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COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET TECHNOLOGIE

Figures

Figure 1: Panel A shows a picture of the rat performing the TSP related task and panel B represents a two dimensional sketch of the optimal trajectory and the encountered place fields .............................................. 12 Figure 2: Place cell sequences experienced during behavior are replayed in both the forward and reverse direction during awake SPW-Rs. Spike trains for 13 neurons with place fields on the track are shown before, during and after a single traversal. Sequences that occur during running (center) are reactivated during awake SPW-Rs. Forward replay (left inset, red box) occurs before traversal of the environment and reverse replay (right inset, blue box) after. The CA1 local field potential is shown on top and the animal's velocity is shown below. From [START_REF] Carr | Hippocampal Replay in the Awake State: A Potential Substrate for Memory Consolidation and Retrieval[END_REF] 9: Fréchet Distance. Panel A shows the free space diagram used during the computation of the Fréchet distance between ABCED and ABCDE trajectories. X and Y axis represent the discrete steps between points of ABCED and ABCDE trajectories. Z axis relates in meter the coupling distance between two points. The coupling sequence is represented with a blue line following the optimal alignment between the two trajectories (i.e. sequences of points). Panel B represents the paired points of ABCDE and ABCED trajectories. During the common prefix ABC, curves are relatively similar and the paired points are located close to each other. This is related by the diagonal part of the coupling sequence in panel A. Then the diverging parts of ABCDE and ABCED are still paired but we can clearly observe a one to many relationship, near point (0.6,-0.1) and the free space diagram relates it by variations along the ABCED steps axis and no variation along the ABCDE steps axis. . 

Abstract

As rats learn to search for multiple sources of food or water in a complex environment, processes of spatial sequence learning and recall in the HC (hippocampus) and prefrontal cortex (PFC) are taking place. Recent studies [START_REF] Jong | The Traveling Salesrat: Insights into the Dynamics of Efficient Spatial Navigation in the Rodent[END_REF][START_REF] Carr | Hippocampal Replay in the Awake State: A Potential Substrate for Memory Consolidation and Retrieval[END_REF] show that spatial navigation in the rat hippocampus involves the replay of place-cell firing during awake and sleep states generating small contiguous subsequences of spatially related place-cell activations that we will call "snippets". These "snippets" occur primarily during sharp-wave-ripple (SPW-R) events. Much attention has been paid to replay during sleep in the context of long-term memory consolidation. Here we focus on the role of replay during the awake state, as the animal is learning across multiple trials.

We hypothesize that these "snippets" can be used by the PFC to achieve multi-goal spatial sequence learning.

We propose to develop an integrated model of HC and PFC that is able to form place-cell activation sequences based on snippet replay. The proposed collaborative research will extend existing spatial cognition model for simpler goal-oriented tasks [START_REF] Barrera | Biologically-Inspired Robot Spatial Cognition Based on Rat Neurophysiological Studies[END_REF][START_REF] Barrera | Learning Spatial Localization: From Rat Studies to Computational Models of the Hippocampus[END_REF] with a new replay-driven model for memory formation in the hippocampus and spatial sequence learning and recall in PFC.

In contrast to existing work on sequence learning that relies heavily on sophisticated learning algorithms and synaptic modification rules, we propose to use an alternative computational framework known as reservoir computing (Dominey 1995) in which large pools of prewired neural elements process information dynamically through reverberations. This reservoir computational model will consolidate snippets into larger place-cell activation sequences that may be later recalled by subsets of the original sequences.

The proposed work is expected to generate a new understanding of the role of replay in memory acquisition in complex tasks such as sequence learning. That operational understanding will be leveraged and tested on a an embodied-cognitive real-time framework of a robot, related to the animat paradigm [START_REF] Wilson | The Animat Path to AI[END_REF]. The originality and contribution of our proposed work include: the use of awake hippocampal replay to create place-cell activation sequences of valid trajectories (snippets) the use of reservoir computing to learn place-cell activation sequences using inputs generated by the hippocampus model the constraining of the model using electrophysiological data in rats the use of the resulting model in an animat the use of behavioral data for training the model and comparing the generated trajectories 

Glossary

1.Introduction

The work accomplished during this thesis focuses on aspects of recurrent neural networks and their dynamics, and how these dynamics can encode aspects of sequential behavior.

We first propose to consider the problem of an agent exhibiting an efficient behavior and to reduce it as the problem of generating a correct sequence of sensory-motor association of an animat [START_REF] Wilson | The Animat Path to AI[END_REF].

We chose to use the reservoir computing framework (Dominey 1995) as a neurobiologically plausible implementation of a sensory-motor sequences learning capability of a situated agent [START_REF] Hendriks-Jansen | Catching Ourselves in the Act : Situated Activity, Interactive Emergence, Evolution, and Human Thought[END_REF].

Reservoir computing is a computational metaphor of cortico-cortical loops in prefrontal cortex (PFC) and its principle is based on maintaining a spatio-temporal high dimensional representation of input sequences through reverberations caused by recurrent connections of PFC neurons. Sensory motor associations are learnt by a model of Striatum (ST) that acts as a simple readout layer by selecting correlated spatiotemporal features provided by the PFC model in order to reconstruct a prediction of the input patterns [START_REF] Rigotti | Internal Representation of Task Rules by Recurrent Dynamics: The Importance of the Diversity of Neural Responses[END_REF][START_REF] Rigotti | The Importance of Mixed Selectivity in Complex Cognitive Tasks[END_REF]Enel et al., n.d.).

We thus propose in section 0 to evaluate the standard complex sequence online learning paradigm of this joint PFC-ST model and to extend it by demonstrating that it is possible to concatenate a complex sequence by learning only from a random set of smaller subsequences of stimuli called snippets. It is possible to explain this new dynamical property by observing a reduced dimension representation of the PFC model dynamics when exposed to the whole sequence and subsequences. In [START_REF] Sanger | Optimal Unsupervised Learning in a Single-Layer Linear Feedforward Neural Network[END_REF], the author demonstrates that generalized hebbian learning computes in fact the linear PCA and it suggests a biologically plausible implementation for the formation of subspaces relevant for a particular task. We will see in section that it is possible to model an equivalent reservoir as a linear combination of reservoir's neurons with a PCA. Learning readout synaptic weights in this space is equivalent to find the correlation coefficients between the raster of principal components neurons and expected neurons. It is also a convenient manner of representing Reservoir's neurons activations over time. Activation raster of equivalent reservoir neurons are represented as a trajectory along the two first components of a principal component analysis (PCA). It appears that trajectories and sub-trajectories of the same stimuli sequence share common sub-trajectories in the reduced state space and suggest a stationary property of the high dimensional time series provided by the PFC allowing the sequence learning to occur.

At the same time, in the lab, experiments were being done related to human cortical dynamics during a visual and narrative comprehension task. We hypothesized that the human brain states observed through an EEG signal display the same mixed selectivity property as the reservoir and succeeded to explain with the same PCA analysis technique that it is possible to learn a reliable decoding of sequential coherence for one modality (images or sentences) only from training data of the other modality. This is explained in more detail in section 2.6.

The key point in both experiments is that projecting the reservoir's neurons activation time series in a subspace congruent to a particular task allows one to represent and modify efficiently spatio-temporal data streamed by a recurrent neural network. It encourages us to formulate the following working hypothesis:

If the recurrent network (or EEG signal) is performing highly similar operations over two successive trials, then the spatiotemporal patterns of activity (as revealed by PCA, a linear combination a neurons) will be similar as well.

In [START_REF] Preston | Interplay of Hippocampus and Prefrontal Cortex in Memory[END_REF], the authors study the interplay between Hippocampus and Prefrontal cortex and their roles in the memory consolidation process. Their understanding entails the notion of schema, 'introduced to cognitive psychology by [START_REF] Piaget | The Child's Conception of the World[END_REF] and [START_REF] Bartett | A Study in Experimental and Social Psychology[END_REF] in their efforts to understand how new information is integrated with pre-existing knowledge.' A schema can be viewed as 'any organized network of overlapping representations that has the following properties: first, new information is better remembered when it fits within a pre-existing schema; second, new information that challenges schema organization may cause modification of the existing schema or development of a new schema; and third, schemas support novel inferences between indirectly related events and their generalization to new situations.' Consolidation is understood as a 'process in which hippocampal networks can link indirectly related elements (A and C) via the invariant common element (B) and, guided by the prefrontal strategic control of conflicting associations to create a schema (A-B-C). During subsequent memory expression, a memory cue ('Are A and C related?') engages prefrontal cortex to select the correct schema (A-B-C) within which the hippocampus retrieves the relevant associations (A-C via B).'

We propose to explain this understanding of memory consolidation with a computational joint model of hippocampus, prefrontal cortex and striatum (HC-PFC-ST) by revisiting an interesting experiment where during a navigation task involving a rat searching for multiple sources of food in a closed environment (see Figure 1, panel A), it has been observed (De [START_REF] Jong | The Traveling Salesrat: Insights into the Dynamics of Efficient Spatial Navigation in the Rodent[END_REF]) a convergence of the trajectories performed by the rat towards a short route between rewarded food cups. As illustrated in Figure 1, panel B, place-fields 1 are traversed in a particular order, which is characteristic of the shortest trajectory between baited feeders 2 . This trend to generate efficient trajectories is referred to as the traveling salesperson problem (TSP). The TSP is a classical algorithmic NP-hard problem that requires an agent to visit a fixed set of locations once, minimizing the total distance traveled.

Sharp wave ripple complexes (SPW-R) occur during awake and sleep states and include the replay of subsequences of place-cells activation sequences related to the trajectories observed in previous trials [START_REF] Barrera | Biologically-Inspired Robot Spatial Cognition Based on Rat Neurophysiological Studies[END_REF][START_REF] Jong | The Traveling Salesrat: Insights into the Dynamics of Efficient Spatial Navigation in the Rodent[END_REF]. In [START_REF] Gupta | Hippocampal Replay Is Not a Simple Function of Experience[END_REF], the authors characterize the content of hippocampus replay and suggest that the activation subsequences generated by the hippocampus during SPW-R are derived from immediate and remote experiences, feature forward and reverse order of previously encountered place-cells activations and the reward plays a modulatory role in occurrence of subsequences contained in a during in SPW-R events. We focus on the role of hippocampus place-cell replay during the awake state, as the rat generates increasingly efficient trajectories between reward sites across multiple trials.

1 Noted Pn, where n is the corresponding place-cell number.

2 Noted Ok, where k is the feeder number

The indirectly related elements mentioned in [START_REF] Preston | Interplay of Hippocampus and Prefrontal Cortex in Memory[END_REF] corresponds to the rewarded food cups observed through the associated place-cell activations, the relationship between rewarded food cups corresponds to sub-trajectories between them. We hypothesize that: Hippocampus links rewarded food cups through SPW-R replay of associated place-cell activation patterns in order to form efficient sub-trajectories Prefrontal cortex reconciles the conflicts in associations of efficient sub-trajectories sharing a common part in order to create an efficient trajectory between rewarded food cups (schema). We extend our scope to a HC-PFC-ST joint model where the hippocampus model emulates different features of the place-cell subsequences replay phenomenon observed during awake SPW-R between trials. It aims at:

Demonstrating dynamical properties induced by the hippocampal replay and the effect of its different features (Foster and Wilson 2006a;[START_REF] Gupta | Hippocampal Replay Is Not a Simple Function of Experience[END_REF] To assess if an animat embedding the HC-PFC-ST model is sufficient to explain the behavior of the rat observed in experiments [START_REF] Wilson | The Animat Path to AI[END_REF][START_REF] Ball | A Navigating Rat Animat[END_REF][START_REF] Foster | Sequence Learning and the Role of the Hippocampus in Rodent Navigation[END_REF][START_REF] Jong | The Traveling Salesrat: Insights into the Dynamics of Efficient Spatial Navigation in the Rodent[END_REF][START_REF] Barrera | Biologically-Inspired Robot Spatial Cognition Based on Rat Neurophysiological Studies[END_REF]. A preliminary work had been done during my master's thesis about the control of a mobile robot with a chaotic random recurrent neural network with continuous time (article in preparation, see section Related work). The learning rule used for associating an action to a sequence of stimuli is related to the recursive estimation of the covariance matrix between perception and action. It emphasizes the importance of learning sensory-motor associations upon the detection of a salient event. In that particular case, a salient event is detected by considering the neuron activation that diverges from the same neuron's running average. An experiment shows that a mobile robot controlled by a random recurrent neural network can learn sensory motor associations from its previous experience and generate motion sequences in compliance with the serial structure of the stimuli by being exposed to the same stimuli sequence without having necessarily the same temporal structure (i.e. the same delay between two different stimuli). It suggests that learning during salient events only allows the model to learn and generate sensory-motor sequences with the same serial structure whilst at the same time removing the requirement of experiencing the same temporal structure. Learning the salient part of a trajectory relies in this case on the running estimate of the covariance matrix. Hippocampal replay during SPW-R occur at a faster time scale than the experienced stimuli sequences and the temporal structure is not a feature of hippocampal replay [START_REF] Davidson | Hippocampal Replay of Extended Experience[END_REF][START_REF] Nádasdy | Replay and Time Compression of Recurring Spike Sequences in the Hippocampus[END_REF]. It suggests that our joint HC-PFC-ST model will learn salient part of stimuli sequences and hippocampal replay will enhance several features of the stimuli sequences replayed.

In addition, conceptors (Jaeger 2014) are based on PCA which also rely on the estimate of the covariance matrix and "help explaining how conceptual-level information processing emerges naturally and robustly in neural systems". The principle is essentially the same: Different stimuli entails differently shaped reservoir state clouds (i.e. different linear combinations of reservoir's neurons). "The ellipsoid envelopes of these clouds make conceptors". "After driving patterns have been stored in the network, they can be selected and stably regenerated by inserting the corresponding conceptor filters in the update loop. A conceptor could be implemented by projecting observed neurons into linear neurons that represent conceptors by projecting along synaptic weights representing the PCA linear combination coefficients. Thus a conceptor is task dependent and requires a prior training on tasks being evaluated. It remains a very powerful tool that allows a single neural system to "learn, store, abstract, focus, morph, generalize, de-noise and recognize a large number of dynamical patterns".

Estimating the covariance matrix allows one to generate appropriate representations of stimuli time-series useful, either for explaining neuron dynamics or for altering them in order to solve difficult learning problem.

It encourages us to use the PCA as a tool for explaining how the dynamics of a recurrent neural network allows the model to learn multiple and complex sensory-motor associations and help to solve a challenging problem: the TSP.

