Hence, M is invertible and the system has a unique solution
U = 0. Finally, by solving the ODE in each branch I'g with vg (0) = vg (¢3) = 0, we obtain that
v=0onT. O

Let us now study the non-homogeneous problems (3.2.1).

Lemma 3.2.6. For any f in W', (3.2.1) has a unique weak solution v in V, see Definition
3.1.8. Moreover, there exists a constant C' such that |[v|,, < C||flly -

Proof. First of all, we claim that for A\g > 0 large enough and any f € W', the problem
B (v,w) + Ao (v, w) = (fy Wy (3.2.5)

has a unique solution v € V. Let us prove the chiim. Let v € V, then W := v belongs to W,
where v is given by Definition 3.1.9. Let us set 01 := maxr [0¢| and v := minp ¢ > 0, (09 is
bounded, see Definition 3.1.9); we get

B (v, ) + Ao (v, D) = Y. L (10 0vOW + Avid + Aguid) da
ac AVt a

— ZAJ ) :Na |8’U|21/J + Ua (v&v) 8'¢ + ()\ + )\0) 'U21/1] dr
- Z}J :Ma 100" % — prac 0] [00] 3 + (A + Xo) v@] da
| =2
> O;L‘J ) _Ma;b |ov]? + </\m/;_ Na;j;/’ ) Uz] do. (3.2:6)
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2

When g for all o € A, we obtain that

Pa Moﬁ"ﬂ
2

ﬁ% B
lol} = ===

Br(0,0) + Xo (v,0) > o 1ol 1l

using the fact that, from Remark 3.1.10, there exists a positive constant Cy, such that [[ve|y, <
Cy |lv]y, for all v e V. This yields

By (v, w) + Xo (v,w) _ p Y

= . 2.
o (3.2.7)

inf sup

veVuew  [vlly Jwly
Using a similar argument for any w € W and © = w¢, where ¢ is given in Definition 3.1.9, we
obtain that for A\g large enough, there exist a positive constant Cy such that

%)\ (’U,’LU)—F)\()(U,Y,U) > HQ

> . 2.
20¢ (3 8)

inf sup
weW ey ”wHW HUHV

From (3.2.7) and (3.2.8), by the Banach-Necas-Babuska lemma (see [48] or [30]), for Ay large
enough, there exists a positive constant C' such that for any f € W’ there exists a unique
solution v € V of (3.2.5) and |v|,, < C|f| - Hence, our claim is proved.

Now, we fix A large enough and we define the continuous linear operator Ry, : W' — V where
Ry, (f) = v is the unique solution of (3.2.5). Since the injection Z from V to W’ is compact,
then Z o R, is a compact operator from W’ into W’. By the Fredholm alternative (see [61]),
one of the following assertions holds:

There exists v € W'\ {0} such that (Id— Ao (Zo Ry,)) v = 0. (3.2.9)
For any g € W', there exists a unique ¥ € W’ such that (Id — Ao (I o RAO)) v=g. (3.2.10)

We claim that (3.2.10) holds. Indeed, assume by contradiction that (3.2.9) holds. Then there
exists U # 0 such that

TeV,

- _
IO R)\OU = )\70
Therefore

veV,

B v + Ao v = (t,w), forallweW.
)\0 )\0

This yields that &) (v,w) = 0 for all w € W and by Lemma 3.2.5, we get that ¥ = 0, which
leads us to a contradiction. Hence, our claim is proved.

Next, from (3.2.10), we can check that for any g € V< W', there exists a unique v € V such
that (Id — Ao (Zo R»,)) U = g. It allows us to define

(Id—Xo (ToRy,)) ' lv:V—VcW.

Let us consider the operator T := (Id — Ao (Ioﬁ,\o))f1 lv o Ry, : W —> V. We claim that
for any f € W', T (f) is a solution of (3.2.1). Indeed, set g := Ry, (f) and v := T (f) =
(Id = Ao (ZoRy,)) " |v (9)- Then

By (g, w) + X (g,w) = (f,w), forallweW,

70



3.2. Preliminary: A class of linear boundary value problems

and Ry, (v) = (v — g)/Xo. Therefore,
B (v, 0) = By (9,0) + Ao (g,w) = (fyw), forall we TV,

Hence, our claim is proved and (3.2.1) has a unique weak solution.
Finally, since (Id — o (Zo Ry,)) |v : V — V is injective (by uniqueness for (3.2.3)), onto
(by Fredholm alternative) and continuous, we get that

(Id =X (ZoRy,)) v = ((Id=Xo (To Ry)) Iv)

is also continuous by the open mapping theorem. This yields that (I d— X (I o EAO))f1 lvoRy,
is continuous from W’ into V. Hence, there exists a positive constant C such that for any f € W,
there exists a unique weak solution v of (3.2.1) and [Jv|l,, < C'|f|ly;». The proof of Lemma 3.2.6
is complete.

O

3.2.2 The Kolmogorov equation

This subsection is devoted to the following boundary value problem including a Kolmogorov
equation

— 0% + bov = 0, inTo\V,a€ A,

vr (i) = olry (i), a,feAiiel, (3.2.11)
Z ’Yia/iocaoﬂ} (Vz) = 0, 1€ -[7

aEAi

forbe PC(T) .

Definition 3.2.7. A weak solution of (3.2.11) is a function v € V' such that
A* (v,w) =0, forallweW,

where &* : V x W — R is the bilinear form defined by

A (v,w) = Z f (Ha0viw + bovw) dzx.
ae AV o

Remark 3.2.8. By using the fact that I',, are line segments, i.e. one dimensional and solving the
ODE, we see that if v is a weak solution of (3.2.11), then v € C? (I).

The uniqueness of solutions of (3.2.11), up to the addition of constants, is obtained by using
a maximum principle:

Lemma 3.2.9. For be PC (T'), the set of solutions of (3.2.11) is the set of constant functions
onI'.

Proof of Lemma 3.2.9. First of all, any constant function on I is a solution of (3.2.11). Now
let v be a solution of (3.2.11) then v € C?(I') by Remark 3.2.8. Assume that the maximum
of v over I' is achieved in I',; by the maximum principle, it is achieved at some endpoint v;
of I'y. Without loss of generality, using Remark 3.1.1, we can assume that 73 (1;) = 0 for all
B € A;. We have dgv (v;) = 0 for all § € A; because v; is the maximum point of v. Since all
the coefficients v;3, 13 are positive, by the Kirchhoff condition if v; is a transition vertex, or by
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the Neumann boundary condition if v; is a boundary vertex, we infer that dgv (1) = 0 for all
B € A;. This implies that dvg is a solution of the first order linear homogeneous ODE

—pgu’ +bgu =0, on [0,45],
u(0) = 0.
Therefore, dvg = 0 and v is constant on I'g for all 5 € A4;. We can propagate this argument,

starting from the vertices connected to v;. Since the network I' is connected and v is continuous,
we obtain that v is constant on I'. O

3.2.3 The dual Fokker-Planck equation

This paragraph is devoted to the dual boundary value problem of (3.2.11); it involves a Fokker-
Planck equation:

— e 0%*m — 0 (bm) = 0, inT,\V,a€ A,
mlr, (v)  mlp; (%) ,
Yia v xf e, iel, (3.2.12)
Y. [miablr, W) mle, () + padam ()] =0, i€l
aEAi

where b e PC (I'), with
m =0, j mdzx = 1. (3.2.13)
r

First of all, let \g be a nonnegative constant; for all h € V’, we now introduce the modified
boundary value problem

Aom — pad*m — 0 (bm) = h, inT'y\V,a e A,
m|r, (vi)  mlp, () ,
Yia g ofediel, (3.2.14)
> [niab (vi) mlr, (i) + pafam ()] =0, i€l
OcE.Ai

Definition 3.2.10. A weak solution of (3.2.14) is a function m € W such that
yy(m,v) = (h,vyyry, forallveV,
where o7\, : W x V — R is the bilinear form defined by
oy, (m,v) = Z J [Aomv + (o 0m + bm) dv] dx.
aeAY o

Definition 3.2.11. A weak solution of (3.2.12) is a function m € W such that

gy(m,v) := Z J (ta0m + bm) dvdx = 0, for allve V. (3.2.15)
ae AV«

Remark 3.2.12. Formally, to get (3.2.15), we multiply the first line of (3.2.12) by v € V, integrate
by part, sum over o € A and use the third line of (3.2.12) to see that there is no contribution
from the vertices.
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Theorem 3.2.13. For any be PC (T,
o (Existence) There exists a solution m € W of (3.2 ) (3.2.13) satisfying
Iy <C, 0<m<C, (3.2.16)

where the constant C' depends only on |b],, and {ia},es- Moreover, g € C*(0,£4) for
all « € A. Hence, m € W.

e (Uniqueness) m is the unique solution of (3.2.12)-(3.2.13).

e (Strictly positive solution) m is strictly positive.

Proof of existence in Theorem 3.2.13. We divide the proof of existence into three steps:

Step 1: Let Ao be a large positive constant that will be chosen later. We claim that for
m e L*(T) and h := \gin € L*(T") = V’, (3.2.14) has a unique solution m € W. This allows us
to define a linear operator as follows:

T:L*(@T) — W,

m—m,

where m is the solution of (3.2.14) with h = A\gim. We are going to prove that T is well-defined
and continuous, i.e, for all m € L? ('), (3.2.14) has a unique solution that depends continuously
on m. For we W, set ¥ := w¢ € V where ¢ is given by Definition 3.1.9. We have

o (w,0) = Y j [Modw? + (padw + bw) & (we)] da

acA

-y f (oo + b08) w? + (11ad + b) wdw + pad (Ow) ] dz.

acA
It follows that when A is large enough (larger than a constant that only depends on b, ¢ and
Ha)s D (w,V) = CAO Hw||W for some positive constant C,\O Moreover, by Remark 3.1.10, there
ex1sts a positive constant C¢ such that for all w e W, we have |we|,, < Cy |wl|y,. This yields

@\, (w, v C
inf sup o (w,v) > o
weW ey ||v]ly Jwly — Cg
Using similar arguments, for \g large enough, there exist two positive constants C), and Cy,

such that > o
inf sup Lo (:0)  On
veV wew [wly vy~ Cy

From Banach-Necas-Babuska lemma (see [48] or [30]), there exists a constant C such that for all
m e L? (I), there exists a unique solution m of (3.2.14) with h = A\gm and |m/,,, < C I 2y

Hence, the map 7T is well-defined and continuous from L? (T) to W.
Step 2: Let K be the set defined by

K:—{meLZ(F):mZOandfmdx—l}.
r

We claim that 7 (K) < K which means {.m = 1 and m > 0. Indeed, using v = 1 as a test
function in (3.2.14), we have {. mdz = §, mdx = 1. Next, let

0 if m(z) =0,

—m(z) ifm(xz)<0.
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Notice that m~ € W and m~¢ € V, where ¢ is given by Definition 3.1.9. Using m™¢ as a test
function in (3.2.14) yields

Z - L [(Ao@ + bO9) (m™)? + pa(0m™)%¢ + (1add + bo) m~om” | dz = J Xomm™~ ¢dx.

acA r

We can see that the right hand side is non-negative. Moreover, for \g large enough (larger
than the same constant as above, which only depends on b, ¢ and pug), the left hand side is
non-positive. This implies that m™ = 0, and hence m > 0. Therefore, the claim is proved.

Step 8: We claim that 7 has a fixed point. Let us now focus on the case when m € K. Using
me as a test function in (3.2.14) yields

D f (6 +006) m® + 1o, (0m)* 6 + (a0 + b) m (om) | = J Nommedz.  (3.2.17)
aeA/Ta r

Since H!(0,4,) is continuously embedded in L* (0, /,), there exists a positive constant C' (in-
dependent of ™ € K) such that

fp mmeds < L s |l o gy & = [l o0y < C lrmlyy

Hence, from (3.2.17), for Ao large enough, there exists a positive constant C; such that C Hm”%/[/ <
XoC |m|y,. Thus

AoC
Cr

Therefore, 7 (K) is bounded in W. Since the bounded subsets of W are relatively compact in
L2 ('), T (K) is compact in L? (T'). Moreover, we can see that K is closed and convex in L? (T").
By Schauder fixed point theorem, see [61, Corollary 11.2], 7 has a fixed point m € K which is
also a solution of (3.2.12) and |m|y, < AoC/Ch.

Finally, from the PDE in (3.2.12), for all a € A, we have (M), + baa) = 0 on (0,£,). This
implies that there exists a constant C, such that

Iy < (3.2.18)

my, + bafa = Cq, for all z € (0,£,). (3.2.19)

It follows that
g, € O([0,4,]), for all a € A. (3.2.20)
Hence i, € C1([0,£,]) for all a € A. Thus, m € W. O

Remark 3.2.14. Let m € W be a solution of (3.2.12). If b,0b € PC (I"), standard arguments
yield that m, € C2(0,4,) for all & € A. Moreover, by Theorem 3.2.13, there exists a constant C
which depends only on [[b], , {[|0ball,},e 4 and pa such that [ma|cz (g, < C for all ae A

Proof of the positivity in Theorem 3.2.13. From (3.2.13), m is non-negative on I". Assume by
contradiction that there exists zg € I’y for some a € A such that m|r, (z9) = 0. Therefore, the
minimum of m over I' is achieved at z¢ € T'y. If 29 € T',\V, then om(xg) = 0. In (3.2.19), we
thus have Cy, = 0, and hence m,, satisfies

My, + baa =0, on [0,44],

with g (75! (z0)) = 0. It follows that 7q = 0 and Mm|p, () = M|r, (v;) = 0 if To = [14,15].
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Therefore, it is enough to consider zg € V.
Now, from Remark 3.1.1, we may assume without loss of generality that 2o = v; and 7g(v;) = 0
for all 5 € A;. We have the following two cases.

Case 1: if xy = v; is a transition vertex, then, since m belongs to W, we get

Py () = TR, (1) = 0, for all B e Ay (3.2.21)

(10%
This yields that v; is also a minimum point of m|p, for all 8 € A;. Thus dgm (v;) < 0 for all
B € A;. From the transmission condition in (3.2.12) which has a classical meaning thanks to
(3.2.20), dgm (v;) = 0, since all the coefficients pg are positive. From (3.2.19), for all 8 € A;, we

have
Cp = ﬁz’ﬁ(()) + bg(0)mp(0) = 0.

Therefore, M (y) +bs(y)ms(y) = 0, for all y € [0, £g] with mg(0) = 0. This implies that g = 0
for all 8 € A;. We can propagate the arguments from the vertices connected to v;. Since I' is
connected, we obtain that m =0 on T

Case 2: if zy = v; is a boundary vertex, then the Robin condition in (3.2.12) implies that
dam (1) = 0 since p, is positive. From (3.2.19), we have C, = 0. Therefore, m, (y) +
ba(y)Ma(y) = 0, for all y € [0,4,] with Mmq(0) = 0. This implies that m (v;) = 0 where v;
is the other endpoint of I'y,. We are back to Case 1, so m=0on .

Finally, we have found that m = 0 on I, in contradiction with SF mdx = 1. [

Now we prove uniqueness for (3.2.12)-(3.2.13).

Proof of uniqueness in Theorem 3.2.13. The proof of uniqueness is similar to the argument in
[32, Proposition 13]. As in the proof of Lemma 3.2.6, we can prove that for Ay large enough,
there exists a constant C' such that for any f € V', there exists a unique w € W which satisfies

Ay, (w,v) = {f, )y forallveV. (3.2.22)
and |wly, < C|fy. This allows us to define the continuous linear operator

Sho L’ ) —w,

fo—)ﬂ),

where w is a solution of (3.2.22). Then we define Ry, = J oS, where J is the injection from
W in L? ('), which is compact. Obviously, Ry, is a compact operator from L?(T") into L* (T").
Moreover, m € W is a solution of (3.2.12) if and only if m € ker (Id — A\gR),). By Fredholm
alternative, see [29], dimker (Id — AgR),) = dimker (Id — MoR3,).
In order to characterize R} , we now consider the following boundary value problem for
ge L2(I') c W
AU — f1a0%v + bdv = g, in T,\V,a € A,

U|Fa(yi) = U|F5(Vi) a,feA;, iel, (3.2.23)
2 ViattaOnV (VZ) =0, €l
QE.AZ‘

A weak solution of (3.2.23) is a function v € V' such that

Do (0, w) 1= Z f (Aovw + pia0vow + bwov)dxr = L gwdz, for all we W.
aeA Yo
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Using similar arguments as in the proof of existence in Theorem 3.2.13, we see that for Ay large
enough and all g € L? ('), there exists a unique solution v € V of (3.2.23). Moreover, there
exists a constant C' such that [vf,, < C'g|2r) for all g € L?(T). This allows us to define a
continuous operator

Tho : L (D) — V,

gr—> .
Then we deﬁne ]~%>\O = Z o T), where Z is the injection from V in L?(T), which is compact.
Therefore, R), is a compact operator from L? (') into L?(T'). For any g € L?(T'), set v = Ty, g

which is the unique solution of (3.2.23). Noticing that 7),(v, w) = Ay, (w,v) forallv e V,w e W,
we obtain that

(ng/\of)L2(F) = (gvj © Skof)LQ(F) = ‘%\0 (U’ SAof) = MAO (Skofﬂ}) = (fa U)L2(F) = (f7 RAOQ)LQ(F)~

Thus R}, = RA0~ But ker (Id — )\OR)\O) is the set of solutions of (3.2.11), which, from Lemma 3.2.9,
consists of constant functions on I'. This implies that dim ker (I d— )\OR’;\O) = 1 and then that

dimker (Id — M\Ry,) = dimker (Id — AoR},) = 1.

