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Abstract

As rats learn to search for multiple sources of food or water in a complex environment, processes of spatial
sequence learning and recall in the HC (hippocampus) and prefrontal cortex (PFC) are taking place. Recent
studies (De Jong et al. 2011; Carr, Jadhav, and Frank 2011) show that spatial navigation in the rat hippocampus
involves the replay of place-cell firing during awake and sleep states generating small contiguous
subsequences of spatially related place-cell activations that we will call “snippets”. These “snippets” occur
primarily during sharp-wave-ripple (SPW-R) events. Much attention has been paid to replay during sleep in
the context of long-term memory consolidation. Here we focus on the role of replay during the awake state,
as the animal is learning across multiple trials.

We hypothesize that these “snippets” can be used by the PFC to achieve multi-goal spatial sequence
learning.

We propose to develop an integrated model of HC and PFC that is able to form place-cell activation sequences
based on snippet replay. The proposed collaborative research will extend existing spatial cognition model for
simpler goal-oriented tasks (Barrera and Weitzenfeld 2008; Barrera et al. 2015) with a new replay-driven
model for memory formation in the hippocampus and spatial sequence learning and recall in PFC.

In contrast to existing work on sequence learning that relies heavily on sophisticated learning algorithms and
synaptic modification rules, we propose to use an alternative computational framework known as reservoir
computing (Dominey 1995) in which large pools of prewired neural elements process information
dynamically through reverberations. This reservoir computational model will consolidate snippets into larger
place-cell activation sequences that may be later recalled by subsets of the original sequences.

The proposed work is expected to generate a new understanding of the role of replay in memory acquisition

in complex tasks such as sequence learning. That operational understanding will be leveraged and tested on a

an embodied-cognitive real-time framework of a robot, related to the animat paradigm (Wilson 1991). The

originality and contribution of our proposed work include:

e the use of awake hippocampal replay to create place-cell activation sequences of valid trajectories
(snippets)

o the use of reservoir computing to learn place-cell activation sequences using inputs generated by the
hippocampus model

e the constraining of the model using electrophysiological data in rats

e the use of the resulting model in an animat

e the use of behavioral data for training the model and comparing the generated trajectories
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1.Introduction

The work accomplished during this thesis focuses on aspects of recurrent neural networks and their dynamics,
and how these dynamics can encode aspects of sequential behavior.

We first propose to consider the problem of an agent exhibiting an efficient behavior and to reduce it as the
problem of generating a correct sequence of sensory-motor association of an animat (Wilson 1991).

We chose to use the reservoir computing framework (Dominey 1995) as a neurobiologically plausible
implementation of a sensory-motor sequences learning capability of a situated agent (Hendriks-Jansen 1996).
Reservoir computing is a computational metaphor of cortico-cortical loops in prefrontal cortex (PFC) and its
principle is based on maintaining a spatio-temporal high dimensional representation of input sequences
through reverberations caused by recurrent connections of PFC neurons. Sensory motor associations are learnt
by a model of Striatum (ST) that acts as a simple readout layer by selecting correlated spatiotemporal features
provided by the PFC model in order to reconstruct a prediction of the input patterns (Rigotti et al. 2010, 2013;
Enel et al., n.d.).

We thus propose in section 0 to evaluate the standard complex sequence online learning paradigm of this joint
PFC-ST model and to extend it by demonstrating that it is possible to concatenate a complex sequence by
learning only from a random set of smaller subsequences of stimuli called snippets. It is possible to explain
this new dynamical property by observing a reduced dimension representation of the PFC model dynamics
when exposed to the whole sequence and subsequences. In (Sanger 1989), the author demonstrates that
generalized hebbian learning computes in fact the linear PCA and it suggests a biologically plausible
implementation for the formation of subspaces relevant for a particular task. We will see in section that it is
possible to model an equivalent reservoir as a linear combination of reservoir’s neurons with a PCA. Learning
readout synaptic weights in this space is equivalent to find the correlation coefficients between the raster of
principal components neurons and expected neurons. It is also a convenient manner of representing
Reservoir’s neurons activations over time. Activation raster of equivalent reservoir neurons are represented as
a trajectory along the two first components of a principal component analysis (PCA). It appears that
trajectories and sub-trajectories of the same stimuli sequence share common sub-trajectories in the reduced
state space and suggest a stationary property of the high dimensional time series provided by the PFC allowing
the sequence learning to occur.

At the same time, in the lab, experiments were being done related to human cortical dynamics during a visual
and narrative comprehension task. We hypothesized that the human brain states observed through an EEG
signal display the same mixed selectivity property as the reservoir and succeeded to explain with the same
PCA analysis technique that it is possible to learn a reliable decoding of sequential coherence for one modality
(images or sentences) only from training data of the other modality. This is explained in more detail in section
2.6.

The key point in both experiments is that projecting the reservoir’s neurons activation time series in a subspace
congruent to a particular task allows one to represent and modify efficiently spatio-temporal data streamed by
a recurrent neural network. It encourages us to formulate the following working hypothesis:

If the recurrent network (or EEG signal) is performing highly similar operations over two successive trials,
then the spatiotemporal patterns of activity (as revealed by PCA. a linear combination a neurons) will be
similar as well.
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In (Preston and Eichenbaum 2013), the authors study the interplay between Hippocampus and Prefrontal
cortex and their roles in the memory consolidation process. Their understanding entails the notion of schema,
‘introduced to cognitive psychology by (Piaget 1967) and (Bartett 1932) in their efforts to understand how
new information is integrated with pre-existing knowledge.” A schema can be viewed as ‘any organized
network of overlapping representations that has the following properties: first, new information is better
remembered when it fits within a pre-existing schema; second, new information that challenges schema
organization may cause modification of the existing schema or development of a new schema; and third,
schemas support novel inferences between indirectly related events and their generalization to new situations.’
Consolidation is understood as a ‘process in which hippocampal networks can link indirectly related elements
(A and C) via the invariant common element (B) and, guided by the prefrontal strategic control of conflicting
associations to create a schema (A-B-C). During subsequent memory expression, a memory cue (‘Are A and
C related?’) engages prefrontal cortex to select the correct schema (A—B—C) within which the hippocampus
retrieves the relevant associations (A—C via B).’

We propose to explain this understanding of memory consolidation with a computational joint model of
hippocampus, prefrontal cortex and striatum (HC-PFC-ST) by revisiting an interesting experiment where
during a navigation task involving a rat searching for multiple sources of food in a closed environment (see
Figure 1, panel A), it has been observed (De Jong et al. 2011) a convergence of the trajectories performed by
the rat towards a short route between rewarded food cups.

Figure 1: Panel A shows a picture of the rat performing the TSP related task and panel B represents a two dimensional sketch of the optimal
trajectory and the encountered place fields

As illustrated in Figure 1, panel B, place-fields' are traversed in a particular order, which is characteristic of
the shortest trajectory between baited feeders®. This trend to generate efficient trajectories is referred to as the
traveling salesperson problem (TSP). The TSP is a classical algorithmic NP-hard problem that requires an
agent to visit a fixed set of locations once, minimizing the total distance traveled.

Sharp wave ripple complexes (SPW-R) occur during awake and sleep states and include the replay of
subsequences of place-cells activation sequences related to the trajectories observed in previous trials (Barrera
and Weitzenfeld 2008; De Jong et al. 2011). In (Gupta et al. 2010), the authors characterize the content of
hippocampus replay and suggest that the activation subsequences generated by the hippocampus during SPW-
R are derived from immediate and remote experiences, feature forward and reverse order of previously
encountered place-cells activations and the reward plays a modulatory role in occurrence of subsequences
contained in a during in SPW-R events. We focus on the role of hippocampus place-cell replay during the
awake state, as the rat generates increasingly efficient trajectories between reward sites across multiple trials.

! Noted P, where n is the corresponding place-cell number.
2 Noted Oy, where k is the feeder number

12



The indirectly related elements mentioned in (Preston and Eichenbaum 2013) corresponds to the rewarded
food cups observed through the associated place-cell activations, the relationship between rewarded food cups
corresponds to sub-trajectories between them. We hypothesize that:
e Hippocampus links rewarded food cups through SPW-R replay of associated place-cell activation
patterns in order to form efficient sub-trajectories
e Prefrontal cortex reconciles the conflicts in associations of efficient sub-trajectories sharing a common
part in order to create an efficient trajectory between rewarded food cups (schema).
We extend our scope to a HC-PFC-ST joint model where the hippocampus model emulates different features
of the place-cell subsequences replay phenomenon observed during awake SPW-R between trials. It aims at:
e Demonstrating dynamical properties induced by the hippocampal replay and the effect of its different
features (Foster and Wilson 2006a; Gupta et al. 2010)
e To assess if an animat embedding the HC-PFC-ST model is sufficient to explain the behavior of the
rat observed in experiments (Wilson 1991; Ball et al. 2010; Foster and Knierim 2012; De Jong et al.
2011; Barrera and Weitzenfeld 2008).
A preliminary work had been done during my master’s thesis about the control of a mobile robot with a chaotic
random recurrent neural network with continuous time (article in preparation, see section Related work). The
learning rule used for associating an action to a sequence of stimuli is related to the recursive estimation of
the covariance matrix between perception and action. It emphasizes the importance of learning sensory-motor
associations upon the detection of a salient event. In that particular case, a salient event is detected by
considering the neuron activation that diverges from the same neuron’s running average. An experiment shows
that a mobile robot controlled by a random recurrent neural network can learn sensory motor associations
from its previous experience and generate motion sequences in compliance with the serial structure of the
stimuli by being exposed to the same stimuli sequence without having necessarily the same temporal structure
(i.e. the same delay between two different stimuli). It suggests that learning during salient events only allows
the model to learn and generate sensory-motor sequences with the same serial structure whilst at the same
time removing the requirement of experiencing the same temporal structure. Learning the salient part of a
trajectory relies in this case on the running estimate of the covariance matrix. Hippocampal replay during
SPW-R occur at a faster time scale than the experienced stimuli sequences and the temporal structure is not a
feature of hippocampal replay (Davidson, Kloosterman, and Wilson 2009; Nadasdy et al. 1999). It suggests
that our joint HC-PFC-ST model will learn salient part of stimuli sequences and hippocampal replay will
enhance several features of the stimuli sequences replayed.

In addition, conceptors (Jaecger 2014) are based on PCA which also rely on the estimate of the covariance
matrix and “help explaining how conceptual-level information processing emerges naturally and robustly in
neural systems”. The principle is essentially the same: Different stimuli entails differently shaped reservoir
state clouds (i.e. different linear combinations of reservoir’s neurons). “The ellipsoid envelopes of these clouds
make conceptors”. “After driving patterns have been stored in the network, they can be selected and stably re-
generated by inserting the corresponding conceptor filters in the update loop. A conceptor could be
implemented by projecting observed neurons into linear neurons that represent conceptors by projecting along
synaptic weights representing the PCA linear combination coefficients. Thus a conceptor is task dependent
and requires a prior training on tasks being evaluated. It remains a very powerful tool that allows a single
neural system to “learn, store, abstract, focus, morph, generalize, de-noise and recognize a large number of
dynamical patterns”.

Estimating the covariance matrix allows one to generate appropriate representations of stimuli time-series
useful, either for explaining neuron dynamics or for altering them in order to solve difficult learning problem.
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It encourages us to use the PCA as a tool for explaining how the dynamics of a recurrent neural network allows
the model to learn multiple and complex sensory-motor associations and help to solve a challenging problem:
the TSP.

1.1.  Prefrontal cortex and hippocampus in rodent navigation

The hippocampus stores information during the acquisition of new memories and these memories are replayed
(in this document, we use ‘replay’ and ‘reactivate’ interchangeably) during sleep as part of a memory
consolidation process (Marr 1971; Stickgold and Walker 2007). Consolidation is believed to involve synaptic
changes in the neocortex reflecting the integration and refinement of memory representations (McClelland,

McNaughton, and O’Reilly 1995; Schwindel and McNaughton 2011) This replay involves neural populations

that were active during a task immediately preceding the sleep period. In (Jadhav et al. 2012), a specific

performance deficit was observed in SPW-R disrupted animals, providing “a causal link between awake
hippocampal SPW-Rs and the spatial memory requirements of outbound trials”. It is possible to characterize
hippocampus replay through the following features:

e Occurrence: Reactivations of specific neural activity patterns during sleep have been observed in several
brain areas including the hippocampus, amygdala, neocortex and striatum (Bendor and Wilson 2012; Carr,
Jadhav, and Frank 2011; Euston, Tatsuno, and McNaughton 2007; Foster and Wilson 2006b; Hoffman
and McNaughton 2002; Ji and Wilson 2007; Karlsson and Frank 2009; Kudrimoti, Barnes, and
McNaughton 1999; Lee and Wilson 2002; Nadasdy et al. 1999; Pennartz 2004; Peyrache et al. 2009; Popa
et al. 2010; Ribeiro et al. 2004; Sutherland and McNaughton 2000; Tatsuno, Lipa, and McNaughton 2006;
Cutsuridis and Hasselmo 2011; Cutsuridis and Taxidis 2013). Other evidence suggests that replay may
also occur during the awake state indicating online memory processes or the planning of behaviors yet to
be performed (Carr, Jadhav, and Frank 2011; Davidson, Kloosterman, and Wilson 2009; Diba and Buzsaki
2007a; Gupta et al. 2010; Jadhav et al. 2012; K. Friston, Breakspear, and Deco 2012; Karlsson and Frank
2009).

e Place-cells: The study of behavioral and neurophysiological mechanisms in rats responsible for spatial
cognition has inspired the development of many computational models of hippocampus place-cells in the
context of goal-oriented learning tasks in robotic systems. Some of the most important models developed
in the past years include those of (Burgess, Recce, and O’Keefe 1994; Sharp, Blair, and Brown 1996;
Redish and Touretzky 1997; Guazzelli et al. 1998; Arleo and Gerstner 2000; P. Gaussier et al. 2002; Filliat
and Meyer 2002; Arleo, Smeraldi, and Gerstner 2004; Milford and Wyeth 2010; Dollé et al. 2010;
Alvernhe, Sargolini, and Poucet 2012; Caluwaerts et al. 2012; Barrera and Weitzenfeld 2008)

e Time cells: In (Eichenbaum 2014), the author distinguishes hippocampus place-cells from hippocampus

time-cells. The latter are characterized by their ability to “parse temporally defined periods into
representations of specific moments (‘time fields’), much as place-cells parse spatially defined
environments into representations of specific locations (place fields)”. Finally, the author suggests that the
fundamental function of the hippocampus is to establish spatio-temporal frameworks for organizing
memories. Place-cells and time-cells are not distinct ‘cell-types’ but instead, the same population of
hippocampal neurons encodes both the spatial and temporal regularities of experience. Hippocampus
place—cells and time-cells are seen as features of hippocampal neurons associated with spatial or temporal
dimensions of the context in which learning occurs.

e Time scale: In the hippocampus, it has been shown that reactivation occurs primarily in a compressed
manner, during the occurrence of fast (150-200 Hz) and short (60-120ms) oscillations called sharp
waves/ripples complexes (SPW-R). Different subsets of cells reactivate in different SPW-Rs, each cell
emitting only a few spikes. The inter-spike interval between reactivating cells is within the range of that
required to induce spike-timing dependent synaptic plasticity (STDP). One hypothesis therefore is that the
sequence of reactivation episodes allows for online and offline synaptic modifications that will eventually
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lead to the consolidation and integration of specific memory items. (Davidson, Kloosterman, and Wilson
2009)

e Reward: Interestingly, the presence of rewards increases replay in hippocampus and ventral striatum
(Lansink et al. n.d.; Singer and Frank 2009), suggesting an interaction between reinforcement learning and
replay. This enhanced reactivation in response to reward could be a mechanism to bind rewarding
outcomes to the experiences that precede them. Awake SPW-R reactivates coherent elements of the
experiences that are associated with the paths to and from the rewarded location. Their findings, in
contrast, indicate that reward plays a special role in modulating the reactivation of cells associated with
recent experiences. Their findings suggest that in the rodent hippocampus, activity following a reward
specifically relates to the sequence of locations the animal traversed on the way to the reward. These
observations indicate that reward increases the likelihood of reactivation for all cells. Therefore, the
specific spatial sequence the animal traversed strongly influences which cells will be active during SPW-
Rs, while the presence or absence of reward modulates the amount and strength of reactivation.

e Direction: Most of the replay events occur in the forward direction (place-cells activate in the same order
as they would activate if the rat was navigating through them), before a movement is initiated, while a
smaller fraction occur in the backward direction at or near reward sites. Interestingly, forward replay was
found to be more directly correlated with the actual path of the animal than backward replay (Foster and
Wilson 2006b; Diba and Buzsaki 2007b)

e Remote: Hippocampal replay is not limited to recent sensory experience and might include events
experienced less recently (Karlsson and Frank 2009; Foster and Wilson 2006b; Davidson, Kloosterman,
and Wilson 2009)

Underlying Neuroanatomy:

The model developed in this thesis provides a possible explanation of mechanisms that allow PFC and
hippocampus to interact to perform path optimization to solve the TSP. This implies functional connectivity
between these two structures. In a recent review of hippocampal—prefrontal interactions in memory-guided
behavior (Shin and Jadhav 2016) outlined a diverse set of direct and indirect connections that allow bi-
directional interaction between these structures. Principal direct connections to PFC originate in the ventral
and intermediate CA1 regions of the hippocampus (Cenquizca and Swanson 2007). Indirect connections
between hippocampus and PFC pass via medial temporal lobe (subiculum, entorhinal cortex, peri- and post-
rhinal cortex) (Delatour and Witter 2002) and the nucleus reuniens (Vertes et al. 2007). Thus while we will
not provide a more extensive review, these studies and reviews allow us to consider that there are anatomical
pathways supporting bi-directional interaction between PFC and hippocampus. The model developed in this
thesis also demonstrates the crucial role of SPW-R replay of “snippets” of previously experienced trajectories
in this sequence consolidation and optimization. While SPW-R replay has more traditionally been examined
during sleep, there is now increasing evidence of its vital role in the awake state, between trials, in spatial
learning tasks (reviewed in (Carr, Jadhav, and Frank 2011)). Figure 2 illustrates awake SPW-R
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Figure 2: Place cell sequences experienced during behavior are replayed in both the forward and reverse direction during awake SPW-Rs.
Spike trains for 13 neurons with place fields on the track are shown before, during and after a single traversal. Sequences that occur during
running (center) are reactivated during awake SPW-Rs. Forward replay (left inset, red box) occurs before traversal of the environment and
reverse replay (right inset, blue box) after. The CAl local field potential is shown on top and the animal’s velocity is shown below. From (Carr,
Jadhav, and Frank 2011).

1.2. Representing sequential behavior in neural networks

Reservoir computing refers to a class of neural network models in computational neuroscience and machine
learning (Mantas LukoSevicius and Jaeger 2009).These systems are characterized by a sparsely connected
recurrent network of neurons (spiking or analog), with fixed connection weights (excitatory and inhibitory).
Because of the recurrent connections, this “reservoir” is a dynamical system that has inherent sensitivity to
the serial and temporal structure of input sequences. Reservoir neurons are connected to readout neurons by
modifiable connections, and these can be trained in different task contexts (e.g. sequence recognition,
prediction, classification). The first instantiation of such models was by (Dominey 1995; Dominey, Arbib,
and Joseph 1995) with the reservoir corresponding to recurrent prefrontal cortical networks, and the
modifiable readout connections corresponding to the corticostriatal projection, with dopamine-modified
synapses These models addressed sensorimotor sequence learning, and demonstrated the inherent sensitivity
of these recurrent systems to serial and temporal structure in motor behavior and in language

(Dominey 1998a, 1998b; Dominey and Ramus 2000; Dominey, Inui, and Hoen 2009; Hinaut and Dominey
2013). Maass developed a related approach with spiking neurons and demonstrated the non-linear
computational capabilities of these systems (Maass et al. 2002). In the machine learning context, Jaeger
demonstrated how such systems have inherent signal processing capabilities (Jaeger and Haas 2004).
Interestingly, these reservoir properties appear to be found in cortex. Electrophysiological studies have
revealed that cortical neurons in primary sensory areas (e.g. V1) have reservoir properties of fading memory
(Nikoli¢ et al. 2009). That is, stimuli presented in the past tend to resonate in the recurrent network and
influence the processing of subsequent stimuli. Equally interestingly, when these networks are exposed to
inputs with multiple dimensions (e.g. target identification, serial order, match/non-match) neurons represent
non-linear mixtures of these dimensions (Dominey, Arbib, and Joseph 1995; Rigotti et al. 2010). Such
nonlinear mixed effects have recently been seen in primate frontal cortex (Rigotti et al. 2013). This argues in
favor of a reservoir-like function in recurrent networks of the cortex in general, and in prefrontal cortex
specifically. We have demonstrated how such recurrent networks can learn about sequential and temporal
structure (Dominey 1998a), including serial order regularities that are expressed in sequence segments
(Dominey and Ramus 2000). However, so far, reservoir computing has not been exploited in terms of its
inherent ability to allow the concatenation of multiple contiguous subsequences into a coherent sequence, thus
addressing a major open question in navigation trajectory learning.

The most prevalent theories of how memories are formed and consolidated rely on dynamic changes in
synaptic strengths and the creation of strongly connected neural assemblies. This hebbian (Hebb 1949) view
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of memory has dominated the field for decades. While there is strong experimental evidence for several
aspects of the theory, there are also significant difficulties that include:

The unclear nature of fast induction and exquisite control of synaptic modification in the presence of

realistic amount of neuronal and synaptic noise and unreliability

The low probability that 2 cortical neurons are in fact connected by synapses
The pluri-functionality of cortical neural networks whereby small groups of cells may be involved in

various and seemingly distinct neural computations in addition to memory formation (how these multiple

functions co-exist with memory is unclear).

1.3. Hypothesis and objectives

We propose to focus on the TSP problem, which is a classical artificial intelligence NP-hard problem that
requires an agent to visit a fixed set of locations once, minimizing the total distance traveled. Figure 3
illustrates the TSP by representing the optimal trajectory linking the main cities in U.S.

Winnipeg
ncouver o
o R
J \—--\‘_\-/ .
North \/\L /s
Dakota /A
pnane Minnesota fois 4l
e Montreal ,.5
DSO ) Wisconsin \\ s, 2 ~ Main
altbts oronto
O Michi
regon Cho i ichigan , q,_./
yoming New York
T |cago .-'
Nebraska indis Pennsylvama
. 7
evada 1 nited States Indigna Y°'k Rh of
a Cologgdo a :
Kansas MisdBuri v m‘a \onnecu
California tucky ~  Virginig New Jg
Los Oklalloma . % =Ssee C':a‘ . Delawarg
Angeles Arife New Maryland
5 . Mexico Dallas Mississippi aroli District of
San Diego o——_Phoenix - na Carolne R C oluimbia
BN Texas GEorgia
I'._\ . San . ha.
R Antonlo ouston
(,Gluf”d \.“ Florida
call
aliegge Monteifey-3 Gulf of 12 943
(C ',r,c,«}l:-' % Mexico
e D s Mexico Havanhlap data ©2014 Google, INEGI

Figure 3: A real life representation of the traveling salesman problem: minimizing the distance travelled while joining main U.S. cities

TSP can be modelled by a graph where vertices are cities and edges the roads linking cities. A simplified

problem featuring only five feeders is represented in Figure 5:
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Figure 4: A simplified instance of the TSP problem as an undirected graph. Five cities represented by letters A, B, C, D and E are linked by
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routes, represented by a segment with a width proportional to the distance between its boundaries

In the traveling salesrat problem (De Jong et al. 2011) derived from the traveling salesman problem, distances
are unknown but instead, each cup containing food (equivalent to cities in TSP) are associated to a reward
information. The paths between cups are analogue to roads between cities and become available once visited
by the rat across trials. It suggests an incremental update of the knowledge acquired during recent experiment,
with a particular emphasis on shortest paths between cups. We propose to study this hypothesis by considering
the following elementary experiment illustrated in Figure 5 and other experiments described in 2.4.
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Figure 5: An optimal trajectory between feeders ABCDE is represented in panel A. Panel B, C and D display non-optimal trajectories that
contain a sub trajectory of the ABCDE trajectory. The sub trajectory shared with the ABCDE trajectory is displayed in red and the non-optimal
parts in blue. Panel B contains the ABCED, panel C the EBCDA trajectory and panel D the BACDE trajectory.

Five cups containing food are laid in an open space and the rat is supposed to experience trajectories illustrated
in panel B, C and D. These trajectories contain a part of the optimal trajectory illustrated in panel A. We will
study how the consolidation of an optimal trajectory (Panel A) can result during awake rest state from a
recombination of non-optimal trajectories containing efficient parts between reward sites (Panels, B, C, D),
supported by a STDP learning mechanism occurring during SPWR.

Several navigations models based on a hippocampus model have been implemented on a mobile robot. In
(Burgess, Recce, and O’Keefe 1994), the authors demonstrate the ability of a mobile robot to reach a single
goal in a simple environment, based only on a hippocampus model featuring place-cells. Recurrent
connections in the hippocampus are not involved nor required in the experiment. A more recent model (Barrera
et al. 2015) uses hippocampus place-cells learnt by hebbian learning driven by kinesthetic information and
visual landmarks. Sensory motors associations required for allowing the agent to navigate are performed with
a Q-learning algorithm (Sutton and Barto 1998) which requires a discrete state space. Another robotic model
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(Hirel et al. 2013) implements neural networks representing enthorinal cortex (EC), HC and PFC in order to
build a cognitive map and solve a multiple goal navigation task.

We thus propose a computational model of hippocampus, prefrontal cortex and striatum that will be embedded
in an animat (Wilson 1991; Filliat and Meyer 2002; Ball et al. 2010) for demonstrating the existence of a
neurobiologically plausible implementation of a heuristic that solves the traveling salesrat problem. Figure 6
represents from a purely modeling point of view the organization of the different functional modules used in
this thesis for simulating a virtual rat:
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Figure 6. Organization of the different functional modules used for defining an animat supposed to mimic the rat’s behavior while incrementally
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solving the TSP problem

The global model is hierarchical composition of other models whose structuration derives from the PerAc
architecture (Philippe Gaussier and Zrehen 1995) could be described as follows:

e An environment model that consists in a 2D free space containing reward sites as illustrated in Figure 4

e An animat that is capable of perceiving the environment through its sensors and to perform an action on
its environment by using its actuators. The relationship between the sensor model and the actuator model
is established the cognition model, allowing the animat to perform actions given a sensory input. No reflex
module linking perception to action in a straightforward manner is used in this study.

o The sensor model is very simple in our case and consists in the perception of the current position
of the animat in the environment in a global coordinate system. It might be replaced by a more
elaborated and realistic model but for the sake of simplicity and a better understanding, we chose
a trivial sensor model.
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o The cognition model establishes dynamical relationships between perceived stimuli and possible
actions. It is implemented by a set of other hierarchical models that might interact. The
relationships illustrated by arrows represents strictly the sufficient model for studying memory

formation mechanisms in this thesis and don’t necessarily correspond to neurons projections
between areas as described in neuroanatomy. A cognitive model could be implemented by an
algorithm, a classifier system (Holland and Reitman 1977), a hidden Markov chain or a neural
network. In our case, the cognitive model is implemented by a hybrid and hierarchical composition
of algorithmic and neural network models:

= A spatial representation model will be responsible of converting the perceived global

position into internal representations suitable for solving the TSP task. It is implemented

by:

A place-cell coding model which provides a place cell mean firing activation pattern
that is characteristic of the perceived position. A 2D Gaussian place cell model is
used but one can also use firing rate maps estimated experimentally and
representing the spatial response of place-cells spatial response measured by
electrodes. It is assimilated to a part of the hippocampus model, not represented
here because it is relative to a neurobiological implementation.

The replay module is implemented by an algorithm that emulates only place-cells
neurons rates and the replay of subsequences of place-cell activations (snippet)
during awake SPW-R as a concatenation. Snippets are characterized by a duration,
modelled by the number of contiguous place-cell activation patterns and a direction,
forward or backward that will be modelled by the increasing or decreasing
numbering of time indices contained by a snippet. A snippet will contain only place-
cell activation patterns encountered during a motion supposed to occur with a
constant speed. This models the time compression phenomenon observed in place-
cell activation subsequences during SPW-R, derived from the place-cell activation
encountered during the last trial and resulting from sensory inputs. Snippets will be
drawn according to a snippet replay likelihood whose distribution might be uniform
when no reward is taken into account or non-uniform and shaped by reward when
available. The role of this model will be to generate subsequences of place cell
activation derived from previous experience and to emphasize parts of trajectories
related to a reward through a non-uniform random replay. Despite the fact that this
part of the model is algorithmic, it admits an implementation based on recurrent
neural networks, also observed in hippocampus (CA3). It is a part of the
hippocampus model.

= A consolidation model learns to predict the next place-cell activation, given a training
dataset generated dynamically by the replay model. The generated predictions reflect the
state-transitions observed in the training dataset and it is possible to emphasize a particular
subset of state-transitions by over representing it in the training dataset. In our case, place-
cell transitions related to a reward are emphasized by the replay module which learn and
maintain a snippet replay likelihood through snippet replay. Consolidation is implemented

by:

A reservoir model will be implemented by the reservoir-computing framework that
emulates cortico-cortical loops through recurrent connections between leaky
integrator neurons, representing only the mean firing rate of non-linear neurons



whose membrane potential time evolution is driven by a time constant resulting
from its resistive and capacitive properties. This defines the prefrontal cortex model
and its role is to combine overlapping parts of snippets replayed at random and build
a transitive relationship between them by aligning the common parts in their
representations.

A readout model implements partially a striatum model. Readout model is supposed
to select spatio-temporal features provided by the reservoir through learning in
order to learn a desired output. In our case, the desired output is a prediction of the
next place cell activation that encodes the next location of the animat.

= A policy model associates the prediction of the next place-cell activation to the action that

is the most likely to realize the prediction. Possible actions are command signals compatible
with the animat possible moves. It is based on three other sub models:

A place-cell decoding model that will provide a 2D map of probable locations given
the place-cell prediction generated by the readout layer.

A transition model that restricts the 2D location map is restricted to areas reachable
by the animat given and estimate of its current position.

A selection model that will select the most probable location in the restricted 2D
location map.

o The actuator model is also very simple and consists in moving the agent to the predicted position.

This emulates a rudimentary sensory motor loop and might be viewed as a form of embodiment. In this model
presented as a hierarchy of other models, some models are implemented by neural networks (HC, PFC, ST)
and their interactions and functioning modes are not clearly specified. In (Pezzulo, Kemere, and van der Meer
2017), the authors provide a schematic illustration of different functioning modes of their model within an
overall architecture for PFC-HC interactions. We propose to adapt this illustration to our joint HC-PFC-ST
model in Figure 7 in order to describe the different modes used by our model for solving the TSP problem.
The experimental protocol we use is inspired by (De Jong et al. 2011) and is defined as follows:
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The rat/animat performs one or more trials by making an attempt to solve the TSP problem, based on
the actual state of its model. In the case of an animat, one or more already existing trajectories are
simply added to a dataset that will be used as a basis for generating snippets.
The rat/animat is put in an awake resting state at the same location before each next trial by enclosing
him in a small and opaque space, preventing him from moving or seeing the arena where the next trial
will occur. At this point, SPW-R events occur and small sequences of recently experienced place-cell
activation patterns are replay. This contributes to the incremental update of two models and correspond
to the two offline modes where recent experience is replayed through SPW-R events and models
updated trough a STDP mechanism:

o The replay (snippet generation) model, implemented by our hippocampus model (HC) and

illustrated in panel A by a dashed ellipsis. The reward information is propagated according to

a power law to adjacent timesteps in a direction relative to the replay direction. The model is

defined recursively and is described more in details in section 2.4.
The consolidation model implemented by the reservoir (PFC) and the readout (ST) layer and

illustrated in panel C, associates a particular state to a place-cell activation sub sequence. This
state is associated incrementally though an online learning rule to the next place-cell activation

neurons.

pattern. The dashed arrow represents the synapsis projecting reservoir neurons in readout



e Then the rat/animat behaves freely based on its newly acquired and consolidated knowledge
(hypothesis) and performs one more attempt to solve the TSP problem. This online mode is illustrated
in panel D and is viewed as a coordinated action perception cycle repeated several times in order to
form a trajectory. The decision taken at a given time will result in a new perception.

OFFLINE (during awake SPW-R) ONLINE (behavior)
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Figure 7 : OFFLINE modes model learning through STDP during SPW-R between each trial when the animal is decoupled from the action-
perception cycle and ONLINE modes model generation of a trajectory based on prior OFFLINE learning and action perception cycles. Panel A
shows the hippocampus model learning recursively to generate snippets related to a reward, based on forward and reverse replay of recently
experienced place cell activation sequences. Panel B shows the synaptic weights being adjusted in order to allow Striatum model to trigger the
appropriate action relative to a stimuli sequence encoded by the Prefrontal cortex model. Panel C and D shows the online modes used during
navigation.

The mode illustrated in panel B corresponds to the preplay phenomenon observed during SPW-R when the
rat is performing the task. SPW-R are shaped by current sensory input. The snippet preplayed during behavior
are samples from the replay model relevant to the current task. It represents the future possible suffix
trajectories, given the trajectory accomplished so far. It might be viewed as a prospective mechanism and can
be used for online planning/inferencing by selecting the action associated to the most rewarding prefix snippet,
suggested by preplay. We won’t use this mode in this thesis and we focus on the consolidation of salient part
of multiple and rewarded trajectories.

Our claim is that it is possible to observe the emergence of the optimal trajectory as a recombination of salient
parts of trajectories experienced during past trials. The heuristic that supports this demonstration is
biologically plausible and implementable by neural networks.

Working hypothesis are summarized as follows: An agent able to move freely within a restricted range in an
environment without obstacles is controlled by a neural network model. This model includes a model of
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hippocampus that will emulate forward and reverse hippocampal replay modulated by a form of reward
observed during awake SPW-R. A PFC model based on reservoir computing will evaluate the hypothesis that
awake hippocampus replay between trials plays a role in long term memory consolidation and allows the agent
to take advantage of its previous experience from trial to trial. The ST model will allow the agent decode
predictions from the PFC and contribute to an action, supposed to minimize the difference between the actual
and predicted position of the agent.

2.Contributions

All the contributions in this thesis aim at investigating the role of hippocampus replay during SPW-R in
memory consolidation process through simulations of models of neural networks based on neurophysiology
supposed to implement a heuristic able to solve the TSP problem. These are models and do not necessarily
reflect or emulate the complete set of observed anatomical features. We start from the simplest model possible
of the memory consolidation process through awake SPW-R and implement only the features that allow the
model to mimic the rat’s behavior while solving the TSP problem. The PFC-ST model illustrated in In Figure
8 panel C is based on a recurrent neural network of leaky integrator neurons having fixed recurrent
connections. Information is processed dynamically through reverberations caused by the recurrent
connections. When the network is exposed to an input sequence like a place-cell activation sequence illustrated
in panel A, the reservoir neurons activation pattern sequence is difficult to understand (see panel B). The
readout layer associate reservoir states to an expected output through a supervised online learning rule. In this
thesis, the expected output will be the place-cell activation contained by the next sample within a snippet.

We propose to use a singular value decomposition of the raster observed in panel B for implementing a
principal component analysis (PCA) illustrated in panel D. It can be viewed as another layer of linear neurons
whose firing rate is a linear combination of reservoir neurons. This additional layer is called the equivalent
reservoir and the linear combination is chosen such that equivalent neurons provide the most orthogonal
possible information. These ‘orthogonal’ neurons might be viewed as different axes spanning a subspace and
they are called principal components. The first neuron will account for most of the information provided by
reservoir neurons, while other neurons will account for a decreasing proportion of the remaining information.
Thus it is possible to represent the neurons activations as a 2D/3D trajectory as illustrated in panel E and to
observe them rather than the raw raster in panel B. Note that if one attempts to learn synaptic weights
projecting the equivalent neurons into the readout neurons, he will find the Pearson correlation coefficients
(Pearson 1896). It is an interesting equality which might be reformulated as: The readout selects iteratively
spatio-temporal features of a stimuli sequence provided by the reservoir, correlated with the expected signal
used in supervised learning.

We use a simulation based approach and the experimental protocol is always the same and a trial in one
experiment is defined by:
e Simulate the awake SPW-R snippet replay when the rat is in a rest state
o Instantiate a model with a fixed set of parameters
o Define a training set based on one or more sequences representing the recent experiences of
the rat
o Train the model by exposing it to a random replay of snippets emulating different features
observed and reported in literature.
e Simulate the next trial, based on the previously acquired knowledge (hypothesis)
o Prime the model by forcing its input with the first samples of the expected sequence
o Generate a trajectory

24



= Autonomously by reinjecting directly the predicted place-cell activation pattern as the
input of the next simulation cycle.

= Non autonomously by injecting the expected place-cell activation pattern as the input
of the next simulation cycle. This is used when the model is not sufficient for generating
autonomously a sequence.

o Gather and record various observables such as:

* Neural network states

* Connectivity matrices

* Time indexes generated by the replay model
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Figure 8: Internal Representations in the reservoir. Panel A shows the raster of simulated hippocampus place-cell neurons activation over time.
Panel B represents the raster of the reservoir’s neurons. Panel C depicts the hippocampus, prefrontal cortex and striatum as we modelled them
and features a supplementary artificial neuron group called equivalent reservoir whose raster is represented in panel D. An equivalent reservoir
neuron represents in fact a principal component, as computed by the PCA algorithm. Panel E represents the raster observed in panel D as a 3D
trajectory resulting from the 3 first principal components.

It is thus possible to extract representations from the recorded data as depicted in Figure 8 for example. Some
representations might be meaningful and will allow one to explain the phenomenon observed through the
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representations. The model will be adjusted based on the numerous and informative observations until the
model is able to predict and explain expected observations having a higher level of abstraction. This very
general process describing the scientific approach can be as well implemented by different models in a
hierarchical manner, exactly as illustrated in Figure 6. The free energy/active inference framework (K. Friston
2009) is an elegant, rigorous and unifying theoretical framework that allows one to create or extend
hierarchical Bayesian models of the brain (K. Friston 2008; Pezzulo, Rigoli, and Friston 2018). We will make
a particular effort to formulate our models, measures and explanations in order to be easily translatable in
Bayesian equations.

From the top level of abstraction (behavior), a very useful metric for comparing trajectories regardless their
phase locking and dimensionality (2D trajectory, place-cell activation sequence, neurons rasters) is the Fréchet
distance. Figure 9 illustrates the Fréchet distance between sequences ABCDE and ABCED also observed in
Figure 5. In each experiment, the trajectory generated by our model is compared to the optimal/idealized

sequence with a Fréchet distance.
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Figure 9: Fréchet Distance. Panel A shows the free space diagram used during the computation of the Fréchet distance between ABCED and
ABCDE trajectories. X and Y axis represent the discrete steps between points of ABCED and ABCDE trajectories. Z axis relates in meter the
coupling distance between two points. The coupling sequence is represented with a blue line following the optimal alignment between the two
trajectories (i.e. sequences of points). Panel B represents the paired points of ABCDE and ABCED trajectories. During the common prefix ABC,
curves are relatively similar and the paired points are located close to each other. This is related by the diagonal part of the coupling sequence
in panel A. Then the diverging parts of ABCDE and ABCED are still paired but we can clearly observe a one to many relationship, near point
(0.6,-0.1) and the firee space diagram relates it by variations along the ABCED steps axis and no variation along the ABCDE steps axis.

It allows a global optimization algorithm to find an optimal set of parameters for instantiating an overall model
able to perform in the required conditions (see section 2.4).

2.1.  Proof of concept

The reservoir-computing framework allows complex sequence learning and generation at the price of several
parameters that might interact between each other in manner that is difficult to characterize and exhibit
unforeseen dynamic properties. Dynamic properties of snippet replay are exactly what we want to observe.
Some guidelines about echo state network have been written (Mantas LukoSevicius and Jaeger 2009) and are
a good starting point. For going further on the particular problem of sequence learning through random replay
of snippets, we need to write a simulator of our model that provides to the user the ability to modify parameters
and to observe quickly the effects of a parameter change on the screen. We propose to write an interactive
simulator based on C++/QT and to explore snippet driven learning properties of a joint PFC-HC model
illustrated in Figure 10.
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Figure 10: The early version of the reservoir model. The snippet replay algorithmic module displayed in red generates dynamically a dataset
used for training the model. The blue arrow represents the feedback link used in autonomous generation mode.

2.1.1. C++/QT simulator

The idea behind this simulator was to provide an interactive and easy to simulator the user, allowing him to
play with the model and its parameter in order to build an intuition on the model functioning. C++ language
and the QT graphical user interface toolkit (GUI) were chosen for their robustness, performances and
versatility, required for writing an interactive and responsive simulator. Boost library is also used for various
utility classes.

