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Introduction 
The field of complex networks aims at studying non-trivial interactions between entities by 

mean of a mathematical object called graph. A graph is a set of elements, called nodes, and a 

set of links, called edges, linking together a subset of nodes by pairs. This representation of 

information can be applied in a wide range of domains, going from transportation with for example 

the complex network of airline routes (where the nodes represent the airports and the edges the 

direct flight routes between two airports) to sociology (friendship, professional relationship), 

biology (proteins interactions, epidemic spreading) and many more. 

 

  

Illustration 1 Example of a Facebook friendship network (left) adapted from http://datasciencepost.com/en/visualize-your-

facebook-network-with-gephi/, where each node represents a Facebook user, and each link a friendship connection; a food web 

(left) from (Bohan et al. 2017). 

Complex networks have also found applications in neuroscience. Indeed, the brain exhibits 

patterns in the functional interactions of its parts or in their structure that are unique to 

individuals and that can be modelized using graph theory. Those models constitute what is called 

the brain connectivity. Brain connectivity can be of different type; one can have: (i) structural 

connectivity (SC); where links represent axons or neuronal fiber tracts or (ii) functional 

connectivity (FC) where links represent statistical dependencies between parts of the nervous 

systems. Those parts can be of different sizes leading to networks describing the brain connectivity 

at different scales. Depending on the spatial resolution of the physical measurements it is based 
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on, the “part” can be a single neuron (in that case the brain connectivity network is called a 

connectome1), an ensemble of neurons, or brain regions. 

A neurodegenerative disease, such as Parkinson’s, Alzheimer’s, or Huntington’s disease, 

causes the neurons, building blocks of the nervous system, to progressively degenerate or die. 

Neurons lose their structure and/or functions. That is why brain connectivity analysis is 

particularly suited to study this kind of diseases, their impact by comparing to healthy brains, or 

even their progression through time. It gives an understanding of the brain structure or function 

as a whole, and allows to quantify the effects of the disease on different aspects. In particular, this 

manuscript will focus on Alzheimer’s disease’s impact on brain connectivity. The knowledges 

about this disease are really poor; clinically it is characterized (in order of appearance) by short-

term memory disorders, loss of language and motor skills, disorientation, confusion and long-term 

memory disorders; neuropathologically, by the accumulation of tau protein extracellular 

neurofibrillary tangles and of intracellular amyloid-β (Aβ) protein plaques. This is what causes 

neuronal loss and synaptic disruptions in specific cortical areas; and what made it being described 

as a disconnection syndrome (Buckner et al. 2005). 

In the era of big data, more and more brain images, brain signals, cognitive tests scores, 

demographic or even physiological data can be acquired from a single patient in a reasonable 

amount of time. Understanding each one of this large quantity of data is a problem in itself but 

understanding them all together is another story. In the field of brain connectivity, this can be 

translated to the use of multimodal, longitudinal, or high-resolution data. 

This thesis report will expose how multilayer complex networks framework applied to brain 

connectivity could help understanding Alzheimer’s disease’s impact and progression. I will try to 

provide the reader with the right amount of information, references and links to work with 

multimodal brain connectivity; from raw brain data to abstract graph models.   

In the first chapter, I will go through the basics of brain connectivity, presenting the widely used 

brain imaging modalities and their associated (pre-)processing steps necessary to access to a 

functional or structural connectivity estimate. I will then, in a second chapter, present a few 

formalisms from graph theory that have been applied to model brain connectivity networks. How 

                                            
1 At the time of writing, only one connectome has been fully described and is the one of a 2mm worm called Caenorhabditis 
elegans (White et al. 1986). 
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we manipulate them, what we can measure on them, and how these measures allowed us to learn 

about the brain and the impact that Alzheimer’s disease has on it. The third chapter will be 

dedicated to the multilayer topology and its application to brain connectivity; a short review of 

the literature will help the reader to identify the context in which the studies that constitute the 

three following chapters were conducted. Chapter 4  will illustrate a successful application of a 

specific type of multilayer topology called multiplex on a magnetoencephalography-based study 

of Alzheimer’s disease. Chapter 5 introduces a novel generalization of the concept of core-periphery 

structure in multiplex networks. And finally, chapter 6 apply this newly defined core-periphery 

model to the first three-modalities multiplex networks and gives new insights on the impact of 

Alzheimer’s disease on most important brain regions.





 

CHAPTER 1  
Structural and 
functional 
brain 
connectivity 
I Neuroimaging data 

A Magnetic Resonance Imaging 
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Magnetic Resonance Imaging, abbreviated as MRI, is a medical imaging 

technique based on a physical phenomenon called nuclear magnetic 

resonance (NMR). By the mean of strong magnetic fields and radio 

waves pulses that excite atoms (mostly hydrogen) present in biological 

organisms, it is possible to measure some of their NMR properties and 

deduce the nature of the tissue they are in. The obtained signals can be 

localized by small unitary volumes (in the order of 1mm3) called a voxel 

(Illustration 2). 

Repeating this operation for adjacent voxels allows to obtain a set of 

signals covering the entire desired volume. Finally, depending on the 

physical measure extracted from those signals and on the radio waves trains used to generate 

them, and on a lot of other physical conditions, a large variety of contrasts can emerge between 

the voxels allowing the creation of different 3D volumes (or scan) that are usually visualized by 

slices, i.e. 2D images. 

Among the most used MRI techniques, one can present the following ones: 

o T1- and T2-based MRI: based on their respective relaxation time (denoted !" and 
!#) needed by an excited atom to retrieve a stable state. These contrasts are the core of 
almost every clinical MRI protocol (Symms et al. 2004). 

o fMRI: functional MRI, based on the blood-oxygen-level dependent contrast 
(BOLD). 

o DWI: diffusion weighted imaging, based on the measure of the Brownian motion 
(random motion of water molecules). 

i T1- and T2-weighted MRI 

As mentioned above, these two contrasts are the basis of all MRI-based studies. T1 is mostly used 

to study normal anatomy while T2 is more appropriate to identify lesions. 

Illustration 2 Artistic 

representation of the voxels 

present in a human brain 

3D scan. 
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They are fast, thus reducing the risk of movement by the patient during the scan which makes 

them the least susceptible to image artifacts. And with a high spatial resolution, they allow to 

precisely segment the brain in to white matter (WM), gray matter (GM), and cerebrospinal 

fluid (CSF) (Illustration 4 ). A wide variety of automated segmentation techniques now exist 

(Liew and Yan 2006; de Boer et al. 2010) to deal 

with images data that are getting larger and larger2 

and for which it would take days for a trained 

anatomist to segment manually 

T1 images are also used to measure volumes of 

different brain parts, such as the hippocampus, or 

the global atrophy of the cortex by evaluating its 

thickness (Illustration 4 ). They give the reference 

3D volume on which any further scans can be 

registered to. 

ii fMRI 

Functional MRI, as its name implies, gives information about the brain activity but is not a direct 

measure of neural activation. It is based on the BOLD contrast, first described in (Ogawa et al. 

1990), that follows the blood oxygenation which itself reflects the demands in glucose, only source 

of energy of normal brain cells. 

This contrast is limited in spatial - due to long range magnetic susceptibility - and temporal 

resolution due to the slow speed of the hemodynamic response. Also, the signal changes related 

                                            
2 7T T1-weighted ultra-high resolution images can now weight more than 1 TB (Lüsebrink et al. 2017) 

Illustration 4  Segmentation of the cortex. Gray/White 

matter (yellow) and pial (red) surfaces (Fischl and Dale 

2000). 

Illustration 3 Example of a brain tumor visualization on a T1- 

and T2-weighted MRI scans. Adapted from 

http://www.startradiology.com/the-basics/mri-technique/. 
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to cerebral activation are close to the noise level which led to numerous controversial results in 

the literature, especially when they are not corrected for multiple testing (Bennett, Wolford, and 

Miller 2009). 

iii DWI 

Diffusion represent the random movements of molecules (Brownian motion). In DWI, one study 

the diffusion of water molecules, largely present in the brain cells or in the CSF, by measuring its 

magnitude in a given direction with the appropriate MR sequences.  

 

Figure 1.1 Graphical display of water molecules moving at different rates through the gray matter and cerebrospinal fluid (CSF). The 

effective distance that water molecules travel in gray matter is smaller than in CSF (represented by the magnitude of the red arrow). The 

difference in travelled diffusion distance versus time is displayed in the lower graph. The faster the molecules move, the more distance is 

travelled, the more signal loss will occur if diffusion gradients are applied. Consequently, the signal loss in the CSF is higher (hypointense) 

compared with the signal loss in the gray matter (hyperintense relative to the CSF). Extracted from (Huisman 2010). 

 

Diffusion in brain tissues can be isotropic, such as in CSF or any other liquid in which the water 

can diffuse equally easily in each direction, or it can be anisotropic, such as in white matter that 

has an internal fibrous structure favoring diffusion of water in the direction of the main fibers 

(Huisman 2010). Therefore, the DWI contrast is dependent on the direction of the applied 

gradient. 
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By repeating the acquisition of DWI volumes for different gradient 

directions (three can be enough), one can build the diffusion profile 

(which is often summarized in a tensor and represented as an 

ellipsoid, see Illustration 5) at each voxel and thus deduce the 

main direction of propagation of the water molecules, it’s called 

diffusion tensor imaging (DTI) (Peter J. Basser et al. 2000). 

From these, one can calculate various maps, such as: 

o the mean diffusivity (MD), sometimes called apparent 
diffusion coefficient (ADC), it reflects the rotationally invariant 
magnitude of water diffusion within brain tissue (Clark et al. 2011);  

o the fractional anisotropy (FA), a scalar between 0 and 1 which measures how 
asymmetric the diffusion inside a voxel is; 

o the principal diffusion direction, usually referred to as colored FA (cFA) where the voxel 
hues are reflecting the main tensor orientation (usually with red indicating transverse, 
green indicating anterior–posterior, blue indicating superior–inferior; “RGB for xyz”) and 
voxel brightness weighted by FA. 

B EEG/MEG 

Electroencephalography (EEG) and 

magnetoencephalography (MEG) are monitoring methods used 

to respectively record brain electrical fields and brain magnetic 

fields. The EEG and MEG are very close methodologies, since the 

main sources of both kinds of signals are essentially the same, i.e., 

ionic currents generated by biochemical processes at the cellular 

level (Lopes da Silva 2013). While EEG consist in a set of 

electrodes to be placed in contact with the surface of the head and 

connected to a relatively small device, MEG is a large machine 

under which the subject has to place his head, inside a magnetically 

shielded room. 

For an electric or magnetic signal to be recordable at a distance, a 

large enough assembly of neurons should activate in a coordinated way and be spatially organized. 

That is the case of a family of neurons called pyramidal cells. In order for electromagnetic fields 

to reach distant sensors, various tissues must be passed. The different layers, such as the 

Illustration 5 Visualization of DTI 

data using ellipsoids.  

Illustration 6 high resolution 256 

electrodes EEG setup  from 

http://dreamsessions.org/101artwork

s.html. 
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cerebrospinal fluid, skull, and skin, especially affect electric fields due to their different electrical 

conductivities but have less impact on the magnetic fields that are not distorted by scalp or skull 

for instance. However, the magnetic fields diminish as 1/&'	with the distance of & (Singh 2014). 

EEG and MEG are subject to the problem of source localization. In many applications it is 

important to know from where the electromagnetic signal came from. The estimation of the 

sources from the scalp fields is called inverse problem. It is ill-posed and consequently, has an 

infinite number of solutions that need to be restrained by making assumptions on the nature of 

the sources. A large number of methods exist whose details go beyond the subject of this 

manuscript; for reviews on EEG/MEG source imaging (MSI) techniques, see (Michel et al. 

2004; Grech et al. 2008; Becker et al. 2015). 

Both modalities have their advantages and drawbacks. MEG is more sensitive in detecting 

currents that are tangential to the scalp whereas EEG is sensitive for both tangential and radial 

currents. This makes MEG detecting primarily the “fissural” cortex activities (i.e. activities 

present in the sulci). MEG is said to have a better spatial resolution with 3-4cm2 on scalp and 3-

4mm when its signals are source-localized (Singh 2014). But it is also a lot more expensive than 

EEG, and has logistic constraints that could make difficult for research or clinical facilities to 

acquire it and/or run specific protocols. 

Although the human brain produces activity in a wide range of frequencies (0.5 to 500 Hz), the 

most clinically relevant activities lie below 70 Hz (normal physiological or spontaneous waves) 

and the frequency bands are alpha (8 to 13 Hz), beta (13 to 30 Hz), theta (4 to 8 Hz), and delta 

(1 to 4 Hz). (Velmurugan, Sinha, and Satishchandra 2014) 

II Structural and functional connectivity 

A Concept and motivation 

It has been shown that the human cerebral cortex is composed with distributed neural assemblies, 

densely connected and interconnected to form a large-scale cortical circuit or “web-like” structure 

(Varela et al. 2001; Boccaletti et al. 2006; Schnitzler and Gross 2005; Carter, Shulman, and 

Corbetta 2012). In that context, a connection is often said to be structural or functional.  
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The structural (or anatomical) connectivity (SC) corresponds to the physical connection 

between different brain sites. At a microscopic scale, those connections can correspond to synapses 

whereas at a more macroscopic level, when we study neural ensembles or cortex parcels, we 

observe white matter fiber pathways or tracts that are estimated using tractography algorithm 

based on DTI data (see section “Structural connectivity estimators” for more details). While this 

set of connections is quite stable at shorter time scales (seconds to minutes), it can be altered at 

longer time scales (hours and more) by a phenomenon called plasticity consisting in the 

strengthening/weakening of synapses or the remapping of cognitive functions to different cortical 

locations. These changes may be due to training (environmental stimuli), thoughts, emotions or 

injury. 

The functional connectivity is a statistical concept defining how dependent spatially distant 

neurophysiological activities are. Due to the wide variety of neural activity recording methods 

and to the fact that, for most of these methods, activities recorded at one site may be influenced 

by its surrounding neighborhood (i.e. because of volume conduction), no unified definition of 

functional connectivity exist. For voxel-based modalities, such as fMRI or PET, the studied brain 

“sites” can be a single voxel or voxels aggregates,  whereas sensor-based modalities, such as EEG 

or MEG, offer a choice between working directly with sensors or with reconstructed sources (De 

Vico Fallani et al. 2014).  

In the framework of complex networks and to understand the systemic impact of wide spread 

neurodegenerative diseases such as AD, we build an interconnected representation of the brain 

based on those two concepts, a whole brain connectivity network or more concisely a brain network 

(Simpson and Laurienti 2016). In whole brain networks the connectivity is computed between all 

possible pairs of brain voxels, cortex parcels or white matter volumes that act as the nodes of the 

network. There are usually two families of scales at which functional or structural connectivity 

brain networks are computed: voxel/vertex-level or region-level. In the former, signals and images 

are kept in their thinner spatial resolution possible - the voxel in the case of MRI-based data, and 

the vertex or the sensor in EEG/MEG data. At this scale, the signals may be noisy or suffer from 

reconstruction algorithms limitations. Moreover, dealing with millions of time series might be 

computationally challenging. In the latter family of scales, time series or white matter tracts are 

aggregated in small brain regions following a brain parcellation. 
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B Brain parcellation 

The choice of a parcellation is an important one, it will determine the number of nodes that the 

brain networks will be composed with, and thus the granularity of the brain connectivity profile. 

Grouping together cortex sub-parcels with opposite behaviors (functional or structural) into one 

single entity might generate, by average, a cancelation of its contribution in the whole network. 

Brain parcellation is a real topic of research, as can attest the number of papers gathered in the 

past year by a single review by Craddock, Bellec, and Jbabdi (2018). This special issue reviews 

all the latest methods related to this domain going from cytoarchitecture-based manual 

parcellation to fully automated whole brain segmentation using deep learning. The importance of 

this aspect of brain connectivity is such that the well-known MICCAI international conference 

organized a challenge on this topic in 2013: MRBrainS (http://mrbrains13.isi.uu.nl/,  Mendrik et 

al. 2015) 

A large panel of brain parcellation methods exist, but the most commonly used in the field on 

brain networks can be divided in two categories; anatomy- or connectivity-based parcellation. 

i Anatomy-based parcellation 

Traditionally, anatomical brain atlases or templates are used to define regions of interest 

(ROIs), i.e. the nodes of the whole brain network. These atlases are derived from anatomical 

landmarks, cortex curvatures, or cytoarchitectonic3 information. Then, the standard pipeline is 

the following: one or more subjects’ anatomical images (usually T1) are manually parcellated, and 

registered onto the average brain in order to obtain a template brain. All new subject is then 

registered on this template which propagates its region labels onto the subject’s brain in order to 

parcellate it (de Reus and van den Heuvel 2013). 

                                            
3 Architecture of neural cells 
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Illustration 7 Example of the Desikan-Killiany anatomical parcellation. 34 ROIs are delineated on each hemisphere based, 

mainly, on local curvature. 

For example with the Desikan-Killiany atlas (Desikan et al. 2006) the procedure was to 

manually parcellate the cortical surface of 40 brains coming from various profiles (different sex, 

age, condition) based on heterogeneous information including: standard conventions, previous 

atlas definitions, and local curvature. They generated an atlas by mean of a registration - i.e. the 

cortical folding patterns alignment - and probabilistic assignment of a label to each vertex of the 

cortical surface. 34 parcels on each hemisphere. A similar process was also used for the Destrieux 

atlas (Christophe Destrieux et al. 2010) which is based on the work of (Duvernoy 1999) and 

ended up being composed with 148 ROIs. Both of these parcellation can be automatically 

generated using the largely distributed FreeSurfer software 

(https://surfer.nmr.mgh.harvard.edu/) making them ones of the most used anatomical 

parcellations. 
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The Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al. 2002) is another widely 

used brain parcellation also based on cortical curvature and standard nomenclature but it has the 

following advantages: (i) it is freely available inside the SPM software (Litvak et al. 2011); (ii) 

it provides a volumetric parcellation (and not only a parcellation of the cortical surface) adapted 

for fMRI-based functional connectivity; (iii) it has been defined directly in the MNI space4 from 

the high resolution Colin275 brain; and (iv) the number of ROIs (or AVOI, as described in the 

paper) is particularly suited for a brain connectivity analysis at reasonable scale. 

 

Illustration 8  Regions of interest of the AAL atlas (Tzourio-Mazoyer et al. 2002), drawn on axial 1-mm-thick T1 MNI single-

subject slices (only one slice every 4 mm is reproduced). Values on the lower right of each slice indicate the stereotaxic z coordinate 

in millimeters (from ) = 75 to ) = 19	mm). 

                                            
4 The MNI space consists in the average of 305 (then 152) T1 brain scans linearly transformed to the Talairach stereotaxic 
template. 
5 T1 brain template computed as the average of the 27 scans of a single young man. After a non-linear registration to the 
MNI305 space, this template has been adopted by many standard software e.g., AFNI (Cox 1996); Brainstorm (Tadel et 
al. 2011); SPM (Litvak et al. 2011); Fieldtrip (Oostenveld et al. 2011). 
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Illustration 9 Regions of interest of the AAL atlas (Tzourio-Mazoyer et al. 2002), drawn on axial 1-mm-thick T1 MNI single-

subject slices (only one slice every 4 mm is reproduced). Values on the lower right of each slice indicate the stereotaxic z coordinate 

in millimeters (from ) = 13 to ) = −43mm). 