Finally, since the solutions m of (3.2.12) are in ker (Id — A\gR),) and satisfy in addition the
normalization condition SF mdx = 1, we obtain the desired uniqueness property in Theo-
rem 3.2.13. [

3.3 Hamilton-Jacobi equation and the ergodic problem

3.3.1 The Hamilton-Jacobi equation

This section is devoted to the following boundary value problem including a Hamilton-Jacobi
equation:

— 0% + H (z,00) + v =0, inTy\V,ae A,

vlr, (vi) = U|Fﬁ(Vi), a,fe A, iel, (3.3.1)
Z Yiatala (Vz) =0, 1€ 1,
aeA;

where A is a positive constant and the Hamiltonian H : I' x R — R is defined in Section 3.1,
except that, in (3.3.1) and the whole Section 3.3.1 below, the Hamiltonian contains the coupling
term, i.e, H (x,0v) in (3.3.1) plays the role of H (x,dv) — F (m (x)) in (3.1.24).

Definition 3.3.1. e A classical solution of (3.3.1) is a function v € C? (T') which satisfies
(3.3.1) pointwise.

e A weak solution of (3.3.1) is a function v € V' such that

Z f (taOvow + H (x,0v) w + Avw) dx =0 for all we W.
ae A @

Proposition 3.3.2. Assume that
Ho e C([0,60] xR), (3.3.2)
\H (z,p)| < Cs (1 + |p|2> forallzeT,peR, (3.3.3)
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3.3. Hamilton-Jacobi equation and the ergodic problem

where Cy is a positive constant. There exists a classical solution v of (3.3.1). Moreover, if H,
is locally Lipschitz with respect to both variables for all o € A, then the solution v belongs to

C?H(I).

Remark 3.3.3. Assume (3.3.2) and that v € H*(T') < V is a weak solution of (3.3.1). From
the compact embedding of H? ([0,£,]) into C19([0, £,]) for all o € (0,1/2), we get v e CLo(T).
Therefore, from the PDE in (3.3.1)

10 @?Va(-) = Ho(, 00a(+)) + AMva(-) € C([0, £a]).

It follows that v is a classical solution of (3.3.1).

Remark 3.3.4. Assume now that H is locally Lipschitz continuous and that v € H?(I') ¢ V is
a weak solution of (3.3.1). From Remark 3.3.3, v € C%9(T") for o € (0,1/2) and the function
— Mg — Hy, (-, 0v,) belongs to C%7([0,4,]). Then, from the first line of (3.3.1), v € C%7(T).
This implies that dv, € Lip[0, £,] and using the PDE again, we see that v € C%1(T).

Let us start with the case when H is a bounded Hamiltonian.

Lemma 3.3.5. Assume (3.3.2) and for some Cg > 0,
|H (z,p)| < Cg, forall (x,p)el xR. (3.3.4)

There exists a classical solution v of (3.3.1). Moreover, if Hy is locally Lipschitz in [0, £,] x R
for all a € A then the solution v belongs to C%' ().

Proof of Lemma 3.3.5. For any u € V, from Lemma 3.2.6, the following boundary value problem:

—pa0v + X = —H (z,0u), ifrxel,\V,aeA,

vlr, (Vi) = U|F@(Vi)a a,fe A, iel, (3.3.5)
Z /Yioc,uloeaoev (Vz) =0, 1el,
acA;

has a unique weak solution v € V. This allows us to define the map T

T:V—YV,

U — .
Moreover, from Lemma 3.2.6, there exists a constant C such that
[l < CH (2, 0u)| 2y < CCr T2, (3.3.6)
where |I'| = X,ealy. Therefore, from the PDE in (3.3.5),
1 [00] oy < Ml gaey + 1H (@,00) |2y < Mol + CrrIDIY2 < (AC + 1) Cr|D|Y2, (3.3.7)

where £ = minge s flo. From (3.3.6) and (3.3.7), 7 (V) is a bounded subset of H? (') defined
in Definition 3.1.3. From the compact embedding of H? (T") into V, we deduce that 7 (V) is a
compact subset of V.

Next, we claim that 7 is continuous from V to V. Assuming that

Uy, — U, inV,
vp =T (uy), foralln, (3.3.8)
v="T(u),
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we need to prove that v, — v in V. Since {v,} is uniformly bounded in H?(T'), then, up to
the extraction of a subsequence, v, — © in C*? (I') for some o € (0,1/2). From (3.3.8), we
have that du, — ou in L?(T,) for all a € A. This yields that, up to another extraction of a
subsequence, du, — du almost everywhere in I',. Thus H (z,0u,) — H (z,0u) in L?(T'y) by
Lebesgue dominated convergence theorem. Hence, ¥ is a weak solution of (3.3.5). Since the
latter is unique, ¥ = v and we can conclude that the whole sequence v, converges to v. The
claim is proved.

From Schauder fixed point theorem, see [61, Corollary 11.2], 7 admits a fixed point which is
a weak solution of (3.3.1). Moreover, recalling that v € H2(T), we obtain that v is a classical
solution of (3.3.1) from Remark 3.3.3.

Assume now that H is locally Lipschitz. Since v, € H?(0,4,) for all a € A, we may use
Remark 3.3.4 and obtain that v € C%! (). O

Lemma 3.3.6. If v,u € C?(T') satisfy

—1160%0 + H (z,00) + M = —po0%u + H (z,0u) + M, ifxel\V,ae A,

. 3.3.9
D) Yiaktala (i) < ) Viattalau (1), ifrieV, (3:3.9)
OzE.AZ‘ aG.AZ'
then v = u.

Proof of Lemma 3.3.6. The proof is reminiscent of an argument in [33]. Suppose by contradic-
tion that 6 := maxp {u —v} > 0. Let x9 € I, be a maximum point of u — v. It suffices to
consider the case when z € V, since if xg € T'\V, then

u(xg) > v (zo), Ou(xg)=0v(zg), %u(zo) < dv(xg),

and we obtain a contradiction with the first line of (3.3.9).
Now consider the case when zg = v; € V; from Remark 3.1.1, we can assume without restriction
that m, (0) = v;. Since u — v achieves its maximum over I" at v;, we obtain that

Ogu (1) = 0gv (1), for all B e A;.
From Kirchhoff conditions in (3.3.9), this implies that
Opu (v;) = 0gv (1), for all B e A;.
It follows that dv,(0) = Ous(0). Using the first line of (3.3.9), we get that

~tta [020a(0) = 0% (0)] = Ha (0, 0ua(0)) — Ha (0,904 (0)) + A (11a(0) — va(0)) > 0.

=0

Therefore, u, — v, is locally strictly convex in [0, £, ] near 0 and its first order derivative vanishes
at 0. This contradicts the fact that v; is the maximum point of u — v. O

We now turn to Proposition 3.3.2.

Proof of Proposition 3.3.2. We adapt the classical proof of Boccardo, Murat and Puel in [26].
First of all, we truncate the Hamiltonian as follows:

H, (2.9) H (z,p), if [p| <n,

z,p) =

b H x,ﬂn), if |p| > n.
p
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3.3. Hamilton-Jacobi equation and the ergodic problem

By Lemma 3.3.5, for all n € N, since H, (x,p) is continuous and bounded by Cs (1 + nQ), there
exists a classical solution v, € C? (T') for the following boundary value problem

—1100%0 + Hy, (7,00) + v =0, zel,\V,ae A,

vlr, (vi) = vlr, (i), forall a,f e A;, i€ 1, (3.3.10)
Z YiaktaOa (VZ) =0, i€l
OzE.AZ'

We wish to pass to the limit as n tend to 400; we first need to estimate v, uniformly in n,
successively in L® (T'), H' (I') and H? (T).

FEstimate in L™ (T'). Since |H, (z,p)| < ¢ <1 + ]p|2> for all z,p, then ¢ = —¢/X and ¥ = ¢/A
are respectively a sub and supersolution of (3.3.10). Therefore, from Lemma 3.3.6, we obtain
[Av,| < e

Estimate in V. For a positive constant K to be chosen later, we introduce w,, := e v v e W,
where 9 is given in Definition 3.1.9. Using w,, as a test function in (3.3.10) leads to

f (ta Oy, 0wy, + Avpwy,) do = J H,, (z,0v,) wydz.

aeAV @

Since |Hy, (z,p)| < ¢ (1 + p?), we have
f uad) ) (00n)? + (a2 K1) v2 (00n)* + (HadV) vy Ov, + vag] da
acA
<J v |Hp, (x, 0vp,)| |vntp| dx
r

<J ceKvnqp |vp| dz + J cpel<on |on| ¥ (00,)? dz
r r

02 c? c?
< L efvn <)\¢U721 + ¢4)\) dx + o; fa [ (ﬁvn) + ﬂ¢ (avn)2 UZ} dz,

«

where we have used Young inequalities. Since A > 0 and v > 0, we deduce that
2 2

aeAf ) [ ) (8%)2 + 2 (MaK - 4(';> v2 (avn) + (a0t)) Unavn:| dr < o Kviwdsc.

(o3
(3.3.11)
Next, choosing K > (1 + ¢?/4p)/p yields that

f Y (Ovp)? + 2002 (0v)* + (e ) vn(?vn] dr < C
ae AV

for a positive constant C' independent of n, because v,, is bounded by ¢/\. Since 1) is bounded
from below by a positive number and 0v is piecewise constant on I'; we infer that

~

f ”v (Ovp)? < C,
ae AV o

where C is a positive constant independent on n. Using this information and (3.3.11) again, we
obtain that {. (0v,)? is bounded uniformly in n. There exists a constant C such that |vy,[,, < C
for all n.
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Estimate in H? (T'). From the PDE in (3.3.10) and (3.3.3), we have
wle?v,| <c+ ¢|ova* + Mup|, forall a € A.

Thus 62v,, is uniformly bounded in L' (I'). This and the previous estimate on |duv,|| r2(r) yield
that dv, is uniformly bounded in L® ('), from the continuous embedding of W11 (0, £,) into
C ([0,44]). Therefore, from (3.3.10), we get that 0%v,, is uniformly bounded in L® (I'). This
implies in particular that v, is uniformly bounded in W2 (T).

Hence, for any o € (0,1), up to the extraction of a subsequence, there exists v € V such
that v, — v in C19 (T'). This yields that H, (x,0v,) — H (x,0v) for all x € T'. By Lebesgue’s
Dominated Convergence Theorem, we obtain that v is a weak solution of (3.3.1), and since
ve CH9(T), by Remark 3.3.3, v is a classical solution of (3.3.1).

Assume now that H is locally Lipschitz. We may use Remark 3.3.4 and obtain that v €
C?'(T"). The proof is complete. O

3.3.2 The ergodic problem
For f € PC (T), we wish to prove the existence of (v, p) € C?(T') x R such that

—1a@*v + H (z,00) + p= f(z), inT\V,a€ A,

vlp, (vi) = vlr, (), a,fed;, iel, (3.3.12)
Z VialalaV (Vi) = 0, 1el,
OcE.Ai

with the normalization condition

J vdz = 0. (3.3.13)
r

Theorem 3.3.7. Assume (3.1.25)-(3.1.27). There exists a unique couple (v,p) € C?(T) x R
satisfying (3.3.12)-(3.3.13), with |p| < maxger |H (z,0) — f (z)|. There exists a constant C which
only depends upon || f| = ry s pa and the constants in (3.1.27) such that

[vlcery < C. (3.3.14)

Moreover, for some o € (0,1), if fo € C%([0,£4]) for all a € A, then (v, p) € C*7 (T') x R; there
exists a constant C which only depends upon | fallcoo((o,e.7) » o and the constants in (3.1.27)
such that

lvl 2oy < C. (3.3.15)

Proof of existence in Theorem 3.5.7. By Proposition 3.3.2, for any A > 0, the following bound-
ary value problem

—11a0%0 + H (z,00) + v = f, inT,\V,a € A,

'U|Fa (VZ) = ’U|F6(V’L)) a,IB € Ai, Z € I, (3316)
Z inoc,U/ocao/U (Vz) = O, 1€ I,
OzE.AZ‘

has a unique solution vy € C?(T). Set C' := maxr |f(-) — H (-,0)]. The constant functions
¢ :=—C/X and g = C/\ are respectively sub and supersolution of (3.3.16). By Lemma 3.3.6,

—C <Ay (z)<C, forall zeT. (3.3.17)

80



3.3. Hamilton-Jacobi equation and the ergodic problem

Next, set u) := vy — minp vy. We see that u) is the unique classical solution of

—p1a0%uy + H (z,0uy) + Auy + Aminpvy = f, in T \V,a€ A,

U|Fa(yi) :u|F5(Vi)7 Oé,,BEAi, 7:6_[7 (3318)
2 YiattaOatx (Vi) = 0, iel.
aG.A»;

Before passing to the limit as A tends 0, we need to estimate uy in C? (T') uniformly with respect
to A. We do this in two steps:

Step 1: Estimate of |0ux||pary. Using ¢ as a test-function in (3.3.18), see Definition 3.1.9,
and recalling that Auy + Aminr vy = A\v), we see that

J HaOupOpdx +J (H (z,0uy) + Avy) Ydz = J fidx.
r

acA
From (3.1.27) and (3.3.17),

f Lo Ou\OYdx + Z f Co |0uy|Tpdr < f (f+C + Cy)Yde.
acA r

aceA

On the other hand, since ¢ > 1, ¢ > ¢ > 0 and 0v¢ is bounded, there exists a large enough
positive constant C” such that

J Lo OupOYdx + — 2 J Co [oux|pdx + C" >0, for all A > 0.
acAvla aeA

Subtracting the two inequalities, we get

C;wa Iawlquéf (f +C + Cy) Ydx + C'.
T r

Hence, for all A > 0, we have R
louxlpary < C, (3.3.19)

where C' := [(2 . (|f] + C + C1) wbda + 2C") /(Co) | .
Step 2: Estimate of |ux|c2ry. Since uy = vy — minr vy, there exists a € A and z € I'y, such
that uy (x)) = 0. For all A > 0 and z € I, we have

ur @] = Jua (@) — ux ()] < | [00a] o < Jounl oy [T
r
From (3.3.19) and the latter inequality, we deduce
[ulra | er,y < C P74,
Let v; be a transition vertex which belongs to oI'y. For all g€ A;, y € I'g,

lux ()] < Jun () — ux ()] + Jux ()] < 20 [0[2/ 007D,

Since the network is connected and the number of edges is finite, repeating the argument as
many times as necessary, we obtain that there exists M € N such that

x| poe ry < MO T/
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This bound is uniform with respect to A € (0,1]. Next, from (3.3.18) and (3.1.29), we get
(] 0%ur] < |H (2, 0un)| + [Moa| + || < Cq (1 + [0url?) + C + [ fll oo ry -

Hence, from (3.3.19), 0%uy is bounded in L! (T") uniformly with respect to A € (0,1]. From the
continuous embedding of W1 (0,¢,) in C([0,4,]), we infer that duy|r, is bounded in C(T,)
uniformly with respect to A € (0,1]. From the equation (3.3.18) and (3.3.17), this implies that
uy is bounded in C? (T') uniformly with respect to A € (0, 1].

After the extraction of a subsequence, we may assume that when A — 0%, the sequence u),
converges to some function v € C! (I') and that A min v, converges to some constant p. Notice
that v still satisfies the Kirchhoff conditions since duy|p, (v;) — v, (v;) as A — 07. Passing
to the limit in (3.3.18), we get that the couple (v, p) satisfies (3.3.12) in the weak sense, then in
the classical sense by using an argument similar to Remark 3.3.3. Adding a constant to v, we
also get (3.3.13).

Furthermore, if for some o € (0,1), f|p, € C%7(T',) for all a € A, a bootstrap argument
using the Lipschitz continuity of H on the bounded subsets of I' x R shows that u) is bounded
in C%7 (T") uniformly with respect to A € (0,1]. After a further extraction of a subsequence if
necessary, we obtain (3.3.15).

O

Proof of uniqueness in Theorem 3.3.7. Assume that there exist two solutions (v, p) and (7, p)
of (3.3.12)-(3.3.13). First of all, we claim that p = p. By symmetry, it suffices to prove that
p = p. Let xg be a maximum point of e := ¥ — v. Using similar arguments as in the proof of
Lemma 3.3.6, with Av and Au respectively replaced by p and p, we get p = p and the claim is
proved.

We now prove the uniqueness of v. Since H, belongs to C! (I'y, x R) for all a € A, then e is
a solution of

1
fa0’eq — U OpHe (y,00v4 + (1 —0) 00,) de] deq =0, in (0,4,),
0

with the same transition and boundary condition as in (3.3.12). By Lemma 3.2.9, e is a constant
function on I'. Moreover, from (3.3.13) , we know that {.edz = 0. This yields that e = 0 on T".
Hence, (3.3.12)-(3.3.13) has a unique solution. O

Remark 3.3.8. Since there exists a unique solution of (3.3.12)-(3.3.13), we conclude that the
whole sequence (uy, Avy) in the proof of Theorem 3.3.7 converges to (v, p) as A — 0.

3.4 Proof of the main result

We first prove Theorem 3.1.13 when F' is bounded.

