
HAL Id: tel-01986362
https://theses.hal.science/tel-01986362

Submitted on 18 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A replay driven model of spatial sequence learning in
the hippocampus-prefrontal cortex network using

reservoir computing
Nicolas Cazin

To cite this version:
Nicolas Cazin. A replay driven model of spatial sequence learning in the hippocampus-prefrontal
cortex network using reservoir computing. Neuroscience. Université de Lyon, 2018. English. �NNT :
2018LYSE1133�. �tel-01986362�

https://theses.hal.science/tel-01986362
https://hal.archives-ouvertes.fr

1

N°d’ordre NNT : 2018LYSE1133

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
Opérée au sein de

L’Université Claude Bernard Lyon 1

Ecole Doctorale 476
(Neurosciences et Cognition)

Spécialité de doctorat : Neurosciences

Discipline : Informatique

Soutenue publiquement le 12/07/2018, par :
(Nicolas Jules-Henri CAZIN)

A replay driven model of spatial sequence

learning in the hippocampus-prefrontal cortex
network using reservoir computing

Devant le jury composé de :

FOURNERET Pierre Professeur des universités – Praticien hospitalier Président

DAMBRE Joni Professeure/GHENT University Rapporteure
ALEXANDRE Frederic Directeur de recherche INRIA/CNRS UMR 5293 Rapporteur
BEN HAMED Suliann Directrice de recherche ISC/CRNS UMR 5229 Examinatrice
FOURNERET Pierre Professeur des universités – Praticien hospitalier Examinateur
POUCET Bruno Directeur de recherche LNC/ CNRS UMR 7291 Examinateur

DOMINEY-Peter Ford Directeur de recherche / INSERM U1208 Directeur de thèse

2

UNIVERSITE CLAUDE BERNARD - LYON 1

Président de l’Université

Président du Conseil Académique

Vice-président du Conseil d’Administration

Vice-président du Conseil Formation et Vie Universitaire

Vice-président de la Commission Recherche

Directrice Générale des Services

M. le Professeur Frédéric FLEURY

M. le Professeur Hamda BEN HADID

M. le Professeur Didier REVEL

M. le Professeur Philippe CHEVALIER

M. Fabrice VALLÉE

Mme Dominique MARCHAND

COMPOSANTES SANTE

Faculté de Médecine Lyon Est – Claude Bernard

Faculté de Médecine et de Maïeutique Lyon Sud – Charles
Mérieux

Faculté d’Odontologie

Institut des Sciences Pharmaceutiques et Biologiques

Institut des Sciences et Techniques de la Réadaptation

Département de formation et Centre de Recherche en Biologie
Humaine

Directeur : M. le Professeur G.RODE

Directeur : Mme la Professeure C. BURILLON

Directeur : M. le Professeur D. BOURGEOIS

Directeur : Mme la Professeure C. VINCIGUERRA

Directeur : M. X. PERROT

Directeur : Mme la Professeure A-M. SCHOTT

COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET TECHNOLOGIE

Faculté des Sciences et Technologies

Département Biologie

Département Chimie Biochimie

Département GEP

Département Informatique

Département Mathématiques

Département Mécanique

Département Physique

UFR Sciences et Techniques des Activités Physiques et Sportives

Observatoire des Sciences de l’Univers de Lyon

Polytech Lyon

Ecole Supérieure de Chimie Physique Electronique

Institut Universitaire de Technologie de Lyon 1

Ecole Supérieure du Professorat et de l’Education

Institut de Science Financière et d'Assurances

Directeur : M. F. DE MARCHI

Directeur : M. le Professeur F. THEVENARD

Directeur : Mme C. FELIX

Directeur : M. Hassan HAMMOURI

Directeur : M. le Professeur S. AKKOUCHE

Directeur : M. le Professeur G. TOMANOV

Directeur : M. le Professeur H. BEN HADID

Directeur : M. le Professeur J-C PLENET

Directeur : M. Y.VANPOULLE

Directeur : M. B. GUIDERDONI

Directeur : M. le Professeur E.PERRIN

Directeur : M. G. PIGNAULT

Directeur : M. le Professeur C. VITON

Directeur : M. le Professeur A. MOUGNIOTTE

Directeur : M. N. LEBOISNE

3

Contents
Abstract .. 8

Acknowledgments.. 9

Glossary ... 10

1. Introduction .. 11

1.1. Prefrontal cortex and hippocampus in rodent navigation.. 14

1.2. Representing sequential behavior in neural networks ... 16

1.3. Hypothesis and objectives ... 17

2. Contributions.. 24

2.1. Proof of concept .. 26

2.1.1. C++/QT simulator .. 27

2.1.2. Complex sequence learning ... 30

2.1.3. Learning from random replay .. 33

2.1.4. Overlap ... 34

2.1.5. Noisy conditions .. 36

2.1.6. Reliability over multiple time scales.. 36

2.1.7. Sparse snippets replay .. 37

2.1.8. Consolidation of complex sequences ... 37

2.2. Towards a more realistic model .. 39

2.2.1. Use trajectories performed by a rat .. 39

2.2.2. Use of a place-cell model ... 40

2.2.3. Generate a set of snippets from multiple sequences based on reward 42

2.2.4. Defining a sensory-motor loop .. 44

2.3. High performance computing simulator ... 47

2.3.1. Use case ... 50

2.3.2. Design .. 51

2.3.3. Components ... 58

2.3.4. Language bindings ... 59

2.3.5. Deployment .. 60

2.4. Prefrontal cortex reservoir network learns to create novel efficient navigation sequences by
concatenating place-cell snippets replayed with spatial credit assignment in hippocampus 63

2.5. Real-time sensory-motor integration of hippocampal place-cell replay and prefrontal sequence
learning in a simulated rat robot (Experimental results to come) .. 144

2.6. Neurodynamic properties of the semantic network... 179

3. Discussion .. 212

Appendix .. 219

4

Communications .. 219

Chicago, IL-U.S.A 2015 Poster (SFN) .. 220

Chicago, IL-U.S.A 2015 Poster (SNL) .. 221

Paris-FRANCE 2016 Poster (CRCNS) .. 222

San Diego, CA-U.S.A 2016 Dynamic Poster (SFN) ... 223

Rome-ITALY 2017 Presentation ... 224

Related work .. 245

Bibliography .. 263

5

Figures
Figure 1: Panel A shows a picture of the rat performing the TSP related task and panel B represents a two
dimensional sketch of the optimal trajectory and the encountered place fields .. 12
Figure 2: Place cell sequences experienced during behavior are replayed in both the forward and reverse
direction during awake SPW-Rs. Spike trains for 13 neurons with place fields on the track are shown before,
during and after a single traversal. Sequences that occur during running (center) are reactivated during awake
SPW-Rs. Forward replay (left inset, red box) occurs before traversal of the environment and reverse replay
(right inset, blue box) after. The CA1 local field potential is shown on top and the animal’s velocity is shown
below. From (Carr, Jadhav, and Frank 2011). ... 16
Figure 3: A real life representation of the traveling salesman problem: minimizing the distance travelled while
joining main U.S. cities .. 17
Figure 4: A simplified instance of the TSP problem as an undirected graph. Five cities represented by letters
A, B, C, D and E are linked by routes, represented by a segment with a width proportional to the distance
between its boundaries ... 18
Figure 5: An optimal trajectory between feeders ABCDE is represented in panel A. Panel B, C and D display
non-optimal trajectories that contain a sub trajectory of the ABCDE trajectory. The sub trajectory shared with
the ABCDE trajectory is displayed in red and the non-optimal parts in blue. Panel B contains the ABCED,
panel C the EBCDA trajectory and panel D the BACDE trajectory. .. 19
Figure 6: Organization of the different functional modules used for defining an animat supposed to mimic the
rat’s behavior while incrementally solving the TSP problem .. 20
Figure 7 : OFFLINE modes model learning through STDP during SPW-R between each trial when the animal
is decoupled from the action-perception cycle and ONLINE modes model generation of a trajectory based on
prior OFFLINE learning and action perception cycles. Panel A shows the hippocampus model learning
recursively to generate snippets related to a reward, based on forward and reverse replay of recently
experienced place cell activation sequences. Panel B shows the synaptic weights being adjusted in order to
allow Striatum model to trigger the appropriate action relative to a stimuli sequence encoded by the Prefrontal
cortex model. Panel C and D shows the online modes used during navigation. ... 23
Figure 8: Internal Representations in the reservoir. Panel A shows the raster of simulated hippocampus place-
cell neurons activation over time. Panel B represents the raster of the reservoir’s neurons. Panel C depicts the
hippocampus, prefrontal cortex and striatum as we modelled them and features a supplementary artificial
neuron group called equivalent reservoir whose raster is represented in panel D. An equivalent reservoir
neuron represents in fact a principal component, as computed by the PCA algorithm. Panel E represents the
raster observed in panel D as a 3D trajectory resulting from the 3 first principal components. 25
Figure 9: Fréchet Distance. Panel A shows the free space diagram used during the computation of the Fréchet
distance between ABCED and ABCDE trajectories. X and Y axis represent the discrete steps between points
of ABCED and ABCDE trajectories. Z axis relates in meter the coupling distance between two points. The
coupling sequence is represented with a blue line following the optimal alignment between the two trajectories
(i.e. sequences of points). Panel B represents the paired points of ABCDE and ABCED trajectories. During
the common prefix ABC, curves are relatively similar and the paired points are located close to each other.
This is related by the diagonal part of the coupling sequence in panel A. Then the diverging parts of ABCDE
and ABCED are still paired but we can clearly observe a one to many relationship, near point (0.6,-0.1) and
the free space diagram relates it by variations along the ABCED steps axis and no variation along the ABCDE
steps axis. ... 26
Figure 10: The early version of the reservoir model. The snippet replay algorithmic module displayed in red
generates dynamically a dataset used for training the model. The blue arrow represents the feedback link used
in autonomous generation mode. ... 27

6

Figure 11: An extract from a scenario XML file describing a simulation ... 28
Figure 12: Main panel of the LiveViewer application and widgets controlling model parameters and displaying
data plots in real time ... 29
Figure 13: Use case diagram of the RRNN Simulator ... 30
Figure 14:A complex and long stimuli sequence of 44 neurons over 540 timesteps 31
Figure 15: Representation of the transition matrix between symbols of the stimuli sequence 31
Figure 16: Reservoir’s neurons states and transitions are represented as a 2D trajectory by displaying the first
two principal components of the neurons activation raster. .. 32
Figure 17: Raster of the readout neurons during training, priming and autonomous generation 33
Figure 18: Raster of stimuli sequences. Random subsequences during the model training and the whole
sequence during generation.. 33
Figure 19: Reservoir neurons when exposed to a random replay of snippets. States are displayed as a 2D
trajectories whose coordinates are the two first principal components as computed by the PCA algorithm .. 34
Figure 20: Raster of the readout neurons when exposed to random replay of snippets during training and
primed by the whole sequence ... 34
Figure 21: Heat map representing the relationship between snippet length (Y-axis), snippet number (X-axis)
and snippet overlap (color) .. 35
Figure 22: Model performances represented as a surface. Snippets overlap and training epochs have an
influence on prediction error .. 35
Figure 23: Input (Panels A and C) and output (Panels B and D) neurons rasters during model training and
testing with an additive noise ... 36
Figure 24: Demonstration of the model‘s sequence generation ability over multiple timescales while trained
at a faster timescale .. 37
Figure 25: Raster of the readout neurons when trained with snippets sparse snippets and the resulting generated
sequence ... 37
Figure 26: Raster of input neurons when exposed to the whole sequence and to a random replay of snippets of
the whole sequence with an additive noise .. 38
Figure 27: Raster of readout neurons generating the whole sequence and learning the whole sequence from a
random replay of sparse, noisy and complex snippets. White circles emphasize ambiguous transitions present
in the training set. It reflects the difficulty of this sequence learning task .. 38
Figure 28: Trajectory performed by a rat (Panel A) and an idealized version (Panel B) 39
Figure 29: Trajectory performed by a rat as captured by the visual tracker. Panel B represents the
corresponding place-cell activation pattern raster, panel C shows the gradient modulus of the position, panel
D represents the condensed and resampled trajectory and panel E shows The corresponding simplified place-
cell activation sequence. .. 41
Figure 30: Place field model applied to a trajectory and representation of a snippet 42
Figure 31: Trajectories performed by the rat over successive trials .. 42
Figure 32: Snippet replay likelihood used in the snippet generation procedure. ... 43
Figure 33: BACDE trajectory and the frequency of different parts being represented through random replay
.. 44
Figure 34 : Successive trajectories of the rat in configuration 40 .. 45
Figure 35: Mean square error histograms for different conditions evaluated in non-autonomous mode 46
Figure 36: Mean square error histograms for different conditions evaluated in autonomous mode 47
Figure 37: Use case diagram of the TRN solution ... 50
Figure 38: The Model View Presenter architecture used by TRN ... 51
Figure 39: Different interfaces organized as different namespace .. 52
Figure 40: Class diagram of the overall model simulating multiple animats .. 54

7

Figure 41: An example of the monitor plugin displaying performances information on the standard output. 55
Figure 42: An example of the Display plugin rendering multiple trajectories computed by several simulators
using 4 GPUs ... 56
Figure 43: Class diagram of the Presenter layer and related artifacts .. 57
Figure 44: Component diagram of the TRN solution .. 58
Figure 45: The TRN4MALTAB component provide to a MATLAB script a limited set of TRN4CPP interfaces
.. 59
Figure 46: TRN4JAVA allows one to interface a third party simulator (SCS, a robotic simulator from USF
Tampa) ... 59
Figure 47: Deployment on a standalone computer .. 60
Figure 48: Deployment of a remote Backend for offloading simulations ... 60
Figure 49: Cluster deployment of TRN with a TCP/IP Server .. 61
Figure 50: Deployment of the heterogeneous Cluster used in this thesis .. 62

8

Abstract
As rats learn to search for multiple sources of food or water in a complex environment, processes of spatial
sequence learning and recall in the HC (hippocampus) and prefrontal cortex (PFC) are taking place. Recent
studies (De Jong et al. 2011; Carr, Jadhav, and Frank 2011) show that spatial navigation in the rat hippocampus
involves the replay of place-cell firing during awake and sleep states generating small contiguous
subsequences of spatially related place-cell activations that we will call “snippets”. These “snippets” occur
primarily during sharp-wave-ripple (SPW-R) events. Much attention has been paid to replay during sleep in
the context of long-term memory consolidation. Here we focus on the role of replay during the awake state,
as the animal is learning across multiple trials.

We hypothesize that these “snippets” can be used by the PFC to achieve multi-goal spatial sequence
learning.

We propose to develop an integrated model of HC and PFC that is able to form place-cell activation sequences
based on snippet replay. The proposed collaborative research will extend existing spatial cognition model for
simpler goal-oriented tasks (Barrera and Weitzenfeld 2008; Barrera et al. 2015) with a new replay-driven
model for memory formation in the hippocampus and spatial sequence learning and recall in PFC.

In contrast to existing work on sequence learning that relies heavily on sophisticated learning algorithms and
synaptic modification rules, we propose to use an alternative computational framework known as reservoir
computing (Dominey 1995) in which large pools of prewired neural elements process information
dynamically through reverberations. This reservoir computational model will consolidate snippets into larger
place-cell activation sequences that may be later recalled by subsets of the original sequences.

The proposed work is expected to generate a new understanding of the role of replay in memory acquisition
in complex tasks such as sequence learning. That operational understanding will be leveraged and tested on a
an embodied-cognitive real-time framework of a robot, related to the animat paradigm (Wilson 1991). The
originality and contribution of our proposed work include:
 the use of awake hippocampal replay to create place-cell activation sequences of valid trajectories

(snippets)
 the use of reservoir computing to learn place-cell activation sequences using inputs generated by the

hippocampus model
 the constraining of the model using electrophysiological data in rats
 the use of the resulting model in an animat
 the use of behavioral data for training the model and comparing the generated trajectories

9

Acknowledgments
Firstly, I would like to express my sincere gratitude to my advisor Peter-Ford Dominey for the continuous
support of my Ph.D study and related research, for his patience and motivation. His guidance helped me in all
the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor
for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Joni Dambre, Dr Suliann Ben
Hamed, Dr Bruno Poucet, Prof. Pierre Fourneret and Dr Frederic Alexandre for their insightful comments and
encouragement, but also for the difficult and wise questions, which incented me to widen my research from
various perspectives.