This parcellation method have some limitations. First, inter-individual anatomical variability 

(Zilles et al. 1997; Destrieux et al. 1998) which remains from 9 to 18 mm, depending on the brain 

regions considered (Thompson et al. 1996). Second, the heterogeneity of structural and/or 

functional connectivity inside each macroscopic brain parcels. For example, the works of Margulies 

et al. (2007) and Beckmann, Johansen-Berg, and Rushworth (2009) showed respectively that 

structural and functional connectivity in the anterior cingulate (AAC) was highly heterogenous 

thought it was typically represented as a single ROI (in AAL for instance, Arslan et al. 2018). 

ii Connectivity-based parcellation 

The common concept between most of the connectivity-based parcellation (CBP) algorithms is to 

cluster vertices or voxels of the brain images/signals based on a  local similarity measure such as 

Pearson’s correlation, Euclidian distance, etc.; or on a global metrics such as Newman’s 

modularity (see Chapter 2 for more details), using various unsupervised clustering algorithm such 
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as k-means, hierarchical clustering (Ward Jr. 1963) or spectral clustering. A spatial constraint is 

usually added such that only neighboring clusters or voxels/vertices can merge into one single 

cluster. Most CBP are single-subject’s parcellations; their scan-to-scan reproducibility, thus, 

cannot be assured. But being directly obtained from the underlying data, they can provide much 

more coherent parcels for subsequent connectivity analysis. 

 

Illustration 10 Typical example of connectivity-based parcellation procedure from Blumensath et al. (2013). After preprocessing, 

clustering proceeds in four steps. In step (1) a slightly smoothed stability map is computed (black: more stable, red: less stable). 

Local optima are identified in step (2). The locations of these optima will be the seed regions used in the next step. In step (3) 

the seeds are grown into disjoint clusters, giving the finest clustering. Finally, in step (4), a spatially constrained hierarchical 

clustering method builds a cluster tree, giving not only a single parcellation, but an entire spectrum of parcellations at different 

resolutions (only one of these is shown here). 

There is a growing list of exhaustive reviews specifically treating the subject of CBP: Eickhoff et 

al. (2015), Thirion et al. (2014), and de Reus and van den Heuvel (2013). 

“Importantly, no single package permitting CBP is, to the best of our 

knowledge, openly distributed at the moment. Rather, it seems that 

different research groups perform CBP analyses based on their own 

script library, in-house databases, and laboratory setups. However, 

sharing of code implementations and international collaboration on 

its successive improvement will hopefully contribute towards a widely 

accepted software infrastructure (cf. Pradal, Varoquaux, and 

Langtangen 2012).”  

Eickhoff et al. (2015) 
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CBP algorithms have been evaluated again this year by Arslan et al. (2018) which associated to 

their paper a website (https://biomedia.doc.ic.ac.uk/brain-parcellation-survey/) that lists some 

links to some of the source codes used to generate the parcellations and a GitHub repository 

containing all the scripts used to evaluate the 24 parcellations as depicted below. 

 

C Connectivity estimators 

Once the nodes of the brain network are chosen, depending on the modalities available, you can 

define the links between them using a connectivity estimator.  

i Structural connectivity estimators 

Structural connectivity almost exclusively refers to a quantification of the white matter fiber 

tracts density or quality computed using tractography algorithms on DWI images. A 

tractography algorithm can be divided in two steps: (i) the local modeling, which defines at each 

voxel the distribution of directions of propagation; and (ii) the fiber tracking that uses this local 

information to build 3D trajectories called streamlines or fiber tracts (Yo et al. 2009; Khalsa 

et al. 2014). 

Two types of local models exist: the one, most common, describing a single main fiber orientation 

of whiter matter inside each voxel, known as the diffusion tensor model (DT, P J Basser, Mattiello, 

and LeBihan 1994); and those capturing multiple fiber orientations such as the multiple tensor 

model (Tuch et al. 2002), 2-ball imaging (QBI, Tuch et al. 2003), diffusion spectrum 

imaging (DSI, Cohen Veterans Bioscience n.d.), [constrained] spherical deconvolution 

(Tournier et al. 2004; Tournier, Calamante, and Connelly 2007), etc. (review by Alexander 2005; 

Lazar 2010). The former type of methods has been proven limited since it cannot capture 

crossing/kissing/fanning/branching fibers inside a single voxel (Seunarine and Alexander 2014; 

Jones 2010). 
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Illustration 11 Comparison of DTI, QBI, and Nieuwenhuys Atlas.(Tuch et al. 2003) 

Some of those advanced methods may require specific DWI sequences with, for example, a set of 

different 3 -values6 , high 3 -values (3 > 3000s/mm2	), or many gradient encoding directions 

(8enc > 60) such as models based on high angular resolution diffusion-weighted imaging (HARDI, 

Tuch et al. 2002). These setups may lengthen the time necessary for a scan, thus, making them 

not suited in clinical environments where young, diseased or old patients cannot support long 

periods inside an MRI scanner. 

After the local modeling, the fiber tracking algorithm allows to estimate fiber tracts. The 

algorithms usually work as follow: a seed voxel is randomly chosen within a subset of possible 

voxels to start from, then a streamline starts to grow by making steps towards either (i) the most 

probable direction as dictated by the local model of the voxel in question - this is called 

deterministic tractography - or towards (ii) a direction sampled from the local fiber orientation 

                                            
6 The 3-value is a factor that reflects the strength and timing of the gradients used to generate diffusion-weighted images. 
(“B-Value Diffusion” n.d.) 
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distribution (FOD) - this is probabilistic tractography. The most common deterministic 

tractography algorithms are FACT for Fiber Assigned by Continuous Tracking (Mori et al. 1999) 

or the streamline tracking algorithm (Peter J. Basser et al. 2000).  

In practice 

In order to compare all the variety of different preprocessing pipelines and tractography algorithm, 

a first initiave called FiberCup (Fillard et al. 2011) tried to define a common framework under 

the form of a challenge. More recently, Maier-Hein et al. (2017) reviewed 96 methods of 

tractography and associated a standalone tool to evaluate new submission 

(http://tractometer.org/).  

Another interesting initiative is the gathering of HARDI-based methods in a MATLAB® toolbox 

(“NeuroImageN - High Angular Resolution Diffusion Imaging (HARDI) Tools” n.d.). 

Once the set of tracts (or tractogram) is generated, different connectivity measures allow to 

quantify the strength of the connection between two ROIs. The most common one is known as 

number of streamlines (NOS) and simply counts the number of generated fiber tracts connecting 

the two sets of voxels/vertices, i.e. starting in ROI = to finish in ROI >. Some other estimators use 

the length of the fiber tracts as a factor of the weight (Hagmann et al. 2008), and/or normalize it 

by the size (area, number of vertices/voxels) of the connecting ROIs. One can also weight the 

connection based on its probability (for probabilistic tractography-based methods), or on the 

fractional anisotropy (FA) of the voxels it’s crossing. 

ii Functional connectivity estimators 

The standard approach in functional connectivity is to estimate a statistical dependency between 

time series averaged inside each previously define ROI. Functional connectivity estimators can be 

linear/nonlinear, bivariate/multivariate, in the time/frequency domain or even based on 

information theory.  

The simplest, linear, is the cross-correlation, especially and widely used in fMRI-based 

connectivity analyses (introduced by Cao and Worsley (1999) discussed by Zalesky, Fornito, and 

Bullmore (2012) and Hlinkaa et al. (2011)). Another similar measure is the (sometimes called 

magnitude-squared-, spectral-, or phase-) coherence equivalent to the cross-correlation, but in 
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the frequency domain. It captures linear time-invariant relationship between two time series by 

resulting a coefficient between 0 and 1; 0 meaning no linear relationship, and 1 meaning that one 

time series can perfectly predict the other in a linear way, independently of the phase difference 

as long as it doesn’t change through time (i.e. time-invariant) (Sun, Miller, and D’Esposito 2004). 

Coherence is function of the frequency and is usually averaged by frequency bands that have a 

neurophysiological meaning; making it the preferred connectivity measure for wide frequency 

range brain recordings (typically EEG and MEG). The phase lag index (PLI, by Stam, Nolte, 

and Daffertshofer (2007)) that works as a phase synchronization quantifier or the wavelet 

correlation and its multiresolution nature (Bullmore et al. 2004; Achard et al. 2006) are also 

adapted to time series of neural activities. 

 

Illustration 12 Illustration of coherence as a measure of the linear time-invariant relationship between two time series. In this 

simulation, the same model of neural activity is linearly convolved with two different models of the hemodynamic response 

function. The correlation coefficient of the resulting time series is 0.52, which is low compared to the coherence in the bandwidth 

of the hemodynamic response function (HRF). Within the bandwidth of the model HRF, coherence is near 1, and above the 

HRF bandwidth, coherence is near 0. (Sun, Miller, and D’Esposito 2004) 

Granger causality is very well appreciated for its directed aspect. Indeed, the granger causality 

evaluates differently the connection from node = to node >, from the one from > to =. It is said that 

= causes > if the past information contained in the signal of = helps in predicting the signal of >. 

Many other dependency estimators exist such as the directed transfer function (DTF, by 

Kaminski and Blinowska (1991), the phase locking value (PLV, by Lachaux et al. (1999)), the 

partial directed coherence (PDC, by Baccalá and Sameshima (2001)), the synchronization 

likelihood (SL, by C. J. Stam and van Dijk (2002)), or the imaginary part of coherency 

(Nolte et al. 2004). And novel methods based on deep learning are also appearing (Y. Wang et 

al. 2018). Colclough et al. (2016), Sakkalis (2011) and Jalili (2016) reviewed some of the 

connectivity estimators and discussed the binarization methods.  



 

CHAPTER 2  
Complex brain 
networks 
I Brain network as a graph 

A set of connectivity coefficients for each pair of ROIs can be stored in a 8 ×8 matrix, with	8 

the number of ROIs, called an adjacency matrix @ = ABCDE, ∀=, > ∈ 1. .8 , where BCD  is the 

connectivity coefficient (or weight of connection) between ROI = and ROI >. It can be represented 

as a fully connected graph of 8 nodes, and 8 × (8 − 1) directed (or L×(LM")
#

	undirected) edges 

weighted by their corresponding coefficient in @. Basic operations on @ are (i) the thresholding 

that allows to remove weak links that may be spurious and due to noise in brain signals and 

images; (ii) binarization that can be useful when the strength of a link does not really make 

sense (such as in structural connectivity analysis where you could simply be interested if there is 

a connection or not) nor directly reflect the real physiological phenomenon (iii) symmetrization, 

less usual, permits the conversion of directed to undirected links, when the direction of the 

connection is not of interest after a wrongly chosen connectivity estimator. 

Thresholding generates information loss, but is often adopted to remove spurious links, reduces 

the false positives rate, and simplify the resulting network topology. It may be absolute, or 

proportional; it is, in many cases, arbitrarily chosen. While some studies analyze networks across 

broad range of thresholds, a recent study have attempted to estimate a priori an optimal threshold 
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value based on topological hypotheses (De Vico Fallani, Latora, and Chavez 2017), or other more 

standard methods filter networks based on the statistical significance of each link (Gourévitch, 

Bouquin-Jeannès, and Faucon 2006; Toppi et al. 2012; Craddock et al. 2013) which again depends 

on an arbitrarily chosen “significance” threshold. There exists other network filtering techniques 

that try to somehow optimize the topology of the network, such as by extracting the minimum 

spanning tree (MST) or minimum connected component (MCC),  defined respectively as 

the subgraph minimizing the summation of link weights without forming any loops and the 

subgraph removing the weakest edges as soon as all the nodes are not disconnected from the main 

component (Vijayalakshmi et al. 2015; Jalili 2016). 
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Illustration 13 Visual representations of brain networks’ adjacency matrices and their associated graph after standard 

connectivity estimation and manipulation. Each rows and columns representing nodes and matrix entries representing links 

weighted by a connectivity estimator. Most of the connectivity estimators allow to start with a fully-connected and weighted 

network (top row) that are often reduced to sparse binary undirected form (bottom row) through thresholding, binarizing, and 

symmetrizing (Rubinov and Sporns 2010).  

Binarizing and symmetrizing also generate great loss of information but also facilitate a lot the 

analysis, with in practice, a decreased computation time and power necessary for every operation 

(including visualization), simple graph metrics and more easily defined null-models for statistical 

comparisons (see below). 
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II Graph analysis tools 

A Graph metrics 

The brain networks topology can be quantified by metrics coming from graph theory. These are 

often segmented in function of the scale of the entity they are describing, that might be a single 

node, the local scale; a group of nodes (or modules), the mesoscale; or the whole network, the 

global scale. 

Starting with local measures, the most standard is the node degree 	dO which is the number of 

nodes to which a given node is connected and can mathematically written as follow: 

PC =QRCD
DSC

, 

where RCD are the entries of the binarized adjacency matrix (zeros or ones). The degree reflects 

the centrality, i.e. the importance of a node in comparison with all the other nodes of the network. 

A lot of network metrics are derived from this first one, including the network density ρ or 

normalized average degree: 

U =
1

8 − 1
× PV =

1
8 − 1

×
1
8
QPC
C

, 

With PV the average node degree, U is comprised between 0 for disconnected networks and 1 for 

fully-connected networks (normalized by 8 − 1, the maximum degree of a node). Note that global 

measures are usually averaged versions of local measures across the whole set of nodes. 

i Functional integration metrics 

such as for the global efficiency E, which is inversely proportional to the average shortest path 

length: 

X =
1
8
QXC
C

=
1
8
Q

1
8 − 1

×
1

∑ ZCDDSC
,

C
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With ZCD the shortest path length between node	= and node	> and XC the efficiency of node	= (local, 

but different from the “local efficiency” of node	=, see below). This measures how globally efficient 

a network is in the sense of connecting distant nodes together. Global efficiency is related to 

another measure based on shortest paths called characteristic path length (Watts and 

Strogatz 1998): 

[ =
1
8
Q[C
C

=
1
8
Q

∑ ZCDDSC

8 − 1
C

, 

Where [C is the average distance between node = and all other nodes (local).  

These two latter measures reflect the functional integration of the concerned network. Functional 

integration is the brain’s ability to combine (integrate) information from distributed (long 

distance) brain regions. Here the distance definition depends on the type of brain network in 

question; it could be structural, functional or even metric if, for instance, your distance ZCD is 

defined as the physical distance separating two brain region’s centroids based on a structural 

connectivity-based network topology. Though, the relationship between X, [  and functional 

integration should be taken with care as highlighted by Achard and Bullmore (2007) and Estrada 

and Hatano (2008) since they do not take into account the redundancy of paths (and their length, 

longer than or equal to the shortest ones) connecting pairs of nodes. 

Other local measures make use of the shortest paths in order to characterize the centrality of a 

nodes or edges, they are called node betweenness centrality NBCO and edge betweenness 

centrality EBCO_ respectively and represent the number of all-to-all shortest paths making use of 

a given node or edge respectively. They can be defined as follow: 

8`aC = Q
Γcd(=)
ΓcdcSCSd

, 

and, 

X`aCD = Q
ΓcdefCDg
ΓcdcSd

, 

where Γcd is the number of shortest paths between node h and i, Γcd(=) the number of these paths 

making use the node =, and Γjk(fCD) those making use of the edge between node = and >. 
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ii Functional segregation metrics 

We say that the brain is functionally segregated if groups of brain regions are densely 

intraconnected but sparsely interconnected. Those groups of nodes are called modules, clusters, 

rich-club, core or community structure and can be quantified using the following metrics. 

First, the clustering coefficient C, which is the fraction of the node’s neighbors that are directly 

connected to each other (Watts and Strogatz 1998); or put differently, the number of triangles a 

given node belongs to over the total number of triangles it could belong to. 

a =
1
8
QaC
C

=
1
8
Q

2!C
PC(PC − 1)C

, 

Where !C	is the number of triangles around node = and could be written as !C 	=
"

#
∑ RCDRClRDlD,l , 

and aC is the (local) clustering coefficient of node =. A variation of the clustering coefficient that 

stays in a similar spirit is the local efficiency Eloc (different from the local version of the 

efficiency EO, that measures how close a node is from any other nodes of the network). This one 

characterizes, like the clustering coefficient, and unlike the global efficiency, only the neighborhood 

of a given node i but instead of looking at direct connections between them, it puts emphasis on 

the length of the shortest path linking them. 

Xloc =
1
8
QXloc,C
C

=
1
8
Q

∑ ZDpM"D,p∈qr

PC(PC − 1)C

, 

Where sC is the subgraph containing all the neighbors of =, but not =. For an extensive comparison 

between a, X, Xloc, and [, see the work of Latora and Marchiori (2003).  

The segregation in a network can also be characterized globally through the concepts of 

community structure and modularity. The range of algorithms used to divide a network into 

partitions of densely connected nodes that are sparsely connected together is vast and complex 

but a majority of them are based on the modularity index Q (Newman 2004, 2006) defined as 

follow: 

t	 = 	Q u2vv − wQ2vx

y

xz"

{

#

|
y

vz"

, 
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With } the number of modules and 2vx	the proportion of all links connecting nodes in module 

~ with those in module �. Finally, the participation coefficient PC, based on a previously 

computed partition of modules, evaluates how evenly distributed the connections of a given node 

are across module. It is defined as follow:  

ÄaC = 1 − Q Å
PC(~)
PC

Ç
#y

vz"

, 

With PC(~) the number of connections the node = with nodes belonging to module ~. 

iii Other metrics 

All the metrics presented above have been described in the context of a binary adjacency matrix, 

i.e. an undirected unweighted network, but adaptations exist for both directed and weighted 

networks. Also, a lot of other graph metrics exist, but I presented here the most useful ones for 

brain connectivity analysis, or at least, the most common. 

In practice 

Jalili (2016) reviewed a set of networks measures useful in brain connectivity analysis. And 

Rubinov and Sporns (2010) made an amazing work in summarizing a large number of metrics for 

which they provided source codes in their MATLAB® brain connectivity toolbox 

(https://sites.google.com/site/bctnet/) along with graph manipulation algorithms such as null 

models generation or thresholding. For Python users, the networkx library is now a standard 

and efficiently implemented a large number of metrics 

(https://networkx.github.io/documentation/networkx-1.10/reference/algorithms.html). 

B Null-hypothesis networks 

Since most of the network measures indirectly depends on basic topological attributes such as the 

number of nodes, the number of edges or the degree distribution which themselves depend on the 

parcellation and/or connectivity estimator; comparing two networks extracted from different 

subjects, or even different machines become difficult. Therefore, significance of network indices 

must be computed against null-hypothesis networks, i.e. random networks that share the 
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topological attributes of the original one but are not supposed to expose any specific behavior 

that could be captured by the index in question. 

 

Figure 2.1 Strategies for generating null networks. Strategy I: time series randomization. Strategy II: correlation matrix 

randomization. Strategy III: topology randomization (e.g. random rewiring). É denotes the network measure calculated for the 

observed network, while É
null

 denotes the same network measure averaged over the ensemble of null networks. Adapted from Zalesky, 

Fornito, and Bullmore (2012).  

Different strategies are presented in Figure 2.1, at different steps of the brain connectivity 

network creation pipeline. Each of them has their advantages and pitfalls, but a common approach 

is to randomly rewire (strategy III) the final networks while preserving the degree distribution. 

While this method’s algorithm is quite simple for binary networks, it might become theoretically 

and computationally complex for weighted and/or directed networks. The only - probably obvious 

- rule is to choose a null model for which the original network topology does not have any influence 

from the point of view of the metric of interest; or, on the contrary, a null-model that greatly 

impact a metric. For example, time series randomization would generate networks with different 

densities if analyzed using a fixed threshold value; then studying a metric that depends on shortest 

path lengths would not make much sense since sparser (resp. denser) networks would have much 

more probability to have longer (resp. shorter) path lengths. 