Prefrontal cortex and hippocampus in rodent navigation

The hippocampus stores information during the acquisition of new memories and these memories are replayed (in this document, we use 'replay' and 'reactivate' interchangeably) during sleep as part of a memory consolidation process [START_REF] Marr | A Simple Theory for Archicortex[END_REF][START_REF] Stickgold | Sleep-Dependent Memory Consolidation and Reconsolidation[END_REF]. Consolidation is believed to involve synaptic changes in the neocortex reflecting the integration and refinement of memory representations [START_REF] Mcclelland | Why There Are Complementary Learning Systems in the Hippocampus and Neocortex: Insights Form the Successes and Failures of Connectionist Models of Learning and Memory[END_REF][START_REF] Schwindel | Hippocampal-Cortical Interactions and the Dynamics of Memory Trace Reactivation[END_REF] This replay involves neural populations that were active during a task immediately preceding the sleep period. In [START_REF] Jadhav | Awake Hippocampal Sharp-Wave Ripples Support Spatial Memory[END_REF]), a specific performance deficit was observed in SPW-R disrupted animals, providing "a causal link between awake hippocampal SPW-Rs and the spatial memory requirements of outbound trials". It is possible to characterize hippocampus replay through the following features:

Occurrence: Reactivations of specific neural activity patterns during sleep have been observed in several brain areas including the hippocampus, amygdala, neocortex and striatum [START_REF] Bendor | Biasing the Content of Hippocampal Replay during Sleep[END_REF][START_REF] Carr | Hippocampal Replay in the Awake State: A Potential Substrate for Memory Consolidation and Retrieval[END_REF][START_REF] Euston | Fast-Forward Playback of Recent Memory Sequences in Prefrontal Cortex during Sleep[END_REF]Foster and Wilson 2006b;[START_REF] Hoffman | Coordinated Reactivation of Distributed Memory Traces in Primate Neocortex[END_REF][START_REF] Ji | Coordinated Memory Replay in the Visual Cortex and Hippocampus during Sleep[END_REF][START_REF] Karlsson | Awake Replay of Remote Experiences in the Hippocampus[END_REF][START_REF] Kudrimoti | Reactivation of Hippocampal Cell Assemblies: Effects of Behavioral State, Experience, and EEG Dynamics[END_REF][START_REF] Lee | Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep[END_REF][START_REF] Nádasdy | Replay and Time Compression of Recurring Spike Sequences in the Hippocampus[END_REF][START_REF] Pennartz | The Ventral Striatum in Off-Line Processing: Ensemble Reactivation during Sleep and Modulation by Hippocampal Ripples[END_REF][START_REF] Peyrache | Replay of Rule-Learning Related Neural Patterns in the Prefrontal Cortex during Sleep[END_REF][START_REF] Popa | Coherent Amygdalocortical Theta Promotes Fear Memory Consolidation during Paradoxical Sleep[END_REF][START_REF] Ribeiro | Long-Lasting Novelty-Induced Neuronal Reverberation during Slow-Wave Sleep in Multiple Forebrain Areas[END_REF][START_REF] Sutherland | Memory Trace Reactivation in Hippocampal and Neocortical Neuronal Ensembles[END_REF][START_REF] Tatsuno | Methodological Considerations on the Use of Template Matching to Study Long-Lasting Memory Trace Replay[END_REF][START_REF] Cutsuridis | Spatial Memory Sequence Encoding and Replay During Modeled Theta and Ripple Oscillations[END_REF][START_REF] Cutsuridis | Deciphering the Role of CA1 Inhibitory Circuits in Sharp Wave-Ripple Complexes[END_REF]. Other evidence suggests that replay may also occur during the awake state indicating online memory processes or the planning of behaviors yet to be performed [START_REF] Carr | Hippocampal Replay in the Awake State: A Potential Substrate for Memory Consolidation and Retrieval[END_REF][START_REF] Davidson | Hippocampal Replay of Extended Experience[END_REF]Diba and Buzsáki 2007a;[START_REF] Gupta | Hippocampal Replay Is Not a Simple Function of Experience[END_REF][START_REF] Jadhav | Awake Hippocampal Sharp-Wave Ripples Support Spatial Memory[END_REF]K. Friston, Breakspear, and Deco 2012;[START_REF] Karlsson | Awake Replay of Remote Experiences in the Hippocampus[END_REF].

Place-cells: The study of behavioral and neurophysiological mechanisms in rats responsible for spatial cognition has inspired the development of many computational models of hippocampus place-cells in the context of goal-oriented learning tasks in robotic systems. Some of the most important models developed in the past years include those of [START_REF] Burgess | A Model of Hippocampal Function[END_REF][START_REF] Sharp | Neural Network Modeling of the Hippocampal Formation Spatial Signals and Their Possible Role in Navigation: A Modular Approach[END_REF][START_REF] Redish | Cognitive Maps beyond the Hippocampus[END_REF][START_REF] Guazzelli | Affordances. Motivations, and the World Graph Theory[END_REF][START_REF] Arleo | Spatial Cognition and Neuro-Mimetic Navigation: A Model of Hippocampal Place Cell Activity[END_REF][START_REF] Gaussier | From View Cells and Place Cells to Cognitive Map Learning: Processing Stages of the Hippocampal System[END_REF][START_REF] Filliat | Global Localization and Topological Map-Learning for Robot Navigation[END_REF][START_REF] Arleo | Cognitive Navigation Based on Nonuniform Gabor Space Sampling, Unsupervised Growing Networks, and Reinforcement Learning[END_REF][START_REF] Milford | Persistent Navigation and Mapping Using a Biologically Inspired Slam System[END_REF][START_REF] Dollé | Path Planning versus Cue Responding: A Bio-Inspired Model of Switching between Navigation Strategies[END_REF][START_REF] Alvernhe | Rats Build and Update Topological Representations through Exploration[END_REF][START_REF] Caluwaerts | A Biologically Inspired Meta-Control Navigation System for the Psikharpax Rat Robot[END_REF][START_REF] Barrera | Biologically-Inspired Robot Spatial Cognition Based on Rat Neurophysiological Studies[END_REF] Time cells: In [START_REF] Eichenbaum | Time Cells in the Hippocampus: A New Dimension for Mapping Memories[END_REF], the author distinguishes hippocampus place-cells from hippocampus time-cells. The latter are characterized by their ability to "parse temporally defined periods into representations of specific moments ('time fields'), much as place-cells parse spatially defined environments into representations of specific locations (place fields)". Finally, the author suggests that the fundamental function of the hippocampus is to establish spatio-temporal frameworks for organizing memories. Place-cells and time-cells are not distinct 'cell-types' but instead, the same population of hippocampal neurons encodes both the spatial and temporal regularities of experience. Hippocampus place-cells and time-cells are seen as features of hippocampal neurons associated with spatial or temporal dimensions of the context in which learning occurs. Time scale: In the hippocampus, it has been shown that reactivation occurs primarily in a compressed manner, during the occurrence of fast (150-200 Hz) and short (60-120ms) oscillations called sharp waves/ripples complexes (SPW-R). Different subsets of cells reactivate in different SPW-Rs, each cell emitting only a few spikes. The inter-spike interval between reactivating cells is within the range of that required to induce spike-timing dependent synaptic plasticity (STDP). One hypothesis therefore is that the sequence of reactivation episodes allows for online and offline synaptic modifications that will eventually lead to the consolidation and integration of specific memory items. [START_REF] Davidson | Hippocampal Replay of Extended Experience[END_REF] Reward: Interestingly, the presence of rewards increases replay in hippocampus and ventral striatum (Lansink et al. n.d.;[START_REF] Singer | Rewarded Outcomes Enhance Reactivation of Experience in the Hippocampus[END_REF], suggesting an interaction between reinforcement learning and replay. This enhanced reactivation in response to reward could be a mechanism to bind rewarding outcomes to the experiences that precede them. Awake SPW-R reactivates coherent elements of the experiences that are associated with the paths to and from the rewarded location. Their findings, in contrast, indicate that reward plays a special role in modulating the reactivation of cells associated with recent experiences. Their findings suggest that in the rodent hippocampus, activity following a reward specifically relates to the sequence of locations the animal traversed on the way to the reward. These observations indicate that reward increases the likelihood of reactivation for all cells. Therefore, the specific spatial sequence the animal traversed strongly influences which cells will be active during SPW-Rs, while the presence or absence of reward modulates the amount and strength of reactivation. Direction: Most of the replay events occur in the forward direction (place-cells activate in the same order as they would activate if the rat was navigating through them), before a movement is initiated, while a smaller fraction occur in the backward direction at or near reward sites. Interestingly, forward replay was found to be more directly correlated with the actual path of the animal than backward replay (Foster and Wilson 2006b;Diba and Buzsáki 2007b) Remote: Hippocampal replay is not limited to recent sensory experience and might include events experienced less recently [START_REF] Karlsson | Awake Replay of Remote Experiences in the Hippocampus[END_REF]Foster and Wilson 2006b;[START_REF] Davidson | Hippocampal Replay of Extended Experience[END_REF] Underlying Neuroanatomy:

The model developed in this thesis provides a possible explanation of mechanisms that allow PFC and hippocampus to interact to perform path optimization to solve the TSP. This implies functional connectivity between these two structures. In a recent review of hippocampal-prefrontal interactions in memory-guided behavior [START_REF] Shin | Multiple Modes of Hippocampal-prefrontal Interactions in Memory-Guided Behavior[END_REF] outlined a diverse set of direct and indirect connections that allow bidirectional interaction between these structures. Principal direct connections to PFC originate in the ventral and intermediate CA1 regions of the hippocampus [START_REF] Cenquizca | Spatial Organization of Direct Hippocampal Field CA1 Axonal Projections to the Rest of the Cerebral Cortex[END_REF]. Indirect connections between hippocampus and PFC pass via medial temporal lobe (subiculum, entorhinal cortex, peri-and postrhinal cortex) [START_REF] Delatour | Projections from the Parahippocampal Region to the Prefrontal Cortex in the Rat: Evidence of Multiple Pathways[END_REF] and the nucleus reuniens [START_REF] Vertes | Nucleus Reuniens of the Midline Thalamus: Link between the Medial Prefrontal Cortex and the Hippocampus[END_REF]). Thus while we will not provide a more extensive review, these studies and reviews allow us to consider that there are anatomical pathways supporting bi-directional interaction between PFC and hippocampus. The model developed in this thesis also demonstrates the crucial role of SPW-R replay of "snippets" of previously experienced trajectories in this sequence consolidation and optimization. While SPW-R replay has more traditionally been examined during sleep, there is now increasing evidence of its vital role in the awake state, between trials, in spatial learning tasks (reviewed in [START_REF] Carr | Hippocampal Replay in the Awake State: A Potential Substrate for Memory Consolidation and Retrieval[END_REF]. Figure 2 illustrates awake SPW-R 

Representing sequential behavior in neural networks

Reservoir computing refers to a class of neural network models in computational neuroscience and machine learning (Mantas Lukoševičius and Jaeger 2009).These systems are characterized by a sparsely connected recurrent network of neurons (spiking or analog), with fixed connection weights (excitatory and inhibitory).

Because of the recurrent connections, this "reservoir" is a dynamical system that has inherent sensitivity to the serial and temporal structure of input sequences. Reservoir neurons are connected to readout neurons by modifiable connections, and these can be trained in different task contexts (e.g. sequence recognition, prediction, classification). The first instantiation of such models was by (Dominey 1995;[START_REF] Dominey | A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences[END_REF] with the reservoir corresponding to recurrent prefrontal cortical networks, and the modifiable readout connections corresponding to the corticostriatal projection, with dopamine-modified synapses These models addressed sensorimotor sequence learning, and demonstrated the inherent sensitivity of these recurrent systems to serial and temporal structure in motor behavior and in language (Dominey 1998a(Dominey , 1998b;;[START_REF] Dominey | Neural Network Processing of Natural Language: I. Sensitivity to Serial, Temporal and Abstract Structure of Language in the Infant[END_REF][START_REF] Dominey | Neural Network Processing of Natural Language: II. Towards a Unified Model of Corticostriatal Function in Learning Sentence Comprehension and Non-Linguistic Sequencing[END_REF][START_REF] Hinaut | Real-Time Parallel Processing of Grammatical Structure in the Fronto-Striatal System: A Recurrent Network Simulation Study Using Reservoir Computing[END_REF]. Maass developed a related approach with spiking neurons and demonstrated the non-linear computational capabilities of these systems [START_REF] Maass | Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations[END_REF]. In the machine learning context, Jaeger demonstrated how such systems have inherent signal processing capabilities [START_REF] Jaeger | Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication[END_REF]. Interestingly, these reservoir properties appear to be found in cortex. Electrophysiological studies have revealed that cortical neurons in primary sensory areas (e.g. V1) have reservoir properties of fading memory [START_REF] Nikolić | Distributed Fading Memory for Stimulus Properties in the Primary Visual Cortex[END_REF]. That is, stimuli presented in the past tend to resonate in the recurrent network and influence the processing of subsequent stimuli. Equally interestingly, when these networks are exposed to inputs with multiple dimensions (e.g. target identification, serial order, match/non-match) neurons represent non-linear mixtures of these dimensions [START_REF] Dominey | A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences[END_REF][START_REF] Rigotti | Internal Representation of Task Rules by Recurrent Dynamics: The Importance of the Diversity of Neural Responses[END_REF]. Such nonlinear mixed effects have recently been seen in primate frontal cortex [START_REF] Rigotti | The Importance of Mixed Selectivity in Complex Cognitive Tasks[END_REF]. This argues in favor of a reservoir-like function in recurrent networks of the cortex in general, and in prefrontal cortex specifically. We have demonstrated how such recurrent networks can learn about sequential and temporal structure (Dominey 1998a), including serial order regularities that are expressed in sequence segments [START_REF] Dominey | Neural Network Processing of Natural Language: I. Sensitivity to Serial, Temporal and Abstract Structure of Language in the Infant[END_REF]. However, so far, reservoir computing has not been exploited in terms of its inherent ability to allow the concatenation of multiple contiguous subsequences into a coherent sequence, thus addressing a major open question in navigation trajectory learning.

The most prevalent theories of how memories are formed and consolidated rely on dynamic changes in synaptic strengths and the creation of strongly connected neural assemblies. This hebbian [START_REF] Hebb | The Organization of Behaviour[END_REF] view of memory has dominated the field for decades. While there is strong experimental evidence for several aspects of the theory, there are also significant difficulties that include:

The unclear nature of fast induction and exquisite control of synaptic modification in the presence of realistic amount of neuronal and synaptic noise and unreliability The low probability that 2 cortical neurons are in fact connected by synapses The pluri-functionality of cortical neural networks whereby small groups of cells may be involved in various and seemingly distinct neural computations in addition to memory formation (how these multiple functions co-exist with memory is unclear).

Hypothesis and objectives

We propose to focus on the TSP problem, which is a classical artificial intelligence NP-hard problem that requires an agent to visit a fixed set of locations once, minimizing the total distance traveled. Figure 3 illustrates the TSP by representing the optimal trajectory linking the main cities in U.S. Five cups containing food are laid in an open space and the rat is supposed to experience trajectories illustrated in panel B, C and D. These trajectories contain a part of the optimal trajectory illustrated in panel A. We will study how the consolidation of an optimal trajectory (Panel A) can result during awake rest state from a recombination of non-optimal trajectories containing efficient parts between reward sites (Panels, B, C, D), supported by a STDP learning mechanism occurring during SPWR.

Several navigations models based on a hippocampus model have been implemented on a mobile robot. In [START_REF] Burgess | A Model of Hippocampal Function[END_REF], the authors demonstrate the ability of a mobile robot to reach a single goal in a simple environment, based only on a hippocampus model featuring place-cells. Recurrent connections in the hippocampus are not involved nor required in the experiment. A more recent model [START_REF] Barrera | Learning Spatial Localization: From Rat Studies to Computational Models of the Hippocampus[END_REF] uses hippocampus place-cells learnt by hebbian learning driven by kinesthetic information and visual landmarks. Sensory motors associations required for allowing the agent to navigate are performed with a Q-learning algorithm (Sutton and Barto 1998) which requires a discrete state space. Another robotic model [START_REF] Hirel | The Hippocampo-Cortical Loop: Spatio-Temporal Learning and Goal-Oriented Planning in Navigation[END_REF]) implements neural networks representing enthorinal cortex (EC), HC and PFC in order to build a cognitive map and solve a multiple goal navigation task.