I thank my fellow labmates in for the stimulating discussions, and for all the fun we have had in the last four
years. Also I thank my colleagues Weitzenfeld & al from university of south Florida/Tampa and Fellous & al
from university of Arizona/Tucson. The discussions we had and their comments played an important role.

Last but not the least; I would like to thank my relatives, my friends and family for supporting me spiritually
throughout writing this thesis and my life in general.

10

Glossary
API Applications programming interface
CPU Central Processing Unit
CLI Command Line Interface
ECC Error Correcting Code
EEG ElectroEncephaloGraphy
FPGA Field Programmable Gate Array
Gflops Giga floating operations per second
GPU Graphical Processing Unit
GUI Graphical User Interface
HC Hippocampus
HHMM Hierarchical Hidden Markov Model
HMM Hidden Markov Model
MKL Math Kernel Library
MPI Message Passing Interface
MVP Model View Presenter
PCA Principal Component Analysis
PFC Prefrontal Cortex
SPW-R SharP Wave ripple during Rest state
ST STriatum
STDP Spike-Timing Dependent synaptic Plasticity
TBPTT Truncated Back Propagation Through Time
TCP Transfer Control Protocol
TRN Temporal Recurrent Network
TSP Traveling Salesperson Problem

11

1.Introduction
The work accomplished during this thesis focuses on aspects of recurrent neural networks and their dynamics,
and how these dynamics can encode aspects of sequential behavior.

We first propose to consider the problem of an agent exhibiting an efficient behavior and to reduce it as the
problem of generating a correct sequence of sensory-motor association of an animat (Wilson 1991).

We chose to use the reservoir computing framework (Dominey 1995) as a neurobiologically plausible
implementation of a sensory-motor sequences learning capability of a situated agent (Hendriks-Jansen 1996).
Reservoir computing is a computational metaphor of cortico-cortical loops in prefrontal cortex (PFC) and its
principle is based on maintaining a spatio-temporal high dimensional representation of input sequences
through reverberations caused by recurrent connections of PFC neurons. Sensory motor associations are learnt
by a model of Striatum (ST) that acts as a simple readout layer by selecting correlated spatiotemporal features
provided by the PFC model in order to reconstruct a prediction of the input patterns (Rigotti et al. 2010, 2013;
Enel et al., n.d.).

We thus propose in section 0 to evaluate the standard complex sequence online learning paradigm of this joint
PFC-ST model and to extend it by demonstrating that it is possible to concatenate a complex sequence by
learning only from a random set of smaller subsequences of stimuli called snippets. It is possible to explain
this new dynamical property by observing a reduced dimension representation of the PFC model dynamics
when exposed to the whole sequence and subsequences. In (Sanger 1989), the author demonstrates that
generalized hebbian learning computes in fact the linear PCA and it suggests a biologically plausible
implementation for the formation of subspaces relevant for a particular task. We will see in section that it is
possible to model an equivalent reservoir as a linear combination of reservoir’s neurons with a PCA. Learning
readout synaptic weights in this space is equivalent to find the correlation coefficients between the raster of
principal components neurons and expected neurons. It is also a convenient manner of representing
Reservoir’s neurons activations over time. Activation raster of equivalent reservoir neurons are represented as
a trajectory along the two first components of a principal component analysis (PCA). It appears that
trajectories and sub-trajectories of the same stimuli sequence share common sub-trajectories in the reduced
state space and suggest a stationary property of the high dimensional time series provided by the PFC allowing
the sequence learning to occur.

At the same time, in the lab, experiments were being done related to human cortical dynamics during a visual
and narrative comprehension task. We hypothesized that the human brain states observed through an EEG
signal display the same mixed selectivity property as the reservoir and succeeded to explain with the same
PCA analysis technique that it is possible to learn a reliable decoding of sequential coherence for one modality
(images or sentences) only from training data of the other modality. This is explained in more detail in section
2.6.

The key point in both experiments is that projecting the reservoir’s neurons activation time series in a subspace
congruent to a particular task allows one to represent and modify efficiently spatio-temporal data streamed by
a recurrent neural network. It encourages us to formulate the following working hypothesis:

If the recurrent network (or EEG signal) is performing highly similar operations over two successive trials,
then the spatiotemporal patterns of activity (as revealed by PCA, a linear combination a neurons) will be
similar as well.

12

In (Preston and Eichenbaum 2013), the authors study the interplay between Hippocampus and Prefrontal
cortex and their roles in the memory consolidation process. Their understanding entails the notion of schema,
‘introduced to cognitive psychology by (Piaget 1967) and (Bartett 1932) in their efforts to understand how
new information is integrated with pre-existing knowledge.’ A schema can be viewed as ‘any organized
network of overlapping representations that has the following properties: first, new information is better
remembered when it fits within a pre-existing schema; second, new information that challenges schema
organization may cause modification of the existing schema or development of a new schema; and third,
schemas support novel inferences between indirectly related events and their generalization to new situations.’
Consolidation is understood as a ‘process in which hippocampal networks can link indirectly related elements
(A and C) via the invariant common element (B) and, guided by the prefrontal strategic control of conflicting
associations to create a schema (A-B-C). During subsequent memory expression, a memory cue (‘Are A and
C related?’) engages prefrontal cortex to select the correct schema (A–B–C) within which the hippocampus
retrieves the relevant associations (A–C via B).’

We propose to explain this understanding of memory consolidation with a computational joint model of
hippocampus, prefrontal cortex and striatum (HC-PFC-ST) by revisiting an interesting experiment where
during a navigation task involving a rat searching for multiple sources of food in a closed environment (see
Figure 1, panel A), it has been observed (De Jong et al. 2011) a convergence of the trajectories performed by
the rat towards a short route between rewarded food cups.

Figure 1: Panel A shows a picture of the rat performing the TSP related task and panel B represents a two dimensional sketch of the optimal

trajectory and the encountered place fields

As illustrated in Figure 1, panel B, place-fields1 are traversed in a particular order, which is characteristic of
the shortest trajectory between baited feeders2. This trend to generate efficient trajectories is referred to as the
traveling salesperson problem (TSP). The TSP is a classical algorithmic NP-hard problem that requires an
agent to visit a fixed set of locations once, minimizing the total distance traveled.

Sharp wave ripple complexes (SPW-R) occur during awake and sleep states and include the replay of
subsequences of place-cells activation sequences related to the trajectories observed in previous trials (Barrera
and Weitzenfeld 2008; De Jong et al. 2011). In (Gupta et al. 2010), the authors characterize the content of
hippocampus replay and suggest that the activation subsequences generated by the hippocampus during SPW-
R are derived from immediate and remote experiences, feature forward and reverse order of previously
encountered place-cells activations and the reward plays a modulatory role in occurrence of subsequences
contained in a during in SPW-R events. We focus on the role of hippocampus place-cell replay during the
awake state, as the rat generates increasingly efficient trajectories between reward sites across multiple trials.

1 Noted Pn, where n is the corresponding place-cell number.
2 Noted Ok, where k is the feeder number

13

The indirectly related elements mentioned in (Preston and Eichenbaum 2013) corresponds to the rewarded
food cups observed through the associated place-cell activations, the relationship between rewarded food cups
corresponds to sub-trajectories between them. We hypothesize that:

 Hippocampus links rewarded food cups through SPW-R replay of associated place-cell activation
patterns in order to form efficient sub-trajectories

 Prefrontal cortex reconciles the conflicts in associations of efficient sub-trajectories sharing a common
part in order to create an efficient trajectory between rewarded food cups (schema).

We extend our scope to a HC-PFC-ST joint model where the hippocampus model emulates different features
of the place-cell subsequences replay phenomenon observed during awake SPW-R between trials. It aims at:

 Demonstrating dynamical properties induced by the hippocampal replay and the effect of its different
features (Foster and Wilson 2006a; Gupta et al. 2010)

 To assess if an animat embedding the HC-PFC-ST model is sufficient to explain the behavior of the
rat observed in experiments (Wilson 1991; Ball et al. 2010; Foster and Knierim 2012; De Jong et al.
2011; Barrera and Weitzenfeld 2008).

A preliminary work had been done during my master’s thesis about the control of a mobile robot with a chaotic
random recurrent neural network with continuous time (article in preparation, see section Related work). The
learning rule used for associating an action to a sequence of stimuli is related to the recursive estimation of
the covariance matrix between perception and action. It emphasizes the importance of learning sensory-motor
associations upon the detection of a salient event. In that particular case, a salient event is detected by
considering the neuron activation that diverges from the same neuron’s running average. An experiment shows
that a mobile robot controlled by a random recurrent neural network can learn sensory motor associations
from its previous experience and generate motion sequences in compliance with the serial structure of the
stimuli by being exposed to the same stimuli sequence without having necessarily the same temporal structure
(i.e. the same delay between two different stimuli). It suggests that learning during salient events only allows
the model to learn and generate sensory-motor sequences with the same serial structure whilst at the same
time removing the requirement of experiencing the same temporal structure. Learning the salient part of a
trajectory relies in this case on the running estimate of the covariance matrix. Hippocampal replay during
SPW-R occur at a faster time scale than the experienced stimuli sequences and the temporal structure is not a
feature of hippocampal replay (Davidson, Kloosterman, and Wilson 2009; Nádasdy et al. 1999). It suggests
that our joint HC-PFC-ST model will learn salient part of stimuli sequences and hippocampal replay will
enhance several features of the stimuli sequences replayed.

In addition, conceptors (Jaeger 2014) are based on PCA which also rely on the estimate of the covariance
matrix and “help explaining how conceptual-level information processing emerges naturally and robustly in
neural systems”. The principle is essentially the same: Different stimuli entails differently shaped reservoir
state clouds (i.e. different linear combinations of reservoir’s neurons). “The ellipsoid envelopes of these clouds
make conceptors”. “After driving patterns have been stored in the network, they can be selected and stably re-
generated by inserting the corresponding conceptor filters in the update loop. A conceptor could be
implemented by projecting observed neurons into linear neurons that represent conceptors by projecting along
synaptic weights representing the PCA linear combination coefficients. Thus a conceptor is task dependent
and requires a prior training on tasks being evaluated. It remains a very powerful tool that allows a single
neural system to “learn, store, abstract, focus, morph, generalize, de-noise and recognize a large number of
dynamical patterns”.

Estimating the covariance matrix allows one to generate appropriate representations of stimuli time-series
useful, either for explaining neuron dynamics or for altering them in order to solve difficult learning problem.

14

It encourages us to use the PCA as a tool for explaining how the dynamics of a recurrent neural network allows
the model to learn multiple and complex sensory-motor associations and help to solve a challenging problem:
the TSP.

1.1. Prefrontal cortex and hippocampus in rodent navigation
The hippocampus stores information during the acquisition of new memories and these memories are replayed
(in this document, we use ‘replay’ and ‘reactivate’ interchangeably) during sleep as part of a memory
consolidation process (Marr 1971; Stickgold and Walker 2007). Consolidation is believed to involve synaptic
changes in the neocortex reflecting the integration and refinement of memory representations (McClelland,
McNaughton, and O’Reilly 1995; Schwindel and McNaughton 2011) This replay involves neural populations
that were active during a task immediately preceding the sleep period. In (Jadhav et al. 2012), a specific
performance deficit was observed in SPW-R disrupted animals, providing “a causal link between awake
hippocampal SPW-Rs and the spatial memory requirements of outbound trials”. It is possible to characterize
hippocampus replay through the following features:
 Occurrence: Reactivations of specific neural activity patterns during sleep have been observed in several

brain areas including the hippocampus, amygdala, neocortex and striatum (Bendor and Wilson 2012; Carr,
Jadhav, and Frank 2011; Euston, Tatsuno, and McNaughton 2007; Foster and Wilson 2006b; Hoffman
and McNaughton 2002; Ji and Wilson 2007; Karlsson and Frank 2009; Kudrimoti, Barnes, and
McNaughton 1999; Lee and Wilson 2002; Nádasdy et al. 1999; Pennartz 2004; Peyrache et al. 2009; Popa
et al. 2010; Ribeiro et al. 2004; Sutherland and McNaughton 2000; Tatsuno, Lipa, and McNaughton 2006;
Cutsuridis and Hasselmo 2011; Cutsuridis and Taxidis 2013). Other evidence suggests that replay may
also occur during the awake state indicating online memory processes or the planning of behaviors yet to
be performed (Carr, Jadhav, and Frank 2011; Davidson, Kloosterman, and Wilson 2009; Diba and Buzsáki
2007a; Gupta et al. 2010; Jadhav et al. 2012; K. Friston, Breakspear, and Deco 2012; Karlsson and Frank
2009).

 Place-cells: The study of behavioral and neurophysiological mechanisms in rats responsible for spatial
cognition has inspired the development of many computational models of hippocampus place-cells in the
context of goal-oriented learning tasks in robotic systems. Some of the most important models developed
in the past years include those of (Burgess, Recce, and O’Keefe 1994; Sharp, Blair, and Brown 1996;
Redish and Touretzky 1997; Guazzelli et al. 1998; Arleo and Gerstner 2000; P. Gaussier et al. 2002; Filliat
and Meyer 2002; Arleo, Smeraldi, and Gerstner 2004; Milford and Wyeth 2010; Dollé et al. 2010;
Alvernhe, Sargolini, and Poucet 2012; Caluwaerts et al. 2012; Barrera and Weitzenfeld 2008)

 Time cells: In (Eichenbaum 2014), the author distinguishes hippocampus place-cells from hippocampus
time-cells. The latter are characterized by their ability to “parse temporally defined periods into
representations of specific moments (‘time fields’), much as place-cells parse spatially defined
environments into representations of specific locations (place fields)”. Finally, the author suggests that the
fundamental function of the hippocampus is to establish spatio-temporal frameworks for organizing
memories. Place-cells and time-cells are not distinct ‘cell-types’ but instead, the same population of
hippocampal neurons encodes both the spatial and temporal regularities of experience. Hippocampus
place–cells and time-cells are seen as features of hippocampal neurons associated with spatial or temporal
dimensions of the context in which learning occurs.

 Time scale: In the hippocampus, it has been shown that reactivation occurs primarily in a compressed
manner, during the occurrence of fast (150-200 Hz) and short (60-120ms) oscillations called sharp
waves/ripples complexes (SPW-R). Different subsets of cells reactivate in different SPW-Rs, each cell
emitting only a few spikes. The inter-spike interval between reactivating cells is within the range of that
required to induce spike-timing dependent synaptic plasticity (STDP). One hypothesis therefore is that the
sequence of reactivation episodes allows for online and offline synaptic modifications that will eventually

15

lead to the consolidation and integration of specific memory items. (Davidson, Kloosterman, and Wilson
2009)

 Reward: Interestingly, the presence of rewards increases replay in hippocampus and ventral striatum
(Lansink et al. n.d.; Singer and Frank 2009), suggesting an interaction between reinforcement learning and
replay. This enhanced reactivation in response to reward could be a mechanism to bind rewarding
outcomes to the experiences that precede them. Awake SPW-R reactivates coherent elements of the
experiences that are associated with the paths to and from the rewarded location. Their findings, in
contrast, indicate that reward plays a special role in modulating the reactivation of cells associated with
recent experiences. Their findings suggest that in the rodent hippocampus, activity following a reward
specifically relates to the sequence of locations the animal traversed on the way to the reward. These
observations indicate that reward increases the likelihood of reactivation for all cells. Therefore, the
specific spatial sequence the animal traversed strongly influences which cells will be active during SPW-
Rs, while the presence or absence of reward modulates the amount and strength of reactivation.