III Known characteristics of brain networks 

A Small-world topology 
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The concept of small-world comes from a social experiment known as the Milgram paradox 

(Travers and Milgram 1969) stating that two people, from anywhere in the world, are separated 

by a small number of intermediates. Put differently, in the world’s social network, where nodes 

are people and links are relationships, the characteristic path length is small (around six, according 

to experiments that followed Milgram’s). This phenomenon was studied through the lens of 

complex networks by Watts and Strogatz (1998), by mean of randomization of a lattice network, 

and latter quantified thanks to a small-worldness index S (Humphries, Gurney, and Prescott 

2006) defined as follow: 

Ö =
a/arand
[/[rand

, 

Where a and [ are the clustering coefficient and the characteristic path length as defined in 

section “Graph metrics”. arand and [rand are the same measures for equivalent random networks 

with an identical number of nodes 8 and identical density U. A network is considered to have a 

high small-worldness when its characteristic path length is significantly shorter than for equivalent 

random networks and have, in the same time, a higher clustering coefficient than by random. 

Thus, it should be a balance between integration and segregation to be robust to single-node 

failures while keeping a cost-efficient propagation of information thanks to smartly distributed 

shortcuts (Bassett et al. 2006). 

Human (and other mammalian) structural brain networks extracted from DWI have high-degree 

nodes, or hubs, and modular structure giving it small-world networks properties (Bullmore and 

Sporns 2009; Hagmann et al. 2007; Heuvel and Sporns 2011). This result has also been 

demonstrated in functional brain networks.  

Bassett and Bullmore (2017) review the latest advances on this concept of small-world network 

and put emphasis on its generalization to weighted networks that carry much more information 

than the old simple but still popular unweighted/binary network model of the brain. In particular, 

it draws attention on weak connections that may play an important role in brain connectivity of 

both healthy and diseased. 

B Default mode network 
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The default mode network (DMN) was observed by Shulman et al. (1997) who noticed a set 

of brain regions whose activity was reduced when performing non-self-referential, goal-directed 

tasks as compared to a control state of quiet rest or simple visual fixation. It was originally 

measured using positron emission tomography (PET) imaging7 (Raichle et al. 2001), where 

the “activity” was defined as an increase of the oxygen extraction fraction (OEF), a ratio of 

oxygen consumed to oxygen delivered. But this effect can be detected in standard fMRI scans, 

even though the relationship between blood-flow and oxygen consumption may not be completely 

evident (Raichle and Mintun 2006).  

In AD, relationships between amyloid-β (Aβ) deposition and the DMN have been observed 

(Buckner et al. 2005; Vlassenko et al. 2010; Mormino et al. 2011) as shown in Figure 2.2. 

Buckner, Andrews-Hanna, and Schacter (2008) mention the possibility that activity in the default 

network augments a metabolic cascade that is conducive to the development of Alzheimer's 

disease. 

The brain can also expose other more or less identified sub-networks such as visual, sensorimotor, 

auditory, ventral and dorsal attention, and executive control (Raichle 2010; Betzel et al. 2014). 

A recent paper from Raichle (2015) himself retraces the history of the DMN and its impact on 

the literature. 

                                            
7 PET is a functional imaging technique used to visualize metabolic processes in the body. It measures gamma-rays emitted 
by a position-emitting radioactive isotope usually embedded on an analogue of glucose molecule (called fludeoxyglucose) 
that serves as radiotracer. This allows to indirectly obtain 3D images of energy (i.e. glucose) consumption in the body by 
triangulating gamma-rays emission and evaluating the radiotracer concentration. 
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Figure 2.2 Convergence and hypothetical relationships across molecular, structural, and functional measures. This figure shows 

how default activity (DMN) pattern in young adults is highly similar to those of amyloid deposition in older adults with AD. 

Extracted from Buckner et al. (2005) 

C Structural rich-club 

A few studies have tried to identify hub 

regions in structural brain networks. Hubs 

are central nodes sharing high degree, 

strength and/or betweenness centrality. 

Hagmann et al. (2008) mapped whole brain 

structural pathways (between 8 = 998 

ROIs) of five participants using diffusion 

spectrum imaging (DSI) followed by a 

tractography and found evidence for the 

existence of a structural core composed of posterior medial and parietal cortical regions that are 

densely interconnected and topologically central (see Figure 2.3). They emitted the hypothesis 

that those regions may play an important role in information integration and showed that the 

strengths of structural connections were highly predictive of the strengths of functional 

connections. 

Figure 2.3 Average network core after the k-core decomposition 

of five subjects’ binary connection matrix. Adapted from 

Hagmann et al. (2008). 
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Figure 2.4  s-core decomposition of cortical regions. Adapted from Heuvel and Sporns (2011). 

Few years later, Heuvel and Sporns (2011) confirmed those results by proving the existence of a 

rich-club organization8 of the human connectome and overlapping its result with previous studies 

by identifying bilateral precuneus, superior frontal and superior parietal regions as part of the 

structural core of the brain (see Figure 2.4 ). 

D Known characteristics of brain networks in health and AD 

Alzheimer’s disease is associated with a loss of small-world features, decreased nodal centrality in 

higher order association areas and abnormal community structure (Yu, Engels, Hillebrand, van 

Straaten, et al. 2017). 

An extensive literature now exist about changes in brain connectivity due to Alzheimer’s disease 

(for reviews see Tijms et al. 2013; Cornelis J. Stam 2014; Fornito, Zalesky, and Breakspear 2015; 

Jalili 2016).  

                                            
8 Rich-club is a set of nodes more densely connected among themselves than nodes of a lower degree. 
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Table 1 Previous studies reporting abnormalities of functional brain networks in AD. APL: Average Path Length, 

CC: Clustering Coefficient, GE: Global Efficiency, LE: Local Efficiency. Reproduced from (Jalili 2016) 

Study  Brain 

signal  

Connectivity 

measure  

Binarization  Findings  

Seo et al. (2013) PET  Correlation  Density  Decreased CC and no change in APL  

de Haan et al. (2012) MEG  Synch Likelihood  NA  Decreased modularity in lower bands 

and increased modularity in higher 

bands  

C. J. Stam et al. (2007) EEG  Synch Likelihood  Threshold/Density  Increased APL and no change in CC  

Willem de Haan et al. 

(2009) 

EEG  Synch Likelihood  Density  Decreased CC in alpha and beta bands 

and decreased APL in alpha and gamma 

bands  

Afshari and Jalili 

(2017) 

EEG  Coherence  Density  Decreased GE and increased LE in alpha 

and beta bands  

Supekar et al. (2008) fMRI  Correlation  Threshold  Decreased CC  

Zhao et al. (2012) fMRI  Correlation  Density  Increased LE and decreased GE  

Ciftçi (2011) fMRI  Coherence  MST  No change in the degree distribution  

Sanz-Arigita et al. 

(2010) 

fMRI  Synch Likelihood  Threshold/Density  Decreased APL and no change in CC  

C. J. Stam et al. (2009) MEG  Phase Synch  NA  Decreased CC and APL in alpha band  

Brier et al. (2014) fMRI  Correlation  Density  No change in APL and reduced CC and 

modularity  

Li et al. (2013) fMRI  Correlation  Threshold  Decreased GE and CC  

J. Wang et al. (2013) fMRI  Correlation  Threshold  Increased APL  

 





 

CHAPTER 3  
Beyond the 
single-layer 
network 
I Introduction 

Networks and complex systems in general never are isolated, they evolve in contact with other 

networks, at different space and time scales. An evocative example would be transportation 

networks; embedded in space, an almost infinite number of network representation of human 

mobility could be superimposed; from subway stations network to airports without forgetting the 

good old road maps… Studying all of them in a single framework could be of interest. If we 

continue with our example, estimating the time necessary to go from the Eiffel Tower in Paris, 

France to a beach in Melbourne, Australia, would probably require to compute the shortest path 

on a metro, RER, planes, and a road network combined. In a network of networks, or a multilayer 

network. 

Multilayer networks have really attracted attention only recently, most papers were published a 

couple of years before the beginning of my PhD thesis. De Domenico et al. (2013) started with 
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the mathematical formulation of it and first reviews on the subject appeared one year later, with 

Kivelä et al. (2014) and Boccaletti et al. (2014). As highlighted by Kivelä et al. (2014), there still 

is lack of a consensus on a set of terminology for studying multilayer networks. I will use in this 

report, the definition of multilayer network and multiplex given by De Domenico et al. (2013) 

where the set of networks (or layers) all have the same number of nodes, and where a node = from 

layer ℎã can be connected to any other node > in any other layer Pã. A multiplex network is a special 

type of multilayer network in which the only possible types of interlayer connections are ones in 

which a given node is connected to its counterpart nodes in the other layers. 

In neuroscience, the application of multilayer networks is expected, due to the large panel of types 

of brain connectivity networks. An obvious example is the interdependence of structure and 

function in the brain. The fact that structure supports function could be abstracted using a 

multilayer network model (Simas et al. 2015; Chapter 5; Chapter 6, De Domenico (2017) called 

it structural and functional decomposition. Functional brain networks are constantly 

evolving with time, especially during task; combining functional networks sampled in time could 

be a solution to study them all at once while keeping the whole set of information at disposal 

(Betzel and Bassett 2017; De Domenico 2017). This decomposition is called task-based 

decomposition. Finally, it has been of common usage to study synchronizations of brain regions 

at different frequency bands, leading to another different set of functional networks that could be, 

again, somehow linked together in a multilayer network (Chapter 1; Brookes et al. 2016; Buldú 

and Porter 2017; De Domenico, Sasai, and Arenas 2016), it is the frequency-based 

decomposition. 
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Figure 3.1 (a) A multilayer network consists of different networks encoded by layers, each one represented by a (possibly directed 

and weighted) adjacency matrix. (b) Common representation of multilayer networks generally known as supra-adjacency matrix. 

Adapted from De Domenico et al. (2013) 

Buldú and Papo still call its application to brain connectivity a terra incognita. 

“[…] a series of fundamental problems arise with this new approach, 

which make the interpretation of multilayer brain networks a terra 

incognita that will need to be explored in the near future.” 

Buldú and Papo (2018) 

II Generalization of graph metrics 

More and more single-layer graph metrics (as presented in 0) find their equivalent in multilayer 

settings. As mentioned above, community detection, an important feature for brain network, has 

been generalized by Mucha et al. (2010) that first need some clarification on the multilayer 

formalism. 

In the following formulas, I will try to use script letters for indices and metrics relative to 

multilayer networks, whereas standard letters will be kept as defined in previous chapters, for 

monolayer networks. 

Let’s assume that our ℒ-layers network is fully described by its supra-adjacency matrix  
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where @[ℓ] = ñRCD
[ℓ]ó, ∀=, > ∈ 1. .8, ∀ℓ ∈ 1. . ℒ is the adjacency matrix of layer ℓ containing the set of 

intra-layer edge weights and a[òℓ] = ñôCD
[òℓ]ó, ∀=, > ∈ 1. .8, ∀ò, ℓ ∈ 1. . ℒ the coupling matrix between 

layers ò and ℓ containing inter-layer edges weights. Then, the strength of node = in layer ℓ can 

be defined as öC
[ℓ] = õintra,C

[ℓ] + õinter,C
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[ℓ] = ∑ RCD
[ℓ]

D  the standard strength of node = in the 

isolated layer ℓ network, and õinter,C
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[òℓ]
Dò  the inter-layer strength of node = (in multiplex 

networks, ∀ò, ℓ ∈ 1. . ℒ, > ≠ = ⇒ ôCD
[òℓ] = 0). 

Then, on can define the multilayer modularity objective function as follow: 
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where: 

o ° = "

#
∑ öCòOò  is the total weights sum of the network; 

o £ò is the structural resolution parameter of layer ò; 

o Rnull,CD
[ò]  is the weight of the edge linking node = and node > in layer ò of the null-model 

multilayer network9; 

o §(R, 3) = ñ1 if R = 3
0	if	R ≠ 3

 is the Kronecker symbol; 

o ßC
[ò] is the community assigned to node = in layer ò. 

In order to study more basic segregation motifs, one can use the generalization of the clustering 

coefficient to the multiplex topology (Battiston, Nicosia, and Latora 2014): 

©C," =
∑ ∑ ∑ RCD

[ℓ]RDD™
[ò]RD™C

[ℓ]	DSC,D™SCòSℓℓ

(ℒ − 1)∑ PC
[ℓ]¶PC

[ℓ] − 1®ℓ

 

                                            
9 Here the null-model type is left to the appreciation of the user. 
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Note that this version of the 

metric is based on the counting 

of two-triangles ¶RCD
[ℓ]RDD™

[ò]RD™C
[ℓ]® , 

i.e. triangles spanning over two 

layers. Another metric ©C,#  is 

counting the three-triangles and 

may be suited, for instance, 

sparser networks. Note also that 

it was defined for binary 

multiplex networks but does not take advantage of the inter-layer links which may be convenient 

when there is no real motivation in using them or when their weight is arbitrary chosen. 

Motifs (Battiston et al. 2017) and other metrics, such as the multi-participation coefficient (used 

in Chapter 1) or the multiplex coreness (introduced in Chapter 5 and used in Chapter 6) have be 

developed. For a brief review on the multilayer graph metrics, see recent work of Mandke et al. 

(2018).  

III Multilayer brain networks topologies 

A Multifrequency brain networks 

As explained before, electrophysiological signals or BOLD signals are usually analyzed by 

frequency-bands, generating one functional brain connectivity network per frequency-band. With 

the arrival of the multilayer framework, we could combine those networks into one single 

mathematical object. To my knowledge, six studies explored this track so far, including ours. 

First, Brookes et al. (2016), constructed frequency-based full multilayer networks from MEG data, 

in which each layer includes the interactions in a given frequency band, and weighted interlayer 

links the cross-frequencies interactions; all by using signals envelopes correlation. They showed 

that the corresponding supra-adjacency matrices (which encode a linear-algebraic representation 

of connections in a multilayer network, see Figure 3.2) convey statistically significant differences 

when comparing a control group with a group of schizophrenia sufferers.  

Figure 3.2 Supra-adjacency representation of the MEG frequency-based full 

multilayer network from Brookes et al. (2016). 
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Then, De Domenico, Sasai, and Arenas (2016) used fMRI data to build a frequency-based 

multiplex where each node is connected to its counterpart in all the other layers (see Figure 3.3). 

They showed that each frequency band (from 0.01Hz to 0.25Hz, by steps of 0.02Hz) carries unique 

topological information. They used a generalization of the page rank centrality measure to identify 

the multilayer definition of hubs and distinguish between healthy and schizophrenic populations.  

 

Figure 3.3 Schematic illustration of brain multiplex functional network construction. From any pairs of brain activity 

signals measured in 264 ROIs (A), they estimated the coherence spectrum (B) that they averaged in 12 frequency bands, to 

quantify the strength of frequency-specific functional connectivity (C). These brain connectivity networks constituted the layers 

of the multiplex functional network once interconnected (D). Adapted from De Domenico, Sasai, and Arenas (2016). 

They chose a uniform weight for interlayer edges linking similar ROIs in different layers using a 

data-driven approach. 

It is in this context that we wrote the article that constitutes the next chapter (Guillon et al. 

2017; Chapter 1). 

Then, Tewarie et al. (2016a) used the same setup as in Brookes et al. (2016) to study inter- and 

intra-layer weights dependencies. They found that the strength of inter-layer coupling significantly 

correlated with the averaged magnitude of within layer interactions highlighting the fact that 
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within and between frequency interactions should not be treated separately, but rather integrated 

into a broader picture of brain function. 

Yu et al. (2017) also used MEG frequency-based multiplex topology to study hub disruption in 

AD and showed an improvement of the discrimination between AD and healthy populations by 

using multilayer-based methodology. 

More recently, Buldú and Porter (2017) interestingly compared 4 topologies, based on MEG: 

single-layer, with one network per frequency-band; aggregated network (also single-layer); 

multiplex and full multilayer (with inter-layer links) and showed that inter-layer weights strongly 

influence the value of λ2, an indicator of synchronizability, emphasizing the fact that the way 

these edges are computed must be carefully chosen. 

B Multimodal brain networks 

As underlined by Buldú and Porter (2017), integrating anatomical and functional networks in a 

multiplex topology is an extremely natural approach. However, only two studies exploited this 

configuration; one in Human (Battiston et al. 2017), the other in Macaque (Crofts, Forrester, and 

O’Dea 2016). 

In Battiston et al. (2017), fMRI- and DTI-based connectivity networks are combined in a two-

layers multiplex to study recurrence of newly defined multilayer motifs. Significant variations of 

these motifs were found to be overrepresented in the human brain and differ from previous findings 

based simply on structural connectivity. This confirms again that non-trivial relationships exist 

between structural and functional brain networks and that the multilayer paradigm is an 

appropriate choice to study them. 

In Crofts, Forrester, and O’Dea (2016), a new measure of structure-function clustering  allowed 

them to investigate functional connections that are distinct from the underlying cortical structure. 

Another recent study integrated functional networks from two different modalities (MEG and 

fMRI, see Figure 3.4 ) in a multilayer topology (Mandke et al. 2018) and evaluated what they 

called “correction schemes”, i.e. filtering or thresholding methods (see section “Brain network as 

a graph” in Chapter 2), and their impact on different multilayer metrics. 
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Figure 3.4  Multimodal brain network creation workflow from Mandke et al. (2018). 

C Temporal brain networks 

As noted in the introduction of this chapter, brain networks evolve. Obviously from a functional 

perspective but also structurally if the time-scale is large enough (days to years) (Betzel and 

Bassett 2017). Multilayer network is a flexible model that allows to add as many layers as needed, 

whose nodes are connected to any other node of any layers. Therefore, a natural way to represent 

temporal brain networks is to chain networks from different adjacent time points (Holme and 

Saramäki 2012). Thus, nodes would only be connected to their equivalent one time-step before 

and one time-step after, constraining the adapted topology to a specific type of multiplex, those 

with ordinal interlayer coupling (see Figure 3.5, red lines). 

 

Figure 3.5 Illustration of two conventional ways of linking a node = to its counterparts in the layers of a multiplex (left) with 

their corresponding schematic representation on a supra-adjacency matrix (right). Adapted from Betzel and Bassett (2017) 

This configuration was the most investigated of the three exposed here. Among the several studies 

that applied this methodology to study the brain, the most influential results were obtained a by 
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a series of papers from Danielle S. Basset et al. (Bassett et al. 2011; Mantzaris et al. 2013; Bassett 

et al. 2013, 2015) where they mainly analyzed modifications of the community (or core-periphery) 

structure during task and learning based on the famous generalization of the modularity metric 

by Mucha et al. (2010). 

Recently, Griffa et al. (2017) built what they call spatio-temporal brain networks, that are 

structurally constrained functional temporal network; where a node corresponding to ROI = is 

connected to ROI > if they are (i) anatomically wired through a fiber tract AND (ii) functionally 

co-active at the same time-point layer (intra-layer edges) or at two following time points (inter-

layer edges). It allowed them to describe wave-like activation propagation patterns. 





 

CHAPTER 4  
Inter-frequency 
hubs in AD 
In this chapter, we exploit the multifrequency brain networks topology, explained in the last 

chapter, based on MEG recordings during resting state in AD patients and age-matched subjects. 

We apply the multi-participation coefficient (MPC) and detect abnormally distributed 

connections across frequency bands in the AD population; mainly localized in association areas 

and cingulate cortex. We measure correlation of this MPC with memory impairment, and finally 

we show that the multilayer network approach improves the diagnostic power as compared to 

single-layer approaches. 
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Loss of brain inter-frequency hubs 
in Alzheimer's disease
J. Guillon1,2, Y. Attal3, O. Colliot1,2, V. La Corte5,6, B. Dubois4, D. Schwartz2, M. Chavez2 & F. De 
Vico Fallani  1,2

Alzheimer’s disease (AD) causes alterations of brain network structure and function. The latter 
consists of connectivity changes between oscillatory processes at different frequency channels. We 
proposed a multi-layer network approach to analyze multiple-frequency brain networks inferred from 
magnetoencephalographic recordings during resting-states in AD subjects and age-matched controls. 
Main results showed that brain networks tend to facilitate information propagation across different 
frequencies, as measured by the multi-participation coefficient (MPC). However, regional connectivity 
in AD subjects was abnormally distributed across frequency bands as compared to controls, causing 
significant decreases of MPC. This effect was mainly localized in association areas and in the cingulate 
cortex, which acted, in the healthy group, as a true inter-frequency hub. MPC values significantly 
correlated with memory impairment of AD subjects, as measured by the total recall score. Most 
predictive regions belonged to components of the default-mode network that are typically affected by 
atrophy, metabolism disruption and amyloid-β deposition. We evaluated the diagnostic power of the 
MPC and we showed that it led to increased classification accuracy (78.39%) and sensitivity (91.11%). 
These findings shed new light on the brain functional alterations underlying AD and provide analytical 
tools for identifying multi-frequency neural mechanisms of brain diseases.

