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“Fractal geometry will make you see everything differently. There is a danger in reading

further. You risk the loss of your childhood vision of clouds, forests, flowers, galaxies,

leaves, feathers, rocks, mountains, torrents of water, carpet, bricks, and much else besides.

Never again will your interpretation of these things be quite the same.”

- Michael F. Barnsley

“My life seemed to be a series of events and accidents. Yet when I look back, I see a

pattern.”

— Benôıt B. Mandelbrot
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Relais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

0.2.4 Goulot d’Etranglement . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

1 Introduction and Motivation 1

1.1 Technological Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions and Structure of the Thesis . . . . . . . . . . . . . . . . . . 6

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Classic Stochastic Geometry 10

2.1 Notions of Classic Stochastic Geometry . . . . . . . . . . . . . . . . . . . 12

2.1.1 Model fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Poisson Point Process . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Poisson Line Process . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Voronoi Tessellations . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 State of the Art of Stochastic Modeling of the Wireless Networks Topologies 17

2.3 Mobility Estimation in Cellular Networks by Means of Stochastic Geometry 19

2.3.1 Mobility State Estimation . . . . . . . . . . . . . . . . . . . . . . . 20

ii



Contents iii

2.3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Stochastic Geometry and User History based Mobility Estimation:
STRAIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Stretch Parameter Computation . . . . . . . . . . . . . . . . . . . 24

2.3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.6 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Self-Similar Geometry. The Hyperfractal Model 30

3.1 Self-similar Geometry. Fractals . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Fractal Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 The Sierpinski Triangle . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Self-Similarity of Human Society Geometry. Self-Similarity of Wireless
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Poisson-Shots on Fractal Maps as Precursors of the Hyperfractal Model . 35

3.3.1 Definition of Poisson-shots on Fractal Maps . . . . . . . . . . . . . 36

3.3.2 Towards the Hyperfractal . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 The Hyperfractal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Propagation Model as Feature of the Topological Model. Urban
Canyon Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 The Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.3 The Hyperfractal Model for Mobile Users . . . . . . . . . . . . . . 41

3.4.4 Hyperfractal Model for Relays . . . . . . . . . . . . . . . . . . . . 43

3.5 Stochastic Geometry of the Hyperfractal Model . . . . . . . . . . . . . . . 46

3.5.1 Typical Points of Φ, Φr and Ξ . . . . . . . . . . . . . . . . . . . . 46

3.5.2 Fundamental Properties of the Typical Points . . . . . . . . . . . . 47

3.5.3 An Alternative Method for Computing the Number of Relays in the
Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Model Fitting with Traces. Computation of Fractal Dimension 52

4.1 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Density-to-Length Criteria and the Computation of the Fractal Di-
mension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 The Spatial Intersection Density Criterion . . . . . . . . . . . . . . 54

4.1.3 The Time Interval Intersection Criterion . . . . . . . . . . . . . . . 55

4.2 Data Fitting Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Application to Ad-Hoc Networks. End-to-End Energy versus Delay 59

5.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Preliminary Study on Connectivity with no Energy Constraints . . 62

5.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Path Cumulated Energy . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Path Maximum Energy . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.3 Remarks on the Network Throughput Capacity . . . . . . . . . . . 73



Contents iv

5.3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Short Study on Load and Bottleneck . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Application to Ad-Hoc networks. Delay-Tolerant Networks 84

6.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Canyon Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.2 Broadcast Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.3 Asymptotic to Poisson Uniform . . . . . . . . . . . . . . . . . . . . 95

6.3.4 Extension with Limited Radio Range . . . . . . . . . . . . . . . . . 96

6.3.5 Information Teleportation . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Simulations in a System Level Simulator . . . . . . . . . . . . . . . . . . . 99

6.4.1 QualNet Network Simulator Configuration . . . . . . . . . . . . . . 99

6.4.2 Urban Vehicular Environment Modeling and Scenario Description 100

6.4.3 Validation of Upper and Lower Bounds: Constant Speed . . . . . . 102

6.4.4 Validation of Bounds Under Speed Variation . . . . . . . . . . . . 102

6.5 Simulations in a Self-Developped Discrete Time Event-Based Simulator . 105

6.5.1 Information Spread Under Hyperfractal Model and Teleportation
Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5.2 Validation of Upper and Lower Bounds on the Average Broadcast
Time in the Entire Network . . . . . . . . . . . . . . . . . . . . . 107

6.5.3 Validation of Bounds on Average Broadcast Time Under Speed
Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Conclusion and Future Work 111

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.1 Generalization of the Model for Nodes . . . . . . . . . . . . . . . . 113

7.2.2 Generalization to Poisson Points on Poisson Lines . . . . . . . . . 113

7.2.3 Generalization to Poisson Voronoi Tessellations . . . . . . . . . . . 114

7.2.4 In-Depth Percolation for a Finite Window . . . . . . . . . . . . . . 115

A Proofs 116

Bibliography 118



List of Figures

1 La carte de Indianapolis . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

2 (A) Le support; (B) Hyperfractale, dF = 3, n = 1, 200 noeuds; . . . . . . . xiv

3 La procédure d’emplacement des relais . . . . . . . . . . . . . . . . . . . . xvi

4 Carte avec noeuds et relais . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

5 Procédure pour Minneapolis . . . . . . . . . . . . . . . . . . . . . . . . . . xix
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Abstract

The modeling of wireless networks with stochastic geometry has become popular in the

recent decades. By means of point processes, the positions of wireless infrastructure

and users are represented with the aim of computing metrics of interest like capacity,

routing delay, broadcast time, etc. This has been done successfully for technologies such

as 3G/LTE/Wi-Fi yet, with the arrival of 5G NR, the necessity for rethinking the models

for the communication scenario has become paramount.

In this thesis we present a novel model for the locations of devices in urban communications

networks. The model combines stochastic geometry with fractal geometry and it is called

“hyperfractal”. The model exists in two options: the option for modeling the densities

of cars on streets and the option for modeling the densities and repartition of auxiliary

communication infrastructure. We present in detail the proposed model and its basic

properties. In order to complete the description of the model and advocate for its ease of

use, we provide a method for computing the fractal dimension of cities.

The usefulness of the model is showcased throughout this thesis by several wireless net-

works applications. One application evaluates the achievable trade-offs between delay and

energy consumption for a V2X network in urban environment modeled with hyperfractals.

A second application consists into studying the broadcast in a V2V delay-tolerant network.

Achievable limits are presented together with a phenomenon specific to hyperfractals: the

teleportation phenomenon, which allows an acceleration of the broadcast.

ix



Les Hyperfractales pour la

Modélisation des Réseaux sans Fil

Nous sommes à la veille d’une nouvelle révolution industrielle provoquée par l’Internet

des Objets (IoT). Dans le but de rendre les villes plus intelligentes et de faciliter la vie

de leurs habitants, de nouveaux scénarios de communication sont apparus qui nécessitent

des performances améliorées et nous obligent à repenser la manière dont nous concevons

et analysons les réseaux. Les nouveaux modéles doivent incorporer les caractéristiques de

la société humaine en profitant de la quantité toujours croissante d’apprentissage pousée

par l’émergence de l’intelligence artificielle.

Les villes intelligentes comprendront un nombre considérable d’appareils connectés et des

scénarios de communication hétérogènes : des drones communiquant avec des bâtiments

intelligents, des bus vers des arrêts d’autobus, des ambulances vers des bicyclettes, des

véhicules vers des feux de circulation et entre eux. Les réseaux de véhicules constituent

une partie importante du nouvel écosystème de communication émergeant dans une ville

intelligente. Les communications vehiculaires exitent dans plusieurs formes : dans leur

forme la plus simple, les communications de véhicule à véhicule (V2V), ou sous une forme

étendue, véhicule à infrastructure (V2I) ou même vehicule a tout (V2X).

Un réseau de véhicules, tel que le réseau ad hoc véhiculaire (VANET), peut facilement être

transformé en un système d’information organisé sur l’infrastructure, de façon a ce que

tout véhicule puisse participer à la collecte et à la communication d’informations utiles.

À mesure que le nombre de réseaux véhiculaires continue de crôıtre et crée maintenant

des réseaux géants (avec des structures hiérarchiques et des types de nœuds divers), les

interactions véhiculaires deviennent de plus en plus complexes. Cette complexité est

encore exacerbée par les relations spatio-temporelles entre véhicules. La mobilité des

véhicules sur les routes ne peuvent plus être adéquatement modélisées par des méthodes

utilisées pour les générations précédentes du réseau.

x
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Figure 1: La carte de Indianapolis

Alors que les véhicules connectés suivent le déploiement de l’activité humaine, un modèle

flexible devrait saisir les caractéristiques de la dynamique de la société humaine. Un

département a des zones rurales à faible densité de population, tandis que les zones

urbaines ont une forte densité de population, comme les villes et les villages. Les villes

reflètent une auto-similarité statistique ou une hiérarchie des clusters [1]. Les villes sont

organisées en quartiers, chaque quartier est organisé en pâtés de maisons, séparés par des

rues. Les pâtés des maisons comprennent des bâtiments/maisons qui sont divisés eux-

mêmes en pièces. Le concept d’auto-similarité, très présent dans la nature, a déjà été

exploité depuis longtemps dans l’urbanisme et l’architecture [1, 2]. Comme les rues sont

situées entre les bâtiments, la structure des rues et des routes dans une ville hérit de la

nature auto-similaire de l’architecture urbaine et donc le trafic routier aussi (Figure 1).

Ce concept d’auto-similarité est particulièrement important. En mathématique, un objet

auto-similaire, ou fractale, est un objet en géométrie qui montre une forte similarité soit

exactement ou approximativement avec des parties plus petites de lui-même, le tout a

la même forme qu’une ou plusieurs des ses pièces. Les fractales sont des objets qui

présentent généralement des motifs similaires à des échelles de plus en plus petites et sont

couramment utilisés pour décrire et simuler des objets apparaissant dans la nature. Dans

ce sens, Mandelbrot a fait un travail remarquable.

Les éléments de réseaux sans fil ont été décrits en utilisant la géométrie stochastique, not-

amment, des processus ponctuels, qui permettent l’analyse des interférences et des retards

réalisables, le débit, la planification efficace du réseau, etc. La géométrie stochastique a été

particulierment utilisée pour la modélisation de réseaux cellulaires, soit pour représenter

les positions des stations de base soit pour les positions des utilisateurs mais aussi pour
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la modélisation de réseaux ad hoc. Nous utilisons généralement des processus ponctuels

qui supposent un caractère aléatoire complet, donc un processus ponctuel uniforme, a

qui ajoutent des fonctionnalités telles que la répulsion ou le clustering (processus hard,

processus Cox).

Les réseaux en treillis tels que le réseau de Manhattan [3] ont été utilisés pour la modélisation

de réseaux ad hoc en milieu urbain, pourtant ces modèles ont été critiqués comme étant

dans les extrêmes de la régularité. Dans l’analyse des réseaux véhiculaires, les modèles

traditionnels supposent le cas limite de la géométrie de l’autoroute ou de la géométrie de

l’intersection. L’absence de macro-modèles pour les villes est l’un des facteurs qui nous

ont conduit vers le corpus de travail. Une étude que nous avons réalisée sur l’estimation

de la mobilité des utilisateurs mobiles avec l’aide des informations fournis par le réseau

montre que la géométrie de l’environnement a un impact énorme sur la mobilité d’un

utilisateur.

Cette thése présentera notre modèle de niveau macro pour la topologie sur laquelle

évoluent des entités de communication véhiculaire dans les villes en exploitant l’auto-

similarité. Le modèle est appelé hyperfractale et présente deux variantes : le modèle

hyperfractale pour la densité des véhicules et le modèle des unités du bord de la route

(RSU). Le modèle exploite l’auto-similarité de la carte de densité des entités de commu-

nication véhiculaire et évite les extrêmes de régularité et de hasard.

0.1 Les Modèles d’ Hyperfractales

Dans tout environnement urbain, il existe une hiérarchie des rues basée sur leur import-

ance dans le schéma d’urbanisation (boulevards, rues, ruelles). Le niveau qu’une rue

occupe dans le plan d’urbanisation vient en conséquence de la densité de trafic qu’il sup-

porte. Une observation intéressante et intuitive est que la longueur cumulée d’un type de

rue diminue quand l’importance de la rue augmente. Par exemple, la longueur cumulée

des boulevards est inférieure à la longueur cumulée des rues, qui, à son tour, est inférieure

à la longueur cumulée des allées. Il est donc naturel que la densité moyenne du trafic par

longueur cumulée de chaque type de rue suive une loi d’échelle de puissance. Dans ce qui

suit, nous analyserons un cas particulier, lorsque la loi de puissance provient d’une distri-

bution fractale. Les villes sont organiquement organisées en structures auto-similaires et

représentent de bons candidats à être modélisés en utilisant la géométrie fractale.

Pour construire une fractale, Mandelbrot commence avec un objet géométrique appelé

initiateur. A cela il applique un motif qui se répète à toutes les échelles en l’appelant le
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générateur. La fractale est obtenue en appliquant le générateur à l’initiateur, en dérivant

un objet géométrique qui peut être considéré comme composé de plusieurs initiateurs au

niveau suivant de la hiérarchie ou de l’échelle inférieure. L’application du générateur à

la nouvelle échelle entrâıne une élaboration plus poussée de la géométrie de l’objet à une

échelle encore plus fine, et le processus se poursuit donc indéfiniment vers la limite. En

pratique, l’itération s’arrête à un niveau au-dessous duquel d’autres copies mises à l’échelle

de l’objet original ne sont plus pertinentes aux fins de la modélisation. En substance,

cependant, la vraie fractale n’existe que dans la limite, et donc ce que l’on voit à chaque

itération est simplement une approximation de fractale.

Nous proposons d’utiliser notre modèle appelé hyperfractale, un modèle axé sur l’auto-

similarité de la topologie. Le modèle hyperfractale permet d’échapper aux extrêmes de la

régularité ou du hasard.

Le modèle proposé n’est pas une fractale mais une hyperfractale, en ce sens que la dimen-

sion est supérieure à la dimension de l’espace euclidien. De façon informelle, le modèle

hyperfractale est un modèle de processus ponctuel de Poisson qui supporte une mesure

avec des propriétés de mise à l’échelle différentes d’un ensemble fractale pur. Initialement,

la carte est supposée être le carré unité. Le support de la population est une grille de

rues similaire à une grille de Manhattan mais avec une résolution infinie. Un exemple

est illustré par la Figure 2a. Dans la première étape, les lignes formant le niveau 0 sont

dessinées en noir épais. Dans la deuxième étape, chacune des quatre zones obtenues est à

nouveau considérée comme une carte indépendante avec une mise à l’échelle spécifique et

les lignes formant le niveau 1 sont dessinées en noir plus fin. Le processus se poursuit de

la même manière dans la troisième étape, où chacune des 16 zones est de nouveau divisée

par 16 lignes tracées en traits noirs très fins.

La carte contient n noeuds mobiles. Le processus d’assignation des points aux lignes

est effectué récursivement, de la même manière que le processus d’obtention du Cantor

Dust [4]. Les deux lignes de niveau 0 forment une croix centrale qui divise la carte en

exactement 4 quadrants. On note par p la probabilité que le nœud mobile soit situé sur la

croix centrale selon une distribution uniforme et q = 1− p la probabilité complémentaire.

Avec une probabilité q/4, le mobile est situé dans l’un des quatre quadrants. La procédure

d’assignation se poursuit récursivement dans chaque quadrant et s’arrête lorsque le nœud

mobile est affecté à une croix de niveau m ≥ 0. Un croisement de niveau m est constitué

de deux segments de lignes de niveau m qui se croisent et chaque segment de la croix est

considéré comme un segment de niveau m. Deux segments appartenant à la même ligne

sont nécessairement de même niveau.
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Figure 2: (A) Le support; (B) Hyperfractale, dF = 3, n = 1, 200 noeuds;

Une rue de niveau H consiste en l’union de segments consécutifs de niveau H dans la

même ligne. La longueur d’une rue correspond à la longueur du côté de la carte. La

Figure 2b montre la population obtenue dans le processus d’assignation des rues après 4

itérations. Comme on peut facilement le constater, la densité de la population diminue

quand le niveau de la rue augmente.

En prenant la densité de l’unité pour la carte initiale, la densité des nœuds mobiles dans

un quadrant est de q/4. Soit λH la densité des noeuds mobiles affectés sur une rue de

niveau H. Il satisfait:

λH = (p/2)(q/2)H

La mesure, dans le sens de Lebesgue, qui représente la densité réelle des nœuds mobiles

dans la carte a de fortes propriétés d’échelle. La plus importante est que la carte dans

son ensemble est reproduite à l’identique dans chacun des quatre quadrants, mais avec

un poids de q/4 au lieu de 1. La mesure a donc une structure qui rappelle la structure

d’un ensemble fractale, tel comme la carte du Cantor [4]. Une différence cruciale réside

dans le fait que la dimension fractale ici, dF , est en fait plus grande que 2, la dimension

euclidienne. En effet, considérer la carte dans seulement la moitié de sa longueur consiste

à considérer la même carte mais avec un poids réduit d’un facteur q/4. On obtient:

(
1

2

)dF
= q/4 thus dF =

log(4
q )

log 2
> 2

Cette propriété ne peut s’expliquer que via le concept de mesure. Notez que lorsque

p → 0, dF → 2 et que la mesure tend vers la mesure uniforme dans le carré de l’unité.

En d’autres termes, une hyperfractale avec une valeur asymptotique de dF = 2 est un

processus ponctuel de Poisson uniforme.
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Des analyses typiques de la géométrie aléatoire ont été faites pour le modele d’hyperfractale

pour les noeuds. En quelques mots, les auteurs ont :

• initié le développement de la méthodologie de la géométrie stochastique et des outils

pour manipuler le modèle hyperfractale afin de faciliter d’autres études sur les com-

munications entre dispositifs à grande échelle.

• initié la dérivation d’outils pour le calcul ultérieur de métriques d’intérêt et facilite

le chemin pour une étude plus approfondie du modèle : la notion de point typique,

Campbel-Mecke, le principe de Mass-Transport, la transformée de Laplace.

0.1.1 Un Modèle de Propagation qui Génère la Nécessité d’Elargir le

Modèle Topologique. L’Effet Canyon

Le modèle de propagation canyon implique que le signal émis par un nœud mobile ne se

propage que dans la rue où il se trouve. Si le réseau est statique, compte tenu du processus

de construction donné, la probabilité qu’un nœud mobile soit placé dans une intersection

passe à zéro lorsque la largeur de la rue passe à zéro et les nœuds positionnés sur deux

rues différentes ne peuvent jamais communiquer. Notez que lorsqu’une rue a une largeur

positive, la largeur de l’intersection est négligeable par rapport à la longueur de la rue et

le réseau sera toujours partitionné.

0.1.2 Le Modèle Hyperfractale pour les Relais

Il n’est pas surprenant que les emplacements des infrastructures de communication en

milieu urbain présentent également un comportement auto-similaire. Nous appliquons

donc un autre processus hyperfractale pour sélectionner les intersections où un relais de

communications est installé.

La procédure d’attribution des relais aux intersections est illustrée de manière intuitive

dans la Figure 3.

Notons π une probabilité fixe et q′ = 1 − π la probabilité complémentaire. Une étape

de sélection d’un intersection nécessite deux processus: le processus dans le quadrant et

le processus dans le segment. La sélection commence par le processus dans le quadrant

: avec la probabilité π2, la sélection est le croisement central des deux rues du niveau 0.

Avec la probabilité π(1−π/2), le relais est placé dans l’un des les quatre segments de rue

du niveau 0 commençant à ce point : Nord, Sud, Ouest ou Est, et le processus se poursuit
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Figure 3: La procédure d’emplacement des relais

sur le segment avec le processus en cours. Sinon, avec la probabilité (1− π/2)2, le relais

est placé dans l’un des quatre quadrants délimités par la croix centrale et le processus

in-quadrant continue récursivement.

La sélection est effectuée M fois. A chaque cycle, la probabilité qu’une intersection entre

deux rues de niveaux respectifs H et V soit sélectionnée est p(H,V ) = π2
(

1−π
2

)H+V
.

Si un croisement est sélectionné plusieurs fois, un seul relais est installé dans le croisement

respectif. Le nombre de passages M est une variable de Poisson de la moyenne ρ. Par

conséquence, une intersection de niveau (H,V ) a la probabilité exp(−ρp(H,V )) de ne pas

avoir de relais et les événements relatifs à chaque intersection sont indépendants.

Le placement du relais est hyperfractal avec la dimension dr:

dr = 2
log(2/q)

log 2
.

Une carte complète avec des noeuds et relais est presentée en Figure 4.

0.2 Des Applications pour les Réseaux sans Fil

0.2.1 Procédure de Validation avec des Données

Une exigence obligatoire lors de la fourniture d’un nouveau modèle pour les réseaux sans

fil est le développement d’une procédure qui permet la transformation des données dans

le modèle avec des paramètres de modèle spécifiques. Des procédures de traitement ponc-

tuelles typiques de l’ajustement des données ont été développées dans la communauté de
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Figure 4: Carte avec noeuds et relais

recherche sur la base des différentes méthodes. Par exemple, dans R, un langage couram-

ment utilisé par la communauté de la géométrie stochastique, les fonctions permettent

d’ajuster les points à plusieurs types de processus : Poisson, Strauss, Softcore, etc. Mal-

heureusement, les procédures existantes d’ajustement des données ne peuvent pas être

utilisées pour le modèle hyperfractale car l’interaction entre les points est différente et ne

peut pas être reconnue par le logiciel existant.

Pour valider notre modèle et prouver son utilité et sa facilité d’utilisation, nous avons

développé une procédure de transformation des cartes de flux de trafic en hyperfractales,

plus précisément le calcul de la dimension fractale des cartes de flux de trafic. On peut

utiliser une telle procédure pour calculer une dimension fractale d’une ville / région, puis

calculer des métriques d’intérêt. Un exemple de ces métriques est l’heure de diffusion.

Soulignons que dans la définition du modèle hyperfractale, nous n’avons pas fait d’hypothèses

ou de conditions sur les propriétés de geometrie telles que la forme. Le modèle n’a besoin

que de densité et de longueur. Par exemple, une hyperfractale n’a pas besoin que les rues

principales / de premier niveau soient en croix ou qu’il existe exactement deux rues de

niveau 1 qui ont la longueur exacte. Ce qui est nécessaire est la mise à l’échelle entre la

longueur des différents niveaux du support. En tenant compte de ces observations (qui

viennent naturellement du processus de construction), nous élaborons maintenant une

procédure de calcul de la dimension fractale d’une carte de densité de trafic.

La procédure peut être adaptée en ajoutant trois critères pour augmenter la précision

de l’ajustement : à savoir, densité-longueur, densité d’intersection spatiale et intersection

d’intervalle de temps.
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Les critères de densité à longueur et le calcul de la dimension fractale

C’est le critère utilisé pour calculer la dimension fractale de la carte.

La procédure pour le calcul de la dimension fractale a les quatre étapes suivantes.

• Nous commençons par recueillir les données, la longueur des rues et les statistiques

de trafic. Par exemple, nous avons utilisé les statistiques de trafic annuelles moy-

ennes.

• Ensuite, nous considérons une seule rue comme un alignement de segments consécutifs

dont les densités, du segment le moins dense au segment le plus dense, ne varient

pas plus que d’un facteur A > 1. Nous appelons la densité de la rue la densité

moyenne de son segment. Dans un modèle de ville hyperfractale pure, nous avons

A = 1. Ceci est assez similaire au concept standard de quantification.

• L’étape suivante consiste à classer les rues par ordre décroissant de densité et à

calculer le vecteur des sommes cumulées des segments de rues ordonnés par leur

densité décroissante.

• Nous établissons ensuite la densité des rues triées par rapport à la longueur cumulée

des rues triées. En parallèle, nous traçons la fonction de répartition de densité avec

une valeur de départ de dF et en utilisant la mesure de la longueur cumulée et par

ajustement de courbe, déterminons la meilleure approximation pour dF .

Il existent d’autres critéres pour la validation de calcul de la dimension fractale.

Enfin, pour illustrer comment le modèle hyperfractale peut être utilisé pour représenter la

distribution des véhicules dans les rues, nous présentons ici quelques résultats d’ajustement

des données.

0.2.2 Etude de la Vitesse de Propagation de l’Information dans un

Réseau Urbain Tolérant aux Retards

La première application est la vitesse de propagation de l’information d’une diffusion

dans un réseau urbain tolérant aux retards qui est déconnecté à tout moment, c’est-à-

dire où les chemins multipistes de bout en bout n’existent pas (nécessitant un modèle

d’acheminement différé). Nous prouvons des limites sur le temps de diffusion moyen

dans une configuration hyperfractale et montrons que la performance est due en partie
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Figure 5: Procédure pour Minneapolis

à un phénomène auto-similaire intéressant, que nous dénotons comme téléportation de

l’information, qui résulte de la topologie et permet une accélération de la temps de diffu-

sion.

On a développé des borne inférieurs et supérieurs pour le temps de broadcast d’un pacquet

d’information dans un reseaux vehiculaire representé une hyperfractale.

Dans ce travail, nous utilisons le processus d’hyperfractale pour les noeuds comme modèle

pour les emplacements des véhicules dans le réseau. Nous n’utilisons pas ici le processus

pour les relais, fait qui conduira à la génération du réseau tolérant aux délais. Etant

donné l’absence des relais, la propagation des paquets à travers les intersections, même à

l’aide de la mobilité, nécessitera l’existence de tampons pouvant contenir le paquet plus

longtemps.

Les mobiles se déplacent sur les lignes qui supportent la carte hyperfractale. Lorsqu’un

nœud atteint une limite, il retourne à la carte du même point, suite à une mobilité de

billard. Au départ, dans un souci de simplicité, la vitesse des mobiles est considérée

comme constante et identique, v, quel que soit le niveau et la densité des nœuds sur les

lignes.

Ici encore, nous utiliserons l’effet canyon comme phénomène de propagation caractéristique

en milieu urbain. Le protocole de diffusion considéré est single-hop broadcast, ce qui signi-

fie que chaque véhicule transporte l’information pendant son voyage et cette information

est transmise aux autres véhicules dans son voisinage immédiat (voisins les plus proches

du nœud infecté) lors du prochain cycle de diffusion.
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Après les dérivations des bornes supérieures et inférieures sur le temps moyen de diffusion,

on arrive au résultat unifiant suivant.