We thus propose a computational model of hippocampus, prefrontal cortex and striatum that will be embedded in an animat [START_REF] Wilson | The Animat Path to AI[END_REF][START_REF] Filliat | Global Localization and Topological Map-Learning for Robot Navigation[END_REF][START_REF] Ball | A Navigating Rat Animat[END_REF] for demonstrating the existence of a neurobiologically plausible implementation of a heuristic that solves the traveling salesrat problem. Figure 6 represents from a purely modeling point of view the organization of the different functional modules used in this thesis for simulating a virtual rat: The global model is hierarchical composition of other models whose structuration derives from the PerAc architecture (Philippe Gaussier and Zrehen 1995) could be described as follows:

An environment model that consists in a 2D free space containing reward sites as illustrated in Figure 4 An animat that is capable of perceiving the environment through its sensors and to perform an action on its environment by using its actuators. The relationship between the sensor model and the actuator model is established the cognition model, allowing the animat to perform actions given a sensory input. No reflex module linking perception to action in a straightforward manner is used in this study.

o The sensor model is very simple in our case and consists in the perception of the current position of the animat in the environment in a global coordinate system. It might be replaced by a more elaborated and realistic model but for the sake of simplicity and a better understanding, we chose a trivial sensor model.

o The cognition model establishes dynamical relationships between perceived stimuli and possible actions. It is implemented by a set of other hierarchical models that might interact. The relationships illustrated by arrows represents strictly the sufficient model for studying memory formation mechanisms in this thesis and don't necessarily correspond to neurons projections between areas as described in neuroanatomy. A cognitive model could be implemented by an algorithm, a classifier system [START_REF] Holland | Cognitive Systems Based on Adaptive Algorithms[END_REF], a hidden Markov chain or a neural network. In our case, the cognitive model is implemented by a hybrid and hierarchical composition of algorithmic and neural network models:

A spatial representation model will be responsible of converting the perceived global position into internal representations suitable for solving the TSP task. It is implemented by:

A place-cell coding model which provides a place cell mean firing activation pattern that is characteristic of the perceived position. A 2D Gaussian place cell model is used but one can also use firing rate maps estimated experimentally and representing the spatial response of place-cells spatial response measured by electrodes. It is assimilated to a part of the hippocampus model, not represented here because it is relative to a neurobiological implementation.

The replay module is implemented by an algorithm that emulates only place-cells neurons rates and the replay of subsequences of place-cell activations (snippet) during awake SPW-R as a concatenation. Snippets are characterized by a duration, modelled by the number of contiguous place-cell activation patterns and a direction, forward or backward that will be modelled by the increasing or decreasing numbering of time indices contained by a snippet. A snippet will contain only placecell activation patterns encountered during a motion supposed to occur with a constant speed. This models the time compression phenomenon observed in placecell activation subsequences during SPW-R, derived from the place-cell activation encountered during the last trial and resulting from sensory inputs. Snippets will be drawn according to a snippet replay likelihood whose distribution might be uniform when no reward is taken into account or non-uniform and shaped by reward when available. The role of this model will be to generate subsequences of place cell activation derived from previous experience and to emphasize parts of trajectories related to a reward through a non-uniform random replay. Despite the fact that this part of the model is algorithmic, it admits an implementation based on recurrent neural networks, also observed in hippocampus (CA3). It is a part of the hippocampus model.

A consolidation model learns to predict the next place-cell activation, given a training dataset generated dynamically by the replay model. The generated predictions reflect the state-transitions observed in the training dataset and it is possible to emphasize a particular subset of state-transitions by over representing it in the training dataset. In our case, placecell transitions related to a reward are emphasized by the replay module which learn and maintain a snippet replay likelihood through snippet replay. Consolidation is implemented by:

A reservoir model will be implemented by the reservoir-computing framework that emulates cortico-cortical loops through recurrent connections between leaky integrator neurons, representing only the mean firing rate of non-linear neurons whose membrane potential time evolution is driven by a time constant resulting from its resistive and capacitive properties. This defines the prefrontal cortex model and its role is to combine overlapping parts of snippets replayed at random and build a transitive relationship between them by aligning the common parts in their representations.

A readout model implements partially a striatum model. Readout model is supposed to select spatio-temporal features provided by the reservoir through learning in order to learn a desired output. In our case, the desired output is a prediction of the next place cell activation that encodes the next location of the animat.

A policy model associates the prediction of the next place-cell activation to the action that is the most likely to realize the prediction. Possible actions are command signals compatible with the animat possible moves. It is based on three other sub models:

A place-cell decoding model that will provide a 2D map of probable locations given the place-cell prediction generated by the readout layer.

A transition model that restricts the 2D location map is restricted to areas reachable by the animat given and estimate of its current position.

A selection model that will select the most probable location in the restricted 2D location map.

o The actuator model is also very simple and consists in moving the agent to the predicted position.

This emulates a rudimentary sensory motor loop and might be viewed as a form of embodiment. In this model presented as a hierarchy of other models, some models are implemented by neural networks (HC, PFC, ST) and their interactions and functioning modes are not clearly specified. In (Pezzulo, Kemere, and van der Meer 2017), the authors provide a schematic illustration of different functioning modes of their model within an overall architecture for PFC-HC interactions. We propose to adapt this illustration to our joint HC-PFC-ST model in Figure 7 in order to describe the different modes used by our model for solving the TSP problem.

The experimental protocol we use is inspired by [START_REF] Jong | The Traveling Salesrat: Insights into the Dynamics of Efficient Spatial Navigation in the Rodent[END_REF]) and is defined as follows:

The rat/animat performs one or more trials by making an attempt to solve the TSP problem, based on the actual state of its model. In the case of an animat, one or more already existing trajectories are simply added to a dataset that will be used as a basis for generating snippets.

The rat/animat is put in an awake resting state at the same location before each next trial by enclosing him in a small and opaque space, preventing him from moving or seeing the arena where the next trial will occur. At this point, SPW-R events occur and small sequences of recently experienced place-cell activation patterns are replay. This contributes to the incremental update of two models and correspond to the two offline modes where recent experience is replayed through SPW-R events and models updated trough a STDP mechanism: o The replay (snippet generation) model, implemented by our hippocampus model (HC) and illustrated in panel A by a dashed ellipsis. The reward information is propagated according to a power law to adjacent timesteps in a direction relative to the replay direction. The model is defined recursively and is described more in details in section 2.4. o The consolidation model implemented by the reservoir (PFC) and the readout (ST) layer and illustrated in panel C, associates a particular state to a place-cell activation sub sequence. This state is associated incrementally though an online learning rule to the next place-cell activation pattern. The dashed arrow represents the synapsis projecting reservoir neurons in readout neurons.

Then the rat/animat behaves freely based on its newly acquired and consolidated knowledge (hypothesis) and performs one more attempt to solve the TSP problem. This online mode is illustrated in panel D and is viewed as a coordinated action perception cycle repeated several times in order to form a trajectory. The decision taken at a given time will result in a new perception.

OFFLINE (during awake SPW-R) ONLINE (behavior)

A The mode illustrated in panel B corresponds to the preplay phenomenon observed during SPW-R when the rat is performing the task. SPW-R are shaped by current sensory input. The snippet preplayed during behavior are samples from the replay model relevant to the current task. It represents the future possible suffix trajectories, given the trajectory accomplished so far. It might be viewed as a prospective mechanism and can be used for online planning/inferencing by selecting the action associated to the most rewarding prefix snippet, suggested by preplay. We won't use this mode in this thesis and we focus on the consolidation of salient part of multiple and rewarded trajectories.

Our claim is that it is possible to observe the emergence of the optimal trajectory as a recombination of salient parts of trajectories experienced during past trials. The heuristic that supports this demonstration is biologically plausible and implementable by neural networks.

Working hypothesis are summarized as follows: An agent able to move freely within a restricted range in an environment without obstacles is controlled by a neural network model. This model includes a model of hippocampus that will emulate forward and reverse hippocampal replay modulated by a form of reward observed during awake SPW-R. A PFC model based on reservoir computing will evaluate the hypothesis that awake hippocampus replay between trials plays a role in long term memory consolidation and allows the agent to take advantage of its previous experience from trial to trial. The ST model will allow the agent decode predictions from the PFC and contribute to an action, supposed to minimize the difference between the actual and predicted position of the agent.

2.Contributions

All the contributions in this thesis aim at investigating the role of hippocampus replay during SPW-R in memory consolidation process through simulations of models of neural networks based on neurophysiology supposed to implement a heuristic able to solve the TSP problem. These are models and do not necessarily reflect or emulate the complete set of observed anatomical features. We start from the simplest model possible of the memory consolidation process through awake SPW-R and implement only the features that allow the model to mimic the rat's behavior while solving the TSP problem. The PFC-ST model illustrated in In Figure 8 panel C is based on a recurrent neural network of leaky integrator neurons having fixed recurrent connections. Information is processed dynamically through reverberations caused by the recurrent connections. When the network is exposed to an input sequence like a place-cell activation sequence illustrated in panel A, the reservoir neurons activation pattern sequence is difficult to understand (see panel B). The readout layer associate reservoir states to an expected output through a supervised online learning rule. In this thesis, the expected output will be the place-cell activation contained by the next sample within a snippet.

We propose to use a singular value decomposition of the raster observed in panel B for implementing a principal component analysis (PCA) illustrated in panel D. It can be viewed as another layer of linear neurons whose firing rate is a linear combination of reservoir neurons. This additional layer is called the equivalent reservoir and the linear combination is chosen such that equivalent neurons provide the most orthogonal possible information. These 'orthogonal' neurons might be viewed as different axes spanning a subspace and they are called principal components. The first neuron will account for most of the information provided by reservoir neurons, while other neurons will account for a decreasing proportion of the remaining information.

Thus it is possible to represent the neurons activations as a 2D/3D trajectory as illustrated in panel E and to observe them rather than the raw raster in panel B. Note that if one attempts to learn synaptic weights projecting the equivalent neurons into the readout neurons, he will find the Pearson correlation coefficients [START_REF] Pearson | Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and Panmixia[END_REF]. It is an interesting equality which might be reformulated as: The readout selects iteratively spatio-temporal features of a stimuli sequence provided by the reservoir, correlated with the expected signal used in supervised learning.

We use a simulation based approach and the experimental protocol is always the same and a trial in one experiment is defined by: Simulate the awake SPW-R snippet replay when the rat is in It is thus possible to extract representations from the recorded data as depicted in Figure 8 for example. Some representations might be meaningful and will allow one to explain the phenomenon observed through the representations. The model will be adjusted based on the numerous and informative observations until the model is able to predict and explain expected observations having a higher level of abstraction. This very general process describing the scientific approach can be as well implemented by different models in a hierarchical manner, exactly as illustrated in Figure 6. The free energy/active inference framework (K. Friston 2009) is an elegant, rigorous and unifying theoretical framework that allows one to create or extend hierarchical Bayesian models of the brain (K. [START_REF] Chumbley | Attractor Models of Working Memory and Their Modulation by Reward[END_REF][START_REF] Pezzulo | Hierarchical Active Inference: A Theory of Motivated Control[END_REF]. We will make a particular effort to formulate our models, measures and explanations in order to be easily translatable in Bayesian equations.

From the top level of abstraction (behavior), a very useful metric for comparing trajectories regardless their phase locking and dimensionality (2D trajectory, place-cell activation sequence, neurons rasters) is the Fréchet distance. Figure 9 illustrates the Fréchet distance between sequences ABCDE and ABCED also observed in Figure 5. In each experiment, the trajectory generated by our model is compared to the optimal/idealized sequence with a Fréchet distance. It allows a global optimization algorithm to find an optimal set of parameters for instantiating an overall model able to perform in the required conditions (see section 2.4).

Proof of concept

The reservoir-computing framework allows complex sequence learning and generation at the price of several parameters that might interact between each other in manner that is difficult to characterize and exhibit unforeseen dynamic properties. Dynamic properties of snippet replay are exactly what we want to observe. Some guidelines about echo state network have been written (Mantas Lukoševičius and Jaeger 2009) and are a good starting point. For going further on the particular problem of sequence learning through random replay of snippets, we need to write a simulator of our model that provides to the user the ability to modify parameters and to observe quickly the effects of a parameter change on the screen. We propose to write an interactive simulator based on C++/QT and to explore snippet driven learning properties of a joint PFC-HC model illustrated in Figure 10. 

C++/QT simulator

The idea behind this simulator was to provide an interactive and easy to simulator the user, allowing him to play with the model and its parameter in order to build an intuition on the model functioning. C++ language and the QT graphical user interface toolkit (GUI) were chosen for their robustness, performances and versatility, required for writing an interactive and responsive simulator. Boost library is also used for various utility classes.

The design is based on interdependent tasks executed in a particular order. From a modeling point of view, any simulation admits an equivalent graph representation where vertices are the tasks and the edges are the dependencies between tasks. A simulation is fully described by a scenario xml file where tasks and their dependencies are declared. An example of a simulation description can be found in Figure 11 : A task is the base class of a process or a widget. A process processes incoming data from its input sinks and writes the result on its outputs. An example of a process is a neuron layer, a running average or a stimulus generator.

A widget represents incoming data in a particular format on the screen and is attached to the main panel as depicted in Figure 12. A very useful widget is the object explorer which allows the user to display and modify the parameters of the model while computing. Other widgets are classic XY plots, bar plots, histograms and rasters. All widgets are instantiated in containers whose layout is also configurable in the xml scenario file.

The simulator is available as a standalone version called LiveViewer. It is mainly used for fast prototyping of simulations by combining building blocks and observing the effect of a parameter change. The graphical user interface allows the user to limit the simulation speed in order to observe fast paced phenomenon and a step by step button allows one to run compute one simulation cycle each time the button is pressed. It is also possible to switch between training and test mode with a simple click at any time.

Automation allows the user to specify program parts called Actors that will act on the interface like a regular user. For example, the learning rate of the model can be set to zero during the test stage and the constant controlling the amount of input signal from the stimulus and the feedback signal from the readout layer projected on the reservoir can be adjusted according to a ramp which is a function of the time. Figure 13 shows the possible uses of the simulator : Communications between Frontend and Backend use a TCP based text protocol and communications between Backend and Workers are implemented with MPI. CPU is used most of the time for computing tasks and some computing power demanding tasks are offloaded to a GPU.

Source code is available on GitHub at https://github.com/NicolasCAZIN/RRNN

Complex sequence learning

We propose to demonstrate that the reservoir computing model we use is able to learn and generate correctly long and complex stimulus sequences with a standard training method. The stimulus at each timestep consists in 44 neurons activated with a serial temporal structure. Each neuron is activated during 10 timesteps and this elementary activation pattern is represented by a red square in Figure.