The design is based on interdependent tasks executed in a particular order. From a modeling point of view,
any simulation admits an equivalent graph representation where vertices are the tasks and the edges are the
dependencies between tasks. A simulation is fully described by a scenario xml file where tasks and their
dependencies are declared. An example of a simulation description can be found in Figure 11 :
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<Process typs="Weights" name="Feedforward" sta="@feedforward gain" alpha="1">
<Data name="pre" rsf="Input"/>
<Data name="post" ref="Reservoir"/>
<WeightsInitializer type="Uniform" name="input initializer" a="-1" b="1" secsd="Gseed"/>
<!-— <WeightsInitializer type="Gaussian" name="input initializer" mean="0" stddev="1" seed="@ssed"/>-->
<NeuromodulationInitializer type="Constant" constant="1" />
</Process>

<Process type="Weights
<Data name="pre"
<Data name="post" r
<l-- <WeightsInitializer type="Uniform" name="reCurrsnt initializer” a="-1" b="1" sesd="@ss=d” />-->
<WeightsInitializer type="Gaussian" name="recurrent initializer" mean="0" stddev="@recurrent stddev" input="Reservoir" ssed="gseed" />

Recurrent” sta="@recurrent gain® alpha="1">

<NeuromodulationInitializer type="Constant" name="recurrent neuromodulation" constant="1" />
</Process>

<Process type="Weights" name="Readout” >
eservoir” sink="x"/>

<Data name="post" ref="Outpat" sink="x"/>

<NeuromodulationInitializer type="Constant" constant="1" />

<WeightsTnitializer name="readout_initializer" type="Uniform" a="@readout_a" b="readout b" ssed="Gssed" />
</Process>

<Process type="Weights" name="Loop" alpha="0" sta="1">
<Data name="pre" I ontput”/>
<Data name="post" ref="Reservoir"/>
<NeuromodulationInitializer type="Constant" constant="1" />

<WeightsInitializer typs="Copy">
<Data name="src" ref="Feedforward"/>
</WeightsInitializer>
</Process>

<Process type="Weights" name="Feedback" alpha="1" eta="1">
"Output"/>
<Data name="post" ref="Reservoir"/>

<Data name="pre" ref=

<NeuromodulationInitializer type="Constant" constant="1" />
<WeightsInitializer type="Uniform" a="-1" b="1" seed="Gseed"/>
</Process>

<Process type="Rule" subtype="LMS" name="rule" epsilon="1" skip="1">

<Data name=' ="Readout" />

<Data nam ="x1"/>

<Data name=" r " sink="x1"/>

<Data name="desired" ref="Stimulus"/>
</Process>

<Actor type="Trainer" name="train" threshold="train_th" epoch="gtrain_epochs" stimzlus="Stimulus" decrease="Gdecrease"/>
<Actor type="Tester" name="test" preamble="@preamble" epoch="Etest_epochs" stim:lus="Stimulus" >
<Data name="measure" ref="error" sink="relative"/>
</Actor>
<Actor type="Evaluator" name="evaluate" rounds="evaluation rounds" >
<Actor type="Ref" ref="train"/>
<Actor type="Ref" ref="test"/>
</Actor>

Figure 11: An extract from a scenario XML file describing a simulation

A task is the base class of a process or a widget. A process processes incoming data from its input sinks and
writes the result on its outputs. An example of a process is a neuron layer, a running average or a stimulus
generator.

A widget represents incoming data in a particular format on the screen and is attached to the main panel as
depicted in Figure 12. A very useful widget is the object explorer which allows the user to display and modify
the parameters of the model while computing. Other widgets are classic XY plots, bar plots, histograms and
rasters. All widgets are instantiated in containers whose layout is also configurable in the xml scenario file.

The simulator is available as a standalone version called LiveViewer. It is mainly used for fast prototyping of
simulations by combining building blocks and observing the effect of a parameter change.
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Figure 12: Main panel of the LiveViewer application and widgets controlling model parameters and displaying data plots in real time

The graphical user interface allows the user to limit the simulation speed in order to observe fast paced
phenomenon and a step by step button allows one to run compute one simulation cycle each time the button
is pressed. It is also possible to switch between training and test mode with a simple click at any time.
Automation allows the user to specify program parts called Actors that will act on the interface like a regular
user. For example, the learning rate of the model can be set to zero during the test stage and the constant
controlling the amount of input signal from the stimulus and the feedback signal from the readout layer
projected on the reservoir can be adjusted according to a ramp which is a function of the time. Figure 13 shows

the possible uses of the simulator :
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Figure 13: Use case diagram of the RRNN Simulator

A client/server version of the simulation is also available and is designed for cluster computing. The server
part is made of two programs called Backend and Worker. The worker program role is to compute simulations
and to send the results when terminated while the Backend program is responsible of the scheduling and life
cycle of simulations. The Backend acts as a proxy between Clients and Workers. The client part is called
Frontend and its role is mainly to read a scenario file, transmit its contents to the Backend and store or display
results when available. Simulated annealing algorithm and grid search algorithms are used for parameter
search and a graphical user interface (GUI) and a command line interface (CLI) are available. An algorithm
and an interface is selected upon each invocation of the Frontend program.

Communications between Frontend and Backend use a TCP based text protocol and communications between
Backend and Workers are implemented with MPI. CPU is used most of the time for computing tasks and some
computing power demanding tasks are offloaded to a GPU.

Source code is available on GitHub at https://github.com/NicolasCAZIN/RRNN

2.1.2. Complex sequence learning

We propose to demonstrate that the reservoir computing model we use is able to learn and generate correctly
long and complex stimulus sequences with a standard training method.
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Figure 14:4 complex and long stimuli sequence of 44 neurons over 540 timesteps

The stimulus at each timestep consists in 44 neurons activated with a serial temporal structure. Each neuron
is activated during 10 timesteps and this elementary activation pattern is represented by a red square in Figure.
The state of a given neuron is determined at least by the last 10 steps. The first 10 neurons have two different
predecessor and successor neurons activated at different timesteps and the total length of the sequence is 540
steps. This sequence is called a complex sequence because it is characterized by several ambiguous transitions
between neurons states. Figure 15 shows the transition probabilities between each neurons :
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Figure 15: Representation of the transition matrix between symbols of the stimuli sequence

The activation pattern of the stimulus might be seen as a state transition function where both states and actions
are activations values. The 10 first neurons exhibit ambiguous transition since their state are not uniquely
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determined by their previous state. This learning problem cannot be solved without maintaining a form of
context that will allow the association of a particular state of a neuron to a limited history of the states of other
neurons. This is exactly the purpose of the cortico-cortical loop modelled by the recurrent connections in the
reservoir computing framework. It is a form of fading memory that allow the state of the modelled prefrontal
cortex to represent a context within a limited time line of sight. Intuitively, if the duration of the context
required by the serial structure of the stimulus sequence fits in the short term memory implemented by
recurrent connection, then the learning of a complex sequence is reduced to the learning of a simple sequence
having the same number of steps but a higher number of meta-states resulting from the conjunction of
successive stimulus states. This is illustrated in Figure 16:

PCA snippets trajectories

Figure 16: Reservoir’s neurons states and transitions are represented as a 2D trajectory by displaying the first two principal components of the
neurons activation raster.

This simpler problem is easily solved by exposing the reservoir model several times to the input activation
sequence and associating incrementally the reservoir's state to the expected output activation sequence by
modifying the synaptic weights of the readout layer according to the delta rule. When evaluated, the model is
primed with the 30 first steps of the expected sequence and then the predicted neurons states are reinjected as
the next input of the model until the end of the expected sequence is reached. The resulting activation pattern
is similar to the expected sequence as depicted in Figure 17:
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Figure 17: Raster of the readout neurons during training, priming and autonomous generation

The serial and temporal structure of the target sequence are reproduced but the sharp transitions from 0%
activation to 100% activations cannot be reproduced by the model. This is explained by the time constant of
the model which have been tuned for capturing the slow variations between each neuron (1 state change every
10 steps). Recurrent connections act like a running average and the side effect is to smooth the stimulus
sequence along the time axis. This demonstrate the model's ability to learn and generate an arbitrarily long
and complex sequences of neuron activation patterns.

2.1.3. Learning from random replay

As stated in, the main hypothesis in this work is that random replay of hippocampus place-cells subsequences
during SPW-R plays a role in awake memory consolidation. We propose to model the snippet replay by
exposing the model during learning to random subsequences of the target sequence. Each subsequence has a
fixed length of 50 timesteps and relates the successive activation of 5 different neurons during 10 timesteps.
19 input neurons are modeled by a binary 0% or 100% mean firing rate and are labelled by letters A to S. The
1000 neurons of the reservoir are exposed to subsequences derived from the target sequence
ABCDEFGHIJKLMNOPQRS selected at random according to a uniform distribution. Figure 18 relates
subsequences and the target sequence:
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Figure 18: Raster of stimuli sequences. Random subsequences during the model training and the whole sequence during generation

We propose to compute the PCA trajectories of the reservoir's neurons when exposed to the subsequences. It
appears that overlapping parts of subsequences (for example EFGHI and GHIJK) overlaps in the reservoir’s
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neurons state space represented along the two first principal components in figure. Even when replayed at
random, each subsequence is represented or encoded in a similar manner by the reservoir.

If the timescale supporting the stimuli is sufficiently slow compared to the timescale of the reservoir, then the
mnesic ability of the network will be exceeded before the end of a subsequence. The context will fade out
quickly and two sequences having a different prefix will result in a similar trajectory after a sufficiently long

delay. This dynamic property is illustrated in Figure 19 and results in the alignment of multiple sequences.
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Figure 19: Reservoir neurons when exposed to a random replay of snippets. States are displayed as a 2D trajectories whose coordinates are the
two first principal components as computed by the PCA algorithm

Overlapping parts of the trajectories are encoded in a similar area and this coherency in the reservoir's state

coding allows the readout layer to associate successfully the reservoir's states to the prediction to the next

stimulus state as demonstrated in Figure 20:
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Figure 20: Raster of the readout neurons when exposed to random replay of snippets during training and primed by the whole sequence

The model is able to autonomously generate an ascending sequence, based only on a random replay of
ascending subsequences. An ascending sequence is a simple sequence without any ambiguous transition. The
recurrent connections are not required for solving this simple problem and it was only the first step for
validating the sequence learning driven by a random replay within the reservoir computing framework.

2.1.4. Overlap

As demonstrated previously in Figure 19, the consolidation from random replay of snippets relies on the
overlap of subsequences in the reservoir's neurons state space. We propose to characterize empirically the
conditions on overlap that allow the snippet replay driven learning to occur. A replay episode is characterized
by a duration T, the number of snippets N and their length L. We consider a fixed time budget of T time steps
allocated to snippet replay. Several combination of subsequences of different length are possible and we show
in Figure 21 the constrained relationship between the number of snippets of fixed length that could be replayed
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during T timesteps and the resulting overlap between snippets (i.e. the number of samples shared by two given
snippets)

160

B
1=

3
g

100

snippets length
snippets overlap

a
2 4 ] 8 10 12

snippet number

Figure 21: Heat map representing the relationship between snippet length (Y-axis), snippet number (X-axis) and snippet overlap (color)

We observe that only a restricted set of snippet length/number combinations allows a non-zero overlap
between snippets. Without intrinsic overlap between contiguous snippets, learning the underlying complete
sequence would be impossible because of important missing parts of the whole trajectory in the training set.

We define a sequence of 20 neurons activated sequentially during 10 timesteps each and expose our model
several times to different combination of snippet number during 100 cumulative learning episodes of 10
training epochs. Based on the constrained relationship between snippet length and snippet number, the snippet

overlap is deduced and model performances in non-autonomous mode are displayed in Figure 22:
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Figure 22: Model performances represented as a surface. Snippets overlap and training epochs have an influence on prediction error

epochs

It shows that a for a fixed set of parameters, a minimum exposure time to random replay and a minimum
overlap between snippets are required in order to reach a low error level. The minimum is reached for a
maximum exposure time and a maximum overlap. A particular case of snippet scheduling which is a unique
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snippet whose duration equals the duration whole sequence. We are not interested in this case which is
equivalent to the classical sequence learning paradigm.

2.1.5. Noisy conditions

The consolidation from random replay benefits from the robustness against noise of the neural networks. We
demonstrate in Figure 23 that a snippet replay altered with a strong noise (-3dB in panel A and -8 dB in panel

C) still allow the consolidation of the target sequence (respectively panels B and D).
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Figure 23: Input (Panels A and C) and output (Panels B and D) neurons rasters during model training and testing with an additive noise

2.1.6. Reliability over multiple time scales

Awake SPW-R replay occurs after a trial at a faster timescale than the stimuli experienced during the trial.
We propose to model that by a neuromodulation mechanism. The stimulus sequence is learnt from random
replay of subsequences with 10% noise added and when evaluating the model for generation, the model is
primed with the beginning of the sequence. This is illustrated by Figure 24 panel A. The model is then put
into autonomous mode by reinjecting the prediction of the readout layer as an input of the reservoir for the
next timestep. The propagation delay between neurons is globally modified by changing the leak rate that
reflects the resistive and capacitive properties of each neurons of the reservoir. In panel B we can observe the

correct generation for a leak rate factor of {1, % , i} Panel C includes factor % and panel D 1—16. This property has

12
been evaluated up to factor equals to (%) (i.e. 4096 times slower than the modelled random replay).
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Figure 24: Demonstration of the model ‘s sequence generation ability over multiple timescales while trained at a faster timescale

2.1.7. Sparse snippets replay

It had been observed that during SPW-R, hippocampus place-cells are replayed as a subsequence featuring
the serial order encountered during the training and missing place-cells in a snippet could be observed. We
propose to verify the robustness of our PFC-ST model by exposing it to a random replay of snippets featuring
missing place-cells in each snippet. Figure 25 shows a raster of the readout neurons when exposed to a random
replay of altered snippet and the generated ascending sequence:

Output raster
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Current time

Figure 25: Raster of the readout neurons when trained with snippets sparse snippets and the resulting generated sequence

Despite the fact that the generated sequence features missing place-cells in some parts, the information
conveyed through the recurrent connections implements a form of short term memory that allow the
consolidation of the complete sequence and the generation to occur until the end of the sequence.

2.1.8. Consolidation of complex sequences

We have demonstrated that it is possible to learn a simple sequence from a random replay of snippets even in
noisy conditions. A more challenging task for our model is to learn a complex sequence from a random replay
of snippets in noisy conditions.
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We use the same input sequence as in section 2.1.2 and configure a random replay of snippets with a 10%
additive noise and one random missing place-cell activation during 10 timesteps for every snippet replayed.
It is illustrated in Figure 26.
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Figure 26: Raster of input neurons when exposed to the whole sequence and to a random replay of snippets of the whole sequence with an
additive noise

The generated sequence is depicted in the output raster in Figure 27. The serial structure respected most of the
time and we observe wrong predictions emphasized by white circles. The generation still occurs after the
wrong predictions.
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Figure 27: Raster of readout neurons generating the whole sequence and learning the whole sequence from a random replay of sparse, noisy
and complex snippets. White circles emphasize ambiguous transitions present in the training set. It reflects the difficulty of this sequence
learning task

The autonomously generated sequence displays a global time dilatation: the end of the generated sequence
occurs at time step 300 230 instead of 300 020. This is explained by the fact that the leak rate acts as a temporal
smoothing filter and consequently, a non-zero time is required for establishing a given neuron firing pattern.
This delay is observed as a continuous increase and decrease of mean firing rate at the beginning and the end
of a neuron activation pattern. The generated output at each timestep is never corrected and the delay is
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cumulated during the generation process occurring within a closed loop between prediction and input. This
points out the need of a metric that measures the similarity between sequences having arbitrary dimensions
but not necessarily the same duration. We propose to use the Fréchet distance.

2.2. Towards a more realistic model

Previous investigations have demonstrated that our joint PFC-HC model is able to consolidate at least a single
complex trajectory based only on random replay of snippets. The stimuli used so far were emulating
hippocampus place-cell coding by affecting one binary neuron sparse orthogonal representation (learning of
a competitive network) for coding one particular location. No combination of neurons in a firing pattern were
allowed and all neurons fired strictly orthogonal patterns (i.e. null dot product). The purpose of the model
being to explain and predict data issued from TSP related experiments with a rat, we need to extend our model
along several axes:

2.2.1. Use trajectories performed by a rat

The synthetic trajectories used so far for demonstrating dynamic properties of the joint HC-PFC model related
to TSP problem are designed by hand and aims at capturing particular features of the rat behavior we are trying
to explain. They do not represent the trajectories performed by a rat trying to solve the TSP problem. We then
use behavioral data about rat solving the TSP problem provided by Fellous & Al, CENL Lab, University of
Arizona, Tucson. Experiments take place in a circular arena having a radius of 1.5m. 21 feeders are scattered
according to a spiral shape. The feeder’s location and label is always the same. Some feeders are baited with
food whilst others are not. We call a configuration the particular state of baited/non-baited feeders. 100
different configurations of baited feeders are explored by different rats during 10 trials. Before each trial the
rat is positioned on the same starting point, near the first baited feeder. Figure 28 panel A shows the trajectory
performed by the rat during trial 4 for configuration 84
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Figure 28: Trajectory performed by a rat (Panel A) and an idealized version (Panel B)

The (x,y) points of the trajectory are provided by a camera based tracker. Measures might contain noisy or
missing samples and that is why we interpolate data with splines. We consider a trajectory as a graph. The
vertices are the feeders and correspond to cities in the TSP problem and the edges are the paths that link the
feeders. In the acquired dataset, the rat does not always find the optimal trajectory between baited feeders and
64 configurations contain at least a trial where an efficient path is found. An efficient path is found when a
given path is a circular shift of the optimal path or the optimal path in reverse order. The subset of 64
configurations containing at least one efficient path each is called the converged subset. Two configurations
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of the converged subset contain an efficient path but all edges of the optimal trajectory had not been
encountered. We restrict the dataset to the converged configurations where every feeder pair of the optimal
trajectory is encountered at least once. This subset is called the complete subset and it accounts for 22% of the
acquired data. We will use this subset in our experiments. If baited feeders are visited in the correct order, it
does not mean that an optimum has been reached. Subj-trajectories linking baited feeders might not describe
the shortest path between these two points. We created an idealized trajectory that links optimally the baited
feeders and an example is shown in Figure 28 panel B. This is required for establishing a performance
criterion. Trajectories are down sampled to a spatial resolution of 20 dot*m™'. This resolution is sufficient for
representing the motion of the rat, using a very high resolution would capture the noise of the camera based
tracker and as demonstrated in section 2.3, there is a direct relationship between the spatial resolution of a
stimuli sequence and the leak rate required by the reservoir model for capturing significant variations of the
sequence.

2.2.2. Use of a place-cell model

Place-cells are a type of pyramidal neurons in the hippocampus that fire preferably when the rat is located in
a particular place called place field. We propose to use an isotropic 2D Gaussian place-cell model defined by:

lls— cill?

fi(s)=e Wk

1)
Where:
e k is the number of the place-cell

e fi(s) is the mean firing rate of the k" place-cell

e ¢ is the (x,y) coordinate of the kt"place-cell

2
T,
° — k

Wi = Tlog(e)

is a constant that will constrain the highest activations of the place-cell to be mostly

contained in a circle of radius 1y, centered in ¢,
e 1} is the radius of the k' place-cell

e 0 is the radius threshold which controls the spatial selectivity of the place-cell?

Trajectories are defined within a 2x2m square space spanned by a regular grid of 16x16 2D Gaussian isotropic
place-cells. Thus from a simulation point of view, a given trajectory result in a raster of 256 place-cell neurons
as illustrated in Figure 29 panel A and B and is defined by the conjunction of the place-cells activations
concatenated for each time step. One can observe in panel C that there exist parts in the trajectory where the
trajectory first order gradient with respect to time is null. It means that the trajectory features static parts where
the rat is not moving. Since the reservoir model captures the serial and temporal structure of a trajectory
through the recurrent connections, a long static part might be partially captured by the PFC model. Indeed, a
given sustained activation pattern as observed in panel B will allow the model to eventually exceed its mnesic
ability and to produce a similar context after this point. The consequence is that the readout layer will associate
several times this fixed context to the same output, resulting in the overrepresentation of a particular point of
the sequence. In autonomous generation mode, this will lead to a fixed point. A practical workaround would
be to modify the learning rule in order to allow a hebbian learning process to occur only when novelty is
detected with the equivalent of a first order derivative filter. In fact, the formulation of the learning rule is

similar to the definition of the covariance matrix between reservoir neurons and readout neurons. The
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estimation of the mean activation value of a neuron over time depends on a particular timescale and this would
add several hyper parameters to the learning rule. Another simple manner of allowing the learning process to
occur only when novelty is detected is to algorithmically remove static parts of the stimulus where the modulus
of the derivative with respect to time (illustrated in panel C) is non zero/

We hypothesize that this novelty detection mechanism is a part of the snippet formation process and we
propose to model a snippet as a contiguous subsequence of the dynamic parts of a place-cell activation
sequence. The regular sampling is the equivalent of a constant velocity. Panel D illustrates the condensed and
resampled trajectory and panel E represents the place-cell activation sequence. It contains only dynamic parts

of the trajectory and it will be used by the snippet generation procedure.
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Figure 29: Trajectory performed by a rat as captured by the visual tracker. Panel B represents the corresponding place-cell activation pattern
raster, panel C shows the gradient modulus of the position, panel D represents the condensed and resampled trajectory and panel E shows The
corresponding simplified place-cell activation sequence.

For specific demonstration purposes, we propose to use place-cell activation sequences based on the place-
cell model described above and spline interpolated trajectories satisfying a constraint on the order where the
feeders are visited. Figure 30 Panel B shows a synthetic trajectory where feeders ABCED are visited. Gray
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circles represent the place-cells centers and their radius. Panel C shows the corresponding place-cell activation
pattern and the same snippet represented in the 2D trajectory and its place-cell extent.
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Figure 30: Place field model applied to a trajectory and representation of a snippet

2.2.3. Generate a set of snippets from multiple sequences based on reward

In the behavioral experiment described in (De Jong et al. 2011) we can observe the rat incrementally solving
the TSP problem by experiencing new paths at each trial. In Figure 31 panel A, B, C, D and E, the rat describes
a new trajectory at each trial and several sub-trajectories are present in different trials. For instance, the path
linking feeder 20 to 12 is observed in panels A, B, C and E.

We hypothesize that the random replay of snippets that allow the model to generate an efficient sequence as
depicted in panel F is based on sequences from remote trials and modulated by a form of reward. This is

compliant to the behaviors and measurements described in (Gupta et al. 2010).
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Figure 31: Trajectories performed by the rat over successive trials
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The aforementioned modulation by a form of reward is illustrated in Figure 32. The BACDE sequence
illustrated in Figure 5 panel D contains long and short paths linking the different feeders. This is related in
Figure 32 by a different number of time indexes.
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Figure 32: Snippet replay likelihood used in the snippet generation procedure.

The snippet replay likelihood reflects a prediction of the reward and is learnt by the replay model illustrated
in Figure 6. Update equations and details about the replay model can be found in 2.4. It becomes possible to
emphasize different parts of a trajectory related to rewards as depicted in Figure 33. If the reservoir model is
able to concatenate the emphasized parts of different parts of a trajectory related to a reward and replayed at
random, then it is possible to generate an efficient trajectory based on salient elements of recently experienced
trajectory. This is the main result of the paper presented in section 2.4. From a more abstract point of view,
the replay model proposes different associations between reward sites (A, B, C, D and E) and the consolidation
model reconciles the overlapping representations, allowing to build a transitive relationship following a path
between reward sites. This correspond to the point of (Preston and Eichenbaum 2013). Their understanding
of the interplay between Hippocampus and Prefrontal cortex and their roles in the memory consolidation
process entails the notion of schema, introduced to cognitive psychology by (Piaget 1967) and (Bartett 1932).
The replay model proposes a solution to the credit assignment problem by propagating the reward information
across time according to a TD (A1) algorithm and the consolidation model allows to build a heuristic that is able
to find efficient global paths in a graph by combining efficient sub-paths based on a reward expectation. This
heuristic is in fact a neural implementation of a reinforcement learning (Sutton and Barto 1998) and it is a
very simple and new manner to solve the credit assignment problem in recurrent neural networks. We will see
that modulating snippet generation probability based on this reward value propagation will allow the
implementation of a form of reinforcement learning that addresses the optimization requirement for solving
the TSP problem.
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Figure 33: BACDE trajectory and the frequency of different parts being represented through random replay

2.2.4. Defining a sensory-motor loop

We propose to make a first attempt by selecting in the dataset’of behavioral experiments configuration 40
where an efficient trajectory (feeders 14,12,18,17,1) is discovered during trial 5 and sub-trajectories of the
efficient trajectory are visited during previous trials 2,3 and 4. Figure depicts these trajectories. During trial 2,
feeders 14,18,12,14,7,1 are visited. Feeder 14 is consumed the first time it is visited and the second time, it is
perceived as a non-rewarding feeder. The trajectory linking baited feeders 12 to 7 is particularly long and
optimal sub-trajectory linking feeder 12 to 18 is performed in trial 2 in reverse order with a sub-trajectory
linking feeder 18 to 12. This example illustrates the need to have a model that can extract sub-trajectories
linking two reward sites with no particular direction and learn preferentially short sub-trajectories between
rewards. During trial 3, feeders 14,18,12,17,1 are visited and it corresponds almost to the optimal trajectory,

3 Gracefully provided by Fellous & al, CENL Lab, Tucson, AZ, U.S.A
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excepted that feeder 18 is visited before 12, instead of feeder 12 before feeder 18. During trial 4, feeders
17,1,14,12,18 which is a circular permutation of the optimal sequence. Sub-trajectories 17,1 and 14,12,18
belongs to the optimal sequence and this example suggests that a model able to consolidate randomly replayed
parts of the optimal trajectories would be able to consolidate them if they are more salient as non-optimal sub-
trajectories.
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Figure 34 : Successive trajectories of the rat in configuration 40

The reservoir model is trained and evaluated several time with a random replay of place-cell activation
subsequences based on different possible combinations of trial 2, 3 and 4. Each model is trained by exposing
it to a random replay of snippets of 10 simulation cycles long for a duration of 1000 simulation cycles. The
model is then evaluated by measuring the mean square prediction error on the readout layer with a Euclidian
norm. This evaluation procedure is repeated 100 times and the mean square prediction error series are gathered
for each trial combination in autonomous and non-autonomous generation mode. In autonomous mode, the
predicted stimulus is reinjected as the next input, while in non-autonomous mode, the next input is forced to
be the next stimulus as observed in the training set, regardless of the predicted stimulus. It allows one to
measure an error along the whole trajectory. Figure 35 represents the prediction errors in non-autonomous
mode for each trial combination.
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Figure 35: Mean square error histograms for different conditions evaluated in non-autonomous mode

A random replay of snippets based on 100 % of trial 2,3 and 4 leads to the lowest error. Other possible
combination of sequences in the snippet generation suggest that some sequences are more informative than
others and combining several trials for generating snippets have a positive effect on performances. It will be
studied more in details in section 2.3. When evaluated in autonomous generation mode, results are not well
differentiated (see Figure 36) and the expected place cell activation sequence is not generated at all. This is
due to the recurrent nature of the generation process. If an error is observed during the early timesteps of the
generation procedure, this erroneous place cell activation pattern is directly injected in the reservoir input
neurons. Reservoir state is different, generates a different prediction that might be erroneous or totally
unexpected or unrelated to a place cell coding of a location.
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snlppets number = 12, preamble = 10 : score (dB) histogram by training set conflguration
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Figure 36: Mean square error histograms for different conditions evaluated in autonomous mode

In order to overcome this difficulty, we propose to implement a form of embodiment. The location encoded
by a place-cell activation pattern is estimated by exploiting the spatial response each modelled place cell, the
agent moved to this new location and then the place-cell model is applied to the new location of the agent in
order to provide an interference free place cell activation pattern. It exploits the fact that an agent situated in
a 2D environment can occupy only one location at a time. By selecting the most probable location encoded in
a place cell activation prediction, the agent performs an action based on the last perception. This emulate a
rudimentary sensory motor loop.

2.3. High performance computing simulator

A Temporal Recurrent Network (TRN) requires training typically 1000 neurons by exposing it repeatedly
stimuli sequences. For each simulation cycle, the recurrent connections contribution to the membrane potential
of the reservoir neurons is implemented by a matrix vector multiplication and thus requires 1000 000 floating
operations with a dense implementation. It is also possible to use a sparse matrix implementation that requires
less floating operations if the connectivity matrix is sparse, but the major drawback of this apparent time
complexity simplification is that the benefit of using a local and fast paced memory is almost lost because of
non-coalesced memory access that result in more frequent access to the remote and slower global memory.
We choose to rely on a dense matrix implementation. Depending on the learning rule implemented and the
learning rate, the magnitude and the stimuli sampling rate, a successful training requires at typically 10 000
simulation cycles. When instantiating a TRN, the synaptic weights are randomly drawn from a particular
distribution with a particular random seed. An error measure on this particular instance cannot be significant
with only one observation. In order to be consistent, a batch of TRN must be evaluated instead and this batch
size must be empirically at least 10 and evaluating more than 100 TRN for building a single measure won’t
play a significant role for accuracy.

The training set is not necessarily formed as a time indexed multidimensional stimuli matrix, and might require
an additional stochastic training set generation procedure that will drive the TRN during training. This
stochastic procedure is in our case the emulation of hippocampus replay during awake SPW-R and it depends
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on a particular random seed for a batch of TRN. It is necessary to evaluate at least a group of 10 TRN batch
having each different random seeds for the snippet generation procedure initialization.

TRN produces predictions of the next stimulus input. For evaluating the whole sequence that the model can
generate, one needs to inject the prediction as the new input and compute the next simulation cycle for
updating the TRN states. Each prediction provided by a given TRN instance might reflect a conflict in the
training set that results most of the time by two different sequences having the same prefix whose duration
exceeds the mnesic ability of the network. In the case of a stimulus representing hippocampus place-cell
coding of a location, the next location prediction is thus not properly encoded and might contain more than a
location. Preliminary study described in 2.1.8 states that autonomous generation is not always possible by
direct injection of the predicted next stimulus as the new input for the next simulation cycle. We developed
and described in section 2.3 a new place-cell location decoder based on a Gaussian kernel and using a finite
element method. This decoder is very robust to noise because it exploits the redundancy and coherency of the
spatial coding of a place-cell activation pattern over the whole arena. The finite element decoding method
requires a grid that tessellates the 2D space defined by the workspace boundaries. A sufficiently low
discretization error is required for avoiding a spatial aliasing effect that will necessarily have a negative impact
on the generated trajectories. The size of the grid can become important very quickly and have a major impact
on the computing load. It is possible to limit the number of grid elements being evaluated by considering a
region of interest, centered on the agent current location and enclosing the locations the agent can reach, as
defined by its transition model. It is thus possible to select the next location of the agent based on the location
probability map computed with the place-cell decoding method, to move the agent to the most probable
location and to apply the sensor model in order to provide to the TRN the stimulus that corresponds to the
most probable location. Selecting the most probable location at each step is a greedy action selection strategy
and does not necessarily lead to the generation of the optimal sequence. However, it is possible to give an
account of the trajectories the model can generate by evaluating the model several times and injecting noise
in the location probability map in order to allow multiple trajectories to be generated. Typically, 10 to 100
random walks are required for building a consistent 2D high-resolution histogram that will represent the
frequencies where a particular location is visited and give an intuitive but not complete view of the set of
trajectories the model can generate and their likelihood to be generated. It is also possible to enhance this view
by extracting a vector field from the multiple displacements or to cluster trajectories in order to characterize
the different classes of trajectories the model can generate.

A trained TRN can be seen as a generative model of trajectories that reflects the training set as represented by
the recurrent neural network with a particular set of parameters. These parameters will condition the model’s
ability to learn a training set and generate a test set. The search space spanned by the Cartesian product of all
parameters prohibits a systematic parameter search and one might follow echo state networks guidelines (M
Lukosevicius 2012) in order to find a parameter set that allows a particular sequence learning problem to be
solved. The authors states that finally, a global optimization algorithm can be used for finding the optimal
parameter set for a given task. Tabu search (Glover and Marti 1986), Simulated annealing (Kirkpatrick, Gelatt,
and Vecchi 1983) and genetic algorithms (Goldberg and Holland 1988) are suitable for this problem and we
chose a simulated annealing variation (Chen et al. 2007) because of its implementation simplicity, the low
number of parameters and its ability to take advantage of parallel simulations.

For all the reasons mentioned above, simulating multiple agents controlled by a HC-PFC-ST joint neural
network model requires a tremendous amount of computing power. Simulating several neural networks
exposes several levels of parallelism and it is possible to take advantage of a massively parallel computing
infrastructure. Recently, it became possible to use graphics processing units (GPU) for general purpose
computing. NVIDIA builds high end gaming graphic cards named Geforce that are perfectly suitable for
training deep neural networks in a reasonable and in fact, they can reach the same level of performance of
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processional graphic cards. Professional graphic cards (Quadro, Tesla) cost approximately 10 times the price
of a gaming graphic card with the same architecture but provides more onboard memory that features an error
correcting code (ECC) mechanism, more computing units, half precision arithmetic operations (16-bits
floating point number) that doubles the computing throughput, faster double precision arithmetic operations
(64-bits floating point number) and drivers certified for specific professional applications. Since artificial
neural networks simulations do not require a high level of precision, a recent gaming graphic card is affordable
and provides the same single precision (32-bits floating point numbers) computing throughput as
approximately 30 recent central processing units (CPU) for the same price. In addition to computing
throughput per price unit and numerical precision considerations, the availability of a high performance
computing (HPC) infrastructure is another question of interest. Indeed, there exist computing farms that
provide an access to computing devices. Some of those are not available for an extended time period and do
not authorize the use of 3™ party libraries used in modern HPC approach. It is a serious problem when
developing a fully asynchronous and distributed simulator. One need a development cluster with a reasonable
computing power and a library and tools ecosystem that allow modern programming and debugging without
having to add an extra cost for the time spent on these machines. Another drawback of some distributed
computing solutions is that the simulations need to be split into several scripts, launched through a job
scheduler on different remote shells. It does not facilitate the simulation process and in addition, scheduler job
does not necessarily run immediately, the entire computing power is not available because it is shared with
other users and a job might be suspended for hours or days.

We chose to build a hybrid CPU/GPU heterogeneous cluster by using a workstation equipped with a Tesla
k40c, upgrading 2 existing workstations with 4 NVIDIA Geforce GTX 1080 and to build a supplementary
high end workstation based on the specifications of the DIGITS DevBox by NVIDIA used in the deep learning
field and hosting 4 more NVIDIA Geforce GTX 1080 boards. The theoretical computing throughput is 88 590
Gflops / second in single precision and this computing power is available constantly, for an unlimited amount
of time. All GPU boards use an exhaust mechanism based on a blower, allowing an easy installation on
different motherboards while maintaining a decent cooling performance for a reasonable price. NVIDIA
provide a very efficient BLAS implementation, parallel random number generation algorithms and other
libraries and tools that reduce significantly the need of developing low-level computing routines and save
development time.

There exist deep neural network frameworks for a particular architecture that implement simple recurrent
neural networks with a hyperbolic tangent activation function, while frameworks designed for other
computing architecture do not provide a RNN with the same specification. State of the art libraries like
Microsoft CNTK or Nvidia CuDNN provide different implementation of recurrent neural network but the
training algorithm behind are not clearly specified, includes the training of the recurrent layer instead of the
readout only required by our echo state approach or simply use a batch of different algorithm and retain the
algorithm and parameter set that gave the best result. Deep learning is a new applied research domain and the
most advanced libraries at this day were first released in 2015-2016, one year after the beginning of this thesis.
We want to keep the model simple, provide clear explanations of their functioning based on several
observations of variables internal or external to the model. It does not include a model of hippocampus replay
and these of the shelf models are not necessarily online models. Practically speaking, the amount of code
dedicated to a neural network model is about 5-10% of the total code volume of our implementation
(approximately 35 000 lines of carefully designed and optimized C++ code) whose added value is more than
being the fastest possible implementation of a simple RNN. We propose a flexible solution that allow one to
take full advantage of the available computing power in a heterogeneous and distributed system. We chose to
rely on the same accelerated linear algebra libraries for CPU and GPU named MKL and CUBLAS and to
write custom kernels for implementing functions that do not already exist (for instance the Bayesian place-
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cell decoding finite element method based on a Gaussian kernel). It is always possible to change the
implementation of a model later and use another learning paradigm. Our objective is to test several hypothesis
and to explain the internal functioning of a biologically plausible model. Exhibiting the best learning
performances possible is not a primary objective but using efficiently the computing power provided by
today’s modern computing architectures for reducing significantly the time to result is a very valuable
advantage.

We will present here the software design of the Temporal Recurrent Network solution. The detailed design
part is omitted because it will have required at least 80 pages of pure software engineering. This is not the
goal of a thesis manuscript and the following page aim at document the non-trivial and careful design and
implementation of a fully asynchronous and distributed neural network simulator that exploits several degrees
of parallelism and modern computing architectures while being easily interfaceable with many existing third
party simulators. The same simulator can run on a simple laptop or on a modern high performance cluster of
computers equipped with the best in slot CPUs and GPUs. It is based on C++ language because of its
sophisticated features and its efficiency at execution.

The whole source code is available at https://github.com/NicolasCAZIN/TRN
2.3.1. Use case

The most synthetic and important view in a system design is the use case. Figure 37 summarizes the different
services offered by the developed solution in an abstract manner:
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| = %

«extend» : Schedule simulations Workstation
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Experimentalist I | — /( i
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Figure 37: Use case diagram of the TRN solution
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The main idea is to provide to an experimentalist an easy way to run simulations of neural network models on
different architectures: a simple laptop, a robot, a workstation or a cluster. The underlying functionality for
providing this ability to execute simulations on a heterogeneous architecture is to schedule simulations on
simulators powered by different computing architecture. It also includes a load balancing mechanism not
represented here. The ability to preview quickly results is important when designing a numerical experiment
and storing the raw results in an easily usable format is essential for extracting valuable observations on an
analysis phase. Reading data generated from 3 party software like MATLAB is also required for working
efficiently in a collaborative scientific work. The experimentalist is required to use a model that works with a
given dataset and the model results depend on the parameters and initial conditions. The TRN solution
provides a parameter search mechanisms based on simulated annealing for finding a global set of parameters
that allows the model to simulate the experiment properly, or to asses that that the problem observed is deeper
that a simple parameter configuration issue. A grid search mechanism is also provided for studying the effect
of a limited set of parameters on several instances of the model. The elaboration of a model is iterative and
requires many trial-error steps. The ultimate goal of the TRN system is to facilitate this tedious work.

2.3.2. Design

We choose to design the TRN solution as a library with different language bindings and a limited number of
executables programs, extensible thanks to a plugin system. The architecture is based on the Model View
Presenter (MVP) pattern and allows one to easily extend or use TRN.

+Send results
+Updates view

+State change events
View < |

\_// Presenter \_// Model

+
+Forward user events Updates model

+Invoke task
Figure 38: The Model View Presenter architecture used by TRN

The user sees the View updated by the Presenter and manipulates indirectly the Model by using the interface
(see section 2.3.2.1) provided by Presenter, which also conveys events and data generated by the Model. In
our case, the user can be a human user that previews the results through observables provided in real time by
the model and rendered with a graphical library or it could be another simulator that interacts with TRN by
using the same programming interface.

2.3.2.1. Application Programming Interface

The entry point of the TRN solution is an application programming interface acting as a Facade design pattern
and provides to the programmer the tools required for using an extending TRN through a hierarchy of
interfaces illustrated in Figure 39.
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Figure 39: Different interfaces organized as different namespace

Several interfaces are available and they provide to the programmer different levels of complexity, allowing
him to implement the tools that participate to the realization of use cases described in Figure 37. The interfaces
hierarchy is articulated around asynchronous function calls and several interfaces allow one to exploit the
system in a simplified manner while other interfaces allow the programmer to defined extension points,
exploited in a transparent manner by the system. It could be described as follows:

e The Basic api allows the programmer to instantiate an engine based on a particular computing
architecture handled the Backend. 1t is also possible through this interface to setup the logging
subsystem and to access to common support functions allowing one to refer to a particular simulation
when calling other interface functions. The base class for the plugin interface is defined here. A plugin
is required to implement a standard initialization based on text arguments and uninitialization routine

e The Sequence api is used for declaring sequences in the system and the plugin interface provides
methods that will use transparently the Sequence api and require the plugin programmer to implement
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methods for accessing a sequence in a dataset according to a hierarchical pointed notation contained
in a standard string.

e The Search api is used for defining global optimization algorithm supposed to find the optimal set of
parameters for a particular experimental condition. The plugin interface provides to the programmer a
standard manner of implementing a global search algorithm through a restricted set of methods.

e The Advanced api is based on the Basic interface and defines the whole set of functionalities accessible
to the user.

e The Callbacks api defines the set of methods that conveys the results provided by a simulator through
the arguments of these methods. The plugin interface provides a standard and transparent manner for
a program for being called back when a result is available and an action is required. It is possible to
attach to the TRN system several plugins implementing the Ca//backs interface. They will be evaluated
in parallel.

e The Custom api aggregates the Facade functions required for building custom model parts requiring
the user to reply to the request of the simulator. This is used for example for defining a custom encoder
model where the next location prediction will be used as a target location for a mobile robot. Once the
mobile robot reached this target point, the custom encoder model will provide to the simulator its
estimated position through a callback. The plugin interface allows one to extend the TRN system with
custom plugins and it uses transparently the Cusftom api. Only one custom plugin at a time is allowed.

e The Extended api is based on the Advanced api allows one to define a simulation without necessarily
requiring the use of Custom and Callbacks interfaces. It provides the methods for building and running
a simulation by encapsulating calls to Extended the api and use when required the functors declared
through Custom and Callbacks interfaces.

e The Simplified interface provides a unique method named compute() that allows the user to specify a
scenario file written in XML, JSON, INI or INFO format. It is a complete simulation procedure that is
able to use the full set of methods exposed by the Extended Custom, Callbacks, Search and Sequence
apis. It is either possible to provide implementation of these interfaces through C++ functors or by
specifying in the scenario file a plug-in implementing the corresponding interface. This is the easiest
way to run multiple simulations in parallel and to store the generated results in a compressed and
structured file format.