Recent advances in network science has allowed new insights in the brain organization from a system perspective. 
Characterizing brain networks, or connectomes, estimated from neuroimaging data as graphs of connected nodes 
has not only pointed out important network features of brain functioning - such as small-worldness, modularity, 
and regional centrality - but it has also led to the development of biomarkers quantifying reorganizational mech-
anisms of disease1. Among others, Alzheimer’s disease (AD), which causes progressive cognitive and functional 
impairment, has received great attention by the network neuroscience community1–3. AD is histopathologically 
defined by the presence of amyloid-β plaques and tau-related neurofibrillary tangles, which cause loss of neurons 
and synapses in the cerebral cortex and in certain subcortical regions2. This loss results in gross atrophy of the 
affected regions, including degeneration in the temporal and parietal lobe, and parts of the frontal cortex and 
cingulate gyrus4.

Structural brain networks, whose connections correspond to inter-regional axonal pathways are therefore 
directly affected by AD because of connectivity disruption in several areas including cingulate cortices and 
hippocampus5, 6. A decreased number of fiber connections eventually lead to a number of network changes on 
multiple topological scales. At larger scales, AD brain networks estimated from diffusion tensor imaging (DTI) 
showed increased characteristic path length as compared to healthy subjects leading to a global loss of network 
small-worldness2, 7. Similar topological alterations have been also documented in resting-state brain networks 
estimated from functional magnetic resonance imaging (fMRI)8, as well as from magneto/electroencephalo-
graphic (M/EEG) signals, the latter ones often reported within the alpha frequency range (8–13 Hz) which is 
typically affected in AD9–11. On smaller topological scales, structural brain network studies have demonstrated 
a loss of connector hubs in temporal and parietal areas that correlates with cognitive decline2, 12, 13. In addition, 
higher-order association regions appear to be affected in functional brain networks inferred from fMRI2, 14 and 
MEG signals, the latter showing a characteristic loss of parietal hubs in higher (>14 Hz) frequency ranges15, 16.
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Graph analysis of brain networks has advanced our understanding of the organizational mechanisms under-
lying human cognition and disease, but a certain number of issues still remain to be addressed17, 18. For example, 
conventional approaches analyze separately brain networks obtained at different frequency bands, or in some 
cases, they simply focus on specific frequencies, thus neglecting possible insights of other spectral contents on 
brain functioning17. However, several studies have hypothesized and reported signal interaction or modulations 
between different frequency bands that are supportive of cognitive functions such as memory formation19–21. 
Moreover, recent evidence shows that neurodegenerative processes in AD do alter functional connectivity in 
different frequency bands16, 22, 23. How to characterize this multiple information from a network perspective still 
remains poorly explored. Here, we proposed a multi-layer network approach to study multi-frequency connec-
tomes, where each layer contains the brain network extracted at different bands. Multi-layer network theory has 
been previously used to synthesize MEG connectomes from a whole population24, characterize temporal changes 
in dynamic fMRI brain networks12, and integrating structural information from multimodal imaging (fMRI, 
DTI)25, 26. Its applicability to multi-frequency brain networks has been recently illustrated in fMRI connectomes 
for which, however, the frequency ranges of interest remains quite limited27.

We focused on source-reconstructed MEG connectomes, characterized by rich frequency dynamics, that were 
obtained from a group of AD and control subjects in eyes-closed resting-state condition. We hypothesized that 
the atrophy process in AD would lead to an altered distribution of regional connectivity across different frequency 
bands and we used the multi-participation coefficient to quantify this effect both at global and local scale28. We 
evaluated the obtained results, which provide a novel view of the brain reorganization in AD, with respect to 
standard approaches based on single-layer network analysis and flattening schemes29. Finally, we tested the diag-
nostic power of the measured brain network features to discriminate AD patients and healthy subjects.

Methods
Experimental design and data pre-processing. The study involved 25 Alzheimer’s diseased (AD) 
patients (13 women) and 25 healthy age-matched control (HC) subjects (18 women). All participants underwent 
the Mini-Mental State Examination (MMSE) for global cognition30 and the Free and Cued Selective Reminding 
Test (FCSRT) for verbal episodic memory31–33. Specifically, we considered the Total Recall (TR) score - given by 
the sum of the free and cued recall scores - which has been demonstrated to be highly predictive of AD34 (Table 1).

Inclusion criteria for all participants were: i) age between 50 and 90; ii) absence of general evolutive pathology; 
iii) no previous history of psychiatric diseases; iv) no contraindication to MRI examination; v) French as a mother 
tongue. Specific criteria for AD patients were: i) clinical diagnosis of Alzheimer’s disease; ii) Mini-Mental State 
Examination (MMSE) score greater or equal to 18. Magnetic resonance imaging (MRI) acquisitions were obtained 
using a 3T system (Siemens Trio, 32-channel system, with a 12-channel head coil). The MRI examination included 
a 3D T1-weighted volumetric magnetization-prepared rapid-gradient echo (MPRAGE) sequence with 1 mm iso-
tropic resolution and the following parameters: repetition time (TR) = 2300 ms, echo time (TE) = 4.18 ms, inver-
sion time (TI) = 900 ms, matrix = 256 × 256. This sequence provided a high contrast-to-noise ratio and enabled 
excellent segmentation of high grey/white matter.

The magnetoencephalography (MEG) experimental protocol consisted in a resting-state with eyes-closed 
(EC). Subjects seated comfortably in a dimly lit electromagnetically and acoustically shielded room and were 
asked to relax. MEG signals were collected using a whole-head MEG system with 102 magnetometers and 204 
planar gradiometers (Elekta Neuromag TRIUX MEG system) at a sampling rate of 1000 Hz and on-line low-pass 
filtered at 330 Hz. The ground electrode was located on the right shoulder blade. An electrocardiogram (EKG) Ag/
AgCl electrodes was placed on the left abdomen for artifacts correction and a vertical electrooculogram (EOG) 
was simultaneously recorded. Four small coils were attached to the participant in order to monitor head position 
and to provide co-registration with the anatomical MRI. The physical landmarks (the nasion, the left and right 
pre-auricular points) were digitized using a Polhemus Fastrak digitizer (Polhemus, Colchester, VT).

We recorded three consecutive epochs of approximately 2 minutes each. All subjects gave written informed 
consent for participation in the study, which was approved by the local ethics committee of the Pitie-Salpetriere 
Hospital. All experiments were performed in accordance with relevant guidelines and regulation. Signal space 
separation was performed using MaxFilter35 to remove external noise. We used in-house software to remove 
cardiac and ocular blink artifacts from MEG signals by means of principal component analysis. We visually 
inspected the preprocessed MEG signals in order to remove epochs that still presented spurious contamination. 
At the end of the process, we obtained a coherent dataset consisting of three clean preprocessed epochs for each 
subject.

Control (HC) Alzheimer (AD) p-value
Age 70.8 (9.1) 73.5 (9.4) 0.3142
MMSE 28.2 (1.4) 23.2 (3.6) <10−5

FR 31.5 (6.6) 14.9 (6.5) <10−5

TR 46.3 (1.5) 33.9 (10.0) <10−5

Table 1. Characteristics, cognitive and memory scores of experimental subjects. Mean values and standard 
deviations (between parentheses) are reported. The last column shows the p-values returned by a non-
parametric permutation t-tests with 10000 realizations. MMSE = mini-mental state examination score; 
TR = total recall memory test score (/48); FR = free recall memory test (/48).
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Source reconstruction, power spectra and brain connectivity. We reconstructed the MEG activity 
on the cortical surface by using a source imaging technique36, 37. We used the FreeSurfer 5.3 software (surfer.nmr.
mgh.harvard.edu) to perform skull stripping and segment grey/white matter from the 3D T1-weighted images of 
each single subject38, 39. Cortical surfaces were then modeled with approximately 20000 equivalent current dipoles 
(i.e., the vertices of the cortical meshes). We used the Brainstorm software40 to solve the linear inverse problem 
through the wMNE (weighted Minimum Norm Estimate) algorithm with overlapping spheres41. Both magneto-
meter and gradiometer, whose position has been registered on the T1 image using the digitized head points, were 
used to localize the activity over the cortical surface. The reconstructed time series were then averaged within 148 
regions of interest (ROIs) defined by the Destrieux atlas42.

We computed the power spectral density (PSD) of the ROI signals by means of the Welch’s method; we chose a 
2 seconds sliding Hanning window, with a 25% overlap. The number of FFT points was set to 2000 for a frequency 
resolution of 0.5 Hz. We estimated functional connectivity by calculating the spectral coherence (Supplementary 
Text) between each pair of ROI signals43. As a result, we obtained for each subject and epoch, a set of connectivity 
matrices of size 148 × 148 where the (i, j) entry contains the value of the spectral coherence between the signals of 
the ROI i and j at a frequency f = 0,0.5, …, 499.

We then averaged the connectivity matrices within the following characteristic frequency bands44, 45: delta 
(2–4 Hz), theta (4.5–7.5 Hz), alpha1 (8–10.5 Hz), alpha2 (11–13 Hz), beta1 (13.5–20 Hz), beta2 (20.5–29.5 Hz) 
and gamma (30–45 Hz). We finally averaged the connectivity matrices across the three available epochs to obtain 
a robust estimate of the individual brain networks whose nodes were the ROIs (n = 148) and links, or edges, were 
the spectral coherence values.

Single-layer network analysis. In order to cancel the weakest noisy connections, we thresholded and 
binarized the values in the connectivity matrices. Specifically, we retained the same number of links for each 
brain network. We considered six representative connection density thresholds corresponding to an average node 
degree k = {1, 3, 6, 12, 24, 48}. These values cover the density range [0.007, 0.327] which contains the typical den-
sity values used in complex brain network analysis17, 18, 46. The resulting sparse brain networks, or graphs, were 
represented by adjacency matrices A, where the aij entry indicates the presence or absence of a link between nodes 
i and j.

Participation coefficient. Given a network partition, the local participation coefficient (PCi) of a node i measures 
how evenly it is connected to the different clusters, or modules of the network47. Nodes with high participation 
coefficients are considered as central hubs as they allow for information exchange among different modules. The 
global participation coefficient PC of a network at layer λ is then given by the average of the PCi values:
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where λki m,
[ ] is the number of links from the node i to the nodes of the module m in layer λ and λki

[ ] is the degree of 
node i in layer λ. By construction, PC ranges from 0 to 1. Here, the partition of the networks into modules was 
obtained by maximizing the modularity function48.

Flattened networks. We also computed the participation coefficients for brain networks obtained by flattening 
the frequency layers into a single overlapping or aggregated network28. In an overlapping network, the weight of an 
edge oij corresponds to the number of times that the nodes i and j are connected across layers:
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In an aggregated network, the existence of an edge indicates that nodes i and j are connected in at least one 
layer:
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Notice that, by construction, flattened networks do not preserve the original connection density of the single 
layer networks.

Multi-layer network analysis. We adopted a multi-layer network approach to integrate the information 
from brain networks at different frequency bands, while preserving their original structure. Specifically, we built 
for each subject a multiplex network (Fig. 1a,b) where the different layers correspond to different frequency bands 
and each node in one layer is virtually connected to all its counterparts in the other layers28, 29.

Without loss of generality, the resulting supra-adjacency matrix A is given by the intra-layer adjacency matri-
ces on the main diagonal:

= δ θ α α β β γA A A A A A A{ , , , , , , }, (4)[ ] [ ] [ ] [ ] [ ] [ ] [ ]1 2 1 2�

where A[λ] corresponds to the brain network at the frequency λ. Notice that inter-layer adjacency matrices of 
multiplexes are intrinsically defined as identity matrices49, 50.
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Multi-participation coefficient. We considered the local multi-participation coefficient MPCi, as an akin version 
of the local participation coefficient PCi, to measure how evenly a node i is connected to the different layers of the 
multiplex28. This way, nodes with high MPCi are considered central hubs as they would allow for a better infor-
mation exchange among different layers. The global multi-participation coefficient is then given by the average 
of the MPCi values:
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where =λ λNLP k o/i i i
[ ] [ ]  stands for node-degree layer proportion, which measures the tendency of the connectivity 

of a node i to concentrate in layer λ. By construction, if nodes tend to concentrate their connectivity in one layer, 
the global multi-participation coefficient tends to 0; on the contrary, if nodes tend to have the same number of 
connections in every layer, the MPC value tends to 1 (Fig. 1c). In the singular case where a node is disconnected 
in every layer, we assigned MPCi = 0 to avoid indeterminate results.

From a statistical perspective, a random walker reaching a node with low MPCi will jump with higher proba-
bility to layers where the node degree is higher, while it will tend to avoid layers with lower node degrees. On the 
contrary, if MPCi is high, the random walker can jump with similar probability to any other layer, and this would 
facilitate the information passing (or communication) across all the layers.

We further used the standard coefficient of variation CVi to measure the dispersion of the degree of a node i 
across layers. A global coefficient of variation CV is then obtained by averaging the CVi values across all the nodes 
(Supplementary Text).

Statistical analysis. We first analyzed network features on global topological scales in order to detect sta-
tistical differences between AD and HC subjects at the whole system level. Only for the network features that 
resulted significantly different at the global scale, we also assessed possible group-differences at the local scale of 
single nodes. This hierarchical approach allowed us to associate brain network differences at multiple topological 
scales51. We used a non-parametric permutation t-test, to assess statistical differences between groups, with a sig-
nificance level of 0.0552, 53. The permutation test generated a set of 10000 surrogate data by randomly exchanging 
the group labels (i.e., AD or HC) of the brain network features. The t-statistic and p-value were then extracted 
from the simulated distributions. At the local scale, we performed a permutation test for each node separately. 
Due to the large number of tests (i.e., 148), we applied a correction for multiple comparisons by computing an 
adjusted version of the false discovery rate (FDR)54.

To test the ability of the significant brain network features to predict the cognitive/memory impairment of 
AD patients, we used the non-parametric Spearman’s correlation coefficient R. We set a significance level of 0.05 
for the correlation of global network features, with a FDR correction in the case of multiple comparisons (local 
features).

Classification. We used a classification approach to evaluate the discriminating power of the local brain net-
work features which resulted significantly different in the AD and HC group. Because we did not know in advance 
which were the most discriminating features, we tested different combinations. In particular, for each local net-
work feature, we first ranked the respective ROIs according to the p-values returned by the between-group sta-
tistical analysis (see previous section). For each subject s, we then tested different feature vectors obtained by 
concatenating, one-by-one, the values of the network features extracted from the ranked ROIs. The generic fea-
ture vector cs reads:

Figure 1. Multi-frequency brain networks. Panel (a) shows brain networks of a representative subject extracted 
from seven frequency bands. Links are inferred by means of spectral coherence and thresholded to have in 
each layer an average node degree k = 12. (b) Procedure to construct a multi-frequency network. Each layer 
corresponds to a different frequency band. Only nodes representing the same brain region in each layer are 
virtually connected. Hence, inter-layer links code for identity relationships. (c) Inter-frequency node centrality. 
A two-layer multiplex is considered for the sake of simplicity. The blue node acts as an inter-frequency hub (i.e., 
multi-participation coefficient MPC = 1) as it allows for a balanced information transfer between layer β1 and 
β2; the red node, who is disconnected in layer β2, blocks the information flow and has MPC = 0.
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= …c g g[ , , ] (6)s k1

where gk is a generic local network feature and k is a rank that ranges from 1 (the most significant ROI) to the total 
number of significant ROIs. When different network features were considered (e.g., PC and MPC), we concate-
nated the respective cs feature vectors allowing for all the possible combinations.

To quantify the separation between the feature vectors of AD and HC subjects, we used a Mahalanobis dis-
tance classifier. We applied a repeated 5-folds cross-validation procedure where we randomly split the entire 
dataset into a training set (80%) and a testing test (20%). This procedure was eventually iterated 10000 times in 
order to obtain more accurate classification rates. To assess the classification performance we computed the sensi-
tivity (Sens), specificity (Spec) and accuracy (Acc), defined respectively as the percentage of AD subjects correctly 
classified as AD, the percentage of HC subjects classified as HC and the total percentage of subjects (AD and HC) 
properly classified. We also computed the receiver operating characteristic (ROC) curve and its area under the 
curve (AUC)55.

Data availability. The Matlab code for the manipulation of multi-layer networks and the computation of 
the MPC, together with the connectivity matrices generated and analyzed in this study, are available at the Brain 
Network Toolbox repository (https://github.com/brain-network/bnt).

Results
Power analysis of source-reconstructed MEG signals confirmed the characteristic changes in the oscillatory activ-
ity of AD subjects compared to HC subjects (Fig. 2a)56–59. Significant alpha power decreases were more evident 
in the parietal and occipital regions (Z < −2.58), while significant delta power increases (Z > 2.58) were more 
localized in the frontal regions of the cortex (Fig. 2b).

Reduced gamma inter-modular connectivity. As expected, the value of the connection density thresh-
old had an impact on the network differences between groups. We selected the first threshold for which we could 
observe a significant group difference for both single- and multi-layer analysis. The obtained results determined 
the choice of a representative threshold, common to all the brain networks, corresponding to an average node 
degree k = 12 (Fig. S1).

We first evaluated the results from the single-layer analysis. By inspecting the global participation coefficient 
PC, we reported in the gamma band a significant decrease of inter-modular connectivity in AD as compared to 
HC (Z = −2.50, p = 0.017; Fig. 3a inset). This behavior was locally identified in association ROIs including tem-
poral and parietal areas (p < 0.05, FDR corrected; Fig. 3a; Table 2). No other significant differences were reported 
in other frequency bands or in flattened brain networks (Fig. S1).

Disrupted inter-frequency hub centrality. Then we assessed the results from the multi-layer analysis. 
Both AD and HC subjects exhibited high global multi-participation coefficients (MPC > 0.9), suggesting a gen-
eral propensity of brain regions to promote interactions across frequency bands. However, such tendency was 
significantly lower in AD than HC subjects (Z = −2.24, p = 0.028; Fig. 3b inset). This loss of inter-frequency 
centrality was prevalent in association ROIs including temporal, parietal and cingulate areas, and with a minor 
extent in motor areas (p < 0.05, FDR corrected; Fig. 3b; Table 2).

Among those regions, the right cingulate cortex was classified as the main inter-frequency hub as revealed 
by the spatial distribution of the top 25% MPC values in the HC group (Fig. 4a). In HC subjects the connec-
tivity of this region across bands, as measured by the node degree layer proportion NLP, was relatively stable 
(Kruskal-Wallis test, χ2 = 10.79, p = 0.095), while it was significantly altered in AD subjects (Kruskall-Wallis 
test, χ2 = 14.98, p = 0.020). In particular, the AD group exhibited a remarkably reduced alpha2 connectivity 

Figure 2. Spectral analysis of MEG signals. (a) Power spectrum density (PSD) for a representative occipital 
sensor before source reconstruction. Each line corresponds to a subject. Bold lines show the group-averaged 
values in the Alzheimer’s disease group (AD) and in the healthy control group (HC). (b) Statistical PSD group 
differences. Z-scores are obtained using a non-parametric permutation t-test. Results are represented both as 
sensor and source space.
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Figure 3. Network analysis of brain connectivity. (a) Inter-modular centrality. Statistical brain maps of group 
differences for local participation coefficients PCi in the gamma band. Only significant differences are illustrated 
(p < 0.05, FDR corrected). The labels same ranks are used as labels. The inset shows the results for the global 
PC; vertical bars stand for group-averaged values while error bars denote standard error means. In both cases, 
Z-scores are computed using a non-parametric permutation t-test. b) Inter-frequency centrality. Statistical brain 
maps of group differences for local multi-participation coefficients MPCi. The inset shows the results for the 
global MPC; same conventions as in (a).