The state of a given neuron is determined at least by the last 10 steps. The first 10 neurons have two different predecessor and successor neurons activated at different timesteps and the total length of the sequence is 540 steps. This sequence is called a complex sequence because it is characterized by several ambiguous transitions between neurons states. Figure 15 shows the transition probabilities between each neurons : The activation pattern of the stimulus might be seen as a state transition function where both states and actions are activations values. The 10 first neurons exhibit ambiguous transition since their state are not uniquely determined by their previous state. This learning problem cannot be solved without maintaining a form of context that will allow the association of a particular state of a neuron to a limited history of the states of other neurons. This is exactly the purpose of the cortico-cortical loop modelled by the recurrent connections in the reservoir computing framework. It is a form of fading memory that allow the state of the modelled prefrontal cortex to represent a context within a limited time line of sight. Intuitively, if the duration of the context required by the serial structure of the stimulus sequence fits in the short term memory implemented by recurrent connection, then the learning of a complex sequence is reduced to the learning of a simple sequence having the same number of steps but a higher number of meta-states resulting from the conjunction of successive stimulus states. This is illustrated in Figure 16: This simpler problem is easily solved by exposing the reservoir model several times to the input activation sequence and associating incrementally the reservoir's state to the expected output activation sequence by modifying the synaptic weights of the readout layer according to the delta rule. When evaluated, the model is primed with the 30 first steps of the expected sequence and then the predicted neurons states are reinjected as the next input of the model until the end of the expected sequence is reached. The resulting activation pattern is similar to the expected sequence as depicted in Figure 17: The serial and temporal structure of the target sequence are reproduced but the sharp transitions from 0% activation to 100% activations cannot be reproduced by the model. This is explained by the time constant of the model which have been tuned for capturing the slow variations between each neuron (1 state change every 10 steps). Recurrent connections act like a running average and the side effect is to smooth the stimulus sequence along the time axis. This demonstrate the model's ability to learn and generate an arbitrarily long and complex sequences of neuron activation patterns.

Learning from random replay

As stated in, the main hypothesis in this work is that random replay of hippocampus place-cells subsequences during SPW-R plays a role in awake memory consolidation. We propose to model the snippet replay by exposing the model during learning to random subsequences of the target sequence. Each subsequence has a fixed length of 50 timesteps and relates the successive activation of 5 different neurons during 10 timesteps. 19 input neurons are modeled by a binary 0% or 100% mean firing rate and are labelled by letters A to S. The 1000 neurons of the reservoir are exposed to subsequences derived from the target sequence ABCDEFGHIJKLMNOPQRS selected at random according to a uniform distribution. Figure 18 relates subsequences and the target sequence: We propose to compute the PCA trajectories of the reservoir's neurons when exposed to the subsequences. It appears that overlapping parts of subsequences (for example EFGHI and GHIJK) overlaps in the reservoir's neurons state space represented along the two first principal components in figure . Even when replayed at random, each subsequence is represented or encoded in a similar manner by the reservoir.

If the timescale supporting the stimuli is sufficiently slow compared to the timescale of the reservoir, then the mnesic ability of the network will be exceeded before the end of a subsequence. The context will fade out quickly and two sequences having a different prefix will result in a similar trajectory after a sufficiently long delay. This dynamic property is illustrated in Figure 19 and results in the alignment of multiple sequences. The model is able to autonomously generate an ascending sequence, based only on a random replay of ascending subsequences. An ascending sequence is a simple sequence without any ambiguous transition. The recurrent connections are not required for solving this simple problem and it was only the first step for validating the sequence learning driven by a random replay within the reservoir computing framework.

Overlap

As demonstrated previously in Figure 19, the consolidation from random replay of snippets relies on the overlap of subsequences in the reservoir's neurons state space. We propose to characterize empirically the conditions on overlap that allow the snippet replay driven learning to occur. A replay episode is characterized by a duration T, the number of snippets N and their length L. We consider a fixed time budget of T time steps allocated to snippet replay. Several combination of subsequences of different length are possible and we show in Figure 21 the constrained relationship between the number of snippets of fixed length that could be replayed during T timesteps and the resulting overlap between snippets (i.e. the number of samples shared by two given snippets) It shows that a for a fixed set of parameters, a minimum exposure time to random replay and a minimum overlap between snippets are required in order to reach a low error level. The minimum is reached for a maximum exposure time and a maximum overlap. A particular case of snippet scheduling which is a unique snippet whose duration equals the duration whole sequence. We are not interested in this case which is equivalent to the classical sequence learning paradigm.

Noisy conditions

The consolidation from random replay benefits from the robustness against noise of the neural networks. We demonstrate in Figure 23 that a snippet replay altered with a strong noise (-3dB in panel A and -8 dB in panel C) still allow the consolidation of the target sequence (respectively panels B and D). Despite the fact that the generated sequence features missing place-cells in some parts, the information conveyed through the recurrent connections implements a form of short term memory that allow the consolidation of the complete sequence and the generation to occur until the end of the sequence.

Consolidation of complex sequences

We have demonstrated that it is possible to learn a simple sequence from a random replay of snippets even in noisy conditions. A more challenging task for our model is to learn a complex sequence from a random replay of snippets in noisy conditions.

We use the same input sequence as in section 2.1.2 and configure a random replay of snippets with a 10% additive noise and one random missing place-cell activation during 10 timesteps for every snippet replayed. It is illustrated in Figure 26. The autonomously generated sequence displays a global time dilatation: the end of the generated sequence occurs at time step 300 230 instead of 300 020. This is explained by the fact that the leak rate acts as a temporal smoothing filter and consequently, a non-zero time is required for establishing a given neuron firing pattern. This delay is observed as a continuous increase and decrease of mean firing rate at the beginning and the end of a neuron activation pattern. The generated output at each timestep is never corrected and the delay is cumulated during the generation process occurring within a closed loop between prediction and input. This points out the need of a metric that measures the similarity between sequences having arbitrary dimensions but not necessarily the same duration. We propose to use the Fréchet distance.

Towards a more realistic model

Previous investigations have demonstrated that our joint PFC-HC model is able to consolidate at least a single complex trajectory based only on random replay of snippets. The stimuli used so far were emulating hippocampus place-cell coding by affecting one binary neuron sparse orthogonal representation (learning of a competitive network) for coding one particular location. No combination of neurons in a firing pattern were allowed and all neurons fired strictly orthogonal patterns (i.e. null dot product). The purpose of the model being to explain and predict data issued from TSP related experiments with a rat, we need to extend our model along several axes:

Use trajectories performed by a rat

The synthetic trajectories used so far for demonstrating dynamic properties of the joint HC-PFC model related to TSP problem are designed by hand and aims at capturing particular features of the rat behavior we are trying to explain. They do not represent the trajectories performed by a rat trying to solve the TSP problem. We then use behavioral data about rat solving the TSP problem provided by Fellous & Al, CENL Lab, University of Arizona, Tucson. Experiments take place in a circular arena having a radius of 1.5m. 21 feeders are scattered according to a spiral shape. The feeder's location and label is always the same. Some feeders are baited with food whilst others are not. We call a configuration the particular state of baited/non-baited feeders. 100 different configurations of baited feeders are explored by different rats during 10 trials. Before each trial the rat is positioned on the same starting point, near the first baited feeder. Figure 28 panel A shows the trajectory performed by the rat during trial 4 for configuration 84 The points of the trajectory are provided by a camera based tracker. Measures might contain noisy or missing samples and that is why we interpolate data with splines. We consider a trajectory as a graph. The vertices are the feeders and correspond to cities in the TSP problem and the edges are the paths that link the feeders. In the acquired dataset, the rat does not always find the optimal trajectory between baited feeders and 64 configurations contain at least a trial where an efficient path is found. An efficient path is found when a given path is a circular shift of the optimal path or the optimal path in reverse order. The subset of 64 configurations containing at least one efficient path each is called the converged subset. Two configurations of the converged subset contain an efficient path but all edges of the optimal trajectory had not been encountered. We restrict the dataset to the converged configurations where every feeder pair of the optimal trajectory is encountered at least once. This subset is called the complete subset and it accounts for 22% of the acquired data. We will use this subset in our experiments. If baited feeders are visited in the correct order, it does not mean that an optimum has been reached. Subj-trajectories linking baited feeders might not describe the shortest path between these two points. We created an idealized trajectory that links optimally the baited feeders and an example is shown in Figure 28 panel B. This is required for establishing a performance criterion. Trajectories are down sampled to a spatial resolution of 20 dot*m -1 . This resolution is sufficient for representing the motion of the rat, using a very high resolution would capture the noise of the camera based tracker and as demonstrated in section 2.3, there is a direct relationship between the spatial resolution of a stimuli sequence and the leak rate required by the reservoir model for capturing significant variations of the sequence.

Use of a place-cell model

Place-cells are a type of pyramidal neurons in the hippocampus that fire preferably when the rat is located in a particular place called place field. We propose to use an isotropic 2D Gaussian place-cell model defined by:

(1)

Where:

is the number of the place-cell is the mean firing rate of the place-cell is the coordinate of the place-cell is a constant that will constrain the highest activations of the place-cell to be mostly contained in a circle of radius , centered in is the radius of the place-cell is the radius threshold which controls the spatial selectivity of the place-cell?

Trajectories are defined within a 2x2m square space spanned by a regular grid of 16x16 2D Gaussian isotropic place-cells. Thus from a simulation point of view, a given trajectory result in a raster of 256 place-cell neurons as illustrated in Figure 29 panel A and B and is defined by the conjunction of the place-cells activations concatenated for each time step. One can observe in panel C that there exist parts in the trajectory where the trajectory first order gradient with respect to time is null. It means that the trajectory features static parts where the rat is not moving. Since the reservoir model captures the serial and temporal structure of a trajectory through the recurrent connections, a long static part might be partially captured by the PFC model. Indeed, a given sustained activation pattern as observed in panel B will allow the model to eventually exceed its mnesic ability and to produce a similar context after this point. The consequence is that the readout layer will associate several times this fixed context to the same output, resulting in the overrepresentation of a particular point of the sequence. In autonomous generation mode, this will lead to a fixed point. A practical workaround would be to modify the learning rule in order to allow a hebbian learning process to occur only when novelty is detected with the equivalent of a first order derivative filter. In fact, the formulation of the learning rule is similar to the definition of the covariance matrix between reservoir neurons and readout neurons. The estimation of the mean activation value of a neuron over time depends on a particular timescale and this would add several hyper parameters to the learning rule. Another simple manner of allowing the learning process to occur only when novelty is detected is to algorithmically remove static parts of the stimulus where the modulus of the derivative with respect to time (illustrated in panel C) is non zero/ We hypothesize that this novelty detection mechanism is a part of the snippet formation process and we propose to model a snippet as a contiguous subsequence of the dynamic parts of a place-cell activation sequence. The regular sampling is the equivalent of a constant velocity. Panel D illustrates the condensed and resampled trajectory and panel E represents the place-cell activation sequence. It contains only dynamic parts of the trajectory and it will be used by the snippet generation procedure. We hypothesize that the random replay of snippets that allow the model to generate an efficient sequence as depicted in panel F is based on sequences from remote trials and modulated by a form of reward. This is compliant to the behaviors and measurements described in [START_REF] Gupta | Hippocampal Replay Is Not a Simple Function of Experience[END_REF]. The snippet replay likelihood reflects a prediction of the reward and is learnt by the replay model illustrated in Figure 6. Update equations and details about the replay model can be found in 2.4. It becomes possible to emphasize different parts of a trajectory related to rewards as depicted in Figure 33. If the reservoir model is able to concatenate the emphasized parts of different parts of a trajectory related to a reward and replayed at random, then it is possible to generate an efficient trajectory based on salient elements of recently experienced trajectory. This is the main result of the paper presented in section 2.4. From a more abstract point of view, the replay model proposes different associations between reward sites (A, B, C, D and E) and the consolidation model reconciles the overlapping representations, allowing to build a transitive relationship following a path between reward sites. This correspond to the point of [START_REF] Preston | Interplay of Hippocampus and Prefrontal Cortex in Memory[END_REF]. Their understanding of the interplay between Hippocampus and Prefrontal cortex and their roles in the memory consolidation process entails the notion of schema, introduced to cognitive psychology by [START_REF] Piaget | The Child's Conception of the World[END_REF]) and [START_REF] Bartett | A Study in Experimental and Social Psychology[END_REF]).

The replay model proposes a solution to the credit assignment problem by propagating the reward information across time according to a algorithm and the consolidation model allows to build a heuristic that is able to find efficient global paths in a graph by combining efficient sub-paths based on a reward expectation. This heuristic is in fact a neural implementation of a reinforcement learning [START_REF] Sutton | Introduction[END_REF] and it is a very simple and new manner to solve the credit assignment problem in recurrent neural networks. We will see that modulating snippet generation probability based on this reward value propagation will allow the implementation of a form of reinforcement learning that addresses the optimization requirement for solving the TSP problem. 

Defining a sensory-motor loop

We propose to make a first attempt by selecting in the dataset 3 of behavioral experiments configuration 40 where an efficient trajectory (feeders 14,12,18,17,1) is discovered during trial 5 and sub-trajectories of the efficient trajectory are visited during previous trials 2,3 and 4. Figure depicts these trajectories. During trial 2, feeders 14,18,12,14,7,1 are visited. Feeder 14 is consumed the first time it is visited and the second time, it is perceived as a non-rewarding feeder. The trajectory linking baited feeders 12 to 7 is particularly long and optimal sub-trajectory linking feeder 12 to 18 is performed in trial 2 in reverse order with a sub-trajectory linking feeder 18 to 12. This example illustrates the need to have a model that can extract sub-trajectories linking two reward sites with no particular direction and learn preferentially short sub-trajectories between rewards. During trial 3, feeders 14,18,12,17,1 are visited and it corresponds almost to the optimal trajectory, excepted that feeder 18 is visited before 12, instead of feeder 12 before feeder 18. During trial 4, feeders 17,1,14,12,18 which is a circular permutation of the optimal sequence. Sub-trajectories 17,1 and 14,12,18 belongs to the optimal sequence and this example suggests that a model able to consolidate randomly replayed parts of the optimal trajectories would be able to consolidate them if they are more salient as non-optimal subtrajectories.

Figure 34 : Successive trajectories of the rat in configuration 40

The reservoir model is trained and evaluated several time with a random replay of place-cell activation subsequences based on different possible combinations of trial 2, 3 and 4. Each model is trained by exposing it to a random replay of snippets of 10 simulation cycles long for a duration of 1000 simulation cycles. The model is then evaluated by measuring the mean square prediction error on the readout layer with a Euclidian norm. This evaluation procedure is repeated 100 times and the mean square prediction error series are gathered for each trial combination in autonomous and non-autonomous generation mode. In autonomous mode, the predicted stimulus is reinjected as the next input, while in non-autonomous mode, the next input is forced to be the next stimulus as observed in the training set, regardless of the predicted stimulus. It allows one to measure an error along the whole trajectory. Figure 35 represents the prediction errors in non-autonomous mode for each trial combination. A random replay of snippets based on 100 % of trial 2,3 and 4 leads to the lowest error. Other possible combination of sequences in the snippet generation suggest that some sequences are more informative than others and combining several trials for generating snippets have a positive effect on performances. It will be studied more in details in section 2.3. When evaluated in autonomous generation mode, results are not well differentiated (see Figure 36) and the expected place cell activation sequence is not generated at all. This is due to the recurrent nature of the generation process. If an error is observed during the early timesteps of the generation procedure, this erroneous place cell activation pattern is directly injected in the reservoir input neurons. Reservoir state is different, generates a different prediction that might be erroneous or totally unexpected or unrelated to a place cell coding of a location. In order to overcome this difficulty, we propose to implement a form of embodiment. The location encoded by a place-cell activation pattern is estimated by exploiting the spatial response each modelled place cell, the agent moved to this new location and then the place-cell model is applied to the new location of the agent in order to provide an interference free place cell activation pattern. It exploits the fact that an agent situated in a 2D environment can occupy only one location at a time. By selecting the most probable location encoded in a place cell activation prediction, the agent performs an action based on the last perception. This emulate a rudimentary sensory motor loop.