 Direction: Most of the replay events occur in the forward direction (place-cells activate in the same order
as they would activate if the rat was navigating through them), before a movement is initiated, while a
smaller fraction occur in the backward direction at or near reward sites. Interestingly, forward replay was
found to be more directly correlated with the actual path of the animal than backward replay (Foster and
Wilson 2006b; Diba and Buzsáki 2007b)

 Remote: Hippocampal replay is not limited to recent sensory experience and might include events
experienced less recently (Karlsson and Frank 2009; Foster and Wilson 2006b; Davidson, Kloosterman,
and Wilson 2009)

Underlying Neuroanatomy:

The model developed in this thesis provides a possible explanation of mechanisms that allow PFC and
hippocampus to interact to perform path optimization to solve the TSP. This implies functional connectivity
between these two structures. In a recent review of hippocampal–prefrontal interactions in memory-guided
behavior (Shin and Jadhav 2016) outlined a diverse set of direct and indirect connections that allow bi-
directional interaction between these structures. Principal direct connections to PFC originate in the ventral
and intermediate CA1 regions of the hippocampus (Cenquizca and Swanson 2007). Indirect connections
between hippocampus and PFC pass via medial temporal lobe (subiculum, entorhinal cortex, peri- and post-
rhinal cortex) (Delatour and Witter 2002) and the nucleus reuniens (Vertes et al. 2007). Thus while we will
not provide a more extensive review, these studies and reviews allow us to consider that there are anatomical
pathways supporting bi-directional interaction between PFC and hippocampus. The model developed in this
thesis also demonstrates the crucial role of SPW-R replay of “snippets” of previously experienced trajectories
in this sequence consolidation and optimization. While SPW-R replay has more traditionally been examined
during sleep, there is now increasing evidence of its vital role in the awake state, between trials, in spatial
learning tasks (reviewed in (Carr, Jadhav, and Frank 2011)). Figure 2 illustrates awake SPW-R

16

Figure 2: Place cell sequences experienced during behavior are replayed in both the forward and reverse direction during awake SPW-Rs.
Spike trains for 13 neurons with place fields on the track are shown before, during and after a single traversal. Sequences that occur during
running (center) are reactivated during awake SPW-Rs. Forward replay (left inset, red box) occurs before traversal of the environment and

reverse replay (right inset, blue box) after. The CA1 local field potential is shown on top and the animal’s velocity is shown below. From (Carr,
Jadhav, and Frank 2011).

1.2. Representing sequential behavior in neural networks
Reservoir computing refers to a class of neural network models in computational neuroscience and machine
learning (Mantas Lukoševičius and Jaeger 2009).These systems are characterized by a sparsely connected
recurrent network of neurons (spiking or analog), with fixed connection weights (excitatory and inhibitory).
Because of the recurrent connections, this “reservoir” is a dynamical system that has inherent sensitivity to
the serial and temporal structure of input sequences. Reservoir neurons are connected to readout neurons by
modifiable connections, and these can be trained in different task contexts (e.g. sequence recognition,
prediction, classification). The first instantiation of such models was by (Dominey 1995; Dominey, Arbib,
and Joseph 1995) with the reservoir corresponding to recurrent prefrontal cortical networks, and the
modifiable readout connections corresponding to the corticostriatal projection, with dopamine-modified
synapses These models addressed sensorimotor sequence learning, and demonstrated the inherent sensitivity
of these recurrent systems to serial and temporal structure in motor behavior and in language
(Dominey 1998a, 1998b; Dominey and Ramus 2000; Dominey, Inui, and Hoen 2009; Hinaut and Dominey
2013). Maass developed a related approach with spiking neurons and demonstrated the non-linear
computational capabilities of these systems (Maass et al. 2002). In the machine learning context, Jaeger
demonstrated how such systems have inherent signal processing capabilities (Jaeger and Haas 2004).
Interestingly, these reservoir properties appear to be found in cortex. Electrophysiological studies have
revealed that cortical neurons in primary sensory areas (e.g. V1) have reservoir properties of fading memory
(Nikolić et al. 2009). That is, stimuli presented in the past tend to resonate in the recurrent network and
influence the processing of subsequent stimuli. Equally interestingly, when these networks are exposed to
inputs with multiple dimensions (e.g. target identification, serial order, match/non-match) neurons represent
non-linear mixtures of these dimensions (Dominey, Arbib, and Joseph 1995; Rigotti et al. 2010). Such
nonlinear mixed effects have recently been seen in primate frontal cortex (Rigotti et al. 2013). This argues in
favor of a reservoir-like function in recurrent networks of the cortex in general, and in prefrontal cortex
specifically. We have demonstrated how such recurrent networks can learn about sequential and temporal
structure (Dominey 1998a), including serial order regularities that are expressed in sequence segments
(Dominey and Ramus 2000). However, so far, reservoir computing has not been exploited in terms of its
inherent ability to allow the concatenation of multiple contiguous subsequences into a coherent sequence, thus
addressing a major open question in navigation trajectory learning.
The most prevalent theories of how memories are formed and consolidated rely on dynamic changes in
synaptic strengths and the creation of strongly connected neural assemblies. This hebbian (Hebb 1949) view

17

of memory has dominated the field for decades. While there is strong experimental evidence for several
aspects of the theory, there are also significant difficulties that include:
 The unclear nature of fast induction and exquisite control of synaptic modification in the presence of

realistic amount of neuronal and synaptic noise and unreliability
 The low probability that 2 cortical neurons are in fact connected by synapses
 The pluri-functionality of cortical neural networks whereby small groups of cells may be involved in

various and seemingly distinct neural computations in addition to memory formation (how these multiple
functions co-exist with memory is unclear).

1.3. Hypothesis and objectives
We propose to focus on the TSP problem, which is a classical artificial intelligence NP-hard problem that
requires an agent to visit a fixed set of locations once, minimizing the total distance traveled. Figure 3
illustrates the TSP by representing the optimal trajectory linking the main cities in U.S.

Figure 3: A real life representation of the traveling salesman problem: minimizing the distance travelled while joining main U.S. cities

TSP can be modelled by a graph where vertices are cities and edges the roads linking cities. A simplified
problem featuring only five feeders is represented in Figure 5:

18

Figure 4: A simplified instance of the TSP problem as an undirected graph. Five cities represented by letters A, B, C, D and E are linked by

routes, represented by a segment with a width proportional to the distance between its boundaries

In the traveling salesrat problem (De Jong et al. 2011) derived from the traveling salesman problem, distances
are unknown but instead, each cup containing food (equivalent to cities in TSP) are associated to a reward
information. The paths between cups are analogue to roads between cities and become available once visited
by the rat across trials. It suggests an incremental update of the knowledge acquired during recent experiment,
with a particular emphasis on shortest paths between cups. We propose to study this hypothesis by considering
the following elementary experiment illustrated in Figure 5 and other experiments described in 2.4.

19

Figure 5: An optimal trajectory between feeders ABCDE is represented in panel A. Panel B, C and D display non-optimal trajectories that

contain a sub trajectory of the ABCDE trajectory. The sub trajectory shared with the ABCDE trajectory is displayed in red and the non-optimal
parts in blue. Panel B contains the ABCED, panel C the EBCDA trajectory and panel D the BACDE trajectory.

Five cups containing food are laid in an open space and the rat is supposed to experience trajectories illustrated
in panel B, C and D. These trajectories contain a part of the optimal trajectory illustrated in panel A. We will
study how the consolidation of an optimal trajectory (Panel A) can result during awake rest state from a
recombination of non-optimal trajectories containing efficient parts between reward sites (Panels, B, C, D),
supported by a STDP learning mechanism occurring during SPWR.

Several navigations models based on a hippocampus model have been implemented on a mobile robot. In
(Burgess, Recce, and O’Keefe 1994), the authors demonstrate the ability of a mobile robot to reach a single
goal in a simple environment, based only on a hippocampus model featuring place-cells. Recurrent
connections in the hippocampus are not involved nor required in the experiment. A more recent model (Barrera
et al. 2015) uses hippocampus place-cells learnt by hebbian learning driven by kinesthetic information and
visual landmarks. Sensory motors associations required for allowing the agent to navigate are performed with
a Q-learning algorithm (Sutton and Barto 1998) which requires a discrete state space. Another robotic model

20

(Hirel et al. 2013) implements neural networks representing enthorinal cortex (EC), HC and PFC in order to
build a cognitive map and solve a multiple goal navigation task.

We thus propose a computational model of hippocampus, prefrontal cortex and striatum that will be embedded
in an animat (Wilson 1991; Filliat and Meyer 2002; Ball et al. 2010) for demonstrating the existence of a
neurobiologically plausible implementation of a heuristic that solves the traveling salesrat problem. Figure 6
represents from a purely modeling point of view the organization of the different functional modules used in
this thesis for simulating a virtual rat:

Figure 6: Organization of the different functional modules used for defining an animat supposed to mimic the rat’s behavior while incrementally

solving the TSP problem

The global model is hierarchical composition of other models whose structuration derives from the PerAc
architecture (Philippe Gaussier and Zrehen 1995) could be described as follows:

 An environment model that consists in a 2D free space containing reward sites as illustrated in Figure 4

 An animat that is capable of perceiving the environment through its sensors and to perform an action on
its environment by using its actuators. The relationship between the sensor model and the actuator model
is established the cognition model, allowing the animat to perform actions given a sensory input. No reflex
module linking perception to action in a straightforward manner is used in this study.

o The sensor model is very simple in our case and consists in the perception of the current position
of the animat in the environment in a global coordinate system. It might be replaced by a more
elaborated and realistic model but for the sake of simplicity and a better understanding, we chose
a trivial sensor model.

21

o The cognition model establishes dynamical relationships between perceived stimuli and possible
actions. It is implemented by a set of other hierarchical models that might interact. The
relationships illustrated by arrows represents strictly the sufficient model for studying memory
formation mechanisms in this thesis and don’t necessarily correspond to neurons projections
between areas as described in neuroanatomy. A cognitive model could be implemented by an
algorithm, a classifier system (Holland and Reitman 1977), a hidden Markov chain or a neural
network. In our case, the cognitive model is implemented by a hybrid and hierarchical composition
of algorithmic and neural network models:

 A spatial representation model will be responsible of converting the perceived global
position into internal representations suitable for solving the TSP task. It is implemented
by:

 A place-cell coding model which provides a place cell mean firing activation pattern
that is characteristic of the perceived position. A 2D Gaussian place cell model is
used but one can also use firing rate maps estimated experimentally and
representing the spatial response of place-cells spatial response measured by
electrodes. It is assimilated to a part of the hippocampus model, not represented
here because it is relative to a neurobiological implementation.

 The replay module is implemented by an algorithm that emulates only place-cells
neurons rates and the replay of subsequences of place-cell activations (snippet)
during awake SPW-R as a concatenation. Snippets are characterized by a duration,
modelled by the number of contiguous place-cell activation patterns and a direction,
forward or backward that will be modelled by the increasing or decreasing
numbering of time indices contained by a snippet. A snippet will contain only place-
cell activation patterns encountered during a motion supposed to occur with a
constant speed. This models the time compression phenomenon observed in place-
cell activation subsequences during SPW-R, derived from the place-cell activation
encountered during the last trial and resulting from sensory inputs. Snippets will be
drawn according to a snippet replay likelihood whose distribution might be uniform
when no reward is taken into account or non-uniform and shaped by reward when
available. The role of this model will be to generate subsequences of place cell
activation derived from previous experience and to emphasize parts of trajectories
related to a reward through a non-uniform random replay. Despite the fact that this
part of the model is algorithmic, it admits an implementation based on recurrent
neural networks, also observed in hippocampus (CA3). It is a part of the
hippocampus model.

 A consolidation model learns to predict the next place-cell activation, given a training
dataset generated dynamically by the replay model. The generated predictions reflect the
state-transitions observed in the training dataset and it is possible to emphasize a particular
subset of state-transitions by over representing it in the training dataset. In our case, place-
cell transitions related to a reward are emphasized by the replay module which learn and
maintain a snippet replay likelihood through snippet replay. Consolidation is implemented
by:

 A reservoir model will be implemented by the reservoir-computing framework that
emulates cortico-cortical loops through recurrent connections between leaky
integrator neurons, representing only the mean firing rate of non-linear neurons

22

whose membrane potential time evolution is driven by a time constant resulting
from its resistive and capacitive properties. This defines the prefrontal cortex model
and its role is to combine overlapping parts of snippets replayed at random and build
a transitive relationship between them by aligning the common parts in their
representations.

 A readout model implements partially a striatum model. Readout model is supposed
to select spatio-temporal features provided by the reservoir through learning in
order to learn a desired output. In our case, the desired output is a prediction of the
next place cell activation that encodes the next location of the animat.

 A policy model associates the prediction of the next place-cell activation to the action that
is the most likely to realize the prediction. Possible actions are command signals compatible
with the animat possible moves. It is based on three other sub models:

 A place-cell decoding model that will provide a 2D map of probable locations given
the place-cell prediction generated by the readout layer.

 A transition model that restricts the 2D location map is restricted to areas reachable
by the animat given and estimate of its current position.

 A selection model that will select the most probable location in the restricted 2D
location map.

o The actuator model is also very simple and consists in moving the agent to the predicted position.

This emulates a rudimentary sensory motor loop and might be viewed as a form of embodiment. In this model
presented as a hierarchy of other models, some models are implemented by neural networks (HC, PFC, ST)
and their interactions and functioning modes are not clearly specified. In (Pezzulo, Kemere, and van der Meer
2017), the authors provide a schematic illustration of different functioning modes of their model within an
overall architecture for PFC-HC interactions. We propose to adapt this illustration to our joint HC-PFC-ST
model in Figure 7 in order to describe the different modes used by our model for solving the TSP problem.
The experimental protocol we use is inspired by (De Jong et al. 2011) and is defined as follows:

 The rat/animat performs one or more trials by making an attempt to solve the TSP problem, based on
the actual state of its model. In the case of an animat, one or more already existing trajectories are
simply added to a dataset that will be used as a basis for generating snippets.

 The rat/animat is put in an awake resting state at the same location before each next trial by enclosing
him in a small and opaque space, preventing him from moving or seeing the arena where the next trial
will occur. At this point, SPW-R events occur and small sequences of recently experienced place-cell
activation patterns are replay. This contributes to the incremental update of two models and correspond
to the two offline modes where recent experience is replayed through SPW-R events and models
updated trough a STDP mechanism:

o The replay (snippet generation) model, implemented by our hippocampus model (HC) and
illustrated in panel A by a dashed ellipsis. The reward information is propagated according to
a power law to adjacent timesteps in a direction relative to the replay direction. The model is
defined recursively and is described more in details in section 2.4.

o The consolidation model implemented by the reservoir (PFC) and the readout (ST) layer and
illustrated in panel C, associates a particular state to a place-cell activation sub sequence. This
state is associated incrementally though an online learning rule to the next place-cell activation
pattern. The dashed arrow represents the synapsis projecting reservoir neurons in readout
neurons.

23

 Then the rat/animat behaves freely based on its newly acquired and consolidated knowledge
(hypothesis) and performs one more attempt to solve the TSP problem. This online mode is illustrated
in panel D and is viewed as a coordinated action perception cycle repeated several times in order to
form a trajectory. The decision taken at a given time will result in a new perception.

OFFLINE (during awake SPW-R) ONLINE (behavior)

A Replay recent experience B Sample from HC model (constrained)

Cellular & systems consolidations Memory retrieval, planning, prospection

C Sample from HC model (unconstrained) D Coordinated action/perception cycle

Self-consistency, model-pruning, homeostasis Predictive processing with sequence prior

Figure 7 : OFFLINE modes model learning through STDP during SPW-R between each trial when the animal is decoupled from the action-
perception cycle and ONLINE modes model generation of a trajectory based on prior OFFLINE learning and action perception cycles. Panel A

shows the hippocampus model learning recursively to generate snippets related to a reward, based on forward and reverse replay of recently
experienced place cell activation sequences. Panel B shows the synaptic weights being adjusted in order to allow Striatum model to trigger the
appropriate action relative to a stimuli sequence encoded by the Prefrontal cortex model. Panel C and D shows the online modes used during

navigation.

The mode illustrated in panel B corresponds to the preplay phenomenon observed during SPW-R when the
rat is performing the task. SPW-R are shaped by current sensory input. The snippet preplayed during behavior
are samples from the replay model relevant to the current task. It represents the future possible suffix
trajectories, given the trajectory accomplished so far. It might be viewed as a prospective mechanism and can
be used for online planning/inferencing by selecting the action associated to the most rewarding prefix snippet,
suggested by preplay. We won’t use this mode in this thesis and we focus on the consolidation of salient part
of multiple and rewarded trajectories.

Our claim is that it is possible to observe the emergence of the optimal trajectory as a recombination of salient
parts of trajectories experienced during past trials. The heuristic that supports this demonstration is
biologically plausible and implementable by neural networks.