Feature Rank ROI label Cortex Z score p-value

γPCi
[ ]

1 Lat_Fis-ant-Horizont L Frontal −3.6507 0.0007
2 Pole_temporal R Temporal −2.8642 0.0063
3 G_front_inf-Triangul L Frontal −2.4562 0.0198
4 S_temporal_transverse L Temporal −2.3887 0.0207
5 G_pariet_inf-Supramar L Parietal −2.3820 0.0222

MPCi

1 G_precentral R Motor −3.4735 0.0006
2 G_front_inf-Opercular R Motor −2.5239 0.0127
3 S_oc_middle_and_Lunatus L Occipital −2.4582 0.0138
4 G_pariet_inf-Supramar L Parietal −2.4860 0.0142
5 S_interm_prim-Jensen L Parietal −2.3708 0.0147
6 S_temporal_transverse R Temporal −2.3996 0.0191
7 S_pericallosal R Limbic −2.3041 0.0203

Table 2. Statistical group differences for local brain network features. ROI labels, abbreviated according to the 
Destrieux atlas, are ranked according to the resulting p-values. The same ranks are used as labels in Fig. 3. ROIs 
highlighted in bold belong to the default mode network (DMN).
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and increased theta connectivity (Fig. 4b). Similar results were also reported for the left cingulate cortex (AD: 
χ2 = 11.89, p = 0.064; HC: χ2 = 6.98, p = 0.323), although it was not significant in terms of MPC differences 
(Fig. 3b; Table 2).

Diagnostic power of brain network features. We adopted a classification approach to evaluate the 
power of the most significant local network properties in determining the state (i.e., healthy or diseased) of each 
individual subject. The best results were achieved neither when we considered single-layer features (i.e., γPCi

[ ]) nor 
when we considered multi-layer features (MPCi) (respectively, first column and row of panels in Fig. 5a). Instead, 
a combination of the two most significant features gave the best classification in terms of accuracy (Acc = 78.39%) 
and area under the curve (AUC = 0.8625) (Fig. 5a,b). While the corresponding specificity was not particularly 
high (Spec = 65.68%), the sensitivity was remarkably elevated (Sens = 91.11%).

Relationship with cognitive and memory impairment. We finally evaluated the ability of the signifi-
cant brain network changes to predict the cognitive and memory performance of AD subjects. We first considered 
the results from single-layer analysis. We found a significant positive correlation between the global participation 
coefficient PC in the gamma band and the MMSE score (R = 0.4909, p = 0.0127; Fig. 6a). Then we considered 
the results from multi-layer analysis. We reported a higher significant positive correlation between the global 
multi-participation coefficient MPC and the TR score (R = 0.5547, p = 0.0074; Fig. 6c). These relationships were 
locally identified in specific ROIs including parietal, temporal and cingulate areas of the default mode network 
(DMN)60 (p < 0.05, FDR corrected; Fig. 6b,d; Table 3).

Discussion
Graph analysis of brain networks have been largely exploited in the study of AD with the aim to extract new 
predictive diagnostics of disease progression. Typical approaches in functional neuroimaging, characterized by 
oscillatory dynamics, analyze brain networks separately at different frequencies thus neglecting the available mul-
tivariate spectral information. Here, we adopted a method to formally take into account the topological infor-
mation of multi-frequency connectomes obtained from source-reconstructed MEG signals in a group of AD and 
healthy subjects during EC resting states.

Main results showed that, while flattening networks of different frequency bands attenuates differ-
ences between AD and HC populations, keeping the multiplex nature of MEG connectomes allow to capture 
higher-order discriminant information. AD subjects exhibited an aberrant multiplex brain network structure 

Figure 4. Inter-frequency hub centrality distribution. (a) The median values of local multi-participation 
coefficients (MPCi) are shown over the cortical surface for the healthy group. Only the top 25% is illustrated 
for the sake of visualization. The corresponding list of ROIs is illustrated in the horizontal bar plot. (b) Group-
median values of the node-degree layer proportion (NLPi) for the right and left cingulate cortex. The grey line 
corresponds to the expected value if connectivity were equally distributed across frequency bands (NLPi = 1/7).
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Figure 5. Classification performance of brain network features. (a) Matrices show the classification rates 
(accuracy = Acc, specificity = Spec, sensitivity = Sens, area under the curve = AUC) corresponding to the 
combination of the most significant γPCi

[ ] and MPCi network features, respectively on the rows and columns of 
each matrix. Black squares highlight the highest accuracy rate and the corresponding specificity, sensitivity and 
AUC. (b) Scatter plots show the Mahalanobis distance of each subject from the AD and HC classes. Separation 
lines (y = x: equal distances) are drawn in grey. Red circles stand for Alzheimer’s disease (AD) subjects, blue 
ones for healthy controls (HC). The bottom right plot shows the ROC curve associated with the best network 
features configuration. The optimal point is marked by a green circle.

Figure 6. Correlation between brain network properties and cognitive/memory scores. (a) Scatter plot of the 
global participation coefficient in the gamma band (PC[γ]) and the mini-mental state examination (MMSE) 
score of AD subjects (Spearman’s correlation R = 0.4909, p = 0.0127). (b) Correlation brain maps of the local 
participation coefficient in the gamma band ( γPCi

[ ]) and the mini-mental state examination (MMSE) score of 
AD subjects. Only significant R values are illustrated (p < 0.05, FDR corrected). (c) Scatter plot of the global 
multi-participation coefficient (PC) and the total recall (TR) score of AD subjects (Spearman’s correlation 
R = 0.5547, p = 0.0074). (d) Correlation brain maps of the local multi-participation coefficient (MPCi) and the 
total recall (TR) score of AD subjects. Only significant R values are illustrated (p < 0.05, FDR corrected).
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that significantly reduced the global propensity to facilitate information propagation across frequency bands as 
compared to HC subjects (Fig. 3b, inset). This could be in part explained by the higher variability of the individual 
node degrees across bands (Fig. S2).

Such loss of inter-frequency centrality was mostly localized in association areas as well as in the cingulate 
cortex (Fig. 3b; Table 2), which resulted the most important hub promoting interaction across bands in the HC 
group (Fig. 4a). Because all these areas are typically affected by AD atrophy4 we hypothesize that the anatomi-
cal withering might have impacted the neural oscillatory mechanisms supporting large-scale brain functional 
integration. Notably, the significant alteration of the connectivity across bands observed in the cingulate cortex 
could be ascribed to typical M/EEG connectivity changes observed in AD, such as reduced alpha coherence57–59, 61  
(Fig. 4b). We also found a significant decrease in the primary motor cortex (right precentral gyrus). While previ-
ous studies have identified this specific region as a connector hub in human brain networks2, its role in AD still 
needs to be clarified in terms of node centrality’s changes with respect to healthy conditions.

While flattening network layers represents in general an oversimplification, analyzing single layers can still be 
a valid approach that is worth of investigation. Because the MPC is a pure multiplex quantity, we considered the 
conceptually akin version for single-layer networks, the standard participation coefficient PC, which evaluates 
the tendency of nodes to integrate information from different modules, rather than from different layers28, 47. 
AD patients exhibited lower inter-modular connectivity in the gamma band with respect to HC subjects (Fig. 3a; 
Table 2) that was localized in association areas including frontal, temporal, and parietal cortices (Fig. 3a; Table 2). 
Damages to these regions can lead to deficits in attention, recognition and planning62. Our results support the 
hypothesis that AD could include a disconnection syndrome63–65. Furthermore, they are in line with previous 
findings showing PC decrements in AD, although those declines were more evident in lower frequency bands and 
therefore ascribed to possible long-range low-frequency connectivity alteration2, 15.

Put together, our findings indicated that AD alters the global brain network organization through connec-
tion disruption in several association regions (Figs 3a and 4a). In particular, we showed that the global loss of 
inter-modular interactions in the gamma band significantly affected the memory performance of AD patients as 
measured by the MMSE (Fig. 4a). These results suggest that the capacity of association areas to integrate informa-
tion from other cortical regions through high-frequency channels, a crucial mechanism for sensory processing 
and memory retrieval66–70, becomes critically compromised in AD patients. Interestingly, such loss was paralleled 
by a diffused decrease of inter-frequency centrality. Future studies, involving recordings of limbic structures and/
or stimulation-based techniques, should elucidate whether these two distinct reorganizational processes are truly 
independent or linked through possible cross-frequency mechanisms which are known to be essential for normal 
memory formation71–73.

As a confirmation of the complementary information carried out by the multi-layer approach, we reported 
an increased classification accuracy when combining the local PC and MPC features. The observed diagnos-
tic power is in line with previous accuracy values obtained with standard graph theoretic approaches (around 
80%) but exhibits slightly higher sensitivity (>90%), which is often desired to avoid false negatives74–78. Other 
approaches should determine if and to what extent the use of more sophisticated machine learning algorithms, or 

Correlation Rank ROI label Cortex R coeff. p-value

γPCi
[ ] - MMSE

1 Lat_Fis-ant-Vertical R Frontal 0.5480 0.0046
2 G_occipital_sup L Occipital 0.5005 0.0108
3 S_interm_prim-Jensen R Parietal 0.4948 0.0119
4 G_and_S_cingul-Ant R Limbic 0.4864 0.0137
5 S_pericallosal R Limbic 0.4735 0.0168
6 G_and_S_transv_frontopol R Frontal 0.4585 0.0212

MPCi - TR

1 Lat_Fis-ant-Horizont L Frontal 0.6915 0.0004
2 S_collat_transv_post L Occipital 0.6706 0.0006
3 S_circular_insula_ant L Frontal 0.6214 0.0020
4 G_parietal_sup R Parietal 0.6061 0.0028
5 S_orbital_lateral R Frontal 0.5920 0.0037
6 Pole_temporal L Temporal 0.5739 0.0052
7 S_orbital_lateral L Frontal 0.5462 0.0085
8 S_temporal_sup R Temporal 0.5457 0.0086
9 G_and_S_occipital_inf L Occipital 0.5368 0.0100
10 G_occipital_sup R Occipital 0.5208 0.0130
11 G_postcentral L Sensory 0.5191 0.0133
12 G_pariet_inf-Supramar R Parietal 0.5151 0.0142
13 S_subparietal R Parietal 0.5066 0.0161
14 S_interm_prim-Jensen L Parietal 0.4915 0.0202
15 S_temporal_inf L Temporal 0.4869 0.0216

Table 3. Correlations of local brain network features and cognitive/memory scores. ROI labels, abbreviated 
according to the Destrieux atlas, are ranked according to the resulting p-values. ROIs written in bold belong to 
the default mode network (DMN).
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the inclusion of basic connectivity features79–81 and different imaging modalities82, can lead to higher classification 
performance and better diagnosis2.

Previous works have documented relationships between brain network properties and neuropsychological 
measurements in AD, suggesting a potential impact for monitoring disease progression and for the development 
of new therapies7, 8, 10, 75, 83, 84. This is especially true for the standard PC which has exhibited stronger correla-
tions and larger between-group differences2. In line with this prediction, we also reported significant correlations 
between the MMSE cognitive scores and the PC values of the AD patients in the gamma band (Fig. 6a). An even 
stronger correlation was found, however, for the global MPC values and the TR scores (Fig. 6b, Table 3). Recent 
studies suggest that TR scores could be more specific for AD85, 86 as compared to MMSE scores which could be 
biased by differences in years of education, lack of sensitivity to progressive changes occurring with AD, as well 
as fail in detecting impairment caused by focal lesions87. Locally, the regions whose MPC correlated with TR 
were part of the default-mode network (DMN) (Table 3), which is heavily involved in memory formation and 
retrieval60, 88. According to recent hypothesis, these areas are directly affected by atrophy and metabolism disrup-
tion, as well as amyloid-β deposition89, 90.

Put together, our results suggest that AD symptoms related to episodic memory losses could be determined by 
the lower capacity of strategic DMN association areas to let information flow across different frequency channels. 
These results are in line with a recent study that adopted a similar multi-frequency network approach91, but that, 
however, i) did not perform a direct comparison with standard single-frequency network measurements and, 
more importantly, ii) did not provide a possible interpretation of the MPC in terms of its ability to favor commu-
nication across frequencies.

Methodological considerations. As in many other biological systems, brain networks can be only inferred 
from experimentally obtained data92, 93. Hence, the resulting network only represents an estimate of the true 
underlying connectivity. In our study, MEG connectivity could be specifically influenced by linear mixing due to 
field spread effects (i.e., primary leakage) as well as by spurious interactions between areas spatially close to truly 
connected regions (i.e., secondary leakage)91, 94.

Here, we estimated brain networks by means of spectral coherence, a functional connectivity measure widely 
used in the electrophysiological literature because of its simplicity and relatively intuitive interpretation95. While 
this measure, as any other existing ones, cannot solve the problem of primary and secondary leakage effects, 
recent evidence showed that source reconstruction techniques, like the one we adopted here, can i) mitigate this 
bias96, 97, ii) generate connectivity patterns consistent within and between subjects98, and iii) help the interpreta-
tion of results in terms of cortical regions97.

To validate the obtained results we used, in a separate analysis, the imaginary coherence as a further approach 
to diminish field spread effects, at the cost, however, of removing possibly existing true interactions at zero-phase 
lag94, 96, 99. We demonstrated that while no significant between-group differences could be obtained in terms of 
MPC (data not shown here), the spatial distribution of the MPC values was very similar to that observed in brain 
networks obtained with the spectral coherence, especially for the internal regions along the longitudinal fissure 
(Fig. S3). Although, this is not a proof that we recovered true connectivity, it nevertheless validates the stability of 
our main results in terms of MPC.

Differently from other multiplex network quantities, such as those based on paths and walks50, the MPC has 
the advantage to not depend on the weights of the inter-layer links which, in general, are difficult to estimate or to 
assign from empirically obtained biological data. This is especially true in network neuroscience where, so far, the 
strength of the inter-layer connections is parametric and subject to arbitrariness27 or estimated through measures 
of cross-frequency coupling21 whose biological interpretation remains still to be completely elucidated20.

Conclusions
We proposed a multi-layer network approach to characterize multi-frequency brain networks in Alzheimer’s dis-
ease. The obtained results gave new insights into the neural deterioration of Alzheimer’s disease by revealing an 
abnormal loss of inter-frequency centrality in memory-related association areas as well as in the cingulate cortex. 
Longitudinal studies, including prodromal mild cognitive impairment subjects, will need to assess the predictive 
value of this new information as a potential non-invasive biomarker for neurodegenerative diseases.
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CHAPTER 5  
Core-periphery 
organization in 
multilayer 
networks 
In this chapter, we define the core-periphery structure in multiplex networks and apply it to, first, 

synthetic network, and then, to a bimodal brain multiplex (DTI- and fMRI-based). Results 

confirm the role of the main known cortical and subcortical hubs, but also suggest the presence 

of new areas in the sensorimotor cortex that are crucial for intrinsic brain functioning.  





rsif.royalsocietypublishing.org

Research

Cite this article: Battiston F, Guillon J, Chavez
M, Latora V, De Vico Fallani F. 2018 Multiplex
core – periphery organization of the human
connectome. J. R. Soc. Interface 15: 20180514.
http://dx.doi.org/10.1098/rsif.2018.0514

Received: 6 July 2018
Accepted: 16 August 2018

Subject Category:
Life Sciences – Physics interface

Subject Areas:
biocomplexity, computational biology,
systems biology

Keywords:
complex networks, multilayer networks,
rich-club, brain connectivity, multimodal
integration

Author for correspondence:
Fabrizio De Vico Fallani
e-mail: fabrizio.devicofallani@gmail.com

Electronic supplementary material is available
online at https://dx.doi.org/10.6084/m9.
figshare.c.4209884.

Multiplex core – periphery organization of
the human connectome
Federico Battiston1,2,3, Jeremy Guillon1,2, Mario Chavez2, Vito Latora3,4

and Fabrizio De Vico Fallani1,2

1Inria Paris, Aramis project-team, 75013 Paris, France
2CNRS, Sorbonne Universites, UPMC Univ Paris 06, Inserm, Institut du cerveau et la moelle epiniere (ICM),
Hopital Pitie-Salpetriere, 75013 Paris, France
3School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK
4Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, 95123 Catania, Italy
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What is the core of the human brain is a fundamental question that has been
mainly addressed by studying the anatomical connections between differ-
ently specialized areas, thus neglecting the possible contributions from
their functional interactions. While many methods are available to identify
the core of a network when connections between nodes are all of the same
type, a principled approach to define the core when multiple types of
connectivity are allowed is still lacking. Here, we introduce a general frame-
work to define and extract the core–periphery structure of multi-layer
networks by explicitly taking into account the connectivity patterns at
each layer. We first validate our algorithm on synthetic networks of different
size and density, and with tunable overlap between the cores at different
layers. We then use our method to merge information from structural and
functional brain networks, obtaining in this way an integrated description
of the core of the human connectome. Results confirm the role of the main
known cortical and subcortical hubs, but also suggest the presence of new
areas in the sensori-motor cortex that are crucial for intrinsic brain functioning.
Taken together these findings provide fresh evidence on a fundamental ques-
tion in modern neuroscience and offer new opportunities to explore the
mesoscale properties of multimodal brain networks.

1. Introduction
Complex networks are characterized by the existence of non-random structures
at different topological scales [1–3]. A peculiar structure is the so-called
core–periphery organization [4], where the network exhibits a group of tightly
connected nodes (i.e. the core), and a group made by the remaining weakly
connected nodes (i.e. the periphery).

Core–periphery organization has been recognized as a fundamental prop-
erty of complex networks to support integration of information [5–12]. A
related concept is that of rich-club behaviour, where the tightly connected
nodes are the network hubs, i.e. the nodes with a large number of links
[13,14]. A rich-club organization has been observed in various real-world sys-
tems, such as social, technological and biological networks [13–16], including
the brain [17–20]. More recently, a refined version of the rich-club analysis,
based not only on the number of connections of the hubs, but also on their capa-
bility to bridge different communities, has been shown to be relevant to support
the integrative properties of the nervous system [21].

In the human brain, rich-club and rich-core organization, associated with
the efficiency in communication and distribution of information, have been
mainly reported in anatomical, or structural, connectivity networks obtained
experimentally from diffusion tensor imaging (DTI) data. It has been conjec-
tured that rich cores, rather than shortest paths, may actually be responsible
for the efficient integration of information between remote brain areas [17],
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which is a crucial prerequisite for normal cognitive perform-
ance [22,23]. Current evidence suggests that posterior medial
and parietal cortical regions mainly constitute the core of the
human connectome [17,24], while the role of other areas, such
as the medial prefrontal cortex (mPFC) and the sensori-motor
system [25], is yet to be clarified. Because brain regions are
also characterized by functional interactions inferred from
neuroimaging data, such as functional magnetic resonance
imaging (fMRI) [26,27], we hypothesize that integrating
information from both structural and functional networks
can give a more accurate estimate of the regions that
eventually constitute the core of the human cortex.