Theorem 3.4.1. Assume (3.1.25)-(3.1.28), (3.1.30) and that F is bounded. There ezists a
solution (v,m,p) € C*(T') x W x R to the mean field games system (3.1.24). If F is locally
Lipschitz continuous, then v e C>Y(I'). If furthermore F is strictly increasing, then the solution
18 unique.

Proof of existence in Theorem 3.4.1. We adapt the proof of Camilli & Marchi in [32, Theorem
1]. For o € (0,1/2) let us introduce the space

M, = {m :mg € C%7([0,4,]) and mle, (1) = mlr, () forallie I and o, € .AZ}

Yiow YiB
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which, endowed with the norm

‘ma (y) — Ma (Z)|
Im| v = [lm]| +max  sup
‘ ‘MJ ‘ ’LOO(F) e A €[00 ]y |y - Z‘O‘

is a Banach space. Now consider the set
lCz{me/\/loszOand J mda:=1}
r

and observe that K is a closed and convex subset of M,. We define a map 7 : K — K as
follows: given m € K, set f = F'(m). By Theorem 3.3.7, (3.3.12)-(3.3.13) has a unique solution
(v,p) € C*(I') x R. Next, for v given, we solve (3.2.12)-(3.2.13) with b(-) = 0,H (-,0v (-)) €
PC(T'). By Theorem 3.2.13, there exists a unique solution m € K n W of (3.2.12)-(3.2.13). We
set T (m) = m; we claim that T is continuous and has a precompact image. We proceed in
several steps:

T is continuous. Let my,m € K be such that ||m, —m|,, — 0asn — +oo; set m, =
T (my),m = T (m). We need to prove that m,, — m in M,. Let (vy,pn),(v,p) be the
solutions of (3.3.12)-(3.3.13) corresponding respectively to f = F (m,,) and f = F (m). Using
estimate (3.3.14), we see that up to the extraction of a subsequence, we may assume that
(Vn, pn) — (©,p) in C1(T) x R. Since F (my)|r, — F(m)|r, in C(Ty), Hy (y, (0vn)a) —
H, (y,00,) in C(]0,44]), and since it is possible to pass to the limit in the transmission and
boundary conditions thanks to the C''-convergence, we obtain that (7,p) is a weak (and strong
by Remark 3.3.3) solution of (3.3.12)-(3.3.13). By uniqueness, (v,p) = (v,p) and the whole
sequence (vy, pp) converges.

Next, m,, = T (my,),m = T (m) are respectively the solutions of (3.2.12)-(3.2.13) correspond-
ing to b = 0pH (x,0v,) and b = 0,H (z,0v). From the estimate (3.2.16), since 0,H (z, Ovy,) is
uniformly bounded in L™ (I"), we see that 7, is uniformly bounded in W. Therefore, up to the
extraction of subsequence, we have

M, —m inW,

my, — m in Mg,

because W is compactly embedded in M, for o € (0,1/2). It is easy to pass to the limit and
find that m is a solution of (3.2.12)-(3.2.13) with b = 0,H (x,0v). From Theorem 3.2.13, we
obtain that @ = m, and hence the whole sequence T, converges to 7.

The image of T is precompact. Since F € C° (R*;R) is a uniformly bounded function, we
see that F'(m) is bounded in L* (I') uniformly with respect to m € K. From Theorem 3.3.7,
there exists a constant C such that for all m € K, the unique solution v of (3.3.12)-(3.3.13) with
[ = F(m) satisfies [v]cz ) < C. From Theorem 3.2.13, we obtain that m = 7T (m) is bounded
in W by a constant independent of m. Since W is compactly embedded in M, for o € (0,1/2)
we deduce that 7 has a precompact image.

End of the proof. We can apply Schauder fixed point theorem (see [61, Corollary 11.2]) to
conclude that the map 7 admits a fixed point m. By Theorem 3.2.13, we get m € WW. Hence,
there exists a solution (v, m, p) € C*(T') x W x R to the mean field games system (3.1.24). If F
is locally Lipschitz continuous, then v € C*!(T") from the final part of Theorem 3.3.7. O

Proof of uniqueness in Theorem 3.4.1. We assume that F' is strictly increasing and that there
exist two solutions (v, m, p1) and (ve, ma, p2) of (3.1.24). We set U = v; — v9, T = M — M2
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and p = p; — p2 and write the equations for 7, and p

(—uaé’Q@Jr H (xz,0v1) — H (x,0v2) + p— (F (m1) — F (mg)) =0, in T, \V,
— 110, 0*m — 0 (m10,H (x,0v1)) + 0 (madpH (x, 0ve)) = 0, in T, \V,
_ _ mir, (v;) M, (1) .
Olp, (Vi) =0 Vi), & = , a,fe A iel,
Iro (i) =, (1) o~ -
Z Viauaaa@ (Vz) = 07 1€ I7
§ aceA;
D7 nia [malr, () & H (vi, dvalr,, () — malr, (vi) OpH (v, dvalr,, (v4))]
aE.Ai
+ 3 padaT (i) = 0, iel,
aE.A»;
Jvd:E:O, del‘zo.
r r

(3.4.1)
Multiplying the equation for ¥ by m and integrating over I',, we get

J pa0vom + [H (z,0v1) — H (z,0v2) +p — (F (my1) — F (m2))]| mdx — [,uamaﬁﬁa]g“ =0.

) (3.4.2)
Multiplying the equation for 7 by ¥ and integrating over [, we get

J Lo 0UOT + [myOpH (2, 0v1) — madpH (z, 0v2)] dvudx (3.4.3)

[e3

IR
- [U\Fa (Hadm|r, + milr, dpH (z, 0vilr,) — ma|r, dpH (waavzlra))]o = 0.

Subtracting (3.4.2) to (3.4.3), summing over a € A, assembling the terms corresponding to a
same vertex v; and taking into account the transmission and the normalization condition for ©
and 7, we obtain

0=y J (1 — mo) [F (m1) — F (ms)] da
aeA Yo
+ 2 J my [H (x,0ve) — H (x,001) + 0pH (z, 0vq) 00) dx
acAvTa

>

meo [H (z,0v1) — H (z, dve) — 0pH (z, 0vg) 0] dx.
acAvTa

Since F' is strictly monotone then the first sum is non-negative. Moreover, by the convexity of
H and the positivity of mq, mo, the last two sums are non-negative. Therefore, we have that
m1 = mg. From Theorem 3.3.7, we finally obtain vy = vy and p; = pa. L]

Proof of Theorem 8.1.13 for a general coupling F'. We only need to modify the proof of exis-
tence.
We now truncate the coupling function as follows:
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Then F, is continuous, bounded below by —AM as in (3.1.31) and bounded above by some
constant C,. By Theorem 3.4.1, for all n € N, there exists a unique solution (vy, My, pn) €
C?(T') x W x R of the mean field game system (3.1.24) where F is replaced by F,. We wish to
pass to the limit as n — +00. We proceed in several steps:

Step 1: py is bounded from below. Multiplying the HJB equation in (3.1.24) by m, and
the Fokker-Planck equation in (3.1.24) by v,, using integration by parts and the transmission
conditions, we obtain that

Z J o, OV Omydix + f H (x, 0vy) mpdzx + py, = f F, (my) mypdz, (3.4.4)
aeA YV« r r
and
Z J b OUp OMy dx +f OpH (z, dvy) my,0vpde = 0. (3.4.5)
aceAvVta r

Subtracting the two equations, we obtain
Pn = f F, (my) mpdr + J [0pH (z, 0vy,) Ovy, — H (z, 0vy) | mydex. (3.4.6)
r r

In what follows, the constant C' may vary from line to line but remains independent of n. From
(3.1.26), we see that 0,H (x, dvy,) Ov, — H (z,0v,) = —H(2,0) = —C. Therefore

Pn = J E, (my) mpdx — C’j mpdr = f E,, (my) mpdx — C. (3.4.7)
T T T

Hence, since F,, + M = 0 and SF mydr = 1, we get that p, is bounded from below by —M — C
independently of n.

Step 2: pn and SF F,, (my)dx are uniformly bounded. By Theorem 3.2.13, there exists a
positive solution w € W of (3.2.12)-(3.2.13) with b = 0. It yields

Z J paOwoudr =0, forallueV,
aeA YV«

SF wdr = 1.

Multiplying the HJB equation of (3.1.24) by w, using integration by parts and the Kirchhoff
condition, we get

Z f e OV, Owdx + j H (x, 0v,) wdx + pnf wdxr = f E, (my) wdz.
aceAVa r T T

)

=0 =1

This implies, using (3.1.27), (3.2.16) and F,, + M > 0,
Pn = J FE, (my) wdzx —f H (z,0v,) wdx
r r
< |w||Lw(F)J (Fn(my) + M) de — M — J (Co |0vy|* — Cy) wdz
r r

< CJ F, (my)dx + C — J Co |0vy|T wdz. (3.4.8)
r r
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Thus, by (3.4.7), we have

e

F, (my) mpdr — C < pp, < CJ F, (my)dx + C. (3.4.9)
r

r

Let K > 0 be a constant to be chosen later. We have

xﬂl%(nm)dn<tLM>KU%(mm)+Aﬁdx+l[ Py (m,) dz

mp<K

1
< = [F, (my) + M]mydx + sup Fy(r) J dx
K Jm, >k O<r<K mn <K
1
< — [F, (my) + M| mydz + sup F(r) J dx (3.4.10)
K ), >k 0<r<K ma<K
<1JF() o+ M, (3.4.11)
< = mp) mpds + — : 4.
K - n n n K K
where Ck := |supg<,<x F(r)| is independent of n. Choosing K = 2C where C' is the constant

in (3.4.9), we get by combining (3.4.11) with (3.4.9) that

J F,(my)m, < C.
r

Using (3.4.11) again, we obtain
f F,(my,)dz < C.
r

Hence, from (3.4.9), we conclude that |py| + | § Fr(my)dz| < C.

Step 3: Prove that F, (my) is uniformly integrable and v, and m, are uniformly bounded
respectively in C1 (') and W. Let E be a measurable with |E| = n. By (3.4.10) with T is
replaced by E, we have

1
J Fo(my)dr < — [F, (my) + M]mpdx + sup F(T)J dx
E K Jenim,>K) o<r<Kk En{mn<K)}
C+M
< )
K + Ckn

where the last inequality comes from . F,(my,)mude < C and Ck = |supgc,<x F(r)|. There-
fore, for all ¢ > 0, we may choose K such that (C+M)/K < €/2 and then n such that Cxn < /2
and get

J F, (my)dx <e, for all E which satisfies |E| <7,
E

which proves the uniform integrability of {F,(my)},,.

Next, since p, and (. F,, (my) dz are uniformly bounded, we infer from (3.4.8) that dv,, is
uniformly bounded in L?(T"). Since by the condition {,wv,dz = 0, there exists T, such that
Un(Ty) = 0, we infer from the latter bound that v, is uniformly bounded in L*(I"). Using the
HJB equation in (3.1.24) and Remark 3.1.7, we get

Ma‘az‘)n’ < [H(w, 0vp)| + [F(ma)| + |pn| < Cq(‘avn‘q + 1) + [Fn(man)| + |pnl.

We obtain that 6?v,, is uniformly bounded in L' ('), which implies that v,, is uniformly bounded
in C1(T"). Therefore the sequence of functions Cy(|0v,|? + 1) + |Fy,(my)| + |pn| is uniformly in-
tegrable, and so is 0?v,. This implies that dv, is equicontinuous. Hence, {v,} is relatively
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compact in C! (T') by Arzela-Ascoli’s theorem. Finally, from the Fokker-Planck equation and
Theorem 3.2.13, since dpH (x, 0vy,) is uniformly bounded in L™ (I'), we obtain that m,, is uni-
formly bounded in W.

Step 4: Passage to the limit

From Step 1 and 2, since {p,} is uniformly bounded, there exists p € R such that p, — p up
to the extraction of subsequence. From Step 3, there exists m € W such that m,, — m in W
and m, — m almost everywhere, up to the extraction of subsequence. Also from Step 3, since
F,, (my,) is uniformly integrable, from Vitali theorem, we have

lim | F, (m,)wde = j F (m)wdz, for all we W.

From Step 3, up to the extraction of subsequence, there exists v € C! (') such that v, — v in
C! (T). Hence, (v, p,m) satisfies the weak form of the MFG system:

Z f o OvOWwdx + f (H (z,0v) + p) wdx = f F (m)wdz, forall we W,
ae AV o r r

and

Z f o OMmOvdx ~|—f OpH (z,0v) movde =0, forall veV.

aeA Yo r
Finally, we prove the regularity for the solution of (3.1.24). Since m € W, we get F\(m) € C%°(T)
for some constant o € (0,1/2). By Theorem 3.3.7, v € C? (v e C*?(T') if F is locally Lipschitz
continuous). Then, by Theorem 3.2.13, we get m € W. We also obtain that v satisfy the
Kirchhoff condition and transition condition in (3.1.24). The proof is done. t
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4 A Class of Mean Field Games on

Networks.
Part two: Finite Horizon Games

Abstract: ~ We consider stochastic mean field games for which the state space is a network.
In the non-stationary case, they are described by a system coupling a Hamilton-Jacobi-Bellman
equation and a Fokker-Planck equation, whose unknowns are an measure m and a value function
v. The function v is continuous and satisfies general Kirchhoff conditions at the vertices. The
measure m satisfies dual transmission conditions: in particular, m is discontinuous across the
vertices in general, and the values of m on each side of the vertices satisfy special compatibility
conditions. Existence and uniqueness are proven, under suitable assumptions.

4.1 Introduction and main results

The present work is devoted to finite horizon stochastic mean field games taking place on net-
works. The most important difficulty will be to deal with the transition conditions at the
vertices. The latter are obtained from the theory of stochastic control in [56, 55], see Section
4.1.3 below. In [32], the first article on MFGs on networks, Camilli & Marchi consider a partic-
ular type of Kirchhoff condition at the vertices for the value function: this condition comes from
an assumption which can be informally stated as follows: consider a vertex v of the network and
assume that it is the intersection of p edges I'1,...,I'p, ; if, at time 7, the controlled stochastic
process X; associated to a given agent hits v, then the probability that X .+ belongs to I'; is
proportional to the diffusion coefficient in I';. Under this assumption, it can be seen that the
density of the distribution of states is continuous at the vertices of the network. In the present
work, the above mentioned assumption is not made any longer. Therefore, it will be seen be-
low that the value function satisfies more general Kirchhoff conditions, and accordingly, that
the density of the distribution of states is no longer continuous at the vertices; the continuity
condition is then replaced by suitable compatibility conditions on the jumps across the vertices.
A complete study of the system of differential equations arising in infinite horizon mean field
games on networks with at most quadratic Hamiltonians and very general coupling costs has
been supplied in a previous work, see [7].

In the present work, we focus on the more basic case, namely finite horizon MFG with globally
Lipschitz Hamiltonian with rather strong assumptions on the coupling cost. This will allow us
to concentrate on the difficulties induced by the Kirchhoff conditions. Therefore, this work
should be seen as a first and necessary step in order to deal with more difficult situations, for
example with quadratic or subquadratic Hamiltonians. We believe that treating such cases will
possible by combining the results contained in the present work with methods that can be found
in [78, 82].

Othis chapter is a work in preparation: Yves Achdou, Manh-Khang Dao, Olivier Ley and Nicoletta Tchou, A
Class of Finite Horizon Mean Field Games on Networks.
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After obtaining the transmission conditions at the vertices for both the value function and
the density, we shall prove existence and uniqueness of weak solutions of the uncoupled HJB
and FP equations (in suitable space-time Sobolev spaces), and regularity results.

The present work is organized as follows: the remainder of Section 4.1 is devoted to setting
the problem and obtaining the system of partial differential equations and the transmission
conditions at the vertices. Section 4.2 contains useful results on a modified heat equation in the
network with general Kirchhoff conditions. Section 4.3 is devoted to the Fokker-Planck equation.
Weak solutions are defined by using a special pair of Sobolev spaces of functions defined on the
network referred to as V and W below. Section 4.4 is devoted to the HJB equation supplemented
with the Kirchhoff conditions: it addresses the main difficulty of the work, consisting of obtaining
regularity results for the weak solution (note that, to the best of our knowledge, such results for
networks and general Kirchhoff conditions do not exist in the literature). Finally, the proofs of
the main results of existence and uniqueness for the MFG system of partial differential equations
are completed in Section 4.5.

4.1.1 Networks and function spaces
The geometry

A bounded network I" (or a bounded connected graph) is a connected subset of R™ made of a
finite number of bounded non-intersecting straight segments, referred to as edges, which connect
nodes referred to as vertices. The finite collection of vertices and the finite set of closed edges
are respectively denoted by V := {v;,i € I} and & := {T'y, « € A}, where I and A are finite sets
of indices contained in N. We assume that for a, 8 € A, if a & 3, then I', n I'3 is either empty
or made of a single vertex. The length of I',, is denoted by £¢,. Given v; € V, the set of indices
of edges that are adjacent to the vertex v; is denoted by A; = {a e A:v; e}, A vertex y;
is named a boundary vertex if §(A;) = 1, otherwise it is named a transition vertez. The set
containing all the boundary vertices is named the boundary of the network and is denoted by
Ol hereafter.