Working hypothesis are summarized as follows: An agent able to move freely within a restricted range in an
environment without obstacles is controlled by a neural network model. This model includes a model of

24

hippocampus that will emulate forward and reverse hippocampal replay modulated by a form of reward
observed during awake SPW-R. A PFC model based on reservoir computing will evaluate the hypothesis that
awake hippocampus replay between trials plays a role in long term memory consolidation and allows the agent
to take advantage of its previous experience from trial to trial. The ST model will allow the agent decode
predictions from the PFC and contribute to an action, supposed to minimize the difference between the actual
and predicted position of the agent.

2.Contributions
All the contributions in this thesis aim at investigating the role of hippocampus replay during SPW-R in
memory consolidation process through simulations of models of neural networks based on neurophysiology
supposed to implement a heuristic able to solve the TSP problem. These are models and do not necessarily
reflect or emulate the complete set of observed anatomical features. We start from the simplest model possible
of the memory consolidation process through awake SPW-R and implement only the features that allow the
model to mimic the rat’s behavior while solving the TSP problem. The PFC-ST model illustrated in In Figure
8 panel C is based on a recurrent neural network of leaky integrator neurons having fixed recurrent
connections. Information is processed dynamically through reverberations caused by the recurrent
connections. When the network is exposed to an input sequence like a place-cell activation sequence illustrated
in panel A, the reservoir neurons activation pattern sequence is difficult to understand (see panel B). The
readout layer associate reservoir states to an expected output through a supervised online learning rule. In this
thesis, the expected output will be the place-cell activation contained by the next sample within a snippet.

We propose to use a singular value decomposition of the raster observed in panel B for implementing a
principal component analysis (PCA) illustrated in panel D. It can be viewed as another layer of linear neurons
whose firing rate is a linear combination of reservoir neurons. This additional layer is called the equivalent
reservoir and the linear combination is chosen such that equivalent neurons provide the most orthogonal
possible information. These ‘orthogonal’ neurons might be viewed as different axes spanning a subspace and
they are called principal components. The first neuron will account for most of the information provided by
reservoir neurons, while other neurons will account for a decreasing proportion of the remaining information.
Thus it is possible to represent the neurons activations as a 2D/3D trajectory as illustrated in panel E and to
observe them rather than the raw raster in panel B. Note that if one attempts to learn synaptic weights
projecting the equivalent neurons into the readout neurons, he will find the Pearson correlation coefficients
(Pearson 1896). It is an interesting equality which might be reformulated as: The readout selects iteratively
spatio-temporal features of a stimuli sequence provided by the reservoir, correlated with the expected signal
used in supervised learning.

We use a simulation based approach and the experimental protocol is always the same and a trial in one
experiment is defined by:

 Simulate the awake SPW-R snippet replay when the rat is in a rest state
o Instantiate a model with a fixed set of parameters
o Define a training set based on one or more sequences representing the recent experiences of

the rat
o Train the model by exposing it to a random replay of snippets emulating different features

observed and reported in literature.
 Simulate the next trial, based on the previously acquired knowledge (hypothesis)

o Prime the model by forcing its input with the first samples of the expected sequence
o Generate a trajectory

25

 Autonomously by reinjecting directly the predicted place-cell activation pattern as the
input of the next simulation cycle.

 Non autonomously by injecting the expected place-cell activation pattern as the input
of the next simulation cycle. This is used when the model is not sufficient for generating
autonomously a sequence.

o Gather and record various observables such as:
 Neural network states
 Connectivity matrices
 Time indexes generated by the replay model

Figure 8: Internal Representations in the reservoir. Panel A shows the raster of simulated hippocampus place-cell neurons activation over time.
Panel B represents the raster of the reservoir’s neurons. Panel C depicts the hippocampus, prefrontal cortex and striatum as we modelled them

and features a supplementary artificial neuron group called equivalent reservoir whose raster is represented in panel D. An equivalent reservoir
neuron represents in fact a principal component, as computed by the PCA algorithm. Panel E represents the raster observed in panel D as a 3D

trajectory resulting from the 3 first principal components.

It is thus possible to extract representations from the recorded data as depicted in Figure 8 for example. Some
representations might be meaningful and will allow one to explain the phenomenon observed through the

26

representations. The model will be adjusted based on the numerous and informative observations until the
model is able to predict and explain expected observations having a higher level of abstraction. This very
general process describing the scientific approach can be as well implemented by different models in a
hierarchical manner, exactly as illustrated in Figure 6. The free energy/active inference framework (K. Friston
2009) is an elegant, rigorous and unifying theoretical framework that allows one to create or extend
hierarchical Bayesian models of the brain (K. Friston 2008; Pezzulo, Rigoli, and Friston 2018). We will make
a particular effort to formulate our models, measures and explanations in order to be easily translatable in
Bayesian equations.

From the top level of abstraction (behavior), a very useful metric for comparing trajectories regardless their
phase locking and dimensionality (2D trajectory, place-cell activation sequence, neurons rasters) is the Fréchet
distance. Figure 9 illustrates the Fréchet distance between sequences ABCDE and ABCED also observed in
Figure 5. In each experiment, the trajectory generated by our model is compared to the optimal/idealized
sequence with a Fréchet distance.

Figure 9: Fréchet Distance. Panel A shows the free space diagram used during the computation of the Fréchet distance between ABCED and
ABCDE trajectories. X and Y axis represent the discrete steps between points of ABCED and ABCDE trajectories. Z axis relates in meter the
coupling distance between two points. The coupling sequence is represented with a blue line following the optimal alignment between the two

trajectories (i.e. sequences of points). Panel B represents the paired points of ABCDE and ABCED trajectories. During the common prefix ABC,
curves are relatively similar and the paired points are located close to each other. This is related by the diagonal part of the coupling sequence
in panel A. Then the diverging parts of ABCDE and ABCED are still paired but we can clearly observe a one to many relationship, near point

(0.6,-0.1) and the free space diagram relates it by variations along the ABCED steps axis and no variation along the ABCDE steps axis.

It allows a global optimization algorithm to find an optimal set of parameters for instantiating an overall model
able to perform in the required conditions (see section 2.4).

2.1. Proof of concept
The reservoir-computing framework allows complex sequence learning and generation at the price of several
parameters that might interact between each other in manner that is difficult to characterize and exhibit
unforeseen dynamic properties. Dynamic properties of snippet replay are exactly what we want to observe.
Some guidelines about echo state network have been written (Mantas Lukoševičius and Jaeger 2009) and are
a good starting point. For going further on the particular problem of sequence learning through random replay
of snippets, we need to write a simulator of our model that provides to the user the ability to modify parameters
and to observe quickly the effects of a parameter change on the screen. We propose to write an interactive
simulator based on C++/QT and to explore snippet driven learning properties of a joint PFC-HC model
illustrated in Figure 10.

27

Figure 10: The early version of the reservoir model. The snippet replay algorithmic module displayed in red generates dynamically a dataset

used for training the model. The blue arrow represents the feedback link used in autonomous generation mode.

2.1.1. C++/QT simulator
The idea behind this simulator was to provide an interactive and easy to simulator the user, allowing him to
play with the model and its parameter in order to build an intuition on the model functioning. C++ language
and the QT graphical user interface toolkit (GUI) were chosen for their robustness, performances and
versatility, required for writing an interactive and responsive simulator. Boost library is also used for various
utility classes.

The design is based on interdependent tasks executed in a particular order. From a modeling point of view,
any simulation admits an equivalent graph representation where vertices are the tasks and the edges are the
dependencies between tasks. A simulation is fully described by a scenario xml file where tasks and their
dependencies are declared. An example of a simulation description can be found in Figure 11 :

28

Figure 11: An extract from a scenario XML file describing a simulation

A task is the base class of a process or a widget. A process processes incoming data from its input sinks and
writes the result on its outputs. An example of a process is a neuron layer, a running average or a stimulus
generator.

A widget represents incoming data in a particular format on the screen and is attached to the main panel as
depicted in Figure 12. A very useful widget is the object explorer which allows the user to display and modify
the parameters of the model while computing. Other widgets are classic XY plots, bar plots, histograms and
rasters. All widgets are instantiated in containers whose layout is also configurable in the xml scenario file.

The simulator is available as a standalone version called LiveViewer. It is mainly used for fast prototyping of
simulations by combining building blocks and observing the effect of a parameter change.

29

Figure 12: Main panel of the LiveViewer application and widgets controlling model parameters and displaying data plots in real time

The graphical user interface allows the user to limit the simulation speed in order to observe fast paced
phenomenon and a step by step button allows one to run compute one simulation cycle each time the button
is pressed. It is also possible to switch between training and test mode with a simple click at any time.
Automation allows the user to specify program parts called Actors that will act on the interface like a regular
user. For example, the learning rate of the model can be set to zero during the test stage and the constant
controlling the amount of input signal from the stimulus and the feedback signal from the readout layer
projected on the reservoir can be adjusted according to a ramp which is a function of the time. Figure 13 shows
the possible uses of the simulator :

30

Figure 13: Use case diagram of the RRNN Simulator

A client/server version of the simulation is also available and is designed for cluster computing. The server
part is made of two programs called Backend and Worker. The worker program role is to compute simulations
and to send the results when terminated while the Backend program is responsible of the scheduling and life
cycle of simulations. The Backend acts as a proxy between Clients and Workers. The client part is called
Frontend and its role is mainly to read a scenario file, transmit its contents to the Backend and store or display
results when available. Simulated annealing algorithm and grid search algorithms are used for parameter
search and a graphical user interface (GUI) and a command line interface (CLI) are available. An algorithm
and an interface is selected upon each invocation of the Frontend program.

Communications between Frontend and Backend use a TCP based text protocol and communications between
Backend and Workers are implemented with MPI. CPU is used most of the time for computing tasks and some
computing power demanding tasks are offloaded to a GPU.

Source code is available on GitHub at https://github.com/NicolasCAZIN/RRNN

2.1.2. Complex sequence learning
We propose to demonstrate that the reservoir computing model we use is able to learn and generate correctly
long and complex stimulus sequences with a standard training method.

31

Figure 14:A complex and long stimuli sequence of 44 neurons over 540 timesteps

The stimulus at each timestep consists in 44 neurons activated with a serial temporal structure. Each neuron
is activated during 10 timesteps and this elementary activation pattern is represented by a red square in Figure.
The state of a given neuron is determined at least by the last 10 steps. The first 10 neurons have two different
predecessor and successor neurons activated at different timesteps and the total length of the sequence is 540
steps. This sequence is called a complex sequence because it is characterized by several ambiguous transitions
between neurons states. Figure 15 shows the transition probabilities between each neurons :

Figure 15: Representation of the transition matrix between symbols of the stimuli sequence

The activation pattern of the stimulus might be seen as a state transition function where both states and actions
are activations values. The 10 first neurons exhibit ambiguous transition since their state are not uniquely

32

determined by their previous state. This learning problem cannot be solved without maintaining a form of
context that will allow the association of a particular state of a neuron to a limited history of the states of other
neurons. This is exactly the purpose of the cortico-cortical loop modelled by the recurrent connections in the
reservoir computing framework. It is a form of fading memory that allow the state of the modelled prefrontal
cortex to represent a context within a limited time line of sight. Intuitively, if the duration of the context
required by the serial structure of the stimulus sequence fits in the short term memory implemented by
recurrent connection, then the learning of a complex sequence is reduced to the learning of a simple sequence
having the same number of steps but a higher number of meta-states resulting from the conjunction of
successive stimulus states. This is illustrated in Figure 16:

Figure 16: Reservoir’s neurons states and transitions are represented as a 2D trajectory by displaying the first two principal components of the

neurons activation raster.

This simpler problem is easily solved by exposing the reservoir model several times to the input activation
sequence and associating incrementally the reservoir's state to the expected output activation sequence by
modifying the synaptic weights of the readout layer according to the delta rule. When evaluated, the model is
primed with the 30 first steps of the expected sequence and then the predicted neurons states are reinjected as
the next input of the model until the end of the expected sequence is reached. The resulting activation pattern
is similar to the expected sequence as depicted in Figure 17:

33

Figure 17: Raster of the readout neurons during training, priming and autonomous generation

The serial and temporal structure of the target sequence are reproduced but the sharp transitions from 0%
activation to 100% activations cannot be reproduced by the model. This is explained by the time constant of
the model which have been tuned for capturing the slow variations between each neuron (1 state change every
10 steps). Recurrent connections act like a running average and the side effect is to smooth the stimulus
sequence along the time axis. This demonstrate the model's ability to learn and generate an arbitrarily long
and complex sequences of neuron activation patterns.

2.1.3. Learning from random replay
As stated in, the main hypothesis in this work is that random replay of hippocampus place-cells subsequences
during SPW-R plays a role in awake memory consolidation. We propose to model the snippet replay by
exposing the model during learning to random subsequences of the target sequence. Each subsequence has a
fixed length of 50 timesteps and relates the successive activation of 5 different neurons during 10 timesteps.
19 input neurons are modeled by a binary 0% or 100% mean firing rate and are labelled by letters A to S. The
1000 neurons of the reservoir are exposed to subsequences derived from the target sequence
ABCDEFGHIJKLMNOPQRS selected at random according to a uniform distribution. Figure 18 relates
subsequences and the target sequence:

Figure 18: Raster of stimuli sequences. Random subsequences during the model training and the whole sequence during generation

We propose to compute the PCA trajectories of the reservoir's neurons when exposed to the subsequences. It
appears that overlapping parts of subsequences (for example EFGHI and GHIJK) overlaps in the reservoir’s

34

neurons state space represented along the two first principal components in figure. Even when replayed at
random, each subsequence is represented or encoded in a similar manner by the reservoir.
If the timescale supporting the stimuli is sufficiently slow compared to the timescale of the reservoir, then the
mnesic ability of the network will be exceeded before the end of a subsequence. The context will fade out
quickly and two sequences having a different prefix will result in a similar trajectory after a sufficiently long
delay. This dynamic property is illustrated in Figure 19 and results in the alignment of multiple sequences.

Figure 19: Reservoir neurons when exposed to a random replay of snippets. States are displayed as a 2D trajectories whose coordinates are the

two first principal components as computed by the PCA algorithm

Overlapping parts of the trajectories are encoded in a similar area and this coherency in the reservoir's state
coding allows the readout layer to associate successfully the reservoir's states to the prediction to the next
stimulus state as demonstrated in Figure 20:

Figure 20: Raster of the readout neurons when exposed to random replay of snippets during training and primed by the whole sequence

The model is able to autonomously generate an ascending sequence, based only on a random replay of
ascending subsequences. An ascending sequence is a simple sequence without any ambiguous transition. The
recurrent connections are not required for solving this simple problem and it was only the first step for
validating the sequence learning driven by a random replay within the reservoir computing framework.

2.1.4. Overlap
As demonstrated previously in Figure 19, the consolidation from random replay of snippets relies on the
overlap of subsequences in the reservoir's neurons state space. We propose to characterize empirically the
conditions on overlap that allow the snippet replay driven learning to occur. A replay episode is characterized
by a duration T, the number of snippets N and their length L. We consider a fixed time budget of T time steps
allocated to snippet replay. Several combination of subsequences of different length are possible and we show
in Figure 21 the constrained relationship between the number of snippets of fixed length that could be replayed

35

during T timesteps and the resulting overlap between snippets (i.e. the number of samples shared by two given
snippets)

Figure 21: Heat map representing the relationship between snippet length (Y-axis), snippet number (X-axis) and snippet overlap (color)

We observe that only a restricted set of snippet length/number combinations allows a non-zero overlap
between snippets. Without intrinsic overlap between contiguous snippets, learning the underlying complete
sequence would be impossible because of important missing parts of the whole trajectory in the training set.
We define a sequence of 20 neurons activated sequentially during 10 timesteps each and expose our model
several times to different combination of snippet number during 100 cumulative learning episodes of 10
training epochs. Based on the constrained relationship between snippet length and snippet number, the snippet
overlap is deduced and model performances in non-autonomous mode are displayed in Figure 22:

Figure 22: Model performances represented as a surface. Snippets overlap and training epochs have an influence on prediction error

It shows that a for a fixed set of parameters, a minimum exposure time to random replay and a minimum
overlap between snippets are required in order to reach a low error level. The minimum is reached for a
maximum exposure time and a maximum overlap. A particular case of snippet scheduling which is a unique

36

snippet whose duration equals the duration whole sequence. We are not interested in this case which is
equivalent to the classical sequence learning paradigm.