Instead of aggregating the two different types of connec-
tivity or analysing them separately, we adopt a multiplex
network approach that preserves and exploits the original
information on how brain regions are structurally and func-
tionally interconnected. In a multiplex network, different
connectivity types are mathematically represented as net-
works at different layers. Notably, in a multiplex—a
particular case of multilayer network—there is a one-to-one
correspondence between the nodes at different layers
[28–32]. Multiplex network theory has been recently used
to successfully extract higher-order properties of multimodal
[33] and multifrequency brain networks that cannot be
retrieved by standard approaches [34,35].

Interestingly, the detection of core–periphery organization
in multiplex networks has been poorly explored, with the
exception of approaches based on k-core decomposition
[36,37]. To address this gap, we introduce a criterion to
define and detect core–periphery organization in multiplex
networks. Our method works for any number of layers and
is scalable to large networks, being non-parametric and
based on local node information [16]. In the following, we
first introduce the general framework and then we validate it
on synthetic multiplex networks with tunable core similarity.

We finally apply our method to integrate information
from structural and functional brain networks and extract
the multiplex core–periphery organization of the human
brain. The obtained results confirm the main core areas in
the posterior medial and parietal cortex, but also highlights
the central role played by the regions of the sensori-motor
system, which has been surprisingly neglected by previous
studies on core–periphery organization, despite being
considered a fundamental component of the default-mode
network [25].

Our research sheds new light on the emergence of core
regions in the human connectome, and we hope it will spur
further work towards a better understanding of the complex
relationships in the nervous system.

2. Results
2.1. Extracting the rich core of a multiplex network
Let us consider a multiplex network described by a vector of
adjacency matrices M ¼ {A[1], . . . , A[M]}, where all inter-
actions of type a, a ¼ 1, . . . , M, are encoded in a different
layer described by a binary adjacency matrix A[a] ¼ {a[a]

ij }.
To detect the core–periphery structure of a multiplex net-
work, we first compute the multiplex degree vector
ki ¼ {k[1]

i , . . . , k[M]
i } of each node i [31], where k[a]

i ¼
P

j=i a[a]
ij .

From now on, we refer to k[a]
i , a ¼ 1, . . . , M, as the richness

of node i at layer a. Notice that this is the simplest way to

define the richness of a node, and different measures of
richness, such as other measures of node centrality, can be
as well used.

For each layer a, we then divide the links of a node i in two
groups, those towards nodes with lower richness and those
towards nodes with higher richness. Hence, in our case, we
can specifically decompose the degree of node i at layer a as
k[a]

i ¼ k[a]"
i þ k[a]þ

i . Finally, the multiplex richness mi of node
i is obtained by aggregating single-layer information:

mi ¼
XM

a¼1
c[a]k[a]

i , (2:1)

where the coefficients c[a] modulate the relative relevance of
each layer and can, for instance, be determined by exogenous
information. In analogy to the single-layer case, we define the
multiplex richness of a node towards richer nodes as:

mþi ¼
XM

a¼1
c[a]k[a]þ

i : (2:2)

In the most simple set-up, we can assume c[a] ¼ c ¼ 1=M 8a.
More general functional forms to aggregate the contributions
from different layers, giving rise to alternative measures of
mi and mi

þ, are presented in the Methods section.
The nodes of the multiplex are ranked according to their

richness m, so that the node i with the best rank, i.e. ranki ¼ 1,
is the node with the largest value of m, the node ranked 2 is
the one with the second largest value of m, and so on. We
then compute for each node i the value of mi

þ as a function
of ranki. The value of the rank corresponding to the maxi-
mum of mi

þ finally determines the core–periphery structure.
All nodes with rank lower than such a value are assigned
to the multiplex core, whereas the remaining ones become
part of the periphery. Nodes in the multiplex core are not
necessarily part of the core of each layer, but are topologically
the most valuable ones when all types of connectivity are
considered. Moreover, we notice that also in the simplest
case, when c[a] ¼ c 8a, the multiplex core–periphery par-
tition cannot be obtained by simply combining the cores of
the different layers, or by applying the single-layer algorithm
on the corresponding aggregated network.

As an illustrative example, we report in figure 1 the curve
mi
þ as a function of ranki obtained in the case of the Top

Noordin Terrorist network, a multiplex network of N ¼ 78
individuals with three layers (encoding information about
mutual trust, common operations and exchanged com-
munication between terrorists), which has been used as a
benchmark to test measures and models of multiplex
networks [31].

Coefficients c[a] were chosen, in this case, to be inversely
proportional to K[a] to compensate for the different densities
of the three layers. The resulting multiplex rich core integrates
information from all the layers and looks different from the
rich cores obtained at each of the three layers by a standard
single-layer rich core analysis. More details about the results
of this analysis are reported in electronic supplementary
material, table S1.

2.2. Testing the method on multiplex networks with
tunable core similarity

A network with a well-defined core–periphery structure has
a high density of links among core nodes. With a suitable
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labelling of the nodes, the adjacency matrix of the network
can be decomposed into four different blocks: a dense diag-
onal block encoding information on core–core links, a
sparser diagonal block describing links among peripheral
nodes and two off-diagonal blocks encoding core–periphery
edges. The key feature of this block structure is that r1 $ r3,
i.e. the density r1 of the core–core block is much higher than
that of the periphery–periphery block, r3. As first noted by
Borgatti & Everett [4], the density r2 of the off-diagonal
blocks is typically not a crucial factor to characterize a
core–periphery structure.

To test how our method works on multiplex networks with
different structures, we have introduced a model to produce
synthetic multiplex networks with tunable core similarity. In
particular, we have constructed multiplexes where each of
the M ¼ 2 layers contains N ¼ 250 nodes, only Nc ¼ 50 of
them belonging to the core. Each layer has the same average
node degree hki ¼ 10, and the same set of parameters
r1 . r2 . r3 to describe its core–periphery structure. Our
model enables control of the number of nodes that are both
in the core of layer 1 and 2. (see Methods for more details).

To quantify the similarity among cores at different layers,
we introduce the core similarity S[a]

c of layer a with respect to
the other layers as:

S[a]
c ¼

1
(M" 1)

XM

b=a

I[ab]
c

N[a]
c

, (2:3)

where I[ab]
c is the number of nodes in the core of both layer a

and layer b, whereas N[a]
c is the size of the core at layer a. The

core similarity S[a]
c ranges in [0,1]. When layer a does not

share core nodes with any other layers we have S[a]
c ¼ 0,

when all its core nodes also belong to the cores of the other
layers S[a]

c ¼ 1, and when on average only half of them are
part of the cores on each other level S[a]

c ¼ 1=2. The average
core similarity of the multiplex can then be computed as
Sc ¼ (1=M)

PM
a¼1 S[a]

c .
In figure 2, we show the results for three multiplex net-

works with different core similarity. In the left column of
figure 2, we consider a multiplex with Sc ¼ 0. The cores
of the two layers are not overlapping, as shown in panel
(a). As a consequence, many nodes with high degree
in one layer have low degree in the other one. When
c[1] ¼ c[2] ¼ 0:5, the multiplex core of the system is formed
by those nodes with sufficiently high multiplex richness, as
shown in panel (b). In panel (c), we show the changes in
the multiplex core when we partially (c[1] ¼ 0:75, c[2] ¼ 0:25,
left subplot) or completely (c[1] ¼ 1, c[2] ¼ 0, right subplot)
bias the algorithm towards the first layer.

In the central column of figure 2, we consider a multiplex
with Sc ¼ 1

2. Half of the core nodes are common to both layers
while half are typical of each layer. The block structure of the
two layers is partially overlapping, and the nodes are spread
uniformly over the k[2]

i versus k[1]
i plane. In the unbiased case,

the multiplex core of the system is formed by nodes which are
part of the core on both layers, but also by nodes scoring
extremely high in one layer, despite being in the periphery
in the other one (panel b). When c[1] . c[2], this is particularly
true for nodes which have high richness in the first layer and
low richness in the second, while the opposite is much more
unlikely (panel c).

In the right column of figure 2, we consider a multiplex
with Sc %1. The block structure of the two layers is now
almost identical; the node degrees k[1] and k[2] are correlated

multiplex core single-layer core

layer 3

layer 2

layer 1
7010

1.0

0

0.2

0.4

0.6

0.8

20 30 40 50
ranki

m̃
+ i

60

(c)(a)

(b)

Figure 1. An illustrative example of the multiplex rich core analysis. In panel (a), we show a multiplex social network obtained from the Top Noordin Terrorists’
contacts, with N ¼ 78 nodes, M ¼ 3 layers and K [1] ¼ 259, K [2] ¼ 437 and K [3] ¼ 200, for the three layers respectively. Panel (b) shows the curve
~mþi ¼ mþi =max (mþi ) as a function of ranki. All nodes from rank equal to 1 up to the node with maximum ~mþ are part of the core of the multiplex,
which is shown in red colour in panel (c), first column. The cores obtained at each layer by the standard single-layer analysis are reported in yellow for the
sake of comparison in the second column. The percentages of core nodes in the single layers that are in the multiplex core are 83.3% for layer 1, 66.7% for
layer 2, and 58.3% for layer 3.
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and most of the nodes belonging to each core are in the multi-
plex core (panel b). As the core structure at the two layers are
extremely similar, the biased cases do not differ significantly
from the unbiased one (panel c).

2.3. Merging structure and function to extract the
connectome’s core

We have applied our method to investigate the human con-
nectome by considering, at the same time, structural and
functional information. We have therefore constructed a mul-
tiplex brain network formed by one structural layer and one
functional layer. The two layers were obtained by first aver-
aging brain connectivity matrices estimated, respectively,
from DTI and fMRI data in 171 healthy individuals. Each
of the two layers is then thresholded by fixing the average
node degree hki. We have focused our analysis on 158 regions
of interest (ROIs) of the cortex (see Methods for more details).

In figure 3, we report the cores found by analysing the
two layers separately, as well as the multiplex core obtained
with our method. The figure refers to the case of a represen-
tative threshold corresponding to an average node degree
hki ¼ 7. We notice that the cores of the structural and func-
tional layers are only partially overlapping, with a value of
core similarity of Sc ¼ 0:15. For the sake of completeness,

we also report the Sc values for the entire threshold range
(electronic supplementary material, figure S1). A detailed
analysis on the robustness of the multiplex core detection in
the presence of random fluctuations is reported in the
electronic supplementary material, text S1.

As shown in figure 3, ventral brain areas tend in general
to form the structural core, while more dorsal regions appear
in the functional core. Notably, brain ROIs (electronic sup-
plementary material, table S2) that are in the core of both
structural and functional layers also tend to be in the core
of the multiplex. Instead, ROIs being in the periphery of
both layers tend to be excluded from the multiplex core.
However, exceptions may exist depending on the multiplex
richness of the nodes. For example, the posterior part of the
right precentral gyrus (RCGa3), which is in the periphery
of both the structural and functional layer, is eventually
assigned to the multiplex core, because of its relatively
high rank score in the two layers. The situation appears
even less predictable for ROIs that are in the core of one
layer and in the periphery of the other layer. Only occasion-
ally these will belong to the multiplex core. This is the case,
for example, of the anterior part of right precentral gyrus
(RCGa2) which exhibits a relatively low structural richness
but high functional richness, i.e. ranked seventh in the func-
tional core, or of the anterior part of the right parietal
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Figure 2. Core – periphery structure in synthetic multiplex networks with different core similarity. In panel (a), we sketch multiplex networks with M ¼ 2 layers,
N ¼ 250 nodes and different levels of core similarity, namely Sc ¼ 0 (left column), Sc ¼ 1

2 (central column) and Sc ¼ 1 (right column). In panel (b), the nodes are
placed in a two-dimensional plane according to their degree at each layer. The size of each dot is proportional to the multiplex richness mi of the node (unbiased
case, c[1] ¼ c[2] ¼ c ¼ 0.5). Nodes belonging to the multiplex cores are usually placed in the right-top corner of the plots and are coloured in orange, while the
multiplex periphery is in blue. In panel (c), we report results obtained for two cases with c[1] = c[2], namely: (c[1] ¼ 0:75,c[2] ¼ 0:25) where the core is biased
towards the important nodes of the first layer (left), and (c[1] ¼ 1,c[2] ¼ 0), where the core corresponds to the core of the first layer (right).
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Figure 3. Extracting the multiplex core of the human brain from structural and functional information. (a) The structural and functional brain networks filtered with
an average node degree hki ¼ 7 are shown, respectively, on the left and right side. They are represented from above with the frontal lobe pointing upward. The
position of the nodes corresponds to the actual location of the brain ROIs (electronic supplementary material, table S2). Yellow and large nodes represent the brain
regions belonging to the core according to the standard single-layer method. Blue and small nodes code for the ROIs in the periphery. Links are yellow and thick if
they connect two ROIs in the core, while they are blue and thin if they connect two peripheral nodes. (b) ROIs are ranked from top to bottom according to their
richness in the structural (left column), functional (right column) and multiplex network (central column). In each column, the labels in bold/normal font stand for
the ROIs that are in the core/periphery. For the sake of simplicity, only ROIs that are at least in one core (structural, functional or multiplex) are listed in the three
columns. Red/blue and thick/thin lines identify ROIs that go into the core/periphery according to the multiplex approach.
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operculum (RPOC1), which has the highest structural
richness but a low functional richness.

2.4. Revealing new core regions of the human brain
We have extracted the multiplex core–periphery structure of
the human brain for the full range of available thresholds
hki ¼ 1,2, . . . ,120 (see Methods for more details). In this
way, we have been able to calculate the coreness Ci of each
node i, defined as the normalized number of thresholds at
which the corresponding ROI is present in the rich core.
This allows us to rank ROIs according to their likelihood to
be part of the multiplex core and to compare these to the
rankings obtained separately for structural and functional
layers. We note that the same approach of investigating the
persistence across a set of different filtering thresholds can
be applied to any node property. This can turn useful for
statistical validation in the case no threshold is universally
accepted, as often happens for brain networks [38–40].

Parietal (pre/cuneus PCU/LOC, superior parietal lobe
SPL), cingulate (anterior Ca, posterior Cp), temporal
(superior temporal gyrus), insular (insular cortex IC), as
well as frontal ROIs (paracingulate PC) mainly constitute
the structural core, as shown in electronic supplementary
material, figure S2. While some overlap exists between the
structural and the functional cores, the latter rather tends
instead to include occipital (occipital fusiform gyrus OFG,
temporo-occipital fusiform cortex TOFC) and central (pre/
post central gyrus CGa/CGp) ROIs and, notably, to exclude
regions in the frontal lobe (top 25% ROIs, electronic
supplementary material, figure S3).

Figure 4 shows the coreness of the multiplex network. As
expected, ROIs that are peripheral (i.e. low coreness) in both
layers are also peripheral in the multiplex, while ROIs with
both a high structural and high functional coreness are typi-
cally observed in the multiplex core (e.g. TOFC, OFG, Ca,
Cp). Interesting behaviours emerge for those regions typically
characterized by high coreness in one layer and low coreness
in the other layer. In fact, some of these ROIs are part of the
multiplex core, while others are usually found in the multi-
plex periphery, as shown in figure 5a. For areas with a
different assignment in the two layers, we note that the
main contribution to the multiplex richness mi comes from
the richness in the layer where node i is identified as core.
Interestingly, not only is the average richness of the node in
the core layer higher than the one in the peripheral layer,
but also its fluctuations around the mean.

As a consequence, among regions that are core in the
structural layer but peripheral in the functional one, those
with relatively higher structural richness (degree), such as
precuneus PCU, insular cortex IC and posterior cingulate
Cp, finally tend to join the multiplex core no matter the
exact value of their functional richness (upper right corner
of figure 5a). Conversely, ROIs with relatively lower struc-
tural degree are usually peripheral in the multiplex, and
typically located in the pre-frontal cortex PC and frontal
lobe FP (lower right corner of figure 5a), as illustrated in
figure 5b,c. Similarly, among areas in the functional core,
those with relatively higher functional degree, such as pre-
central gyrus CGa and central operculum COC, tend to join
the multiplex core (upper left corner of figure 5a). By contrast,
ROIs with relatively lower functional degree, are mostly per-
ipheral in the multiplex, and are located in the parietal

operculum POC and superior frontal gyrus SFG (lower left
corner of figure 5a).

In a separate analysis, we have extracted the multiplex
brain coreness from each individual and we show that,
despite a normal inter-subject variability, the average multi-
plex brain coreness is very similar to the multiplex coreness
of the group-averaged brain networks (electronic supplemen-
tary material, figure S4). Finally, we have evaluated the
robustness of the results when also including subcortical
ROIs in the brain networks. We report that thalamus,
putamen and hippocampus are among the regions with high-
est coreness and therefore become part of the multiplex core
(electronic supplementary material, figure S5). Interestingly,
their presence does not significantly alter the coreness of
the other ROIs (electronic supplementary material, figure
S6), suggesting an assortative structure where highly con-
nected subcortical regions preferentially get connected with
core regions in the cortex.

3. Discussion
The existence of a network core in the brain is a prerequisite
for neural functioning and cognition, and damage to the core
have been associated with several neurological or psychiatric
diseases [19,41,42]. Finding the router regions that ensure
integration between the different brain modules and com-
munication in the system is therefore a fundamental
question in neuroscience. Previous studies have mainly con-
sidered the structural connectivity of the brain through
disparate techniques, such as k-core decomposition, centrality
measures and rich-club analysis [17,24]. While the results
obtained agree on the implication of posterior medial and
parietal cortical regions—as well as subcortical thalamus,
putamen and hippocampus—in the network core [17,24], they
neglect the possible role of other areas that are crucial from a
functional perspective, such as those in the default-mode
network (DMN) [25].

To integrate information from both structural and func-
tional brain connectivity at the network level, we introduce
a general criterion to define and extract the core when
nodes are connected through links which can vary in mean-
ing and nature, and the whole system can be described as a
network with multiple layers [28–32]. Compared to standard
approaches, this method has the theoretical advantage of pro-
viding a more robust solution, taking into account the relative
importance of the nodes at each layer, rather than simply con-
sidering the union or intersection of the cores across layers, or
extracting the core from the aggregated network.

The results obtained shed new light on the role of the
regions characterizing the intrinsic brain function to even-
tually form the core of the human brain. First, we show that
mPFC (e.g. PC and FP), exhibiting a high structural but low
functional coreness, is eventually assigned to the periphery
(figure 5a, lower-right corner). This outcome can be predicted
by the lower multiplex richness and relatively low structural
degree, and not solely by the attitude of frontal areas to be
peripheral in the functional brain network (figure 5b,c). The
exclusion of the mPFC from the rich core supports the hypoth-
esis that default-mode network activity may be mainly driven
from highly coupled areas of the posterior medial and parietal
cortex, which in turn link to other highly connected regions,
such as the medial orbitofrontal cortex [24].

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180514

6

 on September 12, 2018http://rsif.royalsocietypublishing.org/Downloaded from 



Second, while frontal ROIs are excluded, new regions
gain importance and become part of the core because of
their higher multiplex richness (see figure 5a, upper left
corner). Among them, we report areas of the central gyrus
(CGa, CGp to a minor extent), which are characterized by a
low structural but relatively high functional degree, as
shown in figure 5b,c. These regions are part of the primary
sensori-motor cortex, which has been shown to be the most
extensive of the resting-state components, or networks (out
of eight [43]), covering 27% of the total grey matter in the
brain [44]. The primary sensori-motor component has a
high degree of integration (overlap and activity coupling)
with all other resting-state networks (e.g. DMN), which is
consistent with the increased synchronization of neural
activity in cortical regions during sensory processing [45].
Notably, ongoing functional connectivity in the primary sen-
sori-motor network, originally revealed by seed-based
analysis [46,47], has been extensively verified by ICA and
clustering methods [48,49].

Our method provides an effective tool to integrate meso-
scale topological information in brain networks derived from

multimodal neuroimaging data. Multimodal integration of
brain networks is gaining more and more interest [50–53]
due, on the one hand, to the increasing availability of large
heterogeneous datasets (e.g. HCP http://www.humancon-
nectomeproject.org, ADNI http://adni.loni.usc.edu) and, on
the other hand, to the need of principled ways to characterize
multiscale neural mechanisms (e.g. cross-frequency coupling)
and to provide predictive diagnostics for multifactor brain
diseases, such as Alzheimer’s disease.

