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Introduction

The dark matter problem is an important open question in modern-day physics.
Originally, it arose as the problem of the missing mass on the scale of galaxies
and clusters of galaxies. This topic, born as an astrophysical one, encompasses
nowadays many other domains, for instances particle physics, cosmology and the
physics of detectors. Among many possible solutions to this problem that have
been proposed, Weakly Interacting Massive Particles (WIMPs) are among the most
promising and well studied objects.

WIMPs are particularly appealing also because of the possibilities of detecting
such particles, which make them an experimentally testable class of candidates.
One of the main strategies to look for them is dark matter direct detection, which
aims at detecting WIMPs via their scattering off the nuclei in a detector. This
thesis focuses on WIMP dark matter, and in particular on the direct detection of
WIMPs.

Astrophysical quantities play an important role in direct detection, because
they enter in the computation of direct detection limits from experimental results.
Among these quantities, we have the escape speed from the Milky Way, the circular
speed at the location of the Sun and the local dark matter density.

Often a standard set of assumptions for the astrophysics involved in dark
matter direct detection is used, the Standard Halo Model (SHM), where a Maxwell-
Boltzmann speed distribution is assumed for the dark matter. Anyway, the Maxwell-
Boltzmann is an approximation, and the astrophysical quantities fixed at standard
values by the SHM are determined from observations which relie on assumptions
that is important to take into account.

These quantities are intimately related, and these relations become evident
when a mass model for the Milky Way is considered. Under assumptions on the
symmetry of the Galactic gravitational potential and on the distribution of the
velocities of the dark matter particles, we can relate to such a mass model also the
phase-space distribution of the dark matter, which influences the interpretation of
the experimental results in direct detection. Moreover, the determinations of the
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Introduction

above astrophysical quantities from observations are affected by uncertainties, which
translate on the direct detection limits. In the present-day scenario, understanding
these uncertainties would be useful in the case of a discovery in correctly reconstruct
the properties of the detected dark matter candidate.

In this work, we review the formalism of dark matter direct detection, putting
particular emphasis on the astrophysics that enters therein. We thus otuline the
main experimental facts that should be taken into account, explaining some of the
statistical methods usually employed to interpret the data, and we describe some
of the main experiments carried out in this domain. We then outline the main
concepts of the dynamics of our galaxy that allow to put the astrophysics related
to direct detection in a wider framework.

In the main part of this thesis, we focus on the recent estimates of the local
Galactic escape speed, published by the RAVE collaboration in 2014. We have
studied in detail which are the implications of these results for dark matter direct
detection, in particular focusing on the exclusion curves of the most constraining
and representative experimental results at the moment of writing. We have seen how
these estimates impact on the direct detection limits, and how the assumed mass
model for the Milky Way induces correlations between the astrophysical quantities
relevant for dark matter direct detection, that we have taken into account.

In order to make the picture more general, we finally attempt to review the
main estimates present in the literature for the astrophysical quantities relevant
for direct detection, pointing out the main results and assumptions.

Let us briefly summarize how this work is structured.

Chapter 1: Dark matter direct detection: formalism and general aspects.
In this chapter we explain the principles of dark matter direct detection, reviewing
the basic formalism. We will focus in particular on how astrophysics enters in the
computations, and on the standard set of assumptions employed (the so-called
Standard Halo Model). We will thus describe how the velocity distribution of
the dark matter particles is taken into account, as well as the transformation of
this distribution from the Galactic to the Earth reference frame, and the annual
modulation of the WIMP signal expected in a detector that this change of reference
induces.

Chapter 2: Understanding the experimental results. In this chapter we
are going to present the DMDD experiments which we consider in the following,
and some other representative ones, the statistical procedures that we have applied
to compute limits (and regions), and the impact of the astrophysical parameters of
the Standard Halo Model on such limits.

Chapter 3: Galactic dynamics and the dark halo, from Milky Way mass
models to the WIMPs phase space. In this chapter we are going to present
the elements of Galactic dynamics which allow us to place the astrophysical
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quantities related to direct detection in a more general framewok. We will present
particular Milky Way mass models. This treatment enlightens the relations among
the astrophysical quantities (like the local circular velocity, the local dark matter
density, distance to the Galactic center, the local Galactic escape speed, etc.) that
enter the computation of direct detection predictions and limits, and with the
underlying mass model.

Chapter 4: the impact of the local Galactic escape speed estimates on
dark matter direct detection. In this chapter we will concentrate on the recent
estimate of the local Galactic escape speed published by the RAVE collaboration [1],
which relies on the assumption of a particular Milky Way mass model. This induces
correlations among the astrophysical quantities that enter the computation of direct
detection limits.

We will go beyond the Maxwell-Boltzmann approximation by inferring the
WIMP phase-space distribution from the Galactic mass model components thanks
to the Eddington equation. This procedure self-consistently accounts for the
dynamical correlations among the astrophysical parameters.

We will show that a treatment which implements the RAVE results on the
escape speed by consistently correlating all relevant parameters leads to more
constraining exclusion curves with respect to the standard ones, and to moderate
uncertainties. These results are contained in our paper [2] that has recently been
published in the journal Physical Review D.

To accomplish this project we have developed a C/C++ code which allows
to compute DMDD exclusion curves and contours for certain direct detection
experiments, and a code to numerically solve Eddington equation for certain
different mass models of the Galaxy.

Chapter 5: a review of estimates of the astrophysical quantities relevant
to dark matter direct detection. In this chapter we complete the picture
by attempting a review of the main estimates present in the literature for the
astrophysical quantities relevant for direct detection, and those characterizing the
mass models involved in the description of our Galaxy, pointing out the main
results and assumptions. This is meant to provide complementary information on
many of the astrophysical quantities that have been encountered in the rest of the
manuscript, and represents an opening toward possible generalizations of the work
done in this thesis.

Conclusions. We will finally draw our conclusions.
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1.1 Introduction

The dark matter problem is an important open question in modern-day physics.
Originally, it arose as the problem of the missing mass on the scale of galaxies and
clusters of galaxies, so as a purely gravitational issue.

This problem dates back to observations in 1933 by Fritz Zwicky, who proposed
the existence of dark matter as a source of gravitational potential to explain the
motions of galaxies in the Coma Cluster [3].

Subsequently, others discovered flat rotation curves in disk galaxies, Babcock
already in 1939 [4], and Rubin and Ford [5] and Roberts and Whitehurst [6] with
more convincing data in the seventies, which could be explained by non luminous
matter to be the predominant constituent of mass inside galaxies. Even today, the
most convincing evidences for the presence of missing mass in the universe are from
spiral galaxies. There is simply not enough luminous matter observed in spiral
galaxies to account for their observed rotation curves.

The Planck data on the cosmic microwave background, once interpreted in the
framework of the standard model of cosmology (the ΛCDM), provide a Universe
which consists for the 26.8% of dark matter (and only for the 4.9% of ordinary
matter, while the remaining 68.3% is supposed to be made of dark energy).

It is important to remind that different approaches to solve the missing mass
problem can be considered. In particular, an alternative possibility is that the
observations indicate a breakdown of our understanding of gravitational dynamics on
certain scales, which leads to theories where modifications of gravity are considered.
One particular such theory is MOND (MOdified Newtonian Dynamics), which
considers a modification of Newtonian dynamics on galactic scales. A review of the
current observational successes and problems of this alternative paradigm can be
found in [7].

In particle physics, the Standard Model provides a very good description of pro-
cesses related to three of the four known fundamental interactions (electromagnetic,
weak and strong) up to the energies thus far probed by experiments. However,
this model has some issues, like the explanation of the origin of mass, the neutrino
oscillations, the naturalness problem, the matter-antimatter asymmetry and others.
Moreover, there is the question of a more fundamental theory which would include
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Introduction. 1.1

gravitational interaction. Thus, it seems quite possible for the Standard Model of
particle physics to be just an approximation of some bigger underlying theory [8].

Extensions of the Standard Model which aims at dealing with one or more
of these issues are called theories Beyond the Standard Model (BSM theories).
Some of them rely on supersimmetry (SUSY), which roughly speaking introuces a
doubling of the number of particles (w.r.t. those of the Standard Model) which
relates bosonic integral-spin particles to fermionic half-integral-spin superpartners.

While observations on the scales of galaxies, clusters of galaxies and on the
cosmological scale indicate the presence of dark matter in the universe and allow
to quantify its cosmological abundance, Big Bang nucleosynthesis provides upper
limits on the cosmological density of baryons. Such abundances tell us that the
majority of the dark matter in the universe cannot be of a baryonic nature. If the
dark matter is made of non baryonic matter, then particle physics can provide
candidates in abundance in the form of new elementary particles [8]. For instance,
in many supersymmetric models the lightest supersymmetric particle, often the
neutralino, is stable and massive and it undergoes week interaction with ordinary
matter.1

Such massive new elementary particles wich undergo weak interaction, pre-
dicted by BSM theories, are in general called Weakly Interacting Massive Particles
(WIMPs). Their name refers to the fact that these particles undergo weak interac-
tion and feel the effects of gravity, while do not participate in electromagnetic or
strong interactions. Nowadays, WIMPs are among the most promising and well
studied classes of dark matter candidates.

Since WIMP-like particles are predicted in many BSM theories, they potentially
rely on theoretically motivated grounds. Moreover, the fractional contribution of
WIMPs to the energy density of the Universe is such that, with an annihilation cross
section of weak interaction strength, they could provide a cosmological abundance
near the value measured by Planck. This coincidence is known as the "WIMP
miracle", and it is one of the reasons because of WIMPs have received a lot of
attention as a dark matter candidate [8]. Thus, WIMPs are a class of candidates
which might have the right properties to represent the dark matter.

WIMPs are particularly appealing also because of the possibility of detecting
such particles, which makes them an experimentally testable class of candidates. A
multitude of experimental efforts are currently underway to detect WIMPs. Three
are the main strategies to detect them: production at colliders, indirect detection
and direct detection.

Searches for WIMP dark matter are ongoing at colliders, for instance at the
Large Hadron Collider. An example is the search for missing energy events, i.e.
roughly speaking collisons in which a part of the energy goes to an undetected
particle, which could be a WIMP.

1 More about this will be said in section 1.5, while an extensive review of supersymmetric
dark matter can be found in [8]. Let us remark that we quote supersymmetry only as an example,
while the content of this thesis is more general and it is not related to a particular BSM theory.

3



1. Direct detection: formalism and general aspects

Indirect detection of dark matter is based on the idea that WIMPs can annihilate
into Standard Model particles, which can then propagate through space till the
Earth. Here, cosmic rays detectors (as for instance the AMS experiment), gamma
ray telescopes (as Fermi) or neutrino observatories (like Ice Cube) should be able
to detect them as an excess with respect to standard astrophysics backgrounds.2

The third strategy is dark matter direct detection, on which we will focus in this
work. This field began thirty years ago with the work of Drukier and Stodolsky [9],
who proposed to search for neutrinos by observing the nuclear recoil caused by their
weak interactions with nuclei in detectors. Subsequently, Goodman and Witten [10]
pointed out that this approach could be used to search not just for neutrinos,
but also for WIMPs, again via their week interaction with detectors. Soon after,
Drukier, Freese and Spergel [11] extended this work by taking into account the
halo distribution of WIMPs in the Milky Way, as well as proposing the presence of
an annual modulation in the signal.

Dark matter direct detection (DMDD) experiments aim at detecting WIMPs via
the nuclear recoils expected in underground detectors and triggered by the predicted
elastic scatterings of WIMPs off target nuclei. These detectors employ different
target materials (for instance germanium or xenon) and are placed underground
to shield them from the cosmic-ray background. In the standard cosmological
picture, the Galaxy is embedded in a dark matter halo, and weakly interacting
massive particles (WIMPs) are one of the most studied classes of candidates to
constitute such a halo. In the reference frame w.r.t which the halo has no global
motion, the positions and motion of these particles can be described through their
phase-space distribution. Detectors involved in DMDD experiments are located
on Earth, which is orbiting around the Sun, and the Sun is orbiting around the
Galactic center. If the WIMP velocity distribution is isotropic in the Galaxy, than
DMDD experiments are therefore hit by a flux of DM particles, and this flux varies
with a periodicity of one year, as the Earth’s orbital period. A comprehensive
review of these facts can be found in [12].

As the name suggests, WIMPs can interact with matter through weak interaction.
In particular, they can interact with the nuclei of the target material in a detector.3

Elastic as well as inelastic scattering between a WIMP and a nucleus can be
considered (the latter only when the WIMP has excited states). After the collision
the hit nucleus will recoil having acquired kinetic energy, the so called recoil energy.

In this chapter we present in detail the standard formalism which allows one a
description of these issues. For a review, see for instance [13]. We start by intro-
ducing the recoil energy and its relation with the velocity of the incoming WIMP.
We then describe how to compute the rate of events in a DMDD experiment and
the cross section of the elastic scattering for spin-dependent and spin-independent

2 It is important to remember, anyway, that the modelling of such astrophysical backgrounds
is rather uncertain.

3More precisely, WIMPs can interact with quarks, which are the constituents of nucleons, and
nucleons themselves are the constituents of nuclei, so the interaction of a WIMP on a nucleus in
a detector is studied in three different steps, as we will see later on.
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Figure 1.1: A schematic representation of how DMDD works: a WIMP hits a nucleus
inside the detector, and the nucleus acquires a recoil energy that we can measure. Figure
from http://inpac.physics.sjtu.edu.cn.

WIMP-nucleon interaction. We then focus on the astrophysics that directly enters in
the computation of the rate of events, mainly the dark matter velocity distribution.
We introduce the Maxwell-Boltzmann distribution, with its variants including a
cut-off at high velocity. We describe in detail the velocity transformation necessary
to translate these distributions into the Earth reference frame, and the annual
modulation of the expected WIMP signal that arises from such transformation.
We finally specify the standard set of assumptions on the astrophysics involved
commonly employed to compare the results of different experiments.

We will describe in detail in chapter 2 the issues that must be taken into
account when dealing with real experiments. We will explore more in details the
astrophysical aspects involved in DMDD, in particular in relation to the dynamics
of the Galaxy, in chapter 3.

1.2 Relations between velocity and recoil energy

in an elastic scattering process

In this section we would like to introduce the recoil energy that a target nucleus
acquires from the scattering of a WIMP.

In an elastic scattering process between two generic particles, the relative
velocity between the particles and the energy exchange among them are related.
The relation involves also the masses of the particles and the scattering angle. In
the following section we will derive from kinematics the relation between these
quantities. In the subsequent section we will use this equation in order to obtain
a relation between the relative WIMP-nucleus velocity, and the corresponding
maximal recoil energy of the nucleus.
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1.2.1 General relation between relative velocity and recoil
energy

We start by studying the elastic scattering between two particles, which we denote
χ and A (that will represent respectively a WIMP and a target nucleus). We use
non-relativistic kinematics, which is a good approximation for our purposes since
we want to apply this relation to the case of a WIMP which scatters over a nucleus,
which is a highly non-relativistic process since WIMPs are expected to have speeds
of order ∼ 0.001× c at the Solar location. The nucleus is assumed to be initially
at rest.

The recoil energy Er of the nucleus is given by

Er =
|~pAf |2
2mA

=
|~q|2
2mA

, (1.1)

where ~pAf is the momentum of the nucleus after the collision (in the Laboratory
frame4), ~q is the momentum transferred between the two particles and mA is the
mass of the nucleus A. Note that the second equality is valid since the initial
momentum of the nucleus is assumed to be zero.

Now we can place ourself in the Center of Mass (CM) frame of reference, and
calculate the transferred momentum, which has the same value in any reference
frame. We have:

|~q|2 =
∣

∣

∣

~p′χf − ~p′χ0

∣

∣

∣

2

=
∣

∣

∣

~p′χf
∣

∣

∣

2
+
∣

∣

∣

~p′χ0

∣

∣

∣

2 − 2
∣

∣

∣

~p′χf
∣

∣

∣

∣

∣

∣

~p′χ0

∣

∣

∣ cosϑCM ,
(1.2)

where ~p′χf and ~p′χ0 are the momenta of χ in the CM frame respectively after and
before the collision, and ϑCM is the scattering angle in the CM frame (we mark
with a prime ′ the quantities calculated in the CM frame).

Since by assumption the scattering is elastic, we have that
∣

∣

∣

~p′χf
∣

∣

∣ =
∣

∣

∣

~p′χ0

∣

∣

∣, so the
above equation becomes:

|~q|2 = 2
∣

∣

∣

~p′χ0

∣

∣

∣

2
(1− cosϑCM) . (1.3)

With simple kinematics we can demonstrate the relation

~p′χ0 = −~p′A0 = mred~vrel , (1.4)

where
mred

.
=

mχmA

mχ +mA

, (1.5)

is the WIMP-nucleon reduced mass and ~vrel is the relative velocity between the
nucleus and the WIMP in the Laboratory frame. Inserting equation (1.4) in
equation (1.3) we obtain

|~q|2 = 2m2
redv

2
rel (1− cosϑCM) . (1.6)

4The Laboratory frame is the one where the nucleus is initially at rest.

6



Relations between velocity and recoil energy in an elastic scattering process. 1.3

Eventually from (1.1) we get:

Er =
m2
redv

2
rel (1− cosϑCM)

mA

, (1.7)

which provides the recoil energy of a nucleus as a function of the relative velocity.

1.2.2 Relation between velocity and maximal recoil energy

Now we want to see what (1.7) can tell us in the case of our interest, the elastic
scattering between a WIMP and a nucleus. Its meaning is that when a WIMP of a
given velocity5 vrel scatters on a nucleus, it transfers to the nucleus a certain amount
of energy Er. This amount of energy depends on the masses and, in particular,
depends on the scattering angle in the CM frame ϑCM which varies from 0 to π. A
vanishing scattering angle means that the WIMP passes without interaction, so
there is no transferred energy. On the other hand the WIMP can backscatter, i.e.
ϑCM = π. This is the case which corresponds to the maximum transfer of energy,
for a given vrel. Thus, inserting in equation (1.7) the value ϑCM = π, we obtain
that the maximal recoil energy of a nucleus (initially at rest) hit by a WIMP of
velocity v is:

Emax (v) =
2m2

redv
2

mA

. (1.8)

Inverting this relation we obtain the minimal velocity vmin necessary for a
WIMP of mass mχ to transfer to a nucleus of mass mA the recoil energy Er, which
reads:6

vmin (Er)
.
=

√

ErmA

2m2
red

. (1.9)

In figure 1.2 we have plotted the maximal recoil energy Emax as a function of the
mass of the target nucleus mA, for three different values of mχ. As we can clearly
see, every curve presents a maximum. The positions of these maxima coincide with
masses such that mA = mχ. This can be easily proven finding the values of mA

for which the equation ∂Er/∂mA = 0 is satisfied. This tells us that the maximal
transfer of energy (so the maximum recoil energy) for a given WIMP occurs when
using a target nucleus of roughly the same mass, so the choice of the nucleus to be
used as a target in a detector determines which WIMP masses the detector will be
more sensitive to. Lower mass nuclei will give a detector more sensitive to lower
mass WIMPs.

5The nucleus is considered to be initially at rest in the Laboratory, so the relative velocity
between the nucleus and the WIMP is equal to the WIMP velocity in the Laboratory frame.

6 Since for the rest of this work we will focus on elastic scattering, we will not discuss inelastic
scattering further. Anyway, let us just mention that in the case of an inelastic scattering interaction

the minimal velocity becomes vmin = 1√
2mAEr

(

mAEr
mred

+ δ
)

, where δ is the mass splitting between

the lightest and next-to-lightest states in the spectrum (see for instance [12]).
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Figure 1.2: Maximal recoil energy Emax as a function of the mass of the target nucleus
mA, for three different values of mχ. The relative velocity between the WIMP and the
nucleus has been fixed to 300 km/s.

1.3 The event rate

We now want to compute the expected rate of events in a DMDD experiment.
Our physical intuition can drive us toward a simple form for this quantity, but

there are many subtle facts which must be taken into account, most of them related
to the experimental issues that we will discuss in chapter 2.

Before starting let us remark that in this section we are dealing with ~v′, which
is the velocity of the WIMP w.r.t. the target nucleus, i.e. the velocity of the WIMP
in the frame of reference comoving with the Earth. However, the dark matter halo
around our Galaxy is not comoving with the Earth. So we can define another
velocity ~v which is the velocity of the WIMP in the Galactic frame of reference,
i.e. the frame of reference w.r.t. which the dark matter halo has no global motion.
The two velocities are related by a Galilean transformation, as we will see in the
following sections.

1.3.1 The total event rate

We can write the total event rate per unit detector mass R expected in a dark
matter direct detection experiment as:7

R =
nχ⊙
mA

〈v′σ (v′)〉 =
nχ⊙
mA

〈

v′
∫ Emax(v′)

ET
dEr

dσ

dEr
(Er, v

′)

〉

, (1.10)

7In this chapter we neglect the corrections due to the experimental setup, like the energy
resolution, that we will introduce in the next chapter.
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where nχ⊙ = ̺⊙/mχ is the number density of WIMPs at the location of the Sun
(and so of the Earth), ̺⊙ is the dark matter density at the location of the Sun (local
dark matter density from now on), mχ is the mass of the WIMP considered, mA

is the mass of the nucleus and dσ
dEr

(Er, v
′) is the differential cross section for the

process. The integration goes from the threshold energy ET , i.e. the minimal recoil
energy which is considered for the analysis of the data of a given experiment, to
the maximal recoil energy Emax that has been defined in the previous section.

The symbol 〈. . .〉 stands for average over velocities ~v′, and for any function h(~v′)
it is defined as

〈

h(~v′)
〉 .

=
∫

d3~v′h(~v′)f~v′(
~v′) =

∫ 2π

0
dϕ
∫ π

0
sinϑdϑ

∫ +∞

0
dv′v′2h(~v′)f~v′(

~v′) . (1.11)

The variable ~v′ is the velocity of a WIMP in the rest frame of the detector, i.e.
any frame of reference comoving with the Earth. f~v′(

~v′) is the distribution of the
WIMP’s velocities in the Eath reference frame (normalized by definition). It is of
fundamental importance not to misinterpret f~v′(

~v′) nor ~v′. In section 1.6 we will
provide some different forms for the distribution of the WIMPs velocities expressed
in the Galactic reference frame, and soon after we will show how to transform them
into f~v′(

~v′).
We can rewrite equation (1.10) as

R =
nχ⊙
mA

∫ 2π

0
dϕ
∫ π

0
sinϑdϑ

∫ +∞

0
dv′v′

3
f~v′(

~v′)
∫ Emax(v′)

ET
dEr

dσ

dEr
(Er, v

′) . (1.12)

Using the Heaviside step function Θ (x), we can rewrite the integral over Er as

∫ Emax(v′)

ET
dEr . . . =

∫ ∞

ET
dEr . . .Θ (Emax (v′)− Er) , (1.13)

and so the event rate becomes:

R =
nχ⊙
mA

∞
∫

ET

dEr

2π
∫

0

dϕ

π
∫

0

sinϑdϑ

+∞
∫

0

dv′v′
3
f~v′(

~v′)Θ (Emax (v′)− Er)
dσ

dEr
(Er, v

′) .

(1.14)
Now it is interesting to observe in detail the boundaries of the integration over

Er and v′. What we note is that we are integrating over an area that, in the plane

Er, v
′, is defined by the value ET and by the curve Emax (v′) =

2m2
redv

′2

mA
. Under

these integrals we can rewrite the Heaviside function as

Θ (Emax (v′)− Er) = Θ

(

2m2
redv

′2

mA

− Er
)

= Θ

(

v′ −
√

ErmA

2mred

)

= Θ (v′ − v′min) ,

(1.15)
where as we have seen v′min is defined as

v′min (Er)
.
=

√

ErmA

2m2
red

. (1.16)
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This allows us to write

R =
∫ ∞

ET
dEr

nχ⊙
mA

∫ 2π

0
dϕ
∫ π

0
sinϑdϑ

∫ +∞

v′min

dv′v′
3
f~v′(

~v′)
dσ

dEr
(Er, v

′) , (1.17)

and eventually:

R =
∫ ∞

ET
dEr

dR

dEr
(Er) , (1.18)

dR

dEr
(Er)

.
=
nχ⊙
mA

∫

|~v′|>v′min(Er)
d3~v′v′f~v′(

~v′)
dσ

dEr
(Er, v

′) , (1.19)

(1.20)

where we have defined the differential event rate dR
dEr

.

1.4 The scattering cross section

Let us now focus on the differential scattering cross section which appears in
equation (1.19).

1.4.1 Split of the differential event rate into particle physics
and astrophysics

In the case of elastic scattering, either if we are interested in a spin-dependent
interaction (SD), or in a spin-independent interaction (SI ), we can use for the
differential cross section the expression (see for instance [8, pages 265, 272])

dσ

dq2

(

q2, v
)

=
σ0

4m2
redv

2
F 2 (q) , (1.21)

where σ0 is a “standard” cross section at zero momentum transfer, F (q) is the
form factor which accounts for the non-null dimension of the nucleus and its shape,
and q is the transferred momentum as before. We will justify this equation in the
next section.

Recalling that the recoil energy and the transferred momentum are related by
Er = q2/2mA, we obtain that

dσ

dEr
(Er, v) =

σ0mA

2m2
redv

2
F 2 (Er) . (1.22)

Inserting this expression in equation (1.19), and recalling that nχ⊙ = ̺⊙/mχ, we
can write

dR

dEr
(Er) =

̺⊙σ0

2mχm2
red

F 2 (Er) η̃ (Er, t) (1.23)

η̃ (Er)
.
=
∫

|~v′|>v′min(Er)
d3~v′

1

v′
f~v′(

~v′) . (1.24)
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Note that when we will make the standard assumption of a Maxwell-Boltzmann
form for the speed distribution in the Galactic frame, we will use the adimensional
quantity η, defined as

η
.
= v0η̃ , (1.25)

where v0 is the most probable speed of the Maxwell-Boltzmann distribution (the
one at which the maximum of the distribution occurs).

Writing the differential event rate in the above way hallows us to separate it in
two parts: ̺⊙η̃, which contains all the astrophysical dependences, and the other
terms which contain all the description of the WIMP-nucleus interaction from the
point of view of particle and nuclear physics.

101 102 103
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Figure 1.3: Contributions to dR/dEr from astrophysics and from particle/nuclear physics
as functions of the WIMP mass mχ, for a xenon target nucleus.

Figure 1.3 gives an idea of the impact on the differential rate dR/dEr of the
two contributions, the particle physics one and the astrophysics one, as a function
of the mass. In particular we can remark that the astrophysics dominates the
behavior of dR/dEr (mχ) at small mχ, while at big mχ the other part dominates.

1.4.2 Spin-dependent and spin-independent interactions

The “standard” cross section at zero momentum transfer σ0 can be used to describe
either a spin-dependent (SD) or a spin-independent (SI) interaction, so we will
write it as:

σ0 =







σSI for SI interactions,

σSD for SD interactions.

11



1. Direct detection: formalism and general aspects

Spin-independent interaction

For SI interactions, i.e. for the case on which we will focus the most in the following
chapters, we have

σSI =
4

π
m2
red (Zfp + (A− Z) fn)2 , (1.26)

where A is the mass number of the nucleus considered, Z is the number of protons
(so (A− Z) is the number of neutrons), and fp and fn are the effective couplings
of the WIMPs to protons and neutrons (see for instance [8, page 271]). We will
show in the next section how this equation arises. In many cases (for instance
for the neutralino, but also for many other WIMP candidates) the two couplings
are comparable, i.e. fp ≈ fn (see for instance [14]). In these cases we can write
(see [12]):

σSI ≈
m2
red

m2
red,p

A2σp,SI , (1.27)

where mred,p is the reduced mass between the WIMP and the proton, and σp,SI is
the WIMP-nucleon cross section. This equation becomes exact if fp = fn.

Inserting this approximation in equation (1.23) we obtain

dR

dEr
(Er) =

̺⊙A
2σp,SI

2mχm2
red,p

F 2 (Er) η̃ (Er, t) . (1.28)

To give an idea of the orders of magnitude and units of measure involved,
equation (1.28) with the expression (1.86) for η and the values of mχ = 100 GeV/c2,
A = 131 (a xenon nucleus), Er = 1 keV and σp,SI = 4× 10−43 cm2 has the value of
dR
dEr
≈ 10−2 kg−1 keV−1 days−1.

1.5 Computation of the elastic scattering cross

sections

The aim of this section is to justify equations (1.21) and (1.26) in the framework
of a particular class of models. The WIMP-nucleus elastic scattering cross section
depends mainly on the WIMP-quark interaction strength. Anyway, the scattering
rate is computed from the WIMP-nucleus cross section, so a very important role is
played by the distribution of nucleons inside the nucleus and that of quarks inside
the nucleons. Thus the computation of the WIMP-nucleus cross section should be
worked out in three main steps.

For illustrative purposes, let us now consider the case of cold dark matter to be
represented by a supersymmetric neutralino.8 This case is considered for instance
in [8] or [15].

8 A similar description holds for most other WIMP candidates with a SI interaction arising
through scalar couplings. The neutralino is usually used for illustrative purposes because it is
among the favored WIMP candidates (see for instance [8]) and because it represents a useful
benchmark in which working out computations. In the framework of the minimal supersymmetric
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The first step consists in determining the interaction of WIMPs with quarks
and gluons. The effective interactions of neutralinos at the microscopic level are in
practice inferred from diagrammatic calculations.9 The relevant quantities like the
couplings are determined by the supersymmetric model. Thus, the fundamental
elastic scattering cross section is strongly model dependent.

The second step is the translation of the microscopic interactions into interac-
tions with nucleons, making use of the matrix elements of the quark and gluon
operators in a nucleon state. There are several quantitatively different types of
interactions: vector, axial-vector, scalar, pseudoscalar and tensor, which add very
differently inside the nucleon. All this implies additional uncertainties in the final
elastic-scattering cross section, for instance coming from experimental constraints on
the nucleon quark content, or from those coming from Lattice-QCD computations.

The third step finally consists of adding coherently the spin and scalar compo-
nents of the nucleons, using nuclear wave functions, to give the WIMP-nucleus cross
section as a function of momentum transfer. This is obtained by sandwiching the
nucleon operators from the previous step in a nuclear state. This step introduces
a form-factor suppression, which reduces the cross section for heavy WIMPs and
heavy nuclei.

Anyway, an important simplification in the above calculations occurs because
the elastic scattering of WIMPs takes place in the extreme non-relativistic limit.
In particular, the axial-vector current becomes an interaction between the spin of
the quark and the spin of the WIMP, while the vector and tensor currents assume
the same form of the scalar interaction. Because of this reason, only two cases
needs to be considered: scalar interaction and spin-spin interaction. In the latter,
the WIMP couples to the spin of the nucleus, while in the former it couples to the
mass of the nucleus. The complete elastic-scattering cross section is the sum of
these two pieces.

standard model (MSSM), the neutralino is the lightest of the four mass eigenstates arising from

linear combinations of the Bino B̃, the Wino W̃ 3 and the Higgsinos H̃0
1 and H̃0

2 , which are the
superpartners of the photon, Z0 boson and the neutral Higgs bosons. The neutralino is usually
stable and in many supersymmetric models it is the lightest supersymmetric particle (LSP).

9An effective-Lagrangian approach is usually possible because the momentum exchanged
between for instance the neutralino and a quark is small compared to the mass of the mediator.
In fact, as we have seen the WIMP velocities are non relativistic, and thus the transferred energy
(and so the momentum) are small, when compared to the masses of the mediator that for the
scalar interaction can be for instance an Higgs Boson. This approach is no more valid if a mediator
lighter w.r.t. the exchanged momentum is taken into account.
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1. Direct detection: formalism and general aspects

1.5.1 Spin-Independent cross section

Microscopic level

Microscopic interactions other than the axial-vector one can be very important and
will often dominate over the spin interaction in heavy nuclei, so it is of fundamental
importance to evaluate this contribution accurately. The scalar neutralino-nucleon
interaction arises from several sources. There are contributions from squark ex-
change and Higgs exchange which give rise to couplings to quark currents, and there
are one-loop amplitudes for interactions of neutralinos with gluons. An effective
Lagrangian for scalar and tensor neutralino-quark and neutralino-gluon interactions
can be found in [8, page 267]. Here we consider as in [15] the Lagrangian

L = αiχχqiqi , (1.29)

that has to be summed over quark generations, with i labeling the u-type and
d-type generations, and the full expression for the coefficients αi provided in [15]
or [8].

Nucleonic matrix elements

The next step is to evaluate the matrix elements of the quark and gluon operators in
a nucleon state. Those of the light-quark current are obtained in chiral perturbation
theory from measurements of the pion-nucleon sigma term σπN . For each of the
three light quarks (q = u, d, s) we can define the quantities f

(N)
Tq by:

MNf
(N)
Tq

.
= 〈N |mqqq |N〉 , (1.30)

where N = p (for protons) or N = n (for neutrons). We can also define the
quantities

mqB
(N)
b

.
= 〈N |mqqq |N〉 , (1.31)

in terms of which the the pion-nucleon sigma term σπN may be written as

σπN = mud

(

B(N)
u +B

(N)
d

)

and (1.32)

σssN = 2ms 〈N | ss |N〉 , (1.33)

where mud
.
= 1

2
(mu +md).

For the heavy quarks we can define instead

f
(N)
TG

.
= 1−

∑

q=u,d,s

fNTq , (1.34)

and it is found [8] that (for Q = c,t,b)

〈N |mQQQ |N〉 =
2

27
MNf

(N)
TG . (1.35)
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Computation of the elastic scattering cross sections. 1.5

In the limit of large squark masses, i.e. mχ ≪ mq̃ and mq ≪ mq̃, to lowest
order in m−1

q̃ the effective couplings of neutralinos to protons and neutrons fp and
fn can be approximated as (see [15] and [8])

fN
MN

≈
∑

q=u,d,s

fNTq
αq
mq

+
2

27
f

(N)
TG

∑

q=c,b,t

αq
mq

, (1.36)

where the coefficients αq are those of the Lagrangian (1.42).

The determination of the pion-nucleon sigma term σπN from data is plagued by
significant uncertainties, which in turns affect the parameter f

(N)
Tq , and eventually the

cross section for spin-independent interaction. The uncertainty in the pion-nucleon
sigma term is perhaps the biggest one in the calculation of this subsection (see
for instance [15]). This uncertainty impacts on the interpretation of experimental
searches for cold dark matter, and (particularly interesting for us) DMDD. To
properly evaluate the impact of the results of such experiments on (for instance)
supersymmetric models, it is important to understand and minimize the hadronic
uncertainties in the elastic scattering matrix elements. For certain models, the
allowed values of the spin-independent cross section can nowadays be reached
by the experimental sensitivities, but these cross sections are affected by the
above mentioned uncertainties. [15] appeals for a dedicated effort to reduce the
experimental uncertainties in the pion-nucleon sigma term since this quantity can
be crucial to the understanding of new physics beyond the Standard Model.

Lattice-QCD calculations are nowadays able to estimate this quantity with
uncertainties that are considerably reduced w.r.t. the past. Thus, they provide an
alternative to the experimental efforts to reduce the above mentioned uncertainties,
and they are complementary to them. To give an idea of the estimates provided
by Lattice-QCD, we report here the values of σπN and σssN evaluated by our
colleagues10 using Lattice-QCD calculations. These values are σπN = 41.8 (3.2) (4.4)
MeV and σssN = 235 (113) (20) MeV, where the first brackets provide statistical
uncertainties, and the second ones systematic uncertainties.11

Nuclear matrix elements

We finally have to evaluate the effective interaction with the nuclei by evaluating
the matrix elements of the nucleon operators in a nuclear state. Since no spin is
involved here, the nuclear physics is simplified, because in fact the operators simply
count the nucleons, so that the amplitude is proportional to the nucleon number.
This gives a substantial enhancement for heavy nuclei.

10 We warmly thanks L. Lellouche and C. Torrero for providing us with their preliminary
results quoted above.

11The same results can be rewritten in terms of other useful quantities as fudN
.
= σπN/MN =

0.0449 (42) (48) and fsN
.
= σssN/2MN = 0.126 (60) (11). Let us remark that these Lattice-QCD

computations are worked out assuming no difference between the masses of the up and down
quarks, so that the proton and neutron have the same mass, here indicated with MN .
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1. Direct detection: formalism and general aspects

At non-zero momentum transfer, the form factor associated with the nucleon-
number operator is simply the Fourier transform of the nucleon density, which has
a well-determined form. We denote the form factor as F (Er), where Er is the
energy that is transferred from the WIMP to the nucleus. The most commonly
used forms of the nuclear form factor are given in the next subsection.

The differential cross section for the scalar interaction can now be written

dσ

dq
=
F 2 (q)

πv2
[Zfp + (A− Z) fn]2 =

σSI
4m2

redv
2
F 2 (q) , (1.37)

where q
.
= |~q| is the modulus of the transfered momentum, and to obtain the second

equality we have defined the standard cross section at zero momentum transfer as

σSI
.
=
∫ 4m2

redv
2

0
dq
dσ (q = 0)

dq
=

4

π
m2
red [Zfp + (A− Z) fn]2 . (1.38)

Nuclear form factors

The nuclear form factor F (Er) is a function of the transferred energy Er, so it is
implicitly a function of the transferred momentum q =

√
2mAEr. It is normalized

to 1 at zero energy transfer and it decreases while increasing Er.

No form factor. As a first approximation we can neglect the form factor F (Er),
i.e. put F (Er) = 1.

Exponential form factor. A better but still oversimplified approximation is to
use an exponential form (see [8, page 272]), i.e.

F (Er) = exp

(

−Ermχr
2
0

3

)

, (1.39)

where r0 = 10−13cm ×
(

0.3 + 0.91 (mA/GeV )1/3
)

is the nuclear radius. It corre-
sponds to a radial density profile of the nucleus with a Gaussian form.

Woods-Saxon form factor. A more accurate form factor is (see for instance [8])

F (Er) =

[

3j1 (qR1)

qR1

]2

exp
(

− (qs)2
)

, (1.40)

where q =
√

2mAEr is the transferred momentum, R1 =
√
R2 − 5s2 with R ≈ 1.2

fm ×A1/3, j1 is a spherical Bessel function and s ≈ 1 fm. This form factor is not
that obtained from the Fourier transform of the Woods-Saxon density distribution,
but it is very similar to it so it bears the same name.
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Computation of the elastic scattering cross sections. 1.5

Helm form factor. A reasonably good approximation for the nuclear form factor,
which is widely used nowadays, is (see [12]) the Helm form factor

F (q) = 3e−q
2s2/2 sin (qrn)− qrn cos (qrn)

(qrn)3 , (1.41)

where s ≈ 0.9 fm and r2
n = c2 + 7

3
π2a2 − 5s2 is an effective nuclear radius with

a ≈ 0.52 fm and c ≈ 1.23A1/3 − 0.60 fm. This is the form factor more often used
in the literature of DMDD, and we have used it in our implementation as well.

More realistic form factors. Even though the Helm form factor is a common
choice in the literature, studies dedicated to the development of more realistic form
factors to be used for SI interaction in the framework of DMDD exist. For instance,
in [16] model independent, analytic form factors for SI neutralino-nucleon scattering
are derived, mainly on the basis of experimental data of elastic electron scattering,
which allows a more careful determination of these factors. Significant differences
may exist even at relatively low momentum transfers between generic Helm form
factors and these more realistic ones, particularly for large A nuclei. Two of these
proposed form factors are the Fourier Bessel and the Sum of Gaussian. The
authors of [16] warmly suggest their use in computing limits on neutralino-nucleon
cross sections and detection rates in direct dark matter searches.

1.5.2 Spin-Dependent cross section

The SD scattering is due to the interaction of a WIMP with the spin of the nucleus
through the part of the Lagrangian given by operators such as

L = βiχγ
µγ5χqiγµγ

5qi , (1.42)

that has to be summed over quark generations, with i labeling the u-type and
d-type generations, and the expression for the coefficients βi provided in [15] or [8].
This interaction takes place only in those detector isotopes with an unpaired proton
and/or an unpaired neutron.

The spin-dependent part of the elastic WIMP-nucleus cross section can be
written as

σSD =
32

π
G2
Fm

2
redΛ

2J (J + 1) , (1.43)

where mred is the reduced neutralino mass, J is the spin of the nucleus and

Λ
.
=

1

J
(ap〈Sp〉+ an〈Sn〉) . (1.44)

In the above equation, 〈Sp〉 and 〈Sn〉 are the average spin contributions from the
proton and neutron groups, and ap and an are the effective couplings to the proton
and neutron respectively, given by

ap =
∑

q

βq√
2GF

∆(p)
q and an =

∑

q

βq√
2GF

∆(n)
q . (1.45)
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The factors ∆q parametrize the quark spin content of the nucleon and are only
significant for the light (u,d,s) quarks.

Let us remark that (see for instance [12]) SD scattering is often less important
than SI scattering in DMDD experiments for two reasons. First, σSI ∝ A4 for
heavy WIMPs, while σSD ∝ A2. Second, spin-zero isotopes do not contribute to SD
scattering, which is thus reduced in elements where non-zero-spin nuclei represent
only a small fraction of the naturally occurring isotopes within a detector’s target
mass. The fact that SD couplings may often be larger than SI couplings is not
enough to make the SD dominant ( [12]).

Let us remark that also in the SD case a nuclear form factor should be taken
into account. Anyway, the SD form factor depends on the spin structure of a
nucleus and thus it is different between individual elements.

1.6 The dark matter’s velocity distribution

Galactic dark matter should be distributed in a halo which encompasses our
galaxy. In the study of the dynamics of our galaxy, we can model the dark matter
in the Milky Way as a gas of particles which can be described via its phase-
space distribution f (~x,~v). The phase-space distribution contains all information
about the spatial and velocity distributions, which can be specified individually
by integrating out the conjugate quantity. However, we will use that approach in
chapter 3, while here we use a more simple approach, starting from the study of f(~v)
only, because this is the quantity that directly enters in the above computations.

We will start from the simplest picture, and after we will try to make it more
complex. Let us assume that the DM halo presents no global motion, so it is not
rotating with the stars of the Galactic disk. We can call the rest frame of the
halo the Galactic reference frame, which does not rotate, and has the center of the
Galaxy at the origin. So the Galactic reference frame is defined as the reference
frame where the dark matter particles of the halo present no global motion, thus
we have 〈~v〉 .= ∫

d3v~vf~v (~v) = ~0. Note that while by definition the average velocity
of the dark matter particles is zero, of course the velocity of a single dark matter
particle should not.

For dark matter direct detection experiments it is necessary to take into account
the motion of the Sun throughout the Galaxy, and that of the Earth around the
Sun.12 The Sun is orbiting around the center of the Galaxy, and in particular it is
moving with respect to the above mentioned frame. The Earth has a motion in
that frame that is the composition of the motion of the Solar System, and Earth’s
peculiar motion around the Sun. Since experiments of direct detection are worked
out on the Earth, the distribution of dark matter velocities that they are sensitive
to is not the one of the dark matter particles in their rest frame, i.e. the Galactic
reference frame, but rather the one in the Earth frame, f~v′(~v′).

12In this work we neglect the rotation of the Earth around itself, because the daily modulation
of the WIMP signal that it would induce is not detectable by current experiments.
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The dark matter’s velocity distribution. 1.6

In order to work out the integral in (1.24), and so to be able to calculate the
event rate we expect to see in a dark matter direct detection experiment, we need
to know the distribution of the WIMPs’ velocities in the frame of reference of the
Earth f~v′(~v′).

This distribution is related to the one in the Galactic frame f~v (~v) by a Galilean
transformation, which is independent from the functional form of f~v (~v).

One thus assumes a particular form for f~v (~v), the distribution of the WIMP’s
velocities ~v in the Galactic reference frame, and converts it via that transformation
into the corresponding f~v′(~v′).

In subsection 1.6.1 we will provide the standard forms most commonly used for
f~v (~v). More realistic forms will be studied in the subsequent chapters. We present
the above mentioned Galilean transformation in a crude thought intuitive way in
section 1.6.2, and in a detailed manner in section 1.6.3. We show the impact of the
different steps on η in section 1.6.4 and we provide the transformed forms of the
above mentioned distributions in section 1.6.5.

1.6.1 Velocity distributions in the dark matter rest frame

The standard assumption corresponds to chose for the velocity distribution in
the Galactic frame a Maxwell-Boltzmann shape. We will study more realistic
configurations in the following chapters.

Any object (stars, WIMPs, etc.) remains gravitationally bound to the Milky
Way only up to a maximum value of its speed which is called the escape speed
vesc.

13 This can be taken into account adding a cut-off to the high velocity tail of
the Maxwell-Boltzmann distribution. We present these possibilities in the following
sections.

Pure Maxwell-Boltzmann distribution

For illustrative purposes, we will first introduce some general features of the Maxwell-
Boltzmann distribution, before considering it in an astrophysical framework.

In statistical thermodynamics, the Maxwell-Boltzmann distribution describes
the velocity of the particles of a classical ideal gas, in which the particles move
freely without interacting with one another (except for very brief elastic collisions
in which they may only exchange momentum and kinetic energy), when the system
has reached the thermodynamical equilibrium.

The Maxwell-Boltzmann distribution for the velocity vector ~v is:

f~v (~v) =
(

m

2πkBT

)
3

2

exp

(

−m |~v|
2kBT

)

, (1.46)

13This quantity is often referred to as escape velocity, but for coherence with the terminology
that we use in the following sections we will not use this term (we will use the term velocity for
vectors such as ~v, and the term speed for moduli such as v).
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where m is the mass of a gas particle, T is the temperature of the gas and kB is
the Boltzmann constant. This distribution has a mean of µ~v = ~0 and a root mean

square speed of: σ~v =
√

3kBT
m

.
We can see this distribution in terms of the distributions of the three components

of the velocity vector vx, vy and vz. Let ~v = (vx, vy, vz) be the velocity vector of
the gas particles in the reference frame of null bulk motion. Let the components
of ~v be normally distributed (i.e. they follow Gaussian distributions), and these
distributions have mean µi = 0 because there is no global motion, and root mean

square speed σi =
√

kBT
m

(with i = x, y, z), i.e. they follow the distribution:

f (vi) =

√

m

2πkBT
exp

(

− mv2
i

2kBT

)

. (1.47)

Considering then the distribution for the random variable velocity vector ~v, which
is simply the product of the distributions for the three components, we have:

f~v (vx, vy, vz) = f (vx) f (vy) f (vz) (1.48)

=
(

m

2πkBT

)
3

2

exp



−
m
(

v2
x + v2

y + v2
z

)

2kBT



 = f~v (|~v|) , (1.49)

i.e. a three-dimensional normal distribution (multinomial distribution), with a

mean of µ~v = ~0 and a root mean square speed of: σ~v =
√

3kBT
m

. As we can see,
this is simply the Maxwell-Boltzmann distribution for the velocity vector ~v just
introduced above.

While equation (1.46) gives the distribution for the three-dimensional velocity
vector, we are also interested in the distribution of the speed v (defined as v

.
= |~v|).

In order to achieve this let us integrate f~v (~v) over the angles:

∫

d3~vf~v (~v) =
∫ +∞

−∞
dvx

∫ +∞

−∞
dvy

∫ +∞

−∞
dvzf~v (~v)

=
∫ 2π

0
dϕ
∫ π

0
sinϑdϑ

∫ +∞

0
dvv2f~v (~v)

=
∫ +∞

0
dv4πv2f~v (~v) ,

(1.50)

so we see that the Maxwell-Boltzmann distribution for the speed v is

fv (v) = 4πv2f~v (~v) . (1.51)

The distribution fv (v) and f~v (~v) are normalized to unity by definition, as can
be trivially shown by directly computing the normalization.

We can rewrite the above distributions in a more convenient form. As we can
argue from its expression, the distribution for the speed will increase from v = 0
to a certain value v0 of v, and it will be decreasing toward zero for higher speeds.
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The most probable speed v0 is thus defined to be the speed at which the speed
distribution (1.51) will have its maximum. Deriving this distribution w.r.t. v and
imposing the derivative to vanish we get

v0 =

√

2kBT

m
=

√

2

3
σ~v . (1.52)

The relation between v0 and σ~v will be useful in the sequel. Using this we can
rewrite the above distributions in their usual form:

f~v (~v) =
1

v3
0π

3/2
exp

(

−|~v|
2

v2
0

)

(1.53)

and

fv (v) =
4

v3
0π

1/2
v2 exp

(

−v
2

v2
0

)

. (1.54)

As we will show in section 3.4.3 (see also [17, page 304]), the Maxwell-Boltzmann
velocity distribution is the distribution of a self-gravitating isothermal sphere of ideal
gas, which corresponds to a collisionless system of stars described by the isothermal
sphere profile (that we will introduce in chapter 3). This profile is sometimes used
in astrophysics to describe a stellar system, the stars belonging to which thus
have velocities distributed following the Maxwell-Boltzmann distribution. Also the
velocities of an infinite homogeneous stellar system follow a Maxwell-Boltzmann
distribution (see [17]).

The Maxwell-Boltzmann is also usually assumed for the velocity and speed
distributions of the dark matter particles in the Galactic reference frame, where
they have no global motion.14 In DMDD the velocity distribution considered is the
one at the position of the Solar system, which is assumed to have this form.