2.1.5. Noisy conditions
The consolidation from random replay benefits from the robustness against noise of the neural networks. We
demonstrate in Figure 23 that a snippet replay altered with a strong noise (-3dB in panel A and -8 dB in panel
C) still allow the consolidation of the target sequence (respectively panels B and D).

Figure 23: Input (Panels A and C) and output (Panels B and D) neurons rasters during model training and testing with an additive noise

2.1.6. Reliability over multiple time scales
Awake SPW-R replay occurs after a trial at a faster timescale than the stimuli experienced during the trial.
We propose to model that by a neuromodulation mechanism. The stimulus sequence is learnt from random
replay of subsequences with 10% noise added and when evaluating the model for generation, the model is
primed with the beginning of the sequence. This is illustrated by Figure 24 panel A. The model is then put
into autonomous mode by reinjecting the prediction of the readout layer as an input of the reservoir for the
next timestep. The propagation delay between neurons is globally modified by changing the leak rate that
reflects the resistive and capacitive properties of each neurons of the reservoir. In panel B we can observe the

correct generation for a leak rate factor of Panel C includes factor and panel D . This property has

been evaluated up to factor equals to (i.e. 4096 times slower than the modelled random replay).

37

Figure 24: Demonstration of the model‘s sequence generation ability over multiple timescales while trained at a faster timescale

2.1.7. Sparse snippets replay
It had been observed that during SPW-R, hippocampus place-cells are replayed as a subsequence featuring
the serial order encountered during the training and missing place-cells in a snippet could be observed. We
propose to verify the robustness of our PFC-ST model by exposing it to a random replay of snippets featuring
missing place-cells in each snippet. Figure 25 shows a raster of the readout neurons when exposed to a random
replay of altered snippet and the generated ascending sequence:

Figure 25: Raster of the readout neurons when trained with snippets sparse snippets and the resulting generated sequence

Despite the fact that the generated sequence features missing place-cells in some parts, the information
conveyed through the recurrent connections implements a form of short term memory that allow the
consolidation of the complete sequence and the generation to occur until the end of the sequence.

2.1.8. Consolidation of complex sequences
We have demonstrated that it is possible to learn a simple sequence from a random replay of snippets even in
noisy conditions. A more challenging task for our model is to learn a complex sequence from a random replay
of snippets in noisy conditions.

38

We use the same input sequence as in section 2.1.2 and configure a random replay of snippets with a 10%
additive noise and one random missing place-cell activation during 10 timesteps for every snippet replayed.
It is illustrated in Figure 26.

Figure 26: Raster of input neurons when exposed to the whole sequence and to a random replay of snippets of the whole sequence with an

additive noise

The generated sequence is depicted in the output raster in Figure 27. The serial structure respected most of the
time and we observe wrong predictions emphasized by white circles. The generation still occurs after the
wrong predictions.

Figure 27: Raster of readout neurons generating the whole sequence and learning the whole sequence from a random replay of sparse, noisy

and complex snippets. White circles emphasize ambiguous transitions present in the training set. It reflects the difficulty of this sequence
learning task

The autonomously generated sequence displays a global time dilatation: the end of the generated sequence
occurs at time step 300 230 instead of 300 020. This is explained by the fact that the leak rate acts as a temporal
smoothing filter and consequently, a non-zero time is required for establishing a given neuron firing pattern.
This delay is observed as a continuous increase and decrease of mean firing rate at the beginning and the end
of a neuron activation pattern. The generated output at each timestep is never corrected and the delay is

39

cumulated during the generation process occurring within a closed loop between prediction and input. This
points out the need of a metric that measures the similarity between sequences having arbitrary dimensions
but not necessarily the same duration. We propose to use the Fréchet distance.

2.2. Towards a more realistic model
Previous investigations have demonstrated that our joint PFC-HC model is able to consolidate at least a single
complex trajectory based only on random replay of snippets. The stimuli used so far were emulating
hippocampus place-cell coding by affecting one binary neuron sparse orthogonal representation (learning of
a competitive network) for coding one particular location. No combination of neurons in a firing pattern were
allowed and all neurons fired strictly orthogonal patterns (i.e. null dot product). The purpose of the model
being to explain and predict data issued from TSP related experiments with a rat, we need to extend our model
along several axes:

2.2.1. Use trajectories performed by a rat
The synthetic trajectories used so far for demonstrating dynamic properties of the joint HC-PFC model related
to TSP problem are designed by hand and aims at capturing particular features of the rat behavior we are trying
to explain. They do not represent the trajectories performed by a rat trying to solve the TSP problem. We then
use behavioral data about rat solving the TSP problem provided by Fellous & Al, CENL Lab, University of
Arizona, Tucson. Experiments take place in a circular arena having a radius of 1.5m. 21 feeders are scattered
according to a spiral shape. The feeder’s location and label is always the same. Some feeders are baited with
food whilst others are not. We call a configuration the particular state of baited/non-baited feeders. 100
different configurations of baited feeders are explored by different rats during 10 trials. Before each trial the
rat is positioned on the same starting point, near the first baited feeder. Figure 28 panel A shows the trajectory
performed by the rat during trial 4 for configuration 84

Figure 28: Trajectory performed by a rat (Panel A) and an idealized version (Panel B)

The points of the trajectory are provided by a camera based tracker. Measures might contain noisy or
missing samples and that is why we interpolate data with splines. We consider a trajectory as a graph. The
vertices are the feeders and correspond to cities in the TSP problem and the edges are the paths that link the
feeders. In the acquired dataset, the rat does not always find the optimal trajectory between baited feeders and
64 configurations contain at least a trial where an efficient path is found. An efficient path is found when a
given path is a circular shift of the optimal path or the optimal path in reverse order. The subset of 64
configurations containing at least one efficient path each is called the converged subset. Two configurations

40

of the converged subset contain an efficient path but all edges of the optimal trajectory had not been
encountered. We restrict the dataset to the converged configurations where every feeder pair of the optimal
trajectory is encountered at least once. This subset is called the complete subset and it accounts for 22% of the
acquired data. We will use this subset in our experiments. If baited feeders are visited in the correct order, it
does not mean that an optimum has been reached. Subj-trajectories linking baited feeders might not describe
the shortest path between these two points. We created an idealized trajectory that links optimally the baited
feeders and an example is shown in Figure 28 panel B. This is required for establishing a performance
criterion. Trajectories are down sampled to a spatial resolution of 20 dot*m-1. This resolution is sufficient for
representing the motion of the rat, using a very high resolution would capture the noise of the camera based
tracker and as demonstrated in section 2.3, there is a direct relationship between the spatial resolution of a
stimuli sequence and the leak rate required by the reservoir model for capturing significant variations of the
sequence.

2.2.2. Use of a place-cell model
Place-cells are a type of pyramidal neurons in the hippocampus that fire preferably when the rat is located in
a particular place called place field. We propose to use an isotropic 2D Gaussian place-cell model defined by:

(1)

Where:
 is the number of the place-cell

 is the mean firing rate of the place-cell

 is the coordinate of the place-cell

 is a constant that will constrain the highest activations of the place-cell to be mostly

contained in a circle of radius , centered in

 is the radius of the place-cell

 is the radius threshold which controls the spatial selectivity of the place-cell?

Trajectories are defined within a 2x2m square space spanned by a regular grid of 16x16 2D Gaussian isotropic
place-cells. Thus from a simulation point of view, a given trajectory result in a raster of 256 place-cell neurons
as illustrated in Figure 29 panel A and B and is defined by the conjunction of the place-cells activations
concatenated for each time step. One can observe in panel C that there exist parts in the trajectory where the
trajectory first order gradient with respect to time is null. It means that the trajectory features static parts where
the rat is not moving. Since the reservoir model captures the serial and temporal structure of a trajectory
through the recurrent connections, a long static part might be partially captured by the PFC model. Indeed, a
given sustained activation pattern as observed in panel B will allow the model to eventually exceed its mnesic
ability and to produce a similar context after this point. The consequence is that the readout layer will associate
several times this fixed context to the same output, resulting in the overrepresentation of a particular point of
the sequence. In autonomous generation mode, this will lead to a fixed point. A practical workaround would
be to modify the learning rule in order to allow a hebbian learning process to occur only when novelty is
detected with the equivalent of a first order derivative filter. In fact, the formulation of the learning rule is
similar to the definition of the covariance matrix between reservoir neurons and readout neurons. The

41

estimation of the mean activation value of a neuron over time depends on a particular timescale and this would
add several hyper parameters to the learning rule. Another simple manner of allowing the learning process to
occur only when novelty is detected is to algorithmically remove static parts of the stimulus where the modulus
of the derivative with respect to time (illustrated in panel C) is non zero/
We hypothesize that this novelty detection mechanism is a part of the snippet formation process and we
propose to model a snippet as a contiguous subsequence of the dynamic parts of a place-cell activation
sequence. The regular sampling is the equivalent of a constant velocity. Panel D illustrates the condensed and
resampled trajectory and panel E represents the place-cell activation sequence. It contains only dynamic parts
of the trajectory and it will be used by the snippet generation procedure.

Figure 29: Trajectory performed by a rat as captured by the visual tracker. Panel B represents the corresponding place-cell activation pattern
raster, panel C shows the gradient modulus of the position, panel D represents the condensed and resampled trajectory and panel E shows The

corresponding simplified place-cell activation sequence.

For specific demonstration purposes, we propose to use place-cell activation sequences based on the place-
cell model described above and spline interpolated trajectories satisfying a constraint on the order where the
feeders are visited. Figure 30 Panel B shows a synthetic trajectory where feeders ABCED are visited. Gray

42

circles represent the place-cells centers and their radius. Panel C shows the corresponding place-cell activation
pattern and the same snippet represented in the 2D trajectory and its place-cell extent.

Figure 30: Place field model applied to a trajectory and representation of a snippet

2.2.3. Generate a set of snippets from multiple sequences based on reward
In the behavioral experiment described in (De Jong et al. 2011) we can observe the rat incrementally solving
the TSP problem by experiencing new paths at each trial. In Figure 31 panel A, B, C, D and E, the rat describes
a new trajectory at each trial and several sub-trajectories are present in different trials. For instance, the path
linking feeder 20 to 12 is observed in panels A, B, C and E.
We hypothesize that the random replay of snippets that allow the model to generate an efficient sequence as
depicted in panel F is based on sequences from remote trials and modulated by a form of reward. This is
compliant to the behaviors and measurements described in (Gupta et al. 2010).

Figure 31: Trajectories performed by the rat over successive trials

43

The aforementioned modulation by a form of reward is illustrated in Figure 32. The BACDE sequence
illustrated in Figure 5 panel D contains long and short paths linking the different feeders. This is related in
Figure 32 by a different number of time indexes.

Figure 32: Snippet replay likelihood used in the snippet generation procedure.

The snippet replay likelihood reflects a prediction of the reward and is learnt by the replay model illustrated
in Figure 6. Update equations and details about the replay model can be found in 2.4. It becomes possible to
emphasize different parts of a trajectory related to rewards as depicted in Figure 33. If the reservoir model is
able to concatenate the emphasized parts of different parts of a trajectory related to a reward and replayed at
random, then it is possible to generate an efficient trajectory based on salient elements of recently experienced
trajectory. This is the main result of the paper presented in section 2.4. From a more abstract point of view,
the replay model proposes different associations between reward sites (A, B, C, D and E) and the consolidation
model reconciles the overlapping representations, allowing to build a transitive relationship following a path
between reward sites. This correspond to the point of (Preston and Eichenbaum 2013). Their understanding
of the interplay between Hippocampus and Prefrontal cortex and their roles in the memory consolidation
process entails the notion of schema, introduced to cognitive psychology by (Piaget 1967) and (Bartett 1932).
The replay model proposes a solution to the credit assignment problem by propagating the reward information
across time according to a algorithm and the consolidation model allows to build a heuristic that is able
to find efficient global paths in a graph by combining efficient sub-paths based on a reward expectation. This
heuristic is in fact a neural implementation of a reinforcement learning (Sutton and Barto 1998) and it is a
very simple and new manner to solve the credit assignment problem in recurrent neural networks. We will see
that modulating snippet generation probability based on this reward value propagation will allow the
implementation of a form of reinforcement learning that addresses the optimization requirement for solving
the TSP problem.

44

Figure 33: BACDE trajectory and the frequency of different parts being represented through random replay

2.2.4. Defining a sensory-motor loop
We propose to make a first attempt by selecting in the dataset3of behavioral experiments configuration 40
where an efficient trajectory (feeders 14,12,18,17,1) is discovered during trial 5 and sub-trajectories of the
efficient trajectory are visited during previous trials 2,3 and 4. Figure depicts these trajectories. During trial 2,
feeders 14,18,12,14,7,1 are visited. Feeder 14 is consumed the first time it is visited and the second time, it is
perceived as a non-rewarding feeder. The trajectory linking baited feeders 12 to 7 is particularly long and
optimal sub-trajectory linking feeder 12 to 18 is performed in trial 2 in reverse order with a sub-trajectory
linking feeder 18 to 12. This example illustrates the need to have a model that can extract sub-trajectories
linking two reward sites with no particular direction and learn preferentially short sub-trajectories between
rewards. During trial 3, feeders 14,18,12,17,1 are visited and it corresponds almost to the optimal trajectory,

3 Gracefully provided by Fellous & al, CENL Lab, Tucson, AZ, U.S.A

45

excepted that feeder 18 is visited before 12, instead of feeder 12 before feeder 18. During trial 4, feeders
17,1,14,12,18 which is a circular permutation of the optimal sequence. Sub-trajectories 17,1 and 14,12,18
belongs to the optimal sequence and this example suggests that a model able to consolidate randomly replayed
parts of the optimal trajectories would be able to consolidate them if they are more salient as non-optimal sub-
trajectories.

Figure 34 : Successive trajectories of the rat in configuration 40

The reservoir model is trained and evaluated several time with a random replay of place-cell activation
subsequences based on different possible combinations of trial 2, 3 and 4. Each model is trained by exposing
it to a random replay of snippets of 10 simulation cycles long for a duration of 1000 simulation cycles. The
model is then evaluated by measuring the mean square prediction error on the readout layer with a Euclidian
norm. This evaluation procedure is repeated 100 times and the mean square prediction error series are gathered
for each trial combination in autonomous and non-autonomous generation mode. In autonomous mode, the
predicted stimulus is reinjected as the next input, while in non-autonomous mode, the next input is forced to
be the next stimulus as observed in the training set, regardless of the predicted stimulus. It allows one to
measure an error along the whole trajectory. Figure 35 represents the prediction errors in non-autonomous
mode for each trial combination.

46

Figure 35: Mean square error histograms for different conditions evaluated in non-autonomous mode

A random replay of snippets based on 100 % of trial 2,3 and 4 leads to the lowest error. Other possible
combination of sequences in the snippet generation suggest that some sequences are more informative than
others and combining several trials for generating snippets have a positive effect on performances. It will be
studied more in details in section 2.3. When evaluated in autonomous generation mode, results are not well
differentiated (see Figure 36) and the expected place cell activation sequence is not generated at all. This is
due to the recurrent nature of the generation process. If an error is observed during the early timesteps of the
generation procedure, this erroneous place cell activation pattern is directly injected in the reservoir input
neurons. Reservoir state is different, generates a different prediction that might be erroneous or totally
unexpected or unrelated to a place cell coding of a location.

47

Figure 36: Mean square error histograms for different conditions evaluated in autonomous mode

In order to overcome this difficulty, we propose to implement a form of embodiment. The location encoded
by a place-cell activation pattern is estimated by exploiting the spatial response each modelled place cell, the
agent moved to this new location and then the place-cell model is applied to the new location of the agent in
order to provide an interference free place cell activation pattern. It exploits the fact that an agent situated in
a 2D environment can occupy only one location at a time. By selecting the most probable location encoded in
a place cell activation prediction, the agent performs an action based on the last perception. This emulate a
rudimentary sensory motor loop.