2.3.2.2. Model

The role of the Model in the MVP architecture is to define a set of objects representing an abstraction of a
simulation independent of the implementations, performing the required computations on different computing
architectures. We used a Bridge design pattern for allowing the definition of two orthogonal classes’
hierarchies named the abstraction and the implementation.

The abstraction class hierarchy represents objects that contribute to the definition of a simulation. A Reservoir
and its unique concrete subclass WidrowHoff model specify the methods and attributes relative to the
simulation of the consolidation model described in Figure 7. Neurons states and synaptic weights aggregates
are implemented by a Matrix, Batch or Bundle that are initialized by classes deriving from /nitializer. A Loop
class allows one to evaluate the Reservoir once trained. Copy is the simplest Loop possible and copies the
readout activation pattern in the input layer of the Reservoir. The Custom loop allows one to implement its
own Loop by providing a callback function and SpatialFilter represents a loop with an additional
representation decoded from the readout activation pattern by a Decoder and encoded before reinjection by
an Encoder. Custom represents a user specified encoder and Model is an isotropic Gaussian place-cell model.
A Decoder represents a place-cell decoding method. Linear represents the linear decoding method based on
the standard dot product; Map is the kernel dot product Bayesian method described in section 2.4 that uses an
arbitrary firing rate map and Model is the decoding method that uses the same place-cell model as the Model
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decoder. A Scheduler computes a Scheduling, which is concatenation of the time indexes of the sequences
contained in a training set, represented by the class Sez. The Tiled scheduler is the simplest one and consists
in repeating several times the contiguous time indexes of an input sequence. Snippets represent the replay
model described in Figure 7 and Custom allows the user to specify is own scheduler in a callback. A
Measurement performs gather observations either on the readout layer or on the Decoder output.
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Figure 40: Class diagram of the overall model simulating multiple animats
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A Simulator holds references to the classes aforementioned and represents one to several instances of the same
simulation initialized with different random seeds. This allows one to simulate in parallel several animats on
the same computing device. The Message class defines the internal communication interface shared by the
abstraction classes implementing an Observer design pattern.

All the abstraction classes are implemented by several support classes named Memory, Random and Algorithm
that are specific to a computing device. They are owned by a Driver that allows every class from the
abstraction hierarchy to be a Bridge and admit either a CPU or a GPU implementation. Thus, a simulator
could be instantiated and executed transparently on the computing device available on the target machine. It
is possible to extend the supported architectures by writing a supplementary implementation of a Driver. For
instance, it could be implementation targeting a modern FPGA or a more generic but less performant
implementation based on OpenCL.

Several decorators of a Simulator are available and allow one to instrument transparently and optionally a
simulation without affecting the performances when not required. The Performances decorator measures and
report the simulation speed in number of cycles per second (Hz) and the achieved computing throughput
(single precision Gflops/s), the Scheduling decorator reports the dynamic training set as the time indexes
generated by a Scheduler during a training episode. States and Weights report the neurons and synaptic weights
of the Reservoir object.

2.3.2.3. View

The view allows the user to observe data provided by the model and a view component must implement an
interface able to decode a formatted stream of data. This stream of data can come from the calling parameter
of a user implemented callback declared through dedicated parts of the Application programming interface,
or can be a simple hypercube stored into NetCDF or MATLAB format for instance. A 3™ party software like
ParaView or MATLAB might be used for examining the results and adjusting a scenario file that will describe
how the controller must be used in order to simulate a particular experiment split in multiple conditions. The
only TRN components related to the view part of the model are the plugins called Monitor and Display and
they both implement the Callback interface.
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Figure 41: An example of the monitor plugin displaying performances information on the standard output.
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Monitor provides a simple text summary of the different events generated by the model and Display renders
trajectories, neurons rasters and sequence scheduling information. OpenCV is used for its windowing and
rendering primitives.

Figure 42: An example of the Display plugin rendering multiple trajectories computed by several simulators using 4 GPUs

The view part is not really developed in TRN and is left to third party software like MATLAB or ParaView
specialized in scientific data visualization.

2.3.2.4. Presenter

The presenter’s role is to mediate the user’s events captured by the View and Simulators maintained by the
Model. A Worker holds zero or several Simulators backed by the same Driver instance. It is particular Node
whose role is to receive incoming Messages provided by the Communicator and to translate them into the
appropriate Simulator method calls. A Node is a particular 7Task that maintains a Cache for received data and
is implemented by a shared memory mechanism. This allows multiple Node running on the same computer to
mitigate the communications by avoiding the Broker to send an already sent data chunk having the same
checksum. A Broker is a particular task whose role is to send asynchronous messages to several Nodes
represented by Processors whose life cycle and scheduling is managed by a Manager. A Communicator might
use a Compressor for reducing the Message traffic between a Broker and its corresponding Nodes. It serializes
Messages and establishes a communication channel between a Broker and one or more Node. Messages
propagates through a local message queue with a Loca/ communicator, a remote TCP/IP socket with a Remote
communicator and over MPI channels with the Distributed communicator. When using a Remote
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communicator, a Proxy is instantiated instead of a WWorker. Its role is to behave like a Worker, but instead of
using a Simulator, it will act as a regular Broker by implementing the Node methods with calls to Dispatcher
methods. The Dispatcher owns another communicator that establishes a relationship with a Worker. This
communicator polymorphism allows one to deploy TRN over a heterogeneous and distributed infrastructure.

|
] TRN
l Presenter
Engine
1
Core
Processor Task Simulator
1.7 Broker ///,/K;;?
0”-:
/ Executor |
Manager 1 /
Worker
Dispatcher <.

Frontend | | Messages Proxy

N
Compressor "
<.

-.| «interfacex»
__ | Communicator

. Worker.exe

Cache \
ﬂ Q \K Server.exe
e e

1
Distributed Remote

Local
[
: Communicator Communicator Communicator

“-. | v oy
'~. |
K \ Helper Network |

~ . i
Y , Boost
\“ : - . . |l ] ;.’
~ > V Interproiés
PSR MPI I
Serialization ASIO Shared memory‘

Figure 43: Class diagram of the Presenter layer and related artifacts

Two artifacts provide the TCP/IP and MPI connectivity and allow one to adapt the deployment on different

and heterogeneous computer architectures mediated by a network:
[ ]

Worker.exe is an executable that instantiates a unique Worker and a Distributed communicator. It is
used for declaring an MPI process that will exploit a particular computing device on a given host. It is
also possible to oversubscribe to the same computing device by specifying several times the same
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computing device on the same host. It might be required for reaching the maximum performance
possible in specific cases.

e Server.exe is an executable that is specifically used when the host executing the Client side software
is a lightweight computer with almost no computing power and dedicated to monitoring or recording
results. It could be deployed on a remote workstation equipped with several CPUs/GPUs or on a more
modest computer that will play the role of the MPI cluster controller while providing a TCP/IP
interface.

Several deployment examples are described in section 2.3.5.

2.3.3. Components

The MVP architecture described above result in several components and artifacts described in Figure 44:
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The Client.exe program uses the Simplified interface and allows the user to compute simulations. Simulations
could be executed on the same host by using a Loca/ communicator and exploit transparently the computing
power of a CPU through the MKL library or the GPU through the CUDA toolkit. It is also possible to offload
the execution of simulators on a remote computed through a Remofte communicator that will be used also by
the Server.exe artifact for acting as a Proxy between the Local/ communicator of the remote host executing
Server.exe and the Remote communicator of the local host executing Client.exe. Worker.exe is deployed and
installed on computer nodes being a part of an MPI cluster. Rat.d// simulates a rat by implementing Custom
callbacks related to the position and place-cell activation pattern, SimulatedAnnealing.dll and Grid.dll provide
global parameter search algorithm by implementing the Search interface. Display.dll is intended to offer a fast
graphical preview of results by using OpenC)V for implementing the Callbacks interface. MatFile.dll
implements the Sequence interface for providing stimuli sequences to TRN from a MATLAB .mat file and
implements the Callbacks interface for recording result in a structured .mat file.
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2.3.4. Language bindings

TRN4CPP is a C++ interface and provide all functionalities to a C++ program. TRN4MATLAB is a component
that allows a MATLAB script to use TRN through the Simplified, Sequences and Basic API (see Figure 45)
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Figure 45: The TRNAMALTAB component provide to a MATLAB script a limited set of TRN4CPP interfaces

TRN4MATLAB is based on the MEX interface provided by MATLAB. Other interfaces involving asynchronous
callbacks are not implementable because MATLAB does not support multitasking. TRN4JAVA is the Java
binding of most of the TRN4CPP interfaces. It relies on the JN/ interface of a Java virtual machine and allows
a third party simulator to use TRN and to interact with it through Java interfaces provided by TRN4JAVA.
Figure 46 illustrates the TRN4CPP interface Java bindings.
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Figure 46: TRN4JAVA allows one to interface a third party simulator (SCS, a robotic simulator from USF Tampa)
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2.3.5. Deployment

The components and artifacts provided by TRN allow the user to launch simulations in various situations
while taking advantage of computing accelerators like modern GPUs. The simplest deployment possible is on
a laptop computer, equipped with a modest CPU and or GPU. Figure 47 illustrates the relationship between
components, interfaces and artifacts.
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Figure 47: Deployment on a standalone computer

The Client.exe program is invoked on a computer and is configured for using a local communicator, allowing
the user to launch multiple simulations on the CPU and GPU at the same time. It is not recommended because
a significant part of the CPU time will be dedicated to managing the GPU and it will have the effect of slowing
down the GPU simulation. If one or more GPU are used, it is recommended not to use the CPU backend. This
deployment also accounts for a standalone workstation equipped with one or more GPUs.

Another use case allows a lightweight or embedded computer to offload the simulations to a remote
workstation. This is illustrated in Figure 48. A Remote communicator is used on the laptop instead of the Local
communicator in Figure 47.
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Figure 48: Deployment of a remote Backend for offloading simulations

A robot can execute the Client.exe, provide a position estimate and the corresponding place-cell activation
and offload the model learning tasks to a remote workstation. It is possible for different Client.exe instances
to use the same remote Server.exe. It means that a workstation can handle the computational load of multiple
robot. It is also possible to execute a MATLAB script on a modest computer and to offload the computational
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load on a remote workstation equipped with modern computing devices and exploited with a Local
communicator. Another more sophisticated and deployment would involve one or more workstation running
Worker.exe in order to define an MPI based cluster. Server.exe and Worker.exe must be ran with the
mpiexec.exe or mpirun.exe tool provided with the MPI bundle of a particular vendor. It is also possible to use
a Distributed communicator on the laptop computer by including Client.exe in the arguments of the execution
MPI tools. If the client software is not Client.exe by another client based on the same API, it must be invoked
as an MPI process as well. It is not always possible to invoke the client as an MPI process. In this case, a
TCP/IP connection must be used for separating the Frontend part from the Backend part.
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Figure 49: Cluster deployment of TRN with a TCP/IP Server

It is then possible to simulate an important number of scenarios in a limited amount of time by using all the
computing resources available over a local area network (LAN). The cluster used for producing all the results
described in 2.4 and 2.5 is specified by the deployment diagram in Figure 50. A lightweight laptop executes
Client.exe is responsible for reading the simulations described in scenario.xml and to compute them. Results
are stored in a MATLAB mat file and Client.exe communicates through a TCP/IP link with Server.exe
executed on the cluster controller as an MPI process. Computing nodes are equipped with one or more
computing device and execute several instances of Worker.exe as MPI processes. We propose to evaluate the
performances of this cluster by running several simulations in parallel by setting the dimensioning factors
evoked in 2.3 and to use the Performances decorator for measuring the simulation speed (number of simulation
cycles per second) and the single precision computation throughput (number of single precision floating point
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operations per second) during the TRAIN, PRIME and GENERATE phase. These 3 phases does not involve
the same algorithms and need to be measured separately.
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Figure 50: Deployment of the heterogeneous Cluster used in this thesis

The reference simulator used for producing the results described in section 2.1 was based on an optimized
CPU version using SSE4.1 instructions and the 12 cores provided by the Xeon X5675. The theoretical
throughput of this CPU is 294 Gflops/s. It was not possible to measure the effective throughput but the
simulation speed was measured at approximately 2000Hz. This will be the reference of our benchmark. The
new simulator implemented use the notion of mini-batch during the training phase. This result in the usage of
several matrix-matrix multiplication instead of multiple matrix vector product computed serially. The matrix
vector product is bandwidth limited and it is never possible to reach the theoretical computing throughput
because too many global memory accesses (slow) are performed regarding the number of arithmetic
operations. The CPU version implemented by the CPU driver of TRN is based on MKL and achieves the
following performances:

e Train: 2955 Hz @ 9,43 Gflops (1,47x speedup)
e Prime: 2184 Hz @ 8,12 Gflops
e Generate:40Hz @ 192 Gflops

The moderate performance increase of the training phase is due to the use of mini-batch. When using a GTX
1080 with the total drawing power limited to 115%, the maximum throughput an algorithm can reach is 10240
Gflops because of the increased GPU clock. This clock might decrease at one point because the heat produced
is too important. This is the maximum peak performance. The same scenario executed on a unique GTX1080
overclocked gives the following performances:

e Train: 52847 Hz @ 168,84 Gflops (26,42x speedup)
e Prime: 34367 Hz @ 127,72 GFlops
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e Generate: 1156 Hz @ 9746 GFlops

One can notice that the speedup in training is about 26 times quicker than an optimized CPU version and the
theoretical throughput is almost reached during the generation phase. This is explained by the fact that an
optimized kernel has been developed and the number memory access was minimized regarding to the number
of arithmetic operations required. When running the same experiment in a cluster configuration by using all
the modern GPU available (8x GTX 1080 and 1x Tesla k40c overclocked, theoretical throughput 88 590
GFlops), the following performances are observed:

e Train: 454875 Hz (@ 1446.5 Gflops (227,43x speedup
e Prime: 301005 Hz @ 1081.62 Gflops
e Generate: 9993 Hz @ 84236 Gflops (95% efficiency)

The cluster is about 227x faster than the original implementation and it is possible to reach the simulation
speed of 454 KHz in training mode. The computing throughput is still limited by the matrix-vector
multiplication used in the evaluation of neurons states and it is not possible to compute it faster. The generation
mode displays a computing throughput of 84236 Gflops, which correspond to 95% of efficiency. It would be
difficult to go further in terms of optimization. Even the optimized matrix-matrix multiplication provided by
GPU vendors does not reach the theoretical throughput of their devices. The achieved speedup makes possible
new investigations requiring orders of magnitude more computing power. The TRN solution is capable of
exploiting the computing power provided by a modest development cluster by using all degrees of parallelism
available. It is possible to simulate numerical experiments faster by embedding the TRN solution in containers
and executing it in a wider cluster but our low latency, moderate computing power cluster having a fixed cost
is sufficient for the remaining experiment.

2.4. Prefrontal cortex reservoir network learns to create novel
efficient navigation sequences by concatenating place-cell
snippets replayed with spatial credit assignment in
hippocampus
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Abstract (242 words)

As rats learn to search for multiple sources of food or water in a complex environment, they generate
increasingly efficient trajectories between reward sites, across multiple trials. This is referred to as the

Traveling Salesrat Problem (TSP) (de Jong et al (2011). Such spatial navigation involves the replay of

hippocampal place-cells during awake states, generating small sequences of spatially related place-cell
activity that we call “snippets”. These snippets occur primarily during sharp-wave-ripple (SWR)
events. Here we focus on the role of replay during the awake state, as the animal is learning across
multiple trials. We hypothesize that these snippets can be used by the PFC to achieve multi-goal
spatial sequence learning. We use a biologically motivated computational framework known as
‘reservoir computing’ (Enel et al 2016), in which large pools of prewired neural elements process
information dynamically through reverberations. This PFC model consolidate snippets into larger
spatial sequences that may be later recalled by subsets of the original sequences. We developed a
model of snippet generation that is modulated by reward, in the forward and reverse directions. This
implements a form of spatial credit assignment for reinforcement learning. Our simulation
experiments provide neurophysiological explanations for two pertinent observations related to
navigation. Reward modulation allows the system to reject non-optimal segments of experienced
trajectories, and reverse replay allows the system to “learn” trajectories that is has not physically

experienced, both of which significantly contribute to the TSP behavior.

Author Summary (120 words)

As rats search for multiple sources of food in a complex environment, they generate increasingly
efficient trajectories between reward sites, across multiple trials, referred to as the Traveling Salesrat
Problem (TSP). This likely involves the coordinated replay of place-cell into “snippets” between
successive trials. We hypothesize that “snippets™ can be used by the prefrontal cortex (PFC) to
implement a form of reward-modulated reinforcement learning. Our simulation experiments provide

neurophysiological explanations for two pertinent observations related to navigation. Reward
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multiple trials. We hypothesize that these snippets can be used by the PFC to achieve multi-goal
spatial sequence learning. We use a biologically motivated computational framework known as
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model of snippet generation that is modulated by reward, in the forward and reverse directions. This
implements a form of spatial credit assignment for reinforcement learning. Our simulation
experiments provide neurophysiological explanations for two pertinent observations related to
navigation. Reward modulation allows the system to reject non-optimal segments of experienced
trajectories, and reverse replay allows the system to “learn” trajectories that is has not physically

experienced, both of which significantly contribute to the TSP behavior.
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As rats search for multiple sources of food in a complex environment, they generate increasingly
efficient trajectories between reward sites, across multiple trials, referred to as the Traveling Salesrat
Problem (TSP). This likely involves the coordinated replay of place-cell into “snippets” between
successive trials. We hypothesize that “snippets™ can be used by the prefrontal cortex (PFC) to
implement a form of reward-modulated reinforcement learning. Our simulation experiments provide

neurophysiological explanations for two pertinent observations related to navigation. Reward
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multiple trials. We hypothesize that these snippets can be used by the PFC to achieve multi-goal
spatial sequence learning. We use a biologically motivated computational framework known as
‘reservoir computing’ (Enel et al 2016), in which large pools of prewired neural elements process
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modulation allows the system to reject non-optimal segments of experienced trajectories, and reverse
replay allows the system to “learn” trajectories that it has not physically experienced, both of which

significantly contribute to the TSP behavior.

Introduction (637/650)

Spatial navigation in the rat involves the replay of place-cell subsequences (snippets) during awake
and sleep states in the hippocampus during sharp-wave-ripple (SWR) events (Carr et al 2011,

Davidson et al 2009, Euston et al 2007, Kudrimoti et al 1999). We focus on the role of replay during

the awake state (Karlsson & Frank 2009), as the animal generates increasingly efficient trajectories

between reward sites, across multiple trials. This trend toward near-optimal solutions is reminiscent of

the classic Traveling Salesperson Problem (TSP) (de Jong et al 2011). While it appears likely that
replay contributes to this learning behavior, the underlying neurophysiological mechanisms remain to
be understood. We hypothesize (a) that snippet replay allows recurrent dynamics in prefrontal cortex
(PFC) to consolidate snippet representations into novel efficient sequences, by rejecting other
sequences that are less robustly coded in the input, and (b) that a form of reward-modulated replay in
hippocampus implements a simple and efficient form of reinforcement learning to achieve this (Singer

& Frank 2009).

INSERT Figure 1 HERE

An example of the behavior in question is illustrated in Figure 1. Panels A-C illustrate navigation
trajectories that contain subsequences of the optimal path (in red), as well as non-optimal
subsequences (in blue). Panel A illustrates the assembled optimal path in red. We show that a
biologically inspired recurrent network model of prefrontal cortex (Enel et al 2016) is able to integrate

snippets from examples of non-optimal trajectories and to synthesize an optimal path.

For sequence learning, recurrent networks provide inherent sensitivity to serial and temporal structure.
Modification of recurrent connections requires different methods of unwinding the recurrent
connections in time, which limits the full dynamics of the recurrent system over extended time. To

avoid this temporal cut-off and the space and time complexity required in the calculation of credit
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assignment to recurrent connections we used the framework of reservoir computing in which input and
recurrent connections are fixed, and learning-related plasticity occur outside the reservoir network
(Dominey 1995). The readout connections from the recurrent network learn the statistical structure of
the data that the system is trained on, which places requirements on the mechanism that trains the
model. We test the hypothesis that the structure of snippet replay from the hippocampus will provide

the PFC with constraints that can be integrated in order to contribute to solving the TSP problem.

Two principal physical and neurophysiological properties of navigation and replay are exploited by
the model and contribute to the system’s ability to converge onto an acceptable solution to the TSP.
First, during navigation between baited food wells in the TSP task, non-optimal trajectories (by
definition) cover more distance between rewards than near-optimal ones. Second, during the replay of
recently activated places cells, the trajectories are encoded in forward and reverse directions (Diba &

Buzsaki 2007, Foster & Wilson 2006). Exploiting these observations, we test the hypotheses that:

1. Non-optimal trajectories will be less represented in SWR replay because of their increased
distance to reward, allowing the PFC to eliminate non-optimal subsequences in constructing
the final efficient trajectory.

2. Reverse SWR replay will allow the model to exploit the information provided by a given
sequence in forward and backward directions, whereas the actual trajectory run by the rat has

one direction only.

In testing these hypotheses, we will illustrate how the system can meet the following challenges:

1. Learn a global place-cell activation sequence from an unordered set of snippets

2. Efficiently decode a two dimensional location from a noisy place-cell activation pattern that is
output from the PFC reservoir.

3. Consolidate multiple non-optimal sequences into a trajectory that efficiently links rewarded

locations, thus converging to a good solution to the TSP problem.
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4. Learn a trajectory in forward direction and generate it in forward and backward direction,
including concatenating parts of both forward and reverse replayed snippets in order to

generate novel trajectories as demonstrated in (Gupta et al 2010).

The objective is to provide a coherent explanation of how critical aspects of replay — notably its
modulation by reward, and the forward and reverse aspects, can be exploited by a cortical sequence

learning system in order to display novel and efficient navigation trajectory generation.

Material & methods

The model developed in this research provides a possible explanation of mechanisms that allow PFC
and hippocampus to interact to perform path optimization. This implies functional connectivity
between these two structures. In a recent review of hippocampal—prefrontal interactions in memory-

guided behavior Shin and Jadhav (2016) outlined a diverse set of direct and indirect connections that

allow bi-directional interaction between these structures. Principal direct connections to PFC originate

in the ventral and intermediate CAl regions of the hippocampus (Cenquizca & Swanson 2007,

Harland et al 2018). direct connections between hippocampus and PFC pass via the medial temporal

lobe (subiculus, entorhinal cortex, peri- and post-rhinal cortex) (Delatour & Witter 2002), and the

nucleus reuniens (Vertes et al 2007). Indeed memory replay is observed to be coordinated across

hippocampus and multiple cortical areas including V1 (Ji & Wilson 2007). These studies allow us to
consider that there are anatomical pathways that justify the modeling of bi-directional interaction

between PFC and hippocampus (McClelland et al 1995).

Our approach is to start with a set of navigation trajectories (observed from rat behavior, or generated
automatically) that represent the recent experience from the simulated rat. Snippets are extracted from
this experience, and used to train the output connections of the PFC reservoir. This requires the
specification of a model of place-cell activation in order to generate SWR snippets. Based on this
training, the sequence generation performance is evaluated to test the hypotheses specified. The
evaluation requires a method for comparing sequences generated with expected sequences that is

based on the Fréchet distance.
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Navigation Trajectories

A trajectory is a sequence of N contiguous two-dimensional coordinates sampled from time ¢, to time
tynoted L(t; — ty) that corresponds to the rat’s traversal of the baited feeders. The Euclidian
distance between two successive points defines the spatial resolution. We will use points per meter
(points * m~1) as the spatial resolution unit and the spatial resolution of trajectories depicted in is 20

-1

points * m~* along the trajectory.

Experiments were performed using navigation trajectories, including those displayed in Figure 1,

based on data recorded from rats as they ran the TSP task (de Jong et al 2011). Experiments take place

in a circular arena having a radius of 151cm. Twenty-one feeders’ locations are distributed according
to a spiral shape. The feeders’ locations and labels are always the same. In a typical configuration,
only 5 feeders are baited with a cup containing a 20mg food pellet while the others are empty.
Navigation trajectories are sampled from 100 different configurations of baited feeders that were
explored by different rats over 10 trials each. Before each trial, the rats were positioned at the same
starting point and the trajectory of the animal is recorded by an overhead camera at about 20-30 frames
per seconds. Figure 2 panel A depicts the trajectory performed by a rat during trial 4 for configuration

84 (17,10,3,14,15).

INSERT Figure 2 HERE

Video tracking sometimes contain noisy or missing samples and thus we interpolate data with splines.
Trajectories are first condensed by eliminating contiguous samples sharing the same coordinates (i.e.
static parts of the trajectories are pruned). Then the remaining points of the trajectories are resampled

1

evenly in order to match the target spatial resolution of 20 points * m™*, corresponding to Scm

between each position of the trajectory. This can be visualized in Figure 2B.

In the acquired dataset of 100 configurations of rat behavior, 64 configurations resulted in the rat
finding the optimal paths. In 2/3 (42/64) of these configurations the animal found the optimal

trajectory without having previously experienced the component subsequences. In one third (22/64) of

6
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the optimal configurations the animal traversed parts of the efficient path in early trials before finally
displaying the efficient trajectory. These data are thus suitable for testing our hypothesis, and are used
in our experiments. For these data we created an idealized trajectories that link optimally the baited
feeders as illustrated in Figure 2, panel B. This is required for establishing a performance criterion to

assess the model.

Place-cells

The rat is modeled as an animat that navigates in a closed space of 2x2 meters (Wilson 1991). The
animat can move freely in all direction within a limited range (+ 110° left and right of straight ahead),
and encodes locations using hippocampus place-cells activity alone. A given s = (x,y) location is

associated with a place-cell activation pattern by a set of 2D Gaussian place-fields:

_lls= cill?

fe(s)=e Wk

(e))
Where:

e [ is the index of the place-cell
e fi(s) is the mean firing rate of the k" place-cell
ey is the (x,y) coordinate of the k**place-cell

- T

—log(@)

° wy is a constant that will constrain the highest activations of the place-cell to be

mostly contained in a circle of radius 7y, centered in ¢y
e 1y is the radius of the k" place-field

e 0 is the radius threshold which controls the spatial selectivity of the place-cell

Parameter wyis a manner of defining the variance of the 2D Gaussian surface with a distance to center

related parameter 7.

In this study, we will consider a uniform grid of 16x16 Gaussian place-fields or equal size (mimicking
dorsal hippocampus). In Figure 3 the spatial position and extent of the place fields of several place-cells
is represented in panel A by red circles. The degree of red transparency represents the mean firing rate.

7
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INSERT Figure 3 HERE

A mean firing rate close to one will result in an bright circle if the location s is close to the place-field
center ¢ of the place-cell k. For a more distant place-field center ¢; of place-celll, the mean firing

rate will be less important and the red circle representing this mean firing rate will be dimmer.

Thus at each time step, the place-cell coding that corresponds to a particular point in a trajectory is
defined as the projection of this L(t;,) point through K radial basis functions (i.e. Gaussian place-fields

spatial response)

Xin(tn) = {fk(L(t“))}kel...K
(2)
Each coordinate of the input vector X;, (t,) represents the mean firing rate of hippocampus place-cells
and its value lies between 0 and 1. Figure 3 represents in panel B the ABCED trajectory L(t; = ty) and

the corresponding place-cell mean firing rate raster X;, (¢, — ty) is depicted in panel C

Hippocampus replay

The hippocampus replay observed during SWR complexes in active rest phase is modeled by
generating a training set made of condensed (time compressed) subsequences of place-cell activation
patterns that are then replayed at random. The distribution that is sampled for drawing a random place-
cell activation pattern might be uniform or modulated by new or rewarding experience as described in

(Carr et al 2011) : In particular, we model a random replay based on reward. In (Ambrose et al 2016)

the authors show that during SWR sequences place-cell activation occur in reverse order at the end of

a run. We will focus on reward modulation and reverse replay.

We define a snippet as the concatenation of a pattern of successive place-cell activation:

S(n;s) = Xip(tn-ss1 = tn)

3)
Where:

e 5 is the number of place-cell activations.
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In our model of hippocampus replay, we define a time budget noted T that corresponds to the duration
of a replay episode (experimentally, typically 70-100 ms). A replay episode E is a set of snippets of

length s:

E(s) = {S(n;s)}
“)
The sum of the durations of snippets replayed in E equals at least to T'. If the time budget is exceeded

one snippet is truncated in order to fit the time budget.

In Figure 3, Panel B represents a particular trajectory through feeders A, B, C, E and D. The depicted
snippet is a subsequence of 5 contiguous locations belonging to the ABCED sequence. The B and E
feeders are baited and marked as rewarding (R, and R;). Panel B shows the spatial extent of a given
snippet chosen in sequence ABCED and panel C shows the place-cell activation pattern of the

ABCED trajectory and the corresponding snippet location in the raster.

The snippet replay model favors snippets that are on efficient paths linking rewarded sites (e.g. paths
linking feeders A, B and C in panel B Figure 3), and not those that are on inefficient paths (as in paths
linking C, D and E in the same panel). This is achieved by propagating reward value backwards from
rewarded locations, and calculating the probability of replay as a function of proximity to a reward.
Panel D of Figure 3 illustrates the resulting probability distributions for snippet selection along the
complete path. Panel E represents the spatial extent of snippet replay likelihood. Note that the paths

linking A, B and C have the highest probabilities for snippet replay.

Hippocampus place-cell replay can occur in forward or backward direction as suggested in (Foster &
Wilson 2006). We model the reverse replay as follows: For a given trajectory k of N, samples, there
are Ny — s possible snippets that can be replayed but only a limited number of snippets will be
selected to fit the time budget T. A snippet S(n) has a likelihood of being replayed if it is related to a
reward prediction. A generative model of snippet replay likelihood is first learnt by propagating a time
delayed reward information according to the replay direction and the snippet duration. The timespan of

a snippet acts as a propagation vector during the estimation phase of the snippet replay likelihood.



82

219

220

221

222

223

224
225

226

227
228

229
230

231

232

233

234

235

236

237

238

The reward prediction V(t,—> ty, ) is learnt by initializing it to small positive random values and

then iteratively refined by applying the procedure (8) K times:

1. Draw a random contiguous time index subset T = T(n, S, 7; Sieqrn) according to the reverse rate

Brearn:

a. Select a time-step t,such that n € {1 ... N} according to the replay likelihood defined by:

V(t—> ty,)

P(t;—> ty,) =
o SV

(5)

b. Select a random number r € [0, 1] and a contiguous and monotonous time index sequence

7 such that:

s {tmax(l,n—s+1) =ty < ﬁlearn

th = tmin(Nk,n+s)'r = ﬁlearn

(6)

2. Update the reward estimate V over increasing indices of 7 by computing the update equation:

V(tr) = a(R(tg—1) + ¥V (tx-1)) + (1 — @)V (7y)

(7
Where:
e « € [0,1] is the learning rate constant
e y € [0,1] is the discount constant
e R(t) is the observed instantaneous reward information
(8
It is a convex combination of the current estimate of the reward information V(7)) at the next time
step and the instantaneous reward information R(ty—1) + YV (t)—1) based on the previously observed
reward signal R(7,_,) and delayed previous reward estimate yV(7j_1)). Equation 7 implements a

form of temporal difference learning. It is sufficient to define a coarse reward signal as:

10
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1if abaited feeder is encountered at time t
0 otherwise

R(t) = {

The snippet generation procedure is simply the repetition of the steps a and b of procedure (8) with
Bgenerate used instead of Bieqry until the sum of time subsequences durations overflows the fixed

budget duration. These snippets will serve as inputs to the reservoir model of PFC described next.

Reservoir model of PFC for snippet consolidation

We model the prefrontal cortex as a recurrent reservoir network. Reservoir computing refers to a class
of recurrent network models with fixed recurrent connections. The reservoir units are driven by
external inputs and the network dynamics provides a high dimensional representation of the inputs
from which the desired outputs can then be read out by a trained linear combination of the reservoir
unit activities. The principle has been co-developed in distinct contexts as the temporal recurrent

network (Dominey 1995), the liquid state machine (Maass et al 2002), and the echo state network

(Jaeger 2001). The version that we use to model the frontal cortex employs leaky integrator neurons in

the recurrent network. At each time-step, the network is updated according to the following schema:
INSERT Figure 4 HERE

The hippocampus place-cells projects into the reservoir through feed-forward synaptic connections
noted Wfy,q. The projection operation is a simple matrix-vector product. Hence, the input projection

through feed-forward synaptic connections is defined by:
Uffwa(tn) = Wrpwg * Xin(ty)

©
Where:

*  Wypyq is a fixed connectivity matrix whose values do not depend on time.

Synaptic weights are randomly selected at the beginning of the simulation. Various probability density
functions (PDF) could be sampled and one condition on W, is its bijectivity: Every stimulus
Xin(t,) must have a distinct image through Wys,gand each Ugf,gmust correspond to a unique

11
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Xin(ty). Practically speaking (Lukosevicius 2012), sampling U[—1,1]a uniform distribution is

sufficient. A positive synaptic weight in a connectivity matrix models an excitatory connection and a
negative weight models an inhibitory connection between two neurons (that could be implemented via
an intervening inhibitory interneuron). A synaptic weight equal to zero models no connection between
two given neurons. A larger absolute value of the synaptic weights represents a reinforced correlation

between firing patterns of those two neurons.

Let N be the number of neurons in the Reservoir. Reservoir's neurons are driven by both sensory
position inputs X;,(t,) and, importantly by the recurrent connections that project an image of the

previous reservoir state back into the reservoir. The recurrent projection is defined as:

Urec(tn) = Wiee * Xpes(tn1)

(10)
Where:
e W, is aN by N square connectivity matrix.
Synaptic weights are drawn from a U[—1, 1] uniform distribution, scaled by a S(N; K) = K — factor.

VN

The same sign convention as in equation (9) applies for the recurrent connectivity matrix.

Self-connections (i.e. wys, with i € 1 ... N) are forced to zero. W, is also fixed and its values do not

depend on time. The contributions of afferent neurons to the reservoir’s neurons is summarized by
Ures(tn) = Uffwd (tn) + Upec (tn)

(1

The membrane potential of the reservoir’s neurons P, then is computed by solving the following

ordinary derivative equation (ODE):

PTES

at

= _Pres(tn—l) + Ures(tn)

(12)

12
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Where:

e 7 is the neuron’s time constant. It models the resistive and capacitive properties of the

neuron’s membrane.

In this article, we will consider a contiguous assembly of neurons that share the same time constant.
The inverse of the time constant is called the leak rate and is noted h. By choosing the Euler’s forward

method for solving equation(12), the membrane potential is computed recursively by the equation:

Pres(tn) = h* Upes(t) + (1 — h) * Bes(tn-1)
(13)
It is a convex combination between instantaneous contributions of afferents neurons U, .,(t,) and the

previous value Pp.(t,_q) of the membrane potential. The current membrane potential state carries
information about the previous activation values of the reservoir, provided by the recurrent synaptic
weights. The influence of the history is controlled by the leak rate. A high leak rate will result in a
responsive reservoir with a very limited temporal memory. A low leak rate will result in a slowly
varying network whose activation values depend more on the global temporal structure of the input

sequence.

Finally, the mean firing rate of a reservoir’s neuron is given by:

XTE?S(tﬂ.) = GTES(PJ’GS (t?‘[): 91’(?5‘)

(14)
Where:
® 0, is the non-linear activation function of the reservoir neurons

e 0O, is a bias that will act as a threshold for the neuron’s activation function.

We choose a 6,.. = tanh hyperbolic tangent activation function with a zero bias. Negative firing rate
values represent the inhibitory/excitatory connection type in conjunction with the sign of the synaptic
weight. Only the product of the mean firing rate of the afferent neuron by its associated synaptic

weight is viewed by the leaky integrator neuron.

13
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At this point, the reservoir’s states carry information about its present and past activation values within
a limited time span. One single reservoir neuron does not contain the whole information but its
activation fluctuations carry partial information about the serial and temporal structure of the stimulus

sequence. This property corresponds to mixed selectivity (Rigotti et al 2013).

The concatenation of b reservoir states from time t,,_p41 to time t,, is noted X,o5(tp_p+1 = tn). If we
attempt to represent the mean firing rate activation pattern of neurons within this time range, we can
observe that the dynamics are rich but it is difficult to read useful information from a raster: Figure 5
shows in panel B the raster of reservoir neurons when exposed to the ABCDE place-cell activation

sequence depicted in Panel A. The corresponding trajectory is showed in Figure 1, panel A.

Instead, we propose to compute the Singular Value Decomposition (SVD) of the matrix
Xres(tn-p+1 = tn). Xres(tn_p+1 = tn) is viewed as a matrix containing b observations of N
variables (number of neurons in reservoir). The SVD factorizes X,o5(t,—p+1 = tp) into three matrices

named U, X, V such that:
Xres(tn-ps1 2> tn) = U T V"

as)

We will call the matrix U * £ the “equivalent reservoir”. Figure 5.C shows a representation of the neural

network model including the equivalent reservoir.
INSERT Figure 5 HERE

Matrices U and V*might be viewed intuitively as rotation matrices and X as a scaling matrix. Since U
and V*are orthonormal basis, we can see U * X = X,p5(ty_piq = t) * V as a raster of equivalent
neurons. Each equivalent neuron is a neuron whose activation value is a linear combination of
reservoir neurons. The connectivity matrix that projects X,.s reservoir neurons into equivalent

reservoir neurons Xeq is matrix V.

Xeq(tn—b+1 2 ty) = Xpes(tnps1 2 ta) *V

(16)
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In Figure 5.D, we observe the matrix Xeq(tn_p41 = ty) as a raster of equivalent neurons. Most of the

information carried by reservoir neurons can be described with a significantly lower number of

dimensions.

This will allow us to interpret reservoir neurons activation patterns as a simple trajectory in a two or

three -dimensional space as depicted in Figure 5.E

The activation values of the first three neurons of the equivalent reservoir over time are represented as
a three-dimensional trajectory. Time steps of the trajectory that match with a feeder position is

represented with the feeder associated label (A, B, C, D or E).

Moreover, the Wy, synaptic weights that connect the equivalent reservoir to the readout layer are

exactly the correlation coefficient between equivalent reservoir and readout neurons.
Weo =V # corr(Xges, Xeq)

Intuitively, the readout layer selects the linear combinations of neurons correlated with the expected

activation pattern.

Learning in Modifiable PFC Connections to Readout

Based on the rich activity patterns in the reservoir, it is possible to decode the reservoir's state in a
supervised manner in order to produce the desired output as a function of the input sequence. The
expected output is only required to be an activation pattern that is temporally congruent with the input
stimulus. This decoding is provided by the readout layer and the matrix of modifiable synaptic weights

linking the reservoir to the readout layer, noted W, and represented by dash lines in Figure 4.

The readout activation pattern X, (t,) is given by the equation:

Xro(tn) = 0po(Wro * Xyes(tn); Oro)

(17)
Where:

® 0, is the non-linear activation function of the readout neurons
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e 0, is a bias that will act as a threshold for the neuron’s activation function

We choose a 6,, = tanh hyperbolic tangent activation function with a zero bias.

Notice that the update algorithm described above is a very particular procedure inherited from
feedforward neural networks. We chose to use it because it is computationally efficient and

deterministic.

Once the neural network states are updated, the readout synaptic weights are updated by using a

stochastic gradient descent algorithm. By deriving the Widrow-Hoff Delta rule (Widrow & Hoff 1960)

for hyperbolic tangent readout neurons, we have the following update equation:

Wio(tn) = Wi (tn-ps1) + @ * Xpee(tnpp1 = tn ) * (Xro(tn—bJrl =ty ) — Xges(tn_ps1 = tn ))
*(1— Xro(tn—b+1 -ty )2)
(18)
Where:
e is a small positive constant called the learning rate

® t,_py1 — tp is the concatenation of b time steps from t,,_p,1to0 t,

When b = 1, equation (18) computes a stochastic gradient descent. The case when b > 1 is called a
mini-batch gradient descent and allows one to estimate the synaptic weight gradient base on b
successive observations of predicted and desired activation values. A mini batch gradient allows one
to compute efficiently and robustly the synaptic weight gradient. Empirically, b = 32 gives satisfying

results.

In this study, we will focus on the prediction of the next place-cell activation pattern:

Kaes(tn) = Xin(tn+1)
(19)
This readout is considered to take place in the striatum, as part of a cortico-striatal learning system.
This is consistent with data indicating that while hippocampus codes future paths, the striatum codes

actual location (van der Meer et al 2010).
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Training

After each trial, the model is trained using a dataset that is generated online by the snippet replay
mechanism described above in the paragraph on Hippocampus replay. The readout synaptic weights
are also learnedonline by using the learning rule described in the Learning in Modifiable PFC
Connections to Readout section. The model does not receive any form of feedback from the

environment and it learns place-cell activation sequences based only on random replay of snippets.