Cut Maxwell-Boltzmann distribution

Unfortunately, a pure Maxwell-Boltzmann distribution gives only a very approxi-
mate description of the real distribution of the WIMP’s velocities. In fact there
are many aspects that it does not take into account. The most important is that
WIMPs with a speed higher than the escape speed vesc will be no more gravita-
tionally bound to the Galaxy, and so they will escape the halo. This can be taken
into account by considering a Maxwell-Boltzmann distribution with a cut-off in
the high-velocity tail.

Adding a cut-off has the effect of removing all the particles with a speed higher
than the escape speed, while the pure Maxwell-Boltzmann contains particles with
velocities that can be higher. Let us anticipate that the high velocity tail of the
speed distribution is particularly important for the direct detection of light WIMPs,
because among them only those that are sufficiently fast can provide a detectable

14We will see in chapter 3 how this distribution is related to the spatial distribution of the dark
matter particles.
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recoil energy to a target nucleus in the detector. Thus, adding a cut-off allows a
more realistic interpretation of the experimental results in particular at low WIMP
masses.

The simplest cut-off that we can use is a sharp one, so we can define a cut
Maxwell-Boltzmann distribution as

f esc~v (~v)
.
=

1

Nesc

f~v (~v) Θ (vesc − |~v|) =







1
Nesc

f~v (~v) if |~v| < vesc ,

0 if |~v| > vesc ,
(1.55)

where Nesc is a normalization constant, Θ (x) is the Heaviside distribution15 which
is equal to zero for negative x and equal to 1 for positive x, and f~v (~v) is the
Maxwell-Boltzmann distribution for the velocity given in equation (1.53).

As we did in the previous section, we can obtain the corresponding distribution
for the speed f escv (v) as

f escv (v) = 4πv2f esc~v (~v) , (1.56)

which means that:

f escv (v) =
1

Nesc

fv (v) Θ (vesc − v) =







1
Nesc

fv (v) if v < vesc ,

0 if v > vesc .
(1.57)

Now we can normalize the two distributions by imposing
∫

|~v|<vesc
d3~vf esc~v (~v) =

∫ vesc

0
dvf escv (v) = 1 , (1.58)

which, in order to be satisfied, fixes the normalization constant at:

Nesc = erf (z)− 2√
π
z exp

(

−z2
)

, (1.59)

where z
.
= vesc

v0
and we remind that the error function is defined as:

erf (t)
.
=

2√
π

∫ t

0
exp

(

−x2
)

dx . (1.60)

Smoothly cut Maxwell-Boltzmann distribution

The cut-off that is present in equation (1.55) is sharp, so it is not physical. To
smoothen the transition near the escape speed, one may use a (still ad hoc) version
of the cut Maxwell-Boltzmann distribution which presents a smooth (exponential)
cut-off. This distribution can be found for instance in [12] and it reads:

f esc∗~v (~v)
.
=







1
N∗esc

(

1
πv2

0

)3/2 [

e−|~v|
2/v2

0 − e−v2
esc/v

2
0

]

if |~v| < vesc ,

0 if |~v| > vesc ,
(1.61)

15Let us remark that in this work we speak about distributions, but we treat them as functions
and not as proper distributions in the mathematical sense of the term.
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where

N∗esc
.
= erf (z)− 2√

π
z
(

1 +
2

3
z2
)

e−z
2

. (1.62)

The standard assumption for the dark matter velocity distribution is a Maxwell-
Boltzmann, but often a smooth cut-off of this kind is used also in the standard
picture.

The η function

Now that we have presented the velocity distributions which is used as a stan-
dard assumption, we want to redefine the term that contains the majority of the
astrophysical information in the expression of the scattering rate.

This information is contained in η̃, defined in equation (1.24), but we may also
use an adimensional quantity, so we define the function η as:

η
.
= v0η̃ = v0

∫

|~v′|>v′min(Er)
d3~v′

1

v′
f~v′
(

~v′
)

. (1.63)

Note that many authors define their η as our dimensionful η̃.

1.6.2 Velocity transformation: the basic picture

While the distribution of the velocity of the WIMPs in the Galactic reference frame
is assumed to follow a Maxwell-Boltzmann distribution, the computation of the
event rate relies on the velocity relative to the detector. The two distributions
are related by a Galilean transformation, and there are two superimposed motions
which must be considered separately. The first one is the motion of the Sun around
the Galactic center, the second one is that of the Earth around the Sun.16

Motion of the Sun around the Galactic center

The Sun is orbiting the Galactic center and this orbit is approximately contained
in the Galactic plane. This orbit is expected to be roughly elliptical, and because
of this reason the velocity of the Sun forms an angle with the direction of the
Galactic center (i.e. the line which connect the sun and the Galactic center) which
is not 90◦, as expected if the orbit would have been circular, but rather ≈ 60◦. The
situation is sketched in figure 1.4.

In principle the velocity of the Sun is a time-dependent vector, but since the
time-scale of its changes is by far bigger than the duration of a direct detection
experiment, we consider it as a constant vector, only approximatively lying in the
Galactic plane.

16As already said, in this work we neglect the rotation of the Earth around itself.
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Figure 1.4: Artist’s view of the Milky Way, with the position of the Sun in the Galactic
plane, the projection of the Sun velocity and the Galactic longitude. Figure adapted
from https://en.wikipedia.org.

Motion of the Earth around the Sun

The Earth is orbiting the Sun, the rotation’s timescale of this motion can no longer
be neglected with respect to the lifetime of DMDD experiments, thus Earth’s
velocity will be a time-dependent vector.

As illustrated by figure 1.5, the Plane of the Ecliptic is inclined with respect to
the Galactic plane of an angle of roughly 60◦.

Annual modulation

Here we encounter a very important characteristic of the event rate. The Earth is
orbiting around the Sun, so in one year there will be a moment when the velocity
of the Earth will be maximally aligned with that of the Sun (not parallel, see the
following sections), as shown by figure 1.6. When this will happen, of course the flux
of WIMPs hitting the Earth (and thus any DMDD detector) will be enhanced, and
as a consequence the collision rate will have a maximum. Roughly six months later
the situation will be inverted, and the collision rate will then have a minimum. This
means that the collision rate will have an annual modulation, with one maximum
and one minimum during the year. If the Maxwell-Boltzmann is assumed, with the
standard values of the parameters, the maximum happens in June the 1st, and the
minimum in December the 1st (see for instance [18]).
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Figure 1.5: The relative position between the Ecliptic plane and the Galactic plane.
Note that in reality the Ecliptic plane does not pass through the Galactic center. Note
also that the diameter of the Ecliptic shown in the figure should point in a direction
which lies in the Galactic plane, but 8◦ far away from the Galactic center, so the Galactic

longitude of the North Ecliptic Pole is not 90◦, but instead it is lNEP ≈ 98◦. Figure from
http://atomictoasters.com.

Figure 1.6: Relative motion of the Earth around the Sun, showing the maximum and
the minimum alignment of the velocities of these two objects. Figure adapted from
www.hep.shef.ac.uk.
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1.6.3 Velocity transformation: rigorous calculation

Now we want to understand how to transform f~v (~v) into f~v′(~v′). For this purpose
we need to understand how the velocities ~v′ and ~v are related, and to insert this
relation into f~v (~v) (that we assume a priori) in order to obtain f~v′(~v′).

The relation between the velocity of a WIMP in the Earth reference frame ~v′ and
the one in the Galactic reference frame ~v is given by the Galilean transformation:

~v′ = ~v − ~v⊕ (t) , (1.64)

where ~v⊕ (t) is the velocity of the Earth reference frame (i.e. any reference frame in
which the Earth is at rest) w.r.t. the Galactic reference frame. Now the distribution

f~v′
(

~v′χ
)

is simply obtained inserting (1.64) in f~v(~v):

f~v′(
~v′) = f~v(~v⊕ (t) + ~v′) . (1.65)

We can also calculate |~v|2:

|~v|2 =
∣

∣

∣~v⊕ (t) + ~v′
∣

∣

∣

2
=
∣

∣

∣

~v′
∣

∣

∣

2
+ |~v⊕ (t)|2 + 2

∣

∣

∣

~v′
∣

∣

∣ |~v⊕ (t)| cosϑ , (1.66)

where for every ~v the angle ϑ is the angle between ~v⊕ and ~v.

The motion of the Earth w.r.t. the Galactic frame

Before studying how the velocity distribution of dark matter changes, let us compute
~v⊕. The velocity of the Earth w.r.t. the Galactic frame is constituted by two
components:

~v⊕ (t) = ~v⊕/⊙ (t) + ~v⊙ , (1.67)

where ~v⊙ is the velocity of the Sun w.r.t. the Galactic frame, detailed in the
following paragraph, while ~v⊕/⊙ (t) is the velocity of the Earth w.r.t. the Sun,
described in the next-to-following one.

The motion of the Sun w.r.t. the Galactic frame

The velocity of the Sun in the Galactic frame can be separated itself into two
components:

~v⊙ = ~vLSR + ~v⊙pec , (1.68)

where ~vLSR is the velocity of the Local Standard of Rest17 (LSR), while ~v⊙pec is the
velocity of the Sun w.r.t. the LSR, called the peculiar velocity of the Sun.

Galactic coordinates are defined as the coordinates in the Cartesian frame
aligned with the x axis in the direction which connects the center of the Galaxy

17The LSR is defined as the rest frame at the location of the Sun of a star that would be on
a circular orbit in the gravitational potential one would obtain by azimuthally averaging away
non-axisymmetric features in the actual Galactic potential.
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and the Sun, directed toward the center of the Galaxy, the y axis lying in the plane
of the disk, and directed as the rotation of the stars of the disk, and thus the z
axis perpendicular to the Galactic plane, see figure 1.4. The components of the
velocity vectors in this section are given in the Galactic reference frame.

The velocity of the LSR is defined as:

~vLSR
.
= (0, vc, 0) , (1.69)

where vc is the Galactic circular speed at the position of the Sun. The peculiar
velocity of the Sun is defined as:

~v⊙pec
.
= (U⊙, V⊙,W⊙) , (1.70)

so the velocity of the Sun turns out to be:

~v⊙ = (U⊙, vc + V⊙,W⊙) . (1.71)

For the peculiar velocity of the Sun, in this work we use the values most
commonly used in the literature at the moment of writing, which have been
determined in [19] and reads

~v⊙pec =
(

11.1+0.69
−0.75, 12.24+0.47

−0.47, 7.25+0.37
−0.36

)

km/s (1.72)

with additional systematic uncertainties of ≈ (1, 2, 0.5) km/s.
Let us note that the values of U⊙, V⊙ and W⊙ as well as vc are determined

via observations, and the results of such studies in the literature are affected by
uncertainties and present some contrast between each others, as we will see in
chapters 4 and 5.

The motion of the Earth in the Solar system

The velocity of the Earth w.r.t. the Sun, in Galactic coordinates, can be written
as (see for instance [12], but also [20] where a slightly different notation is used18):

~v⊕/⊙ (t) = v⊕/⊙

[

ε̂1 cos
(

2π

T

(

t− t̃
)

)

+ ε̂2 sin
(

2π

T

(

t− t̃
)

)]

, (1.73)

where v⊕/⊙ = 29.8 km/s, and the two unitary vectors ε̂1 and ε̂2 have the compo-
nents:

ε̂1 = (0.9931, 0.1170,−0.01032) and ε̂2 = (−0.0670, 0.4927,−0.8676) , (1.74)

and are the directions of the Earth’s motion at the Spring equinox (March 21,
t = t̃ = 80 days) and Summer solstice (June 21, t = t̃+ 0.25 years), respectively.

18 A most recent and accurate determination of these quantities can be found in [21]. In our
work anyway we stick to the standard values presented above.

27



1. Direct detection: formalism and general aspects

The value of t̃ = 80 days corresponds to 21 March, i.e. the Spring Equinox, and
it is the time at which the direction of the Earth’s motion is ε̂1; so we choose the
value of t̃ by construction, i.e. because of the definitions (1.73) and (1.74). With
this value for the phase t̃, we can compute the maxima/minima of |~v⊕|. We get
t = 152 days (i.e. the 1st of June) and t = 152 + 365

2
days ≈ 335 days, i.e. the 1st

of December.

Note anyway that the expected event rate in a DMDD experiment can have
different minima/maxima. In particular an exchange of the times at which maximum
and minimum occur is possible, and it occurs for combinations of mχ and mA

corresponding to a low enough vmin, as we will see in the next sections.

Also other changes in the shape of the modulation and in the time at which the
maximum and the minimum occur are possible, as detailed in [12]. For instance, [12]
considers (among others) the addition of another component to the smooth dark
matter halo following a Maxwell-Boltzmann distribution, a stream of dark matter
particles modeled on the base of the Sagittarius stream, which originates from
the Sagittarius galaxy which is a satellite of the Milky Way. This stream has
a very different velocity distribution, and thus originates a DMDD signal which
has a maximum on December the 29th, and a minimum on June the 30th. The
resulting modulation spectrum is a linear combination of the spectrum for the
smooth halo component and that for the stream, appropriately weighted; it is no
longer sinusoidal, is not even symmetric in time and has a maximum which occurs
several months from each maximum of the two separate components.

The velocity of the Earth w.r.t. the Galaxy

Inserting equations (1.73) and (1.68) into (1.67) we obtain:

~v⊕ (t) =











v⊕/⊙ε1x cos
(

2π
T

(

t− t̃
))

+ v⊕/⊙ε2x sin
(

2π
T

(

t− t̃
))

+ U⊙

v⊕/⊙ε1y cos
(

2π
T

(

t− t̃
))

+ v⊕/⊙ε2y sin
(

2π
T

(

t− t̃
))

+ vc + V⊙

v⊕/⊙ε1z cos
(

2π
T

(

t− t̃
))

+ v⊕/⊙ε2z sin
(

2π
T

(

t− t̃
))

+W⊙











. (1.75)

From this we can easily calculate the modulus that appears in equation (1.66):

|~v⊕ (t)|2 =v2
⊕/⊙ + U2

⊙ + (vc + V⊙)2 +W 2
⊙

+ 2v⊕/⊙ sin
(

2π

T

(

t− t̃
)

)

[ε2xU⊙ + ε2y (vc + V⊙) + ε2zW⊙]

+ 2v⊕/⊙ cos
(

2π

T

(

t− t̃
)

)

[ε1xU⊙ + ε1y (vc + V⊙) + ε1zW⊙]

+ 2v2
⊕/⊙ cos

(

2π

T

(

t− t̃
)

)

sin
(

2π

T

(

t− t̃
)

)

[ε1xε2x + ε1yε2y + ε1zε2z] .

(1.76)
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1.6.4 Approximated expressions for the η term

Now that we know how to write the distribution in terms of the velocities in the
Earth’s frame, we can work out the calculation of the collision rate.

We look at it in three different cases: 1) neglecting the motion of the Earth and
the motion of the Sun, 2) neglecting only the motion of the Earth around the Sun,
and finally 3) with all the terms.

We express our results in terms of η, which is a function of many physical
variables, but in the sequel we will write it as a function of few or none of them
only, for simplicity.

We recall here equation (1.28), which tells us that for the spin-independent
interaction we have:

dR

dEr
≈ σp,SIF

2

2m2
redmχ

̺⊙η̃ . (1.77)

(1.78)

Neglecting the motion of the Earth and the motion of the Sun

If we could neglect the motion of the Sun through the Galaxy, and that of the
Earth around the Sun, we would have simply ~v′ ≈ ~v, and then at this point in
order to get η we would just need to choose a form for the velocity distribution of
dark matter, which appears in equation (1.63), and solve the integral therein. In
the case of the smoothly cut Maxwell-Boltzmann distribution of equation (1.61),
the calculation is straightforward, and η̃ turns out to be:

η̃ (vmin (Er,mχ,mA) , v0) =
2

v0

√
πN∗esc

(

exp
(

−vmin
v0

)2

− exp
(

−vesc
v0

)2
)

(1.79)

=
2

v0

√
πN∗esc

(

exp

(

− ErmA

2m2
redv

2
0

)

− exp
(

−vesc
v0

)2
)

,

(1.80)

where we recall that v0 is the most probable speed of the Maxwell-Boltzmann
distribution.

We can clearly see that because of (1.80) the differential event rate (1.77)
is exponentially decreasing with the recoil energy Er. This feature, present al-
ready at this very approximate stage, will remain present also in the subsequent
approximations.

η has here lost its time-dependence because the time-dependent part of the ve-
locity has been neglected. Anyway, for the purposes of direct detection experiments
we cannot neglect the above mentioned motions.

Neglecting only the motion of the Earth around the Sun

With the approximation
~v′ ≈ ~v − ~v⊙ , (1.81)
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we obtain (again for a smoothly cut Maxwell-Boltzmann and for SI interaction):

η̃ =



































































erf

(

x+
v⊙
v0

)

−erf

(

x− v⊙
v0

)

− 4√
π

(

1−

(

x2+
(
v⊙
v0 )

2

3
−z2

))

v⊙
v0
e−z

2

2N∗escv⊙

for vmin < |v⊙ − vesc|,
erf(z)−erf

(

x− v⊙
v0

)

− 2√
π

(

v⊙
v0

+z−x− 1

3

(

v⊙
v0
−2z−x

(

v⊙
v0

+z−x
)2
))

e−z
2

2N∗escv⊙

for |v⊙ − vesc| < vmin < v⊙ + vesc ,

0 for v⊙ + vesc < vmin
(1.82)

where x = vmin/v0 and z = vesc/v0, and again there is no time-dependence in η.

Exact calculation

Finally, without approximations, i.e. with

~v′ = ~v − ~v⊕ (t) = ~v − ~v⊙ − ~v⊕/⊙ (t) , (1.83)

we have the full solution, that we will give in equation (1.96).

Now η has acquired a time dependence, through the time dependent ~v⊕ (t).

In the next section we will provide the analytic forms for η computed for the
pure, cut and smoothly cut Maxwell-Boltzmann distributions.

1.6.5 Velocity distributions in the Earth reference frame

Transformed pure Maxwell-Boltzmann distribution

If we have assumed for the distribution of the dark matter in the Galactic rest frame
a pure Maxwell-Boltzmann shape, inserting (1.66) in the distribution (1.46) we

obtain the corresponding f~v′
(

~v′χ
)

holding for the velocities in the Earth’s reference
frame which is:

f~v′(
~v′) = f~v

(

~v⊕ (t) + ~v′
)

=
1

v3
0π

3

2

exp





−
∣

∣

∣~v⊕ (t) + ~v′
∣

∣

∣

2

v2
0





 . (1.84)

Using this result and equation (1.63) we can rewrite η as:

ηMB (t, vmin (Er,mχ,mA) , v0) = v0

∫

|~v′|>v′min
d3~v′

1

v′
1

v3
0π

3

2

exp





−
∣

∣

∣~v⊕ (t) + ~v′
∣

∣

∣

2

v2
0







(1.85)
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We can solve this integral and we obtain:19

ηMB (t, vmin (Er,mχ,mA) , v0) =
v0

2v⊕ (t)

[

erf

(

vmin
v0

+
v⊕ (t)

v0

)

− erf

(

vmin
v0

− v⊕ (t)

v0

)]

.

(1.86)
Note that the escape speed do not appear here because we are considering the pure
Maxwell-Boltzmann without any cut-off.

Applying now the same definition and procedure that we used in deriving equa-
tion (1.54) from equation (1.53), we obtain that the speed distribution associated
with a pure Maxwell-Boltzmann velocity distribution, in the Earth reference frame,
is:

fv′ (v
′) =

v′ exp
[

−
(

v′

v0

)2 −
(

| ~v⊕|
v0

)2
]

v0

√
π | ~v⊕|

[

exp

(

2
v′ | ~v⊕|
v2

0

)

− exp

(

−2
v′ | ~v⊕|
v2

0

)]

(1.87)

This speed distribution is shown in figure 1.7 for two different times of the year,
t = 152 days and t = 335 days. These times correspond to June the 1st and
December the 1st, i.e. they correspond to the minimum and maximum alignment
of the velocity of the Earth with the Sun’s one. In the same figure we plotted the
pure Maxwell-Boltzmann speed distribution in the Galactic reference frame, i.e.
equation (1.54).
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Figure 1.7: An example of a pure Maxwell-Boltzmann speed distribution in the Galactic
frame and in the Earth frame at two different times of the year.

19The same result is obtained in [12, page 30], but note that their η is defined as our η̃.
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Transformed cut Maxwell-Boltzmann distribution

If we assume as distribution for the WIMP’s velocities the cut Maxwell-Boltzmann
distribution of equation (1.55), η will be a function of the following variables:

η = η (t, vmin (Er,mχ,mA) , vesc, v0) . (1.88)

For the velocities in the Earth’s reference frame we obtain:

f esc~v′

(

~v′χ
)

=
1

Nesc

f~v
(

~v⊕ (t) + ~v′χ
)

Θ
(

vesc −
∣

∣

∣~v⊕ (t) + ~v′χ
∣

∣

∣

)

=







1
Nesc

f~v
(

~v⊕ (t) + ~v′χ
)

if |~v⊕ (t) + ~v′χ| < vesc ,

0 if |~v⊕ (t) + ~v′χ| > vesc .

(1.89)

Using this result we can rewrite η as:

η (t, vmin (Er,mχ,mA) , vesc, v0) (1.90)

=
∫

|~v′|>v′min
d3~v′

Θ
(

vesc −
∣

∣

∣~v⊕ (t) + ~v′χ
∣

∣

∣

)

v′Nescv2
0π

3

2

exp





−
∣

∣

∣~v⊕ (t) + ~v′χ
∣

∣

∣

2

v2
0





 . (1.91)

This integral can be solved analytically, and the result is provided by equation
(1.96) taking β = 0.

Transformed smoothly cut Maxwell-Boltzmann distribution

Assuming as distribution for the WIMP’s velocities the smoothly cut Maxwell-
Boltzmann distribution of equation (1.61), η will be again a function of the following
variables:

η = η (t, vmin (Er,mχ,mA) , vesc, v0) . (1.92)

For the velocities in the Earth’s reference frame we obtain:

f esc∗~v′

(

~v′
) .

=











1
N∗esc

(

1
πv2

0

)3/2
[

e−|~v⊕(t)+~v′|2/v2
0 − e−v2

esc/v
2
0

]

if
∣

∣

∣~v⊕ (t) + ~v′
∣

∣

∣ < vesc ,

0 if
∣

∣

∣~v⊕ (t) + ~v′
∣

∣

∣ > vesc .

(1.93)
Using this result we can rewrite η as:

η (t, vmin (Er,mχ,mA) , vesc, v0) (1.94)

=
∫

|~v′|>v′min
d3~v′

Θ
(

vesc −
∣

∣

∣~v⊕ (t) + ~v′χ
∣

∣

∣

)

v′N∗escv
2
0π

3

2

[

e−|~v⊕(t)+~v′|2/v2
0 − e−v2

esc/v
2
0

]

. (1.95)

This integral can be solved analytically, and the result can be found in [12, page
30] (where their η is defined as our η̃). We report here the solution corresponding
to (1.89) (obtained for β = 0) and the one for (1.93) (obtained for β = 1). They
read:
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η̃ =







































1
|~v⊕(t)| for z < y, x < |y − z| ,
erf(x+y)−erf(x−y)− 4√

π

(

1−β
(

x2+ y
2

3
−z2

))

ye−z
2

2Nesc,β |~v⊕(t)| for z > y, x < |y − z| ,
erf(z)−erf(x−y)− 2√

π (y+z−x−β
3

(y−2z−x)(y+z−x)2)e−z
2

2Nesc,β |~v⊕(t)| for |y − z| < x < y + z ,

0 for y + z < x ,

(1.96)
where x

.
= vmin/v0, y

.
= |~v⊕ (t)| /v0 and z

.
= vesc/v0. Note that the normalization is

different for the two distributions, so we have Nesc,0
.
= Nesc and Nesc,1

.
= N∗esc.

1.7 Annual modulation

In the previous section we have seen that the velocity of the Earth changes with
time, because our planet orbits around the Sun and this motion, unlike the motion
of the Sun throughout the Galaxy, has a timescale comparable with that of the
direct detection experiments.

Once we have expressed ~v⊕ (t) as in equation (1.67), we are interested in
discussing its variation over time. It is important to remind that this velocity arises
from the composition of the constant term ~v⊙ and the time-dependent term ~v⊕/⊙ (t).
As time changes, ~v⊕ (t) changes too, and in particular |~v⊕ (t) | varies through a
maximum and a minimum. Anyway, due to the inclination of the plane of the
ecliptic w.r.t. the Galactic plane, these extreme values are not |~v⊙|+ |~v⊕/⊙| and
|~v⊙| − |~v⊕/⊙|, as can be seen from figure 1.8.

Note also that, as can be seen from the figure, the curve which describes |~v⊕ (t) |
is slightly translated to higher velocity values w.r.t. |~v⊙|. This is due to the fact
that the axis of inclination of the Ecliptic w.r.t the Galactic plane is not passing
through the center of the Galaxy, but 8◦ further away.

Once we take into account the motion of the Earth around the Sun, we have
a time dependence of the velocity distribution of the dark matter particles in the
Earth frame. As a consequence, also η, and so the differential scattering rate
dR/dEr of equation (1.28), and the scattering rate R itself, will present a time
dependence (in particular they will have a periodic behavior with a period of
one year). The precise behavior with time of these quantities depends on which
velocity distribution we consider for the dark matter. In the case of a pure Maxwell-
Boltzmann distribution (1.53), η (t) assumes the form (1.86), and its behavior with
time can be well approximated by a cosinusoidal function plus a constant, so does
the event rate. In this section we want to show this in detail. Similar behavior is
expected for a cut Maxwell-Boltzmann distribution with vesc, as that in equation
(1.55). Behaviors which differ by far from the cosinusoidal one are typical of certain
velocity distributions, for instance those presented in [12, figure 4].
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1.7.1 Approximated expression for the velocity of the Earth
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Figure 1.8: Yearly variation of the modulus of the velocity of the Earth w.r.t. the Galactic
frame. For this illustration we have assumed v⊙ ≈ 232.6 km/s, v⊕/⊙ = 29.8 km/s, and
v⊙ (t) as in the text.

We can calculate v⊕
.
=
√

|~v⊕| using (1.76), and considering that v⊕/⊙ ≪ v⊙ we
obtain to first order the approximated expression:

v⊕ (t) ≈ v⊙ + bv⊕/⊙ cos
(

2π

T
(t− t0)

)

, (1.97)

where bi
.
= ε̂i · v̂⊙, b

.
=
√

b2
1 + b2

2 and t0 is the time at which the maximum of v⊕ (t)
occurs, i.e. t0 ≈ 152 days with the above mentioned assumptions on the motion of
the Sun and the Earth.

1.7.2 Approximated expression for the η term

We are now going to show that the function η (t) in the case of a pure Maxwell-
Boltzmann distribution is well approximated by a cosine plus a constant. We
start from the expression (1.86), and defining xmin

.
= vmin

v0
and y (t)

.
= v⊕(t)

v0
we can

rewrite it as:

η (y (t)) =
1

2y (t)
[erf (xmin + y (t))− erf (xmin − y (t))] . (1.98)

Using the approximation (1.97) we get for y (t) the approximation

y (t) ≈ 1

v0

(

v⊙ + bv⊕/⊙ cos
(

2π

T
(t− t0)

))

= y0 + δy cos
(

2π

T
(t− t0)

)

, (1.99)
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where y0
.
= v⊙

v0
∼ 1 and δy

.
=

bv⊕/⊙
v0
∼ 10−1, i.e. we can see that δy ≪ y0 because

v⊕/⊙ ≪ v⊙.
Now we can develop η (t) in Taylor series, i.e. we can write:

η (y (t)) =
∞
∑

n=0

η(n) (y0)

n!
(y (t)− y0)

n , (1.100)

and keep only the first two terms, those with n = 0 and n = 1 respectively, and
neglect all the subsequents. In fact, since |y (t)− y0| ≤ δy ≈ 10−1, it turns out that
|y (t)− y0| ≫ (y (t)− y0)

2.
Inserting the explicit form of η (1.98) in the development (1.100) and neglecting

the terms of order higher than n = 1 we get:

η (y (t)) ≈ η (y0) +Mη cos
(

2π

T
(t− t0)

)

, (1.101)

with

Mη
.
=
δy

y0

[

1√
π

(

e−(xmin+y0)2 − e−(xmin−y0)2
)

− η (y0)

]

. (1.102)

1.7.3 Approximated expressions of the event rate

Now, inserting the expression (1.101) in the equation for the differential event rate
(1.28), we obtain

dR

dEr
(Er, t) ≈

dR0

dEr
(Er) +

dRmod

dEr
(Er) cos

(

2π

T
(t− t0)

)

, (1.103)

with

dR0

dEr
(Er)

.
=
̺⊙A

2σp,SIF
2 (Er)

2v0mχm2
red,p (mχ)

η (y0) and
dRmod

dEr
(Er)

.
=
̺⊙A

2σp,SIF
2 (Er)

2v0mχm2
red,p (mχ)

Mη .

(1.104)
Experiments collect events that they often must put into energy bins before

performing statistical analyses. A bin has a finite width, in which the total rate
reads

R (t) =
∫ E2

E1

dEr
dR

dEr
(Er, t) , (1.105)

so using the approximation (1.103) we obtain

R (t,mχ, σp,SI) ≈ R0 (mχ, σp,SI) +Rmod (mχ, σp,SI) cos
(

2π

T
(t− t0)

)

, (1.106)

with

R0 (mχ, σp,SI)
.
=

̺⊙A
2σp,SI

2v0mχm2
red,p (mχ)

∫ E2

E1

dErF
2 (Er) η (y0) (1.107)

and

Rmod (mχ, σp,SI)
.
=

̺⊙A
2σp,SI

2v0mχm2
red,p (mχ)

∫ E2

E1

dErF
2 (Er)Mη (Er) . (1.108)
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1.7.4 The recoil spectra, the amplitude of the modulation
and the phase inversion

As we have seen, the time dependence of the differential event rate comes entirely
from the time dependence of the term η. This term undergoes a small (but crucial
in this section) variation during the year, and this variation reflect on a similar
variation on the differential event rate. We show in figure 1.9 the differential event
rate (also called recoil spectrum) computed at t = 152 days (June the 1st) and
t = 335 days (December the 1st), which correspond to the time of the maximum
and minimum of the differential event rate. We can see from the figure that the
differential event rate at t = 335 days is greater than that at t = 152 days for low
values of the recoil energy Er, while the converse occurs for high Er values.

For illustrative purposes the figures of this section have been obtained considering
a WIMP of mχ = 100 GeV scattering off a xenon nucleus with a WIMP-proton
SI cross section of σp,SI = 10−45 cm2, assuming the smoothly cut MB distribution,
the SHM values for the astrophysical parameters (see next section) and the Helm
form factor. We recall that features similar to those illustrated in this section for
the differential event rate as a function of the recoil energy are present also in the
term η as a function of the minimal velocity vmin (a part from the effect of the
form factor), since the two are related by (1.28).
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Figure 1.9: We compare the differential event rates at t = 152 days and t = 335 days,
for a WIMP of mχ = 100 GeV scattering off a xenon nucleus with a WIMP-proton SI
cross section of σp,SI = 10−45 cm2, assuming the smoothly cut MB distribution, the SHM
values for the astrophysical parameters and the Helm form factor.
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Let us recall that the average differential event rate is approximately given by

〈dR/dEr〉 ≈
1

2

(

dR

dEr
(Er, 152) +

dR

dEr
(Er, 335)

)

, (1.109)

and the amplitude of the modulation is given by

∆
dR

dEr
(Er) ≈

1

2

(

dR

dEr
(Er, 152)− dR

dEr
(Er, 335)

)

. (1.110)

Two important features of the modulation should be pointed out. First, the
amplitude of the modulation is usually small relative to the average rate, in
particular it is in general of order 1% to 10% of the average rate. Second, the
amplitude of the modulation changes sign at low recoil energies (small vmin).

These two features are evident in figure 1.10, where we compare the average
differential event rate with the modulus of the amplitude of the modulation of the
differential event rate. This figure has been obtained with the above mentioned
assumptions, but the described features occur in general, not only in this particular
case. We remark that in the figure the modulus of the amplitude is shown, so that
the sign change of the modulation appears as the fall of the blue curve at around
Er ≈ 20 keV.
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Figure 1.10: The average differential event rate is shown together with the associated
modulation (definitions are given in the text), for a WIMP of mχ = 100 GeV scattering
off a xenon nucleus with a WIMP-proton SI cross section of σp,SI = 10−45 cm2, assuming
the smoothly cut MB distribution, the SHM values for the astrophysical parameters and
the Helm form factor.

The amplitude of the modulation is positive when dR
dEr

(Er, 152) > dR
dEr

(Er, 335)

(so tmax = 152 days and tmin = 335 days) and negative when dR
dEr

(Er, 152) <
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dR
dEr

(Er, 335) (so tmax = 335 days and tmin = 152 days). Thus, the change in sign
of the modulation tells us that the times at which maximum and minimum occur
can exchange. As we can see from figure 1.11, the amplitude of the modulation
is negative for low recoil energies (small vmin), where thus tmax = 335 days, and
positive for high recoil energies (large vmin), where thus tmax = 152 days.

The phase reversal of the annual modulation that we have shown in figure 1.11
provides a way to determine the WIMP mass (see for instance [12]). In fact, while
the phase of the modulation is fixed for a given vmin, regardless of the WIMP mass,
the phase of the modulation for a given recoil energy is not. This occurs because,
due to the relation (1.16), to compute the recoil energy associated with a given vmin
one also must specify the mass of the WIMP (and the mass of the target nucleus).
Thus the WIMP mass can be constrained trough an experimental determination
of the recoil energy at which the phase reverses. Moreover, the detection of this
phase reversal could constitute an important signature of WIMPs, because known
backgrounds are not expected to provide such an effect.
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Figure 1.11: We show the amplitude of the modulation of the differential event rate
for a WIMP of mχ = 100 GeV scattering off a xenon nucleus with a WIMP-proton SI
cross section of σp,SI = 10−45 cm2, assuming the smoothly cut MB distribution, the SHM
values for the astrophysical parameters and the Helm form factor.

1.8 The standard halo model (SHM)

The so called standard halo model is a sort of industry agreed standard used in
interpreting the results of DMDD experiments. It consists of a set of assumptions
about the astrophysics entering the calculation of quantities related to DMDD
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experiments (for instance the scattering rate (1.23)). The advantage of this model
is that it allows the comparison between the results of different experiments.

Let us now fix what we will call from now on the Standard Halo Model (SHM).20

This model assumes for the velocity distribution of the dark matter at the position
of the Sun a Maxwell-Boltzmann form. Usually this distribution is cut in such a
way that no particle is present at |~v| > vesc. This can be obtained with a sharp
cut-off like in (1.55), but in our computations we prefer to use the more physical
smooth cut-off of (1.61).

The values assumed by the SHM are:

vesc = 544 km/s, vc = 220 km/s, v0 = vc and ̺⊙ = 0.3 GeV/cm3, (1.111)

where we recall that vesc is the local Galactic escape speed, vc is the circular speed
at the position of the Sun, v0 is the most probable speed of the Maxwell-Boltzmann
distribution (which gives also a measure of the dispersion of the speeds around
the mean value), and ̺⊙ is the local dark matter density. The values above are
employed for instance in the interpretation of the experiments XENON100 ( [22]),
CDMSII ( [23]) and LUX ( [24]).

Some papers using the SHM specify also that they assume a mean circular
velocity of the Earth with respect to the galactic center of 232 km/s (like for
instance [23]).21 This quantity is equivalent to the average (over time) of our
equation (1.97), i.e. (for sufficiently long time) to the modulus of ~v⊙, the velocity
of the Sun in the galactic rest frame, given in equation (1.71). It is straightforward
to see from that equation that the values we employed for the peculiar motion of
the Sun, equation (1.72), used with the above value of vc give precisely the value
of 232 km/s.22

20 Note that, even if this model is rather standard, some variations are possible depending on
the author and the collaboration. Moreover, the value of some of the quantities of the SHM has
slightly changed over time, so we try to provide the most recent values assumed under this name.

21Note that sometimes the authors do not specify which value has been assumed for such a
quantity (for instance [22]), while others use different values (for instance 245 km/s in [24]).

22 Note anyway that, instead of using the approximated equation (1.97), we fully implemented
in our code the peculiar motion of the Sun and the motion of the Earth around it, see section
1.6.3.
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2.1 Introduction

Many tens of experiments which aim at detecting WIMPs (and/or other dark
matter candidates, for instance axions) via their scattering off nuclei in a detector
are currently operating, and the next generation (under construction) is about to
reach the ton scale.

In this chapter we explain how we can use the data taken by such DMDD
experiments to obtain limits or signal regions in the relevant parameter space. We
will focus on the interpretation of such results in terms of spin-independent elastic
scattering of WIMPs off nuclei (and we will present only some of the existing
experiments and statistical methods, among which those that we are going to
consider in the rest of this work).

We start by presenting some experimental facts that must be taken into account,
and enter in the computation of the total event rate R, and then we present the
statistical methods that we have applied to compute upper limits. We then
introduce a certain number of DMDD experiments, some of which are relevant for
our work and will be used in the following chapters. We will focus in particular
on the quantities that we can use to recompute the associated limits or regions.
We will present a number of experiments which allow to put upper limits in the
parameter space σpSI ,mχ, as well as the DAMA experiment with its long standing
detected modulated signal, and its interpretation in terms of SI elastic scattering
of WIMPs off nuclei. We will conclude by presenting the prospects for future
experiments.
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2. Understanding the experimental results

2.2 Experimental features that must be taken

into account

In chapter 1 we have presented the total event rate R (i.e. the number of events
per unit time per unit detector mass) of a DMDD experiment, that we have finally
written as an integral over energies of the differential event rate dR/dEr, equation
(1.18). When we deal with real detectors, we must also account for the precise
composition and response of the detector to predict the recoil event rate for a given
experiment; this is what we are going to present in this section.

In particular, we need to take into account that in some experiments the
measured recoil energy is just a part of the actual recoil energy (this is called
quenching), that experiments introduce cuts in the data to reduce the background,
so an energy-dependent experimental efficiency must be included, and that the
experimental apparatus cannot determine energies with a perfect precision, so
an energy resolution must be taken into account. Moreover, real experiments
sometimes use as targets more than one nuclear species, and/or the target element
exists in nature with more than one isotope. Finally, to obtain the number of
expected events we need to multiply the event rate by the mass of the detector and
the exposure time, and for experiments which run for a certain period of time but for
which the number of detected events (thanks to efficient background discrimination)
is very small, we need to take the average over time of the time-dependent total
event rate. These points are reviewed for instance in [13], and more recently in [25]
and [26].

2.2.1 Quenching

The recoiling nucleus transfers its energy to either the electrons, in which case
this energy may be observed as ionization or scintillation in the detector, or to
other nuclei, producing phonons or heat. Experiments that do not measure the
phonons/heat can only directly measure the fraction of energy Q that goes into
the channel that is observed (such as scintillation); we refer to this as the observed
nuclear recoil energy Eobs. Observed energies for experiments that measure only
from the electron channel are usually quoted in keVee, where ee stands for “electron
equivalent”.1 These differ from the actual nuclear recoil energy Er (sometimes
quoted in keVnr, where nr stands for “nuclear recoil”), and they are related through
the so-called quenching factor Q, via the relation

Eobs = QEr . (2.1)

Some detectors can calibrate their energy scale to Eobs = Er, in which case the
quenching factor can be ignored (Q = 1) in the above formulation (this is the case

1Let us note that, on the other hand, for experiments which measure phonons, the phonon
energy can be labeled as well in electron equivalent units, as it is the case for CDMSLite [27],
which calibrates the phonon energy w.r.t. electron recoils; a conversion to nuclear recoil energies
is thus necessary, as explained in detail in section 2.5.7.
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for instance of XENON10 [28] and CDMSII [23], as pointed out also in [25]).
Often we will not be interested in the event rate over the full energy spectrum

to which the experiment is sensitive (1.18), but instead we will need to compute the
total event rate within a particular detected energy interval [E1, E2], which reads:

R[E1,E2] (t) =
∫ E2/Q

E1/Q
dEr

dR

dEr
(Er, t) =

∫ E2

E1

dEobs
dR

dEobs
(Eobs, t) , (2.2)

where the last equality simply follows via a trivial substitution. This form is
relevant when dealing with binned events, or when applying the maximum gap
method presented in section 2.3.2.

2.2.2 Experimental efficiency

Due to e.g. data cuts designed to reduce backgrounds, an energy dependent
experimental efficiency ε (Eobs) must be taken into account, so the above equation
becomes:

R[E1,E2] (t) =
∫ E2

E1

dEobsε (Eobs)
dR

dEobs
(Eobs, t) =

∫ E2/Q

E1/Q
dErε (QEr)

dR

dEr
(Er, t) .

(2.3)

2.2.3 Energy resolution

Detectors cannot determine the event energies with perfect precision. If the expected
amount of energy in the channel an experiment observes due to a nuclear recoil is
Eobs, the measured energy will be distributed about Eobs, and we will indicate it as
E ′. The previous formula applies only for a perfect energy resolution and must be
corrected for this finite resolution. To take it into account, the differential event
rate in the previous equation has to be replaced by a convolution of the differential
event rate with a function G (Eobs, E

′) which describes the energy resolution (and
in particular the dispersion of the value of the measured energy E ′ around the
actual value Eobs ), so instead of equation (2.3) we will use2

R[E1,E2] (t) =
∫ E2

E1

dE ′
∫ ∞

0
dEobsε (Eobs)

dR

dEobs
(Eobs, t)G (Eobs, E

′) (2.4)

=
∫ ∞

0
dEobsε (Eobs)

dR

dEobs
(Eobs, t)

∫ E2

E1

dE ′G (Eobs, E
′) .

Usually a Gaussian energy resolution is assumed, the form of which is given by

G (Eobs, E
′) =

1

σ (Eobs)
√

2π
exp

[

−(E ′ − Eobs)2

2σ2 (Eobs)

]

(2.5)

2 Note that sometimes, as for instance in [26], a second experimental efficiency ε (E′) is used,
in which case equations (2.6) and (2.7) are no more valid.
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where σ (Eobs) is the standard deviation of the above Gaussian distribution of mean
Eobs, but it is often referred to as “the energy resolution” tout court.

If such an energy resolution is assumed, the integration over E ′ in equation
(2.4) can be solved providing a result in terms of the error function. So we can
rewrite equation (2.4) with the integral in Eobs only, as

R[E1,E2] (t) =
∫ ∞

0
dErε (QEr) Φ (QEr, E1, E2)

dR

dEr
(Er, t) , (2.6)

where we have defined the so-called energy response function as

Φ (Eobs, E1, E2)
.
=
∫ E2

E1

dE ′G (Eobs, E
′) (2.7)

=
1

2

[

erf

(

E2 − Eobs√
2σ (Eobs)

)

− erf

(

E1 − Eobs√
2σ (Eobs)

)]

.

It should be noticed that the energy resolution becomes particularly important
at low WIMP masses, so particular care should be employed in this regime. Let
us consider for instance dual phase detectors (as those using xenon as a target
material), for which as we will see the number of detected photoelectrons (of
the primary scintillation signal S1, see the following sections) is then converted
into nuclear recoil energy. Close to the energy threshold, the number of detected
photoelectrons is small. For this reason, one could reasonably expect the detector
resolution for nuclear recoils (as a function of Er) to be governed by Poisson
statistics for the number of detected photoelectrons.3

2.2.4 More than one target nucleus and isotopic composi-
tion

The above equations are related to the interaction between a WIMP and a particular
nucleus, but in detectors there may be several different nuclei and several isotopes
per nucleus. The mass number A is the total number of nucleons in a single nucleus,
i.e. the number of protons plus neutrons, so it is a dimensionless integer. Since in
nature for the majority of the elements there exist many different isotopes for each
element, and different isotopes of the same element differ because of their number
of neutrons, the mass number is not characteristic of a certain element, but rather
of a certain isotope of a certain element.4 So detectors based on elements which

3 Moreover, as pointed out by [29], reality is more complicated, and the observed distribution
is at best quasi Poisson. Thus, [29] concludes that the detector resolution can unlikely be
summarized with a simple statistical model, in particular at low recoil energies where it is more
relevant. For light WIMP masses (below ∼ 10 GeV), regime in which the detector sensitivity
is dominated by Poisson fluctuations above the threshold in the S1 signal, a correct model of
the detector resolution becomes essential, and it seems preferable to use the discrete resolution
distributions directly obtained from Monte Carlo simulations.

4A quantity which is characteristic of a certain element is instead the relative atomic mass

which is the mass of a nucleus of a certain element averaged over the population of different
isotopes, and expressed in atomic mass units.
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are present in nature with many isotopes (for example the element xenon, used for
instance by the experiments LUX, XENON100 and XENON10), contain nuclei of
the same element but with different mass numbers.

Moreover, some experiments use targets which contain more than one species
of elements (an example is given by the experiment DAMA, which uses crystals of
NaI).

These effects can be taken into account by calculating the total event rate as a
weighted average of the individual rates for the different elements/isotopes, which
can be written as:

R (t) =
N
∑

i=1

hiRi (t) , (2.8)

where i is an index which enumerates the different isotopes/elements, N is the
number of different isotopes/elements present in the detector and Ri (t) is computed
for each isotope/element i from equation (1.18). hi is the mass fraction of the i-th
isotope/element given by

hi =
nimAi

∑N
j=1 njmAj

, (2.9)

where mAi is the mass of a nucleus of the isotope/element i and ni is the number
fraction of the i-th species, i.e. the number of nuclei of the i-th species divided by
the total number of nuclei.

In our numerical implementation of these computations we have assumed that
for every experiment the isotopic composition of its target material is the same as
the natural isotopic composition of the corresponding element (apart for elements
for which the most common isotope has a natural abundance of at least 99%, for
which we neglected rare isotopes). In the case of more isotopes, for every isotope
ni is given by its natural abundance, while for the case of many elements it is given
by the ratio between the number of the atoms of the species i in a molecule of the
target material, and the number of atoms that composes such molecule.

In table 2.1 we provide the values of the useful quantities associated with the
elements used by the DMDD experiments that we will present in this chapter,
while in table 2.2 we provide the isotopic composition of those elements (among the
above ones) for which no single isotope has a natural abundance of more than 99%.
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Element Atomic number Z Mass number A Atomic weight Mass (average)

(u.m.a.) (GeV )

O 8 16 15.999 14.90

Na 11 23 22.990 21.41

Si 14 − 28.085 26.16

Ar 18 40 39.948 37.21

Ca 20 − 40.078 37.33

Ge 32 − 72.630 67.65

I 53 127 126.904 118.21

Xe 54 − 131.293 122.29

W 74 − 183.840 171.25

Table 2.1: The main properties of the elements used in the DMDD experiments described
in this chapter. The mass numbers reported are those of the more frequent isotope. For
elements with the symbol − in the column of the mass number, there is no isotope which
constitutes at least the 99% of all atoms of that material. As a consequence,we took into
account the isotopic composition of that material using equation (2.8) to calculate the
total rate. The isotopic compositions of those elements are listed in table 2.2.

Si Ca Ge Xe W

A n.a. A n.a. A n.a. A n.a. A n.a.

28 0.9223 40 0.96941 70 0.2123 128 0.019 180 0.0012

29 0.0467 42 0.00647 72 0.2766 129 0.264 182 0.2650

30 0.0310 43 0.00135 73 0.0773 130 0.041 183 0.1431

44 0.02086 74 0.3594 131 0.212 184 0.3064

46 0.00004 76 0.0744 132 0.269 186 0.2843

48 0.00187 134 0.104

136 0.886

Table 2.2: The isotopic composition of some elements used in DMDD experiments; A is
the mass number, n.a. stands for natural abundance.

2.2.5 Detector mass and exposure time, average over time

Finally, let us remark that all the experiments presented in this section, apart from
the DAMA experiment, run for a period of time of the order of many months,
but the number of detected events, thanks to efficient background discrimination,
is very small. For such experiments we need to consider the average over time
of the time-dependent total event rate. Since the information on which are the
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actual days of activity of the detector is in general not available, we simply take
the average between the maximum and the minimum event rate over one year

R[E1,E2] =
R[E1,E2](tmax≃152 days) +R[E1,E2](tmin≃335 days)

2
, (2.10)

where R[E1,E2] (t) is given in equation (2.4), while tmin and tmax are discussed in
section 1.7.

Often we will need to compute the number of recoil events expected by a
detector in the energy window [E1, E2]. This is obtained by multiplying the average
event rate per unit detector mass in the same energy window, provided by equation
(2.4), by the total mass of the detector ∆M and by the exposure time ∆T :

N[E1,E2] = ∆M∆TR[E1,E2] . (2.11)

Note that usually experimental papers provide both the total ∆M ×∆T of the
experiment, and the same quantity after cuts. If the cuts have properly been taken
into account using the experimental efficiency as in equation (2.3) and subsequent,
then the total ∆M ×∆T must be used.

2.3 Statistical methods to extract upper limits

from data

In this section we describe how to extract limits from DMDD data using Poisson
statistics, and two of the methods often employed in the direct detection community.

2.3.1 Poisson statistics

In the DMDD experiments presented in this section, the number of detected events
is usually small enough for the Poisson statistics to apply.

