
HAL Id: tel-01986362
https://theses.hal.science/tel-01986362

Submitted on 18 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A replay driven model of spatial sequence learning in
the hippocampus-prefrontal cortex network using

reservoir computing
Nicolas Cazin

To cite this version:
Nicolas Cazin. A replay driven model of spatial sequence learning in the hippocampus-prefrontal
cortex network using reservoir computing. Neuroscience. Université de Lyon, 2018. English. �NNT :
2018LYSE1133�. �tel-01986362�

https://theses.hal.science/tel-01986362
https://hal.archives-ouvertes.fr


1 

 
 
 
 
 
 

N°d’ordre NNT : 2018LYSE1133 
 
 

THESE de DOCTORAT DE L’UNIVERSITE DE LYON 
Opérée au sein de 

L’Université Claude Bernard Lyon 1 
 

Ecole Doctorale 476 
(Neurosciences et Cognition) 

 
Spécialité de doctorat : Neurosciences 

Discipline : Informatique 
 
 
 

Soutenue publiquement le 12/07/2018, par : 
(Nicolas Jules-Henri CAZIN) 

 
A replay driven model of spatial sequence 

learning in the hippocampus-prefrontal cortex 
network using reservoir computing 

 
 
 

Devant le jury composé de : 
 
 

FOURNERET Pierre  Professeur des universités – Praticien hospitalier Président 
 

DAMBRE Joni   Professeure/GHENT University   Rapporteure 
ALEXANDRE Frederic  Directeur de recherche INRIA/CNRS UMR 5293 Rapporteur 
BEN HAMED Suliann  Directrice de recherche ISC/CRNS UMR 5229 Examinatrice 
FOURNERET Pierre  Professeur des universités – Praticien hospitalier Examinateur 
POUCET Bruno  Directeur de recherche LNC/ CNRS UMR 7291 Examinateur 

 
DOMINEY-Peter Ford  Directeur de recherche / INSERM U1208  Directeur de thèse 
  



2 

UNIVERSITE CLAUDE BERNARD - LYON 1 
 

Président de l’Université 

Président du Conseil Académique  

Vice-président du Conseil d’Administration 

Vice-président du Conseil Formation et Vie Universitaire  

Vice-président de la Commission Recherche 

Directrice Générale des Services 

M. le Professeur Frédéric FLEURY 

M. le Professeur Hamda BEN HADID 

M. le Professeur Didier REVEL 

M. le Professeur Philippe CHEVALIER 

M. Fabrice VALLÉE 

Mme Dominique MARCHAND  
 

COMPOSANTES SANTE 
 

Faculté de Médecine Lyon Est – Claude Bernard 

Faculté de Médecine et de Maïeutique Lyon Sud – Charles 
Mérieux 

Faculté d’Odontologie  

Institut des Sciences Pharmaceutiques et Biologiques 

Institut des Sciences et Techniques de la Réadaptation 

Département de formation et Centre de Recherche en Biologie 
Humaine 

Directeur : M. le Professeur G.RODE  

Directeur : Mme la Professeure C. BURILLON 

Directeur : M. le Professeur D. BOURGEOIS 

Directeur : Mme la Professeure C. VINCIGUERRA 

Directeur : M. X. PERROT 

Directeur : Mme la Professeure A-M. SCHOTT 

 

COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET TECHNOLOGIE 

Faculté des Sciences et Technologies 

Département Biologie 

Département Chimie Biochimie 

Département GEP 

Département Informatique 

Département Mathématiques 

Département Mécanique 

Département Physique 

UFR Sciences et Techniques des Activités Physiques et Sportives 

Observatoire des Sciences de l’Univers de Lyon 

Polytech Lyon 

Ecole Supérieure de Chimie Physique Electronique 

Institut Universitaire de Technologie de Lyon 1 

Ecole Supérieure du Professorat et de l’Education 

Institut de Science Financière et d'Assurances 

Directeur : M. F. DE MARCHI 

Directeur : M. le Professeur F. THEVENARD  

Directeur : Mme C.  FELIX 

Directeur : M. Hassan HAMMOURI 

Directeur : M. le Professeur S. AKKOUCHE 

Directeur : M. le Professeur G. TOMANOV 

Directeur : M. le Professeur H. BEN HADID 

Directeur : M. le Professeur J-C PLENET  

Directeur : M. Y.VANPOULLE   

Directeur : M. B. GUIDERDONI  

Directeur : M. le Professeur E.PERRIN 

Directeur : M. G. PIGNAULT 

Directeur : M. le Professeur C. VITON 

Directeur : M. le Professeur A. MOUGNIOTTE 

Directeur : M. N. LEBOISNE 
  



3 

Contents 
Abstract .............................................................................................................................................................. 8 

Acknowledgments.............................................................................................................................................. 9 

Glossary ........................................................................................................................................................... 10 

1. Introduction .............................................................................................................................................. 11 

1.1. Prefrontal cortex and hippocampus in rodent navigation.................................................................. 14 

1.2. Representing sequential behavior in neural networks ....................................................................... 16 

1.3. Hypothesis and objectives ................................................................................................................. 17 

2. Contributions............................................................................................................................................ 24 

2.1. Proof of concept ................................................................................................................................ 26 

2.1.1. C++/QT simulator ...................................................................................................................... 27 

2.1.2. Complex sequence learning ....................................................................................................... 30 

2.1.3. Learning from random replay .................................................................................................... 33 

2.1.4. Overlap ....................................................................................................................................... 34 

2.1.5. Noisy conditions ........................................................................................................................ 36 

2.1.6. Reliability over multiple time scales.......................................................................................... 36 

2.1.7. Sparse snippets replay ................................................................................................................ 37 

2.1.8. Consolidation of complex sequences ......................................................................................... 37 

2.2. Towards a more realistic model ........................................................................................................ 39 

2.2.1. Use trajectories performed by a rat ............................................................................................ 39 

2.2.2. Use of a place-cell model ........................................................................................................... 40 

2.2.3. Generate a set of snippets from multiple sequences based on reward ....................................... 42 

2.2.4. Defining a sensory-motor loop .................................................................................................. 44 

2.3. High performance computing simulator ........................................................................................... 47 

2.3.1. Use case ..................................................................................................................................... 50 

2.3.2. Design ........................................................................................................................................ 51 

2.3.3. Components ............................................................................................................................... 58 

2.3.4. Language bindings ..................................................................................................................... 59 

2.3.5. Deployment ................................................................................................................................ 60 

2.4. Prefrontal cortex reservoir network learns to create novel efficient navigation sequences by 
concatenating place-cell snippets replayed with spatial credit assignment in hippocampus ....................... 63 

2.5. Real-time sensory-motor integration of hippocampal place-cell replay and prefrontal sequence 
learning in a simulated rat robot (Experimental results to come) .............................................................. 144 

2.6. Neurodynamic properties of the semantic network......................................................................... 179 

3. Discussion .............................................................................................................................................. 212 

Appendix ........................................................................................................................................................ 219 



4 

Communications ........................................................................................................................................ 219 

Chicago, IL-U.S.A 2015 Poster (SFN) .................................................................................................. 220 

Chicago, IL-U.S.A 2015 Poster (SNL) .................................................................................................. 221 

Paris-FRANCE 2016 Poster (CRCNS) .................................................................................................. 222 

San Diego, CA-U.S.A 2016 Dynamic Poster (SFN) ............................................................................. 223 

Rome-ITALY 2017 Presentation ........................................................................................................... 224 

Related work .............................................................................................................................................. 245 

Bibliography .................................................................................................................................................. 263 

 
  



5 

Figures 
Figure 1: Panel A shows a picture of the rat performing the TSP related task and panel B represents a two 
dimensional sketch of the optimal trajectory and the encountered place fields .............................................. 12 
Figure 2: Place cell sequences experienced during behavior are replayed in both the forward and reverse 
direction during awake SPW-Rs. Spike trains for 13 neurons with place fields on the track are shown before, 
during and after a single traversal. Sequences that occur during running (center) are reactivated during awake 
SPW-Rs. Forward replay (left inset, red box) occurs before traversal of the environment and reverse replay 
(right inset, blue box) after. The CA1 local field potential is shown on top and the animal’s velocity is shown 
below. From (Carr, Jadhav, and Frank 2011). ................................................................................................. 16 
Figure 3: A real life representation of the traveling salesman problem: minimizing the distance travelled while 
joining main U.S. cities .................................................................................................................................... 17 
Figure 4: A simplified instance of the TSP problem as an undirected graph. Five cities represented by letters 
A, B, C, D and E are linked by routes, represented by a segment with a width proportional to the distance 
between its boundaries ..................................................................................................................................... 18 
Figure 5: An optimal trajectory between feeders ABCDE is represented in panel A. Panel B, C and D display 
non-optimal trajectories that contain a sub trajectory of the ABCDE trajectory. The sub trajectory shared with 
the ABCDE trajectory is displayed in red and the non-optimal parts in blue. Panel B contains the ABCED, 
panel C the EBCDA trajectory and panel D the BACDE trajectory. .............................................................. 19 
Figure 6: Organization of the different functional modules used for defining an animat supposed to mimic the 
rat’s behavior while incrementally solving the TSP problem .......................................................................... 20 
Figure 7 : OFFLINE modes model learning through STDP during SPW-R between each trial when the animal 
is decoupled from the action-perception cycle and ONLINE modes model generation of a trajectory based on 
prior OFFLINE learning and action perception cycles. Panel A shows the hippocampus model learning 
recursively to generate snippets related to a reward, based on forward and reverse replay of recently 
experienced place cell activation sequences. Panel B shows the synaptic weights being adjusted in order to 
allow Striatum model to trigger the appropriate action relative to a stimuli sequence encoded by the Prefrontal 
cortex model. Panel C and D shows the online modes used during navigation. ............................................. 23 
Figure 8: Internal Representations in the reservoir. Panel A shows the raster of simulated hippocampus place-
cell neurons activation over time. Panel B represents the raster of the reservoir’s neurons. Panel C depicts the 
hippocampus, prefrontal cortex and striatum as we modelled them and features a supplementary artificial 
neuron group called equivalent reservoir whose raster is represented in panel D. An equivalent reservoir 
neuron represents in fact a principal component, as computed by the PCA algorithm. Panel E represents the 
raster observed in panel D as a 3D trajectory resulting from the 3 first principal components. ...................... 25 
Figure 9: Fréchet Distance. Panel A shows the free space diagram used during the computation of the Fréchet 
distance between ABCED and ABCDE trajectories. X and Y axis represent the discrete steps between points 
of ABCED and ABCDE trajectories. Z axis relates in meter the coupling distance between two points. The 
coupling sequence is represented with a blue line following the optimal alignment between the two trajectories 
(i.e. sequences of points). Panel B represents the paired points of ABCDE and ABCED trajectories. During 
the common prefix ABC, curves are relatively similar and the paired points are located close to each other. 
This is related by the diagonal part of the coupling sequence in panel A. Then the diverging parts of ABCDE 
and ABCED are still paired but we can clearly observe a one to many relationship, near point (0.6,-0.1) and 
the free space diagram relates it by variations along the ABCED steps axis and no variation along the ABCDE 
steps axis. ......................................................................................................................................................... 26 
Figure 10: The early version of the reservoir model. The snippet replay algorithmic module displayed in red 
generates dynamically a dataset used for training the model. The blue arrow represents the feedback link used 
in autonomous generation mode. ..................................................................................................................... 27 



6 

Figure 11: An extract from a scenario XML file describing a simulation ....................................................... 28 
Figure 12: Main panel of the LiveViewer application and widgets controlling model parameters and displaying 
data plots in real time ....................................................................................................................................... 29 
Figure 13: Use case diagram of the RRNN Simulator ..................................................................................... 30 
Figure 14:A complex and long stimuli sequence of 44 neurons over 540 timesteps ...................................... 31 
Figure 15: Representation of the transition matrix between symbols of the stimuli sequence ........................ 31 
Figure 16: Reservoir’s neurons states and transitions are represented as a 2D trajectory by displaying the first 
two principal components of the neurons activation raster. ............................................................................ 32 
Figure 17: Raster of the readout neurons during training, priming and autonomous generation .................... 33 
Figure 18: Raster of stimuli sequences. Random subsequences during the model training and the whole 
sequence during generation.............................................................................................................................. 33 
Figure 19: Reservoir neurons when exposed to a random replay of snippets. States are displayed as a 2D 
trajectories whose coordinates are the two first principal components as computed by the PCA algorithm .. 34 
Figure 20: Raster of the readout neurons when exposed to random replay of snippets during training and 
primed by the whole sequence ......................................................................................................................... 34 
Figure 21: Heat map representing the relationship between snippet length (Y-axis), snippet number (X-axis) 
and snippet overlap (color) .............................................................................................................................. 35 
Figure 22: Model performances represented as a surface. Snippets overlap and training epochs have an 
influence on prediction error ............................................................................................................................ 35 
Figure 23: Input (Panels A and C) and output (Panels B and D) neurons rasters during model training and 
testing with an additive noise ........................................................................................................................... 36 
Figure 24: Demonstration of the model‘s sequence generation ability over multiple timescales while trained 
at a faster timescale .......................................................................................................................................... 37 
Figure 25: Raster of the readout neurons when trained with snippets sparse snippets and the resulting generated 
sequence ........................................................................................................................................................... 37 
Figure 26: Raster of input neurons when exposed to the whole sequence and to a random replay of snippets of 
the whole sequence with an additive noise ...................................................................................................... 38 
Figure 27: Raster of readout neurons generating the whole sequence and learning the whole sequence from a 
random replay of sparse, noisy and complex snippets. White circles emphasize ambiguous transitions present 
in the training set. It reflects the difficulty of this sequence learning task ...................................................... 38 
Figure 28: Trajectory performed by a rat (Panel A) and an idealized version (Panel B) ................................ 39 
Figure 29: Trajectory performed by a rat as captured by the visual tracker. Panel B represents the 
corresponding place-cell activation pattern raster, panel C shows the gradient modulus of the position, panel 
D represents the condensed and resampled trajectory and panel E shows The corresponding simplified place-
cell activation sequence. .................................................................................................................................. 41 
Figure 30: Place field model applied to a trajectory and representation of a snippet ...................................... 42 
Figure 31: Trajectories performed by the rat over successive trials ................................................................ 42 
Figure 32: Snippet replay likelihood used in the snippet generation procedure. ............................................. 43 
Figure 33: BACDE trajectory and the frequency of different parts being represented through random replay
.......................................................................................................................................................................... 44 
Figure 34 : Successive trajectories of the rat in configuration 40 .................................................................... 45 
Figure 35: Mean square error histograms for different conditions evaluated in non-autonomous mode ........ 46 
Figure 36: Mean square error histograms for different conditions evaluated in autonomous mode ............... 47 
Figure 37: Use case diagram of the TRN solution ........................................................................................... 50 
Figure 38: The Model View Presenter architecture used by TRN ................................................................... 51 
Figure 39: Different interfaces organized as different namespace .................................................................. 52 
Figure 40: Class diagram of the overall model simulating multiple animats .................................................. 54 



7 

Figure 41: An example of the monitor plugin displaying performances information on the standard output. 55 
Figure 42: An example of the Display plugin rendering multiple trajectories computed by several simulators 
using 4 GPUs ................................................................................................................................................... 56 
Figure 43: Class diagram of the Presenter layer and related artifacts .............................................................. 57 
Figure 44: Component diagram of the TRN solution ...................................................................................... 58 
Figure 45: The TRN4MALTAB component provide to a MATLAB script a limited set of TRN4CPP interfaces
.......................................................................................................................................................................... 59 
Figure 46: TRN4JAVA allows one to interface a third party simulator (SCS, a robotic simulator from USF 
Tampa) ............................................................................................................................................................. 59 
Figure 47: Deployment on a standalone computer .......................................................................................... 60 
Figure 48: Deployment of a remote Backend for offloading simulations ....................................................... 60 
Figure 49: Cluster deployment of TRN with a TCP/IP Server ........................................................................ 61 
Figure 50: Deployment of the heterogeneous Cluster used in this thesis ........................................................ 62 

  



8 

Abstract 
As rats learn to search for multiple sources of food or water in a complex environment, processes of spatial 
sequence learning and recall in the HC (hippocampus) and prefrontal cortex (PFC) are taking place. Recent 
studies (De Jong et al. 2011; Carr, Jadhav, and Frank 2011) show that spatial navigation in the rat hippocampus 
involves the replay of place-cell firing during awake and sleep states generating small contiguous 
subsequences of spatially related place-cell activations that we will call “snippets”. These “snippets” occur 
primarily during sharp-wave-ripple (SPW-R) events. Much attention has been paid to replay during sleep in 
the context of long-term memory consolidation. Here we focus on the role of replay during the awake state, 
as the animal is learning across multiple trials. 
 
We hypothesize that these “snippets” can be used by the PFC to achieve multi-goal spatial sequence 
learning. 
 