The edges I', € £ are oriented in an arbitrary manner. In most of what follows, we shall make
the following arbitrary choice that an edge I'y, € £ connecting two vertices v; and v;, with i < j
is oriented from v; toward v;: this induces a natural parametrization 7y : [0, o] — T'o = [v4, v5]:

—y; + Yy for y € [0,4,]. (4.1.1)

For a function v : I' > R and « € A, we define v, : (0,4,) — R by
Vo () :=v|p, o mo(x), for all z € (0,4,).

Remark 4.1.1. In what precedes, the edges have been arbitrarily oriented from the vertex with
the smaller index toward the vertex with the larger one. Other choices are of course possible.
In particular, by possibly dividing a single edge into two, adding thereby new artificial vertices,
it is always possible to assume that for all vertices v; € V,

either m,(0) = v;, for all a € A; or mo({o) = v4, for all a € A;. (4.1.2)

This idea was used by Von Below in [99]: some edges of I" are cut into two by adding artificial
vertices so that the new oriented network I' has the property (4.1.2), see Figure 4.1 for an
example.
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T, 3 T, i

V1 14 V2 g 4 %)
T N
L's 2 I's
Iy Vs
I’5T
V3 4 2 U3 =) Uy
I_\4 F4

Figure 4.1: Left: the network I' in which the edges are oriented toward the vertex with larger
index (4 vertices and 4 edges). Right: a new network I obtained by adding an
artificial vertex (5 vertices and 5 edges): the oriented edges sharing a given vertex v
either have all their starting point equal v, or have all their terminal point equal v.

Function spaces related to the space variable

The set of continuous functions on I' is denoted by C(I') and we set

PC(T):=qv:T >R : forallae A, va € C(0,4a) '
v can be extended by continuity to [0, 44].

By the definition of piecewise continuous functions v € PC(I"), for all a € A, it is possible to
extend v|p, by continuity at the endpoints of I'y: if I'y = [14, 7], we set

Vo (73t (2)) if x € Ty\V,
U|Fa (l’) = { Vo (0) = yl_i)rélJr Ve (y)v if v = v, (4_1'3)
Vo (bo) i= lim vy (y), ifz=v;.
(ad

For m € N, the space of m-times continuously differentiable functions on I' is defined by
C"(T):={veC([):v,€C™([0,4,]) for all a € A},

and is endowed with the norm [v]|gm y := maxaeAmaxogkgmHﬁkvaHLoc(Wa). For o € (0,1), the
space C™° (T'), contains the functions v € C™ (T') such that 0™v, € C% ([0,4,]) for all a € A;
it is endowed with the norm

‘amva (y) — 0"Mvq (Z)‘

V| .o = ||v] +sup sup
[olgme @y = 0l omry oEA  3es ly —z[7
y,2€[0,4a/]

For a positive integer m and a function v € C™ (T"), we set for k < m,
Fv (z) = v, (m3! (2)) if 2 € TR\V. (4.1.4)

Notice that v € C* (') is continuous on T' but that the derivatives d'v, 0 < I < k are not
defined at the vertices. For a vertex v, we define d,v (v) as the outward directional derivative
of v|r, at v as follows:

hh%lJr . , if v =7, (0),

aav (V) = ) 'Ua Eoé) Ua (goé h) ) (415)
lim , ifv =74 (ly).
h—0+ h
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For all i € I and « € A;, setting

= 41 Vi =Talla), (4.1.6)
-1 if V; = 7Ta(0),

we have
0av(13) = Ny V|1, (1) = Nia Ova (1 (15)). (4.1.7)

Remark 4.1.2. Changing the orientation of the edge does not change the value of dyv(v) in
(4.1.5).

We say that v is Lebesgue-integrable on T', if v, is Lebesgue-integrable on (0,¢,). In this
case, for all x1,z9 € 'y,

o (2)
J v(x)de = f Vo (y) dy. (4.1.8)
[x1,22] o (z1)

When v is Lebesgue-integrable on T', for all « € A, we say that v is Lebesgue-integrable on T"

and we define
Lo
j Y J
r acA

The space LP (I') = {v:v|p, € LP(T'y) for all a« € A}, p € [1,00], is endowed with the norm
1

HU”LP(F) = (ZaeA HUO‘“?MO,%)) if 1 <p < oo, and maxaeq H’l)aHLm(O to) if p = +00. We shall
also need to deal with functions on I" whose restrictions to the edges are weakly-differentiable:
we shall use the same notations for the weak derivatives.

Definition 4.1.3. For any integer s > 1 and any real number p > 1, the Sobolev space W;"*(T')
is defined as follows

WyP(T) :={v:T - Rs.t. v € WP (0,4,) for all a € A},

and endowed with the norm

[olwgr(ry (Z > |l

k=1acA

=

p(0.le + ’U‘Lp(r))

For s € N\{0}, we also set Hj(T') = W*(') and H*(T') = C(T") n H§(T).

Finally, when dealing with probability distributions in mean ﬁeld games, we will often use the
set M of probability densities, i.e., m € L'(I'), m = 0 and (. m(z)dz = 1.

Some space-time function spaces

The space of continuous real valued functions on I' x [0, 7] is denoted by C(I" x [0,T1).
Let PC(T" x [0,T]) be the space of the functions v : I' x [0,7] — R such that

1. for all t € [0,T], v(-,t) belongs to PC(T")

2. for all ae A, vlp, «[o,r] is continuous on 'y, x [0,T7;
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For a function v € PCO(I" x [0,T]), a € A, we set va(z,t) = v, x[0,(Ta(T),t) for all (z,t) €
[0,44] x [0,T].

For two nonnegative integers m and n, let C""(I" x [0,T]) be the space of continuous real
valued functions v on I' x [0, T] such that for all a € A, v|r 0,7 € C™"(Ta x [0,T]). For
o€ (0,1), 7€ (0,1), we define in the same manner C"*7"+7(T" x [0,T1])

Useful results on continuous and compact embeddings of space-time function spaces are given
in Appendix 4.6.

4.1.2 A class of stochastic processes on I

After rescaling the edges, it may be assumed that ¢, = 1 for all « € A. Let uq, @ € A and
Pia,t € I, o0 € A; be positive constants such that ). . A; Pia = 1. Consider also a real valued
function a € PC(T x [0,T]), such that, for all a € A, t € [0,T], alr, (-,t) belongs to C1(T'y,).

As in Remark 4.1.1, we make the assumption (4.1.2) by possibly adding artificial nodes: if
v; is such an artificial node, then f(.4;) = 2, and we assume that p;, = 1/2 for a € A;. The
diffusion parameter y has the same value on the two sides of an artificial vertex. Similarly, the
function a does not have jumps across an artificial vertex.

Consider a Brownian motion (W;) defined on the real line. Following Freidlin & Sheu ([55]),
we know that there exists a unique Markov process on I' with continuous sample paths that can
be written (X, ay) where X; € Ty, (if Xy = v;, i@ € I, oy is arbitrarily chosen as the smallest
index in A;) such that, defining the process x; = m,,(X¢) with values in [0, 1],

dry = 4/ 2,U4atth + o, (:L‘t, t)dt + df@t + dhi7t, (419)

e ;. is continuous non-decreasing process (measurable with respect to the o-field generated
by (X¢, o)) which increases only when X; = v; and a; = 0,

e h; is continuous non-increasing process (measurable with respect to the o-field generated
by (X, ay)) which decreases only when X; = v; and x; = 1,

and for all function v € C%(T x [0, T]) such that

Z DiaOav (Vi,t) =0, forallie I, te[0,T], (4.1.10)
OleAi
the process

t

M, = (X, t) —f

(5,511 (Xs,5) + flo, 020 (X, 8) + alr,. (Xs, ) v (X, 3)>ds (4.1.11)
0

is a martingale, i.e.,
E(M:|Xs) =M, forall0<s<t<T. (4.1.12)
For what follows, it will be convenient to set
D := {u e C*(I): Z DiaOat (v;) =0, forallie I} . (4.1.13)
aEAi

Remark 4.1.4. Note that in (4.1.10), the condition at boundary vertices boils down to a Neumann
condition.
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Remark 4.1.5. The assumption that all the edges have unit length is not restrictive, because we
can always rescale the constants u, and the piecewise continuous function a.

The goal is to derive the boundary value problem satisfied by the law of the stochastic process
X;. Since the derivation here is formal, we assume that the law of the stochastic process X; is a
measure which is absolutely continuous with respect to the Lebesgue measure on I' and regular
enough so that the following computations make sense. Let m(z,t) be its density. We have

E[v (X, t)] = Lv (x,t)m (x,t)dx, for all ve PC(T x [0,T]). (4.1.14)

Consider u € C*(T x [0,T]) such that for all t € [0, T], u(:,t) € D. Then, from (4.1.11)-(4.1.12),
we see that

E[u(Xs,1)] = E[u(Xo,0)] + E Ut(atu (Xe,8) + po, 0u (Xs, 8) + alr,, (Xs, ) du (X, s))ds] .

0
(4.1.15)
Taking the time-derivative of each member of (4.1.15), we obtain
j Or(um)(z, t)dx = E(&tu (X4, 1) + o, 0%u (Xt t) + alr,, (Xt,t) ou (Xt,t)>.
r
Using again (4.1.14), we get
J (no*u(z,t) + a(z, t)ou(z, t)) m(z, t)dx = J u(z, t)oym(z, t)d. (4.1.16)
r r
By integration by parts, recalling (4.1.2), we get
0 = Z f (em(z,t) — pad®m(z,t) + 0(am)(z,t)) u(z, t)dz
acAYTa
= >, [nisalr. (vis ymlr, (vis ) = pa@am(vi, )] ulr, (vi, 1)
i€l aeA;
_Z Z Mam‘l“a@i?t)aau(yiat)a (4117)
iel aeA;

where n;q is defined in (4.1.6).

We choose first, for every a € A, a smooth function w which is compactly supported in
(Ta\V) x [0,T]. Hence ulr,(vi,t) = 0 and dgu(v;,t) = 0 for all 4 € I,3 € A;. Notice that
u(-,t) € D. Tt follows that m satisfies

(O¢m — e 0?m + 0 (ma)) (z,t) =0, forzely\V,te(0,T), acA (4.1.18)

For a smooth function x : [0,7] — R compactly supported in (0,7), we may choose for every
i € I, a smooth function u such that u(vj,t) = x(t)d; ; for all t € [0,T"], j € I and dqu(vj,t) =0
for all t € [0,T], j € I and a € Aj, we infer a condition for m at the vertices,

Z niaa|r, (vi, t)ymlr, (Vi,t) — palam(vi,t) =0 forallie I, te (0,T). (4.1.19)
OcE.A»;

This condition is called a transmission condition if v; is a transition vertex and reduces to a
Robin boundary condition when v; is a boundary vertex.

Finally, for a smooth function y : [0,7] — R compactly supported in (0,7), for every transi-
tion vertex v; € V\dI" and «, § € A;, we choose u such that
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o u(-,t)e D
o Oou(Viyt) = X(t)/Pia, Opu(vi) = —x(t)/pig, Oyu(vi) = 0 if v € A\{a, B}
e The directional derivatives of u at the vertices v #+ v; are 0.

Using such a test-function in (4.1.17) yields a jump condition for m,

it m Vi, t
mir, (v, ) = Irs ( ), for all a, B € Aj,v; € V,te (0,T),
Yia YiB

in which ‘
Yia = @, forallie I,a € A;. (4.1.20)
o

Summarizing, we get the following boundary value problem for m (recall that the coefficients
Njq are defined in (4.1.6)):

dom — pad®m+ 2 (ma) =0, (w.1) € (T\V) x (0,T), a e A,

Z Maaam (Vivt) - niaah‘a (Vi)m‘ra (Viat) =0, le (OvT)a v, €V,
aE.Ai
(4.1.21)
1 m Vi, t
mlr. (vit) _ Ira (v ), te (0,7), a,fe A;, v;eV,
Yia YiB

m(z,0) = mo(z), xel.

\

4.1.3 Formal derivation of the MFG system on I

Consider a continuum of indistinguishable agents moving on the network I'. Under suitable
assumptions, the theory of MFGs asserts that the distribution of states is absolutely continuous
with respect to Lebesgue measure on I'. Hereafter, m stands for the density of the distribution
of states: m = 0 and (. m(x,t)dz =1 for ¢t € [0, T].

The state of a representative agent at time ¢ is a time-continuous controlled stochastic process
X; in I, as defined in Section 4.1.2, where the control is the drift a;, supposed to be of the form
ay = G(Xt, t)

For a representative agent, the optimal control problem is of the form

T
v(x,t) = i%fIEm [L (L (Xs,as) + ¥ [m(-,t)] (Xs))ds +vr (X7) |, (4.1.22)

where E,; stands for the expectation conditioned by the event X; = x. The functions and
operators involved in (4.1.22) will be described below.

Let us assume that there is an optimal feedback law, i.e. a function a* defined on T" x [0,T]
which is sufficiently regular in the edges of the network, such that the optimal control at time ¢
is given by aj = a*(X},t). Then, almost surely if X; € T,\V,

dry, (Xp) = ag(m, (X)), t)dt + /2p1adW.

An informal way to describe the behavior of the process at the vertices is as follows: if X; hits
v; € V, then it enters I'y,, a € A; with probability p;o > 0, (pia Wwas introduced in Section 4.1.2).

Let us discuss the ingredients in (4.1.22). The running cost depends separately on the control
and on the distribution of states. The contribution of the distribution of states involves the
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coupling cost operator 7, which may be either nonlocal and regularizing, i.e., ¥ : P (I') — C%(T")
for example, or local, i.e. ¥ [m](z) = F(m(z)) where F : RT — R is a continuous function.
The contribution of the control involves the Lagrangian L, i.e., a real valued function defined
on (Uaeal'a\V) x R. If 2 € T,\V and a € R, L(x,a) = Lo(7, ! (x),a), where L, is a continuous
real valued function defined on [0, £,] x R. We assume that lim, |, infyer, L”‘|(ay"a) = 4. The
last one is the terminal cost vy. Further assumptions on L, ¥ and vy will be made below.
Under suitable assumptions, Ito calculus as in [56, 55] and the dynamic programming principle

lead to the following HJB equation on I', more precisely the following boundary value problem:

-

—0v — 10?0 + H (z,00) = ¥ [m(-,t)](z), in (T,\V) x (0,T),a € A,

vlr, (vi,t) = v|r, (Vi) for all v; € V,t € (0,T) o, € A;,
X Z Yiattala (Viyt) = 0, if (vi,t) eV % (0,T), (4.1.23)
ae,Ai

(v (2, T) =vr(z).

We refer to [79, 81] for the interpretation of the value function v. Let us comment the different
equations in (4.1.23):

1. The Hamiltonian H is a real valued function defined on (Uaeal'a\V) x R. For x € T',\V
and p € R,
H (z,p) = sup {—ap — Lo (r; ' (x),a)} .
a

The Hamiltonians H|r, xr are supposed to be C! and coercive with respect to p uniformly
in x.

2. The second condition means in particular that v is continuous at the vertices.

3. The third equation in (4.1.23) is a Kirchhoff transmission condition (or Neumann boundary
condition if v; € JI'); it is the consequence of the assumption on the behavior of X at
vertices. It involves the positive constants 7;, defined in (4.1.20).

If (4.1.22) has a smooth solution, it provides a feedback law for the optimal control problem,
i.e.,

a*(z,t) = —0pH (x,0v (z,1)).
According to Section 4.1.2, the density m(x, t) of the law of the optimal stochastic process X; sat-
isfies (4.1.21) (where a is replaced by a*). Finally, replacing a*(x,t) by the value —0,H (z, dv (x, 1)),
we obtain the system

r—ﬁtv — pa0?v + H (z,0v) = ¥ [m(-, 1)] (), (z,t) € (TL\V) x (0,T), € A,
Orm — pa0*m — 0 (mopH (z,0v)) = 0, (z,t) € (TQ\V) x (0,T),a € A,
Z f)/ioc,uocaoav (Vi7t) = 07 (Viat) eV x (07 T) 5
acA;

Z PaOam (v, t) + nin Oy H® (vi, 0|1, (v3, 1)) m|r, (vi,t) =0, (v3,t) eV x (0,T),
OcE.Ai
1 m v, t
U‘Fa (Viat) = v’Fﬁ (Viat)7 m|Fa (V’“ ) = |Fﬁ ( ‘ )a aaB € Aiv (Vi7t) €V x (OaT)v
Vi YiB

v(z,T) =vr(x), m(z,0) =mg(x) zeT,

(4.1.24)
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where HY := H|p_xr. At a vertex v;, i € I, the transmission conditions for both v and m consist
of dy, = #(A;) linear relations, which is the appropriate number of relations to have a well posed
problem. If v; € 0T, there is of course only one condition.

4.1.4 Assumptions and main results
Before giving the precise definition of solutions of the MFG system (4.1.24) and stating our
result, we need to introduce some suitable functions spaces.

Function spaces related to the Kirchhoff conditions

The following function spaces will be the key ingredients in order to build weak solutions
of (4.1.24).

Definition 4.1.6. We define two Sobolev spaces: V := H!(T'), and

wir, (vi) _ wlr, (1)
Yia YiB

W= {w:F—>R: we H} (T) and for all i e I, a,,@’eAZ}, (4.1.25)

which is a subspace of H}(T).
Definition 4.1.7. Let the function ¢ € W be defined as follows:

©q is affine on (0,4,),
©lr., () = Yias if € A;, (4.1.26)
 is constant on the edges I', which touch the boundary of T'.