Poisson statistics allows to exclude some part of the parameter space as follows:
parameters that predict an average number of events Nth (in the energy range
under consideration) are excluded at a confidence level 1− α if the probability of
seeing as few as the observed number of events is less than α. For zero event, that
corresponds to upper limits on Nth of 2.3 at a 90% CL, 5.9 at 3σ and 14.4 at 5σ.
We provide the proof of this in the following subsections.

The case of Nobs detected events

A discrete non negative random variable X is said to follow a Poisson distribution
of expected value µ when the probability of X being equal to a discrete value x is

P (X = x) =
µx

x!
e−µ . (2.12)
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So, assuming that in a detector the number of observed events Nobs is a random
variable Poissonianly distributed with expected value Nth predicted by the theory,
the probability that in a given experiment the random variable Nobs will assume
the value Nobs (i.e. that we will observe a number of events Nobs) is:

P (Nobs = Nobs|Nth) =
NNobs
th

Nobs!
e−Nth = 1− P (Nobs 6= Nobs|Nth) . (2.13)

Now, when in a real experiment we observe Nobs events, in order to put a
conservative limit on the value of Nth we can allow all the Nth for which Nobs = Nobs

is as improbable as occurring in only a fraction α (for instance 10%) of the repetitions
of the experiment, and discard at an 1−α CL (for instance 90%) the Nth for which
this is more improbable, because they are assumed to be "too unlikely". So we
want to find the Nth associated with a probability of

α ≤ P (Nobs = Nobs|Nth) =
NNobs
th

Nobs!
e−Nth . (2.14)

Since this means that

P (Nobs 6= Nobs|Nth) ≤ 1− α , (2.15)

we will say that we are excluding the above mentioned values of Nth at 1− α CL
(for instance 90% CL). This means that we have excluded all the Nth which give
Nobs = Nobs in less than a fraction α of the cases.

In our case, since Nth = Nth (σpSI ,mχ), we can invert the above relation and
obtain an exclusion curve (giving an upper limit) in the plane σpSI ,mχ in the form
of a function σpSI (mχ).

The case of 0 detected event

When we are interested in the particular case of 0 detected event, inserting the
value Nobs = 0 in equation (2.14), we get that we exclude at 90% CL all the Nth

which do not satisfy the condition

Nth ≤ 2.30 . (2.16)

In the same way we obtain Nth . 5.9 for 3σ (which means a CL of 99.73002%) and
Nth . 14.4 for 5σ (which means a CL of 99.99994%).

Another way to obtain the same result is the following. The standard "Poisson"
confidence level C upper limit Nth is the one which would result in a fraction C
of random experiments having more events in the entire experimental range than
the Nobs actually observed. This fraction C is simply the sum of the probability of
Nobs = Nobs + 1 plus the probability of Nobs = Nobs + 2, etc., i.e.:

P (Nobs > Nobs|Nth) =
∞
∑

k=Nobs+1

Nk
th

k!
e−Nth =

∫ Nth

0
dt
tNobs

Nobs!
e−t , (2.17)
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where the last equality is justified in [30].
If we require a C.L. of C = 90%, and we are in the particular case of Nobs = 0,

the above equation becomes

0.90 = 1− e−Nth , (2.18)

from which it follows that the exclusion curve for a 90% CL is defined by Nth = 2.3.
The limits obtained using Poisson statistics as presented above, both in the

case of 0 and of Nobs detected events, always exclude less parameter space then
naively imposing Nth (mχ, σpSI) < Nobs.

5 This is due to the fact that they take
into account statistical fluctuations, which are governed by Poisson statistics, of
the number of observed events.

2.3.2 Maximum Gap Method

The maximum gap method (MGM) was originally presented in [30] and has been
largely employed to extract upper limits from the data of DMDD experiments (for
instance in [28], [22] and [26]). Here we present it showing how we apply it to the
case of our interest, i.e. DMDD experiments (even though its formulation in [30]
allows more general applications). We will use it to extract upper limits from all
the experiments with no or few events detected presented in this chapter, taking
into account some subtleties related to some particular experiments.

Motivation

In DMDD experiments the detected events can be seen as distributed along a one
dimensional axis (the one of the recoil energy Er, see figure 2.1). In addition to
the events coming from WIMPs scattering off nuclei (signal events) there can be a
background of which the expectation can be computed, but one cannot exclude (or
might not want to exclude) the presence of an additional unknown (non-negative)
background. If it cannot be excluded that the unknown background could account
for all the detected events, then only an upper limit on the signal can be reported.

Since the likelihood associated with an unknown background is unknown,
methods based on likelihood, like that of Feldman-Cousins [31] or the Bayesian
approach, cannot be applied (see [30]). For a given WIMP mass mχ, the distribution
of events in the variable Er (i.e. the differential event rate times the fiducial mass

5 For a given experiment we expect the number of observed events Nobs to be given by the sum
of the events produced by WIMPs, and those produced by the possible presence of an unknown
background (a part of which is estimated by the experimental collaborations and presented as
expected background). Thus a naive way to extract an upper limit on σpSI from the data of
experiments which detect a non-zero (but small) number of events Nobs consists in excluding all
the points in the plane mχ, σpSI for which the theoretical expectation for the events produced
by WIMPs is Nth (mχ, σpSI) ≥ Nobs. Of course this method provides just an approximated
exclusion limit, but it can be used for rapid estimations; the exclusion curves shown in figure 2.2
are computed in this way.
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times the total exposure) can be computed, but the WIMP-nucleon cross section
σpSI is unknown. The simplest thing that one could do would be to select an
interval in recoil energy and apply the method from Poissonian statistics (described
in the previous section) to that energy interval. Usually, the bottom of the range of
energies to which the detector is sensitive is limited by noise or other backgrounds.
Thus if there are many events at such low energies, the limit will be weaker than
required by the data. On the other hand, the experimenter could inadvertently
bias the result by choosing the interval endpoints to give particularly few events,
and thus obtaining an upper limit which is stronger than required by the data. In
order to avoid such a bias, it might be safer to avoid using the observed events to
select the interval used. Anyway this method follows the opposite strategy, i.e. the
range is carefully chosen to have especially few observed events with respect to the
predicted number of events in the same interval. This approach is meant to make
the method particularly insensitive to background, because the background is likely
to be higher in regions where more events are found. The maximum gap method
cannot be used to identify a positive detection, but instead it is appropriate to
extract limits from experiments with a very low, but not zero, background (in the
case where we cannot exclude that all the events are due to background).

The maximum gap

The lower part of figure 2.1 (adapted from [30]) represents as the continuous line
the predicted number of events as a function of energy dN/dE (for a given proposed
σpSI), and the actually detected events (black rectangles).

If an expected background is present, it can be included in dN/dE, even though
usually it is not (and we thus say that there is no background subtraction). In any
case, we assume that also an unknown background could be present, which could
in principle account for all the detected events.

To set an upper limit, for every value of the WIMP mass mχ we augment the
value of σpSI until we reach a value that is just “too high” to be accepted. We need
to specify which is the criterion for considering a value of σpSI as “too high”. Note
that to find the strongest possible upper limit we should look at energies where
there is a small number of events, and thus a small background.

Let us consider the gap between two events occurring at energies Ei and Ei+1.
The size of the gap (for a given couple of values of mχ and σpSI) can be characterized
by the value of the expected number of events within the gap, given by:

xi = N[Ei,Ei+1] =
∫ Ei+1

Ei

dN

dEr
(mχ, σpSI) dEr , (2.19)

where N[Ei,Ei+1] is the one of equation (2.11), that as we have seen can be computed
from the differential scattering event rate.6

6 Note that here we are considering a time averaged number of events (so the variation over
time is neglected).
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Figure 2.1: Sketch of how we apply the maximum gap method to a concrete case (in this
figure, the data of the XENON10 experiment published in [28]. The upper part of the
figure (adapted from [28]) represents the distribution of the events as usually presented
by the experimental papers, i.e. as a function of the recoil energy and of a function of the
ratio of the two measured quantities S1 (scintillation of the hit xenon nucleus) and S2
(scintillation light emitted in the top xenon gaseous phase from ionization electrons that
drifted upward from the hit nucleus). For a more detailed description of the quantities
S1 and S2, see section 2.5.1. Note that only events following in a particular area of this
plane, namely the one identified by the blue and the black lines, are considered candidate
events, i.e. events that might come from WIMP scattering off nuclei. The lower part of
the figure (adapted from [30]) represents as the continuous line the predicted number
of events as a function of energy dN/dE (for a given proposed σpSI), and the actually
detected events as black rectangles corresponding to the events in the signal region which
are surrounded by a red circle in the upper part of the figure.
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We will thus call the maximum gap the one which corresponds to the maximum
among all the gap sizes xi.

The criterion which defines the upper limit

The bigger the σpSI we consider, the bigger the value of the gap size of the
corresponding maximum gap,7 and we will have to reject those σpSI that give a
too big value of x w.r.t. the data. The criterion for "too big" is that if the choice
of σpSI would be correct, a random experiment would almost always give fewer
expected events in its maximum gap. Call x the maximum gap size of such a
random experiment. If the random variable x is lower than the observed maximum
gap size with probability C0, the assumed value of σpSI is rejected as too high with
confidence level C0.

Obviously we can make a substitution of the variable of integration in equation
(2.19) without varying x, which means that x is unchanged under a transformation
of the variable in which events are distributed. So we can make a substitution
such that every point of the Er axis is transformed to a variable equal to the total
number of events expected in the interval between that Er point and the lowest
allowed value of Er (which is ET ). Irrespective of how events were expected to be
distributed in the original variable, they will be distributed uniformly with unit
density in the new variable. So any event distribution can be transformed to an
equivalent uniform distribution of unit density. The new probability distribution
of x depends on the total length of this uniform unit density distribution, and in
this new variable the total length of the distribution is equal to the total expected
number of events µ (which in our case can be computed using equation (2.11)
as µ = N[ET ,Emax]), but it does not depend on the shape of the original event
distribution.

The probability C0 (given a total number of events predicted µ) of the maximum
gap size being smaller than a particular value of x is a function only of x and µ:

C0 (x, µ) =
m
∑

k=0

(kx− µ)k exp (−kx)

k!

(

1 +
k

µ− kx

)

, (2.20)

where m is the greatest integer ≤ µ/x. For a 1− α CL upper limit (for instance
90%) we have to increase σpSI until µ and the observed x are such that C0 reaches
1− α (which means C0 = 0.90 in the case of a 90% CL). Equation (2.20) is derived
in [30]. This method is most appropriate when there are only a few events in the
part of the range that seems relatively free of background (small µ), even though
this method can be used with an arbitrary number of events in the data. The result
is a conservative upper limit that is not too badly weakened by a large unknown
background in part of the considered region because it excludes regions where a

7 Since x scales linearly with σpSI , in our numerical implementation we have used this fact to
reduce the computation time by computing x only once for a given σpSI of reference, and than
rescaling this value by the ratio between the new σpSI and the reference value of σpSI used.
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large unknown background causes events to be too close together for the maximum
gap to be there.

Let us just remark a couple of facts. First, in our numerical implementation of
the MGM, in order to optimize the computation time, we first used the (very fast)
Poisson method to look for a naive limit, and we started from that value to look
for the upper limit with the MGM. Secondly, let us remark that, when scanning
the parameter space σpSI ,mχ the max gap interval (in Er) not necessary need to be
the same for all the tested values of mχ. For instance, this occurs for CDMSLite.

2.3.3 Optimum Interval Method

The optimum interval method (OIM) was originally introduced by [30]. It has
been used, in the framework of DMDD experiments, for instance by the CDMS
collaboration in [23], [32] and [27], by the Edelweiss collaboration in [33] and by the
CRESST2 collaboration in [34]. This method is a generalization of the maximum
gap method.

Instead of considering the interval with 0 events detected in it, corresponding to
the maximum gap, as done with the maximum gap method, if there is a relatively
high density of events in the data we may want instead to consider the “maximum”
interval over which there is 1 event detected, or 2 events, or n events. This is
precisely what the OIM does, with an automatic selection of which interval to use.

Let us shortly review how does the method work. Let us take Cn (x, µ) to be
the probability, for a given cross section and no background, that all intervals
with ≤ n events have their expected number of events ≤ x. This quantity can be
computed via equation (2.20) for the particular case of n = 0, and can be tabulated
via a Monte Carlo for the other values of n. Then Cn can be used in the same way
as C0 to obtain an upper limit: for x equal to the maximum expected number of
events taken over all intervals with ≤ n events, Cn (x, µ) is the confidence level
with which the assumed cross section is excluded as being too high.

To avoid biasing the result by choosing a particular interval influenced by our
prejudices, the method implements an automatic selection of which interval to use.
Cn is computed for each interval within the total range of an actual experiment, for
the observed number of events n and the expected number of events x in the interval.
The bigger Cn, the stronger the evidence that the assumed cross section is too high.
The “optimum interval” will then be the one that will most strongly indicate that
the proposed cross section is too high (we will call Cmax the corresponding value of
Cn (x, µ)).

Thus, a 90% confidence level upper limit on the cross section (this is the value
usually chosen when computing limits from DMDD results) is one for which the
observed Cmax is higher than would be expected from 90% of random experiments
with that cross section and no unknown background.

Even though the definition of Cmax seems to imply that its determination
requires to check an infinite number of intervals, this is not case. In fact, to
determine Cmax one only needs to consider those intervals that are terminated by
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an event or by an endpoint of the total experimental range, because sub-intervals
of these would necessarily have a smaller Cn (x, µ) than the corresponding original
ones.

In [30] also a comparison of the above methods is worked out, with the following
main conclusions. When there is no background, or the background is distributed
the same as the signal, then OIM gives a stronger limit than the MGM, and
for some values of µ also a stronger limit than the Poisson statistics. When the
background, unknown to the experimenters, is distributed in a different way w.r.t.
the expected signal, than the MGM produces a limit weaker than that of the OIM,
and Poisson statistics provides the weakest limit of all.

2.3.4 Impact of the nucleus mass on the exclusion curves

In figure 2.2 we have plotted many exclusion curves (computed with the naive
Nth < Nobs method) for different target nuclei. For all curves we used Er = 5 keV,
the SHM, the Helm form factor and an exposure of 200 kg×day. The shape of
these curves is due to the predominance of the astrophysical part in the expression
of the scattering rate at low mχ, and the predominance of the particle physics part
at high mχ, as we already pointed out with figure 1.3.

One thing that is important to underline is that, as we can see from the figure,
different materials (which have different atomic masses mA) give exclusion curves
with a minimum at different values of mχ. The higher the value of mA, the higher
the value of mχ at which the curve has its minimum. This is due to the fact that,
as shown in figure 1.2, the recoil energy transferred from a WIMP colliding with
a nucleus as a function of mA has a maximum at mi = mχ. Since the minimum
in the exclusion curve indicates on which values of mχ the detector is able to put
the strongest constraint, it is evident that the choice of the material used in a
particular detector will depend also on which is the range of WIMP masses that
the experiment wants to study more carefully.

2.4 How the astrophysics fixed by the SHM af-

fects the exclusion curves

Now that we have explained how we can obtain limits on the relevant parameter
space from the data of DMDD experiments, we want to show how variations
in the values of the astrophysical quantities fixed by the SHM impact on the
exclusion curves. We will first point out the role of the SHM in comparing different
experimental results. We will thus briefly discuss the astrophysical uncertainties
that affect the quantities fixed by the SHM. Finally, we will describe the impact of
variations in the values of the astrophysical parameters of the SHM on the exclusion
curves, both with qualitative and quantitative illustrations.
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Figure 2.2: We illustrate the impact of the target nucleus mass on the exclusion
curves, which have been computed with the naive method Nth < Nobs. We consider for
illustration a recoil energy of Er = 5 keV and an exposure of 200 kg×days. The SHM
and the Helm form factor are assumed.

2.4.1 The role of the SHM in comparing different experi-
mental results

As we have extensively discussed in chapter 1, DMDD aims at detecting WIMPs
via their scattering off nuclei. In this chapter we describe some of the experimental
techniques employed in this domain, together with the details and results of some
of the most sensitive experiments carried out until now. As we have seen in the
previous section, to extract limits from the experimental data, statistical methods
(like for instance the maximum gap method or, in the case of signal regions, a χ2

test, as we will see later on in this chapter) are employed. Roughly speaking, the
underlying principle of all these methods is to compare the theoretical prediction
associated with a certain set of parameter values with the experimental data, and
thus to associate to these parameter values a probability of being excluded/favored
accordingly. In particular, in the case of DMDD the theoretical predicted quantities
that are compared with the experimental findings are all computed from the
differential event rate given for instance in equation (1.23) (which has to be
modified to take into account general or particular experimental subtleties, as
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explained in this chapter).
As we can see from that equation, a central role in computing this quantity

is played by the astrophysical properties of dark matter, in particular its velocity
distribution f~v (~v), for which also the local circular speed vc and the local Galactic
escape speed vesc play an important role, and its local mass density ̺⊙. A standard
set of assumptions is usually employed to fix these quantities, the so-called standard
halo model (SHM), which assumes a Maxwell-Boltzmann speed distribution for the
dark matter, and which we have already described in detail in section 1.8 (most of
the ingredients used below are explained there).

A common setup is useful because it allows to compare among each others
the experimental results presented by different collaborations, nevertheless, it
represents an oversimplified point of view which neglects many facts. To start with,
it assumes fixed values for the above mentioned quantities, but those quantities
are determined through astrophysical observations, so different studies exist in
the literature, providing different results, and each result is affected by statistical
and/or systematic uncertainties. We outline this issue in the following section, and
we will explore it in more detail in chapter 5. We then illustrate at a qualitative
level in the subsequent section how variations in the values of these parameters
affect the limits set by DMDD experiments.

Moreover, as we will see in chapter 3 the above mentioned astrophysical quanti-
ties can be related by an underlying mass model. This is of particular importance
because often measures of such quantities rely on particular assumptions on the
Milky Way mass model.

As we will see in section 3.4.3, the density profile corresponding to a Maxwell-
Boltzmann speed distribution is the singular isothermal sphere of equation (3.33).
Anyway, N-body simulations suggest that the dark matter density may not follow
such a profile.

It is important to understand the level of error induced by the SHM assump-
tions. In the following section we briefly summarize some of the estimates of the
astrophysical parameters of the SHM that are currently available in the literature,
than focusing on the effects that varying these parameters has on the DMDD limits.

In chapter 4 we will present as a case study the impact on DMDD limits of the
most recent estimate of the escape speed. This will also give us the opportunity to
drop the assumption of a Maxwell-Boltzmann speed distribution and to consider
speed distributions arising from the assumed mass model.

2.4.2 Astrophysical uncertainties

Let us now briefly outline some of the different estimates present in the literature
for the parameters of the SHM, and the associated uncertainties, in order to give
to the reader an idea on which are the ranges of variation to expect for the values
of these astrophysical quantities w.r.t. those fixed by the SHM. We will explore
more in detail in chapter 5 the different estimates present in the literature, the
methods used to obtain them and the associated uncertainties.
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The distance of the Sun from the Galactic center

When we consider quantities as the local circular speed, the local Galactic escape
speed, the local dark matter density, we are talking about local quantities in the
sense that they are evaluated at the location of the Sun.8 So, when we talk about
the local Galactic escape speed, the local circular speed and the local dark matter
density, we mean respectively vesc (~r⊙), vc (~r⊙) and ̺DM (~r⊙).

The statements above mean that all these quantities contain in their definition
the distance r⊙ of the Sun from the Galactic center (where we indicate r⊙

.
= |~r⊙|).

There is some debate on the value of r⊙, anyway the standard value reported in [35]
is r⊙ = 8.4± 0.6 kpc.

The local dark matter density

The local dark matter density ̺⊙ is the dark matter density evaluated at the
position of the Solar System, i.e. where the DMDD experiments are carried out.
The value assumed by the SHM is ̺⊙ = 0.3 GeV/c2 cm−3. This is the "canonical
value" reported in [36] and in [35], where it is also reported that this number has
to be considered correct within a factor of 2 or 3 ( [35] reports that these values
arise from a sampling of many references).

In the recent years, anyway, there has been a tendency to consider higher values,
somewhat around ̺⊙ ≈ 0.4 GeV/c2 cm−3, as noticed for instance by [12]. In [37] it
is reported that, even if the commonly used value is the one above, the authors
found in their simulation ̺⊙ = 0.39 GeV/c2 cm−3.9

The work of [38] employs a model for the local (i.e. in the Solar neighborhood)
Galactic potential applied to the data from the observations worked out by the
RAVE collaboration. The value of ̺⊙ = 0.542 ± 0.042 GeV/c2 cm−3 is then
determined, considerably higher the standard one.

We can basically conclude by saying that recent estimates of the local dark
matter density are pointing toward values higher than the standard one, but the
uncertainties on each individual measure and especially the differences among the
methods employed by these different studies are still very important.

The ratio between the local circular speed and the distance from the
Sun to the Galactic center

In [39] the authors investigate the distance of the Sun from the Galactic center, the
rotational speed of the local standard of rest (to which in this thesis we refer as
the local circular speed at the position of the Sun vc, see equation (1.69)) and the
peculiar velocity of the Sun. They find out that the value of the ratio vc/r⊙ is better

8 Let us remark that sometimes we do not explicitly write the word local, which is left
understood.

9 For the spherical halo, at a radius roughly equal to the Sun’s distance from the Galactic
center, [37] finds 〈̺⊙〉 = 0.30 GeV/c2 cm−3, but this value increase to 〈̺⊙〉 = 0.37 GeV/c2 cm−3

for a thick disk, and to 〈̺⊙〉 = 0.39 GeV/c2 cm−3 for the thin disk containing Sun’s position.
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constrained than the two quantities considered independently. In particular, they
find vc/r⊙ = 29.9± 1.7 km s−1 kpc−1 to vc/r⊙ = 31.6± 1.7 km s−1 kpc−1. This is
particularly important, because it points out that an important correlation in the
measured values of vc and r⊙ is present, as it is clearly shown by figure 2 of [39].
It would be good to try to keep in mind similar correlations when using this or
similar estimates in computing DMDD limits.

The local circular speed

The value assumed for the circular speed at the position of the Sun in the SHM is
vc = 220 km/s.

This value, anyway, has been for long time subject to big uncertainties, for
instance the study of [39] reports that the best fit values they find range from
vc = 200± 20 to vc = 279± 33, and that the value of vc/r⊙ is better constrained
than the two quantities separately, as already discussed.

The recent estimate of [40] reports a value, higher than the standard one, of
vc = 240± 8 km/s, and specifies that with the large data set they have the values
of vc and r⊙ are no more tightly correlated.

The local Galactic escape speed

The value of the local Galactic escape speed assumed in the SHM is vesc = 544 km/s.
This value was estimated by the RAVE collaboration in [41] in 2007. In particular,
the result of that study was the range 498 km/s < vesc < 608 km/s at 90% confidence
level, with 544 km/s as a median likelihood.

A new estimate of this quantity was published in 2014 by the RAVE collaboration
in [1], providing the result of 533+54

−41 km/s at 90% confidence level, with an additional
4% of systematic uncertainty. This is the estimate on which we will focus in chapter
4, so a detailed description of it will be provided therein.

2.4.3 Impact of the astrophysical parameters of the SHM
on the exclusion curves

Even tough the SHM fixes the values of the Galactic escape speed, of the circular
speed and of the local dark matter density, these values are just conventional ones.
Because of this, it is interesting to recall which are the effects of variations of
these parameters on the DMDD exclusion curves. These effects are schematically
illustrated in figure 2.3, where two reference target nuclei are considered (silicon
and xenon). We consider variations of ̺⊙ of a factor of two, and variations of the
escape speed, of the circular speed and of the most probable speed of the assumed
Maxwell-Boltzmann distribution of ±50 km/s (the values assumed for the analysis
are provided in the caption).

A qualitative representation of the variation of these quantities is illustrated in
figure 2.4 where we illustrate the changes by flashes, rather than by using different
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values of the parameters.
Let us recall that in this chapter we are focusing on the spin-independent

interpretation of the elastic scattering of a WIMP (of mass mχ) off a nucleus
(atomic number A, mass mA), and no isospin violation. To understand the impact
of the above parameters on DMDD limits, we need to recall equation (1.23),
from which we have that the differential event rate per atomic target mass in an
experiment is:

dR

dEr
(Er) =

̺⊙σpSIA
2

2mχµ2
p

F 2 (Er)
∫

|~v|>vmin(Er)
d3~v

f⊕ (~v, t)

|~v| , (2.21)

with µp the WIMP-proton reduced mass, Er the recoil energy, σp the WIMP-nucleon
cross section, F (Er) the nuclear form factor (assumed of the Helm type), and

vmin =
√

mAEr/(2µp) the minimal velocity that a WIMP needs to transfer to a

nucleus the recoil energy Er; we take the time average of Eq. 2.21. f⊕ (~v, t) is the
dark matter velocity distribution in the Earth reference frame obtained from the
one in the Galactic frame via a Galilean transformation.10

From the above equation (2.21), and recalling the velocity transformations
described in chapter 1, we can remark that the effects of variations in the parameters
fixed by the SHM are the following.

• Both vesc and vc impact on the position of the asymptote of the limit at
low WIMP mass. In fact, vesc + vc + V⊙ defines the average WIMP mass
threshold mχmin given an atomic target and a recoil energy threshold, by
solving vmin (ET ,mχmin,mA) = vesc + vc + V⊙, see equation (1.16). This
corresponds to the position on the mass axis of the asymptote of the upper
limit on the spin-independent cross section (the larger vesc and/or vc, the
lower the mass threshold).

• vc impacts on the relative position of the maximum sensitivity of a DMDD
experiment on the mχ axis (for a given atomic target); a larger vc globally
shifts the cross section limit curve to the left while not fully affecting the
asymptote at the mass threshold, for which vesc is also relevant.

• The larger the velocity dispersion, the larger the sensitivity peak (in the SHM,
it is fixed by the most probable speed of the Maxwell-Boltzmann which is
v0 = vc).

• The local dark matter density ̺⊙ produces a global linear vertical translation
of the entire exclusion curve.

10As explained in this chapter, when computing DMDD limits for real experiments we also take
into account the experimental efficiency, the energy resolution of the detector, the fractions of
atomic targets and the isotopic compositions for each target element. Anyway, in the illustrative
plots of figures 2.3 and 2.4 these effects are not included.
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Figure 2.3: The figure shows the impact on DMDD exclusion curves of variations in
the astrophysical parameters usually fixed by the SHM, ̺⊙, vesc, vc and v0 (see section
1.8). The limits are computed for illustration using Poisson statistics assuming 0 events
detected (thus applying Nth ≤ 2.30 to obtain a 90% C.L. limit) in a recoil energy range
comprised between ET = 5 keV and Emax = 100 keV, with a total exposure of 500 kg×day.
We consider two different target nuclei, silicon (lighter) and xenon (heavyer). Top left
panel: the local dark matter density ̺⊙. Top right panel: the local Galactic escape
speed vesc. Bottom left panel: the local circular speed vc. Bottom right panel: the most
probable speed v0 (which gives also the velocity dispersion) of the cut Maxwell-Boltzmann
velocity distribution assumed.

2.5 DMDD experiments

In this section we describe some DMDD experiments, among which those that
we will use in chapter 4.11 For every experiment, we briefly summarize the most
important quantities that allow to reproduce their data analysis, and how we can
work it out (as we did for instance to produce the exclusion curves presented in

11The list of experiments presented here is not meant to be complete, but only to describe those
experiments that we are going to use, which are mainly those that provided the most stringent
constraints at the moment of writing, and some other experiments to provide an idea of the
variety of existing experiments.
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Figure 2.4: The impact of variations in the parameters of the SHM on DMDD exclusion
curves, illustrated at a qualitative level using the reference curve for a xenon target
nucleus reported in figure 2.3. Top left: the local dark matter density. Top right: the
escape speed. Bottom left: the circular speed. Bottom right: the most probable speed
(which is related to the velocity dispersion).

figure 2.5). Some of these properties, along with other experiment-related quantities,
are listed in table 2.4. In order to extract the limits that we show in figure 2.5
from every experiment we apply the MGM to the data.

Unless otherwise stated, no quenching factor need to be taken into account for
the above-mentioned experiments. As in any of the references from which the data
are extracted, the SHM is assumed and we use the Helm form factor to model
effects of the nuclear shape. We verified that the upper limits we obtained using the
MGM for each experiment reasonably match those obtained (often with different
methods) by the corresponding official analysis. These limits are shown in figure
2.5.

2.5.1 XENON10

XENON10 is an experiment located at the Gran Sasso National Laboratory (Italy),
which uses a dual phase (liquid and gaseous) detector filled with xenon to search
for WIMPs. Dual phase operation enables simultaneous measurement of direct
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Figure 2.5: The parameter space σpSI ,mχ that one wants to constrain for the spin
independent interpretation of the DMDD experimental results. We show the upper limit
on σpSI for the null experiments presented in this section, computed using the MGM. Also
shown are the regions associated to the interpretation of the DAMA annual modulated
signal as a SI elastic scattering of WIMPs off nuclei. For all the curves, the SHM (which
has vesc = 544 km/s, ̺⊙ = 0.3 GeV/cm3 and a Maxwell-Boltzmann distribution with
v0 = 220 km/s, see section 1.8) has been assumed.

scintillation (called the S1 signal) in the liquid, and of ionization via proportional
scintillation12 (called the S2 signal) in the gas. The ratio of the two signals is
different for nuclear recoil events (from WIMPs and neutrons) and from electron
recoil events (from gamma and beta background), which allows an event-to-event
discrimination.

This can be understood by looking at the upper part of figure 2.1. Electron
recoil events distribute in a band in the upper part of the shown plane (the dense
gathering of events in figure 2.1), while nuclear recoil events in the lower part
(this is determined via calibration). The two bands are mostly separated (even if
partially superposed), and this allows to define a band in which almost all events
are expected to be from nuclear recoils. This (with additional cuts in the energy
range) is used to define the signal region, shown in blue in figure 2.1. Only events
falling inside this region are considered as possible WIMP candidates in the data
analysis.

12Scintillation light triggered by the ionization electrons that drifted from the hit nucleus
upward to the xenon gaseous phase.
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We focused on the analysis [28] of data taken between 2006 and 2007, where a
total exposure of 577 kg×days was analyzed. The live-time of the experiment was
58.6 days and the detector fiducial mass (after cuts) used for the data analysis was
5.4 kg.

The threshold energy employed for the analysis is ET = 4.5 keV, and the recoil
energy window extends up to Emax = 26.9 keV. In the studied energy window,
the observed number of events is 10 (without background subtraction), while a
background of 7 events was expected in the same window. To obtain for XENON10
the 90% C.L. upper limit on the WIMP parameter space for spin-independent
WIMP-nucleon scattering, we used the maximum gap method [30], as done in
the original analysis [28] by the XENON collaboration. The boundaries of the
maximum gap interval are E1 = 4.5 keV and E2 = 15.5 keV.

In our analysis of the XENON10 data, we also took into account the energy
dependent experimental efficiency of the experiment as done in [25], i.e. with the
approximated expression:

ε (E) = 0.46
(

1− E

135keV

)

. (2.22)

As in [25] we used a Gaussian energy resolution (2.5) with

σ (E) = (0.579keV)
√

(E/keV) + 0.021E . (2.23)

The nuclear recoil scintillation efficiency Leff
The nuclear recoil energy reconstruction in dual phase xenon detectors has been
widely discussed and improved over time. The main point is that the XENON10
and XENON100 detectors do not measure directly nuclear recoil energies Enr, but
they measure instead the signals S1 and S2. While the ratio between the two is
used for event-to-event background discrimination, only the signal S1 is used to
compute the nuclear recoil equivalent energy Enr of an event. This is done using
the equation

Enr =
S1

LyLeff
Se
Sn

, (2.24)

which can be found for instance in [28], where also the values of the volume averaged
light yield Ly and of the scintillation quenching factors for electron recoils Se and for
nuclear recoils Sn for XENON10 are provided.13 The quantity Leff is the nuclear
recoil scintillation efficiency (sometimes called also scintillation yield for nuclear
recoils), and it has been the subject of an animated debate, see for instance [42].

The value originally used by the XENON collaboration in [28] was the simple
constant assumption of Leff = 0.19. Later, the value of Leff = 0.14 was used
in [25], based on hints from [43] that Leff could be lower. A proper approach

13 These values are Ly = 3.0± 0.1(syst)± 0.1(stat), Se = 0.54 and Sn = 0.93, at a drift field
of 0.73 kV/cm.
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consists in taking into account the energy dependence of Leff (Enr). In our analysis
of the XENON10 data we used the form of Leff (Enr) obtained from the cubic
spline interpolation of the spline points of figure 3 of [43], which we finally used to
recompute updated values of the quantities ET , Emax, E1 and E2 (the original values,
written above, were obtained by the XENON collaboration with the assumption
Leff = 0.19, so we obtained the new ones simply by multiplying the nuclear recoil
energy scale by a factor 0.19/Leff (Enr)).

14

Some recent studies related to the determination of Leff in liquid xenon,
thus particularly relevant for the experiments XENON10, XENON100 and LUX,
are [29], [44], [45] and [46]. In [29] constraints and an updated estimate of Leff (Enr)
with an extrapolation for low energies are proposed, based also on data from [47].
Reference [44] shows that the quenching of electronic excitation from nuclear recoils
in liquid xenon is well described by Lindhard theory15 if the nuclear recoil energy is
reconstructed using an energy scale which combines scintillation and ionization. The
authors thus argue the adoption of this perspective, whereas usually experiments
with liquid xenon as the target medium use only the primary scintillation signal S1
to reconstruct Enr. Reference [45] reiterates the idea, and shows that for events
falling in the lower left corner of the typical search box (shown in the upper part
of figure 2.1), the actual nuclear recoil energies are smaller than the usual energy
scale suggests. Reference [46] shows that for very low recoil energies a simplifying
approximation of the Lindhard model must be removed, namely the assumption that
the atomic binding energy of the electrons is negligible. Removing this hypothesis
leads to a modification of the model that reflects on DMDD experiments as a
decrease in sensitivity to low mass dark matter, which means less constraining
limits in this mass range, as shown in figure 5 of [46].

2.5.2 XENON100

XENON100 is the successor of XENON10, the experimental technique is the same
and the main improvement is in size: a total mass of 100 kg of liquid xenon instead
of 10 kg. In this work we considered the data of [22] (taken between 2011 and
2012) where a live-time of 224.6 days and a detector fiducial mass of 34.0 kg are
considered.

The threshold energy employed for the analysis is ET = 6.6 keV, and the recoil
energy window extends up to Emax = 30.5 keV. In the studied energy window,
the observed number of events is 2 (without background subtraction), while a
background of 1 event was expected in the same window. To obtain for XENON100
the 90% CL upper limit on the WIMP parameter space for spin-independent WIMP-

14 In this way,the original value of ET = E1 = 4.5 keV, Emax = 26.9 keV and E2 = 15.5 keV
become ET = E1 ≈ 5.47 keV, Emax ≈ 23.43 keV and E2 ≈ 15.15 keV.

15 Lindhard theory is a method of calculating the effects of electric field screening by electrons
in a solid, based on quantum mechanics. In this framework, [48] computed a general expression
for the expected fraction of nuclear recoil energy that is transferred to electrons, which is of
particular interest for DMDD.
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nucleon scattering shown in figure 2.5, we used the maximum gap method [30],
which was used also in the original analysis [22] as a cross-check of the primary
analysis, worked out with a profile likelihood. The boundaries of the maximum gap
interval are E1 = 7.8 keV (lower boundary) and E2 = 30.5 keV (upper boundary).

For the experimental efficiency we used a second degree polynomial fit to the
acceptance shown in figure 1 of [22], which reads ε (E) = aE2 + bE + c with
a = 0.00038, b = −0.0305 and c = 0.818. For lack of better information we used
the same energy resolution that we used for XENON10.

For the XENON100 experiment we do not need any adjustment of the energy
values through consideration of an updated Leff because following the controversy
on this quantity that surrounded the interpretation of the XENON10 results,
the XENON collaboration improved their Leff considering an energy dependent
Leff (Enr), the one of figure 1 of [49], so that the XENON100 results of [22] already
take into account the dependence of Leff on Er. A more recent determination of
Leff by the XENON100 collaboration is shown in figure 5 of [50].

2.5.3 LUX

The Large Underground Xenon experiment (LUX) is located at the Sanford un-
derground research facility and aims at detecting WIMPs via their scattering off
xenon nuclei. For WIMP masses bigger than around 7 GeV , it represents the
more constraining experiment at the moment of writing, for spin-independent
WIMP-nucleon interaction. Its data analysis can be found in [24]. The preliminary
run described there collected 85.3 days of data, with a detector fiducial xenon mass
of 118 kg. In 2014 a 300-days run has started (see [51]), which is supposed to
improve the sensitivity by a factor of 5.

Reference [24] does not contain all the information that we need to reproduce
the LUX limits. We thus follow the approach detailed in [26]. We use the maximum
gap method on an S1 range of 2− 30 photoelectrons.16 In this range, 160 events
have been observed, all being consistent with the predicted background of electron
recoils. Of these events, 24 fall into the calibration nuclear recoil band (see figure
4 of [24]). However, they all fall on the same half of the expected nuclear recoil
distribution, while if they would all come from that distribution, they should be
with the same probability on one half or on the other half. For this reason, it is
unlikely that a significant part of these 24 events would come from nuclear recoils.
In [26], the MGM is used to compute five different exclusion curves for LUX, taking
into account respectively 0, 1, 3, 5 or all the 24 events. As we can see in figure
1 therein, the official limit obtained by the LUX collaboration, at low WIMP
masses, falls between the MGM curve for 0 events, and that for 1 event. We choose
to consider, for our MGM analysis, 0 detected events. The obtained curve thus
reproduces very well the official curve at low masses, the region on which we are

16 The same range is used for the MGM analysis in [26], and for a likelihood analysis in [24].
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more interested in, while it is more constraining at high masses.17

We have considered the experimental efficiency after cuts of LUX, that can
be found in figure 9 of [24] (shown as the black crosses). As in [26], we set the
counting efficiency to 0 below 3 keVnr.

We use a Gaussian energy resolution, with standard deviation

σ (Enr) = σPMT ×Q (Enr) , (2.25)

with Q (Enr) = 4.131
Enr/keV

+ 0.690 and an S1 single photoelectron resolution of

σPMT = 0.37 photoelectrons (see [26]).
An indicative conversion from S1 and S2 signals to Enr can be inferred from

the contour lines in figure 4 of [24]. To convert S1 into Enr, we have used the
relation Enr = S1

LyLeff
Se
Sn

with the Light yield Ly = 3 photo-electrons/keVee and the

scintillation quenching Se = 0.54 for electron recoils and Sn = 0.93 for nuclear
recoils, from [43]. Even if the value of the Lindhard factor Leff in liquid xenon
is the subject of an animated debate, for our analysis of the LUX data we simply
assumed the value Leff = 0.14, considering this approximation sufficient for our
purposes.

2.5.4 EDELWEISS-II

EDELWEISS-II is an experiment located at the Laboratoire Souterrain de Modane
(France) at a depth of 4800 m water equivalent, which aims at detecting WIMPs
using Ge crystals as targets. EDELWEISS II uses interleaved detectors that measure
both phonons and ionization. In the final data analysis [33] an exposure of 384
kg×days was reported.

The threshold energy employed for the analysis is ET = 20 keV, and the recoil
energy window extends up to 200 keV. In the studied energy window, 5 candidate
events have been observed, while a background of 3 events was expected in the
same window.

To obtain for EDELWEISS-II the 90% C.L. upper limit on the WIMP parameter
space for spin-independent WIMP-nucleon scattering, we used the maximum gap
method [30], while the original analysis employs the optimum interval method
without background subtraction. The boundaries of the maximum gap interval are
E1 = 23.2 keV and E2 = 172 keV.

2.5.5 CDMS-II

The Cryogenic Dark Matter Search experiment CDMS-II at the Soudan Under-
ground Laboratory (USA) is an experiment which aims at detecting WIMPs using
germanium crystals as targets. The detector also contains silicone crystals, but
those have been excluded from the analysis [23] that we consider here because

17We obtained also the curve for 1 event, not shown here; at high masses this curve too is more
constraining than the official one.
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of their lower sensitivity to coherent nuclear elastic scattering (they are instead
considered in dedicated analysis like [52]). An exposure of 612 kg×days has been
analyzed.

The threshold energy employed for the analysis is ET = 10 keV, and the recoil
energy window extends up to 100 keV. To obtain for CDMSII the 90% CL upper
limit on the WIMP parameter space for spin-independent WIMP-nucleon scattering,
we used the maximum gap method [30], while the original analysis employs the
optimum interval method (also presented in [30]) without background subtraction.
The boundaries of the maximum gap interval are E1 = 15.5 keV and E2 = 100 keV.

We take into account the experimental efficiency, which we obtained from a fit
but can be found also in [25].

2.5.6 SuperCDMS

SuperCDMS is an upgrade to the CDMSII experiment with new detector hardware
which aims at detecting WIMPs using Ge crystals as targets. We consider a recent
data analysis focused on low mass WIMPs that has been released in [32], in which
an exposure of 577 kg×days has been analyzed.

The threshold energy employed for the analysis is ET = 1.6 keVnr, and the recoil
energy window extends up to 10 keVnr. In the studied energy window, 11 candidate
events have been observed, while a background of 6.198 events was expected in the
same window. Their energies are listed in table I of [32].

To obtain for SuperCDMS the 90% CL upper limit on the WIMP parameter
space for spin-independent WIMP-nucleon scattering, we used the maximum gap
method [30], while the original analysis employs the optimum interval method
without background subtraction. We take into account the experimental efficiency,
which we obtain from the red curve of figure 1 of [32], and which is an interpolation
of data representing the exposure-weighted sum of the measured efficiency for each
detector and period. We assumed a Gaussian energy resolution, and for lack of
better information we used the same σ as CDMSLite.

2.5.7 CDMSLite

CDMSLite is the name of a calorimetric technique employed to work out a low WIMP
mass analysis based on data taken from one single detector of the SuperCDMS
experiment. This analysis makes use of data which correspond to an exposure of
10.3× 0.6 kg×days, and can be found in [27].

The threshold energy employed for this analysis is 0.170 keVee, and the analysis
extends up to energies of 7 keVee. In the CDMSLite analysis, the phonon energy
is measured in units of keVee,

18 while in practice in our analysis we use nuclear

18 In the CDMSLite analysis the phonon energy is calibrated w.r.t. the electron recoils, and
because of this it is labeled in electron-equivalent units, see [27].
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recoil energies, which are expressed in keVnr. The conversion between the two in
CDMSLite can be understood from the below dedicated subsection 2.5.7.

We read off the recoil energy spectrum data from figure 1 of [27], using the
histogram with bins of 10 eVee for measured energies between 0.10 keVee and
1.60 keVee, and the histogram with bins of 75 eVee above 1.60 keVee. We can
deduce that in the recoil energy window chosen for this analysis 162 candidate
events have been observed. Since the maximum gap method requires unbinned
data, we have to construct these data. Following the procedure of [26], which uses
the maximum gap method as well, we construct them by dividing each bin with
multiple events into enough bins of equal width so that in the end we have one
event per bin; we then assign to each event the middle energy of the bin containing
it.

To obtain for CDMSLite the 90% CL upper limit on the WIMP parameter
space for spin-independent WIMP-nucleon scattering, we used the maximum gap
method [30], while the original analysis employs the optimum interval method
without background subtraction. We take into account the experimental efficiency,
which we take to be 98.5% for every energy, as stated in [26] and as can be deduced
from the inset of figure 1 of [27]. We assumed a Gaussian energy resolution, with
the same value σ = 0.014 keVee of [26] and [27].

Energy conversions in CDMSLite

The quantity measured by the detector is the phonon energy Eee (measured in
keVee). This energy can be converted into a nuclear recoil equivalent energy Enr
(whose unit is denoted keVnr) using the equation

Enr = EeeQ
−1 (Enr) , (2.26)

where Q (Enr) is the quenching factor. This quantity has been introduced in 2.2.1,
and depends on the material.

For the CDMSLite experiment, we used the same quenching factor used by the
SuperCDMS collaboration in [27].19 This quenching factor is:

Q(Enr, A, Z) =
1 + e×Vb

εγ
Y (Enr, A, Z)

1 + e×Vb
εγ

, (2.28)

19Note that this choice is not the only possible one. For the same material (Ge) and experiment
(CDMSLite) the authors of [26] use, for coherence with the analysis of the CoGeNT experiment,
the quenching factor

QGe = 0.2E0.12
nr . (2.27)

The effects of changing the quenching factor are shown in Figure 4 of [27]. These effects mostly
consist in a shift of the limit curve along the WIMP mass axis. Thus, for masses above ≈ 6
GeV/c2, where the curve is relatively flat, the effect is rather small. On the other hand, for lighter
WIMP masses the systematic uncertainty in yield produces a noticeable effect on the derived
limits.
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where e is the charge of the electron, Vb is the bias voltage applied between the two
surfaces of the detector, and it was chosen to be Vb = 69 V (so e× Vb = 69 eV), εγ
is the average excitation energy per charge pair, and it takes the value εγ = 3 eV
in Ge, and Y (Enr, A, Z) is the ionization yield (all these values are from [27]).

The ionization yield used in the CDMSLite analysis by the SuperCDMS collab-
oration is the one modeled by Lindhard, which reads

Y (Enr, A, Z) = k
g (ε)

1 + kg (ε)
, (2.29)

where A is the mass number, Z the atomic number,

g (Enr, Z) = 3ε0.15 + 0.7ε0.6 + ε , (2.30)

ε (Enr, Z) = 11.5
(

Enr
keV

)

Z−
7

3 and

k (A,Z) = 0.133Z2/3A−0.5.

For a Ge target, this gives k ≈ 0.157.
In the table below we report some quantities that are relevant for the CDMSLite

analysis, with their values in keVee, and their conversions into keVnr obtained using
the quenching factor of equation (2.28) and that of CoGeNT.

ET Emax σ

Original value in keVee 0.170 7.00 0.014

Converted to keVnr using (2.28) 0.8426 23.61 0.08746

Converted to keVnr using (2.27) 0.8649 23.91 0.09308

Table 2.3: Some quantities that are relevant for the CDMSLite analysis, with their
values in keVee, and their conversions into keVnr. Note that also all the energies at which
events occur had to be translated from keVee to keVnr, but since there are 162 candidate
events, we have not listed those values here.

2.5.8 CRESST-II

The cryogenic dark matter search CRESST-II, located at the Laboratori Nazionali
del Gran Sasso (Italy), is an experiment which aims at detecting WIMPs via elastic
scattering off nuclei in CaWO4 crystals. Its most recent data analysis focused on low
mass WIMPs can be found in [34]. The exposure (before cuts) is 29.35 kg × days
and it has been collected in 2013.

The threshold energy is set at ET = 0.6 keV, and the upper bound on the recoil
energy of the analysis is set at 40 keV. All the events which fall into this recoil
energy window, and which have a light yield below the center of the oxygen band
(see figure 1 of [34]), are accepted as WIMP recoil candidates. This gives a number
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of candidate events which is 77. The energies of these events can be inferred from
figure 1 of [34], with the help also of the histogram in the inset of figure 2 therein.

To obtain from CRESST-II the 90% C.L. upper limit on the WIMP parameter
space for spin-independent WIMP-nucleon scattering, we used the maximum gap
method [30], while the original analysis employs the optimum interval method.
Since three different target nuclei are present, to calculate the total rate we have
used equation (2.8) with the weights of equation (2.9) being hCa = 1/6, hO = 4/6
and hW = 1/6. We took into account the energy resolution, which according to [34]
is Gaussian with σ = 0.107 keV, and the experimental efficiency after cuts, which
we obtain from the blue curve in figure 3 of [34] (where it is called “final nuclear
recoil efficiency”).
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2. Understanding the experimental results

2.6 The DAMA experiment

The DAMA experiment, located at the Gran Sasso National Laboratory (Italy),
consists of 250 kg of radio pure NaI(Tl) scintillator. It has undergone two phases:
DAMA/NaI between 1995 and 2003, and DAMA/LIBRA between 2003 and today.

The DAMA collaboration claims evidence for an annual modulation in the event
rate (in the energy range from 2 to 6 keVee) of 8.9σ [54]. Such modulated signal is
compatible with the one expected for WIMPs, that we have presented in section
1.7.

As we have seen, the main features expected for such a WIMP signal (in the
absence of non thermalized components in the halo) are a modulation which follows
a cosine function, with a period of one year and a phase around June the 2nd, and
the modulation must be present only in a well-defined low energy range, where
WIMPs can induce signals.20 These features are clearly present in the DAMA
signal, as we will see. In addition, the modulation amplitude of the rate of events in
the region of maximal sensitivity has to be, as we have seen, of order ∼ 1%− 10%
of the average rate in the same region. For the DAMA experiment, we can compare
the modulation amplitude reported in figure 2.7 with the average rate reported
in figure 2.8. It should be noticed that part of the rate in figure 2.8 is due to
unknown background, while the modulation amplitude should not be affected by
this background. Thus, the ratio between the amplitude of the modulation and the
average rate in the DAMA experiment fulfill the above condition, but the presence
of this unknown background makes difficult a more quantitative statement.