It is important to note, that our analysis of the human
connectome relies on the assumption that each layer contrib-
utes with the same intensity to the definition of the
multiplex core. In general, however, the contribution of a
layer a can be weighted differently through a choice of the
parameter c[a], and this can be used to enhance or reduce
the importance of the different types of connectivity. A
larger value of c[a] increases the relevance of the correspond-
ing layer until when, in the limit in which c[a] ! 1 and the
coefficients of all the other layers go to zero, the multiplex
core is no longer defined by the topology of all the M
layers, but coincides with the core at layer a. For instance,
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Figure 4. The multiplex core of the human connectome. Panel (a) shows the human brain, where ROIs are highlighted based on their multiplex coreness. The colour
and size of the nodes are associated with the percentiles of multiplex coreness in each brain region, so that core nodes are larger in size and coloured in red. The left
side shows the lateral view of the left hemisphere (top, dorsal; bottom, ventral). The right side shows the lateral view of the right hemisphere (top, dorsal; bottom,
ventral). In the middle, the brain is shown from above, with the frontal lobe pointing upward. In panel (b), we report the ROIs corresponding to the 25% highest
values of multiplex coreness. The colour follows the same legend as in panel (a).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180514

7

 on September 12, 2018http://rsif.royalsocietypublishing.org/Downloaded from 



setting c[structural] ¼ 1 and c[functional] ¼ 0 returns a core based
on the anatomical information only, and in agreement with
most of the previous literature on such topic (see electronic
supplementary material, figure S2). As an unbiased way to
characterize the multiplex core of the human brain, we
have focused our analysis on the simplest and symmetric
case, c[structural] ¼ c[functional] ¼ 0:5. We show in electronic sup-
plementary material, figure S7 that the results are relatively
stable for small perturbations around this unbiased con-
dition. However, other combinations are in general
possible and should be adopted if supported by a plausible
rationale. For example, in the case of multifrequency brain
networks one could assign different weights to the network

layers taking into account the frequency scaling of the brain
activity’s power spectra [54,55].

In practice, the proposed method to detect the core–per-
iphery organization of multiplex networks has two clear
advantages: (i) it is fast and scalable, since it works using
only local information; (ii) it is non-parametric, e.g. no need
to input a priori information such as the core size. Moreover,
it can be generalized in a straightforward way to the case of
directed networks. A drawback of the method is that it
focuses on highly connected rich nodes, and neglects the
possible important role of the so-called connectors, i.e. central
nodes with low degree [56]. We note that alternative core–
periphery structures which include connectors can be
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Figure 5. Emergent non-trivial core regions in the multiplex brain. Panel (a) shows the scatter plot of the structural, functional and multiplex coreness of the ROIs in
the brain. The colour and size of the nodes are associated with the percentile of multiplex coreness across the set of brain regions, as in figure 4. Panel (b) reports
the average value of multiplex richness hmii across the different thresholds for the ROIs with the strongest differences in structural and functional coreness. The
colour follows the same legend as in panel (a). Panel (c) illustrates the distribution of the ROIs (black points) as a function of their averaged structural and functional
degree across all the thresholds. Only the ROIs listed in panel (b) are highlighted according to the same colour legend as in panel (a).
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detected by more computationally demanding methods such
as those based on stochastic block models, which have been
recently proposed to extract the mesoscale structure of
time-varying and multilayer networks [57]. We hope that
our work can trigger further developments in the exploration
of core–periphery structure of real-world large-scale
multiplex networks.

To conclude, our method to investigate multiplex core–
periphery organization in complex networks suggests that
the core of the human cortex is made up of known cortical
and subcortical hubs, as well as of areas in the sensori-
motor system that were previously overlooked by standard
approaches, but that are crucial for the brain functioning.
Our findings offer an augmented definition of the rich core
of the human brain, which takes into account not only the
anatomical structure but also its function.

We hope that our work will contribute to advance our
understanding of the mesoscale connectivity mechanisms in
multiplex brain networks, in an effort to better integrate the
one-to-many relationships that exist between structure and
function in the human brain [26].

4. Methods
4.1. Multiplex stochastic block model with tunable core

similarity
Stochastic block models for multiplex networks have been
recently introduced by Peixoto [57]. Here, we introduce a sto-
chastic block model that enables sampling of multiplex
networks with an assigned value of core similarity SC (see
equation (3)). Suppose we have N nodes and we want to con-
struct a multiplex network having a core–periphery structure
at each layer a ¼ 1, . . . , M, with N[a]

c nodes in the core of layer a.
In particular, we set M ¼ 2, N ¼ 250, N[1]

c ¼ N[2]
c ¼ Nc ¼ 50,

and we create at each layer a core–periphery structure with the
same set of densities: r1 ¼ 0:2, r2 ¼ 0:04 and r3 ¼ 0:03.
Namely, for each of the two layers, we connect with a probability
r1 two nodes both in the core, with probability r2 a node in the
core and a node in the periphery, and finally with probability r3

two peripheral nodes. The values of the three parameters were
chosen in a way that hki ¼ 10 on both layers, and the core–
periphery structure of each layer is sufficiently strong to be
detected with good accuracy, as discussed in the electronic
supplementary material, text S2.

Different levels of core similarity are achieved by varying the
overlap between core nodes at the two layers. When the two sets
of core nodes are completely overlapping, Sc ¼ 1, whereas when
the two sets are disjoint Sc ¼ 0. Despite other related formu-
lations of Sc are possible, our definition reflects the intuition
that when two layers with equal core size share half of the core
nodes, then Sc ¼ 1

2.

4.2. Multiplex richness mi and mi
þ

The multiplex richness mi and mi
þ introduced in equations (1) and

(2) are obtained by means of a simple aggregation of information
based on the single layers. In the simplest set-up c[a] ¼ c ¼ 1=M
for a ¼ 1, . . . , M, and the multiplex richness mi of a node i is
simply proportional to its overlapping degree oi [31]. A layer
with higher density weighs more in the computation of the
multiplex core of a network.

In general, coefficients c[a] can be used to modulate the rel-
evance of the layers of the network in order to extract its core.
If one wants to have equal contributions to mi and mi

þ from all
the layers but their number of links K[a] is different—for instance,

because in some layers it might be easier to establish or measure
a connection than in others—a natural choice is to set c[a] to be
proportional to 1=K[a]. In other cases, independently from their
density, it might be reasonable to assign different importance
to different layers, because of exogenous information. Once
again this can be achieved by assigning different values of the
coefficients c[a].

Our method inherits many advantageous properties of the
original algorithm proposed for single-layer networks [16].
First, it can be easily extended to directed layers by replacing
k[a]

i with (k[a],in
i þ k[a],out

i )=2 in equation (1), where k[a],in
i and

k[a],out
i correspond, respectively, to the in-degree and out-degree

of node i at layer a, and by substituting k[a]þ
i with

(k[a],inþ
i þ k[a],outþ

i )=2 in equation (2). Second, for weighted net-
works mi and mi

þ can be obtained by replacing the adjacency
matrix binary entries a[a]

ij with their weighted counterparts w[a]
ij ,

and by substituting the node degree with the strength
s[a]

i ¼
P

j=i w[a]
ij . Third, the core size is relatively stable with

respect to randomly chosen different rankings of nodes with
equal degree.

We finally notice that equation (1) is a particular choice of a
more general scenario, where the multiplex richness mi is a
generic function f of the degree of a node at the different layers:

mi ¼ f (k[1]
i , . . . ,k[M]

i ) (4:1)

and mi
þ is a generic function g :

mþi ¼ g (kþ[1]
i , . . . ,kþ[M]

i ): (4:2)

4.3. Multimodal brain networks
We have considered 171 healthy human subjects from the NKI
Rockland dataset http://fcon_1000.projects.nitrc.org/indi/pro/
nki.html. We have used diffusion weighted magnetic resonance
imaging (dwMRI) and fMRI to derive, respectively, structural
and functional brain networks in each subject.

We have gathered the corresponding connectivity matrices
from the USC Multimodal Connectivity Database (http://
umcd.humanconnectomeproject.org) [58].

In particular, structural connectivity has been obtained
using anatomical fibre assignment through the continuous
tracking (FACT) algorithm [59]. Functional connectivity has
been computed by means of the Pearson’s correlation coeffi-
cient between fMRI signals recorded during a 10 min resting
state (RS). RS-based functional connectivity measures the
amount of interaction—or temporal dependence—between
different brain areas during spontaneous brain activity [27].
More details about the processing steps can be found here
[60]. A total number of N ¼ 188 ROIs are available for both
structural and functional brain networks, thus resulting in con-
nectivity matrices of size N&N, spatially matched with the
MNI152 template [61].

Because we are mainly interested in cortical networks, we
focused our analysis on the network obtained by removing all
subcortical ROIs and obtained connectivity matrices of size
158&158. The full names and acronyms for all the ROIs can
be found in electronic supplementary material, table S1. We
have then averaged the resulting connectivity matrices (after
Fisher transformation) across subjects in order to have a popu-
lation-level representation. At the end, we obtained a structural
weighted connectivity matrix S, whose entry sij ¼ s ji contain
the group-average number of axonal fibres between ROIs i and
j, and a functional weighted connectivity matrix F , whose
entry fij ¼ f ji correspond to the group-average correlation
coefficient between the fMRI signals of ROIs i and j.

We have used density-based thresholding to derive structural
and functional brain networks by removing the lowest values
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from the connectivity matrices and binarizing the remaining ones
[27]. We have considered a full range of density thresholds, corre-
sponding to an increasing average node degree hki ¼ 1,2, . . . ,120.
The last value was given by the maximal hki observed in the
native structural connectivity matrices, which are originally not
fully connected. After filtering, for each threshold we have com-
bined the resulting structural and functional brain networks
into a multiplex network M ¼ {S, F }.

Data accessibility. All the experimental data used in this work can be
downloaded from the USC Multimodal Connectivity Database
http://umcd.humanconnectomeproject.org. The Matlab code used
to compute the core–periphery structure of multiplex networks is
made available at https://github.com/brain-network/bnt.
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Moreno Y, Porter MA, Gómez S, Arenas A. 2013
Mathematical formulation of multilayer networks.
Phys. Rev. X 3, 041022. (doi:10.1103/PhysRevX.3.
041022)
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CHAPTER 6  
Impact of AD 
on the 
multimodal 
core-periphery 
organization 
In this chapter, we apply again the previously defined core-periphery structure, and use its 

associated coreness index to study multimodal hub disruption in Alzheimer’s disease. We show 

that core brain regions are the more susceptible to become peripheral as a consequence of the 

disease. We also show that the multimodal coreness is correlated with memory test scores (MMSE 

and FCSRT) in regions associated to working memory and language processing. 
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This chapter will soon be submitted as a journal article. I chose to incorporate it in this thesis as 

a whole in order to get a clear idea on what it should look like when it will be published. 

Abstract 

Many neurodegenerative diseases are recognized to include a disconnection syndrome initiated by 

the neuronal atrophy process. In Alzheimer's disease (AD), the progressive destruction of axonal 

pathways leads to aberrant network reconfigurations both at the structural and functional level. 

In such network reorganization, the core and peripheral nodes appear to be crucial for the 

prediction of clinical outcome due to their ability to influence large-scale functional integration. 

However, the role of the different types of brain connectivity in such prediction still remains 

unclear. Using a multiplex network approach, we integrated information from DWI, fMRI and 

MEG brain connectivity to extract an enriched description of the core-periphery structure in a 

group of AD patients and age-matched subjects. Results showed that the multiplex coreness - 

i.e., the probability of a region to be in the core - was mainly driven by DWI structural 

connectivity with significant contributions of fMRI and MEG functional connectivity, respectively 

at 0.1-0.3Hz and 8-10Hz. At the global scale, the multiplex coreness was significantly decreased 

in AD patients as a result of the randomization process initiated by the neurodegeneration. At 

the local scale, the most affected brain areas, such as medial temporal and occipital regions, 

tended to be in the core of the network and not in its periphery. In addition, the multiplex coreness 

significantly predicted the cognitive and memory impairment of patients as measured respectively 

by the MMSE and free-recall scores. Taken together these results indicate that a more accurate 

description of neurodegenerative diseases can be obtained from the multimodal integration of 

neuroimaging-derived network data. 

I Introduction 

The brain is a complex network where differently specialized areas are anatomically and 

functionally connected. Because of such interconnected structure, focal damages can affect the 

rest of the network through the interruption of communication pathways. Indeed, many 

neurological disorders affecting language, motor and sensory abilities are often due to a 

disconnection syndrome caused by the anatomical connectivity breakdown between the relevant 
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brain areas (SCHMAHMANN and PANDYA 2008). In the case of neurodegenerative diseases, 

the disconnection hypothesis is theoretically supported by a progressive death of neurons and 

synapses that induce gross atrophy. Empirical evidence has shown that Alzheimer’s disease (AD) 

patients with severe motor and cognitive impairments exhibited anatomical disconnections among 

regions between cerebral hemispheres that resemble those observed in split-brain subjects 

(Delbeuck, Collette, and der Linden 2007; Lakmache et al. 1998). In Parkinson’s disease (PD) 

intrahemispheric dissociations between subcortical and cortical structures have been linked to 

disturbances in cognition, perception, emotion, and sleep (Cronin-Golomb 2010). In addition, 

functional connectivity alterations within and between hemispheres have been reported in both 

AD (Blinowska et al. 2017; Sankari 2010; Adler, Brassen, and Jajcevic 2003; Babiloni et al. 2009) 

and PD (Luo et al. 2015; Dubbelink et al. 2013) suggesting their potential role in the early 

diagnosis. 

Altogether, these findings suggest that neurodegenerative diseases must be considered as a 

network problem. Recent approaches based on network (or graph) theory have greatly advanced 

our understanding of the connection mechanisms characterizing brain diseases (Stam 2014). 

Among others, decreased efficiency, modularity and hub centrality have been largely reported in 

neurodegeneration and associated with the stage of disease. Increasing evidence suggests that the 

core-periphery structure of the human connectome - that supports global integration of 

information among distant areas - is highly affected by the AD process and that resulting changes 

might be effective predictors of cognitive declines. On the one hand, brain areas forming the core 

of the network - i.e. nodes with high connectivity and mutually interconnected - have been 

reported to be preferentially attacked by AD (Yan et al. 2018). On the other hand, brain regions 

forming the periphery of the network - i.e., nodes with low connectivity that are mutually 

interconnected - appear to be crucial for the degeneration, too (Daianu et al. 2013, 2015). While 

these results refer to structural brain connectivity, the relative contribution of functional brain 

connectivity into the network core-periphery changes remain poorly understood. 

Based on the aforementioned empirical and theoretical grounds, we hypothesize that 

neurodegeneration would affect the core-periphery structure of the brain network at both 

anatomical and functional levels. More specifically, we expected that the extraction of the core-

periphery organization by integrating information from multimodal brain networks would give 

more accurate predictor of AD and cognitive impairment. Finally, based on the evidence that 
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hubs are the most attacked nodes, we hypothesize that the core brain regions would be mostly 

impacted by the AD atrophy process. 

To test these predictions, we considered multiple brain networks derived from DWI, fMRI and 

MEG data recorded in a group of AD patients and age-matched healthy controls. Cognitive 

impairments in AD patients were described using multidomain behavioral measurements. We 

extracted the multimodal core-periphery structure of the brain networks through a multiplex 

network approach, where all the available information is kept at different connectivity layers. We 

evaluated how AD impacted the multiplex core-periphery organization and we tested the 

correlation of the regional coreness with the cognitive and memory impairment of patients. See 

??? for more details on the experimental design and methods of analysis. 

 

Figure 6.1 Multimodal brain network. This figure shows the multimodal brain networks of a randomly chosen subject. Layers 

correspond to structural or functional brain connectivity networks obtained from DWI, fMRI of MEG. All the layers have the 

same density (or average node degree P) and weighted links whose weights are normalized between 0 and 1. The nodes are sized 

according to their strength, i.e. the sum of its connected edges weights.  

II Results 

Let us consider a 9-layers multiplex  

ℳ = ñ@[¨≠ÆØ], @[¨≠Æ∞], @±¨≠Æ≤≥¥, @±¨≠Æ≤µ¥, @±¨≠Æ∂≥¥, @±¨≠Æ∂µ¥, @±¨≠Æ∑¥, @[∏¨π∫], @[ªº∫]ó , 

where @[v] = {BC,D
[v]} is the fully weighted adjacency matrix describing all connections associated 

to the couples of brain regions = and > in modality ~ ∈ {MEG¡, . . . ,MEG¬, fMRI,DTI}. See section 

Methods for details. 
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In order to assess for changes in the core-periphery organization of this multimodal brain 

connectivity multiplex we use the multiplex coreness index © with the node strength as measure 

of richness, such as defined by (Battiston et al. 2017). The coreness index can be parametrized by 

a coefficients vector ô of length }, the number of layers, that allows to modulate the importance 

of each layer in the computation of the multiplex richness of each node, and consequently in the 

final multiplex core-periphery organization. 

A Complementarity of brain imaging modalities 

In order to get the maximum out of the cohort’s multimodal brain connectivities. We chose to 

tweak this coefficients vector ô  by using a data-driven approach in order to maximize the 

difference between AD and HC populations’ coreness. We used the Particles Swarm Optimization 

algorithm (PSO, (Kennedy and Eberhart, n.d.)). The Fisher’s criterion »(ô) maximizes the 

distance between the mean coreness of the two populations while minimizing the variance within 

each population (see Methods section for details). A minimum was obtained for the following 

coefficients vector ô∗: 

Layer 
  

À∗[ ] 

ÃÕŒœ 0.000 
ÃÕŒ– 0.001 
ÃÕŒ—“ 0.258  
ÃÕŒ—” 0.000 
ÃÕŒ‘“ 0.000 
ÃÕŒ‘” 0.002 
ÃÕŒ’ 0.000 
÷Ã◊ÿ 0.104  
Ÿ⁄ÿ 0.961 

Note that all coreness measures presented in the subsequent results have been computed using 

this optimal coefficient vector ô∗, and should be written ©(ô∗) but will be refered to as © for 

readability purposes. 

None of the three modalities has been discarded by the optimization, though, we notice the 

cancellation of the contribution of all MEG frequency-bands except for €". In Figure 6.2a, are 

shown the projection of the solution vectors (or particles) on the three main components axis. 

The other non-shown components are rapidly zeroing-out throughout 81 iterations of the 80 
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particles that have been necessary to converge to an optimum. The optimal configuration gives, 

in healthy subject, a high coreness on the central and superior frontal gyrii, and relatively high 

values in temporal cortices and superior parietal cortices as shown in the top row of Figure 6.2b. 

Coreness in AD respects the same pattern but with a general decrease in the values. 

This global decrease of coreness in AD indicates a reduced size of the core structure at most of 

the network thresholds. The four highest coreness ROIs have values superior to 0.92 indicating 

that they almost always belong to the multimodal core in healthy subjects. As expected, most of 

the high-coreness-ROIs are regions already found in the literature to be key in structural or 

functional brain connectivity networks. The right and left superior frontal gyri (1st and 3rd 

highest coreness ROIs respectively) are the richest regions belonging to the structural rich club 

organization found in (van den Heuvel and Sporns 2011). And, the right and left precentral gyri 

(2nd and 4th highest coreness ROIs respectively) were already found at the top 12 among 1000 

ROIs after a binary k-core decomposition in (Hagmann et al. 2008). 