Note that ¢ is positive and bounded. We set = maxr ¢, ¢ = minr .

Remark 4.1.8. One can see that v € V +—— vy is an isomorphism from V onto W and w e W +—
-1
we

Definition 4.1.9. Let the function space W < W be defined as follows:

is the inverse isomorphism.

m|F“ (i) = m|rﬁ (i) forallie I, o, € .AZ} .

W= {m T - R:mge CH([0,4,]) and
Yia YiB
(4.1.27)

Running assumptions

(Diffusion constants) (ptq)aca is a family of positive numbers.

(Jump coefficients) (7Via)aed, is a family of positive numbers such that Z Yiatta = 1.
OzGAi

(Hamiltonian) The Hamiltonian H is defined by the collection H® := H|p_ g, @ € A: we
assume that

H*e C' (T, x R), (4.1.28)
H® (x,-)is convex in p, for any x € I'y, (4.1.29)
H (z,p) < Co(lp| + 1), for any (z,p) € Ty x R, (4.1.30)
|opH (z,p)| < Co, for any (z,p) € Ty x R, (4.1.31)
|0 H (z,p)] < Co(|p| + 1), for any (z,p) € Ty x R, (4.1.32)

for a constant Cy independent of a.
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(Coupling operator) We assume that # is a continuous map from L?(I") to L?(T'), such
that for all m e L*(T),
[7Im]lL2ry < CIml2qry + 1) (4.1.33)

Note that such an assumption is satisfied by local operators of the form #[m](z) =
F(m(x)) where F is a Lipschitz continuous function.

(Initial and terminal data) vy € HY(T') and mg € L*(T') n M.

The above set of assumptions, referred to as (H), will be the running assumptions hereafter. We
will use the following notation: p := minges pto > 0 and 7 := maxaea flo-
We will also say that the coupling ¥ is strictly increasing if, for any m1, ms € M n L3(T),

| 1 = ) ) = # el > 0
r
and equality implies m1 = mo.

Stronger assumptions on the coupling operator

We will sometimes need to strengthen the assumptions on the coupling operator, namely that
¥ has the following smoothing properties:

¥ maps the topological dual of W to H, bl(F); more precisely, ¥ defines a Lipschitz map from
W' to H}(T).

Note that such an assumption is not satisfied by local operators.

Definition of solutions and main result

Definition 4.1.10. (solutions of the MFG system) A weak solution of the Mean field games
system (4.1.24) is a pair (v, m) such that

ve L?(0,T; H*(T')) n C([0,T); V), éwe L*(0,T; L*(T)),
me L*(0,T;W) n C([0,T]; L*T) n M), dyme L* (0,T; V"),

v satisfies

Z J [0 (z,t) w (x) + padv (z,t) ow () + H (x,0v (z,t)) w (z)] dz
ae AV o

= J VIm(-,t)](x)w (z)dx, forallwe W, ae. te(0,T),
r
v(z,T) =vp(x) forae xzel,

and m satisfies

Z J [Oem (z,t) v (2) dz + padOm (x,t) Ov (z) + OpH (x,0v (x,t)) m (x,t) ov (x)] dz
ae AV o
=0, forallveV, ae. te(0,7),

m(x,0) = mgo(x) forae. xel,
where V and W are introduced in Definition 4.1.6.

We are ready to state the main result:
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Theorem 4.1.11. Under assumptions (H),
(i) (Existence) There exists a weak solution (v,m) of (4.1.24).
(ii) (Uniqueness) If ¥ is strictly increasing, then the solution is unique.

(7ii) (Regularity) If ¥ satisfies furthermore the stronger assumptions made in Section 4.1.4 and
if vp € C*™(T) N D for some n e (0,1) (D is given in (4.1.13)), then v e C*Y(T x [0,T]).
Moreover, if for all « € A, 0,H“(x,p) is a Lipschitz function defined in 'y x R, and if
mo € W, then me C([0,T]; W) n WH2(0,T; L*(T')) n L*(0,T; HZ(T)).

4.2 Preliminary: a modified heat equation on the network with

general Kirchhoff conditions

This section contains results on the solvability of some linear boundary value problems with
terminal condition, that will be useful in what follows. Consider

.
—0pv — e 0%v = h, in (T4\V) x (0,T),a € A,
'Uh“a (Vi?t) :U’FB (Viat)7 tG(O,T), (X,,BEAZ‘,I/Z‘GV,

X 4.2.1
Z YialaOaV (Viyt) =0, t€(0,T),15,€V, ( )
aeAi
v(x,T) =vr (), xel,

where h e L2 (0, T; W') and vy € L*(T).

Definition 4.2.1. If vy € L3(T') and h € L% (0,T; W'), a weak solution of (4.2.1) is a function
ve L2(0,T;V) n C([0,T]; L3(T)) such that ¢;v € L? (0,T; W') and

— O (t) s wyyyr gy + B (v (1) ,w) = (h(t), w)y y,  for allwe W and ae. te (0,7),

v (IE,T) = UT($)¢
(4.2.2)
where 2 : V x W — R is the bilinear form defined as follows:

B (v,w) = L povowdxr = Z f Mo Ovowd.
e A @

We use the Galerkin’s method (see [49]), i.e., we construct solutions of some finite-dimensional
approximations to (4.2.1).

Recall that ¢ has been defined in Definition 4.1.7. We notice first that the symmetric bilinear
form Z(u,v) := { ppdudv is such that (u,v) — (u,v)r2(r) + #(u,v) is an inner product in V'
equivalent to the standard inner product in V, namely (u,v)y = (u,v)r2(r) + . dudv. Therefore,
by standard Fredholm’s theory, there exist

e a non decreasing sequence of nonnegative real numbers ()}, that tends to +co as
k — o0,

e a Hilbert basis (vi);—; of L*(T") , which is also a a total sequence of V' (and orthogonal if
V' is endowed with the scalar product (u,v)r2ry + %(u,v)),
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such that R
B(Vi,v) = M (VE, v) 2y forallveV. (4.2.3)
Note that
N, ifk=/
f UOVEOVppdr = ot ’
r 0 ifk#L¢.

Note also that v, is a weak solution of

— 100 (POVE) = AV, in T,\V,a € A,

Vk|Fa (Vl) = Vk|F5 (VZ) ;o Be A, (424)
Z ’Yiaﬂaaavk (Vz) =0, ye€ V?
acA

which implies that vi € C%(T).
Finally, by Remark 4.1.8, the sequence (¢vi);; is a total family in W (but is not orthogonal
if W is endowed with the standard inner product).

Lemma 4.2.2. For any positive integer n, there exist n absolutely continuous functions y; :
[0,T] >R, k=1,...,n, and a function v, : [0,T] — L*(T") of the form

v (2,8) = Dyt () vi(x), (4.2.5)
k=1

such that
yp (T) = f vpvedx, fork=1,...n, (4.2.6)
r

and

— i(vn,vkgo)Lz(p) + B (vn,vipp) = {h(t),vip)y, fora.a. te (0,T), forallk=1,... n.

dt
(4.2.7)

Proof of Lemma 4.2.2. For n > 1, we consider the symmetric n by n matrix M, defined by
(Mn) e = J Vevepdz.
r

Since ¢ is positive and (vj)7°_; is a Hilbert basis of L? (I'), we can check that M, is a positive
definite matrix and there exist two constants ¢, C' independent of n such that

n

cléP < Y (Mp)p, & < CIE°,  for all £ R™ (4.2.8)
k=1

Looking for vy, of the form (4.2.5), and setting Y = (yf, ..., yZ)T, Y = (%y’f, e %yﬁ)T,

(4.2.7) implies that we have to solve the following system of differential equations

T
—M,Y + BY = F,, Y(T) = (J vTvl,...,f vTvn> ,
r r

where By = 2 (vo,vi) and E,(t) = ((h(t),vie), ..., h(t),vae))'. Since the matrix M,
is invertible, the ODE system has a unique absolutely continuous solution. The lemma is
proved. ]
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We propose to send n to 400 and show that a subsequence of {v,} converges to a solution
of (4.2.1). Hence, we need some uniform estimates for {v,}.

Lemma 4.2.3. There exists a constant C depending only on ', (a)aca, T and ¢ such that
lvnll Lo, p20y) + vl L2y + 100nl 20wy < € (||hHL2(O,T;W’) + ||UTHL2(F)> :

Proof of Lemma 4.2.3. Multiplying (4.2.7) by y? (t) e* for a positive constant A to be chosen
later, summing for k = 1,...,n and using the formula (4.2.5) for v,, we get

—J 8tvnvne”godx —I—J 1OV, 0 (Une gp) ’\t<h( ), vn)wr W,
r r
and

2
—L [(% <U2”e’\t> ;\ vie )‘t] odr + L,u(&vn)z eModx +J pov e opdr = e M(h(t), vnp).

Integrating both sides from s to T', we obtain

2
f (%(;Uas)e,\s (93 T) )\T) oda + 2 f Jvz )\t@dxdt
r

T
—i—f J (0vy)2eM pdadt +f J pov v dpdrdt
s JU

T
j AUR(E), v (1) o)t

A

T
c f AN o () v

1 T 02 T
3 f J;u ((Ovn)? + v2) eMpdzdt + o J A h(t) |3 dt,

I~ Js

A

where C' is positive constant depending on ¢, because of Remark 4.1.8. Therefore,

e’\sJ U”(Qx’s)@dx + 4J J 11(0vn )2 e dadt + % — % ! HL —rn J J vneMpdrdt
T s JI

2 T 2 T
< e)‘Tf Mgpdm + CeATf |R(t) |3 dt.
r 2 2& s

Choosing A > 1/2 + 1 + 2,u\|(?<p|]Loo /(p and noticing that §.vZ (z,T) pdz is bounded by
? § v3dx from (4.2.6), it follows that

T T
J v2 (x, s)pdx + J f v2pdzdt + f J (Ov ) dxdt
r s JI' s JI'

02
< 27T (Hyhuiz(ww,) + wfr v%da;) . (4.2.9)

Estimate of v, in L® (0,T; L? (")) and L? (0,T; V). From (4.2.9), it is straightforward to see
that

lvnll Lo 0,120y + Ivnll 20,00y < € <HhHL2(O,T;W’) + HUTHL2(F)> 7 (4.2.10)
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for some constant C' depending only on (pq)aca, ¢ and T

Estimate Oy, in L? (0, T;W’). Consider the closed subspace G of W defined by G; =
{w eW: SF viwdz = 0 for all k < n} It has a finite co-dimension equal to n. Consider also
the n-dimensional subspace Go = span{viy,...,vyp} of W. The invertibility of the matrix
M,, introduced in the proof of Lemma 4.2.2 implies that G; n G2 = {0}. This implies that
W = G1 ® Gy. For w € W, we can write w of the form w = w, + w,, where w, € G2 and
Wy, € G1. Hence, for a.e. t € [0,T], from (4.2.5) and (4.2.7), one gets

d d
Opon(t), Wy w = = <J vnwda:> = — (J vnwndm‘> = —(h(t), wp)wrw +f pOVy QW d.
’ dt r dt r ’ r
(4.2.11)
Since there exists a constant C' independent of n such that ||wy |y, < C |wly,, it follows that

[0tvn Ol < C(1h Ol + Elva B)]y)

for almost every ¢, and therefore, from (4.2.10), we obtain

000 D20,z < € (IMF20 ) + Iorliacry)
for a constant C independent of n. O

Theorem 4.2.4. There exists a unique solution v of (4.2.1), which satisfies

HUHLOC(QT;L?(F)) + HU”LQ(QT;V) + Hat,U”LQ(O,T;W’) < C (HhHLQ(O,T;W’) + HUTHLQ(F)) y (4212)
where C is a constant that depends only on I, (ta)aca, T and ¢.

Proof of Theorem /.2.4. From Lemma 4.2.3, the sequence (vy,),, .y is bounded in L? (0,7 V) and
the sequence (0yvy,),,oy is bounded in L?(0, T; W’). Hence, up to the extraction of a subsequence,
there exists a function v such that v e L? (0,T;V), dw e L% (0,T; W') and

R T2 )
Uy — VU weakly in L= (0,T;V), (4.2.13)
Oy, — Opv weakly in L2 (0, T; W').
Fix an integer N and choose a function ¥ € C* ([0,7];V) having the form
N
T(t) = ). dy (t) v, (4.2.14)
k=1
where dy, ..., dy are given real valued C' functions defined in [0, T]. For all n > N, multiplying
(4.2.7) by dj (t), summing for &k = 1,...,n and integrating over (0,7") leads to
T T T
— f j OrvpUpdxdt + f J povp 0 (V) dadt = f Ch, vp)dt. (4.2.15)
o Jr 0o Jr 0
Letting n — +00, we obtain from (4.2.13) that
T T T
— J (Opv, D)dt + f f puovo (vy) dedt = f Ch, vp)dt. (4.2.16)
0 o Jr 0
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Since the functions of the form (4.2.14) are dense in L? (0,T;V), (4.2.16) holds for all test
function v € L? (0,T;V). Recalling the isomorphism v € V + tp € W (see Remark 4.1.8), we
obtain that, for all w € W and ¢ € C! (0,7,

_ L T<atv’w>qut + L ' L povowpdrdt = L T<h,w>wdt.

This implies that, for a.e. t € (0,7,
—(Op,wy + B (v,w) = (h,w)y for all we W.

Using Theorem 3.1 in [84] (or the same argument as in [49, pages 287-288]), we see that v €
c([o,T]; L?O(F)), where L?D(F) ={w:T >R : {Lw?pdr < +o0}, and since ¢ is bounded from
below and from above by positive numbers, L?O(I‘) = L*(T") with equivalent norms. Moreover,

ot < T ) -
[max lo(-, )| 2y < C (10w]l 20wy + [0l L20.75v))

We are now going to prove v (T) = vy. For all o e C! ([0,T];V) of the form (4.2.14) and such
that 7 (0) = 0, we deduce from (4.2.15) and (4.2.16) that

T T
- J f Orovppdxdt — f U (T) v, (T) pdx + J f p0vy 0 (V) dadt
o Jr r o Jr

T T
=— f J ofovpdrdt — j v (T)v(T) pdx + J f povd (vyp) dxdt.
o Jr r o Jr
We know that v, (T) — vr in L? (I'). Then, using (4.2.13), we obtain

LU(T) vrpds — L 5 (T) v (T) .

Since the functions of the form Y5, dy, (T) vy, are dense in L*(T'), we conclude that v (T) = vr.
In order to prove the energy estimate (4.2.12), we use ve*yp as a test function in (4.2.2) and

apply similar arguments as in the proof of Lemma 4.2.3 for A large enough, we get (4.2.12).
Finally, if h = 0 and vy = 0, by the energy estimate for v in (4.2.12), we deduce that v = 0.

Uniqueness is proved. ]

Theorem 4.2.5. Ifvr € V and he L* (T x (0,T)), then the unique solution v of (4.2.1) satisfies
veL? (O,T; H? (F)) N C([0,T); V) and oy € L? (0, T; L? (F)) Moreover,

10l Lo 0,0y + 10l 20,7502 (0)) + 1000 20,122 (0)) < € (Hh”LQ(O,T;LQ(F)) + HUT”\/) , (4.2.17)
for a positive constant C' that depends only on T, (tia)aca, T and .

Proof of Theorem 4.2.5. It is enough to prove estimate (4.2.17) for vy,
Multiplying (4.2.7) by —%yg, summing for k = 1,...,n and using (4.2.5) leads to

J ((?tvn)and:v — f 10V, 0 (Cpopp) do = f hoyvnpda,
I T T

hence

(0vp)?

j (8tvn)2g0dx — J 14Oy pdr — J OV, O, Opdr = f hoivnpdx.
Iy T T I
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Multiplying by e* where A will chosen later, and taking the integral from s to T, we obtain

LT L(@tvnﬂe,\t(pdxdt — L g [(5% (T))2e>\T — (ovn (s))Qe)‘S] odi

T M T
+/\f f 5(%”)2‘3/\tapda?dt = J f [0V Opvn e dpdadt
s JI s JI

T
= —J J h@tvne)‘tgod:cdt
s JI

| 17 2 Xt
< h*epdxdt + = (Orvn)“e™Mpdadt. (4.2.18)
2 s JI 2 s JI

Let us deal with the term §.(dvy, (z,T))%*pdz. From (4.2.6),

()

(L vTvkd:z:> i = L p(ovr ()2 pda

f (Ovr (z))*edz.
r

| @ @10 = 3 0
r k=1
o0

< D
k=1

<

=

Then, choosing \ = 2ﬁ2\]8¢|]%w(r)/(£2ﬁ), we obtain that

T
J 2u(dvp (z, s))2cpdx+f J (Opvn) 2 pdxdt < 2N (h!%z(m(oﬂ) + uf ((%T)Qda:) . (4.2.19)
r s Jr r

Estimate of dv, in L (0,T; L*(T)) and dyvy, in L* (T x (0,T)). From (4.2.19), it is straight-
forward to see that

loval e 07,22 (ry) + [000nll L2(rx0.m)) < € <HhHL2(F><(O,T)) + HaUTHLZ(F)>
for some constant C' depending only on I'; p, T" and ¢.