Corollary 0.1. Le temps de diffusion moyen Tbroadcast lorsque n→∞ satisfait:

lim
n→∞

log Tbroadcast
log n

= 1− δ (1)

avec δ = 1
dF−1 .

En étudiant la propagation épidémique de l’information dans les hyperfractales, nous

avons découvert le phénomène de téléportation de l’information.

Dans un processus de point de Poisson uniforme bidimensionnel, le paquet d’information

se répand uniformément comme un disque complet qui se développe à un débit constant,

ce qui cöıncide avec la vitesse de propagation de l’information. Fait intéressant, dans une

hyperfractale, le phénomène est complètement différent, en raison de l’effet canyon et de

la répartition de la population spécifique au nouveau modèle, comme illustré en Figure 6.

Deux contagions de nœuds infectés sur les lignes de niveau 0 sont mises en évidence.

Ces zones ne sont pas connectées à la zone infectée principale sur la ligne d’où elles

proviennent, la ligne de niveau H = 0. Les nœuds de ces zones sont infectés en recevant

le paquet de nœuds circulant sur des lignes perpendiculaires. Cela génère plusieurs zones

de contagion. Sur cette ligne, le paquet est diffusé à partir de toutes les sources de

contamination apparues et la diffusion est accélérée. C’est un phénomène qui caractérise

de manière unique la diffusion dans les configurations hyperfractales.
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Figure 6: La téléportation d’information
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Le phénomène de téléportation permet une accélération du temps de diffusion. Notez que

l’accélération elle-même est un phénomène auto-similaire et prend place récursivement:

la propagation au niveau Hi est accélérée par la téléportation provenant des lignes Hi+1,

Hi+2, Hi+3 et ainsi de suite. Dans un hyperfractal avec téléportation, le temps de diffusion

évolue comme: O(n1−δ).

Toutes ces analyses ont été validées par des simulations effectuées dans un simulateur

auto-développé dans MatLab mais aussi en QualNet.

0.2.3 Le Routage de Bout en Bout dans un Réseau Hyperfractale avec

Relais

La deuxième application est le routage de bout en bout dans un réseau hyperfractale avec

relais représentant les unités de bord de route dans les communications V2I (véhicule à

infrastructure).

Les modèles hyperfractaux pour les nœuds et les relais conviennent parfaitement à l’analyse

des performances clés des réseaux ad hoc en milieu urbain. Dans ce qui suit, nous montrer-

ons comment, en modélisant un réseau de véhicules avec des unités côté route en utilisant

des hyperfractales, des calculs peuvent être effectués afin d’observer le compromis entre

l’énergie de bout en bout et le retard. Cela plaide également pour l’utilité de nos modèles.

Dans l’étude des réseaux ad hoc et des sous-catégories de réseaux de véhicules ad hoc, la

topologie apparâıt fréquemment comme un facteur déterminant dans le calcul de l’énergie

ou du délai de bout en bout. Par conséquent, il est tout à fait naturel d’utiliser les modèles

hyperfractaux pour l’analyse de telles mesures.

La stratégie de routage considérée est la stratégie de routage du plus proche voisin. Le

saut suivant est toujours le prochain voisin dans une rue, c’est-à-dire qu’il n’existe aucun

autre nœud entre l’émetteur et le récepteur.

Nous définissons le délai de transmission de bout en bout comme le nombre total

de sauts que le paquet prend sur son chemin vers la destination.

La transmission se fait en mode semi-duplex, un nœud n’est pas autorisé à émettre et

à recevoir pendant le même intervalle de temps. Le signal reçu est affecté par le bruit

de bruit gaussien blanc additif (AWGN) N et la perte de chemin avec exposant α > 2.

Nous faisons l’hypothèse simplifiée que tous les nœuds d’une rue transmettent la même

puissance nominale Pm qui ne dépend que du nombre de nœuds de la rue.
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Notons par t un noeud et par P (t) la puissance de transmission nominale de ce noeud.

Definition 0.2. Soit T une suite de nœuds qui constitue un chemin de routage. La

longueur du chemin est D(T ) = |T |. Les chemins énergétiques pertinents sont les suivants:

• L’énergie cumulée de chemin est la quantité C(T ) =
∑

t∈T P (t).

• L’énergie maximale de chemin est la quantité M(T ) = maxt∈T P (t).

L’énergie cumulée de chemin présente un intérêt puisque nous souhaitons optimiser la

quantité d’énergie dépensée dans la communication de bout en bout, et respectivement

l’énergie maximale du chemin lorsque nous voulons trouver le chemin dont l’énergie max-

imale ne dépasse pas un seuil donné en fonction de la durabilité énergétique des nœuds

ou du protocole. Par exemple, il est probable qu’aucun nœud ne puisse supporter une

puissance nominale de Pmax qui est l’énergie nécessaire pour transmettre dans une plage

correspondant à la longueur totale d’une rue. Dans ce cas, il est nécessaire de trouver

un chemin qui utilise des rues avec suffisamment de population pour réduire la puissance

nominale du nœud.

Nous montrons les limites théoriques pour le compte de bonds de communication de bout

en bout sous deux contraintes d’énergie différentes : soit l’énergie totale accumulée, soit

l’énergie maximale par nœud. Nous avons en outre calculé une limite inférieure sur la

capacité de débit du réseau avec des contraintes sur l’énergie du chemin.

Les résultats sont obtenus en observant le comportement du routage dans un chemin

direct, un chemin dévié avec trois segments, soit un chemin dévié avec cinq segments

(Figure 7).

Regardons la Figure 8 pour comprendre les compromis entre l’énergie cumulée de bout en

bout et le nombre de sauts pour un couple émetteur-récepteur. La paire a été sélectionnée

au hasard parmi les simulations effectuées sur une carte hyperfractale avec n = 800 noeuds,

coefficient de perte α = 4, dimension fractale des nœuds df = 4, 33 et dimension fractale

des relais dr = 3. Le tracé montre l’énergie cumulée minimale pour la transmission de

bout en bout pour un nombre fixe et autorisé de sauts, k, dans les marqueurs de cercle

rouges. Notez que l’énergie ne diminue pas de manière monotone, car forcer à prendre

un chemin plus long peut ne pas permettre de prendre le meilleur chemin. Cependant,

en considérant l’énergie minimale cumulée de tous les chemins jusqu’à un certain nombre

de sauts, (les marqueurs d’étoiles noires dans la Figure 8), l’énergie diminue et montre

clairement le comportement attendu. En d’autres termes, l’énergie cumulée minimale di-

minue effectivement lorsque le nombre de sauts est autorisé à crôıtre (et la communication

de bout en bout est autorisée à choisir des chemins plus longs, mais moins coûteux).
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Figure 8: Énergie de bout en bout minimale cumulée par rapport aux sauts pour une
paire émetteur-récepteur.

Toutes ces analyses ont été validés par des simulations effectuées soit dans un simulateur

auto-développé dans MatLab, soit dans QualNet.

0.2.4 Goulot d’Etranglement

Une autre analyse a été effectuée pour observer le goulot d’étranglement dans les stratégies

de routage considérées.

Notez que, désormais, nous utilisons le terme nœud pour désigner à la fois les mobiles et

les nœuds et les relais.

La charge γ(x) d’un nœud x est le nombre de chemins routés via le nœud respectif.

Nous ne fournissons pas analytiquement une technique de routage telle que la charge soit
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équilibrée. Au lieu de cela, nous calculons ici la charge des nœuds de transmission sous

la contrainte du routage des coûts de chemin minimum (soit la technique de routage vers

le plus proche voisin, soit un délai minimum).

Bien que la stratégie de routage ne soit pas optimale en ce qui concerne l’équilibrage de

la charge, nous la choisissons comme technique de routage de référence afin de mieux

comprendre la charge obtenue lors de la minimisation des coûts. De plus, une technique

de routage à délai minimal est intéressante car elle maximise le débit du réseau.
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Figure 9: Répartition de la charge dans un hyperfractal avec df = 3.3, dr = 2.3,index
des noeuds jusqu’à l’index 500, index des relais à partir de l’index 500

Lorsque vous utilisez la stratégie de routage à délai minimal, la distribution de la charge

change considérablement, voir la figure 9b. Pour la même configuration hyperfractale,

df = 3.2, dr = 2.3, les relais sont fortement chargés, tandis que les nœuds mobiles

supportent un trafic beaucoup plus léger.

Nos résultats ont montré que la charge est mieux équilibrée lorsque la dimension fractale

des relais est plus élevée.



Chapter 1

Introduction and Motivation

1.1 Technological Context

During the last few years we have witnessed some of the intense moments in the evolution

of communication networks and I consider myself lucky to have my phD work in this

period. It is in the past three years that we stopped talking of telecommunications net-

works in the user-to-network sense of communication but started exploring the new vast

fields opened by the “emancipation” of the object aka “object”. The main new challenge

is not to make people communicate, but allow smart objects to exchange messages for

decreasing the pressure and amount of human supervised communications.

The main concept sparking this revolution is the Internet of Things (IoT), that has brought

with itself the concepts of Industry 4.0 [5] and Vehicular Communications [6]. Yet these

are not considered to be under the umbrella of the mobile communications in a traditional

sense. The discussions around the goals of the 5th Generation (5G) of communications

have lead to the idea that there will be a logical split (overlapping exists) between the

so-called composing slices of the new communication system. The slices are as follows:

the evolution of Long Term Evolution (LTE) becomes the Enhanced Mobile Broadband

(EMB), the second slice is the massive IoT and the third slice is the slice of the ultra-

reliable and low latency communications with their tough constraints.

Nokia, together with all major players in the ICT (Information and Communications

Technology), believes that the IoT has the potential to ignite a new industrial revolution

because it will simplify peoples’ lives, make cities smarter and industries more efficient [7].

Bell Labs Consulting estimates IoT’s worth to be 36 times the potential value of today’s

Internet by year 2020.

1
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An intelligent infrastructure takes in account the behavior and necessities of the citizens.

This leads to smarter, safer and more sustainable cities. Technology aims to make cities

respond faster to demographic and economic changes and adjust easier to these shifts.

However, smarter infrastructure and applications only make a difference when they ac-

tually make people’s life better and easier, and not more complicated. The user is no

longer to adapt his consuming mode to the network, but the network must adapt its ser-

vices in order to better serve the user. One can argue that, by increasing the number of

applications and social services, the social interactions between humans have decreased.

Also, by increasing the number of connected devices that people have to handle (smart

phone, smart watch, tablet, bluetooth, etc), the manipulation of the objects has become

a nuisance and has lead to a waste of energy and attention. That is why a responsive,

flexible technology that works for humanity will make cities indeed “smart”, creating a

safer and sustainable environment.

Challenge: The pressures of urban growth

At the turn of the 20th century, just 15% of the world population lived in cities. According

to the United Nations (UN), the year 2007 witnessed the turning point when more than

50% of the world population were living in cities, for the first time in human history [8].

The urbanization is estimated to reach 70% percent in 2070 [9].

The global population shift to urban areas creates new challenges for cities: better ways

to promote a growing economy, improve operating efficiency, and maintain the safety and

well-being of citizens. We must, now more than ever, address the city’s impact on the

environment. Although it is commonly understood that smart city services can address

these challenges, the best path to developing them is often unclear and communications

are often disregarded when migrating towards a smart city infrastructure.

As Figure 1.1 shows, in a smart city, tremendous amount of communications are happening

simultaneously: drones can communicate with buildings, buses with bus stops, traffic

agents with traffic poles, traffic lights with vehicles. Notice how often the vehicles appear

in the 5G communications scenarios. Indeed, the driverless car initiatives push towards

the development of vehicular communications in all of their options: vehicle-to-vehicle

(V2V), vehicle-to-infrastructure (V2I), vehicle-to-everything (V2X).

More than 1.25 million people die on the roads each year, with 90 percent of cases being

caused by human error [10]. The national departments of transportation want to increase

safety for travelers and roadside workers. It is believed that automated driving supported

by V2X communications has the potential to save lives by preventing millions of traffic



Chapter 1. Introduction and Motivation 3

Figure 1.1: Property of Nokia Networks: Smart Cities that Enrich Life

accidents. Connectivity with other vehicles and pedestrians, centralized cloud-based back-

office systems, traffic control centers and roadside equipment are to enable services such

as danger warnings, cooperative adaptive cruise control, platooning and more. Real-time

communication helps vehicles deal with situations that neither the driver nor the vehicle’s

built-in sensors can identify, enabling safer and predictive driving. Safety-critical V2X use

cases for highways demand a latency below 100 ms end-to-end; in some situations even 50

ms latency is required. Such demands are not supported by today’s cellular networks and

highway agencies do not hold licenses to operate cellular networks along their highways.

furthermore, the 3G/4G networks are not adapted for communications along roads or

highways. An IEEE 802.11p-based radio technology, also referred to as Dedicated Short

Range Communication (DSRC) or Intelligent Transport Systems (ITS)-G5, is seen as an

alternative to V2X over cellular (C-V2X) [11]. But that requires building a costly new

footprint of DSRC-infrastructure along the highways and adding another new dedicated

DSRC-communication module in addition to existing cellular modems that are already

embedded in many vehicles.

Nokia identified some of the demanding requirements of the highway and automotive

industry as follows:
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• Robust end-to-end latency for safety-critical V2X use cases below 20 ms;

• Enabling predictive driving based on a long-distance view beyond the range of in-

vehicle sensors and direct vehicle-to-vehicle communication;

• Greater network capacity to support multimedia services for traveler comfort in

addition to safety-critical V2X use cases;

• Improved network coverage through a neutral host approach by leveraging existing

highway infrastructure, e.g. toll gantries, for mounting cellular antennas of com-

munications service providers and existing communications networks of highway

agencies for backhauling;

• Building upon telecommunications standards to integrate V2X into existing cellular

modems that are already embedded in many vehicles;

• Alignment with the 5G technology roadmap including LTE-Advanced, LTE-Vehicular

and others.

In an intelligent transportation system (ITS), V2I sensors also called road-side units

(RSU) can capture infrastructure data and provide travelers with real-time advisories

about such things as road conditions, traffic congestion, accidents, construction zones

and parking availability [12]. Nevertheless, one of the main functionalities of the infra-

structure is assisting in the vehicular communications. V2I communication is typically

wireless and bi-directional: data from infrastructure components can be delivered to the

vehicle over an ad hoc network and vice versa. Such V2I sensors can include overhead

RFID readers and cameras, traffic lights, lane markers, streetlights, signage and parking

meters. Considerations have been made for dedicated infrastructure, yet a more economic

sensible way of assisting the vehicular communications is to exploit the already existing

telecommunications and traffic poles. The design of the topology of the RSU is therefore

closely tied to the deployment of the vehicular communications and the vehicular traffic.

Given the number of connected devices, stochastic geometry remains a good ally in provid-

ing the tools needed for computing metrics in networks of this size.
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1.2 Motivation

Future communication scenarios have a heterogeneity and diversity that is no longer

answered by the stochastic geometry models designed for 3rd Generation (3G) or 4th

Generation(4G) communications. Indeed, at the time of 3G/4G, the requirements for

the design of topological models for networks were the robustness and adaptability to

all scenarios. In 3G/4G, these scenarios meant mostly mobile communications between

individuals. In 5G, as earlier stated, this is no longer the case. Another constraint

that models designed for 3G/4G communications had to deal with was the lack of data

for fitting the models or adapting the models for the specific scenarios. Nowadays, the

the world of artificial intelligence and massive machine learning, the huge amount of data

allows for the development of models that can be adapted and fine-tuned for each scenario

and situation. We are no longer in the moment where we ask: “Would your model work

for day time and night time as well? Rush hour and business hours? ” Machine learning

and data analysis allow for real-time recalculation of models parameters in order for the

models to fit with a maximum precision the reality and offer extremely accurate estimation

of metrics for the exploitation of a communication network.

With these considerations in mind, we set ourselves to the design and exploration of

new topological models for some specific communication scenarios in 5G. While learning

from the tremendous bouquet of knowledge gathered in the stochastic geometry com-

munity while working for the 4G communication models, we allow ourselves to dive into

new spaces, in particular, observing and getting inspiration from the fascinating fractal

geometry.
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1.3 Contributions and Structure of the Thesis

In this thesis, we propose a novel stochastic model for representing car traffic in urban

environment. The model is analyzed and exploited. By combining stochastic geometry

with fractal geometry, this new model aims for a more realistic representation of human

activity in cities. The structure of this thesis is organized as follows.

The present chapter is Chapter 1.

Chapter 2 overviews the state-of-the-art in classic stochastic geometry models applied to

wireless communications. First, we review the Poisson point process, the most commonly

used model for wireless networks and remind its basic properties and tools. Secondly, we

present state of the art works on wireless network models, as well as seminal works done in

the community. We briefly present our preliminary work done for the mobility estimation

by using means of stochastic geometry. This work has lead to useful observations that

were some of the generators behind the hyperfractal model idea.

In Chapter 3, we start by revisiting basic notions about fractals and we present a pion-

eering work done by Philippe Jacquet in the modeling the locations of sensor networks

with fractals, as an example of some of the first such works done in wireless networks.

Then, we introduce the main contribution of this thesis, the hyperfractal model for

urban networks. The model has two components: (i) the model for mobile nodes and

(ii) the model for infrastructure. The hyperfractal model for nodes is described, together

with its properties and tools that we derived in order to handle the model. Then, we

present the hyperfractal model for relays. Again, we present the tools we have derived for

handling the models and a metric relevant for the model that we computed as an example

of how to use these tools. We further present our preliminary work of generalization of

the models in classic stochastic geometric model.

Chapter 4 presents our method for fitting the model with real traffic traces and real city

maps. In particular, we describe an algorithm that computes the fractal dimension of an

actual city from street length and traffic traces. Several examples are presented in detail.

In Chapter 5, we present a first application of the hyperfractal model studied during this

thesis, the modeling and evaluation of the energy consumption and delay in an end-to-end

transmission performed in a vehicular network with relaying infrastructure. The chapter

terminates by analyzing the load of the routing links and identifying the bottleneck.

Chapter 6 presents a second application of the hyperfractal model studied during this

Ph.D, the modeling and evaluation of the information dissemination. We observe that
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when the relaying infrastructure is not used, the network is disconnected and the inform-

ation propagates like in a delay tolerant network. An interesting phenomenon in this

model is debated, what we call information teleportation phenomenon, that is character-

istic to hyperfractals and arises as a consequence of the scaling law of the population in

the model.

Finally, Chapter 7 presents the concluding remarks, on-going works and opens the path

for future exploration of the model and its capabilities.
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Chapter 2

Classic Stochastic Geometry

In mathematics and telecommunications, stochastic geometry models of wireless networks

refer to mathematical models based on stochastic geometry that are designed to represent

aspects of wireless networks [13]. The models generated with the help of tools of stochastic

geometry and related fields like point processes, spatial statistics, geometric probability,

percolation theory, etc. are further analyzed with the aim of better understanding wireless

communication networks and accurately predict various network performance metrics.

In the 1960s, a pioneering stochastic geometry model [14] was developed to study wireless

networks. This was followed by models based on geometric probability [15, 16]. Later the

use of these models increased significantly and they became massively used for studying

a number of wireless network technologies including mobile ad hoc networks, sensor net-

works, vehicular ad hoc networks, cognitive radio networks and several types of cellular

networks, such as heterogeneous cellular networks [17, 18]. Key performance and quality

of service quantities are often based on concepts from signal processing such as the signal-

to-interference-plus-noise ratio (SINR), which forms the mathematical basis for defining

network connectivity and coverage.

The principal motivation behind the usage of these stochastic geometry models is that it

is acceptable to assume that the locations of nodes or the network structure are random

in nature due to the size and unpredictability of users in wireless networks. Furthermore,

the size of the objects is negligible when considered in comparison to the size of the

network. The use of stochastic geometry tools can allow for the derivation of closed-

form or semi-closed-form expressions for these quantities without resorting to exhaustive,

time-consuming simulations or to deterministic models which are limited and possibly

incorrect.

10
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Some of the key quantities that are usually studied with the help of stochastic geometry

are the following:

• SINR, signal to noise plus interference ratio [19]. Due to the scarcity of radio

resources, several transmissions are always concurrent and the SINR is the main

KPI for the decision of correct reception at the receiver side.

• Coverage is a major factor in mobile network planning, as a good coverage is the

critical requirement in the deployment of networks.

• Network capacity is very relevant in mobile architecture design and resource plan-

ning. It is crucial to estimate the capacity that can be delivered to users in order

to guarantee a good quality of service and in order to prevent from any user to be

in outage.

• Shot noise [20]. Stochastic geometry has been often motivated for the study of wire-

less networks by the need to understand the type of noise that arises in electronics.

An example of use of stochastic geometry is the tool for finding the average of the

sum of functions of a point process, Campbell’s formula [21], which will be reminded

several time throughout this manuscript.

• Network interference as shot noise began to be studied once the Fourier and Laplace

transform techniques were developed [22]. The tools were necessary for analyzing

the interference experienced by a user in a wireless network in which the locations of

the (interfering) nodes or transmitters are positioned according to a Poisson process.

• SINR coverage and connectivity models [23] were proposed in late 2000s in the

framework of stochastic geometry.
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2.1 Notions of Classic Stochastic Geometry

2.1.1 Model fundamentals

A wireless network consists of nodes that transmit and receive the data inside the network:

base stations and users in a cellular network for phone communications, sensor nodes in

a sensor network, IoT devices, drones, cars, etc. Before going into the development of

stochastic geometry models and tools for the analysis of the wireless networks, more

fundamental models are required for mathematically representing the signal propaga-

tion and the node positioning. For instance, one of the first steps is the modeling of

the radio propagation. The choice of these models takes into account the environment,

wireless network type, technology used (microwave/millimeter-wave), specific architecture

(cellular/ad-hoc/etc), channel/medium access control (MAC) protocol, which controls the

channels and, hence, the communicating structures of the network.

One of the building blocks of a stochastic geometry wireless network model is the propaga-

tion model. As electromagnetic signals (waves) propagate through air (and other materi-

als) at an elevated frequency, they are negatively affected by multipath propagation. This

is due to reflection, refraction, diffraction and dispersion generated when signals collide

with obstacles such as buildings. Realistic and easy models to handle with are needed

for the propagation. A common approach is to consider two separate parts: the random

and deterministic, or non-random, components of signal propagation. The deterministic

component is usually represented by some path-loss or attenuation function that uses

the distance propagated by the signal from its source for modeling the power decay of

electromagnetic signals. The function is as follows: l(| x − y |) =| x − y |α, where the

path-loss exponent α > 2 and | x − y | denoted the distance between point y and the

signal source at point x. The random component’s aim is to capture the effect generated

by the absorption and reflection. This effect is called fading and some of the models are:

Rayleigh (exponential), log-normal, Rice, Nakagami, etc.

The second and most important task in stochastic geometry network models is choosing a

fit mathematical model for the location of the network nodes and the interaction between

them. The standard assumption is that the nodes are represented by points, idealized due

to their small size in comparison to the size of the network, in some space, most often, two-

dimensional Euclidean, which means they form a stochastic or random structure known

as a spatial point process.
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Let us further overview some basic notions of point processes and other tools in stochastic

geometry as they will be frequently used throughout this manuscript. Most of these

notions have been taken from [24–26].

The most basic objects studied in stochastic geometry are point processes. Visually, a

point process can be depicted as a random collection of points in space. More formally, a

point process (PP) is a measurable mapping Φ from some probability space to the space

of point measures (a point measure is a measure which is locally finite and which takes

only integer values) on some space G. Each such measure can be represented by a discrete

sum of Dirac measures on G. In the following, we will only refer to the space Rd.

A few dichotomies concerning point processes on Euclidean space Rd that will be relevant

in the development of this manuscript are as follows:

• A point process can be simple or not. It is simple if the multiplicity of a point is at

most one, no two points are at the same location.

• A point process can be stationary or not. The process is stationary if its distribution

is invariant by translation through any vector v ∈ Rd, i.e. P{v+Φ ∈ Γ} = P{v+Φ ∈
Γ} for any v ∈ Rd and Γ.

• A point process can be Poisson or not. A formal definition of the Poisson point

process (PPP) is given in the following subsection. A Poisson point process offers a

handy computational framework for different quantities of interest.

– The homogeneous Poisson point process is stationary and simple. This may be

considered as the simplest (and most natural) point process.

– The framework for non-homogeneous Poisson point process is also well de-

veloped, although more technical than that of the homogeneous case. They

can be used to model distributions of users which are not uniform across space.

– There is also a comprehensive computational framework for stationary point

processes which are not Poisson. This is Palm calculus [17].

• A point process can be isotropic or not. Isotropy holds if the law of the point process

is invariant to rotation. The homogeneous Poisson point process is isotropic. If a

point process is isotropic and stationary, it is called motion-invariant.

• A point process can be marked or not; marks assign labels to the points of the

process, and they are typically independent of the point process and independent

and identically distributed. The study of marked point processes may require the

handling of Palm calculus.
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2.1.2 Poisson Point Process

Definition 2.1. Let Λ be a locally finite measure on Rd. A point process Φ is said to

be Poisson with intensity measure Λ if for all pairwaise disjoint sets B1, . . . , Bk ∈ B, the

random variables Φ(B1), . . . ,Φ(Bk); i.e., ∀n1, . . . , nk ∈ N

P (Φ(B1) = n1, . . . ,Φ(Bk) = nk) = Πk
i=1e

−Λ(Bi)
Λ(Bi)

ni

ni!

Definition 2.2. If Φ is a Poisson point process on Rd with intensity measure Λ(dx) = λdx

where λ ∈ R∗+ and dx denotes the Lebesgue measure, then Φ is called a homogeneous

Poisson point process of intensity λ.

Figure 2.1: Poisson point process

Typical Point

The notion of typical point is particularly important for a point process, as it is comprised

in the definition and derivation of most of the tools. The typical point is meant to simplify

computations as a computation done for the typical point should be representative for all

points in the process. One cannot simply pick a point uniformly from an infinite number

of points, and if a rule defines how to pick such a point, we introduce biasing since the rule

will have to depend on the point’s vicinity (or some other property of the point process

realization).

The typical point is strongly connected to the notion of Palm distribution [17]. One can

interpret the Palm distribution of Φ, P 0, as the conditional probability given that Φ has

a point at the origin. The intuition behind the existence of the typical point is: the

conditional distribution of points “seen” from the origin given that the process Φ has a

point there is exactly the same as the conditional distribution of points “seen” from an
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arbitrary location x given that Φ has a point at x. In this context, P 0 (resp. P x) is often

called the distribution of seen from its “typical point” located at 0 (resp. at x).