On the other hand, as we will see the interpretation of the DAMA signal as
a spin-independent elastic scattering of WIMPs off nuclei is in contrast with the
interpretation of the results of many of the most recent experiments described in
the previous section, as it is evident from figure 2.5.21

A recent review of the experiment can be found in [54]. We based our recon-
struction of the model independent interpretation of the DAMA results mainly
on the strategy employed by [55],22 which is based on data that can be found for
instance in [56]. Similar or alternative approaches can be found in the literature,

20 Moreover, the modulation must be present only in “single hit” events, i.e. those events
for which only a single detector, among all the available ones in the experimental setup, “fires”,
because in fact the probability for a single WIMP of interacting more than once in the same
experiment is negligible.

21Of course, spin-dependent interpretations can be considered, or even more general approaches,
in which cases it is sometimes possible for the tension to be mitigated, see for instance [25], which
anyway was published before some of the experimental results leading to the most constraining
limits presented in this chapter.

22 However, as we will discuss later the fractions of channeled events employed in [55] have
been superseeded by most recent estimates, which basically imply that channeling for the DAMA
experiment is negligible. We thus reproduce the DAMA analysis using the procedure of [55] but
neglectin the channelling. How the channeling is implemented in [55] is discussed in section 2.6.2
and we recompute the corresponding DAMA regions and provide the best fit values in section
2.6.4. We compare these DAMA regions obtained with the old fractions of channeling with those
resulting from neglecting channeling in figure 2.9.
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for instance in [57].

In this section we review the main results of the DAMA experiment and we
present the strategy that we employ to provide the interpretation of these results
in terms of spin-independent elastic scattering of WIMPs off nuclei, based on a
χ2 analysis, that we show in figure 2.5. We also discuss the issues of quenching,
channeling and energy resolution related to the DAMA experiment. We finally
present how to derive (following [55]) an upper limit on σpSI (as a function of mχ)
from the DAMA data.

2.6.1 The annual modulation of the DAMA signal

The first phase of the DAMA experiment, DAMA/NaI, collected over six annual
cycles a total exposure of 0.82 ton×year, while the second one, DAMA/LIBRA,
collected over seven annual cycles a total exposure of 0.29 ton×year. Thus the
total exposure collected by the DAMA experiment over 13 years was 1.17 ton×year,
orders of magnitude bigger than the exposure usually collected in the field.

Figure 2.6 shows the time behavior of the experimental residual rate (residual
means that the average over time of the signal is subtracted from the total signal,
so that only the modulated part of the signal is left) of the single-hit23 events
collected by DAMA/NaI and DAMA/LIBRA in the energy range from 2 to 6 keVee.
The experimental data are taken from Fig.1 of [54].
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Figure 2.6: The time behavior of the experimental residual rates of the single-hit events
collected by DAMA/NaI and DAMA/LIBRA in the energy range from 2 to 6 keVee.
The experimental data are taken from figure 1 of [54]. The superimposed curve shows a
cosinusoidal fit to the data, described in the text. The ticks on the horizontal axis are
placed at the 1st of January of the corresponding year.

23In DMDD only single-hit events are considered, i.e. those for which only one single detector
among the many presents in an experiment “triggers”, because the probability for a WIMP to
experience multiple interactions is negligible.
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2. Understanding the experimental results

The curve superimposed represents the result obtained by fitting a cosinusoidal
function

f (t) = A cos [2π (t− t0) /T ] (2.31)

to the data (relative to the 13 annual cycles), using as free parameters A, t0 and
T . Doing the fit, we have obtained as final values of the parameters an amplitude
of A = (0.0112± 0.0012) day−1 kg−1 keV−1 (sometimes reported as cpd/kg/keV,
where cpd means counts per day), a period of T = (365.7 ± 1.8) days and a phase
of t0 = (138± 20) days (from January the 1st). We obtain a chi square of χ2 = 64.3
with a number of degrees of freedom24 d.o.f. = 77, thus giving a reduced chi
square of χ2/d.o.f. = 0.83 (which means that the model used to fit the data can
be accepted).

The fit was originally performed in [54], with the result A = (0.0116± 0.0013)
day−1 kg−1 keV−1, T = (0.999± 0.002) yr and t0 = (146± 7) days, which signs
the presence of a modulated signal at the level of 8.9σ [54].

We remark that both fits are compatible within errors with the characteristics
of the modulated signal expected for WIMPs, which has T = 365.25 days and
t0 = 152 days as we have seen in section 1.6.3.

2.6.2 Quenching and channeling in DAMA

In the DAMA experiment, in addition to the effect of quenching, one can also take
into account that of channeling. Including this effect in the interpretation of the
DAMA results has received particular attention in the past, mainly in relation
with attempts of mitigating the tension between these results and those of other
direct detection experiments. Nevertheless, the recent results of [58] imply that
the fraction of channeling is much smaller than assumed previously (for instance
in [55], on which our procedure is based), and thus it is practically negligible in the
analysis of the DAMA results.25 For completeness in this section we explain how the

24The number of 77 d.o.f. is obtained subtracting the number of fitting parameters equal to 3
from the total number of data points, 80.

25 In [58] the fraction of channeled recoiling ions in NaI(Tl) crystals is studied using analytical
models related to Lindhard theory. The channeling of lattice ions recoiling after a collision with a
WIMP is found to be very different (in particular, the fraction is smaller) from the channeling of
incident ions. This is the reason because of the old estimates of the channeling fraction for the
DAMA experiment, presented in the reminder of this section, are ways larger than those of [58]:
they apply to atoms which start their motion close to the middle of a channel, but not to the
case of lattice ions recoiling after a collision with a WIMP, which is the one relevant for DMDD.
Moreover, in [58] the fractions for lattice ions are found to be function not only of the recoil
energy, but also of the temperature. The nuclei ejected from their lattice sites by a WIMP are
initially part of a row or plane so they start from or very close to lattice sites, thus blocking effects
are important and the probability for them of being channeled would be zero. Nevertheless, any
departure of the actual lattice from a perfect one due to vibrations of the atom allow for some of
the recoiling lattice nuclei to be channeled, because ibrations displace them from the lattice sites.
Vibrations are related to the temperature, which explains way the channeling fraction of recoiling
ions is very temperature dependent. [58] provides upper limits on the channeling fractions for
NaI crystals, for instance in their figure 14.
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channeling effect can be taken into account, but we neglect it in producing figures
2.5, 2.7 and 2.8. In figure 2.9 we show the difference between the interpretation of
the DAMA results obtained by considering the recent estimates of the channeling
in NaI christals (thus practically neglecting it, i.e. setting fNa (Er) ≈ fI (Er) ≈ 0
in equation (2.32)) and that obtained by considering the old values described in
this section. More details will be provided at the end of section 2.6.4, but let us
anticipate that the results of [58] move the DAMA region at low WIMP masses to
cross sections larger by an order of magnitude.

For what concerns the quenching, while the recoiling nucleus loses its energy
both via electromagnetic interactions and via nuclear force interactions, the detector
measures scintillation light, which comes mainly from the electromagnetic part. So
as for (2.1), the observed energy Eobs (in keVee) is smaller than the actual energy
Er (in keVnr) by a factor Q, that for the elements used in the DAMA experiment
is respectively QNa = 0.3 and QI = 0.09 (see for instance [55]).

Because of the crystalline structure of the target, for certain angles and energies
of the particles no nuclear force interaction takes place, and the entire energy is
lost electromagnetically. These are the so-called channeled events, for which Q ≈ 1.
For the fraction of channeled events in the DAMA experiment, in the past the
parameterization e.g. of [55] has been used:

fNa (Er) ≈
exp (−Er/18)

1 + 0.75Er
and fI (Er) ≈

exp (−Er/40)

1 + 0.65Er
, (2.32)

where Er is meant in keVnr. This parameterization has been obtained in [55] by
fitting figure 4 of [59].

Using the above equations together with equations (2.1), (2.9) and (2.8),26 we
can now write the differential event rate expected for the DAMA experiment as

dR

dEr

DAMA

(Eobs) = (2.33)

=
∑

i=Na,I

mi

mNa +mI

{

[1− fi (Eobs/Qi)]
1

Qi

dRi

dEr
(Eobs/Qi) + fi (Eobs)

dRi

dEr
(Eobs)

}

,

where the first term corresponds to quenched events and the second to channeled
(so unquenched) ones.

2.6.3 The DAMA energy resolution

To obtain the actual event rate, we still need to take into account the energy
resolution of the DAMA experiment, that can be introduced as in equation (2.4),
where we are directly computing the total event rate. The total event rate for the

26 Note that equation (2.8) holds not only for the total event rate, but also for the differential
event rate.
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i-th energy bin
[

E+
i , E

−
i

]

centered around the observed energy Ei (and of width

∆Ei), can thus be written as:27

RDAMA

[E+

i ,E
−
i ] (t) =

∫ ∞

0
dE

dR

dE
(E, t)

∫ E−i

E+

i

dE ′G (E,E ′) . (2.34)

We assume for DAMA a Gaussian energy resolution of the type of (2.5), with
energy dependent standard deviation

σDAMA (E) = 0.45
√

E/keVee + 0.0091 (E/keVee) (2.35)

as in [55].
In our numerical implementation we have taken this energy resolution into

account using the energy response function of (2.7).

2.6.4 Fitting the DAMA spectral data

As we have seen in section 1.7.3, the differential event rate can be approximated
as in equation (1.103) with a part which is time-independent, plus a part which
presents a cosinusoidal variation with time. So, for the model independent analysis
of DAMA, the DAMA signal as a function of energy and time can be parametrized
as:28

S (E, t) = S0 (E) + A (E) cos
[

2π

T
(t− t0)

]

, (2.36)

where S0 (E) is the part of the signal which do not depend on time, A (E) is the
amplitude of the modulation, T its period, t0 its phase, and t is time measured in
days from the beginning of the year. Since we are going to provide an interpretation
of the DAMA data in terms of WIMPs scattering off nuclei, we assume T = 1 year
and t0 = 152 days which is what you would expect for WIMPs. As we can see
these values are compatible, within errors, with those obtained from the fits in
section 2.6.1 to the residual rate measured by the DAMA experiment.

For our analysis we consider the data on the modulation amplitude A (E)
relative to the DAMA exposure (first results of DAMA/NaI combined with the
final results of DAMA/LIBRA), provided in figure 9 of [56]. In the original DAMA
data analysis a software energy threshold of ET = 2 keVee is considered (see for
instance [54]), the above data extend up to Emax = 20 keVee and they are presented
in NDAMA

bins = 36 bins of width ∆E = 0.5 keVee each. We indicate them as Aobsi ,
where the index i runs over the number of bins, from 1 to NDAMA

bins .
For every point of the parameter space σpSI ,mχ the predicted amplitude of the

modulation of the scattering rate can be computed as

Apredi (mχ, σpSI)
.
=

1

2∆E

(

RDAMA
[Ei,Ei+∆E] (t = 152)−RDAMA

[Ei,Ei+∆E] (t = 335)
)

, (2.37)

27Note that in this section, to avoid heavy notation, we drop the subscript for observed energies,
thus using E instead of Eobs.

28 Note that this corresponds to a differential event rate, not to a total event rate.
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Figure 2.7: The plot shows the data on the modulation amplitude A (E) relative to
the DAMA exposure (DAMA/NaI and DAMA/LIBRA) provided in figure 9 of [56].
Superimposed are the two best fitting modulation amplitudes, computed as explained
in the text, i.e. the two modulation amplitudes corresponding to the points in the
parameter space mχ, σpSI which provide the two minima of the χ2. We recall that the
point corresponding to the red curve is already excluded by the constraint obtained from
the DAMA data on the average rate, as explained in the text. Due mainly to the presence
of two target nuclei and of the channeling effect, the shape of the fitted modulation
amplitudes is more complex than the simple one shown for illustration in figure 1.11 (and
moreover here we are computing it for each bin of energy used to bin the data). We can
see from this figure that only one of the two fitted curves present a phase inversion.

with RDAMA

[E+

i ,E
−
i ]

(t) given by equation (2.34).

To compare the theoretical prediction with the data, a χ2 function can be used,
because as stated by [55] the Aobsi can be considered Gaussianly distributed. It
reads:

χ2
DAMA (mχ, σpSI) =

NDAMAbins
∑

i=1





(

Apredi (mχ, σpSI)− Aobsi
)

σobsi





2

, (2.38)

where Apredi (mχ, σpSI) is the predicted amplitude of the modulation of the energy
dependent signal in the i-th bin (given a point in the plane σpSI ,mχ), Aobsi is
the amplitude observed by the actual experiment for the i-th bin, and σobsi is the
associated error (standard deviation).

We thus compute the χ2 for every point of the parameter space σpSI ,mχ

identifying the points where it presents a local or global minimum χ2
min (i.e.
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2. Understanding the experimental results

we minimize the χ2), and we select allowed regions by looking for the contours
corresponding to χ2 (σpSI ,mχ) = χ2

min + ∆χ2 (CL), where ∆χ2 (CL) is evaluated
for 2 degrees of freedom. In particular as in [55] we select the levels corresponding
to 90% CL and to 3σ (i.e. 99.73% CL), which for 2 degrees of freedom correspond
to ∆χ2 (90%) = 4.6 and ∆χ2 (99.73%) = 11.8.

We obtain (neglecting channeling) two minima that are shown together with the
associated contours in figure 2.5, assuming for the analysis the SHM. We obtain a
first minimum at the point mχ = 11.35 GeV, σpSI = 2.2× 10−40 cm2 corresponding
to the value χ2

min = 33.2, and a second minimum at the point mχ = 77.2 GeV,
σpSI = 1.55× 10−41 cm2 corresponding to χ2

min = 28.5, for 34 degrees of freedom
(the number of d.o.f. being given by NDAMA

bins minus the number of free parameters).
Let us remark that the major part of the 99.73% CL region around the second
minimum, including the best fit point, is excluded by the DAMA data presented in
the following section.29

To test our code w.r.t. values found in literature, and for the comparison shown
in figure 2.9, we computed also the best fit points (and the corresponding regions)
corresponding to the outdated values for the channeling effect presented in section
2.6.2. They are a first minimum at the point mχ = 12.1 GeV, σpSI = 1.26× 10−41

cm2 corresponding to the value χ2
min = 33.3, and a second minimum at the point

mχ = 77.9 GeV, σpSI = 2.31× 10−41 cm2 corresponding to χ2
min = 26.5, for 34

degrees of freedom.30

Figure 2.9 shows the comparison between the DAMA regions obtained by
neglecting the channeling (as suggested by the recent estimates of this effect) and
those obtained using the out-dated values for the channeling that we presented in
section 2.6.2. As we can see from the figure and from the above mentioned values
of the best fit points, the low mass region for DAMA corresponding to the old
values for the channelling is located at cross sections about a factor ten smaller
than those corresponding to the recent estimates of this effect. The second region
is just slightly affected, and the significance of the fit (provided by the values of
the chi square quoted above) does not change significantly.

29 The best fit points and the corresponding regions we obtained are quite similar to those that
can be found in the recent literature, e.g. [60].

30 The values that we obtain for the first minimum are very similar to those obtained by [55],
which found mχ = 12 GeV and σpSI = 1.3 × 10−41 cm2 with χ2

min = 36.8. We cannot directly
compare the values we obtain for the second minimum with those of [55], because therein the
second minimum is obtained after excluding part of the parameter space using the DAMA data
in the way explained in the following section. We report instead the values we get for the second
minimum without taking these additional constraint into account. The second minimum we report
is thus excluded by the constraint from DAMA, so we report it only for the sake of illustration.
Note however that the value we found for this second minimum is similar to the one in table IV
of [25], which employs anyway different assumptions, for instance for the parameterization of the
fraction of channeled and quenched events.
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2.6.5 Constraints from DAMA

Here we follow again the strategy of [55]. The constant part of the detected

spectrum S0 (E) (see equation (2.36)) should consist of the time average
〈

dR
dE

(E)
〉

of the differential event rate plus an unknown background BG (E), so it can be
written as

S0 (E) =

〈

dR

dE
(E)

〉

+BG (E) . (2.39)

For any given WIMP model, the annual modulation amplitude A (E) and

the averaged differential rate
〈

dR
dE

(E)
〉

are not independent. The latter can be

computed using (2.34), and for every energy bin it is given by

〈

dR

dE
(E)

〉

=
1

2∆Econs

(

RDAMA
[Ej ,Ej+∆Econs]

(t = 152) +RDAMA
[Ej ,Ej+∆Econs]

(t = 335)
)

.

(2.40)
This additional information can be taken into account by using the figure 1 of [56]

which shows precisely the signal S0 (E) in 32 bins of width ∆Econs = 0.25 keVee

in the energy range from 2 keVee to 10 keVee, as measured by the DAMA/LIBRA
detectors.

For each value of mχ we increase σpSI , computing for every value of σpSI the

expected signal from WIMPs
〈

dR
dE

(E)
〉

in each of these energy bins. Whenever
〈

dR
dE

(E)
〉

exceeds the observed rate in at least one of the bins, that particular value

of (mχ, σpSI) is not consistent with the data and has to be excluded. All the values
corresponding to the same mχ and higher σpSI will provide higher values too, and
so can be excluded as well. The exclusion curve that we obtain is plotted in figure
2.5 and clearly exclude the DAMA best fit point at high masses.

2.7 Current and future experiments and expected

sensitivities

At the moment, in almost all the mass range apart from low WIMP masses, LUX
is the most constraining experiment (in particular, LUX puts the stronger limit
from ≈ 6 GeV, value below which the low mass analysis of SuperCDMS is more
constraining, up to 5 TeV, where the published LUX limit of [24] ends). The low
WIMP mass region is instead dominated by the limits of CRESSTII, CDMSLite
and SuperCDMS. Anyway, since many experiments are currently analyzing data,
taking data or are under development, the situation is constantly evolving. Some of
the experiments described in this chapter are still running, for instance XENON100,
LUX, SuperCMDS, EDELWEISS. Several large-scale direct detection experiments
are in their planning phase and will start science runs within this decade. A recent
review of the current status and perspectives of experiments employing noble gases
can be found for instance in [61] or in [62]. Let us remark that so many direct
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Figure 2.8: We report the average rate measured by the DAMA experiment, as a
function of the recoil energy. The data are those from figure 1 of [56]. Superimposed
are the two curves representing the average rate (computed as explained in the text)
associated to the points in the parameter space mχ, σpSI which provide the two minima
of the χ2. We recall that the data points are supposed to come from the signal plus an
unknown background, while the superimposed curves are those that would be originated
from WIMPs only. As we can see, the average rate represented by the red curve exceed
the observed rate in the DAMA experiment (the gray points in the plot), so the associated
best fit point is already excluded (see discussion in the text).

detection experiments exist or are planned, that reviewing them all is behind the
scope of this work. Here we thus provide only an incomplete presentation of some
of these experiments.

The LUX experiment will continue throughout 2015 to take data which will
allow it to reach its sensitivity goal with a blinded 300 live-days search [24]. The
next phase in the LUX program is called LUX-ZEPLIN and foresees a 7 ton liquid
xenon detector. Operation is expected to start in 2016, with the goal of reaching a
sensitivity of 2× 10−48 cm2 after three years of data taking ( [63]).

The next step of the XENON program is called XENON1T and plan to employ
an active mass of ≈ 2 tons of xenon. The underground construction of this new
phase started in 2013, completion and commissioning are expected for 2015. After
two years of continuous data taking, a sensitivity of 2× 10−47 cm2 is expected. The
upgrade of XENON1T, XENONnT, has the goal of improving the sensitivity of
another order of magnitude, thus reaching 2× 10−48 cm2.

The SuperCDMS experiment is currently taking data. The next phase of the
project is called the SuperCDMS SNOLAB [64], based on a 110 kg target. The
baseline design calls for a combination of germanium and silicone detectors that
would be operated in both the standard SuperCDMS mode and the new CDMSLite
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Figure 2.9: We compare the DAMA regions obtained by neglecting the channeling (as
suggested by the recent estimates of this effect quoted in the text), on the left panel, with
those obtained using the out-dated values for the channeling that we presented in section
2.6.2, on the right panel. As we can see the low mass region for DAMA corresponding to
the old values for the channelling is located at cross sections about a factor ten smaller
than those corresponding to the recent estimates of this effect (practically implemented
by negleting it). This is particularly important because channeling has in the past been
invoked to mitigate the tension between the DAMA regions (in particular the low WIMP
mass one) and the limits set by other experiments, and due to the above mentioned
recent estimates thit role for the channeling effect is even less appropriate nowadays, as
it is clear from the figure. The values corresponding to the best fit points shown in the
figures are specified at the end of section 2.6.4.

mode.

The next phase of the EDELWEISS project is called EDELWEISS-III, a 24 kg
fiducial mass experiment, that has now started to take data. In 2012 and 2013,
a substantial upgrade of the setup was undertaken to significantly improve the
sensitivity. Several improvements have been made over EDELWEISS-II including a
lower detector threshold and an improved energy resolution. Special attention was
made to reduce backgrounds through additional shielding and improved radiopurity
in several detector components. Finally, improvements are also being made in the
discrimination of background events, including surface events. The EDELWEISS-III
setup, its physics prospects and first data recorded are described in [65].

DarkSide-50 is a dual-phase argon detector employing 50 kg of active mass,
developed inside the Borexino Counting Test facility at the Laboratori Nazionali
del Gran Sasso. the collaboration has recently presented results of a run with
natural argon. The projected sensitivity considering an energy threshold of 35
keVnr and a data taking period of 3 years is ≈ 10−45 cm2 for a 100 GeV WIMP.
The DarkSide collaboration plans a 5 ton liquid argon dual-phase detector, with
3.3 tons as active target mass, with an aimed sensitivity of 10−47 cm2.

The DARk matter WImp search with noble liquids (DARWIN) [66] is an
initiative to build an ultimate, multi-ton dark matter detector at the Laboratori
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Nazionali del Gran Sasso. Its primary goal is to probe the spin-independent WIMP-
nucleon cross section down to the 10−49 cm2 region for ≈ 50 GeV/c2 WIMPs, so
it aims at exploring the experimentally accessible parameter space, which will be
finally limited by the irreducible neutrino backgrounds.31

31 The effect of neutrino backgrounds on the discovery potential of WIMPs of DMDD experi-
ments is explored in detail in [67].
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3.1 Introduction

In the previous chapters we have been looking in detail at how experiments
aim at detecting WIMPs via their scattering off nuclei. As we have seen, a lot
of astrophysics enters the interpretation of the results of such experiments. In
particular, we have seen that a crucial role is played by the velocity distribution
of the dark matter, together with quantities like the local dark matter density ̺⊙,
the Galactic escape speed vesc at the position of the Sun and the velocity of the
Sun in the Galactic frame.

In chapter 1 we have introduced them by explaining how and where we use
them in direct detection, but without specifying the underlying theory from which
they come from. If at that moment this choice appeared justified by the necessity
of focusing first on the formalism of direct detection, which has provided the
initial motivation for this work, now the time has come to provide the theoretical
framework on which these astrophysical quantities rely.

This chapter presents a review of the concepts of galactic dynamics that are
relevant for the subject of this work. For a full guide to the subject, we refer the
reader to the bible of that domain, [17], from which this chapter is inspired. Let us
remark that, even if the majority of the laws, definitions, quantities and principles
treated in this chapter hold (and are used) in general in the study not only of
the Milky Way, but also and especially of any galaxy or cluster of galaxies, here
we will obviously focus on their application to our own galaxy. Moreover, we will
mostly introduce the physical concepts from the viewpoint of a dark matter particle
hunter.

A top-down approach to the subject of galactic dynamics would have probably
implied to start by introducing the phase-space distribution of stars, i.e. the
distribution in the 6-dimensional space of position and velocity of the stars (which,
if the system is not in a steady state, is a function also of time, so 7-dimensional),
and deriving from that the spatial distribution and the velocity distributions.
Though this approach is more elegant, we follow instead a bottom-up approach
to the subject, having already introduced the velocity distribution and going now
to introduce the spatial distribution. This is thought to be more suited to drive
the reader from the issues concerning direct detection presented in the previous
chapters, to the concepts of galactic dynamics described here.

We will start by discussing the mass distribution of the dark matter and of
baryons inside the Milky Way, and the construction of mass models. Then we will
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provide definitions and illustrations to quantities like the escape speed and the
circular speed, assuming Newtonian dynamics. We will then discuss systems in
equilibrium, the collisionless Boltzmann equation and the Jeans equations. The
next section will be dedicated to an overview of the isothermal sphere, the mass
distribution upon which the Maxwell-Boltzmann velocity distribution relies. We
will then explain how in spherically symmetric systems the velocity distribution
can be computed (under certain conditions) from the mass distribution, both for
systems which are isotropic and for anisotropic ones.

3.2 The spatial distribution of mass in the Milky

Way

The distribution of mass in the Milky Way is to a big extent still unknown. Stars
and gas form the luminous band that we can see at night crossing the sky (we will
refer to them as baryons), and in modern day standard cosmology this baryonic
matter is tought to lie in a cold dark matter halo.

The baryons are mainly distributed inside a flattened structure, the disk, which
contains the majority of the visible mass, and presents spiral arms and a central bar.
A part of the baryons lies in a structure located at the center of the Galaxy and
less extended than the disk, the bulge. The dark matter halo is instead considered
to be rather spherical, even if a certain degree of triaxiality is probably present,
and in addition substructures like subhaloes should be present (at least, if dark
matter is made of WIMPs). Anyway, the structure of the dominant components,
the baryonic disk and the dark matter halo, remains to some extent uncertain.
More precisely, many reliable models exists, and there is a plethora of data that
allows to describe the kinematics of stars in the Milky Way and to constrain the
components, but how accurately depends on the physical quantity under scrutiny.

The majority of the mass is contained in the dark matter halo, observable only
through its gravitational effect on the luminous components of the Galaxy.

In this chapter we deal with the issue of modeling the Milky Way. It is important
to distinguish among three types of models of the Galaxy (see [68]): mass models,
kinematic models and dynamical models. Mass models are the simplest ones
and simply attempt to describe the density distribution of the various Galactic
components, and thus the Galactic potential. Kinematic models describe the density
and the velocity distributions of the luminous components of the Galaxy, but do
not inspect if they are consistent with a steady state in any Galactic potential.
Dynamical models describe systems which are in steady state in a given potential
because their phase-space density depends only on integrals of motion.

In next section we deal with mass models only, while we will introduce the
dynamics in the following sections. We start by presenting the most common
density profiles that are used to describe the dark matter halo. We thus go on and
present some interesting density profiles used to describe the baryonic content of
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the Milky Way. Then, we discuss how a Milky Way mass model (MWMM) is built
up.

3.2.1 The dark matter mass distribution in space

We are now going to introduce some of the most common density profiles used to
describe dark matter halos. They span a wide range of shapes. Let us clarify one
point about the terminology used, in relation with the behavior of such profiles
toward the center of the halo. The two extremes are represented by the so called
core or cusp behaviors. A cusped profile means one for which the density of matter
increases as a power law when approaching the center (for instance the NFW
profile), while a cored profile is one for which this power law behavior disappear at
a certain distance when we approach the center of the halo (for instance the cored
isothermal sphere) see figure 3.1.

The singular isothermal sphere profile

The singular isothermal sphere (SIS) profile is the simplest parameterization of the
spatial distribution of matter in an astronomical system (e.g. galaxies, clusters of
galaxies, etc.). It reads:

̺SIS (r)
.
=

σ2

2πGNr2
, (3.1)

where r is the distance from the center of the sphere and σ2 is the variance of the
corresponding speed distribution, as we will see in section 3.4 where we will study
this profile in more detail.

This profile represents one of the standard assumptions used in DMDD on
which the Maxwell-Boltzmann velocity distribution for the dark matter relies, as
we will see.

The cored isothermal sphere profile

One interesting variant of the singular isothermal sphere profile often considered in
the literature is the cored isothermal sphere, which reads:

̺ (r) = ̺s
a2 + r2

s

a2 + r2
, (3.2)

where rs is the scale radius, ̺s is the matter density at the position rs, and a is a
parameter which gives the radius of the transition between the inner part of the
halo (the so called core), and the outer one. Clearly, the cored isothermal sphere
profile tends toward the singular isothermal sphere profile when a≪ r. An example
of a cored isothermal sphere profile is shown in figure 3.1.
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The Navarro Frenk and White profile

The profile most commonly used to describe dark matter halos is the Navarro
Frenk and White density profile (NFW hereafter). It was originally derived by
analytically fitting N-body simulations (see [69]), and it is used to describe the DM
halo of the Milky Way as well as the ones of other galaxies.

The NFW profile is the spherically symmetric density profile of the form (see
for instance [69] or [70]):1

̺NFW (r) =
δc̺crit

r
rs

(

1 + r
rs

)2 , (3.3)

where r is the distance from the center of the system, rs is the scale radius, ̺crit is
the present critical density for closure of the universe2 and δc is the (adimensional)
characteristic density constrast.

The scale radius is defined as

rs
.
=
rv
c∆

, (3.4)

where c∆ is the (adimensional) concentration parameter and rv is the virial radius.
This quantity is defined as the distance from the center of the halo within which
the mean density is ∆ times the present critical density. The parameter ∆ is called
the virial overdensity parameter.3

The characteristic density contrast δc is related to the concentration parameter
c∆ by the above mentioned requirement that the mean density within rv should be
∆̺crit,

4 so

δc
.
=
vc3

∆g (c∆)

3
, (3.5)

where

g (c∆) =
1

ln (1 + c∆)− c∆/ (1 + c∆)
. (3.6)

In practice, the profile has only two free parameters: the scale radius rs which
determines its scale, and the concentration parameter c∆ which describes its shape.5

1 Note that often this profile is written in terms of the scale density ̺s
.
= δc̺crit, thus reading

̺ (r) = ̺s
r

rs
(1+ r

rs
)

2 .

2Remember that ̺crit = 3H2

8πGN
, where H (z) is the Hubble parameter, for which at z = 0 (today)

we will consider in the following chapter the same value used by [1] of H = 73 (km/s)/Mpc.
3 Different choices of the value of ∆ are possible; some values often used in the literature are

178, 200 (see for instance [17]) and 340 (which is not common, but it is used in the study [1] on
which we will rely in the next chapter).

4 This is equivalent to write that ∆̺crit = MNFWint (rv) /
4

3
πr3
v, which allows to demonstrate

equation (3.5). Note that MNFWint (r) is given in equation (A.1).
5 The concentration parameter is a general structure parameter not necessarily restricted to

the NFW profile. In cosmology, the concentration is related to the time of gravitational collapse,
and a cosmological scenario is usually associated with a halo concentration-mass relation; small
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Let us remark that the quantity ∆, necessary to define c∆, can be fixed freely, but
then c∆ should transform accordingly such that the profile remains unchanged, so
∆ does not represent an additional degree of freedom.6

Some of the interesting astrophysical quantities that can be computed from the
mass density can be obtained analytically for this profile. Their expressions are
listed in appendix A. An example of a NFW profile is shown in figure 3.1.

The Zhao profile

The Zhao profile (or αβγ profile) reads:

̺αβγ (r) =
̺s

(r/a)γ [1 + (r/a)α]
β−γ
α

, (3.7)

where ̺s is the scale density and rs the scale radius. The parameter γ gives the
slope of the profile in the central region (i.e. at small r), β gives the slope of the
profile in the outern region (i.e. at large r), and α specifies how fast the slope
changes from γ to β. 7 It represents a generalization of the NFW profile of (3.3),
which can be recovered with the choices: (α, β, γ) = (1, 3, 1). It can be used to
describe cusp profiles (like the NFW) as well as cored profiles (obtained in general
for γ = 0). In practice it provides a usefull way to parameterize many different
profiles in one single equation.

The Einasto profile

The Einasto profile [72] reads:

̺Ein (r) = ̺s exp
{

− 2

α

[(

r

a

)α

− 1
]}

, (3.8)

where ̺s is the scale density and a the scale radius. The parameter α controls
the slope of the profile, which thus can be seen as a generalization of a power law
(which has a constant slope on a log-log plot). Einasto’s profile has the same form
as Sersic’s law, which is used to describe the surface brightness (i.e. the projected
density) profile of galaxies.

For what concerns its use to describe dark matter, this profile seems to better
catch the behavior of the dark matter profile of galaxies in N-body simulations
w.r.t. broken power-law models like the NFW profile (with the same number of
free parameters), see [73]. An example of an Einasto profile is shown in figure 3.1.

mass haloes are more concentrated because they typically collapse earlier than haloes of larger
masses. These issues are discussed for instance in [71], where the dependence of the concentration
parameter on mass of the halo, on redshift and on the environment (halos or subhaloes) is studied
using cosmological simulations.

6 Alternative choices of the two free parameters can be done, for instance rv and rs, or rv and
c∆. Moreover, if we write the profile in terms of the parameter ̺s we can use as free parameters
the quantities rs and ̺s, and in this case we do not need to define the concentration parameter
so we do not need to fix ∆.

7Actually, β and γ are the slopes of the profile in a log-log plot.
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Figure 3.1: Different dark matter profiles, normalized such that they all provide the
same value for the dark matter density at the position of the Sun, which we fixed at
̺⊙ = 0.3 GeV/cm3 (as in the SHM) at r⊙ = 8 kpc. They are an NFW profile (3.3)
with rs = 8 kpc and ̺s = 1.2 GeV/cm3, a cored isothermal sphere (3.2) with rs = 8 kpc,
a = 2 kpc and ̺s = 0.3 GeV/cm3, and an Einasto profile (3.8) with a = 8 kpc, α = 0.3
and ̺s = 0.3 GeV/cm3.

The Burkert profile

The Burkert profile [74] reads:

̺Bur (r) =
c

(r + a) (a2 + r2)
, (3.9)

and it is motivated as a fit to observed rotation curves.

3.2.2 The baryons mass distribution in space

Usually, the baryonic content of the Galaxy is modeled by the superposition of
different distinct components. In general at least an axisymmetric profile for the
disk and a spherically symmetric profile for the bulge, located in the central part
of the Galaxy and containing a smaller amount of mass than the disk, are used.8

In addition, other components can be taken into account. In particular, often
two disks are used, a thin and a thick disk (as e.g. in [68]), and sometimes also a
gaseous disk component (separated from the stellar disk). In addition, sometimes
axisymmetric (as e.g. in [68]) or triaxial bulges (as e.g. in [75]) with a bar are

8 This is the case for instance for the simple MWMM employed in [1], that we will use in
chapter 4.
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considered.9

For much of the information contained in this section, we rely on [17].

Stellar disk/s

Most of the stars in the Galaxy lie in a flattened, roughly axisymmetric structure
known as the Galactic disk. The disk is a fundamental component of any mass
model which aims at describing the Milky Way globally. On clear, dark nights
the cumulative light of the faint stars of the disk is visible as a luminous band
stretching across the sky, which is where the name Milky Way for our galaxy comes
from.

Exponential Disk. Observations of other disk galaxies suggest that the surface
brightness is approximatively an exponential function of R, and in the direction
perpendicular to the Galactic plane the density of stars fall off exponentially. Thus,
an axially symmetric density profile commonly employed in the description of
the disk of the Milky Way (as for instance in [68], see also [17]) is the so called
exponential disk. Its most common form is:

̺ED (R, z) =
Md

4πzdR2
d

exp

(

−|z|
zd
− |R|
Rd

)

, (3.10)

where Md is the total mass of the disk, zd is the scale height and Rd is the scale
lenght.10 In the above equation, z is the distance from the midplane.

The thin and thick disks of the Milky Way. Even if in simple models a single
disk is taken into account, more complex ones consider (at least) two populations
of stars, described by two different disks, a thin one, and a thick one. Even tough
different density profiles for the disks exist, usually a double exponential profile
(3.10) is considered for each of the disk components, thin and thick, as done for
instance in [68]. The populations of stars described by the two different disks
are different (see [17, sec. 1.1]). The stars of the thick disk are older and have a
different chemical composition from those of the thin disk, to which the Sun belong.
More precisely, the stars of the thick disk have lower metallicities, and for a given
metallicity they have higher abundances of the α nuclides (16O, 20Ne, 24Mg, 28Si,
etc.) w.r.t. 56Fe (so the thick disk is said to be metal-poor), which are a signature
of stars formed early in the history of the disk.

9 Let us remark that, even if the real Galaxy has spiral arms, for certain purposes (e.g. the
determination of quantities on which we are mainly interested in this work, like for instance the
local Galactic escape speed) the mass modelling description discussed above is the most suitable
one, so a spiral arm description will not be discussed here.

10 A spherically symmetric approximation of this profile, which provides the same potential in
the disk an thus is useful in DMDD related computations, can be found in [76]
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Miyamoto-Nagai disk. This axisymmetric density profile can be found in [77],
and is used to describe the disk of the Milky Way for instance in [1]. It has the
form:

̺ (R, z) =
b2MMN

4π

aMNR
2 +

[

aMN + 3 (z2 + b2
MN)

1/2
] [

aMN + (z2 + b2
MN)

1/2
]2

[

R2 +
[

aMN + (z2 + b2
MN)

1/2
]2
]5/2

(z2 + b2
MN)

3/2

,

(3.11)
where MMN is the total mass of the system described by this profile, while aMN

and bMN are non-zero parameters with the dimension of length. Depending on
the choice of the parameters, the Miyamoto-Nagai profile can represent anything
from an infinitesimally thin disk to a spherical system (see [17, sec. 2.3]). For
instance, [78] employs a Miyamoto-Nagai profile to describe both the disk and the
bulge.

Stellar bulge

In addition to the disks, the Galaxy contains a small, amorphous, stellar system,
located at its center, thicker than the disk, and comprising the 15% of the total
luminosity. The bulge stars are tought to date from near the time of formation of
the Galaxy, while the stars of the disks have a wide range of ages (stars formation
being an ongoing process in the disks). While the stars in the Solar neighborhood
are found on nearly circular orbits, the velocity vectors of bulge stars are randomly
oriented. In the therminology of statistical mechanics, where temperature is
proportional to mean-square velocity, a stellar population like the disk in which the
random velocities are much smaller then the mean velocity is said to be cold, while
the bulge population, in which the random velocities are larger than the mean
velocity, is said to be hot.

Hernqvist profile. This spherically symmetric density profile is presented in [79],
and it has been used to describe the bulge of the Milky Way for instance in [1]. Its
form is:

̺H (r) =
MH

2π

aH

r (r + aH)3 , (3.12)

where MH is the mass of the system described by this profile and aH is the scale
length. One of the nice features of this profile is that almost all of the interesting
quantities that can be computed from the mass density can be obtained analytically.
Some of them are listed in appendix A.

Oblate ellipsoidal bulge. The oblate ellipsoidal bulge is an axisymmetric density
profile which can be used (as in [68]) to provide an approximated description of
the stellar bulge of the Milky Way. Its form is:

̺OEB (R, z) =
̺b,0

(1 +m/r0)
α exp

[

−
(

m

rcut

)2
]

, (3.13)
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where, in cylindrical coordinates, m
.
=
√

R2 + (z/q)2, and q is the axis ratio. Note
that because of its dependence on m only, this density profile is of the form
associated with equation (A.10). The properties of oblate ellipsoidal bulges are
described in details in appendix A. Let us remark that an alternative form for the
stellar bulge, also of an oblate ellipsoidal shape, is presented in [17, sec. 2.7].

Triaxial bulge. Even if spherical (or axial) symmetry can be already a good
approximation for the stellar bulge of the Milky Way, the Galactic bulge is actually
triaxial. The lenghts of the two principal axes that lie in the Galactic plane are in
the ratio 3:3:1, and the triaxial structure extends to about 3 kpc from the center.
Its longest axis is inclined by about 20 degrees w.r.t. the line from the Sun to the
Galactic center. An example of a triaxial profile for the bulge can be found in [80].

Density profile with a bar. Since the Galactic bulge is triaxial, it is also
sometimes called “a bar”, and thus the Milky Way is considered to be a barred
galaxy. Roughly speaking, a bar is a higly elongated, rapidly rotating stellar system.
A recent model for the Milky Way bar can be found in [78]. That work employs
the well established bar model of [81], which contains both a bar and a spheroidal
nucleus with a steep inner power low behavior and an exponential outern profile.

Gaseous disk

The gas component is sometimes omitted in making models of the Milky Way, but
it is particularly relevant for MOND models, as those considered in [82]. A mass
model for the gas in the Milky Way can be found in [83].

3.2.3 Mass models for the Milky Way

To describe an astrophysical system, like for instance a galaxy, a cluster of galaxies,
the Milky Way, etc., as we already stated different types of models can be used.
In this section we focus on the simplest type, i.e. (analytical or semi-analytical)
mass models. A mass model is simply a model where we describe a system using a
density profile ̺ (~x), i.e. a function which, for every point of the physical space,
specifies the density of matter for every component of the system (dark matter,
baryons,...).

The density profiles that we have seen up to now represent generic models
that can be used to describe many different astrophysical systems, like clusters of
galaxies, spheroidal galaxies, the different components of our own galaxy, etc. In
this section, we aim at describing the mass distribution of the Milky Way, i.e. we
consider Milky Way mass models.

A Milky Way mass model usually is obtained adding multiple profiles, each
of them describing one component of the Milky Way. How many components
one model takes into account, and which degree of symmetry every component
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has, depends on the purpose for which one wants to use the MWMM, and on the
accuracy with which one wants to describe the Galaxy.11 In general, a Milky Way
mass model can contain the following components: the stellar bulge, the stellar
disk (possibly two components, thin and thick), the baryonic gas and the dark
matter halo.12 Anyway, usually simpler mass models are employed (depending on
the purposes), which do not contain all of these components.

So, in general a MWMM could read:

̺MWMM (~r) = ̺DM (~r) + ̺Bulge (~r) + ̺ThinDisk (R, z) + ̺ThickDisk (R, z) + ̺Gas (~r) ,
(3.14)

where (R, ϑ, z) indicate cylindrical coordinates (so that r =
√
R2 + z2). Usually

each of the above profiles will have a certain degree of symmetry, so they will not
be all functions of ~r.

From the density profile it is straightforward to derive, analytically or numeri-
cally, the gravitational potential Φ (~r) using equation (3.16) or equation (3.22), as
will be explained in the next section.

Since the Newtonian gravitational potential is additive, we can calculate the
potential of this system as the sum of the potentials of the individual terms. This
gives:

ΦMWMM (~r) = ΦDM (~r)+ΦBulge (~r)+ΦThinDisk (R, z)+ΦThickDisk (R, z)+ΦGas (~r) ,
(3.15)

where the individual potentials are those computed from the respective profiles.
In the next sections we will introduce some of the basic quantities related to

the Galactic dynamics that are more relevant for this work. To illustrate13 them,
we will use two examples of MWMM. The first example that we will employ is
inspired from [68] and based on a MWMM calibrated on recent data. The second
one, taken from [1], is simpler and it is not meant to be a good Milky Way mass
model, but we will show it mainly because we will employ it in the next chapter.

Mass model of the Galaxy from [68]

To illustrate the quantities introduced in the next sections, we will use a MWMM
inspired from one calibrated on recent data, the best fit mass model determined
in [68]. This model has been obtained by [68] with a Bayesian approach employed to
take into account photometric and kinematic data. It contains a NFW dark matter

11 For instance, a very simple mass model of the Milky Way can include a dark matter spherically
symmetric halo, a spherically symmetric bulge and an axially symmetric disk, as it is the case
for the mass model employed by [1], on which we will rely in chapter 4. Even though with a
high degree of simplification, when constrained from observational kinematic data, such a simple
model can already capture the main dynamical features of the Milky Way.

12 Let us remark that sometimes also other components are considered, like for instance an hot
gas halo.

13 Let us remark that we produced the figures used to illustrate the next sections using analytic
expressions where possible, and numerical computations otherwise.
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spherically symmetric halo (3.3), combined with an axisymmetric baryonic bulge
(the oblate ellipsoid provided in equation (3.13)) and two different populations of
baryons in the disk, described through two different axisymmetric disks of different
thickness, the thin disk and the thick disk, modeled with two exponential disks of
the form (3.10).

The parameters of the model have the following values.14 The NFW halo has
̺s = 0.00846 M⊙ pc−3 and rs = 20.2 kpc. The oblate ellipsoidal bulge has ̺0 = 95.6
M⊙ pc−3, r0 = 0.075 kpc, rcut = 2.1 kpc, α = 1.8 and q = 0.5. The thick disk is an
exponential disk with Rd = 3.31 kpc, Σ0 = 209.5 M⊙ pc−2 (from which the total
mass of the disk can be obtained as Md = 2πΣ0R

2
d), and zd = 0.9 kpc. The thin

disk is an exponential disk with Rd = 2.90 kpc, Σ0 = 816.6 M⊙ pc−2 and zd = 0.3
kpc. These profiles, individaully and summed up to make the full MWMM, are
shown in figure 3.2.

To compute the gravitational potential and related quantities shown in the
illustrative plots, we neglect the axisymmetry of the bulge and use instead a spherical
approximation (as done for instance in [82]) which gives the same run of mass
with radius, and consists in substituting in equation (3.13) m/r0 with r/q1/3r0 and
m/rcut with r/q1/3rcut. For the same purposes we represent each exponential disk by
a spherical distribution (provided for instance in [76]) that approximates the mass
and circular velocity of the exponential disk: Φ (r) = −MdGN [1− exp (−r/b)] /r,
with b

.
=
√

R2
d + z2

d. Altough the Galactic disk is certainly flattened, this equation
provides the same amount of mass interior to r as an exponential disk, and matches
its circular speed with error no more than ∼ 15% (see [17, sec. 2.6]). Anyway,
we remark that these approximations are only employed in producing some of the
figures used in the next sections, which have just an illustrative purpose.

Mass model of the Galaxy from [1]

In chapter 4 we will make use of the MWMM employed by [1], so in this chapter,
together with the MWMM presented in the previous section, we show the behavior
of the physical quantities introduced in the next sections also for this MWMM.
Let us point out that this one is not meant to be a good Milky Way mass model,
it was not calibrated for that. We mainly present it because we will use it in the
next chapter. Anyway, even though with a high degree of simplification, when
constrained from observational kinematic data, such a simple model can already
capture the main dynamical features of the Milky Way.

The density profiles and the parameters for the baryonic components are
fixed in [1], and we employ the values of the parameters of the dark matter halo
corresponding to the best fit obtained therein. This MWMM employs a NFW
profile (3.3) for the dark matter, an Hernquist profile (3.12) for the baryonic bulge,
and a Miyamoto Nagai profile (3.11) for the baryonic disk.

14 A more detailed discussion on the different estimates of the above quantities present in the
literature and on the associated uncertanties will be done in chapter 5.
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The NFW halo has rs = 7.8 kpc and ̺s = 1.92 GeV/cm3. The parameters
of the baryonic components of the model have the following values, determined
by [84]. The Hernqvist bulge has aH = 0.6 kpc and MH = 1.5 × 1010 M⊙. The
Miyamoto-Nagai disk has aMN = 4 kpc, bMN = 0.3 kpc and MMN = 5× 1010 M⊙.
These profiles, individaully and summed up to make the full MWMM, are shown
in figure 3.2.
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Figure 3.2: Density profiles (in the plane of the disk) for the Milky Way mass models
that we use to illustrate this chapter, as a function of the cylindrical coordinate R. Left:
MWMM from [68]. Right: MWMM from [1]. The different components of each MWMM
are shown together with the total density of the model. The values of the parameters
have been fixed as specified in the text, see section 3.2.3.

3.3 Galactic dynamics, the basic ingredients

A Milky Way mass model specifies the mass distribution of the various components
of our Galaxy, dark matter and baryons, through the density of mass, and Poisson
equation associates to this density the corresponding gravitational potential.

From the quantities above it is then possible to derive other useful quantities
like the total mass contained in a sphere of a certain radius centered on the center
of the system and, most important for DMDD, to define the escape speed from the
system and the speed of a body on a circular orbit, as we are now going to see.

We report in appendix A the analytic expressions of the quantities defined
below for some of the density profiles quoted above.

3.3.1 The gravitational potential and the internal mass

Following [17, sec 2.1] we define the Newtonian gravitational potential Φ (~x) as

Φ (~x)
.
= −GN

∫ ̺ (~x′)

|~x′ − ~x|d
3x′ . (3.16)
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In Newtonian gravity, the density of mass ̺ (~x) of a system generates its
gravitational potential Φ (~x) as described by Poisson’s equation:

∇2Φ (~x) = 4πGN̺ (~x) . (3.17)

Poisson’s equation is a differential equation which can be solved for Φ (~x) given
̺ (~x) and an appropriate boundary condition. The boundary conditions to impose
to Poisson equation depend on the physical system under study. For an isolated
system the boundary condition is Φ→ 0 as |~x| → ∞.

The gravitational potential derives from the gravitational force ~F (~x), acting on
a point mass m situated at position ~x, and generated by the Newtonian gravitational
attraction of a distribution of mass ̺ (~x):

~F (~x) = −m~∇Φ (~x) . (3.18)

For spherically symmetric systems we have that ̺ (~x) = ̺ (r), so Φ (~x) = Φ (r),
and thus15

~F (r) = −mdΦ

dr
êr = −GN

mMint (r)

r2
êr , (3.19)

where
Mint (r)

.
=
∫

dΩ
∫ r

0
r′2dr′̺ (r′, ϑ, ϕ) = 4π

∫ r

0
̺ (r′) r′2dr′ (3.20)

is the mass interior to a radius r. Using the second equality of (3.19), and recalling
that (for an isolated system) the potential Φ (r) is assumed to be zero at infinity
and negative otherwise, we can write

Φ (r) = −
∫ ∞

r
dr′

dΦ

dr′
= −

∫ ∞

r
dr′

GNMint (r
′)

r′2
. (3.21)

The interior masses associated to some dark matter profiles are reported in figure
3.3.