We propose to develop an integrated model of HC and PFC that is able to form place-cell activation sequences 
based on snippet replay. The proposed collaborative research will extend existing spatial cognition model for 
simpler goal-oriented tasks (Barrera and Weitzenfeld 2008; Barrera et al. 2015) with a new replay-driven 
model for memory formation in the hippocampus and spatial sequence learning and recall in PFC. 
 
In contrast to existing work on sequence learning that relies heavily on sophisticated learning algorithms and 
synaptic modification rules, we propose to use an alternative computational framework known as reservoir 
computing (Dominey 1995) in which large pools of prewired neural elements process information 
dynamically through reverberations. This reservoir computational model will consolidate snippets into larger 
place-cell activation sequences that may be later recalled by subsets of the original sequences. 
 
The proposed work is expected to generate a new understanding of the role of replay in memory acquisition 
in complex tasks such as sequence learning. That operational understanding will be leveraged and tested on a 
an embodied-cognitive real-time framework of a robot, related to the animat paradigm (Wilson 1991). The 
originality and contribution of our proposed work include: 
 the use of awake hippocampal replay to create place-cell activation sequences of valid trajectories 

(snippets) 
 the use of reservoir computing to learn place-cell activation sequences using inputs generated by the 

hippocampus model 
 the constraining of the model using electrophysiological data in rats 
 the use of the resulting model in an animat 
 the use of behavioral data for training the model and comparing the generated trajectories 
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API  Applications programming interface 
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1.Introduction 
The work accomplished during this thesis focuses on aspects of recurrent neural networks and their dynamics, 
and how these dynamics can encode aspects of sequential behavior. 
 
We first propose to consider the problem of an agent exhibiting an efficient behavior and to reduce it as the 
problem of generating a correct sequence of sensory-motor association of an animat (Wilson 1991).  
 
We chose to use the reservoir computing framework (Dominey 1995) as a neurobiologically plausible 
implementation of a sensory-motor sequences learning capability of a situated agent (Hendriks-Jansen 1996). 
Reservoir computing is a computational metaphor of cortico-cortical loops in prefrontal cortex (PFC) and its 
principle is based on maintaining a spatio-temporal high dimensional representation of input sequences 
through reverberations caused by recurrent connections of PFC neurons. Sensory motor associations are learnt 
by a model of Striatum (ST) that acts as a simple readout layer by selecting correlated spatiotemporal features 
provided by the PFC model in order to reconstruct a prediction of the input patterns (Rigotti et al. 2010, 2013; 
Enel et al., n.d.).  
 
We thus propose in section 0 to evaluate the standard complex sequence online learning paradigm of this joint 
PFC-ST model and to extend it by demonstrating that it is possible to concatenate a complex sequence by 
learning only from a random set of smaller subsequences of stimuli called snippets. It is possible to explain 
this new dynamical property by observing a reduced dimension representation of the PFC model dynamics 
when exposed to the whole sequence and subsequences. In (Sanger 1989), the author demonstrates that 
generalized hebbian learning computes in fact the linear PCA and it suggests a biologically plausible 
implementation for the formation of subspaces relevant for a particular task. We will see in section  that it is 
possible to model an equivalent reservoir as a linear combination of reservoir’s neurons with a PCA. Learning 
readout synaptic weights in this space is equivalent to find the correlation coefficients between the raster of 
principal components neurons and expected neurons. It is also a convenient manner of representing 
Reservoir’s neurons activations over time. Activation raster of equivalent reservoir neurons are represented as 
a trajectory along the two first components of a principal component analysis (PCA). It appears that 
trajectories and sub-trajectories of the same stimuli sequence share common sub-trajectories in the reduced 
state space and suggest a stationary property of the high dimensional time series provided by the PFC allowing 
the sequence learning to occur.  
 
At the same time, in the lab, experiments were being done related to human cortical dynamics during a visual 
and narrative comprehension task. We hypothesized that the human brain states observed through an EEG 
signal display the same mixed selectivity property as the reservoir and succeeded to explain with the same 
PCA analysis technique that it is possible to learn a reliable decoding of sequential coherence for one modality 
(images or sentences) only from training data of the other modality. This is explained in more detail in section 
2.6.  
 
The key point in both experiments is that projecting the reservoir’s neurons activation time series in a subspace 
congruent to a particular task allows one to represent and modify efficiently spatio-temporal data streamed by 
a recurrent neural network. It encourages us to formulate the following working hypothesis: 
 
If the recurrent network (or EEG signal) is performing highly similar operations over two successive trials, 
then the spatiotemporal patterns of activity (as revealed by PCA, a linear combination a neurons) will be 
similar as well. 
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In (Preston and Eichenbaum 2013), the authors study the interplay between Hippocampus and Prefrontal 
cortex and their roles in the memory consolidation process. Their understanding entails the notion of schema, 
‘introduced to cognitive psychology by (Piaget 1967) and (Bartett 1932) in their efforts to understand how 
new information is integrated with pre-existing knowledge.’ A schema can be viewed as ‘any organized 
network of overlapping representations that has the following properties: first, new information is better 
remembered when it fits within a pre-existing schema; second, new information that challenges schema 
organization may cause modification of the existing schema or development of a new schema; and third, 
schemas support novel inferences between indirectly related events and their generalization to new situations.’ 
Consolidation is understood as a ‘process in which hippocampal networks can link indirectly related elements 
(A and C) via the invariant common element (B) and, guided by the prefrontal strategic control of conflicting 
associations to create a schema (A-B-C). During subsequent memory expression, a memory cue (‘Are A and 
C related?’) engages prefrontal cortex to select the correct schema (A–B–C) within which the hippocampus 
retrieves the relevant associations (A–C via B).’ 
 
We propose to explain this understanding of memory consolidation with a computational joint model of 
hippocampus, prefrontal cortex and striatum (HC-PFC-ST) by revisiting an interesting experiment where 
during a navigation task involving a rat searching for multiple sources of food in a closed environment (see 
Figure 1, panel A), it has been observed (De Jong et al. 2011) a convergence of the trajectories performed by 
the rat towards a short route between rewarded food cups.  

 
Figure 1: Panel A shows a picture of the rat performing the TSP related task and panel B represents a two dimensional sketch of the optimal 

trajectory and the encountered place fields 

As illustrated in Figure 1, panel B, place-fields1 are traversed in a particular order, which is characteristic of 
the shortest trajectory between baited feeders2. This trend to generate efficient trajectories is referred to as the 
traveling salesperson problem (TSP). The TSP is a classical algorithmic NP-hard problem that requires an 
agent to visit a fixed set of locations once, minimizing the total distance traveled.  
 
Sharp wave ripple complexes (SPW-R) occur during awake and sleep states and include the replay of 
subsequences of place-cells activation sequences related to the trajectories observed in previous trials (Barrera 
and Weitzenfeld 2008; De Jong et al. 2011). In (Gupta et al. 2010), the authors characterize the content of 
hippocampus replay and suggest that the activation subsequences generated by the hippocampus during SPW-
R are derived from immediate and remote experiences, feature forward and reverse order of previously 
encountered place-cells activations and the reward plays a modulatory role in occurrence of subsequences 
contained in a during in SPW-R events. We focus on the role of hippocampus place-cell replay during the 
awake state, as the rat generates increasingly efficient trajectories between reward sites across multiple trials. 
                                                 
1 Noted Pn, where n is the corresponding place-cell number. 
2 Noted Ok, where k is the feeder number 
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The indirectly related elements mentioned in (Preston and Eichenbaum 2013) corresponds to the rewarded 
food cups observed through the associated place-cell activations, the relationship between rewarded food cups 
corresponds to sub-trajectories between them. We hypothesize that: 

 Hippocampus links rewarded food cups through SPW-R replay of associated place-cell activation 
patterns in order to form efficient sub-trajectories 

 Prefrontal cortex reconciles the conflicts in associations of efficient sub-trajectories sharing a common 
part in order to create an efficient trajectory between rewarded food cups (schema). 

We extend our scope to a HC-PFC-ST joint model where the hippocampus model emulates different features 
of the place-cell subsequences replay phenomenon observed during awake SPW-R between trials. It aims at:  

 Demonstrating dynamical properties induced by the hippocampal replay and the effect of its different 
features (Foster and Wilson 2006a; Gupta et al. 2010) 

 To assess if an animat embedding the HC-PFC-ST model is sufficient to explain the behavior of the 
rat observed in experiments (Wilson 1991; Ball et al. 2010; Foster and Knierim 2012; De Jong et al. 
2011; Barrera and Weitzenfeld 2008). 

A preliminary work had been done during my master’s thesis about the control of a mobile robot with a chaotic 
random recurrent neural network with continuous time (article in preparation, see section Related work). The 
learning rule used for associating an action to a sequence of stimuli is related to the recursive estimation of 
the covariance matrix between perception and action. It emphasizes the importance of learning sensory-motor 
associations upon the detection of a salient event. In that particular case, a salient event is detected by 
considering the neuron activation that diverges from the same neuron’s running average. An experiment shows 
that a mobile robot controlled by a random recurrent neural network can learn sensory motor associations 
from its previous experience and generate motion sequences in compliance with the serial structure of the 
stimuli by being exposed to the same stimuli sequence without having necessarily the same temporal structure 
(i.e. the same delay between two different stimuli). It suggests that learning during salient events only allows 
the model to learn and generate sensory-motor sequences with the same serial structure whilst at the same 
time removing the requirement of experiencing the same temporal structure. Learning the salient part of a 
trajectory relies in this case on the running estimate of the covariance matrix. Hippocampal replay during 
SPW-R occur at a faster time scale than the experienced stimuli sequences and the temporal structure is not a 
feature of hippocampal replay (Davidson, Kloosterman, and Wilson 2009; Nádasdy et al. 1999). It suggests 
that our joint HC-PFC-ST model will learn salient part of stimuli sequences and hippocampal replay will 
enhance several features of the stimuli sequences replayed. 
 
In addition, conceptors (Jaeger 2014) are based on PCA which also rely on the estimate of the covariance 
matrix and “help explaining how conceptual-level information processing emerges naturally and robustly in 
neural systems”. The principle is essentially the same: Different stimuli entails differently shaped reservoir 
state clouds (i.e. different linear combinations of reservoir’s neurons). “The ellipsoid envelopes of these clouds 
make conceptors”. “After driving patterns have been stored in the network, they can be selected and stably re-
generated by inserting the corresponding conceptor filters in the update loop. A conceptor could be 
implemented by projecting observed neurons into linear neurons that represent conceptors by projecting along 
synaptic weights representing the PCA linear combination coefficients. Thus a conceptor is task dependent 
and requires a prior training on tasks being evaluated. It remains a very powerful tool that allows a single 
neural system to “learn, store, abstract, focus, morph, generalize, de-noise and recognize a large number of 
dynamical patterns”.  
 
Estimating the covariance matrix allows one to generate appropriate representations of stimuli time-series 
useful, either for explaining neuron dynamics or for altering them in order to solve difficult learning problem. 
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It encourages us to use the PCA as a tool for explaining how the dynamics of a recurrent neural network allows 
the model to learn multiple and complex sensory-motor associations and help to solve a challenging problem: 
the TSP. 

1.1. Prefrontal cortex and hippocampus in rodent navigation 
The hippocampus stores information during the acquisition of new memories and these memories are replayed 
(in this document, we use ‘replay’ and ‘reactivate’ interchangeably) during sleep as part of a memory 
consolidation process (Marr 1971; Stickgold and Walker 2007). Consolidation is believed to involve synaptic 
changes in the neocortex reflecting the integration and refinement of memory representations (McClelland, 
McNaughton, and O’Reilly 1995; Schwindel and McNaughton 2011) This replay involves neural populations 
that were active during a task immediately preceding the sleep period. In (Jadhav et al. 2012), a specific 
performance deficit was observed in SPW-R disrupted animals, providing “a causal link between awake 
hippocampal SPW-Rs and the spatial memory requirements of outbound trials”. It is possible to characterize 
hippocampus replay through the following features: 
 Occurrence: Reactivations of specific neural activity patterns during sleep have been observed in several 

brain areas including the hippocampus, amygdala, neocortex and striatum (Bendor and Wilson 2012; Carr, 
Jadhav, and Frank 2011; Euston, Tatsuno, and McNaughton 2007; Foster and Wilson 2006b; Hoffman 
and McNaughton 2002; Ji and Wilson 2007; Karlsson and Frank 2009; Kudrimoti, Barnes, and 
McNaughton 1999; Lee and Wilson 2002; Nádasdy et al. 1999; Pennartz 2004; Peyrache et al. 2009; Popa 
et al. 2010; Ribeiro et al. 2004; Sutherland and McNaughton 2000; Tatsuno, Lipa, and McNaughton 2006; 
Cutsuridis and Hasselmo 2011; Cutsuridis and Taxidis 2013). Other evidence suggests that replay may 
also occur during the awake state indicating online memory processes or the planning of behaviors yet to 
be performed (Carr, Jadhav, and Frank 2011; Davidson, Kloosterman, and Wilson 2009; Diba and Buzsáki 
2007a; Gupta et al. 2010; Jadhav et al. 2012; K. Friston, Breakspear, and Deco 2012; Karlsson and Frank 
2009). 

 Place-cells: The study of behavioral and neurophysiological mechanisms in rats responsible for spatial 
cognition has inspired the development of many computational models of hippocampus place-cells in the 
context of goal-oriented learning tasks in robotic systems. Some of the most important models developed 
in the past years include those of (Burgess, Recce, and O’Keefe 1994; Sharp, Blair, and Brown 1996; 
Redish and Touretzky 1997; Guazzelli et al. 1998; Arleo and Gerstner 2000; P. Gaussier et al. 2002; Filliat 
and Meyer 2002; Arleo, Smeraldi, and Gerstner 2004; Milford and Wyeth 2010; Dollé et al. 2010; 
Alvernhe, Sargolini, and Poucet 2012; Caluwaerts et al. 2012; Barrera and Weitzenfeld 2008) 

 Time cells: In (Eichenbaum 2014), the author distinguishes hippocampus place-cells from hippocampus 
time-cells. The latter are characterized by their ability to “parse temporally defined periods into 
representations of specific moments (‘time fields’), much as place-cells parse spatially defined 
environments into representations of specific locations (place fields)”. Finally, the author suggests that the 
fundamental function of the hippocampus is to establish spatio-temporal frameworks for organizing 
memories. Place-cells and time-cells are not distinct ‘cell-types’ but instead, the same population of 
hippocampal neurons encodes both the spatial and temporal regularities of experience. Hippocampus 
place–cells and time-cells are seen as features of hippocampal neurons associated with spatial or temporal 
dimensions of the context in which learning occurs. 

 Time scale: In the hippocampus, it has been shown that reactivation occurs primarily in a compressed 
manner, during the occurrence of fast (150-200 Hz) and short (60-120ms) oscillations called sharp 
waves/ripples complexes (SPW-R). Different subsets of cells reactivate in different SPW-Rs, each cell 
emitting only a few spikes. The inter-spike interval between reactivating cells is within the range of that 
required to induce spike-timing dependent synaptic plasticity (STDP). One hypothesis therefore is that the 
sequence of reactivation episodes allows for online and offline synaptic modifications that will eventually 
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lead to the consolidation and integration of specific memory items. (Davidson, Kloosterman, and Wilson 
2009) 

 Reward: Interestingly, the presence of rewards increases replay in hippocampus and ventral striatum 
(Lansink et al. n.d.; Singer and Frank 2009), suggesting an interaction between reinforcement learning and 
replay. This enhanced reactivation in response to reward could be a mechanism to bind rewarding 
outcomes to the experiences that precede them. Awake SPW-R reactivates coherent elements of the 
experiences that are associated with the paths to and from the rewarded location.  Their findings, in 
contrast, indicate that reward plays a special role in modulating the reactivation of cells associated with 
recent experiences. Their findings suggest that in the rodent hippocampus, activity following a reward 
specifically relates to the sequence of locations the animal traversed on the way to the reward. These 
observations indicate that reward increases the likelihood of reactivation for all cells. Therefore, the 
specific spatial sequence the animal traversed strongly influences which cells will be active during SPW-
Rs, while the presence or absence of reward modulates the amount and strength of reactivation. 