Distance towards the nearest point of a Poisson point process, also called the

contact distribution is formulated as follows.

Let Φ be a homogeneous Poisson point process on Rd with intensity λ. For a given x ∈ R,

let R = infX∈Φ |X − x|; Note that:

P (R ≥ r) = P (Φ(B(x, r)) = 0) = e−λkdr
d

where B(x, r) = y ∈ Rd : |y − x| < r and kd is the volume of the unit ball in Rd.

Laplace transform

Let Φ be a Poisson point process on Rd with intensity measure Λ. Then for all measurable

functions f : Rd → R+,

LΦ(f) = E
[
e(−

∫
Rd fdΦ)

]
= exp

(
−
∫
Rd

(1− e−f )dΛ

)

Campbell-Mecke averaging formula for Poisson point process gives a method for

calculating expectations of sums of measurable functions f with ranges on the real line.

Let Φ be a process on Rd with intensity measure M . Then for any measurable function

f : Rd → R which is either non-negative or integrable with respect to M , the integral∫
Rd fdΦ is almost surely well defined and

E

[∫
Rd
f(x)dΦ(dx)

]
=

∫
Rd
f(x)M(dx)

Mass Transport Principle (MTP)

This principle comes from graph theory and more precisely from unimodularity. We

remind the reader we have introduced the notion of typical point in a point process. In

which regards finite graphs, the typical vertex can be naturally defined as the vertex

uniformly sampled from all vertices. Unimodular (innite) graphs can be seen as graphs

which exhibit enough regularity allowing one to come up with an equivalent notion of

the typical vertex. A complete treatment of this subject can be found in [27]. The

analogy from unimodular graphs to point processes has been done in [26]. Here, the

most fundamental property of unimodular graphs, called the mass transport principle,

has been extended to point processes. Based on this extension, one can now make use of
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this property for the translation of properties from the typical point to all other points

of the process. The mass transport principle for Poisson point process is formulated as

follows.

For any translation invariant f(x, y,Φ), (f(x+ a, y + a,Φ + a) = f(x, y,Φ), for any a):

E

 ∑
xi∈Φ∪{x0}

f(x0, xi,Φ ∪ {x0})

 = E

 ∑
xi∈Φ∪{x0}

f(xi, x
0,Φ ∪ {x0})

 (2.1)

A clear example of Mass Transport Principle in wireless communications is the statement:

the mean total rate received by a node is equal to the mean total transmitted rate.

2.1.3 Poisson Line Process

Let µ be a localy finite measure on R × [0, π) invariant with respect to cylinder shears,

then there exists a finite measure G on [0, π) such that

µ(dr × dθ) = dr ×G(dθ) (2.2)

Let Φ =
∑

n∈Z δ(rn,θn) be a Poisson point process on R× [0, π) with intensity measure of

the form (2.2). Equivalently Φ is an i.i.d. marked stationary Poisson point process with

intensity λ = G([0, π)) and mark distribution G(dθ)/G([0, π]). Then Φd =
∑

n∈Z δd(rn,θn)

is a Poisson line process.

2.1.4 Voronoi Tessellations

A tessellation is a collection of open, pairwise disjoint polyhedra or polygons in the case

of R2, whose closures cover the space, and which is locally finite, i.e., the number of

polyhedra intersecting any given compact set is finite [17].

A Voronoi diagram is a partitioning of a plane into regions based on distance to points

in a specific subset of the plane. That set of points (called seeds, sites, or generators) is

specified beforehand, and for each seed there is a corresponding region consisting of all

points closer to that seed than to any other. These regions are called Voronoi cells.

Let Φ2 be a simple stationary and ergodic point process on R2 with intensity λ2 ∈ R∗+.

The Voronoi cell of each x ∈ R2 is defined by:
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Figure 2.2: Voronoi tessellation

V (x,Φ2) =
{
y ∈ R2 : |y − x| ≤ infZ∈Φ2 |y − Z|

}
which is a convex set.

Voronoi tessellation-based models of cellular access network were considered to derive

closed-form expressions for the mean number of users in a cell, the mean length of con-

nections, and the total power received at the base station.

The work of [28] shows a relevant example of infrastructure modeling with tessellations

and how environment geometry reflects into the telecommunication structure.

2.2 State of the Art of Stochastic Modeling of the Wireless

Networks Topologies

In the past decades, the research community has successfully modeled network topologies

by extensively using Poisson Point Process (PPP). The seminal work of [29] has enriched

the community knowledge on the achievable limits of capacity, routing, etc. Further

works, e.g., [18, 30, 31], have studied in detail the routing and communication properties

of these topologies.

In [32] the authors overview results driven by stochastic geometry and random graphs on

connectivity, capacity, outage probability and other fundamental limits of wireless net-

works. The authors start by giving the mathematical preliminaries, basic notions, nota-

tions and properties of point processes, boolean models and random geometric graphs.

Then, using stochastic geometric tools they characterize interference, outage and through-

put. Basics of percolation and connectivity are reviewed in other to further pass to the
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analysis of capacity. Other applications are also shortly reviewed such as routing, in-

formation propagation and secrecy. Different spatial stochastic models like Poisson point

process, Poisson hard-core process, Strauss process and the perturbed triangular lattice

are used in [33] to fit the locations of base-stations in cellular networks. The data was

obtained from a public database. The authors introduce a metric called deployment gain

in order to estimate the coverage performance achieved by a data set.

A Matern hard core process is used in [34] in order to model concurrent transmissions in

carrier-sense multiple access (CSMA) networks. As the field of multi-tier and cognitive

wireless networks received increased interested, the need for characterizing the interference

in these new type of scenarios was answered in numerous works [35]. In [36], the authors

provide and extensive survey on the literature related to stochastic geometry models for

single-tier as well as multi-tier and cognitive cellular wireless networks. The authors

overview the models and methods used for multi-tier networks together with the relevant

metrics. Information dissemination within a network modeled by a Poisson point process

has been studied (e.g. [37], [38])

As the study of cellular networks with tools of stochastic geometry became more intense,

special attention has been given to enhancing the accuracy of the estimation of signal-to-

interference-plus-noise-ration (SINR). In this sense, the authors of [39] have shown that

the SINR values experienced by a user with respect to different base stations are related

to an instance of the two-parameter Poisson-Dirichlet process.

In the recent years we have experienced the emergence of millimeter wave technology for

the cellular networks. Stochastic geometry again has proved its utility for modeling and

analyzing the networks under the new technology and with the peculiarities of this techno-

logy. New frameworks have been specially tailored [40] including new path-loss model for

the different distribution of line-of-sight and non-line-of-sight propagation considerations,

blockage models that become crucial when handling millimeter wave systems and Monte

Carlo simulations where the analytical tools had to be extended by fittings. Other works,

for example [41], propose the use of Ginibre pint process as a model for wireless networks

with repulsion.

One of the first works that addresses the modeling of vehicular networks by means of

stochastic geometry has been done in [42]. In that sense, the authors initiate the modeling

of vehicular networks through a one dimensional network obtained as nodes randomly

located on a straight line with slotted Aloha and nearest neighbor transmissions. They

derive close formulas for the capture probability, the density of progress and the average
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delay, relevant metrics for vehicular communications. The study is further extended in

[43] and [44].

The authors of [45] develop a model for vehicular networks in two steps. First, they gen-

erate a Poisson line process to model the road infrastructure and, in the second phase,

they generate independent Poisson Point processes on the lines, in order to model the loc-

ations of vehicles on road. They obtain therefore a Poisson Cow Point Process. The focus

of [46] is the scenario of vehicle to vehicle and vehicle to infrastructure communications

accounting for the clustering effect near the intersections.

In [47], the authors develop a model starting from two data sets, one from Beijing, repres-

entative for large cities, and one from the city of Porto, representative for small cities. By

analyzing the empirical probability mass function of the point counts they find that the

Log Gaussian Cox Process (LGCP) fits with good accuracy the data. Let us emphasize

that the authors provide a model for the locations of random vehicles in cities, and do

not take into account specific urban propagation phenomenons. Particular setups and

results on information dissemination in vehicular networks have been proven in [48, 49],

etc. The particular setup of highway has been studied under the constraints imposed by

the millimeter wave technology in [50].

Some first attempts to combine the stochastic geometry with fractal geometry have been

done in [51] and [52], where the authors use classic stochastic geometry to model the

position of base-stations but fractal geometry to model the coverage.

More references will be given in each chapter for the specific application treated.

2.3 Mobility Estimation in Cellular Networks by Means of

Stochastic Geometry

A preliminary study we have performed during the first part of the Ph.D period consisted

in the estimation of mobile user equipment (UE) speed by exploiting network information

and stochastic geometry. This study came as a continuation of the work on mobility

estimation by means of signal processing with the intention to exploit network provided

information and stochastic geometry. The lessons learned from this study were funda-

mental for the creation of the hyperfractal model.

UE’s speed information is useful for optimizing handover (HO), reduce call drop or net-

working signaling flow, optimizing the UE-to-evolved NodeB (eNB) attachment and radio
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time

UE Trajectory

Figure 2.3: UE mobility through heterogeneous networks.

resource utilization efficiency, for example during channel allocation decision and in multi-

carrier deployment scenarios. For instance, one may favor the HO of high-speed UEs to

large coverage cells (e.g., macro cells) or to higher coverage carriers in multi-carrier scen-

arios. On the other hand, for macro cell traffic offloading purpose, low or medium speed

UEs are preferred to HO to small cells, see Figure 2.3. It is also known that UE’s speed

information can be beneficial to the optimal configuration of HO parameters, for example

in setting the filtering coefficients of power measurements, as well as for determining most

suitable transmission scheduling strategy [53].

In this preliminary study, we address the problem of UE mobility estimation for the en-

hancement of HO procedure in mobile cellular networks. We propose a novel scheme to

estimate the UE mobility class based on the behavior of the UEs in the network, the

correlation between the mobility and the characteristics of the environment, and the UE

history information available at the eNBs. We use stochastic geometry for network model-

ing. The method is following the Long Term Evolution (LTE) Mobility State Estimation

(MSE) legacy model and has negligible additional computational complexity to the eNB

and the UE.

2.3.1 Mobility State Estimation

There exists a rich literature on user speed estimation methods that are built on physical

layer signal measurements and exploit signal processing techniques (see for example [54–

56]). However, these methods are computational complex and not in line with the 3rd

Generation Partnership Project (3GPP) legacy procedures. Most of these methods assume

that the information of the reference signal received power (RSRP) strengths is available



Chapter 2. Classic Stochastic Geometry for Wireless Networks 21

anytime for the eNBs. In reality, RSRP are transmitted only periodically. Additionally,

authors only consider constant speeds.

An approach of high interest to the industry is to exploit UE history information that is

exchanged between eNBs during HO procedures (through the X2 interface). In 3GPP,

the purpose of UE history information is to provide target eNB, with a list of UE’s

previously visited cells and associated (per-cell) information elements. As standardized,

the UE history information contains the IDs of the last visited cells (up to 16), and the

durations that the UE stayed in each cell (called the cell residence time). The goal is to

use these information elements to derive UE mobility state with high accuracy, very low

computational complexity, compatible to 3GPP standards and legacy architectures, and

valid for various network environments.

The 3GPP LTE MSE Procedure

The legacy LTE MSE procedure in 3GPP [57, 58] consists in counting the number of HOs

(denoted by NHO) or re-selections (denoted by NCR) that the UE does during a sliding

time window (denoted by TCRmax), for categorizing the UE into one of three states:

“Normal” (in this study we call it “Low”), “Medium” or “High”, with respect to the two

MSE thresholds NCRmedium and NCRhigh deployed as follows: If a UE’s NCR count

is smaller than the threshold NCRmedium, then the UE’s mobility state is determined as

“Normal”. If the UE’s NCR is greater than NCRmedium but less than NCRhigh, the UE’s

mobility state is determined as “Medium”. If the UE’s NCR is greater than NCRhigh,

then the UE’s mobility state is determined as “High” ( see Figure 2.4) .

NCRmedium NCRhigh

NCR counted

Low
mobility

Medium 
mobility

High 
mobility

Figure 2.4: The 3GPP LTE MSE algorithm.

Note that the above standard procedure often leads to inaccuracy due to its over-simplified

modeling and assumptions.
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Enhancements to the legacy LTE MSE procedure have been proposed in several papers

[59–61] and were debated in detail in our work published in [62]. We refer the reader to

this piece of work for a detailed comparison.

2.3.2 System Model

The network consists of a number of MC macro cells. The coverage area of each cell is

represented by its Voronoi region. For our computation, we do not mean the radio range

of a cell is limited by its Voronoi region. The locations of macro cell eNBs are extracted

from the city of Cologne network topology and the resulting Voronoi regions are obtained

as displayed in Figure 2.5.
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Figure 2.5: Macro cell network topology.

A set of UEs are extracted from the Kolntrace data [63]. At every time instance (with

the resolution of 1 second), one has the following trace available from [63]: the Cartesian

coordinates of UE k on the X and Y axes and the speed of UE in kmph. Given the

above data and the network topology model, we can determine the time-stamp of HO to

a cell and the time-stamp of HO from the cell. Meanwhile, we use Th to denote the time

spent by a user in a cell. The UE trajectories are the measured trajectories or simulated

according to Kolntrace. Note that the traces contain UEs of various speed.
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2.3.3 Stochastic Geometry and User History based Mobility Estima-

tion: STRAIGHT

In [64], the authors propose a mobility estimator for cellular networks that is based on

the following dependency between the UE velocity and average cell residence time:

E[Th] =
πR

2E[V ]
(2.3)

where: Th is the HO call cell residence time, defined as the time spent by a mobile in a

given cell to which the call was handed over from a neighboring cell before crossing to

another cell, R is the cell radius, V is the user speed. This expression assumes uniformly

distributed mobiles in a cellular network and, secondly, the mobiles moving in straight

lines with direction uniformly distributed in [0, 2π). Equation (2.3) can be re-written as:

E[V ] =
πR

2E[Th]
(2.4)

for showing that the user speed is proportional to the ratio of cell radius over the cell

residence time.

The assumption of linear trajectory of UEs is clearly unrealistic. One can easily find that

UEs have erratic trajectories and with many direction changes which will thus lengthen

the cell residence time and lead to incorrect estimation of the UE’s speed. As the time

a UE stays in a cell depends not only on the UE’s speed but also on its trajectory, we

can interpret that the erratic trajectory can be translated into an increase in its travel

distance.

From (2.4), one may also interpret πR
2 as the average distance traveled by an UE in the

cell and thus the increase in traveled distance would mean an increase to a notion of the

cell radius, such that a “virtual” or equivalent cell radius should be used to replace the

simple R in (2.4) for taking into account erratic trajectory or similar factor.

Figure 2.6 depicts the concept of equivalent cell radius. That is, a UE that has an erratic

path through a cell i of radius R is similar to that the UE has a straight path through the

cell with radius Req. In short, an increase in a UE’s drift can be considered as contributing

to an increase of the equivalent cell radius.

To be precise, let η be the ”stretch” parameter defined as η =
Req
R , where R is the

actual radius of a cell and Req is the equivalent cell radius of the cell. It expresses a

dilatation or stretch of the actual cell radius induced by the typical trajectories of the

users in the cell.
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Ri

Req

Figure 2.6: Principle of the equivalent cell radius.

By applying this transformation (i.e., using the notion of equivalent cell radius), we can

resort to the straight path assumption and use equation (2.4) for estimating the UE’s

speed such that:

E[V ] =
πηR

2E[Th]
(2.5)

where the parameter η would depend on the environment, network topology, and the

characteristics of mobile UEs passing through the cell area. For example, we may have

a specific value for each cell or a specific value for each type of cell. In addition, this

parameter may have similar or correlated value among neighboring cells.

The main steps of the proposed UE’s speed procedure are summarized in the following.

During the off-line part each eNB builds the network topology map (Figure 2.5 is an

example) in its memory. Furthermore, each eNB learns its own parameter η, the value of

which can be shared with neighboring eNBs (through the X2 interface).

During the on-line part of the scheme, the mobility estimation is performed as follows.

At the HO moment, the eNB inquires the user for the UE history information containing

previous cell ID, and the residence time in the previous cell. Knowing the neighboring

eNB’s parameter value η, the eNB uses equation (2.5) to estimate the UE’s speed in the

previously visited cell. At last, the eNB classifies the speed to one of the three mobility

classes defined by 3GPP.

2.3.4 Stretch Parameter Computation

To determine η, we propose two methods for the computation. Both of them include a

learning phase. The two methods are different in the manner of computation of the cell

radius.
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The first method is based on the consideration that the locations of the eNBs are known

and can be spread over the whole network. We consider the locations of ENBs are modeled

by Poisson point process (PPP). Next, we draw the Voronoi tessellations accordingly and

approximate the coverage area of each cell by its Voronoi region. The radius of each cell

is computed by considering the area of the Voronoi cell, denoted by A. Using the value

of A, we can draw a circle of equivalent area, whose radius is given by R =
√

A
π . It can

have very different values as the actual cell size depends not only on the eNB transmission

power but also on the physical environment and local geometry (e.g., rural or city center,

etc.).

The computation is done as following: for each of the users in the training set, we compute

the sojourn time in each cell. The average speed during the sojourn time is computed

as the average over the speed measured in each second. Next, the stretch parameter for

that cell when crossed by the particular car is computed. After the operation is done for

each vehicle in the training set, the stretch parameter for each cell is computed as the

average over all the values obtained for the particular cell. Note that this method leads

to improved estimation accuracy as it computes a value of the cell radius for each cell.

However, it would require additional computational complexity or cost to the eNB since

each eNB must compute the Voronoi tessellations or broadcast throughout the network.

The second method for computing the radius of each cell again uses stochastic geometry

modeling.

We use the interesting results presented in [65]. It states that the rate at which a Poisson

point process (in R2) with intensity λ crosses the x or y axis is given as Rate(λ) = 4
√
λ

π .

Therefore, we denote the expected length of a typical line segment by E(seg) and is

obtained as:

E(seg) =
π

4(λ)
1
2

This is actually the mean traveled distance in a cell under a straight path assumption.

The expected length of a typical line segment can be computed by first computing the

intensity of the PPP that generated the eNBs. For an increase in accuracy, the generating

process can be considered as inhomogeneous, composed by three (or more) homogeneous

processes (a different λ for each type of the environment). It is easy to observe that there

exists a direct dependency between the intensity of the generating PPP and the

environment. For example, a dense PPP is characteristic to urban environment, while

a sparser process is characteristic for suburban/rural environment.
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Parameter Value

Environment type urban, suburban, highway, rural

Macro cells 235, variable size

Trajectories variable, experimental data

Speed variable, from 0 to 120 kmph

No. of UEs used for learning 300 UEs

No. of UEs to test speed estimation 45 UEs

Time resolution of data in Kolntrace 1 second

LTE MSE TCRmax 30 seconds [59] for LTE MSE 1

100 seconds [66] for LTE MSE 2

LTE MSE NCRmedium 3

LTE MSE NCRhigh 5

Table 2.1: Simulation parameters.

Now that we have the radius for each Voronoi cell, the parameter η can be learned through

the same mechanism described for the first method. By considering the diameter of the

cell to be the expected length of the typical line segment, the method requires only the

knowledge of the parameter λ for each of the environment where the network is deployed.

Therefore, the computational complexity is lower than that of the first method. However,

since it uses the same value of cell radius for each environment type, the scheme may lead

to lower accuracy in determining the cell radius also in computing the parameter η.

2.3.5 Performance Evaluation

We evaluate the mobility estimation using the mobility traces from [63]. Other para-

meters are shown in Table 2.1. LTE MSE procedure is evaluated with two parameter

configurations, the standard one and the configuration used in more recent publications.

Note that the network comprises 235 macro cells with variable cell size, covering diverse

environments (city center, suburban, highway, and rural). The data is obtained from the

Kolntrace project. Figure 2.7 shows the trajectories of two UEs throughout the macro

cell network. One can see how erratic the trajectory a UE may be during a travel.

In this work, we present the performance results obtained by using the first method for

the computation of the stretch parameter, η.
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(a) UE 1 trajectory.
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(b) UE 2 trajectory.

Figure 2.7: Examples of UE trajectories in the network.

Table 2.2: Mobility class estimation accuracy.

STRAIGHT LTE MSE 1 LTE MSE 2

Low Mobility Class 66% 95% 57.58%

Medium Mobility Class 37% 3.75% 43.13%

High Mobility Class 78% 4% 15.63%

According to 3GPP, the estimated UE’s speeds will be classified into three mobility classes

[57, 58]: Low Mobility Class from 0 to 40 kmph, Medium Mobility Class from 40 to 90

kmph, and High Mobility Class fro speed exceeding 90 kmph.

As an illustration, Figure 2.8 shows the average speed of UEs when crossing cells M8

and M68. An interesting observation is that the UEs crossing cell M8 are either in Low

Mobility Class, either in Medium Mobility Class, while the UEs crossing cell M68 are

either in Medium Mobility Class or High Mobility Class. That shows that even if the

UE’s speeds in one cell can very considerably, the average values of the UE’s speeds reside

in two adjacent mobility classes. This observation is consistent with our thought that the

environment has a strong impact to the mobility and speed of the user and its trajectory.

Table 2.2 shows the correct classification probabilities for the two algorithms. One can

observe that the performance obtained by LTE MSE procedure has high accuracy (> 90%

for the first configuration) for UEs with Low Mobility Class and obtain a dramatic drop

for UEs of Medium and High Mobility Class. This is due to the fact that LTE MSE

with configuration 1 will tend to claim UEs in Low Mobility Class. The performances
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Figure 2.8: Histogram of UEs’ speed in cells.

achieved by our proposed scheme clearly outperform LTE MSE 1 even when dealing with

challenging situations of Medium and High mobility classes. For the second configuration

of LTE MSE, STRAIGHT is outperformed in the medium mobility regime.

Further considerations are given by computing the MSE state distribution defined as the

probability of a UE being estimated to be in a particular mobility state class. Table

2.3 shows the results obtained for our scheme and for LTE MSE scheme with the two

configurations, in comparison. We denote STRAIGHT as A, LTE MSE configuration 1

as B and LTE MSE configuration 2 as C for reasons of space.

Table 2.3: MSE state distribution

A B C A B C A B C

Low 66% 95% 57.5 27.5 95.63 44.3 0% 92% 50%

Mobility % % % %

Medium 16.6 4.5 28.7 37% 3.7% 43.1 21.9 3% 34.3

Mobility % % % % %

High 16.6 0% 13.6 35% 0.6% 12.5 78% 4% 15.6

Mobility % % % %

As an overall performance, the probability to be classified in the correct class is 60.33%

for our scheme and 34, 25% for LTE MSE with configuration 1 and 38, 73% for LTE MSE

with configuration 2 which clearly shows the superiority of the proposed scheme.
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2.3.6 Lessons Learned

This section presented my work on UE’s speed estimation based on the UE history inform-

ation. The proposed algorithm can be easily applied to today’s LTE or future cellular

networks for enhanced UE’s speed estimation accuracy. The method uses the UE cell

sojourn time and also exploits the properties of UE mobility behavior and the physical

environment. The results of simulations performed with realistic data have shown that

STRAIGHT can provide a much better accuracy in comparison to existing legacy LTE

MSE procedure and can satisfactorily estimate UE’s speeds of various classes including

low mobility class and also challenging situations of medium mobility class and and high

mobility class.

Furthermore, the study exploits the geometry of the network and shows that the trajectory

of the user is dependent on the geometry of the environment. Here, we do not mean only

the geometry of th environment in the sense mentioned earlier, where we specify that the

size of the cells depends on the environment, but the erratic nature of the trajectory.

We made here a first observation that the trajectories of users are imposed by the archi-

tecture of the city and this impact is not a negligible one. Yet, at the time of this study,

there were no methods for quantifying the environment geometry’s impact on wireless

networks and even less, on the environment’s self-similarity reflection in the UE behavior

in the network.

Again, as the scope of this subsection was to show how our motivation of considering more

carefully the environment’s geometry for the modeling of wireless networks was born, we

have not presented here all the details of this work and we refer the reader to [62] for a

detailed description of the algorithm and evaluation of performances.



Chapter 3

Self-Similar Geometry. The

Hyperfractal Model

3.1 Self-similar Geometry. Fractals

Throughout this manuscript, the word “fractal” is used either as an adjective, either a

substantive.

Fractal geometry was invented almost entirely by Benoit B. Mandelbrot in a period of

time stretching over thirty years, starting with 1950. The fractals became easier to un-

derstand and accessible to everyone after their popularization in his most appraised work

[4]. The increase of computational power awoke the interest for the science of form in the

fields of physics and biology. Mathematicians too became interested in the possibility of

using this new geometry for visualizing solution spaces of dynamic systems whose beha-

vior could no longer be regarded as smooth, but discontinuous and chaotic. The fractal

geometry revolves around the idea that the world is chaotic, discontinuous, irregular in

its superficial physical form but that beneath this first impression lies an order which is

regular, unyielding and of infinite complexity [1].

Fractals, such as the examples in Figure 3.1, are a forest of mathematical models for very

irregular and detailed sets.

In [67], a fractal is defined as follows. “In mathematics, a self-similar object is exactly or

approximately similar to a part of itself (i.e. the whole has the same shape as one or more

of the parts). Many objects in the real world, such as coastlines, are statistically self-

similar: parts of them show the same statistical properties at many scales. Self-similarity

30
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Figure 3.1: Gosper island, Koch snowflake, box fractal, Sierpiński sieve

is a typical property of artificial fractals. Scale invariance is an exact form of self-similarity

where at any magnification there is a smaller piece of the object that is similar to the

whole. For instance, a side of the Koch snowflake is both symmetrical and scale-invariant;

it can be continually magnified three times without changing shape.”

To build a fractal, Mandelbrot starts with a geometric object called an initiator. To this

he applies a pattern which repeats itself at every scale calling this the generator. The

fractal is obtained by applying the generator to the initiator, deriving a geometric object

which can be considered to be composed of several initiators at the next level of hierarchy

or scale down. Applying the generator again at the new scale results in further elaboration

of the object’s geometry at yet a lower scale. The process is continued indefinitely. In

practice, the iteration stops at a level below which further scaled copies of the original

object are no longer relevant for the purpose of the modeling. In essence, however, the

true fractal only exists in the limit, and thus what one sees is simply an approximation

to it.