 

Figure 6.2 Particles Swarm Optimization of multimodal coreness difference. In panel a), each dot represents the 

position of a particle at a given iteration in the 9-dimensions coreness coefficient vector space. Only three components of the 

vectors are depicted: MEG in the €" band, fMRI and DWI. In b), the evolution of the optimal value of the objective function 

»(ô∗), the fisher’s criterion, in function of the iteration of the PSO (colorbar is identical to a)). In panel c) are represented the 

average multimodal coreness of the healthy controls (HC) population and the Alzheimer’s disease (AD) population at the optimum 

shown in a).  

B Core disruption in Alzheimer’s disease 
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We have studied the coreness in AD by comparing it to those of the HC population. We observed 

that brain regions that are core in most of the healthy subjects tend to be the one losing the most 

coreness in AD. This trend can be quantified by measuring linear regression line’s slope of the 

average coreness difference Δ©C 	= 		©̅AD,C 	− ©̅HC,C in function of the average coreness of the healthy 

population ©̅HC (Figure 6.3a). We found a slope value ‡·ª = −0.26 indicating AD will impact the 

coreness by 26% of reduction on average. 

 

Figure 6.3 Local coreness disruption in AD. Panel a) plots the deviation of local coreness in AD as compared to HC on 

average. The gray line represents the hub disruption index line at ‡·ª = −0.26. Stars show significantly different regions of 

interest (ROIs) according to a Wilcoxon test at € = 0.025. Panel b) shows the same difference of local coreness on the cortical 

surface.  

 

C Modelization of the Alzheimer’s disease’s impact on the 

individual core disruption 

Based on the hypothesis that AD is a disconnection syndrome, we modelized our AD population 

by randomizing the HC one. The randomization process consists in shuffling a given proportion 

U of edges at each layer of our subjects’ multimodal network. Thus, the weight distribution is 

kept unchanged; only the topology of the network is impacted, randomly. From each HC subject’s 

multiplex, we generated �‚„‰Â = 3 new randomized multiplexes that constituted three “fake” AD 

patients. This gave us a randomized population (RA) of size 8π· = �‚„‰Â × 8ÊÁ = 63 subjects. 

We then compared the core disruption of this randomized population and found that between 45 

and 60 percent (Fig. 6.4) of the edges in the HC population must be randomly shuffled in order 

to get a core disruption similar to the one that is present in AD. 
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Figure 6.4  Hub disruption index in AD. This figure shows the hub disruption index distribution, represented as a gray box, 

in function of the proportion of edges that have been shuffled in healthy controls’ (HCs) multiplexes. In blue and orange are 

inserted, respectively, the HCs’ and the ADs’ individual hub disruption indices distributions. Boxes are sorted in descending order 

based on their median.  

D Individual core disruption and local coreness: associations 

to cognitive scores 

We studied the coreness deviation of AD patients from normal population by the mean of the 

individual hub disruption index (HDI). HDI is computed as the linear regression line’s slope 

obtained over all local coreness differences between a subject õ ’s coreness and the coreness 

averaged over the HC population: ©Ë,C − ©̅HC,C. The individual values HDIË were then correlated to 

the cognitive tests scores such as the MMSE and the Free Recall score of the FCSRT, as presented 

in Figure 6.5. 
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Figure 6.5 Local correlation with cognitive scores. In panels a) and b), left column shows the linear regression curve 

between the global HDI and, respectively, the Mini-Mental State Examination (MMSE) score, and Free Recall (FR) score of the 

FCSRT in the Alzheimer’s Disease (AD) population (one dot is one patient). And in right column, are shown the Spearman’s 

correlation coefficients between the averaged local coreness of AD population and the same cognitive scores. Only significant ROIs 

are shown (h < 0.025).  

III Conclusions and Discussions 

Multiplex architecture has been recently applied to brain networks; as compositions of frequency-

based functional networks (Brookes et al. 2016; Guillon et al. 2017), time-varying networks or 

structuro-fonctional networks such as reviewed by (Domenico 2017). This work is the first to 

combine three modalities covering a wide range of brain functional oscillations (0.1 to 45Hz with 

fMRI and MEG) and brain structure (with DWI). Results obtained by the PSO (Figure 6.2a and 

b) can be seen as a proof of the complementarity, in terms of information, of MEG, fMRI, and 

DWI in the study of brain connectivity and shows that combining those modalities together might 

lead to a better discrimination of AD patients versus healthy subjects. Our results on healthy 
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subjects (Figure 6.2c, top row) are in line with previously obtained results concerning structural 

or functional core-periphery structure (van den Heuvel and Sporns 2011, Hagmann et al. 2008). 

Especially the bilateral superior frontal and prefrontal gyri are known to be highly central regions 

from a structural point of view and the occipital gyri . 

Results in Figure 6.3 indicate that AD disconnections are targeted, or follow an order based on 

structural and functional connectivity pathways. In general, brain regions belonging to the 

multimodal core will see their coreness decrease by 26% on average; the highest-coreness nodes 

have a higher probability of being discarded from the core after AD progression. This proves that 

the study of combined modalities is necessary to understand how AD progressively disrupt the 

different networks. The fact that the coreness disruption (measured using the HDI) can be 

reproduced by shuffling layers of the multiplex also supports the hypothesis that AD is a 

disconnection syndrome and encourages further research on finer models of AD progression, 

starting from healthy subject, by using for instance longitudinal datasets. One could also think to 

constrain the shuffling procedure on a subset of edges, on preferred nodes, or on preferred layers.  

Multimodal coreness in AD showed a correlation with cognitive test scores implying intensive use 

of memory and language, especially in temporal and superior frontal areas. While episodic memory 

has long been known to depend on the medial temporal lobe (MTL) (Squire 1992; Gordon 1995) 

which is the most correlated region (Figure 6.5b); language and working memory are taking place 

in the superior frontal lobe (Pochon et al. 2002, and many other studies mainly based on fMRI). 

The main advantage of using the coreness measure is that it avoids the fact of having to choose 

one specific threshold. It evaluates the core-periphery structure at every possible threshold (or 

more precisely only integer values of the average degree P) of a fully weighted multiplex. It could 

be interesting to study its optimal coefficient vector ô∗ in different protocols, conditions, diseases 

in order to evaluate on which physical medium (i.e. hematic, electromagnetic, or physiological) 

the differences are made. This coefficient ô∗ also address the problem mentioned by Buldú and 

Papo (2018) of translating the weights of the connections into the same units since it does not 

require any arbitrary choice concerning the contribution of each layer. However, the weights 

distribution between each layer can have a great impact on the core-periphery organization, and 

on the value of the components of ô∗  itself. This aspect might be a subject requiring more 

attention in future research. Mandke et al. (2018) already suggested to apply a singular value 

decomposition (SVD) to all layers obtained with a single connectivity estimator. 
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IV Methods 

A Cohort inclusion 

The study involved 23 Alzheimer’s disease (AD) patients (13 women) and 26 healthy age-matched 

control (HC) subjects (19 women). All participants underwent the Mini-Mental State 

Examination (MMSE) for global cognition and the Free and Cued Selective Reminding Test 

(FCSRT) for verbal episodic memory. Inclusion criteria for all participants were: i) age between 

50 and 90; ii) absence of general evolutive pathology; iii) no previous history of psychiatric 

diseases; iv) no contraindication to MRI examination; v) French as a mother tongue. Specific 

criteria for AD patients were: i) clinical diagnosis of Alzheimer’s disease; ii) Mini-Mental State 

Examination (MMSE) score greater or equal to 18. All subjects gave written informed consent for 

participation in the study, which was approved by the local ethics committee of the Pitié-

Salpêtrière Hospital. All experiments were performed in accordance with relevant guidelines and 

regulation. 

B Data acquisition and pre-processing 

i Structural and functional MRI 

Magnetic resonance imaging (MRI) acquisitions were obtained using a 3T system (Siemens Trio, 

32-channel system, with a 12-channel head coil). The MRI examination included:  

i) 3D T1-weighted volumetric magnetization-prepared rapid gradient echo (MPRAGE) sequence 

with the following parameters: thickness = 1 mm isotropic, repetition time (TR) = 2300ms, echo 

time (TE) = 4.18ms, inversion time (TI) = 900ms, acquisition matrix = 256 × 256;  

ii) echo planar imaging (EPI) sequence with the following parameters: one image with no 

diffusion sensitization (b0 image) and 50 diffusion-weighted images (DWI) at b = 1500 s/mm2 , 

thickness = 2mm isotropic, TR = 13000ms, TE = 92ms, flip angle = 90°, acquisition matrix = 

128 × 116;  

iii) functional MRI (fMRI) resting-state sequence sensitive to blood oxygenation level-

dependent (BOLD) contrast with the following parameters: 200 images, thickness = 3mm 

isotropic, TR = 2400ms, TE = 30ms, flip angle = 90°, acquisition matrix = 64 × 64. 
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All MR images were processed using the Clinica software (http://www.clinica.run). We first used 

the t1-freesurfer-cross-sectional pipeline to process T1-weighted images. This 

pipeline is a wrapper of different tools of the FreeSurfer software 

(http://surfer.nmr.mgh.harvard.edu/) (Fischl 2012). It includes segmentation of subcortical 

structures, extraction of cortical surfaces, cortical thickness estimation, spatial normalization onto 

the FreeSurfer surface template (FsAverage), and parcellation of cortical regions. Functional MRI 

images pre-processing have been conducted using the fmri-preprocessing pipeline. Slice 

timing correction, head motion correction and unwarping have been applied using SPM12 tools 

(www.fil.ion.ucl.ac.uk/spm). Separately the brain mask has been extracted from the T1 image of 

each subject using FreeSurfer. The resulting fMRI images have then been registered to the brain-

masked T1 image of each subject using SPM’s registration tool. Finally, diffusion-weighted images 

have been processed using the dwi-preprocessing pipeline of Clinica. For each subject, all 

raw DWI volumes were rigidly registered (6 degrees of freedom (dof)) to the reference b0 image 

(DWI volume with no diffusion sensitization) to correct for head motion. The diffusion weighting 

directions were appropriately updated [Leemans & Jones, 2009]. An affine registration (12 dof) 

was then performed between each DWI volume and the reference b0 to correct for eddy current 

distortions. These registrations were done using the FSL flirt tool (www.fmrib.ox.ac.uk/fsl). To 

correct for echo-planar imaging (EPI) induced susceptibility artifacts, the field map image was 

used as proposed by (Jezzard and Balaban 1995) with the FSL prelude/fugue tools. Finally, the 

DWI volumes were corrected for nonuniform intensity using the ANTs N4 bias correction 

algorithm (Tustison et al. 2010). A single multiplicative bias field from the reference b0 image 

was estimated, as suggested in (Jeurissen et al. 2014). 

ii Magnetoencephalography 

The magnetoencephalography (MEG) experimental protocol consisted in a resting-state with eyes-

closed (EC). Subjects seated comfortably in a dimly lit electromagnetically and acoustically 

shielded room and were asked to relax. MEG signals were collected using a whole-head MEG 

system with 102 magnetometers and 204 planar gradiometers (Elekta Neuromag TRIUX MEG 

system) at a sampling rate of 1000 Hz and on-line low-pass filtered at 330 Hz. The ground electrode 

was located on the right shoulder blade. An electrocardiogram (EKG, Ag/AgCl electrodes) was 

placed on the left abdomen for artifacts correction and a vertical electrooculogram (EOG) was 

simultaneously recorded. Four small coils were attached to the participant in order to monitor 
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head position and to provide co-registration with the anatomical MRI. The physical landmarks 

(the nasion, the left and right pre-auricular points) were digitized using a Polhemus Fastrak 

digitizer (Polhemus, Colchester, VT). We extracted three consecutive clean epochs of 

approximately 2 minutes each. 

Signal space separation was performed using MaxFilter (http://imaging.mrc-

cbu.cam.ac.uk/meg/Maxfilter) to remove external noise. We used in-house software to remove 

cardiac and ocular blink artifacts from MEG signals by means of principal component analysis. 

We visually inspected the preprocessed MEG signals in order to remove epochs that still presented 

spurious contamination. At the end of the process, we obtained a coherent dataset consisting of 

three clean preprocessed epochs per subject.  

We reconstructed the MEG activity on the cortical surface by using a source imaging 

technique (He 1999; Baillet et al. 2001): i) We used the previously segmented T1-weighted 

images of each single subject (Fischl et al. 2002; Fischl et al. 2004)  to import cortical surfaces 

in the Brainstorm software (Tadel et al. 2011) where they were modeled with approximately 

20000 equivalent current dipoles (i.e., the vertices of the cortical meshes). ii) We applied 

the wMNE (weighted Minimum Norm Estimate) algorithm with overlapping spheres (Lin et al. 

2006) to solve the linear inverse problem. Both magnetometer and gradiometer, whose position 

has been registered on the T1 image using the digitized head points, were used to localize the 

activity over the cortical surface. 

C Brain connectivity estimation 

We built, for each modality, one or multiple brain connectivity networks whose nodes are regions 

of interests (ROIs) defined by the standard Desikan atlas (68 regions); and links are weighted by 

a given connectivity measure estimated between each pair of nodes resulting in 68 × 68 

fully symmetric adjacency matrices. 

i MEG-based functional connectivity 

In the case of MEG, we used the spectral coherence as a connectivity estimator with the following 

parameters:  window length = 2s, window type = sliding Hanning, overlap = 25% number of 
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FFT points (NFFT) = 2000 for a frequency resolution of 0.5Hz between 2Hz 

and 45Hz included.  

We then averaged the connectivity matrices within the following characteristic frequency bands 

(Stam et al. 2002; Babiloni et al. 2004): delta (2–4Hz), theta (4.5–7.5Hz), alpha1 (8–

10.5Hz), alpha2 (11–13Hz), beta1 (13.5–20Hz), beta2 (20.5–29.5Hz) and gamma (30–45Hz). We 

finally averaged the connectivity matrices across the three available epochs to obtain a robust 

estimate of the individual brain networks.  

ii fMRI-based functional connectivity 

We focused our analysis on the scale 2 wavelet correlation matrices that represented - with a TR 

= 2400ms - the functional connectivity in the frequency interval 0.05–0.10Hz (Biswal et al. 1995; 

Cordes et al. 2001). We wanted to study the highest possible frequencies in order to increase the 

robustness of the correlation (more periods) while staying in the most correlated frequency band. 

iii DWI-based structural connectivity 

We used again Clinica and its tractography pipeline that includes the following steps: 

estimation of the fiber orientation distributions (FODs) using constrained spherical deconvolution 

(CSD) algorithm from MRtrix3 dwi2fod tool and tractography based on iFOD2 algorithm from 

MRtrix3 tckgen tool. The connectome is finally estimated by counting the number of tracts 

connecting each pair of nodes according to the given parcellation file using MRtrix3 

tck2connectome tool. 

D Particles swarm optimization 

We used the PSO algorithm under the MATLAB® software with the default parameters to 

minimize the inverse of the Fisher’s criterion Í(ô) = 1/»(ô). The Fisher’s criterion »(ô) is defined 

as follow: 

»(ô) =
eÎ·ª(ô) − ÎÊÁ(ô)g

#

õ·ª
# + õÊÁ

# , 
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with ÎÏÌj(ô), the average local (i.e. node level) index, here the coreness ©, over a population Pop, 

which in our case belongs to {AD,HC}, and, 

õÏÌj# = Q (ÎË(ô) − ÎÏÌj(ô))#

Ë∈ÏÌj

, 

with õ a subject belonging the population Pop. 

Since »(ô) = »(Rô), ∀R ∈ ℝÒ, and in order to save one dimension in the searching space, we 

expressed the coefficient ô as a point on the positive section of the unitary hypersphere of 

dimension } = 9 such that: 

ô =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

sinı". . . sinıˆ
sinı". . . sinı˜cosıˆ
sinı". . . sinı¯cosı˜
sinı". . . sinı˘cosı¯
sinı". . . sinı˙cosı˘
sinı". . . sinı'cosı˙
sinı"sinı#cosı'
sinı"cosı#
cosı" ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

,ıp ∈ [0,
˛
2
], ∀P ∈ [1,} − 1] 

And used the angles vector ı as our particle position vector of dimension } − 1. 

E Methodological considerations 

Two-levels dimensionality limitations in the optimization of the core-periphery algorithm’s 

contribution coefficients ô: 

o The dimension of the searching space; i.e. the number of layers can hardly be greater 
than what we used here (i.e. } = 9) 

o The cost function, here the inverse of the Fisher’s criterion, reduces to one the dimension 
of the features space (i.e. the space of nodal measures) in order to compare the two 
populations; therefore, it should be carefully chosen when the number of nodes increases, 
since the size of the feature’s vectors will increase with it. One could think of the absolute 
difference between an average global measure on our populations’ multiplexes, or a more 
advanced classification accuracy measure. 
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Conclusion 
We proposed first a multilayer approach to study MEG-based multi-frequency brain connectivity. 

We identified a new type of hubs characterized by their ability to integrate information from 

different frequency bands. We showed that AD have an impact on those hubs, especially in 

cingulate and memory-related association areas. In the same study we also proved that multilayer 

metrics, such as the multi-participation coefficient, were complementary to the standard single-

layer ones in the discrimination of AD versus healthy populations. In a second work, we 

generalized the concept of core-periphery structure to the case of multiplex networks where layers 

have different natures of links. We applied it to structuro-functional brain networks and showed 

that our method succeeds in identifying known core nodes coming from both modalities but also 

brain regions in the sensorimotor system that were previously overlooked by standard approaches. 

We applied again the coreness metric on a multimodal dataset that allowed us to build, for the 

first time, a multiplex network based on fMRI, DWI and multiple frequency bands of MEG. We 

showed that applying a multilayer index, such as the coreness, on a multiplex built as this one 

allows to consider multiple modalities in the same time and without any loss of information. Our 

results are perfectly in line with the literature, from a functional and structural point-of-view, in 

healthy and diseased subjects. 

In general, this work shows the path to future study that might try various topologies of multilayer 

brain networks, and to combine different modalities. In the study of AD, one could think for 

instance to add a temporal component to incorporate the disease progression in the model.  

I also really missed, from the dataset of the AD cohort we used in Chapter 4 and 6, information 

about Aβ and Tau proteins concentration, such as with PET scans. Especially with results that 

we obtained in Figure 6d of Chapter 4 where we show the local correlation between the Total 

Recall score of the FCSRT and the }ÄaC values; regions that were the most correlated really 

overlap with the ones that are typically affected by amyloid deposition as shown with the Figure 

2.2 extracted from Buckner et al. (2005). I would have liked to explore connectivity-based 
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parcellation at the individual level. As shown multiple times in the literature, parcellation has a 

great effect on resulting networks, and since every brain is different, I don’t see why parcellations 

should not be. The difficulty would be then to compare connectome between subjects. I would 

use ROI’s centroid positions in a discretize MNI space to run group-wise analyses at a “meta-

voxel” level. 

Finally, this work also came with questions. In particular, one of the most urging methodological 

questions is about the inter-layer links. How are they computed and what do they express? Also, 

how to consider them in the generalization of network metrics? A few works, presented in Chapter 

3 and 5, already proposed some solutions.  

As many other elements of the brain multilayer networks construction pipeline, there is no 

consensus yet on which method to prefer. And I argue that this will slow down research focused 

on their possible application; since no framework has been precisely and commonly accepted, there 

is no possibility for neurologists (in this case) to compare results and finally use multilayer metrics 

as comprehensive indicators of neural structure or function. I deeply feel that open datasets and 

reproducible analyses will be the only way to get descent discussions in the field. 

To conclude, we confirmed throughout this work that the multilayer networks framework is suited 

for an application to brain networks. Future research may now explore many different 

configurations of multilayer brain networks through time and modalities. Especially, multi-

frequency and multimodal brain networks appeared to be a good choice for the investigation of 

the behavior of neurodegenerative disease such as Alzheimer’s disease for which we gave new 

viewpoints about a few of its already known aspects. 
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