Between each sequence of the training set (snippets in our case), the states of the reservoir and readout
are set to a small random uniform value centered on zero. This models the fact that a time between the
replays of two snippets is sufficiently long for inducing states in the neural network that are not
correlated with the previous stimulus. This is required for having the same effect as simulating a
longer time after each snippet but without having to pay the computational cost associated to this extra

simulation time.

Embodied Simulation of Sensory-Motor loop via the spatial filter

Once the model is trained, we need to evaluate its performance and the trajectories it can generate. The
model is primed with the first p steps of the place-cell activation sequence the model is supposed to
produce. This sequence is called the target sequence. Then the model’s ability to generate a place-cell
activation sequence is evaluated by injecting the output prediction of the next place-cell activation
pattern as the input at the next step. In this iterative procedure, the system should autonomously

reproduce the trained sequence pattern of place-cell activations.

Predicted place-cell activation values might be noisy, and the reinjection of even small amounts of
noise in this autonomous generation procedure can lead to divergence. We thus employ a procedure
that determines the location coded by the place-cell activation vector output, and reconstructs a proper
place-cell activation vector coding this location. We call this denoising procedure the spatial filter as

referred to in Figure 4.

We model the rat action as ‘reaching the most probable nearby location’. Since only the prediction of

the next place-cell activation pattern 1 is available, we need to estimate the most probable point
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5" (tn+1) = (X" (tn+1), Y (tn+1)). From a Bayesian point of view, we need to determine the most
probable next location s(t,41), given the current location s(t,,) and the predicted place-cell activation

pattern 1(t,,). We can state our problem as:

S*(tn+1) = argmaxs(tn+1)P(s(tn+1)|77(tn);s(tn)) +u

(20)
Where:

e uisa noise function sampling a uniform distribution U (0, m)

u is useful at least in degenerate cases when a zero place-cell activation prediction generates an invalid
location coding. It is also used for biasing the generation procedure and to explore other branches of
the possible trajectories the model can generate as described in section Evaluating Behavior with

Random walk.

The animat is then moved to this new location s* and a new noise/interference free place-cell
activation pattern is generated by the place-field model described in section Sensor model. We call this
place-cell prediction/de-noising method the spatial filter and it emulates a sensory-motor loop for the
navigating rat in this study. Figure 4 depicts this sensory motor loop. An embodied animat able to
choose the most appropriate action according to a sequence of stimuli should be able to perform the

same experiments. We will study trajectory consolidation with the spatial filter.

By using Bayes rule, we can write:

P (t)|s(tn+1))P (s(tn+1)Is(tn))
P(n(tn+1)ls(tn))

P(s(tn+1)n(tn), s(tn-1)) =

(21)
Where:

o P(n(ty)|s(t,41))is called the sensor model and represents the probability to fire the pattern n

at time t,, given the point s at time t,, 44
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o  P(s(tp4q)|s(ty)) is called the transition model and represents the probability for the agent to
be at location s(t,+1) given the current location s(t;,)
e P(n(ty)|s(t,))is a normalization factor that does not depend on s(t;,+1) and could be omitted

for a maximization problem as stated in equation (20)

The sensor and transition model need to be defined in order to evaluate the most probable point given

the predicted place-cell activation vector and the current position.

Sensor model
If we consider the place-cell activations n = (1 )ke1.x at time t as a conditionally independent

consequence and the site s = (x, y) as the cause that generated 7, the sensor model can be written as:

K
Pals) = [ [ Panls)
k=1

(22)

We propose to estimate the posterior probability P(n|s) by using a similarity function based on a one-
dimensional Gaussian function for mapping any difference between mean firing rates f(s) and 1y

into a real number between 0 and 1. The Gaussian based function is described by the equation:

) =)
glx,x';0)=e 20°

(23)
Where:

e ¢ is the standard deviation of the Gaussian function

Thus when a mean firing rate fj,(s) is close to 1y, the corresponding response g(fi (s) ,ny; ) is close
to 1. A very different mean firing rate will be related with a response close to zero. Parameter o
controls the selectivity of the kernel. Small o values will define a narrow Gaussian curve and result in
the rejection of points separated from a relatively close distance from each other. We define the

posterior probability as:
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P(nils) =

9 (8), s 0)

2sres 9(fi(s"),nk; 0)

Then it is possible to rewrite equation (22) as:

K

_Fr()-m)*

e 202
P(nkls) = 1_[ (=2

k=12

s'es €

202

Since we are using a product of exponential functions, we can simplify equation (22) :

Where:

['(n) might be simplified by considering that Yccge 202

rm = Hﬁ=1

P(nls)

3
_(Fr(s")=mp)
Zsese 2

_lf ) -nl?

=€

202 T(n)

_(s)-m)”

dimensional Gaussian integral. The Gaussian integral in K dimensions is given by:

Thus,

s'es€

[ ac= ()

the one-dimensional Gaussian

_(r(s)-m)”
2

20

2
~ (2mo?)z and we have:

integral

20

NI

approximation

evaluates

7 1s a normalization function that only depends on 1)

to

a

24

25

(26)

is an approximation of the one

27
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_K
I~ (2mo?) 2

(28)
In equation (26), I'(n) could be also defined as:
Cn) = 1
() = _IF G-
s'es€ 20°
29

According to equation (27), the K-dimensional Gaussian integral approximation evaluates to

_lr(s")-ni® K _K
Yoese 202 = (2mo?)z and we still have I’ = (2ma?) =, It is also possible to evaluate I'(n) with

taylor series expansions but the major drawback of this solution would be its sensitivity to noise
because of the use of high order polynomials. Since we are only going to evaluate all the points of the
S 2D space and find the maximum of equation (26), the normalization constant I' could be omitted.
The computation equation (26) is based on a similarity function G which measures the similarity

between place-cell activation patterns:

_lle=x"11?
G(x,x')=e 20°

(30)
It is a K dimensional Gaussian kernel similar to those used in support vector machines (Cortes &
Vapnik 1995). Intuitively, it is a dot product in feature space. In Figure 6, panel A shows an example of

the values of equation (30) computed for o = 10 and a finite element map of 1000x1000 elements.

The most probable locations emerge as the most salient areas.
INSERT Figure 6 HERE

Note that the same selection principle could be extended to any place-cell activation spatial response.
A two dimensional grid description of a place-cell activation function built on observations gathered

during a behavioral experiment with a rat is a good example.
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Transition model

The agent can move only on its adjacent locations. This is a constraint of physical continuity that
restricts the areas of the map that must be evaluated for selecting the next location s(t,4,). This is
modeled by a circle of radius R centered on the agent’s current position s(t,). The agent is allowed to

move within a circular sector defined by Radius R and angle a defined by:

< E(tn), d(tn-1) >

lléCt)NI* < R? and — =
lECE DNt

V= {s(tn) ES < cos(g)

(31
Where:
o (ty)=s(ty)-s(t,—1) is a vector that represent the ‘heading’ of the agent, based on its current
position s(t,) and previous position s(t,,_1)
. cf(tn)= 5(tp+1)- S(ty) is a vector that represent the future heading of the agent, based on the

future position s(t,+1) being evaluated and its current position s(t,,)

If no direction is available (i.e. the agent is no longer moving) or if a is set to zero, only the
IE(t,)II? < R%*condition is evaluated. R is chosen in order to enclose the maximum range of motion of
the agent. Restricting the search space for the most probable point by using an appropriate radius R
bounds and significantly reduces the time complexity of the implementation. We then define the

transition model as:

1
— i t EV
P(s(tnsn)|s(tn)) = {Juy & SCtnst)
0 otherwise

(32)

Where |V | represents the area of the V set

Once again, we can omit the normalization constant because of the maximization problem we are

trying to solve and the term |;—Iin (32) can be replaced by 1
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A unified formulation
In (Zhang et al 1998) several reconstructions methods are evaluated and they can be viewed as the

maximization of a function (s, n) defined by the following general equation for K place-cells:

PG = ) Bl <+ AGS)

k=1
(33)
Where 7y, is the mean firing rate of place-cell k, ¢, (s)is a basis function associated with place-cell k

and A(s) is a bias term that is independent of place-cells and reminiscent of a regularization term.

The sum over the K place-cells is in fact a dot product and equation (33) can be rewritten as:

Y(s,m) = K(¢p(s),m) + A(s)
(34

Where K (x, x") is a function that evaluates the similarity between x and x’
In (Zhang et al 1998), the similarity function K(x, x’) is the usual dot product < x, x" >.

Reconstructing a two dimensional location s*based on place-cell activation pattern is equivalent to
maximizing the similarity function K(¢(s),n(t)) under the constraint represented by A(s). The

reconstruction problem is stated as:

s*(t) = argmaxses(P(s,m))
(35
We propose to formulate our reconstruction kernel based/Bayesian method by using this unified
formulation and identifying terms in equation (34) where ¢(s) = f(s) is the firing rate map (i.e. the
spatial response of the place-cells), K(x,x") = G(x,x") is the Gaussian kernel defined in equation
(30), A(s) = u is the noise function mentioned in equation (20), S =V is the set if points lying in a

circle sector centered on the agent as defined in equation (31)

Parameterization of the Spatial Filter
The spatial filter is required for evaluating the model and it is necessary to evaluate its accuracy. We

use a finite element method for simplicity and speed. The two dimensional space that encloses the
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arena (4m?) is thus discretized into square tiles of equal size. Depending on the spatial resolution of
this uniform grid, trajectories discretized through this grid will exhibit an aliasing effect if the grid size
is too coarse. We estimated the absolute discretization error by measuring repeatedly the distance

between a random point drawn uniformly in [-1,1] x [-1,1] and its discretized coordinates.
A grid of 1024 x 1024 provides an acceptable discretization error of less than 1.5 millimeter

Place-cell prediction might be noisy and it is useful to evaluate the performances of the spatial filter in
noisy conditions. For each possible grid size, an important number of random points in [-1, 1] x [-1, 1]
is drawn from a uniform distribution. Then for each point, a uniform noise is added to the mean firing
rate patterns of place-cells activations that correspond to random points. The noise magnitude varies

from 0 to 1 (equivalent to 100% mean firing rate) and produce different values of signal to noise ratio.

The reconstruction error is measured for different values of the ¢ parameter of the spatial filter

(described in section Sensor model) and for different values of signal to noise ratio.

Figure 6, panel B shows the reconstruction mean square root error of different place-cell location
decoding methods. We can observe that the linear model is quite poor at decoding an approximation of
a hippocampus place-cell activation. Even with a 0.03 noise magnitude (SNR = 13.64dB, 3% error in
place-cell pattern prediction) added to the mean firing rate of 256 place-cells, the linear decoder
commits errors about 10 cm. Our kernel-based decoder provides reconstruction errors about the same
order of magnitude as the discretization error when no noise is added. Reconstruction error is still
under lem with a 10% noise (SNR = -0.33dB). Panel C summarizes the performance of our decoder

for different combinations of ¢ and noise magnitude.

It appears that & = 10 is the best parameter regardless of the grid size. The spatial filter will now be

configured with a 1024 x 1024 grid and ¢ = 10.

Evaluating Behavior with Random walk

Once the model has been trained, it is then primed with place-cell activation inputs corresponding to

the first few steps of the trajectory. The readout from the PFC reservoir generates the next place-cell
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activation pattern in the trajectory, which is then reinjected into the reservoir via the spatial filter, in a
closed loop process. This loop evaluation procedure is called autonomous generation. In order to
evaluate what the model really learned in a particular experimental condition, several instances of the
same model are evaluated multiple times. We call this a random walk procedure. The batch of
generated trajectories (usually 1000) are accumulated in a stencil buffer which acts as a two
dimensional histogram showing the most frequently generated trajectories. The arena is drawn with its
feeders and a vector field is computed from trajectories in order to show the main direction of these
trajectories. Trajectories are superimposed and summed, resulting in a two-dimensional histogram

representing the space occupied by trajectories. Figure 7 shows an example of random walk trajectories.
INSERT Figure 7 HERE

In cases where small errors are reinjected into the closed loop system they can be amplified, causing
the trajectory to diverge. It is possible to overcome this difficulty by injecting the expected position at
each time step instead of the predicted position. The error/distance measurement will quantify the
diverging prediction, while allowing the trajectory generation to continue. This method is called the
non-autonomous generation and it evaluates only the ability of a model to predict the next place-cell
activation pattern, given a sequence of place-cell activation. If this procedure succeeds, then the model

has a chance to succeed as well with the autonomous generation procedure but it is not guaranteed.

Comparing produced and ideal sequences using Discrete Fréchet distance

The joint PFC-HIPP model can be evaluated by comparing an expected place-cell firing pattern with
its prediction by the readout layer. At each time step, an error metric is computed and then averaged
over the duration of the expected neurons firing rate sequence. The simplest measure is the mean

square error. This is the error that the learning rule described in equation (18) minimizes.

Although the model output is place-cell coding, what is of interest is the corresponding spatial
trajectory. A useful measurement in the context of comparing the predicted and actual navigation
sequences is the discrete Fréchet distance. It is a measure of similarity between two curves that takes

into account the location and ordering of the points along the curve. We use the discrete Fréchet
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distance applied to polygonal curves as described in (Eiter & Mannila 1994). In (Wylie 2013) the

Discrete Fréchet distance F between two curves A and B is defined by:

F(A,B) =min _max [d(A(a(t)),B(B(t)))]

a,B te[1,m+n]
(36)
Where d(.,.) is the Euclidean distance, m is the number of steps of the curve A, n is the number of

steps of the curve B, and a, [ are reparametrizations of the curves A and B.

Intuitively, the Fréchet distance is the maximum distance between matched points of curves A and B.

Figure 8 illustrates the discrete Fréchet distance.
INSERT Figure 8 HERE

The closest points of curves A and B are matched by finding the sequence of steps along A and B (i.e.
coupling) that must be followed to achieve the minimum coupling distance. The free space diagram
depicted in panel A represents the propagation of the reachability information between two points of A

and B.

A point in the coupling sequence associates two steps of sequence A and B whose Euclidian distance

minimize the coupling distance.

In equation (36), the max(.,.) function is used in order to measure the coupling distance between A
and B. A particular case happens when A and B are similar, excepted at unique step t. The distance
between curves at this step will be reported as the Fréchet distance and we prefer to avoid masking
interesting results by using a variant of the Fréchet distance. Instead of max(.,.), we use the sum(.,.)
function (i.e. operator +). The implied coupling distance gives the minimum of the total distance of an

order preserving correspondence between points of P and Q (Eiter & Mannila 1994).

Results

For robustness purposes, results are based on a population of neural networks rather than a single

instance. The population size is usually 1000 for evaluating a condition and the metrics described
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above are aggregated by computing their mean p(.) and standard-deviation o(.). For convenience, we

define a custom score function associated to a batch of coherent measurements as:
score(X) = u(X) + o(X)

(37)

Results having a low mean and standard deviation will be reported as low score whilst other possible
configurations will result in a higher score. We choose this method rather than Z-score, which

penalizes low standard deviations.

Sequence learning

The model performance depends on several parameters. In (Lukosevicius 2012), a guideline for

manual parameters tuning is described. Tuning parameters like input scaling requires experience and
intuitive insight, and trial and error is suggested. Trial and error is also suggested for tuning the leak
rate parameter and the spectral radius of the recurrent weights matrix should be tuned according to the
mnesic abilities required by the task. We prefer to rely on automated parameter selection and we use a
clustered simulated annealing algorithm as described in (Ram et al 1996). A solution is thus a

particular set of parameters for the model. The possible values of those parameters are:

e W, scaling factor having values from 0 to 10 with 0.001 increments and noted in_scale
e W, scaling factor having values from 0 to 10 with 0.001 increments and noted rec_scale

e leak rate having values from 0 to 1 with 0.001 increments and noted leak_rate

In section Reservoir model of PFC for snippet consolidation, we defined S(N;K) = K % as the

scaling factor of W, with N being the number of neurons in the reservoir because the spectral radius

p(W,.pp) is approximately the same for different values of N. In the parameter search, we are looking

. 1
for the optimal value of rec_scale such that S(N; rec_scale) = rec_scale o

This parameter set is evaluated on B = 10 different model instances, and Fréchet distance
measurements are reduced into a one-dimensional cost function (described in equation 37) that is

associated to the parameter set.
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A population of C= 10 solutions is evaluated during I = 1000 iterations. The initial temperature is

Ty = 1 and the final temperature T, = 1 * 10720, The cooling schedule is exponential multiplicative
1
(T =To*a®)and @ = (?)T. Every K = 100 iterations, the population is renewed with mutations of
0

the best solution evaluated so far. The number of reservoirs neurons is set to N = 1024. The noise
injected in the location probability map (see paragraph Embodied Simulation of Sensory-Motor loop
via the spatial filter) is set to m = 0 in order to ensure that the next location selected during the

sequence generation is the most probable location. Each model instance is trained with a slow learning
rate of @ = % = 9.7656e — 05 and by exposing only 100 times to the same sequence. Trajectories

are preprocessed as described in section Navigation Trajectories and a spatial resolution of 20

1

dots *m™" is used.

As a preliminary experiment, we propose to search for a parameter set that allows the model to learn
and generate a complex navigation sequence. A sequence is qualified as complex sequences because it
contains loop, a feature that is particularly challenging for a sequence learning model. Figure 7 panel A
illustrates a complex trajectory featuring 2 loops. It corresponds to a navigation task requiring good
mnesic abilities and from a simulation point of view, sequences with long loops require a context, or
state history, long enough to disambiguate repeating subsequences. The goal is to find a parameter set
that allows learning and generating complex sequences even in degraded conditions. Table 1

summarizes the results of 10 parallel simulated annealing procedures.

INSERT Table 1 HERE

The best solution has been evaluated with a score of 1.1879078. It means that the sum of coupling
distances of the generated sequences is low for every model instance evaluated. Figure 7 panel B shows
the trajectories generated by the 10000 instances of model setup with the best parameters. They
correspond visually to the expected trajectory despite the fact that noise has been added for an easier
visualization. We propose to estimate the position prediction error as an average coupling distance
between generated and target Trajectory by computing for the 10000 model instances the discrete
Fréchet distance score (sum of coupling distances) and to divide it by the number of samples in the
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target trajectory. It results in a set of averages of distances to the target trajectory. After exposing the
model only 100 times to the target sequence, it is able to generate it with a prediction error of 1.16cm
+ 2.4mm. A longer exposure of 1000 times to the target sequence lowers the prediction error to
1.13cm + 2mm and. There is no significant gain at exposing the model 10 times longer to the training

set.

The discretization error induced by the use of a finite element method for location reconstruction with
our place-cell decoding bayesian method (see section Embodied Simulation of Sensory-Motor loop via
the spatial filter) is 1.5mm. It is the lower boundary of the prediction error it is possible to reach. The

reconstruction error of our Bayesian method with a noise free signal is 0.32mm + 0.22mm

This demonstrates that the overall model with only 1024 reservoir neurons is suitable for trajectory
learning and the best parameter set is in_scale = 6.379720, rec_scale = 6.553708, leak_rate =
0.494997. The optimized rec_scale = 6.553708 value results in a spectral radius p(Wpe) =
3.8712 and in_scale = 6.379720 ensures a significant influence of the input on the reservoir
dynamics. The inverse of the model time constant, leak_rate = 0.494997, is adapted to the dynamics

of the complex training sequence sampled at a spatial resolution of 20 dots * m™1,

By keeping the same parameters and trajectory and then varying the leak_rate from 0 to 1 and the
spatial resolution of the trajectory, it is possible to show that there exists for each spatial resolution a
tight range of leak rates that allows good performance. Figure 9 illustrates this property of recurrent

neural networks.

INSERT Figure 9 HERE

The score of each (leak rate, spatial resolution) pair is depicted on a heat map with a logarithmic

scale. The x-axis represents the spatial resolution in dots * m~!

and the y axis the leak rate
leakrate = 0 results in a systematic failure and this is expected. Reservoirs neurons are always silent
and their states cannot be associated to an expected readout value. Depending on the spatial resolution

used for sampling the trajectories, there is an adapted leak rate range that yields good performance.
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Consolidation from snippet replay

The model is able to learn and generate navigation sequences from place-cell activation patterns. The
next step is to demonstrate that a sequence can be learned by the same model when it is trained on

randomly presented snippets, instead of the continuous sequence.
INSERT Figure 10 HERE

The model parameters are kept the same and snippets are replayed in a random order. In this
experiment, no reward is used, and thus each snippet has equal chance of being replayed. The only
free parameter is the snippet size. We collect the state-trajectories of reservoir neurons when exposed
to snippets. The internal state of the reservoir is driven by the external inputs, and by recurrent internal
dynamics. The reservoir adopts a dynamical state-trajectory when presented with an input sequence.
Such a trajectory is visualized in Figure 10D. This is a 2D (low dimensional) visualization, via PCA,
of the high dimensional state transitions realized by the 1000 neurons reservoir as the input sequence
corresponding to ABCDE is presented. Panels A-C illustrate the trajectories that the reservoir state
traverses as it is exposed to an increasing number of randomly selected snippets generated for the
same ABCDE sequence. We observe that as snippets are presented, the corresponding reservoir state-
trajectories start roughly from the same point because of the random initial state of the reservoir before
each snippet is replayed. Then the trajectories evolve and partially overlap with the state-trajectory
produced by the complete sequence. Replaying snippets at random thus has no negative impact
because the reservoir states overlap when snippet trajectories overlap. Snippets quickly drive the
reservoir state from an initial random activation (corresponding to the grey area at the center of each
panel) onto their corresponding locations in the reservoir activation state-trajectory. Thus, a snippet
that encodes the sequence near element B will drive the reservoir into the same state of activation that

it did when it appeared in the un-fragmented initial sequence (as in panel D).

The stochastic gradient descent can occur because the activation values of X,.s are reliable and
everything happens as if the model had been exposed to the whole sequence. Given this visualization

of the reservoir state induced by snippet replay, we now demonstrate that sequence learning is possible
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through snippet replay by running several simulations using data from rat traversals of different

configurations from the behavioral dataset.

INSERT Figure 11 HERE

Figure 11 illustrates the effects of snippet size on sequence reconstruction performance. In general,
longer snippets lead to better learning, though it is of interest to note the variability between
performance on these 10 sequences of varying length and complexity from the rat behavior dataset.
Different snippet sizes are possible and they are defined by the number of samples corresponding to a
percentage p €]0, 1] of the total number of samples T}, of a k trajectory. Several snippets sizes are
evaluated with the optimal parameters found in Sequence learning. Figure 11 displays the Fréchet
distance scores when the model learns ten sequences, based on random replay with different snippets
sizes. The time budget parameter is fixed to T = 184 x 100, 100 times the size of the trajectory

having the highest number of samples.

The maximum snippet size corresponds to the length of the shortest sequence itself. It is the particular
case where the number of possible snippets is one. We are more interested by smaller snippet sizes
that only represent partially the place-cells activations of the entire sequence because they model

hippocampus place-cell replay during SWR.

The snippet size limits the size of the place-cell activation history (context) maintained by the
reservoir. If the snippet size is shorter than the size of the context required for generating a trajectory,
then the trajectory generated by the model will be different from the expected trajectory. This is not
necessarily a bad property of snippet replay since it allows the model to generate novel trajectories that
it can represent. We will continue to illustrate this property by examining other generated sequences

extracted from the training set.

Fréchet distance scores of generated trajectories are clustered into two classes of trajectories by a
standard K-means algorithm: the ‘best’ class aggregates trajectories having the smallest possible

Fréchet distance score, and the ‘others’ class aggregates trajectories having the remaining scores.
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Table 2 shows for the trajectory found in configuration 34 and a limited range of snippets size, the

population percentage of each class and its associated Fréchet distance score.
INSERT Table 2 HERE

For snippet size = 9, 91.2% of the generated trajectories have a Fréchet distance score of 0.037858.
This is the smallest possible snippet size that allows acceptable generation performances for the
trajectory found in Configuration 34, trial 2. snippet size = 20 is also an interesting point because

even the ‘others’ class score has the same order of magnitude as the ‘best’ class score.

Sequences are globally generated with the best accuracy the model can reach for snippet size = 10.
Snippet replay entails a performance drop compared to standard sequence learning paradigms but it is
not relevant for navigation tasks. We observe that random snippet replay allows the model to align
random subsequences of a trajectory and consolidate them; to break the long range dependencies by
using a short snippet size and to generate any trajectory the model can represent. Now we will see the

advantages of this capability.

Longer paths are rejected

The previous experiment showed that it is possible to consolidate single navigation sequences from a
uniform random replay of snippets. Now we will examine how using reward proximity to modulate
snippet replay probability distributions (as described in the hippocampal replay description) can lead

to the rejection of longer, inefficient paths between rewarded targets.

1000 copies of the model run 10 times. Each are exposed to the reward modulated replay of two
sequences ABC and ABD having a common prefix AB as illustrated in Figure 12. At the end of the
common prefix AB, the trajectory forks and takes two different directions. This situation is ambiguous
because the model has no prior knowledge about which location is the next one. The model is exposed
to a random replay of sequences ABC and ABE. The random replay is not uniform and takes into
account the reward associated with a baited feeder when food was consumed. Snippets close to a

reward have more chance to be replayed and thus to be consolidated into a trajectory.
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INSERT Figure 12 HERE

Panel A in Figure 12 illustrates the distribution of snippets selected from the two sequences, ABC in
pink and ABD in blue. At the crucial point of choice at location B, we the distribution of snippets for
sequence ABC largely outnumbers those for sequence ABD. This is due to the propagation of rewards
respectively from points C and D. Per design, rewards propagated from a more proximal location will
have a greater influence on snippet generation. Panel C shows the 2D histogram of autonomously
generated sequences when the model is primed with the initial sequence prefix starting at point A. We

observe a complete preference for the shorter sequence ABC illustrated in panel E.

The snippet generation model described above takes into account the location of rewards, and the
magnitude of rewards. In panel B, we show the distribution of snippets allocated to paths ABC and
ABD when a 10x stronger reward is presented at location D. This strong reward dominates the snippet
generation and produces a distribution that strongly favors the trajectory towards location D, despite
its farther distance. Panel F confirms this tendency. This suggests an interesting interaction between
distance and reward magnitude. For both conditions, distances to the expected sequence have been
measured for every trajectory generated (10 000 for ABC and 10 000 for ABD). Then a Kruskall
Wallis test confirms with a result of zero (p-value = 0) for both cases that trajectories generated

autonomously correspond to the expected trajectories

Novel efficient sequence creation

Based on the previously demonstrated dynamic properties, we determined that when rewards of equal
magnitudes are used, the model would favor shorter trajectories between rewards. We will now test the
model’s ability to exploit this capability, in order to generate a novel and efficient trajectory from
trajectories that contain a sub-path of the efficient trajectory. That is, we determine whether the model
can assemble the efficient subsequences together, and reject the longer inefficient subsequences in
order to generate a globally efficient trajectory. Figure 1 illustrates the desired trajectory that should be
created without direct experience (Panel A), and panels B-D illustrate the three trajectories that each

contain part of the optimal trajectory, and which will be used to train the model (red).
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INSERT Figure 13 HERE

The same A, B, C, D, E feeders are used, the efficient sequence is ABCDE, the model parameters are
the same and the random replay is based on the following trajectories: ABCED that contains the ABC
part of the ABCDE target sequence, BACDE that contains the CDE part of the ABCDE target

sequence, and EBCDA that contains the BCD part of the ABCDE target sequence.

Figure 13 A illustrates how the hippocampal replay model generates distributions of snippets that
significantly favor the representation of the efficient subsequences of each of the three training
sequences. This is revealed as the three successive peaks of snippet distributions on the time histogram
for the blue (ABCED) sequence, favoring its initial part ABC, the yellow (EBCDA) sequence,
favoring its middle part BCD, and the pink (BACDE) sequence, favoring its final part CDE. When
observing each of the three color-coded snippet distributions corresponding to each of the three
sequences we see that each sequence is favored (with high replay density) precisely where it is most
efficient. Thus, based on this distribution of snippets for training, the reservoir should be able to

extract the efficient sequence.

This is shown in panel B, which illustrates the autonomously generated sequences for 1000 instances
of the model executed 10 times each. The spatial histogram reveals that the model is able to extract
and concatenate the efficient subsequences to create the optimal path, though it was never seen in its
entirely in the input. Panel C illustrate the significant differences between distances to different
sequences used in this experiment, A Kruskal-Wallis test confirms these significant differences with a

very small p-value = 5.9605e-08.

Reverse replay

In (Carr et al 2011), hippocampus replay during SWR is characterized by the activation order of the
place-cells which occurs in backward and forward direction. We hypothesize that reverse replay
allows the rat to consolidate in both directions a trajectory explored in one direction only. If we
consider the TSP problem as a graph optimization problem, the effect of reverse replay could be

intuitively understood as maintaining the possible trajectories graph as undirected, rather than directed
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with a snippet replay in forward direction only. This means that an actual trajectory, and its
unexplored reverse version, can equally contribute to new behavior, and fewer actual trajectories are

required for gathering information for solving the TSP problem.

In the current experiment, we examine the effects of forward and reverse replay during the sequence
learning process. At the same time, we investigate the effects of forward and reverse reward
propagation during the creation of the hippocampal replay model. We first validate that a random
replay containing reversed snippets allows the model to generate sequences in both directions. One
hundred instances of the model are exposed to a random replay of snippets having size 10 during a
reverse replay stage that is evaluated over the following parameters ranges: Reverse rate varying from

0 to 1 with increments of 0.1.

We examine the train-test direction pairs forward-forward, forward-reverse, reverse-forward and
reverse-reverse as illustrated in Figure 14, as we vary the proportion of reverse replay. For each
corresponding condition (Cartesian product of hippocampal reward propagation reverse rate, and

replay direction reverse rate), the model is successively reset to its initial state and trained.

INSERT Figure 14 HERE

As shown in Figure 14, the model is able to generate the ABCDE sequence in forward and backward
direction and best performances are achieved when about half of the snippets of ABCDE are entirely
reversely replayed. The same conclusion applies for sequence EDCBA. At this point, the effect of
reverse replay is to have virtually a forward random replay of a given trajectory in forward direction

(as experienced by the agent) and the same trajectory experienced in the reverse direction.

We now investigate how reverse replay can be exploited in a recombination task where some
sequences are experienced in the forward direction, and others in the reverse direction, with respect to
the order of the sequence to be generated. We use the same setup as described above for novel
sequence generation, but we invert the direction of sequence EBCDA in the training set. Without
EBCDA, the model is not exposed to sub trajectories linking feeders B to C and C to D and the

recombination cannot occur. We then introduce a partial reverse replay, which allows snippets to be
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played in forward and reverse order. This allows the reservoir to access segments BC and CD (even

though they are not present in the forward version of the experienced trajectory.

INSERT Figure 15 HERE

Figure 15 illustrates the histogram of sequence performance for 10000 runs of the model (1000 models
run 10 times each) on this novel sequence generation task with and without 50% reverse replay. We
observe a significant shift towards reduced errors (i.e. towards the left) in the presence of reverse

replay (panels A and B).

We then examine a more realistic situation by reproducing an observation of spontaneous creation of
“shortcuts™ described in (Gupta et al 2010). The model is exposed to a random replay of snippets
extracted from two trajectories having different direction (clockwise and counter clockwise). Figure 16
shows the left lap and right lap trajectories. The system thus experiences different parts of the maze in
different directions. We examine whether the use of reverse replay can allow the system to generate

novel shortcuts.

INSERT Figure 16 HERE

The left and right trajectories used for training are illustrated in Figure 16A and B. The model is
trained with snippets from these sequences using different random replay rates. The model is
evaluated in non-autonomous mode with 4 sequences representing the 4 possible types of shortcut.
Figure 16 C shows that the best performance is achieved with an equal proportion of forward and
reverse replay. Figure 16D shows trajectories generated in non-autonomous mode with parameters
a = 220°, R = 10cm, Reverse Replay rate 0%, with a prime starting at the central start point. After
turning left, the system continues on the trajectory. Then, crucially, at the bottom of the maze, the
system crosses into the right hand maze, and begins to display large errors, as this part of the maze has
never been experienced in this direction. In Figure 16E, this same segment is now experienced with
low error, even though this movement has never actually been experienced by the system. This is

because in this case the system has been trained with Reverse Replay rate 50%. Thus, in the right hand
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part of the maze, it is as if the system had experienced this already in the counter-clockwise direction,

though in reality this has never occurred, but is simulated by the reverse replay.

The trajectory is evaluated in non-autonomous mode and the position of the agent necessarily follows
the target trajectory. In this case, the expected trajectory describes a counterclockwise path and the
right part of the trajectory describes a clockwise path. Results are not significantly different with a
replay rate 25% and 75%, where the best performance is observed, and all the other conditions are
significantly different. Table 3 Shows the significant p-values for all possible comparisons between

two different replay reverse rate.
INSERT Table 3 HERE

This phenomenon was obtained for the 4 possible shortcuts.

Effects of Consolidation and Reverse Replay

We demonstrated the ability of the system to consolidate experience and generate new efficient
sequences, and we also showed the added value of reverse replay. The model demonstrates the ability
to accumulate and consolidate paths over multiple trials, and to exploit reverse replay. Here we
examine these effects on the more extensive and variable dataset extracted from rat behavior (de Jong
et al 2011). We show the positive effects of replay on trajectories from rats trying to optimize spatial

navigation in the TSP task.

We consider a trajectory as a graph and the vertices are the feeders and the edges the paths that link
the feeders. By analyzing the trajectories, it is possible to split the remaining dataset in 9 different
groups characterized by two criteria: The number of informative trials required to observe all the edges
contained in the target trajectory, and the direction of the edges contained in the trials taken into

account
INSERT Table 4 HERE

In, each column contains configurations in which the rat performed trajectories containing edges of the

target trajectory in a particular direction, and in which the rat converged on a near-optimal trajectory at
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least once. Each configuration consists of 8 to 13 trials where each trial might contain a trajectory
having a shared edge with the target trajectory. Such a trial is called an informative trial. Therefore, a
given configuration can be classified into different clusters. For example, configuration 97 has three
trials that contain the edges of the optimal sequence in the forward direction and three trials containing
the edges of the optimal sequence in the forward and backward directions. Configurations 80 and 58

contain three trials in which trajectories have edges in the backward direction only.

We study the different clusters by training the model with random replay of different combinations of
informative trials. The combination representing an empty set of informative trials is not evaluated.
For each combination of informative trials, the random replay is evaluated with 0%, 25%, 50%, 75%
and 100% of reverse replay rate in order to show the joint effect of random replay and combination of
informative trials. The model is then evaluated in non-autonomous mode with the target sequences
that consist in a set of trajectories linking the baited feeders in the correct order. An idealized sequence
is added to the target sequence set because trajectories generated by the rat might contain edges that do
not relate the shortest distance between two vertices. Agent’s moves are restricted to a circle having a

10 cm radius.

INSERT Figure 17 HERE

Figure 17 illustrates the combined effects of successive integration of experience and its contribution
to reducing error, and of the presence of different mixtures of forward and reverse replay. The
ANOVA revealed that there is a significant effect for consolidation (F(4, 58500) = 333.96, p <
0.0001), as performance increases with exposure to more previous experience (Panel A). There is also
a significant effect for reverse replay rate (F(2, 58500) = 2921.54, p < 0.0001), illustrated in Panel B.
There was a significant interaction between consolidation and replay direction (F(8, 58500) =2.81, p <

0.01).

Discussion

In this study, we tested the hypothesis that hippocampus awake replay observed during sharp wave

ripple events plays a role in memory consolidation by exposing the prefrontal cortex between
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successive trials to short subsequences of place-cell activation patterns. The behavior of interest is a
form of spatial navigation trajectory optimization in a task, mimicking the well-known traveling
salesperson problem. It is a NP-Hard problem and finding an exact solution would require significant
time and computing resources. Nevertheless, it has been observed that a rat was able to quickly solve

simplified versions of this problem (Bures et al 1992, de Jong et al 2011).

In this behavior, rats are observed to converge quickly to a near-optimal path linking 5 baited food
wells in a 151cm radius open arena. During their successive approximation to the optimal path, the
rats often traversed segments of the optimal trajectory, as well as non-optimal segments. Observing
this behavior, we conjectured the existence of neural mechanisms that would allow most of the
optimal segments to be reinforced and most of the non-optical segments to be rejected, thus leading to
the production of the overall near-optimal trajectory. The overall mechanism we propose can be
decomposed into two distinct neural systems. The first is a replay mechanism that favors the
representation of snippets that occurred on these optimal segments, and that in contrast will give
reduced representation to snippets that correspond to non-optimal trajectory segments. Interestingly,
this characterization of replay is broadly consistent with the effects of reward on replay observed in

behaving animals (Ambrose et al 2016).

The second neural system required to achieve this integrative performance is a sequence learning
system that can integrate multiple subsequences (i.e. snippets) into a consolidated representation,
taking into consideration the probability distributions of replay so as to favor more frequently replayed
snippets. Here we considered a well-characterized model of sequence learning based on recurrent

connections in prefrontal cortex.

Replay mechanism: Replay is modeled using a procedure that randomly selects a subset of place-cells
coding part of a sequence, and outputs this snippet while taking into account the proximity of this
snippet to a future reward. Each time a reward is encountered, it is taken into consideration in
generating the snippet, and reward value is propagated backwards along the sequence, thus
implementing a form of spatio-temporal credit assignment. This can be viewed in the figures
illustrating the snippet probability densities. The replay mechanism also implements a second feature
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observed in animal data, which is a tendency to replay snippets in reverse order. These two features of
the replay model correspond to what is observed in the rat neurophysiology, and they also make
fundamental contributions to the model’s ability to converge on an efficient navigation path. This
extends previous demonstrations of the value of replay to include reward-modulated optimization

(Johnson & Redish 2005).

Reservoir network: The reservoir computing framework models the prefrontal cortex and its recurrent

connections. A reservoir network is able to learn stimuli sequence predictions by maintaining a form
of neuronal state history, resulting from multiple reverberations of neural activity, and the time
constant of these neurons related to the resistive and capacitive properties of a neuron’s membrane. It
is a form of fading memory and when a reservoir network is exposed to a random replay of snippets,
its memory storing abilities are truncated by the duration of the snippet. The effect of snippet replay is
to break long-range time dependencies within an input sequence. The neurons state history is
necessarily shortened. After several time-steps, the reservoir neuron states are similar to those that
would have been observed by exposing the neural network to the entire sequence until it matches the
snippet. This coherency in neurons state coding and the truncation of the neurons states history allows
the reservoir network to naturally align and stitch together subsequences of place-cell activation in the
neurons state space. It is thus possible to learn a whole sequence from a random replay of snippets by
representing only short term dependencies between successive place-cell activation patterns. Long-
range time dependencies will not be represented nor learnt by the reservoir network. These results
yield the prediction that if the whole sequence is decomposed into snippets that do not feature long-
range time dependencies, the complete sequence could be learnt and generated, otherwise it will result

in a simplified sequence.

Effects of reward: The instantaneous reward information acquired during a past experience is used for
recursively updating the snippet replay likelihood in the hippocampus model. The resulting time
distribution of snippets features multiple modes defined around the moments that rewards are
obtained. This creates a reward gradient and allows sensory-motor associations to be learned by the

prefrontal cortex and striatum model. This is a novel form of reinforcement learning, and the main
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effect of reward combined with hippocampus replay is to reinforce existing efficient paths between
rewards. A secondary effect of rewards could be observed when rewards are sufficiently close for
allowing a mutual contribution to the snippet replay likelihood surrounding the moments associated
with reward delivery. Thus, we predict that a cluster of reward sites will have the effect of propagating

the reward information farther than a single reward.

Effects of reverse replay: The reverse replay mechanism has a dual effect. First, a snippet replayed in

reverse order will play the role of a short-term support for the reward propagation in reverse direction
in the snippet replay likelihood online learning. Place-cell activation sequences leading to a nearby
reward are represented more frequently and earlier than other paths, and allow less efficient sub-paths
to be rejected. It results in a rewarding path selection mechanism by implementing a form of saliency
based on reward information. This is a form of spatio-temporal credit assignment that allows to take
advantage of the reservoir network ability to combine multiple snippets into a whole sequence. We
showed that it is possible to consolidate multiple sequences featuring parts of the same underlying
optimal sequence into one efficient sequence and to generate it autonomously. Second, when the
snippet replay likelihood is learned, a non-zero reverse replay rate allows the prefrontal cortex to be
exposed to sequences of place-cell activations in both forward and reverse direction. This results in
sequence learning in both directions while having experienced a place-cell activation sequence in one
direction only. These results can be tested experimentally by recording place cells activities in SWR

during the task.