High performance computing simulator

A Temporal Recurrent Network (TRN) requires training typically 1000 neurons by exposing it repeatedly stimuli sequences. For each simulation cycle, the recurrent connections contribution to the membrane potential of the reservoir neurons is implemented by a matrix vector multiplication and thus requires 1000 000 floating operations with a dense implementation. It is also possible to use a sparse matrix implementation that requires less floating operations if the connectivity matrix is sparse, but the major drawback of this apparent time complexity simplification is that the benefit of using a local and fast paced memory is almost lost because of non-coalesced memory access that result in more frequent access to the remote and slower global memory. We choose to rely on a dense matrix implementation. Depending on the learning rule implemented and the learning rate, the magnitude and the stimuli sampling rate, a successful training requires at typically 10 000 simulation cycles. When instantiating a TRN, the synaptic weights are randomly drawn from a particular distribution with a particular random seed. An error measure on this particular instance cannot be significant with only one observation. In order to be consistent, a batch of TRN must be evaluated instead and this batch size must be empirically at least 10 and evaluating more than 100 TRN for building a single measure won't play a significant role for accuracy.

The training set is not necessarily formed as a time indexed multidimensional stimuli matrix, and might require an additional stochastic training set generation procedure that will drive the TRN during training. This stochastic procedure is in our case the emulation of hippocampus replay during awake SPW-R and it depends on a particular random seed for a batch of TRN. It is necessary to evaluate at least a group of 10 TRN batch having each different random seeds for the snippet generation procedure initialization.

TRN produces predictions of the next stimulus input. For evaluating the whole sequence that the model can generate, one needs to inject the prediction as the new input and compute the next simulation cycle for updating the TRN states. Each prediction provided by a given TRN instance might reflect a conflict in the training set that results most of the time by two different sequences having the same prefix whose duration exceeds the mnesic ability of the network. In the case of a stimulus representing hippocampus place-cell coding of a location, the next location prediction is thus not properly encoded and might contain more than a location. Preliminary study described in 2.1.8 states that autonomous generation is not always possible by direct injection of the predicted next stimulus as the new input for the next simulation cycle. We developed and described in section 2.3 a new place-cell location decoder based on a Gaussian kernel and using a finite element method. This decoder is very robust to noise because it exploits the redundancy and coherency of the spatial coding of a place-cell activation pattern over the whole arena. The finite element decoding method requires a grid that tessellates the 2D space defined by the workspace boundaries. A sufficiently low discretization error is required for avoiding a spatial aliasing effect that will necessarily have a negative impact on the generated trajectories. The size of the grid can become important very quickly and have a major impact on the computing load. It is possible to limit the number of grid elements being evaluated by considering a region of interest, centered on the agent current location and enclosing the locations the agent can reach, as defined by its transition model. It is thus possible to select the next location of the agent based on the location probability map computed with the place-cell decoding method, to move the agent to the most probable location and to apply the sensor model in order to provide to the TRN the stimulus that corresponds to the most probable location. Selecting the most probable location at each step is a greedy action selection strategy and does not necessarily lead to the generation of the optimal sequence. However, it is possible to give an account of the trajectories the model can generate by evaluating the model several times and injecting noise in the location probability map in order to allow multiple trajectories to be generated. Typically, 10 to 100 random walks are required for building a consistent 2D high-resolution histogram that will represent the frequencies where a particular location is visited and give an intuitive but not complete view of the set of trajectories the model can generate and their likelihood to be generated. It is also possible to enhance this view by extracting a vector field from the multiple displacements or to cluster trajectories in order to characterize the different classes of trajectories the model can generate.

A trained TRN can be seen as a generative model of trajectories that reflects the training set as represented by the recurrent neural network with a particular set of parameters. These parameters will condition the model's ability to learn a training set and generate a test set. The search space spanned by the Cartesian product of all parameters prohibits a systematic parameter search and one might follow echo state networks guidelines (M Lukoševičius 2012) in order to find a parameter set that allows a particular sequence learning problem to be solved. The authors states that finally, a global optimization algorithm can be used for finding the optimal parameter set for a given task. Tabu search [START_REF] Glover | Tabu Search[END_REF], Simulated annealing [START_REF] Kirkpatrick | Optimization by Simulated Annealing[END_REF] and genetic algorithms [START_REF] Goldberg | Genetic Algorithms and Machine Learning[END_REF]) are suitable for this problem and we chose a simulated annealing variation [START_REF] Chen | Parallelizing Simulated Annealing Algorithms Based on High-Performance Computer[END_REF]) because of its implementation simplicity, the low number of parameters and its ability to take advantage of parallel simulations.

For all the reasons mentioned above, simulating multiple agents controlled by a HC-PFC-ST joint neural network model requires a tremendous amount of computing power. Simulating several neural networks exposes several levels of parallelism and it is possible to take advantage of a massively parallel computing infrastructure. Recently, it became possible to use graphics processing units (GPU) for general purpose computing. NVIDIA builds high end gaming graphic cards named Geforce that are perfectly suitable for training deep neural networks in a reasonable and in fact, they can reach the same level of performance of processional graphic cards. Professional graphic cards (Quadro, Tesla) cost approximately 10 times the price of a gaming graphic card with the same architecture but provides more onboard memory that features an error correcting code (ECC) mechanism, more computing units, half precision arithmetic operations (16-bits floating point number) that doubles the computing throughput, faster double precision arithmetic operations (64-bits floating point number) and drivers certified for specific professional applications. Since artificial neural networks simulations do not require a high level of precision, a recent gaming graphic card is affordable and provides the same single precision (32-bits floating point numbers) computing throughput as approximately 30 recent central processing units (CPU) for the same price. In addition to computing throughput per price unit and numerical precision considerations, the availability of a high performance computing (HPC) infrastructure is another question of interest. Indeed, there exist computing farms that provide an access to computing devices. Some of those are not available for an extended time period and do not authorize the use of 3 rd party libraries used in modern HPC approach. It is a serious problem when developing a fully asynchronous and distributed simulator. One need a development cluster with a reasonable computing power and a library and tools ecosystem that allow modern programming and debugging without having to add an extra cost for the time spent on these machines. Another drawback of some distributed computing solutions is that the simulations need to be split into several scripts, launched through a job scheduler on different remote shells. It does not facilitate the simulation process and in addition, scheduler job does not necessarily run immediately, the entire computing power is not available because it is shared with other users and a job might be suspended for hours or days.

We chose to build a hybrid CPU/GPU heterogeneous cluster by using a workstation equipped with a Tesla k40c, upgrading 2 existing workstations with 4 NVIDIA Geforce GTX 1080 and to build a supplementary high end workstation based on the specifications of the DIGITS DevBox by NVIDIA used in the deep learning field and hosting 4 more NVIDIA Geforce GTX 1080 boards. The theoretical computing throughput is 88 590 Gflops / second in single precision and this computing power is available constantly, for an unlimited amount of time. All GPU boards use an exhaust mechanism based on a blower, allowing an easy installation on different motherboards while maintaining a decent cooling performance for a reasonable price. NVIDIA provide a very efficient BLAS implementation, parallel random number generation algorithms and other libraries and tools that reduce significantly the need of developing low-level computing routines and save development time.

There exist deep neural network frameworks for a particular architecture that implement simple recurrent neural networks with a hyperbolic tangent activation function, while frameworks designed for other computing architecture do not provide a RNN with the same specification. State of the art libraries like Microsoft CNTK or Nvidia CuDNN provide different implementation of recurrent neural network but the training algorithm behind are not clearly specified, includes the training of the recurrent layer instead of the readout only required by our echo state approach or simply use a batch of different algorithm and retain the algorithm and parameter set that gave the best result. Deep learning is a new applied research domain and the most advanced libraries at this day were first released in 2015-2016, one year after the beginning of this thesis. We want to keep the model simple, provide clear explanations of their functioning based on several observations of variables internal or external to the model. It does not include a model of hippocampus replay and these of the shelf models are not necessarily online models. Practically speaking, the amount of code dedicated to a neural network model is about 5-10% of the total code volume of our implementation (approximately 35 000 lines of carefully designed and optimized C++ code) whose added value is more than being the fastest possible implementation of a simple RNN. We propose a flexible solution that allow one to take full advantage of the available computing power in a heterogeneous and distributed system. We chose to rely on the same accelerated linear algebra libraries for CPU and GPU named MKL and CUBLAS and to write custom kernels for implementing functions that do not already exist (for instance the Bayesian place-cell decoding finite element method based on a Gaussian kernel). It is always possible to change the implementation of a model later and use another learning paradigm. Our objective is to test several hypothesis and to explain the internal functioning of a biologically plausible model. Exhibiting the best learning performances possible is not a primary objective but using efficiently the computing power provided by today's modern computing architectures for reducing significantly the time to result is a very valuable advantage.

We will present here the software design of the Temporal Recurrent Network solution. The detailed design part is omitted because it will have required at least 80 pages of pure software engineering. This is not the goal of a thesis manuscript and the following page aim at document the non-trivial and careful design and implementation of a fully asynchronous and distributed neural network simulator that exploits several degrees of parallelism and modern computing architectures while being easily interfaceable with many existing third party simulators. The same simulator can run on a simple laptop or on a modern high performance cluster of computers equipped with the best in slot CPUs and GPUs. It is based on C++ language because of its sophisticated features and its efficiency at execution.

The whole source code is available at https://github.com/NicolasCAZIN/TRN

Use case

The most synthetic and important view in a system design is the use case. Figure 37 summarizes the different services offered by the developed solution in an abstract manner: The main idea is to provide to an experimentalist an easy way to run simulations of neural network models on different architectures: a simple laptop, a robot, a workstation or a cluster. The underlying functionality for providing this ability to execute simulations on a heterogeneous architecture is to schedule simulations on simulators powered by different computing architecture. It also includes a load balancing mechanism not represented here. The ability to preview quickly results is important when designing a numerical experiment and storing the raw results in an easily usable format is essential for extracting valuable observations on an analysis phase. Reading data generated from 3 rd party software like MATLAB is also required for working efficiently in a collaborative scientific work. The experimentalist is required to use a model that works with a given dataset and the model results depend on the parameters and initial conditions. The TRN solution provides a parameter search mechanisms based on simulated annealing for finding a global set of parameters that allows the model to simulate the experiment properly, or to asses that that the problem observed is deeper that a simple parameter configuration issue. A grid search mechanism is also provided for studying the effect of a limited set of parameters on several instances of the model. The elaboration of a model is iterative and requires many trial-error steps. The ultimate goal of the TRN system is to facilitate this tedious work.

Design

We choose to design the TRN solution as a library with different language bindings and a limited number of executables programs, extensible thanks to a plugin system. The architecture is based on the Model View Presenter (MVP) pattern and allows one to easily extend or use TRN. The user sees the View updated by the Presenter and manipulates indirectly the Model by using the interface (see section 2.3.2.1) provided by Presenter, which also conveys events and data generated by the Model. In our case, the user can be a human user that previews the results through observables provided in real time by the model and rendered with a graphical library or it could be another simulator that interacts with TRN by using the same programming interface.

Application Programming Interface

The entry point of the TRN solution is an application programming interface acting as a Facade design pattern and provides to the programmer the tools required for using an extending TRN through a hierarchy of interfaces illustrated in Figure 39. methods for accessing a sequence in a dataset according to a hierarchical pointed notation contained in a standard string. The Search api is used for defining global optimization algorithm supposed to find the optimal set of parameters for a particular experimental condition. The plugin interface provides to the programmer a standard manner of implementing a global search algorithm through a restricted set of methods. The Advanced api is based on the Basic interface and defines the whole set of functionalities accessible to the user. The Callbacks api defines the set of methods that conveys the results provided by a simulator through the arguments of these methods. The plugin interface provides a standard and transparent manner for a program for being called back when a result is available and an action is required. It is possible to attach to the TRN system several plugins implementing the Callbacks interface. They will be evaluated in parallel. The Custom api aggregates the Facade functions required for building custom model parts requiring the user to reply to the request of the simulator. This is used for example for defining a custom encoder model where the next location prediction will be used as a target location for a mobile robot. Once the mobile robot reached this target point, the custom encoder model will provide to the simulator its estimated position through a callback. The plugin interface allows one to extend the TRN system with custom plugins and it uses transparently the Custom api. Only one custom plugin at a time is allowed. The Extended api is based on the Advanced api allows one to define a simulation without necessarily requiring the use of Custom and Callbacks interfaces. It provides the methods for building and running a simulation by encapsulating calls to Extended the api and use when required the functors declared through Custom and Callbacks interfaces.

The Simplified interface provides a unique method named compute() that allows the user to specify a scenario file written in XML, JSON, INI or INFO format. It is a complete simulation procedure that is able to use the full set of methods exposed by the Extended Custom, Callbacks, Search and Sequence apis. It is either possible to provide implementation of these interfaces through C++ functors or by specifying in the scenario file a plug-in implementing the corresponding interface. This is the easiest way to run multiple simulations in parallel and to store the generated results in a compressed and structured file format.

Model

The role of the Model in the MVP architecture is to define a set of objects representing an abstraction of a simulation independent of the implementations, performing the required computations on different computing architectures. We used a Bridge design pattern for allowing the definition of two orthogonal classes' hierarchies named the abstraction and the implementation. The abstraction class hierarchy represents objects that contribute to the definition of a simulation. A Reservoir and its unique concrete subclass WidrowHoff model specify the methods and attributes relative to the simulation of the consolidation model described in Figure 7. Neurons states and synaptic weights aggregates are implemented by a Matrix, Batch or Bundle that are initialized by classes deriving from Initializer. A Loop class allows one to evaluate the Reservoir once trained. Copy is the simplest Loop possible and copies the readout activation pattern in the input layer of the Reservoir. The Custom loop allows one to implement its own Loop by providing a callback function and SpatialFilter represents a loop with an additional representation decoded from the readout activation pattern by a Decoder and encoded before reinjection by an Encoder. Custom represents a user specified encoder and Model is an isotropic Gaussian place-cell model. A Decoder represents a place-cell decoding method. Linear represents the linear decoding method based on the standard dot product; Map is the kernel dot product Bayesian method described in section 2.4 that uses an arbitrary firing rate map and Model is the decoding method that uses the same place-cell model as the Model decoder. A Scheduler computes a Scheduling, which is concatenation of the time indexes of the sequences contained in a training set, represented by the class Set. The Tiled scheduler is the simplest one and consists in repeating several times the contiguous time indexes of an input sequence. Snippets represent the replay model described in Figure 7 and Custom allows the user to specify is own scheduler in a callback. A Measurement performs gather observations either on the readout layer or on the Decoder output. A Simulator holds references to the classes aforementioned and represents one to several instances of the same simulation initialized with different random seeds. This allows one to simulate in parallel several animats on the same computing device. The Message class defines the internal communication interface shared by the abstraction classes implementing an Observer design pattern. All the abstraction classes are implemented by several support classes named Memory, Random and Algorithm that are specific to a computing device. They are owned by a Driver that allows every class from the abstraction hierarchy to be a Bridge and admit either a CPU or a GPU implementation. Thus, a simulator could be instantiated and executed transparently on the computing device available on the target machine. It is possible to extend the supported architectures by writing a supplementary implementation of a Driver. For instance, it could be implementation targeting a modern FPGA or a more generic but less performant implementation based on OpenCL.