 Direction: Most of the replay events occur in the forward direction (place-cells activate in the same order 
as they would activate if the rat was navigating through them), before a movement is initiated, while a 
smaller fraction occur in the backward direction at or near reward sites. Interestingly, forward replay was 
found to be more directly correlated with the actual path of the animal than backward replay (Foster and 
Wilson 2006b; Diba and Buzsáki 2007b) 

 Remote: Hippocampal replay is not limited to recent sensory experience and might include events 
experienced less recently (Karlsson and Frank 2009; Foster and Wilson 2006b; Davidson, Kloosterman, 
and Wilson 2009) 

 
Underlying Neuroanatomy: 
 
The model developed in this thesis provides a possible explanation of mechanisms that allow PFC and 
hippocampus to interact to perform path optimization to solve the TSP. This implies functional connectivity 
between these two structures.  In a recent review of hippocampal–prefrontal interactions in memory-guided 
behavior (Shin and Jadhav 2016) outlined a diverse set of direct and indirect connections that allow bi-
directional interaction between these structures. Principal direct connections to PFC originate in the ventral 
and intermediate CA1 regions of the hippocampus (Cenquizca and Swanson 2007). Indirect connections 
between hippocampus and PFC pass via medial temporal lobe (subiculum, entorhinal cortex, peri- and post-
rhinal cortex) (Delatour and Witter 2002) and the nucleus reuniens (Vertes et al. 2007). Thus while we will 
not provide a more extensive review, these studies and reviews allow us to consider that there are anatomical 
pathways supporting bi-directional interaction between PFC and hippocampus. The model developed in this 
thesis also demonstrates the crucial role of SPW-R replay of “snippets” of previously experienced trajectories 
in this sequence consolidation and optimization. While SPW-R replay has more traditionally been examined 
during sleep, there is now increasing evidence of its vital role in the awake state, between trials, in spatial 
learning tasks (reviewed in (Carr, Jadhav, and Frank 2011)). Figure 2 illustrates awake SPW-R  
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Figure 2: Place cell sequences experienced during behavior are replayed in both the forward and reverse direction during awake SPW-Rs. 
Spike trains for 13 neurons with place fields on the track are shown before, during and after a single traversal. Sequences that occur during 
running (center) are reactivated during awake SPW-Rs. Forward replay (left inset, red box) occurs before traversal of the environment and 

reverse replay (right inset, blue box) after. The CA1 local field potential is shown on top and the animal’s velocity is shown below. From (Carr, 
Jadhav, and Frank 2011). 

1.2. Representing sequential behavior in neural networks 
Reservoir computing refers to a class of neural network models in computational neuroscience and machine 
learning (Mantas Lukoševičius and Jaeger 2009).These systems are characterized by a sparsely connected 
recurrent network of neurons (spiking or analog), with fixed connection weights (excitatory and inhibitory). 
Because of the recurrent connections, this “reservoir” is a dynamical system that has inherent sensitivity to 
the serial and temporal structure of input sequences. Reservoir neurons are connected to readout neurons by 
modifiable connections, and these can be trained in different task contexts (e.g. sequence recognition, 
prediction, classification). The first instantiation of such models was by (Dominey 1995; Dominey, Arbib, 
and Joseph 1995) with the reservoir corresponding to recurrent prefrontal cortical networks, and the 
modifiable readout connections corresponding to the corticostriatal projection, with dopamine-modified 
synapses These models addressed sensorimotor sequence learning, and demonstrated the inherent sensitivity 
of these recurrent systems to serial and temporal structure in motor behavior and in language  
(Dominey 1998a, 1998b; Dominey and Ramus 2000; Dominey, Inui, and Hoen 2009; Hinaut and Dominey 
2013). Maass developed a related approach with spiking neurons and demonstrated the non-linear 
computational capabilities of these systems (Maass et al. 2002). In the machine learning context, Jaeger 
demonstrated how such systems have inherent signal processing capabilities (Jaeger and Haas 2004). 
Interestingly, these reservoir properties appear to be found in cortex. Electrophysiological studies have 
revealed that cortical neurons in primary sensory areas (e.g. V1) have reservoir properties of fading memory 
(Nikolić et al. 2009). That is, stimuli presented in the past tend to resonate in the recurrent network and 
influence the processing of subsequent stimuli. Equally interestingly, when these networks are exposed to 
inputs with multiple dimensions (e.g. target identification, serial order, match/non-match) neurons represent 
non-linear mixtures of these dimensions (Dominey, Arbib, and Joseph 1995; Rigotti et al. 2010). Such 
nonlinear mixed effects have recently been seen in primate frontal cortex (Rigotti et al. 2013). This argues in 
favor of a reservoir-like function in recurrent networks of the cortex in general, and in prefrontal cortex 
specifically. We have demonstrated how such recurrent networks can learn about sequential and temporal 
structure (Dominey 1998a), including serial order regularities that are expressed in sequence segments 
(Dominey and Ramus 2000). However, so far, reservoir computing has not been exploited in terms of its 
inherent ability to allow the concatenation of multiple contiguous subsequences into a coherent sequence, thus 
addressing a major open question in navigation trajectory learning.  
The most prevalent theories of how memories are formed and consolidated rely on dynamic changes in 
synaptic strengths and the creation of strongly connected neural assemblies. This hebbian (Hebb 1949) view 
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of memory has dominated the field for decades. While there is strong experimental evidence for several 
aspects of the theory, there are also significant difficulties that include: 
 The unclear nature of fast induction and exquisite control of synaptic modification in the presence of 

realistic amount of neuronal and synaptic noise and unreliability 
 The low probability that 2 cortical neurons are in fact connected by synapses 
 The pluri-functionality of cortical neural networks whereby small groups of cells may be involved in 

various and seemingly distinct neural computations in addition to memory formation (how these multiple 
functions co-exist with memory is unclear).  

1.3. Hypothesis and objectives 
We propose to focus on the TSP problem, which is a classical artificial intelligence NP-hard problem that 
requires an agent to visit a fixed set of locations once, minimizing the total distance traveled. Figure 3 
illustrates the TSP by representing the optimal trajectory linking the main cities in U.S. 

 
Figure 3: A real life representation of the traveling salesman problem: minimizing the distance travelled while joining main U.S. cities 

TSP can be modelled by a graph where vertices are cities and edges the roads linking cities. A simplified 
problem featuring only five feeders is represented in Figure 5: 
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Figure 4: A simplified instance of the TSP problem as an undirected graph. Five cities represented by letters A, B, C, D and E are linked by 

routes, represented by a segment with a width proportional to the distance between its boundaries 

In the traveling salesrat problem (De Jong et al. 2011) derived from the traveling salesman problem, distances 
are unknown but instead, each cup containing food (equivalent to cities in TSP) are associated to a reward 
information. The paths between cups are analogue to roads between cities and become available once visited 
by the rat across trials. It suggests an incremental update of the knowledge acquired during recent experiment, 
with a particular emphasis on shortest paths between cups. We propose to study this hypothesis by considering 
the following elementary experiment illustrated in Figure 5 and other experiments described in 2.4.  
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Figure 5: An optimal trajectory between feeders ABCDE is represented in panel A. Panel B, C and D display non-optimal trajectories that 

contain a sub trajectory of the ABCDE trajectory. The sub trajectory shared with the ABCDE trajectory is displayed in red and the non-optimal 
parts in blue. Panel B contains the ABCED, panel C the EBCDA trajectory and panel D the BACDE trajectory. 

Five cups containing food are laid in an open space and the rat is supposed to experience trajectories illustrated 
in panel B, C and D. These trajectories contain a part of the optimal trajectory illustrated in panel A. We will 
study how the consolidation of an optimal trajectory (Panel A) can result during awake rest state from a 
recombination of non-optimal trajectories containing efficient parts between reward sites (Panels, B, C, D), 
supported by a STDP learning mechanism occurring during SPWR.  

Several navigations models based on a hippocampus model have been implemented on a mobile robot. In 
(Burgess, Recce, and O’Keefe 1994), the authors demonstrate the ability of a mobile robot to reach a single 
goal in a simple environment, based only on a hippocampus model featuring place-cells. Recurrent 
connections in the hippocampus are not involved nor required in the experiment. A more recent model (Barrera 
et al. 2015) uses hippocampus place-cells learnt by hebbian learning driven by kinesthetic information and 
visual landmarks. Sensory motors associations required for allowing the agent to navigate are performed with 
a Q-learning algorithm (Sutton and Barto 1998) which requires a discrete state space. Another robotic model 
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(Hirel et al. 2013) implements neural networks representing enthorinal cortex (EC), HC and PFC in order to 
build a cognitive map and solve a multiple goal navigation task. 
 
We thus propose a computational model of hippocampus, prefrontal cortex and striatum that will be embedded 
in an animat (Wilson 1991; Filliat and Meyer 2002; Ball et al. 2010) for demonstrating the existence of a 
neurobiologically plausible implementation of a heuristic that solves the traveling salesrat problem. Figure 6 
represents from a purely modeling point of view the organization of the different functional modules used in 
this thesis for simulating a virtual rat: 

 
Figure 6: Organization of the different functional modules used for defining an animat supposed to mimic the rat’s behavior while incrementally 

solving the TSP problem  

The global model is hierarchical composition of other models whose structuration derives from the PerAc 
architecture (Philippe Gaussier and Zrehen 1995) could be described as follows: 

 An environment model that consists in a 2D free space containing reward sites as illustrated in Figure 4 

 An animat that is capable of perceiving the environment through its sensors and to perform an action on 
its environment by using its actuators. The relationship between the sensor model and the actuator model 
is established the cognition model, allowing the animat to perform actions given a sensory input. No reflex 
module linking perception to action in a straightforward manner is used in this study. 

o The sensor model is very simple in our case and consists in the perception of the current position 
of the animat in the environment in a global coordinate system. It might be replaced by a more 
elaborated and realistic model but for the sake of simplicity and a better understanding, we chose 
a trivial sensor model. 
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o The cognition model establishes dynamical relationships between perceived stimuli and possible 
actions. It is implemented by a set of other hierarchical models that might interact. The 
relationships illustrated by arrows represents strictly the sufficient model for studying memory 
formation mechanisms in this thesis and don’t necessarily correspond to neurons projections 
between areas as described in neuroanatomy. A cognitive model could be implemented by an 
algorithm, a classifier system (Holland and Reitman 1977), a hidden Markov chain or a neural 
network. In our case, the cognitive model is implemented by a hybrid and hierarchical composition 
of algorithmic and neural network models: 

 A spatial representation model will be responsible of converting the perceived global 
position into internal representations suitable for solving the TSP task. It is implemented 
by: 

 A place-cell coding model which provides a place cell mean firing activation pattern 
that is characteristic of the perceived position. A 2D Gaussian place cell model is 
used but one can also use firing rate maps estimated experimentally and 
representing the spatial response of place-cells spatial response measured by 
electrodes. It is assimilated to a part of the hippocampus model, not represented 
here because it is relative to a neurobiological implementation. 

 The replay module is implemented by an algorithm that emulates only place-cells 
neurons rates and the replay of subsequences of place-cell activations (snippet) 
during awake SPW-R as a concatenation. Snippets are characterized by a duration, 
modelled by the number of contiguous place-cell activation patterns and a direction, 
forward or backward that will be modelled by the increasing or decreasing 
numbering of time indices contained by a snippet. A snippet will contain only place-
cell activation patterns encountered during a motion supposed to occur with a 
constant speed. This models the time compression phenomenon observed in place-
cell activation subsequences during SPW-R, derived from the place-cell activation 
encountered during the last trial and resulting from sensory inputs. Snippets will be 
drawn according to a snippet replay likelihood whose distribution might be uniform 
when no reward is taken into account or non-uniform and shaped by reward when 
available. The role of this model will be to generate subsequences of place cell 
activation derived from previous experience and to emphasize parts of trajectories 
related to a reward through a non-uniform random replay. Despite the fact that this 
part of the model is algorithmic, it admits an implementation based on recurrent 
neural networks, also observed in hippocampus (CA3). It is a part of the 
hippocampus model. 

 A consolidation model learns to predict the next place-cell activation, given a training 
dataset generated dynamically by the replay model. The generated predictions reflect the 
state-transitions observed in the training dataset and it is possible to emphasize a particular 
subset of state-transitions by over representing it in the training dataset. In our case, place-
cell transitions related to a reward are emphasized by the replay module which learn and 
maintain a snippet replay likelihood through snippet replay. Consolidation is implemented 
by: 

 A reservoir model will be implemented by the reservoir-computing framework that 
emulates cortico-cortical loops through recurrent connections between leaky 
integrator neurons, representing only the mean firing rate of non-linear neurons 
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whose membrane potential time evolution is driven by a time constant resulting 
from its resistive and capacitive properties. This defines the prefrontal cortex model 
and its role is to combine overlapping parts of snippets replayed at random and build 
a transitive relationship between them by aligning the common parts in their 
representations. 

 A readout model implements partially a striatum model. Readout model is supposed 
to select spatio-temporal features provided by the reservoir through learning in 
order to learn a desired output. In our case, the desired output is a prediction of the 
next place cell activation that encodes the next location of the animat. 

 A policy model associates the prediction of the next place-cell activation to the action that 
is the most likely to realize the prediction. Possible actions are command signals compatible 
with the animat possible moves. It is based on three other sub models: 

 A place-cell decoding model that will provide a 2D map of probable locations given 
the place-cell prediction generated by the readout layer.  

 A transition model that restricts the 2D location map is restricted to areas reachable 
by the animat given and estimate of its current position. 

 A selection model that will select the most probable location in the restricted 2D 
location map.  

o The actuator model is also very simple and consists in moving the agent to the predicted position. 

This emulates a rudimentary sensory motor loop and might be viewed as a form of embodiment. In this model 
presented as a hierarchy of other models, some models are implemented by neural networks (HC, PFC, ST) 
and their interactions and functioning modes are not clearly specified. In (Pezzulo, Kemere, and van der Meer 
2017), the authors provide a schematic illustration of different functioning modes of their model within an 
overall architecture for PFC-HC interactions. We propose to adapt this illustration to our joint HC-PFC-ST 
model in Figure 7 in order to describe the different modes used by our model for solving the TSP problem. 
The experimental protocol we use is inspired by (De Jong et al. 2011) and is defined as follows: 

 The rat/animat performs one or more trials by making an attempt to solve the TSP problem, based on 
the actual state of its model. In the case of an animat, one or more already existing trajectories are 
simply added to a dataset that will be used as a basis for generating snippets. 

 The rat/animat is put in an awake resting state at the same location before each next trial by enclosing 
him in a small and opaque space, preventing him from moving or seeing the arena where the next trial 
will occur. At this point, SPW-R events occur and small sequences of recently experienced place-cell 
activation patterns are replay. This contributes to the incremental update of two models and correspond 
to the two offline modes where recent experience is replayed through SPW-R events and models 
updated trough a STDP mechanism: 

o The replay (snippet generation) model, implemented by our hippocampus model (HC) and 
illustrated in panel A by a dashed ellipsis. The reward information is propagated according to 
a power law to adjacent timesteps in a direction relative to the replay direction. The model is 
defined recursively and is described more in details in section 2.4. 

o The consolidation model implemented by the reservoir (PFC) and the readout (ST) layer and 
illustrated in panel C, associates a particular state to a place-cell activation sub sequence. This 
state is associated incrementally though an online learning rule to the next place-cell activation 
pattern. The dashed arrow represents the synapsis projecting reservoir neurons in readout 
neurons. 
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 Then the rat/animat behaves freely based on its newly acquired and consolidated knowledge 
(hypothesis) and performs one more attempt to solve the TSP problem. This online mode is illustrated 
in panel D and is viewed as a coordinated action perception cycle repeated several times in order to 
form a trajectory. The decision taken at a given time will result in a new perception. 

OFFLINE (during awake SPW-R) ONLINE (behavior) 

A Replay recent experience B Sample from HC model (constrained) 

 

 

Cellular & systems consolidations Memory retrieval, planning, prospection 

C Sample from HC model (unconstrained) D Coordinated action/perception cycle 

  
Self-consistency, model-pruning, homeostasis Predictive processing with sequence prior 

Figure 7 : OFFLINE modes model learning through STDP during SPW-R between each trial when the animal is decoupled from the action-
perception cycle and ONLINE modes model generation of a trajectory based on prior OFFLINE learning and action perception cycles. Panel A 

shows the hippocampus model learning recursively to generate snippets related to a reward, based on forward and reverse replay of recently 
experienced place cell activation sequences. Panel B shows the synaptic weights being adjusted in order to allow Striatum model to trigger the 
appropriate action relative to a stimuli sequence encoded by the Prefrontal cortex model. Panel C and D shows the online modes used during 

navigation. 

The mode illustrated in panel B corresponds to the preplay phenomenon observed during SPW-R when the 
rat is performing the task. SPW-R are shaped by current sensory input. The snippet preplayed during behavior 
are samples from the replay model relevant to the current task. It represents the future possible suffix 
trajectories, given the trajectory accomplished so far. It might be viewed as a prospective mechanism and can 
be used for online planning/inferencing by selecting the action associated to the most rewarding prefix snippet, 
suggested by preplay. We won’t use this mode in this thesis and we focus on the consolidation of salient part 
of multiple and rewarded trajectories. 

Our claim is that it is possible to observe the emergence of the optimal trajectory as a recombination of salient 
parts of trajectories experienced during past trials. The heuristic that supports this demonstration is 
biologically plausible and implementable by neural networks. 

Working hypothesis are summarized as follows: An agent able to move freely within a restricted range in an 
environment without obstacles is controlled by a neural network model. This model includes a model of 
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hippocampus that will emulate forward and reverse hippocampal replay modulated by a form of reward 
observed during awake SPW-R. A PFC model based on reservoir computing will evaluate the hypothesis that 
awake hippocampus replay between trials plays a role in long term memory consolidation and allows the agent 
to take advantage of its previous experience from trial to trial. The ST model will allow the agent decode 
predictions from the PFC and contribute to an action, supposed to minimize the difference between the actual 
and predicted position of the agent. 