We can take the above equality (3.21) and insert the expression of Mint (r),
given in equation (3.20). We can integrate by parts the obtained expression, taking
the derivative of Mint (r) and the primitive of r−2, and we thus obtain that the
Newtonian potential arising from a spherically symmetric density profile ̺ (r) can
be written also as:

Φ (r) = −4πGN

[

1

r

∫ r

0
̺ (r′) r′2dr′ +

∫ ∞

r
̺ (r′) r′dr′

]

, (3.22)

which is found also in [17, pag. 36] and reflects the fact that the Newtonian
gravitational potentials add linearly.

The gravitational potentials arising from such dark matter profiles are reported in
figure 3.4. Those arising from the different components of the MWMMs introduced
in section 3.2.3 are reported in figure 3.5.

15The second equality follows from Newton’s second theorem, [17, pag. 34].
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Figure 3.3: Examples of the mass interior to a certain radius r, as a function of r, for
the dark matter halo profiles of figure 3.1. The different profiles are normalized such that
they all provide the same value for the dark matter density at the position of the Sun,
which we fixed at ̺⊙ = 0.3 GeV/cm3 (as in the SHM) at r⊙ = 8 kpc. The values of the
parameters for each profile are specified in the caption of figure 3.1.
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Figure 3.4: The gravitational potential of the dark matter halo profiles of figure 3.1.
The different profiles are normalized such that they all provide the same value for the
dark matter density at the position of the Sun, which we fixed at ̺⊙ = 0.3 GeV/cm3 (as
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the caption of figure 3.1.
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Figure 3.5: Gravitational potential (in the plane of the disk) for the Milky Way mass
models that we use to illustrate this chapter, as a function of the cylindrical coordinate
R. Left: MWMM from [68]. Right: MWMM from [1]. The different components of
each MWMM are shown together with the total density of the model. The values of the
parameters have been fixed as specified in the text, see section 3.2.3.

3.3.2 The circular speed

An important property of a spherical matter distribution, in particular in the light
of the subject of this work, is its circular speed vc (r), which is defined as the speed
of a test particle in a circular orbit at radius r and reads

v2
c (r)

.
= rac = r

∣

∣

∣

~F
∣

∣

∣

m
= r

dΦ

dr
=
GNMint (r)

r
, (3.23)

where ac is the centripetal acceleration, and we have used equation (3.19).
We now want to determine the speed of a body moving on a circular orbit in the

axial plane of an axisymmetric system. Recalling that ~F = −~∇Φ, we can see that
the square of this quantity is given by the radial component of the gravitational
force multiplied by the distance from the center, i.e. for an axisymmetric system:

v2
c (R, z = 0)

.
= Rac = R

∣

∣

∣

~FR
∣

∣

∣

m
= R

(∣

∣

∣

∣

∣

dΦ(R, z)

dR

∣

∣

∣

∣

∣

)

z=0

, (3.24)

where we have used cylindrical coordinates, which we indicate as (R, ϑ, z). The
circular speed associated with some dark matter profiles is reported in figure 3.6.

The circular speed of a MWMM

We now want to calculate the circular speed of a body orbiting along a circular orbit
in the plane of the disk of a mass model. We have already calculated the circular
velocities for the three individual density profiles which compose it. From equation
(3.24) we can easily see that the square of the circular velocity for any Milky Way
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Figure 3.6: The circular speed of the dark matter halo profiles of figure 3.1. The
different profiles are normalized such that they all provide the same value for the dark
matter density at the position of the Sun, which we fixed at ̺⊙ = 0.3 GeV/cm3 (as in
the SHM) at r⊙ = 8 kpc. The values of the parameters for each profile are specified in
the caption of figure 3.1.

mass model will simply be the sum of the squares of the circular velocities of the
individual components, so

(

vMWMM
c (R, z = 0)

)2
=
(

vDMc (r)
)2

+
(

vBulgec (r)
)2

+
(

vDiskc (R, z = 0)
)2

, (3.25)

with the addition of other components (e.g. a second disk or the gas) if present.
Figure 3.7 illustrates the contribution to the total circular speed of the different

components of the two MWMMs presented in section 3.2.3.

3.3.3 The escape speed

For an object of mass m at a position r (for instance a star or a dark matter particle)
in a spherically symmetric potential Φ (r) we can write the potential gravitational
energy as U (r) = mΦ (r) < 0, and the kinetic energy as K (r) = 1

2
mv2 (r) > 0. The

object can escape the potential which is in only when its kinetic energy exceeds the

module of its potential energy, i.e. when v (r) >
√

2 |Φ (r)|. So, following [17, sec.
2.2] we can define the escape speed vesc (r) as

vesc (r)
.
=
√

2 |Φ (r)| , (3.26)

i.e. as the minimum velocity that an object need to have in order to be able to
escape the gravitational potential represented by Φ (r).
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Figure 3.7: The circular speed (for objects in the plane of the disk) for the Milky
Way mass models that we use to illustrate this chapter, as a function of the cylindrical
coordinate R. Left: MWMM from [68]. Right: MWMM from [1]. The different
components of each MWMM are shown together with the curve for the MWMM. The
values of the parameters have been fixed as specified in the text, see section 3.2.3. We
remark that in the inner part of the Galaxy the baryonic bulge contributes more than
the disk, while in the outer the converse happens. The contribution of the dark matter is
very small in the inner Galaxy, while it dominates going toward higher R. This are the
so called rotation curves for a spiral Galaxy, i.e. the curves providing the circular speed
as a function of R in the disk. As we can clearly see from the figure, the effect of adding
to the baryons the dark matter component is to enhance the values of the circular speed
at R outside the inner part of the Galaxy. In particular, the impact of the dark matter is
such that the rotation curve is almost flat at every R outside the inner Galaxy, while it
would have had a Keplerian behavior if only the baryons would have been present. Flat
rotation curves are usually what is observed either for other spiral galaxies and for the
Milky Way (usually with bigger uncertainties). This has historically been one of the first
and most invoked arguments for the need of dark matter in galaxies.

The above definition of the escape speed would be the speed that a body should
have in order to be able to arrive at an infinite distance from the Milky Way.
Anyway, sometimes we can use another definition of the escape speed, namely:

vesc (r)
.
=
√

2 |Φ (r)− Φ (rmax)| , (3.27)

where rmax is the distance from the center of the potential at which a body is
considered to be unbound. This is more appropriate when we do not consider an
isolated system, to describe the fact that an object can escape the gravitational
potential of such a system once it is sufficently far away from it to be “captured” by
the gravitational potential of a nearby object. While equation (3.26) well represents
the escape speed necessary for escaping for instance a star, since the Milky Way is
not an isolated system, the escape speed from the Galaxy can more appropriately
be described using equation (3.27). This will describe the fact that, though Φ (rmax)
is not necessarily 0, the body could escape the gravitational potential of the Milky
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Figure 3.8: The escape speed of the dark matter halo profiles of figure 3.1. The different
profiles are normalized such that they all provide the same value for the dark matter
density at the position of the Sun, which we fixed at ̺⊙ = 0.3 GeV/cm3 (as in the SHM)
at r⊙ = 8 kpc. The values of the parameters for each profile are specified in the caption
of figure 3.1.

Way because of e.g. the presence of other nearby galaxies. This definition is used
for instance in [1].

The escape speed of some dark matter profiles is shown in figure 3.8, while that
of the MWMM presented in section 3.2.3 is shown in figure 3.9.

For a point which lies in the plane of the disk, we can write:

vMWMM
esc (R, z = 0) =

√

2 |ΦMWMM (R, z = 0)− ΦMWMM (Rmax, z = 0)| , (3.28)

where the potential is that of the MWMM under consideration.

The escape speed for every component of the MWMMs presented in the be-
ginning of this chapter, as well as the ones for the total, are shown in figure
3.9.

3.4 The isothermal sphere

This section provides an overview of the isothermal sphere, the mass distribution
upon which the Maxwell-Boltzmann velocity distribution relies. The discussion is
mainly based on [17, sec. 2.1, sec. 4.3].
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Figure 3.9: The escape speed (in the plane of the disk) for the Milky Way mass models
that we use to illustrate this chapter, as a function of the cylindrical coordinate R. Left:
MWMM from [68]. Right: MWMM from [1]. The different components of each MWMM
are shown together with the curve for the MWMM. The values of the parameters have
been fixed as specified in the text, see section 3.2.3. The escape speed of this figure is
defined as in equation (3.27), with Rmax = 500 kpc.

3.4.1 Power-law density profiles

We can consider a system whose mass density drops off as a certain power α of the
radius:

̺PL (r) = ̺0

(

r

r0

)−α
, (3.29)

i.e. a power law density profile.
Using equation (3.20) we obtain that the above profile corresponds to an internal

mass of

Mint (r) =
4π̺0r

α
0

3− α r(3−α) , (3.30)

and we see that we have to assume α < 3 in order to have a finite interior mass.
Using equations (3.23) and (3.30), we obtain

v2
c (r) =

4πGN̺0r
α
0

3− α r(2−α) . (3.31)

When α > 2 the potential difference in these models between radius r and
infinity is finite. Thus, the escape speed vesc (r) from radius r, using its definition
(3.26) and equation (3.21), is given by

v2
esc (r) = 2

∫ ∞

r

GNMint (m)

m2
dm = 2

v2
c (r)

α− 2
(α > 2) . (3.32)

So we see that, for this family of models with the above mentioned assumptions,
vesc, vc and α are related (this is not the case for the majority of the density
profiles). Anyway, over the range 3 > α > 2, (vesc/vc) rises from the value of 2,
characteristic of a point mass, toward infinity.
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Observations tell us that the circular-speed curves of many galaxies are remark-
ably flat, so we see from equation (3.31) that an interesting case is α = 2. This is
actually the profile of the model called singular isothermal sphere, treated in detail
in the following subsection.

Let us remark that the light distributions in elliptical galaxies suggest α = 3
(see [17]) and the flat rotation curves of spiral galaxies suggest α = 2, so it is
evident that the escape speed of galaxies is in general a very uncertain quantity.

3.4.2 The singular isothermal sphere

The singular isothermal sphere has already been introduced in section 3.2.1, and it
is the spherically symmetric density profile of the form:16

̺SIS (r)
.
=

σ2

2πGNr2
, (3.33)

where r is the distance from the center of the sphere and σ is the dispersion in any
one component of the velocity. The mean square speed of the objects described by
this profile is 3σ2, as we are going to see in the next subsection.

The mass contained in a sphere of radius r concentric with the isothermal sphere
can be computed from (3.20) and reads:

MSIS
int (r) =

2σ2r

GN

. (3.34)

The speed of a body which is on a circular orbit in a system whose density profile
is that of a singular isothermal sphere can be calculated from (3.23) and turns out
to be:

vSIScirc (r) =
√

2σ . (3.35)

The density profile (3.33) diverges for r → 0 (i.e. the density at the center of
the sphere is infinite). Moreover, it has a serious defect: its total mass is infinite,
as can be seen by taking the limit of (3.34) for r → ∞ . No real astrophysical
system can thus be modeled with such a profile over more than a limited range
of radii. The Newtonian gravitational potential corresponding to this profile can
be computed from equation (3.22), but the integral in the second term of that
equation diverges. To get rid of this problem it is possible to limit the use of this
model up to only a certain distance from the center of the system, rcut. This means
to redefine the profile in (3.33) as being equal to zero for every r > rcut.

16The singular isothermal sphere profile can be alternatively written as ̺SIS (r)
.
= ̺s (rs/r)

2
,

where rs is some scale radius and ̺s is the matter density at the position rs. This form makes
clear that it is a particular case of the power law profile of equation (3.29), obtained with the
choice α = 2.
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3.4.3 The phase-space distribution associated with the SIS,
and the analogy with an isothermal gas

We now want to point out which are the phase-space distribution and velocity
distribution associated with a SIS profile, and why this profile is called isothermal.

Taking Φ0 to be a constant, let us define the relative potential Ψ and the relative
energy per unit mass E as

Ψ = −Φ + Φ0 (3.36)

and

E = −E + Φ0 = Ψ− v2

2
, (3.37)

where E = Φ + 1
2
v2.

The SIS density profile from the phase-space distribution

Let us consider a dynamical system (made of stars, or of dark matter particles),
whose phase-space distribution is

f (E) =
̺1

(2πσ2)3/2
exp

( E
σ2

)

. (3.38)

Integrating over all velocities we find

̺ = ̺1e
Ψ/σ2

. (3.39)

We can write Poisson’s equation (3.17) for this system, which turns out to be

1

r2

d

dr

(

r2dΨ

dr

)

= −4πGN̺ , (3.40)

or using (3.39)
d

dr

(

r2d ln ̺

dr

)

= −4πGN

σ2
r2̺ . (3.41)

We can easily find one solution of equation (3.41), namely

̺ (r)
.
=

σ2

2πGNr2
, (3.42)

which is exactly the singular isothermal sphere presented in equation (3.33).

The analogy with an isothermal gas

Consider an isothermal gas. Its equation of state is

p =
kBT

m
̺ , (3.43)
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where kB is Boltzmann’s constant, p and T the pressure and temperature of the
gas, m the mass of a gas particle and ̺ the density. The equation of hydrostatic
equilibrium reads

dp

dr
= −̺dΦ

dr
(3.44)

and can be easily rewritten as

kBT

m

d̺

dr
= −̺GNMint (r)

r2
. (3.45)

Multiplying this equation by r2m/̺kBT and then differentiating it w.r.t. r one
obtains

d

dr

(

r2d ln ̺

dr

)

= −4πGNm

kBT
r2̺ . (3.46)

If we compare equation (3.46) with equation (3.41), we see that they are identical
if we set

σ2 =
kBT

m
. (3.47)

Therefore, the structure of an isothermal self-gravitating sphere of gas is identical
with the structure of a collisionless system of objects (stars or dark matter particles)
whose phase-space distribution is given by equation (3.38).

The velocity distribution associated with a SIS

We can easily obtain the distribution for the velocities of the particles described by
(3.38) at a given radius r as

f (v; r) =
f
(

ψ (r)− v2

2

)

̺ (r)
, (3.48)

and we find that it is a Maxwell-Boltzmann distribution

fv (v) =
1

(2πσ2)3/2
exp

(

− v2

2σ2

)

. (3.49)

The mean square speed of the objects of this system can be easily computed from
(3.38) and is 3σ2, and the dispersion in any one component of the velocity is σ2.

3.5 Systems in equilibrium and the Jeans equa-

tions

In this section we review some of the bases of the dynamics of a galaxy, which will
be useful in the sequel. They hold of course for stellar systems as well as for dark
matter halos.
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We introduce the collisionless Boltzmann equation and we present how the
Jeans equations can be obtained. We then focus on particular results holding for
spherically symmetric systems only. We discuss the anisotropy in velocity space,
introducing the useful anisotropy parameter. We summarize the Jeans theorems
and we recall the relationship among integrals of motion and the phase-space
distribution of a system. This section is mainly based on [17, sec. 4.1, sec. 4.8 and
7.2].

3.5.1 The collisionless Boltzmann equation

Consider an Hamiltonian dynamical system with canonical coordinates qi and
conjugate momenta pi, i = 1, . . . , n where 2n is the number of degrees of freedom of
the system17, and f (n)(p, q) is the phase-space distribution. The Liouville theorem
is a fundamental result which tells us that the flow of points trough the phase
space is incompressible. This theorem follows directly from the continuity equation
satisfied by f (n)(p, q). It reads:

df (n)

dt
.
=
∂f (n)

∂t
+

n
∑

i=1

(

∂f (n)

∂qi
q̇i +

∂f (n)

∂pi
ṗi

)

= 0 . (3.50)

Now imagine a large number of stars (or dark matter particles) moving under
the influence of a smooth potential Φ (~x, t). At any time t, a full description of
the state of any collisionless system is given by specifying the phase-space density
(called also distribution function) f (~x, ~p, t).18

A particular case of Liouville’s theorem, the one that we obtain for n = 3, is
the collisionless Boltzmann equation, which reads:

df

dt
.
=
∂f

∂t
+

3
∑

i=1

(

∂f

∂xi
ẋi +

∂f

∂vi
v̇i

)

=
∂f

∂t
+

6
∑

α=1

(

∂f

∂wα
ẇα

)

= 0 , (3.51)

where ~x is the position in three-dimensional space, ~v
.
= ~̇x and ~w

.
= (~x,~v) =

(w1, . . . , w6).

Recalling the relations ~F = m~̇v and ~F = −~∇ (mΦ (~x, t)), we can make the

substitution ~̇v = −~∇Φ (~x, t), so we can rewrite the above equation as:

df

dt
.
=
∂f

∂t
+

3
∑

i=1

(

∂f

∂xi
vi −

∂f

∂vi

∂Φ

∂xi

)

= 0 , (3.52)

This is the fundamental equation of stellar dynamics, and it means that the
flow of stellar phase points in the phase space is incompressible. The quantity

17Note that if the system is constituted of particles, as for instance the molecules of a gas, or
the stars of a galaxy, or the particles of the dark matter halo, n = Nd, where N is the number of
particles and d is the number of spatial dimensions of the system (for instance d = 3 for a system
in three-dimensional space).

18 Let us remark that using the velocities as in f (~x,~v, t), instead of the momenta as in f (~x, ~p, t),
relies on the assumption that all the stars or particles of the system have the same mass.
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f (~x, ~p, t), i.e. the phase-space distribution, is defined to be the number of stars per
unit volume of phase space, but the same equation holds also when interpreting it
as the mass density or the luminosity density in phase space.

This equation, here reported in Cartesian coordinates, can easily be rewritten
in any coordinate system, and the corresponding expressions can be found in [17].

3.5.2 The Jeans equations

It is possible to gain valuable insights by taking "moments" of the collisionless
Boltzmann equation. We need to define some quantities: the spatial number density
(of stars or dark matter particles)19

ν (~x, t)
.
=
∫

f (~x,~v, t) d3v ; (3.53)

the mean velocity

vi (~x, t)
.
=

1

ν

∫

vif (~x,~v, t) d3v ; (3.54)

the quantity

vivj (~x, t)
.
=

1

ν

∫

vivjf (~x,~v, t) d3v (3.55)

and the stress tensor −νσ2
ij (which is symmetric), of components

σ2
ij (~x, t)

.
= (vi − vi) (vj − vj) = vivj − vivj . (3.56)

The second equality tells us that the mean value of vivj may be separated in two
parts, a part vivj which is due to streaming motion, and the part vivj which arises
because the stars near any given point ~x do all have the same velocity.

From the collisionless Boltzmann equation we can derive the Jeans equations:

∂ν

∂t
+
∂ (νvi)

∂xi
= 0 , (3.57)

∂ (νvj)

∂t
+
∂ (νvivj)

∂xi
+ ν

∂Φ

∂xj
= 0 (3.58)

∂vj
∂t

+ vi
∂vj
∂xi

= − ∂Φ

∂xj
− 1

ν

∂
(

νσ2
ij

)

∂xi
. (3.59)

The first equation is clearly a continuity equation.
The above set of equations is written in Cartesian coordinates. With an

analogous procedure it is possible to derive the Jeans equations in cylindrical and
in spherical coordinates.

19 Let us remark that the spatial number density ν (~x, t) is related to the mass density ̺ (~x, t)
by the relation mν (~x, t) = ̺ (~x, t), under the assumption that all the objects of the system have
the same mass m.

107



3. Galactic dynamics and the dark halo: from Milky Way mass models to the
WIMPs phase space

From the collisionless Boltzmann equation in cylindrical coordinates we obtain
the Jeans equations in cylindrical coordinates:

∂ν

∂t
+

1

R

∂ (RνvR)

∂R
+
∂ (νvz)

∂z
= 0 , (3.60)

∂ (νvR)

∂t
+
∂
(

νv2
R

)

∂R
+
∂ (νvRvz)

∂z
+ ν





v2
R − v2

ϕ

R
+
∂Φ

∂R



 = 0 , (3.61)

∂ (νvϕ)

∂t
+
∂ (νvRvϕ)

∂R
+
∂ (νvϕvz)

∂z
+

2ν

R
vϕvR = 0 , (3.62)

∂ (νvz)

∂t
+
∂ (νvRvz)

∂R
+
∂
(

νv2
z

)

∂z
+
νvRvz
R

+ ν
∂Φ

∂z
= 0 . (3.63)

In spherical coordinates,20 the case of greatest importance is when the system
is in steady state and vr = vϑ = 0, in which case we find:

d
(

νv2
r

)

dr
+
ν

r

[

2v2
r −

(

v2
ϑ + v2

ϕ

)]

= −ν dΦ
dr

. (3.64)

Jeans equations in spherically symmetric systems

Consider a system (for instance a galaxy, or a naive approximation of the dark
matter halo surrounding our Galaxy 21) in which both the density and the velocity
structures are invariant under rotations about the galactic center. Thus the system
(galaxy or halo) does not rotate, and

v2
ϑ = v2

ϕ . (3.65)

We can now define the anisotropy parameter β (r) as

β (r)
.
= 1− v2

ϑ (r)

v2
r (r)

. (3.66)

where v2
r (r) is the radial velocity dispersion. This parameter describes the degree of

anisotropy of the velocity distribution at each point. Note that it can be rewritten

20 We will decompose here the velocity vector ~v in the components vr along the radial direction
(the same as ~r), vϕ and vϑ. These can be expressed in terms of the polar coordinates for the
velocity space as (we use the same notation as [17, pag. 295]) vr = v cos η, vϑ = v sin η cosψ, and
vϕ = v sin η sinψ, where v2 = v2

r + v2
ϕ + v2

ϑ is the square of the modulus of the velocity, η is the
polar angle and ψ the azimuthal angle. Let us finally remark that v2

T = v2
ϕ + v2

ϑ.

21This approximation is considered for a galaxy in [17, sec. 4.8], on which this section mostly
relies, and used also for the dark matter halo of our Galaxy in [55].
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in terms of the tangential velocity dispersion recalling that v2
T (r)

.
= v2

ϑ (r)+v2
ϕ (r) =

2v2
ϑ (r). Its values have the following meanings:

β = 1⇐⇒ v2
ϑ = 0

0 < β < 1⇐⇒ v2
ϑ < v2

r

β = 0⇐⇒ v2
ϑ = v2

r (isotropic case)

β < 0⇐⇒ v2
ϑ > v2

r

The configuration in which β = 0 corresponds to the isotropic case, the one in
which v2

T ≪ v2
r which implies β (r) ≈ 1 corresponds to radial anisotropy, while

the opposite limit, in which v2
T ≫ v2

r and so β → −∞, is referred to as tangential
anisotropy.

Even though this formalism holds in general for stellar systems as well for the
dark matter, either for the Milky Way and for other galaxies, in the framework of
this work we are mostly interested in the value of β for the dark matter halo of our
Galaxy. Numerical models and observations suggest (see [17, sec. 4.8]) that for
the dark matter halo of the Milky Way v2

ϑ 6 v2
r , and thus β > 0. More precisely,

N-body simulations of the Galaxy suggest that it grows from approximately zero at
the center of the halo (isotropic) up to a value of about 0.2− 0.4 for r larger than
the Sun’s position (up to [60]), or even 0.5 (up to [85]) and then it remains constant
or mildly decreases approaching the edge of the Galaxy, see [60] and references
therein. Note anyway that there are of course no direct measures from observations
of β for the dark matter, and also those of β for stars are few and unclear because
the real stars populations are ways more anisotropic than what can be described
through β.

With the above assumptions, equation (3.64) becomes

1

ν

d
(

νv2
r

)

dr
+ 2

βv2
r

r
= −dΦ

dr
. (3.67)

Isotropic velocity dispersion

To solve the Jeans equations, we usually need some assumptions on the form of
the velocity dispersion tensor σ2 of equation (3.56).

The simplest assumption we can make is to suppose that σ2 takes the special
isotropic form:

σ2
ij
.
= (vi − vi) (vj − vj) = σ2δij . (3.68)

In general there is no reason to assume that the dispersion tensor is isotropic, but
this can be a useful starting/reference point.

Then, the Jeans equations in the particular case of a 1) steady state 2) axisym-
metric system in which 3) σ2 is isotropic and 4) the only streaming motion is in
the azimutal direction become:

∂ (νσ2)

R
− ν

(

vϕ
2

R
− ∂Φ

∂R

)

= 0 , (3.69)
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obtained from (3.61), and
∂ (νσ2)

∂z
+ ν

∂Φ

∂z
= 0 (3.70)

obtained from (3.63).

3.5.3 Integrals of motion and the Jeans theorems

A constant of motion in a given force field is any function C (~x (t) , ~v (t) , t) that is
constant along any orbit, i.e.:

dC (~x (t) , ~v (t) , t)

dt
= 0 . (3.71)

An integral of motion in a given force field is any function of the phase-space
coordinates alone I (~x (t) , ~v (t)) that is constant along any orbit, i.e.:

dI (~x (t) , ~v (t))

dt
= 0 . (3.72)

While every integral of motion is a constant of motion, the converse is not true.
According to [17, sec. 3.1.1], any orbit in any force field has at least 6 constants

of motion. The coordinates (~x (0) , ~v (0)) can be regarded as such. In any static
potential Φ (~x), the total energy is an integral of motion. In any axysymmetric
potential Φ (R, z, t) (where we took the z axis to be parallel to the axis of symmetry)
the component of the angular momentum along the z axis is an integral of motion.
In any spherical potential Φ (r, t), the three components of the angular momentum
are three integrals of motion. In a spherically symmetric potential Φ (r), i.e. one
which is static and spherical, both the total energy and the three components of
the angular momentum are integrals of motions; there is also a fifth integral of
motion, which has a more complicated form.22 So orbits in any time-independent
potential necessarily admit five independent integrals of motion.

Jeans Theorems

We report here two results, taken from [17, sec. 4.2], that are useful for the sequel.

Jeans Theorem. Any steady-state solution of the collisionless Boltzmann equa-
tion depends on the phase-space coordinates only through integrals of motion in
the galactic potential, and any function of these integrals yields a steady-state
solution of the collisionless Boltzmann equation.

The most interesting part of the theorem, the one which will be used in the
following, is the second one. The first proposition only tells us that the distribution
function, the form of which we do not know a priori, is a function of at least two
integrals whose form is likewise a priori unknown to us.

22In such a potential, it is usually more practical to consider as integrals of motion the modulus
of the angular momentum and the two independent components of n̂

.
= ~L/L.
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Strong Jeans theorem. The distribution function of a steady-state gravitational
system in which almost all orbits are regular with non-resonant frequencies may be
presumed to be a function only of three independent isolating integrals, which may
be taken to be actions.

In practice, this theorem tells us that, if the potential is regular, for all practical
purposes any time-dependent galaxy may be represented by a solution of the form
f (I1, I2, I3), where I1, I2, I3 are any three independent isolating integrals.

Jeans Theorems applied to spherical systems

As we have seen, any spherical potential necessarily admits four isolating integrals,
the total energy E and the three components of the angular momentum ~L. Applying
the Jeans theorem we can thus conclude that any non-negative function of these
integrals can serve as the distribution function of a spherical stellar system.

There is a simple extension of the strong Jeans theorem which allows to conclude
that the distribution function of any steady-state spherical system can be expressed
as a function f

(

E, ~L
)

. If the system is spherically symmetric in all its properties,

f cannot depend on the direction of ~L but only on its magnitude L, and we have
that f = f (E,L).

The most interesting and important case is when the stellar system itself
provides the potential Φ. If we regard f as the mass density function, then we have

▽2 Φ = 4πG̺ = 4πG
∫

fd3~v . (3.73)

This equation can be written, using spherical symmetry, as:

1

r2

d

dr

(

r2dΦ

dr

)

= 4πG
∫

f
(

1

2
v2 + Φ, |~r × ~v|

)

d3~v . (3.74)

The above equation is the fundamental equation governing spherical equilibrium
stellar systems.

3.6 How to derive the phase-space distribution

from the density profile

In this section we are going to study the following problem. We have a system,
the mass density function of which is described by a function of the position. The
system can be composed of one or more components, each of them with its own
mass distribution. It is important to remark that the sum of all components features
the total gravitational potential that drives the dynamics of each component. We
would like to compute the phase-space distribution corresponding to the mass
density. This problem was presented and solved by Eddington [86] in the context
of globular clusters. This section is mainly based on [17, sec. 4.3].
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We are going to consider different degrees of symmetry for the density dis-
tribution and for the velocity distribution. We will consider in this section only
spherically symmetric density distributions, and we will not consider distributions
with lesser spatial symmetries.

For what concerns the velocity part of the phase-space distribution, for systems
with spherically symmetric densities we will consider isotropic velocity distributions
and anisotropic ones. These latter, due to the spherical symmetry of the density
distribution, have the same velocity dispersion in both the angular directions, as
in equation (3.65). This allows to define the anisotropy parameter (3.66). We are
going to consider cases with constant anisotropy parameter as well as cases with
anisotropy parameter which is a function of the spherical coordinate r.

Taking Φ0 as a constant (sometimes set at Φ (Rmax), which delineates the virial
radius of the gravitational system, or the virial radius times some factor, as we
will use for example in next chapter) let us define the relative potential Ψ and the
relative energy per unit mass E (of a star or a dark matter particle) as

Ψ = −Φ + Φ0 (3.75)

and

E = −E + Φ0 = Ψ− v2

2
, (3.76)

where E = Φ + 1
2
v2 is the total mechanical energy per unit mass . We generally

choose Φ0 such that f > 0 for E > 0 and f = 0 for E ≤ 0.
Let us remark that, once we have obtained the phase-space distribution, it is

enough to evaluate it at the position of the Sun r⊙ and to divide it by the local
dark matter density evaluated at r⊙ to get back the velocity distribution at the
position of the Sun

f (v; r⊙) =
f
(

E (r⊙) = ψ (r⊙)− v2

2

)

̺ (r⊙)
, (3.77)

which is what one need in studying dark matter direct detection.
Let us emphasize that, though f (E) is the phase-space distribution function of

a given species, the gravitational potential ψ (r) does include the contributions of
all other massive components.

3.6.1 Spherically symmetric systems with isotropic disper-
sion tensors

The simplest spherical models are those with distribution functions that depend on
E only, f (E), which are called ergodic systems.23 For those systems, the velocity

23 In statistical mechanics and chaos theory, the term ergodic denotes a system that unifromly
explores its energy surface in phase space, which implies that the phase-space distrbution is
uniform on the energy surface. In the usage of this term made here the phase-space distribution
is ergodic, but the motion of individual stars generally is not.
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dispersions are given by

v2
i =

1

̺

∫

dvrdvϑdvϕv
2
i f
[

Ψ− 1

2

(

v2
r + v2

ϑ + v2
ϕ

)

]

, (3.78)

where i = r, ϑ, ϕ.
It is clear from the dependence on each vi of the f in the above equation that

v2
r = v2

ϑ = v2
ϕ, so the velocity-dispersion tensor is everywhere isotropic.

When f = f (E) and we have chosen the constant involved in the definition of
Ψ in such a way that f (E) = 0 for E < 0, equation (3.74) becomes

1

r2

d

dr

(

r2dΦ

dr

)

= −16π2G
∫ ψ

0
f (E)

√

2 (Ψ− E)dE . (3.79)

This equation may be regarded either as a nonlinear equation for ψ (r), or as a
linear equation for f (E). We will start by choosing simple forms for f and solving
for Ψ (and hence for ̺).

Eddington Equation

Now we want to find the way to determine the phase-space density f (E) of a
spherically symmetric system with isotropic velocity from its mass distribution,
̺ (r), which is only a function of the distance r to the system’s center. We will
mainly follow [17, sec. 4.3.1]. We can calculate its mass density ̺ (r) from the
phase-space distribution function of the system via:

̺ (r) =
∫

d3~vf (r, ~v) . (3.80)

Because of the assumed isotropic velocity, we showed before that the phase-space
distribution function was a mere function of the energy. By a simple change of
variable, we therefore get:

̺ (r) = 4π
∫ Ψ

0
f (E)

√

2 (Ψ− E)dE . (3.81)

Since Ψ is a monotonic function of r, we can regard ̺ as a function of Ψ. We
can thus differentiate both sides of the equation with respect to Ψ (taking care
of the upper bound of the integral), and the result is an Abel integral equation
having solution

f (E) =
1√
8π2

d

dE
∫ E

0

d̺

dΨ

dΨ√
E −Ψ

. (3.82)

This result is due to Eddington [86] and this equation is known as Eddington’s
formula [17]. It can be rewritten as:

f (E) =
1√
8π2

[

∫ E

0

d2̺

dΨ2

dΨ√
E −Ψ

+
1√
E

(

d̺

dΨ

)

Ψ=0

]

. (3.83)
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We can also rewrite it in a way which is more suitable for numerical integration
because of the absence of the square root at the denominator in the integral term,
i.e.:

f (E) =
1√
8π2

[

+
1√
E

(

d̺

dΨ

)

Ψ=0

+ 2
√
E
(

d2̺

dΨ2

)

Ψ=0

+ 2
∫ E

0
dΨ
√
E −Ψ

d3̺

dΨ3

]

.

(3.84)
An example of the use of Eddington equation is that from the singular isothermal

sphere we are able to recover the phase-space distribution function

f (E) =
̺1

(2πσ2)3/2
exp





Ψ− v2

2

σ2



 , (3.85)

from which we can easily obtain the distribution for the velocities of dark matter
particles at a given radius r, which as we have seen in section 3.4.3 is the Maxwell-
Boltzmann distribution.

An illustration of the f (E) associated with the NFW dark matter profile of
the MWMMs considered in the first part of this chapter, obtained via Eddington
equation, is shown in figure 3.10

3.6.2 Spherically symmetric systems with anisotropic dis-
persion tensors

N-body simulations show that dark matter do not follow the isothermal sphere
density profile. Moreover, their velocity distribution turns out to anisotropic [60].

Let us now consider procedures generalized from the Eddington equation that
allow us to determine the phase-space density functions with an anisotropic velocity
dispersion tensor, associated to spherically symmetric density distributions.

When f depends on L as well as on E , v2
ϕ = v2

ϑ 6= v2
r. The essential distinction

between systems with f = f (E) and those with f (E , L) is that the former have
isotropic velocity-dispersion tensors and the latter do not.

Let us recall that from such an f (E , L) we can recover the density distribution
as

ν (r) =
∫

d3~vf (E , L) = 2π
∫ π

0
dη sin η

∫

√
2Ψ

0
dvv2f

(

Ψ− 1

2
v2, rv sin η

)

. (3.86)

Constant anisotropy parameter

Constant anisotropy parameter and ansatz for the functional shape.
The simplest way to introduce anisotropy is to take distributions of the kind
considered in the previous section, and to multiply them by functions of L.24 For

24 The distributions obtained in this way will still be solutions of the Boltzmann equation
thanks to the second part of Jeans theorem.
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Figure 3.10: Upper panel: the f (E) associated with the NFW dark matter profiles
of the MWMMs used to illustrate the first part of this chapter. These phase-space
distributions have been obtained applying Eddington equation to the NFW density
profiles. Different cases are considered: the f (E) associated to the NFW dark matter
profile first in the presence of its gravitational potential only, then in the presence of
the potential generated by itself (dark matter) plus the stellar bulge, and finally in the
presence of the potential generated by the whole MWMM, i.e. dark matter plus baryons
(bulge and two disks components, or bulge and disk, depending on the MWMM). Left:
MWMM from [68]. Right: MWMM from [1]. Lower panel: the same quantities, but this
time as functions of E/Ψmax. For every curve, the corresponding Ψmax is the maximum
value of the gravitational potential of the system changed in sign Ψ. It is simply the
value attained by Ψ at the center of the system.

instance, we can construct a phase-space distribution with constant anisotropy
parameter β (r) = β assuming for its functional form the ansatz

f (E , L) = L−2βG (E) , (3.87)

where L = |~r × ~v| = rv sin (η) = rvT is the modulus of the angular momentum per
unit mass.

The above form is justified because it allows to consistently recover ̺ (r) from
f (E , L) using (3.80).
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The function G (E) can be computed from the following formula 25 used in [85]

G (E) =
2β (2π)−3/2

Γ (1− λ) Γ (1− β)

d

dE
∫ E

0

dΨ

(E −Ψ)λ
dn̺β
dψn

, (3.88)

where ̺β
.
= r2β̺ is expressed as a function of ψ and n

.
= ⌊(3/2− β)⌋ and λ

.
=

3/2− β − n are the integer floor and the fractional part of 3/2− β.
Let’s note that the convergence of the above integral requires β < 1. This

equation is a generalization of the Eddington formula, which one can recover in
the particular case of β = 0 (isotropic case).

There are particular cases in which computing the phase-space distribution
function from the potential-density pair becomes trivial, since the above equation
reduces to equations in which only differentiations enter (see [85]).

For half-integer values of β, i.e. β = 1/2,−1/2, . . . , the above expression reduces
to

f (E , L) =
1

2π2

L−2β

(−2β)!!

d3/2−β̺β
dψ3/2−β |ψ=E . (3.89)

For the simplest case of β = 1/2, it becomes simply

f (E , L) =
1

2π2L

̺+ r (d̺/dr)

(dψ/dr)
|r=rE , (3.90)

where rE is the radius of the largest orbit of a particle with energy E , i.e. Ψ (rE) = E .

Particular case from generalized NFW, with anisotropy parameter 1/2.
Let us consider a family of centrally cusped spherically symmetric density profiles
which reads

̺ (r) =
(b− 2) Ψ0

4πG

ab−2

r (r + a)b−1 , (3.91)

where b > 2 is the asymptotic density power index at large radii, and Ψ0 is the
depth of the central potential well. This family of profiles contains the Hernquist
profile for b = 4 and the NFW profile for b = 3.

The corresponding phase-space distribution can be computed using equation
(3.88), but for the particular case of β = 1/2 equation (3.90) allows to write down
the phase-space distribution for all the family using rE written in terms of the
q-logarithm function defined in [85] (so rE = Lnb−2 (1 + rE)). One obtains

f (E , L) =
b− 2

(2π)3 L

(b− 1) rE

(1 + rE)bE − (1 + rE)2 . (3.92)

Note that f (E , L) for some particular values of β can be found again in [85].

25An equivalent but slightly different way of writing this equation can be found in [60].
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Anisotropy parameter dependent on r

Osipkov-Merrit models. Let us consider now a phase-space distribution which
is associated with an anisotropy factor β (r) growing with the galactocentric distance
r, called the Osipkov-Merritt family of models.26 It consists in considering f (E , L)
depending on E and L only through the variable

Q
.
= E − L2

2r2
a

, (3.93)

where ra is the anisotropy radius.
For r ≪ ra, Q→ E and the OM distribution is isotropic, while for r larger than

ra the distribution exhibits a radial anisotropy which grows with r approaching
the value β (r) ≈ 1 for large values of ra. It can be shown [60] that the anisotropy
parameter takes the form:

β (r) =
r2

r2 + r2
a

. (3.94)

Recalling that L = rvT , we can rewrite the above variable Q as

Q = Ψ (r)− 1

2

[

v2
r +

(

1 +
r2

r2
a

)

v2
T

]

= Ψ (r)− 1

2

[

v2
r +

1

1− β (r)
v2
T

]

(3.95)

One finds that [17, pag. 298]

f (Q) =
1√
8π2

[

∫ Q

0

d2̺Q
dψ2

dψ√
Q− ψ +

1√
Q

(

d̺Q
dΨ

)

Ψ=0

]

, (3.96)

where

̺Q (r)
.
=

(

1 +
r2

r2
a

)

̺ (r) =
1

1− β (r)
̺ (r) . (3.97)

Notice that this is another generalization of Eddington equation, because in the
limit r ≪ ra, Q→ E so the above equation goes back to the Eddington formula.

Linear combination. In order to provide a better fit to the behavior of β (r)
found in N-body simulations, which is not captured by the anisotropy coefficient of
the Osipkov-Merrit models who grows too fast, [60] considers the linear combina-
tion27 of a distribution associated with a fixed β and one of the Osipkov-Merrit
type:

f (E , L) = wfOM (Q) + (1− w) fβ (E , L) , (3.98)

26 Let us remark that the Osipkov-Merritt family of models is a subclass of the Michie models,
which are themselves a subclass of the King models.

27 Note that this is not the only solution: some authors have considered simplest ways to
combine different asymptotic values for β in the center of the halo, and in the outskirts of the
halo (see e.g. [87])
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where w is a real constant which weights the contribution of the two terms, fOM (Q)
is a distribution of the type of equation (3.96), and fγ (E , L) is of the type (3.87).

As shown in [60], the associated anisotropy parameter turns out to be

β (r) = [1− wv
2
T (r; fOM)

v2
r (r; f)

]− [(1− w)
v2
T (r; fγ)

v2
r (r; f)

] (3.99)

This model has the 3 free parameters w, ra and γ which allows to fit the
anisotropy parameter to reproduce the results of N-body simulations.

Product. Of course alternative distributions can be considered. To recover the
behavior of the anisotropy parameter found in N-body simulations, one possibility
is to consider as in [60] the phase-space distribution of the form

f (E , L) = k (E)h (E , L) . (3.100)

We can make two different ansatz for h (E , L):

hA (E , L) = (1 + k)−b/a (3.101)

and

hB (E , L) = (1 + k − k exp (−10/k))−b/a , (3.102)

where E and L enters only via the particular dimensionless combination

k =

(

L2

2r2
kE

)

(3.103)

with rk a constant characteristic radius.

On the other hand, k (E) must be determined by numerically solving an integral
equation containing Ψ and ̺.

3.6.3 A remark on the applicability of Eddington equation

We would like to make an important remark concerning the applicability of Edding-
ton equation. As we know, in order to be physically meaningful (as a phase-space
distribution function), the function f (E) obtained via Eddington equation needs
to be non-negative everywhere (more precisely, non-negative for every E between 0
and the maximum value of Ψ associated to the studied system). Unfortunately,
nothing in the derivation of the Eddington formula guarantees that the obtained
f (E) would be non-negative everywhere in such domain.
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The condition for the applicability of Eddington equation

As we have seen in equation (3.82), we can write the phase-space distribution
computed via Eddington equation as the derivative w.r.t E of a function I (E)
defined as:

I (E) .
=
∫ E

0

d̺

dΨ

dΨ√
E −Ψ

. (3.104)

Since the f (E) obtained is related to I (E) through a derivative w.r.t E , it is easy
to see that the function f (E) is everywhere non-negative if and only if the function
I (E) is monotonous and increasing, or at most constant (but not decreasing).
As a consequence, as [17] points out, a spherical density distribution ̺ (r) in the
(positive) potential Ψ (r) can arise from an ergodic phase-space distribution if and
only if the couple ̺ (r), Ψ (r) is such that the above condition is satisfied.

We could wonder if, in those cases where the above condition is not satisfied,
it is still possible to use the f (E) obtained via Eddington equation only in the
limited range of E where f (E) is positive. From the above discussion we can
conclude that this would not be correct, because a phase-space distribution f (E)
that is somewhere negative is not a physically meaningful object, and thus even
the positive part of it would not represent anything meaningful.

In this section we would like to gain some insights on how to deal with the
problem of which are the conditions for the applicability of Eddington equation.
We will illustrate some examples of cases where this procedure can be applied, and
cases where this procedure cannot. We will thus adopt a more general point of view,
and specify a sufficient condition for the Eddington procedure to be applicable. We
will finally recall a theorem which deals with the same issue in the more general
case of anisotropic systems of the Osipkov-Merrit type, that we encountered in the
literature while writing this section.

Examples of MWMMs to which Eddington equation can be applied

We show in figure 3.11 three examples of cases where the condition for the applica-
bility of Eddington equation (i.e. dI(E)

dE ≥ 0, equivalent to the condition f (E) ≥ 0)
is satisfied. Those curves represent the function I (E) corresponding to the dark
matter profile lying in the MWMM used in [1], respectively for the three cases
where we consider only the dark matter halo, dark matter plus baryonic bulge and
dark matter plus baryonic bulge and disk. We see that for both cases the above
condition for the applicability of Eddington equation is fulfilled, and in fact from
the application of Eddington equation we obtain a positive f (E).

Examples of MWMMs to which Eddington equation cannot be applied

The question of the applicability of Eddington equation arose from the fact that we
came across cases for which f (E) is somewhere negative. This always corresponds

to a violation of the condition dI(E)
dE ≥ 0.
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Figure 3.11: We show three examples of couples ̺ (r), ψ (r) for which Eddington equation
is applicable, those corresponding to the dark matter NFW profile ̺ (r) associated to the
MWMM of [1] introduced in section 3.2.3, respectively with dark matter halo only, dark
matter halo and baryonic bulge, and dark matter halo with baryonic bulge and disk.

We illustrate this with an example. For instance, in figure 3.12 we show that if
we consider the same mass model as in figure 3.11, but with a cored profile specified
in the caption instead of the NFW used above (and using the same baryonic
component), we incur in the situation where I (E) is decreasing, so f (E) is not
everywhere positive. For the model of figure 3.12 this occurs only when baryons are
added to the dark matter in the gravitational potential, while when both ̺ (r) and
ψ (r) are those associated to the dark matter only, I (E) is monotonous increasing
and we can apply Eddington equation.

We also kept the same baryonic content and the same dark matter profile
used above, but varying the parameter γ from 0 (core) to 1 (cusp). We saw
that increasing the value of γ from 0 gradually leads from non-monotonous to
monotonous increasing I (E); we show the situation for a slightly increased value of
γ = 0.2 in figure 3.13.

Since we came across this issue while trying to apply the Eddington equation
to a cored profile, we have been wondering if it was the cored nature of the profile
to be at the origin of the non applicability of the Eddington procedure as one
might think by looking at the figures above. As we can see from figure 3.12, when
the cored dark matter profile is considered lying in the gravitational potential
associated to itself plus the baryonic content used in this section, it gives a I (E)
not monotonous. However, we also see from figure 3.12 that, when we remove all
the additional components (so that the cored dark matter profile is left alone in the
gravitational potential generated by itself), it provides a monotonous and increasing
I (E). We can thus conclude that considering a cored profile is not enough to end
up in the situation where the Eddington procedure is not applicable.
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Figure 3.12: Same as figure 3.11, but now the NFW profile describing the dark matter
halo has been replaced by a cored profile obtained from the αβγ parameterization by
setting α = 2.9, β = 2.5, γ = 0, rs = 4.4 kpc and ̺s = 1.75 GeV/cm3. For the cases
with dark matter halo plus baryons (both bulge and disk or bulge only) the function
I (E) is clearly not monotonous, thus providing via Eddington equation a phase-space
distribution not positively defined.
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Figure 3.13: The same as figure 3.12, but now the parameter γ of the dark matter profile
has been set to γ = 0.2, i.e. a less cored profile.

Some questions could be raised, for instance is the cored nature of the dark
matter profile which originates the violation of the above condition? Or is it the
fact that we take into account additional components which originates it? Actually,
no one of this facts is directly responsible, in the sense that considering a cored
profile is not enough for the condition of applicability to be violated (as we have just

121



3. Galactic dynamics and the dark halo: from Milky Way mass models to the
WIMPs phase space

seen), and neither it is summing additional components (that in our case describe
baryons) to the ̺ (r) for which we want to compute the phase-space distribution.

Actually, we will see that the problem could be better approached from another
point of view: in general, only conditions on generic ̺ (r) and ψ (r) could be
cast. Only once a particular model (i.e. a couple of ̺ (r), ψ (r)) is specified, these
conditions might be translated into conditions on the parameters that have a
physical meaning in the model like the baryonic mass.

A sufficient condition on d2̺
dΨ2 for the applicability of Eddington equation

We will now approach the problem from a different point of view. Instead of
concentrating on a particular feature (as the cored nature or the baryonic content)
of a particular couple ̺ (r), ψ (r), we will look for a condition on generic ̺ (r) and
ψ (r). In this section we would like to provide a sufficient condition which, once
verified, ensures the applicability of Eddington equation, and to explain why it is so.
This corresponds to a necessary condition for the non-applicability of Eddington
equation.