Let us further explore the underlying meaning of fractals in order to better understand

the motivation of using this model and the derivations that will further follow.

3.1.1 Fractal Dimension

To quantify the wilderness of fractals, one can use the notion of fractal dimension. There

are many and more or less intuitive definitions of fractals and fractal dimension [68]. Note

that there is not one complete definition of the fractal dimension. Several definitions exist

together with methods for computing it. By using these definitions, one can obtain

different values for some sets.
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Dietrich Stoyan says in “Fractals, Random Shapes and Point Fields” [68]: “the mathem-

atical theory of fractals is rather complicated, yet the methods of measurement of fractal

dimension are easily understood, and they give the feeling of the underlying meaning.”

In order to better understand the notion of fractal dimension, we shall start by introducing

the concept of topological dimension.

Lebesgue covering dimension or topological dimension

The Lebesgue covering dimension or topological dimension of a topological space [69] is

one of the ways of defining the dimension of the space in a topologically invariant way

[70]. An open cover of a topological space X is a family of open sets whose union contains

X. The ply or order of a cover is the smallest number n such that each point of the space

belongs to at most n sets in the cover. A refinement of a cover C is another cover, each

of whose sets is a subset of a set in C; its ply may be smaller than, or possibly larger

than, the ply of C. The covering dimension of a topological space X is defined to be the

minimum value of n, such that every open cover C of X has an open refinement with ply

n+ 1 or lower.

As an example, finite systems of points have topological dimension zero and curves have

topological dimension one. In the case of infinite systems, it makes sense to make more

subtle distinctions, therefore, introduce the fractal dimension.

We will present here some definitions given for fractals by Prof. Emma Carberry at MIT.

We found these definitions relevant for our use of these concepts later throughout this

manuscript. Note that these notions will be used several times throughout the manuscript.

Definition 3.1. A subset of Rn is (affine) self-similar if a subset of this subset is mapped

to the original subset by a nontrivial affine transformation : f(x) = Ax+ b, where A is

an n×n invertible matrix and b is an n dimensional vector. The transformation is known

as a self-similarity transformation.

Definition 3.2. Given a self-similar set, we define the fractal dimension dF of this set

as log k
logM where k is the number of disjoint regions that the set can be divided into, and

M is the magnification factor of the self-similarity transformation.

Definition 3.3. A fractal is a subset of Rn that is self-similar and whose fractal dimension

exceeds its topological dimension.

In the following, we will use the example of the Sierpinski triangle for a better under-

standing of the computation of the fractal dimension.
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Figure 3.2: Sierpinski triangle construction process

3.1.2 The Sierpinski Triangle

Also called the Sierpinski gasket or the Sierpinski sieve, the Sierpinski triangle is a fractal

and attractive fixed set with the overall shape of an equilateral triangle, subdivided re-

cursively into smaller equilateral triangles [71]. Sierpinski’s triangle is highly cited when

the aim is to provide an example of self-similar sets. Its construction is illustrated in

Figure 3.2 and described in Algorithm 1. Observe the initiator which is the triangle itself

and the generator, the half of the side of the triangle.

Algorithm 1 Sierpinski’s Triangle Construction

1: procedure Sierpinski
2: Start with an equilateral triangle.
3: Subdivide it into four smaller congruent equilateral triangles and remove the cen-

tral triangle.
4: Repeat step 2 and step 3 with each of the remaining smaller triangles forever.

For integer number of dimensions d, when doubling a side of an object, 2d copies of it are

created. Let us look at Figure 3.2. For the Sierpinski triangle, doubling its side creates 3

copies of itself. Therefore, according to Definition 3.2, the Sierpinski triangle has fractal

dimension log(3)/log(2) = log23 = 1.585, which follows from solving 2d = 3 for d.

The area of a Sierpinski triangle is zero (in Lebesgue measure). The area remaining after

each iteration is clearly 3/4 of the area from the previous iteration, and an infinite number

of iterations results in zero. Note that Sierpinski triangle each has topological dimension

1, which is in line with Definition 3.3.
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3.2 Self-Similarity of Human Society Geometry. Self-Similarity

of Wireless Networks

From rapid prototyping to tissue-engineering, fractals have been extensively used in bio-

logy and medicine. In fact, as nature is seen as having a fractal “nature”, it is easy to

understand why fractals have been used from the modeling of the universe to the modeling

of the behavior of atoms. One may argue that the universe itself is fractal as a whole, the

debate on this topic having led to the birth of fractal cosmology [72].

Cities yield some of the best examples of fractals (see Figure 3.3) as we shall further argue

throughout this section.

Figure 3.3: Paris view from space at night. Courtesy of NASA/ESA

From Plato onwards, there has been an effort into demonstrating cities as examples of

Euclidean geometry and proofs of the man’s power over nature. This has led to the

separation of art from science as if the human society development is purely artificial.

However this simplistic point of view has always been contradicted to some extent and

more strongly in the last 50 years. When it has been realized that the physical form of

cities is generated by social and economic constraint, the idea that the organically growth

of cities is optimal has received more credibility. The view about the shape and form of

cities has become that their irregularity and messiness is simply a superficial manifestation

of a deeper order. In his remarkable work, [1, 2], Michael Batty argues that “cities are

fractal in form” and that much of the pre-existing urban theory is a theory of the fractal

city.
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As the organization of economic activities in cities displays self-similarity properties, it

comes as a natural consequence that urban road networks, as location of human activities,

inherits self-similarity. This has been shown in [73]. Furthermore, it is immediate to notice

that vehicular traffic inherits the same self-similarity. The self-similarity of urban traffic

in time has been proven by data fitting in [74, 75]. These works support the adequacy of

self-similar processes in modeling the vehicular traffic time series over various time scales.

Furthermore, [76] shows that the requests for cars in platforms such as Uber display a

self-similar pattern.

Passing now to networks, one does not lack references to the self-similarity of traffic in

networks [77, 78]. In [79], the authors use self-similarity to simulate the network traffic

and in [80] the authors show that the traffic in Ethernet is self-similar. [81] proposes a

multi-fractal model for high-speed networks and the authors of [82] propose self-similarity

for the simulation of IP traffic. In which regards wireless networks, fractal geometry has

not been exploited extensively. In [83], the authors use the properties of fractals in order

to miniaturize an antenna. Yet the subject where the self-similarity has been used the

most intensively in the area of wireless networks is for the modeling of the coverage and

coverage border [84, 85]. In [86], the authors claim that the placement of base-station

is self-similar, which seems rather intuitive as the base-stations, themselves, follow social

agglomerations where the cellular traffic is more intense.

A pioneering work has been done by using Poisson shots on Cantor maps for representing

sensor networks. This model is, in fact, the precursor of the hyperfractal model and will

further be debated in more details due to the importance it for the topic of this thesis.

3.3 Poisson-Shots on Fractal Maps as Precursors of the Hy-

perfractal Model

The precursor model of the hyperfractal model is the model called Poisson shots on

fractal maps, and more precisely, the Poisson shots on Cantor maps. This model was

generated by the motivation to model a network of transmitters and receivers in a setup

that resembles the Virtual Multiple-Input-Single-Output (Virtual-MISO) communication

scenario yet other communication scenarios can be envisaged.

We shall briefly remind this model that was developed in [87] due to the importance it

had in the process of generation of the hyperfractal model.



Chapter 3 Self-Similar Geometry. The Hyperfractal Model 36

3.3.1 Definition of Poisson-shots on Fractal Maps

The Cantor maps are the support of the population of transmitters and receivers in the

following model from [88]. The sensor networks inherit the property of self-similarity

from the Cantor map. As the communication scenario is not relevant in this part of the

manuscript, we shall not elaborate on this but only focus on the mathematical model that

served as inspiration for the main contribution of this thesis.
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Let us first define the binary Cantor map and more generally the `-ary Cantor map, where

` ≥ 2 is an integer. The reader is referred to [87, 88] for a more complete and detailed

presentation.

Definition 3.4 (`-ary Cantor maps). Let ` ≥ 2 be an integer and 0 ≤ a ≤ 1/`. The

`-Cantor finite map is the fractal set K(a, `) that satisfies K(a, `) = ∩k≥0Kk(a, `) and

K0(a, `) = [0, 1] and Kk+1(a, `) =
⋃j=`−1
j=0 (j(a+ b) + aKk(a, `)) with a+ b = (1− a)/(`−

1). The infinite `-Cantor map K∗(a, `) satisfies K∗(a, `) = ∪k≥0a
−kK(a, `). The fractal

dimension is dF = − log `
log a .

One can observe that the finite Cantor map is contained in the interval [0, 1]. The fractal

dimension is obtained by observing that reducing distance by factor a gives exactly the

`th half of the set: adF = 1/`. The fractal dimension of K(a, `)2 embedded in (R+)2 is

−2 log `
log a . Notice how the method used for determining the fractal dimension is similar to

the method used for finding the fractal dimension of Sierpinski’s triangle and following

Definition 3.2.

Definition 3.5 (The infinite Cantor map). The infinite Cantor map is the fractal set

K∗(a) on R+ that satisfies K∗(a, `) = ∪k≥0a
−kK(a, `),
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(a) l = 4, a = 0.25. (b) l = 4, a = 0.2

(c) l = 4, a = 0.1. (d) l = 4, a = 0.02

Figure 3.5: Variation of parameter a

We notice that the infinite Cantor map spans in the whole R+ and that K(a) = K∗(a) ∩
[0, 1].

As a demonstration of the previous definitions, Figure 3.4a presents the network support

K2(1/8, 4) and Figure 3.5 presents a Poisson shot on the Cantor map K2(1/8, 4). The

population analyzed in our model is obtained as such a Poisson shot.

Furthermore, this representation of the Poisson shots on Cantor maps can be used to

represent a Poisson point process and all the stages between a Poisson point process

and a Poisson shot on a Cantor map. Figure 3.5 illustrates four topologies obtained for

different values of a and l. Notice how for a = 0.25 we obtain, in fact, a Poisson point

process and with the decay of parameter a, a certain clustering appears and the fractal

dimension becomes lower and lower.
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3.3.2 Towards the Hyperfractal

One can notice that the locations of the Poisson shots on the Cantor map may represent

location of IoT devices in rooms, or buildings, or blocks, or cities, etc, or other unit of

organization that has a self-similar structure and can be represented through a Cantor

set.

While working on the mobility estimation through means of stochastic geometry we ob-

served the impact of urban environment on the trajectories of the UEs. Learning that

the locations of the devices inside buildings have a fractal distribution by inheriting the

properties of the environment, the question came very soon: What about the devices

in between the buildings, on the streets? Do the locations of these devices

inherit the self-similarity of the environment?

Given the Poisson shot on Cantor map model and the previous observation on the UEs

trajectories through the city, it fast came to our mind the idea that we could model the

distribution of population of UEs (cars, IoT devices, etc) on streets in a space that is

complementary to the space occupied by the population in a Poisson shot in a Cantor

map. More precisely, our intuition was to place the streets between the Cantor sets

and make the street width negligible. The following section will give all the theoretical

development of the model, together with the intuition behind it.
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3.4 The Hyperfractal Model

As vehicular communications comprise vehicle-to-vehicle type of communications (V2V)

and vehicle to infrastructure type of communications (V2I), we identify two actors in

the communication scenario: the vehicle and the infrastructure device. As the location

of vehicles and their number are very different from the locations and number of infra-

structure elements, we design the hyperfractal model in two options, one dedicated to

the vehicles that will be called mobile nodes from now on, and one for the adjacent

infrastructure devices that will be called relays from this time on.

3.4.1 Propagation Model as Feature of the Topological Model. Urban

Canyon Model

The main goal is to develop a model for communications of vehicles in urban settings.

As cars move on the streets of the city, the consequences of the radio propagation in

this environment cannot be overlooked for an accurate modeling. Buildings are made of

concrete, glass and steel which generate a formidable obstacle for radio wave propagation.

This is the so-called canyon effect (see Figure 3.6) that implies that the signal emitted

by a mobile node propagates only on the axis where it stands on [89, 90] and cannot

penetrate the barrier created by the building walls.

This effect is further exacerbated when deploying millimeter wave (mmWave) technology.

Measurements for mmWave have shown that the buildings materials (tinted glass) are

highly attenuative and very reflective [91]. Communication in millimeter wave is directive

Figure 3.6: Signal strength heat map in a city. Canyon effect
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and possible with good quality when vehicles are in line-of-sight [92, 93]. This features

and the urban architecture characteristics lead to the existence of dead zones of coverage

and decrease drastically the possibility of routing a packet through intersections. We

therefore decide that the canyon effect is a fundamental characteristic of the communi-

cation scenarios addressed by the hyperfractal model and we include it in the design of

the model, from the very beginning.

3.4.2 The Support

The map model lays in the unit square embedded in the 2-dimensional Euclidean space.

The support of the population is a grid of streets. Let us denote this structure by X =⋃∞
l=0Xl with

Xl :={(b2−(l+1), y), b = 1, 3, . . . , 2l+1 − 1, y ∈ [0, 1]}

∪{(x, b2−(l+1)), b = 1, 3, . . . , 2l+1 − 1, x ∈ [0, 1]},

where l denotes the level and l starts from 0, and b is an odd integer. Notice that X
is a dense subset. The construction of the first three levels, l = 0, 1, 2, is displayed in

Figure 3.7. Observe that in the first stage, the “central cross” X0 splits X − X0 in 4

“quadrants” which all are homothetic to X with the scaling factor 1/2.

(a) (b) (c)

Figure 3.7: Hyperfractal support construction process

Observe that, similar to the Sierpinski’s triangle construction process, we obtain smaller

and smaller “crosses”. The complete hyperfractal support is obtained, however, by sum-

ming the totality of the crosses obtained in all the stages. The number of stages goes to

infinity. Figure 3.8 shows the complete support for three stages.
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Figure 3.8

Remark 3.6. The 1-dimensional Lebesgue measure of X is∞. The 2-dimensional Lebesgue

measure of X is 0. The Lebesgue covering dimension of X is 2, easily obtained by applying

Minkowski–Bouligand dimension (box-counting dimension) [94].

We remind the reader that a fractal is a subset of Rn that is self-similar and whose fractal

dimension exceeds its Lebesgue covering dimension (also called topological dimension), as

per Definition 3.3. The fact that the Lebesgue covering dimension of X is 2 implies that

its fractal dimension will be higher than 2.

3.4.3 The Hyperfractal Model for Mobile Users

The mobile users are represented with the Poisson point process Φ on X . The total

intensity of process Φ, or mean number of points is a with 0 < a <∞. The total number

of available points is n.

The process Φ is constructed in the following way:

• one samples the total number of mobiles users Φ(X ) = n from Poisson(a) distribu-

tion;

• each mobile is placed independently with probability p on X0 according to the uni-

form distribution;

• with probability (1− p)/4 it is recursively located in the similar way in one the four

quadrants of
⋃∞
l=1Xl;

• for each of the obtained quadrants, the previous two steps are repeated;
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Figure 3.9 shows a hyperfractal with n = 1200 nodes obtained following the described

procedure.
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Figure 3.9: Hyperfractal with n = 1, 200 mobile nodes, dF = 3

The process Φ has 1-dimensional intensity:

λl = (p/2)(q/2)la (3.1)

on Xl, l = 0, . . . ,∞, with q = 1− p for some parameter p (0 ≤ p ≤ 1).

Following the construction procedure it is easy to observe that the process Φ is neither

stationary nor isotropic.

However, the process has the following self-similarity property: the intensity measure

of Φ on X is reproduced in each of the four quadrants of
⋃∞
l=1Xl with the

scaling of its support by the factor 1/2 and of its value by q/4. Therefore the

measure has a structure which recalls the structure of a fractal set, such as the Cantor

map [4]. One can define the fractal dimension of this measure.

Remark 3.7. The fractal dimension dF of the intensity measure of Φ satisfies

(
1

2

)dF
=
q

4
thus dF =

log(4
q )

log 2
≥ 2.

The fractal dimension dF defined above is greater than 2, the Euclidean dimension of the

square in which it is embedded, thus we named the model hyperfractal, for the first time

in [95]. Also, the fractal dimension is higher than the Lebesgue covering dimension of

the support X , verifying Definition 3.3. Notice that the hyperfractal is not a subset, like

fractals are. The self-similarity is generated by the support X plus the measure defined

on the support.
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When p = 1 the model reduces to the Poisson process on the central cross while for p→ 0,

dF → 2 it corresponds to the uniform measure in the unit square.

3.4.4 Hyperfractal Model for Relays

It is expected that the road-side units for vehicular communications will be installed

on traffic light poles and traffic cameras. Not surprisingly, these elements also display

self-similar behavior as their placement is dependent of the traffic density. Hence we

apply another hyperfractal process for selecting the intersections where a road-side relay

is installed or the existing traffic light is used as road-side unit.

We denote the relay process by Ξ. In order to facilitate the definition of process Ξ, we

shall make use of an auxiliary Poisson process Φr. Both process Ξ and Φr have as support

the 0-dimensional subset of X made of the intersections of segments constituting X .

Starting from a total budget of points M , the process Φr is constructed as following:

Algorithm 2 Construction of Φr

1: procedure Placement(M,π) i=1;
2: repeat
3: one samples the total number of relays Φr(X ) = M
4: with probability π2, the placement is on the central crossing X′;
5: with probability π

(
1−π

2

)
, the relay is placed in one of the four street segments

of level X0 starting at this point: North, South, West or East;
6: the process continues on the segment with the in-segment process;
7: with probability (1−π

2 )2, the relay is placed in one of the four quadrants deli-
mited by the central cross and the in-quadrant process continues recursively;

8: i = i+ 1;
9: until i > M

Following the placement process, Φr has discrete intensity

p(h, v) = ρπ2

(
1− π

2

)h+v

(3.2)

on all intersections Xh ∩ Xv for h, v = 0, . . . ,∞ for some parameter π, 0 ≤ π ≤ 1 and

ρ > 0. That is, on any such intersection the mass of Φr is a Poisson random variable

with parameter p(h, v) and ρ is the total expected number of points of Φr in the model.

The expression in equation (3.2) comes straight-over after the construction process. This

process be detailed in an intuitive manner in the following.
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The self-similar structure of Φr is well explained by its construction in which we first

sample the total number of points from a Poisson distribution of intensity ρ and given

Φr(X ) = M , each point is independently placed.

Note the Poisson process Φr is not simple since an intersection can carry several points.

Let us go back now to our main interest, the process for relays, Ξ. After defining process

Φr, the process Ξ is very easily defined.

Definition 3.8. Ξ is the support measure of process Φr.

In other words, only one relay is installed in every crossing where Φr has at least one

point.

The construction of process Ξ is further illustrated in an intuitive way in Figure 3.10.
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Figure 3.10: Relays process construction

Remark 3.9. Note that the relays form a non-homogeneous binomial point process (i.e.

points are placed independently) on the crossings of X with a given intersection of two

segments from Xu and Xv occupied by a relay point with probability 1− exp(−ρp(h, v)).

Similarly to the process of users, we can define the fractal dimension of the relay process.

Remark 3.10. The fractal dimension dr of the probability density of Ξ is equal to the

fractal dimension of the intensity measure of the Poisson process Φr and verifies

dr = 2
log(2/(1− π))

log 2
. (3.3)
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It can be assumed that Φ and Φr (and consequently Ξ) are independent, but we do

not need this assumption throughout the following derivations in this chapter. The as-

sumption of independence, will be, however, used in the following chapters. A complete

hyperfractal map with mobile nodes and relays is illustrated in Figure 3.11.
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Figure 3.11: Complete hyperfractal map with mobiles and relays
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3.5 Stochastic Geometry of the Hyperfractal Model

In this section we formally define and prove some basic properties regarding the typical

user and the typical relay in the hyperfractal model described in the previous section.

Some stochastic geometry tools are also provided in order to facilitate the future usage of

the model by the research community.

As we mentioned in the previous chapter, the typical point of a stationary point process

is one of the most important notions considered in stochastic geometry. The typical

point is on the ground of Palm theory [96], having the Campbell-Mecke formula as the

central property. We remind the reader (and refer to previous chapter) that in random

graph theory, the root of an infinite unimodular rooted graphs is considered as it typical

node, with the mass transport principle as the central property. Both approaches seek at

generalizing the notion of the typical node as the one uniformly sampled from the whole

population. It is straightforward to observe that this does not make sense for infinite

populations.

Point processes Φ, Φr and Ξ defined in the previous section are not stationary but are

almost surely finite. Given this property, their respective typical points can be simply

defined as the points uniformly sampled from the whole realization, given it is non-null.

This approach, combined with the self-similar properties of the considered hyperfractal

model lead to some interesting and useful observations that we present in this chapter.

In fact, as it will be shown in the following section, it is customary to define the typical

points of the above processes in a more constructive way and prove the aforementioned

uniform sampling properties among other results.

3.5.1 Typical Points of Φ, Φr and Ξ

Let L + 1 be an integer geometric random variable with parameter p (i.e., P(L = l) =

p(1−p)l−1)) and given L, let x0 be the random location uniformly chosen on XL. We call

x0 the typical mobile user of Φ. More precisely, we shall consider point process Φ ∪ {x0}
where x0 is sampled as described above and independently of Φ.

Similarly, let U+1, V +1 be two independent geometric random variables with parameter

π and given (U, V ) let x∗ be a crossing uniformly sampled from all the intersections of

XU ∩ XV . We call x∗ the typical auxiliary point of Φr. More precisely, we shall consider

point process Φr ∪{x∗} where x∗ is sampled as described above and independently of Φr.
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The definition of the typical relay node ξ0 is less explicit and shall not be treated in this

manuscript.

In what follows, we shall prove that our typical points support both the Campbell-Mecke

formula and the Mass-Transport Principle therefore justifying our definition.

3.5.2 Fundamental Properties of the Typical Points

Theorem 3.11 (Campbell-Mecke formula). For all measurable functions f(x, φ) where

x ∈ X and φ is a realization of a point process on X :

E

∑
xi∈Φ

f(xi,Φ)

 = aE [f(x0,Φ ∪ {x0})] (3.4)

E

 ∑
xi∈Φr

f(xi,Φ
r)

 = ρE [f(x∗,Φ
r ∪ {x∗})] (3.5)

Proof of Theorem 3.11. First, let us consider the process of users Φ. We remind the reader

that the process Φ is non-stationary. By applying Campbell-Mecke formula and Slivnyak

theorem [17] for the non-stationary Poisson point processes Φ, we obtain:

E

∑
xi∈Φ

f(xi,Φ)

 =

∫
X

E [f(x,Φ ∪ {x})]µ(dx), (3.6)

where µ(dx) is the intensity measure of the process Φ. Specifying this intensity measure

in the right hand side term of (3.6), this becomes

∞∑
l=0

∫
Xl

E [f(x,Φ ∪ {x})] a(1− p)lpdx.

In the above expression one can recognize E
[
f(x0,Φ ∪ {x0})

]
which concludes the proof

of (3.4).

The proof of (3.5) follows exactly the same lines.

Theorem 3.12. The total expected number of relay nodes E [Ξ(X )] admits the following

representation

E[Ξ(X )] =

∞∑
k=0

(k + 1)2k
(

1− π
2

)nk
. (3.7)
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Proof. By the definition of Ξ, one can express the left hand side of (??) in the following

way:

E

∑
xi∈Ξ

f(xi,Ξ)

 = E

 ∑
xi∈Φr

f(xi, supp(Φ))

Φr({xi})

 ,
where supp(Φ) denotes the support of Φ. Using (3.5), we thus obtain:

E

∑
xi∈Ξ

f(xi,Ξ)

 = aE

[
f(x∗, supp(Φr ∪ {x∗}))

1 + Φr({x∗})

]
. (3.8)

Which becomes:

E [Ξ(X )] = aE

[
1

1 + Φr({x∗})

]
.

In order to prove (3.7), observe that Nπ := Φr({x∗}) is a mixture of Poisson random

variables and E
[

1
1+Nπ

]
can be calculated.

Let us validate numerically the finding in Theorem 3.11. We generate hyperfractal maps

with several values of n and ρn = n, dF = 3. Let us remind that the theorem gives the

expression of E[Ξ(X )] as a sum with k →∞. In reality, a limited number of terms of the

sums will suffice to approximate E[Ξ(X )] with acceptable accuracy. We denote by kmax

the number of terms used to compute the sum.
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Figure 3.12: Measured versus computed number of relay in the map for several values
of kmax

Figure 3.12 shows that the computed values of number of relays approaches the measured

value for kmax = 40. The precision is further enhanced when kmax = 60.

Now we shall state another fundamental property of the typical nodes equivalent to the

Campbell-Mecke expression.
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Corollary 3.13 (The Mass Transport Principle (MTP)). For all measurable functions

f(x, y, φ) of x, y ∈ X and a realization of a point process on X :

E

 ∑
xi∈Φ∪{x0}

f(x0, xi,Φ ∪ {x0})


=E

 ∑
xi∈Φ∪{x0}

f(xi, x0,Φ ∪ {x0})


and similarly for (x∗,Φ

r) and (ξ0,Ξ
′).

Remark 3.14. The MTP allows us to easily prove that the typical node can be seen as

uniformly sampled from the total population of nodes given this latter is not null.

Remark 3.15. The Mass Transport Principle is very useful in proving various conservation

principles regarding the typical node. For example suppose all nodes transmit with equal

transmission power 1, whatever the medium access control protocol employed. Denote

by R = f(x, y,Φ) the bit-rate available from x to y, for example R = f(x, y,Φ) =

log(1 + SINRx→y). We define the following notions:

• total rate out from node x, Rx→ :=
∑

y Rx→y.

• total rate to the node x, Rx← :=
∑

y Ry→x.

Under these assumptions and notations, making use of the MTP, the following result

holds. The total expected rate into node x0 is equal to the total expected rate out from

the node x0: E[Rx0→] = E[Rx0←].

3.5.3 An Alternative Method for Computing the Number of Relays in

the Map

The previous section gave us the exact value of number of relays in the map by means of

stochastic geometry. We shall now make an alternative computation of this quantity.

Theorem 3.16. The average total number of relays in the map is:

R(ρ) = O(ρ2/dr log ρ) (3.9)

Proof. The probability that a crossing of two lines of level H and V is selected to host

a relay is 1 − (1− p(H,V ))M . When M is large, the probability is approximately 1 −
exp(−Mp(H,V )).
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The average number of relays on a streets of level H is denoted by LH(ρ) and satisfies

the identity:

LH(ρ) =
∑
V≥0

2V (1− exp(−p(H,V )ρ)) .