2.Contributions 
All the contributions in this thesis aim at investigating the role of hippocampus replay during SPW-R in 
memory consolidation process through simulations of models of neural networks based on neurophysiology 
supposed to implement a heuristic able to solve the TSP problem. These are models and do not necessarily 
reflect or emulate the complete set of observed anatomical features. We start from the simplest model possible 
of the memory consolidation process through awake SPW-R and implement only the features that allow the 
model to mimic the rat’s behavior while solving the TSP problem. The PFC-ST model illustrated in In Figure 
8 panel C is based on a recurrent neural network of leaky integrator neurons having fixed recurrent 
connections. Information is processed dynamically through reverberations caused by the recurrent 
connections. When the network is exposed to an input sequence like a place-cell activation sequence illustrated 
in panel A, the reservoir neurons activation pattern sequence is difficult to understand (see panel B). The 
readout layer associate reservoir states to an expected output through a supervised online learning rule. In this 
thesis, the expected output will be the place-cell activation contained by the next sample within a snippet. 
 
We propose to use a singular value decomposition of the raster observed in panel B for implementing a 
principal component analysis (PCA) illustrated in panel D. It can be viewed as another layer of linear neurons 
whose firing rate is a linear combination of reservoir neurons. This additional layer is called the equivalent 
reservoir and the linear combination is chosen such that equivalent neurons provide the most orthogonal 
possible information. These ‘orthogonal’ neurons might be viewed as different axes spanning a subspace and 
they are called principal components. The first neuron will account for most of the information provided by 
reservoir neurons, while other neurons will account for a decreasing proportion of the remaining information. 
Thus it is possible to represent the neurons activations as a 2D/3D trajectory as illustrated in panel E and to 
observe them rather than the raw raster in panel B. Note that if one attempts to learn synaptic weights 
projecting the equivalent neurons into the readout neurons, he will find the Pearson correlation coefficients 
(Pearson 1896). It is an interesting equality which might be reformulated as: The readout selects iteratively 
spatio-temporal features of a stimuli sequence provided by the reservoir, correlated with the expected signal 
used in supervised learning. 
 
We use a simulation based approach and the experimental protocol is always the same and a trial in one 
experiment is defined by: 

 Simulate the awake SPW-R snippet replay when the rat is in a rest state  
o Instantiate a model with a fixed set of parameters 
o Define a training set based on one or more sequences representing the recent experiences of 

the rat 
o Train the model by exposing it to a random replay of snippets emulating different features 

observed and reported in literature.  
 Simulate the next trial, based on the previously acquired knowledge (hypothesis) 

o Prime the model by forcing its input with the first samples of the expected sequence 
o Generate a trajectory 
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 Autonomously by reinjecting directly the predicted place-cell activation pattern as the 
input of the next simulation cycle. 

 Non autonomously by injecting the expected place-cell activation pattern as the input 
of the next simulation cycle. This is used when the model is not sufficient for generating 
autonomously a sequence. 

o Gather and record various observables such as: 
 Neural network states 
 Connectivity matrices 
 Time indexes generated by the replay model 

 
Figure 8: Internal Representations in the reservoir. Panel A shows the raster of simulated hippocampus place-cell neurons activation over time. 
Panel B represents the raster of the reservoir’s neurons. Panel C depicts the hippocampus, prefrontal cortex and striatum as we modelled them 

and features a supplementary artificial neuron group called equivalent reservoir whose raster is represented in panel D. An equivalent reservoir 
neuron represents in fact a principal component, as computed by the PCA algorithm. Panel E represents the raster observed in panel D as a 3D 

trajectory resulting from the 3 first principal components. 

It is thus possible to extract representations from the recorded data as depicted in Figure 8 for example. Some 
representations might be meaningful and will allow one to explain the phenomenon observed through the 
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representations. The model will be adjusted based on the numerous and informative observations until the 
model is able to predict and explain expected observations having a higher level of abstraction. This very 
general process describing the scientific approach can be as well implemented by different models in a 
hierarchical manner, exactly as illustrated in Figure 6. The free energy/active inference framework (K. Friston 
2009) is an elegant, rigorous and unifying theoretical framework that allows one to create or extend 
hierarchical Bayesian models of the brain (K. Friston 2008; Pezzulo, Rigoli, and Friston 2018). We will make 
a particular effort to formulate our models, measures and explanations in order to be easily translatable in 
Bayesian equations. 
 
From the top level of abstraction (behavior), a very useful metric for comparing trajectories regardless their 
phase locking and dimensionality (2D trajectory, place-cell activation sequence, neurons rasters) is the Fréchet 
distance. Figure 9 illustrates the Fréchet distance between sequences ABCDE and ABCED also observed in 
Figure 5. In each experiment, the trajectory generated by our model is compared to the optimal/idealized 
sequence with a Fréchet distance. 

 
Figure 9: Fréchet Distance. Panel A shows the free space diagram used during the computation of the Fréchet distance between ABCED and 
ABCDE trajectories. X and Y axis represent the discrete steps between points of ABCED and ABCDE trajectories. Z axis relates in meter the 
coupling distance between two points. The coupling sequence is represented with a blue line following the optimal alignment between the two 

trajectories (i.e. sequences of points). Panel B represents the paired points of ABCDE and ABCED trajectories. During the common prefix ABC, 
curves are relatively similar and the paired points are located close to each other. This is related by the diagonal part of the coupling sequence 
in panel A. Then the diverging parts of ABCDE and ABCED are still paired but we can clearly observe a one to many relationship, near point 

(0.6,-0.1) and the free space diagram relates it by variations along the ABCED steps axis and no variation along the ABCDE steps axis. 

It allows a global optimization algorithm to find an optimal set of parameters for instantiating an overall model 
able to perform in the required conditions (see section 2.4). 

2.1. Proof of concept 
The reservoir-computing framework allows complex sequence learning and generation at the price of several 
parameters that might interact between each other in manner that is difficult to characterize and exhibit 
unforeseen dynamic properties. Dynamic properties of snippet replay are exactly what we want to observe. 
Some guidelines about echo state network have been written (Mantas Lukoševičius and Jaeger 2009) and are 
a good starting point. For going further on the particular problem of sequence learning through random replay 
of snippets, we need to write a simulator of our model that provides to the user the ability to modify parameters 
and to observe quickly the effects of a parameter change on the screen. We propose to write an interactive 
simulator based on C++/QT and to explore snippet driven learning properties of a joint PFC-HC model 
illustrated in Figure 10. 
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Figure 10: The early version of the reservoir model. The snippet replay algorithmic module displayed in red generates dynamically a dataset 

used for training the model. The blue arrow represents the feedback link used in autonomous generation mode. 

2.1.1. C++/QT simulator 
The idea behind this simulator was to provide an interactive and easy to simulator the user, allowing him to 
play with the model and its parameter in order to build an intuition on the model functioning. C++ language 
and the QT graphical user interface toolkit (GUI) were chosen for their robustness, performances and 
versatility, required for writing an interactive and responsive simulator. Boost library is also used for various 
utility classes. 
 
The design is based on interdependent tasks executed in a particular order. From a modeling point of view, 
any simulation admits an equivalent graph representation where vertices are the tasks and the edges are the 
dependencies between tasks. A simulation is fully described by a scenario xml file where tasks and their 
dependencies are declared. An example of a simulation description can be found in Figure 11 : 
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Figure 11: An extract from a scenario XML file describing a simulation 

A task is the base class of a process or a widget. A process processes incoming data from its input sinks and 
writes the result on its outputs. An example of a process is a neuron layer, a running average or a stimulus 
generator. 
 
A widget represents incoming data in a particular format on the screen and is attached to the main panel as 
depicted in Figure 12. A very useful widget is the object explorer which allows the user to display and modify 
the parameters of the model while computing. Other widgets are classic XY plots, bar plots, histograms and 
rasters. All widgets are instantiated in containers whose layout is also configurable in the xml scenario file. 
 
The simulator is available as a standalone version called LiveViewer. It is mainly used for fast prototyping of 
simulations by combining building blocks and observing the effect of a parameter change. 
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Figure 12: Main panel of the LiveViewer application and widgets controlling model parameters and displaying data plots in real time 

The graphical user interface allows the user to limit the simulation speed in order to observe fast paced 
phenomenon and a step by step button allows one to run compute one simulation cycle each time the button 
is pressed. It is also possible to switch between training and test mode with a simple click at any time. 
Automation allows the user to specify program parts called Actors that will act on the interface like a regular 
user. For example, the learning rate of the model can be set to zero during the test stage and the constant 
controlling the amount of input signal from the stimulus and the feedback signal from the readout layer 
projected on the reservoir can be adjusted according to a ramp which is a function of the time. Figure 13 shows 
the possible uses of the simulator : 
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Figure 13: Use case diagram of the RRNN Simulator 

A client/server version of the simulation is also available and is designed for cluster computing. The server 
part is made of two programs called Backend and Worker. The worker program role is to compute simulations 
and to send the results when terminated while the Backend program is responsible of the scheduling and life 
cycle of simulations. The Backend acts as a proxy between Clients and Workers. The client part is called 
Frontend and its role is mainly to read a scenario file, transmit its contents to the Backend and store or display 
results when available. Simulated annealing algorithm and grid search algorithms are used for parameter 
search and a graphical user interface (GUI) and a command line interface (CLI) are available. An algorithm 
and an interface is selected upon each invocation of the Frontend program. 
 
Communications between Frontend and Backend use a TCP based text protocol and communications between 
Backend and Workers are implemented with MPI. CPU is used most of the time for computing tasks and some 
computing power demanding tasks are offloaded to a GPU. 
 
Source code is available on GitHub at https://github.com/NicolasCAZIN/RRNN 

2.1.2. Complex sequence learning 
We propose to demonstrate that the reservoir computing model we use is able to learn and generate correctly 
long and complex stimulus sequences with a standard training method. 
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Figure 14:A complex and long stimuli sequence of 44 neurons over 540 timesteps 

The stimulus at each timestep consists in 44 neurons activated with a serial temporal structure. Each neuron 
is activated during 10 timesteps and this elementary activation pattern is represented by a red square in Figure. 
The state of a given neuron is determined at least by the last 10 steps. The first 10 neurons have two different 
predecessor and successor neurons activated at different timesteps and the total length of the sequence is 540 
steps. This sequence is called a complex sequence because it is characterized by several ambiguous transitions 
between neurons states. Figure 15 shows the transition probabilities between each neurons : 

 
Figure 15: Representation of the transition matrix between symbols of the stimuli sequence 

The activation pattern of the stimulus might be seen as a state transition function where both states and actions 
are activations values. The 10 first neurons exhibit ambiguous transition since their state are not uniquely 
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determined by their previous state. This learning problem cannot be solved without maintaining a form of 
context that will allow the association of a particular state of a neuron to a limited history of the states of other 
neurons. This is exactly the purpose of the cortico-cortical loop modelled by the recurrent connections in the 
reservoir computing framework. It is a form of fading memory that allow the state of the modelled prefrontal 
cortex to represent a context within a limited time line of sight. Intuitively, if the duration of the context 
required by the serial structure of the stimulus sequence fits in the short term memory implemented by 
recurrent connection, then the learning of a complex sequence is reduced to the learning of a simple sequence 
having the same number of steps but a higher number of meta-states resulting from the conjunction of 
successive stimulus states. This is illustrated in Figure 16:  

 
Figure 16: Reservoir’s neurons states and transitions are represented as a 2D trajectory by displaying the first two principal components of the 

neurons activation raster. 

This simpler problem is easily solved by exposing the reservoir model several times to the input activation 
sequence and associating incrementally the reservoir's state to the expected output activation sequence by 
modifying the synaptic weights of the readout layer according to the delta rule. When evaluated, the model is 
primed with the 30 first steps of the expected sequence and then the predicted neurons states are reinjected as 
the next input of the model until the end of the expected sequence is reached. The resulting activation pattern 
is similar to the expected sequence as depicted in Figure 17: 
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Figure 17: Raster of the readout neurons during training, priming and autonomous generation 

The serial and temporal structure of the target sequence are reproduced but the sharp transitions from 0% 
activation to 100% activations cannot be reproduced by the model. This is explained by the time constant of 
the model which have been tuned for capturing the slow variations between each neuron (1 state change every 
10 steps). Recurrent connections act like a running average and the side effect is to smooth the stimulus 
sequence along the time axis. This demonstrate the model's ability to learn and generate an arbitrarily long 
and complex sequences of neuron activation patterns. 

2.1.3. Learning from random replay 
As stated in, the main hypothesis in this work is that random replay of hippocampus place-cells subsequences 
during SPW-R plays a role in awake memory consolidation. We propose to model the snippet replay by 
exposing the model during learning to random subsequences of the target sequence. Each subsequence has a 
fixed length of 50 timesteps and relates the successive activation of 5 different neurons during 10 timesteps. 
19 input neurons are modeled by a binary 0% or 100% mean firing rate and are labelled by letters A to S. The 
1000 neurons of the reservoir are exposed to subsequences derived from the target sequence 
ABCDEFGHIJKLMNOPQRS selected at random according to a uniform distribution. Figure 18 relates 
subsequences and the target sequence: 

 
Figure 18: Raster of stimuli sequences. Random subsequences during the model training and the whole sequence during generation 

We propose to compute the PCA trajectories of the reservoir's neurons when exposed to the subsequences. It 
appears that overlapping parts of subsequences (for example EFGHI and GHIJK) overlaps in the reservoir’s 
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neurons state space represented along the two first principal components in figure. Even when replayed at 
random, each subsequence is represented or encoded in a similar manner by the reservoir. 
If the timescale supporting the stimuli is sufficiently slow compared to the timescale of the reservoir, then the 
mnesic ability of the network will be exceeded before the end of a subsequence. The context will fade out 
quickly and two sequences having a different prefix will result in a similar trajectory after a sufficiently long 
delay. This dynamic property is illustrated in Figure 19 and results in the alignment of multiple sequences. 

 
Figure 19: Reservoir neurons when exposed to a random replay of snippets. States are displayed as a 2D trajectories whose coordinates are the 

two first principal components as computed by the PCA algorithm 

Overlapping parts of the trajectories are encoded in a similar area and this coherency in the reservoir's state 
coding allows the readout layer to associate successfully the reservoir's states to the prediction to the next 
stimulus state as demonstrated in Figure 20: 

 
Figure 20: Raster of the readout neurons when exposed to random replay of snippets during training and primed by the whole sequence 

The model is able to autonomously generate an ascending sequence, based only on a random replay of 
ascending subsequences. An ascending sequence is a simple sequence without any ambiguous transition. The 
recurrent connections are not required for solving this simple problem and it was only the first step for 
validating the sequence learning driven by a random replay within the reservoir computing framework. 

2.1.4. Overlap 
As demonstrated previously in Figure 19, the consolidation from random replay of snippets relies on the 
overlap of subsequences in the reservoir's neurons state space. We propose to characterize empirically the 
conditions on overlap that allow the snippet replay driven learning to occur. A replay episode is characterized 
by a duration T, the number of snippets N and their length L. We consider a fixed time budget of T time steps 
allocated to snippet replay. Several combination of subsequences of different length are possible and we show 
in Figure 21 the constrained relationship between the number of snippets of fixed length that could be replayed 
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during T timesteps and the resulting overlap between snippets (i.e. the number of samples shared by two given 
snippets) 

 
Figure 21: Heat map representing the relationship between snippet length (Y-axis), snippet number (X-axis) and snippet overlap (color) 

We observe that only a restricted set of snippet length/number combinations allows a non-zero overlap 
between snippets. Without intrinsic overlap between contiguous snippets, learning the underlying complete 
sequence would be impossible because of important missing parts of the whole trajectory in the training set.  
We define a sequence of 20 neurons activated sequentially during 10 timesteps each and expose our model 
several times to different combination of snippet number during 100 cumulative learning episodes of 10 
training epochs. Based on the constrained relationship between snippet length and snippet number, the snippet 
overlap is deduced and model performances in non-autonomous mode are displayed in Figure 22: 

 
Figure 22: Model performances represented as a surface. Snippets overlap and training epochs have an influence on prediction error  

It shows that a for a fixed set of parameters, a minimum exposure time to random replay and a minimum 
overlap between snippets are required in order to reach a low error level. The minimum is reached for a 
maximum exposure time and a maximum overlap. A particular case of snippet scheduling which is a unique 
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snippet whose duration equals the duration whole sequence. We are not interested in this case which is 
equivalent to the classical sequence learning paradigm. 

2.1.5. Noisy conditions 
The consolidation from random replay benefits from the robustness against noise of the neural networks. We 
demonstrate in Figure 23 that a snippet replay altered with a strong noise (-3dB in panel A and -8 dB in panel 
C) still allow the consolidation of the target sequence (respectively panels B and D). 