2.3. High performance computing simulator
A Temporal Recurrent Network (TRN) requires training typically 1000 neurons by exposing it repeatedly
stimuli sequences. For each simulation cycle, the recurrent connections contribution to the membrane potential
of the reservoir neurons is implemented by a matrix vector multiplication and thus requires 1000 000 floating
operations with a dense implementation. It is also possible to use a sparse matrix implementation that requires
less floating operations if the connectivity matrix is sparse, but the major drawback of this apparent time
complexity simplification is that the benefit of using a local and fast paced memory is almost lost because of
non-coalesced memory access that result in more frequent access to the remote and slower global memory.
We choose to rely on a dense matrix implementation. Depending on the learning rule implemented and the
learning rate, the magnitude and the stimuli sampling rate, a successful training requires at typically 10 000
simulation cycles. When instantiating a TRN, the synaptic weights are randomly drawn from a particular
distribution with a particular random seed. An error measure on this particular instance cannot be significant
with only one observation. In order to be consistent, a batch of TRN must be evaluated instead and this batch
size must be empirically at least 10 and evaluating more than 100 TRN for building a single measure won’t
play a significant role for accuracy.

The training set is not necessarily formed as a time indexed multidimensional stimuli matrix, and might require
an additional stochastic training set generation procedure that will drive the TRN during training. This
stochastic procedure is in our case the emulation of hippocampus replay during awake SPW-R and it depends

48

on a particular random seed for a batch of TRN. It is necessary to evaluate at least a group of 10 TRN batch
having each different random seeds for the snippet generation procedure initialization.

TRN produces predictions of the next stimulus input. For evaluating the whole sequence that the model can
generate, one needs to inject the prediction as the new input and compute the next simulation cycle for
updating the TRN states. Each prediction provided by a given TRN instance might reflect a conflict in the
training set that results most of the time by two different sequences having the same prefix whose duration
exceeds the mnesic ability of the network. In the case of a stimulus representing hippocampus place-cell
coding of a location, the next location prediction is thus not properly encoded and might contain more than a
location. Preliminary study described in 2.1.8 states that autonomous generation is not always possible by
direct injection of the predicted next stimulus as the new input for the next simulation cycle. We developed
and described in section 2.3 a new place-cell location decoder based on a Gaussian kernel and using a finite
element method. This decoder is very robust to noise because it exploits the redundancy and coherency of the
spatial coding of a place-cell activation pattern over the whole arena. The finite element decoding method
requires a grid that tessellates the 2D space defined by the workspace boundaries. A sufficiently low
discretization error is required for avoiding a spatial aliasing effect that will necessarily have a negative impact
on the generated trajectories. The size of the grid can become important very quickly and have a major impact
on the computing load. It is possible to limit the number of grid elements being evaluated by considering a
region of interest, centered on the agent current location and enclosing the locations the agent can reach, as
defined by its transition model. It is thus possible to select the next location of the agent based on the location
probability map computed with the place-cell decoding method, to move the agent to the most probable
location and to apply the sensor model in order to provide to the TRN the stimulus that corresponds to the
most probable location. Selecting the most probable location at each step is a greedy action selection strategy
and does not necessarily lead to the generation of the optimal sequence. However, it is possible to give an
account of the trajectories the model can generate by evaluating the model several times and injecting noise
in the location probability map in order to allow multiple trajectories to be generated. Typically, 10 to 100
random walks are required for building a consistent 2D high-resolution histogram that will represent the
frequencies where a particular location is visited and give an intuitive but not complete view of the set of
trajectories the model can generate and their likelihood to be generated. It is also possible to enhance this view
by extracting a vector field from the multiple displacements or to cluster trajectories in order to characterize
the different classes of trajectories the model can generate.

A trained TRN can be seen as a generative model of trajectories that reflects the training set as represented by
the recurrent neural network with a particular set of parameters. These parameters will condition the model’s
ability to learn a training set and generate a test set. The search space spanned by the Cartesian product of all
parameters prohibits a systematic parameter search and one might follow echo state networks guidelines (M
Lukoševičius 2012) in order to find a parameter set that allows a particular sequence learning problem to be
solved. The authors states that finally, a global optimization algorithm can be used for finding the optimal
parameter set for a given task. Tabu search (Glover and Martí 1986), Simulated annealing (Kirkpatrick, Gelatt,
and Vecchi 1983) and genetic algorithms (Goldberg and Holland 1988) are suitable for this problem and we
chose a simulated annealing variation (Chen et al. 2007) because of its implementation simplicity, the low
number of parameters and its ability to take advantage of parallel simulations.

For all the reasons mentioned above, simulating multiple agents controlled by a HC-PFC-ST joint neural
network model requires a tremendous amount of computing power. Simulating several neural networks
exposes several levels of parallelism and it is possible to take advantage of a massively parallel computing
infrastructure. Recently, it became possible to use graphics processing units (GPU) for general purpose
computing. NVIDIA builds high end gaming graphic cards named Geforce that are perfectly suitable for
training deep neural networks in a reasonable and in fact, they can reach the same level of performance of

49

processional graphic cards. Professional graphic cards (Quadro, Tesla) cost approximately 10 times the price
of a gaming graphic card with the same architecture but provides more onboard memory that features an error
correcting code (ECC) mechanism, more computing units, half precision arithmetic operations (16-bits
floating point number) that doubles the computing throughput, faster double precision arithmetic operations
(64-bits floating point number) and drivers certified for specific professional applications. Since artificial
neural networks simulations do not require a high level of precision, a recent gaming graphic card is affordable
and provides the same single precision (32-bits floating point numbers) computing throughput as
approximately 30 recent central processing units (CPU) for the same price. In addition to computing
throughput per price unit and numerical precision considerations, the availability of a high performance
computing (HPC) infrastructure is another question of interest. Indeed, there exist computing farms that
provide an access to computing devices. Some of those are not available for an extended time period and do
not authorize the use of 3rd party libraries used in modern HPC approach. It is a serious problem when
developing a fully asynchronous and distributed simulator. One need a development cluster with a reasonable
computing power and a library and tools ecosystem that allow modern programming and debugging without
having to add an extra cost for the time spent on these machines. Another drawback of some distributed
computing solutions is that the simulations need to be split into several scripts, launched through a job
scheduler on different remote shells. It does not facilitate the simulation process and in addition, scheduler job
does not necessarily run immediately, the entire computing power is not available because it is shared with
other users and a job might be suspended for hours or days.

We chose to build a hybrid CPU/GPU heterogeneous cluster by using a workstation equipped with a Tesla
k40c, upgrading 2 existing workstations with 4 NVIDIA Geforce GTX 1080 and to build a supplementary
high end workstation based on the specifications of the DIGITS DevBox by NVIDIA used in the deep learning
field and hosting 4 more NVIDIA Geforce GTX 1080 boards. The theoretical computing throughput is 88 590
Gflops / second in single precision and this computing power is available constantly, for an unlimited amount
of time. All GPU boards use an exhaust mechanism based on a blower, allowing an easy installation on
different motherboards while maintaining a decent cooling performance for a reasonable price. NVIDIA
provide a very efficient BLAS implementation, parallel random number generation algorithms and other
libraries and tools that reduce significantly the need of developing low-level computing routines and save
development time.

There exist deep neural network frameworks for a particular architecture that implement simple recurrent
neural networks with a hyperbolic tangent activation function, while frameworks designed for other
computing architecture do not provide a RNN with the same specification. State of the art libraries like
Microsoft CNTK or Nvidia CuDNN provide different implementation of recurrent neural network but the
training algorithm behind are not clearly specified, includes the training of the recurrent layer instead of the
readout only required by our echo state approach or simply use a batch of different algorithm and retain the
algorithm and parameter set that gave the best result. Deep learning is a new applied research domain and the
most advanced libraries at this day were first released in 2015-2016, one year after the beginning of this thesis.
We want to keep the model simple, provide clear explanations of their functioning based on several
observations of variables internal or external to the model. It does not include a model of hippocampus replay
and these of the shelf models are not necessarily online models. Practically speaking, the amount of code
dedicated to a neural network model is about 5-10% of the total code volume of our implementation
(approximately 35 000 lines of carefully designed and optimized C++ code) whose added value is more than
being the fastest possible implementation of a simple RNN. We propose a flexible solution that allow one to
take full advantage of the available computing power in a heterogeneous and distributed system. We chose to
rely on the same accelerated linear algebra libraries for CPU and GPU named MKL and CUBLAS and to
write custom kernels for implementing functions that do not already exist (for instance the Bayesian place-

50

cell decoding finite element method based on a Gaussian kernel). It is always possible to change the
implementation of a model later and use another learning paradigm. Our objective is to test several hypothesis
and to explain the internal functioning of a biologically plausible model. Exhibiting the best learning
performances possible is not a primary objective but using efficiently the computing power provided by
today’s modern computing architectures for reducing significantly the time to result is a very valuable
advantage.

We will present here the software design of the Temporal Recurrent Network solution. The detailed design
part is omitted because it will have required at least 80 pages of pure software engineering. This is not the
goal of a thesis manuscript and the following page aim at document the non-trivial and careful design and
implementation of a fully asynchronous and distributed neural network simulator that exploits several degrees
of parallelism and modern computing architectures while being easily interfaceable with many existing third
party simulators. The same simulator can run on a simple laptop or on a modern high performance cluster of
computers equipped with the best in slot CPUs and GPUs. It is based on C++ language because of its
sophisticated features and its efficiency at execution.

The whole source code is available at https://github.com/NicolasCAZIN/TRN

2.3.1. Use case
The most synthetic and important view in a system design is the use case. Figure 37 summarizes the different
services offered by the developed solution in an abstract manner:

Figure 37: Use case diagram of the TRN solution

51

The main idea is to provide to an experimentalist an easy way to run simulations of neural network models on
different architectures: a simple laptop, a robot, a workstation or a cluster. The underlying functionality for
providing this ability to execute simulations on a heterogeneous architecture is to schedule simulations on
simulators powered by different computing architecture. It also includes a load balancing mechanism not
represented here. The ability to preview quickly results is important when designing a numerical experiment
and storing the raw results in an easily usable format is essential for extracting valuable observations on an
analysis phase. Reading data generated from 3rd party software like MATLAB is also required for working
efficiently in a collaborative scientific work. The experimentalist is required to use a model that works with a
given dataset and the model results depend on the parameters and initial conditions. The TRN solution
provides a parameter search mechanisms based on simulated annealing for finding a global set of parameters
that allows the model to simulate the experiment properly, or to asses that that the problem observed is deeper
that a simple parameter configuration issue. A grid search mechanism is also provided for studying the effect
of a limited set of parameters on several instances of the model. The elaboration of a model is iterative and
requires many trial-error steps. The ultimate goal of the TRN system is to facilitate this tedious work.

2.3.2. Design
We choose to design the TRN solution as a library with different language bindings and a limited number of
executables programs, extensible thanks to a plugin system. The architecture is based on the Model View
Presenter (MVP) pattern and allows one to easily extend or use TRN.

Figure 38: The Model View Presenter architecture used by TRN

The user sees the View updated by the Presenter and manipulates indirectly the Model by using the interface
(see section 2.3.2.1) provided by Presenter, which also conveys events and data generated by the Model. In
our case, the user can be a human user that previews the results through observables provided in real time by
the model and rendered with a graphical library or it could be another simulator that interacts with TRN by
using the same programming interface.

2.3.2.1. Application Programming Interface

The entry point of the TRN solution is an application programming interface acting as a Facade design pattern
and provides to the programmer the tools required for using an extending TRN through a hierarchy of
interfaces illustrated in Figure 39.

52

Figure 39: Different interfaces organized as different namespace

Several interfaces are available and they provide to the programmer different levels of complexity, allowing
him to implement the tools that participate to the realization of use cases described in Figure 37. The interfaces
hierarchy is articulated around asynchronous function calls and several interfaces allow one to exploit the
system in a simplified manner while other interfaces allow the programmer to defined extension points,
exploited in a transparent manner by the system. It could be described as follows:

 The Basic api allows the programmer to instantiate an engine based on a particular computing
architecture handled the Backend. It is also possible through this interface to setup the logging
subsystem and to access to common support functions allowing one to refer to a particular simulation
when calling other interface functions. The base class for the plugin interface is defined here. A plugin
is required to implement a standard initialization based on text arguments and uninitialization routine

 The Sequence api is used for declaring sequences in the system and the plugin interface provides
methods that will use transparently the Sequence api and require the plugin programmer to implement

53

methods for accessing a sequence in a dataset according to a hierarchical pointed notation contained
in a standard string.

 The Search api is used for defining global optimization algorithm supposed to find the optimal set of
parameters for a particular experimental condition. The plugin interface provides to the programmer a
standard manner of implementing a global search algorithm through a restricted set of methods.

 The Advanced api is based on the Basic interface and defines the whole set of functionalities accessible
to the user.

 The Callbacks api defines the set of methods that conveys the results provided by a simulator through
the arguments of these methods. The plugin interface provides a standard and transparent manner for
a program for being called back when a result is available and an action is required. It is possible to
attach to the TRN system several plugins implementing the Callbacks interface. They will be evaluated
in parallel.

 The Custom api aggregates the Facade functions required for building custom model parts requiring
the user to reply to the request of the simulator. This is used for example for defining a custom encoder
model where the next location prediction will be used as a target location for a mobile robot. Once the
mobile robot reached this target point, the custom encoder model will provide to the simulator its
estimated position through a callback. The plugin interface allows one to extend the TRN system with
custom plugins and it uses transparently the Custom api. Only one custom plugin at a time is allowed.

 The Extended api is based on the Advanced api allows one to define a simulation without necessarily
requiring the use of Custom and Callbacks interfaces. It provides the methods for building and running
a simulation by encapsulating calls to Extended the api and use when required the functors declared
through Custom and Callbacks interfaces.

 The Simplified interface provides a unique method named compute() that allows the user to specify a
scenario file written in XML, JSON, INI or INFO format. It is a complete simulation procedure that is
able to use the full set of methods exposed by the Extended Custom, Callbacks, Search and Sequence
apis. It is either possible to provide implementation of these interfaces through C++ functors or by
specifying in the scenario file a plug-in implementing the corresponding interface. This is the easiest
way to run multiple simulations in parallel and to store the generated results in a compressed and
structured file format.

2.3.2.2. Model

The role of the Model in the MVP architecture is to define a set of objects representing an abstraction of a
simulation independent of the implementations, performing the required computations on different computing
architectures. We used a Bridge design pattern for allowing the definition of two orthogonal classes’
hierarchies named the abstraction and the implementation.
The abstraction class hierarchy represents objects that contribute to the definition of a simulation. A Reservoir
and its unique concrete subclass WidrowHoff model specify the methods and attributes relative to the
simulation of the consolidation model described in Figure 7. Neurons states and synaptic weights aggregates
are implemented by a Matrix, Batch or Bundle that are initialized by classes deriving from Initializer. A Loop
class allows one to evaluate the Reservoir once trained. Copy is the simplest Loop possible and copies the
readout activation pattern in the input layer of the Reservoir. The Custom loop allows one to implement its
own Loop by providing a callback function and SpatialFilter represents a loop with an additional
representation decoded from the readout activation pattern by a Decoder and encoded before reinjection by
an Encoder. Custom represents a user specified encoder and Model is an isotropic Gaussian place-cell model.
A Decoder represents a place-cell decoding method. Linear represents the linear decoding method based on
the standard dot product; Map is the kernel dot product Bayesian method described in section 2.4 that uses an
arbitrary firing rate map and Model is the decoding method that uses the same place-cell model as the Model

54

decoder. A Scheduler computes a Scheduling, which is concatenation of the time indexes of the sequences
contained in a training set, represented by the class Set. The Tiled scheduler is the simplest one and consists
in repeating several times the contiguous time indexes of an input sequence. Snippets represent the replay
model described in Figure 7 and Custom allows the user to specify is own scheduler in a callback. A
Measurement performs gather observations either on the readout layer or on the Decoder output.