Estimate of 0*v, in L? (T x (0,T)). Finally, using the PDE in (4.2.1), we can see that d%v,
belongs to L? (I' x (0,7')) and is bounded by C (HhHLQ(Fx(QT)) + H’UTHV), hence v, is bounded in
L? (0, T; H? (F)) by the same quantity. The Kirchhoff conditions (which boil down to Neumann
conditions at JI') are therefore satisfied in a strong sense for almost all .

Using Theorem 3.1 in [84] (or a similar argument as [49] pages 287-288), we see that v in
c([0,T]; V).

O
4.3 The Fokker-Planck equation
This paragraph is devoted to a boundary value problem including a Fokker-Planck equation
[(6m — pad®m — 0 (bm) = 0, in (Ta\V) x (0,T), ae A,
iyt m vi,t
i ‘(V ) _ ’FB'( ), te(0,7), a, e A;, vy e V\aT,
Tia i (4.3.1)
D Habam (Vi t) + nigh (v, t) mir, (vi,t) =0, te (0,T), €V,
aE.Ai
m(z,0) = mg (x), xel,
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where b e PC (T x [0,T]) and mq € L*(T).
Definition 4.3.1. A weak solution of (4.3.1) is a function m € L? (0, T; W) n C([0, T]; L*(T"))
such that o;m e L? (0,T;V’) and

Oym,v)yry + o/ (m,v) =0 forallveV and a.e. te (0,7T),

m (+,0) = my,

(4.3.2)

where &7 : W x V — R is the bilinear form

o (v,w) = f uomaovdx —|—J bmaovdz.
r r

Using similar arguments as in Section 4.2, in particular a Galerkin method, we obtain the
following result, the proof of which is omitted.

Theorem 4.3.2. If b e L®(T x (0,7)) and mg € L*(T), there exists a unique function m €
L2(0,T;W) n C([0,T]; L*(T")) such that ym € L?(0,T; V') and (4.3.2). Moreover, there exists
a constant C which depends on (fta)aca, |0],,, T and ¢, such that

Imll 200wy + Iml oo o, p200y) + 10emll 20,00y < C Mol 2y - (4.3.3)

Remark 4.3.3. If mg € M, which will be the case when solving the MFG system (4.1.24), then
m(-,t) € M for all t € [0,T]. Indeed, we use v = 1 € V as a test-function for (4.3.1). Since
ov = 0, integrating (4.3.2) from 0 to ¢, we get Sf) §p Oym(x, s)dxds = 0. This implies that

J m(x,t)dr = f mo(x)dr =1, forall t e (0,T].
T r

Setting m™ = —1,,ym, we can also use v = 0 'm~e M as a test-function for A € Ry. Indeed,
the latter function belongs to L?(0,T;V’). Taking X large enough and using similar arguments

as for the energy estimate (4.3.3) yield that m~ = 0, i.e., m = 0.
We end this section by stating a stability result, which will be useful in the proof of the main
Theorem.

Lemma 4.3.4. Let mo., be be sequences of functions satisfying
moe — myg in L* (T, b. — b in L? (T x (0,T)),

and for some positive number K independent of €, ||b] Lo 0,7)) < K, [be] o rx0,7)) < K-
Let m. (respectively m) be the solution of (4.3.2) corresponding to the datum mg. (resp. mg) and
the coefficient bz (resp. b). The sequence (m.) converges to m in L? (0,T; W)~ L* (0,T; L*(T)),
and the sequence (0ym.) converges to (dym) in L? (0, T;V").

Proof of Lemma 4.3.4. Taking (m. —m)e *p~! as a test-function in the versions of (4.3.2)
satisfied by m. and m, subtracting, we obtain that

m)? e*)‘t> + 2 (me —m)? e M| o tdx + f (@ (me —m))?e Mo tdx
F 2 r
+ f p(m o (me —m) e Mo(e™dx + J (beme — bm) 0 (me —m) e Mo~ dx
r r

+ | (beme — bm) (me —m) e Mo(p™1)da = 0. (4.3.4)

b
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There exists a positive constant K such that |b.|., ,[b], < K for all e. Hence, there exists a
positive constant C' (in fact it varies from one line to the other in what follows) such that

L B(% <(ma —m)? e*/\t> + % (e — m)? eAt] o lda + LM(a (me —m))2e Mo ldz

< CJ (Ime = mP + [me = ml [0 (me = m)| + [m] [b: = b] (12 (me = m)| + [me —m|)) e M~ dz
r

< C’f <|mE —m|* + |b. — b|2m2> e Mo tdr + f g(& (me —m))2e Mo~ lde.
r r

The assumptions on the coefficents b, and b imply in fact that b, — b in LP(I" x (0,7")) for
all 1 < p < . On the other hand, we know that m € LY(I" x (0,7")) for all 1 < ¢ < c0. From

the latter observation with p = ¢ = 4, we see that the quantity Sg Sr (|b8 —b)? m2) e Mo~ ldzdt
tends to 0 as € — 0 uniformly in A > 0. We write

T
f f (]be —b|? m2) e Mo~ ldzdt = o.(1).
o Jr

Choosing A large enough and integrating the latter inequality from 0 to ¢ € [0, 7], we obtain
[me — mHL2(O,T;W) + [me — mHLw(o,T;LZ(F)) < 0:(1) + C'|moe — mOHL?(r) :
Subtracting the two versions of (4.3.2) and using the latter estimate also yields
|0eme — dm| 2o vy < 0£(1) + C moe — mol L2y,

which achieves the proof. O

4.4 The Hamilton-Jacobi equation

This section is devoted to the following boundary value problem including a Hamilton-Jacobi
equation

—0pv — 0% + H (z,0v) = f, in (T,\V) x (0,T), ae A,
vlr, (vi,t) = vlr, (Vi, 1) te(0,7), a,B€ A;, v, €V,
Z YiataOav (Vi t) = 0, te(0,7), vieV, (44.1)
acA;
(v (2, T) =vr (), xel,

where f € L?(T' x (0,T)), vr € V and the Hamiltonian H : I' x R — R satisfies the running
assumptions (H).

Definition 4.4.1. For f € L? (I' x (0,T)) and vy € V, a weak solution of (4.4.1) is a function
ve L?(0,T; H*(T)) n C([0,T]; V) such that épv € L? (T x (0,T)) and
f (—0pvw + povow + H (x,0v) w) de = f fwdz for all we W, a.a. te(0,T), (4.4.2)
r r
v(z,T) =vp(z). (4.4.3)

We start by proving existence and uniqueness of a weak solution for (4.4.1). Next, further
regularity for the solution will be obtained under stronger assumptions.
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4.4.1 Existence and uniqueness for the Hamilton-Jacobi equation

Theorem 4.4.2. Under the running assumptions (H), if f € L> (T x (0,T)), then the boundary
value problem (4.4.1) has a unique weak solution.

Uniqueness is a direct consequence of the following proposition.

Proposition 4.4.3. (Comparison principle) Under the same assumptions as in Theorem 4.4.2,
let v and D be respectively weak sub- and super-solution of (4.4.1), i.e., v,0 € L? ((),T; H?( F))
and o, 040 € L? (T x (0,T)) such that

J (—0rvw + povow + H (z, 0v) w f fwdz,
I forallwe W, w=>0, a.a. te(0,T),

J (—0ow + pdvow + H (x,00) w f fwdzx,
r

v(z,T) <vp(x) <o(x,T) fora.a zel.
Then v <0 in T x (0,7T).

Proof of Proposition 4.4.3. Setting 7 = v — 0, we have, for all w € W such that w > 0 and for
aate (0,7):

f — 0w + povow + (H (x,dv) — H (x,00)) wdx < 0
r

+/\t

and U (x,T) <0 forallzeT. Set 7" =7 lg-p) and w =7 . We have

(5+)2 A2 M ot (7t ) AL
— | & 5 pdx + 2( eMpdr + u&v o(vTp)etdx
r r

+ f [H (x,00) — H (x,00)] v peMde <0
r

Integrating from 0 to T', we get

—t 2 _
f(” éo) - ( ’. )cpdm—i—f f “2eMpdudt
f J Gon <pe’\tda;dt+J fu&v vt opeMdadt

f f (z,0v) — H (z,00)] 7" peMdadt < 0.

From (4.1.31), |H (z,dv) — H (z,09)| < Cp|dv|. Hence, since v (T') = 0 and |dv|vt = |ovt|vt
almost everywhere, we get

T
f f ( 24 pu(ovh) > eModrdt — J f (1|0 + Coyp) 0T [vTeMdadt <0.  (4.4.4)
o Jr

For A large enough, the first term in the left hand side is not smaller than the second term. This
implies that 77 = 0. O

Now we prove Theorem 4.4.3. We start with a bounded Hamiltonian H.
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Proof of existence in Theorem 4.4.3 when H is bounded by Cy. Take v € L?(0,T;V) and f €
L? (T x (0,T)). From Theorem 4.2.4 and Theorem 4.2.5 with h = f — H (z,0v) and vy € V, the
following boundary value problem

—atU - /J’aa2v = f - H (1"3 %) ) in (Fa\V) x (07 T) , € -’47

vlr,, (vi,t) :U|F@ (virt), te(0,7), a,Be A, vie A, (4.4.5)
Diaed, Yiattalav (Viyt) = 0, tex(0,T), v;eV,
v(x,T) =vp(x), zxel,

has a unique weak solution v € L? (0, T; H* (")) n C([0,T]; V) n W12 (0, T; L? (T)). This allows
us to define the map 7T

T:L?(0,T;V) — L*(0,T; V),

V> .

From (4.1.31), © — H (x, 0v) is continuous from L? (0,T;V) into L? (I' x (0,T)). Using again
Theorem 4.2.5, we have that T is continuous from L2 (0,7;V) to L? (0,T;V). Moreover, there
exists a constant C' depending only on Cpy.,I',(tta)aca, f, T, ¢ and vp such that

I0ev] L2rw0.1y) + 10l L20,1;2(0)) < C- (4.4.6)

Therefore, from Aubin-Lions theorem (see Lemma 4.6.1), we obtain that 7 (L? (0,T;V)) is
relatively compact in L2 (0,7T;V). By Schauder fixed point theorem, see [61, Corollary 11.2],
the operator 7 admits a fixed point which is a weak solution of (4.4.1). O

Proof of existence in Theorem 4.4.2 in the general case. Now we truncate the Hamiltonian as
follows

H (z,p) if |p| <n,

H (:U, pn) if [p| > n.
[p]

From the previous proof for bounded Hamiltonians, for all n, there exists a solution v, €
L?(0,T; H*(T)) n C([0,T]; V) n W12 (0,T;L? (T')) of (4.4.1), where H is replaced by H,.
We propose to send n to +00 and to show a subsequence of {v,} converges to a solution of
(4.4.1). Hence, we need some uniform estimates for {v,}. As in the proof of Proposition 4.4.3,
using —v,eMy as a test-function, integrating from 0 to T’ and noticing that H is sublinear, see
(4.1.30), we obtain

2 2 T T A
J |:’Un (;:O) Yy (;7 )eAT} odx +J f {QUieMw—i-M&vn]Q 6/\t(,0 +Mavnvnez\ta¢] dxdt
r 0 Jr

Hy, (x7p) =

T T
= —f f H,, (x,0vy,) vpeNtodrdt + f f foneModrdt
0o Jr o Jr

T 1 T 1 T
< Cof f (1 + |0vn]) |vn| eMpdadt + J J freModrdt + J f v2eModrdt.
0 Jr 2Jo Jr 2Jo Jr

In the following lines, the constant C' above will vary from line to line and will depend only on
(tta)aeca, Cu, T and . Taking X large enough leads to the following estimate:

lvnl 200,00y < € (HfHL?(o,T;L?(F)) + vzl 2y + 1) ; (4.4.7)
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and thus, from (4.1.30) again, we also obtain

T T T
f J |H,, (, 0vp)|* dadt < J J CZ (|0vn] + 1)* dedt < j f 20C¢ <\5vn\2 + 1) dxdt
o Jr o Jr o Jr
<C (Hf”%%o,T;p(r)) + Jvr |72y + 1> :

Therefore, {H,, (x,dv,) — f} is uniformly bounded in L? (0,7 L? (I')). From Theorem 4.2.5,
we obtain that (v),,cy is uniformly bounded in L? (0, T; H2 (I')) nC([0,TT; V) W2 (0,T; L* (T')).
By the Aubin-Lions theorem (see Lemma 4.6.1), (v,), is relatively compact in L? (0,7;V)
(and bounded in C([0,T];V)). Hence, up to the extraction of a subsequence, there exists
ve L?(0,T;V) n Wh2 (0, T; L? (F)) such that

v, — v, in L*(0,T;V) (strongly), Orvp — O, in L*(T x (0,T)) (weakly). (4.4.8)

Hence, H, (x,0v,) — H (x,0v) a.e. in I' x (0,7). Note also that we can apply Lebesgue
dominated convergence theorem to H,, (x, dvy,) because Hy, (x, 0v,) < H (x, 0vy,) < Co(1+|0vy)).
Therefore, H, (x,0v,) — H (x,0v) in L?(T" x (0,7T)). Thus, it is possible to pass to the limit in
the weak formulation satisfied by v,, and obtain that for all we W, x € C.(0,T),

LT () (— L dpvwdz + L dvowda + L H (z,0v) wdm) g LT " ( L fwdx> N

Therefore, v satisfies (4.4.2).

From Theorem 4.2.4, v, (T) = vy for all n. Since for all a € A, (v,), tends to v in L?(T, x
(0,7)) strongly and in W2(T', x (0,T)) weakly, vp|r, x =1}y converges to v|p, w =7y in L*(Cs)
strongly. Passing to the limit in the latter identity, we get (4.4.3). We have proven that v is a
weak solution of (4.4.1). O

We end the section with a stability result for the Hamilton-Jacobi equation.

Lemma 4.4.4. Let (vp:)e, (fe): be sequences of functions satisfying
vre — vr in'V, fo — fin L* (T x (0,7)).

Let ve be the weak solution of (4.4.1) with data vr., f=, then (ve). converges in L* (0, T; HQ(F)) )
C([0,T]; V) n W2 (0,T; L* (T')) to the weak solution v of (4.4.1) with data vr, f.

Proof of Lemma 4.4.4. Subtracting the two PDEs for v. and v, multiplying by (ve — v) Mol
taking the integral on I" x (0,7) and using similar computations as in the proof of Proposi-
tion 4.4.3, we obtain

lve = vl20) <C <Hf€ ~ Fleeexomy + lvre = UTHL2(F)> ’

for A large enough and C' independent of e. This proves the convergence of v, to v in L? (0, T; V).
Then, the convergence in L? (0,T; H*(T')) n C([0,T]; V) n W2 (0,T; L? (T')) results from the
assumption that H is Lipschitz with respect to its second argument, and from stability results
for the linear boundary value problem (4.2.1) which are obtained with similar arguments as in
the proof of Theorem 4.2.5. O
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4.4.2 Regularity for the Hamilton-Jacobi equation

In this section, we prove further regularity for the solution of (4.4.1).

Theorem 4.4.5. We suppose that the assumptions of Theorem 4.4.2 hold and that, in addition,
vy € H2(T) satisfies the Kirchhoff conditions given by the third equation in (4.4.1), f € PC(T x
[0,T]) N L2(0,T; H:(Q)) and o,f € L*(0,T; HX(T)).
Then, the unique solutionv of (4.4.1) satisfiesv € L* (0,T; H*(T)) and d;v € L? (0,T; H' (I)).
Moreover, there exists a constant C' depending only on |vr| g2(ry, (Ha)aca, H and f such that
10ll 20,7 m3(ry) + 1960 20,112 (1)) < C- (4.4.9)
If, in addition, there exists n € (0,1) such that vy € C*T1(T') then there exists 7 € (0,1) such
e C*13(T x [0,T]), and v is a classical solution of (4.4.1).

The main idea to prove Theorem 4.4.5 is to differentiate (4.4.1) with respect to the space
variable and to prove some regularity properties for the derived equation. Let us explain formally
our method. Assuming the solution v of (4.4.1) is in C*(T' x (0,7)) and taking the space-
derivative of (4.4.1) on (I';\V) x (0,T), we have

0100 — 0% + 0 (H(x, 0v)) = of.
Therefore, u = dv satisfies the following PDE
—04u — pe0*u + 0 (H (z,u)) = of,
with terminal condition u(x,T) = dvp(x). From the Kirchhoff conditions in (4.4.1) and Re-
mark 4.1.1, we obtain a condition for u of Dirichlet type, namely
Z HaYiaiat|r, (Vi t) =0, te (0,T), v;e V.
&E.Ai
Note that the latter condition is an homogeneous Dirichlet condition at the boundary vertices
of T'.