 
Figure 23: Input (Panels A and C) and output (Panels B and D) neurons rasters during model training and testing with an additive noise 

2.1.6. Reliability over multiple time scales 
Awake SPW-R replay occurs after a trial at a faster timescale than the stimuli experienced during the trial. 
We propose to model that by a neuromodulation mechanism. The stimulus sequence is learnt from random 
replay of subsequences with 10% noise added and when evaluating the model for generation, the model is 
primed with the beginning of the sequence. This is illustrated by Figure 24 panel A. The model is then put 
into autonomous mode by reinjecting the prediction of the readout layer as an input of the reservoir for the 
next timestep. The propagation delay between neurons is globally modified by changing the leak rate that 
reflects the resistive and capacitive properties of each neurons of the reservoir. In panel B we can observe the 

correct generation for a leak rate factor of  Panel C includes factor  and panel D . This property has 

been evaluated up to factor equals to  (i.e. 4096 times slower than the modelled random replay). 
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Figure 24: Demonstration of the model‘s sequence generation ability over multiple timescales while trained at a faster timescale 

2.1.7. Sparse snippets replay 
It had been observed that during SPW-R, hippocampus place-cells are replayed as a subsequence featuring 
the serial order encountered during the training and missing place-cells in a snippet could be observed. We 
propose to verify the robustness of our PFC-ST model by exposing it to a random replay of snippets featuring 
missing place-cells in each snippet. Figure 25 shows a raster of the readout neurons when exposed to a random 
replay of altered snippet and the generated ascending sequence: 

 
Figure 25: Raster of the readout neurons when trained with snippets sparse snippets and the resulting generated sequence 

Despite the fact that the generated sequence features missing place-cells in some parts, the information 
conveyed through the recurrent connections implements a form of short term memory that allow the 
consolidation of the complete sequence and the generation to occur until the end of the sequence. 

2.1.8. Consolidation of complex sequences 
We have demonstrated that it is possible to learn a simple sequence from a random replay of snippets even in 
noisy conditions. A more challenging task for our model is to learn a complex sequence from a random replay 
of snippets in noisy conditions.  



38 

We use the same input sequence as in section 2.1.2 and configure a random replay of snippets with a 10% 
additive noise and one random missing place-cell activation during 10 timesteps for every snippet replayed. 
It is illustrated in Figure 26.  

 
Figure 26: Raster of input neurons when exposed to the whole sequence and to a random replay of snippets of the whole sequence with an 

additive noise 

The generated sequence is depicted in the output raster in Figure 27. The serial structure respected most of the 
time and we observe wrong predictions emphasized by white circles. The generation still occurs after the 
wrong predictions. 

 

 
Figure 27: Raster of readout neurons generating the whole sequence and learning the whole sequence from a random replay of sparse, noisy 

and complex snippets. White circles emphasize ambiguous transitions present in the training set. It reflects the difficulty of this sequence 
learning task 

The autonomously generated sequence displays a global time dilatation: the end of the generated sequence 
occurs at time step 300 230 instead of 300 020. This is explained by the fact that the leak rate acts as a temporal 
smoothing filter and consequently, a non-zero time is required for establishing a given neuron firing pattern. 
This delay is observed as a continuous increase and decrease of mean firing rate at the beginning and the end 
of a neuron activation pattern. The generated output at each timestep is never corrected and the delay is 
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cumulated during the generation process occurring within a closed loop between prediction and input. This 
points out the need of a metric that measures the similarity between sequences having arbitrary dimensions 
but not necessarily the same duration. We propose to use the Fréchet distance. 

2.2. Towards a more realistic model 
Previous investigations have demonstrated that our joint PFC-HC model is able to consolidate at least a single 
complex trajectory based only on random replay of snippets. The stimuli used so far were emulating 
hippocampus place-cell coding by affecting one binary neuron sparse orthogonal representation (learning of 
a competitive network) for coding one particular location. No combination of neurons in a firing pattern were 
allowed and all neurons fired strictly orthogonal patterns (i.e. null dot product). The purpose of the model 
being to explain and predict data issued from TSP related experiments with a rat, we need to extend our model 
along several axes: 

2.2.1. Use trajectories performed by a rat 
The synthetic trajectories used so far for demonstrating dynamic properties of the joint HC-PFC model related 
to TSP problem are designed by hand and aims at capturing particular features of the rat behavior we are trying 
to explain. They do not represent the trajectories performed by a rat trying to solve the TSP problem. We then 
use behavioral data about rat solving the TSP problem provided by Fellous & Al, CENL Lab, University of 
Arizona, Tucson. Experiments take place in a circular arena having a radius of 1.5m. 21 feeders are scattered 
according to a spiral shape. The feeder’s location and label is always the same. Some feeders are baited with 
food whilst others are not. We call a configuration the particular state of baited/non-baited feeders. 100 
different configurations of baited feeders are explored by different rats during 10 trials. Before each trial the 
rat is positioned on the same starting point, near the first baited feeder. Figure 28 panel A shows the trajectory 
performed by the rat during trial 4 for configuration 84 

 
Figure 28: Trajectory performed by a rat (Panel A) and an idealized version (Panel B) 

The  points of the trajectory are provided by a camera based tracker. Measures might contain noisy or 
missing samples and that is why we interpolate data with splines. We consider a trajectory as a graph. The 
vertices are the feeders and correspond to cities in the TSP problem and the edges are the paths that link the 
feeders. In the acquired dataset, the rat does not always find the optimal trajectory between baited feeders and 
64 configurations contain at least a trial where an efficient path is found. An efficient path is found when a 
given path is a circular shift of the optimal path or the optimal path in reverse order.  The subset of 64 
configurations containing at least one efficient path each is called the converged subset. Two configurations 
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of the converged subset contain an efficient path but all edges of the optimal trajectory had not been 
encountered. We restrict the dataset to the converged configurations where every feeder pair of the optimal 
trajectory is encountered at least once. This subset is called the complete subset and it accounts for 22% of the 
acquired data. We will use this subset in our experiments. If baited feeders are visited in the correct order, it 
does not mean that an optimum has been reached. Subj-trajectories linking baited feeders might not describe 
the shortest path between these two points. We created an idealized trajectory that links optimally the baited 
feeders and an example is shown in Figure 28 panel B. This is required for establishing a performance 
criterion. Trajectories are down sampled to a spatial resolution of 20 dot*m-1. This resolution is sufficient for 
representing the motion of the rat, using a very high resolution would capture the noise of the camera based 
tracker and as demonstrated in section 2.3, there is a direct relationship between the spatial resolution of a 
stimuli sequence and the leak rate required by the reservoir model for capturing significant variations of the 
sequence. 

2.2.2. Use of a place-cell model 
Place-cells are a type of pyramidal neurons in the hippocampus that fire preferably when the rat is located in 
a particular place called place field. We propose to use an isotropic 2D Gaussian place-cell model defined by: 

 
(1) 

Where: 
  is the number of the place-cell 

  is the mean firing rate of the  place-cell 

  is the  coordinate of the place-cell 

  is a constant that will constrain the highest activations of the place-cell to be mostly 

contained in a circle of radius , centered in  

  is the radius of the  place-cell 

  is the radius threshold which controls the spatial selectivity of the place-cell? 

Trajectories are defined within a 2x2m square space spanned by a regular grid of 16x16 2D Gaussian isotropic 
place-cells. Thus from a simulation point of view, a given trajectory result in a raster of 256 place-cell neurons 
as illustrated in Figure 29 panel A and B and is defined by the conjunction of the place-cells activations 
concatenated for each time step. One can observe in panel C that there exist parts in the trajectory where the 
trajectory first order gradient with respect to time is null. It means that the trajectory features static parts where 
the rat is not moving. Since the reservoir model captures the serial and temporal structure of a trajectory 
through the recurrent connections, a long static part might be partially captured by the PFC model. Indeed, a 
given sustained activation pattern as observed in panel B will allow the model to eventually exceed its mnesic 
ability and to produce a similar context after this point. The consequence is that the readout layer will associate 
several times this fixed context to the same output, resulting in the overrepresentation of a particular point of 
the sequence. In autonomous generation mode, this will lead to a fixed point. A practical workaround would 
be to modify the learning rule in order to allow a hebbian learning process to occur only when novelty is 
detected with the equivalent of a first order derivative filter. In fact, the formulation of the learning rule is 
similar to the definition of the covariance matrix between reservoir neurons and readout neurons. The 
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estimation of the mean activation value of a neuron over time depends on a particular timescale and this would 
add several hyper parameters to the learning rule. Another simple manner of allowing the learning process to 
occur only when novelty is detected is to algorithmically remove static parts of the stimulus where the modulus 
of the derivative with respect to time (illustrated in panel C) is non zero/ 
We hypothesize that this novelty detection mechanism is a part of the snippet formation process and we 
propose to model a snippet as a contiguous subsequence of the dynamic parts of a place-cell activation 
sequence. The regular sampling is the equivalent of a constant velocity. Panel D illustrates the condensed and 
resampled trajectory and panel E represents the place-cell activation sequence. It contains only dynamic parts 
of the trajectory and it will be used by the snippet generation procedure. 

 
Figure 29: Trajectory performed by a rat as captured by the visual tracker. Panel B represents the corresponding place-cell activation pattern 
raster, panel C shows the gradient modulus of the position, panel D represents the condensed and resampled trajectory and panel E shows The 

corresponding simplified place-cell activation sequence. 

For specific demonstration purposes, we propose to use place-cell activation sequences based on the place-
cell model described above and spline interpolated trajectories satisfying a constraint on the order where the 
feeders are visited. Figure 30 Panel B shows a synthetic trajectory where feeders ABCED are visited. Gray 
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circles represent the place-cells centers and their radius. Panel C shows the corresponding place-cell activation 
pattern and the same snippet represented in the 2D trajectory and its place-cell extent. 

 
Figure 30: Place field model applied to a trajectory and representation of a snippet 

2.2.3. Generate a set of snippets from multiple sequences based on reward 
In the behavioral experiment described in (De Jong et al. 2011) we can observe the rat incrementally solving 
the TSP problem by experiencing new paths at each trial. In Figure 31 panel A, B, C, D and E, the rat describes 
a new trajectory at each trial and several sub-trajectories are present in different trials. For instance, the path 
linking feeder 20 to 12 is observed in panels A, B, C and E. 
We hypothesize that the random replay of snippets that allow the model to generate an efficient sequence as 
depicted in panel F is based on sequences from remote trials and modulated by a form of reward. This is 
compliant to the behaviors and measurements described in (Gupta et al. 2010). 

 
Figure 31: Trajectories performed by the rat over successive trials 
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The aforementioned modulation by a form of reward is illustrated in Figure 32. The BACDE sequence 
illustrated in Figure 5 panel D contains long and short paths linking the different feeders. This is related in 
Figure 32 by a different number of time indexes. 

 
Figure 32: Snippet replay likelihood used in the snippet generation procedure. 

The snippet replay likelihood reflects a prediction of the reward and is learnt by the replay model illustrated 
in Figure 6. Update equations and details about the replay model can be found in 2.4. It becomes possible to 
emphasize different parts of a trajectory related to rewards as depicted in Figure 33. If the reservoir model is 
able to concatenate the emphasized parts of different parts of a trajectory related to a reward and replayed at 
random, then it is possible to generate an efficient trajectory based on salient elements of recently experienced 
trajectory. This is the main result of the paper presented in section 2.4. From a more abstract point of view, 
the replay model proposes different associations between reward sites (A, B, C, D and E) and the consolidation 
model reconciles the overlapping representations, allowing to build a transitive relationship following a path 
between reward sites. This correspond to the point of (Preston and Eichenbaum 2013). Their understanding 
of the interplay between Hippocampus and Prefrontal cortex and their roles in the memory consolidation 
process entails the notion of schema, introduced to cognitive psychology by (Piaget 1967) and (Bartett 1932).  
The replay model proposes a solution to the credit assignment problem by propagating the reward information 
across time according to a  algorithm and the consolidation model allows to build a heuristic that is able 
to find efficient global paths in a graph by combining efficient sub-paths based on a reward expectation. This 
heuristic is in fact a neural implementation of a reinforcement learning (Sutton and Barto 1998) and it is a 
very simple and new manner to solve the credit assignment problem in recurrent neural networks. We will see 
that modulating snippet generation probability based on this reward value propagation will allow the 
implementation of a form of reinforcement learning that addresses the optimization requirement for solving 
the TSP problem. 
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Figure 33: BACDE trajectory and the frequency of different parts being represented through random replay 

2.2.4. Defining a sensory-motor loop  
We propose to make a first attempt by selecting in the dataset3of behavioral experiments configuration 40 
where an efficient trajectory (feeders 14,12,18,17,1) is discovered during trial 5 and sub-trajectories of the 
efficient trajectory are visited during previous trials 2,3 and 4. Figure depicts these trajectories. During trial 2, 
feeders 14,18,12,14,7,1 are visited. Feeder 14 is consumed the first time it is visited and the second time, it is 
perceived as a non-rewarding feeder. The trajectory linking baited feeders 12 to 7 is particularly long and 
optimal sub-trajectory linking feeder 12 to 18 is performed in trial 2 in reverse order with a sub-trajectory 
linking feeder 18 to 12. This example illustrates the need to have a model that can extract sub-trajectories 
linking two reward sites with no particular direction and learn preferentially short sub-trajectories between 
rewards. During trial 3, feeders 14,18,12,17,1 are visited and it corresponds almost to the optimal trajectory, 

                                                 
3 Gracefully provided by Fellous & al, CENL Lab, Tucson, AZ, U.S.A 
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excepted that feeder 18 is visited before 12, instead of feeder 12 before feeder 18. During trial 4, feeders 
17,1,14,12,18 which is a circular permutation of the optimal sequence. Sub-trajectories 17,1 and 14,12,18 
belongs to the optimal sequence and this example suggests that a model able to consolidate randomly replayed 
parts of the optimal trajectories would be able to consolidate them if they are more salient as non-optimal sub-
trajectories. 

 
Figure 34 : Successive trajectories of the rat in configuration 40 

The reservoir model is trained and evaluated several time with a random replay of place-cell activation 
subsequences based on different possible combinations of trial 2, 3 and 4. Each model is trained by exposing 
it to a random replay of snippets of 10 simulation cycles long for a duration of 1000 simulation cycles. The 
model is then evaluated by measuring the mean square prediction error on the readout layer with a Euclidian 
norm. This evaluation procedure is repeated 100 times and the mean square prediction error series are gathered 
for each trial combination in autonomous and non-autonomous generation mode. In autonomous mode, the 
predicted stimulus is reinjected as the next input, while in non-autonomous mode, the next input is forced to 
be the next stimulus as observed in the training set, regardless of the predicted stimulus. It allows one to 
measure an error along the whole trajectory. Figure 35 represents the prediction errors in non-autonomous 
mode for each trial combination. 
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Figure 35: Mean square error histograms for different conditions evaluated in non-autonomous mode 

A random replay of snippets based on 100 % of trial 2,3 and 4 leads to the lowest error. Other possible 
combination of sequences in the snippet generation suggest that some sequences are more informative than 
others and combining several trials for generating snippets have a positive effect on performances. It will be 
studied more in details in section 2.3. When evaluated in autonomous generation mode, results are not well 
differentiated (see Figure 36) and the expected place cell activation sequence is not generated at all. This is 
due to the recurrent nature of the generation process. If an error is observed during the early timesteps of the 
generation procedure, this erroneous place cell activation pattern is directly injected in the reservoir input 
neurons. Reservoir state is different, generates a different prediction that might be erroneous or totally 
unexpected or unrelated to a place cell coding of a location. 
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Figure 36: Mean square error histograms for different conditions evaluated in autonomous mode 

In order to overcome this difficulty, we propose to implement a form of embodiment. The location encoded 
by a place-cell activation pattern is estimated by exploiting the spatial response each modelled place cell, the 
agent moved to this new location and then the place-cell model is applied to the new location of the agent in 
order to provide an interference free place cell activation pattern. It exploits the fact that an agent situated in 
a 2D environment can occupy only one location at a time. By selecting the most probable location encoded in 
a place cell activation prediction, the agent performs an action based on the last perception. This emulate a 
rudimentary sensory motor loop. 

2.3. High performance computing simulator 
A Temporal Recurrent Network (TRN) requires training typically 1000 neurons by exposing it repeatedly 
stimuli sequences. For each simulation cycle, the recurrent connections contribution to the membrane potential 
of the reservoir neurons is implemented by a matrix vector multiplication and thus requires 1000 000 floating 
operations with a dense implementation. It is also possible to use a sparse matrix implementation that requires 
less floating operations if the connectivity matrix is sparse, but the major drawback of this apparent time 
complexity simplification is that the benefit of using a local and fast paced memory is almost lost because of 
non-coalesced memory access that result in more frequent access to the remote and slower global memory. 
We choose to rely on a dense matrix implementation. Depending on the learning rule implemented and the 
learning rate, the magnitude and the stimuli sampling rate, a successful training requires at typically 10 000 
simulation cycles. When instantiating a TRN, the synaptic weights are randomly drawn from a particular 
distribution with a particular random seed. An error measure on this particular instance cannot be significant 
with only one observation. In order to be consistent, a batch of TRN must be evaluated instead and this batch 
size must be empirically at least 10 and evaluating more than 100 TRN for building a single measure won’t 
play a significant role for accuracy.  