Several decorators of a Simulator are available and allow one to instrument transparently and optionally a simulation without affecting the performances when not required. The Performances decorator measures and report the simulation speed in number of cycles per second (Hz) and the achieved computing throughput (single precision Gflops/s), the Scheduling decorator reports the dynamic training set as the time indexes generated by a Scheduler during a training episode. States and Weights report the neurons and synaptic weights of the Reservoir object.

View

The view allows the user to observe data provided by the model and a view component must implement an interface able to decode a formatted stream of data. This stream of data can come from the calling parameter of a user implemented callback declared through dedicated parts of the Application programming interface, or can be a simple hypercube stored into NetCDF or MATLAB format for instance. A 3 rd party software like ParaView or MATLAB might be used for examining the results and adjusting a scenario file that will describe how the controller must be used in order to simulate a particular experiment split in multiple conditions. The only TRN components related to the view part of the model are the plugins called Monitor and Display and they both implement the Callback interface. Monitor provides a simple text summary of the different events generated by the model and Display renders trajectories, neurons rasters and sequence scheduling information. OpenCV is used for its windowing and rendering primitives. The view part is not really developed in TRN and is left to third party software like MATLAB or ParaView specialized in scientific data visualization.

Presenter

The presenter's role is to mediate the user's events captured by the View and Simulators maintained by the Model. A Worker holds zero or several Simulators backed by the same Driver instance. It is particular Node whose role is to receive incoming Messages provided by the Communicator and to translate them into the appropriate Simulator method calls. A Node is a particular Task that maintains a Cache for received data and is implemented by a shared memory mechanism. This allows multiple Node running on the same computer to mitigate the communications by avoiding the Broker to send an already sent data chunk having the same checksum. A Broker is a particular task whose role is to send asynchronous messages to several Nodes represented by Processors whose life cycle and scheduling is managed by a Manager. A Communicator might use a Compressor for reducing the Message traffic between a Broker and its corresponding Nodes. It serializes Messages and establishes a communication channel between a Broker and one or more Node. Messages propagates through a local message queue with a Local communicator, a remote TCP/IP socket with a Remote communicator and over MPI channels with the Distributed communicator. When using a Remote communicator, a Proxy is instantiated instead of a Worker. Its role is to behave like a Worker, but instead of using a Simulator, it will act as a regular Broker by implementing the Node methods with calls to Dispatcher methods. The Dispatcher owns another communicator that establishes a relationship with a Worker. This communicator polymorphism allows one to deploy TRN over a heterogeneous and distributed infrastructure. Worker.exe is an executable that instantiates a unique Worker and a Distributed communicator. It is used for declaring an MPI process that will exploit a particular computing device on a given host. It is also possible to oversubscribe to the same computing device by specifying several times the same computing device on the same host. It might be required for reaching the maximum performance possible in specific cases. Server.exe is an executable that is specifically used when the host executing the Client side software is a lightweight computer with almost no computing power and dedicated to monitoring or recording results. It could be deployed on a remote workstation equipped with several CPUs/GPUs or on a more modest computer that will play the role of the MPI cluster controller while providing a TCP/IP interface. Several deployment examples are described in section 2.3.5.

Components

The MVP architecture described above result in several components and artifacts described in Figure 44: 

Language bindings

TRN4CPP is a C++ interface and provide all functionalities to a C++ program. TRN4MATLAB is a component that allows a MATLAB script to use TRN through the Simplified, Sequences and Basic API (see Figure 45) 

Deployment

The components and artifacts provided by TRN allow the user to launch simulations in various situations while taking advantage of computing accelerators like modern GPUs. The simplest deployment possible is on a laptop computer, equipped with a modest CPU and or GPU. Figure 47 illustrates the relationship between components, interfaces and artifacts. The Client.exe program is invoked on a computer and is configured for using a local communicator, allowing the user to launch multiple simulations on the CPU and GPU at the same time. It is not recommended because a significant part of the CPU time will be dedicated to managing the GPU and it will have the effect of slowing down the GPU simulation. If one or more GPU are used, it is recommended not to use the CPU backend. This deployment also accounts for a standalone workstation equipped with one or more GPUs.

Another use case allows a lightweight or embedded computer to offload the simulations to a remote workstation. This is illustrated in Figure 48. A Remote communicator is used on the laptop instead of the Local communicator in Figure 47. The reference simulator used for producing the results described in section 2.1 was based on an optimized CPU version using SSE4.1 instructions and the 12 cores provided by the Xeon X5675. The theoretical throughput of this CPU is 294 Gflops/s. It was not possible to measure the effective throughput but the simulation speed was measured at approximately 2000Hz. This will be the reference of our benchmark. The new simulator implemented use the notion of mini-batch during the training phase. This result in the usage of several matrix-matrix multiplication instead of multiple matrix vector product computed serially. The matrix vector product is bandwidth limited and it is never possible to reach the theoretical computing throughput because too many global memory accesses (slow) are performed regarding the number of arithmetic operations. The CPU version implemented by the CPU driver of TRN is based on MKL and achieves the following performances:

Train: 2955 Hz @ 9,43 Gflops (1,47x speedup)

Prime: 2184 Hz @ 8,12 Gflops Generate:40Hz @ 192 Gflops

The moderate performance increase of the training phase is due to the use of mini-batch. When using a GTX 1080 with the total drawing power limited to 115%, the maximum throughput an algorithm can reach is 10240 Gflops because of the increased GPU clock. This clock might decrease at one point because the heat produced is too important. This is the maximum peak performance. The same scenario executed on a unique GTX1080 overclocked gives the following performances:

Train: 52847 Hz @ 168,84 Gflops (26,42x speedup)

Prime: 34367 Hz @ 127,72 GFlops Generate: 1156 Hz @ 9746 GFlops

One can notice that the speedup in training is about 26 times quicker than an optimized CPU version and the theoretical throughput is almost reached during the generation phase. This is explained by the fact that an optimized kernel has been developed and the number memory access was minimized regarding to the number of arithmetic operations required. When running the same experiment in a cluster configuration by using all the modern GPU available (8x GTX 1080 and 1x Tesla k40c overclocked, theoretical throughput 88 590 GFlops), the following performances are observed:

Train: 454875 Hz @ 1446.5 Gflops (227,43x speedup Prime: 301005 Hz @ 1081.62 Gflops Generate: 9993 Hz @ 84236 Gflops (95% efficiency)

The cluster is about 227x faster than the original implementation and it is possible to reach the simulation speed of 454 KHz in training mode. The computing throughput is still limited by the matrix-vector multiplication used in the evaluation of neurons states and it is not possible to compute it faster. The generation mode displays a computing throughput of 84236 Gflops, which correspond to 95% of efficiency. It would be difficult to go further in terms of optimization. Even the optimized matrix-matrix multiplication provided by GPU vendors does not reach the theoretical throughput of their devices. The achieved speedup makes possible new investigations requiring orders of magnitude more computing power. The TRN solution is capable of exploiting the computing power provided by a modest development cluster by using all degrees of parallelism available. It is possible to simulate numerical experiments faster by embedding the TRN solution in containers and executing it in a wider cluster but our low latency, moderate computing power cluster having a fixed cost is sufficient for the remaining experiment. 

3.Discussion

We set out to determine how the replay of experienced behavior could allow for a form of optimization of learning, within the behavioral and neurophysiological context of the "traveling salesrat" paradigm. Here, rats are observed to find the most efficient path linking a set of baited food wells, in a surprisingly short number of trials. We hypothesized that the organized replay of recently experienced behavior could allow the rat to amplify its experience, and contribute to the fast resolution of the problem. A major question then concerns how the replay can bias learning towards the optimal solution. During the thesis, we developed a replay algorithm that propagates reward value along the replayed trajectory, thus implementing a form of spatio-temporal credit assignment in a reinforcement-learning context, by biasing replay probability to favor snippets that are on an efficient path to a rewarded location. We then demonstrated how the PFC-like reservoir could learn from this biased distribution of replay in order to consolidate the most efficient path. In the following sections, we situate this work in a broader context and discuss its pertinence within these domains.

The TSP problem is a global optimization problem and the behavior of an agent that is able to solve this problem could be demonstrated with a reinforcement learning algorithm like Q-Learning [START_REF] Sutton | Introduction[END_REF][START_REF] Barrera | Learning Spatial Localization: From Rat Studies to Computational Models of the Hippocampus[END_REF]) by learning the successful action sequence maximizing the expected reward. It requires an explicit discretization of perceptual observables states and an explicit reward but does not require a model of the environment.

Experiments with an animat require defining an embodied and situated agent equipped with sensors and actuators and a behavioral control architecture that relates its perceptions to its actions and allows it to survive in its environment. We defined a sensor model by considering the hippocampus place-field response to a particular location and a transition model by restricting the locations the agent can reach at each time step to a circle around the center of its body. Thus, we defined a simple navigation policy by selecting at each time step the most probable location encoded in the prediction of the next place-cell activation pattern, based on forward and backward random replay of snippets taking into account the notion of reward. By doing this, we defined two generative models. A generative model is "an internal model that encodes the probabilistic relations between states, actions, and rewards. Such a model permits to generate observable data given some other hidden (non-directly observable) parameters, and ultimately permits to estimate the value of a plan" [START_REF] Pezzulo | Internally Generated Sequences in Learning and Executing Goal-Directed Behavior[END_REF]. The first generative model provides short place-cells activation sequences given a stream of sensory input and the associated reward information. It emulates the replay phenomenon observed during awake SPW-R. Snippets are randomly drawn from a replay likelihood estimated with a recursive algorithm based on , described in [START_REF] Sutton | Introduction[END_REF] and implementing a form of reinforcement learning. The snippet replay direction has the effect of propagating the reward forward and backward in time, allowing one to have an estimate of the future reward. The recursive definition allows the generative model to be compatible with a recurrent neural network structure, also found in area CA3 of the hippocampus. Once learnt, the replay generative model is able to produce snippets that reflect the accessible rewards information. When coupled with a stimulus coding a space information, it is thus possible to generate a dynamical training set that represent sub-trajectories associated to a reward. This dynamical training set is used for training the second generative model which is the consolidation model (see Figure 6) implemented by a PFC and ST model (see Figure 7). This model exploits the reservoir's ability to align in neurons state space the activation sequences sharing a common subsequence. This result in the concatenation of overlapping subsequences of place cell activation and when overlapping subsequences reflect the overlapping subsequences related to a reward, it is then possible to concatenate efficient parts of trajectories experienced before. The learning rule is very simple and as opposed to other recurrent neural network model using Backpropagation through time or other complex algorithms, we solved the credit assignment problem by pairing two models, implementable by random recurrent networks.

At this point, multiple efficient trajectories might exist and it is possible to give an account of all the trajectories the agent can generate based on the consolidated knowledge of the trajectories previously encountered and the reward information associated with salient points of these trajectories by simulating several random walks of an agent implementing this generative model. Findings described in section 2.4 provide a link between awake SPW-R and hippocampal memory processes involved in a goal directed behavior. Simulated agents exhibited a behavior suggesting an incremental update of their internal representation of the world, based only on the cumulated and rewarded experiences acquired during the previous trials. Snippet replay allowed the agents to recombine rewarded parts of the previous trajectory and to consolidate a trajectory between feeders that privileges paths between baited feeders. It is possible to consolidate the multiple trajectories that exist between baited feeders by exposing a sequence learning model more often to place-cell subsequences related to a reward. Finally, we studied the TSP, which is a particular optimization problem by implementing a generative model of the optimal sequence with a HC-PFC-ST joint model featuring a particular form of replay during awake SPW-R that emphasizes short rewarding sub-paths. An interesting perspective could be to extend this study by implementing a more comprehensive model of hippocampal replay as characterized in [START_REF] Gupta | Hippocampal Replay Is Not a Simple Function of Experience[END_REF].

Hierarchical hidden Markov model

Reservoir states form a lattice of observable states whose transition probabilities result from the likelihood of a snippet to be replayed. In fact, the PFC model based on reservoir computing allows the model to respect the Markov assumption by maintaining and providing at each time step an account of the recent observable (placecell activation) states. It associates to any stimuli sequence a state that is characteristic of the recent history of stimuli sequence and the mnesic abilities of the PFC model are mainly determined by the number of neurons, the spectral radius (maximum absolute value of the eigenvalues) of the recurrent connectivity matrix and the leak rate that reflects the time constant of the neurons by emulating the resistive and capacitive properties of neurons membrane. Reverse replay (Foster and Wilson 2006b;[START_REF] Ambrose | Reverse Replay of Hippocampal Place Cells Is Uniquely Modulated by Changing Reward[END_REF]) is a potential mechanism to the credit assignment problem encountered in reinforcement learning : In addition of virtually exposing the agent to transitions between locations in both directions as demonstrated in [START_REF] Gupta | Hippocampal Replay Is Not a Simple Function of Experience[END_REF] and in section 2.3, we demonstrated that reverse replay of snippets allows the backward propagation of the reward through the reverse consolidation of place-cell transitions related to trajectory parts emphasized by reward and forward replay emphasizes forward transitions between place-cell patterns [START_REF] Wikenheiser | Decoding the Cognitive Map: Ensemble Hippocampal Sequences and Decision Making[END_REF].