As we said, Eddington equation provides a non-negative phase-space distribution
if and only if I (E) defined in equation (3.104) is not decreasing, which is equivalent

to say that dI(E)
dE ≥ 0. Recalling the form of Eddington equation (3.82), we can

write this condition as:

dI (E)
dE =

1√
E

(

d̺

dΨ

)

Ψ=0

+
∫ E

0
dΨ

d2̺

dΨ2

1√
E −Ψ

≥ 0 . (3.105)

For every physically interesting couple ̺ (r), ψ (r), the first term is positive or
equal to zero. Thus, the condition

∫ E

0
dΨ

d2̺

dΨ2

1√
E −Ψ

≥ 0 (3.106)

ensures the applicability of Eddington equation. It is clear that the integrand in

the above equation is always positive if d2̺(Ψ)
dΨ2 ≥ 0 for all Ψ between 0 and E , so

d2̺(Ψ)
dΨ2 ≥ 0 is sufficient for the above inequality to be verified. Thus d2̺(Ψ)

dΨ2 ≥ 0 is
a sufficient condition for the applicability of Eddington equation to the couple ̺,
Ψ (where we remind that ̺ is the one of any component of a mass model, and
Ψ is the collective one, i.e. the one arising from the sum of all the components).
This means that, when we want to obtain via Eddington equation the phase-space
distribution of a particular ̺ in a particular gravitational potential Ψ, we can check
if the above condition is verified, and in the affirmative case we are sure that the
phase-space distribution obtained using Eddington equation will be everywhere

non-negative. We can also rephrase this by saying that d2̺(Ψ)
dΨ2 < 0 is a necessary

condition for the non-applicability of Eddington equation.
Let us rewrite this necessary condition for the non-applicability of Eddington

equation in a more convenient way, in terms of derivatives w.r.t. r. Both ̺ and ψ
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are actually functions of r, and to take derivatives w.r.t. Ψ one has to express the
former as a function of the latter eliminating r, which can always be done because
both are monotonous functions of r, but which in practice is rarely trivial (or even
possible) to do analytically. To circumvent it, one can express the condition as the
following.

Since

d2̺

dΨ2
=

(

dΨ

dr

)−2




d2̺

dr2
− d̺

dr

(

dΨ

dr

)−1
d2Ψ

dr2



 , (3.107)

we thus have that the condition d2̺
dΨ2 < 0, necessary for the non-applicability of

Eddington equation, is equivalent to the condition

d̺

dr

(

dΨ

dr

)−1
d2Ψ

dr2
>
d2̺

dr2
, (3.108)

which can be rewritten as

d2Ψ

dr2
/
dΨ

dr
<
d2̺

dr2
/
d̺

dr
, (3.109)

where we flipped the versus of the inequality because d̺
dr
< 0. Written in this fashon,

the condition is easier to be checked.

Examples of MWMMs which fulfill the above necessary condition for
the failure of the Eddington procedure

As we have seen in section 3.6.3, d2̺(Ψ)
dΨ2 < 0 is a necessary condition for the non-

applicability of Eddington equation. In figure 3.14, we show three examples of a
dark matter profile ̺ in a potential Ψ, two of which correspond to a decreasing

I (E). We also show the corresponding ̺ (Ψ), d̺(Ψ)
dΨ

and d2̺(Ψ)
dΨ2 . As we can see, as

expected for the cases which correspond to the non applicability of the Eddington
procedure, the second derivative occurs to be negative from a certain value of Ψ on.

The three examples of figure 3.14 are a dark matter profile ̺ in a potential Ψ
generated by itself, then by itself plus a bulge, and finally by itself plus a bulge
with twice the mass of the previous one.

Here we have been obtaining the failure of the Eddington procedure by progres-
sively adding baryonic mass, while in a previous section we have obtained the same
result by shifting from a cusped to a cored dark matter profile. It is very important
to remark that in the case of a generic mass model only generic conditions on the
behavior of ̺ as a function of Ψ can be cast, as for instance the necessary condition
for the non-applicability d2̺

dΨ2 < 0. Only when applied to a couple of ̺, Ψ of which
we specify the functional shapes, such conditions for the applicability of Eddington
equation can thus be translated on particular conditions on the values that the
parameters of the model can assume without braking them.
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Figure 3.14: Illustration. The dark matter is described using the αβγ parameterization
for the density profile, by setting α = 1, β = 3, γ = 0, rs = 7.8 kpc and ̺s = 1.92
GeV/cm3. The baryonic component is represented by an Hernqvist profile (3.12) with
aH = 0.6 kpc, and various values for the mass MH = Mb, 0.5×Mb, 0, with Mb = 1.5×1010

M⊙.

We can finally wonder what happens when generalized Eddington procedures
(with velocity anisoropy) are considered. For anisotropic models of the Osipkov-
Merrit type (which includes the Eddington procedure as a particular case), the
answer is provided by a theorem that we report in the next section.

A general theorem on the consistency of mass models, for phase-space
distributions of the Osipkov-Merrit type

In this section we state a theorem, originally derived in [88] and formulated in a
more suitable way in [89], which investigates precisely the so called consistency of a
mass model. A mass model is said to be consistent when the distribution function
f which describes it is everywhere non-negative.

More precisely, this theorem provides conditions to check the non-negativity of
the distribution function of a multi-component (i.e. composed by more than one
density profile) spherical system where the orbital anisotropy of each component
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is described by the Osipkov-Merrit anisotropy presented in section 3.6.2 (i.e. for
which the distribution function is of the type described in that section). As we
have seen, the distribution function for each component ̺k (where k enumerates
the components, while T will stand for total) can be obtained with equation (3.96),
which is a generalization of Eddington equation that we can recover in the limit of
ra →∞, which means velocity isotropy. We recall that the gravitational potential
which enters in that equation is the total one, i.e. the one which arises from the
sum of all the components.

The theorem is valid for untruncated systems with a finite total mass, for which
the second term in equation (3.96) is zero. An example of such a system, studied
in [89], is constituted by the sum of two Hernquist profiles.

The theorem, as reported in [89], states that a necessary condition for the non
negativity of the distribution function fk of the Osipkov-Merrit type (associated to
the component described by ̺Q,k defined from ̺k in equation (3.97)) is:

d̺Q,k
dΨk

≥ 0 , for 0 ≤ Ψk ≤ Ψk (0) . (3.110)

If this necessary condition is satisfied, a strong sufficient condition for the non
negativity of fk is

d

dΨk





d̺Q,k
dΨk

(

dΨT

dΨk

)−1
√

ΨT



 ≥ 0 , for 0 ≤ Ψk ≤ Ψk (0) . (3.111)

The proof can be found in [88]. A weak sufficient condition is

d

dΨk





d̺Q,k
dΨk

(

dΨT

dΨk

)−1


 ≥ 0 , (3.112)

obtained by requiring that
d2̺Q,k
dΨ2
T
≥ 0 in equation (3.96) (after having eliminated

the second term).
The first thing to remark is that the necessary condition (3.110) depends only

on ̺Q,k and thus it is valid independently of any other interacting component added
to the model.

Then, even when the necessary condition is satisfied, fk can be negative, because
of the radial behavior of the integrand in equation (3.96), which depends on the
total potential, on the particular ̺Q,k, and on the anisotropy radius ra.

This theorem, that we encountered in the literature while writing this section,
addresses thus a more general issue w.r.t. the one addressed by this section, i.e.
under which conditions the distribution function obtained via the generalization of
the Eddington procedure for anisotropic Osipkov-Merrit models is non negative. It
does so focusing on untruncated systems with a finite total mass. Since Eddington
equation is a particular case of (3.96), obtained in the limit ra → ∞, which
means velocity isotropy, the results of the theorem apply directly to the Eddington
procedure, for which ̺Q,k in the conditions above becomes ̺k.
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CHAPTER 4

On the use of the estimates of the local Galactic escape

speed in computing dark matter direct detection limits
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4.1 Introduction

Astrophysical quantities enter in the computation of DMDD limits from experimen-
tal results, and the uncertainties on these quantities translate into uncertainties on
the limits. Moreover, relevant astrophysical quantities are usually determined from
observations by making assumptions which should be taken into account while
using them to compute DMDD limits. In addition, often these quantities arise
from a mass model, which induces correlations among them.

In this chapter, after introducing these problems (that have already been
discussed in section 2.4), we are going to focus on the recent estimate of the local
Galactic escape speed that has been published recently (2014) by [1], and on its
implications for dark matter direct detection. This quantity matters in particular
at low WIMP masses, where the results of the experiments are more controversial.
Moreover, it serves as a case study to outline the issues related to the use of the
estimates of astrophysical quantities in DMDD.

We are thus also going to briefly summarize in section 4.2 the work that has
been done by the RAVE collaboration in [1], because the results of this chapter
highly rely on the results and procedure employed therein.

To translate the results of that study into DMDD we consider in section 4.5
either the standard assumption of a Maxwell-Boltzmann speed distribution for the
dark matter, and alternatively an ergodic distribution arising from the application
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of the Eddington procedure to the mass model employed by [1], that we are going
to describe in detail in section 4.3.

We are then going to present in detail in sections 4.4 and 4.6 the impact of the
RAVE estimate of the escape speed on DMDD limits, with a particular attention
to the correlations induced by the assumed mass model and to the uncertainties
associated to this estimate. We conclude in section 4.7.

4.1.1 Astrophysical uncertainties

Considering the SHM as a starting point, we can now try to understand which
are the facts that should be taken into account to improve the description of the
astrophysics involved in DMDD.

We will proceed as follows. The first step is to focus on the different estimates
present in the literature for the parameters of the SHM, and on the associated
uncertainties. We briefly did so in section 2.4, and we will go into more details in
next chapter. Here, we just recall few facts about the escape speed, on which this
chapter mainly relies. The second step is to take into account the hypothesis on
which such estimates rely upon, and the correlations among the parameters. The
third step is to relax the hypothesis of a Maxwell-Boltzmann speed distribution for
the dark matter, and consider instead other ergodic phase-space distributions for
the dark matter.

We have worked out a detailed analysis of these topics focusing on the case
study of the escape speed, which we present in the reminder of this chapter.

Let us remark that other studies on the impact of astrophysical uncertainties
in DMDD exist, for instance [90], but they follow a pretty different approach.

4.1.2 The local Galactic escape speed

The escape speed measures the depth of the potential well of the Milky Way and
therefore contains information about the mass distributed exterior to the radius
for which it is estimated.

Methods to estimate this quantity were introduced in [91], where a sample of
high-velocity stars was analyzed. It was pointed out that the determination of the
escape speed required, due to the reduced sample dimension, prior knowledge of
the form of the high-velocity distribution. This prior is assumed also by [1], as we
will see in section 4.2.1.

The value of the local Galactic escape speed assumed in the SHM is vesc = 544
km/s. This value was estimated by the RAVE collaboration in [41] in 2007. In
particular, the result of that study was the range 498 km/s < vesc < 608 km/s at
90% confidence level, with 544 km/s as a median likelihood. The median values of
the two studies are very similar, while the uncertainties at 90% confidence level are
reduced to a factor of 0.6 (0.7) for the upper (lower) margin respectively, mainly
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due to the augment number of stars considered.1

A new estimate of this quantity was published in 2014 by the RAVE collaboration
in [1], providing the result of 533+54

−41 km/s at 90% confidence level, with an additional
4% of systematic uncertainty.2 This is the estimate on which we will focus in this
chapter, so a detailed description of it will be provided in the following sections.

The main differences among [41] and [1] will be summarized in section 4.2.6.

4.1.3 Working plan to evaluate the impact of the local
Galactic escape speed estimates on dark matter di-
rect detection limits

We conclude this introductory part by presenting the motivations and the working
plan for this chapter.

The knowledge of the high velocity tail of the WIMP velocity distribution
has a strong impact on the way dark matter direct detection may constrain or
discover light WIMPs in the GeV mass range. A careful investigation of the physics
affecting the low WIMP mass region of the parameter space for the spin-independent
interpretation of this scattering is fundamental, because at around 10 GeV signal-
like events reported by some experiments (e.g. the DAMA experiment [54]), are at
odds with limits from other experiences. Different effects impact DMDD limits at
low WIMP masses. Those related to the detector are the energy threshold and the
energy resolution of the detector, while those of astrophysical origin are related to
the high velocity tail of the dark matter speed distribution and to the local dark
matter density. In this respect, particularly relevant are the local escape speed
from the Milky Way, and the local circular speed, as the sum of both defines the
maximum speed in the observer’s frame.

While the latter has been studied in depth by many authors, this is not the
case for the former. Recently, there have been important observational efforts to
estimate it. A method to measure it is to use nearby high-velocity stars, that
are supposed to trace the high-velocity tail of the stars speed distribution, which
should vanish at the escape speed as well. Following this approach, the RAVE
collaboration published in 2014 the latest estimate of this quantity [1] (P14 from
now on), while its previous estimate, again from the same collaboration, dates back
to 2007 [41].

In this chapter we focus our attention on the estimates of the escape speed
published by P14, which rely on the assumption, among others, of a particular
Milky Way mass model. Because of this, these new estimates cannot be used
blindly as they rely on assumptions which induce tight correlations between the
escape speed and other local astrophysical parameters (e.g. the local circular speed,
the local dark matter density and the distance of the Sun to the Galactic center).

1 A comparison between the two works of [41] and [1] is briefly worked out in section 4.2.6.
2See the following sections for the other results obtained in that study.
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Directly using those results to compute DMDD limits is straightforward, but
this would lead to inconsistent results because neglecting the hypotheses these
estimates rely upon, and the induced correlations, which should instead be taken
into account in the computation of such limits. In this chapter we analyze these
assumptions and derive a self-consistent model for the local phase-space distribution
of the dark matter, which consistently takes into account the correlations between
the astrophysical parameters.

We consider isotropic dark matter velocity distributions. We initially consider
the standard Maxwell-Boltzmann speed distribution for the dark matter. We then go
beyond the Maxwell-Boltzmann approximation computing by means of Eddington
equation (thus assuming spherical symmetry of the gravitational potential) the
phase-space distribution of the dark matter (still ergodic in this case), wherein the
previously mentioned correlations are automatically taken into account.

We take as reference the experimental sensitivities currently achieved by the most
constraining experiments at the moment of writing: LUX [24], SuperCDMS [32] and
CRESST2 [34], and we compute the corresponding exclusion curves with associated
uncertainties (focusing on the spin-independent interpretation of DMDD, with no
isospin violation). We have found that a treatment which implements the RAVE
results on the escape speed by consistently correlating all relevant parameters leads
to more constraining exclusion curves with respect to the standard ones, and to
moderate uncertainties (that we quantify later).

The procedure that we employ and the results that we obtain in this study are
contained in our paper [2] that has recently been published in the journal Physical
Review D.

4.2 Summary of the estimates of the local Galac-

tic escape speed worked out by the RAVE

collaboration in P14

This section briefly summarizes the work done in P14 to estimate the local Galactic
escape speed. In particular, we recall their methods and assumptions in order to
emphasize that their results should not be used with other arbitrary assumptions.

P14 uses data mainly taken from the Radial Velocity Experiment (RAVE DR4)
to estimate the local escape speed from the Galaxy, and tests its method using a
suite of cosmological simulations of the formation of Milky Way-sized galaxies. Its
best estimate of the local Galactic escape speed is 533+54

−41 km/s, at 90% C.L. with
an additional 4% of statistical uncertainties. P14 defines vesc as the minimum speed
required to reach 3×R340, three times the Galactocentric radius encompassing a
mean overdensity of 340 times the critical density for closure in the Universe. Then
it estimates the mass of the Galaxy starting from the escape speed, and assuming
as mass model for the halo two versions of the NFW profile. Its best estimate of
M340 (mass interior to R340, dark matter and baryons) is 1.6+0.5

−0.4 × 1012 M⊙.
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4.2.1 The Likelihood analysis

In many equilibrium models of stellar systems there are stars with velocities up to
the escape speed, but in others all stars have velocities considerably smaller than
the escape speed. To obtain a credible relationship between the densities of fast
stars and the escape speed one must engage oneself with processes that place stars
in the marginally bound part of the phase space. The simulations on which P14
tests its method give velocity distributions that are compatible with the law

n||
(

v|||~r, k
)

∝
(

vesc (~r)−
∣

∣

∣v||
∣

∣

∣

)k+1
, (4.1)

where v|| is the line-of-sight velocity expressed in a Galactocentric rest frame, and
k is an index (this ansatz was originally used in [91], work from which also the
method employed in [1] was proposed, later being extended by [41]).

Let us remember the definition of likelihood function (from [92, pag. 324]):

L (ϑ|x) =
n
∏

i=1

p (xi|ϑ) , (4.2)

where ϑ is a set of parameters, xi is one of the n experimental realizations of the
multidimensional stochastic variable X, and p (xi|ϑ) is the probability that an
experiment could give as result the values xi, if the parameters have the values ϑ.

So P14 adopts as likelihood function the function
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∣

∣

∣

)k+1 , (4.3)

We can see that this likelihood is simply defined as the probability distribution
n||
(

v|||~r, k
)

, which has been normalized by means of the denominator.

4.2.2 The employed procedure

Given the observational data for v||, they calculate the above likelihood for a wide
range of values of the two parameters vesc and k. Then they marginalize over the
nuisance parameter k. Finally they find out the best estimate of vesc as the value
which maximizes the marginalized likelihood.

Since the stars of the data set do not reside all near the Sun’s location, it is
necessary to take into account their individual positions. They do this in two
alternative ways: 1) by binning the data in Galactocentric radial distance bins or
2) by correcting the measured parallel speeds by the ratio of the distant to local
gravitational field.

Calculating the gravitational potential relies on a Galactic mass model that
includes both the baryons and dark matter. They use 1) a Miyamoto & Nagai
disk, 2) an Hernqvist bulge and 3) an original or (alternatively) an adiabatically

131



4. On the use of the estimates of the local Galactic escape speed in computing dark
matter direct detection limits

contracted NFW profile for the dark matter halo. In the NFW profile the free
parameters are the total mass M340 inside R340 and the concentration parameter
c340, one of which can be set by imposing a fixed value for vcirc (r⊙).

P14 uses a set of simulations to create fake data, to study how the employed
likelihood analysis behave, and to extract from them the values of some parameters.
In this way P14 found that its likelihood analysis gives a strong degeneracy between
vesc and k, and tends to give too low values of the escape speed. In order to be able
to obtain information on vesc, they need to acquire more information on k. They do
this using cosmological simulations, and they finally select the interval on k which
gives the better reconstruction of the true vesc put as input from the simulation.
The adopted interval is finally 2.3 < k < 3.7. They also adopt a threshold of
vmin = 200 km/s and, alternatively, 300 km/s. P14 also concludes that, corrected
in this way, the method yields a non negligible systematic scatter, but not a bias
in the estimated escape speed.

4.2.3 The analysis on real data: sample selection

The majority of the observational data for P14’s study comes from the fourth data
release (DR4) of the Radial Velocity Experiment (RAVE). The survey determines
from the spectra of the stars very precise line-of-sight velocities vlos, plus several
other stellar properties. The DR4 contains information about more than 420000
individual stars (of which after selection P14 actually uses only around one hundred,
see section 4.2.4, so the sample employed is very small compared to the the full
catalog).

The data give precise measurements of vlos, which P14 converts into Galactic rest
frame v||,i adopting the values (U⊙, V⊙,W⊙) = (11.1, 12.24, 7.25) km/s (from [19]).
P14 then computes the rotational velocities of all stars in Galactocentric cylindrical
coordinates vϕ, using the line-of sight velocities, proper motions, distances and the
angular coordinates of the stars. It assumes r⊙ = 8.28 kpc as the distance from
Sun to Galactic Center (from [93]) and discards all the stars that 1) have positive
vϕ (i.e. they select only counter rotating (halo) population), or 2) those for which
the upper end of the 95% confidence interval on vϕ reaches above 100 km/s. This
is important because a contamination from stars from the rapidly rotating disk
(P14 wants only stars from the stellar halo) could jeopardize the procedure. Also
other publicly available data sets are considered (the sample of metal-poor dwarf
stars collected by [94], from which respectively 17 and 14 stars for the two different
velocity selections described below are considered).

4.2.4 P14 results

For all stars in the catalog it can be estimated what their radial velocity would
be if they were situated at the position of the Sun. Then they create two samples
using the new velocities :
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• V300: stars with rescaled velocities v′|| > 300 km/s, which are predominantly
halo stars (51 stars, 34 from RAVE).

• V200: stars with rescaled velocities v′|| > 200 km/s, preselecting only stars
classified as “halo” (83 stars, 69 from RAVE).

Then P14 makes the likelihood analysis in the plane k,vesc. All but one of the
maximum likelihood pairs agree very well. In all cases a clear degeneracy between
k and vesc is visible. Then P14 marginalizes over the optimized k-interval obtained
above, and computes the median of every distribution, obtaining a higher value of
vesc than the maximum likelihood value for all samples. This behavior is consistent
with the test P14 performed on the simulations, which yield the conclusion that
the likelihood method underestimates vesc.

For halo stars with original |v||| > 200 km/s P14 does a second analysis, binning
in Galactocentric distance (6 overlapped bins, only 3 used for analysis), and thereby
performs a spatially resolved analysis.

4.2.5 Discussion

Estimating the mass of the Milky Way

P14 also wants to determine the mass of the Milky Way from the estimate of the
local escape speed. It uses the fact that the escape speed is a measure of the local
depth of the potential well Φ (r⊙) = −1

2
v2

esc. A critical point in P14’s analysis is
whether the velocity distribution reaches up to vesc, or it is truncated at some lower
values.

It is not a conceptual problem to define the escape speed as the high end of the
velocity distribution in disregard of the potential profile outside the corresponding
limiting radius. However, then it is important to use the same limiting radius while
deriving the total mass of the system using an analytic profile. This means P14
had to redefine the escape speed as:

vesc (r, Rmax) =
√

2 |Φ (r)− Φ (Rmax)| . (4.4)

Rmax = 3R340 was assumed being considered an appropriate value by [1].3 This
leads to somewhat higher estimates, for similar escape speeds w.r.t. other studies.

3 To give an idea of the values assumed by Rmax, we can provide two values which are
representative of those occurring in the RAVE analysis: for the best fit analysis which assumed
vc = 220 km/s and obtained 533+54

−41
km/s, the corresponding Rmax is ≈ 490 kpc, while for the

best fit analysis which assumed vc = 240 km/s and obtained 511+48
−35 km/s, the corresponding

Rmax is ≈ 427 kpc. The meaning of defining the escape speed as the speed necessary to reach
Rmax, from the physical point of view, is to consider an object unbound when it reaches that
distance from the center of the Galaxy. Even tough this choice is somewhat arbitrary, we should
recall that the Andromeda Galaxy (also known as M31), the nearest major galaxy to the Milky
Way, is located at approximately 780 kpc from the Earth, and it has a mass of the same order of
magnitude of the Milky Way. Thus, the above values of Rmax are around half way between M31
and us, so it is meaningful to think that an object which reaches such a distance could leave the
Milky Way because captured by the gravitational potential of another galaxy.
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For instance, [41] found an escape speed of 544 km/s and derived a halo mass
of 0.85 × 1012M⊙ for an NFW profile, using in practice Rmax = ∞. If the value
Rmax = 3R340 is used instead, the resulting halo mass is 1.05× 1012M⊙, an increase
by more than 20% (see [1]). This explains why the mass estimates of [1] are higher
then those of [41] even if the values obtained for the escape speed are similar.
Keeping this in mind, it should be straightforward to compute the virial mass of
the Milky Way, given a certain local escape speed value, assuming the simple mass
model presented above.

Fitting the halo concentration parameter

The previous analysis have been repeated by P14 using two fixed values of vc: the
standard value of vc = 220 km/s, and the value of vc = 240 km/s toward which the
most recent estimates point (as we have seen in chapter 2).

Up to now the value of vc was fixed, but there are many different estimates of it.
To deal with this P14 reparametrizes the NFW and leaves the concentration of the
halo c340 as a free parameter. So P14 repeats the likelihood analysis following the
same procedure, but in the plane M340, c340. Because the concentration parameter
is strongly related to the mass and the formation time of a dark matter halo,
additional constraints on this space can be put from the results of some simulations.
The maximum likelihood points, for the NFW and contracted NFW, are respectively
M340 = 1.37× 1012M⊙, c340 = 5 and M340 = 1.22× 1012M⊙, c340 = 5. These values
corresponds respectively to circular speeds of 196 km/s and 236 km/s. Marginalizing
the likelihood along the c340-axis, P14 obtains the one-dimensional PDF for the
virial mass. The median values obtained are almost identical to the maximum
likelihood found above.

To summarize, P14 applies a likelihood analysis on a set of stars selected
between those contained in the RAVE survey. First, P14 assumes a value for the
vc, and once it has marginalized over the nuisance parameter, it ends up with a
likelihood for the escape speed vesc. Then P14 relaxes the hypothesis on vc (so it
has an additional free parameter), and using the mass model of the Milky Way it
does a likelihood analysis on the plane c340 versus M340. We consider this second
analysis to be more interesting, because recent studies (as for instance [40]) suggest
a value for vc different from that of the SHM, and this second analysis allows this
parameter to vary.

The result of the likelihood analysis worked out by P14 for the plane c340 versus
M340 is shown in figure 4.1. Note that P14 applies the same analysis also using
a contracted NFW profile instead of the standard one, but we are not going to
consider that part of the analysis.4 Instead, we are going to consider the content of
figure 4.1, focusing in particular on the blue areas.

4 Note just that the two halo models, the unaltered and the adiabatically contracted NFW
halo, are rather extreme cases and the true shape of the Galactic halo is most likely intermediate
to these options.
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Figure 4.1: The result of the likelihood analysis worked out by P14 in the plane c340

versus M340. The likelihood is plotted in blue. The dark blue area marks the region
where the value of the likelihood ranges from the maximum to 10% of the maximum.
The light blue area marks the regions where the value of the likelihood ranges from 10%
of the maximum to 1% of the maximum. This blue areas are those that we are going
to consider in the following. The orange area represents a prior from simulations, and
we are not going to consider it for the reasons listed in the following sections, The black
closed lines arise from applying the prior from the simulation (orange) to the likelihood
(blue). Along the gray lines the value of the vc remains constant. This figure is taken
from [1].

4.2.6 Comparison with the escape speed estimates worked
out by the RAVE collaboration in 2007

It is important to recall some differences and analogies between the work of P14 [1]
on which this chapter focuses, and the work of [41] which provides the standard
value for the escape speed assumed by the SHM.5

[41] employed data from an earlier version of the RAVE survey. The basic
analysis strategy is the same, but [41] used a different ansatz for the high velocity
tail of the stars’ speed distribution w.r.t. that of equation (4.1) used by [1]. In [41]
the assumption was made that the stars considered were from a local sample, i.e.
they were located in a volume small enough w.r.t. the Galaxy for the escape speed
to be approximately constant over that volume. Thus no rescaling of the projected
parallel velocities by means of the gravitational potential was employed, unlike in [1]
where such a rescaling is considered. The mass model employed and the values of
the baryonic components are the same in [41] and in [1]. The degeneracy between
k and vesc was already pointed out by [41] who used priors from simulations as well
as [1] does. However, the simulations employed by [1] are much more advanced
(because more recent), thus allowing a more detailed analysis. The prior on k
used by [41], 2.7 − 4.7, is larger than the one of [1], which is nevertheless very

5 For the result of the study [41], see 4.1.2; for the standard halo model, see section 1.8.
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close to the lower part of the interval of [41]. The number of stars employed in [1]
represents an increase of a factor of 5 w.r.t. [41] (a factor of 3 if the additional
catalogs considered are taken into account). Even though the escape speed found
by the two studies is similar, the estimated mass of the Milky May is higher in [1]
due to the fact that [41] practically employs Rmax =∞.

4.2.7 Conclusions drown by P14

P14 analyzes the data of the RAVE survey and other literature data, to evaluate
the local escape speed, and from this the virial mass of our galaxy.

• They have to calibrate their method on cosmological simulations to brake
the degeneracy in parameters.

• They define the escape speed as the speed necessary to reach 3R340. The
best estimate (with 90% confidence interval) is 533+54

−41 km/s. Their estimate
is very close to the previous one by [41].

• With their value of vesc they can estimate the virial mass of the Galaxy
(dark matter and baryons) by assuming a simple mass model of the baryonic
content of the Milky Way and a spherical (original or contracted) NFW halo
for the dark matter, and fixing vc = 220 km/s and vc = 240 km/s.

• Since the quantity vc is under debate, they relax any hypothesis on its value
by adding a free parameter, the concentration parameter c340, in the NFW
profile. Then they marginalize over c340 using simulations results, and find
estimates for the mass of the Galaxy.

• Finally they can compare their results with the results of other studies in the
literature. Their mass results obtained with unaltered NFW better agree with
literature estimates, but imply a value of vc which is in strong disagreement
with recent estimates (because too low). The adiabatically contracted NFW
pushes toward a value of vc which is in better agreement with recent estimates,
but the associated mass value agrees worse with the literature. These circular
speeds are highly dependent on the adopted model for the baryonic component,
so have to be threaten with caution. An intermediate model could mitigate
the tensions.

4.3 The Milky Way mass model employed by

P14

P14 analysis is based on a sample of ∼ 100 stars mostly from the RAVE catalog. To
derive observational constraints on vesc from stellar velocities P14 needed to make
an assumption on the shape of the high velocity tail of the stars speed distribution,
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namely f⋆ (v) ∝ (vesc − v)k, with k calibrated from cosmological simulations. To
estimate vesc at the position of the Sun, P14 rescaled the vesc of the observed
stars using the gravitational potential of the Milky Way, for which a particular
Milky Way mass model had to be assumed and where only the dark matter halo
parameters were left free. They thus transformed the line of sight velocity v|| (~r) of

each star according to v′|| (~r) = v|| (~r)×
√

|Φ (~r⊙) /Φ (~r)| (~r⊙ being the position of

the Sun) before performing a likelihood analysis.6 This introduces a dependence
on the assumed Milky Way mass model and thus correlations in the astrophysical
parameters relevant to DMDD, that one must take into account when using P14
results.

P14 fixed the Sun’s distance from the Galactic center at r⊙ = 8.28 kpc [93],
the peculiar motion of the Sun at the values determined by [19], and repeated the
analysis for 3 cases: vc = 220 km/s, vc = 240 km/s and free vc. Their Milky Way
mass model is based on a fixed baryonic model (disk and bulge), and on a NFW
profile for the dark halo, the parameters of which (the scale density ̺s and radius
rs) were left free. The Milky Way mass model assumed in P14 contains a NFW
halo [69] for the dark matter, an Hernquist [79] baryonic bulge and a Miyamoto
Nagai [77] baryonic disk. Thus it reads:7

̺MW (R, z) = ̺s
rs
r

(

1 +
r

rs

)−2

+
MH

2π

aH

r (r + aH)3

+
b2MMN

4π

aMNR
2 +

[

aMN + 3 (z2 + b2
MN)

1/2
] [

aMN + (z2 + b2
MN)

1/2
]2

[

R2 +
[

aMN + (z2 + b2
MN)

1/2
]2
]5/2

(z2 + b2
MN)

3/2

,
(4.5)

where R and z are cylindrical coordinates (r =
√
R2 + z2). It has only two free

parameters, the scale density ̺s and the scale radius rs of the NFW profile. The
baryonic content is fixed, with the parameters taking the values specified in table
4.1 that were determined by [84].

Disk (Miyamoto Nagai) Bulge (Hernquist)

Scale length aMN 4 kpc Scale radius aH 0.6 kpc
Scale height bMN 0.3 kpc Total mass MH 1.5× 1010 M⊙
Total mass MMN 5× 1010 M⊙

Table 4.1: Structural parameters of the baryonic components of the MWMM used by
P14, taken from [1].

6 Remember that the escape speed for a star in ~r is defined as vesc (~r)
.
=
√

2 |Φ (~r)|, Φ (~r)
being the gravitational potential of the Milky Way.

7This expression is simply the sum of the three components, the individual expressions of
which are provided respectively by the equations (3.3), (3.12) and (3.11).
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The associated Newtonian gravitational potential is:8

ΦMW (R, z) =− 4πGN
̺sr

3
s

r
ln
(

1 +
r

rs

)

− GNMH

r + aH

− GNMMN
[

R2 +
[

aMN + (z2 + b2
MN)

1/2
]2
]1/2

.
(4.6)

P14 chooses the value of the virial overdensity v to be v = 340, thus fixing cv as
c340. P14 assumes Rmax = 3R340 as the distance from the center of the Galaxy at
which a body would be considered unbound, where R340 is simply the virial radius
rv = rscv of the NFW profile, calculated for v = 340. We keep the same choices.

In P14 the above mass model is used to estimate the mass of the Milky Way.
In particular, M340 is used, which is the total mass (dark matter and baryons)
contained inside a sphere of radius R340.

In this model, the total mass inside a spherical shell of any radius r can be
calculated simply as

Mint (r) = MNFW
int (r) +MH

int (r) +MMN
int (r) . (4.7)

P14 computes this quantity for r = R340, thus using

M340
.
= Mint (R340) = MNFW

int (R340) +MH
int (R340) +MMN

int (R340) . (4.8)

For the NFW profile, using the definition of R340 we have that MNFW
int (R340) =

340̺c
4
3
πR3

340. For the Miyamoto Nagai disk, since R340 ≫ aMN , one can safely
assume that almost all the mass of the disk is contained inside a sphere of radius R340,
so that MMN

int (R340) ≈ MMN . Finally, the mass MH
int (r) can easily be calculated

from (A.5) for any r.

4.4 Converting P14 results into the vc,vesc plane

As we have already said, P14 repeated its analysis for the 3 cases: vc = 220 km/s,
vc = 240 km/s and vc free, obtaining different results, the main of which (that we
are going to use) are summarized in table 4.2 below. Since we want to study the
impact of the P14 results on DMDD, we are going to convert those results in the
plane vc,vesc, which is more relevant to DMDD. Since the mass model has only
two free parameters, we see that for every couple of values vc, vesc the local dark
matter density ̺⊙ can be directly computed using the mass model. The correlations
among these astrophysical parameters should be properly taken into account while
computing DMDD limits. We are also going to consider independent estimates of
vc, in the way explained in the sequel.

8Again, this expression is the sum of the three components, given in the equations (A.2), (A.6)
and (A.12).
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4.4.1 From the constraints on M340,c340 to those on vesc,vc

The speed of a body which is on a circular orbit on the Galactic plane can be com-
puted from the gravitational potential of the Milky Way as v2

c (R, 0) = RdΦ(R,z)
dR

∣

∣

∣

z=0
,

where R and z are cylindrical coordinates. This circular speed in our Milky Way
mass model can be computed as in equation (3.25) and reads:9

v2
c (r) =4r3

sπ̺sGN





ln
(

1 + r
rs

)

r
− 1

rs + r



+
GNMHr

(r + aH)2

+R







GNMMN
[

R2 + (aMN + bMN)2
]3/2





 .

(4.9)

The escape speed is set by the kinetic energy an object needs to get unbound,
i.e. to reach a certain Rmax, it is thus defined as (see also equation (3.28)):

vesc (r⊙)
.
=
√

2 |ΦMW (r⊙)− ΦMW (Rmax)| . (4.10)

As we stated in section 4.3, the assumed mass model has only two free parameters,
and we can recast equations so that the two free parameters are any of the couples
of parameters c340 and M340, ̺s and rs, or vc, vesc. Thus, a pair of ̺s, rs (or
equivalently a pair of M340, c340) converts into a pair of vc, vesc, and viceversa.

We thus converted in the vc, vesc plane, more relevant to DMDD, the P14 results
for the 3 cases mentioned above (prior or not on vc), which are summarized in table
4.2.

P14 assumption vc vesc rs ̺s ̺⊙

(km/s) (km/s) (kpc) (GeV/cm3) (GeV/cm3)

vc = 220km/s 220 533+54+109
−41−60 16.4+6.6+13.6

−4.5−6.4 0.42+0.26+0.48
−0.16−0.24 0.37+0.02+0.04

−0.03−0.04

vc = 240km/s 240 511+48
−35 7.8+3.8

−2.2 1.92+1.85
−0.82 0.43+0.05

−0.05

Free vc 196+26
−18 537+44

−55 36.7+50.7
−19.0 0.08+0.31

−0.07 0.25+0.14
−0.12

9 It is instructive to estimate the contribution that each component of the mass model provides
to the circular speed at Sun’s position (r⊙ = 8.28 kpc). Using (A.7) and (A.13) we obtain
vHc (r⊙) ≈ 82 km/s, and vMNc (r⊙) ≈ 134 km/s, which give a contribution of 157 km/s from the
baryons all together. We can see using equation (3.25) that a circular speed at the position of the
Sun of vc (r⊙) = 220 km/s requires vNFWc (r⊙) ≈ 153 km/s. Thus, at the position of the Sun the
contribution of the dark matter halo is roughly the same as that of the baryons altogether, and
the disk contributes more than the bulge. Clearly the baryons alone are not enough to justify the
observed value of the circular speed at Sun’s position.
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at 1σ, and ±12 km/s at 2σ, which is the range that we will consider in the following
in association with the P14 vc-free analysis for the study of the astrophysical
uncertainties on DMDD. This range is reported as a green band in figure 4.4. We
can see that by crossing the vc, vesc band provided by the result of the P14 vc-free
analysis, this additional constraint defines a region, that we will use for the study
of the astrophysical uncertainties on DMDD. Let us remark that this region extend
up to values of the local dark matter density of ̺⊙ = 0.55 GeV/cm3, which is higher
than the corresponding value in the SHM but consistent with the tendency found
in recent studies as described in section 2.4.2. Anyway, we recall that the MWMM
employed has been chosen only for consistency with the procedure employed by
P14 (which assumed the same mass model), but it is rather simplistic and not
meant to be used to provide precise estimates of the local dark matter density.

4.4.4 Speculating beyond P14

We may also note that the trend of the blue band is in contrast with the claim in
P14 that their vesc estimates anticorrelate with vc as a result of their selection of
stars from the RAVE catalog (biased to negative longitudes), which explains why
vesc decreases from 533 to 511 km/s as the prior on vc is increased from 220 to 240
km/s. This anticorrelation is illustrated by the dotted lines in figure 4.5.

This contrast comes from the method used in P14 to extract the likelihood
region in the c340-M340 plane,10 shown in their figure 4.1: the authors kept the
posterior PDF of vesc frozen to the shape obtained with vc = 220 km/s, while
varying only c340 and M340. This means that they did not recompute the velocities
of their stellar sample according to the changes in vc induced by those in c340 and
M340. We remind that in principle the pair vc, vesc is strictly equivalent to the pair
c340-M340, so we may have expected to recover the anticorrelation claimed for the
former pair from the contours obtained for the latter.

While the goal of P14 in the vc-free case was mostly to investigate how to
improve the matching between Galactic models and the primary fit results, with
a focus on the Milky Way mass, the above procedure somehow breaks the self-
consistency of the analysis. This has poor impact on the Galactic mass estimate,
which was the main focus in P14, but this affects the true dynamical correlation
that vesc should exhibit with the other astrophysical parameters. Unfortunately,
improving on this issue would require access to the original data, which are not
available to us. Therefore, we will stick to this result in the following, and further
comment on potential ways to remedy this limitation at the qualitative level in
section 4.6.3.

10We thank T. Piffl for having clarified this issue.
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4.5.1 From the Milky Way mass model to the dark matter
speed distribution

As we have seen in section 3.6, in order to build a self-consistent velocity distribution,
we can consider as phase-space distributions functions of integrals of motion which
automatically satisfy the Jeans equation. The simplest case occurs assuming
spherical symmetry (of the total gravitational potential) and velocity isotropy (for
the dark matter velocity distribution), so that the phase-space distribution becomes
a function of the total energy E = mΦ + 1

2
mv2 only, which is an integral of motion.

Such systems are called ergodic [17].

Under these assumptions we can use the Eddington equation [96], which allows
to compute the phase-space distribution for the dark matter directly from the
assumed gravitational potential of the Milky Way and the dark matter density
profile. We wrote this equation in different ways as (3.82), (3.83) and (3.84), but
let us recall for clarity its most common form:

f (E) =
1√
8π2

[

∫ E

0

d2̺

dΨ2

dΨ√
E −Ψ

+
1√
E

(

d̺

dΨ

)

Ψ=0

]

, (4.14)

where Ψ = −Φ + Φ0 is the relative gravitational potential of the Milky Way,
E = −E/m+ Φ0 the relative energy per unit mass and Φ0 a constant.

The local velocity distribution for the dark matter can then be computed as
f erg
~v (|~v| , r) = f (E) /̺ (r), which turns out to be actually a function of the modulus

of ~v only (a direct consequence of the assumed velocity isotropy). Thus, it is
enough to consider the dark matter speed distribution, which reads f erg

v (v, r) =
4πv2f erg

~v (|~v| , r).
In practice, we solved numerically Eddington equation (easier to solve numeri-

cally in the form (3.84)) for the MWMM assumed by P14.

This procedure can be applied only to spherically symmetric systems, and
the Milky Way mass model assumed by P14 is not, because of the disk which is
instead axisymmetric, see (4.5). Anyway, since it does not dominate the potential
at the position of the Sun (r⊙, z = 0), it can be shown that we can force spherical
symmetry while not affecting the circular velocity at the Sun’s position. In fact,
we can consider, instead of the axially symmetric spherical potential Φ (R, z) of
equation (4.6), a spherically symmetric potential Φ′ (r) obtained with the same dark
matter halo and baryonic bulge as the one above, but with a spherical approximation
of the disk. We just need to verify that Φ′ gives in the disk (and in particular at
Sun’s position) the same circular velocity (so v2

c (r⊙, z = 0) = R∂RΦ′ (R, z) |R=r⊙,z=0

must be satisfied) and the same internal mass given by Φ, and we can then apply
the above procedure to Φ′. This approximation is valid when we compute the speed
distribution for a point which lies in the Galactic disk (as it is the case here, since
we are interested in computing this distributions at the position of the Sun).
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4.5.2 The impact of baryons

We illustrate here the application of the Eddington procedure to compute the
phase-space distribution, and then the speed distribution, of the dark matter that is
described by the NFW profile lying in the gravitational potential described by the
Milky Way mass model assumed by P14. This is the procedure that we will employ
systematically in the next section to compute the speed distributions associated
with the ergodic phase-space distributions that we are going to use to go beyond
the Maxwell-Boltzmann approximation. We take here the opportunity to outline
the modifications induced by the presence of the baryons.
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Figure 4.6: The f (E) associated with the NFW dark matter profile of the Milky Way
mass model with the parameters fixed at the values associated to the best fit point of
the P14 analysis with prior vc = 240 km/s. This phase-space distribution has been
obtained applying Eddington equation to the NFW density profile. Three different cases
are considered: the f (E) associated to the NFW dark matter profile first in the presence
of its gravitational potential only, then in the presence of the potential generated by itself
(dark matter) plus the stellar bulge, and finally in the presence of the potential generated
by the whole Milky Way mass model, i.e. dark matter plus baryons (bulge and disk).
Left panel: the curves as a function of E . Right panel: the same curves as a function
of E/Ψmax. The values of Ψmax are 166285 km2/s2, 273806 km2/s2 and 323815 km2/s2,
respectively for dark matter only, dark matter plus baryonic bulge and dark matter plus
bulge and disk.

Figure 4.6 shows the phase-space distribution associated to the NFW profile
with the parameters values associated to the best fit point of the P14 analysis with
prior vc = 240 km/s. We show three different cases: the f (E) associated to the
NFW dark matter profile in the presence of its gravitational potential only, then
the f (E) in the presence of the potential generated by itself (dark matter) plus the
stellar bulge, and finally the f (E) in the presence of the potential generated by
the whole Milky Way mass model, i.e. dark matter plus baryonic bulge and disk.

As we can see, adding the baryons (i.e. adding the bulge and than the disk)
has the effect of shifting the vertical asymptote of the phase-space distribution
toward higher values of the relative energy E (which is positively defined). This
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can be easily understood if we think that adding a baryonic component to the
mass model means to add mass and thus to deepen the gravitational potential weel.
A deeper potential weel allows for more energetic particles in the system, so the
values allowed for E are higher.

It is now important to remark that, when we compute the speed distribution
from the phase-space distribution, we do so for a fixed value of the distance from
the Galactic center r. On the one hand, the phase-space distribution computed via
Eddington equation is by construction a function of only one variable, E . More
precisely, The phase-space distribution depends on the phase-space variables, ~r and
~v, only through E , which is itself a function of these variables E = E (~r,~v). When
we compute the speed distribution from the phase-space we thus reintroduce the
dependence on ~r (more precisely r, because the system is spherically symmetric).

It is very important to remark that, once we fix r to a certain value r0 and
compute ferg (v, r0), only a part of the corresponding f (E) is accessible. This
happens because the particles described by ferg (v, r0) have an energy which is
E = Ψ (r0) − 1

2
v2, which can thus range between zero and Ψ (r0). Thus, Ψ (r0),

the depth of the potential well at r0, defines the maximal allowed value for E . On
the other hand, E = 0 corresponds to v = vesc, i.e. particles which have a kinetic
energy equal (or bigger) than their potential energy can escape the potential weel
of the Galaxy so they are no longer present (so the tail of the speed distribution
vanishes at vesc).

In figure 4.7 we show ferg (v, r⊙), i.e. the dark matter speed distribution
computed at the position of the Sun r⊙ (in the Galactic reference frame), again for
the three cases of figure 4.6, i.e. the NFW dark matter profile (with the parameters
of the best fit point of the P14 analysis with prior vc = 240 km/s) in the presence
of its gravitational potential only, then in the presence of the potential generated
by itself plus the stellar bulge, and finally in the presence of the potential generated
by the whole Milky Way mass model, dark matter plus baryonic bulge and disk.
We can remark that, as can be understood from the discussion above on vesc, the
high velocity tail (and thus vesc) of the speed distribution extends toward higher
values of the velocity when we add the baryons. The peak of the distribution (and
so the most probable speed) as well moves toward higher velocities when we add
the baryons. Both facts clearly come from having added mass to the system, and
then having deepened the gravitational potential weel.

4.5.3 Comparing the Maxwell-Boltzmann and the ergodic
speed distributions

We now want to compare the Maxwell-Boltzmann speed distribution (of which
we consider the smoothly cut version of equation (4.13)) and the ergodic speed
distribution that we compute using the Eddington formula. We will compare them
in the Galactic reference frame, remembering that we need to transform them into
the corresponding distributions in the Earth reference frame in order to use them
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Figure 4.7: The speed distribution f (v) associated with the NFW dark matter profile of
the Milky Way mass model with the parameters fixed at the values associated to the best
fit point of the P14 analysis with prior vc = 240 km/s. These speed distributions come
from the phase-space distributions of figure 4.6. Three different cases are considered: the
NFW dark matter profile first in the presence of its gravitational potential only, then
in the presence of the potential generated by itself plus the stellar bulge, and finally in
the presence of the potential generated by the whole Milky Way mass model, i.e. dark
matter plus baryons (bulge and disk).

for the DMDD-related computations we are interested in.
Firstly, we compare the Maxwell-Boltzmann and the ergodic distributions for

different values of the distance r from the Galactic center. We use the MWMM
already presented in this section, and for illustration we fix the parameters of the
dark matter NFW halo at the values of rs = 20 kpc and c340 = 10 (corresponding
to roughly ̺s = 0.25 GeV/cm3). The two speed distributions associated to the
dark matter halo lying in the gravitational potential of the considered MWMM
are shown in figure 4.8 for three different values of the distance from the Galactic
center: r = 0.1 kpc, r = 1 kpc and r = 10 kpc. The Maxwell-Boltzmann speed
distributions have been computed using the values of vc (r) and vesc (r) associated
to the MWMM in use, and computed at the corresponding distance r from the
Galactic center.

As we can appreciate from figure 4.8, the peak of the Maxwell-Boltzmann
distribution shifts toward higher values of v when we increase the distance from the
Galactic center, due to the behavior of vc (r), since the most probable speed of the
distribution, i.e. the one at which the peak occurs, is given by v0 = vc (r). Since as
we have shown in equation (1.52) the velocity dispersion of the Maxwell-Boltzmann
velocity distribution (i.e. of the vector, while in the figure we are showing the
speed distribution, i.e. the distribution of the modulus of ~v, the two of them being
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Figure 4.8: Comparing the Maxwell-Boltzmann and the ergodic speed distributions
obtained from the Eddington procedure, at different distances from the Galactic center.
The MWMM is the one fixed in the beginning of this chapter, and the parameters of the
NFW halo are fixed at the values of rs = 20 kpc and c340 = 10 (corresponding to roughly
̺s = 0.25 GeV/cm3).

related by fMB
v = 4πv2fMB

~v ) is related to the most probable speed as v0 =
√

2/3σ~v,

also the width of the peak of the Maxwell-Boltzmann increase while increasing r.11

Finally, we remark that the high-velocity tail of the Maxwell-Boltzmann extends
toward higher velocities while r increases, as vesc does. However, it should be
remarked that, due to the above relation between the most probable speed and the
width of the peak, these tails are quite thin.

On the other hand, it is clear from figure 4.8 that the behavior of the ergodic
distributions obtained from the Eddington procedure is less simple to guess. The
high velocity tail, which by construction ends at the escape speed, extends to lower
values of v when increasing r, because the escape speed has the same behavior.
On the other hand, the position of the peak does not follow from the circular
speed, and neither does the width of the peak. The high velocity tails are this time
considerably fatter and elongated w.r.t the low velocity ones, especially at low r.

We can clearly see that the ergodic speed distribution at low r is very different
from the corresponding Maxwell-Boltzmann, while the similarity between the two
increases while augmenting r. In particular, we can see that at r = 10 kpc, i.e.