The training set is not necessarily formed as a time indexed multidimensional stimuli matrix, and might require 
an additional stochastic training set generation procedure that will drive the TRN during training. This 
stochastic procedure is in our case the emulation of hippocampus replay during awake SPW-R and it depends 



48 

on a particular random seed for a batch of TRN. It is necessary to evaluate at least a group of 10 TRN batch 
having each different random seeds for the snippet generation procedure initialization. 

TRN produces predictions of the next stimulus input. For evaluating the whole sequence that the model can 
generate, one needs to inject the prediction as the new input and compute the next simulation cycle for 
updating the TRN states. Each prediction provided by a given TRN instance might reflect a conflict in the 
training set that results most of the time by two different sequences having the same prefix whose duration 
exceeds the mnesic ability of the network. In the case of a stimulus representing hippocampus place-cell 
coding of a location, the next location prediction is thus not properly encoded and might contain more than a 
location. Preliminary study described in 2.1.8 states that autonomous generation is not always possible by 
direct injection of the predicted next stimulus as the new input for the next simulation cycle. We developed 
and described in section 2.3 a new place-cell location decoder based on a Gaussian kernel and using a finite 
element method. This decoder is very robust to noise because it exploits the redundancy and coherency of the 
spatial coding of a place-cell activation pattern over the whole arena. The finite element decoding method 
requires a grid that tessellates the 2D space defined by the workspace boundaries. A sufficiently low 
discretization error is required for avoiding a spatial aliasing effect that will necessarily have a negative impact 
on the generated trajectories. The size of the grid can become important very quickly and have a major impact 
on the computing load. It is possible to limit the number of grid elements being evaluated by considering a 
region of interest, centered on the agent current location and enclosing the locations the agent can reach, as 
defined by its transition model. It is thus possible to select the next location of the agent based on the location 
probability map computed with the place-cell decoding method, to move the agent to the most probable 
location and to apply the sensor model in order to provide to the TRN the stimulus that corresponds to the 
most probable location. Selecting the most probable location at each step is a greedy action selection strategy 
and does not necessarily lead to the generation of the optimal sequence. However, it is possible to give an 
account of the trajectories the model can generate by evaluating the model several times and injecting noise 
in the location probability map in order to allow multiple trajectories to be generated. Typically, 10 to 100 
random walks are required for building a consistent 2D high-resolution histogram that will represent the 
frequencies where a particular location is visited and give an intuitive but not complete view of the set of 
trajectories the model can generate and their likelihood to be generated. It is also possible to enhance this view 
by extracting a vector field from the multiple displacements or to cluster trajectories in order to characterize 
the different classes of trajectories the model can generate. 

A trained TRN can be seen as a generative model of trajectories that reflects the training set as represented by 
the recurrent neural network with a particular set of parameters. These parameters will condition the model’s 
ability to learn a training set and generate a test set. The search space spanned by the Cartesian product of all 
parameters prohibits a systematic parameter search and one might follow echo state networks guidelines (M 
Lukoševičius 2012) in order to find a parameter set that allows a particular sequence learning problem to be 
solved. The authors states that finally, a global optimization algorithm can be used for finding the optimal 
parameter set for a given task. Tabu search (Glover and Martí 1986), Simulated annealing (Kirkpatrick, Gelatt, 
and Vecchi 1983) and genetic algorithms (Goldberg and Holland 1988) are suitable for this problem and we 
chose a simulated annealing variation (Chen et al. 2007) because of its implementation simplicity, the low 
number of parameters and its ability to take advantage of parallel simulations. 

For all the reasons mentioned above, simulating multiple agents controlled by a HC-PFC-ST joint neural 
network model requires a tremendous amount of computing power. Simulating several neural networks 
exposes several levels of parallelism and it is possible to take advantage of a massively parallel computing 
infrastructure. Recently, it became possible to use graphics processing units (GPU) for general purpose 
computing. NVIDIA builds high end gaming graphic cards named Geforce that are perfectly suitable for 
training deep neural networks in a reasonable and in fact, they can reach the same level of performance of 
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processional graphic cards. Professional graphic cards (Quadro, Tesla) cost approximately 10 times the price 
of a gaming graphic card with the same architecture but provides more onboard memory that features an error 
correcting code (ECC) mechanism, more computing units, half precision arithmetic operations (16-bits 
floating point number) that doubles the computing throughput, faster double precision arithmetic operations 
(64-bits floating point number) and drivers certified for specific professional applications. Since artificial 
neural networks simulations do not require a high level of precision, a recent gaming graphic card is affordable 
and provides the same single precision (32-bits floating point numbers) computing throughput as 
approximately 30 recent central processing units (CPU) for the same price. In addition to computing 
throughput per price unit and numerical precision considerations, the availability of a high performance 
computing (HPC) infrastructure is another question of interest. Indeed, there exist computing farms that 
provide an access to computing devices. Some of those are not available for an extended time period and do 
not authorize the use of 3rd party libraries used in modern HPC approach. It is a serious problem when 
developing a fully asynchronous and distributed simulator. One need a development cluster with a reasonable 
computing power and a library and tools ecosystem that allow modern programming and debugging without 
having to add an extra cost for the time spent on these machines. Another drawback of some distributed 
computing solutions is that the simulations need to be split into several scripts, launched through a job 
scheduler on different remote shells. It does not facilitate the simulation process and in addition, scheduler job 
does not necessarily run immediately, the entire computing power is not available because it is shared with 
other users and a job might be suspended for hours or days.  

We chose to build a hybrid CPU/GPU heterogeneous cluster by using a workstation equipped with a Tesla 
k40c, upgrading 2 existing workstations with 4 NVIDIA Geforce GTX 1080 and to build a supplementary 
high end workstation based on the specifications of the DIGITS DevBox by NVIDIA used in the deep learning 
field and hosting 4 more NVIDIA Geforce GTX 1080 boards. The theoretical computing throughput is 88 590 
Gflops / second in single precision and this computing power is available constantly, for an unlimited amount 
of time. All GPU boards use an exhaust mechanism based on a blower, allowing an easy installation on 
different motherboards while maintaining a decent cooling performance for a reasonable price. NVIDIA 
provide a very efficient BLAS implementation, parallel random number generation algorithms and other 
libraries and tools that reduce significantly the need of developing low-level computing routines and save 
development time. 

There exist deep neural network frameworks for a particular architecture that implement simple recurrent 
neural networks with a hyperbolic tangent activation function, while frameworks designed for other 
computing architecture do not provide a RNN with the same specification. State of the art libraries like 
Microsoft CNTK or Nvidia CuDNN provide different implementation of recurrent neural network but the 
training algorithm behind are not clearly specified, includes the training of the recurrent layer instead of the 
readout only required by our echo state approach or simply use a batch of different algorithm and retain the 
algorithm and parameter set that gave the best result. Deep learning is a new applied research domain and the 
most advanced libraries at this day were first released in 2015-2016, one year after the beginning of this thesis. 
We want to keep the model simple, provide clear explanations of their functioning based on several 
observations of variables internal or external to the model. It does not include a model of hippocampus replay 
and these of the shelf models are not necessarily online models. Practically speaking, the amount of code 
dedicated to a neural network model is about 5-10% of the total code volume of our implementation 
(approximately 35 000 lines of carefully designed and optimized C++ code) whose added value is more than 
being the fastest possible implementation of a simple RNN. We propose a flexible solution that allow one to 
take full advantage of the available computing power in a heterogeneous and distributed system. We chose to 
rely on the same accelerated linear algebra libraries for CPU and GPU named MKL and CUBLAS and to 
write custom kernels for implementing functions that do not already exist (for instance the Bayesian place-
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cell decoding finite element method based on a Gaussian kernel). It is always possible to change the 
implementation of a model later and use another learning paradigm. Our objective is to test several hypothesis 
and to explain the internal functioning of a biologically plausible model. Exhibiting the best learning 
performances possible is not a primary objective but using efficiently the computing power provided by 
today’s modern computing architectures for reducing significantly the time to result is a very valuable 
advantage. 

We will present here the software design of the Temporal Recurrent Network solution. The detailed design 
part is omitted because it will have required at least 80 pages of pure software engineering. This is not the 
goal of a thesis manuscript and the following page aim at document the non-trivial and careful design and 
implementation of a fully asynchronous and distributed neural network simulator that exploits several degrees 
of parallelism and modern computing architectures while being easily interfaceable with many existing third 
party simulators. The same simulator can run on a simple laptop or on a modern high performance cluster of 
computers equipped with the best in slot CPUs and GPUs. It is based on C++ language because of its 
sophisticated features and its efficiency at execution. 

The whole source code is available at https://github.com/NicolasCAZIN/TRN 

2.3.1. Use case 
The most synthetic and important view in a system design is the use case. Figure 37 summarizes the different 
services offered by the developed solution in an abstract manner: 

 
Figure 37: Use case diagram of the TRN solution 
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The main idea is to provide to an experimentalist an easy way to run simulations of neural network models on 
different architectures: a simple laptop, a robot, a workstation or a cluster. The underlying functionality for 
providing this ability to execute simulations on a heterogeneous architecture is to schedule simulations on 
simulators powered by different computing architecture. It also includes a load balancing mechanism not 
represented here. The ability to preview quickly results is important when designing a numerical experiment 
and storing the raw results in an easily usable format is essential for extracting valuable observations on an 
analysis phase. Reading data generated from 3rd party software like MATLAB is also required for working 
efficiently in a collaborative scientific work. The experimentalist is required to use a model that works with a 
given dataset and the model results depend on the parameters and initial conditions. The TRN solution 
provides a parameter search mechanisms based on simulated annealing for finding a global set of parameters 
that allows the model to simulate the experiment properly, or to asses that that the problem observed is deeper 
that a simple parameter configuration issue. A grid search mechanism is also provided for studying the effect 
of a limited set of parameters on several instances of the model. The elaboration of a model is iterative and 
requires many trial-error steps. The ultimate goal of the TRN system is to facilitate this tedious work. 

2.3.2. Design 
We choose to design the TRN solution as a library with different language bindings and a limited number of 
executables programs, extensible thanks to a plugin system. The architecture is based on the Model View 
Presenter (MVP) pattern and allows one to easily extend or use TRN. 

 
Figure 38: The Model View Presenter architecture used by TRN 

The user sees the View updated by the Presenter and manipulates indirectly the Model by using the interface 
(see section 2.3.2.1) provided by Presenter, which also conveys events and data generated by the Model. In 
our case, the user can be a human user that previews the results through observables provided in real time by 
the model and rendered with a graphical library or it could be another simulator that interacts with TRN by 
using the same programming interface. 

2.3.2.1. Application Programming Interface 

The entry point of the TRN solution is an application programming interface acting as a Facade design pattern 
and provides to the programmer the tools required for using an extending TRN through a hierarchy of 
interfaces illustrated in Figure 39. 
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Figure 39: Different interfaces organized as different namespace 

Several interfaces are available and they provide to the programmer different levels of complexity, allowing 
him to implement the tools that participate to the realization of use cases described in Figure 37. The interfaces 
hierarchy is articulated around asynchronous function calls and several interfaces allow one to exploit the 
system in a simplified manner while other interfaces allow the programmer to defined extension points, 
exploited in a transparent manner by the system. It could be described as follows: 

 The Basic api allows the programmer to instantiate an engine based on a particular computing 
architecture handled the Backend. It is also possible through this interface to setup the logging 
subsystem and to access to common support functions allowing one to refer to a particular simulation 
when calling other interface functions. The base class for the plugin interface is defined here. A plugin 
is required to implement a standard initialization based on text arguments and uninitialization routine  

 The Sequence api is used for declaring sequences in the system and the plugin interface provides 
methods that will use transparently the Sequence api and require the plugin programmer to implement 
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methods for accessing a sequence in a dataset according to a hierarchical pointed notation contained 
in a standard string. 

 The Search api is used for defining global optimization algorithm supposed to find the optimal set of 
parameters for a particular experimental condition. The plugin interface provides to the programmer a 
standard manner of implementing a global search algorithm through a restricted set of methods. 

 The Advanced api is based on the Basic interface and defines the whole set of functionalities accessible 
to the user. 

 The Callbacks api defines the set of methods that conveys the results provided by a simulator through 
the arguments of these methods. The plugin interface provides a standard and transparent manner for 
a program for being called back when a result is available and an action is required. It is possible to 
attach to the TRN system several plugins implementing the Callbacks interface. They will be evaluated 
in parallel. 

 The Custom api aggregates the Facade functions required for building custom model parts requiring 
the user to reply to the request of the simulator. This is used for example for defining a custom encoder 
model where the next location prediction will be used as a target location for a mobile robot. Once the 
mobile robot reached this target point, the custom encoder model will provide to the simulator its 
estimated position through a callback. The plugin interface allows one to extend the TRN system with 
custom plugins and it uses transparently the Custom api. Only one custom plugin at a time is allowed. 

 The Extended api is based on the Advanced api allows one to define a simulation without necessarily 
requiring the use of Custom and Callbacks interfaces. It provides the methods for building and running 
a simulation by encapsulating calls to Extended the api and use when required the functors declared 
through Custom and Callbacks interfaces. 

 The Simplified interface provides a unique method named compute() that allows the user to specify a 
scenario file written in XML, JSON, INI or INFO format. It is a complete simulation procedure that is 
able to use the full set of methods exposed by the Extended Custom, Callbacks, Search and Sequence 
apis. It is either possible to provide implementation of these interfaces through C++ functors or by 
specifying in the scenario file a plug-in implementing the corresponding interface. This is the easiest 
way to run multiple simulations in parallel and to store the generated results in a compressed and 
structured file format. 

2.3.2.2. Model 

The role of the Model in the MVP architecture is to define a set of objects representing an abstraction of a 
simulation independent of the implementations, performing the required computations on different computing 
architectures. We used a Bridge design pattern for allowing the definition of two orthogonal classes’ 
hierarchies named the abstraction and the implementation. 
The abstraction class hierarchy represents objects that contribute to the definition of a simulation. A Reservoir 
and its unique concrete subclass WidrowHoff model specify the methods and attributes relative to the 
simulation of the consolidation model described in Figure 7. Neurons states and synaptic weights aggregates 
are implemented by a Matrix, Batch or Bundle that are initialized by classes deriving from Initializer. A Loop 
class allows one to evaluate the Reservoir once trained. Copy is the simplest Loop possible and copies the 
readout activation pattern in the input layer of the Reservoir. The Custom loop allows one to implement its 
own Loop by providing a callback function and SpatialFilter represents a loop with an additional 
representation decoded from the readout activation pattern by a Decoder and encoded before reinjection by 
an Encoder. Custom represents a user specified encoder and Model is an isotropic Gaussian place-cell model. 
A Decoder represents a place-cell decoding method. Linear represents the linear decoding method based on 
the standard dot product; Map is the kernel dot product Bayesian method described in section 2.4 that uses an 
arbitrary firing rate map and Model is the decoding method that uses the same place-cell model as the Model 
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decoder. A Scheduler computes a Scheduling, which is concatenation of the time indexes of the sequences 
contained in a training set, represented by the class Set. The Tiled scheduler is the simplest one and consists 
in repeating several times the contiguous time indexes of an input sequence. Snippets represent the replay 
model described in Figure 7 and Custom allows the user to specify is own scheduler in a callback. A 
Measurement performs gather observations either on the readout layer or on the Decoder output.  

 
Figure 40: Class diagram of the overall model simulating multiple animats 
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A Simulator holds references to the classes aforementioned and represents one to several instances of the same 
simulation initialized with different random seeds. This allows one to simulate in parallel several animats on 
the same computing device. The Message class defines the internal communication interface shared by the 
abstraction classes implementing an Observer design pattern.  
All the abstraction classes are implemented by several support classes named Memory, Random and Algorithm 
that are specific to a computing device. They are owned by a Driver that allows every class from the 
abstraction hierarchy to be a Bridge and admit either a CPU or a GPU implementation. Thus, a simulator 
could be instantiated and executed transparently on the computing device available on the target machine. It 
is possible to extend the supported architectures by writing a supplementary implementation of a Driver. For 
instance, it could be implementation targeting a modern FPGA or a more generic but less performant 
implementation based on OpenCL. 
 
Several decorators of a Simulator are available and allow one to instrument transparently and optionally a 
simulation without affecting the performances when not required. The Performances decorator measures and 
report the simulation speed in number of cycles per second (Hz) and the achieved computing throughput 
(single precision Gflops/s), the Scheduling decorator reports the dynamic training set as the time indexes 
generated by a Scheduler during a training episode. States and Weights report the neurons and synaptic weights 
of the Reservoir object. 

2.3.2.3. View 

The view allows the user to observe data provided by the model and a view component must implement an 
interface able to decode a formatted stream of data. This stream of data can come from the calling parameter 
of a user implemented callback declared through dedicated parts of the Application programming interface, 
or can be a simple hypercube stored into NetCDF or MATLAB format for instance. A 3rd party software like 
ParaView or MATLAB might be used for examining the results and adjusting a scenario file that will describe 
how the controller must be used in order to simulate a particular experiment split in multiple conditions. The 
only TRN components related to the view part of the model are the plugins called Monitor and Display and 
they both implement the Callback interface. 