Figure 40: Class diagram of the overall model simulating multiple animats

55

A Simulator holds references to the classes aforementioned and represents one to several instances of the same
simulation initialized with different random seeds. This allows one to simulate in parallel several animats on
the same computing device. The Message class defines the internal communication interface shared by the
abstraction classes implementing an Observer design pattern.
All the abstraction classes are implemented by several support classes named Memory, Random and Algorithm
that are specific to a computing device. They are owned by a Driver that allows every class from the
abstraction hierarchy to be a Bridge and admit either a CPU or a GPU implementation. Thus, a simulator
could be instantiated and executed transparently on the computing device available on the target machine. It
is possible to extend the supported architectures by writing a supplementary implementation of a Driver. For
instance, it could be implementation targeting a modern FPGA or a more generic but less performant
implementation based on OpenCL.

Several decorators of a Simulator are available and allow one to instrument transparently and optionally a
simulation without affecting the performances when not required. The Performances decorator measures and
report the simulation speed in number of cycles per second (Hz) and the achieved computing throughput
(single precision Gflops/s), the Scheduling decorator reports the dynamic training set as the time indexes
generated by a Scheduler during a training episode. States and Weights report the neurons and synaptic weights
of the Reservoir object.

2.3.2.3. View

The view allows the user to observe data provided by the model and a view component must implement an
interface able to decode a formatted stream of data. This stream of data can come from the calling parameter
of a user implemented callback declared through dedicated parts of the Application programming interface,
or can be a simple hypercube stored into NetCDF or MATLAB format for instance. A 3rd party software like
ParaView or MATLAB might be used for examining the results and adjusting a scenario file that will describe
how the controller must be used in order to simulate a particular experiment split in multiple conditions. The
only TRN components related to the view part of the model are the plugins called Monitor and Display and
they both implement the Callback interface.

Figure 41: An example of the monitor plugin displaying performances information on the standard output.

56

Monitor provides a simple text summary of the different events generated by the model and Display renders
trajectories, neurons rasters and sequence scheduling information. OpenCV is used for its windowing and
rendering primitives.

Figure 42: An example of the Display plugin rendering multiple trajectories computed by several simulators using 4 GPUs

The view part is not really developed in TRN and is left to third party software like MATLAB or ParaView
specialized in scientific data visualization.

2.3.2.4. Presenter

The presenter’s role is to mediate the user’s events captured by the View and Simulators maintained by the
Model. A Worker holds zero or several Simulators backed by the same Driver instance. It is particular Node
whose role is to receive incoming Messages provided by the Communicator and to translate them into the
appropriate Simulator method calls. A Node is a particular Task that maintains a Cache for received data and
is implemented by a shared memory mechanism. This allows multiple Node running on the same computer to
mitigate the communications by avoiding the Broker to send an already sent data chunk having the same
checksum. A Broker is a particular task whose role is to send asynchronous messages to several Nodes
represented by Processors whose life cycle and scheduling is managed by a Manager. A Communicator might
use a Compressor for reducing the Message traffic between a Broker and its corresponding Nodes. It serializes
Messages and establishes a communication channel between a Broker and one or more Node. Messages
propagates through a local message queue with a Local communicator, a remote TCP/IP socket with a Remote
communicator and over MPI channels with the Distributed communicator. When using a Remote

57

communicator, a Proxy is instantiated instead of a Worker. Its role is to behave like a Worker, but instead of
using a Simulator, it will act as a regular Broker by implementing the Node methods with calls to Dispatcher
methods. The Dispatcher owns another communicator that establishes a relationship with a Worker. This
communicator polymorphism allows one to deploy TRN over a heterogeneous and distributed infrastructure.

Figure 43: Class diagram of the Presenter layer and related artifacts

Two artifacts provide the TCP/IP and MPI connectivity and allow one to adapt the deployment on different
and heterogeneous computer architectures mediated by a network:

 Worker.exe is an executable that instantiates a unique Worker and a Distributed communicator. It is
used for declaring an MPI process that will exploit a particular computing device on a given host. It is
also possible to oversubscribe to the same computing device by specifying several times the same

58

computing device on the same host. It might be required for reaching the maximum performance
possible in specific cases.

 Server.exe is an executable that is specifically used when the host executing the Client side software
is a lightweight computer with almost no computing power and dedicated to monitoring or recording
results. It could be deployed on a remote workstation equipped with several CPUs/GPUs or on a more
modest computer that will play the role of the MPI cluster controller while providing a TCP/IP
interface.

Several deployment examples are described in section 2.3.5.

2.3.3. Components
The MVP architecture described above result in several components and artifacts described in Figure 44:

Figure 44: Component diagram of the TRN solution

The Client.exe program uses the Simplified interface and allows the user to compute simulations. Simulations
could be executed on the same host by using a Local communicator and exploit transparently the computing
power of a CPU through the MKL library or the GPU through the CUDA toolkit. It is also possible to offload
the execution of simulators on a remote computed through a Remote communicator that will be used also by
the Server.exe artifact for acting as a Proxy between the Local communicator of the remote host executing
Server.exe and the Remote communicator of the local host executing Client.exe. Worker.exe is deployed and
installed on computer nodes being a part of an MPI cluster. Rat.dll simulates a rat by implementing Custom
callbacks related to the position and place-cell activation pattern, SimulatedAnnealing.dll and Grid.dll provide
global parameter search algorithm by implementing the Search interface. Display.dll is intended to offer a fast
graphical preview of results by using OpenCV for implementing the Callbacks interface. MatFile.dll
implements the Sequence interface for providing stimuli sequences to TRN from a MATLAB .mat file and
implements the Callbacks interface for recording result in a structured .mat file.

59

2.3.4. Language bindings
TRN4CPP is a C++ interface and provide all functionalities to a C++ program. TRN4MATLAB is a component
that allows a MATLAB script to use TRN through the Simplified, Sequences and Basic API (see Figure 45)

Figure 45: The TRN4MALTAB component provide to a MATLAB script a limited set of TRN4CPP interfaces

TRN4MATLAB is based on the MEX interface provided by MATLAB. Other interfaces involving asynchronous
callbacks are not implementable because MATLAB does not support multitasking. TRN4JAVA is the Java
binding of most of the TRN4CPP interfaces. It relies on the JNI interface of a Java virtual machine and allows
a third party simulator to use TRN and to interact with it through Java interfaces provided by TRN4JAVA.
Figure 46 illustrates the TRN4CPP interface Java bindings.

Figure 46: TRN4JAVA allows one to interface a third party simulator (SCS, a robotic simulator from USF Tampa)

60

2.3.5. Deployment
The components and artifacts provided by TRN allow the user to launch simulations in various situations
while taking advantage of computing accelerators like modern GPUs. The simplest deployment possible is on
a laptop computer, equipped with a modest CPU and or GPU. Figure 47 illustrates the relationship between
components, interfaces and artifacts.

Figure 47: Deployment on a standalone computer

The Client.exe program is invoked on a computer and is configured for using a local communicator, allowing
the user to launch multiple simulations on the CPU and GPU at the same time. It is not recommended because
a significant part of the CPU time will be dedicated to managing the GPU and it will have the effect of slowing
down the GPU simulation. If one or more GPU are used, it is recommended not to use the CPU backend. This
deployment also accounts for a standalone workstation equipped with one or more GPUs.
Another use case allows a lightweight or embedded computer to offload the simulations to a remote
workstation. This is illustrated in Figure 48. A Remote communicator is used on the laptop instead of the Local
communicator in Figure 47.

Figure 48: Deployment of a remote Backend for offloading simulations

A robot can execute the Client.exe, provide a position estimate and the corresponding place-cell activation
and offload the model learning tasks to a remote workstation. It is possible for different Client.exe instances
to use the same remote Server.exe. It means that a workstation can handle the computational load of multiple
robot. It is also possible to execute a MATLAB script on a modest computer and to offload the computational

61

load on a remote workstation equipped with modern computing devices and exploited with a Local
communicator. Another more sophisticated and deployment would involve one or more workstation running
Worker.exe in order to define an MPI based cluster. Server.exe and Worker.exe must be ran with the
mpiexec.exe or mpirun.exe tool provided with the MPI bundle of a particular vendor. It is also possible to use
a Distributed communicator on the laptop computer by including Client.exe in the arguments of the execution
MPI tools. If the client software is not Client.exe by another client based on the same API, it must be invoked
as an MPI process as well. It is not always possible to invoke the client as an MPI process. In this case, a
TCP/IP connection must be used for separating the Frontend part from the Backend part.

Figure 49: Cluster deployment of TRN with a TCP/IP Server

It is then possible to simulate an important number of scenarios in a limited amount of time by using all the
computing resources available over a local area network (LAN). The cluster used for producing all the results
described in 2.4 and 2.5 is specified by the deployment diagram in Figure 50. A lightweight laptop executes
Client.exe is responsible for reading the simulations described in scenario.xml and to compute them. Results
are stored in a MATLAB mat file and Client.exe communicates through a TCP/IP link with Server.exe
executed on the cluster controller as an MPI process. Computing nodes are equipped with one or more
computing device and execute several instances of Worker.exe as MPI processes. We propose to evaluate the
performances of this cluster by running several simulations in parallel by setting the dimensioning factors
evoked in 2.3 and to use the Performances decorator for measuring the simulation speed (number of simulation
cycles per second) and the single precision computation throughput (number of single precision floating point

62

operations per second) during the TRAIN, PRIME and GENERATE phase. These 3 phases does not involve
the same algorithms and need to be measured separately.

Figure 50: Deployment of the heterogeneous Cluster used in this thesis

The reference simulator used for producing the results described in section 2.1 was based on an optimized
CPU version using SSE4.1 instructions and the 12 cores provided by the Xeon X5675. The theoretical
throughput of this CPU is 294 Gflops/s. It was not possible to measure the effective throughput but the
simulation speed was measured at approximately 2000Hz. This will be the reference of our benchmark. The
new simulator implemented use the notion of mini-batch during the training phase. This result in the usage of
several matrix-matrix multiplication instead of multiple matrix vector product computed serially. The matrix
vector product is bandwidth limited and it is never possible to reach the theoretical computing throughput
because too many global memory accesses (slow) are performed regarding the number of arithmetic
operations. The CPU version implemented by the CPU driver of TRN is based on MKL and achieves the
following performances:

 Train: 2955 Hz @ 9,43 Gflops (1,47x speedup)

 Prime: 2184 Hz @ 8,12 Gflops

 Generate:40Hz @ 192 Gflops

The moderate performance increase of the training phase is due to the use of mini-batch. When using a GTX
1080 with the total drawing power limited to 115%, the maximum throughput an algorithm can reach is 10240
Gflops because of the increased GPU clock. This clock might decrease at one point because the heat produced
is too important. This is the maximum peak performance. The same scenario executed on a unique GTX1080
overclocked gives the following performances:

 Train: 52847 Hz @ 168,84 Gflops (26,42x speedup)

 Prime: 34367 Hz @ 127,72 GFlops

63

 Generate: 1156 Hz @ 9746 GFlops

One can notice that the speedup in training is about 26 times quicker than an optimized CPU version and the
theoretical throughput is almost reached during the generation phase. This is explained by the fact that an
optimized kernel has been developed and the number memory access was minimized regarding to the number
of arithmetic operations required. When running the same experiment in a cluster configuration by using all
the modern GPU available (8x GTX 1080 and 1x Tesla k40c overclocked, theoretical throughput 88 590
GFlops), the following performances are observed:

 Train: 454875 Hz @ 1446.5 Gflops (227,43x speedup

 Prime: 301005 Hz @ 1081.62 Gflops

 Generate: 9993 Hz @ 84236 Gflops (95% efficiency)

The cluster is about 227x faster than the original implementation and it is possible to reach the simulation
speed of 454 KHz in training mode. The computing throughput is still limited by the matrix-vector
multiplication used in the evaluation of neurons states and it is not possible to compute it faster. The generation
mode displays a computing throughput of 84236 Gflops, which correspond to 95% of efficiency. It would be
difficult to go further in terms of optimization. Even the optimized matrix-matrix multiplication provided by
GPU vendors does not reach the theoretical throughput of their devices. The achieved speedup makes possible
new investigations requiring orders of magnitude more computing power. The TRN solution is capable of
exploiting the computing power provided by a modest development cluster by using all degrees of parallelism
available. It is possible to simulate numerical experiments faster by embedding the TRN solution in containers
and executing it in a wider cluster but our low latency, moderate computing power cluster having a fixed cost
is sufficient for the remaining experiment.

2.4. Prefrontal cortex reservoir network learns to create novel
efficient navigation sequences by concatenating place-cell
snippets replayed with spatial credit assignment in
hippocampus

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

2.5. Real-time sensory-motor integration of hippocampal
place-cell replay and prefrontal sequence learning in a simu-
lated rat robot (Experimental results to come)

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

2.6. Neurodynamic properties of the semantic network.

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

3.Discussion
We set out to determine how the replay of experienced behavior could allow for a form of optimization of
learning, within the behavioral and neurophysiological context of the “traveling salesrat” paradigm. Here,
rats are observed to find the most efficient path linking a set of baited food wells, in a surprisingly short
number of trials. We hypothesized that the organized replay of recently experienced behavior could allow the
rat to amplify its experience, and contribute to the fast resolution of the problem. A major question then
concerns how the replay can bias learning towards the optimal solution. During the thesis, we developed a
replay algorithm that propagates reward value along the replayed trajectory, thus implementing a form of
spatio-temporal credit assignment in a reinforcement-learning context, by biasing replay probability to favor
snippets that are on an efficient path to a rewarded location. We then demonstrated how the PFC-like reservoir
could learn from this biased distribution of replay in order to consolidate the most efficient path. In the
following sections, we situate this work in a broader context and discuss its pertinence within these domains.

The TSP problem is a global optimization problem and the behavior of an agent that is able to solve this
problem could be demonstrated with a reinforcement learning algorithm like Q-Learning (Sutton and Barto
1998; Barrera et al. 2015) by learning the successful action sequence maximizing the expected reward. It
requires an explicit discretization of perceptual observables states and an explicit reward but does not require
a model of the environment.

Experiments with an animat require defining an embodied and situated agent equipped with sensors and
actuators and a behavioral control architecture that relates its perceptions to its actions and allows it to survive
in its environment. We defined a sensor model by considering the hippocampus place-field response to a
particular location and a transition model by restricting the locations the agent can reach at each time step to
a circle around the center of its body. Thus, we defined a simple navigation policy by selecting at each time
step the most probable location encoded in the prediction of the next place-cell activation pattern, based on
forward and backward random replay of snippets taking into account the notion of reward. By doing this, we
defined two generative models. A generative model is “an internal model that encodes the probabilistic
relations between states, actions, and rewards. Such a model permits to generate observable data given some
other hidden (non-directly observable) parameters, and ultimately permits to estimate the value of a plan“
(Pezzulo et al. 2014). The first generative model provides short place-cells activation sequences given a stream
of sensory input and the associated reward information. It emulates the replay phenomenon observed during
awake SPW-R. Snippets are randomly drawn from a replay likelihood estimated with a recursive algorithm
based on , described in (Sutton and Barto 1998) and implementing a form of reinforcement learning.
The snippet replay direction has the effect of propagating the reward forward and backward in time, allowing
one to have an estimate of the future reward. The recursive definition allows the generative model to be
compatible with a recurrent neural network structure, also found in area CA3 of the hippocampus. Once learnt,
the replay generative model is able to produce snippets that reflect the accessible rewards information. When
coupled with a stimulus coding a space information, it is thus possible to generate a dynamical training set
that represent sub-trajectories associated to a reward. This dynamical training set is used for training the
second generative model which is the consolidation model (see Figure 6) implemented by a PFC and ST model
(see Figure 7). This model exploits the reservoir’s ability to align in neurons state space the activation
sequences sharing a common subsequence. This result in the concatenation of overlapping subsequences of
place cell activation and when overlapping subsequences reflect the overlapping subsequences related to a
reward, it is then possible to concatenate efficient parts of trajectories experienced before. The learning rule
is very simple and as opposed to other recurrent neural network model using Backpropagation through time

213

or other complex algorithms, we solved the credit assignment problem by pairing two models, implementable
by random recurrent networks.