We notice that LH(ρ) = L0((q′/2)Hρ) and that L0(ρ) satisfies the functional equation:

L0(ρ) = 1− exp(−π2ρ) + 2L0(((q′)/2)ρ).

It is known from [97],[98] that this classic equation has a solution such as L0(ρ) = O(ρ2/dr).

The average total number of relays in the city is obtained as:

R(ρ) =
∑

H,V≥0

2H+V (1− exp(−p(H,V )ρ))

and satisfies the functional equation

R(ρ) = 1− exp(−π2ρ) + 4L0(p(q′/2)ρ) + 4R((q/2)2ρ).

From the same reference, [97], [98], one gets

R(ρ) = O(ρ2/dr log ρ)

Since 2/dr < 1 the number of relays is much smaller than ρ.

Notice that the expression in Theorem 3.16 is less precise than the one in Theorem 3.11.

Notice also that it is a closed formula which expresses the average total number of relays

in the map as a function of the fractal dimension of the relay process.

3.6 Concluding Remarks

This section has provided the definition and properties of the main contribution of this

thesis: the hyperfractal model. We first gave a brief overview of the fractal geometry and

fractals, passing through the examples of usage of fractal geometry in the modeling of

human society. In particular, we debated the modeling of urban environment and with its

specific activities and we arrived to the modeling of wireless networks by means of fractal

geometry. This chapter has not only given the intuition behind the choice of fractals for

the proposed model but also presented the precursor of the hyperfractal model.
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We have defined the hyperfractal model with its two options, the option for nodes and the

option for relays, in a both theoretical and algorithmic manner. We have also presented

tools that allow the manipulation of the model in the framework of stochastic geometry

but also an example of alternative computation of metrics.



Chapter 4

Model Fitting with Traces.

Computation of Fractal Dimension

A mandatory requirement when providing a novel model for the topology of wireless net-

works is to validate it with real data. An immediate requirement is to provide a procedure

that allows transforming the data into the model. Usual procedures of data fitting for

point process have been developed in the research community using diverse methods.

For example, in the programming language called R, a commonly used language by the

stochastic geometry community, the functions and libraries allow fitting the points to sev-

eral types of processes: Poisson, Strauss, StraussHard, MultiStrauss, MultiStraussHard,

Softcore, etc [99]. Unfortunately, existing procedures of data fitting cannot be used for

the hyperfractal model as the interaction between points are different and cannot be

recognized by existing software.

To validate the hyperfractal model and to prove its utility and ease of use, we developed

a procedure of transforming traffic flow maps into hyperfractals, more precisely the com-

putation of fractal dimension of the traffic flow maps. One can use such a procedure

to compute the fractal dimension of a neighborhood, or of a city or a region and then,

with the help of the derived expressions for the hyperfractals, compute metrics of interest.

Example of such metrics are the broadcast time, the end-to-end delay and energy, etc as

it will be shown in the following chapters.
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4.1 Theoretical Foundation

Let us emphasize that in the definition of the hyperfractal model, we did not make as-

sumptions or conditions on geometric properties such as shape. In order to preserve the

self-similarity, the constraints are only on the density of population on streets and the

length of streets. For example, a hyperfractal does not need that either the main/first

level streets to be in a cross with a 90 degree angle or that there exist exactly two streets of

level one that have the exact length. What is indeed necessary is the scaling between the

length of different levels of the support Xl and the scaling of the 1-dimensional intensity

per level, λl, which are the only factors that generate the fractal characteristics of the

model.

Taking into account these observations (that follow naturally from the construction pro-

cess), we elaborated a procedure of computation of the fractal dimension of a traffic density

map. The procedure can be adapted by adding three criteria to increase the precision

of the fitting: namely, density-to-length, spatial intersection density, and time interval to

intersection.

4.1.1 Density-to-Length Criteria and the Computation of the Fractal

Dimension

This is the criteria used for computing the fractal dimension of the map. In a hyperfractal,

the cumulated length of the street up to level H is 2H+1− 1. At this level, H, the density

of the nodes on the streets is p
2

( q
2

)H
. We define as cumulated distance lΣ as the sum

of all streets of level H ′ < H. Let us define the density as a function of the cumulated

distance lΣ. It can be expressed as:

λ(lΣ) = Θ
(
l
log(q/2)/ log 2
Σ

)

Which can be further reduced to:

λ(lΣ) = Θ
(
l1−dFΣ

)
(4.1)

Notice that this is an expression that shows the decrease of the density of population with

the increase of cumulated length by using the fractal dimension.

The procedure for the computation of the fractal dimension has the following five

steps.
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(i) The first step is the data collection, the length of streets and traffic statistics. For

example, we used average annual traffic statistics, yet other kind of traffic statistics can

be used, with different refinement and granularity.

(ii) Next, we consider a single street as an alignment of consecutive segments whose

densities, from the less dense segment to the densest segment, do not vary more than by

a factor fA > 1. We consider the density of the street the average density of its segment.

In a pure hyperfractal city model we have fA = 1. This is quite similar to the standard

concept of quantization.

(iii) The following step is to rank the streets in decreasing order of density: λ1 ≥ λ2 ≥
. . . ≥ λi ≥ . . .. Please be reminded that the building procedure of the hyperfractal acts

similarly.

(iv) We compute the vector of cumulated sums of the segments of streets ordered by their

decreasing density.

(v) We next plot the density of sorted streets versus cumulated length of sorted streets. In

parallel, we plot the density repartition function with a starting value of dF and by using

the measure cumulated length and by curve fitting, determine the best approximation for

dF .

4.1.2 The Spatial Intersection Density Criterion

This provides the density statistics of the street intersections in the map. An accurate

computation of the street intersection statistics is important for the validity of wireless

metrics, as it will be shown in the following chapters.

For characterizing the street intersection statistics, we shall start by looking at the vari-

ation of the distance towards the intersection with a street whose density is in an interval

[a, b]. More precisely we define L([a, b]) as the largest distance from any point in any

street of H (resp. V) to an intersection with a street in V (resp. H) whose density is in

the interval [a, b].

There should exist Cl > 1 such that

L([λ,Clλ]) = O
(
λ1/(dF−1)

)
(4.2)

when λ decreases. In the pure hyperfractal model one must take Cl = 2/q, otherwise

some value of λ would not correspond to any street density.
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(a) Snapshot of Minneapolis traffic flow
map
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(b) Computation of fractal dimension

Figure 4.1: Procedure for Minneapolis

4.1.3 The Time Interval Intersection Criterion

This criteria can make the model fitting more precise when dealing with metrics where

time is of crucial importance. Is is relevant for particular wireless metrics, like broadcast,

but not all others. More specifically, the criteria is necessary for the validation of Lemma

6.7 that gives the estimate of the packet turn time at an intersection.

The average time interval I(n1, n2) between two event crossing by mobile nodes at an

intersection of two streets containing respectively n1 and n2 mobile nodes:

I(n1, n2) ≤ S

n1 + n2
(4.3)

where S is a fixed parameter that relates to the average slowness of mobile nodes (defined

informally as the average time to travel across one unit of distance). Formally, in our

model, S = 1/v, when considering constant speed.

4.2 Data Fitting Examples

Finally, in order to illustrate how the hyperfractal model can be used for representing

vehicles distribution on streets, we present here some data fitting results. Using public

measurements ([100–103]), we show that the data validates the hyperfractal scaling of

density and length of streets.
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(a) Map of Nyon
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(b) Computation of fractal dimension

Figure 4.2: Procedure for Nyon

Figure 4.1a shows the snapshot of a traffic flow map displaying the average annual weekday

traffic in a neighborhood of Minneapolis, in the United States. The most dense streets

are represented in purple, the second densest streets are represented in red, then follow

the yellow streets and at last the streets represented in green. Notice how the cumulated

length of the purple streets is visibly lower than the cumulated length of the red streets.

By applying the described fitting procedure and using equation (4.1), the estimated fractal

dimension for Minneapolis is dF = 2.9. In Figure 4.1b we demonstrate the fitting of the

data for the density repartition function.

A second example of data fitting uses the measurements performed in the town of Nyon, in

Switzerland (see Figure 4.2a). By making use of the density-to-length criteria, the fractal

dimension is computed to be dF = 2.3 and the fitting is further displayed in Figure 4.2b.

Other two examples show the use of procedure for computing the fractal dimension of an

area in Seattle, USA, (in Figure 4.3) and respectively Adelaide, Australia, (in Figure 4.4).

The computed value for Seattle is dF = 2.3 and for Adelaide dF = 2.8.

The fitting procedure presented here allows for the computation of the fractal dimension

of the map according to the provided data. We do not suggest, however, that the annual

average traffic flow is an ideal data set, as it does not capture variations such as day/night,

rush hour/light traffic, and so on. An accurate modeling will need to adapt to the dynam-

ics of the traffic measurements (and thus of the network), and the fractal dimension for

each of these situations should be computed in each situation. In particular, the metrics

of the network should be computed with the appropriate fractal dimension, depending on

the situation analyzed (rush hour, night, etc).
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(a) Snapshot of Seattle traffic flow map
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(b) Computation of fractal dimension
Figure 4.3: Procedure for Seattle

(a) Annual Average Traffic Estimates in
Adelaide
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(b) Computation of fractal dimension

Figure 4.4: Procedure for Adelaide

At the moment of the writing of this manuscript, we did not develop yet a procedure for

the computation of the fractal dimension of the relay process Ξ. Although we believe the

procedure will be similar to the procedure of the computation of the fractal dimension of

the process Φ, the main issue in proceeding with the development of such a procedure is

the lack of available datasets for validating the procedure. While the desirable dataset for

validating such a procedure is a dataset of RSU (road side units), the lack of deployment

of V2X infrastructure can delay this procedure for too long. That is why, we count, for

future work, of validating a procedure of computation of the fractal dimension of the

process of relays Ξ by using dataset of traffic lights.
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Note that the same observations on the density decrease with the cumulated length in-

crease are the key drivers for the generalization of the two processes, Φ and Ξ to classic

stochastic geometry models, as it will be described in a future chapter.

4.3 Concluding Remarks

This chapter has provided the procedure for computing the fractal dimension of a city/area/neigh-

borhood with several criteria for several levels of accuracy. Such a procedure is mandatory

when proposing a novel model for the topology of devices. The procedure has been presen-

ted in NOKIA 5G Campus Event.

Note that the our main intention is to provide a future user a procedure though which

one can:

• take as an input the measurements of a traffic flow;

• transform into a hyperfractal with specific parameters (dF , n, etc);

• and easily compute metrics of interest.

The existence of such a method makes complete the methodology of usage of the hyper-

fractal model.



Chapter 5

Application to Ad-Hoc Networks.

End-to-End Energy versus Delay

The hyperfractal models for nodes and relays, are very fit for the analysis of key perform-

ances of ad-hoc networks in urban environment. In the following, we shall show how, by

modeling a vehicular network with road-side units by using hyperfractals, computations

can be done in order to observe the trade-off between the end-to-end energy an delay. Sec-

ondary results on the bottleneck and network capacity under specific routing techniques

are also provided. This further advocates for the usefulness of our models.

5.1 Introduction and Motivation

In the study of ad-hoc and, as a sub-class of ad-hoc, vehicular networks, topology arises

frequently as a determinant factor in the computation of energy or end-to-end delay.

Therefore, it is only natural to use the hyperfractal models for the analysis of such metrics.

Efficient communications for vehicular networks will be a vital part of the 5th generation

of communication systems. Vehicular networking emerges as a key area of future com-

munications networks with many innovation opportunities yet significant challenges. For

instance, vehicular networks will continue to scale up to reach tremendous network sizes

(with diverse hierarchical structures and node types), while vehicular interactions will be-

come more complex. Automated and autonomous driving in such a complex environment

requires more and more sensors that generate an increasing amount of data and require

high bandwidth and data rates [104]. Millimeter wave technology (mmWave) can ensure

this high data rates [105].
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With many GHz of spectrum to offer, millimeter wave bands are increasingly attractive

as one of the runners-up for enabling the 5th generation of wireless communications.

While for a long time these frequencies have been disregarded for traditional cellular

communications due to their large near-field loss and poor penetration (blocking) through

concrete, water, foliage, and other common material, recent research and experiments have

shown that communications are feasible in ranges of 150-200m dense urban scenarios with

the use of such high gain directional antennas [106]. Furthermore, its tight requirements

(e.g, line of sight, short range) are easily answered as the embedding space of vehicular

networks leads to a highly directive topology (as much as it is possible, roads are built as

straight lines) [107].

Given the numerous challenges of mmWave and the important place the vehicular com-

munications hold in the new communications era, a realistic modeling of the topology for

accurate estimation of network metrics and energy in particular is highly desirable.

The problem of energy optimization is critical for wireless nodes. A wireless transmission

is done by electromagnetic waves that are generated by the antenna of the device when

an electric field passes through it. Amongst other factors, the distance at which the wave

will reach is influenced by the power of the electric field passing through the antenna.

Yet there are numerous electromagnetic waves in concurrent transmissions and some of

these waves will arrive at the receiver’s antenna, therefore, for increasing the probability

of recovering the transmitted message, the received signal strength has to overcome a

specified threshold, which translates, again, in the increase of transmission power at the

transmitter side.

Meanwhile, there are numerous regulations regarding the maximum allowed transmission

power as it is harmful for humans and living beings (in particular in mmWave bands),

the telecommunication industry is trying to limit the energy consumption due to the

cost of electricity and the high environmental fingerprint (see for example one of the

motivations of the Cloud-RAN technology [108]), and the number of wireless devices of

small dimensions with a limited battery is exploding due to the massive IoT slice of 5G.

Sensors are particularly concerned about the energy consumption as they tend to use

small batteries for energy supply that are in many instances non-replenishable. Significant

attention has been given by the research community to this aspect. In [109] and [110], the

authors develop a protocol based on opportunistic routing and asynchronous periods of

activity in order to minimize the network energy consumption and end-to-end delay. More

specifically, their work looks at sleep-wake periods. By considering an uncoordinated sleep

mechanism, [111] provides a queuing analysis of the trade-offs between delay and energy.
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On the other hand, the authors of [112] estimate the network lifetime (defined here as the

time until the first node is drained of energy) and optimize it by exploiting the mobility

of the sink. The network lifetime is also studied in [113] by considering clustering.

Considerable work has been done on the problem of energy efficiency for broadcast and

multicast [114, 115]. In [116] the trade-offs between throughput and delay are computed

when each user is allowed to send redundant packets along multiple paths towards its des-

tination. A thorough analysis using queuing is provided. In [117], the authors propose an

enhancement for opportunistic routing with the purpose to optimize energy consumption.

In [118], the authors optimize relay placement in a sensor network such that constraints

on connectivity, energy and performance are fulfilled.

In this chapter, we initiate the development of applications using the hyperfractal for

the modeling of ad-hoc networks with the purpose of increasing the understanding of

the hyperfractal model, demonstrate its capabilities and the tractability of expressions.

For this, we study the achievable trade-off between the energy consumption and delay

for end-to-end routing a piece of information between two nodes in a vehicular network

with relays by exploiting the properties of the model, yet the study can be used for other

scenarios of ad-hoc communications.

On one hand, our aim is to showcase the computation of key performance indicators (KPIs)

in a end-to-end transmission in a hyperfractal setup. We advocate that compuations of

KPIs by exploiting the self-similarity and scaling properties of the hyperfractal model

can provide tractable results with little complexity. On the other hand, we aim at ex-

ploring more fundamental properties of the hyperfractal like connectivity under specific

constraints. Our studies have as secondary results observations on load and routing bot-

tleneck.

5.2 System Model

The network topology model for this study will consider both the hyperfractal model for

nodes, Φ, which will represent positions of cars on streets and the hyperfractal model for

relays, Ξ, which will represent the positions of road-side units, that assist in the vehicular

networks. We are developing here a scenario that contains therefore both V2V (vehicle

to vehicle) communications and V2X (vehicle to infrastructure).
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As we primarily seek to understand the relationship between end-to-end communications

and energy costs, we do not consider other detailed aspects of the communication pro-

tocol, such as the distributed aspects needed to gather position information and construct

routing tables in every node. In fact, one can consider, in this case, that the source needs

to know only the destination and the path towards the destination in terms of city map,

not the specific sequence of nodes.

The considered routing strategy is the nearest neighbor routing strategy. The next hop

is always the next neighbor on a street, i.e. there exists no other node between the

transmitter and the receiver. Denote by d(i, j) the euclidean distance between nodes i

and j, rij represents the cost of directly transmitting a packet from node i to node j.

Thus: 
rij = 1 if nodes i and j are aligned

and @k such that d(i, j) = d(i, k) + d(k, j)

rij =∞ otherwise

The nearest neighbor routing strategy is a commonly routing strategy in stochastic geo-

metry as it is a consequence of the interference model. It is a common fact that the

signal strength of the nearest neighbor is the highest and the other neighbors resent more

interference.

5.2.1 Preliminary Study on Connectivity with no Energy Constraints

A first study on the routing metrics in the hyperfractal model was performed under no

constraints on transmission energy or radio range. Throughout this preliminary study it

is assumed that each two nodes are connected if they belong to the same street, no matter

the distance between the nodes. Following the construction process which assigns a relay

in the central cross with high probability and given the assumption of connectivity that

we make throughout this study, there will always be a connectivity competent around the

relay with coordinates [1
2 ,

1
2 ]. As we will be addressing the case when n → ∞, we shall

refer to this component as to the “giant component”.

A first result on the connectivity in the giant component under the assumptions described

is given in the following.

Definition 5.1. Define by e(ρ) the fraction of mobile nodes outside the giant component.

We further define by E(ρ, n) as the average number of mobile nodes outside the giant

component, E(ρ, n) < ne(ρ).
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Theorem 5.2. In a hyperfractal map with dF the fractal dimension of the measure of

nodes process Φ, dr the fractal dimension of the measure of relays process Ξ, n mobile

nodes and ρ the Poisson variable generating the relay process, the fraction of mobile nodes

in the giant component tends to 1 when ρ→∞ and the average number of mobile nodes

outside the giant component is O(nρ−2(dF−2)/dr) when ρ→∞.

Remark: For a configuration where dF − 2 > dr/2, the average number of mobile nodes

outside the giant component tends to zero when ρ = O(n).

Let us now give the proof of Theorem 5.2.

Proof. Let us first introduce the following notion.

Definition 5.3. Define as g(ρ) the cumulated density of nodes of process Φ of lines

connected to the central cross with a single relay.

We remind the reader that there is a set of vertical lines and a set of horizontal lines

connected to the central cross with a single relay. The proof shall start by referring to a

horizontal line, but it can be a vertical line in a similar way.

Given a horizontal line of level H, the probability that the line is connected to the vertical

segment in the central cross is 1 − e−ρπ2(q′/2)H . On each line of level H the density of

mobiles is (p/2)(q/2)H . The same reasoning is applied for the vertical line, therefore there

are 2H of such lines intersecting each of the lines forming the central cross. One obtains

g(ρ) as:

g(ρ) = 2
∑
H≥1

2H(p/2)(q/2)H(1− e−ρπ2(q′/2)H ) (5.1)

The quantity g(ρ) is a lower bound of the fraction of mobile nodes connected to the

central cross as a line can be connected to the central cross via a sequence of relays, while

above we consider the lines which are connected via a single relay. The fraction of nodes

connected to the central nodes including those nodes in support of level 0, X0 which are

in density p. Therefore the quantity representing the fraction of nodes connecting to the

central cross is lower bounded by the quantity p+ g(ρ).

The fraction of nodes outside the giant component is therefore the complementary of this

quantity:

e(ρ) = 1− p− g(ρ) = 2
∑
H≥1

2H
(p

2

)(q
2

)H
e−ρπ

2(q′/2)H (5.2)
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We shall now use a tool called the Mellin Transform [97]. This will be frequently used in

the development of our results as it is a handy tool when working with harmonic sums

that go to infinity.

The Mellin Transform e∗(s) of e(ρ) is :

e∗(s) =

∫ ∞
0

e(ρ)ρs−1dρ = Γ(s)2
∑
H≥1

2H
(p

2

)(q
2

)H (
π2

(
q′

2

)H)−s
=

pq(π
2q′

2 )−s

1− q( q
′

2 )−s
Γ(s)

(5.3)

The Mellin transform is defined for positive residue, R(s) > 0, and has s a simple pole at

s0 = log(1/q)
log(2/q′) = −2(dF−2)

dr
.

Using the inverse Mellin transform [97] we recover e(ρ) as:

e(ρ) =
1

2iπ

∫ c+i∞

c−i∞
e∗(s)ρ−sds

for any given number c within the definition domain of e∗(s) and obtain e(ρ) = O(ρ−s0).

We remind that both dF and dr are greater than 2 and so the theorem is proved.

Let us validate Theorem 5.2 by numerical evaluation. The configuration studied is chosen

as to validate the constraint, dF−2 > dr
2 , dF = dr = 3, n = ρ = 200, 300, 400, 500, 800, 1200

and 1600 nodes.
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Figure 5.1a illustrates the variation of fraction of mobile nodes that are not included in

the giant component. As claimed by Theorem 5.2, the fraction decreases with the increase

of number of mobiles. Furthermore, the actual number of mobiles comprised in the giant

component nodes follows the scaling law O(n
1
3 ) as shown in Figure 5.1b .

5.3 Main Results

The previous preliminary results on connectivity were derived under no constraints on

energy and radio range. As the energy consumption is an important KPI in ad-hoc

networks, we initiate a comprehensive study with observations on the achievable end-to-

end delay when constraints on transmission power are considered.

Definition 5.4. We define the end-to-end transmission delay as the total number of

hops the packet takes in its path towards the destination.

We consider this as a good definition for the end-to-end delay as it is universal and not

dependent on the access protocol. In fact, the results computed in such a manner, can

be fitted to any of the access protocols (aloha, cdma, etc.). The transmission is done in a

half-duplex way, a node is not allowed to transmit and receive during the same time-slot.

The received signal is affected by additive white Gaussian noise (AWGN) noise N and

path-loss with pathloss exponent α > 2 .

Denote by Pmax the maximum allowed transmission power. It is assumed that all nodes

on a street transmit with the same nominal power Pm which depends only on the number

of nodes on the street as follows:

Pm =
Pmax

mα
. (5.4)

Usually, the received power is expressed as Preceived = Pmax/(distance
α), where Pmax is

the transmission power. In this case, we take the distance to be 1 when talking about

nodes located on opposite ends of streets (normalized) therefore Preceived = Pmax
1α . When a

extra node is located at the middle of the streets and we use the nearest neighbor routing

technique, Preceived = Pmax
(1/2)α , when there is one more node Prec = Pmax

(1/3)α and so on.

Therefore, on a street with m nodes, a good approximation is to suppose Pm = Pmax
mα . The

transmission power is often decided through some prior sensing, so this can be considered

realistic.
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An immediate consequence of this reasoning is that the cumulated energy to cover a whole

street containing m nodes with uniform distribution via nearest neighbor routing is :

mPm = Pmax/m
α−1 (5.5)

Observe that, in this case, the larger the population of the street the smaller the nominal

power and the smaller the energy to cover the street.

Relays stand in intersections, and thus on two streets with different values ofm. Therefore,

they will need to employ two different values for the transmission power. It is a common

fact, for example for LTE devices, to have two different radio interfaces therefore we will

make the same assumption for relays. The simulations will be done for the case with a

single radio interface as well.

The giant component described previously is considered with no constraints on energy, in

other words no constraint on the radio range. Here, given that the transmitting energy

is dependent of the average density of the nodes on the streets and that the transmission

energy per node is limited by the protocols to a value of Pmax, the connectivity is much

more restricted and directly dependent on the constraints on energy.

We introduce the following notions and notations. Denote by t a node and by P (t) the

nominal transmission power of this node.

Definition 5.5. Let T be a sequence of nodes which constitutes a routing path. The

path length is D(T ) = |T |. The relevant “energy paths” are:

• The path cumulated energy is the quantity C(T ) =
∑

t∈T P (t), the sum of all

nominal transmission energy of all nodes included in the path.

• The path maximum energy is the quantity M(T ) = maxt∈T P (t), the maximum

nominal energy used by a node in the specific routing path.

The path cumulated energy is of interest as we want to optimize the quantity of energy

expended in the-end-to-end communication. This will lead to the minimization of the

total energy spent by the network.

The path maximum energy is an important quantity to optimize as we want to find

the path whose maximum energy does not exceed a given threshold depending on the

energy sustainability of the nodes or the protocol. For instance, it is likely that no node

can sustain a nominal power of Pmax which is the energy needed to transmit in a range

corresponding to the entire length of a street. In this case it is necessary to find a path
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which uses streets with enough (more) population in order to reduce the node nominal

power to an acceptable value.

Now, as we have defined our constraints on the energy in a path, we can go back to the

connectivity and define new connectivity components in concordance with the energy.

Definition 5.6.

• Let G(n,E) be the set of all nodes connected to the central cross with a path

cumulated energy not exceeding E.

• Let Gk(n,E) be the subset of G(n,E), where the path to the central cross should

not go through more than k fixed relays.

Definition 5.7. Let G′(n,E) and G′k(n,E) the respective equivalents of G(n,E) and

Gk(n,E) but with the consideration of the path maximum energy instead of cumulated

energy.

5.3.1 Path Cumulated Energy

The following theorem shows the asymptotic connectivity properties of the hyperfractal

in function of the cumulated energy and in function of the path maximum energy.

Theorem 5.8. In a hyperfractal with n nodes. The following holds:

lim
n→∞

E
{
|G1(n, n−γPmax)|

n

}
= 1 (5.6)

for γ < α− 1

and

lim
n→∞

E
{
|G′1(n, n−γPmax)|

n

}
= 1 (5.7)

for γ < α

where α is the pathloss coefficient.

The theorem shows that the components G1(n, n−γPmax), the set of all nodes connected

to the central cross through maximum one relay and with a path cumulated energy not

exceeding n−γPmax, andG′1(n, n−γPmax), the set of all nodes connected to the central cross

through maximum one relay and with a path maximum energy not exceeding n−γPmax,

scale proportionally with the number of nodes n and tend to include all of the nodes when
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n→∞. Note that the constraint on energy, either cumulated either maximum per path,

n−γPmax is approximatively n−1Pmax and the exponent of n is even lower than −1.

Before going for the proof of Theorem 5.8 let us introduce the following instrumental

lemma that ensures the existence of nodes in a street.