 
Figure 41: An example of the monitor plugin displaying performances information on the standard output.  
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Monitor provides a simple text summary of the different events generated by the model and Display renders 
trajectories, neurons rasters and sequence scheduling information. OpenCV is used for its windowing and 
rendering primitives. 

 
Figure 42: An example of the Display plugin rendering multiple trajectories computed by several simulators using 4 GPUs 

The view part is not really developed in TRN and is left to third party software like MATLAB or ParaView 
specialized in scientific data visualization. 

2.3.2.4. Presenter 

The presenter’s role is to mediate the user’s events captured by the View and Simulators maintained by the 
Model. A Worker holds zero or several Simulators backed by the same Driver instance. It is particular Node 
whose role is to receive incoming Messages provided by the Communicator and to translate them into the 
appropriate Simulator method calls. A Node is a particular Task that maintains a Cache for received data and 
is implemented by a shared memory mechanism. This allows multiple Node running on the same computer to 
mitigate the communications by avoiding the Broker to send an already sent data chunk having the same 
checksum. A Broker is a particular task whose role is to send asynchronous messages to several Nodes 
represented by Processors whose life cycle and scheduling is managed by a Manager. A Communicator might 
use a Compressor for reducing the Message traffic between a Broker and its corresponding Nodes. It serializes 
Messages and establishes a communication channel between a Broker and one or more Node. Messages 
propagates through a local message queue with a Local communicator, a remote TCP/IP socket with a Remote 
communicator and over MPI channels with the Distributed communicator. When using a Remote 
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communicator, a Proxy is instantiated instead of a Worker. Its role is to behave like a Worker, but instead of 
using a Simulator, it will act as a regular Broker by implementing the Node methods with calls to Dispatcher 
methods. The Dispatcher owns another communicator that establishes a relationship with a Worker. This 
communicator polymorphism allows one to deploy TRN over a heterogeneous and distributed infrastructure. 

 
Figure 43: Class diagram of the Presenter layer and related artifacts 

Two artifacts provide the TCP/IP and MPI connectivity and allow one to adapt the deployment on different 
and heterogeneous computer architectures mediated by a network: 

 Worker.exe is an executable that instantiates a unique Worker and a Distributed communicator. It is 
used for declaring an MPI process that will exploit a particular computing device on a given host. It is 
also possible to oversubscribe to the same computing device by specifying several times the same 
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computing device on the same host. It might be required for reaching the maximum performance 
possible in specific cases. 

 Server.exe is an executable that is specifically used when the host executing the Client side software 
is a lightweight computer with almost no computing power and dedicated to monitoring or recording 
results. It could be deployed on a remote workstation equipped with several CPUs/GPUs or on a more 
modest computer that will play the role of the MPI cluster controller while providing a TCP/IP 
interface. 

Several deployment examples are described in section 2.3.5. 

2.3.3. Components 
The MVP architecture described above result in several components and artifacts described in Figure 44: 

 
Figure 44: Component diagram of the TRN solution 

The Client.exe program uses the Simplified interface and allows the user to compute simulations. Simulations 
could be executed on the same host by using a Local communicator and exploit transparently the computing 
power of a CPU through the MKL library or the GPU through the CUDA toolkit. It is also possible to offload 
the execution of simulators on a remote computed through a Remote communicator that will be used also by 
the Server.exe artifact for acting as a Proxy between the Local communicator of the remote host executing 
Server.exe and the Remote communicator of the local host executing Client.exe. Worker.exe is deployed and 
installed on computer nodes being a part of an MPI cluster. Rat.dll simulates a rat by implementing Custom 
callbacks related to the position and place-cell activation pattern, SimulatedAnnealing.dll and Grid.dll provide 
global parameter search algorithm by implementing the Search interface. Display.dll is intended to offer a fast 
graphical preview of results by using OpenCV for implementing the Callbacks interface. MatFile.dll 
implements the Sequence interface for providing stimuli sequences to TRN from a MATLAB .mat file and 
implements the Callbacks interface for recording result in a structured .mat file. 
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2.3.4. Language bindings 
TRN4CPP is a C++ interface and provide all functionalities to a C++ program. TRN4MATLAB is a component 
that allows a MATLAB script to use TRN through the Simplified, Sequences and Basic API (see Figure 45) 

 
Figure 45: The TRN4MALTAB component provide to a MATLAB script a limited set of TRN4CPP interfaces 

TRN4MATLAB is based on the MEX interface provided by MATLAB. Other interfaces involving asynchronous 
callbacks are not implementable because MATLAB does not support multitasking. TRN4JAVA is the Java 
binding of most of the TRN4CPP interfaces. It relies on the JNI interface of a Java virtual machine and allows 
a third party simulator to use TRN and to interact with it through Java interfaces provided by TRN4JAVA. 
Figure 46 illustrates the TRN4CPP interface Java bindings. 

 
Figure 46: TRN4JAVA allows one to interface a third party simulator (SCS, a robotic simulator from USF Tampa) 
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2.3.5. Deployment 
The components and artifacts provided by TRN allow the user to launch simulations in various situations 
while taking advantage of computing accelerators like modern GPUs. The simplest deployment possible is on 
a laptop computer, equipped with a modest CPU and or GPU. Figure 47 illustrates the relationship between 
components, interfaces and artifacts. 

 
Figure 47: Deployment on a standalone computer 

The Client.exe program is invoked on a computer and is configured for using a local communicator, allowing 
the user to launch multiple simulations on the CPU and GPU at the same time. It is not recommended because 
a significant part of the CPU time will be dedicated to managing the GPU and it will have the effect of slowing 
down the GPU simulation. If one or more GPU are used, it is recommended not to use the CPU backend. This 
deployment also accounts for a standalone workstation equipped with one or more GPUs. 
Another use case allows a lightweight or embedded computer to offload the simulations to a remote 
workstation. This is illustrated in Figure 48. A Remote communicator is used on the laptop instead of the Local 
communicator in Figure 47. 

 
Figure 48: Deployment of a remote Backend for offloading simulations 

A robot can execute the Client.exe, provide a position estimate and the corresponding place-cell activation 
and offload the model learning tasks to a remote workstation. It is possible for different Client.exe instances 
to use the same remote Server.exe. It means that a workstation can handle the computational load of multiple 
robot. It is also possible to execute a MATLAB script on a modest computer and to offload the computational 
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load on a remote workstation equipped with modern computing devices and exploited with a Local 
communicator. Another more sophisticated and deployment would involve one or more workstation running 
Worker.exe in order to define an MPI based cluster. Server.exe and Worker.exe must be ran with the 
mpiexec.exe or mpirun.exe tool provided with the MPI bundle of a particular vendor. It is also possible to use 
a Distributed communicator on the laptop computer by including Client.exe in the arguments of the execution 
MPI tools. If the client software is not Client.exe by another client based on the same API, it must be invoked 
as an MPI process as well. It is not always possible to invoke the client as an MPI process. In this case, a 
TCP/IP connection must be used for separating the Frontend part from the Backend part. 

 
Figure 49: Cluster deployment of TRN with a TCP/IP Server 

It is then possible to simulate an important number of scenarios in a limited amount of time by using all the 
computing resources available over a local area network (LAN). The cluster used for producing all the results 
described in 2.4 and 2.5 is specified by the deployment diagram in Figure 50. A lightweight laptop executes 
Client.exe is responsible for reading the simulations described in scenario.xml and to compute them. Results 
are stored in a MATLAB mat file and Client.exe communicates through a TCP/IP link with Server.exe 
executed on the cluster controller as an MPI process. Computing nodes are equipped with one or more 
computing device and execute several instances of Worker.exe as MPI processes. We propose to evaluate the 
performances of this cluster by running several simulations in parallel by setting the dimensioning factors 
evoked in 2.3 and to use the Performances decorator for measuring the simulation speed (number of simulation 
cycles per second) and the single precision computation throughput (number of single precision floating point 
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operations per second) during the TRAIN, PRIME and GENERATE phase. These 3 phases does not involve 
the same algorithms and need to be measured separately. 

 
Figure 50: Deployment of the heterogeneous Cluster used in this thesis 

The reference simulator used for producing the results described in section 2.1 was based on an optimized 
CPU version using SSE4.1 instructions and the 12 cores provided by the Xeon X5675. The theoretical 
throughput of this CPU is 294 Gflops/s. It was not possible to measure the effective throughput but the 
simulation speed was measured at approximately 2000Hz. This will be the reference of our benchmark. The 
new simulator implemented use the notion of mini-batch during the training phase. This result in the usage of 
several matrix-matrix multiplication instead of multiple matrix vector product computed serially. The matrix 
vector product is bandwidth limited and it is never possible to reach the theoretical computing throughput 
because too many global memory accesses (slow) are performed regarding the number of arithmetic 
operations. The CPU version implemented by the CPU driver of TRN is based on MKL and achieves the 
following performances: 

 Train: 2955 Hz @ 9,43 Gflops (1,47x speedup) 

 Prime: 2184 Hz @ 8,12 Gflops 

 Generate:40Hz @ 192 Gflops 

The moderate performance increase of the training phase is due to the use of mini-batch. When using a GTX 
1080 with the total drawing power limited to 115%, the maximum throughput an algorithm can reach is 10240 
Gflops because of the increased GPU clock. This clock might decrease at one point because the heat produced 
is too important. This is the maximum peak performance. The same scenario executed on a unique GTX1080 
overclocked gives the following performances: 

 Train: 52847 Hz @ 168,84 Gflops (26,42x speedup) 

 Prime: 34367 Hz @ 127,72 GFlops 
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 Generate: 1156 Hz @ 9746 GFlops 

One can notice that the speedup in training is about 26 times quicker than an optimized CPU version and the 
theoretical throughput is almost reached during the generation phase. This is explained by the fact that an 
optimized kernel has been developed and the number memory access was minimized regarding to the number 
of arithmetic operations required. When running the same experiment in a cluster configuration by using all 
the modern GPU available (8x GTX 1080 and 1x Tesla k40c overclocked, theoretical throughput 88 590 
GFlops), the following performances are observed: 

 Train: 454875 Hz @ 1446.5 Gflops (227,43x speedup 

 Prime: 301005 Hz @ 1081.62 Gflops  

 Generate: 9993 Hz @ 84236 Gflops (95% efficiency) 

The cluster is about 227x faster than the original implementation and it is possible to reach the simulation 
speed of 454 KHz in training mode. The computing throughput is still limited by the matrix-vector 
multiplication used in the evaluation of neurons states and it is not possible to compute it faster. The generation 
mode displays a computing throughput of 84236 Gflops, which correspond to 95% of efficiency. It would be 
difficult to go further in terms of optimization. Even the optimized matrix-matrix multiplication provided by 
GPU vendors does not reach the theoretical throughput of their devices. The achieved speedup makes possible 
new investigations requiring orders of magnitude more computing power. The TRN solution is capable of 
exploiting the computing power provided by a modest development cluster by using all degrees of parallelism 
available. It is possible to simulate numerical experiments faster by embedding the TRN solution in containers 
and executing it in a wider cluster but our low latency, moderate computing power cluster having a fixed cost 
is sufficient for the remaining experiment. 

2.4. Prefrontal cortex reservoir network learns to create novel 
efficient navigation sequences by concatenating place-cell 
snippets replayed with spatial credit assignment in 
hippocampus 
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2.5. Real-time sensory-motor integration of hippocampal 
place-cell replay and prefrontal sequence learning in a simu-
lated rat robot (Experimental results to come) 



145 



146 

 



147 

 



148 

 



149 

 



150 

 



151 

 



152 

 



153 

 



154 

 



155 

 



156 

 



157 

 



158 

 



159 

 



160 

 



161 

 



162 

 



163 

 



164 

 



165 

 



166 

 



167 

 



168 

 



169 

 



170 

 



171 



172 

 



173 

 



174 

 



175 

 



176 

 



177 

 



178 

  



179 

2.6. Neurodynamic properties of the semantic network. 
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3.Discussion 
We set out to determine how the replay of experienced behavior could allow for a form of optimization of 
learning, within the behavioral and neurophysiological context of the “traveling salesrat” paradigm.  Here, 
rats are observed to find the most efficient path linking a set of baited food wells, in a surprisingly short 
number of trials. We hypothesized that the organized replay of recently experienced behavior could allow the 
rat to amplify its experience, and contribute to the fast resolution of the problem.  A major question then 
concerns how the replay can bias learning towards the optimal solution.  During the thesis, we developed a 
replay algorithm that propagates reward value along the replayed trajectory, thus implementing a form of 
spatio-temporal credit assignment in a reinforcement-learning context, by biasing replay probability to favor 
snippets that are on an efficient path to a rewarded location.  We then demonstrated how the PFC-like reservoir 
could learn from this biased distribution of replay in order to consolidate the most efficient path.  In the 
following sections, we situate this work in a broader context and discuss its pertinence within these domains. 
 
The TSP problem is a global optimization problem and the behavior of an agent that is able to solve this 
problem could be demonstrated with a reinforcement learning algorithm like Q-Learning (Sutton and Barto 
1998; Barrera et al. 2015) by learning the successful action sequence maximizing the expected reward. It 
requires an explicit discretization of perceptual observables states and an explicit reward but does not require 
a model of the environment. 
 
Experiments with an animat require defining an embodied and situated agent equipped with sensors and 
actuators and a behavioral control architecture that relates its perceptions to its actions and allows it to survive 
in its environment. We defined a sensor model by considering the hippocampus place-field response to a 
particular location and a transition model by restricting the locations the agent can reach at each time step to 
a circle around the center of its body. Thus, we defined a simple navigation policy by selecting at each time 
step the most probable location encoded in the prediction of the next place-cell activation pattern, based on 
forward and backward random replay of snippets taking into account the notion of reward. By doing this, we 
defined two generative models. A generative model is “an internal model that encodes the probabilistic 
relations between states, actions, and rewards. Such a model permits to generate observable data given some 
other hidden (non-directly observable) parameters, and ultimately permits to estimate the value of a plan“ 
(Pezzulo et al. 2014). The first generative model provides short place-cells activation sequences given a stream 
of sensory input and the associated reward information. It emulates the replay phenomenon observed during 
awake SPW-R. Snippets are randomly drawn from a replay likelihood estimated with a recursive algorithm 
based on , described in (Sutton and Barto 1998) and implementing a form of reinforcement learning. 
The snippet replay direction has the effect of propagating the reward forward and backward in time, allowing 
one to have an estimate of the future reward. The recursive definition allows the generative model to be 
compatible with a recurrent neural network structure, also found in area CA3 of the hippocampus. Once learnt, 
the replay generative model is able to produce snippets that reflect the accessible rewards information. When 
coupled with a stimulus coding a space information, it is thus possible to generate a dynamical training set 
that represent sub-trajectories associated to a reward. This dynamical training set is used for training the 
second generative model which is the consolidation model (see Figure 6) implemented by a PFC and ST model 
(see Figure 7). This model exploits the reservoir’s ability to align in neurons state space the activation 
sequences sharing a common subsequence. This result in the concatenation of overlapping subsequences of 
place cell activation and when overlapping subsequences reflect the overlapping subsequences related to a 
reward, it is then possible to concatenate efficient parts of trajectories experienced before. The learning rule 
is very simple and as opposed to other recurrent neural network model using Backpropagation through time 
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or other complex algorithms, we solved the credit assignment problem by pairing two models, implementable 
by random recurrent networks. 
 
At this point, multiple efficient trajectories might exist and it is possible to give an account of all the 
trajectories the agent can generate based on the consolidated knowledge of the trajectories previously 
encountered and the reward information associated with salient points of these trajectories by simulating 
several random walks of an agent implementing this generative model. Findings described in section 2.4 
provide a link between awake SPW-R and hippocampal memory processes involved in a goal directed 
behavior. Simulated agents exhibited a behavior suggesting an incremental update of their internal 
representation of the world, based only on the cumulated and rewarded experiences acquired during the 
previous trials. Snippet replay allowed the agents to recombine rewarded parts of the previous trajectory and 
to consolidate a trajectory between feeders that privileges paths between baited feeders. It is possible to 
consolidate the multiple trajectories that exist between baited feeders by exposing a sequence learning model 
more often to place-cell subsequences related to a reward. Finally, we studied the TSP, which is a particular 
optimization problem by implementing a generative model of the optimal sequence with a HC-PFC-ST joint 
model featuring a particular form of replay during awake SPW-R that emphasizes short rewarding sub-paths. 
An interesting perspective could be to extend this study by implementing a more comprehensive model of 
hippocampal replay as characterized in (Gupta et al. 2010).  