Conclusions and limitations: The joint PFC-HP-ST model we studied here is able to mimic the rat’s

ability to find good approximations to the traveling salesperson problem by taking advantage of recent
rewarding experiences for updating a trajectory generative model using hippocampus awake replay.
We showed that reverse replay allows the agent to reduce the TSP task complexity by considering an
undirected graph where feeders are vertices and trajectories are the edges instead of a directed graph.
In this case, autonomous sequence generation is no longer possible but the information available in

each prediction of the prefrontal cortex contains the expected locations. This allows the building of a
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Figure 1: An optimal trajectory between feeders ABCDE is represented in panel A. Panel B, C and D display non optimal
trajectories that contain a sub trajectory of the ABCDE trajectory. The sub trajectory shared with the ABCDE trajectory is
displayed in red and the non-optimal parts in blue. Panel B contains the ABCED, panel C the EBCDA trajectory and panel D

the BACDE trajectory.
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Figure 2: Example Rat trajectory. A. One trial of the rat traversal of configuration 84. B. Idealized version of this trajectory

that can be compared with trajectories generated by the model.
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Figure 3: Place-cell and Snippet coding. Panel A represents the place-cell activations that correspond to a single point. Place-
cell centers are represented by red points and the mean firing rate of each place-cell by a red circle with a fixed radius,
centered on the place-cell center. The transparency level of the circle represents the magnitude of the mean firing rate. Panel
B depicts the ABCED trajectory, the two randomly selected reward sites R; and Rzand a snippet randomly drawn between R,
and R;. The snippet length is s = 5. Panel C represents the raster of the place-cell activation along the ABCED trajectory.
The time index where feeders A,B (R;),C,D and E(R;) are encountered during the ABCED trajectory are tagged above the
raster and represented by a thin white vertical line. The snippet represented in panel B is emphasized by a blue rectangle in
panel C. Panel D represents the snippet replay likelihood as learnt by the Hippocampal replay model and panel E represents

the spatial extent of the snippet replay likelihood
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Figure 4: Reservoir Computing Model. The Temporal Recurrent Network (TRN) is a model of the prefrontal cortex (PFC)
that take into account cortico-cortical loops by defining a fixed recurrent adjacency matrix for the leaky integrator neurons
that model PFC neurons. Inputs of the TRN are modelled hippocampus (HIPP) place-cells. During the training phase, place-
cells activations are provided by the algorithmic model of SWR replay (red pathway), and the striatum model leams to
predict the next place-cell activation from the PFC model states by modifying the synaptic weights that project the PFC
model into the striatum model according the delta learning rule. During the generation phase, the model is no longer learning
and the place-cell activation patterns result from the new position of the agent, reconstructed with a Bayesian algorithm from

the next place-cell activation prediction of the modeled striatum (blue pathway)
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Figure 5: Internal Representations in the reservoir . Panel A shows the raster of simulated hippocampus place-cell neurons
activation over time. Panel B represents the raster of the reservoir’s neurons. Panel C depicts the hippocampus, prefrontal
cortex and striatum as we modelled them and features a supplementary artificial neuron group called equivalent reservoir
whose raster is represented in panel D. An equivalent reservoir neuron represents in fact a principal component, as computed
by the PCA algorithm. Panel E represents the raster observed in panel D as a 3D trajectory resulting from the 3 first principal

components.
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1094 Figure 6: Spatial Filter. Panel A represents the location probability map computed by our Bayesian reconstruction method
1095 and result from a Gaussian kernels with ¢ = 10 applied to the norm between the place-cell activation of each point of the

1096 map and the predicted next place-cell activation pattern computed by the reservoir model. The trajectory ABCED is overlaid
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on the map and the current position corresponding to the input activation pattern is shown in red. Panel B depicts the
reconstruction error in function of the noise magnitude/signal to noise ratio of the linear direct model (Average of the place-
cells centers weighted by the normalized mean firing rate of the place —cells), our radial basis function method (the Gaussian
kernel is a radial basis function) computed over the full map and a faster version of our method where the computation is
limited to a circle surrounding the current position. Panel C shows an extensive evaluation of the firing rate map based kernel
decoding algorithm. Noise varies from 0% to 100% of mean firing rate and sigma varies from 0.01 to 100 in a semi

logarithmic manner.
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Figure 7: Sequence learning. Panel A illustrates a long convoluted trajectory taken by a rat in configuration 38. Panel B

illustrates the probability maps of trajectories generated by the trained model in autonomous sequence generation mode. Note

that there are two locations where the trajectory crosses itself, which introduces ambiguity that the model is able to

disambiguate. This illustrates that the model is well able to learn such sequences.
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Free space diagram for sequences ABCDE and ABCED
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1111 Figure 8: Fréchet Distance. Panel A shows the free space diagram used during the computation of the Fréchet distance
1112 between ABCED and ABCDE trajectories. X and Y axis represent the discrete steps between points of ABCED and ABCDE
1113 trajectories. Z axis relates in meter the coupling distance between two points. The coupling sequence is represented with a
1114 blue line following the optimal alignment between the two trajectories (i.e. sequences of points). Panel B represents the
1115 paired points of ABCDE and ABCED trajectories. During the common prefix ABC, curves are relatively similar and the
1116 paired points are located close to each other. This is related by the diagonal part of the coupling sequence in panel A. Then
1117 the diverging parts of ABCDE and ABCED are still paired but we can clearly observe a one-to-many relationship, near point
1118 (0.6,-0.1) and the free space diagram relates it by variations along the ABCED steps axis and no variation along the ABCDE

1119 steps axis.
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Figure 9: Spatial resolution vs. reservoir neuron leak rate. As the spatial resolution increases, the number of discrete points

that describe a sequence increases. We observe that as this occurs, the corresponding leak rate decreases. This indicates the

relation between sequence length and local temporal memory implemented at the individual neuronal level.
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Figure 10: Illustration of snippet integration in reservoir state space. Here we visualize the high dimensional reservoir space
in a low (2D) PCA space, in order to see how pieces (snippets) of the overall sequence are consolidated. In this experiment,
the sequence ABCDE is broken into snippets, which are then used to train the model. The challenge is that only local
structure is presented to the model, which must consolidate the global structure. Panels A-C represent the state trajectory of
reservoir activation after 100, 1000 and 1000 snippets. While each snippet represents part of the actual trajectory, each is
taken out of its overall spatial context in the sequence. Panel D represents the trajectory of reservoir state during the complete
presentation of the intact sequence. Panel C reproduces this trajectory, but in addition we see “ghost” trajectories leading to
the ABCDE trajectory. These ghost elements represent the reservoir state transitions from an initial random state as the first

few elements of each snippet take the reservoir from the initial undefined state onto the component of the ABCDE trajectory

coded by that snippet.

1000 snippets from ABCDE
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Figure 11: Effects of snippet size on sequence learning for sequences of varying difficulty.
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configurations of the rat TSP data set were used with snippets of different sizes varying from 0 to 70. We observe that for

most sequences, error is reduced as snippet size increases.
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Figure 12: Longer paths are rejected. Panels A and B illustrate snippet counts for T maze trajectories pictured in panels C
and D. In Panel C, sequences begin at location A, and rewards are given at locations C and D. Based on the reward proximity
and propagation, there is a higher probability of snippets being selected along path AC than path AD. This is revealed in
panel A, a histogram of snippets for the sequences ABC (in Blue) and ABD (in Orange). Panels B and D illustrate how
distance and reward intensity interact. By increasing the strength of the reward, a longer trajectory can be rendered virtually
shorter and more favored, by increasing the probability that snippets will be selected from this trajectory, as revealed in Panel
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1149 B. Panel E and F confirm a neat tendency to generate autonomously sequences significantly similar to the ABC and ABD

1150 sequence respectively (p-value = 0).
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1153 Figure 13: Efficient Sequence Synthesis. A. Distribution of snippets drawn from the sequences illustrated in Figure 1 B, C
1154  and D. Globally we observe snippet selection favors snippets from the beginning of sequence ABCED (blue), the middle of
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EBCDA (yellow), and the end of sequence BACDE (pink), which corresponds exactly to the efficient subsequences (ABC,
BCD, and CDE) of these three sequences. This distribution of snippets is used to train the model. The results of the training
are illustrated in panel B. Here we see a 2D histogram of sequences generated by the model in the ABCDE recombination
experiment. 10 batches of 100 reservoirs each were trained and each model instance was evaluated 10 times with noise. Panel
C confirms that the trajectories generated autonomously are significantly more similar to the target sequence ABCDE (p-
value = 5.9605¢e-08) These results are very robust and satisfying, demonstrating that our hypothesis for efficient sequence

discovery based on reward-modulated replay is validated.
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Figure 14: Effects of reverse replay and initial sequence direction. When a sequence is learned and tested in the same
direction, introduction of reverse replay gradually impairs performance (panels A and D). When training and testing direction

are reversed, then the introduction of reverse replay gradually improves performance. Interestingly, a mixture of forward and

reverse replay leads to a general compromise for all situations.
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1170 Figure 15: Reverse replay facilitates efficient sequence discovery. Using the same sequences illustrated in Figure |, we

1171 reversed the direction of sequence EBCDA, and then tested the model’s ability to synthesize the ABCDE sequence from
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1174  Figure 16: Reverse replay allows novel shortcut path generation. Panels A and B illustrate the trajectories for left and right
1175 trajectories, based on Gupta et al. After training on these two trajectories, we test the ability to generate a shortcut that makes
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1181

the complete outer loop in one direction. Panel C — without reverse replay, significant spatial errors are revealed when the
system attempts to complete the counter-clockwise loop on the right side of the maze Panel D illustrates the beneficial effects
of reverse replay during trajectory learning. Panel E illustrates the effect of a model training with 100% reverse replay. It is
similar to using a 0% reverse replay but the effect is observed on the left lap trajectory part. Panel F — when reverse replay is

introduced, this error is attenuated.
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1184 Figure 17: Consolidation and reverse replay applied to behavioral data. Data from the rat TSP configurations are used for
1185 training and testing the model. A. Effects of consolidation: as successive trials are added to the replay repertoire; the
1186 trajectory reconstruction error is significantly reduced. B. Effects of reverse replay: as reverse replay is introduced in snippet

1187 formation for training the PFC model, reconstruction error is significantly reduced.
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1189
1190

1191

1192

1193

1194

Solution number in_scale leak rate rec_scale score

1 '6.379720' '0.494997' '6.553708' 1,1879078
2 '5.212805' '0.481997" '5.542781' 1,1900330
3 '6.429717" '0.485997" '6.553708' 1,1994574
4 '5.189806' '0.480997" '5.542781' 1,2003332
5 '5.404791' '0.483997' '5.542781' 1,2313991
6 '5.256802' '0.508997" '5.542781' 1,2524340
7 '9.084041' '0.445998' '8.420773' 1,2691536
8 '5.211805' '0.495997" '5.542781' 1,2712017
9 '6.322724' '0.492997" '6.952679' 1,2836924
10 '8.297723' '0.459998' '5.542781' 1,3022404

Table 1: summary of the 10 parameter sets optimized by the parallel simulated annealing algorithm. Column in_scale

represents the scaling constant applied to the feedforward connectivity matrix W,, rec_scale represents the scaling
constant applied to the recurrent connectivity matrix W,..., normalized by % and ensuring an approximately constant

spectral radius of p = 3.87. Column leak_rate represents different values of the leak rate of the reservoir neurons and

solution number, the rank of the parameter set sorted in increasing order
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1195
1196

Snippets size 1 5 9 12 16 20 23 27 31

best Score 0.53583 | 0.13909 | 0.037858 | 0.037005 | 0.021245 | 0.015277 | 0.014615 | 0.013871 | 0.020241
Population % 299 52.1 91.2 98.6 98.2 94.9 83.7 77.8 99

others | Score 0.98145 | 0.92174 | 0.73686 1.0041 0.87086 0.029701 | 0.025379 | 0.022013 | 0.95653
Population % 70.1 47.9 8.8 1.4 1.8 5.1 16.3 22.2 1

Table 2: Performance (revealed by Fréchet distance to desired trajectory) as a function of snippet size.
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1197
1198

Reverse rate | 0% 25% 50% 75% 100%

0% N.A. 1.1921e-07 1.1921e-07 1.1921e-07 1.1921e-07
25% 1.1921e-07 N.A. 1.1921e-07 0.017098 1.1921e-07
50% 1.1921e-07 1.1921e-07 N.A. 1.1921e-07 1.1921e-07
75% 1.1921e-07 0.017098 1.1921e-07 N.A. 1.1921e-07
100% 1.1921e-07 1.1921e-07 1.1921e-07 1.1921e-07 N.A.

Table 3: p-values of different combinations of reverse replay rate (ANOVA1)
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Clusters of conditions Edge direction
number Forward Backward Both
Required 1 0] 84 41,43,53,78,84
number of 2 8,25,33,41,44,48,52,70,78 11 8,11,25,29,32,33,38,40,44,52,56,70,82
trial(s) 3 |97 58,80 48,80,97
Total number of | 10 4 21
configurations
1199 Table 4:Classification of rat behavioral configurations by direction in which executed trajectories relate to desired trajectory.

1200
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Supporting Information - Compressed/ZIP File Archive

Click here to access/download
Supporting Information - Compressed/ZIP File Archive
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Supporting Information - Compressed/ZIP File Archive

Click here to access/download
Supporting Information - Compressed/ZIP File Archive
rat behavior.zip
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2.5. Real-time sensory-motor integration of hippocampal
place-cell replay and prefrontal sequence learning in a simu-
lated rat robot (Experimental results to come)
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Abstract: An open problem in the cognitive dimensions of navigation concerns how previous
exploratory experience is re-organized in order to allow the creation of novel efficient
navigation trajectories. This behavior is revealed in the “traveling sales-rat problem™ when
rats discover the shortest path linking baited food wells after a few exploratory traversals. We
have developed a model of navigation sequence leaming, where sharp wave ripple replay of
hippocampal place cells transmit “snippets” of the recent trajectories that the animal has
explored to the prefrontal cortex (PFC). PFC is modeled as a recurrent reservoir network that
is able to assemble these snippets into the efficient sequence. While this demonstrates the
theoretical feasibility of the PFC-HIPP interaction, the integration of such a dynamic system
into a real-time sensory-motor system remains a challenge. In the current research we test the
hypothesis that the PFC reservoir mode! can operate in a real-time sensory-motor loop. Place
cell activation encoding the current position of the simulated rat robot feeds the PFC reservoir
which generates the successor place cell activation that represents the next step in the
reproduced sequence. This is played into the robot simulation of the navigating rat, which
advances to the coded location and then generates de-novo the current place cell activation. A
crucial aspect of this interaction is the transformation of the place cell vector output of PFC to
a physical displacement, and then the recoding of the new location in a place cell activation
vector. This recoding allows for a normalization of the place cell input to the PFC which
yields significant performance improvements. We demonstrate how this integrated sensory-
motor system can learn simple navigation sequences, and then, importantly, how it can
synthesize novel efficient sequences based on prior experience. The model of hippocampal
replay generates a distribution of snippets as a function of their proximity to a reward, thus
implementing a form of spatial credit assignment that solves the TSP task. The integrative
PFEC reservoir reconstructs the efficient TSP sequence based on exposure to this distribution
of snippets that favors paths that are most proximal to rewards. This contributes to the

understanding of hippocampal replay in novel navigation sequence formation.
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Introduction:

As rats learn to search for multiple sources of food or water in a complex environment,
processes of spatial sequence leaming and recall in the hippocampus (HC) and prefrontal
cortex (PFC) are taking place. Recent studies show that spatial navigation in the rat
hippocampus involves the replay of place cell firing during awake and sleep states generating
small sequences of spatially related place cell activity we call “snippets”. These “snippets”
occur primarily during sharp-wave-ripple (SPWR) events. Much attention has been paid to
replay during sleep in the context of long term memory consolidation. Here we focus on the
role of replay during the awake state, as the animal is learning across multiple trials. We
hypothesize that these “snippets” can be used by the PFC to achieve multi-goal spatial
sequence learning. We develop an integrated model of hippocampus and PFC that is able to
form spatial navigation sequences based on snippet replay. This extends our existing spatial
cognition model for simpler goal-oriented tasks (Barrera and Weitzenfeld, 2008; Barrera et al,
2011) with a new replay-driven model for memory formation in the hippocampus and spatial

sequence leaming and recall in PFC.

*#*% Insert Figure 1: Rodent and robot experiments. *##

In contrast to existing work on sequence leaming that relies heavily on sophisticated leaming
algorithms and synaptic modification rules, we propose to use an alternative computational
framework known as ‘reservoir computing’ (Dominey 1995) in which large pools of prewired
neural elements process information dynamically through reverberations. This reservoir
computational model consolidates snippets into larger spatial sequences that may be later
recalled by subsets of the original sequences. We constrain the model using
electrophysiological recordings in rodents in a multi-goal spatial task that is known to involve
the hippocampus and the PFC (Watkins de Jong et al 2011). The resulting integrated system
allows us to generate a new understanding of the role of replay in memory acquisition in
complex tasks such as sequence leaming. That operational understanding is leveraged and
tested on a simulated robotic platform. The originality and contribution of this work includes
1) the use of awake hippocampal replay to create small chunks of valid trajectories (snippets)
that favor the TSP sequence, 2) the use of reservoir computing to learn spatial sequences

using inputs generated by our hippocampus model, 3) our constraining and testing of the
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model using electrophysiological data in rats and 4) the use of the resulting model in the

embodied-cognitive real-time framework of a robot.

The following sections overview the key background areas for the proposed research: (1)
sleep and awake replay in rats, (2) place cell models of spatial cognition, and (3) reservoir

computing and sequence leaming.

Snippet Replay in Rats

The hippocampus stores information during the acquisition of new memories and these
memories are replayed as “snippets” during sleep as part of a memory consolidation process
(Marr, 1971; Stickgold & Walker, 2007). Consolidation is believed to involve synaptic
changes in the neocortex reflecting the integration and refinement of memory representations
(McClelland, McNaughton, & O'Reilly, 1995; Schwindel & McNaughton, 2011). This replay
involves neural populations that were active during a task immediately preceding the sleep
period. Reactivations of specific neural activity patterns during sleep have been observed in
several brain areas including the hippocampus, amygdala, neocortex and striatum (Bendor &
Wilson, 2012; Carr et al., 2012 ; Euston et al. 2007; Foster & Wilson, 2006; Hoffman &
McNaughton, 2002; Ji & Wilson, 2007; Karlsson & Frank, 2009; Kudrimoti et al,, 1999; Lee
& Wilson, 2002; Nadasdy et al. 1999; Pennartz et al., 2004 Peyrache et al. 2009; Popa et al.
2010; Ribeiro et al., 2004; Sutherland & McNaughton, 2000; Tatsuno et al. 2006; Cutsuridis
& Hasselmo 2011; Cutsuridis & Taxidis 2013). Other evidence suggests that replay may also
occur during the awake state indicating online memory processes or the planning of behaviors
yet to be performed (Carr et al. 2011; Davidson et al. 2009; Diba & Buzsaki, 2007, Gupta, et
al. 2010). In the hippocampus, it has been shown that reactivation occurs primarily in a
compressed manner, during the occurrence of fast (150-200 Hz) and short (60-120ms)
oscillations called sharp waves/ripples complexes (SPWR). Different subsets of cells
reactivate in different SPWRs, each cell emitting only a few spikes. The interspike interval
between reactivating cells is within the range of that required to induce spike-timing
dependent synaptic plasticity (STDP). One hypothesis therefore is that the sequence of
reactivation episodes allows for online (awake replay, focus of this proposal) and offline
(sleep replay) synaptic modifications that will eventually lead to the consolidation and

integration of specific memory items.

Interestingly, the presence of rewards increases replay in hippocampus and ventral striatum

(Lansink et al., 2008; Singer & Frank, 2009), suggesting an interaction between reinforcement
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leaming and replay. The computational mechanisms underlying these reactivations and their
possible consequences on leaming have been investigated in hippocampus (Hasselmo, 2008;
Johnson & Redish, 2005). 1t was suggested that replay may improve reinforcement leaming
algorithms, in simple tasks in which rats had to memorize a sequence of turns in a corridor-

type maze with a single goal location (Johnson & Redish, 2003).

Most of the replay events occur in the forward direction (place cells activate in the same order
as they would activate if the rat was navigating through them), before a movement is initiated,
while a smaller fraction occur in the backward direction at or near reward sites. Interestingly,
forward replay was found to be more directly correlated with the actual path of the animal

than backward replay (Diba & Buzsaki, 2007).

Our working hypothesis is that forward replay during active learning triggers the formation of
‘snippets’, short sequences of place cell firings ordered in the order they were traversed. We
also hypothesize that backward replay allows for *credit assignment’ of the snippets when a
reward is obtained, hence reinforcing those paths that vielded a reward (Foster & Wilson,
2006).

There have been many quantitative analyses of individual SPWRs in hippocampus and of
their synchronization with other areas such as the PFC. There has however been little detailed
account of how the neuronal population that fires during each SPWR varies from trial to trial,
as the animal learns. Here, we give such an account, as the animal learns to ‘link’ (create a

sequence of) multiple rewarded cup locations.

These hypotheses have never been implemented and tested in a complex task in which the
animal is free to leamn and recall at will (i.e. ‘operant’ learning: no supervised/directed

‘learning’ phase). Many fundamental questions remain to be answered.

Computational Models of Spatial Cognition in Hippocampus and Robotics Experimentation

The study of behavioral and neurophysiological mechanisms in rats responsible for spatial
cognition has inspired the development of many computational models of hippocampus place
cells in the context of goal-oriented learning tasks in robotic systems. Some of the most
important models developed in the past years include those of Burgess, Recce, and O'Keefe
(1994), Brown and Sharp (1995), Redish and Touretzky (1997), Guazzelli, Corbacho, Bota,
and Arbib (1998), Arleo and Gerstner (2000), Gaussier, Revel, Banquet, and Babeau (2002),
Filliat and Meyer (2002), Arleo, Smeraldi, and Gerstner (2004), Milford and Wyeth (2007,
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2010), Dolle, Sheynikhovich, Girard, Chavarriaga, and Guillot (2010), Alvemhe, Sargolini,
and Poucet (2011), Caluwaerts et al (2012), and Barrera and Weitzenfeld (2008, 2011). The
complete system provides a spatial cognition model for navigation in simulated and real robot
in corridor-based mazes and open environments exploiting external landmarks and/or path
integration. The work described in Barrera & Weitzenfeld (2008) replicated O'Keefe and
Nadel (1978) and O'Keefe (1983) experiments with T-mazes and 8-arm mazes leaming the
interaction between visual and idiothetic cues (Jeffery and O’'Keefe 1999). Barrera, et al

(2011) extended the experiments to cyclical corridors.

In this model, place cells represented spatial locations that were used to navigate in goal-
oriented tasks based on topological maps integrating information from path integration
( Mittelstaedt & Mittelstaedt 1982) and landmarks as described in Weitzenfeld et al (2012). In
Tejera, Barrera, Fellous, Llofriu and Weitzenfeld (2013) we described a model extension to
spatial cognition in open arena environments, i.e. having no corridors, as in the Morris water
maze (1981). Recently, the computational model was extended to incorporate grid and head
direction cells, i.e. “biological odometry” as described in Tejera, Barrera, Llofriu and
Weitzenfeld (2013). This system provides the robotic simulation framework for our integrated
experiments linking a sensory-motor system to the PFC reservoir model for sequence

generation.

Reservoir Computing and Sequence Learning

Reservoir computing refers to a class of newal network models in computational
neuroscience and machine learning (Lukosevicius and Jaeger 2009). These systems are
characterized by a sparsely connected recurrent network of neurons (spiking or analog), with
fixed connection weights (excitatory and inhibitory). Because of the recurrent connections,
this “reservoir” is a dynamical system that has inherent sensitivity to the serial and temporal
structure of input sequences. Reservoir neurons are connected to readout neurons by
modifiable connections, and these can be trained in different task (e.g. sequence recognition,
prediction, classification). The first instantiation of such models was by Dominey, with the
reservoir corresponding to recurrent prefrontal cortical networks, and the modifiable readout
connections cormresponding to the corticostriatal projections, with dopamine-modified
synapses (Dominey 1995; Dominey, et al. 1995). These models addressed sensorimotor
sequence leaming, and demonstrated the inherent sensitivity of these recurrent systems to

serial and temporal structure in motor behavior and in language (Dominey 1998a; Dominey
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1998b; Dominey and Ramus 2000; Dominey et al. 2009; Hinaut and Dominey 2013). Maass
developed a related approach with spiking neurons and demonstrated the non-linear
computational capabilities of these systems (Maass et al. 2002). In the machine leaming
context, Jacger demonstrated how such systems have inherent signal processing capabilities
(Jaeger and Haas 2004). Interestingly, these reservoir properties appear to be found in cortex.
Electrophysiological studies have revealed that cortical neurons in primary sensory areas (e.g.
V1) have reservoir properties of fading memory (Nikolic et al. 2009). That is, stimuli
presented in the past tend to resonate in the recurrent network and influence the processing of
subsequent stimuli. Equally interestingly, when these networks are exposed to inputs with
multiple dimensions (e.g. target identification, serial order, match/non-match) neurons
represent non-linear mixtures of these dimensions (Dominey et al. 1995; Rigotti, et al. 2010).
Such nonlinear mixed effects have recently been seen in primate frontal cortex (Rigotti, et al.
2013). This argues in favor of a reservoir-like function in recurrent networks of the cortex in
general, and in prefrontal cortex specifically. We have demonstrated how such recurrent
networks can leamn about sequential and temporal structure (Dominey 1998a), including serial
order regularities that are expressed in sequence segments (Dominey and Ramus 2000).
However, so far, reservoir computing has not been exploited in terms of its inherent ability to
allow the concatenation of multiple contiguous subsequences into a coherent sequence, thus

addressing a major open question in navigation trajectory leaming.

The most prevalent theories of how memories are formed and consolidated rely on dynamic
changes in synaptic strengths and the creation of strongly connected neural assemblies. This
Hebbian view of memory has dominated the field for decades (Hebb 1949). While there is
strong experimental evidence for several aspects of the theory, there are also significant
difficulties that include 1) the unclear nature of fast induction and exquisite control of
synaptic modifications in the presence of realistic amount of neuronal and synaptic noise and
unreliability, 2) the low probability that 2 cortical neurons are in fact connected by synapses
and 3) the pluri-functionality of cortical neural networks whereby small groups of cells may
be involved in various and seemingly distinct neural computations in addition to memory

formation (how these multiple functions co-exist with memory is unclear).

Reservoir Computing offers an altemative and complementary approach in which synaptic
plasticity within the recurrent network is de-emphasized and where neural dynamics and
reverberations are made central to neuronal processing. The focus is on computations that

emerge from neural interactions rather than on computations that are ‘burnt in’ or
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‘programmed’ by synaptic modifications. The current research will test the hypothesis that
these neural dynamics can be exploited to concatenate overlapping subsequences (*snippets’
formed via hippocampal replay) into a coherent sequence. The major questions we will

address include:

QlL: Is reservoir computing able to allow the concatenation of multiple contiguous
subsequences into a coherent sequence, thus addressing a major open question in complex

spatial navigation trajectory leaming?

Q2: How can hippocampal replay be modulated by reward in order to contribute to the TSP
behavior? Should the hippocampus model store everything that is being leamed on the basis
of place field overlap only? Should it be selective to the location of rewards or other task

contingencies?

Q3: How to optimize neural representation and model memory acquisition at the network

level in hippocampus and PFC?

Integrated Model of Hippocampus Replay and PFC Integration

Our approach to answering these questions involves the development of a model of sequence
leaming using replay in hippocampus and reservoir computing in PFC. The modeling of
replay is constrained by experimental data and the full model is tested on simulated robotic
platforms. The tests involve navigation between multiple goals (baited cups in rat experiments
and rewarded floor landmarks in a robot arena — see Figure 1) to generate a model supporting
the current hypothesis while offering predictions that will further prompt modeling
refinements and new rodent experiments in relation to replay, hippocampus-PFC functional

interactions and spatial sequence leaming.

*** Insert Figure 2. Hippocampus-PFC model architecture. **#

Replay-Driven Model of Spatial Sequence Learning in the Hippocampus-PFC network using
Reservoir Computing

The computational mode! consists of 3 main components: Place Representation module (left
module in Figure 2), Hippocampus Replay module (top right in Figure 2, and PFC Reservoir
for Sequence Leaming module (bottom right in Figure 2). The goal of the extended model is
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to implement online replay-based memory acquisition in the Hippocampus and reservoir-
computing based sequence leaming in PFC. The Hippocampus-PFC architecture generates
snippets of place fields which are used in the PFC reservoir to reconstruct complete spatial
sequence trajectories. After successful leaming, when primed with a subsequence, the PFC
completes that initial trajectory as the system becomes entrained by the input sub-sequence.

The main processing steps of the Hippocampus-PFC network model are:

Replay-driven snippet formation in Hippocampus. During a trial, the model features
artificially generated sharp wave-ripple complexes and awake replay in hippocampus that
forms ‘snippets’ of disjoint bouts of trajectories. Reward at baited cups will lead to non-
uniform snippet reinforcement, based on propagation of reward value from rewarded sites
along the trajectory, thus implementing a spatial credit assignment. The result is that snippets
on trajectories that lead to rewards will have an increase probability of being replayed. We
predict that some of the most strongly linked snippets will act as hippocampal indexes (Nadel,
2000). The place cell layer consists of a 16x16 array of neurons with a homogenous
organization and similar field size with overlapping place fields implemented as leaky

integrators. SPWR characteristics are based on data from existing literature.

Sequence Learning in PFC using reservoir computing. We use a reservoir model of PFC,

extending concepts developed in Enel et al. (2016). The inputs are artificially constructed
hippocampal ‘snippets’, sequences of place cell activations. The reservoir leams to
concatenate the ‘snippets’ in the proper order and identify those snippets that will represent

the entire sequence.

The PFC will inherently group individual shorter sequences, through replay, to form a full
sequence (Fig 3). Specifically, the reservoir model will consist of a population of order 1000
leaky integrator neurons with tanh() activation functions, as specified in Enel et al (2016).
Based on the vector of activation of place cells from Hippocampus, the PFC will leam a form
of identity operation: Given an input sequence segment of place cell activation, it will
generate/predict the subsequent sequence of place cell activations. These place cell readout
neurons will be used for navigation, and will also be connected to the reservoir units with
feedback connections. Feedback connections from these readout units to the reservoir will
allow the predicted outputs to serve as inputs when in sequence recall mode. Training will
use a modified version of the FORCE learning method developed by Sussillo and Abbott

(2009), in which the learning of connection weights between reservoir and readout neurons is
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based on an online process of weight adjustment that allows for the sampling of the readout

error by the system.
Feedforward Integration from Hippocampus into PFC.

The Hippocampus-PFC network model will be initially simulated by using prerecorded paths
of the rat inside the environment as the rat moves from one cup to the next in search of food
(Watkins de Jong, et al., 2011). Through propagation of reward during replays between trials,
the hippocampus will learn a model of place cell snippet generation based on reward
proximity, and then replay small sets of successive snippets so that PFC can learn the
transitions and create the global sequence. As trials proceed, the quality of individual
snippets (increased density of replay around rewarded targets) will improve due to leaming in
the Hippocampus. Here we consider an example, based on Figure 2 and 3. Afier each trial,
restSPWRs will lead to replay of several successive snippets (e.g. 85-86-87; 82-83; §3-84-
85). Though the entire sequence is never replayed, when provided with such subsequences,
we predict that the PFC reservoir model will be able to construct a coherent representation of
the complete set of snippet transitions, thus defining the overall sequence. Such construction
is one of the defining characteristic of reservoirs (see research background section), though it

was never tested in this particular spatial navigation context.

*#*% Insert Figure 3. Cartoon of snippet formation **%*

- Because snippets that link rewarded sites by shorter trajectories will be replayed with greater
density that those that are on inefficient trajectores far from rewards; we predict that the
model will naturally converge towards short sequences (a phenomenon observed

experimentally). This will be tested in the model and in the simulated robot.

- Because of the creation of snippets during replay, the ‘units’ of spatial information used by
the PFC will be *chunks’ of trajectories, rather than individual place fields. This should speed
up the sequence learning process significantly over classical RL on place fields. To test this
hypothesis, we will systematically vary the amount of replay. We predict that the performance
of the model will correlate with the amount of replay, up to a point where too much replay
will yield aberrant snippets, and hence, learning impairments. This will generate experimental
predictions that could be tested in the future by optogenetic or pharmacological means of

manipulating SPWRs in vivo.
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Sequence Learning Robot Simulation Experiments

Real-time experimentation is performed with a robot simulator to test the model under real
time conditions similar to that of rats with 5-6 baited cups. As with the rats, a subset (5-6 of
21) of the spatial targets in the arena will be baited. In the first trial, the robot will begin an
exploration of the arena, following a built-in rule for exploration: proceed to the closest
unvisited target (baited or not). During the traversal, place cells will be activated. Their
activation will lead to synaptic modification, linking them together if overlapping. When a
reward is detected (this will be provided by the control program that will give a reward signal
when the robot approaches a baited target), the strength of the connections between the
recently visited place cells will be increased through a reinforcement leaming process. After
the robot has visited all of the rewarded targets, it will enter the inter-trial period. During this
period the hippocampus will mostly replay snippets that were reinforced during the previous
trial. This replay will be provided as a place cell activation sequence to the PFC model. Over
multiple trials, as reinforcement learning proceeds in hippocampus, the formation of snippets
that occur during a traversal from one rewarded target to another will increase. Progressively,
the inputs to the PFC will consist of concatenated snippets that will form part of the global
sequence to be learned. We will show that, whereas the hippocampus can learn local
regularities, it cannot bind them into a coherent whole. The PFC model will perform this
global linkage of replayed snippets to produce a complete beginning to end sequence.
During the active exploration period of successive trials, the PFC will be in a
prediction/navigation mode: it will receive place cell activation inputs, and will in real-time
predict/gencrate the next place cell activation. In early trials, before significant leaming has
occurred, these predictions will not be useful and will only slightly bias the *nearest neighbor’
strategy. As learning proceeds, however, these will become more and more accurate, and will
aid the robot to proceed to each baited target, ignoring the unbaited ones. A measure of
confidence as a function of the output neuron activation levels will be used to determine when

the PFC should contribute to the choice when in conflict with the hippocampus.
Methods:

The robot simulator is illustrated in Figure 4. It simulates the movement of a rat in a 2x2m
square arena. The rat’s intemal representation of this space is realized by a regular 16x16 grid

of place cells on this surface. The navigation module generates a sequence of place cell field
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activations that begins when the rat is placed in the maze and finishes when the rat has visited
all feeders. PC activations are implemented as Gaussian fields, where the activation of a cell
is strongest at the center and becomes weaker the further away. During each episode the
navigation module: (a) calculates the activation of all place cells (which we call an activation
pattem), (b) records the activation pattern along with the reward received, and (c) performs
navigation actions. After completion of each episode the navigation module sends an input
sequence to the reservoir module consisting of all the PC activation patterns and rewards

received.
Insert Figure 5. Place cell coding and Snippet formation.

Hippocampal replay based on proximity to rewards

Hippocampus replay phenomenon observed during SPW-R complexes in active rest phase is
modeled by a training set made of condensed subsequences of place-cell activation pattern
replayed at random. The distribution that is sampled for drawing a random place-cell
activation pattern might be uniform or modulated by new or rewarding experience as
described in (Carr et al 2011) : In particular, we model a random replay based on reward. In
(Ambrose et al 2016) the authors show that during SPW-R sequences place-cell activation

occur in reverse order at the end of a run. We will focus on reward modulated and reverse
replay.

We define a snippet as the concatenation of successive place-cell activation pattern:
S(n;s) = Xin(tn-ss1 = tn)

(n

Where:
* 5 is the number of concatenated place-cell activation pattem.
In our mode! of hippocampus replay, we define a time budget noted T that corresponds to the
duration of a replay episode. A replay episode E is a set of snippets of length s:
E(s) = {S(n; 5)}

(2)
The sum of the durations of snippets replayed in Eequals at least to T'. It the time budget is
exceeded; one snippet is truncated in order to fit the time budget.
In Erreur ! Source du renvoi introuvable., Pancl B represents a particular trajectory
encountering feeders A, B, C, E and D. The depicted snippet is a subsequence of 5 contiguous
locations belonging to the ABCED sequence. The B and E feeders are baited and marked as
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rewarding (R1 and R:). Panel B shows the spatial extend of a given snippet chosen in
sequence ABCED and panel C shows the place-cell activation pattern of the ABCED
trajectory and the corresponding snippet location in the raster.

The snippet replay model favors snippets that are on efficient paths linking rewarded sites
(e.g. paths linking feeders A, B and C in panel B figure 3), and not those that are on
inefficient paths (as in paths linking C, D and E in the same panel). This is achieved by
propagating errors backwards from rewarded locations, and calculating the probability of
replay as a function of proximity to a reward. Panel D of Figure 3 illustrates the resulting
probability distributions for snippet selection along the complete path. Note that the paths
linking A, B and C have the highest probabilities for snippet replay.

Hippocampus place-cell replay can occur in forward or backward direction as suggested in

(Foster & Wilson 2006). We model the reverse replay as follows: For a given trajectory k of

Ny samples, there are Ny, — 5 possible snippets that can be replayed but only a limited number
of snippets will be selected to fit the time budget T'. A snippet S(n) have a likelihood of being
replayed if it is related to a reward prediction . A generative model of snippet replay
likelihood is first learnt by propagating a time delayed reward information according to the
replay direction and the snippet duration. The timespan of a snippet acts as a propagation
vector during the estimation phase of the snippet replay likelihood.
The reward prediction V(t;—> ty,) is leamt by initializing it to small positive random
values and then iteratively refined by applying the procedure (6) K times:
1. Draw a random contiguous time index subset T=T(n, 5,7; flearn) according to the

reverse rate feqrm:

a. Select a time-step t,,such that n € {1...N,} according to the replay likelihood defined

by:
P(t,=> ty,) = w
Yo s
(3)

b. Select a random number r € [0,1] and a contiguous and monotonous time index

sequence T such that:

- tmax(l,n—s+1) = tnr r< -B{Eﬂrn
tn = I:minl[."'n';c.n+s}|r ra -B{Eﬂrn

4)
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2. Update the reward estimate V over increasing indices of T by computing the update

equation:
V(re) = a(R(ti-1) + ¥V (m-)) + (1= a)V(xi)
()
Where:
e « € [0,1] is the learning rate constant
s ¥ €[0,1] is the discount constant
e R(t) is the observed instantaneous reward information
(6)

It is a convex combination of the current estimate of the reward information V(1) at the next
time step and the instantaneous reward information R(Tp_;) 4 ¥V (Tx—1) based on the
previously observed reward signal R(ty_,) and delayed previous reward estimate yV (14— )).
Equation Erreur ! Source du renvoi introuvable. implements a form of temporal difference

leaming. It is sufficient to define a coarse reward signal as:

R(t) = {

The snippet generation procedure is simply the repetition of the steps a and b of procedure (6)

lif a baited feeder is encountered at time t
0 otherwise

with B erare used instead of f.;,, until the sum of time subsequences durations overflows

a fixed time budget duration.
*** Insert Figuret Efficient Sequence Synthesis ***
Figure 6A illustrates how the replay mechanism in Hipp generates an augmented density of

snippets for the efficient subsequences that have been previously experienced.An illustration

of how this method vyields increased

Reservoir model of PFC for snippet consolidation

We model the prefrontal cortex as a recurrent reservoir network. Reservoir computing refers
to a class of recurrent network models with fixed recurrent connections. The reservoir units
are driven by external inputs and the network dynamics provides a high dimensional
representation of the inputs from which the desired outputs can then be read out by a trained
linear combination of the reservoir unit activities. The principle has been co-developed in

distinct contexts as the temporal recurrent network (Dominey 1995), the liquid state machine



159

420
421
422
423
424
425
426
427
428
429
430
431
432
433

434

435

436

437
438
439
440
441
442

443

444

445

446
447

448

(Maass et al 2002), and the echo state network (Jaeger 2001). The version that we use to
model the frontal cortex employs leaky integrator neurons in the recurrent network. At each

time-step the network is updated according to the following schema:
INSERT Figure 7 HERE

The modelled hippocampus place-cells projects into the reservoir through feed-forward
synaptic connections noted Wef,,;. The projection operation is a simple matrix-vector

product. Hence, the input projection through feed-forward synaptic connections is defined by:

Ut puwa(tn) = Wipa * Xin(ty)

Where:

*  Wgpyy is a fixed connectivity matrix whose values do not depend on time.
Synaptic weights are randomly selected at the beginning of the simulation. Various

probability density functions (PDF) could be sampled and one condition about on W4 is its
bijectivity: Every stimulus X, (t,) must have a distinct image through W, ;and each

U fwamust correspond to a unique Xy, (t,,). Practically speaking (Lukosevicius 2012),

sampling U[—1, 1] a uniform distribution is sufficient. A positive synaptic weight ina
connectivity matrix models and excitatory connection and a negative weight models an
inhibitory connection between two neurons. A synaptic weight equals to zero models no
connection between two given neurons. A larger absolute value of the synaptic weights
represents a reinforced correlation between firing pattems of those two neurons.

Let N be the number of neurons in the Reservoir. Reservoir's neurons are driven by both

sensorial input X, (t,)) and, importantly by the recurrent connections that project an image of
the previous reservoir state back into the reservoir. The recurrent projection is defined as:
Urm:' (tn) = Wrz'r " xr’es(tn—‘l)

(8)
Where:

e W, .. isa Nby N square connectivity matrix.
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Synaptic weights are drawn from a U[—1, 1] uniform distribution, scaled by a S(N; K) =
K ‘% factor. The same sign convention as in equation (7) applies for the recurrent connectivity

matrix.
Self-connections (i.e. w,f-;',: with i € 1 ... N)are forced to zero. W, is also fixed and its
values do not depend on time. The contributions of afferent neurons to the reservoir's neurons
is summarized by
Ures(t2) = Uppa(ta) + Urec(t2)
("

The membrane potential of the reservoir's neurons P, then is computed by solving the
following ordinary derivative equation (ODEY);

ar,,.