11 Actually, the relations v0 = vc (r) and v0 =
√

2/3σ~v are exact for a Maxwell-Boltzmann
without truncation. Since here we are truncating the Maxwell-Boltzmann at the escape speed,
these relations have to be considered in our case just indicative. Even if quantitatively the difference
is small, this shows that the Maxwell-Boltzmann, once truncated, is no more self-consistent, and
so the SHM neither.
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at distances from the Galactic center similar to the distance of the Sun, the two
distributions are much more similar, which tells us that the use of the Maxwell-
Boltzmann for direct detection is in practice a viable approximation. However, we
see that some differences are still there, and they will have a non-negligible impact.
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Figure 4.9: Comparing the Maxwell-Boltzmann speed distribution and the ergodic
speed distribution obtained from the Eddington procedure. The MWMM is the one
fixed in the beginning of this chapter. The parameters of the Maxwell-Boltzmann
are those corresponding to the best fit point of P14 with prior on vc = 240 km/s,
and correspondingly vesc = 511 km/s. Those of the ergodic distribution are the ones
corresponding to the same best fit point, i.e. the values of rs and of ̺s from table 4.2.
We remind that the ergodic speed distribution has been computed using Rmax = 427 kpc,
the effect of which is widely discussed in section 4.5.4.

Figure 4.9 shows a comparison between the Maxwell-Boltzmann speed distribu-
tion and the ergodic speed distribution obtained from the Eddington procedure.
The parameters of the Maxwell-Boltzmann are those corresponding to the best fit
point of P14 with prior on vc = 240 km/s, and correspondingly vesc = 511 km/s,
while those of the ergodic distribution are the ones corresponding to the same best
fit point, i.e. the values of rs and of ̺s from table 4.2. We can notice that the peaks
of the two distributions are different, as the widths of the distributions themselves.
As already stated, while for the Maxwell-Boltzmann the most probable speed is
related to the circular speed and to the velocity dispersion, this is not the case for
the ergodic speed distribution. Also the high velocity tails are different, with a
fatter tail for the Maxwell-Boltzmann w.r.t the ergodic one. Moreover, as we have
seen the peak of the Maxwell-Boltzmann varies a lot with the circular speed, while
the one of the ergodic distribution is almost unaffected.
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4.5.4 The role of Rmax

As we have seen, P14 defines in (4.4) the escape speed as the speed necessary
to reach a distance from the Galactic center of Rmax. We presented the same
definition in chapter 2 as (3.27), and at that time we pointed out that, while the
usual definition of the escape speed (3.26) is suitable for isolated systems, like for
instance a star, the definition which includes Rmax is more appropriate for systems
like the Galaxy, which are not isolated because surrounded by other galaxies.

The choice made by P14 is to set the value of the distance from the Galactic
center at which an object is considered to be unbound Rmax to the value of 3R340,
as an educated guess.12 This provides values of Rmax that are between 430 kpc and
530 kpc in the simulations considered by P14. For the real Galaxy, the best fit of
the analysis worked out by P14 assuming vc = 220 km/s (which obtained 533+54

−41

km/s) corresponds to an Rmax of ≈ 490 kpc, while the best fit of the analysis worked
out by P14 assuming vc = 240 km/s (which obtained 511+48

−35 km/s) corresponds to
Rmax ≈ 427 kpc.

The nearest major galaxy to the Milky Way, the Andromeda Galaxy (also
known as M31), is located at approximately 780 kpc from the Earth, and it has a
mass of the same order of magnitude of the Milky Way. Thus, the choice of P14
of taking Rmax = 3R340 provides values of Rmax that are around half way between
M31 and us: an object which could reach such a distance could leave the Milky
Way for instance because captured by the gravitational potential of M31. We recall
anyway that the potential slowly changes with radius, so the results of P14 are
rather insensitive to small changes in the above definition.

For consistence with the analysis worked out by P14, in the work presented in
this chapter we took into account the same definition of the escape speed including
Rmax. Even if it does not play a major role in the analysis worked out in this
chapter, in this section13 we want to briefly outline which is the impact of including
this Rmax in the definition of the escape speed on the phase-space distributions
obtained from the Eddington equation for the mass model considered by P14, and
on the associated speed distributions.

First of all, considering an object unbound at a finite Rmax provides lower values
(in modulus) for the gravitational potential Φ, and thus lower values of Ψ. This can
be seen by comparing the values of Ψmax reported in the legend of figure 4.6 with
those of figure 4.10. As a consequence, obviously also the values of the escape speed
are lower (since they scale as the square root of the modulus of the potential).

The impact of a finite Rmax on the phase-space distribution f (E) obtained from
Eddington equation can be clearly seen comparing figure 4.6 with figure 4.10, where
we show the f (E) associated with the NFW dark matter profile of the Milky Way
mass model assumed, with the parameters fixed at the values associated to the best
fit point of the P14 analysis with prior vc = 240 km/s. Adding the cutoff at Rmax

12We remember that we can compute R340 as R340 = rsc340.
13 We warmly thank Benoit Famaey for useful discussions on the subject of this section, and

more in general on the astrophysics involved in this work.
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Figure 4.10: The f (E) associated with the NFW dark matter profile of the Milky Way
mass model with the parameters fixed at the values associated to the best fit point of
the P14 analysis with prior vc = 240 km/s, as in figure 4.6, but with the cutoff at Rmax

in the definition of the escape speed. The value of Rmax = 427 kpc is the one associated
with the parameters of the halo for the best fit point with prior vc = 240 km/s, computed
as Rmax = 3R340 = 3rsc340. The impact of adding the cutoff at Rmax in the definition of
the escape speed is evident as the fact that the curves do not tend toward zero when
approaching E = 0 s2/km2. The values of Ψmax are 154072 km2/s2, 261442 km2/s2 and
310948 km2/s2, respectively for dark matter only, dark matter plus baryonic bulge and
dark matter plus bulge and disk. As expected these values are slightly decreased w.r.t.
the corresponding ones found for the case without Rmax shown in figure 4.6. Left panel:
the curves as a function of E . Right panel: the same curves as a function of E/Ψmax.

in the definition of the escape speed leads to the fact that the curves do not tend
toward zero when approaching E = 0, as they do when no Rmax is considered. The
non-zero value of f (E) at E = 0 comes from the second term in Eddington equation
(3.83), for which Ψ = 0 now means r = Rmax and not r =∞. This is particularly
interesting as that term is sometimes neglected in computing Eddington equation.

The impact of Rmax on the f (v) obtained from Eddington equation can be
understood by comparing figure 4.7 with figure 4.11, where we show the speed
distributions f (v) associated with the NFW dark matter profile of the Milky Way
mass model considered with the parameters fixed at the values associated to the best
fit point of the P14 analysis with prior vc = 240 km/s. These speed distributions
arise respectively from the phase-space distributions of figure 4.6 (which do not
include any Rmax in the definition of the escape speed) and that of figure 4.10
(which include Rmax). The impact of adding the cutoff at Rmax in the definition of
the escape speed is clearly visible in the high velocity tail of the speed distribution:
when Rmax is considered, the escape speed is lowered, and the speed distribution,
instead of decreasing toward zero (and reach it at v = vesc, where the escape speed
is now the one computed using Rmax), decreases up to a certain value of v close to
vesc, but then before reaching zero it presents a small increase when approaching
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Figure 4.11: The speed distribution f (v) associated with the NFW dark matter profile
of the Milky Way mass model with the parameters fixed at the values associated to the
best fit point of the P14 analysis with prior vc = 240 km/s, as in figures 4.7 but with
the cutoff at Rmax in the definition of the escape speed. These speed distributions come
from the phase-space distributions of figure 4.10. The value of Rmax = 427 kpc is the
one associated with the parameters of the halo for the best fit point with prior vc = 240
km/s, computed as Rmax = 3R340 = 3rsc340. The impact of adding the cutoff at Rmax in
the definition of the escape speed is clearly visible in the high velocity tail of the speed
distribution: when Rmax is added, the escape speed is lowered, and the speed distribution,
instead of going toward zero, has a small increase when approaching the escape speed.

the new escape speed.14

This effect can be more or less prominent depending on the value of Rmax and
the value of r at which the speed distribution is computed. For the values of Rmax

typical of P14 and for r = r⊙, as we can see from figure 4.11 the effect is present,
but not very prominent with respect to the size of the whole speed distribution.

Including Rmax in our procedure is necessary for consistence with the definition
of the escape speed employed by P14, and it allows us to obtain ergodic speed
distributions that end at the correct escape speed (i.e. the one corresponding to the
values of the mass model parameters used to compute it via Eddington equation).
On the other hand, the growing of f (v) when it approaches Rmax is not a physical
effect: it is due to the fact that with the definition of the escape speed including
Rmax we are somewhat forcing a part of the population of dark matter particles
described by f (v) to have velocities smaller than the vesc computed with Rmax,
while they would otherwise occupy the tail extending till the value of vesc computed

14 Let us remark that, a part from this effect at high velocities, the distributions obtained with
and without Rmax are the same.
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without Rmax, larger than that with Rmax. Thus, when this effect is present in
the speed distributions that we derive from the mass model employed by P14, we
employ an exponential cutoff to obtain an f (v) which decreases and reaches zero at
vesc (the one computed with Rmax). We also normalize the distribution so obtained
to unity, because this normalization, present in the f (v) obtained from Eddington
equation, is lost when using the above cutoff.

Let us conclude by saying that we had to define the escape speed using Rmax

for consistence with P14 (motivated by the fact, as stated above, that the Galaxy
is not an isolated system). We thus faced the effect that this has on the very end of
the high velocity tail of the speed distribution, we asked ourselves questions about
this effect, and we finally dealt with it in the way that appeared to us the most
consistent, which we described above.

4.6 DMDD limits from the P14 estimates of vesc

and related astrophysical uncertainties

We are now going to translate the P14 estimates into DMDD limits, focusing on
the spin-independent interpretation of the elastic scattering of a WIMP (of mass
mχ) off a nucleus (of atomic number A and mass mA), and no isospin violation.
To understand the impact of the above parameters on DMDD limits, we need to
recall the master equation (2.21), from which we have that the differential event
rate per atomic target mass in an experiment is:

dR

dEr
(Er) =

̺⊙σpSIA
2

2mχµ2
p

F 2 (Er)
∫

|~v|>vmin(Er)
d3~v

f⊕ (~v, t)

|~v| , (4.15)

with µp the WIMP-proton reduced mass, Er the recoil energy, σp the WIMP-nucleon
cross section, F (Er) the nuclear form factor (assumed of the Helm type), and

vmin =
√

mAEr/(2µp) the minimal velocity that a WIMP needs to transfer to a

nucleus the recoil energy Er. f⊕ (~v, t) is the dark matter velocity distribution in the
Earth reference frame obtained from the one in the Galactic frame via a Galilean
transformation. Let us remark that, as explained in chapter 2, when computing
DMDD limits we also take into account the experimental efficiency, the energy
resolution of the detector, the fractions of atomic targets, the isotopic compositions
for each target element, and we take the time average of equation 4.15.

For illustration, we will compute the DMDD limits using the results of the
most constraining (in different WIMP-mass ranges) experiments at the moment of
writing: LUX [24] (a reference for xenon experiments), SuperCDMS [32] (a reference
for Germanium experiments), and CRESST II [34] (a reference for multitarget
experiments).

Before converting P14 results on vesc in terms of DMDD limits, we recall
that they affect the whole WIMP velocity distribution (vc, vesc, and the velocity
dispersion) as well as the local dark matter density ̺⊙, which will now be different
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plane with the uncertainty contours associated with the astrophysical configurations
derived from the three P14 best-fit points:

• the best-fit point with prior vc = 220 km/s and associated 90% CL error bar,

• the best-fit point with prior vc = 240 km/s and associated 90% CL error bar,

• the best-fit point with free vc (plus an additional prior on the concentration)
and associated uncertainty band corresponding to 1% of maximum likelihood
in the M340-c340 plane.

These curves have been derived by using the ergodic speed distribution obtained
from Eddington equation in section 4.5, which self-consistently correlates the dark
halo parameters with vesc and vc. We also report on the same plot the exclusion
curves calculated from the SHM (the parameters of which are given in section 1.8).

We note that the best-fit points associated with priors on vc lead to similar
curves and bands, in particular in the low WIMP mass region. This is due to the
anticorrelation between vc and vesc, which is such that the sum vc + vesc, relevant
to characterize the WIMP mass threshold, remains almost constant. From 4.3, we
also see that ̺⊙ varies over the range of values ≈ [0.35, 0.47] GeV/cm3 for these
two points, which leads to less than ±15% of relative difference in the predicted
event rate. In contrast, the exclusion curves associated with the vc-free case have
a slight offset toward larger WIMP masses while lying slightly above the others
with a larger uncertainty. This is due to the prior on the concentration that forces
small values of vc while not affecting vesc, and consequently to the lower values of
̺⊙ spanning the range ≈ [0.15, 0.35] GeV/cm3. In comparison, the SHM curves
(aimed at reproducing the limits published by the experimental collaborations) lie
in between, and are less constraining than the P14 parameters with priors on vc.

We will now describe in detail, one by one, the results obtained firstly for the
case with prior vc = 240 km/s, secondly for the vc-free case, and finally for another
case which will bring us to speculate beyond the results of P14.

4.6.1 DMDD limits from the P14 best-fit point with prior
vc = 240 km/s

We first considered the P14 best-fit point with prior vc = 240 km/s, likely the
most motivated case given the recent estimates (e.g. [40], see section 2.4.2). Figure
4.13 shows the exclusion curves and the associated 90% C.L. uncertainties for this
configuration. The CRESST-II, SuperCDMS and LUX limits are shown respectively
in the left, middle and right panels. The absolute and the relative uncertainties are
shown in the top and, respectively, in the bottom panels. We compare the limits
obtained from the ergodic speed distribution to those calculated from the SHM
model on the one hand, and from the Maxwell-Boltzmann with the P14 values for
the astrophysical parameters on the other hand.
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Comparing our results with those obtained for the SHM, we find that the former
are more constraining by ∼ 40% in a wide range of high WIMP masses, due to the
value of ̺⊙ = 0.43± 0.05 GeV/cm3 (inferred from the P14 escape speed estimate
of vesc = 511+48

−35 at 90% CL), higher than the SHM one (̺⊙ = 0.3 GeV/cm3) over a
large part of the depicted WIMP mass range.

At very low WIMP masses the SHM beats the ergodic one because vesc itself
affects the effective WIMP mass threshold: it is set to 544 km/s in the SHM
(vc+vesc = 764 km/s), while the P14 best-fit point (for vc = 240 km/s) corresponds
to vesc=511 km/s (vc + vesc = 751 km/s).

We also show the effect of using a Maxwell-Boltzmann velocity distribution,
instead of a more consistent ergodic one together with the correctly correlated
astrophysical parameters. This impacts especially at low WIMP masses, because
of significant differences between the high-velocity tail of the two distributions.
Comparing on each plot the limits obtained with the same astrophysical parameters,
but respectively with a Maxwell-Boltzmann or an ergodic velocity distribution, we
see that the shape of the distribution plays a role where its tail (less step for the
Maxwell-Boltzmann) does, mainly at low WIMP masses. The Maxwell-Boltzmann
is actually more constraining at energy recoils leading to vmin larger than the peak
velocity of the phase-space distribution. This is because the Maxwell-Boltzmann
exhibits a less steep tail at high velocities than the ergodic one. This illustrates
why not only is the escape speed important in the low WIMP mass region, but also
the high-velocity tail of the speed distribution, and thereby the speed distribution
itself.
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Figure 4.13: Top panels: experimental 90% C.L. exclusion curves, calculated using
the P14 result for the vc = 240 km/s analysis. Bottom panels: relative uncertainties
with respect to the vc = 240 km/s best-fit point of P14. Left panels: CRESST-II data.
Middle panels: SuperCDMS data. Right panels: LUX data. See the text for details. We
published these figures in [2].
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The relative uncertainties in the exclusion curves for this P14 point saturate at
∼ ±10% at high WIMP masses, value set by the allowed range in ̺⊙, and they
degrade toward very low WIMP masses, where the high-velocity tail and vesc come
also into play, and the maximum possible recoil energy approaches the threshold
energy. This can clearly be observed in the case of LUX, the efficiency of which
drops for WIMP masses below ∼ 8 GeV (bottom right panel of 4.13).

Some of the bumps in figure 4.14 in the case of CRESST2 come from the presence
of more than one target nucleus (the others, similar to those in SuperCDMS, from
the impact of the observed nuclear-recoil-like events on the maximum gap method
that we used to derive the exclusion curves). This shows that employing different
target nuclei in a detector helps to reduce the astrophysical uncertainties (as
well as combining different experiments). A similar complementarity arises when
considering experiments based on different target nuclei.

It is still difficult to draw strong conclusions on the overall uncertainties in the
exclusion curves induced by the P14 results without questioning more carefully
the P14 initial assumptions and priors. We will do so in the next subsections.
We can already emphasize that a self-consistent use of these estimates of vesc is
not straightforward (for instance, one cannot just vary vesc in a given C.L. range
irrespective of the other astrophysical parameters). A proper use must take the
correlations between all the relevant astrophysical parameters into account. Indeed,
we have just seen that not only the WIMP mass threshold is affected (a direct
consequence of varying vesc + vc), but also the global event rate is, because ̺⊙ must
be varied accordingly.

4.6.2 DMDD limits from the P14 vc-free analysis, with ad-
ditional constraints

In this section, we are going to examine the P14 results in light of independent
constraints on the astrophysical inputs. As we have seen, P14 provided three best-fit
configurations each based on different priors. The most conservative approach
would be to relax fixed priors as much as possible, as all astrophysical parameters
are affected by uncertainties. In this section we will therefore focus on the vc-free
case.

We do not use the same prior on the concentration of the dark matter halo of
P14 (represented by the pink band in figure 4.4) because it is based on cosmological
simulations without baryons. Instead, we combine the region provided by the
vc-free analysis of P14 in the plane of figure 4.4, with the constraint on vc published
in [40] and already described in section 4.4.3, which is independent on any Milky
Way mass model because based on geometric quantities only (parallaxes and proper
motions of masers). For the reasons explained in section 4.4.3, we selected from [40]
the results corresponding to the model B1, which are vc = 243± 12 km/s at 2σ
(shown as a green band in figure 4.4). As already stated, to ensure consistency
we have verified that the other quantities estimated in [40], in particular the Sun
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distance from the Galactic center and the local radial derivative of the circular
velocity, have values compatible with those of the Milky Way mass model we use
(which for consistency we had to chose to be the same as the mass model used in
P14).
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Figure 4.14: Upper panel: Experimental 90% C.L. exclusion curves, calculated using a
combination of the P14 vc-free analysis with the additional constraints on vc from [40]
presented in the text. Lower panel: corresponding relative uncertainties. From left to
right: CRESST2, SuperCDMS, LUX. We published these figures in [2].

To compute the DMDD limits associated to the vc-free analysis of P14, we
used the region of the plane in figure 4.4 where the P14 blue band crosses the
green band associated with the results of [40]. In the above region the allowed
values of the local dark matter density reach up to ̺⊙ ≈ 0.57 GeV/cm3 (as can be
understood by looking at the gray contours in figure), i.e. they are higher than
those of the SHM, but similar to those found in recent studies [38]. We show in
4.14 the uncertainties obtained when considering the combination of the P14 vc-free
case with the additional constraints on vc discussed above.

The behavior is qualitatively similar to the one already described for the
vc = 240 km/s case in figure 4.13, only the uncertainties change. We also report
the exclusion curves obtained with the P14 results with prior vc = 240 km/s, which
are shown to lie within the contours of the vc-free case (plus independent and
additional constraints on vc). This can easily be understood from 4.4. The relative
uncertainties saturate at values of ≈ ±20% at large WIMP masses, due to the
allowed range of ̺⊙ ∈ [0.37, 0.57] GeV/cm3 while they further degrade toward low
WIMP masses because of the additional effects from vesc and vc.

159



4. On the use of the estimates of the local Galactic escape speed in computing dark
matter direct detection limits

4.6.3 Speculating beyond P14

In the P14 analysis with fixed vc an anticorrelation is present between vc and vesc,
which is absent in the vc-free analysis due to the procedure employed, as explained
in section 4.4.4. This anticorrelation is due to the fact that the majority of the stars
studied are located at negative Galactic longitudes, so it is consistent to take it into
account. Because of the caveats affecting the vc-free case of P14 (see the discussion
in 4.4.4), and in order to try to recover a better consistency in the Galactic mass
modeling, we may try to further speculate about what a self-consistent vc-free band
would look like. The P14 argument that vc and vesc should linearly anticorrelate
is sound because it is based on a purely geometrical reasoning (the fact that the
stellar sample is biased toward negative longitudes).

We thus “speculate” beyond the P14 analysis, suggesting that the most self-
consistent use of the RAVE results would be to consider the region which takes
into account this anticorrelation, represented in figure 4.5 by the black dotted lines.
As before, we also investigate how the uncertainties export to DMDD limits, using
again the additional 2-σ constraints on vc from [40].
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Figure 4.15: Same as 4.14, but for the vc-vesc range supposed to properly take the
anticorrelation (represented by the dotted lines in figure 4.5) into account (upper: absolute,
lower: relative). From left to right: CRESST2, SuperCDMS, LUX. We published these
figures in [2].

The DMDD limits and uncertainties obtained from this region are shown in
figure 4.15. They are similar to those presented in the previous section (vc-free
case), but likely more consistent with the original data used in P14 (because of the
supposed anticorrelation between vesc and vc).

The relative uncertainties improve on the entire mass range. They improve
down to ∼ ±10% in the large WIMP mass region. This illustrates the importance of
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Figure 4.16: Effect of not considering the correlation of the astrophysical parameters
(local dark matter density and relevant speeds) in drawing the relative uncertainty in the
LUX DMDD exclusion curve. The dashed region is the same as the colored region in the
bottom left panel of 4.15. We published this figure in [2].

accounting for astrophysical correlations in reducing the astrophysical uncertainties
that affects DMDD. To quantify this, we show the difference in the relative uncer-
tainty band between the correlated and uncorrelated cases in 4.16, using the LUX
results, where the dashed region shows the correlated uncertainty band obtained in
the bottom left panel of 4.15. The improvement is not as tremendous as one would
naively expect, but still clearly visible around the maximum sensitivity region: this
is due to the fact that large speeds (vc and vesc) are dynamically correlated with a
large local dark matter density, which tends to maximize the uncertainty in the low
WIMP mass region (there is still a gain in the intermediate region). Nevertheless,
we stress that accounting for these dynamical correlations would become critical
when using direct detection to check a WIMP model that would be invoked to
interpret any putative indirect detection signal (the WIMP annihilation rate scales
like ̺2

⊙).

4.7 Conclusions

In this chapter we have studied the impact of the recent estimate of the Galactic
escape speed vesc from [1] (P14) on the DMDD exclusion curves. This observable is
difficult to reconstruct, and the method used in P14, as recognized by the authors,
is potentially subject to systematic errors. Nevertheless, these constraints are
independent of those coming from studies of rotation curves, and thereby may
provide complementary information on the WIMP phase-space. We have shown
that the conversion of these results is nontrivial, as the constraints on vesc are
obtained from a series of assumptions that relate each value of vesc to a different
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set of parameters for the dark halo profile. This implies that one cannot use the
different vesc ranges provided by P14 blindly and irrespective of these assumptions.
A naive use of these estimates would neglect the underlying assumptions, and thus
the correlations they induce among the astrophysical parameters and the dark
matter velocity distribution.

We have assumed spherical symmetry and gone beyond the Maxwell-Boltzmann
approximation by considering ergodic phase space distributions for the WIMPs.
This method ensures a self-consistent physical connection between the phase-space
distribution and the underlying Milky Way mass model. In particular, all local
variables relevant to DMDD calculations, i.e. the average WIMP speed, the
dispersion velocity, and the local dark matter density, are consistently dynamically
correlated in this approach.

We have studied the three best-fit configurations provided by P14, two with
priors on the circular velocity vc (220 and 240 km/s), and one with vc left free.
These configurations are shown in the vc,vesc plane in 4.2. As the first two appeared
to us too specific, we concentrated on the latest, which was originally optimized for
Milky Way mass estimates (we had to convert the P14 results from the c340,M340

plane to the vc,vesc plane). The anticorrelation between vc and vesc arising from
the locations of the stars of the P14 sample extracted from the RAVE catalog,
which are biased toward negative longitudes, and found in the vc = 220 km/s and
in the vc = 240 km/s cases, was no longer present due to the use of the posterior
PDF for vesc with the vc = 220 km/s prior. We therefore further speculated on
what a fully self-consistent vc-free case could look like, and considered this guess as
an alternative. Finally, we accounted for independent constraints on vc from [40],
which have the advantage of being almost fully independent of the Galactic mass
model. This has driven us to favor large vc regions, around 240 km/s, which are in
principle associated with lower escape speeds in P14.

We have translated these P14 results in terms of DMDD exclusion curves
focusing on the LUX, SuperCDMS, and CRESST-II experiments as references.
We found that a consistent use of these estimates implies large values for ̺⊙,
so more constraining exclusion curves (up to ∼ 40% more), and evaluated the
associated uncertainties. This is anyway consistent with several independent recent
results on the local dark matter density (see e.g. references [97], [38] and [98]).
This is a good news for direct dark matter searches as it tends to increase their
potential of discovery or exclusion. We have also investigated the associated relative
uncertainties, and shown that they are highly nontrivial as P14 values of vesc are
correlated with other astrophysical parameters, as already stated above. We have
shown that taking P14 results at face value (plus eventually additional independent
constraints on vc) converts into moderate uncertainties, down to ∼ ±10% in
the regime where the experiments can trigger on the whole phase space (large
WIMP masses). This is not to be considered as a definitive estimate of the overall
astrophysical uncertainties, as both P14 and our phase-space modeling suffer from
simplifying assumptions (simplistic baryonic mass model, spherical symmetry, etc.);
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this is still indicative, and compares to the low-edge estimates of other studies
based on rotation curves (see for instance [90]). When getting closer to the high-
velocity tail (low WIMP masses), the uncertainties explode as the experimental
efficiency drops, but we have illustrated the nice complementarity between the
experiments using different target atoms in this regime. This complementarity
allows to maintain a moderate uncertainty of ∼ ±20% down to WIMP masses of
a few GeV. Nevertheless, since the SHM value for the sum vc + vesc is 764 km/s,
slightly more than the 751 km/s found from the more recent P14 estimate (with
the prior vc = 240 km/s), the generic outcome is that we find an effective WIMP
mass threshold slightly heavier than in the SHM.

There are several limitations in this analysis, the main of which are the simple
Milky Way mass model and its baryonic content, fixed by P14. Unfortunately, we
cannot go beyond this choice as this would no longer be consistent with P14 results.
Second, we made the assumption that the dark matter phase-space was entirely
governed by the total energy, and that the system was spherically symmetric,
which led to the derivation of ergodic velocity distribution. While this approach
self-consistently correlates the local velocity features and the local dark matter
density to the full gravitational potential, it remains to be investigated in detail
whether it reliably captures the dynamics at stake in spiral galaxies. Some works
do indicate that this approach provides a reasonable description of cosmological
simulation results (see for instance [99]), but it is obvious that more studies are
necessary to clarify this issue.

Finally, we stress that our study is complementary to those based e.g. on
rotation curves, as it relies on different, and independent, observational constraints.
Further merging these different sets of constraints would be interesting in the future.
Moreover, because of these dynamical correlations arising in the local astrophysical
parameters, which was continuously underlined throughout this chapter, several
improvements could also be expected in the complementary use of direct and
indirect detection constraints in order to exclude or validate some WIMP scenarios.
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CHAPTER 5

A review of estimates of the astrophysical quantities relevant

to dark matter direct detection
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5.1 Introduction

Studying the astrophysical properties of the Milky Way is of course very interesting
in its own, but it is also crucial for the topic of this work, dark matter direct
detection. As we have seen in the previous chapters, computing the limits (or
signal regions) associated to dark matter direct detection experiments requires to
fix the astrophysical framework. We have seen in section 2.4 which are the main
astrophysical quantities that are directly relevant for direct detection, in section 1.8
we have presented the standard assumptions employed (the Standard Halo Model)
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and in section 2.4 we have shown which is the impact on the exclusion curves of
variations in some of these parameters.

Chapter 4 has been dedicated to study in particular the impact on dark matter
direct detection limits of the recent estimates of the local Galactic escape speed
published by the RAVE collaboration. We have seen that the procedure employed
to determine the escape speed relies on certain hypothesis (among which the
particular Milky Way mass model assumed), which induces correlations among the
astrophysical parameters, that we have tried to take into account at our best in
computing the direct detection exclusion curves.

The goal of this chapter is to attempt a review of some of the up to date
estimates of the astrophysical quantities that matters for direct detection, briefly
summarizing the methods employed to determine these quantities from the ob-
servations. We will try to focus on the results of these studies, but also on the
underlying assumptions, on the compatibility among them, and on the correlations
between different astrophysical quantities present in the assumptions or in the
results. This review thus expands without any claim of completeness the discussion
already outlined in section 2.4.

Quantities like the distance from the Sun to the Galactic center r⊙ are usually
determined via geometric methods, which are usually based on few hypothesis. On
the other hand, quantities like the circular velocity at Sun’s position are evaluated
via dynamical methods, by assuming models for the gravitational potential or for
the mass distribution of the Milky Way. Some studies use local models (valid only
in the surroundings of the Sun), while others employ global models (e.g. Milky
Way mass models).

Since often models of the Milky Way are employed (e.g. mass models), we
aim at summarizing which are some among the most up to date theoretical and
observational achievements on this topic present in the literature.1

This review of the main estimates for the astrophysical quantities relevant for
direct detection, and those characterizing the mass models involved in the descrip-
tion of our Galaxy, is meant to complete the picture outlined in this work providing
complementary information on many of the astrophysical quantities that we have
encountered. This also represents an opening toward possible generalizations to
other astrophysical quantities of the work done in this thesis on the impact of the
escape speed estimates on dark matter direct detection limits.

For a major readability of this section we will recall the author’s names when
making citations, unlike we did in the rest of this work.

1For very useful discussions about this and other topics discussed in this manuscript, we
warmly thank Benoit Famaey who also provided us the most up to date references that we will
consider in this chapter.
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5.2 The astrophysical quantities more relevant

for direct detection: review of some estimates

in the recent literature

As we have seen, the astrophysical parameters most relevant for dark matter direct
detection are: the Galactic escape speed at the position of the Sun vesc, the Sun’s
distance from the Galactic center r⊙, the local dark matter density ̺⊙ and the
velocity of the Sun in the Galactic frame, ~vpec = (U⊙, vc + V⊙,W⊙), where vc is
the circular speed at the position of the Sun. Since the whole chapter 4 has been
dedicated to the escape speed, we will not threat it again here.

5.2.1 The distance from the Galactic center, the circular
velocity and the peculiar velocity of the Sun

Let us first focus on the distance from the Galactic center r⊙, the circular velocity at
the position of the Sun vc, and the peculiar velocity of the Sun ~vpec = (U⊙, V⊙,W⊙).
We discuss these quantities together because, as we will see, their measures are
related. In particular, the measures of r⊙ do not depend on the others, but
conversely the measures of the others depend on those of r⊙, and on each others.

The distance of the Sun from the Galactic center r⊙

The best available estimate of the Sun’s distance from the Galactic center r⊙ dates
to 2009 and can be found in Gillessen et al. (2008) [93], which provides the value
r⊙ = 8.28± 0.15 (stat.) ±0.29 (sys.). This is also the value that we employed in
chapter 4, as it was assumed by Piffl et al. in [1] to estimate the escape speed.

Previously on the same year, two other estimates appeared in the literature:
r⊙ = 8.4± 0.4 kpc from Ghez et al. (2008) [100] and r⊙ = 8.33± 0.35 kpc from
Gillessen et al. (2008) [101]. They both contained measures of the mass of and the
distance from the supermassive black hole in the center of the Galaxy, coincident
with the radio source Sagittarius A* (this being the operational definition of r⊙).

For the two studies of Ghez et al. (2008) [100] and Gillessen et al. (2008) [101]
above, astrometric and radial data were collected. Those data were relative to the
star S2 closely orbiting on an elliptical orbit around the supermassive black hole at
the center of the Galaxy, with a period of 15.9 years which allowed the observation
of one full orbit. Such a star is a good tracer of the gravitational potential in that
region. The data consist in observations of the position of the star S2 at different
instants of time (astrometric data), and of its radial velocity.

The sets of data used by the two studies were taken respectively with the Keck
telescope (the one of Ghez et al. (2008) [100]), and with the NTT/VLT telescope
(the one of Gillessen et al. (2008) [101]).

The two sets of data on the position of S2 employed by these two studies were
initially thought to be incompatible, but Gillessen et al. (2008) [93] have shown
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that, allowing an offset in the definition of the reference frames used, the two sets
of data can be brought to agreement, and Gillenssen et al. (2008) [93] thus used
the combination of the two dataset to obtain the above estimate, which has slightly
reduced uncertainties.

The method is purely geometrical: it consists in taking the above mentioned
data and fitting an ellipsoidal orbit, performing a χ2 test. The distance from the
Galactic center r⊙ is one of the parameters of the fit.

The above method does not rely on any assumption concerning other astro-
physical parameters. The other quantities that are estimated in Gillessen et al.
(2008) [93], like for instance the mass of the central black hole, are not relevant for
direct detection. No Milky Way mass model has been assumed.

The circular velocity vc and its combination with other quantities, vc+V⊙
and (vc + V⊙) /r⊙

The most recent study, on which we are going to focus, is the one by Reid et al.
(2014) [40], which used the measurements of trigonometric parallaxes and proper
motions for over 100 masers associated with young, high-mass stars. This study
is particularly interesting to us also because we have used some of its results in
chapter 4.

Summary. In Reid et al. (2014) [40], axially symmetric models of the Milky Way
have been fit to the data. The main results are that the distance to the Galactic
center r⊙ has been estimated to be 8.34± 0.16 kpc, the circular rotation speed at
the Sun vc = 240± 8 km/s, and the rotation curve has been found to be almost
flat at Sun’s position (with a slope of −0.2± 0.4 km s−1 kpc−1).

Since the dataset is large, the parameters r⊙ and vc are no longer highly
correlated. The component of the peculiar Solar motion in the direction of Galactic
rotation is found to be V⊙ = 14.6±5.0 km s−1. V⊙ and vc are significantly correlated,
but the sum of these parameters is well constrained, V⊙ + vc = 255.2 ± 5.1 km
s−1, as well as the angular speed of the Sun in its orbit around the Galactic center
(vc + V⊙) /r⊙ = 30.57 ± 0.43 km s−1 kpc−1.

The work of Reid et al. (2014) [40] is the first one which uses fully three-
dimensional data to strongly constrain all three parameters r⊙, U⊙ and vc + V⊙.

Methodology employed. The measurements used by Reid et al. (2014) [40]
are relative to position, parallax, proper motion and Doppler shift, and they allow
a complete reconstruction of the velocity vectors of observed objects, which are
masers located in high mass star forming regions (HMSFR). Then, a model for the
Milky Way is assumed, which consists in modeling the Galaxy as a disk rotating
with circular speed given by2 vc (R) = vc (r⊙) + dvc

dR
(R− r⊙).

2 Let us remark that the sensitivity of the fundamental Galactic parameters r⊙ and vc to
alternative rotation curves has been investigated by substituting (when fitting) the simple linear
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A Bayesian fitting approach is employed,3 with the posterior estimated using
a MCMC based on the Metropolis-Hastings algorithm. The data were fitted
with a least-square fitting (i.e. assuming Gaussian data uncertainties). Priors on
(U⊙, V⊙,W⊙) were necessary, and particularly important is V⊙, the motion of the
Sun in the direction of Galactic rotation, because the average peculiar motion of
the sources is correlated to it. Because of the range of values found in the literature
(which ranges up to V⊙ = 26 km/s in Bovy et al. (2012) [102], see next section),
the prior assumed is V⊙ = 15± 10 km/s.

Note that to model the observations, two kinds of motion are relevant: the
peculiar motion of the Sun (important since all measurements are relative to it, and
parameterized as usual as (U⊙, V⊙,W⊙)), and that of the sources being measured.
Here we report on the latter only few details, because it is beyond the scope of
this chapter, but let us remark that in Reid et al. (2014) [40] these movements are
taken into account and extensively described.

Four different sets of priors were considered, assuming the values and obtaining
the results described below. Let us remark that the set called A is the most relevant
one, and in particular the model A5 is considered to be the reference fit, because
its priors are those least restrictive while in keeping with current knowledge. In
order to test the sensitivity of the procedure to the priors, other sets of priors have
been considered (B,C,D). The complete results of the Bayesian fitting associated
with the various models are shown in table 4 of Reid et al. (2014) [40].

Set-A: The priors assumed are: U⊙ = 11.1± 1.2 km/s, V⊙ = 7.2± 1.1 km/s and
W⊙ = 7.2± 1.1 km/s, and priors on the average peculiar motion of the HMSFR of
U s = 3± 10 km/s and V s = −3± 10 km/s.

The data contain some outliers, namely sources with anomalous kinematics,
probably due to the effect of supernovae in the spiral arms. The method employed
for set-A represents an outlier-tolerant approach, because it initially keeps all the
sources, only removing some of them in subsequent repetitions of the analysis with
prior A, giving rise to sets A1 to A4. The 95 initial sources are thus reduced to 80,
which are used for the fit with less outliers, A5.

This fit has a good χ2 = 224.9 for 232 d.o.f., and provides r⊙ = 8.34 ± 0.16
kpc, vc = 240± 8 km/s and almost flat rotation curve at Sun’s position (dvc/dR =
−0.2± 0.4 km s−1 kpc−1).

Thanks to the higher number of sources and better distribution across the Galaxy,
vc and r⊙ are significantly less correlated than in previous studies (marginalized
and joint PDF are shown in figure 3 of Reid et al. (2014) [40]).

form above with alternative forms. The conclusion is that these two parameters are reasonably
insensitive to a wide variety of rotation curve shapes. Anyway, the authors report that some of
the sources clearly cannot be modeled by an axisymmetric rotation curve.

3The procedure involves a transformation between heliocentric and Galactocentric frames,
which requires accurate values for r⊙, U⊙ and, in particular, for vc+V⊙, which has been subtracted
in the heliocentric frame.
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Anyway, a strong anti-correlation is present between V⊙ and vc. Circular
velocity parameters are still correlated but linear combinations of them are well
determined: vc + V⊙ = 255.2± 5.1 km/s and (vc + V⊙) /r⊙ = 30.57± 0.43 km s−1

kpc−1. Moreover, V⊙ = 15.6± 6.8 km s−1 (consistent with Bovy et al. (2012) [102]).
We remind that A5 is considered to be the reference fit, because its priors are those
least restrictive while compatible with current knowledge.

Set-B: Sets B, C, and D are based on the same selection of 80 stars as model
A5 (thus without those that are kinetically anomalous). Tighter priors for the
Solar motion (from Schönrich et al. (2010) [19]) are used: U⊙ = 11.1± 1.2 km/s,
V⊙ = 12.2 ± 2.1 km/s and W⊙ = 7.2 ± 1.1 km/s, and no priors for the average
peculiar motion of the HMSFR is assumed. The main results are: r⊙ = 8.33± 0.16
kpc and vc = 243± 6 km s−1, with a χ2 comparably good to the one of set A.

Set-C: No priors for the Solar motion are assumed (because of the big uncer-
tainties found in the literature, see next section) but tighter priors on the peculiar
motion of the HMSFRs are considered: U s = 3± 5 km/s and V s = −3± 5 km/s.
The main results are: r⊙ = 8.30±0.19 kpc, vc = 239±8 km s−1 and V⊙ = 14.6±5.0
km s−1.

Set-D: No priors are assumed on both the Solar motion and the average peculiar
motion of the HMSFR, a part from bounding V⊙ and V s with equal probability
within ±20 km/s of the Set A initial values and zero probability outside that
range. This is motivated by the aim of facilitating the use of the associated results
together with other literature estimates. Main results are: r⊙ = 8.29± 0.21 kpc
and vc = 238± 15 km s−1.

Comparison with other estimates. The value for V⊙ obtained with Set-C
priors is consistent with that of Schönrich et al. (2010) [19], while it presents some
contrast w.r.t. that of Bovy et al. (2012) [102], anyway in the sets where the prior
that the peculiar motions of the HMSFR are small are relaxed, the results lose
significance.

The values found for the Sun’s motion toward the Galactic center are in
agreement with other estimates, as for instance 11.1± 1.2 km/s in Schönrich et al.
(2010) [19], or 10± 1 km/s in Bovy et al. (2012) [102], while those for the Solar
motion component perpendicular to the Galactic plane W⊙ differ only slightly from
for instance the 7.2 km/s in Schönrich et al. (2010) [19].

The results obtained for r⊙ (for model A5) are compatible with those obtained
by Gillessen et al. [93], and are claimed to be likely the most accurate to date.

The estimates of vc in the last decade have been ranging over a range of values
100 km/s wide. Comparing the result associated with the model A5, 240± 8 km/s,
to the one obtained by Bovy et al. (2012) [102] of 218± 6 km/s, we see that the
values differ, but in Bovy et al. (2012) [102] a high value of V⊙ = 26± 3 km/s is
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obtained (see the details below). Since the full tangential speed in these two works,
vc + V⊙ = 252.2± 4.8 km/s in A5 of Reid et al. (2014) [40] and vc + V⊙ = 242+10

−3

km/s in Bovy et al. (2012) [102] are consistent, probably the differences on vc come
from the differences on V⊙, as explained in the section dedicated to Bovy et al.
(2012) [102].

The model A5 of Reid et al. (2014) [40] strongly constrains (vc + V⊙) /r⊙ =
30.57 ± 0.43 km s−1 kpc−1. This value can be compared with the one in Reid et
al. (2004) [103] of (vc + V⊙) /r⊙ = 30.24 ± 0.12 km s−1 kpc−1. This last is an
estimate based on the proper motion of Sgr A*, interpreted as the reflex motion
from the Sun’s Galactic orbit. This gives, by using r⊙ = 8.34± 0.16 kpc, a value of
vc + V⊙ = 252.2± 4.8 km/s, in good agreement with the results obtained in Reid
et al. (2014) [40] from parallaxes.

Up to Reid et al. (2014) [40], it can be concluded that vc exceed the IAU
recommended value of 220 km/s with > 95% probability provided that V⊙ < 23
km/s. Changing the value of this quantity would have an impact on a wide range
of astrophysical estimates. Let us remark in particular that higly affected would
be the estimates of the total mass (dark matter dominated) of the Milky Way.
Interestingly for dark matter direct detection, this would lead also to a higher value
of the local dark matter density ̺⊙, as we have seen already in the previous chapter
when considering the assumption of vc = 240 km/s.

The peculiar velocity of the Sun ~vpec and its component in the direction
of the disk’s rotation V⊙

We are now going to summarize which are the main results in the literature about
Sun’s peculiar motion (w.r.t the Local Standard of Rest, LSR), and in particular
its component in the direction of Galactic rotation V⊙. Let us remark that knowing
with high precision the proper motion of the Sun w.r.t. the Local Standard of
Rest is of fundamental importance to convert any astrophysical measure from the
heliocentric reference frame in which it is worked out, to the Galactic reference
frame. While the radial and azimutal components U⊙ and W⊙ are simpler to
determine from the movements of Solar-neighborhood stars, the determination of
V⊙ is more involved, and thus its estimates are spread over a wider range of values.
In particular, they range between approximately 5 and 25 km/s. The above range
is inferred from the following values estimated in the literature: V⊙ = 5.23± 0.62
km/s in Dehnen et al. (1997) [104], V⊙ = 12.24 ± 0.47 km/s in Schönrich et al.
(2010) [19] and V⊙ = 26± 3 km/s in Bovy et al. (2012) [102].

The estimate of Dehnen et al. (1997) [104]. The value of V⊙ was low
compared to the other components of the peculiar velocity since few years ago, due
to estimates as the one from Dehnen et al. (1997) [104], which provided a value of
V⊙ = 5.23±0.62 km/s (together with U⊙ = 10.00±0.36 km/s and W⊙ = 7.17±0.38
km/s for the other components, and with a value of r⊙/Rd ≈ 3 to 3.5, where Rd is
the scale length of the disk).
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This estimate was based on stellar kinematics, and used data relative to paral-
laxes and proper motions of a subsample of the Hipparcos catalog. The velocity
dispersion tensor was determined as a function of the color of the main sequence
stars observed. As a side note, let us quote that the data seemed to indicate that
the Galactic gravitational potential is significantly non-axisymmetric at the Solar
radius, which could be due to the spiral structure of the Milky Way.

The numerical values obtained were based on the assumption of r⊙ = 8 kpc,
and of other quantities not relevant for this discussion.

The work of McMillan et al. (2009) [39]. McMillan and Binney (2009) [39]
analyze observations of parallax, proper motion and line-of-sight velocity for 18
masers to investigate the distance of the Sun from the Galactic center r⊙, the
rotational speed of the local standard of rest vc and the peculiar velocity of the
Sun ~vpec.

Various models of the rotation curve and models allowing for a peculiar motion
of the HMSFR are considered. They obtain that the data are best fit by either
assuming a higher value of V⊙ than the usual one presented above, or by a net
peculiar motion of the HMSFR. They argue that a correction in V⊙ would be much
more likely, and that the data support the conclusion that the value of V⊙ should
be revised upward from 5.23 to 11 km/s.

They also found out that the value of the ratio vc/r⊙ is better constrained
than the two quantities considered independently. In particular, McMillan and
Binney (2009) [39] estimate ranges from vc/r⊙ = 29.9 ± 1.7 km s−1 kpc−1 to
vc/r⊙ = 31.6 ± 1.7 km s−1 kpc−1. On the other hand, the estimates of the two
separate quantities highly depend on the model assumed, and range between
6.7± 0.5 kpc and 8.9± 0.9 kpc for r⊙, and between 200± 20 km/s and 279± 33
km/s for vc.

This is particularly important, because it points out that an important correla-
tion in the measured values of vc and r⊙ is present, as it is clearly shown by figure 2
of McMillan and Binney (2009) [39]. This should be kept in mind when using this
or similar estimates in computing DMDD limits. Anyway, the more recent estimate
provided by Reid et al. (2014) [40] has found that, since the dataset employed
therein is large, the parameters r⊙ and vc are no longer higly correlated in their
work.

The estimate of Schönrich et al. (2010) [19]. The value determined in
Dehnen et al. (1997) [104] has been largely used, but McMillan and Binney
(2009) [39] argued that a more plausible interpretation of the data (w.r.t. assuming
an unexpected lag in the HMSFR on which that study relies upon) is obtained if
V⊙ exceeds the value of Dehnen et al. (1997) [104] by ≈ 6 km/s.

Thus, a subsequent analysis was worked out by Schönrich et al. (2010) [19],
obtaining the following values: V⊙ = 12.24+0.47

−0.47 km/s (together with U⊙ = 11.1+0.69
−0.75

km/s and W⊙ = 7.25+0.37
−0.36 km/s), with additional systematic uncertainties on
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(U⊙, V⊙,W⊙) of ∼ (1, 2, 0.5) km/s. In particular, this estimate provides a value of
V⊙ which is higher than the previously estimated one by 7 km/s.

The work of Schönrich et al. (2010) [19] is based on stellar kinematics. It
applies an analysis based on similar data, but on a different methodology w.r.t the
standard one employed in Dehnen et al. (1997) [104], namely using a particular
chemo-dynamical model of the Galaxy (which in turn allows to compute the phase-
space distribution for the stars). It should be noted that, up to the authors, the
critics moved to the standard procedure are beyond doubt, while the result on V⊙
has some sensitivity to the dynamical approximations used in deriving the Galaxy
model, so that improvements on the model to fit more datasets could lead to small
variations in the value of V⊙.

The estimate of Bovy et al. (2012) [102]. Bovy et al. (2012) [102] determine
the local value of the circular velocity to be vc = 218± 6 km/s (at 68% confidence),
and marginalizing over all the systematics considered they find that vc < 235 km/s
at > 99% confidence. On the other hand, they find that the Sun’s rotational
velocity is Vϕ,⊙ = 242+10

−3 km/s.4 As can be seen, an offset between the Sun’s
rotational velocity and the local circular velocity V⊙ = 26± 3 km/s is found, which
is larger than the locally-measured Solar motion of 12 km/s. This larger offset
reconciles the value of vc found with the recent claims that vc . 240 km/s. Also
the Solar distance to the Galactic center is determined, with values in the range 8
kpc < r⊙ < 9 kpc with the best fit at the lower hand.5

The analysis is based on measuring the rotation curve of the Milky Way over
the Galactocentric range 4 kpc . R . 14 kpc from the data taken by the SDSS
III’s Apache Point Observatory Galactic Evolution Experiment (APOGEE). The
line-of-sight velocities of 3365 stars out to heliocentric distances of 10 kpc are
modeled using an axisymmetric kinematical model. While warm stellar-disk tracers
do not on average rotate at the circular velocity, their off-set from vc, the so-called
asymmetric drift, is a dynamical effect that can be calculated from their observed
velocity dispersion.