Hierarchical hidden Markov model  
Reservoir states form a lattice of observable states whose transition probabilities result from the likelihood of 
a snippet to be replayed. In fact, the PFC model based on reservoir computing allows the model to respect the 
Markov assumption by maintaining and providing at each time step an account of the recent observable (place-
cell activation) states. It associates to any stimuli sequence a state that is characteristic of the recent history of 
stimuli sequence and the mnesic abilities of the PFC model are mainly determined by the number of neurons, 
the spectral radius (maximum absolute value of the eigenvalues) of the recurrent connectivity matrix and the 
leak rate that reflects the time constant of the neurons by emulating the resistive and capacitive properties of 
neurons membrane. Reverse replay (Foster and Wilson 2006b; Ambrose, Pfeiffer, and Foster 2016) is a 
potential mechanism to the credit assignment problem encountered in reinforcement learning : In addition of 
virtually exposing the agent to transitions between locations in both directions as demonstrated in (Gupta et 
al. 2010) and in section 2.3, we demonstrated that reverse replay of snippets allows the backward propagation 
of the reward through the reverse consolidation of place-cell transitions related to trajectory parts emphasized 
by reward and forward replay emphasizes forward transitions between place-cell patterns (Wikenheiser and 
Redish 2014). 
 
We proposed a hierarchy of discrete time models which could be viewed individually as an autonomous hidden 
Markov model (Markov 1913; Dugad and Desai 1996; Jurafsky and Martin 2017). It is then possible to view 
the animat model as a hierarchical hidden Markov model (Fine, Singer, and Tishby 1998) 
With a fully specified hierarchical hidden Markov model implemented by our joint HC-PFC-ST model, it is 
then possible to benefit from several algorithms:  

 Forward algorithm: It is possible to evaluate a belief state of the agent at a given time which is the 
probability of a position at a particular time, given the history of place-cells activation values by applying 
the forward algorithm on the HHMM. It consists in recursively evaluating the probability of the agent’s 
position given successive place-cell activation patterns. With the help of the forward algorithm on a 
HHMM, is then possible to: 

1. Filter a position by estimating the posterior distribution of current position given all available 
place-cell activations 
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2. Predict a position by estimating the posterior distribution of a future position given all available 
place-cell activations 

The recursive definition of the forward algorithm allows one to evaluate the belief state of the agent’s 
position given all available place-cell activations (the likelihood of the trajectory) online during navigation 
and opens the door to online planning.  

 Viterbi algorithm: It is possible to find a sequence of observable states (reservoir states) that reflects a 
sequence of hidden states (position of the agent) that maximizes the reward and minimizes the walking 
distance of the agent during a trial by using a Viterbi algorithm (Viterbi 1967). This is a solution to the 
TSP problem and we demonstrated that our joint HC-PFC-ST model is sufficient for learning a state 
transition model that does not require an explicit discretization of perceptual (observable) states. Viterbi 
algorithm rely on the forward algorithm and instead of estimating recursively the posterior distribution of 
a position at a particular time given all the place-cells activations observed so far, one can estimate 
recursively the probability of the most probable path to each position given all available observations. 
Practically speaking a Viterbi algorithm can be implemented by selecting at each time step of a trajectory 
the location that maximizes the current forward path probability, which is given by the product of the 
previous forward path probability, the transition probability given by the transition model and the state 
observation likelihood given by the sensor model. The preplay of place-cell subsequences related to the 
current location of the agent observed in (Diba and Buzsáki 2007b) could be interpreted as a prospective 
mechanism playing a role in the evaluation of possible solutions related to the current agent’s situation 
(Pezzulo et al. 2014). Since the forward algorithm is recursive, it is possible to maintain an estimate of the 
current position with the place-cell activations encountered gradually and to evaluate the outcomes of the 
possible trajectories derived from the current trajectory and the remaining suffixes suggested by the 
snippets being replayed. Implementing this algorithm in our model would imply to implement the online 
prospecting mode described in Figure 7 panel C. 

 Forward-backward algorithm: A hidden Markov model relies on parameters transition probabilities and 
emission probabilities. The standard algorithm for training a HMM and to find the model that explains a 
given sequence is the forward backward algorithm or the Baum-Welch algorithm (Baum and Petrie 1966; 
Welch 2003). It is a special case of the Expectation-Maximization algorithm. The algorithm is iterative 
and consists in 2 successive procedures repeated for each iteration until convergence that can be 
summarized as follows: 
1. Expectation: For 1 < t < T apply the following algorithms: 

 Forward: The forward algorithm is used in order to estimate the probability of observing t 
available place-cell activations and being in the current position on time t. 

 Backward: The backward algorithm is also a recursive algorithm on a HMM that is used for 
smoothing a position by estimating the posterior distribution of a past position given all 
available place-cell activations. It computes the probability of ending with T-t place-cell 
activation given the current position at time t 

2. Maximization: Update the actual emission and transition probabilities and the initial position 
distribution estimates by using the results computed in the expectation step 

There is no trivial link between the forward backward algorithm and the snippet driven learning paradigm 
we are using for training a random recurrent neural network but in (Unkelbach, Yi, and Schmidhuber 
2009), the authors propose an expectation maximization algorithm training algorithm for recurrent neural 
network (Greff, van Steenkiste, and Schmidhuber 2017) performing a time series prediction task. In (Ma 
and Ji 1998), the authors demonstrate a learning algorithm for echo states networks (Jaeger 2001) whose 
formulation is very close to temporal neural network (Dominey 1995). There exists also a training method 
based on Kalman filter for training a recurrent neural network (Puskorius and Feldkamp 1994). 
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We hypothesize that snippet driven learning of a reservoir model fits in this framework. The expectation 
step, which consists in estimating the joint probability distribution over positions, conditioned on the 
observed place-cell activation sequences given the current readout synaptic weights, could be implemented 
by using random replay of snippets in forward and backward direction. The maximization step could be 
assimilated to the gradient descent procedure used for training readout weights. Finally, the iteration of 
the expectation maximization algorithm until convergence could be implemented by allowing the snippet 
driven learning to occur between each trial during several trials, until the generated trajectories converge 
to an efficient trajectory. This corresponds to the awake snippet replay we modelled and studied. 

We then propose to extend the snippet driven learning paradigm by integrating the trajectory generated during 
the previous trial as a part of the awake SPW-R content. An additional exploratory navigation policy might 
be required and this allows the animat to mimic the rat behavior. This is the subject of a collaborative work 
with USF Tampa described in section 2.5 

Free energy and active inference 
Hidden Markov model is a particular case of dynamic Bayesian network. It is possible to describe the animat 
implementation of a joint HC-PFC-ST model under the light of the free energy framework as a hierarchical 
Bayesian model (K. Friston 2008). By describing our model within a unified framework, it allows one to view 
the model with a high level of abstraction while relying on correct neurophysiological basis and to extend the 
model with ad-hoc or neuro-mimetic components for studying other problems that could be explained with an 
active inference model. An example could be the work accomplished in section 2.6 which relies on the same 
mixed selectivity property observed in reservoir computing (Rigotti et al. 2013; Enel et al., n.d.) or the 
hierarchical model used in this thesis and illustrated in Figure 6. A collaboration with ISTC CNR had been 
initiated during a visit (see Rome-ITALY 2017 Presentation) and aims at proving more rigorously that the 
animat as we modelled it in this thesis learns a generative model minimizing free energy, based on the existing 
work about free energy based models (Klaas Enno Stephan et al. 2010; Chumbley, Dolan, and Friston 2008; 
Kiebel et al. 2009; K. Friston 2003; K. J. Friston, Daunizeau, and Kiebel 2009; K. Friston et al. 2016; K. J. 
Friston et al. 2017).  

Global optimization 
The TSP is a global optimization problem and from this point of view, it is interesting to compare the heuristic 
implemented in this thesis with existing algorithms able to solve the TSP. 

The number of possible sub trajectories combinations is dramatically reduced when taking into account the 
reward and using reverse replay when training the consolidation model allows one to consider only a non-
directed graph problem by virtually exposing the consolidation model to trajectory subsequences in forward 
and reverse direction. It is necessary but not sufficient for allowing an agent to navigate We had to evaluate 
the animat’s trajectories in non-autonomous mode when reverse replay was required for consolidating 
solutions derived from sub trajectories in reverse direction. It caused a tendency to revisit feeders already 
visited and no longer containing food. One needs to implement a preplay mechanism (Diba and Buzsáki 
2007b) that will replay snippets related only to future rewards, given the current position of the animat and 
excluding the snippets associated to a reward perception that minimizes the error with the reward prediction 
by updating the learning rule of the replay model. It is then possible to realize a Viterbi algorithm that will 
allow the animat to generate the optimal sequence. 

The closest heuristic that solves the TSP is the ant colony system (ACS) (Dorigo and Gambardella 1997; Yang 
et al. 2008), where multiple agents (ants) deposit an amount of ‘pheromones’ that is proportional to the length 
of their tour in the solution space. Each agents moves stochastically according to the concentration level of 
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pheromones in the solution space and increases this concentration level each be releasing more pheromones 
along the trajectory they just described. The possible shortest routes emerge as the paths following the most 
concentrated pheromone trails. This is very analogue to the model we developed in this thesis if one considers 
that an ‘ant’ corresponds to the simulated agents when establishing a random walk map. The pheromone trail 
that is shared and built collectively by the ant colony is emulated by the incremental learning of the snippet 
replay likelihood through multiple replay episodes. The consolidation model allows one agent to generate 
trajectories related to rewarded paths (analogue to a path along the pheromone trail), either in an offline 
simulation during the consolidation process, or during an online generation/exploration process that will allow 
new paths to be discovered/associated and consolidated after the end of the current trial during SPW-R. 

Multiple timescale 
The recurrent networks we used in our implementation were relative to the same time constant, allowing them 
to function only in a restricted timescale that matches the intrinsic timescale of the stimuli sequence. We 
demonstrated multiple rewarded sequences consolidation properties with simplified trajectories displaying a 
constant speed and thus featuring a single characteristic timescale. Several authors demonstrated the function-
ing principle and some properties of recursive recurrent neural network (Tani and Nolfi 1999; Jaeger 2007; 
Yamashita and Tani 2008). The main idea is to consider two or three interacting recurrent neural networks 
having a characteristic timescale (leak rate). It is thus possible to view each network as a time basis: Any 
stimuli sequence could be decomposed in several spatio-temporal features resulting from one or more time-
scales. The readout layer can then select the spatio-temporal features correlated to the expected signal with an 
online and supervised learning rule. Intuitively, it is similar to a wavelet analysis/synthesis process. Learning 
selects the best time/space basis for representing a high-dimensional stimuli sequence featuring fast and slow 
variations. 

Deep learning 
Recent advances in machine learning and the raising computing power of modern computers allowed the 
emergence of the deep learning as a new applied research field. Briefly, it consists in processing a massive 
data amount with several hierarchical layers of neural networks, each layer learning more and more abstract 
representations of the dataset. A particular type of deep neural network is the recurrent neural network (RNN) 
whose static architecture is similar to the model used in this thesis. RNN are typically trained with a 
backpropagation trough time (Werbos 1990) or backpropagation through structure (Goller and Kuchler 1996). 
The subject is complex and an entire PhD thesis had been dedicated to the training of recurrent neural network 
(Sutskever 2013). The training algorithm we used for the consolidation model as described in 2.4 can be 
assimilated to a truncated back propagation through time (TBPTT) algorithm, learning only synaptic weights 
between the output layer and the unique hidden layer. Recurrent weights are never modified. The credit 
assignment problem inherent to sequence learning is solved very simply by training a replay generative model 
beforehand. Instead of modifying the synaptic weights of the recurrent connections according to a delayed 
form of reward, we used a form of  algorithm where the time delayed reward information is propagated 
through the place cell subsequences replay phenomenon observed during SPW-R. The resulting replayed place 
cell subsequences constitutes a dynamic training set for the consolidation model where only the place cell 
subsequences related to a reward are represented. This replay model emulates the activations of the 
hippocampus. The training process of the replay model might involve other areas of the brain, in particular 
for justifying at least the reward circuit, and the notion of novelty associated to place-cells transitions. At this 
point, we can state that our model is biologically inspired but is not necessarily biologically plausible. The 
replay and consolidation model are learnt only during SPW-R in order to elaborate a navigation policy based 
on a reward estimate. It is a form of reinforcement learning and the use of continuous recurrent neural network 
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allows one to consider continuous sensory and action states and a continuous time (a series of discrete time 
events separated by a delay that could be arbitrarily small). This model should belong to the deep 
reinforcement learning (Arulkumaran et al. 2017) family of algorithms because it “scales to decision-making 
problems that were previously intractable, i.e., settings with high-dimensional state and action spaces”. The 
overall model developed in this thesis might be considered as a deep temporal model (K. J. Friston et al. 2017) 

Cognitive maps 
We demonstrated that hippocampal replay is a suitable mechanism playing a role in offline consolidation and 
suggested that online planning could use this mechanism as well. 
In (Pezzulo et al. 2014), a generative model of plan values supporting vicarious trial-and-error and goal-
directed behavior is described. We implemented a generative model, implemented by a random recurrent 
neural network and described as a dynamic Bayesian network. We demonstrated the ability of our joint HC-
PFC-ST model to learn a generative model in a compact manner, robust to noise and benefiting from the 
neural network generalization ability. This work is an empirical attempt to demonstrate the argument 
developed in (Wikenheiser and Redish 2014) where the authors conclude that “sequences play a more active 
and complex role in information processing than encoding veridical experience. Their role in flexibly 
manipulating and permuting representations of space to generate novel paths that might aid action selection 
meshes well with the cognitive map envisioned by Tolman (Tolman 1948; Johnson and Crowe 2008)” 

Piaget schema 
The notion of schema had been introduced to cognitive psychology by (Piaget 1967) and (Bartett 1932) in 
their efforts to understand how new information is integrated with pre-existing knowledge.’ A schema can be 
viewed as ‘any organized network of overlapping representations that has the following properties:  

1. New information is better remembered when it fits within a pre-existing schema 
2. New information that challenges schema organization may cause modification of the existing schema 

or development of a new schema 
3. Schemas support novel inferences between indirectly related events and their generalization to new 

situations.’ 
We demonstrated in 2.4 that it is possible to establish a transitive relationship between parts of trajectories 
associated to a reward, based uniquely on random replay. The replay model implemented partially by the 
hippocampus model, proposes associations of rewarded trajectory parts and the consolidation model 
implemented by a model of prefrontal cortex and striatum, associates overlapping rewarded trajectories by 
aligning their spatiotemporal representations through the online association of the states of the reservoir’s 
neurons to the prediction of the next input of the consolidation model. Thus, it is possible to replay and 
consolidation models as the two parts of a schema generative model: Property 1 is ensured by the use of an 
online and supervised learning rule, which will attempt to incrementally reduce the error between the expected 
and generated states by adjusting synaptic weights of the readout layer (part of the striatum model) only. A 
new information that fits an existing schema will be encoded by the reservoir model in an area of the state 
space that contains state transitions learnt earlier. The required synaptic weight modification will be less 
important in this case and will be more important with a new information this is not yet related to consolidated 
(pre-existing) schema. Property 2 is also implemented by the online learning rule of the consolidation model. 
A challenging new information could be assimilated to an ambiguous state transition of the reservoir model, 
occurring when at least two overlapping snippets represent the same prefix 2D trajectory and bifurcate in two 
different direction. A balanced representation of the two snippets by the replay model will result in an 
ambiguous state transition that could be observed through multiple random walks. The existing schema is 
modified as the new ‘branch’ of the possible trajectories is represented and learnt. If this new branch is 
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overrepresented, the readout synaptic weights allowing the prediction of the old schema are progressively 
modified until the new schema is learnt. Finally, property 3 is implemented by the use of neural networks that 
have an intrinsic generalization ability. We demonstrated that the overlapping part of different snippets would 
be encoded in the reservoir neurons state space in similar areas. This allows the model to establish new paths 
between previously unrelated sub-paths. 

Computational psychiatry 
The prospective memory mechanism described in Figure 7 panel C was not investigated in this thesis. How-
ever, the simulation of future events contributes to the formation of plans and predictions. In (Schacter, Addis, 
and Buckner 2008b), the authors review “neuroimaging, neuropsychological, and cognitive studies that have 
examined future-event simulation and its relation to episodic memory” and “consider the applications of this 
work for research concerning clinical populations suffering from anxiety or depression in which pathological 
future thinking is a central feature”. By extending the model developed in this thesis, one could simulate past 
and future events associated to positive or negative outcome and simulate the ability of a subject to envision 
positive events. Other authors proposed to explain hysteria (Edwards et al. 2012) and psychotic symptoms 
(Adams et al. 2013) in terms of false inferences or beliefs. They “use a neurobiologically informed model of 
hierarchical Bayesian inference in the brain to explain functional motor and sensory symptoms in terms of 
perception and action arising from inference based on prior beliefs and sensory information”. The computa-
tional model developed in this thesis extended with a prospective memory mechanism and neuromodulation 
mechanism could be an implementation of a hierarchical Bayesian temporal inference model that are of major 
interest for the emerging discipline of computational psychiatry as illustrated in (Klaas E. Stephan, 
Diaconescu, and Iglesias 2016; Valton et al. 2017). Computational psychiatry has suddenly made it possible 
to mine data from long-standing observations and link it to mathematical theories of cognition. It’s also be-
come possible to develop computer-based experiments that carefully control environments so that specific 
behaviors can be studied in detail (MIT 2017). 
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