Lemma 5.9. There exists c1 > 0 such that, for all integers H and n, the probability that

a street of level H contains less than nλH/2 nodes or more than 2nλH nodes is smaller

than exp(−c1nλH).

Proof. Let NH(n) be the number of nodes contained in the street of level H.

Let z be a real number. By Chebyshev’s inequality [119], we have:

E[ezNH(n)] = (1 + (ez − 1)λH)n

In order to use Chebysev’s inequality, we change the “<” to “>”:

P

(
NH(n) <

nλH
2

)
= P

(
e−zNH(n) > eznλH/2

)
≤ E[e−zNH(n)]

e−znλH/2

Therefore
E[e−zNH(n)]

e−znλH/2
= exp

(
n
(
log
(
1 + (e−z − 1)λH

)
+ zλH/2

))
.

For |z| bounded there exists c2 > 0 such that |ez− 1| ≤ c2|z| and there exists c3 such that

ez − 1 ≤ z + c3z
2. For |x| bounded there exists c4 such that log(1 + x) ≤ x− c4x

2. From

these steps we obtain that, for sufficiently small |z|, one has:

log
(
1 + (e−z − 1)λH

)
+ z

λH
2
≤ −zλH

2
+ c2λHz

2 − c3λ
2
Hz

2

≤ −c1λH .

which settles that
E[e−zNH(n)]

e−znλH/2
≤ e−c1nλH . (5.8)

The proof of the second part of the lemma proceeds via the same reasoning, yet this time

by using the inequality:

P (NH(n) > 2nλH) ≤ E[ezNH(n)]

e2znλH
. (5.9)
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The following corollary gives an observation on the scaling of the number of nodes in a

segment of street with the cumulated energy, getting us one step closer to the results we

are searching for.

Corollary 5.10. Let 0 < φ ≤ 1, assume an interval corresponding to a fraction φ of the

street length. If the interval is on a street of level H, the probability that it contains less

than φλHn/2 nodes and it is covered with a cumulated energy greater than φ(nλH)1−αPmax

is smaller than e−c1φλHn.

Proof. This is a slight variation of the previous proof.

Indeed if we denote byNH(n, φ) the number of nodes on the segment, we have E[etNH(n,φ)] =

(1 + λHφ(ez − 1))n. Similarly, the previous proof applies by just replacing λH by φλH .

On this street, each node has the nominal power Pmax/N
α
H(n), therefore the cumulated

energy of the segment containing NH(n, φ) has the expression Pmax
NH(n,φ)
Nα
H(n) .

By further applying the previous reasoning to each of the random variables NH(n) and

NH(n, φ), we obtain the result.

Throughout the rest of this chapter, we only consider the cases where dF > 3 as we need

dr < dF − 1, i.e. (2/q)2 < 2/q′.

The following theorem is the main result of this chapter and shows that increasing the

path length decreases the cumulated energy. In fact, we shall see that for n → ∞, the

limiting energy goes to zero.

Theorem 5.11. In a hyperfractal with n nodes, with dF the fractal dimension of the

process Φ and dr the fractal dimension of process Ξ, we consider an expression of the

energy En as En = cEn
(1−α)(1−c5)Pmax where cE > 0 and c5 < 1. The number of hops,

Dn, on the shortest path of cumulated energy less than En between two nodes belonging

to the giant component G1(n,En) is :

Dn = O(n1−c5/(dF−1)). (5.10)

Note that, although the source and the destination belong to G1(n,En), it is not necessary

that all the nodes constituting the path also belong to G1(n,En), i.e., the path may include

nodes that are more than one hop from the central cross.
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Figure 5.2: a) Diverted path with three fixed relays (left), b) five fixed relays (right).

Remark 5.12. We have the following identity:

(
En
Pmax

)1/(α−1)

DdF−1
n = O(ndF−2).

Proof. The main part of our proof is to consider the simplified case when the source,

denoted by mH , and the destination, mV , both stand on two different segments of the

central cross. In this case, the energy constraint will be considered 1
3En. The result can

easily be extended to the case when the source and the destination stand anywhere in

the giant component G1(n,En) by taking En as energy constraint and the theorem then

follows.

Let us look at Figure 5.2 a). Segment [SO] and [OD] belong to X0 and the segments

[AB], [BC] intersect X0 and belong to Xx1 ,Xx2 with x1, x2 > 0 and not necessarily x1 6= x2.

When mH and mV are on located on X0, there exists a direct path which takes the direct

route by staying on X0, more specifically, in Figure 5.2 a), the segments [SA],[AO],[OC],[CD].

Then, the path length is of order of Θ(n) while the cumulated energy of order Θ(n1−α)Pmax.

In order to significantly reduce the order of magnitude of the path hop length, one must

consider a diverted path with three fixed relays, as indicated in Figure 5.2 a). The three

fixed relays we refer to are relays A,B and C. The diverted path proceeds into two streets

of Xx. Let T be the path. It is considered that x = c5
logn

log(2/q′) for c5 < 1.

The path is made of two times two segments: the segment of street [SA] on X0 which

corresponds to the distance from the source to the first fixed relay to a street of Xx, and

then the segment [AB] between this relay and the fixed relay to the crossing a street of
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Xx. The second part of the path is symmetric and corresponds to the connection between

this relay and the destination through segment [BC] and [CD].

Let us look at the more general scenario in Figure 5.2,b). Denote by L(x, y) the distance

from an arbitrary position on a street of Xy to the first fixed relay to a street of Xx. The

probability that a fixed relay exists at a crossing of two streets of respective Xx and Xy is

1− exp(−ρnp(x, y)). Since, by construction, the spacing between streets of Xx is 2−x:

L(x, y) ≤ 2−x

1− exp(−ρp(x, y))

where ρ is the total expected number of points in Φr in the map (reminding that the

process of relays Ξ is the support of Φr and ρ = n to simplify. The probability that the two

streets of Xx have a fixed relay at their crossing is 1− exp(−ρp(x, x)). With the condition

ρ = n, one gets ρp(x, x) = n1−2c5 log(2/q)/ log(2/q′) > n1−c5 since 2 log(2/q) < log(2/q′).

Therefore the probability that the relay does not exist decays exponentially fast.

Going back to the analyzed scenario in Figure 5.2,b) and using the reasoning of eq. (5.5)

for segments of X0 and Xx, the cumulated energy of the path, E(T ), satisfies with high

probability

E(T ) = O(L(x, 0)n1−αPmax) +O((nλx)1−αPmax)

and the average number of nodes of the path, D(T ), satisfies with probability tending to

1, exponentially fast:

D(T ) = O(L(x, 0)n) +O(nλx).

It is quite easy to observe that the main contributers in the cumulated energy are the

segments [AB] and [BC] since it is there that the spacing between consecutive nodes is

more significant and therefore the nominal transmission power per node as well. Let us

express this contribution by denoting x as x = c5
logn

log(2/q′) :

E(T ) = O
(
n(1−α)(1−c5)

)
.

Let cE such that

E(T ) ≤ cE
3
n(1−α)(1−c5).

The main contributor in hop count in the path is, in fact, the nodes of the path standing

on X0, namely [SA] and [DC]:

D(T ) = O
(
n1−c5/(dF−1)

)
.
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And so the proof is complete.

In Theorem 5.11, it is always assumed that En → 0, since c5 < 1. In this case Dn spans

from O(n1−1/(dF−1)) to O(n) (corresponding to a path staying on the central cross). When

the hyperfractal dimension dF is large it does not make a large span. In fact, if En is

assumed to be constant, i.e. c5 = 1, then we can have a substantial reduction in number

of hops, as described in the following theorem.

Theorem 5.13. In a hyperfractal with n nodes, with dF the fractal dimension of the

process Φ and dr the fractal dimension of process Ξ, the shortest path of cumulated energy

En = vEPmax with vE > 6, between two nodes belonging to the giant component G1(n,En),

passes through a number of hops :

Dn = O
(
n

1− 2
dr(1+1/dF )

)
Remark 5.14. When dr → 2 then Dn = O(n1/(dF+1)), and the hyperfractal model is

behaving like a hypercube of dimension dF + 1. Notice that, in this case, Dn tends to be

O(1) when dF →∞.

Proof. In the proof of Theorem 5.11, it is assumed that x < logn
log(2/q′) in order to ensure

that the number of hops on the route of Xx tends to infinity. However the parameter x

can be in the range logn
log(2/q′) ≤ x <

logn
2 log(2/q) .

When nλx → 0, E(T )→ 2Pmax since the streets of Xx are empty of nodes with probability

tending to 1. Let us denote x = c6
logn

2 log(2/q) with c6 < 1. We have D(T ) = O(L(x, 0)n) =

O(n1−c6/dr). Clearly c6 cannot be greater than 1 as, in this case, the two streets of

Xx will not hold a fixed relay with high probability and the packet will not turn at the

intersection. Therefore the smallest order one can obtain on the diverted path with three

relays is limited to n1−1/dr , which is not the claimed one.

To obtain the claimed order, one must use the more general, diverted path with five

fixed relays, as shown in Figure 5.2 b). The diverted path is composed by the segments:

[SA′],[A′E],[EF ],[FG],[GC ′] and [C ′D′]. It is shown in [95] that the order can be decreased

to n1−2/((1+1/dF )dr).

5.3.2 Path Maximum Energy

The next results revisit the previous theorems on the path cumulated energy in the cor-

responding case of the imposed constraint on the path maximum energy.
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Theorem 5.15. Let Mn = n−α(1−c5)Pmax for c5 < 1. The number of hops Dn on the

shortest path of maximum energy less than Mn between two nodes belonging to the giant

component G′1(n,Mn) is:

Dn = O(n1−c5/(dF−1))

Remark 5.16. It is important to note that although the orders of magnitude of path

length Dn are the same in both Theorem 5.11 and Theorem 5.15, the results consider

two different giant components: the giant component referring to the cumulated energy,

G1(n,En) versus the giant component referring to the maximum energy G′1(n,Mn).

Remark 5.17. The following identity hold:

(Mn/Pmax)1/αDdF−1
n = O(ndF−1−α). (5.11)

Theorem 5.18. Let the maximum path energy between two points belonging to the giant

component, G′1(n,Mn) be Mn = Pmax. The number of hops Dn on the shortest path is

O(n1−2/(dr(1+1/dF )).

This theorem gives, in fact, the path length when no constraint on energy exists (or

that the maximum energy allowed is the highest energy for a transmission between two

neighbors in the hyperfractal map).

5.3.3 Remarks on the Network Throughput Capacity

Let us now briefly look at the scaling of the network throughput capacity when a constraint

on the energy is imposed. In [120], the authors express the throughput capacity of ad-hoc

wireless networks in a PPP setup as:

ζ(n) = Θ

(
n2
∑

i∈G ωi(n)∑
i,j∈G rij

)
. (5.12)

where ζ(n) is the throughput capacity, defined as the expected number of packets delivered

to their destinations per slot, ωi(n) is the expected transmission rate of each node i

among all the nodes n and G is the giant component. In the following, denote by C the

transmission rate of each node.

Using the result of Theorem 5.11 and Theorem 5.15 and substituting them in the expres-

sion 5.12, we obtain the following corollary on a lower bound of the network throughput

capacity with constraints on path energy.
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Corollary 5.19. In a hyperfractal with n nodes, with dF the fractal dimension of the

process Φ and dr the fractal dimension of process Ξ, c5 < 1 and C the transmission rate

of each node, when:

• En = O(n(1−α)(1−c5)Pmax) is the maximum cumulated energy of the minimal path

between any pair of nodes in the giant component G1(n,En)

or when

• Mn = O(n−α(1−c5)Pmax) is the maximum path energy of the minimal path between

any pair of nodes in the giant component G′1(n,Mn),

a lower bound on the network throughput is:

ζ(n) = Ω
(
Cn

c5
dF−1

)
(5.13)

Remark 5.20. We notice that with c5 < 1 and dF > 3 we have ζ(n) of order which can be

smaller than n1/2 which is less than the capacity in a random uniform network with no

canyon effect as described by Gupta and Kumar in [29].

Remark 5.21. When c5 = 1, i.e. with no energy constraint En = cEPmax the path

length can drop down to Dn = O
(
n1−2/((1+1/dF )dr)

)
and, in this case, we have ζ(n) =

Ω(n2/((1+1/dF )dr)) which tends to be in O(n) when dF →∞ and dr → 2. In this situation

the capacity is of optimal order since Dn tends to be O(1).

5.3.4 Simulations

This section presents an evaluation of the accuracy of our theoretical findings in differ-

ent scenarios by comparing them to results obtained by simulating the events in a two-

dimensional network. We use our own discrete time event-based simulator (developed in

Matlab) which follows the model presented earlier.

The length of the map is set to 1000 and, therefore, Pmax is just 1000α, where α is the

pathloss coefficient that is either 2, 3 or 4, as it will be mentioned throughout the section.

Let us look at Figure 5.3 to get a grasp of the trade-offs between cumulated end-to-end

energy and hop count for a transmitter-receiver pair. The pair has been selected randomly

from the simulations performed in a hyperfractal map with n = 800, pathloss coefficient

α = 4, fractal dimension of nodes dF = 4.33 and fractal dimension of relays dr = 3.
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The plot shows the minimum cumulated energy for the end-to-end transmission for a

fixed and allowed number of hops, k, in red circle markers. Note that the energy does

not decrease monotonically. This is due to the fact that forcing to take a longer path

may not allow to take the best path. However when considering the minimum cumulated

energy of all paths up to a number of hops, the black star markers in Figure 5.3, the

energy decreases and exhibits clearly the behavior analyzed in Theorem 5.11. That is,

the minimum cumulated energy is indeed decreasing when the number of hops is allowed

to grow (and the end-to-end communication is allowed to choose longer, yet energetically

cheaper, paths).

Let us further validate Theorem 5.11 through simulations performed for 100 randomly

chosen transmitter-receiver pairs in hyperfractal maps with various configurations. We

run simulations for different values of the number of nodes, n = 800 nodes and 1000

nodes respectively, different values of pathloss, α = 2 and α = 3 (values characteristic

of urban environment when the technology is mmWave) and different configurations of

the hyperfractal map. The setups of the hyperfractal maps are: node fractal dimension

dF = 4.33 and relay fractal dimension dr = 3.3 for the first setup and dF = 3.3 and

dr = 2.3 for the second setup.

The results exhibited in Figures 5.4, 5.5, 5.6 and 5.7 are obtained by computing, for each

of the transmitter-receiver pair, the minimum cumulated end-to-end energy for a path

smaller than k, then averaging over the 100 results.

The left-hand sides of the Figures 5.4 and 5.5 show the variation of the minimum path

cumulated energy with the increase of the number of hops in setup of dF = 4.33 and

dr = 3 for n = 800 in Figure 5.4 and n = 1000 in Figure 5.5. The figures demonstrate

that, indeed, allowing the hop count to grow decreases the energy considerably. The decay
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Figure 5.3: Minimum cumulated end-to-end energy versus hops for a transmitter-
receiver pair.
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Figure 5.4: Minimum cumulated end-to-end energy versus hops, averaging over 100
transmitter-receiver pairs, dF = 4.3, dr = 3.3, n = 800
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Figure 5.5: Minimum cumulated end-to-end energy versus hops, averaging over 100
transmitter-receiver pairs, dF = 4.3, dr = 3.3, n = 1000
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Figure 5.6: Minimum cumulated end-to-end energy versus hops, averaging over 100
transmitter-receiver pairs, dF = 3.2, dr = 2.3, n = 800, linear scale left, logarithmic scale

right

of the maximum cumulated energy with the allowed number of hops is even more visible

in logarithmic scale in the right side of the same figures.

The decays remains substantial when changing the setup to dF = 3.2, dr = 2.3. Figures 5.6

and 5.7 shows the results obtained for n = 800 and n = 1000 respectively in the new setup.

The decay is exhibited more clearly when looking in logarithmic scale. Even though there

can be oscillations around the linearly decreasing characteristic, as one can notice in
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Figure 5.7: Minimum cumulated end-to-end energy versus hops, averaging over 100
transmitter-receiver pairs, α = 2,dF = 3.3, dr = 2.3, n = 1000, linear scale left, logar-

ithmic scale right
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(b) Logarithmic scale

Figure 5.8: Minimum cumulated end-to-end energy versus hops, averaging over 100
transmitter-receiver pairs, α = 3, dF = 4.33, dr = 3, n = 800

Figure 5.7, left hand side, the global behavior stays the same, decreasing, as one can

better notice in logarithmic scale in Figure 5.7, right hand side.

When changing the pathloss coefficient to α = 3, the effect of Theorem 5.11 remains, as

illustrated in Figure 5.8 for a hyperfractal setup of dF = 4.33, dr = 3, n = 800 nodes.

Next, we validate the claims of Theorem 5.15 on the variation of path length with the

imposed constraint on maximum energy per node. For that, we choose randomly 100

transmitter-receiver pairs belonging to the central cross and we compute the shortest

path by applying a constraint on the maximum transmission energy of nodes belonging

to the path. For the configurations chosen, the hyperfractal setups are: nodes fractal

dimension dF = 3.3, relays fractal dimension dr = 2.3, pathloss coefficient α = 3 and we

vary the number of nodes, n to be either n = 500 or n = 800.

For both values of n, Figure 5.9a, shows that indeed, decreasing the constraint of path

maximum energy leads to an increase in the path length.
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Figure 5.9: Path maximum energy versus hops

Changing the fractal dimensions (both streets and relays) does not change the behavior,

as illustrated in Figure 5.9b. In this case, the hyperfractal setups have the following

base configuration: nodes fractal dimension dF = 4.33, relays fractal dimension dr = 3,

pathloss coefficient α = 4 and we vary the number of nodes, n to be either n = 500 or

n = 800. Again, making a tougher constraint on the path maximum energy leads to the

increase of the path length, showing that achievable trade-offs in hyperfractal maps of

nodes with road-side infrastructure.

5.4 Short Study on Load and Bottleneck

5.4.1 System Model

The system model for this short study contains, as throughout the whole chapter, both

the mobile nodes, Φ and the relays, Ξ. In this study we shall not consider any constraints

on the radio range or energy consumptions, as these constraints usually generate a more

balanced load while we are searching for the extreme case scenario.

Whenever dealing with routing in a network, one must keep in mind that the network

links are limited and an interesting question arises: what is the repartition of load in a

network given a routing technique? Is there a bottleneck? In the following, we try to

observe the behavior of the network load under the routing techniques imposed in this

chapter.
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5.4.2 Main Results

Note that, from now on, we use the term node to refer both mobile to nodes and relays.

Definition 5.22. The load σ(x) of a node x is the number of paths that are routed

through the respective node.

We do not provide analytically a routing technique such that the load is balanced. Instead,

we compute here the load of forwarding nodes under the constraint of minimum path cost

routing (either NN, or minimum delay). While the routing strategy is suboptimal in

which regards the load balancing, we choose it as the reference routing technique in order

to give insights on the load achieved when minimizing the cost and due to its utilization

throughout the derivations done in the previous section. Furthermore, a minimum delay

routing technique is of interest as it maximizes the network throughput.

In the previous section, the average path cost both for NN routing and for minimum delay

routing, Dn was derived in Theorem 5.18 under the constraint of minimum cost and no

constraints on energy or radio range as Dn = O
(
n

1− 2
(1+1/dF )dr

)
.

In the hyperfractal, there are a total of Ln = |G| ∗ (|G| − 1) routes between the nodes,

where |G| is the size of the giant component. Throughout the derivations, we make the

simplistic assumption that all nodes have equal traffic toward all destinations and each

node x has the same capacity C(x) = C (similar to the previous section) and supports a

load σ(x) as per Definition 5.22.

We further define the following quantities: µn as the capacity per route and per node, Cn

the total capacity of routes.

Remark 5.23. The aggregate throughput of routes that pass through a node is inferior to

the capacity of the node.

µnσ(x) ≤ C(x) (5.14)

Under these assumptions and observations, the following hold:

Theorem 5.24. The aggregate throughput of routes multiplied by the length of routes is

inferior to the sum of the capacity of all the nodes.

LnCn ≤
∑
x∈G

C(x)
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Proof. The average load of the nodes in a hyperfractal is:

E[σ(x)] =
DnLn

n+R(ρ)
(5.15)

Substituting in (5.14) and multiplying on both sides with |G| = n+R(ρ):

µnDnLn ≤
∑
x∈G

C(x)

As the capacity of the routes is Cn = µnDn we arrive to the result that we write as:

µnDnLn(1 + ε) = |G|C with 1 + ε a positive number.

A lower bound on the capacity of the network can be derived, this time, in function of

the network load. The minimum capacity of a route is achieved by minimizing µmin =

minx∈G

(
C
σ(x)

)
.

Replacing µn by using (5.14), the minimum will be obtained as:

min

(
1

σ(x)

)
=

n+R(ρ)

DnLn(1 + ε)
(5.16)

Denote by σ∗ = maxx∈G(σ(x)) the maximum achieved load in the hyperfractal network.As

it strongly depends on the employed routing technique, σ∗ is a quantity that can be

determined only empirically.

Definition 5.25. We define by τ = 1 + ε as the peak to average load ratio.

From (5.15) and (5.16) τ = σ∗

E[σ] . This quantity shows whether the load is balanced in the

network. A high peak-to-average load ratio implies the existence a bottleneck, a node that

is charged with routing considerably more routes than the other nodes in the network and

that can represent a point of failure. Being a function of σ∗, the value of τ is determined

through simulations.

The lower bound on capacity is therefore achieved for the bottleneck µmin = C
σ∗ Con-

sequently:

Corollary 5.26. The network capacity in a hyperfractal is higher than:

Cn ≥
C

σ∗
|G|(|G| − 1)

where σ∗ is the maximum load achieved in the network.
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This corollary shows that the network capacity is limited by the bottleneck of the network,

therefore, a routing technique that provides a low peak to average load can be beneficial

for the network capacity.

Notice that all of these observations are quite general and not conditioned on the model.

The only metric conditioned by the model is the average path length, Dn.

5.5 Simulations

The simulations are performed by using both routing strategies. For the minimum delay

routing, it is assumed that each transmitting node uses the same nominal transmit power

and that the received signal is affected by path-loss denote in this section as l(i, j) and

Rayleigh fading (note that in this study we do not use power control). Path-loss between

node i and node j is modeled by the power-law function l(i, j) = (Ar)α when the two

nodes i and j are aligned, where A,α are some constants and r is the distance between

transmitter and receiver, otherwise l(i, j) = 0. The reception undergoes Rayleigh fading

Fij independent over nodes and time, which is independently sampled at each time slot

for each transmitter-receiver pair. Given this, the signal received by receiver j from

transmitter i at time slot tn becomes Fijl(i, j). Throughout this work, we restrict to the

case of Rayleigh fading, thus by renormalization of A when necessary, F is a non negative

random variable with exponential distribution of mean 1.

By assuming the background noise power negligible, and that node i is in transmit mode,

the successful reception of a signal transmitted from node i to a node j at a given time slot

occurs when: Fijl(i, j) > K
∑

k∈B−{i} Fkjl(k, j), where K is the SIR threshold related to

the bit-rate when a particular modulation plus coding scheme is considered. where I(j)

is given by
∑

b∈Bn
Fn

(b,j)

l(‖b−j‖) . B is the subset of nodes transmitting at the considered time

slot.

In order to avoid time-consuming simulations of Aloha protocol, the following results

are used for computing the probabilities of successful reception, pij when independent

Rayleigh fading is applied [120]: pij = pA(1 − pA)
∏
k 6=i,j wkj (K/l(i, j)), where wkj(θ) is

the Laplace transform of the pdf of the signal produced by node k over node j, pA is

the Aloha medium access probability, and K is the Signal to Interference Ratio (SIR).

In the following, the pathloss coefficient α = 4 and K = 1. In this case, as the results

is more general, the pathloss is taken as 4, a more pessimistic value. The validations are

performed for several configurations with different values of n, dF and dr.
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Figure 5.10: Load distribution in hyperfractal dm = 3.3, dr = 2.3, nodes index up to
index 500, relays index starting from index 500

400 600 800 1000 1200
5

10

15

20

nr points

τ

 

 

d
m

=3,d
r
=3

d
m

=3, d
r
=4.3

(a) peak-to-average load

400 600 800 1000 1200
14

15

16

17

18

19

nr points

de
la

y

 

 

d
m

=3,d
r
=3

d
m

=3, d
r
=4.3

(b) delay

Figure 5.11: Peak-to-average load (a) and delay (b) for two configurations, NN routing

Figures 5.10a showcases the distribution of load for a hyperfractal configuration dF = 3.2,

dr = 2.3 for the nearest node routing strategy. The indexes of the relays start after the

index 500. Notice that the relays support loads of routes that are superior to the load

supported by the mobile nodes, with a easily distinguishable maximum.

When using the minimum delay routing strategy, the load distribution changes dramat-

ically, see Figure 5.10b. For the same hyperfractal configuration, dF = 3.2, dr = 2.3, the

relays are heavily loaded, while the mobile nodes support a much lighter traffic.

Let us look now to the peak-to-average load, τ , and the delay in two configurations.

Figure 5.11a shows the peak-to-average load for different values of n in two configurations,

with the same fractal dimension of mobile nodes, dF = 3, but different value for the fractal

dimension of relays, dr = 3 in the first configuration, and dr = 4.3 in the second one.

One can easily notice that the load is better balanced when the fractal dimension of

relays is higher. Figure 5.11b confirms that the second configuration outperforms the first
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Figure 5.12: Peak-to-average load (a) and delay(b) for two configurations, min delay
routing

configuration as the delay achieved in the second configuration is inferior to the delay

achieved when dr = 4.3.

For the minimum delay routing technique, Figure 5.12a shows the peak-to-average load

for different values of n in two configurations, with the same fractal dimension of mobile

nodes, dF = 3, but different values for the fractal dimension of relays, dr = 3 and dr = 4.3,

respectively. In this case, the first configuration offers a lower delay, yet the bottleneck

of the network with the increase of nodes evolves better for the second configuration.

This suggests that the choice of the fractal dimension of the infrastructure has to be done

accordingly, with respect to the quality of service constraints and allowed trade-offs.

5.6 Concluding Remarks

This chapter has presented a piece of work that answers some of the most crucial questions

of ad-hoc networks: the connectivity, the energy consumption and the routing delay. More

precisely, we have provided achievable trade-offs between energy consumption and routing

delay, all while maintaining the connectivity of the network under the required energy

constraints: path total energy or energy per transmitting node.