= =Prp\tn_1) + Uity
2 (1) + Ut

(1)

Where:
e 7 is the neuron’s time constant. It models the resistive and capacitive properties of the
neuron’s membrane.
In this article, we will consider a contiguous assembly of neurons that share the same time
constant. The inverse of the time constant is called the leak rate and is noted h. By choosing
the Euler’s forward method for solving equation(10), the membrane potential is computed
recursively by the equation:
Fres(tn) = h* Upoo(tn) + (1 —h) * Beo(ty,)
(11)

It is a convex combination between instantaneous contributions of afferents neurons U, (t,,)

and the previous value P, (¢t,_,) of the membrane potential. The current membrane
potential state carries information about the previous activation values of the reservoir,
provided by the recurrent synaptic weights. The influence of the history is controlled by the
leak rate. A high leak rate will result in a responsive reservoir with a very limited temporal
line of sight. A low leak rate will result in a slowly varying network whose activation values
depend more on the global temporal structure of the input sequence.

Finally, the mean firing rate of a reservoir’s neuron is given by:

Xres(tn) = ﬂres(Pres(tn}; G'TES}

Where:
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* 0, is the non-linear activation function of the reservoir neurons

e 0, is a bias that will act as a threshold for the neuron’s activation function.
We choose a 0,.., = tanh hyperbolic tangent activation function with a zero bias. Negative
firing rate values represent the inhibitory/excitatory connection type in conjunction with the
sign of the synaptic weight. Only the product of the mean firing rate of the afferent neuron by
its associated synaptic weight is viewed by the leaky integrator neuron.
At this point, the reservoir’s states carry information about its present and past activation
values within a limited time line of sight. One single reservoir neuron does not contain the
whole information but its activation fluctuations carry partial information about the serial and

temporal structure of the stimulus sequence. This property corresponds to mixed selectivity

(Rigotti et al 2013).

Learning in Modifiable PFC Connections to Readout

Based on the rich activity patterns in the reservoir, it is possible to decode the reservoir's state
in a supervised manner in order to produce the desired output as a function of the input
sequence. The expected output is only required to be an activation pattern that is temporally
congruent to the input stimulus. This decoding is provided by the readout layer and the matrix
of modifiable synaptic weights linking the reservoir to the readout layer, noted W, and
represented by dash lines in Erreur ! Source du renvoi introuvable..
The readout activation pattem X, (t,) is given by the equation:
X*m (tn) = Org (Wra * X:res (tn}; @ra)
(13)

Where:

* @, isthe non-linear activation function of the readout neurons

e @, is a bias that will actas a threshold for the neuron’s activation function
We choose a 6,., = tanh hyperbolic tangent activation function with a zero bias.
Notice that the update schema describe above is a very particular schema inherited from
feedforward neural networks. We chose to use it because it is computationally efficient and
deterministic.
Once the neural network states are updated, the readout synaptic weights are updated by using
a stochastic gradient descent algorithm. By deriving the Widrow-Hoff Delta rule (Widrow &

Hoff 1960) for hyperbolic tangent readout neurons, we have the following update equation:
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Wio(tn) = W (tn_pr1) + @ * Xpes(tnps1 = ta)
* l[::"{ru:'(t;*t—iﬁl =ty ) = Xaes(tn_p+1 = tn }) # (1 =Xra(tn-ps1 = ta)?)
(14)
Where:
e isa small positive constant called the leaming rate
* t,_p41 — t, is the concatenation of b time steps from t,,_p jto ¢,
When b = 1, equation (14) computes a stochastic gradient descent. The case when b > 1 is
called a mini-batch gradient descent and allows one to estimate the synaptic weight gradient
base on a b successive observations of predicted and desired activation values. A mini batch
gradient allows one to compute efficiently and robustly the synaptic weight gradient.
Empirically, b = 32 gives satisfying results.
In this study, we will focus on the prediction of the next place-cell activation pattem:
Kaes(tn) = Xin(tns1)
(15)
The readout is not related to any motor action. It means that we firstly focus on the place-cell
firing pattem sequence consolidation. This is the first step towards a biologically plausible

model suitable for a navigation task.

An example of the snippet generation in simulation is illustrated in Figure 6B. There we see
for 1000 copies of the model in different starting conditions, each tested 10 tmes, the
autonomous generation of a navigation sequence after training on snippets from the sequences

in panels A-C of Figure 1B.

Integration of the Hipp-PFC model in a real-time sensory-motor loop with rat simulator.

The integration architecture is represented in Figure 8. As illustrated the system operates in
two modes. In learning mode, the navigation module which includes the rat simulator
operates autonomously and follows a spatial sequence link rewarded targets within the arena.
The observed sequences of place-cell activations are accumulated, and made available to the
replay module (corresponding the the Hipp) which implements the reward propagation
method describied above. With experience, the Hipp begins to generate snippets with a
density distribution that favors shorter paths between rewards. This replay is the contents that

is sent to the reservoir for leaming.
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Once learing has taken place, the system can then drive the simulated rat in the environment.

Autonomous execution:

In this mode, the simulator generates place cell vectors that are input to the reservoir. Based
on these inputs, the reservoir is driven into a state trajectory that it has learned, and generates
the next place cell activation in the sequence; this is input to the simulator which then moves
to that location; the simulator then generates a place cell vector for the new location; this

place cell vector is input to the PFC model, and the cycle continues.

Experiment 1: Demonstration of real-time interaction.

The first experiment is used to recrcate a path produced by the navigation module. The
experiment consists of performing an evaluation episode after each training episode. On the
first 4 cycles of the evaluation episode, since the reservoir is not yet initialized, actions are
selected directly from the original training path. From the 5th cyele on, an action is selected to

navigate to the next position predicted by the reservoir.
Experiment 2: Demonstration of learning from Snippets

This experiement duplicates experiment 1, but now engages the replay module to generate
snippets. The reservoir is thus trained on snippets, rather than on the uninterrupted whole

sequence, which was the case in Experiment 1.
Experiment 3. Demonstration of autonomous generation of the TSP solution.

In this experiment, the navigation module executes three sequences corresponding to those
illustrated in Figure 1B, panels B-D. These are sequences ABCED that contains the ABC part
of the ABCDE target sequence, BACDE that contains the ABC part of the ABCDE target
sequence, and EBCDA that contains the ABC part of the ABCDE target sequence

The replay module will then be executed, implementing the reward propagation algorithm,
and generating distributions of sequences from the three original sequences, corresponding to

those illustrated in Figure 6A.
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Discussion:

successful integration of reservoir PFC with simulator, in a real-time closed loop system

successful demonstration that this can be used to allow creation of a new efficient sequence in

the TSP context.

Demonstration that in situations where data generation is difficult (as in robot navigation), the
use of replay, and in particular reward-modulated replay, is an effective altemate to

generating additional training data.
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Figure 1: Rodent and robot experiments. (Left) Behavioral apparatus where a rat (no
hyperdrive) is shown wearing a reflective jacket for tracking purposes on the open-field with
21 cups (Watkins de Jong et al. 2011). (Center) Schematic representation of the sample final
path chosen by the animal after 10 trials. In this spatial sequence, place fields A, B and C are

expected to reactivate while place field F is not.
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P11-P10-P12-P71-P72-P13-P14-P77-P15. As the rat reaches OS5 the hippocampus will replay
(acqSPWR) the place cell firing sequence just activated generating snippets (in red boxes) as
exemplified by the next graph. As the rodent learns the shorter route between cups, place cell firing
sequences may get shorter, with the following sequence: PI11-P70-P71-P72-P76-P77-P15. Again as
the rat reaches OS5 the hippocampus will replay the place cell firing sequence just activated generating
snippets (in red boxes, bottom graph). It can be observed that two different trajectories followed by the
rodent, even if involving similar cups, may yield different snippet formations, possibly involving some
of the same place fields. The graph shows that “snippets’ are formed by increasing the synaptic
weights between subsets of place cells that reactivate together (illustrated here as an overlap in the

activity curves).
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Abstract

Understanding the neural process underlying the comprehension of visual images and
sentences remains a major open challenge in cognitive neuroscience. We previously
demonstrated with fMRI and DTI that comprehension of visual images and sentences
describing human activities recruits a common semantic system. The current research tests the
hypothesis that this common semantic system will display similar neural dynamics during
processing in these two modalities. To investigate these neural dynamics we recorded EEG
from naive subjects as they saw simple narratives made up of a visual image (or a sentence)
depicting a human event, followed by a second image (or sentence — always in the same
modality) that was either a sequentially coherent narrative follow-up, or not, of the first image
(or sentence).  Analysis of the EEG signal revealed common neural dynamics for semantic
processing across modalities. Late positive ERPs were observed in response to sequential
incoherence for sentences and images, consistent with previous studies that examined
coherence in these two modalities separately. Analysis of oscillatory power revealed
increased gamma-band activity for sequential coherence, again consistent with previous
studies showing gamma increases for coherence and matching in sentence and image
processing. Multivariate analysis demonstrated that training on data from one modality
(images or sentences) allowed reliable decoding of the sequential coherence of data from
trials in the untrained modality, providing further support for a common underlying semantic
system for images and sentences.  Processing sequential coherence of successive stimuli is
associated with neural dynamics that are common to sentence and visual image modalities and
that can be decoded across modalities. These results are discussed in the context of EEG
signatures of narrative processing and meaning, and more general neural mechanisms for

structure processing.
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Introduction:

A major function of higher cognitive processing is making sense of the world around us
based on accumulated experience that is organized in a narrative structure (Bruner 1990).
Binder et al (2009) note that knowledge acquired from experience underlies our ability to
understand, and forms the basis of the semantic system. In a meta-study of 120 PET and
fMRI studies that access meaning from words, they identified a widely distributed network
that suggests that semantic representations tap into sensory, motor, affective and cognitive
systems recruited in human experience.

We hypothesize that such a broadly distributed semantic coding is not restricted only to
verbal material, but rather that there will be a common network for representing meaning
issued from verbal or visual image input. In our first test of this hypothesis, we determined
whether a common semantic network would be recruited in the comprehension of visual
images, and sentences that depict human events (Jouen et al 2015). fMRI and DTI revealed
the spatial organization of this network and aspects of its connectivity. Interestingly, the
common network was quite similar to that identified by Binder et al (2009), including major
activation in the angular gyrus and temporo-parietal cortex. This was inspired by the
groundbreaking work of Vandenberghe et al (1996) in understanding the common semantic
system, and extended their approach from simple images and single words, to rich images and
full sentences. In our second investigation of this hypothesis we performed detailed mapping
of the white matter pathways and functional connectivity linking the cortical nodes of this
distributed network, with major hubs in the anterior temporal cortex and the temporo-parietal
cortex (Jouen et al in revision, Jouen et al 2012). The dense connectivity of this area
highlights its role in integrative processes. Such a densely connected area could serve as an
anchor point for the convergence of multimodal cortical representations during experience.
During comprehension, activation of such a convergence zone could then allow for divergent
reactivation of multimodal areas in reconstructing the meaning (Lallee & Dominey 2013,
Meyer & Damasio 2009). While fMRI and DTI thus provide a view of the spatially
distributed network organization of the semantic system and its connectivity that will be
engaged in making meaning from narrative, it is less optimal for characterization of the
temporal dynamics of this integrative processing. Given its temporal precision, EEG is a
more suitable tool for investigating the temporal unfolding of processes in narrative

integration. We thus set out to compare the temporal dynamics of the EEG signal in visual
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image and sentence processing using short (two-element) narratives that allowed us to
manipulate the sequential coherence of the successive stimuli within the narratives.

Written and visual narratives have been investigated using EEG in protocols similar to
ours where different dimensions of narrative coherence has been manipulated. Late ERP
positivities with some variability in their localization and timing are frequently observed in
these coherence manipulations. This can be seen during violation of the expectation or goal
in visual narrative (Cohn et al 2014, Sitnikova et al 2008), and violation of semantic
expectations built up earlier in a text in verbal narrative (Bomkessel-Schlesewsky &
Schlesewsky 2008, Brouwer et al 2012, Paczynski & Kuperberg 2012, Xiang & Kuperberg
2015). While there are a variety of experimental manipulations that can modulate late
positivities, there is converging evidence that these responses can be associated with aspects
of semantic incoherence (Brouwer et al 2012). These results from verbal and visual image
narrative meaning processing indicate that encountering unfulfilled expectations or
predictions can invoke on-line processes that are often revealed by late ERP positivities.

Such aspects of cognitive processing can also be characterized in terms of oscillatory
power in neuronal activity. EEG gamma-band activity has been associated with semantic
processing in language (Hagoort et al 2004, Hald et al 2006) and in multisensory semantic
matching (Schneider et al 2008). The gamma-band activity appears to increase in situations
of semantic congruence. Thus, gamma band responses were observed to increase in responses
to semantically correct vs. violation sentences (Hald et al 2006). Likewise, gamma-band
responses increased in response to semantically matching vs mismatching stimuli (Schneider
et al 2008) in a multisensory semantic priming task using visual and auditory stimuli. We can
thus predict that gamma-band responses would be increased in conditions of increased
coherence between successive stimuli.

While the demonstration of related ERP and time-frequency effects for image and
sentence processing would argue for a common underlying mechanism, demonstration of
cross-modal decoding (i.e. training a decoder on image data and decoding sentence data, and
vice-versa) would further argue that the neural dynamics in the two cases share a common
component. The EEG signal is sensitive to diverse cognitive functions and has been used to
decode cognitive states. For example, attentional focus in an auditory “cocktail party™ context
can be decoded from single trial EEG (O'sullivan et al 2014), and EEG has been used to
diseriminate which one of seven different musical fragments a subject is listening to (Schaefer

etal 2011). This type of decoding should be suitable to test our hypothesis of the existence of
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common neurophysiological processes for the semantic processing of visual and written
narratives.

In this context, the goal of the current research is to determine whether common neural
processes will be invoked in the treatment of stimuli that are unexpected based on narrative
context established in verbal and visual image input modalities. Specifically, using EEG we
set out to determine if we would observe a common temporal pattern of activity in simple
visual and verbal narrative processing, by examining ERPs, oscillatory activity, and cross-
modal decoding. We adapt the protocol from Jouen et al (2013) to the EEG domain, retaining
the overall structure of the protocol that involved the presentation of natural visual images
depicting human activity, and in separate blocks of trials, short whole sentences describing the
same type of human activity. For EEG we introduce an aspect of temporal succession
corresponding to simple narratives. In both the sentence and the image domains, two
successive stimuli are presented, separated by a variable delay. The second stimulus can be
sequentially coherent or incoherent in a namrative context with respect to the first. Brain
responses to these stimuli are analysed to determine if there is evidence for a common

processing of sequential coherence in sentences and images.

Methods:

Participants: Eighteen healthy right-handed volunteers participated in the experiment
(10 females, 8 males, native French speakers, without prior neurological history, 25.5 + 4.1
years). The study was conducted in accordance with the Declaration of Helsinki, and all
participants were advised of the physical details of the experiment, and gave their informed

written consent to participate in the experiment.
k#dEE Figure 1| About Here *#++#
Stimuli:

The paradigm is presented in Figure 1. For the image conditions one-hundred and

twenty (120) image pairs were sclected from the Getty photo database

(http://www.gettvimages. fr). Sixty pairs of images made up sequentially coherent narratives,
and a second set of sixty images pairs made up sequentially incoherent narratives. For the
sentence conditions, sixty sentence pairs were created that made up sequentially coherent
narratives, and sixty pairs for incoherent narratives. In the same way that images can

implicate the same people in different situations over the presentation of two successive

5
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stimuli, the sentences describing people performing an action can follow-up (or not) in the
second sentence. To reproduce a similar effect as with the images, that is, that certain
information does not need to be re-analysed (e.g. the identity of the people, their different
roles in the relations that link them) we chose to use a complete sentence for stimulus 1 (e.g.
“The man and the woman looked at the movie announcements™) and only pronouns to refer to
the same protagonists in the stimulus 2 (e.g. “They bought tickets at the counter.”). Example
sentences and images are illustrated in Figure 1. The images were controlled and
counterbalanced for the number of people illustrated (1 or 2). Additional sample sentences
are:

Sequentially Coherent: S1- The man opens the driver side door. S2 - He starts the car.

Sequentially Incoherent: §1 - The woman lounges by the pool. 82 - She irons the

laundry.

Experimental Paradiom:

Subjects were seated in front of a visual display. Visual stimuli (sentences or images)
were presented at the center of the screen, subtending a visual angle of approximately 5°.
Subjects saw a visual image (or read a sentence) depicting a human event, and after a pause
saw a second image (or sentence) that was either sequentially coherent, or not, with the first
image (or sentence). Stimulus one and two were always in the same modality (sentence or
visual image). The stimuli were presented for 2 seconds, separated by a delay of 1-1.5
seconds. Trials were blocked by modality (image or sentence), two blocks per modality, for a
total of 4 blocks. Each block had 30 coherent, and 30 incoherent trials. Two thirds of the trials
were followed by probe guestions in order to maintain vigilance. Subjects made responses

with their right hand.

EEG acquisition and preprocessing:

We acquired continuous neural activity with 64 channel EEG (Biosemi, ActiveTwo,
version 5.36) sampled at 2Khz while subjects performed the task. EEG data was processed
using EEGLAB. Preprocessing was performed with the FASTER plugin for EEGLAB
(Nolan, Whelan et al. 2010), with bandpass filter from 1 Hz to 95 Hz, notch filter (50 Hz),
artifact rejection and epoching from -0.5 to 3 s relative to the stimulus onset. All electrodes
were referenced with respect to the mastoids. Artifacts from eye movements, blinks and

temporal muscle activity were identified and removed using a second-order blind

6
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identification (SOBI) algorithm implemented in the EEGLAB toolbox interface (Lio and
Boulinguez 2013).

EEG Analysis
The EEG signal was analysed in terms of task related ERPs, time frequency analysis,

and cross-modal (sentence vs. image) decoding approaches.

a. ERP analysis: Average waveforms were computed across all trials per condition,
using a baseline subtraction with the interval [-200 0 ms]. Repeated measures ANOVAs and
Wilcoxon non-parametric tests were performed using MATLAB, on the factors: Modality
(Image, Sentence), Sequential Coherence (Sequential, Non-Sequential) and Order (First,
Second stimulus) for different time windows. Holm's method was used to cormrect for
multiple comparisons (Holm 1979). The analysis was performed for time windows including
250-350ms corresponding to the P300, 500-625ms corresponding to the N400, 750-1000ms
corresponding to the P600, and a later positivity at 1600-1800ms.

b. Near Gamma Band (NGB 33-45 Hz) Time-frequency analysis: Time-frequency (TF)
event-related spectral perturbation (ERSP) representations were obtained by computing the
mean squared norm of the convolution of complex Morlet wavelets with the EEG data, across
the trials per condition. We used wavelets with a 3-cycle width and frequencies ranging from
1 to 80 Hz, at 1 Hz intervals. We performed a single-trial baseline correction, dividing the
ERSP power at each time point by the average spectral power in the pre-stimulus baseline
period at the same frequency before averaging and taking a log-transformed measure of the
percentage of ERSP as described in Grandchamp and Delorme (2011).

Repeated measures ANOVAs and Wilcoxon non-parametric tests were performed
using MATLAB, on the factors: Modality (Image, Sentence), Sequential Coherence
(Sequential, Non-Sequential) and Order (First, Second stimulus) on the ERSP in the near-
gamma band (3545 Hz) for sliding time widows of 200 ms. Holm’s method was used to
correct for multiple comparisons (Holm 1979).

c. Cross-modal decoding: Principal component analysis (PCA) was performed, using
Matlab, on the signals from the 64 electrodes over all conditions of sequential coherence
(Sequential, Non-Sequential), modalities (Image, Sentence) and stimulus order (first and
second) confounded, starting from 500ms prior to stimulus onset, to 1000 ms post offset. We

then separated data from sequential vs non-sequential, image vs. sentence, and first vs. second
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stimulus trials, and analysed this data in the resulting PCA space, to determine if the principal
components were sensitive to these task factors, particularly the sequential coherence.

We then performed a cross-modal validation. That is, we performed PCA on data from
image processing and determined whether the resulting principal components could be used to

discriminate sequential coherence in the sentence data (and vice versa).

Rk Figure 2 About Here *##%#

Results

EEG Analysis

Before the detailed analysis, we first provide an overall view of the effects of stimulus
order. Figure 2 illustrates an example of the effects Order (First, Second stimulus) on ERP
responses to Modality (lmage, Sentence) and Sequential Coherence (Sequential, Non-
Sequential) in a representative frontal central electrode FC1. Note that during extended
periods between the stimulus onset and offset (e.g. 750-1000 ms) the modality and sequential
coherence effects are absent for stimulus 1, and then become pronounced for stimulus 2. This
is supported by the ANOVA. During the 750-1000 ms window there are significant effects for
Order [F(1,17) = 6.0, p < 0.05], Modality [F(1,17) = 244, p < 0.001], and Sequential
Coherence [F(1,17) = 10.8, p < 0.01]. Interestingly there is an Order * Modality interaction
[E(L,17)=11.83, p < 0.01], and an Order * Sequential Coherence interaction [F(1,17) = 16.3,
p < 0.001]. Overall, all 64/64 electrodes demonstrated a significant main effect for Modality,
55/64 for Stimulus Order, and 31 for Sequential Coherence. The Modality * Order interaction
was observed in 45/64, and the Sequential Coherence * Order interaction in 24/64 electrodes.
This indicates rich effects that are highly influenced by the factors manipulated in the task,
and that the effects of coherence emerge, as expected only with the second stimulus. We now
provide a more specific analysis of these effects.

ERP results are presented for four time periods corresponding to the P300, N400, and
two late positivities. The first of these late positivities is in the P600 range (750-1000ms), and
the second is a later positivity (1600-1800ms). Recall that the coherence of a given pair of
stimuli can only be discerned by the subject after the presentation of stimulus 2. Thus, in all
statistical analyses, our selection requirement is for electrodes that display the desired effect
for Stimulus 2, and not for Stimulus 1. That is, in all ERP results reported, NonSEQ — Seq is
not significantly different with p = 0.05 for stimulus 1, while for stimulus 2, NonSEQ - Seq
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is different at p < 0.05, for sentences and images, as revealed by ANOVA and Wilcoxon post-

hoc tests.

Rk Figure 3 About Here *##%#
*#%+% Table 1 About Here *##%*

Early positivity (P300)

Surface maps and ERP plots are presented in Figure 3, displaying the sequential
coherence contrast (NonSEQ — SEQ) for both sentences and images, as well as the modality
contrast (sentences vs. images) in the 250-350 timeframe. An extend group of frontal central
electrodes appear to make both coherence and modality discriminations in this timeframe.
These observations are confirmed by ANOVA and Wilcoxon pot-hoc tests. Multiple central
electrodes met the criteria of NonSEQ — SEQ at p = 0.05 for Stim 1, and p < 0.05 for Stim 2
(see Table 1). Illustrative frontal central electrode C1-12 displays a significant effects for
Modality [F(1,17) = 9.4, p < 0.01], and Sequential Coherence [F(1,17)=16.6, p <0.001], and
a significant Sequential Coherence * Order interaction [F(1,17) = 12.5, p < 0.01], indicating
that indeed the coherence effect is dependent on whether the subject is exposed to the first or
second stimulus. All of the identified electrodes display a significant Sequential Coherence *
Order interaction (see Table 1).

**#** Figure 4 About Here *¥**%#

N4OO

Surface maps and ERP plots are presented in Figure 4 displaying the sequential
coherence contrast for both sentences and images in the 500-623ms time frame. We can
observe that a sequential coherence discrimination with a frontal negativity is made for the
second stimulus, in a number of centrally located electrodes, but only for the Image and not
the Sentence modality. These observations are confirmed by ANOVA and Wilcoxon post-
hoc tests. Multiple eclectrodes (AF7-2, AF3-3, F3-5, F5-6, AF4-36, Fo-41) partially
responded to the selection criteria, that is, they reliably distinguished sequential coherence for

the second stimuli, but only for images. Illustrative frontal electrode AF7-2 displays a
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significant effects for Modality [F(1,17) = 7.0, p < 0.01], a significant Sequential Coherence *
Order interaction [F(1,17) = 525, p < 0.01].

Rk Figure 5 About Here *##%#

##%%% Table 2 About Here **#%#

Late Positivities (750 — 1000 ms) and (1606 — 1800 ms)

Figure 5 illustrates ERP responses and surface maps for the sequential coherence
contrast for sentences and images in the 750 — 1000 and 1600 — 1800 ms time frames. We
can see similar frontal positivities for the Image and Sentence modalities for both of the late
time windows. These observations are confirmed by ANOVA and Wilcoxon pot-hoc tests.
Multiple spatially contiguous electrodes met the criteria of NonSEQ — SEQ at p = 0.05 for
Stim 1, and p < 0.05 for Stim 2 (see Table 2). Ilustrative frontal central electrode FC1
displays a significant effects for Modality [F(1,17) = 244, p < 0.001], Sequential Coherence
[E(L,17) =108, p=< 0.01], and Order [F(1,17) = 6.0, p < 0.05], and a significant Sequential
Coherence * Order interaction [F(1,17) = 12.5, p <0.01], indicating that indeed the coherence
effect is dependent on whether the subject is exposed to the first or second stimulus.
Wilcoxon post-hoc tests confirmed that only for stimulus 2 there was a significant sequential
coherence contrast for both modalities (see Table 2). All but one of these electrodes displays
the sequential coherence by order interaction. These two late positivities thus reliably
distinguish the sequential vs non sequential coherence contrast for the second stimuli in both
sentence and image modalities. Interestingly, as indicated in Table 2, they also make the
modality distinction.

*¥*#** Figure 6 About Here *¥**%

#*%%* Table 3 About Herp **##*#

Near-Gamma Time-Frequency Analvsis

According to our criteria of no sequential coherence effect for the first stimulus and a
significant effect both for images and sentences for the second stimulus, a group of left frontal

electrodes was identified (see Table 3). Figure 6 illustrates the TF representation for an
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example of one of these electrodes, FC5-9. In the period 1200-1400ms, near-gamma activity
(3545 Hz) appears to be greater for sequential vs non-sequential stimuli, only for the second
stimulus. This is confirmed by ANOVA. In the period 1200-1400 there are significant effects
for Modality [F(1,17) = 5.3, p < 0.05], and Sequential Coherence [F(1,17)=4.6, p<0.05], a
significant Modality * Stimulus Order interaction [F(1,17) = 13.0, p < 0.01], and a significant
Sequential Coherence * Stimulus Order interaction [F(1,17) =9.1, p < 0.01]. This interaction
means that the sequential coherence response depends on the stimulus order. Post-hoc tests
reveal that in all cases, near-gamma power increases in the sequentially coherent condition for

stimulus 2. Summary statistics for all significant effects are provided in Table 3.

wEFEF Figure 7 About Here *##%#

##%%% Table 4 About Here **#%#

Cross-modal decoding:

In order to determine the principal components accounting for variability in the EEG
signal, we first performed PCA on data from sentences and images. As illustrated in Figure 7
the first two components of the PCA appear to represent the two predominant dimensions in
the data which are, respectively, the Modality of the stimuli (sentences vs. pictures), and the
Sequential Coherence of stimulus 2. Wilcoxon tests on the sequential coherence differences
reveal that PC1 reliably makes the coherence distinction for Sentence 2 in the Late 2 period
(1600-1800ms), and PC2 reliably makes the coherence distinction for Image 2 in the Late 1
(750-1000ms) and late 2 periods (see Table 4). In all comparisons the coherence distinction is
never significant for the first stimuli. This indicates that the PCA is sensitive to the
distinction between coherent and incoherent stimuli for the key second stimulus.

Cross-Modal Validation:

PCA was performed on data from image trials, and then the resulting principal
components were used to decode the sequential coherence using data from sentence trials.
The symmetrical decoding operation (PCA on sentence trials, decoding image trials) was then
performed.  Tables 5 and 6 display the Wilcoxon statistics for the sequentially
incoherent/coherent distinction in this cross-modal validation, for the first, and second stimuli,
respectively. Recall that when the first image or sentence is presented, the subject cannot yet

determine if it is coherent or incoherent, and so we predict no decoding can be made on the
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data from stimulus 1. Indeed, this is confirmed in Table 5. No coherent vs incoherent
differences are significant for stimulus 1. We see that in Table 6, the data for stimulus 2
reveals a different story. When the PCA was performed on the image data, the first
component reliably distinguished between sequential coherence for images, in the two late
periods. More importantly, this component also reliably made the coherence distinction for
the sentence trials, in both late periods. In the complementary sense, PCA performed on
sentence data could then reliably make the coherence distinction both for sentences and
images. This argues that the processing of sequential coherence has common neural

substrates for images and sentences.

Discussion:

In the current research we analyze neural activity generated while subjects are exposed
to complex human-activity-related stinuli presented in two-event narrative sequences. Our
objective is to test the hypothesis that common neural processes are involved in making sense
of these narrative sequences in the sentence and image conditions. We previously performed
a related experiment where we recorded brain activation using fMRI while subjects were
involved in understanding single visual images and written sentences. This revealed a
network of brain regions common to processing sentences and images suggesting that the
understanding process involves mapping the understood situation into one’s own experiential
representation of meaning (Jouen et al 2015). This is coherent with the semantic network
identified by Binder et al (2009), and extends this into the visual image domain. Here we
examine the neural dynamics associated with engaging the semantic system as required for
understanding two-element narratives made up of images or sentences.

Already by 300 ms. we observe two effects — a modality distinction, between sentences
and images, and interestingly, for both sentence and image modalities we also observe the
sequential coherence effect. Such early responses have been observed in language processing
for syntactic class expectation violations (Neville et al 1991), and in image processing in
response to comic strip panels in which the motion lines were in conflict with the depicted
motion, or when they were absent (Cohn & Maher 2015). This suggests that this early
positivity is a response to a violation of an expectation with respect to the narrative structure
linking the two successive stimuli.  Interestingly we observed an N400 in response to the
incoherent images, but not sentences. Cohn et al (2012) similarly observed N400 effects in

response to image sequences that violated narrative structure and semantic structure, and

12



191

Paczynski and Kuperberg (2012), note different combinations of stimuli can produce late

positive responses with and without the N400.

Late Positive Response to Narrative Incoherence

The main result is the reliable observation of late centrally distributed positive ERP
responses during the processing of sentences and images in the sequentially incoherent
condition. The late positivity that we observe in the 750-1000 ms timeframe is similar to
those that have been observed when sentences and images do not fit with the previously
established context (Bornkessel-Schlesewsky & Schlesewsky 2008, Brouwer et al 2012,
Kuperberg 2007, Xiang & Kuperberg 2015). While it is beyond the scope of the current
analysis to retrace the details of the evolution of the P600 from its syntactic processing origins
(Osterhout & Holcomb 1992) to its more recent manifestation in the complex world at the
interface of syntax and semantics, we can attempt to situate our finding of a late frontal
positivity that is associated with a form of making meaning both for text and visual narratives.

Thus, while frontal positivities were initially produced in response to syntactic
anomalies, they have been identified in a number of situations that do not involve syntactic
recovery. For example Kaan and Swaab (2003) observe a late (500-9200 ms) frontal positivity
associated with ambiguity resolution and/or increases in discourse complexity. Kuperberg
(2007) reviews studies where late positivities are evoked, with and without syntactical
anomalous sentences. Of particular interest, in the sentence “Every morning at breakfast the
eggs would eat ...", the response to eggs (which is semantically anomalous as inanimate eggs
cannot eat) was a robust P600, in the absence of an N400 (Kuperberg et al 2003). Kuperberg
suggests that some degree of semantic association between a verb and its arguments may
trigger a P600. Similarly, Xiang and Kuperberg (2015) have argued that a late posterior
positivity component is triggered when a near certain prediction is followed by an input that
requires a switch to a new generative model representing relationships between events.
Paczynski and Kuperberg (2012) advocate the P600 as reflecting a conflict between semantic
memory-based predictions, and the detection of propositional incoherence. Brouwer et al
(2012) consider that late positivities are invoked by semantic integration processes. Our
sequentially incoherent condition would thus invoke such integration processes producing a
prediction error. We can suggest that this type of situation can be established in a narrative
context, so that while the second sentence contains no inherent violation, it is anomalous with
respect to the namrative context established by the first sentence. This is similar to the

discourse effects observed by van Berkum and Hagoort (Hagoort & van Berkum 2007, van
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Berkum et al 2003, Van Berkum et al 2005, Van Berkum et al 1999), where an N400 can be
evoked by an otherwise neutral sentence that has been rendered anomalous by preceding
context.

While the actual cognitive processing that is associated with these late positivities
remains to be clarified, we can conclude that sequential incoherence in short narratives
reliably evokes late positivities with similar timing and topography for sentences and images.

This common ERP profile is evidence for common underlying neurophysiological processing.

Time-Frequency Analysis

Gamma band activity provides further evidence. Gamma band activity is associated
with a number of higher cognitive functions including controlling and organizing memory
traces (Keizer et al 2010), and semantic processing in sentence comprehension (Hagoort et al
2004, Hald et al 2006). We observed increases of near-gamma band activity (35-45 Hz) for
sequentially coherent stimuli, both for sentence and image processing. Such increases in
gamma band activity have been proposed to reflect integrative processing through enhanced
coherence of neural activity in multiple interacting regions. In the sequentially coherent
conditions, participants have established a context with the first stimulus and can then proceed
with further integration and processing with the second stimulus when it is sequentially
coherent. The increase in near-gamma that we observe may be related to integration that

would involve multiple brain regions in an extended semantic network (Jouen et al 2015).

Cross-Modal Decoding:

The ERP and time frequency analyses revealed late positivities that were common to
sentence and image processing, suggesting a common underlying neural mechanism. If the
neural dynamics are related for processing the sequentially incoherent stimuli for sentences
and images, then a pattern decoder trained on sentences should be able to decode sequential
coherence in images, and vice versa. The principal component analysis revealed that the EEG
signal reliably encodes information about the modality of the stimuli (sentence vs image), and
the status of the second stimulus as being sequentially coherent or incoherent with respect to
the first. As a multivariate analysis tool, PCA allows the opportunity of generating principal
components from one set of data, and then testing another set of data using those components

in order to determine whether the second data set is related to the first (Brouwer & Heeger
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2009). Analyses were thus performed to determine whether the principal components that
characterize sentence processing would allow decoding for image processing, and vice versa.
The cross-validation results revealed exactly that. When PCA was applied to sentences,
the first component reliably distinguished coherent vs. incoherent sentences and images, and
only for the crucial second stimulus of the pair. The same positive outcome was observed
when applying the complementary analysis, i.e. running PCA on the image data and testing on
the sentence data. Thus, this cross-modal generalization argues that the same processes are at

work in narrative integration of the successive stimuli for sentences and images.

Behavioral Correlates

This leads to the question of what it is that subjects are actually doing in our task. One
suggestion is that without any intention or will to do so, subjects naturally engage with the
stimuli and attempt to make sense of them. Data from studies of embodied language indicate
that this is the case for language processing (Aziz-Zadeh et al 2006), and we can consider that
it is similar for image processing. We have begun to behaviorally investigate this integrative
process in the domain of sentence processing. As in the current study, we exposed subjects to
successive sentences in pairs that were either sequentially coherent or not. Subjects found the
second sentence in the sequentially incoherent pairs less easy to mentally imagine than those
in the sequentially coherent condition, and they also required additional time to make the
judgement (Madden-Lombardi et al 2015). This suggests that in the sequentially coherent
pairs, the representation of the second sentence is already (partially) included in the
representation evoked by the first sentences, whereas in the sequentially incoherent pairs,
additional processing is required. This additional processing may be reflected in the late
positivities we observe, while the integration of the coherent image may be reflected by the
increase near gamma response. This processing may be part of attempting to make sense in
the context of narrative integration. According to the event indexing model of Zwaan and
colleagues (Zwaan 1999, Zwaan et al 1995) coherence can be measured along five
dimensions: time, space, causation, motivation and protagonist. In the sequentially incoherent
conditions, while relations in the dimensions of time and space may be broken, the
protagonist relation remains, so that the sequentially incoherent conditions can be considered
as a shift in time or storyline rather than a completely incoherent or unrelated event (Madden-

Lombardi et al 2015).
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Models of Newral Dynamics of structure Processing

How can such structural processing be mapped onto neural dynamics? In a long-term
effort to respond to this question, and based on the property of massive local recurrent
connections in primate cortex (Goldman-Rakic 1987) we have developed a class of recurrent
network models that are sensitive to sequential structure, from the serial and temporal
structure of sensorimotor sequences (Dominey 1998a, Dominey 1998b), to abstract rule
structure in language and artificial grammars (Dominey 2005, Dominey et al 2009, Hinaut &
Dominey 2011, Hinaut & Dominey 2013). Based on structural regularities in the sentence-
meaning data used during training, the recurrent network model can anticipate the next words
in an incoming sentence, and when low probability words arrive, the model displays a
perturbation of its activity due to adjustment between the anticipatory activity that is
inappropriate to what is actually perceived. These perturbations are related to the P600 that is
observed in response to sentence structure violations (Hinaut & Dominey 2013).

We have recently extended the model of grammatical construction to that of narrative
construction. By analogy, where a grammatical construction defines the relation between
words in a sentence and their relation to arguments in a predicate-argument event
representation, a narrative construction defines the structural relations between sentences in a
narrative and multiple interrelated events and relations between them in a situation model
(Mealier et al 2017). Exploiting this analogy, at the level of the narrative construction, we
would predict that when incoming sentences that have low probability (with respect to
narrative structures leamed in the training corpus) arrive, they will likewise result in a
perturbation of the model’s prediction corresponding to a late positivity.

This suggests the existence of generalized structure processing mechanisms whose
response to unpredicted structure will be a late positivity. Interestingly, there is precedence
for these predictions. Lelekov et al (2000) presented non-linguistic geometric sequences that
could be characterized in terms of their surface structure and abstract structure. Violations of
abstract structure produced a reliable late positivity similar to what we observe in the current
study. Patel observed similar late positive responses to structural violations in music (Patel et
al 1998). His shared syntactic integration resource hypothesis proposes that what is important
in these observations across different processing domains is the notion of structural
integration, with (Patel 2003). Here we begin to accumulate evidence that such structural

processing may apply as well at the level of narrative structure.
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Conclusion

From the groundbreaking work of Vandenberghe et al (1996), there is evidence for a
common semantic system for words and pictures. Jouen et al (2015) extended this line of
research, revealing a more broadly extended semantic system common to the representation of
the semantics of human event evoked by sentences and complex images, with extended
anatomical and functional connectivity (Jouen et al in revision). The current research reveals
evidence for common neural dynamics for semantic processing of short narrative sequences
made up of sentences or images. Using EEG we observe common spatiotemporal patterns of
brain activity when subjects encounter sequentially incoherent stimuli in the image or
sentence modalities. This is revealed in the ERP domain as a set of late central positivities,
and in the time-frequency domain as an increase in near-gamma power. This is coherent with
related research examining sentence and image processing separately. Importantly, there is
nothing inherently wrong with these sequentially incoherent stimuli, it is only their relation
with the first stimulus that is manipulated. Further, multivariate analysis discovers this
sequential coherence effect in one modality, and can then be used to decode sequential
coherence in the other modality, further arguing for a common neurodynamics of meaning
integration, independent of the input modality. This demonstrates that the brain tracks
coherence not only within individual sentences and images, but across multiple stimuli in a
narrative context, and that this mechanism is at least partially independent of the stimulus
modality. The question of the nature of the contents of these representations remains a topic
of future research. A growing body of resecarch now addresses the representation and
decoding of the contents of meaning, e.g. (Wehbe et al 2014). Future research should attempt
to apply these techniques across sentence and visual modalities in the further characterization

of the common semantic system.
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Table 1. Discrimination of sequential coherence by an Early ERP positivity.
Statistical p-values for Wilcoxon signed rank comparisons. Right two columns
(Coherence Discrimination) illustrate electrodes with significant coherence
differences for sentences and images in the Early Positivity (250 — 350 ms)
window. We also illustrate (Modality Discrimination) how in the same window
several of these electrodes distinguish sentence and image. This demonstrates a
form of mixed selectivity. All of these electrodes display a significant sequential

coherence x order interaction in the ANOVA.

Electrode Modality Discrimination | Coherence Discrimination
Coherent Incoherent | Image Sentence

Central (C1-12) 0,005 0,025 0,0084 0,0074
Centro-Frontal (FCz-47) 0,006 0,008 0.0074 0.0096
Centro-Parietal

(CPz-32) - - 0.0034 0.0057
{CPL-19) - - 0.0096 0.0043
{CP2-56) 0,01 0,043 0.005 0.0038
Parietal (Pz-31) - - 0.0074 0.0043
Temporal (T8-52) - - 0.0074 0.0096
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Table 2. Discrimination of sequential coherence by Late ERP Positivity. Right
two columns (Coherence Discrimination) illustrate  electrodes displaying
significant sequential coherence differences for sentences and images in the 750-
1000 ms window, and the corresponding statistical p-values for Wilcoxon signed
rank comparisons. All electrodes except FT8 displayed a significant sequential
coherence interaction. A significant effect in the late positivity 1600-1800ms time
window was observed in all of these electrodes with the exception of FT8-43, and
CP2-56. We also illustrate (Modality Discrimination) how in the same window
these electrodes distinguish sentence and image. This demonstrates a form of
mixed selectivity.