Now, by extending continuously the PDEs in (4.4.1) until the vertex v; in the branchs I',, and
I's, o, B € A;, and using the continuity condition in (4.4.1), one gets
_Naazvh‘a + H (l/i? a’l)‘pa (Viv t)) - f’Fa (Viv t) = _Mb’&QU‘Fﬂ + HB(’/i? aU‘Fﬂ(VZG t)) - f’rg (Viv t)'
This gives a second transmission condition for u at v; € V\dI' of Robin type, namely

paOulr, (vi,t) — H (v, ulr, (vi,t)) + flr., (vi,t)

(4.4.10)
—ppdulr, (vi,t) — HP (vi,ulr, (v, 1) + flr, (vis 1),
which is equivalent to
HaNiaOau (Viyt) — HY (v, ulr, (Vi t)) + flr, (vi,t) (4.4.11)
=pgn;g0gu (v, t) — Hﬁ(l/i,u|p5(yi,t)) + flrs (vir t). o
Hence, we shall study the following nonlinear boundary value problem for u = v,
(—0iu — p1a02u + 0 (H (z,u)) = 0f (x,1), (x,t) € (TR\V) x (0,T), ae A,
Z YiataNiat|r, (Vi,t) =0, te(0,T), v;eV,
acA;
| Hamiadat (vist) = HO (viyule, (vi, ) + fIr,, (v::)
= ppnigdpu (vi,t) — HP (vi, ulp, (vi, t) + flr, (vist), t€ (0,T), o, B € A;, v € V\aT,
u(z,T) = ur(x), zxel,
(4.4.12)
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where df € L? (I' x (0,7)) and ur € F defined in (4.4.13) below. Theorem 4.4.5 will follow by
choosing up = dvp.
In order to define the weak solutions of (4.4.12), we need the following subspaces of H} (T).

Definition 4.4.6. We define the Sobolev spaces

F = {u € Hl} (") and Z YiataMiat|r,, (Vi) = 0 for all v; € V} , (4.4.13)
OzGAi

E = {e e H} (I') and Z nia€lr, (vi) =0 for all v; € V} . (4.4.14)
OcEAi

Definition 4.4.7. Let the function ¢ be defined as follows:
1o is affine on (0,4,),
Vlr, (V) = paYia, if v; € VT, € A;, (4.4.15)
1) is constant on the edges I', which touch the boundary of T'.

Note that 1 is positive and bounded. The map f — f1 is an isomorphism from F' onto E.

Definition 4.4.8. A weak solution of (4.4.12) is a function u € L?(0,T; F) such that dyu €
L?(0,T; E"), u(-,T) = ur and

— (0w, e)pr g + f <m9u6e — (H (x,u)) 0e) dr = —J foedx, forallee E, a.ate (0,T),
r r

(4.4.16)
Remark 4.4.9. Note that if u is regular enough, then (4.4.16) can also be written
(O, & prp + f (nouce + 0 (H (z,u))e)dx
r
=25 D, i [H* (i ulr, (vist) = flr, (vit)]elr, (1)
i€l acA;
= J (0f )edz, forallee E, a.ate (0,T). (4.4.17)
r

Remark 4.4.10. To explain formally the definition of weak solutions, let us use e € F as a
test-function in the PDE in (4.4.12). After an integration by parts, we get

J (—due + poude + 0 (H (r,w) ) dr = 3 S niattadulr, (v Delra () = f (0] )eda,
r i€l acA; r

where n;, is defined in (4.1.6). On the one hand, from the second transmission condition, there
exists a function ¢; : (0,7') — R such that p,0ulr, (vi,t) —H*(vi, ulr, (vi, t)) + flr, (Vi t) = ci(t)
for all o € A;. It follows that

- Z Z niaﬂaaU|Fa (Vi7 t)eh“a (Vz)

el aceA;
= = Dclt) Y miaelr, () + D) Y nia [-H (i ulr, (v, ) + flr, (vist)] elr. ()
el acA; i€l acA;
= D 2 mia [H Wiy ulr, (v, 1) + flr. (vis )] elr, (),
i€l aeA;

because e € E. Then we may use the Remark 4.4.9 and obtain (4.4.16).
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We start by proving the following result about (4.4.12) and then give the proof of Theo-
rem 4.4.5.

Theorem 4.4.11. Under the running assumptions, if ur € F, f € C(I'x[0,T])nL?(0,T; H}(T)
and o.f € L(0,T; H}(T')), then (4.4.12) has a unique weak solution u. Moreover, there exists a

constant C depending only on L', T, 1, [ur| g, |10.f ] 20 0,0y | flcwxpory and |0uf | 2o,z (ry)
such that

lull L20.7sm2(0)) + Ul oqo,mr) + 10eul L2 p w07y < C- (4.4.18)
Remark 4.4.12. Theorem 4.4.11 implies that u(-,t) € C' (I'y) for all a € A for a.e. t. Hence, the
transmission conditions for u hold in a classical sense for a.e. t € [0,T].

We use the Galerkin’s method to construct solutions of certain finite-dimension approxima-
tions to (4.4.12).

We notice first that the symmetric bilinear form 2 (u,v) := §p pp~toudv is such that (u,v) —
(u,v) 2y + @(u,v) is an inner product in E equivalent to the standard inner product in E,
namely (u,v)g = (u,v)r2(r) + § Qudv. Therefore, by standard Fredholm’s theory, there exist

e a non decreasing sequence of nonnegative real numbers (A;)}L,, that tends to +c0 as
k — o

e A Hilbert basis (eg);, of L?(I'), which is also a a total sequence of E (and orthogonal if
E is endowed with the scalar product (u,v)r2ry + %(u,v)),

such that 5
HB(ex,e) = Ai(er,e)r2ry, forallee E. (4.4.19)
Note that
A, k=4
J poerdepp tdr = ko ’
r 0 ifk=#¢.

Note also that e is a weak solution of

— a0 (’Lbilaek) = Arer in FQ\V, ae A,

Oaer (V1) _ Js% () for all o, B € A;, (4.4.20)
Yia i

Yiaed, Miatklr, (i) =0 if v e V.

which implies that ex|r, € C?(T,) for all a € A.
Finally, the sequence (fz)_; given by fr = ¢ "ley is a total family in F' (but is not orthogonal).

Lemma 4.4.13. Under the assumptions made in Theorem 4.4.11, for any positive integer n,
there exist n absolutely continuous functions yi : [0,T] — R, k = 1,...,n, and a function
Up 2 [0,T] — L3(T) of the form

un (8) = Y yk (8) i, (4.4.21)
k=1
such that for allk =1,... n,
y (T') = f urfp?de, (4.4.22)
T
and
d
- e + | (itu — H @) () do == | foGo)de. (@423)
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Proof of Lemma 4.4.13. The proof follows the same lines as the one of Lemma 4.2.2 but it is
more technical since we obtain a system of nonlinear differential equations. For n > 1, we
consider the symmetric n by n matrix M,, defined by

My)ge = Lfkfﬂ/fdﬂl

Since 9 is positive and bounded and since (¢f;);°, is a Hilbert basis of L?(I'), we can check
that M, is a positive definite matrix and there exist two constants ¢, C' independent of n such
that

n

clé? < DL (M) & < CIE7, forall e R™ (4.4.24)

k(=1

Looking for u, of the form (4.4.21) and setting Y = (y7,...,y")", ¥V = (%y?,...,%yﬁ)T,
(4.2.7) implies that we have to solve the following a system of ODEs:

—M,Y(t)+ BY (t) + H(Y)(t) = G(t), te[0,T]
T

9 9 (4.4.25)
Y(T) = (J upfiy“dax, - - - ,J upfpp dm) ,
r r
where
(] BM = SI‘ uafga(wfk)dx
o H;i(Y) =~ H(z,YTF)o(fip)dz with F = (f,--- ,f,)T and YTF =3, yfy = u,

= — (o f(z,t)0(fi)dx for all i € 1, -

Since the matrix M is invertible and the function #H is Lipschitz continuous by (4.1.31), the
system (4.4.25) has a unique global solution. This ends the proof of the lemma. O

We start by giving some estimates for the approximation .
Lemma 4.4.14. Under the assumptions made in Theorem 4.4.11, there exists a constant C
depending only on T', T, 4, [ur|p, 10f] 120w 0,m)) 1flcwxor and [0f |20 1m ) such that
|unl oo 0.7 5) + HunHm(o,T;Hg(r)) + [ Geunl 2 (rx 0,y < C-

Proof of Lemma 4.4.14. We divide the proof into two steps:

Step 1: Uniform estimates of u, in L*(0,T;L*(T)), L*(0,T; F) and W42(0,T; E'). Multi-
plying (4.4.23) by y? (t) fre*tp where X is a positive constant to be chosen later, summing for
k=1,...,n and using (4.4.21), we get

— L Ortununetpdr + L(u@un — H(x, un))ﬁ (une’\% dx J fo( unwe”)

In the following lines, C' will be a constant that may vary from lines to lines. Since H satisfies
(4.1.30) and f is bounded, there exists a constant C' such that

2
—f {@ <u2"e)‘t> - ; ule )‘t} Ydx +J 11 |0uy | eMapda — C’f [tn| (|un| + |Oun|) eMda
r r

<C’J (Jtin| + |0 |)eMN daz. (4.4.26)
r
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The desired estimate on u,, is obtained from the previous inequality in a similar way as in the
proof of Lemma 4.2.3, by taking A large enough.

Step 2: Uniform estimates of uy in L*(0,T;F) n L*(0,T; H3(T')) and of dyuy, in L*(T x
(0,7)). Multiplying (4.4.23) by 0y} (t) fre’1h where X is a positive constant to be chosen later,
integrating by part the term containing H and f (all the integration by parts are justified)
summing for k = 1,...,n and using (4.4.21), we obtain that

- f (Osun ) eMapda + J (0RO (@une)‘ti/)) dx + J O (H (x,u,)) dpuneipda (4.4.27)
r r r

— 2 Z Nia [H (Vi un|r, (Vist)) — flr., (i, t)] Ounlr, (vi, t) ¥lr, (vi) M = L&f&tunwe)‘tdx.

i€l aeA;

Note that from (4.1.31) and (4.1.32),
|0 (H (2,un))| < Co(1 + |up| + |0un|) (4.4.28)

so, from Step 1, this function is bounded in L?(T" x (0,T)) by a constant. Moreover,

LT L 0 fopuptpedudt < C < J ' L (0 f)%”th)é ( J ' L (6tun)2e3”¢dxdt>é, (4.4.29)

and we can also estimate the term {. p0u,0 (Grune*yp) dz as in the proof of Theorem 4.2.5.
Therefore, the only new difficulty with respect to the proof of Theorem 4.2.5 consists of obtaining
a bound for the term

D 20 nia [H (viynlr,, (vist)) = flr, Wi t)] drunlr, (vist) eXlr, (v) .
i€l acA;

Let Jia(p) be the primitive function of p — H®(v;,p) such that J;,(0) = 0:

d
H® (vi, unlr, (vi,$)) Orunlr, (vi,s) = @\Z‘a(unha (vi, ).

We can then write

T
| (raol® G, 20 Bl (01,0) X0, ()

S

T
=nia¥|r,, (Vi) (—\Z‘a (unlr, (i, T)) M + Tia (unlr,, (vi,5)) e + AJ Jia (un|r,, (vi,t)) 6Atdi> .

Since H*(x,-) is sublinear, see (4.1.30), |Jia(p)| is subquadratic, i.e., | Jia(p)| < C(1 + p?), for
a constant C' independent of o and 4. This implies that

T
J (ano‘ (Viy tnr,, (Vi) Gptnr, (vist) eX9|p, (W)) dt‘

S

T
<C <e)‘T +u2|r, (v, T) M + 2|, (v, ) e’\s> + C)\J (1 +u2|r, (vi,t)) eMdt.
0
Note that, from Step 1 and the stability of the trace, A SST (1 +ul|r, (v, t)) eMdt < Che*'. To
summarize

T
[ (riatt® sl 1, 0) ke, (1,000, ()

s

(4.4.30)
<C (u%\pa (i, T) e + u2|r, (v, 5)° e)‘s) +C(N).
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4.4. The Hamilton-Jacobi equation

Similarly, using the fact that f € C(I' x [0,7]) and &;f|r, (v;,-) € L?(0,T), and integrating by
part, we see that

T
J f|Fa (Viv t) atunh‘a (7/@', t) e’\tdt‘

T
= ‘(f\raun)\ra i, T) N — (flroun)lr., (Vi t) e — f (Aflra (¥ist) + 0cfIrg (vis ) unlr, (vi,t) eMdt

s

T
< C (‘Un’Fa (vi, T) 1M + |unlr, (vi,5) [ + )\J |un|r, (v, t)] e)‘tdt>

s

I NV B N2
+2 uslp, (vi,t)e dt+2 (Ocfr,, (v, t))" edt.

From Step 1 and the assumptions on f, the last three terms in the right hand side of the latter
estimate are bounded by a constant depending on A, but not on n. To summarize,

T
f flr., (vi,t) Qunlr, (vi,t) e/\tdt‘ <C (”U,nh‘a (v, T) ]e’\T + |un|r, (v, 5) ]e/\s> +C(N).

(4.4.31)
To conclude from (4.4.30) and (4.4.31), we use the following estimates
|un|r, (Vi t)] < C <f |up, (z,t)] dx —i—f |Owy, (z,1)] d:c) ,
Ta Ta (4.4.32)
ullp, (v,t) < C (f u? (z,t) de + J |tn Oy, (z,t)] dx) ,

fort=sandt="1T.

Then proceeding as in the proof of Theorem 4.2.5 and combining (4.4.27), (4.4.28), (4.4.29),
(4.4.30) and (4.4.31) with (4.4.32), we find the desired estimates by taking A large enough.

Let us end the proof by proving (4.4.32). The function ¢ = u,|r, (-,t) is in H(T,). By
the continuous embedding H'(T,) < C(T,), we can define ¢ in the pointwise sense (and even
at two endpoints of any edges, see (4.1.3)). For all « € A and z,y € T, we have ¢(x) =

B(y) + S, 21 0(€)dE. Tt follows

Talé(z) = Lu o(x)dy = fra o(y)dy + La f[ | av(eydedy < f B(O)]dE + Tl La 126(6)de

«@

which gives the first estimate setting x = v;. The second estimate is obtained in the same way
replacing ¢ by ¢? and using the fact that W1 (T'y)ss is continuously embedded in C(T',).
O

Proof of Theorem 4.4.11. From Lemma 4.4.14, up to the extraction of a subsequence, there
exists u € L? (0, T; HZ (T')) n W2 (T x (0,T)) such that

Uy — U, in L? (0, T; F n HZ (1)),

(4.4.33)
Oy, — Opu, in L2 (T x (0,7)).

Moreover, by Aubin-Lions Theorem (see Lemma 4.6.1),

compact
—

L*(0,T;F n Hf (T)) n W2 (0,T; L* (I)) L*(0,T; F),
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so up to the extraction of a subsequence, we may assume that wu, — u in L?(0,T; F') and almost
everywhere. Moreover, from the compactness of the trace operator from W2(T, x (0,T)) to
L2(00q x (0,T)), tnlor, < (0,r) = @lorax(o,r) in L*(0Tq x (0,T))) and for almost every t € (0, 7).
Similarly, un|r, x (=1} = U|r,x{=7} In L?(T',) and almost everywhere in I'y. Then, using the
Lipschitz continuity of H with respect to its second argument, and similar arguments as in the
proof of Theorem 4.2.4, we obtain the existence of a solution of (4.4.12) satisfying (4.4.18) by
letting n — +o0. Since H2(T,) = C**9(T,) for some o € (0,1/2), u(-,t) € C1*7 (T, for all
a€ Aand a.a. t.

Finally, the proof of uniqueness is a consequence of the energy estimate (4.4.18) for w. O

Next, we want to prove that, if u is the solution of (4.4.12) and v is the solution (4.4.1), then
0v = u. It means that we have to define a primitive function on the network I'.

Definition 4.4.15. Let © € I's, = [v4y,v3,] and y € Ta,, = [Viny, Vipny1 |- We denote the set of
paths joining from x to y by 7. More precisely, if £ € T7, we can write £ under the form

L=x—>V; > Vy— ...V, —Y,

with v;, € V and [uik, Vikﬂ] = T4, . The integral of a function ¢ on £ is defined by

Lqﬁ@dé:f[w,uil]qj(g)d“,ij[

recalling that the integrals on a segment are defined in (4.1.8).

o () de +f 6 (€) de, (4.4.34)
] [

Vig Vig 1 Vi Y]

Lemma 4.4.16. Let u be the unique solution of (4.4.12) with up = dvp. Then for all x,y € T
and a.e. t€[0,T],

J u(¢,t)d¢ = u (¢, t)d¢, for all Ly,Ly € TY.
El £2

This means that the integral of u from x to y does not depend on the path. Hence, for any
L € x7, we can define

f@u@,t) ¢ | e

Proof of Lemma 4.4.16. First, it is sufficient to prove S£ u (¢, t)d¢ = 0 for all £ € Tx. Secondly,
if a given edge is browsed twice in opposite senses, the two related contributions to the integral
sum to zero. It follows that, without loss of generality, we only need to consider loops in T
such that all the complete edges that it contains are browsed once only. It is also easy to see
that we can focus on the case when = € V. To summarize, we only need to prove that

Lu(g,t)dgzo

when v;, € W\I" and £ = vy — v, — ... = v;,, — Vi, where v;, # v;, for k + L.
The following conditions

1. e|r, = 0 on each edge I', not contained in £

2. forallk=0,...m—1, e|pak = Ly, <ipy1 — Lig>ip,, if Ta, is the edge joining v;, and v;, |

3. e|pam = 1, <io — Li,,>io if I'a,, is the edge joining v; , and v,
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4.4. The Hamilton-Jacobi equation

define a unique function e € E which takes at most two values on £, namely +1.
From Definition 4.4.15, we have

d o d d
locna = XGf wenaig | o

Vikvyik+1]

d

[ une©d - [ autc e
r r

Then, using Definition 4.4.8, Remark 4.4.9 and Remark 4.4.10 yields that

d
dtf (¢ 1) d¢

_ j 100 (1) + OH (C,u (G, 1)) — Of (¢, 1)] e (¢) de
aE.A a

- Z L o () + OH (o (G, ) — 2F (6, 8)] e (C) d¢

i e| (V) Mg 100, <_I’Lakau‘rak (Vik+17t) + H® (Vik+17u|rak (Vik“at)) —f (Vik+1at))
= Ta )

rar iy, (—Makau\rak (Vi 1) + H® (Vz‘k,UIF% (%J)) —f (Vmi))

where we have set i,,+1 = i9. Now using (4.4.10) (which is satisfied for a.e. ¢ from the regularity
of u) and the fact that e € E, we conclude that

d
dt

| utctrac- L”“’T) 6 = [ ur©dc = [ oor(©rac o

where the last identity comes from the assumption that vy € V' (the continuity of vr).

u (¢, t)d¢ = 0. (4.4.35)

Hence

O]

Lemma 4.4.17. If up = dvp € F, then the weak solution u of (4.4.12) satisfies u = dv where
v is the unique solution of (4.4.1).