We proposed a hierarchy of discrete time models which could be viewed individually as an autonomous hidden Markov model [START_REF] Markov | Essai d'une Recherche Statistique Sur Le Texte Du Roman 'Eugène Oneguine[END_REF][START_REF] Dugad | A Tutorial on Hidden Markov Models[END_REF][START_REF] Jurafsky | Hidden Markov Models[END_REF]. It is then possible to view the animat model as a hierarchical hidden Markov model [START_REF] Fine | Hierarchical Hidden Markov Model: Analysis and Applications[END_REF] With a fully specified hierarchical hidden Markov model implemented by our joint HC-PFC-ST model, it is then possible to benefit from several algorithms: Forward algorithm: It is possible to evaluate a belief state of the agent at a given time which is the probability of a position at a particular time, given the history of place-cells activation values by applying the forward algorithm on the HHMM. It consists in recursively evaluating the probability of the agent's position given successive place-cell activation patterns. With the help of the forward algorithm on a HHMM, is then possible to: 1. Filter a position by estimating the posterior distribution of current position given all available place-cell activations 2. Predict a position by estimating the posterior distribution of a future position given all available place-cell activations The recursive definition of the forward algorithm allows one to evaluate the belief state of the agent's position given all available place-cell activations (the likelihood of the trajectory) online during navigation and opens the door to online planning. Viterbi algorithm: It is possible to find a sequence of observable states (reservoir states) that reflects a sequence of hidden states (position of the agent) that maximizes the reward and minimizes the walking distance of the agent during a trial by using a Viterbi algorithm [START_REF] Viterbi | Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm[END_REF]. This is a solution to the TSP problem and we demonstrated that our joint HC-PFC-ST model is sufficient for learning a state transition model that does not require an explicit discretization of perceptual (observable) states. Viterbi algorithm rely on the forward algorithm and instead of estimating recursively the posterior distribution of a position at a particular time given all the place-cells activations observed so far, one can estimate recursively the probability of the most probable path to each position given all available observations. Practically speaking a Viterbi algorithm can be implemented by selecting at each time step of a trajectory the location that maximizes the current forward path probability, which is given by the product of the previous forward path probability, the transition probability given by the transition model and the state observation likelihood given by the sensor model. The preplay of place-cell subsequences related to the current location of the agent observed in (Diba and Buzsáki 2007b) could be interpreted as a prospective mechanism playing a role in the evaluation of possible solutions related to the current agent's situation [START_REF] Pezzulo | Internally Generated Sequences in Learning and Executing Goal-Directed Behavior[END_REF]. Since the forward algorithm is recursive, it is possible to maintain an estimate of the current position with the place-cell activations encountered gradually and to evaluate the outcomes of the possible trajectories derived from the current trajectory and the remaining suffixes suggested by the snippets being replayed. Implementing this algorithm in our model would imply to implement the online prospecting mode described in Figure 7 panel C. Forward-backward algorithm: A hidden Markov model relies on parameters transition probabilities and emission probabilities. The standard algorithm for training a HMM and to find the model that explains a given sequence is the forward backward algorithm or the Baum-Welch algorithm [START_REF] Baum | Statistical Inference for Probabilistic Functions of Finite State Markov Chains[END_REF][START_REF] Welch | Hidden Markov Models and the Baum-Welch Algorithm[END_REF]. It is a special case of the Expectation-Maximization algorithm. The algorithm is iterative and consists in 2 successive procedures repeated for each iteration until convergence that can be summarized as follows: 1. Expectation: For 1 < t < T apply the following algorithms:

Forward: The forward algorithm is used in order to estimate the probability of observing t available place-cell activations and being in the current position on time t. Backward: The backward algorithm is also a recursive algorithm on a HMM that is used for smoothing a position by estimating the posterior distribution of a past position given all available place-cell activations. It computes the probability of ending with T-t place-cell activation given the current position at time t 2. Maximization: Update the actual emission and transition probabilities and the initial position distribution estimates by using the results computed in the expectation step There is no trivial link between the forward backward algorithm and the snippet driven learning paradigm we are using for training a random recurrent neural network but in [START_REF] Unkelbach | An EM Based Training Algorithm for Recurrent Neural Networks[END_REF], the authors propose an expectation maximization algorithm training algorithm for recurrent neural network [START_REF] Greff | Neural Expectation Maximization[END_REF] performing a time series prediction task. In [START_REF] Ma | Fast Training of Recurrent Networks Based on the EM Algorithm[END_REF], the authors demonstrate a learning algorithm for echo states networks [START_REF] Jaeger | The 'Echo State' Approach to Analysing and Training Recurrent Neural Networkswith an Erratum Note[END_REF] whose formulation is very close to temporal neural network (Dominey 1995). There exists also a training method based on Kalman filter for training a recurrent neural network [START_REF] Puskorius | Neurocontrol of Nonlinear Dynamical Systems with Kalman Filter Trained Recurrent Networks[END_REF].

We hypothesize that snippet driven learning of a reservoir model fits in this framework. The expectation step, which consists in estimating the joint probability distribution over positions, conditioned on the observed place-cell activation sequences given the current readout synaptic weights, could be implemented by using random replay of snippets in forward and backward direction. The maximization step could be assimilated to the gradient descent procedure used for training readout weights. Finally, the iteration of the expectation maximization algorithm until convergence could be implemented by allowing the snippet driven learning to occur between each trial during several trials, until the generated trajectories converge to an efficient trajectory. This corresponds to the awake snippet replay we modelled and studied. We then propose to extend the snippet driven learning paradigm by integrating the trajectory generated during the previous trial as a part of the awake SPW-R content. An additional exploratory navigation policy might be required and this allows the animat to mimic the rat behavior. This is the subject of a collaborative work with USF Tampa described in section 2.5

Free energy and active inference

Hidden Markov model is a particular case of dynamic Bayesian network. It is possible to describe the animat implementation of a joint HC-PFC-ST model under the light of the free energy framework as a hierarchical Bayesian model (K. [START_REF] Chumbley | Attractor Models of Working Memory and Their Modulation by Reward[END_REF]. By describing our model within a unified framework, it allows one to view the model with a high level of abstraction while relying on correct neurophysiological basis and to extend the model with ad-hoc or neuro-mimetic components for studying other problems that could be explained with an active inference model. An example could be the work accomplished in section 2.6 which relies on the same mixed selectivity property observed in reservoir computing [START_REF] Rigotti | The Importance of Mixed Selectivity in Complex Cognitive Tasks[END_REF]Enel et al., n.d.) or the hierarchical model used in this thesis and illustrated in Figure 6. A collaboration with ISTC CNR had been initiated during a visit (see Rome-ITALY 2017 Presentation) and aims at proving more rigorously that the animat as we modelled it in this thesis learns a generative model minimizing free energy, based on the existing work about free energy based models (Klaas Enno [START_REF] Stephan | Ten Simple Rules for Dynamic Causal Modeling[END_REF][START_REF] Chumbley | Attractor Models of Working Memory and Their Modulation by Reward[END_REF][START_REF] Kiebel | Recognizing Sequences of Sequences[END_REF]K. Friston 2003;K. J. Friston, Daunizeau, and Kiebel 2009;K. Friston et al. 2016;K. J. Friston et al. 2017).

Global optimization

The TSP is a global optimization problem and from this point of view, it is interesting to compare the heuristic implemented in this thesis with existing algorithms able to solve the TSP.

The number of possible sub trajectories combinations is dramatically reduced when taking into account the reward and using reverse replay when training the consolidation model allows one to consider only a nondirected graph problem by virtually exposing the consolidation model to trajectory subsequences in forward and reverse direction. It is necessary but not sufficient for allowing an agent to navigate We had to evaluate the animat's trajectories in non-autonomous mode when reverse replay was required for consolidating solutions derived from sub trajectories in reverse direction. It caused a tendency to revisit feeders already visited and no longer containing food. One needs to implement a preplay mechanism (Diba and Buzsáki 2007b) that will replay snippets related only to future rewards, given the current position of the animat and excluding the snippets associated to a reward perception that minimizes the error with the reward prediction by updating the learning rule of the replay model. It is then possible to realize a Viterbi algorithm that will allow the animat to generate the optimal sequence.

The closest heuristic that solves the TSP is the ant colony system (ACS) [START_REF] Dorigo | Ant Colonies for the Travelling Salesman Problem[END_REF][START_REF] Yang | An Ant Colony Optimization Method for Generalized TSP Problem[END_REF], where multiple agents (ants) deposit an amount of 'pheromones' that is proportional to the length of their tour in the solution space. Each agents moves stochastically according to the concentration level of pheromones in the solution space and increases this concentration level each be releasing more pheromones along the trajectory they just described. The possible shortest routes emerge as the paths following the most concentrated pheromone trails. This is very analogue to the model we developed in this thesis if one considers that an 'ant' corresponds to the simulated agents when establishing a random walk map. The pheromone trail that is shared and built collectively by the ant colony is emulated by the incremental learning of the snippet replay likelihood through multiple replay episodes. The consolidation model allows one agent to generate trajectories related to rewarded paths (analogue to a path along the pheromone trail), either in an offline simulation during the consolidation process, or during an online generation/exploration process that will allow new paths to be discovered/associated and consolidated after the end of the current trial during SPW-R.

Multiple timescale

The recurrent networks we used in our implementation were relative to the same time constant, allowing them to function only in a restricted timescale that matches the intrinsic timescale of the stimuli sequence. We demonstrated multiple rewarded sequences consolidation properties with simplified trajectories displaying a constant speed and thus featuring a single characteristic timescale. Several authors demonstrated the functioning principle and some properties of recursive recurrent neural network [START_REF] Tani | Learning to Perceive the World as Articulated: An Approach for Hierarchical Learning in Sensory-Motor Systems[END_REF]Jaeger 2007;[START_REF] Yamashita | Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment[END_REF]. The main idea is to consider two or three interacting recurrent neural networks having a characteristic timescale (leak rate). It is thus possible to view each network as a time basis: Any stimuli sequence could be decomposed in several spatio-temporal features resulting from one or more timescales. The readout layer can then select the spatio-temporal features correlated to the expected signal with an online and supervised learning rule. Intuitively, it is similar to a wavelet analysis/synthesis process. Learning selects the best time/space basis for representing a high-dimensional stimuli sequence featuring fast and slow variations.

Deep learning

Recent advances in machine learning and the raising computing power of modern computers allowed the emergence of the deep learning as a new applied research field. Briefly, it consists in processing a massive data amount with several hierarchical layers of neural networks, each layer learning more and more abstract representations of the dataset. A particular type of deep neural network is the recurrent neural network (RNN) whose static architecture is similar to the model used in this thesis. RNN are typically trained with a backpropagation trough time [START_REF] Werbos | Backpropagation Through Time: What It Does and How to Do It[END_REF] or backpropagation through structure [START_REF] Goller | Learning Task-Dependent Distributed Representations By\nbackpropagation through Structure[END_REF]. The subject is complex and an entire PhD thesis had been dedicated to the training of recurrent neural network [START_REF] Sutskever | Training Recurrent Neural Networks[END_REF]. The training algorithm we used for the consolidation model as described in 2.4 can be assimilated to a truncated back propagation through time (TBPTT) algorithm, learning only synaptic weights between the output layer and the unique hidden layer. Recurrent weights are never modified. The credit assignment problem inherent to sequence learning is solved very simply by training a replay generative model beforehand. Instead of modifying the synaptic weights of the recurrent connections according to a delayed form of reward, we used a form of algorithm where the time delayed reward information is propagated through the place cell subsequences replay phenomenon observed during SPW-R. The resulting replayed place cell subsequences constitutes a dynamic training set for the consolidation model where only the place cell subsequences related to a reward are represented. This replay model emulates the activations of the hippocampus. The training process of the replay model might involve other areas of the brain, in particular for justifying at least the reward circuit, and the notion of novelty associated to place-cells transitions. At this point, we can state that our model is biologically inspired but is not necessarily biologically plausible. The replay and consolidation model are learnt only during SPW-R in order to elaborate a navigation policy based on a reward estimate. It is a form of reinforcement learning and the use of continuous recurrent neural network allows one to consider continuous sensory and action states and a continuous time (a series of discrete time events separated by a delay that could be arbitrarily small). This model should belong to the deep reinforcement learning [START_REF] Arulkumaran | Deep Reinforcement Learning: A Brief Survey[END_REF]) family of algorithms because it "scales to decision-making problems that were previously intractable, i.e., settings with high-dimensional state and action spaces". The overall model developed in this thesis might be considered as a deep temporal model (K. J. [START_REF] Friston | Deep Temporal Models and Active Inference[END_REF] 

Cognitive maps

We demonstrated that hippocampal replay is a suitable mechanism playing a role in offline consolidation and suggested that online planning could use this mechanism as well. In [START_REF] Pezzulo | Internally Generated Sequences in Learning and Executing Goal-Directed Behavior[END_REF]), a generative model of plan values supporting vicarious trial-and-error and goaldirected behavior is described. We implemented a generative model, implemented by a random recurrent neural network and described as a dynamic Bayesian network. We demonstrated the ability of our joint HC-PFC-ST model to learn a generative model in a compact manner, robust to noise and benefiting from the neural network generalization ability. This work is an empirical attempt to demonstrate the argument developed in [START_REF] Wikenheiser | Decoding the Cognitive Map: Ensemble Hippocampal Sequences and Decision Making[END_REF] where the authors conclude that "sequences play a more active and complex role in information processing than encoding veridical experience. Their role in flexibly manipulating and permuting representations of space to generate novel paths that might aid action selection meshes well with the cognitive map envisioned by Tolman [START_REF] Tolman | Cognitive Maps in Rats and Men[END_REF][START_REF] Johnson | Revisiting Tolman, His Theories and Cognitive Maps[END_REF])"

Piaget schema

The notion of schema had been introduced to cognitive psychology by [START_REF] Piaget | The Child's Conception of the World[END_REF] and [START_REF] Bartett | A Study in Experimental and Social Psychology[END_REF] in their efforts to understand how new information is integrated with pre-existing knowledge.' A schema can be viewed as 'any organized network of overlapping representations that has the following properties:

1. New information is better remembered when it fits within a pre-existing schema 2. New information that challenges schema organization may cause modification of the existing schema or development of a new schema 3. Schemas support novel inferences between indirectly related events and their generalization to new situations.' We demonstrated in 2.4 that it is possible to establish a transitive relationship between parts of trajectories associated to a reward, based uniquely on random replay. The replay model implemented partially by the hippocampus model, proposes associations of rewarded trajectory parts and the consolidation model implemented by a model of prefrontal cortex and striatum, associates overlapping rewarded trajectories by aligning their spatiotemporal representations through the online association of the states of the reservoir's neurons to the prediction of the next input of the consolidation model. Thus, it is possible to replay and consolidation models as the two parts of a schema generative model: Property 1 is ensured by the use of an online and supervised learning rule, which will attempt to incrementally reduce the error between the expected and generated states by adjusting synaptic weights of the readout layer (part of the striatum model) only. A new information that fits an existing schema will be encoded by the reservoir model in an area of the state space that contains state transitions learnt earlier. The required synaptic weight modification will be less important in this case and will be more important with a new information this is not yet related to consolidated (pre-existing) schema. Property 2 is also implemented by the online learning rule of the consolidation model. A challenging new information could be assimilated to an ambiguous state transition of the reservoir model, occurring when at least two overlapping snippets represent the same prefix 2D trajectory and bifurcate in two different direction. A balanced representation of the two snippets by the replay model will result in an ambiguous state transition that could be observed through multiple random walks. The existing schema is modified as the new 'branch' of the possible trajectories is represented and learnt. If this new branch is overrepresented, the readout synaptic weights allowing the prediction of the old schema are progressively modified until the new schema is learnt. Finally, property 3 is implemented by the use of neural networks that have an intrinsic generalization ability. We demonstrated that the overlapping part of different snippets would be encoded in the reservoir neurons state space in similar areas. This allows the model to establish new paths between previously unrelated sub-paths.