Electrode Modality Discrimination | Coherence Discrimination
Coherent Incoherent | Image Sentence

Central (C4-50) 0.0018 0.0012 0.0084 0.0475

Fronto-Central

{FC1-11}) 00018 0.0065 00014 0.0475

(FC2-46) 00018 0.0025 0.0009 0.0386

{(FC3-10) 0.0033 0.0084 0.0043 00311

{FC4-45) 0.0029 0.0021 00016 0.0475

(FC6-44) 00043 0.0007 0.0025 0.0429

Centro-Parietal

(CP2-56) 0.0002 0.0009 00156 0.0386

Fronto-Temporal

(FT8-43) 0.0279 0.005 0.0347 0.0429

Table 3. Discrimination of sequential coherence by Near-Gamma oscillatory
power.  Right two columns (Coherence Discrimination) illustrate electrodes
displaying significant sequential coherence differences for sentences and images
in the near-gamma (34-45 Hz) range, and the corresponding statistical p-values
for Greenhouse-Geisser corrected post-hoc comparisons.

Electrode Coherence Discrimination
Time window Image Sentence

Central (C1-12) 2000-2200 0.030 0.0241
Fronto-Central

{FC5-9) 1200-1400 0.0449 0.0064
{FC3-10) 2200-2400 0.0315 0.0214
(FC1-11) 2000-2200 0.0374 0.0365
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Late 1  (750-1000) Late 2 (1600 — 1800)
SENT IMA SENT IMA
PC1 0.159 0.200 0.005* 0.159
PC2 0.132 0.015* 0.141 0.017*
Table 4. Sequential coherence discrimination for Stimulus 2. Wilcoxon p values for

NonSEQ - SEQ differences for the second stimulus, based on projection of SENT and IMA
data for SEQ and NonSEQ trials onto the first two PCs generated by applying PCA to the
entire data set. We can observe that between PC1 and PC2 the NonSE(Q) — SEQ) distinction

reliably be made.

Latel (750-1000) Late2 (1600 - 1800)
Test on Teston Teston Test on
Imagel Sentencel Imagel Sentencel
Train on Images 0.616 (0.845) 0.647 (0.143)
Train on Sentences (0.586) 0.777 (0.616) 0.144

Table 5. Sequential coherence cannot be discriminated for Stimulus 1. Control test of PCA
decoding of coherence of the first stimulus, depending on training and testing conditions.
Wilcoxon p values for Sequentially Coherent - Incoherent differences for stimulus 1.
Significant values (p < 0.05) indicate that the coherence difference is reliable. Upper row
provides results from training on Ilmage data, lower row from ftraining on Sentence data.
Parentheses () indicate the crucial transfer conditions where training is in one modality, and
testing in the other. Here we expect no differences to be significant, since the coherence

distinction cannot be made at the first stimulus.
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Early (750-1000) Late  (1600-1800)
Test on Teston Teston Test on
Image2 Sentencel Image2 Sentencel
Train on Images 0.016 (0.048) 0.031 {(0.009)
Train on Sentences (0.020) 0.043 (0.039) 0.009

Table 6. Sequential coherence is cross-modally decoded for Stimulus 2. Transfer test of PCA

decoding of sequential coherence of the second stimulus, depending on training and testing

conditions. Wilcoxon p values for NonSEQ — SEQ differences for stimulus 2. Significant

values (p < 0.05) indicate that the Sequential Coherence difference is reliable. Upper row

provides results from training on Ilmage data, lower row from ftraining on Sentence data.

Parentheses () indicate the crucial transfer conditions where training is in one modality, and

testing in the other. Here we expect all differences to be significant.
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Figure captions:

Figure 1. Temporal unfolding of the experimental protocol for the image (A) and sentence (B)
conditions.

Figure 2. Comparison of ERP responses to first and second stimuli. A. Stimulus] — small
effects of modality are seen, but no effects of sequential coherence are visible (as expected).
B. Sequential coherence effects become visible.

Figure 3. P300 (250-350ms) effect. This positivity makes a modality distinction, with a
greater positive effect for sentences. 1t also makes the NonSEQ (sequentially incoherent) vs.
SEQ (sequentially coherent) distinction, with an increased positivity for the sequentially
incoherent stimuli. Mustrated with Electrode FC1 (11).

Figure 4. In a late N400 timeframe (525-600ms) there is a significant negativity for NonSEQ
(sequentially incoherent) vs. SEQ (sequentially coherent) for images but not sentences.
Electrodes 2[AFT], 3[AF3], 6[F5], 36[AF4], 41[F6] display a significant effect, only for the

second stimulus.

Figure 5. Late positivities (750-1000, and 1600-1800 ms) are sensitive to the NonSEQ
(sequentially incoherent) vs. SEQ (sequentially coherent) distinction for sentences and
images. Scalp maps for sentences and images INCO-sequential coherence contrast for 750-
1000ms displayed on left, and for 1600-1800 displayed on right. Illustrated with Electrode
FC1(11).

Figure 6. Near Gamma (Hz) oscillations are increased for Stim 2 in the sequentially coherent
condition. Panels a-d illustrate TF data for electrode FC5-9 in response to Stim 1 for
sentences and images in the non-sequential and sequential conditions. No difference between
Non-SEQ and SEQ for sentences, nor for images. Panels a*-d* zoom in on the 1200-1400ms
35-45 time-frequency window with increased resolution. Again no Non-SEQ vs. SEQ
differences. Same spatial organization for panels a2-d2*, but for Stim 2, where Non-SEQ vs.
SEQ differences are predicted, and observed. For sentences and images there is increased near

gamma activity in the 1200-1400ms time-frequency window.
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Figure 7. A. Projection of IMA and SENT, SEQ and Non-SEQ data onto PCl. Clear
separation of IMA vs SENT trials in multiple time windows. B. Spatial distributions of
contributions of electrodes to PCL. C. Projection of IMA and SENT, SEQ and Non-SEQ) data
onto PC2. Clear separation of SEQ and Non-SEQ trials in the 750-1000 and 1600-1800

timeframes. D. Spatial distributions of contributions of electrodes to PC2.
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3.Discussion

We set out to determine how the replay of experienced behavior could allow for a form of optimization of
learning, within the behavioral and neurophysiological context of the “traveling salesrat” paradigm. Here,
rats are observed to find the most efficient path linking a set of baited food wells, in a surprisingly short
number of trials. We hypothesized that the organized replay of recently experienced behavior could allow the
rat to amplify its experience, and contribute to the fast resolution of the problem. A major question then
concerns how the replay can bias learning towards the optimal solution. During the thesis, we developed a
replay algorithm that propagates reward value along the replayed trajectory, thus implementing a form of
spatio-temporal credit assignment in a reinforcement-learning context, by biasing replay probability to favor
snippets that are on an efficient path to a rewarded location. We then demonstrated how the PFC-like reservoir
could learn from this biased distribution of replay in order to consolidate the most efficient path. In the
following sections, we situate this work in a broader context and discuss its pertinence within these domains.

The TSP problem is a global optimization problem and the behavior of an agent that is able to solve this
problem could be demonstrated with a reinforcement learning algorithm like Q-Learning (Sutton and Barto
1998; Barrera et al. 2015) by learning the successful action sequence maximizing the expected reward. It
requires an explicit discretization of perceptual observables states and an explicit reward but does not require
a model of the environment.

Experiments with an animat require defining an embodied and situated agent equipped with sensors and
actuators and a behavioral control architecture that relates its perceptions to its actions and allows it to survive
in its environment. We defined a sensor model by considering the hippocampus place-field response to a
particular location and a transition model by restricting the locations the agent can reach at each time step to
a circle around the center of its body. Thus, we defined a simple navigation policy by selecting at each time
step the most probable location encoded in the prediction of the next place-cell activation pattern, based on
forward and backward random replay of snippets taking into account the notion of reward. By doing this, we
defined two generative models. A generative model is “an internal model that encodes the probabilistic
relations between states, actions, and rewards. Such a model permits to generate observable data given some
other hidden (non-directly observable) parameters, and ultimately permits to estimate the value of a plan*
(Pezzulo et al. 2014). The first generative model provides short place-cells activation sequences given a stream
of sensory input and the associated reward information. It emulates the replay phenomenon observed during
awake SPW-R. Snippets are randomly drawn from a replay likelihood estimated with a recursive algorithm
based on TD(A), described in (Sutton and Barto 1998) and implementing a form of reinforcement learning.
The snippet replay direction has the effect of propagating the reward forward and backward in time, allowing
one to have an estimate of the future reward. The recursive definition allows the generative model to be
compatible with a recurrent neural network structure, also found in area CA3 of the hippocampus. Once learnt,
the replay generative model is able to produce snippets that reflect the accessible rewards information. When
coupled with a stimulus coding a space information, it is thus possible to generate a dynamical training set
that represent sub-trajectories associated to a reward. This dynamical training set is used for training the
second generative model which is the consolidation model (see Figure 6) implemented by a PFC and ST model
(see Figure 7). This model exploits the reservoir’s ability to align in neurons state space the activation
sequences sharing a common subsequence. This result in the concatenation of overlapping subsequences of
place cell activation and when overlapping subsequences reflect the overlapping subsequences related to a
reward, it is then possible to concatenate efficient parts of trajectories experienced before. The learning rule
is very simple and as opposed to other recurrent neural network model using Backpropagation through time
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or other complex algorithms, we solved the credit assienment problem by pairing two models, implementable
by random recurrent networks.

At this point, multiple efficient trajectories might exist and it is possible to give an account of all the
trajectories the agent can generate based on the consolidated knowledge of the trajectories previously
encountered and the reward information associated with salient points of these trajectories by simulating
several random walks of an agent implementing this generative model. Findings described in section 2.4
provide a link between awake SPW-R and hippocampal memory processes involved in a goal directed
behavior. Simulated agents exhibited a behavior suggesting an incremental update of their internal
representation of the world, based only on the cumulated and rewarded experiences acquired during the
previous trials. Snippet replay allowed the agents to recombine rewarded parts of the previous trajectory and
to consolidate a trajectory between feeders that privileges paths between baited feeders. It is possible to
consolidate the multiple trajectories that exist between baited feeders by exposing a sequence learning model
more often to place-cell subsequences related to a reward. Finally, we studied the TSP, which is a particular
optimization problem by implementing a generative model of the optimal sequence with a HC-PFC-ST joint
model featuring a particular form of replay during awake SPW-R that emphasizes short rewarding sub-paths.
An interesting perspective could be to extend this study by implementing a more comprehensive model of
hippocampal replay as characterized in (Gupta et al. 2010).

Hierarchical hidden Markov model

Reservoir states form a lattice of observable states whose transition probabilities result from the likelihood of
a snippet to be replayed. In fact, the PFC model based on reservoir computing allows the model to respect the
Markov assumption by maintaining and providing at each time step an account of the recent observable (place-
cell activation) states. It associates to any stimuli sequence a state that is characteristic of the recent history of
stimuli sequence and the mnesic abilities of the PFC model are mainly determined by the number of neurons,
the spectral radius (maximum absolute value of the eigenvalues) of the recurrent connectivity matrix and the
leak rate that reflects the time constant of the neurons by emulating the resistive and capacitive properties of
neurons membrane. Reverse replay (Foster and Wilson 2006b; Ambrose, Pfeiffer, and Foster 2016) is a
potential mechanism to the credit assignment problem encountered in reinforcement learning : In addition of
virtually exposing the agent to transitions between locations in both directions as demonstrated in (Gupta et
al. 2010) and in section 2.3, we demonstrated that reverse replay of snippets allows the backward propagation
of the reward through the reverse consolidation of place-cell transitions related to trajectory parts emphasized
by reward and forward replay emphasizes forward transitions between place-cell patterns (Wikenheiser and
Redish 2014).

We proposed a hierarchy of discrete time models which could be viewed individually as an autonomous hidden
Markov model (Markov 1913; Dugad and Desai 1996; Jurafsky and Martin 2017). It is then possible to view
the animat model as a hierarchical hidden Markov model (Fine, Singer, and Tishby 1998)

With a fully specified hierarchical hidden Markov model implemented by our joint HC-PFC-ST model, it is
then possible to benefit from several algorithms:

=> Forward algorithm: It is possible to evaluate a belief state of the agent at a given time which is the

probability of a position at a particular time, given the history of place-cells activation values by applying
the forward algorithm on the HHMM. It consists in recursively evaluating the probability of the agent’s
position given successive place-cell activation patterns. With the help of the forward algorithm on a
HHMM, is then possible to:
1. Filter a position by estimating the posterior distribution of current position given all available
place-cell activations
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2. Predict a position by estimating the posterior distribution of a future position given all available
place-cell activations

The recursive definition of the forward algorithm allows one to evaluate the belief state of the agent’s
position given all available place-cell activations (the likelihood of the trajectory) online during navigation
and opens the door to online planning.
Viterbi algorithm: It is possible to find a sequence of observable states (reservoir states) that reflects a
sequence of hidden states (position of the agent) that maximizes the reward and minimizes the walking
distance of the agent during a trial by using a Viterbi algorithm (Viterbi 1967). This is a solution to the
TSP problem and we demonstrated that our joint HC-PFC-ST model is sufficient for learning a state
transition model that does not require an explicit discretization of perceptual (observable) states. Viterbi
algorithm rely on the forward algorithm and instead of estimating recursively the posterior distribution of
a position at a particular time given all the place-cells activations observed so far, one can estimate
recursively the probability of the most probable path to each position given all available observations.
Practically speaking a Viterbi algorithm can be implemented by selecting at each time step of a trajectory
the location that maximizes the current forward path probability, which is given by the product of the

previous forward path probability, the transition probability given by the transition model and the state
observation likelihood given by the sensor model. The preplay of place-cell subsequences related to the
current location of the agent observed in (Diba and Buzsaki 2007b) could be interpreted as a prospective
mechanism playing a role in the evaluation of possible solutions related to the current agent’s situation
(Pezzulo et al. 2014). Since the forward algorithm is recursive, it is possible to maintain an estimate of the
current position with the place-cell activations encountered gradually and to evaluate the outcomes of the
possible trajectories derived from the current trajectory and the remaining suffixes suggested by the
snippets being replayed. Implementing this algorithm in our model would imply to implement the online
prospecting mode described in Figure 7 panel C.

Forward-backward algorithm: A hidden Markov model relies on parameters transition probabilities and
emission probabilities. The standard algorithm for training a HMM and to find the model that explains a
given sequence is the forward backward algorithm or the Baum-Welch algorithm (Baum and Petrie 1966;
Welch 2003). It is a special case of the Expectation-Maximization algorithm. The algorithm is iterative

and consists in 2 successive procedures repeated for each iteration until convergence that can be
summarized as follows:
1. Expectation: For 1 <t <T apply the following algorithms:

e Forward: The forward algorithm is used in order to estimate the probability of observing t
available place-cell activations and being in the current position on time t.

e Backward: The backward algorithm is also a recursive algorithm on a HMM that is used for
smoothing a position by estimating the posterior distribution of a past position given all
available place-cell activations. It computes the probability of ending with T-t place-cell
activation given the current position at time t

2. Maximization: Update the actual emission and transition probabilities and the initial position

distribution estimates by using the results computed in the expectation step

There is no trivial link between the forward backward algorithm and the snippet driven learning paradigm
we are using for training a random recurrent neural network but in (Unkelbach, Yi, and Schmidhuber
2009), the authors propose an expectation maximization algorithm training algorithm for recurrent neural
network (Greff, van Steenkiste, and Schmidhuber 2017) performing a time series prediction task. In (Ma
and Ji 1998), the authors demonstrate a learning algorithm for echo states networks (Jaeger 2001) whose
formulation is very close to temporal neural network (Dominey 1995). There exists also a training method
based on Kalman filter for training a recurrent neural network (Puskorius and Feldkamp 1994).



We hypothesize that snippet driven learning of a reservoir model fits in this framework. The expectation
step, which consists in estimating the joint probability distribution over positions, conditioned on the
observed place-cell activation sequences given the current readout synaptic weights, could be implemented
by using random replay of snippets in forward and backward direction. The maximization step could be
assimilated to the gradient descent procedure used for training readout weights. Finally, the iteration of
the expectation maximization algorithm until convergence could be implemented by allowing the snippet
driven learning to occur between each trial during several trials, until the generated trajectories converge
to an efficient trajectory. This corresponds to the awake snippet replay we modelled and studied.
We then propose to extend the snippet driven learning paradigm by integrating the trajectory generated during
the previous trial as a part of the awake SPW-R content. An additional exploratory navigation policy might
be required and this allows the animat to mimic the rat behavior. This is the subject of a collaborative work
with USF Tampa described in section 2.5

Free energy and active inference

Hidden Markov model is a particular case of dynamic Bayesian network. It is possible to describe the animat
implementation of a joint HC-PFC-ST model under the light of the free energy framework as a hierarchical
Bayesian model (K. Friston 2008). By describing our model within a unified framework, it allows one to view
the model with a high level of abstraction while relying on correct neurophysiological basis and to extend the
model with ad-hoc or neuro-mimetic components for studying other problems that could be explained with an
active inference model. An example could be the work accomplished in section 2.6 which relies on the same
mixed selectivity property observed in reservoir computing (Rigotti et al. 2013; Enel et al., n.d.) or the
hierarchical model used in this thesis and illustrated in Figure 6. A collaboration with ISTC CNR had been
initiated during a visit (see Rome-ITALY 2017 Presentation) and aims at proving more rigorously that the
animat as we modelled it in this thesis learns a generative model minimizing free energy, based on the existing
work about free energy based models (Klaas Enno Stephan et al. 2010; Chumbley, Dolan, and Friston 2008;
Kiebel et al. 2009; K. Friston 2003; K. J. Friston, Daunizeau, and Kiebel 2009; K. Friston et al. 2016; K. J.
Friston et al. 2017).

Global optimization

The TSP is a global optimization problem and from this point of view, it is interesting to compare the heuristic
implemented in this thesis with existing algorithms able to solve the TSP.

The number of possible sub trajectories combinations is dramatically reduced when taking into account the
reward and using reverse replay when training the consolidation model allows one to consider only a non-
directed graph problem by virtually exposing the consolidation model to trajectory subsequences in forward
and reverse direction. It is necessary but not sufficient for allowing an agent to navigate We had to evaluate
the animat’s trajectories in non-autonomous mode when reverse replay was required for consolidating
solutions derived from sub trajectories in reverse direction. It caused a tendency to revisit feeders already
visited and no longer containing food. One needs to implement a preplay mechanism (Diba and Buzsaki
2007b) that will replay snippets related only to future rewards, given the current position of the animat and
excluding the snippets associated to a reward perception that minimizes the error with the reward prediction
by updating the learning rule of the replay model. It is then possible to realize a Viterbi algorithm that will
allow the animat to generate the optimal sequence.

The closest heuristic that solves the TSP is the ant colony system (ACS) (Dorigo and Gambardella 1997; Yang
et al. 2008), where multiple agents (ants) deposit an amount of ‘pheromones’ that is proportional to the length
of their tour in the solution space. Each agents moves stochastically according to the concentration level of
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pheromones in the solution space and increases this concentration level each be releasing more pheromones
along the trajectory they just described. The possible shortest routes emerge as the paths following the most
concentrated pheromone trails. This is very analogue to the model we developed in this thesis if one considers
that an ‘ant’ corresponds to the simulated agents when establishing a random walk map. The pheromone trail
that is shared and built collectively by the ant colony is emulated by the incremental learning of the snippet
replay likelihood through multiple replay episodes. The consolidation model allows one agent to generate
trajectories related to rewarded paths (analogue to a path along the pheromone trail), either in an offline
simulation during the consolidation process, or during an online generation/exploration process that will allow
new paths to be discovered/associated and consolidated after the end of the current trial during SPW-R.

Multiple timescale

The recurrent networks we used in our implementation were relative to the same time constant, allowing them
to function only in a restricted timescale that matches the intrinsic timescale of the stimuli sequence. We
demonstrated multiple rewarded sequences consolidation properties with simplified trajectories displaying a
constant speed and thus featuring a single characteristic timescale. Several authors demonstrated the function-
ing principle and some properties of recursive recurrent neural network (Tani and Nolfi 1999; Jaeger 2007;
Yamashita and Tani 2008). The main idea is to consider two or three interacting recurrent neural networks
having a characteristic timescale (leak rate). It is thus possible to view each network as a time basis: Any
stimuli sequence could be decomposed in several spatio-temporal features resulting from one or more time-
scales. The readout layer can then select the spatio-temporal features correlated to the expected signal with an
online and supervised learning rule. Intuitively, it is similar to a wavelet analysis/synthesis process. Learning
selects the best time/space basis for representing a high-dimensional stimuli sequence featuring fast and slow
variations.

Deep learning

Recent advances in machine learning and the raising computing power of modern computers allowed the
emergence of the deep learning as a new applied research field. Briefly, it consists in processing a massive
data amount with several hierarchical layers of neural networks, each layer learning more and more abstract
representations of the dataset. A particular type of deep neural network is the recurrent neural network (RNN)
whose static architecture is similar to the model used in this thesis. RNN are typically trained with a
backpropagation trough time (Werbos 1990) or backpropagation through structure (Goller and Kuchler 1996).
The subject is complex and an entire PhD thesis had been dedicated to the training of recurrent neural network
(Sutskever 2013). The training algorithm we used for the consolidation model as described in 2.4 can be
assimilated to a truncated back propagation through time (TBPTT) algorithm, learning only synaptic weights
between the output layer and the unique hidden layer. Recurrent weights are never modified. The credit
assignment problem inherent to sequence learning is solved very simply by training a replay generative model
beforehand. Instead of modifying the synaptic weights of the recurrent connections according to a delayed
form of reward, we used a form of TD (4) algorithm where the time delayed reward information is propagated
through the place cell subsequences replay phenomenon observed during SPW-R. The resulting replayed place
cell subsequences constitutes a dynamic training set for the consolidation model where only the place cell
subsequences related to a reward are represented. This replay model emulates the activations of the
hippocampus. The training process of the replay model might involve other areas of the brain, in particular
for justifying at least the reward circuit, and the notion of novelty associated to place-cells transitions. At this
point, we can state that our model is biologically inspired but is not necessarily biologically plausible. The
replay and consolidation model are learnt only during SPW-R in order to elaborate a navigation policy based
on a reward estimate. It is a form of reinforcement learning and the use of continuous recurrent neural network
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allows one to consider continuous sensory and action states and a continuous time (a series of discrete time
events separated by a delay that could be arbitrarily small). This model should belong to the deep
reinforcement learning (Arulkumaran et al. 2017) family of algorithms because it “scales to decision-making
problems that were previously intractable, i.e., settings with high-dimensional state and action spaces”. The
overall model developed in this thesis might be considered as a deep temporal model (K. J. Friston et al. 2017)

Cognitive maps

We demonstrated that hippocampal replay is a suitable mechanism playing a role in offline consolidation and
suggested that online planning could use this mechanism as well.

In (Pezzulo et al. 2014), a generative model of plan values supporting vicarious trial-and-error and goal-
directed behavior is described. We implemented a generative model, implemented by a random recurrent
neural network and described as a dynamic Bayesian network. We demonstrated the ability of our joint HC-
PFC-ST model to learn a generative model in a compact manner, robust to noise and benefiting from the
neural network generalization ability. This work is an empirical attempt to demonstrate the argument
developed in (Wikenheiser and Redish 2014) where the authors conclude that “sequences play a more active
and complex role in information processing than encoding veridical experience. Their role in flexibly
manipulating and permuting representations of space to generate novel paths that might aid action selection
meshes well with the cognitive map envisioned by Tolman (Tolman 1948; Johnson and Crowe 2008)”

Piaget schema

The notion of schema had been introduced to cognitive psychology by (Piaget 1967) and (Bartett 1932) in
their efforts to understand how new information is integrated with pre-existing knowledge.” A schema can be
viewed as ‘any organized network of overlapping representations that has the following properties:

1. New information is better remembered when it fits within a pre-existing schema

2. New information that challenges schema organization may cause modification of the existing schema

or development of a new schema
3. Schemas support novel inferences between indirectly related events and their generalization to new
situations.’

We demonstrated in 2.4 that it is possible to establish a transitive relationship between parts of trajectories
associated to a reward, based uniquely on random replay. The replay model implemented partially by the
hippocampus model, proposes associations of rewarded trajectory parts and the consolidation model
implemented by a model of prefrontal cortex and striatum, associates overlapping rewarded trajectories by
aligning their spatiotemporal representations through the online association of the states of the reservoir’s
neurons to the prediction of the next input of the consolidation model. Thus, it is possible to replay and
consolidation models as the two parts of a schema generative model: Property 1 is ensured by the use of an
online and supervised learning rule, which will attempt to incrementally reduce the error between the expected
and generated states by adjusting synaptic weights of the readout layer (part of the striatum model) only. A
new information that fits an existing schema will be encoded by the reservoir model in an area of the state
space that contains state transitions learnt earlier. The required synaptic weight modification will be less
important in this case and will be more important with a new information this is not yet related to consolidated
(pre-existing) schema. Property 2 is also implemented by the online learning rule of the consolidation model.
A challenging new information could be assimilated to an ambiguous state transition of the reservoir model,
occurring when at least two overlapping snippets represent the same prefix 2D trajectory and bifurcate in two
different direction. A balanced representation of the two snippets by the replay model will result in an
ambiguous state transition that could be observed through multiple random walks. The existing schema is
modified as the new ‘branch’ of the possible trajectories is represented and learnt. If this new branch is
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overrepresented, the readout synaptic weights allowing the prediction of the old schema are progressively
modified until the new schema is learnt. Finally, property 3 is implemented by the use of neural networks that
have an intrinsic generalization ability. We demonstrated that the overlapping part of different snippets would
be encoded in the reservoir neurons state space in similar areas. This allows the model to establish new paths
between previously unrelated sub-paths.

Computational psychiatry

The prospective memory mechanism described in Figure 7 panel C was not investigated in this thesis. How-
ever, the simulation of future events contributes to the formation of plans and predictions. In (Schacter, Addis,
and Buckner 2008b), the authors review “neuroimaging, neuropsychological, and cognitive studies that have
examined future-event simulation and its relation to episodic memory” and “consider the applications of this
work for research concerning clinical populations suffering from anxiety or depression in which pathological
future thinking is a central feature”. By extending the model developed in this thesis, one could simulate past
and future events associated to positive or negative outcome and simulate the ability of a subject to envision
positive events. Other authors proposed to explain hysteria (Edwards et al. 2012) and psychotic symptoms
(Adams et al. 2013) in terms of false inferences or beliefs. They “use a neurobiologically informed model of
hierarchical Bayesian inference in the brain to explain functional motor and sensory symptoms in terms of
perception and action arising from inference based on prior beliefs and sensory information”. The computa-
tional model developed in this thesis extended with a prospective memory mechanism and neuromodulation
mechanism could be an implementation of a hierarchical Bayesian temporal inference model that are of major
interest for the emerging discipline of computational psychiatry as illustrated in (Klaas E. Stephan,
Diaconescu, and Iglesias 2016; Valton et al. 2017). Computational psychiatry has suddenly made it possible
to mine data from long-standing observations and link it to mathematical theories of cognition. It’s also be-
come possible to develop computer-based experiments that carefully control environments so that specific
behaviors can be studied in detail (MIT 2017).
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Appendix

Communications
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concatenating place-cell snippets replayed in hippocampus
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Prefrontal cortex reservoir network learns to create novel efficient navigation sequences by
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Introduction

Spatial navigation in the rat involves the replay of place cell subsequences
(snippets) during awake and sleep states in the hippocampus during sharp
-wave-ripple (SPWR) events ([1], [2]). We focus on the role of replay du-
ring the awake state, as the ani-
mal generates increasingly effi-
cient trajectories between re-
'ward sites, across multiple trials.
This trend toward optimal solu-
tions is referred to as the Trave-
ling Salesman Problem (TSP). We |
hypothesize that snippet replay
allows recurrent dynamics in pre-
frontal cortex (PFC) to consolidate
snippet representations to create
novel efficient sequences in TSP,

by rejecting training sequences that are less robustly coded in the input.

Temporal Recurrent Network for sequence learning

Prefrontal cortex is modeled as an instantiation of the reservoir compu-
ting paradigm called the Temporal Recurrent Network (TRN) [3], a com-
putational metaphor of the cortico-cortical (reservoir) and corticostriatal
(readout) circuits. Inputs excite a pool of neurons having fixed recurrent
connections, generating high dimensional dynamics through reverbera-
tion. The ciple is straightforward:

Spatal filter

Place feld mode! Bayesian reconstruction
20 point o Place cells

Readout

Place cels

HPPOLAMPLS STRIATUM
PREFRONTAL CORTEX
1. Input neurons (hippocampal place cells - HPCs) fire and induce a high
dimensional time dependent activity pattern on the PFC reservoir's
neurons

™~

. The desired output (next location coded HPCs) is reconstructed in rea-
dout neurons (striatum) by reading the reservoir's neurons and correc-
ting the synaptic weights in order to minimize the quadratic error bet-
ween the actual output and the expected output.

w

. The predicted output feeds back (through a spatial filter) as self input
driving autonomous sequence generation.

Spatial filter (reconstruction) during autonomous
sequence generation

During autonomous sequence generation, HPC readouts code the next lo-
cation in the sequence and feed-back to the input. To reduce noise in this
feedback signal, we reconstruct the 2D location from a weighted average
of location hypothesis carried by HPC [4] and then generate a correspon-
ding HPC activation pattern coding this location to be reinjected as input.
We propose the following methed : Given the firing rate maps of 256
place-cells (), .- ;- 255, and a location s, place-cell responses a=A{s) en-
code partial information about location s. Applying a gaussian kernel to 4;,
centered on a; will result in a map representing the probability of a 2D
point s* to generate the activation .

ABCED 2D reconstruction from place cell firing pattern

3

P(s") (dB)

This map is noted P{s*/a) and will take values close to 1for g;values
close to Ays). Values close to O will be associated with points not related to
Ajfs). Finally, the map that estimates the position of the possible points s*
that generated the place-cell activation pattern (g is given by:

N

P(s)= ) Pls+ladPla)  Plssla)=K+e

_llags-a?
o

Given a prediction of a place cell activation pattern and its associated loca-
tion probability map, computing the most probable location and genera-
ting an HPC activation pattern coding this location results in significant re-

duction of accumulated noise in the HPC feedback signal.

Novel efficient navigation sequence is created
Three different trajectories (ABCED, BACDE, EBCDA) linking five reward
sites contain parts of the target sequence ABCDE.

10 instances of the model Random walk for ABCDE recombination

are trained only with ran- al L i
dom snippets of sequences -

ABCED, BACDE and EBCDA.

After being primed with 10, - €

samples of the ABCDE se- .,
quence, the model is able i

H

to reject long subpaths wu B A B
Ll .
(CED, BAC, EB, DA) while a8
consolidating the short i
subpaths (ABC, BCD, CDE) ' o . . -
into the ABCDE sequence. X

Snippet replay generates training input

Snippet replay is modeled as generation of random subsequences of place
cell firing patterns that occurred during previous trials. Snippet length
(i.e. duration) is fixed and
a limited time budget is al-
located to snippet replay.
Snippets are generated o
between random pairs of 04
reward sites in previous 02
trajectories. Shorter paths .
between rewarded sites

are more robustly coded

due to greater snippet
loverlap. Here is an

‘example of a snippet of

the ABCED sequence. It el o5 0
lasts 5 simulation ticks and %
both spatial and place-cell representation are shown.

ABCED trajectory

08

02

04

06

08

2300 ABCED place cell activation "

A B © £ 3
R, Sopost Ry 08

Place cell number

Trajectories are consolidated from random replay

TRN reservoir activation values over time can be represented as trajecto-
ries by using the principal component analysis (PCA). Similar stimuli are
coded in similar trajectories in the reservoir's state space. The context
provided by the recurrent connections induces slight differences in the en-
coding of similar sequences that
have different preambles. A cer-
tain time is required for fading of

Reservoir state partial PCA trajectories.

this context. For a given context
length, a sufficient overlap bet- 1
'ween snippets will ensure a pro- )
per consolidation of the whole
trajectory. Insufficient snippet
overlap results in consolidation
failure (desired for non-optimal ., _
sequences). ! 3

T

Spatial overlap is required

For a given feeder configuration, 9 different navigation trajectories contain
subpaths of the target sequence. Subpaths are constrained to span over 2
feeders in one condition and 3 feeders in the other condition. Between

each of the § first trials, the  7andom waik for configuration 7/ subpstns of 3 fesdars

an

model is trained with snip- e Cpem—
pets of the corresponding e 4 y % g
- .
sequence. At trial 10, the o4 : 1 |
model is exposed to snip- 02 . 'Hq
pets of the target sequence. > o . . .
The model is able to disco- o2 . .
ver the target sequence be- .4 b W /’_
fore trial 10 only when snip- ¥
pets span subpaths of 3 fee-
ders. e as o os P
x
Condition 2 feeders subpaths 3 feeders subpaths
Config 6 Trial 10 Trial &
Config 7 Trial 10 Trial 7
Conclusion

We demonstrated that the TRN reservoir model is able to consolidate ran-
domly replayed snippets into efficient navigation sequence. It naturally
aligns overlapping subsequences of stimuli in the reservoir state space.
The limited time budget allocated to the random replay of snippets gives
to the model the ability to select shortest paths between reward sites.
Based on these two dynamical properties, we showed that the model is
able to consolidate snippets of partially overlapping multiple navigation
sequences in order to autonomously generate novel efficient navigation
sequences. The current navigation model exploits a spatial filter to reduce
noise in place cell predictions. It is based on place cells spatial response
and it simulates a perception/action paradigm. The next version of the
model will be implemented in a simulated and physical robotic animat
that will take into account embodiment constraints. The online snippet re-
play model will be based on electrophysiological measurement of a rat
hippocampus.

Longer paths are rejected

Two sequences joining sites ABE and ABCDE are replayed. Spatial distribu-
tion will be sparse between two rewarded sites linked by a long path and
will be denser for a shorter path. The higher density yields greater overlap

between snippets 3 Random walk for sequence ABCDE Hgh
which favors them i k r)::‘l:nmml

in competition du- )

ring the learning % i

process. Thus, for 4 . F 5

the same time of 02 -

exposure to ran- > 0
dom replay, short
paths between re-
wards will tend to
be favored by
greater snippet 08

overlap. 1 . - Low

e

T Test |Primed with ABE
Condition |
No intermediate reward | ABE generated

Primed with ABCDE

ABE generated

Intermediate Reward ABCDE generated ABCDE generated
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Study on chaos in continuous time neural networks and application to motor
control of a robot

Nicolas CAZIN, Mathias QUOY
ETIS Laboratory, UCP/ENSEA/CNRS (UMR 8051}, Cergy-Pontoise

18 février 2016

Résumé

1 Introduction

Artificial neural networks models are often divided among
feed-forward petworks {multi-layer perceptrons for instance)
and recurrent neural networks (RNN), like Hopfield networks
for instance [17]. The main property of RNN is their defi-
nition of attractors. Indeed, a RNN may be considered as
dynamical system, and as such its dynamics exhibits varions
dynamical patterns, and converges towards different kind of
attractors : stable fixed point, limit cycles, or even chaotic at-
tractors [35, 40]. Therefore, since the seminal work by Sompo-
linsky et al. [39], work in the field of chaotic neural networks
has been developing. In particular recurrent neural network
maodel were proposed (7, 7, 7, 3i]. In these modeks, the RNN is
converging towards an attractor. Depending on their conver-
gence scheme and attractors, we can define two different ty pes
of such RNN : 1- RNN where the parameters are fixed, and
2- RNN where the parameters may evobve through internal
constraints {eg. learning) or external influence {eg. visual in-
puts). In the first case, parameters set one dynamical system.
This dynamical system may have one or several attractors
[17, 42, 36] Samso & vérifier. One of the drawbacks is the
fact that once on the attractor, the systems stays on it. One
way to avoid it, is to change the state of one or several neu-
ron. This leads to change the initial condition of the dyna-
mical system, and therefore pives the possibility to comverge
to another attractor if the initial condition is outside the at-
traction basin [17, 31]. One other way is to use the dynamical
system as a reservoir of attractors, and learn of the links bet-
ween the RRN and an output layer. This is the framework
of reservoir computing (12, 28, 18]. In 2004 Echo State Net-
works proposed by Jaeger and Haas (18] gave a theoretical
and practical framework for the leaming of sequences using
recurrent neural networks. In 2009, Sussillo and Abbott [41]
proposed an extended leamming scheme for ESN called FORCE
learning. The last possibility is to use a chaotic itinerancy [45]
through Milnor attractors, where the dynamics may escape
the attractor min [46]. The difficulty is to define the attrac-
tors depending on what the RNN is used for. In Hopfields
networks, the weights are computed beforehand by a combi-
nation of all pattern to be stored. The problem of learning
patterns on-line is that the weights are parameters of the
dynamical system. Thus if they are modified, the dynamical
system s not the same anymore, and hence the attractors are
different. Therefore, the system falls into the second category

where the parameters are modified. Changing the parameters
of a dynamical system may lead to bifurcations. These bifur-
cations change the mumber and the nature of the dynamical
system’s attractors. Therefore, in the framework of ESN, Laje
and Buonomano proposed to tume the recurrent connections
for learning timing and moto patterns [?]. In an earlier work,
Dancé et al. [9] proposed a discrete time recurrent neural net-
work learning on the links between the recurrent net and the
output, and within the recurrent net. It was based on the
thearetical study of this kind of networks (7, ?]. This mo-
del was limited to discrete time neural networks. This article
investigates how it may be extended to contmuous time neu-
ral networks. We will focus here on firing rate models. Some
work has been done on spiking models, although not formerly
presented as chaotic [6, 48, 47, 21, 5.

2 Continuous time update

The definition of an asymetrical random recurent neural
network & given in [11] and its short pame is Resonnant
Spatio- Temporal architecture { HeST). Let A be one instance
of this neural network structured in K layers. Each p € K
layer contains N neurons. The J%9) () matrix contains sy-
naptic weights between the g € K layer and the p e K layer.
gleal

i
neuron of layer g € K and the i € N neuron of layer p € K.
Jipa) — {ij"']:l is a N % N matrix. A link is said to be
modifiable if the weight may change. The fipure 1 shows an
instance of a two layer ReST network.

is the synaptic weight on the link between the j € N

«  orm bl ikl i
ST L
- rm e roe mociftie e

E U]

=

ey
e

T
T

Stimulus

Ficure 1 — ReST architecture

The incoming stimulus feeds the primary layer through a
one to one non modifiable link. The primary layer is connec-
ted to the secondary layer throngh a one to all non modifiable
feedforward link. The recurrent link in the secondary layer is
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intended at captwring a spatio-temporal dependency of the
secondary layer's states. The feedback link is o one to all mo-
difiable link and is intended for associating a spatio-temporal
state of the secondary layer to the current stémulus on the pri-
mary layer. The feedforward and recurrent synaptic weights
are randomly set according to a ganssian distribution such
as

1
W N el

(1) NP oy = N0, )

With tl(w ]{r{md.iti{m :

- =mveeNfPJ:we;\rfﬂh:j
Each weights of the recurrent link samples this distribution
and is connected to others nenrons but there is no recurrent
connection for an individual neuron. The feedback link is ini-
tially set to 0 for each weights :
(2) (I =0)

Wie WP e Nled

The feedforwand ink connects each newron of the secondary
layer to every neurons of the primary layer according to ran-
dom weights. Since the primary layer is spatially coherent®,
a neuron of the secondary layer may view the stimulus mo-
dified by the random weights as a random spatial feature
extracted from the primary layer. Each neuron of the secon-
dary layer is coding for a random feature of the primary layer
and the recurrent ink introduces a time dependency amongst
the previous states of the secondary layer. Thus, the states
of the secondary layer constitutes at each time a high di-
mensional spatio-temporal encoding of the low dimensional
incoming stimulus. Each stimulus is associated by reinforee-
ment ? to the its previous encoding. This is clearly an on-line
reservoir computing approach.

2.1 Local field

The variation of the local field at time f,, of the ¢ newron
on the p layer when considering the incoming g layer is given

by :

\[flﬂ

ll + Z JCWJ F

n.

()
(3 +n. Bu

()
it i :Ej {Er::l

e

{_.EPII( tnl

Where :
- ugpq]{f.,,) : is the value of the local field at time .