Proof of Lemma 4.4.17. For simplicity, we write the proof in the case when oI" + . The proof
is similar in the other case.

Let us fix some vertex v, € 0I'. From standard regularity results for Hamilton-Jacobi equation
with homogeneous Neumann condition, we know that that there exists w, a closed neighborhood
of {vx} in I made of a single straigt line segment and containing no other vertices of I" than v,
such that vl o1y € L*(0,T; H*(w)) n C([0,T]; H*(w) n W2(0,T; H' (w)). Hence, v satisfies
the Hamilton-Jacobi equation at almost every point of w x (0,7"). Moreover the equation

0w (Vi t) + pd*v(vg, t) — H(vg, 0) + f(vg,t) = 0 (4.4.36)

holds for almost every ¢ € (0,T) and in L?(0,T).
For every z € T and ¢t € [0, 7], we define

B (@, 8) = v (e, t) + f_f w (G, 1) de. (4.4.37)
k

1%
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Remark 4.4.18. If oT' = ¢, then the proof should be modified by replacing vy by a point v € T'\V
and by using local regularity results for the HJB equation in (4.4.1).

We claim that 9 is a solution of (4.4.1).

First, v (-, ) is continuous on I'. Indeed, 0(y,t) — 0(x,t) = S@ u(C,t)d¢. On the other hand,
ue C([0,T]; F) < L*®(I" x [0,T]). It follows that [0(y,t) — 0(x,t)| < |[u||zo@x[o,rdist(z,y)
which implies that o (-, ¢) is continuous on T'.

Next, from the terminal conditions for wu,

0 (z,T) =v(uk,T)+J

Vg

u<<,T>d<=w(uk)ﬁﬁaw(odc=vT<:c>,

Vg

where the last identity follows from the continuity of vy on T'.

Let us check the Kirchhoff condition for 9. Take v; € V and a € A;. From (4.1.7), for
a.e. t € (0,7), 0a0(vi,t) = nig00|p, (vi,t) and from (4.4.37), 0d|r, (vi,t) = u|r, (v, t). Since
u(-,t) € F, we get

D, Viakta@ad(Vist) = Y Yiaktatiatlr, (vist) = 0,
acA; acA;

which is exactly the Kirchhoff condition for ¥ at v;.

There remains to prove ¢ solves the Hamilton-Jacobi equation in I'\V: Take z € I',\V for some
a € A and consider a path 732 3 £ = vy — --- — 14, — x, where iyp = k and v;,, € I'y. Let
i+, be the other endpoint of I',. We proceed as in the proof of Lemma 4.4.16: the following
conditions

1. e|r, = 0 on each edge I', not contained in £
2. forall j =0,...m, e|pj = li;<ijiy — Lij>ij if I'; is the edge joining Vi; and Viji

define a unique piecewise constant function e which takes at most two values on £, namely +1.
Note that e does not belong to £ because e(vy) # 0, but that e satisfies >, 4 niaelr, (Vi) =
0 for all v; € V\OT.

Using this function, a similar computation as in the proof of Lemma 4.4.16 implies that, for
almost every t € (0,7),

0o (z,t) — Opu(vg, t) = — padulr, (z,t) + H (z,u|r, (x,t)) — f (z,1)
+ UaOov (l/k,t) —H (I/k, 0) +f (Vk,t) .

Then, using (4.4.36) and the fact that 00 = u, the latter identity yields that for almost every
(z,t) € (0,T) x T,

000(x,t) + 0?0 (z,t) — H (z,00 (z,t)) + f (z,t) = 0.

We have proven that ¢ is a solution of (4.4.1). Since v is the unique solution of (4.4.1), we
conclude that v = ¥ and dv = u. O

We are now ready to give the proof of Theorem 4.4.5.

Proof of Theorem 4.4.5. Since dv = w by Lemma 4.4.17 and u satisfies (4.4.18) by Theo-
rem 4.4.11, we obtain that v € L? (0,T; H* (T')) and v € L? (0,T; H' (T')) and (4.4.9) holds.

Therefore, using an interpolation result combined with Sobolev embeddings, see [11] or Lemma
4.6.2 in the Appendix, v € C**79/2(I" x [0,T]) for some 0 < ¢ < 1.

118



4.5. Existence, uniqueness and regularity for the MFG system (Proof of Theorem 4.1.11)

Finally, we know that since f € W20, T, H}(T)), flr.xp1] € C"(Tq x [0,T]) for all
ne (0,1/2). If f € C"3(Ty x [0,T]) for some n € (0,1/2), we claim that v € C2L(T" x [0,T7]).
This is a direct consequence of a theorem of Von Below, see the main theorem in [99], for the

(modified) heat equation
— dyw — o 0w = g(z,t), (4.4.38)

with the same Kirchhoff conditions as in (4.4.1): Note that if the terminal Cauchy condition
for wis w(-,t = T) = vy and if ¢ = f — H(x,0v), then w = v. Now g = f — H(z,0v) €
C™2(Ty x [0,T]), where 1/2 > 7 = min(co,n) > 0. Using the result in [99], we obtain that
v=we C**IH7/2(T, x [0,T]), then that v is a classical solution of (4.4.1). O

4.5 Existence, uniqueness and regularity for the MFG system
(Proof of Theorem 4.1.11)

Proof of existence in Theorem 4.1.11. First of all, given mg and vp, let us construct the map 7
from L2 (0,7;V) to itself as follows.

Given v e L?(0,T;V), we first define m as the weak solution of (4.3.1) with initial data mq
and b = H,(z,0v). We know that m € L? (0,T; W) n C([0,T]; L*(T")) n W2(0, T; V).

We claim that if v, — v in L2 (0, T; V) then H,(-, dv,) tends to H,(-, dv) in L*(I' x (0,7)). To
prove the claim, we argue by contradiction: assume that there exist a positive number € and a
subsequence vy(,,) such that | Hy (-, 0vgn)) — Hp(:, 0v)| 120 (0,r)) > € Then since dvgy, tends to
0v in L*(I" x (0,T)), we can extract another subsequence vy(,,) from v(,,) such that dvy,) tends
to dv almost every where in T' x (0, T). From the continuity of Hy, we deduce that Hy (-, 0vy(n))
tends to Hp(-,0v) almost everywhere in I' x (0,7"). Since there exists a positive constant Cy
such that |[Hy (-, 0vyn))eo < Co, [Hp(+,0v)|eo < Co, Lebesgue dominated convergence theorem
ensures that Hy(-, 0vy () tends to Hy(-,dv) in L*(T' x (0, 7)), which is the desired contradiction.

To summarize, Hy(-,0v,) tends to Hy(-,dv) in L*(I" x (0,T)) on the one hand, and for a
positive constant Cy, |Hp(-, 0vyn)|w < Co, |Hp(+, 0v)|w < Cp. Using Lemma 4.3.4, we see that
my, the weak solution of (4.3.1) with initial data mo and b = Hp(z, dv,) converges to m in
L?(0,T;W) n L® (O,T; LQ(F)) ~ WH2(0,7;V"). Hence, the map v — m is continuous from
L?(0,T;V) to L*(0,T; W) n L* (0, T; L*(T')) n W2(0,T; V'). Moreover, the a priori estimate
(4.3.3) holds uniformly with respect to v.

Then, knowing m, we construct 7 (v) = ¥ as the unique weak solution of (4.4.1) with f(x,t) =
¥ [m(-,t)](x). Note that m — f is continuous and locally bounded from L?(I' x (0,T)) to L?(T x
(0,7)). Then Lemma 4.4.4 ensures that the map m — 9 is continuous from L?(I" x (0,7)) to
L?(0,T; H*(')) L™ (0,T; V)nW'2(0,T; L*(T")). From Aubin-Lions theorem, see Lemma 4.6.1,
m — ¥ maps bounded sets of L2(I" x (0,T)) to relatively compact sets of L? (0,T;V).

Therefore, the map 7 : v ~ ¥ is continuous from L? (0,T;V) to L?(0,7;V) and has a rel-
atively compact image. Finally, we apply Schauder fixed point theorem [61, Corollary 11.2]
and conclude that the map 7 admits a fixed point v. We know that v € L? (0,T; H*(I')) n
L*(0,T; V) n WE2(0,T; L2(T)) and m € L2 (0, T; W) A L® (0,T; LA(T)) n W2(0, T; V/(T)).

Hence, there exists a weak solution (v,m) to the mean field games system (4.1.24). O

Proof of uniqueness in Theorem 4.1.11. We assume that there exist two solutions (vi,m1) and
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(vg, mg) of (4.1.24). We set T = v1 — vg and M = mj — my and write the system for T, m

-

— 04T — e 0%0 + H (z,0v1) — H (z, 0ve) — (¥ [m1] — ¥ [ma]) = 0, xel\V, te(0,T),
O — e 0*m — 0 (m10pH (z,0m1) — madpH (x,0ms)) = 0 xel,\V, te(0,T),
_ ‘ >
Bl () = Tl (v3,1), TCe ol TR WD) 0 Be A e,
Yia YiB
Z f)/ioc,uocaocﬁ (Vi7t) =0, vieV, te (O, T) s

)\ OcE.AZ'
> nia [malr, () B H® (vi, dvalr,, (v, 1)) — malr, (vi) O H (vi, dvalr,, (v, )]
OLEAZ'
+ ) palaT (Vi t) =0, vieV, te(0,T),
aGAi
v(x,T) =0, m(z,0) =0.

Testing by m the boundary value problem satified by @, testing by @ the boundary value problem
satified by m, subtracting, we obtain

JOTL (m1 —ma) (¥ [m1] =7 [m2)] dvdt + LT L 0, (7 7) duwdt

+ Z m [H (z,0ve) — H (z,001) — OpH (z, 0vq) 00] dx
+ Z mo [H (x,0v1) — H (x,0v2) + pH (x,0v1) 0v] dx = 0.

Since ¥ is strictly monotone, the first sum is nonnegative. Moreover,

J J&t (m v) dmdtzfr[ m(z,T) v(x,T) —m(z,0) v(z,0)]dx = 0,

since (x,T) = 0 and m(x,0) = 0. From the convexity of H and the fact that mi, mo are
nonnegative, the last two sums are nonnegative. Therefore, all the terms are zero and thanks
again to the fact that ¥ is strictly increasing, we obtain m; = ms. From Lemma 4.4.2, we
finally obtain v; = vs. ]

Proof of regularity in Theorem 4.1.11. We make the stronger assumptions written in Section
4.1.4 on the coupling operator ¥. We know that ¥ [m] € W12(0,T; H}(T')) n PC(T x [0,T7]).
Assuming also that vy € V and dvy € F, we can apply the regularity result in Theorem 4.4.5:
ve L* (0,T; H*(T)) n WhH2(0,T; H (I)).

Moreover, since ¥ [m] € W'2(0,T, Hy (T)), we know that (¥ [m])|r, «[o.7] € C792(Ty x [0,T])
for all 0 < o < 1/2. If vy € C?*™ A D for some n € (0,1) (D is defined in (4.1.13)), then from
Theorem 4.4.5, v € C?*71+7/2(T' x [0,T7]) for some 7 € (0,1) and the boundary value problem
for v is satisfied in a classical sense.

In turn, if for all « € A, 0,H*(x, p) is a Lipschitz function defined in I'y, x R, and if mg e W,
then we can use the latter regularity of v and arguments similar to those contained in the proof
of Theorem 4.2.5 and prove that m € C([0,T]; W) n WL2(0,T; L*(T')) n L?(0, T; HZ(T)). O
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4.6 Appendix: Some continuous and compact embeddings

Lemma 4.6.1. (Aubin-Lions Lemma, see [83]) Let Xo,X and X be function spaces, (Xo and
X1 are reflexive). Suppose that Xo is compactly embedded in X and that X is continuously
embedded in X1. Consider some real numbers 1 < p,q < +00. Then the following set

{v:(0,T) > Xo: ve LP(0,T; Xy), dve LY1(0,T; X1)}
is compactly embedded in LP (0,T; X).

Lemma 4.6.2. (Amann, see [11]) Let ¢ : [a,b] x [0,T] — R such that ¢ € L?(0,T; H*(a,b))
and 0y¢ € L*(0,T; L?(a,b)). Then ¢ € C5(0,T; H'(a,b)) for some s € (0,1/2).

This result is a consequence of the general result [11, Theorem 1.1] taking into account [11,
Remark 7.4]. More precisely, we have

compact
—>

Ey := H*(a,b) E := H'(a,b) — Ey := L*(a,b).

Let ro=r1 =r=2,090=0,01 =2and o = 1. For any v € (0,1), we define

1 1 1—v
— = —+4 , oy:i=(1—v)sy+ vs.
Ty 7o 1

This implies that r, = 2 and 0, = 2v. Therefore, if v € (1/2,1), then the following inequality is
satisfied
o—1/r<o,—1/r, <01 —1/r1.

Hence, we infer from [11, Remark 7.4]

E\ — (Eo, Ev)y1 — (Eo.E1)vy, = W™ (a,b) — E,

where (Eo, E1)u1, (Eo.E1),,r, are interpolation spaces. This is precisely the assumption allowing
to apply [11, Theorem 1.1], which gives the result of Lemma 4.6.2.
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Résumé : Cette thése porte d’une part sur 1’¢ ude d’e¢ uations de Hamilton-Jacobi-Bellman (HJB) associées
a des problémes de contrdle optimal et d’autre part de jeux a champ moyen (MFG) avec la particularite qu’on
se place sur des réseaux, pour lesquels on autorise différentes dynamiques et colts dans chaque aréte.

Dans la premiére partie, on considére un probléme de controle optimal sur les réseaux dans lesquels on rajoute
des coits d’entre (ou de sortie) aux sommets conduisant a une e entuelle discontinuite de la fonction valeur.
Celle-ci est caracte isée comme I’unique solution de viscosité d’une eq ation Hamilton-Jacobi (HJ) pour
laquelle une condition de jonction adéquate est établie.

La deuxieme partie concerne les MFG stochastiques sur les réseaux dans le cas ergodique. Ils sont décrits par
un systeme couplant une équation de HJB et une équation de Fokker-Planck, dont les inconnues sont: la
densité m qui est en général discontinue aux sommets et satisfait deux conditions de transmission aux
sommets; la fonction valeur v qui est continue et satisfait des conditions de Kirchhoff aux sommets et enfin
la constante ergodique p. L’ existence et I’unicite sont prouve s pour des Hamiltoniens sous-quadratiques et
des couplages bornés inférieurement généraux.

Enfin, dans une derni¢re partie, nous ¢tudions le méme probléme non stationnaire pour des Hamiltoniens
sous-lincaires et un couplage regularisant. La principale difficulté supplémentaire par rapport au cas
stationnaire est d’établir lare ularite. Notre approche consiste & ¢ udier la solution de I’equ tion de HJ de ive
pour gagner de la régularité sur la solution de I’equ tion initiale.

Title : Hamilton-Jacobi equations and Mean field games on networks
Keywords : Optimal control problems, Hamilton-Jacobi equation, Mean Field Games, networks

Abstract: The dissertation focuses on the study of Hamilton-Jacobi-Bellman (HJB) equations associated
with optimal control problems and mean field games (MFG) problems in the case when the state space is
a network. Different dynamics and running costs are allowed in each edge of the network.

In the first part, we consider an optimal control on networks in which there are entry (or exit) costs at the
edges of the network leading to a possible discontinuous value function. The value function is
characterized as the unique viscosity solution of a Hamilton-Jacobi (HJ) equation for which an adequate
junction condition is established.

The second part is about stochastic MFG for which the state space is a network in the ergodic case. They
are described by a system coupling a HIB equation and a Fokker-Planck equation, whose unknowns are:
the density m which is in general discontinuous at the vertices and satisfies dual transmission condition;
the value function v is continuous and satisfies general Kirchhoff conditions at the vertices and the ergodic
constant p. Existence and uniqueness are proven for subquadratic Hamiltonian and the general coupling
term which is bounded from below.

Finally, in the last part, we study non-stationary stochastic MFG on networks. The transition conditions
for v and m are similar to the ones given in second part. We prove the existence and uniqueness of a weak
solution for sublinear Hamiltonian and bounded non-local regularizing coupling term. The main additional
difficulty compared to the stationary case is to establish the regularity of the system. Our approach is to
study the solution of the derived HJ equation to gain regularity over the initial equation.
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