Computational psychiatry

The prospective memory mechanism described in Figure 7 panel C was not investigated in this thesis. However, the simulation of future events contributes to the formation of plans and predictions. In (Schacter, Addis, and Buckner 2008b), the authors review "neuroimaging, neuropsychological, and cognitive studies that have examined future-event simulation and its relation to episodic memory" and "consider the applications of this work for research concerning clinical populations suffering from anxiety or depression in which pathological future thinking is a central feature". By extending the model developed in this thesis, one could simulate past and future events associated to positive or negative outcome and simulate the ability of a subject to envision positive events. Other authors proposed to explain hysteria [START_REF] Edwards | A Bayesian Account of 'Hysteria[END_REF]) and psychotic symptoms [START_REF] Adams | The Computational Anatomy of Psychosis[END_REF]) in terms of false inferences or beliefs. They "use a neurobiologically informed model of hierarchical Bayesian inference in the brain to explain functional motor and sensory symptoms in terms of perception and action arising from inference based on prior beliefs and sensory information". The computational model developed in this thesis extended with a prospective memory mechanism and neuromodulation mechanism could be an implementation of a hierarchical Bayesian temporal inference model that are of major interest for the emerging discipline of computational psychiatry as illustrated in (Klaas E. [START_REF] Stephan | Bayesian Inference, Dysconnectivity and Neuromodulation in Schizophrenia[END_REF][START_REF] Valton | Comprehensive Review: Computational Modelling of Schizophrenia[END_REF]. Computational psychiatry has suddenly made it possible to mine data from long-standing observations and link it to mathematical theories of cognition. It's also become possible to develop computer-based experiments that carefully control environments so that specific behaviors can be studied in detail (MIT 2017).
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 1 Figure 1: Panel A shows a picture of the rat performing the TSP related task and panel B represents a two dimensional sketch of the optimal trajectory and the encountered place fields

Figure 2 :

 2 Figure 2: Place cell sequences experienced during behavior are replayed in both the forward and reverse direction during awake SPW-Rs. Spike trains for 13 neurons with place fields on the track are shown before, during and after a single traversal. Sequences that occur during running (center) are reactivated during awake SPW-Rs. Forward replay (left inset, red box) occurs before traversal of the environment and reverse replay (right inset, blue box) after. The CA1 local field potential is shown on top and the animal's velocity is shown below. From (Carr, Jadhav, and Frank 2011).
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 3 Figure 3: A real life representation of the traveling salesman problem: minimizing the distance travelled while joining main U.S. cities TSP can be modelled by a graph where vertices are cities and edges the roads linking cities. A simplified problem featuring only five feeders is represented in Figure 5:

Figure 4 :

 4 Figure 4: A simplified instance of the TSP problem as an undirected graph. Five cities represented by letters A, B, C, D and E are linked by routes, represented by a segment with a width proportional to the distance between its boundaries In the traveling salesrat problem (De Jong et al. 2011) derived from the traveling salesman problem, distances are unknown but instead, each cup containing food (equivalent to cities in TSP) are associated to a reward information. The paths between cups are analogue to roads between cities and become available once visited by the rat across trials. It suggests an incremental update of the knowledge acquired during recent experiment, with a particular emphasis on shortest paths between cups. We propose to study this hypothesis by considering the following elementary experiment illustrated in Figure 5 and other experiments described in 2.4.
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 5 Figure 5: An optimal trajectory between feeders ABCDE is represented in panel A. Panel B, C and D display non-optimal trajectories that contain a sub trajectory of the ABCDE trajectory. The sub trajectory shared with the ABCDE trajectory is displayed in red and the non-optimal parts in blue. Panel B contains the ABCED, panel C the EBCDA trajectory and panel D the BACDE trajectory.

Figure 6 :

 6 Figure 6: Organization of the different functional modules used for defining an animat supposed to mimic the rat's behavior while incrementally solving the TSP problem

  consolidations Memory retrieval, planning, prospection C Sample from HC model (unconstrained) D Coordinated action/perception cycle Self-consistency, model-pruning, homeostasis Predictive processing with sequence prior

Figure 7 :

 7 Figure 7 : OFFLINE modes model learning through STDP during SPW-R between each trial when the animal is decoupled from the actionperception cycle and ONLINE modes model generation of a trajectory based on prior OFFLINE learning and action perception cycles. Panel A shows the hippocampus model learning recursively to generate snippets related to a reward, based on forward and reverse replay of recently experienced place cell activation sequences. Panel B shows the synaptic weights being adjusted in order to allow Striatum model to trigger the appropriate action relative to a stimuli sequence encoded by the Prefrontal cortex model. Panel C and D shows the online modes used during navigation.

  a rest state o Instantiate a model with a fixed set of parameters o Define a training set based on one or more sequences representing the recent experiences of the rat o Train the model by exposing it to a random replay of snippets emulating different features observed and reported in literature. Simulate the next trial, based on the previously acquired knowledge (hypothesis) o Prime the model by forcing its input with the first samples of the expected sequence o Generate a trajectory Autonomously by reinjecting directly the predicted place-cell activation pattern as the input of the next simulation cycle. Non autonomously by injecting the expected place-cell activation pattern as the input of the next simulation cycle. This is used when the model is not sufficient for generating autonomously a sequence. o Gather and record various observables such as: Neural network states Connectivity matrices Time indexes generated by the replay model

Figure 8 :

 8 Figure 8: Internal Representations in the reservoir. Panel A shows the raster of simulated hippocampus place-cell neurons activation over time. Panel B represents the raster of the reservoir's neurons. Panel C depicts the hippocampus, prefrontal cortex and striatum as we modelled them and features a supplementary artificial neuron group called equivalent reservoir whose raster is represented in panel D. An equivalent reservoir neuron represents in fact a principal component, as computed by the PCA algorithm. Panel E represents the raster observed in panel D as a 3D trajectory resulting from the 3 first principal components.

Figure 9 :

 9 Figure 9: Fréchet Distance. Panel A shows the free space diagram used during the computation of the Fréchet distance between ABCED and ABCDE trajectories. X and Y axis represent the discrete steps between points of ABCED and ABCDE trajectories. Z axis relates in meter the coupling distance between two points. The coupling sequence is represented with a blue line following the optimal alignment between the two trajectories (i.e. sequences of points). Panel B represents the paired points of ABCDE and ABCED trajectories. During the common prefix ABC, curves are relatively similar and the paired points are located close to each other. This is related by the diagonal part of the coupling sequence in panel A. Then the diverging parts of ABCDE and ABCED are still paired but we can clearly observe a one to many relationship, near point (0.6,-0.1) and the free space diagram relates it by variations along the ABCED steps axis and no variation along the ABCDE steps axis.

Figure 10 :

 10 Figure 10: The early version of the reservoir model. The snippet replay algorithmic module displayed in red generates dynamically a dataset used for training the model. The blue arrow represents the feedback link used in autonomous generation mode.

Figure 11 :

 11 Figure 11: An extract from a scenario XML file describing a simulation

Figure 12 :

 12 Figure 12: Main panel of the LiveViewer application and widgets controlling model parameters and displaying data plots in real time

Figure 13 :

 13 Figure 13: Use case diagram of the RRNN SimulatorA client/server version of the simulation is also available and is designed for cluster computing. The server part is made of two programs called Backend and Worker. The worker program role is to compute simulations and to send the results when terminated while the Backend program is responsible of the scheduling and life cycle of simulations. The Backend acts as a proxy between Clients and Workers. The client part is called Frontend and its role is mainly to read a scenario file, transmit its contents to the Backend and store or display results when available. Simulated annealing algorithm and grid search algorithms are used for parameter search and a graphical user interface (GUI) and a command line interface (CLI) are available. An algorithm and an interface is selected upon each invocation of the Frontend program.

Figure 14 :

 14 Figure 14:A complex and long stimuli sequence of 44 neurons over 540 timesteps

Figure 15 :

 15 Figure 15: Representation of the transition matrix between symbols of the stimuli sequence

Figure 16 :

 16 Figure 16: Reservoir's neurons states and transitions are represented as a 2D trajectory by displaying the first two principal components of the neurons activation raster.

Figure 17 :

 17 Figure 17: Raster of the readout neurons during training, priming and autonomous generation

Figure 18 :

 18 Figure 18: Raster of stimuli sequences. Random subsequences during the model training and the whole sequence during generation

Figure 19 :

 19 Figure 19: Reservoir neurons when exposed to a random replay of snippets. States are displayed as a 2D trajectories whose coordinates are the two first principal components as computed by the PCA algorithm Overlapping parts of the trajectories are encoded in a similar area and this coherency in the reservoir's state coding allows the readout layer to associate successfully the reservoir's states to the prediction to the next stimulus state as demonstrated in Figure 20:

Figure 20 :

 20 Figure 20: Raster of the readout neurons when exposed to random replay of snippets during training and primed by the whole sequence

Figure 21 :

 21 Figure 21: Heat map representing the relationship between snippet length (Y-axis), snippet number (X-axis) and snippet overlap (color)We observe that only a restricted set of snippet length/number combinations allows a non-zero overlap between snippets. Without intrinsic overlap between contiguous snippets, learning the underlying complete sequence would be impossible because of important missing parts of the whole trajectory in the training set. We define a sequence of 20 neurons activated sequentially during 10 timesteps each and expose our model several times to different combination of snippet number during 100 cumulative learning episodes of 10 training epochs. Based on the constrained relationship between snippet length and snippet number, the snippet overlap is deduced and model performances in non-autonomous mode are displayed in Figure22:

Figure 22 :

 22 Figure 22: Model performances represented as a surface. Snippets overlap and training epochs have an influence on prediction error

Figure 23 :

 23 Figure 23: Input (Panels A and C) and output (Panels B and D) neurons rasters during model training and testing with an additive noise

Figure 24 :

 24 Figure 24: Demonstration of the model's sequence generation ability over multiple timescales while trained at a faster timescale

Figure 25 :

 25 Figure 25: Raster of the readout neurons when trained with snippets sparse snippets and the resulting generated sequence

Figure 26 :

 26 Figure 26: Raster of input neurons when exposed to the whole sequence and to a random replay of snippets of the whole sequence with an additive noiseThe generated sequence is depicted in the output raster in Figure27. The serial structure respected most of the time and we observe wrong predictions emphasized by white circles. The generation still occurs after the wrong predictions.

Figure 27 :

 27 Figure 27: Raster of readout neurons generating the whole sequence and learning the whole sequence from a random replay of sparse, noisy and complex snippets. White circles emphasize ambiguous transitions present in the training set. It reflects the difficulty of this sequence learning task

Figure 28 :

 28 Figure 28: Trajectory performed by a rat (Panel A) and an idealized version (Panel B)

Figure 29 :

 29 Figure 29: Trajectory performed by a rat as captured by the visual tracker. Panel B represents the corresponding place-cell activation pattern raster, panel C shows the gradient modulus of the position, panel D represents the condensed and resampled trajectory and panel E shows The corresponding simplified place-cell activation sequence.For specific demonstration purposes, we propose to use place-cell activation sequences based on the placecell model described above and spline interpolated trajectories satisfying a constraint on the order where the feeders are visited. Figure30Panel B shows a synthetic trajectory where feeders ABCED are visited. Gray

Figure 30 :

 30 Figure 30: Place field model applied to a trajectory and representation of a snippet

Figure 31 :

 31 Figure 31: Trajectories performed by the rat over successive trials

Figure 32 :

 32 Figure 32: Snippet replay likelihood used in the snippet generation procedure.

Figure 33 :

 33 Figure 33: BACDE trajectory and the frequency of different parts being represented through random replay

Figure 35 :

 35 Figure 35: Mean square error histograms for different conditions evaluated in non-autonomous mode

Figure 36 :

 36 Figure 36: Mean square error histograms for different conditions evaluated in autonomous mode

Figure 37 :

 37 Figure 37: Use case diagram of the TRN solution

Figure 38 :

 38 Figure 38: The Model View Presenter architecture used by TRN

Figure 40 :

 40 Figure 40: Class diagram of the overall model simulating multiple animats

Figure 41 :

 41 Figure 41: An example of the monitor plugin displaying performances information on the standard output.

Figure 42 :

 42 Figure 42: An example of the Display plugin rendering multiple trajectories computed by several simulators using 4 GPUs

Figure 43 :

 43 Figure 43: Class diagram of the Presenter layer and related artifacts Two artifacts provide the TCP/IP and MPI connectivity and allow one to adapt the deployment on different and heterogeneous computer architectures mediated by a network:Worker.exe is an executable that instantiates a unique Worker and a Distributed communicator. It is used for declaring an MPI process that will exploit a particular computing device on a given host. It is also possible to oversubscribe to the same computing device by specifying several times the same

Figure 44 :

 44 Figure 44: Component diagram of the TRN solutionThe Client.exe program uses the Simplified interface and allows the user to compute simulations. Simulations could be executed on the same host by using a Local communicator and exploit transparently the computing power of a CPU through the MKL library or the GPU through the CUDA toolkit. It is also possible to offload the execution of simulators on a remote computed through a Remote communicator that will be used also by the Server.exe artifact for acting as a Proxy between the Local communicator of the remote host executing Server.exe and the Remote communicator of the local host executing Client.exe. Worker.exe is deployed and installed on computer nodes being a part of an MPI cluster. Rat.dll simulates a rat by implementing Custom callbacks related to the position and place-cell activation pattern, SimulatedAnnealing.dll and Grid.dll provide global parameter search algorithm by implementing the Search interface. Display.dll is intended to offer a fast graphical preview of results by using OpenCV for implementing the Callbacks interface. MatFile.dll implements the Sequence interface for providing stimuli sequences to TRN from a MATLAB .mat file and implements the Callbacks interface for recording result in a structured .mat file.

Figure 45 :

 45 Figure 45: The TRN4MALTAB component provide to a MATLAB script a limited set of TRN4CPP interfacesTRN4MATLAB is based on the MEX interface provided by MATLAB. Other interfaces involving asynchronous callbacks are not implementable because MATLAB does not support multitasking. TRN4JAVA is the Java binding of most of the TRN4CPP interfaces. It relies on the JNI interface of a Java virtual machine and allows a third party simulator to use TRN and to interact with it through Java interfaces provided by TRN4JAVA. Figure46illustrates the TRN4CPP interface Java bindings.

Figure 46 :

 46 Figure 46: TRN4JAVA allows one to interface a third party simulator (SCS, a robotic simulator from USF Tampa)

Figure 47 :

 47 Figure 47: Deployment on a standalone computer

Figure 48 :

 48 Figure 48: Deployment of a remote Backend for offloading simulations A robot can execute the Client.exe, provide a position estimate and the corresponding place-cell activation and offload the model learning tasks to a remote workstation. It is possible for different Client.exe instances to use the same remote Server.exe. It means that a workstation can handle the computational load of multiple robot. It is also possible to execute a MATLAB script on a modest computer and to offload the computational

Figure 49 :

 49 Figure 49: Cluster deployment of TRN with a TCP/IP ServerIt is then possible to simulate an important number of scenarios in a limited amount of time by using all the computing resources available over a local area network (LAN). The cluster used for producing all the results described in 2.4 and 2.5 is specified by the deployment diagram in Figure50. A lightweight laptop executes Client.exe is responsible for reading the simulations described in scenario.xml and to compute them. Results are stored in a MATLAB mat file and Client.exe communicates through a TCP/IP link with Server.exe executed on the cluster controller as an MPI process. Computing nodes are equipped with one or more computing device and execute several instances of Worker.exe as MPI processes. We propose to evaluate the performances of this cluster by running several simulations in parallel by setting the dimensioning factors evoked in 2.3 and to use the Performances decorator for measuring the simulation speed (number of simulation cycles per second) and the single precision computation throughput (number of single precision floating point

Figure 50 :

 50 Figure 50: Deployment of the heterogeneous Cluster used in this thesis
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Several interfaces are available and they provide to the programmer different levels of complexity, allowing him to implement the tools that participate to the realization of use cases described in Figure 37. The interfaces hierarchy is articulated around asynchronous function calls and several interfaces allow one to exploit the system in a simplified manner while other interfaces allow the programmer to defined extension points, exploited in a transparent manner by the system. It could be described as follows:

The Basic api allows the programmer to instantiate an engine based on a particular computing architecture handled the Backend. It is also possible through this interface to setup the logging subsystem and to access to common support functions allowing one to refer to a particular simulation when calling other interface functions. The base class for the plugin interface is defined here. A plugin is required to implement a standard initialization based on text arguments and uninitialization routine The Sequence api is used for declaring sequences in the system and the plugin interface provides methods that will use transparently the Sequence api and require the plugin programmer to implement 
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