— 7% is the time constant all local fields of supporting

layer p
— N% : i the number of neurons contained in the g ineo-
ming layer.
- Jf;“']{t,,] : is the synaptic weight between the ¢ newron
of the p layer and the j nenron of the g layer.
- :z:;q]{f,,] :is the state of the j newron of the g layer at
time f,,.
- r.'ﬁ’"]{t,,) :
ming synaptic weights {Jf;("]{!,,]]

is the instantaneous contribution of the inco-

JENTD

1. the stimulus is a picture
2, modified [ time delsyed hebbian learning rule

Basically, it is a generalization of the leaky integrator neu-
ron model deseribed in [38]. Biologically speaking, the P
time constant & equivalent to the product of the resistivity
and capacity properties of the membrane. The neurons time
constant is the same l;{g)all units. We use the Euler's method
for solving (3). Let f  be the auxdlliary function evaluating
the first order derivative of the local field U.EM]
at time ¢ and point [ :

ith component

&LEN]
T |r=r,.:t=u£F""i!,.]

IEql

(4 [t =

Let F:,E;P] be the infinitesimal time increment between two
evaluations of the auxilliary function {4)

()
Where :

N N
" rLP]-NLP]

f"+1 - E" + h::f]

~ N is the mmmber of points contained in a sampling
perind #
The time update equation of the local field solved by the
Euler's method is given by :

“’EM]{EH'I-III - QLEM]{EH + IFLLP])

= uP g, B P (1) + O(R2)

B uEP("]{E,.) -+ N uqu]“") + r.'EP]{f,.j
(6) ~ {1_W)-u§“]{t,.)+ﬁ' Pt
- sl '*L—::—F" instaniorneons
WPl " Wiy o

In particular, N, = ) = 1 leads to the discrete update
scheme. Clearly, it is a convex combination between the past
and the instantaneous values.

2.2 Membrane potential

The membrane potential at time ¢, of a i neuron on the p
layer is the sum of its local field contributions :

P
{?:l E Fl+1 Z “-(N] gl:p]
q=1
Where :
- Efp] : iz the threshold of the i nenron of the p layer

2.3  Activation function

The activation function of each neuron is a sigmoid function
piven by -

1
8 wlrig) = ——
(®) falri0) = T
Where :
—z:isavaluein B
— g : is the slope parameter of the function

4. ie the v time constant
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2.4 State

Each neuron i of layer p computes its activation state ac-
cording to its membrane potential

(9) 2P (i) = Falp™ (ber) + 171 g)

Where :
- pr] tis the i'" coordinate of the T stinlus vector feeding
the p layer

2.5 Synaptic weights

The learning rule & a temporal version of the hebbian lear-
ning rule. Instead of learning co-oceurency between presynap-
tics nenrons * and postsynaptic neurons ®, this rule is base on
the coviariance of signals propagating through layers. The
equation is the following :

() (p)
WY e, )
(pg) O By \ba (7] 1]
{1“) T,qu - 3-; =— Nia ° Ecw] ° dgp {Eu:l ° djq {f-r:—ljI
rreodef aliore helibian

Where

= dP () = 2 () = 5 (8)

- ‘it‘;ﬂ{ r:—l:l - _l::lll{ n—1 :I - E_-‘Eiq]{tr:—l )

— I;(t,) : & the running average activation value ¢ estima-

ted at time £,
— Tj(tp—1) : is the running average activation value j esti-

mated at time £,y

Oy(p" () = 1= fulpl” (tn): )
.EM] : & the sampling period of the evolution of the sy-

naptic weights between layers p and g.

e'?9) - is a small positive constant called the learning rate.

&, {pgp]{i,.]] is a function intended to allow learning to ocour

only when the postsynaptic neuron i is not saturated 5. Ounly

the so called dynamic/fluctuating neurons are interesting

during learning. dﬂp]{f,,) iz in fact the dynamical part of the
signal of newron i. It is related to the part of the signal fluc-
tuating around the mnning average activation value ¥ ““" ]{E")

by -

(1) &Mtna) = 8- 27 (k) + (1= 8) - 2" (t0)
Where :
— /3 :is the habituation parameter and is chosen in the [0, 1]
interval

It is apain a convex comhination between novelty and past.
The higher 3 is, the less the averape estimation will take into
account the the current state ;I:EP]{IE,.). The same explanation

holds for d¥'(t,._1).

This learning rule will reinforce synaptic connections het-
ween each j neuron having a sipnal correlated at time £,
with each nenron ¢ at time #, [9). The introduction of the
synaptic propagation delay 7 in the covariance of the activa-
tion signals is mandatory for learning a sequence of stimuli

. neurons j of layer g

. neurons i of layer @

. activity close to 1

. the time difference between tn and -1

b ==

varying from one step to another. The whole equation {10) iz
normalized by the size of the incoming layer N This trick
iz intended to have an equivalent influency on the synaptic
weights of the local field u!®), for every value of N9, The
amomt of modification of synaptic weights is kept the same.
The drawhack of this trick is that the learning in wide net-
works tends to be slower. Theoretical results are encountered
in wide networks and the computational load is increased with
realistic sizes. For simplicity purpose, synaptic weights time

()

constant 73" is the same aceross the whole local field (pg).

iPu)

Let f-f.-f"'
order derivative of the synaptic weight Jff‘"] at time ¢ and
point [ :

be the auxilliary fimetion evaluating the first

(pa)
aJr

jiral
af |E=!,,:u=.f£r‘3

L’

(12) (t,a

Let FLF}W] be the infinitesimal time increment between two
evaluation of the anxdlliary function (4)

(13) tart = tn + RE?
Where :
- htw] — 1
g TLP q) _J\[LPH
- NIE,M] is the number of points contained in a sampling
perind ®

We use the Euler's method for solving (10 :

Jhewd 2
O {..4}“*{ ):I+O{hf§“”l
(i)
{1_1) o ftl-“:'] M dl:P]{ j-d;"f]{ﬁ"_]_:]

Nia). Vtw] *

2.6 Error measure

The error measure used is in this article is the instantaneous
INEAT SQUATE EITOT

e

S (k) — B8

1

E‘EP‘I‘]{E") = 'V":P‘]

(15)

Where :

- F}tp{"]{i,,) = fu{uﬂwl{f,,];g) is the i*" coordinate of the

predicted sipnal

- ff{"]{f,,] is the " coordinate of the input stimulus.
The prediction is extracted from the local fields connecting
the secondary layer g to the output layer. It may be seen
as what the output would be without the incoming stimulus
used for hebbian learning.

A network v depends on a random seed. The error is mea-
sured among several networks in order to have a statistically
robust learning metric. The mean and standard deviation of
this instantaneous error is extracted from these networks and
reported on a graph such as the one in figure 2. This measure

8. ie the 'r.r'Ip'” time constant
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=

Ficure 2 — Mean/Standard deviation of the instantaneous
learning error

is done after the states are updated and before the weights
are adapted. Thus, when a stimulus is driving the network,
the error is evaluating the learning done during the previons
cycle. Without this extra care, it would be very easy to re-
port good learning error with an arbitrarily important lear-
ning rate. In this particular case, the network will overadapt
its weights in order to fit the current stimulus. The error will
not be zero even if the learning process is held for a long time.
The sigmoid function is often very stiff becanse of the chaotic
dynamics requirements and the image of the stimulus on the
primary layer may be saturated. In the case where the lear-
ning leads to a perfect match between the predicted stimulus
and the next stimulus projected onto the input layer, the er-
ror will not be zero when comparing the prediction against
the non saturated stimulus.

2.7 Local truncation error

Every mumerical integration scheme involve a local trun-
cation error. Fuler’s method is about G(h2). Due to the re-
current nature of RRNN, the error commited at a given time
step is reinjected at the next time step. The figure 3 depicts
the effect of the reinjection of local truncation error.

M= 128, gain = 18, sgma_thets =0, 10 points
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Fiaure 3 — Comparaison between Euler explicit et Runge-
Kutta 4" order methods with different ki, values.

The Euler's method is compared to the classical RK4 me-
thod for each subfigure. The network is exactly the same,
including initial conditions and weighting. The subfigure 3a
reports the mean activation values of the secondary layer over
time without stimulus and &, = 0.1. The subfigure 3b shows
the effect of increasing the time resolution® : both update
scheme hifurcate after a given time. This time is increasing
when parameter g is increased. Fast variation of neural acti-
vity arise and the resulting drift overcomes faster. Decreasing
Py, will delay this drift phenomenon but it cannot be avoided.
The wise way to handle this problem & to consider both i,
and f,, as parameters of the RRNN. The nmmerical intepgra-
tion scheme is a part of the parameter set too.

2.8 Population update policy

For simplicity purposes, this study is restricted to the syn-
chronous update case in a psendo hierarchical fashion. Each
layer is updated from the stimulus layer to the secondary
layer.

0. practicaly by decrasing k.
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2.9 Stiffness

A stiff system may be described by several coupled partial
differentiate equation evolving at different timescales. In this
study, we will consider the update equations of the weights
{10) and states (9). The problem arises when an important
variation of a weight occurs at a fast time scale. The state
variation induced by this fast weight wariation may not be
percieved by the network state equation. The time increment
is too coarse and the leaky integrator neuron is damping this
quick variation. In this study, we do not want to take into
account the stiffness of the equation system by using a state
of the art integration scheme with variable step. The damping
effect may be interesting and there & no restriction for a fast
time scaled network to drive a slower time scaled network. As
stated in section 2.7, we will use the forward Evler’s method
for the leaky inteprator model.

3 Simulation

3.1 Limitations of the original model

3.1.1 Avrbitrary timescale

The original ReST model & described in [11] with a very
specific scheduling when updating states, weights and stimuli.
One stimulus update induce one state update for all neurons
group in a feedforward way and this state update is follbowed
by an update of the modifiable synaptic weights. Let’s note
it stimulus, = states; = weights,. This scheduling is very
restrictive and does restrict any physical world experiment
gince stimuli and network do not necessary evolwe along the
same timescale. Each element of the update scheme may be
refreshed at a different rate. A more general scheduling noted
stimulusy = statesp = weightso would allow ns to be more
flexible in order to embed the ReST architecture into a robot.
A simple try of the original model with a stimulus remaining
the same during 10 cyeles shows the Emitations of the original
ReST network at handling different timescales. The figure 4
shows an increasing learning error :

Ficure 4 — Learning in original ReST architecture with a
stimulus remaining 10 cycles

It may be explained by the fact that in this particular im-
plementation and for a given stimulus timescale T' = 10, the
network will learn 9 times the transition (spotl — spotl) and
one time the expected transition (spofl — spot2). Figure 4
depicts the networks inability to learn the (@ — b) transition
while the sequence (0 = n - a—=a—2a—=0—=a —=2a—
a—=a—=3bsbasbosbosbosboasbaboab=b)is
driving the network. A simple solution to deal with arbitrary
stimulus timescale is to introduce a transition detector based
on the first order derivative. The network learning is trigege-
red only when a rising edpge is detecting a stimmlus change.
This is a ad-hoc solution but not so meaningless from a bio-
logical point of view. This iz a rough novelty detection in the
incoming stimmlus and the enthorinal cortex is involved in the
novelty detection. At least one criticism may be emitted @ A
local modification in the stimules will trigger learning to the
whole set of neurons. From one synapse point of view, it im-
plies the knowledge of all wariation of activities of the others
neurons and this is not correct.

In fact, this triggering is built in the learning equation {10).
Each dynamical part of the signal coordinate!'” is in fact a
novelty detector. For instance, lets consider the layer p and

-t

its " neurons state at time f,, noted I(P]{E,.:l. When the

i

P (k)
dEp]{E,,j s not zero. In other words, the neuron's state is dif-
ferent from its habituation value. According to (10), learning
occurs only when a difference between habituation and ins-
tantaneous values ocowrs at a given timescale. Since nenrons
from the secondary layer are recurrent, several paths of dif-
ferent length may exist and the dynamical part of the signal
of a neuron won't fade at the same rate as other neurons
dynamical part. That’s why silent or saturated neurons time
associations won't be learned and fixed points dynamics will
restrict the learning timelapse. The network will learn un-
til postsynaptics or presynaptics neurons reach their averape
value. This average value may be reached slowly or quickly,
according to the walue of the 3 parameter. Fipure 5 depicts
this phenomenon.

state of this neuron differs from its running average

abmarsatia mayen

b

NN

Fiaure § — Influence of 3 on the amount of modified weights
during a learning cycle

The upper subfigure shows the mean observable mea-
sures ! accross time. A different attractor i reached when

the corresponding stimulus drives the network. The subfigure

10, (ko) and df;”(t"_l}

1 Nl
11. T Zi_" I;PJUH}
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below represents the total amount of modified weights during
a learning eycle 2. Learning is effective only when the percep-
tion differs from the expectation of the nenrons state. Large
A wvalues allow the nenrons to capture slow transitions het-
ween stimulus /states of the secondary layer. Small 3 values
will tend to focus the neurons learning on the begining of the
transitions.

3.1.2 Merged evocation and perception

The two layers model is built in a such manner that the
stinmlus T (¢} (Figure Ga) will be blended with the contri-
bution of the local field uElE]{f”] (Figure Gib). This may have
anngying consequences on the expected output. When a se-
quence is learmed during a significant amount of time, the
local field contribution begins to hold the prediction of the
next stimulus so strong that the it will evocate the prediction
of the stimulus.

(a) Stimmlus  dri- (b) Blending of the (¢) Chained evoca-
ving the primary stimulns and its tion of the sequence
laver SUCORSSOT

Ficure 6 — Blending on the primary layer

If the network & exposed to learning for a lonper period,
the evocation overlaid on the primary

layer will evocate the
next prediction and so on (Figure G¢). In order to avoid this
problem, one have to wnfold the network by duplicating the
primary layer and thus separate input from output.

3.2 Towards an independant dynamics mo-
del

In order to overcome the lmitations of the original model
and to give the network the ability to have an update fre-
quency independant from the stimuli frequencies, the ReST
architecture has been unfolded in the following way (Figure

Tz

. Nip N rpg) ()
12. Yo Yojmo |Hin T (ki) — Fi7T(tn)

G

» Lion non mednabie

—w Lien modifable au l x
40 Tt L
8 1 £
- i et
sis : 3
., . - L
fredaie ] . M #
B, e,
. . T
FE L LAl
P ™ 3 ap  Prédiction /
SHimulus N '
l—- \QD. —
40 LY %00 I
| SN e < BE .
\ L . - L
\ ua L] b 3
\ bt - — .
L} et et - -y b -
LY - i tecdbatk 1
'-If}i fepdinrward Ak
b Couche primalreientrds g Couthe priralreiortie

Couche secondaire
" ditecteur de

Ficure 7 — The modified ReST architecture

The primary layer is now implemented by two layers. The
output layer is the exact copy of the input layer. The initial
conditions are the same. The feedback is extracted in the

same way. The stinmlus sipnal is applied to the output layer
hecause :

the feedback synaptic weights are initially set to zero

the learning equation { 10) implies hebbian style learning,.
At the bepining of the learning process, the post-synaptic
activity is zero since the synaptic weights are zero. The heb-
bian style learning rule might be viewed as o product of pre-
synaptic and post-synaptic activation states. A zero post sy-
naptic term would obviously drive the equation (10) to zero.
Since non zero post-synaptic activation states are required
and the synaptic weights between pre-synaptic neurons and
post-synapt surons are zero, the only way to induce non
zero post-synaptic activation accordingly to the (9) equation
is to drive the output layer with the input stimulus. Learning
an occeur in thiz way and the loeal field contribution will
grow as the learning process is sustained. When the feedback
local field will have a sufficient contribution, it may be able
to overcome the neuron’s threshold value and have a signi
fican influence on the output layer’s state. At this point of
the learning process, the output layer will relate mformations
from the current input '* and the prediction of the next in-
put !t The prediction is simply extracted by computing (10)
without the contribution of 1), Having non zero synaptic
weights at the begining of the simulation is possible and in
this case, driving the output layer with the input stimulus is
no longer required. The activation values of the output layer
will be driven by the secondary layer’s states and will heavily
rely on the initial weighting scheme. This architecture is not
restricted to have an output layer similar to its input layer.
It could be set to a layer with a different nomber of neurons.
The only condition is to have a postsynaptic activity driven by
the expected output. The learning process will capture any
delayed co-activation between input stimulus and expected
output. This network might be seen as a delayed associative

e Y.

The following experiments will uwse the same stimuli se-
quence depicted in Figure 8.

13, Iip)
14, pi™ (tns1)
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(a) Stimulus 1 (b) Stimulus 2 (c) Stiomlus 3 (d) Stimuolus 4

Fioure 8§ — Stimuli of the "points’ sequence

Note that the stimulus presentation frequency is steady and
do not contains any jitter component. The robot experiment
will allow to test the network ability to capture sequences
with small phase fluctuating.

3.3 Effect of h,

Theoretically speaking, decreasimg h, is equivalent to in-
creasing, the dominance of the local fields histories amongst
their current values in (6). The right operand * weighted by
Iy have lesser importance. The equation & ewvolving as if the
time constant 7.7 in the equation (3) were raised. The net-
work evolution i slowed down if we consider the update cycle
time as constant. For the same cycle time, two networks set
with a different h, will compute a different amount of state
variation. From a more experimental point of view, decreasing
h,, will slow down the evolution of the network while the lear-
ning is still possible. In particnlar, learning will continne even
if I, is modified when learning. The only condition is that the
network contimies to fluctuate with a speed related to the sti-
muli sequence update speed. In this way, the corresponding
attractor is reached before the next stimulus change and the
learning process may take place and converges towards the
carrect prediction. In order to understand the effect of the h,
parameter on the learning process for a given stimulus times-
cale T, several learning were performed with different values
of {h,, 7). The figure 9 relates some of those cases.

Nig)

15, e (tn) = 30,
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0.05 (T = 20) x | x
0.033 (T = 30) x| x
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TapLE 1 Selectivity of the network with different net-
work fstimuli timescale. A cross x means that the network
iz sensitive to the stimulus timescale for the network times-
cale range
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Ficure 9 — Learning curves according to different net-

work fstimuli timescales

The learning error curves are very different according to the
networks % and stimulus 7 timescales. For instance, T = 20
iz suitable for learning only with h, € {0.5,0.1,0.05} and
T = 30 for h, € {0.1,005}. From a plobal point of view, sti-
muli zequences are properly learned in a limited bandwidth of
the network update frequency. This is clearly a stimulus fre-
quency selectivity property of the network. Such a network
may be tuned to the correct update frequency in order to
capture the required stimuli update frequency. Table 1 sum-
marizes the networks selectivity property. Figures 9t and 9o
relates a problem of ambiguous learning,. It conld be explained
by the use of an mapropriate timescale. The network is upda-
ting too fast compared to the slow update rate of the stimuhis.
The time dependency no longer holds a sufficient amount of
stimulus related informations. The dynamics of the reservoir
is not input driven. Points on the attractors trajectory are
no longer related to a stimulus. The error rate & increasing
with time after reaching a minimum. This is due to the fact
that at the very bepining of the learning process, when the

16. ha
1;
17.
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instantaneous error & diminishing, the membrane potential
is not strong enough at this particular moment and is ampli-
fied by the sipmoids gain '®. It appears like a strong response
with some pradients, matching the shape of the next incoming
stimulus. Learning strenghten the synaptic connections invol-
ved in the coding of the prediction and the resulting activity
becomes more and more saturated. At this point, the instan-
taneous error leaves its mininmm and rise, until a remanence
phenomenon occurs. This is explained in section 3.5.

3.4 Efect of h,

Changing the value of h,, will have an obvious effect on the
learning process since h,, is directly related to the learning
equation. Hewriting equation (14) leads to :

(16) ij“”{f,.+1) = ij””{h )+

&, (p" (ta))

(pleal (gl
t_hu g N

4 q) ¢ y i 2
-dP (tn) - di? (1) +O(RTY )

2
By neglecting the O{hff"'] ) term, modifying b, = hf_‘:"” i

equivalent to choosing another learning rate parameter such

]

that £(r9l = hEN] - elP) The learning process will be slower

but the loecal error will have an influence on the reservoir’s
)

- ' i) :I

ht will induce a

dynamics 'Y, Injecting a local truncation error of G{hf
at each learning cycle on each synaptic wel
different activation value of the outpoing newrons since the
activation function is non-linear and stiff. Small changes in
the membrane potential could lead to noticeable chanpges in
the activation value. Learning during T steps with a /79
learning rate is not strictly equivalent to learning during %

steps with a (1) = thj""] - £'79) Jearning rate. The figure 10

(B) by =1, kp =1 (bl hy =1, k=01 (c) hy =1, hp =001

Figure 10 — Learning curves for different values of h,,

shows that the learning process iz effectively slowed down.
The timescale relative to the parameter h,, = 12 allows the
network to reach a satisfactory learning process faster than
a network set with a parameter h,, = 0.12'. The learning
process is not only sleowed down but the dynamics of the
network are altered. The learning curves of each pattern do
not reach their minimnm at the same time in figure 10a and
figure 10c. As stated in section 2.9, the evolution of equations
{3) and (10) are strongly dependent and a fast variation of
{10) will possibly trigger a fast variation in (3).

18, the gsigmoid slope parameter
19. See section 2.7

2. Figure 10b

21. Figure 10b

3.5 Response latency reduction

The response latency of the network for giving a suitable
prediction may vary according to the networks timescale 2. A
slow dynamic will induce a late response. This is not annoying
and the network remains suitable for realtime purposes if the
prediction is provided always before the next stimulus of the
sequence. Fipure 11 depicts the "Points’ sequence driving the
network with a period T = 20 and a leak rate of h, = 0.05.
In this way, the network is tuned to the stimulus period 2.
Figures 1la and 11b display the activities of the stimulus
layer, driving the input layer. Each diagram is split in several
tiles for readability purposes. Figures 11c and 11d represent
the predictions of the output layer. The corresponding lear-

(a) Activitics of stimuli for t € (b) Activities of stimuli for ¢ €
[0, 1000 (7000, 000

(c) Predictions for ¢ € [0,1000] (d) Predicticns
t & [T000, 8000

for

Fioure 11 — Stimuli and predictions for ¢ £ [0, 1000] and
£ € [T000,8000|

ning curve?! has been established by sampling the instan-
taneous errar before the stimulus change. The error curve is
rizsing after reaching its minimum. This is related to the error
measure *° . According to the learning process, this prediction
tends to minimize the error between the input layer and the
next stimulus applied on this input layer. This input layer
may add some distorsion to the input stimuhis because of the
gain of the sigmoid function and the threshold of each neu-
ron. The difference between a non saturated stimulus pattern
and its distorded prediction will always be non zero. When
the learning process is in its early stage, the readout weights
applied to the secondary layer states gives a non saturated
signal which is closer to the original /non saturated stimulus.
Once the synaptic weights are reinforced, the incoming pre-
diction signal is strong enough to trigger a saturated response
of the output neurons. The comparison of the activities shows
us that the response latency is diminishing as the learning du-
ration is increasing. By looking closer at the diagram 11e¢, one

22, ha, the leak rate parameter
Teha=14 go=hs
Figure 12

23.
4.
25, Section 2.6
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Figure 12 — Prediction error for T = 20 and k, = 0.05

may observe that the activation values are getting stronger as
the learning time increases. Figure 13 explains fram a global
point of view the responce latency reduction.
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Ficure 13 - Chronograms of the sequence prediction

Three snapshots of a prediction activation pattern for a gi-
ven stimulus are reported on the same prediction graph. The
network starts to predict the next stimulus with a weak pre-
diction activation pattern®®. The amplitude is low and the
slope is soft. Then, due to the learning effect, the predictions
are strengthened and the activation pattern surface & wider.
As learning ocours, the prediction pattern surfaces are sprea-
ding. The amplitude is rising and is of course saturated by the
sigmoid fimction. The slope of each pattern & petting stiffer
and the side effect is a reduction of the latency between the
stimulus and its prediction 27 Even if the prediction response
delay is decreasing, the prediction pattern remains a longer
extent of time and may interfer with other prediction pat-
terns. In fact, the network does not produce its predictions
faster as the learning time is extended. It would be more ac-

26. bold curve
27. the delays d1, d2, d3
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curate to say that the network computes strong predictions 2
faster as the learning time is extended. Figure 14 depicts an

attempt to measure this phenomenon.

dhvne B i

sk Irce T

FiGure 14

Latency of prediction versus learning time

As shown in figure 11, the prediction are still consistant,
even if they overlap. The error function used in this study
would measure an incorrect prediction since the overlapped
prediction pattern is different from the expected pattern. An
error measure including a novelty detector feature 2 will allow
an agent implementing a ReST architecture to benefit from

a reduced prediction latency over time.

4 Robot

The modified ReST architecture is able to learn stimuli se-
quences having a frequency * different from the network fre-
quency *'. Running experiments on a robot are more difficult.
Sensors are producing noise and the robot may experience un-
forseen phenomenons from the environnement. Stimulus will
not be presented with exactly the same frequency. From the
ReST network point of view, this jitter will enable the lear-
ning process on different points of the attractor trajectories.

28. saturated
29. like the learning rule (10)
30. fatimulus = 1

p (p) _ 1
3L A = g

F1GURE 15 — Robulab 10 ® used in this study

Figure 15 shows the Robulah 100 (®) robot from (© Robosoft
used in this study. A part of the software is embedded in the
robot internal computer and the computationnal part is left
to a workstation. The robot has two driving wheel mounted
with rotary coders, one panoramic camera and an electronic
compass. The wheels of the robot are submited to frictional
forces and the limited precision of rotary encoders and gears.
This implies that a motor sequence may set the robot with an
azimut not previously perceived. The network state may be
close to a known attractor and converge towards the expected
state or far enough from a known situation and exhibit a
chaotic / exploratory behavior [11].

4.0.1 Compass

As stated before, the robot may experience unforseen phe-
nomenons from the environnement. The electronic compass
relies on magnetic fields and they may be perturbated by steel
embeded in the building structure. Figure 16 depicts the re-
sult of such a phenomenon. The robot is rotating 3 times and
two discontinuities are encountered from azimuth 40° to 70°
and 240° to 255°. Even if the hypothesis of magnetic field
deflection may be partially false, this measure is a hard proof
about the difficulty to rely on coherent sensors data in this
experiment.

10
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Figure 16 — Discontinuities of the compass measurements

4.0.2 Two sensory modalities network
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Figure 17 — ReST architecture with two sensorial modalities

The ReST architecture is modified for this experiment by
extending it to a two sensory modalities network. Figure 17
shows this modification. Input and output layer are simply
duplicated and adapted to the size of the new inputs. The
learning rate parameters®? are set to a high value such that
the learning process can ocour in less than ten step. Of course,
the network will be quickly pushed to overlearning and the
restitution of spatio temporal pattern will be limited. This
is a tradeoff for the experiment. Learning is triggered only
when a motor event occurs. The robot is thus restricted to
learn sensori-motor associations only when a new motor order
is sned. This constraint has to be relaxed and no more tran-
sition detector should be used since novelty detection is built
in the learning rule (10). Even if the presence of a such motor

32, ¢'P) on the output layers only

11

event transition detector i artificial, this setup is sufficient
for starting to study continnous time updates RRNN.

Motor In this study, the robot's moves are restricted to
simple rotations. No translation oceurs. Figure 15 depicts the
workspace which is partitionned in absolute bearings identi-
fied with rubber tape stripes : 0°, 30°, 90°, 1807, 210°, 270"
and 360. From the robot point of view, those bearings are rea-
chable by 3 successive rotations of : 30°, 60°, 90° if we consider
a positive spinning, angle. The motor part is a simple layer of
7 neurons encoding the 7 possible relative azimuts with a po-
pulation coding : —90°, —60°, —30°, 07, 30°, 60°, 90°. The
current move corresponding activity is sustained until the ro-
tation is successfully achieved . Such motor orders are forced
via a joystick by the experimentator.

Visual As stated before, the compass measure is noisy and
not suitable for building a more complex perception based on
visual place cells [20]. Place cells are based on msupervised
classification and these landmarks are built according to the
panoramic camera and the electronic compass. The absolute
azimut of a landmark is computed thanks to the absolute azi-
mut of the robot, the relative azimut of the panoramic camera
and eamera specific geometrical clues. The resulting visual
place cells are not properly categorized at the neighborhood
of the discontinnities shown in 16. For simplicity and feasa-
bility and since the robots moves are rotations only, visual
place cells are implemented with a simple population coding

- of the compass angle to the mapnetic north. & layver of 360

neurons i relating the current bearing of the robot with a 1°
ETToT.

4.1 Simple sequence

The experience from [11] is reproduced. The robot & posi-
tioned inside a cireular workspace and the front of the robot
is pointing to the begining of the workspace * . The motor se-
quenced learned by the robot is @ 30°, 60°, 90°. At the end of
one motor sequence, the robot will points toward the 1807 azi-
mut and after the second motor sequence, the percieved visual
pattern will be the same as at the begining of the experiment.
The period of the motor stimuli is 2 while the period of the
visual stimuli is 1. When the predictions reach a satisfying
level **, the joystick is no longer used and the robot is driven
only by its predictions. The sequence is replayed without any
exterior intervention.

33. the robats angular speed command goes below a very low threshold
3. bearing (°
35. saturated and sustained activation, nearly immediate response
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Ficure 18 — Visual patterns vs time

Figure 18 shows visual patterns * through time. Each point
represents the anple between the robot and the mapnetic
north. As expected, wide bearing moves are slower than the
tiny ones. Friction forces and population coding of the azimut
explain the wariation of the visnal pattern. Thus, it is shifted
arommd the 0° bearing. The starting angle after each double
sequence is not exactly the same. Compass error observed in
16 are contributing too to these irregularities.

36. bearing of the robot in our case

12

Wik
n

. -

{a) Motor orders sent to the robot (hs = 0.05)
30 degrees 50 degrees 90 degrees
i

(k) Prediction of the motor orders (hs = 0.05)

Ficure 19 — Motor orders and their predictions

Figure 19 shows the motor order sent to the robot by the
experimentator. Even if the imposed rythm of motor stimuli
tends to be as steady as possible, phase fluctuations are ohser-
ved. Becanse of friction forces and bearing algorithm slightly
fluctuating convergence time, the moment where the rohot
iz stabilised might be slightly different at each different se-
quence. At time ¢+ = 2300, the motor sequence is considered
to be learned and motor forcing is disabled. The robot is only
driven by the prediction of its next moves and anticipated
visual situation. Figure 22i shows that the motor sequence is
replayed with the good serial structure ¥ but with a different
temporal structure **. In fact, the robot is no longer constrai-
ned to wait the end of its current move. As soon as the visuo
motor perception triggers the evocation of the next action and
visual situation, the corresponding azimut is sent as the target
steering of the robot. Moreover, the motor input is sustained
while the robot is moving. It means that the proprioception of
the robot is forced to be the same as if it were at the begining

AT, 30° —60° 00"
34, shorter delays between motor orders
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of the move. The proprioception & changing at every moment
of the mow and should be taken into account. In fact, the
original exprience described in [11] contained a stronger wor-
king hypothesis : One move of the robot was spammed aceross
one time step and during this step, the network was freezed.
Stimulus, robot, network update and learning used to evolve
within the same timescale. In this continuous time study each
stimulus has its own frequency that might Huctuate because
of the experimentator. The robot sensors and actuators are
running at their own frequencies ™ and are constrained by
their design. The network update frequency is influenced by
a controlled b, leak rate and the computing power of the
supporting architecture and its cpu load. The discretization
of motor orders into seven relative azimut is inducing a time
dependency against motion completion. The proprioception
is frozen while the robot and the network are reacting to the
emnvironment. The motor neurons layers should be chanpged
to a more continuous and responsive implementation in or-
der to observe the correct temporal constraints reproduction
during replay. A population coded layer representing the pos-
gible angular speeds would be more appropriate. Practically
speaking, the current setup is sufficient for demonstrating the
networks ability of serial replay of sensori motor associtations
with a continmous time update scheme of a RRNN.

4.2  Restitution without compass

The same experiment as in section 4.1 is realized but this
time, the visual input *° is cut just hefore replaying the se-
guence. This is the equivalent to ccculting the panoramic ca-
mera with an opaque mask. Please note that in the original
experiment, the camera is still plugged and thermal noie is
in fact driving the associative network. Since the noise is not
carrelated to motor orders, no sensory motar pattern should
be learned by the time delay reinforcement rule (10). Learning
is done as previously and at ¢ = 1500 the learning process is
assessed to be satisfactory. The compass information is forced
to zero and the replay of the visno-motor sequence is triggered

{Figure 20).

Fiaurg 20 — Visual patterns during learning and replay

349, refresh rate
Al the population coded bearing angle given by the compass

L3

Figure 21b shows that the replay without the compass is

not the same.

wix
1]

. - = =
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{a) Motor orders sent to the robot (hs = 0,05)
30degrees 60 degrees 90 degrees
N —

T

= o o =

{b) Prediction of the motor orders (hs = 0.05)

Fiaure 21 — Motor orders and their predictions

This time, the robot is no more driven by its visual in-
put during replay. The next motor order prediction is com-
puted only thanks to the current motor order. The robot is
blind and the replay continues for a long time. A shorter re-
play time was expected. As stated hefore, €9 learning rate
constants were arbitrarily set to unusual high values in or-
der to achieve an experiment with a decent amount of trials.
Learning is triggered only by motor events and visnal transi-
tions are no longer used as clues in the replay. The learning
process captured only the serial structure of motor orders. A
population coded motor layer representing the instantaneous
possible angular velocities should solve the problem of having
one sensorial modality and one target azimut angle instead of
two responsive sensorial modalities.
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Fieure 22 — Motor command signals and their predictions

4.3  Several time scales

The same sequence & learned for different values of I, para-
meter. Figure 22f shows that the timescale h, = 1 is not adap-
ted to the timescale of the stimuli. The network is unable to
capture the stimuli sequence because the history of its states
is fading too fast compared to the slow stimuli frequency. Fi-
pure 22p shows more structured predictions. Predictions are
contiguous and the serial order & correct. However, the 30°
motor order prediction*' is missing too often to be conside-
red as a good prediction. Tinescales used in both fipures 22h
and 22 are adapted to the stimuli timescale. Motor orders
are all predicted in the good serial order with a high intensity
and sustained response. The timescale wed in figure 22h is
no longer adapted. The petwork takes too much time to ac-
cumulate activities and converge towards correct predictions
and in this case, the experimentator tends to adapt its motor
order frequency to the petwork prediction frequency. This is
the same selectivity property observed in section 3.3.

5 Conclusion

We saw that it i possible both in theory (chapter 77) and in
practice (chapitre ?7) to use contimous time update RRNN
in order to learn and replay sequences. On the contrary to
[11], the predictions are no longer directly injected in the net-
work. The latter have its own dynamics and timescales and is
no longer constrained to be phase locked with the incoming
stimuli (section ?77). Stimuli cceur at their own timescale and
the i, parameter & used in order to "tune” the time constant
of the network to the timescale of the stimuli (section 77).
This is the key in the successful implementation of a visuo-

motor sequences learning task on a mobile robot {chapitre
e

The parameter 3 needs to be studied more in detaik and
in particular, its relationship with the parameter I, (section
3.1.1). This is required in order to get rid of the additional no-
veltiy detection mechanism based on the first order derivative.
The contmuous time update RRNN robustness against noise
needs to be studied. Another interesting direction would be to
study the network dynamical properties with a different sche-
duling. Indeed, each group of newrons are updated in a fived
order. Relaxing this constraint will have a major influence on
the comergence of the network towards solutions

11. red color

14

Nous avons vu que les stimuli non orthogonanx engen-
draient des prédictions incomplétes qui ressemblaient & une
combinaizon des motifs non orthogonaux entre ewx (section
7). Clest peut-étre 1i un phénoméne intéressant i expliquer
et & exploiter pour prédire la prochaine zone d'intérét en
mouvement dun stimulus dans sa projection sur la couche
primaire.

Une des problémes inhérents 4 U'apprentissage par renfor-
cement est la question du moment & partir duquel le réseau
ne doit plus apprendre. Un premier élément de réponse est
obtenu en examinant la régle d’'apprentissage {(équation (10))
qui comporte une fonction permettant d'empécher 'appren-
tissage d'une prédiction sur un champ lbeal contenant suf-
fisnmment d'information. Un deuxiéme élément de réponse
vient en exploitant une observation simple : 'erreur d'appren-
tissage qui est mesurée i chaque instant posséde la caracté-
ristique d'augmenter lentement une fois qu'elle a atteint son
minimum, pour ensuite se stabiliser lorsque les champs locaux
du lien de feedback sont saturés. On peut aussi faire le choix
de contimer 'apprentissage jusqu'a l'obtention d'm temps
de réponse satisfaizsant au prix d’une rémanence de la prédic-
tion précédente (section 3.5). Dans ce cas 1a, il est nécessaire
d’adjoindre un mécanisme permettant d'extraire la derniére
prédiction avant de mesurer son erreur et de la réinjecter.
Des mécanismes attentionnels peuvent bien sur moduler la
plasticité du résean.

Les réseaux ReST ont des propriétés similaires aux Echo
State Network et penvent étre utilisés en ligne avee beancoup
moins de contraintes. Les expériences menées dans cette étude
contenaient wniquement des stimuli ne proposaient qu’une
seule fréquence. Les réseaux étudiés n'utilisent qu'une seule
couche secondaire et moyvennant wm réglage adapté du pa-
ramétre i, il est possible de "sensibiliser” le réseau i la fré-
quence de présentation des stimuli. Pour aller plus loin et étre
capable de gérer des stimuli reposant sur plusieurs fréquences
"internes", différentes conches secomdaires accordées avec dif-
férents paramétres fi, pourraient étre considérées comme des
bases permettant la décomposition temporelle de stimuli. Un
air de musique capté par une oreille par exemple présente plu-
siewurs variations de la pression de air & plusienrs échelles de
temps différentes. L'échelle de temps rapide concerne la hau-
teur des notes. L'échelle de temps plus globale et done plus
lente concerne la durée des notes et on peut aussi considérer
une troisiéme échelle de temps. La méme analyse peat étre
faite en prenant I'exemple de la parole qui peut se décomposer
en mots qui enx mémes penvent étre décomposés en syllabes
elémentaires. Ces syllabes pewvent étre décomposées en for-
mants. La phrase prononcée est alors une combinaison de ces
éléments sur plusieurs échelles de temps. Le mouvement lui
aussi pent étre décomposé en sous mouvements élémentaires.
D'autre part, chague neurone de la couche secondaire et sa
pondération peut étre vu comme une projection du stimulus
dans m espace 4 une dimension définie aléatoirement selon
la loi de distribution ganssienne vue dans 77, Tout se passe
comme si chaque neurone de la couche secondaire extrayait
une caractéristique spatiale du stimmlis. Ces caractéristiques
spatiales sont combinées entre elles d'une itération i autre
par le biais du lien récurent. La sortie de la couche secon-
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daire peut donc étre vue i chaque instant comme i encodage
spatio-temporel selon une échelle de temps donnée des stimuli
présentés jusqu’i lors. [l devrait done étre possible de décom-
poser selon ke temps des stimuli génériques en considérant
un banc de conches secondaires paramétrées judiciemsement
avec des b, différents. Rien n'mterdit la communication entre
ces couches secondaires et elles penvent s'influer entre elles.
Ainzi, pent-ftre est-il possible d’observer un mécanisme tel
que la couche i léchelle de temps la phs lente influe sur la
dynamique de 'échelle de temps plus rapide de maniére 4 lui
faire pénérer des états particuliers 4 haute fréquence, propres
i cette méme "basse fréquence” qui sert finalement de sup-
port. Jaeger ([19]) a déji en un raisonnement similaire avec
les ESN. Selon ui, les caractéristiques i basse fréquence tem-
porelle puidaient 'extraction de caractéristiques i plus haute
fréquence. Le signal ainsi décomposé est reconstitué pour for-
mer la prédiction correspondant i la prochaine entrée.

En définitive, cette étude a permis de mettre en évidence
I'apport fondamental de Putilisation d’équations de mise &
jour 4 temps contimm @ On dispose maintenant de RNRA ca-
pable d’apprendre et de restituer des séquences de stimuli
i plusieurs échelles de temps. Ces RNRA ont la particula-
rité d'avoir leurs dynamiques propres et d'&tres accordés a
différentes "fréquences”. Il est trés tentant d’aller vers 'ana-
lyse/synthése multi échelle. La figure 23 décrit ce que pour-
rait étre une architecture BeST utilisant plusienrs échelles de
temps.
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Ficure 23 - Schéma préliminaire de larchitecture ReST
multi-échelles

L'intuition est la suivante : le stimulus appliqué 4 la couche
primaire alimenterait les couches secondaires paramétrées i
des échelles de temps h, différentes pour capturer une gamme
plus large de dynamiques des stimuli. Pour chague neurone de
la couche d’entrée. phisieurs chemins existent jusqu’aux neu-
rones de la couche de sortie. Certains emprimtent toutes les
couches secondaires et d’autres qu'une seule. D'autres encore
utilisent plusieurs fois la méme couche avant de passer par
une autre conche secondaire. La combinatoire est trés grande
et tons ces chemins sont caleulés en paralléles. La distribu-
tion des poids en A0, ?%) fait en sorte que les couches
secondaires comportent blf.-a.m:m]p de sous réseax mdépen-
dants. En calculant 'activité du réseau, on caleule en fait
tous les chemins possibles. La plipart de ces chemins auront
une lonpuenr différente dans le temps et c'est ce qui va nous
permettre de décomposer les stimuli selon les plusieurs bases
de temps que sont les conches secondaires. Senls les chemins
ayant une activité corrélée avec les stimuli seront utilisés dans

15

le décodage des activités des couches secondaires par les liens
de feeedback et seront renforcés par apprentissage.
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