A model is fit to the data. A flat rotation curve and alternatively a power low
rotation curve are considered. For the distribution of velocities in Galactocentric
rest frame, it consists of a single biaxial Gaussian, with a mean radial velocity of
zero because of the assumption of axisymmetry, and a mean rotational velocity
given by the local circular velocity vc, adjusted for the local asymmetric drift.
Velocity anisotropy between the radial and the rotational directions is present
in the model, described by the rotational velocity variance σ2

ϕ and by the radial
velocity variance σ2

R. Their ratio comes from an axisymmetric equilibrium model

4 The most robust measurements on the local circular velocity are those based on the observed
proper motion of Sag A*, but this requires an estimate of r⊙. Other measurements are based for
instance on samples of halo stars or on globular cluster systems, but what such measurements
actually measure is Sun’s rotational velocity, Vϕ,⊙. To obtain vc, these measurements depend on
a highly uncertain correction for the Sun’s motion w.r.t vc.

5 Note that more detailed results are summarized in table 2 of [102].
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for the distribution function f (E , L) in a disk with a circular velocity constant with
radius. For this a Dehnen distribution function is used (see Dehnen (1999) [105]).
No assumptions on r⊙ are made. The systematics of the analysis are studied,
with the conclusion that they do not significantly bias the results for the Galactic
parameters.

The value obtained for vc in this study is considered compatible with the other
estimates in the literature (as for instance those of McMillan et al. (2009) [39]) by
the authors, because differences are explained by the different peculiar motion of
the Sun w.r.t. vc, and because their work takes into account the theoretically well
motivated corrections due to the asymmetric drift.

A crucial point is that the Galactocentric motion of the Sun is approximately
VR,⊙ = −10.5 ± 1.0 km/s, but the difference vc − Vϕ,⊙ turns out around 26 ± 3
km/s. This difference must be understood in the following terms. Usually the
peculiar motion of the Sun is defined w.r.t. the Local Standard of Rest (LSR). The
LSR itself is assumed to rotate around the Galactic center with velocity given by
(0, vc, 0). This is the case, roughly speaking, only if the stars surrounding the Sun
are on average rotating with that velocity. Anyway, the model used in Bovy et al.
(2012) [102] calls Rotational Standard of Rest (RSR) the reference frame moving
with (0, vc, 0), and find a difference between the motions of LSR and RSR: the LSL
seems to rotate ∼ 12 km/s faster than the RSR.6 A difference in the motion of
the two should be understood as the fact that the LSR would not be on a circular
orbit around the Galactic center.

The implication of this result on dark matter direct detection is, as explained
in Bovy et al. (2012) [102], that decomposing the motion of the Sun in the usual
way, i.e. with vc and V⊙ kept separate (instead of considering only the rotational
velocity Vϕ,⊙), is dangerous because it can lead in taking into account high values
of vc as 240 km/s together with the standard value (or higher values) for V⊙, which
would be incorrect if this difference in rotation between LSR and RSR is really
present.

5.2.2 The local dark matter density ̺⊙

The standard value of the local dark matter density is considered to be ̺⊙ = 0.3
GeV/c2 cm−3. This is for instance the "canonical value" reported in the reviews of
particle physics [36] and [35], where it is reported to be correct within a factor of 2
or 3.

In the recent years, anyway, there has been a tendency to consider higher values,
somewhat around ̺⊙ ≈ 0.4 GeV/c2 cm−3. For instance in Ling et al. (2010) [37]
it is reported that, even if the commonly used value is the one above, a recent
determination suggests ̺⊙ = 0.39 GeV/c2 cm−3 and this is also what the authors
found in their simulation.

6 Note that the measure of the Solar motion w.r.t. the LSR is then local, while the one w.r.t.
the RSR is global.
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The recent estimate of Bovy and Tremaine (2012) [97]. The work of Bovy
and Tremaine (2012) [97] considers the same measures employed by Moni Bidin et
al. (2014) [106]7 of the vertical motion of stars situated 1 to 4 kpc from the Galactic
mid-plane. Using the same procedure of Moni Bidin et al. (2012) [107], based on
Jeans equation, but assuming instead the approximation that the circular velocity
curve is flat in the mid-plane (i.e. that the circular speed is therein independent of
radius) Bovy and Tremaine (2012) [97] ends up with an estimate of the local dark
matter density which is ̺⊙ = 0.3± 0.1 GeV/c2 cm−3, consistent with the standard
estimates, and which they consider to be the most robust direct measurement of
this quantity to date.

It should be noticed that the above estimate relies on the additional assumptions
of r⊙ = 8 kpc, and of vc = 220 km s−1, consistent for instance with the results
of Bovy et al. (2012) [102], but with the standard value of vc that many recent
estimates suggest should be increased.

Moreover the authors notice that the dark matter density they estimate is the
average at R = r⊙, but at a height from the disk mid-plane of 1 to 4 kpc. For
two reasons the local dark matter density at z = 0, the one important for dark
matter direct detection, should thus be enhanced. First, for the pure geometrical
reason that for instance an NFW profile gives a higher ̺ at z = 0 than at z = 2.5
kpc. Second, the gravitational influence of the disk should further increase the
mid-plane dark matter density. Thus the value of the local dark matter density
reported above should be enhanced by about thirty percent.

The recent estimate of Bienaymé et al. (2014) [38]. The work of Bienaymé
et al. (2014) [38] employs a model for the local (i.e. in the Solar neighborhood)
Galactic potential applied to the data from the observations worked out by the
RAVE collaboration, already described in the previous chapter, combined with
data from the 2MASS and UCAC catalogs.

The observed stars are red clump stars for which distances, radial velocities
and metallicities have been measured, located in a cylinder of 500 pc of radius
extending from 200 to 2000 pc in the direction of the South Galactic Pole. The
procedure employed consists in assuming a distribution function depending on
three integrals of motion in a separable potential which locally represents the one
of the Milky Way, with four free parameters. The distribution is fit to the data
and allows to deduce the vertical force and the total mass density distribution up
to 2 kpc away from the Galactic plane.

The value of ̺⊙ = 0.542± 0.042 GeV/c2 cm−3 is then determined, considerably
higher than the standard one. This value is obtained assuming r⊙ = 8.5 kpc. Such
a high local density, in combination with a circular velocity of 240 km/s, could be
produced by a flattening of the halo of order 0.8. Another possibility, which would
also provide a lower circular velocity, would be the presence of a secondary dark

7 Moni Bidin et al. (2014) [106] provided an estimate of ̺⊙ pointing toward values one order
of magnitude smaller than the standard one.
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matter component, a very thick disk.

The recent estimate of Piffl et al. (2014) [98]. The work of Piffl et al.
(2014) [98] makes use of the kinematics of ∼ 200000 giant stars lying within ∼ 1.5
kpc of the Galactic plane. They are primarily used to determine the vertical profile
of mass density near the Sun.

The employed procedure is based on the assumption of mass models made of
three double exponential disks, an oblate bulge and a NFW dark matter halo. The
dynamics of RAVE stars in the gravitational potential is modeled by assuming
phase-space distributions that are functions of three integrals of motion.

Piffl et al. (2014) [98] provides an estimate of the local dark matter density
which depends on the axis ratio of the dark matter halo q, ̺⊙ = 0.48q−0.89 GeV
cm−3. Once combined with the value for this ratio provided by observations,
q ≈ 0.8, it provides as a result a value of ̺⊙ higher than the one of the SHM. This
value is bigger than the one usually found in dark matter only simulations, but in
good agreement with the one of simulations which include baryons.

Statistical errors are significantly smaller than systematics effects. Those other
than the flattening of the dark halo yield overall uncertainties of ∼ 15%.

The detailed study on the dark halo of Piffl et al. (2015) [108]. As we
have seen in the previous paragraph, Piffl et al. (2014) [98] estimated the local
dark matter density by modeling the Galaxy by combining dynamical models of
the stellar disc with star counts and the kinematics of RAVE stars. The major
uncertainty of their model was the flattening q of the dark halo. The best-fitting
local dark matter density in that study increased with the assumed halo axis ratio
as q−0.89. In Piffl et al. (2015) [108] it has been found that, even if the dark halo
were originally spherical, it must be flattened inside the solar radius r⊙ with q = 0.7
to 0.9. Even though q varies with radius, this variation is modest within r⊙. As we
have previously seen, from a subset of the data used by Piffl et al. (2015) [108] and
employing a very different procedure, Bienaymé et al. (2014) [38] determined as
well the local dark matter density. Piffl et al. (2015) [108] points out that the local
dark matter densities of these two studies (Piffl et al. (2014) [98] and Bienaymé et
al. (2014) [38]) agree for halo axis ratio q in the range 0.79 to 0.94. Interestingly,
this is just the range of axis ratios that Piffl et al. (2015) [108] leads to expect if
the dark halo were spherical before the baryonic disk was added (more precisely,
the final minor-major axis ratios found are q = 0.75 to 0.95).

For completness, let us report the procedure employed by Piffl et al. (2015) [108]
and some of the additional results found therein, which even tought not directly
related to the local dark matter density discussed in this section, are interesting as
well for DMDD. The reader interested only in the local dark matter density can
skip this part and go directly to the conclusions of the section.

The study of Piffl et al. (2015) [108] shows how to construct fully self-consistent
multi-component equilibrium Galaxy models with axisymmetric distribution func-
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tions f (Jr, Jϕ, Jz) which depends on phase-space position only through action
coordinates. The goal is to study how the dark matter halo is distorted when bary-
onic disks and bulge are adiabatically added to the system (i.e. with f (Jr, Jϕ, Jz)
left unchanged). A dark halo will respond to the quiescent accumulation of baryons
in the disk by distorting adiabatically. This means that the three action integrals
Jr, Jϕ, Jz of which the phase-space distribution is function will be constants, and
thus f (Jr, Jϕ, Jz) will be unaffected by the accumulation of baryons. This is an
enormous advantage because f (Jr, Jϕ, Jz) can thus be inferred by dark matter only
simulations, and then adding baryons will leave it unchanged. Only the velocity
distribution and density distribution will change.

As working example, Piffl et al. (2015) [108] employs the Galaxy model inspired
from the model presented in Piffl et al. (2014) [98] (for which the axis ratio q in
the dark matter halo is the less constrained parameter) and makes its dark matter
halo a fully dynamical object. The employed reference mass model contain a thin,
a thick and a gaseous disks, a dark matter halo and a bulge, with functional forms
described in appendix A and main parameters described in table 4 of Piffl et al.
(2015) [108]. Its parameters were obtained in Piffl et al. (2014) [98] by reproducing
a variety of observational constraints such as gas kinematics, the proper motion
of Sagittarius A*, maser sources in the disk and the kinematics of around 200000
stars taken from the RAVE survey. Piffl et al. (2014) [98] originally considers a
NFW dark matter halo, good only for dark matter only simulations, and Piffl et
al. (2015) [108] studies how this halo modifies when the bryonic disks of Piffl et al.
(2014) [98] are adiabatically added.

Through an iterative procedure, the gravitational potential that is generated by
the dark matter halo and the stellar disk in presence of predefined contributions
from a gas disc and an axisymmetric bulge is determined.

A new family of phase-space distributions is introduced, in which only the
functional form for the phase-space distribution for disks is fixed. No phase-space
distribution is used for the gaseous disk and for the bulge (which are taken into
account only via fixed density distributions). A phase-space distribution with
the functional form f (Jr, Jϕ, Jz) is fixed for the dark matter, which i) generates
a halo which is NFW when isolated, and ii) presents a flattenng internal to the
Sun’s orbit when disks and bulge are added. The velocity anisotropy for the dark
matter phase-space distribution must be fixed. Piffl et al. (2015) [108] considers
three different sets of parameters in order to have isotropy, radial anisotropy and
tangential anisotropy.

The main change in the final model is the adiabatic compression of the dark halo
by the flattened potential of the discs. This contraction has two components. The
first component of the contraction is a spherical shrinkage, the second component
is a pinching towards the plane at distances from the Galactic center inferior to
around 10 kpc, which flattens the halo. The extent to which the halo flattens
depends on the velocity anisotropy, in the sense that radial bias maximises the
flattening. In the case of a radially biased halo (the most likely case according
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to cosmological simulations) the compressed halo obtained after introducing the
baryons looks very much like a "dark disc" (superimposed to a spherical halo). Such
a disc would be non-rotating, in contrast to a dark disc formed by the capture of
satellite halos.

The models worked out in Piffl et al. (2015) [108] yield the velocity distribution
of dark matter particles at Sun’s position, which is of crucial importance for dark
matter direct detection. The distributions of speeds with respect to the Sun are
clearly not Maxwellian, and triaxial. They are more sharply peaked in the radially
biased model, and less sharply peaked in the tangentially biased model. Since the
detectors employed in DMDD have a threshold speed for detection, the radially
biased model offers significantly better chances of detecting dark matter.

Very recently, Binney and Piffl (2015) [109] have extended the work of Piffl et
al. (2015) [108] from the construction of a single model in which both the stellar
disk and the dark halo are represented by distribution functions, to a systematic
search in the multidimensional parameter space of such models. Binney and Piffl
(2015) [109] succeeds in finding a model that respects the constratints on the
rotation curve internal to the Solar radius which were violated by the model of
Piffl et al. (2015) [108]. This success is achieved thanks to a thick scale lenght of
Rd = 3.66 kpc. This model is also compatible with a banch of other observational
constraints considered. Nevertheless, this model is inconsistent with the measured
optical depth for microlensing of bulge stars of Binney and Evans (2001) [110],
due to the fact that it attributes a too large fraction of the density at R ≤ 3
kpc to dark matter rather than stars. It also implies a scale lenght for the thick
disk which is too large w.r.t. current knowledge, and lowering it would result in
the constraints from rotation cruves being violated again. Thus, Binney and Piffl
(2015) [109] concludes that adiabatic compression for the Galactic dark halo can
be ruled out. This furnishes compelling evidences that there has been a significant
transfer of energy from the baryons to the dark halo, which can possibly occur
through different physical phenomena.

Conclusion. We can basically conclude this section by stating that recent esti-
mates of the local dark matter density are pointing (apart from few exceptions)
toward values higher than the standard one, but the uncertainties on each individual
measure and especially the differences among the results of different studies are
still very important.

5.3 Global studies and constraints on the param-

eters of Milky Way mass models

As we have seen, the estimates of the astrophysical quantities directly relevant
for dark matter direct detection, as vesc, r⊙, ̺⊙ and ~vpec = (U⊙, vc + V⊙,W⊙), are
obtained from the observations through procedures that usually rely on certain
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assumptions. Some of these studies need to assume a particular mass model for
the Milky Way.

In this section we aim at summarizing some among the most updated or robust
estimates8 of the parameters associated to the components of Milky Way mass
models more realistic than e.g. the one employed in chapter 4.

We extensively discussed in section 3.2.2 which are the components usually
employed in a Milky Way mass model, which are their main characteristics, and
which are the functional shapes of the most commonly employed density profiles.
In this section we will instead deal with estimates of the values that the parameters
of such components assume when Milky Way mass models are constrained using
data from observations.

5.3.1 Baryons

Let us first focus on the baryonic content of the Milky Way. We already provided
two sets of parameters describing the baryonic component of the Milky Way. The
first one represents a recent determination of the values of these quantities that
has been worked out in McMillan (2011) [68], which we discussed in section 3.2.3.
The second one is an old determination of the parameters of the Galactic bulge
and disk that was originally worked out in Xue et al. (2008) [84] and successively
employed in Piffl et al. (2014) [1], so we have discussed it in sections 3.2.3 and 4.3.

The thin and thick disks of the Milky Way

The disk is a fundamental component of any mass model which aims at describing
the Milky Way globally. Even if in simple models a single disk is taken into account,
more complex ones consider (at least) two populations of stars, described by two
different disks, a thin one, and a thick one. Even though different density profiles
for the disks exist, usually a double exponential profile (3.10) is considered for each
of the disk components, thin and thick.

The parameters of the baryonic components obtained by McMillan
(2011) [68]. As we already stated, McMillan (2011) [68] employs a Bayesian
approach to take into account input from photometric and kinematic data. For
the disks, he considers a thick and a thin component. We report here the values
corresponding to the best fit model of McMillan (2011) [68]. The thick disk is an
exponential disk with Rd = 3.31± 0.56 kpc and Σ0 = 209.5± 110 M⊙ pc−2 (from
which the total mass of the disk can be obtained as Md = 2πΣ0R

2
d), for which

zd = 0.9 kpc is assumed. The thin disk is an exponential disk with Rd = 2.90±0.22
kpc and Σ0 = 816.6± 123 M⊙ pc−2 for which zd = 0.3 kpc is assumed.

8 We warmly thank Benoit Famaey for providing us with the references that we will consider
in this section.
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More on the scale lengths of the thin and thick disks. A recent estimate
of the scale length of the thin disk can be found in Bovy et al. (2013) [111], which
provides the value of Rd = 2.15 ± 0.14 kpc. That estimate is based on fitting a
parameterized Milky Way potential and a phase-space distribution depending on
three integrals of motion to the data relative to the dynamics of G-type dwarfs
from SEGUE. It should be noticed that purely photometric constraints are usually
less strong, thus allowing values of Rd up to 3 kpc. The length scale of the thick
disk can be taken approximately equal to the one of the thin disk, as explained by
Binney and Tremaine [17].

More on the scale heights of the thin and thick disks. For the values of
the scale heights we can consider ∼ 0.3±0.05 kpc for the thin disk and ∼ 1.35±0.4
kpc for the thick disk. The central values are the traditional one obtained by
Gilmore and Read (1983) [112]. The values of the associated uncertainties are
subject to a certain debate in the literature, thus it is not simple to provide a recent
reference value. We thus report the error bars above, suggested by B. Famaey
and which arise from taking into account the concurrent estimates appeared in the
literature in the last thirty years.

Bulges and MWMM

We are now going to discuss two works in which one can find the values of the
parameters of the components describing the baryonic content of the Milky Way,
interesting in particular for the bulges employed.

The parameters of the oblate ellipsoidal bulge determined in McMillan
(2011) [68]. For the oblate ellipsoidal bulge of its best fit model, McMillan
(2011) [68] finds ̺0 = 95.6± 6.9 M⊙ pc−3, assuming r0 = 0.075 kpc, rcut = 2.1 kpc,
α = 1.8 and q = 0.5.

The MWMM with a triaxial bulge used in McGaugh (2008) [82]. Mc-
Gaugh (2008) [82] employed a mass model which includes an exponential stellar
disk, the triaxial bulge originally determined by Binney et al. (1997) [80] and a gas
disk following the distribution of Merrifield and Olling [83] described in detail in
next section.9 Particularly interesting are the values of the parameters associated
to the triaxial bulge, in particular the azimuthal mean density of the bulb/bar,
originally determined in Binney et al. (1997) [80], which can be found also in
section 3 of McGaugh (2008) [82], together with the values for the other baryonic
components (which anyway miss a thick disk).

9The gas component is sometimes omitted in making models of the Milky Way, but it is
particularly relevant for MOND models, as those considered in McGaugh (2008) [82].
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The MWMM with a bar of Wang et al. (2012) [78]. A recent model for
the Milky Way bar can be found in Wang et al. (2012) [78], where data from the
BRAVA survey have been fit with a χ2 minimization to determine the relevant
parameters of the model.10 That work employs the well established bar model
of Dwek et al. (1995) [81], which contains both a bar and a spheroidal nucleus
with a steep inner power low behavior and an exponential outer profile. For the
gravitational potential Wang et al. (2012) [78] employs a Miyamoto-Nagai profile
for both the disk and the bulge, with no explicit component for the dark matter
contribution, considered very low in mass in the central part of the halo under
investigation.

The mass model for the gas of Olling and Merrifield

A mass model for the gas in the Milky Way can be found in Olling and Merrifield
(2001) [83], where the surface gas density at the position of the Sun (assumed to
be r⊙ = 8.5 kpc) is determined to be ΣHI + ΣH2

≈ 11 M⊙/pc2, summing atomic
and molecular hydrogen.11

The local scale height of the gas is found to be hz0,gas = 150 pc in Karlberla et al.
(2009) [113], while Olling and Merrifield (2001) [83] point toward hz0,gas = 240 pc.

In Karlberla et al. (2009) [113], also a radial dependence of the scale height of
the gas density profile is proposed. This dependence has the behaviour hz (R) =
hz0,gas exp [(R−R⊙) /Rgas], with Rgas = 9.8 kpc.

Karlberla et al. (2009) [113] provides an estimate of ΣHI,local ∼ 10 M⊙/pc2,
approximately in agreement with the one of Olling and Merrifield (2001) [83] for
which ΣHI alone was ∼ 9.25 M⊙/pc2. In Karlberla et al. (2009) [113, pag. 37] also
a radial distribution of the surface density is proposed, with saturation at ∼ 10
M⊙/pc2 below 12.5 kpc.

The value of Σgas,local = 13 M⊙/pc2 is obtained in Bovy and Rix (2013) [111].
The same value is obtained by Flynn et al. (2006) [114] in the so-called Tuorla
model.12

To summarize, taking into account the different values presented above, we
guess that a reasonable interval could be represented by Σgas,local = 12± 1 M⊙/pc2.

Hot gas component

Finally, an additional component of hot gas (distributed in a halo) can be considered.
This gas has been proposed to account for the missing baryons in the Milky Way.
One such model is presented in Fang et al. (2012) [115, sec. 2]. Observational
constraints on such a hot gas corona, from dwarf satellites, can be found in Gatto
et al. (2013) [116].

10 The values of these parameters can be found in Wang et al. (2012) [78].
11See table D1 of Olling and Merrifield (2001) [83].
12 The name comes from that of the observatory where part of the study is carried out.
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5.3.2 Milky Way total mass and surface densities

In this section we consider the total mass content of the Milky Way (baryons and
dark matter), and the surface densities relative to the luminous components only,
and to the total.

Milky Way total mass estimates from observations of Leo I

The most updated estimate of the mass of the Milky Way (more precisely, the virial
mass), is the one obtained by Boylan-Kolchin et al. (2013) [117], which provides
a median value of Mvir,MW = 1.6 × 1012 M⊙, with a 90% confidence interval of
[1.0− 2.4]×1012 M⊙. This estimate is based on measurements of the proper motion
of the Leo I dwarf spheroidal galaxy obtained with the Hubble Space Telescope,
combined with numerical simulations of Galaxy-size dark matter halos.

The total mean surface density within 1.1 kpc: a recent estimate by the
Strasbourg’s group

The value recently obtained by the group of Strasbourg formally is 68.5±1 M⊙/pc2.
Anyway, the error bars describing the systematic errors are larger than those above,
so that taking them into account would lead to a value of 68.5± 10 M⊙/pc2.

In addition, a surface density of 97±2.2 M⊙/pc2 at z = 2 kpc has been obtained
by the same group, where again the errors are statistical ones and not systematic
ones. Because of this reason, a value of 97± 15 M⊙/pc2 would be more safe and
representative of both the systematic and statistical errors.

Bovy and Rix (2013) [111] found a value of 68± 4 M⊙/pc2 for the total mean
surface density at z = 1.1 kpc, where again uncertainties of ±10 kpc would be
more representative of the statistical plus systematic uncertainties. These values
are courtesy of B. Famaey.

The local surface density corresponding to the visible components: re-
cent estimates by the Strasbourg’s group

The value obtained for the baryons (all together) in 1 kpc is 44.5± 4.1 M⊙/pc2,
of which ∼ 11 M⊙/pc2 for the gas and so ∼ 33.5± 4 M⊙/pc2 for the stars. The
Tuorla model of Flynn et al. (2006) [114] provides the value 35.5 M⊙/pc2 for the
stellar component (without error bars).

Bovy and Rix (2013) [111] provides the value of 38±4 M⊙/pc2 for the stars and
fixes 13 M⊙/pc2 for the gas. Olling and Merrifield (2001) [83] should be better for
the gas, so one could consider instead the value of 11 M⊙/pc2 for the gas. Bovy et
al. (2012) [118] constrained Σstars = 30± M⊙/pc2 at r⊙, more or less in agreement
with their estimate of ∼ 33.5± 4 M⊙/pc2. Otherwise, Binney and Tremaine [17]
state that the local gas is ∼ 25% of the surface baryonic density of the disk, which
would provide something around ∼ 33 M⊙/ pc2 for the stars (thin plus thick disks)
if the density of gas is 11 M⊙/ pc2.
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To summarize, combining the different local estimates in z = ±1.1 kpc: Σgas =
11 M⊙/pc2 (or 12± 1 M⊙/pc2), Σstars = 33.5± 4 M⊙/pc2 (but values up to 42 can
be considered if one wants to follow Bovy et al. (2012) [118]). These values are
courtesy of B. Famaey.
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This thesis deals with the astrophysical aspects related to the direct detection of
WIMPs. In the first part of this work we described the formalism of DMDD, as well
as the results obtained by experimental collaborations and the statistical techniques
related to the interpretation of their data. We have then outlined the main concepts
of the dynamics of our galaxy that allow to put the astrophysics related to DMDD
in a wider framework, and reviewed some of the main determinations present in
the literature of the astrophysical quantities relevant for DMDD.

The main results that we have obtained are described in chapter 4, where we
have focused on the recent estimates of the local Galactic escape speed published
by the RAVE collaboration [1]. We have studied in detail the implications of these
results for the spin-independent interpretation of DMDD experimental results.

We have focused on the exclusion curves associated with the three most constrain-
ing experiments at the moment of writing: LUX (representative of xenon experi-
ments), SuperCDMS (representative of germanium experiments) and CRESST-II
(representative of multi-target experiments).

A naive use of these estimates would neglect the underlying assumptions, and
thus the correlations they induce among the astrophysical parameters and between
them and the dark matter velocity distribution.

We have gone beyond the Maxwell-Boltzmann approximation (usually assumed
in the framework of the Standard Halo Model), computing from the mass model
assumed by means of Eddington equation the phase-space distribution of the dark
matter. This provides a self-consistent physical connection between the phase-space
distribution and the underlying Milky Way mass model. Moreover, in this approach
dynamical correlations among the astrophysical parameters relevant for DMDD
calculations are automatically taken into account.

We have shown that taking into account the RAVE results on the escape speed
by consistently correlating all the relevant parameters leads to more constraining
exclusion curves with respect to the standard ones, due to the higher values of
the associated local dark matter density, and we have evaluated the uncertainties
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associated to each experiment. These uncertainties, moderate at large WIMP
masses, grow as the experimental efficiency drops, i.e. at low WIMP masses,
and we have illustrated the nice complementarity between the experiments using
different target nuclei in this regime.

These results are the object of our paper [2] that has been published in the
journal Physical Review D during the final year of this thesis.

The main limitations of this analysis are the simple Milky Way mass model and
its fixed baryonic content, which we employed for consistency with the assumptions
of the RAVE collaboration, and the assumption for the dark matter phase space
to be governed by the total energy only. For these reasons in this thesis we
complemented the picture by reviewing more realistic mass models and more
complex phase-space distributions.

The work presented in this document has been carried out over a period of three
years. During these three years, a part of the working time has been dedicated
to learn the formalism of DMDD and the statistical methods used to extract
information from the data, and to understand and reproduce the interpretation of
the experimental results. A part of the time has been used to learn the basics of the
dynamics of our Galaxy, and to implement the associated numerical computations.

A significant part of the time has been spent to learn and implement the
numerical solutions used to reproduce the interpretation of the data from DMDD
experiments and the computations related to the Galactic dynamics (e.g. solving
Eddington equation), and to learn the programming languages used, mainly C,
C++ and python. Another significant part of the time has been dedicated to study
the impact of the RAVE estimates of the escape speed on DMDD limits. Even if
never enough widened, bibliographic searches has received a certain attention too.

During the preparation of this thesis, I have also had the chance to experience
the teaching of Newtonian mechanics to first year university students for two
consecutive years.
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APPENDIX A

Additional details on some interesting mass density profiles

In this section we provide additional information on some of the dark matter and
baryonic mass density profiles introduced in chapter 3. We also present the analytic
expressions of some useful quantities like the gravitational potential Φ, the Galactic
escape speed vesc (r), the mass Mint (r) interior to radius r, etc. for some of these
profiles.

A.1 NFW profile

The mass contained within a sphere of radius r in a NFW profile (3.3) can be
computed from (3.20) and reads:

MNFW
int (r) = 4π̺critδcr

3
s



ln
(

1 +
r

rs

)

−
r
rs

(

1 + r
rs

)



 . (A.1)

As we can see, the above mass exhibits a logarithmic divergence for r →∞, which
means that the NFW halo profile should come with a finite extent, i.e. it can be
useful to define the edge of the halo up to which we describe the density of matter
with equation (3.3) and assume that outside it there is no more matter. Sometimes
the edge of the halo is assumed to occur at rv.

The Newtonian gravitational potential corresponding to this profile can be
computed from equation (3.22), and it reads:

ΦNFW (r) = −4πGN̺critδcr
3
s

ln
(

1 + r
rs

)

r
. (A.2)

The limit for r → 0 of ΦNFW (r) is finite and has the value −4πGN̺critδcr
2
s .
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The speed of a body which is on a circular orbit in a NFW profile can be
calculated from (3.23) and turns out to be:

vNFWc (r) =

√

√

√

√

√4r3
sπ̺critδcGN





ln
(

1 + r
rs

)

r
− 1

rs + r



 . (A.3)

From the above result, using equation (3.26) we can obtain the escape speed of
a body inside a NFW profile, which is:

vNFWesc (r) =

√

√

√

√

8πGN̺critδcr3
s

ln
(

1 + r
rs

)

r
, (A.4)

A.2 Hernqvist profile

Using equation (3.20), we can calculate the mass contained in a spherical shell of
radius r for the Hernqvist profile (3.12), which reads:

MH
int (r) =

MHr
2

(r + aH)2 . (A.5)

From (3.22) we deduce that the Newtonian potential generated by the Herquist
profile is:

ΦH (r) = −GNMH

r + aH
. (A.6)

Using equations (3.23) and (A.5), we can calculate the speed of a body on a
circular orbit inside an Hernqvist profile, which is:

vHc (r) =

√
GNMHr

r + aH
, (A.7)

and using (3.26) we can calculate the escape speed for the Hernquist profile, which
reads:

vHesc (r) =

√

2GNMH

r + aH
. (A.8)

A.3 Oblate ellipsoids

The dark matter halo of the Milky Way can be considered spherical as a first
approximation. Nevertheless, if we would like to consider the baryons, we should
take into account that in a typical spiral galaxy they are not spherically symmetric
distributed, but instead they lie mainly in the Galactic disk, so at least axial
symmetry is required.

The bulge can be approximated as being spherically symmetric, but it would be
better to describe it with an oblate ellipsoid. Finally, it can also be interesting to
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consider axially symmetric (or even triaxial) dark matter halos. In this section we
then recall some results about ellipsoidal systems (oblate ellipsoids in particular),
which can be found in [17, sec. 2.5].

An axisymmetric ellipsoid has two semi-axis of equal lenght, and the third one
of a different lenght, which can be bigger or smaller than the previous ones. If the
two semiaxes which are equal between each others are the minor ones, we have a
prolate ellipsoid. If the two semiaxes which are equal between each others are the
major ones, we have an oblate ellipsoid.

We now consider the case of an oblate spheroid. The lengths of the principal
semi-axis will be denoted by a and b, with b ≤ a.1 The eccentricity e is defined as:

e
.
=

√

1− b2

a2
, (A.9)

and q
.
= b/a is the axis ratio. The volume of an oblate spheroid is V = 4

3
πa2b =

4
3
πa3
√

1− e2 .

Let us now define the quantity m2 .
= R2 + z2

1−e2 and consider a body in which
̺ = ̺ (m2), i.e. a body whose isodensity surfaces are the similar spheroids

constant = m2 .
= R2 +

z2

1− e2
. (A.10)

Following [17, sec. 2.5] one can calculate its gravitational potential Φ (R0, z0) at
any point (R0, z0).

It is now possible to find the radial component of the force exerted at point
(R0, z0) by the distribution of mass ̺ (m) considered. Using (3.24), we can then cal-
culate the circular speed vc (R, z = 0) in the equatorial plane of an oblate spheroidal
mass distribution, which reads:

v2
c (R, z = 0) = 4πGN

√
1− e2

∫ R

0

̺ (m2)m2dm√
R2 −m2e2

. (A.11)

A.4 Miyamoto-Nagai disk

The gravitational potential that is generated via Poisson equation by the Miyamoto-
Nagai density profile (3.11) can be found in [77] and reads

ΦMN (R, z) = − GNMMN
[

R2 +
[

aNM + (z2 + b2
NM)

1/2
]2
]1/2

. (A.12)

From equations (3.24) and (A.12), it is easy to compute the circular velocity of
a body in a circular orbit inside the plane z = 0 of the Miyamoto-Nagai potential,

1 Note that in an oblate spheroid by definition two semiaxes will be of lenght a, and one of
lenght b.
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which is:

vMN
c (R, z = 0) = R







GNMMN
[

R2 + (aMN + bMN)2
]3/2







1/2

. (A.13)
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Résumé en français
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Doctorant
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Cette thèse traite des aspects astrophysiques de la détection directe de

matière noire sous forme de WIMPs (Weakly Interacting Massive Particles).

On se concentre sur les contraintes observationnelles des quantités astro-

physiques qui influent sur l’interprétation des résultats expérimentaux de

détection directe.

On revoit tout d’abord le formalisme de la détection directe et on résume les

résultats expérimentaux les plus importants ainsi que les méthodes statistiques

généralement utilisés pour interpréter les données. On reproduit ensuite les

limites expérimentales sur la section efficace spin-indépendante. On résume

l’ensemble des hypothèses astrophysiques couramment utilisées dans le modèle

de halo standard et on décrit l’influence de ses paramètres sur les limites.

Pour inscrire la détection directe dans un cadre plus général, on résume

les concepts les plus importants de la dynamique Galactique. En particulier,

on revoit comment modéliser la Galaxie avec des modèles de masse, tout en

soulignant les relations entre les différentes quantités astrophysiques.
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On décrit des procédures qui permettent d’obtenir des distributions dans

l’espace des phases de la matière noire qui soient consistantes avec un profil

de matière noire et un potentiel Galactique donné. La plus simple procédure

étant basée sur l’équation d’Eddington, on discute ses limites d’applicabilité.

On revoit dans les détails la littérature récente concernant les déterminations

et les incertitudes des quantités astrophysiques liées à la détection directe et

des paramètres Galactiques fondamentaux.

Dans la dernière partie de la thèse on s’intéresse aux estimations récentes

de la vitesse d’échappement publiées par la collaboration RAVE. On étudie

dans les détails les implications de ces résultats sur les expériences de détection

directe. Pour cela on prends en compte les corrélations entre les quantités

astrophysiques importantes pour la détection directe, et en assumant le

modèles de masse de RAVE on calcule la distribution de matière noire dans

l’espace des phases avec l’équation d’Eddington. Du fait des valeurs plus

élevés de la densité locale de matière noire, cette procédure conduit à des

limites plus contraignantes par rapport a celles standards.

Introduction

Le problème de la matière noire est une des grosses questionnes ouvertes

aujourd’hui dans la physique moderne. En origine, ce problème est né il y a

presque un siècle comme question de nature astrophysique, plus précisément

comme le problème de la masse manquante dans l’univers, et en particulière

à l’échelle des galaxies et des amas de galaxies. Ce sujet, en origine pure-

ment astrophysique, embrasse aujourd’hui plusieurs domaines de la physique,

comme par exemple la physique des particules, la cosmologie et la physique

des détecteurs.
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Beaucoup de classes de solutionnes différentes ont été proposées, et une

classe de candidats particulièrement intéressantes, sur la quelle on s’est con-

centrée, est constituée par les WIMPs (Weakly Interacting Massive Particles),

une classe de particules douées d’une masse et qui interagissent faiblement.

Elles pourraient avoir les bonnes caractéristiques pour expliquer entièrement

l’abondance cosmologique de matière sombre nécessaire dans le modèle stan-

dard de la cosmologie, le Lambda-CDM. En plus, l’existence de particules

avec les bonnes propriétés pour être des WIMPs est prévue dans beaucoup de

théories au delà du Modèle Standard de la physique des particules, et donc

les WIMPs ont aussi une base théorique très solide. Cette thèse se concentre

sur la matière sombre, et plus précisément sur les WIMPs.

Un fait qui rends les WIMPs particulièrement intéressantes est qu’elles

sont sensées être détectables, ce qui fait d’elles une théorie testable. Il y a

trois stratégies principales pour les détecter: la détection directe, la détection

indirecte et la production aux collisionneurs. La détection directe se base

sur le principe que une WIMP puisse diffuser sur un noyau cible dans un

détecteur, et que l’énergie de recul d’un tel noyau puisse en suite être détectée

pour pouvoir reconstruire les propriétés de la WIMP.

Sujet de la thèse

Cette thèse se concentre principalement sur les aspects astrophysiques liées à la

détection directe de WIMPs, en particulière en connexion avec la modélisation

de la Voie Lactée, et avec l’étude de l’espace des phases de la matière sombre.

Les quantités astrophysiques qui jouent un rôle important en détection

directe, comme par exemple la vitesse d’échappement de la Voie Lactée, la

vitesse circulaire à la position du Soleil et la densité locale de matière sombre,
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sont liées très profondément, et ces relations deviennent évidentes quand

on considère un modèle de masse de la Voie Lactée. En plus, sous certains

assomptions de symétrie pour le potentiel gravitationnel de la Galaxie et

sur l’anisotropie dans la distribution des vitesses des particules de matière

sombre, on peut les mettre en relations avec la distribution dans l’espace des

phases de la matière sombre, qui influences les interprétations des résultats

des expériences (à la fois les détections et les exclusions) en détection directe.

Les quantités astrophysiques rentrent dans les calcules qui amènent à

mettre des limites dans l’espace des paramètres intéressante pour la détection

directe, et les incertitudes sur ces quantités se transfèrent sur les limites.

Dans le cadre présent, connaitre les incertitudes astrophysiques peut, d’une

côté, aider à comprendre à quel point est grave la tension qui existe entre les

interprétations de certain résultats experimentales comme des détections, et

les limites. De l’autre côté, dans le cas d’une découverte ils vont être très

utiles pour reconstruire correctement les propriétés du candidat à la matière

sombre détecté.

En plus, les quantités astrophysiques importantes pour la détection directe

de matière sombre sont en générale déterminée à partir des observations en

faisant des hypothèses, qui doivent être prise en compte pour pouvoir utiliser

ces estimations de façonne consistante en détection directe. Par exemple,

souvent ces estimations sont basées sur un modèle de masse, qui donne lieu à

des corrélations entre les différents quantités.

Le travail publié

En particulière, cette thèse se concentre sur l’estimation récente de la vitesse

d’échappement locale de la Voie Lactée, publiée par la collaboration RAVE
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en 2014. Cette quantité est importante en particulier aux basses masse pour

les WIMPs, là où les résultats sont plus controversés. En plus, il s’agit d’un

étude-type pour mettre en lumière les problématiques liées à l’utilisation des

quantités astrophysiques en détection directe.

On a étudié en détail quelles sont les implications des résultats de RAVE

pour la détection directe de matière sombre, en particulier en se concentrant

sur les courbes d’exclusions des trois expériences qui donnent les limites les

plus contraignantes au moment de l’écriture. Ces trois expériences sont: LUX

(basée sur un détecteur à Xénon), SuperCDMS (basée sur le Germanium) et

CRESST-II (basée sur plusieurs espèces de noyau-cibles différentes). On a vu

comment le modèle de masse considéré introduis des corrélations entre les

quantités astrophysiques importantes pour la détection directe, qu’on a bien

pris en compte pour recalculer les limites.

Pour traduire les résultats de cette étude sur les courbes de détection

directe, on a considérée à la fois l’hypothèse standard qui consiste en une

distribution de Maxwell-Boltzmann pour la distribution des modules des

vitesses, et l’hypothèse plus réaliste d’une distribution ergodique obtenue en

utilisant la procédure d’Eddington, à partir du modèle de masse utilisé par la

collaboration RAVE, que on décris en détails dans la thèse.

Dans la suite du manuscrit, on indique comment généraliser la procédure

utilisée. On fait donc une revue des estimations les plus importantes présentes

dans la littérature, pour les quantités astrophysiques qui sont important pour

la détection directe de matière sombre, en soulignant les résultats les plus

intéressants, les hypothèses et leurs rôle dans le cadre de la détection directe.
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Organisation du document

On décris ici la structure du document, en expliquant brièvement le contenu

de chaque chapitre et en décrivant les résultats les plus importants.

Chapitre 1: Détection directe de matière sombre, le

formalisme et les aspects généraux

On introduit le problème de la matière sombre, en décrivant brièvement les

observations les plus importantes qui prouvent la nécessité de matière sombre

dans l’univers. On décris aussi quelles sont les classes les plus importantes

de candidats qui ont été proposées pour expliquer la matière sombre, et on

décris aussi certains des alternatives à la matière sombre. On va ensuite se

concentrer sur les WIMPs, particules massives et qui interagissent faiblement,

et on va décrire quelles sont les stratégies utilisée aujourd’hui pour les détecter.

On explique les principes fondamentaux qui sont à la base de la détection

directe des WIMPs, en faisant un résumé du formalisme de base. On va se

concentrer en particulière sur comment l’astrophysique rentre en jeu dans les

calcules, et sur l’ensemble d’hypothèses standard qui est utilisé normalement

(il est connu avec le nom de Standard Halo Model). On va ensuite décrire

comment la distribution des vitesses des particules de matière sombre est

prise en compte, autant bien que la transformation de cette distribution du

référentiel Galactique à celui de la Terre, où les expériences sont faites. On va

revoir aussi la modulation annuelle du signal des WIMPs dans un détecteur,

qui est attendue à cause de ce changement de référentiels.
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Chapitre 2: Comprendre les résultats expérimentaux

Dans ce chapitre on va présenter les résultats les plus importants pour les

expériences de détections directe de matière sombre, en particulière ceux qu’on

a utilisées pendant cette thèse. On va présenter les procédures statistiques

qu’on a utilisé pour déterminer les limites et les régions associées à des signaux

positifs, et on va aussi décrire l’impact des paramètres astrophysiques sur ces

limites.

Chapitre 3: La dynamique Galactique, qui introduise

des corrélations dynamiques

Dans ce chapitre on va présenter les éléments de dynamique Galactique qui

permettent de lier dans un cadre plus large les quantités importantes pour

la détection directe. On va discuter plus en détail de certain modelés de

masse pour la Voie Lactée. Cette façon de traiter le problème introduise des

corrélations entre les quantités astrophysiques (comme par exemple la vitesse

circulaire locale, la densité locale de matière sombre, la distance du centre

Galactique, la vitesse d’échappement de la Voie Lactée, etc.) qui rentrent das

le calcul des limites de détection directe.
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Chapitre 4: l’impact des estimations récentes de la vitesse

d’échappement sur les limites de détection directe

Les quantités astrophysiques rentrent dans le calcul des limites associées aux

résultats expérimentaux, et les incertitudes sur ces quantités se propagent sur

les limites. Souvent, des hypothèses standard sont faites pour l’astrophysique

liée à la détection directe, le Standard Halo Model, dans lequel une distribution

de Maxwell-Boltzmann est utilisée pour décrire la vitesse des particules de

matière sombre, ou des configurations non standard sont utilisée, parfois en

faisant des analyses Monte Carlo pour déterminer les incertitudes, et donc en

utilisant des a priori sur les paramètres astrophysiques. De toute façonne, les

quantités astrophysiques sont d’habitude déterminées à partir des observations

en faisant des hypothèses qui doivent être prise en considération si on veut

utiliser les résultats de ces estimations en détection directe.

Dans ce chapitre on se concentre sur l’estimation récente de la vitesse

d’échappement locale Galactique, publiée par la collaboration RAVE en 2014

(Piffl et al. 2014), qui repose sur la même assomption d’un modèle de masse

particulier pour la Voie Lactée. Ça porte à des corrélations entre les quantités

astrophysiques qui rentrent dans le calcule des limites de détection directe.

On est allé au delà de l’approximation de Maxwell-Boltzmann (utilisée

d’habitude dans le cadre du Standard Halo Model), pourtant on a, grâce

à l’équation d’Eddington, déterminée à partir du modèle de masse utilisé

la distribution dans l’espace des phases de la matière sombre, dans laquelle

les corrélations mentionnées auparavant sont prises en compte de façonne

automatique.

On a montré qu’en prenant en compte les résultats de RAVE sur la

vitesse d’échappement, et en considérant les corrélations entre les paramètres

importants, on obtient des limites plus sévères par rapport au cas standard,
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à cause du plus haut valeur de la densité locale de matière sombre, et on a

déterminé aussi les incertitudes liée à ça, pour diffèrent expériences.

On a refait l’analyse pour diffèrent résultats des estimations de RAVE,

et on trouve à chaque fois des résultats similaires, mais avec des différences

dans la magnitude des incertitudes

On à refait l’analyse pour les trois expériences les plus contraignantes

au moment de l’écriture: LUX (exemple d’expérience basée sur le Xénon),

SuperCDMS (exemple d’expérience basée sur le Germanium) et CRESST-II

(exemple d’expérience avec plusieurs noyaux-cibles).

Les résultats décrit ci dessus sont contenus dans le papier qu’on a publié

récemment dans le journal Physical Review D.

Pour amener jusqu’au but le projet ci-dessus, on a développé un code en

langage C/C++ qui permet de calculer les limites et les régions associées à

des signaux pour différents expériences de détection directe, et on a développé

aussi un code pour résoudre de façonne numérique l’équation d’Eddington

pour différents modelés de masse de la Voie Lactée.

Chapitre 5: les contraintes observationnells sur les quan-

tités astrophysiques liées à la détection directe de matière

sombre

Ce chapitre contient une revue des principales estimations, présentes dans

la littérature, concernant les quantités astrophysiques important pour la

détection directe, et veule aussi suggérer comment ils peuvent être important

pour la détection directe.
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Conclusions

Dans ce chapitre on va résumer le travail effectué et on va conclure. Du

fait des valeurs plus élevés de la densité locale de matière noire associés aux

estimaisonnes de la collaboratione RAVE, la procédure utilisée conduit à des

limites plus contraignantes par rapport a celles standards.
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Abstract

This thesis deals with the astrophysical aspects of the direct detection of WIMP dark matter
(DMDD). In particular, it focuses on the observational constraints on the astrophysical quantities
relevant for DMDD, which impact on the interpretation of the experimental results.

We review the formalism of DMDD and we summarize some of the main experimental results
in this domain and the statistical methods usually employed to interpret the data, reproducing
the associated constraints on the parameter space relevant for spin-independent WIMP-nucleon
interaction. We summarize the set of astrophysical assumptions usually employed, the Standard
Halo Model, and we point out the impact of variations in its parameters on such limits.

We outline the main concepts of the dynamics of our galaxy that allow to put the astrophysics
related to DMDD in a wider framework. In particular, we review the description of the Galaxy
through Milky Way mass models (MWMM), pointing out how the astrophysical quantities are
related. We describe some procedures to obtain dark matter phase-space distributions consistent
with given dark matter profile and Galactic potential, the simplest being Eddington equation, of
which we discuss the limits of applicability. We review in detail the recent literature on the main
determinations and uncertainties of the astrophysical quantities relevant for DMDD and of the
fundamental Galactic parameters.

In the most original part of this thesis we focus on the recent estimates of the local Galactic
escape speed published by the RAVE collaboration. We study in detail the implications of these
results for the spin-independent interpretation of DMDD experiments. We take into account
the correlations between the astrophysical quantities relevant for DMDD calculations, and from
the assumed MWMM we compute the dark matter phase-space distribution using Eddington
equation, which provides a self-consistent physical connection between the two. This procedure
leads to more constraining exclusion curves with respect to the standard ones, due to higher
values of the local dark matter density.

Résumé

Cette thèse traite des aspects astrophysiques de la détection directe (DD) de matière noire
sous forme de WIMPs. On se concentre sur les contraintes observationnelles des quantités
astrophysiques qui influent sur l’interprétation des résultats expérimentaux de DD.

On revoit tout d’abord le formalisme de la DD et on résume les résultats expérimentaux les
plus importants ainsi que les méthodes statistiques généralement utilisés pour interpréter les
données. On reproduit ensuite les limites expérimentales sur la section efficace spin-indépendante.
On résume l’ensemble des hypothèses astrophysiques couramment utilisées dans le modèle de
halo standard et on décrit l’influence de ses paramètres sur les limites.

Pour inscrire la DD dans un cadre plus général, on résume les concepts les plus importants
de la dynamique Galactique. En particulier, on revoit comment modéliser la Galaxie avec des
modèles de masse, tout en soulignant les relations entre les différentes quantités astrophysiques.
On décrit des procédures qui permettent d’obtenir des distributions dans l’espace des phases de
la matière noire qui soient consistantes avec un profil de matière noire et un potentiel Galactique
donné. La plus simple procédure étant basée sur l’équation d’Eddington, on discute ses limites
d’applicabilité. On revoit dans les détails la littérature récente concernant les déterminations
et les incertitudes des quantités astrophysiques liées à la DD et des paramètres Galactiques
fondamentaux.

Dans la derniere partie de la thèse on s’intéresse aux estimations récentes de la vitesse
d’échappement publiées par la collaboration RAVE. On étudie dans les détails les implications de
ces résultats sur les expériences de DD. Pour cela on prends en compte les corrélations entre les
quantités astrophysiques importantes pour la DD, et en assumant le modèles de masse de RAVE
on calcule la distribution de matière noire dans l’espace des phases avec l’équation d’Eddington.
Du fait des valeurs plus élevés de la densité locale de matière noire, cette procédure conduit à
des limites plus contraignantes par rapport a celles standards.