While developing the answers to this critical questions, we have provided insights for

the design and operation of vehicular networks using millimeter wave technology under

hyperfractal model. Several observations that arose as secondary results have also been

presented. These secondary results debate on the bottleneck in hyperfractals networks

under specific routing techniques.



Chapter 6

Application to Ad-Hoc networks.

Delay-Tolerant Networks

6.1 Introduction and Motivation

As the hyperfractals are models inspired from the locations of connected devices that

inherit the locations of humans on streets, it comes as natural that the main use of the

hyperfractals is to serve for the modeling of the vehicular networks.

In the following, we propose the study of the broadcast of a packet of information in

a vehicular delay tolerant network. We will derive bounds for the broadcast time by

exploiting the properties of the hyperfractal model and we will raise awareness of specific

phenomenons that appear due to network’s self-similarity and the consequences of these

phenomena.

A distributed network of vehicles such as vehicular ad-hoc network (VANET) can easily

be turned into an infrastructure-less self-organizing traffic information system, where any

vehicle can participate in collecting and reporting useful information. As the number of

vehicular networks continue to grow and now create giant networks (with diverse hier-

archical structures and node types), vehicular interactions are becoming more complex.

This complexity is further exacerbated by the time-space relationships between vehicles.

The intrinsic mobility of the vehicles on the roads leads to highly dynamic and evolution-

ary topologies that can no longer be adequately modeled through methods inherited from

previous networks generations.

84
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Disseminating information in a network is typically done in a broadcast-oriented way

[121–123]. Broadcast in vehicular networks can be done with the help of the adjacent

infrastructure, yet, in this work, we focus on the study of infrastructure-less vehicular

networks to understand their performance limits. Broadcasting schemes, rather than

unicasting, are particularly adequate for vehicular networks due to the mobility of the

cars, which implies an ongoing evolving topology. In broadcast protocols, the advantage

stands in the fact that the vehicles do not require the knowledge of a specific destination

location or its relevant route. This eliminates the complexity of route discovery, address

resolution and the previously mentioned topology management with mobility, which are

critical aspects in dynamic networks such as vehicular networks. Broadcast protocols have

been enhanced throughout the past years in order to minimize the redundancy and energy

consumption, to reduce the security issues [124], increase reliability and comparisons have

been made between the achievable performances with and without road-side infrastructure

[123].

Vehicular networks have specific requirements and challenges, as shown in [125, 126] that

can be sometimes overcome by exploiting the mobility [127]. Moreover, in [128], the

authors show that the urban architecture features, more specific the intersections, can be

used to ease the dissemination of information in vehicular networks.

In making use of the delay tolerant property of ah-hoc networks, an important work has

been done in [37, 129], where a thorough analysis is provided for the broadcast time in

a delay tolerant network. In [130], the authors exploit social relationship for proposing a

routing protocol for delay-tolerant networks (DTN), while in [131], the authors analyze

routing protocols performances obtained in DTN. Other metrics in delay-tolerant networks

have been analyzed in [132, 133]

The work done in [134] gives an in-depth analysis of the topological properties of a vehicu-

lar network, with a focus on the mobility models while [135] presents a thorough study

on the importance of location for routing protocols in ad-hoc networks.

In this Chapter, in order to extend the understanding of the hyperfractal model, and

further demonstrate its capabilities, we study the time limit requirements for a piece of

information to propagate in an urban vehicular network, by exploiting the model.

On one hand, our aim is to better exhibit the impact on the broadcast time of the particu-

lar environment, the traffic and network topologies. We advocate that network geometry

should indeed be considered and exploited when designing broadcast protocols. On the

other hand, we aim at demonstrating the ease of use of the hyperfractal model and how

it can be exploited to enhance the computing wireless networks KPIs (Key Performance
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Indicators). For instance, most of broadcast protocols parameters are dependent on traffic

density and this is a metric which can be predicted when considering the particular net-

work geometry.

We will prove here that the average broadcast time in a hyperfractal setup is inO(n1−δ log n)

where n is the number of mobile nodes and where δ is a parameter depending on the fractal

dimension.

6.2 System Model

In this Chapter, we use the process Φ as the model for the locations of vehicles in the

network. We do not make use of the process Ξ here which will lead to the generation

of the delay-tolerant network, as, in the absence of the relays, the propagation of the

packets through intersections, even with the help of mobility, will require the existence of

buffers that can hold the packet for a longer time. We make use of several properties of

the process Φ but we also develop extra results that will be useful in deriving the main

theoretical contributions.

As the density of the population on the streets rapidly decays with the increase of the

level, there will be unpopulated streets. Therefore, we say that a street is busy if the

street contains at least one mobile node.

The following lemma will play an important role in the proof of our main results:

Lemma 6.1. The average number of busy streets is asymptotically equivalent to nδ −Γ(−δ)
log(2/q)

with δ = log 2
log(2/q) where Γ stands for Euler “Gamma” function.

The mobiles move on the lines that are the support of the hyperfractal map. When a

node reaches a boundary, it reenters the map from the same point, following a billiard

mobility. Initially, for the sake of simplicity, the speed of the mobiles is considered to be

constant and identical, v, no matter the level and the density of the nodes on the lines. In

reality, the values of speed vary in certain intervals. As our analysis is focused on upper

and lower bounds, the variation will not impact the order of magnitude. The case of

variable speed will be discussed later, in Section 5.5 where we show that the bounds are

validated for variable speed case as well. We will not analyze the case where some streets

are congested and thus speed up the broadcast as some nodes are blocked in intersections.
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6.2.1 Canyon Effect

Here again, we will use the canyon effect as the characteristic propagation phenomenon

in urban environment.

We remind the reader that the canyon propagation model implies that the signal emitted

by a mobile node propagates only on the street where it stands on. If the network was

static, considering the given construction process, the probability that a mobile node

is placed in an intersection goes to zero when the street width goes to zero and nodes

positioned on two different streets are never able to communicate. Notice that when a

street has positive width, the intersection width is negligible compared to the street length

and the network will still be partitioned. The connectivity of the network is thus ensured

through the mobility of the nodes, leading to a scenario of a delay tolerant network.

6.2.2 Broadcast Algorithm

A feasible approach to forward a packet of information from a source to a destination in the

absence of any predictive knowledge on the node movement is the epidemic routing, analog

to the spreading of an infectious disease. In this case, when the traffic is low, epidemic

routing can achieve an optimal delivery delay at the expense of increased use of network

resources. The considered broadcast protocol is a single-hop broadcast meaning that each

vehicle carries the information while traveling, and this information is transmitted to

the other vehicles in its one-hop vicinity (nearest neighbors of the infected node) during

the next broadcasting cycle. This single-hop broadcasting protocol relies heavily on the

mobility of the vehicles for spreading information.

In this study, as we primarily seek to understand the limit of the propagation speed, we

do not consider other detailed aspects of the broadcast protocol, such as packet collisions.

Later on, in the simulations section, all the protocol stack will be implemented. At time

t0 = 0 only one node, called “source”, holds the packet. At time t > t0, the population

of nodes is split among nodes that have received the packet, called infected nodes, and

nodes that have not yet received the packet, called healthy nodes by analogy with epidemic

propagations.

The measured broadcast time represents the time needed for the entire network contam-

ination starting from a single random source. The average broadcast time is obtained by

averaging over all possible sources, as it will be further defined in the following section.
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6.3 Main Results

In this section we provide the computation of broadcast time when the network of vehicles

is modeled using the hyperfractal model for nodes. We show that the computations are

simplified due to the scaling effect of the hyperfractal. In particular, given the self-

repeating pattern of streets with hierarchical density, we can compute metrics of interest

by observing a local scenario (for such a pattern) and then use the lessons learned to the

whole network.

The main results are first proven under the assumption that each node is reachable through

wireless propagation by its nearest neighbor, therefore that the radio range is always high

enough to reach the next hop. A reasoning behind this assumption can be that the com-

munications between vehicles has a preliminary sensing phase through which it determines

the necessary transmission power for the transmission to reach the next neighbor. Another

reasoning is that, even under the assumption that the transmission range is high enough

in order to reach several vehicles on the street, due to the interferences, the highest SINR

(Signal-to-Noise plus Interference) ratio is the one experiences by the nearest neighbor.

The results provided are as following: the evaluation of matching generic upper and lower

bounds for the average broadcast time in a hyperfractal setup. Then, specific results in

extremes cases are provided. It will be shown that the performance is due in part to

an interesting self-similar phenomenon, denoted as information teleportation, that arises

as a consequence of the topology and allows an acceleration of the broadcast therefore

decreasing the broadcast time. We then provide the extension of the results when radio

range is considered.

Throughout the following analysis, without lack of generality, we only consider streets

which are busy streets as in Lemma 6.1.

6.3.1 Upper Bound

There are always interesting observations to be made on the hyperfractal model that lead

to simplification of reasoning and computation. These observation lead to an intuitive

computation of the bounds. For example, the following remark is a immediate consequence

of the construction process.

Remark: There are 2H streets of level H intersecting each of the streets forming the

central cross. Due to the canyon effect, the packet will not be able to jump from a street

to another street, but has to be propagated through intersections. This will be done when



Chapter 6.Application to Ad-Hoc Networks. Broadcast in Delay-Tolerant Networks 89

x

y

A

C

C

B

Figure 6.1: Direct route versus directed route

a node carrying the packet crosses the intersection. We denote by I(ni, nj) the average

time that a packet takes to jump from one street containing ni nodes to an intersecting

street containing nj nodes, assuming all nodes on the first street carry the packet. In fact,

it is sufficient to assume that the closest nodes towards the intersection carry the packet.

In the following, for sake of generality, we deal with the case where the nodes of interest,

x and y, are placed on perpendicular lines of respective depths, Ha and Hb. The location

of x denotes the location of the node on line of level Ha that initiates the broadcast. The

location of y denotes the location of a node on line Hb that will receive the packet. In

fact, due to the mobility of the nodes, one cannot fix from the start of the broadcast the

location of node y. Furthermore, as the time when the packet arrives from one route on a

specific location on the line Hb can differ from the case the packet comes from a different

route, we cannot choose the location of a node in a fix moment in time. Therefore, we

choose y to be the representation of a location of a node y on line Hb on the segment

[y0 − 1/λHb , y0 + 1/λHb ], where y0 denotes the position of a node on line Hb when the

broadcast was initiated by node x.

Definition 6.2. We define by Tn(x, y) the time necessary for a packet transmitted in a

broadcast initiated by node x to arrive at node y. We define by E[Tn(x, y)] the average

broadcast time between all fixed (x, y) pairs.

Definition 6.3. The direct route is the route that uses the streets that embed the nodes

x and respectively, y and contains the intersection between these two streets.

Definition 6.4. A diverted route between nodes x and y is a route that employs four

segments and three intersections.

As an example, in Figure 6.1, the direct route is drawn in continuous blue line and the

diverted route is drawn in dotted red line and dotted blue line.

We can now make the observation that placing the nodes x and y on parallel streets

of different depth would just lead to an extra term in the following developments, that
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would not be relevant as it would not change the order of size, as it would exist in both

scenarios,the direct street scenario and the diverted street scenario.

The following Lemmas give intuitive results that will be further used in the development

of the bounds.

Lemma 6.5. Assume that the street of level Ha holding node x contains na nodes, and

the street of level Hb holding node y contains nb nodes. Given a transmission hop time h,

the bound on the time Tn(x, y) in the direct route is:

Tn(x, y) ≤ hna + hnb + I(na, nb). (6.1)

Proof. To prove the formulae, let us look at the setup illustrated in Figure 6.1. In the

direct route case it is assumed that the packet hops from node x towards the intersection

with the street holding the node y (straight, blue line). The maximum number of hops

is na, thus it takes at most hna time units. The packet turns on the intersection in time

I(na, nb) and then proceeds towards node y in at most hnb time units.

Lemma 6.6. Consider the diverted route containing two additional streets of level Hc

and level Hd, respectively perpendicular to the street holding x, and perpendicular to the

street holding y, and containing respectively nc nodes and nd nodes. Assuming nc and nd

strictly positive, in the diverted route, the bound on Tn(x, y) becomes:

Tn(x, y) ≤ h(naL(Hc) + 1) + h(nbL(Hd) + 1)

+I(na, nc) + I(nb, nd) + I(nc, nd)

+hnc + hnd (6.2)

where L(Hi) is the distance from a node to the intersection with a street of level Hi.

Proof. Let us again look at the setup illustrated in Figure 6.1. It is assumed that, instead

of taking the direct route as expressed in inequality (6.1), the packet is diverted into the

street of level Hc, then to the street of level Hd before being delivered on the street of node

y (dashed, red line). The quantity h(naL(Hc)+1 and h(nbL(Hd)+1) is the time necessary

for the packet to propagate from x to the intersection with the street of level Hc through

hop-by-hop propagation, and similarly, the time necessary for the packet to propagate

from the intersection of the street of level Hd to node y. The average number of nodes

between x and the streets of level Hc is naL(Hc), due to the uniform node distribution

on the interval. Even in considering the node mobility and the time difference between

each hop, the mean remains the same since the distribution of nodes remains uniform on
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the interval. The additive term +1 in the final result comes from the fact that the closest

node moving towards the intersection may be located beyond the intersection.

The following lemma gives an estimate of the packet turn time at an intersection.

Lemma 6.7. In a hyperfractal map with n nodes, where all nodes move with constant

speed v, for all ni, nj ∈ N∗, the following inequality holds:

I(ni, nj) ≤
1

v(ni + nj)
. (6.3)

where I(ni, nj) is the packet turn time at the intersection between the streets holding ni

nodes, respectively nj nodes.

Proof. Let ∆ be the distance between an intersection and a node moving toward the

respective intersection. It is assumed, without loss of generality, that the packet originally

progresses on an East-West street and that the intersection stands at abscissa z ∈ [0, 1].

Let g > 0 be the distance toward the intersection of the closest node moving toward the

intersection. An upper bound on the probability that ∆ > g: ∆ is greater than g when

no node is either in the interval [z − g, z] and is not moving toward the right, or is in the

interval [z, z + g] and is moving toward the left. The probability of such event is upper

bounded by (1 − g)n, in fact it is exactly this expression when z ∈ [g, 1 − g], omitting

border effects.

The car at distance ∆ reaches the intersection in ∆
v time units. At this time the car

can transmit the packet to the closest car on the North-South street. Now, merging the

problem over the two streets together, the probability that the time for the packet to turn

to be larger than g/v is equal to the probability that no car on the East-West street and

on the North-South street reaches the intersection before g/v time units, which is upper

bounded by (1− g)ni(1− g)nj . Thus

vI(ni, nj) ≤
∫ 1

0
(1− g)ni+njdg =

1

ni + nj
.

The following technical result gives the probability that a street is busy and will be further

used in the development of the bounds.
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Lemma 6.8. In a hyperfractal with n nodes and dF > 2, the probability that a street

a level H(n), with nc mobile nodes on the street and H(n) = d log(n1−εp/2)
log(2/q) e is empty is

smaller than e−(q/2)nε .

Proof.

P (nc = 0) =
(
1− λH(n)

)n
< e−nλH(n) ≤ e−(q/2)nε

In order words, the probability that a street is empty is the probability that the procedure

of placing the n nodes has never selected the level H(n). As the nodes are placed on a level

following a Poisson distribution, we can use the exponential expressing and immediately

get the result.

The following theorem gives the upper bound on the broadcast time and proves that it

grows as n
1− 1

dF−1 , showing that the growth is sub-linear and only depends on the fractal

dimension.

Theorem 6.9. In a network with n mobile nodes placed in a hyperfractal setup with fractal

dimension dF > 2, transmission hop time h and constant speed of vehicles v, consider x

and y be two nodes on perpendicular streets. When n → ∞ the average broadcast time

satisfies:

• (i) in the direct route scenario

E[Tn(x, y)] ≤ hpn+
1

v
; (6.4)

• (ii) in the diverted route scenario, for all ε > 0

E[Tn(x, y)] ≤ 2hpn1−δ+ε
(

2
p

)δ
+ 4

qhn
ε/δ

+ 3
v +O(ne−(q/2)nε) (6.5)

where δ = 1
dF−1 .

Proof. As we look for the upper bound, the inequality in the direct case (eq.6.4) comes

straightforward as E[na + nb] < pn. The term 1
v is the upper bound of I(ni, nj) therefore

maximizing the sum. The diverted route scenario again follows Figure 6.1. Both nc and

nd are strictly positive with high probability. Indeed the probability that nc = 0 is e−nλc .

Let us take Hc = Hd = H(n) with H(n) = d log(n1−εp/2)
log(2/q) e as per Lemma 6.8, thus:
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log(n1−ε(p/2))

log(2/q)
− 1 ≤ H(n) ≤ log(n1−ε(p/2))

log(2/q)
+ 1.

We have both:

E[nc] = E[nd] ≤ nε
2

q
.

Meanwhile, let us take as diverted route the closest street of level H(n) from node x since

this street is busy with probability higher than e−(q/2)nε . In this case:

L(H(n)) ≤ 2−H(n) ≤ 2n−δ(1−ε)
(

2

p

)δ
.

Consequently:

p

2
n2−H(n) ≤ pn1−δ+δε

(
2

p

)δ
and the result is obtained by changing the value of ε in ε/δ.

The term O(ne−(q/2)nε/δ) comes from the case when either nc = 0 or nd = 0 which

arrives with probability e−(q/2)nε . In this case, we know that Tn(x, y) ≤ hpn+ 1
v thus the

contribution to E[Tn(x, y)] is O(ne−(q/2)nε).

Remark As ε becomes smaller, the convergence of eq. (6.5) is slower.

Remark The quantity δ is strictly less than 1 (δ < 1) and tends to 1 when dF → 2.

Remark In fact the term 3/v is far too high while its weight in the sum should not be of

high importance. Using Lemma 6.3, the term can be replaced by 2
vn + 1

vnε/δ
. Notice that

the optimal value of ε is of order log logn
logn which does not reach negligible values as long as

n� 1
hv and leads to the global estimate E[Tn(x, y)] = O(n1−δ logn).

Definition 6.10. The average broadcast time Tbroadcast is the average of all source-

destination pairs (x, y) of E[Tn(x, y)].

Corollary 6.11. When n→∞, the average broadcast time as the average over all sources

x satisfies:

Tbroadcast = O(n1−δ log n) (6.6)

Here, by all sources x we mean that we compute the broadcast time started by each source

and average over all sources.
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6.3.2 Lower Bound

The intuition behind the lower bound of the average broadcast time comes from the fact

that the highest weight in the broadcast time is taken by the time that the packet hops

on the main cross, where the density of mobile nodes is considerably higher than on the

following levels.

Theorem 6.12. Consider a network with n mobile nodes in a hyperfractal setup with

fractal dimension dF > 2, transmission hop time h, constant speed of vehicles v, δ = 1
dF−1

and Γ stands for Euler “Gamma” function. The average broadcast time satisfies:

Tbroadcast ≥
p3

2
hn1−δ log(2/q)

−Γ(−δ)
(6.7)

Proof. The broadcast time verifies:

Tbroadcast =
1

n2

∑
(x,y)

E[Tn(x, y)] (6.8)

when (x, y) are all the possible pairs of two nodes in the hyperfractal.

We denote by H the set of nodes on the horizontal segment belonging to the central cross

and V the set of nodes on the vertical segment of the central cross.

As we compute the sum only over the terms on the central cross,

Tbroadcast ≥
1

n2

∑
x∈H
y∈V

E[Tn(x, y)] +
∑
x∈V
y∈H

E[Tn(x, y)]

 (6.9)

as the number of the terms in the sum in (6.9) is lower than the total number of terms in

the sum in (6.8).

Since the packet must leave the street of node x, it must at least run on a distance L(x)

which is the average distance from node x to the closest busy perpendicular street. The

same holds for reaching node y. In other words, the following inequality holds:

E[Tn(x, y)] > hpn E[L(x)].

Assume that the node x is on the East-West segment of the central cross. The average

distance to the closest North-South busy street is larger than 1
2NSn

, where NSn is the

random variable expressing the number of busy North-South streets in presence of n
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mobile nodes. Therefore, E[L(x)] ≥ E[ 1
2NSn

]. The lowest value would be obtained if the

busy North-South streets were equally spaced.

By Lemma 6.1, one has E[NSn] = 1
2Bn. Furthermore E

[
1

NSn

]
≥ 1

E[NSn] by convexity of

the hyperbolic function. Thus by referring to Lemma 6.1:

E[Tn(x, y)] >
hpn

Bn
= hpn

log(2/q)

−Γ(−δ)
.

Using the fact that E[|H||V|] = (n− 1)np2/4 terminates the proof.

Notice that, for practical computations, there is not a need for a an exact expression of

the number of busy streets. The value of E[L(x)] can be simply determined as 1/number

of levels in the map.

Corollary 6.13. The average broadcast time when n→∞ satisfies:

Tbroadcast = Ω(n1−δ) (6.10)

Remark: When n = 2, following expression (6.4), Tbroadcast < h + 1
v . Furthermore,

the same holds for the cases when all nodes are on the same street or move on two

perpendicular streets.

Combining Corollary 6.11 and the lower bound of Theorem 6.12, one obtains the matching

result:

Corollary 6.14. The average broadcast time when n→∞ satisfies:

lim
n→∞

log Tbroadcast
log n

= 1− δ (6.11)

6.3.3 Asymptotic to Poisson Uniform

This assymptotic case is studied for scientific interested. We do not believe, however, that

a network of vehicles, can, at any time, be modeled as uniform Poisson Point Process,

yet, as it is the major model used by the stochastic geometry community when dealing

with wireless networks, we hereby observe the following.

As previously mentioned, the asymptotic case when δ = 1 gives a Poisson uniform case.

This scenario works as following: the mobile nodes are placed randomly on the plane

move on predefined motion directions (either North-South or South-North, either East-

West or West-Est). Every node is alone on its road, the only occasion when a car can
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communicate is when another car crosses its road. A single node moving on a East-West

street sees and transmits a packet towards all the North-South moving nodes crossing its

street in O( 1
v +h) time. Furthermore, one of these nodes moving on a North-South street

transmits the packet to all East-West moving nodes also in O( 1
v + h) time, thus the total

broadcast time is:

Tbroadcast = O(
1

v
+ h) (6.12)

which is equivalent into letting δ = 1 in the general formula.

6.3.4 Extension with Limited Radio Range

When a car correctly receives the packet, it transfers it to all the cars that are within its

radio range. Up until this moment, throughout this work, we have used the hypothesis of

unlimited radio range. In this section we will investigate the more realistic hypothesis of

limited radio range.

In the following, the radio range is dependent of the number of mobile nodes in the city

map, Rn = 1√
n

. The reason is the following. The population of a city (in most of the

cases) is proportional to the area of the city and the population of cars is proportional to

the population of the city, therefore the population of cars is proportional to the area of

the city, Area = A · n where A is a constant. A natural assumption is that the absolute

radio range, R, is constant. But since we assume in our model that the city map is always

a unit square, the relative radio range in the unit square must be Rn = R√
An

which we

simplify in Rn = 1√
n

.

As the radio range is fixed and the average distance between nodes increases with the

increase of the depth, some nodes will become unreachable. Therefore, the condition for a

a piece of information to be broadcasted on a street is that the average distance between

nodes is not higher than the radio range.

The following Lemma is an adaption of Lemma 6.8 and gives the maximum depth of

the level on which the average distance between nodes allows for the propagation of the

packet.

Lemma 6.15. In a hyperfractal with n nodes and dF > 2, the probability that a street a

level H(n) with H(n) = d log(n1/2−εp/2)
log(2/q) e has at least one inter-node gap higher than Rn is

ne−(q/2)nε .

Proof. The probability that a car is not followed by another car within distance Rn is

equal to (1−RnλH(n))
n which is smaller than e−n

1/2λH(n) . Given nc, the probability that
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there exists such a node (the car within distance Rn of the car holding the packet) is

smaller than nce
−
√
nλH(n) . With nc ≤ n the lemma is proved.

Similarly, Lemma 6.1 becomes:

Lemma 6.16. The average number of busy streets where there is no inter-node gap higher

than Rn is asymptotically equivalent to nδ/2 −Γ(−δ)
log(2/q) with δ = log 2

log(2/q) where Γ stands for

Euler “Gamma” function.

The proof follows the proof of Lemma 6.1, by adding the factor Rn to λH . As it adds no

extra scientific contribution to the proof of Lemma 6.1, the proof will not be detailed.

In this case, the upper bound rewrites as follows.

Theorem 6.17. Consider a network with n mobile nodes in a hyperfractal setup with

fractal dimension dF > 2, transmission hop time h and constant speed of vehicles v. Let

x and y be two nodes on perpendicular streets. When n → ∞, for a transmission radio

range of R = 1√
n

, the average broadcast time satisfies:

• (i) in the direct route scenario

E[Tn(x, y)] ≤ hpn+
1

v
;

• (ii) in the diverted route scenario, for all ε > 0

E[Tn(x, y)] ≤ 2hpn1/2−δ+ε
(

2
p

)δ
+ 4

qhn
ε/δ

+ 3
v +O(ne−(q/2)nε)

where δ = 1
dF−1 .

Following the same reasoning, the lower bound becomes:

Theorem 6.18. Consider a network with n mobile nodes in a hyperfractal setup with

fractal dimension dF > 2, transmission hop time h, constant speed of vehicles v, δ = 1
dF−1

and where Γ stands for Euler “Gamma” function. For a transmission radio range of

R = 1√
n

, the average broadcast time satisfies:

Tbroadcast ≥
p3

2
hn1−δ/2 log(2/q)

−Γ(−δ)
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The proof follows the same steps as the proof of Theorem 6.12, using the result of Lemma

6.16 instead of Lemma 6.1.

Notice that, for the limited radio range bounds, we no longer have the equivalent the

unifying Corollary 6.14, as the exponent of n in the upper bound is 1/2− δ while in the

lower bound the exponent is 1− δ/2.

However, in the simulations section, we shall prove that the bounds obtained for unlimited

radio range scenario hold even when simulating the complete IEEE 802.11p protocol stack

and under realistic transmission conditions.

6.3.5 Information Teleportation

As Theorem 6.9 shows, in a hyperfractal, the broadcasted packet can follow either a direct

route or a diverted route. The diverted route case leads to the existence of new conta-

gions on the lines of level Hc and Hd. This is what we call “information teleportation”

phenomenon as the new contagions are not due to a source on lines Hc or Hd spreading

its packet in a hop by hop manner but is due to routing the packets through intersections.

The phenomenon will be visually illustrated by experiments in Section 5.5.

The teleportation phenomenon allows an acceleration of the broadcast time. Note that the

acceleration itself is a self-similar phenomenon and takes places recursively: propagation

on level Hi is accelerated by teleportation coming from lines Hi+1, Hi+2, Hi+3 and so

on. In a hyperfractal with teleportation effect, the broadcast time evolves as O(n1−δ)

according to Corollary 6.11.

To consider a network with the absence of teleportation is to consider the direct route case

in Theorem 6.9. In such a network, the broadcast time scales linearly with the number

of hops, O(nh). The two regimes are illustrated in Figure 6.2a. The teleportation phe-

nomenon arises after the linear characteristic overtakes the one for O(n1−δ). Therefore,

the inflexion point where teleportation arises verifies nh = An1−δ, where A is a constant.

As the propagation on each of the lines depends on the speed of the nodes, fractal dimen-

sion and so on, the inflexion point will appear at a different moment in each scenario, and

will be the turning point when the propagation delay on the direct route becomes higher

than the propagation delay on the direct route.

But this gives an insight only on the delay in propagating on the direct route versus

the delay on propagating on the diverted route. However, we say that the teleportation

effect speeds up the broadcast in the whole network. Let us look at an intuitive example
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Figure 6.2: (A) Broadcast time evolution in hyperfractal vs linear regime: inflexion
point. (B) Contagion propagation speed on the line of level 0.

of situation when the broadcast is accelerated due to information teleportation. In a

hyperfractal setup, let us consider an infected source on a line of level H = 0. In each

time slot h, two more nodes get infected and become themselves sources. In the absence

of teleportation, therefore, the number of infected points increases linearly with the hop

time. In the presence of intersections with lines of levels Hi > 0, new “outbreaks of

infection” arise at time stamps of 1
vn(λ0+λHi )

.

Figure 6.2b shows graphically the evolution. This is an upper bound as not all the

teleportation contagions generate a speed up; the nodes can be infected from neighboring

contagions by simple hop by hop propagations. The teleportation phenomenon will be

further debated in the Simulations Section, 5.5, where we will share our experiments and

observations over the teleportation phenomenon.

6.4 Simulations in a System Level Simulator

6.4.1 QualNet Network Simulator Configuration

In order to evaluate the accuracy of our theoretical findings, we have performed simu-

lations in QualNet Developer 6.1 [136], a commercial network simulator. QualNet is a

system level simulator capable to mimic the performance of real networks. The avail-

able libraries implementing the standard specifications for different wireless and wired

technologies provide the necessary tools for the simulation of complex communications



Chapter 6.Application to Ad-Hoc Networks. Broadcast in Delay-Tolerant Networks 100

Parameter Setting

Modulation and coding scheme 802.11 PHY specific MCS

Operating frequency 2.4GHz

Data rate 6Mbps

Transmission power 20dBm

Receiver sensitivity -85dBm

Antenna type Omnidirectional

MAC Protocol 802.11 MAC

Medium Access Technique CSMA/CA

Association mode Ad-hoc

Street length 1 Km

Environment type urban

Application type Constant Bit Rate (CBR)

Hop duration time (h) 60 ms

Table 6.1: PHY, MAC, application and environment parameters configuration in Qual-
Net

networks. The simulator allows the design and configuration of protocols, network to-

pologies, propagation environment and traffic applications and provides valuable insights

regarding the behavior and performance of the simulated scenario.

For the evaluation of the theoretical quantities derived for the urban vehicular networks,

the simulations follow IEEE 802.11p, the approved amendment to the IEEE 802.11 stand-

ard for wireless access in vehicular environments (WAVE), a vehicular communication

system [137]. A custom configuration of the physical (PHY) and medium access con-

trol layer (MAC) layers allows the modeling of wireless networks implementing the IEEE

802.11p. Table 1 presents the main PHY, MAC and propagation parameters configured

for the simulated scenarios.

6.4.2 Urban Vehicular Environment Modeling and Scenario Description

An important step in the simulation is the design of the city map. As per the procedure

described in Chapter 4, we can use the fractal dimension (computed from the input the

average daily traffic flow measurement) to generate an equivalent simulated map of the city

maps. The urban environment is replicated by means of a 3D map of a grid street plan,

modeled using a three-level fractal geometry. We generate three levels in the hierarchy of

streets (boulevards, streets, alleys) to set the urban street grid as illustrated in Figure 6.3.

As the buildings generate the canyon effect, the streets behave like a wave guide which

is directly represented by the pathloss model set (urban model) and the propagation
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Figure 6.3: 3-D city map modeling in QualNet

environment (metropolitan). The width of the street decreases as the hyperfractal level

increases, similarly to real cities, e.g., boulevards are wider than streets, which are, in

turn, wider than alleys. For the first level the street width is approximately 60 meters,

30 meters for the second level, and 15 meters for the third level.

The simulation scenarios are created using the IEEE 802.11 library, integrating a variable

number of nodes generated with a hyperfractal distribution, connected in a wireless ad-hoc

network deployed in an urban environment (see Figure 6.4). In release 6.1, QualNet does

not offer broadcast capabilities. In order to simulate a single-hop broadcast protocol (i.e.

the information carried by one vehicle is transmitted to the other vehicles in its one-hop

vicinity during the next broadcasting cycle), static hop-by-hop routing was configured in

QualNet, ensuring that packets are forwarded from one node to the one in the immediate

vicinity. This allows to observe the propagation of the packet along the direct route versus

diverted route, as studied in Section 6.3.

We first validate the bounds claimed by Theorems 6.9 and 6.12 by observing the time

necessary for a packet to propagate from one fixed source S to a fixed area of location,

by selecting a destination node D. As such, there are two considered end-to-end paths

between the source node S and the destination node D: the direct route (in Figure 6.4 in

red) which follows the first-level streets (with a higher density of nodes), and an diverted

route (in Figure 6.4 in green) which uses and third-level streets (less populated).

An important part of the end-to-end delay is the time spent in routing the packet through

the intersection. As QualNet does not support delay-tolerant features, the routing through

intersections is emulated by a temporary lack of available nodes in each intersection on

the end-to-end paths in the evaluated scenarios. As such, additional nodes were added

in intersection and were temporarily deactivated during the simulation. The crossed-out

circles in Figure 6.4 emphasize the intersections where the nodes are deactivated and the

additional queuing delays occur. The deactivation time (and implicitly the queuing delay)

depends on the density of nodes on the streets and on their traveling speed.
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Figure 6.4: Direct (green) versus diverted (red) path between source and destination,
dF = 3, n = 200

6.4.3 Validation of Upper and Lower Bounds: Constant Speed

Several batches of simulations were run for three values of fractal dimension: dF = 2.5,

dF = 3, and dF = 3.75 with the number of nodes n ranging from n = 200 up to n = 800

nodes. The end-to-end delay on the considered paths is evaluated by using a Constant

Bit Rate (CBR) application generating 100 packets of 512 bytes at every 5 seconds.

The formulations used for the upper bounds are the expression in equation (6.4) for

the direct route and (6.5) for the diverted route respectively. For the lower bound the

formulation used for validation through simulations is the closed expression T > hnL(x).

Figures ?? (A), (B), (C) validate Theorems 6.9 and 6.12 on the expression of the average

broadcast time for the direct path. The speed of the mobile nodes has been set to 40

kmph, as the typical legal speed limit in many cities. The upper bound is depicted in

dash black, the lower bound in dash blue and the simulation results in continuous red

line.

Figures ?? (D), (E), (F) validate Theorems 6.9 and 6.12 on the expression of the average

broadcast time for the diverted path. Again, the speed of the mobile nodes has been set

to the constant value of 40 kmph.

6.4.4 Validation of Bounds Under Speed Variation

The theoretical results are developed under the assumption of constant speed throughout

the whole network map, yet research has shown [62] that the speed is highly influenced by
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(a) direct route, dF = 2.5
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(b) direct route, dF = 3
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(c) direct route, dF = 3.75

200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

45

50

n

d
el

ay
 (

m
s)

 

 

diverted route
upper bound in diverted route
lower bound in diverted route

(d) diverted route, dF = 2.5
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(e) diverted route, dF = 3
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(f) diverted route, dF = 3.75

Figure 6.5: Validation of bounds for direct route, constant speed, (A), (B), (C). Valid-
ation of bounds for diverted route, constant speed, (D), (E), (F)
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the environment geometry. The following experiments show that the bounds introduced

in Section 6.3 hold for the more realistic scenario of variable values of speed.

The first analysis looks at the case where the speed of the nodes is proportional to the

level, i.e., v ∝ H. This models the scenario where the speed is lower on crowded streets,

due to congestion, and increases with the decrease of density of nodes. Namely, the nodes

on a level Hi have the same speed vi ∝ Hi. For each simulation scenario, the following

vehicular mobility scenario is considered: the vehicles move with 20 kmph on the level 0

streets, 40 kmph on level 1 and 60 kmph on level 2, therefore the speed on the red route

is 20 kmph and on the green route 60 kmph. Figure 6.6 validates the bounds, showing

that our results extend to variable speed cases.
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Figure 6.6: Validation of bounds for v increasing with level: a) dF = 3, direct route,
b) dF = 3, diverted route, c) dF = 3.75, direct route, d) dF = 3.75, diverted route

The second analysis looks at the case where the speed is proportional to the inverse of the

level, v = 1
H . This models the scenario where streets with a high level of importance in

the city offer greater speed, like highways, but decreases with the street importance, for

example, alleys. For each simulation scenario, the following vehicular mobility scenario

is considered: the vehicles move with 60 kmph on the level 0 streets, 40 kmph on level

1 and 20 kmph on level 2, therefore the speed on the red route is 60 kmph and on the
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green route 20 kmph. Figure 6.7 validates our bounds for this scenarios of variable speed

as well. All the plots have been done for ε = 0.1.
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Figure 6.7: Validation of bounds for v decreasing with level: a) dF = 3, direct route,
b) dF = 3, diverted route, c) dF = 3.75, direct route, d) dF = 3.75, diverted route

6.5 Simulations in a Self-Developped Discrete Time Event-

Based Simulator

As QualNet does not allow simulating a full epidemic broadcast, we developed a discrete

time event-driven simulator in Matlab which follows the model presented in Section 6.2

in order to observe specific phenomenons that arrive when broadcasting a packet in a

hyperfractal.

The map length is the unit and a scaling is performed in order to respect the scaling of

real cities as well as communication and motion parameters. In that sense, it is considered

that the unit represents 10 kms of distance in a real scale. Respecting this scaling, the

value of speed in the simulations is v = 10−3. The hop duration is chosen as = 1ms.

Throughout the simulations, the depth of the hyperfractal are restricted to H = 5.
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(a) One of the initial stages
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(b) Intermediate stage
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(c) Teleportation phenomenon
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(d) One of the final stages

Figure 6.8: Snapshots of information dissemination in a Hyperfractal, healthy nodes
in red ‘*’, infected nodes in black ‘o’

6.5.1 Information Spread Under Hyperfractal Model and Teleportation

Phenomenon

We first study information propagation in a full idealized epidemic broadcast with its

specific phenomena. In a two dimensional uniform Poisson point process, the information

packet spreads uniformly as a full disk that grows at a constant rate, which coincides with

the information propagation speed, as shown in [37].

Interestingly, in a hyperfractal, the phenomenon is completely different, as a consequence

of the canyon effect and the population distribution specific to the new model.

The simulations are performed using the following scenario: a source starts an epidemic

broadcast of an information packet at time t = 0 in a network of 1,200 nodes in a 1x1

unit square, mobile node speed v = 10−3, packet transmission time, also called hop time

is h = 10−3. The population of 1,200 nodes is distributed in the map according to a

hyperfractal of dimension dF = 5.33.

Figure 6.8 shows different stages in the information propagation starting from a random

chosen source until the complete contamination of the nodes.
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As one can notice, the information propagation is highly influenced by geometry of the

network and does not happen in a uniform way, but it strongly influenced by the distri-

bution of the population and the constraints imposed by the environment (canyon effect,

intersections).

Let us now illustrate the propagation phenomenon that arises as a consequence of the

hyperfractal distribution of nodes and the broadcast algorithm. Figure 6.8c shows “the

teleportation phenomenon” in a network of n = 1, 200 nodes with dF = 5.33. Two

contagions of infected nodes on the lines of level 0 are highlighted. These areas are not

connected to the main infected area on the line on which they originate, the line of level

H = 0. The nodes on these areas are infected by receiving the packet from nodes traveling

on perpendicular lines. This generates several areas of contagion. On this line, the packet

is spread from all of the contamination sources that have arisen and thus the broadcast is

sped up. This is a phenomenon that uniquely characterizes the broadcast in hyperfractal

setups.

6.5.2 Validation of Upper and Lower Bounds on the Average Broadcast

Time in the Entire Network

In the previous section, using the simulations done in QualNet, we validated the bounds

for the broadcast time in the direct route and in the indirect route. Now, the developed

simulator, we can validate the bounds for the average broadcast time for a complete

contamination of the network. The self-developed simulator allows for choosing larger

values of n.

The experiments are run for numerous values of n starting with n = 300 and then from

n = 500 up to 5, 000 nodes with a step of 500 and dF = 3and dF = 5.33, thus p = 0.5,

and 0.9 respectively.

The formulation used for the upper bound is the expression in equation (6.2), while for

the lower bound the formulation used for validation through simulations is the closed

expression T > hnL(x) with L(x) = 1
Bn

and Bn =
nδΓ(δ)( p2 )

δ

log(2/q) .

Figure 6.9a validates Theorems 6.5 and 6.12 on the expression of the average broadcast

time.

Notice that the lower bound follows with a good approximation the simulation results.

Each of the cases shows that the broadcast time increases with the decrease of the number

of points, a phenomenon which is captured successfully by the upper bound. The upper
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Figure 6.9: Broadcast time: simulation vs. theoretical results for (a) dF = 3, (b)
dF = 3.33, (c) dF = 3.75, (d) dF = 5.33

bound increases with a higher slope for big fractal dimension (see Figure 6.9d), converging

towards the asymptotic bound of O(n1−δ log n).

6.5.3 Validation of Bounds on Average Broadcast Time Under Speed

Variation

Again, we shall prove that the bounds developed under the constant speed assumption

hold when the speed varies with the level.

The first analysis looks at the case where the speed of the nodes is proportional to the

level, v ∝ H, the nodes on a level Hi have the same speed vi ∝ Hi.

The values of speed are chosen such as to represent, in real-setup, v = 36 kmph for H = 0,

v = 40 kpmh for H = 1, v = 50 kmph for H = 2, v = 60 kmph for H = 3 and v = 70

kmph for H = 4. Results obtained in two setups with different fractal dimension are

displayed in Figure 6.10 and validate both upper and lower bound on the broadcast time.

The second analysis looks at the case where the speed is proportional to the inverse of the

level, v = 1
H . For this case, the values of speed are chosen to correspond to real-setup
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(a) vH ∝ λH , dF = 3

0 1000 2000 3000 4000 5000
0

5

10

15

20

n

br
oa

dc
as

t t
im

e

 

 

upper bound
simulations
lower bound

(b) vH ∝ λH , dF = 5, 3

Figure 6.10: Speed proportional to the level
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Figure 6.11: Speed inversely proportional to the level

values of: v = 36 kmph for H = 4, v = 40 kpmh for H = 3, v = 50 kmph for H = 2,

v = 60 kmph for H = 1 and v = 70 kmph for H = 0.

Results obtained in two setups with different fractal dimensions are displayed in Figure

6.11 and validate both upper and lower bound on the broadcast time.

The figures might give the impression that the simulated average broadcast time char-

acteristic is increasing in n. Let us remind that the simulations are restricted to H = 5

levels, which eliminates a substantial number of nodes.

6.6 Concluding Remarks

In this chapter, we addressed another application specific to ad-hoc networks, information

dissemination, under the hyperfractal model. This study provided an extended character-

ization of the information propagation speed of of vehicular delay tolerant mobile networks
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in urban scenario by exploiting the hyperfractal model nodes for the topology of the net-

work and mobile vehicle locations. We have provided theoretical matching upper and

lower bounds for such networks. These theoretical bounds are useful in order to increase

our understanding of the fundamental properties and performance limits of vehicular net-

works in urban environments, as well as to evaluate and optimize the performance of

specific routing algorithms.

Furthermore, we have shown an information propagation phenomenon specific to a hyper-

fractal setup: the information teleportation phenomenon, that allows for the acceleration

of the broadcast.

The findings have been validated by extensive simulations performed in a self-developed

simulator as well as simulations performed in a commercial network simulator. This has

shown that the results remain valid for a full-stack implementation of devices and under

realistic propagation phenomenons.

This study was a proof that the hyperfractal model for nodes is suited for the analysis of

the delay-tolerant networks in urban environment.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis proposed a novel model for the representation of the density of devices commu-

nicating in urban environment like networks of cars and IoT devices by merging stochastic

geometry with self-similarity. We have shown how the model can be handled in order to

compute metrics of interest in wireless networks and improve the performance. More

specific, the contributions of this work are as follows.

A new model called “hyperfractal” has been proposed and introduced. The model exists

in two options: for representing the decaying density of nodes with the increase of length

of the streets and for representing the placement of road-side infrastructure by using the

same observation, the decrease of mobile nodes density with the length of streets.

The model has been defined, described and basic properties such as connectivity were

studied. Some typical tools such as the Campbell-Mecke formula have been developed

that allow the manipulation of the model withing classic stochastic geometry framework.

For the hyperfractal model for nodes on lines, the authors have developed a procedure of

computing the fractal dimension of cities and areas, as a key feature of a hyperfractal,

when public traces are available. Furthermore, this procedure comprises several criteria

for validation that allow an increased flexibility in the application of the model to traces.

This procedure has been showcased during Nokia 5G Campus event.

The ease of use and capabilities of the hyperfractal model have been showcased by the

study of two wireless communication scenarios. One of the applications advocated for the

use of the model when using millimeter wave technology. In this first study, we showed

111
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how metrics like end-to-end transmission energy and routing delay can be evaluated with

by exploiting a hyperfractal setup. Some considerations on capacity and load balancing

were also provided. In the second application, the focus was on a infrastructure-less com-

munication scenario. More precisely, we evaluated the broadcast time in a network of cars.

During this study, we discovered the “teleportation” phenomenon that is a characteristic

of the hyperfractal setup and that allows for a speed-up of the network contamination.

7.2 Future Work

The hyperfractal model is very promising therefore possible directions of further work are

vast. Some of the directions can be the following.

There is a necessity for a procedure of validation with traces of the hyperfractal model

with relays. Up until now, the lack of publicly available data has made this difficult. The

procedure should be similar to the procedure of validation of the model for mobile nodes,

several criteria should be provided.

Hyperfractals can be a good fit for millimeter wave urban communications modeling,

as the propagation model fits well the limitations experienced in millimeter frequency

bands. In this direction, we believe a research subject could be evaluating the load and

performances achievable when using millimeter wave based infrastructure. The model can

also be extended to a three dimensional embedding space for the study of communications

in networks of drones deploying millimeter wave technology or beam-forming if operating

in LTE frequency bands.

An idea that the authors would have liked to explore is the iterated hybrid hyperfractals.

We call them “hybrid” as the idea is to choose a different p for each of the quadrants or, a

different option would be to choose a different p for each level, preserving the stationarity

in depth but not the self-similarity. Other iterated options can be imagined, yet the focus

should be on models that help us imitate even more the reality and capture the features

of the desired communication scenario.

The exploration of equivalent stochastic geometric models, like Poisson points on Poisson

line tessellations that would inherit the property of self-similarity and the laws of scaling

has generated stimulating ideas, one of which lead to the concept of percolation in depth.
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7.2.1 Generalization of the Model for Nodes

In their extensive work, the authors of [138] have shown that telecommunications networks

follow road networks and these can be fitted successfully to Poisson line tesselations, Pois-

son Voronoi tessellations and Poisson Delauney tessellations. Furthermore, the authors

have provided methods for computing the intensity of the underlying point process of each

of these tessellations.

For future work, we envisage the generalization of the support to Poisson line tessellations,

the generalization of process Φ to a process of Poisson points on Poisson lines and the

generalization of processes Φr and Ξ to processes obtained in the intersections of the

generalization of process X . This will lead to the creation of models that should relax

the constraints of the hyperfractal models, in particular, the constraints on splitting the

structure in quadrants and the extension constraint generated by the limited window.

The generalized models should preserve the scaling of length of the support with the level

and the scaling of the density of points (either on lines, either on intersections of lines)

with the level specific to the hyperfractal models.

In contrast to the hyperfractal models, the equivalent generalized models will be stationary

and isotropic, which are good properties that will further simplify the manipulation of the

models. This opens the path for the development of further results that will combine the

benefits of the good properties of the generalized models as well as the laws of scaling of

the hyperfractal models. On the other hand, the generalized models will no longer display

the self-similarity by splitting in quadrants nor their intensity measure is expected to be

fractal.

The procedure of computation of the fractal dimension of traffic density maps of cities

presented earlier in this manuscript relies solely on these laws of scaling with the depth.

A further extension of this procedure is by taking in account the statistics of intersections

of the structure of level i with the support structure of level i−1. This again, is a feature

that is expected to be preserved in the generalized model.

Let us now give several ideas about these further developments.

7.2.2 Generalization to Poisson Points on Poisson Lines

It is natural that a first generalization to be done is by finding the equivalent model in

terms of Poisson points on Poisson lines. Observe that the hyperfractal has the following

growth of length. Define by l0 the length of the support X0 at level 0. At level 1, the
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length of X0 is l1 = 2l0, then l2 = 4l0, . . . ln = 2nl0. Therefore at a level n, the mean

length is ln = Cnl0 with C > 1. The density per level has a growth as λn = p(1−p)nλ
Cnl0

.

Given these observations, the procedure of obtaining the process of Poisson points on

Poisson lines equivalent to a hyperfractal has the following steps:

i) Build the line process in order to respect the same mean length per unit window;

ii) Assign the Poisson points in order to keep the same density per level.

We denote by Ξ∗ the support structure made of Poisson lines, at each level, Ξ∗ has the

density λΞ∗
h . Denote by Ω the obtained process of Poisson points on Poisson lines.

By its constriction, the process is stationary, isotropic, uniform. The location of the

typical point ω0 is found by choosing the level of the Poisson tessellation with a geometric

random variable and adding the line in the origin. With uniform probability p, a point

is place in the origin. The Laplace transform of interference for Poisson line process has

been studied in [139] and can be extended for the obtained process. In which regards the

Campbell-Mecke formula, we remind that this equivalent process is stationary, therefore

one can make use of the Campbell-Mecke formula for stationary point processes as follows:

E

∑
ωi∈Ω

f(ωi, φ)

 = ΛE
[
f(ω0,Ω ∪ {ω0})

]

The complete development of the generalization remains for future work.

7.2.3 Generalization to Poisson Voronoi Tessellations

The generalization to Poisson Voronoi tessellations can be done either as a generalization

to iterated Poisson Voronoi tessellations, or as generalization to independent Poisson

Voronoi tessellations. In both cases, the algorithm for obtaining the equivalent tesselation

is a finite window is as follows:

i) Given p, find the density υh at each level of the Poisson point process of the equivalent

Voronoi tessellation;

ii) Built the tessellations at each depth in order to respect the mean length of lines in the

window;

iii) Assign Poisson points to the lines while keeping the same density of population within

level.
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Let us further give some hints for the generalization to independent Poisson Voronoi

tessellations. We denote by Ξ∗∗ the support structure made of Voronoi cells, at each level,

Ξ∗∗ is generated by an underlying Poisson point process with density vh = 2h. Denote

by Ω∗∗ the obtained process of Poisson points on Poisson lines. The point process on

the support has the intensity λΩ∗∗
h = p(1 − p)h and on each of the lines the density is

p(1− p)h/2h .

Again here, the obtained process, by its constriction, is stationary, isotropic, uniform.

7.2.4 In-Depth Percolation for a Finite Window

While trying to imagine the extension of the hyperfractal model to the equivalent models,

the following questions came to our mind: if we limit the window of analysis, for the

growth of λ (number of Poisson points) and ρ, how does the giant component scale?

What about if we allow for a logarithmic growth of the window?

When laying in a limited window, for n→∞, there will exist a finite number of lines in

a layer and we will always be able to find a level sufficiently deep such that there is a line

that connects to the lines of the first level. Secondly, when n→∞, there is a increasing

probability that there is a line that holds a point and has a relay at the intersection with

the lines of the firs level.

This concept of connectivity in this finite window of analysis but with a depth going to

infinity, we call it as “percolation in depth”. The questions look rather interesting, in

particular for the stochastic geometry community.



Appendix A

Proofs

Proof of Lemma 6.1

Lemma A.1. The average number of busy streets is asymptotically equivalent to nδ Γ(−δ)
log(2/q)

with δ = log 2
log(2/q) and where Γ(.) is the Euler “Gamma” function.

Proof of Lemma 6.1. Let us denote by Bn be the average number of busy streets. The

probability that a street of level H is busy is 1− (1− λH)n. Therefore

Bn = 2
∑
H≥0

2H(1− (1− λH)n).

We introduce the Poisson generating function B(z) =
∑

nBn
zn

n! e
−z. It is named after

Poisson as it is equivalent into considering that the number of nodes n is random and

follows a Poisson law of parameter z. The reason behind introducing this function is that

it facilitates the manipulation and the asymptotics of its coefficient is given by the general

depoissonization theorems [140]. One has:

B(z) = 2
∑
H

2H(1− e−λHz).

The Mellin transform B∗(s) =
∫∞

0 B(z)zs−1dz = 2 (p/2)−s

1−2(q/2)−sΓ(s) is defined for −1 <

<(s) < 0 and has simple poles at s = −δ + 2ikπ
log(q/2) with k ∈ Z. Applying the results of
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[140] the estimate Bn = O(nδ) is obtained. More precisely for all M > 0

Bn =
nδ

log(2/q)

∑
k∈Z

n2ikπ/ log(2/q)Γ(−δ + 2ikπ/ log(2/q))

+(n−M )

=
nδ

log(2/q)
(Γ(−δ) +O (Γ(−δ + 2ikπ/ log(2/q)))

The main asymptotic term is Bn = nδ Γ(−δ)
log(2/q) the other contributions are negligible due

to the exponential decrease of function Gamma on the imaginary axis.
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