At this point, multiple efficient trajectories might exist and it is possible to give an account of all the
trajectories the agent can generate based on the consolidated knowledge of the trajectories previously
encountered and the reward information associated with salient points of these trajectories by simulating
several random walks of an agent implementing this generative model. Findings described in section 2.4
provide a link between awake SPW-R and hippocampal memory processes involved in a goal directed
behavior. Simulated agents exhibited a behavior suggesting an incremental update of their internal
representation of the world, based only on the cumulated and rewarded experiences acquired during the
previous trials. Snippet replay allowed the agents to recombine rewarded parts of the previous trajectory and
to consolidate a trajectory between feeders that privileges paths between baited feeders. It is possible to
consolidate the multiple trajectories that exist between baited feeders by exposing a sequence learning model
more often to place-cell subsequences related to a reward. Finally, we studied the TSP, which is a particular
optimization problem by implementing a generative model of the optimal sequence with a HC-PFC-ST joint
model featuring a particular form of replay during awake SPW-R that emphasizes short rewarding sub-paths.
An interesting perspective could be to extend this study by implementing a more comprehensive model of
hippocampal replay as characterized in (Gupta et al. 2010).

Hierarchical hidden Markov model
Reservoir states form a lattice of observable states whose transition probabilities result from the likelihood of
a snippet to be replayed. In fact, the PFC model based on reservoir computing allows the model to respect the
Markov assumption by maintaining and providing at each time step an account of the recent observable (place-
cell activation) states. It associates to any stimuli sequence a state that is characteristic of the recent history of
stimuli sequence and the mnesic abilities of the PFC model are mainly determined by the number of neurons,
the spectral radius (maximum absolute value of the eigenvalues) of the recurrent connectivity matrix and the
leak rate that reflects the time constant of the neurons by emulating the resistive and capacitive properties of
neurons membrane. Reverse replay (Foster and Wilson 2006b; Ambrose, Pfeiffer, and Foster 2016) is a
potential mechanism to the credit assignment problem encountered in reinforcement learning : In addition of
virtually exposing the agent to transitions between locations in both directions as demonstrated in (Gupta et
al. 2010) and in section 2.3, we demonstrated that reverse replay of snippets allows the backward propagation
of the reward through the reverse consolidation of place-cell transitions related to trajectory parts emphasized
by reward and forward replay emphasizes forward transitions between place-cell patterns (Wikenheiser and
Redish 2014).

We proposed a hierarchy of discrete time models which could be viewed individually as an autonomous hidden
Markov model (Markov 1913; Dugad and Desai 1996; Jurafsky and Martin 2017). It is then possible to view
the animat model as a hierarchical hidden Markov model (Fine, Singer, and Tishby 1998)
With a fully specified hierarchical hidden Markov model implemented by our joint HC-PFC-ST model, it is
then possible to benefit from several algorithms:

 Forward algorithm: It is possible to evaluate a belief state of the agent at a given time which is the
probability of a position at a particular time, given the history of place-cells activation values by applying
the forward algorithm on the HHMM. It consists in recursively evaluating the probability of the agent’s
position given successive place-cell activation patterns. With the help of the forward algorithm on a
HHMM, is then possible to:

1. Filter a position by estimating the posterior distribution of current position given all available
place-cell activations

214

2. Predict a position by estimating the posterior distribution of a future position given all available
place-cell activations

The recursive definition of the forward algorithm allows one to evaluate the belief state of the agent’s
position given all available place-cell activations (the likelihood of the trajectory) online during navigation
and opens the door to online planning.

 Viterbi algorithm: It is possible to find a sequence of observable states (reservoir states) that reflects a
sequence of hidden states (position of the agent) that maximizes the reward and minimizes the walking
distance of the agent during a trial by using a Viterbi algorithm (Viterbi 1967). This is a solution to the
TSP problem and we demonstrated that our joint HC-PFC-ST model is sufficient for learning a state
transition model that does not require an explicit discretization of perceptual (observable) states. Viterbi
algorithm rely on the forward algorithm and instead of estimating recursively the posterior distribution of
a position at a particular time given all the place-cells activations observed so far, one can estimate
recursively the probability of the most probable path to each position given all available observations.
Practically speaking a Viterbi algorithm can be implemented by selecting at each time step of a trajectory
the location that maximizes the current forward path probability, which is given by the product of the
previous forward path probability, the transition probability given by the transition model and the state
observation likelihood given by the sensor model. The preplay of place-cell subsequences related to the
current location of the agent observed in (Diba and Buzsáki 2007b) could be interpreted as a prospective
mechanism playing a role in the evaluation of possible solutions related to the current agent’s situation
(Pezzulo et al. 2014). Since the forward algorithm is recursive, it is possible to maintain an estimate of the
current position with the place-cell activations encountered gradually and to evaluate the outcomes of the
possible trajectories derived from the current trajectory and the remaining suffixes suggested by the
snippets being replayed. Implementing this algorithm in our model would imply to implement the online
prospecting mode described in Figure 7 panel C.

 Forward-backward algorithm: A hidden Markov model relies on parameters transition probabilities and
emission probabilities. The standard algorithm for training a HMM and to find the model that explains a
given sequence is the forward backward algorithm or the Baum-Welch algorithm (Baum and Petrie 1966;
Welch 2003). It is a special case of the Expectation-Maximization algorithm. The algorithm is iterative
and consists in 2 successive procedures repeated for each iteration until convergence that can be
summarized as follows:
1. Expectation: For 1 < t < T apply the following algorithms:

 Forward: The forward algorithm is used in order to estimate the probability of observing t
available place-cell activations and being in the current position on time t.

 Backward: The backward algorithm is also a recursive algorithm on a HMM that is used for
smoothing a position by estimating the posterior distribution of a past position given all
available place-cell activations. It computes the probability of ending with T-t place-cell
activation given the current position at time t

2. Maximization: Update the actual emission and transition probabilities and the initial position
distribution estimates by using the results computed in the expectation step

There is no trivial link between the forward backward algorithm and the snippet driven learning paradigm
we are using for training a random recurrent neural network but in (Unkelbach, Yi, and Schmidhuber
2009), the authors propose an expectation maximization algorithm training algorithm for recurrent neural
network (Greff, van Steenkiste, and Schmidhuber 2017) performing a time series prediction task. In (Ma
and Ji 1998), the authors demonstrate a learning algorithm for echo states networks (Jaeger 2001) whose
formulation is very close to temporal neural network (Dominey 1995). There exists also a training method
based on Kalman filter for training a recurrent neural network (Puskorius and Feldkamp 1994).

215

We hypothesize that snippet driven learning of a reservoir model fits in this framework. The expectation
step, which consists in estimating the joint probability distribution over positions, conditioned on the
observed place-cell activation sequences given the current readout synaptic weights, could be implemented
by using random replay of snippets in forward and backward direction. The maximization step could be
assimilated to the gradient descent procedure used for training readout weights. Finally, the iteration of
the expectation maximization algorithm until convergence could be implemented by allowing the snippet
driven learning to occur between each trial during several trials, until the generated trajectories converge
to an efficient trajectory. This corresponds to the awake snippet replay we modelled and studied.

We then propose to extend the snippet driven learning paradigm by integrating the trajectory generated during
the previous trial as a part of the awake SPW-R content. An additional exploratory navigation policy might
be required and this allows the animat to mimic the rat behavior. This is the subject of a collaborative work
with USF Tampa described in section 2.5

Free energy and active inference
Hidden Markov model is a particular case of dynamic Bayesian network. It is possible to describe the animat
implementation of a joint HC-PFC-ST model under the light of the free energy framework as a hierarchical
Bayesian model (K. Friston 2008). By describing our model within a unified framework, it allows one to view
the model with a high level of abstraction while relying on correct neurophysiological basis and to extend the
model with ad-hoc or neuro-mimetic components for studying other problems that could be explained with an
active inference model. An example could be the work accomplished in section 2.6 which relies on the same
mixed selectivity property observed in reservoir computing (Rigotti et al. 2013; Enel et al., n.d.) or the
hierarchical model used in this thesis and illustrated in Figure 6. A collaboration with ISTC CNR had been
initiated during a visit (see Rome-ITALY 2017 Presentation) and aims at proving more rigorously that the
animat as we modelled it in this thesis learns a generative model minimizing free energy, based on the existing
work about free energy based models (Klaas Enno Stephan et al. 2010; Chumbley, Dolan, and Friston 2008;
Kiebel et al. 2009; K. Friston 2003; K. J. Friston, Daunizeau, and Kiebel 2009; K. Friston et al. 2016; K. J.
Friston et al. 2017).

Global optimization
The TSP is a global optimization problem and from this point of view, it is interesting to compare the heuristic
implemented in this thesis with existing algorithms able to solve the TSP.

The number of possible sub trajectories combinations is dramatically reduced when taking into account the
reward and using reverse replay when training the consolidation model allows one to consider only a non-
directed graph problem by virtually exposing the consolidation model to trajectory subsequences in forward
and reverse direction. It is necessary but not sufficient for allowing an agent to navigate We had to evaluate
the animat’s trajectories in non-autonomous mode when reverse replay was required for consolidating
solutions derived from sub trajectories in reverse direction. It caused a tendency to revisit feeders already
visited and no longer containing food. One needs to implement a preplay mechanism (Diba and Buzsáki
2007b) that will replay snippets related only to future rewards, given the current position of the animat and
excluding the snippets associated to a reward perception that minimizes the error with the reward prediction
by updating the learning rule of the replay model. It is then possible to realize a Viterbi algorithm that will
allow the animat to generate the optimal sequence.

The closest heuristic that solves the TSP is the ant colony system (ACS) (Dorigo and Gambardella 1997; Yang
et al. 2008), where multiple agents (ants) deposit an amount of ‘pheromones’ that is proportional to the length
of their tour in the solution space. Each agents moves stochastically according to the concentration level of

216

pheromones in the solution space and increases this concentration level each be releasing more pheromones
along the trajectory they just described. The possible shortest routes emerge as the paths following the most
concentrated pheromone trails. This is very analogue to the model we developed in this thesis if one considers
that an ‘ant’ corresponds to the simulated agents when establishing a random walk map. The pheromone trail
that is shared and built collectively by the ant colony is emulated by the incremental learning of the snippet
replay likelihood through multiple replay episodes. The consolidation model allows one agent to generate
trajectories related to rewarded paths (analogue to a path along the pheromone trail), either in an offline
simulation during the consolidation process, or during an online generation/exploration process that will allow
new paths to be discovered/associated and consolidated after the end of the current trial during SPW-R.

Multiple timescale
The recurrent networks we used in our implementation were relative to the same time constant, allowing them
to function only in a restricted timescale that matches the intrinsic timescale of the stimuli sequence. We
demonstrated multiple rewarded sequences consolidation properties with simplified trajectories displaying a
constant speed and thus featuring a single characteristic timescale. Several authors demonstrated the function-
ing principle and some properties of recursive recurrent neural network (Tani and Nolfi 1999; Jaeger 2007;
Yamashita and Tani 2008). The main idea is to consider two or three interacting recurrent neural networks
having a characteristic timescale (leak rate). It is thus possible to view each network as a time basis: Any
stimuli sequence could be decomposed in several spatio-temporal features resulting from one or more time-
scales. The readout layer can then select the spatio-temporal features correlated to the expected signal with an
online and supervised learning rule. Intuitively, it is similar to a wavelet analysis/synthesis process. Learning
selects the best time/space basis for representing a high-dimensional stimuli sequence featuring fast and slow
variations.

Deep learning
Recent advances in machine learning and the raising computing power of modern computers allowed the
emergence of the deep learning as a new applied research field. Briefly, it consists in processing a massive
data amount with several hierarchical layers of neural networks, each layer learning more and more abstract
representations of the dataset. A particular type of deep neural network is the recurrent neural network (RNN)
whose static architecture is similar to the model used in this thesis. RNN are typically trained with a
backpropagation trough time (Werbos 1990) or backpropagation through structure (Goller and Kuchler 1996).
The subject is complex and an entire PhD thesis had been dedicated to the training of recurrent neural network
(Sutskever 2013). The training algorithm we used for the consolidation model as described in 2.4 can be
assimilated to a truncated back propagation through time (TBPTT) algorithm, learning only synaptic weights
between the output layer and the unique hidden layer. Recurrent weights are never modified. The credit
assignment problem inherent to sequence learning is solved very simply by training a replay generative model
beforehand. Instead of modifying the synaptic weights of the recurrent connections according to a delayed
form of reward, we used a form of algorithm where the time delayed reward information is propagated
through the place cell subsequences replay phenomenon observed during SPW-R. The resulting replayed place
cell subsequences constitutes a dynamic training set for the consolidation model where only the place cell
subsequences related to a reward are represented. This replay model emulates the activations of the
hippocampus. The training process of the replay model might involve other areas of the brain, in particular
for justifying at least the reward circuit, and the notion of novelty associated to place-cells transitions. At this
point, we can state that our model is biologically inspired but is not necessarily biologically plausible. The
replay and consolidation model are learnt only during SPW-R in order to elaborate a navigation policy based
on a reward estimate. It is a form of reinforcement learning and the use of continuous recurrent neural network

217

allows one to consider continuous sensory and action states and a continuous time (a series of discrete time
events separated by a delay that could be arbitrarily small). This model should belong to the deep
reinforcement learning (Arulkumaran et al. 2017) family of algorithms because it “scales to decision-making
problems that were previously intractable, i.e., settings with high-dimensional state and action spaces”. The
overall model developed in this thesis might be considered as a deep temporal model (K. J. Friston et al. 2017)

Cognitive maps
We demonstrated that hippocampal replay is a suitable mechanism playing a role in offline consolidation and
suggested that online planning could use this mechanism as well.
In (Pezzulo et al. 2014), a generative model of plan values supporting vicarious trial-and-error and goal-
directed behavior is described. We implemented a generative model, implemented by a random recurrent
neural network and described as a dynamic Bayesian network. We demonstrated the ability of our joint HC-
PFC-ST model to learn a generative model in a compact manner, robust to noise and benefiting from the
neural network generalization ability. This work is an empirical attempt to demonstrate the argument
developed in (Wikenheiser and Redish 2014) where the authors conclude that “sequences play a more active
and complex role in information processing than encoding veridical experience. Their role in flexibly
manipulating and permuting representations of space to generate novel paths that might aid action selection
meshes well with the cognitive map envisioned by Tolman (Tolman 1948; Johnson and Crowe 2008)”

Piaget schema
The notion of schema had been introduced to cognitive psychology by (Piaget 1967) and (Bartett 1932) in
their efforts to understand how new information is integrated with pre-existing knowledge.’ A schema can be
viewed as ‘any organized network of overlapping representations that has the following properties:

1. New information is better remembered when it fits within a pre-existing schema
2. New information that challenges schema organization may cause modification of the existing schema

or development of a new schema
3. Schemas support novel inferences between indirectly related events and their generalization to new

situations.’
We demonstrated in 2.4 that it is possible to establish a transitive relationship between parts of trajectories
associated to a reward, based uniquely on random replay. The replay model implemented partially by the
hippocampus model, proposes associations of rewarded trajectory parts and the consolidation model
implemented by a model of prefrontal cortex and striatum, associates overlapping rewarded trajectories by
aligning their spatiotemporal representations through the online association of the states of the reservoir’s
neurons to the prediction of the next input of the consolidation model. Thus, it is possible to replay and
consolidation models as the two parts of a schema generative model: Property 1 is ensured by the use of an
online and supervised learning rule, which will attempt to incrementally reduce the error between the expected
and generated states by adjusting synaptic weights of the readout layer (part of the striatum model) only. A
new information that fits an existing schema will be encoded by the reservoir model in an area of the state
space that contains state transitions learnt earlier. The required synaptic weight modification will be less
important in this case and will be more important with a new information this is not yet related to consolidated
(pre-existing) schema. Property 2 is also implemented by the online learning rule of the consolidation model.
A challenging new information could be assimilated to an ambiguous state transition of the reservoir model,
occurring when at least two overlapping snippets represent the same prefix 2D trajectory and bifurcate in two
different direction. A balanced representation of the two snippets by the replay model will result in an
ambiguous state transition that could be observed through multiple random walks. The existing schema is
modified as the new ‘branch’ of the possible trajectories is represented and learnt. If this new branch is

218

overrepresented, the readout synaptic weights allowing the prediction of the old schema are progressively
modified until the new schema is learnt. Finally, property 3 is implemented by the use of neural networks that
have an intrinsic generalization ability. We demonstrated that the overlapping part of different snippets would
be encoded in the reservoir neurons state space in similar areas. This allows the model to establish new paths
between previously unrelated sub-paths.

Computational psychiatry
The prospective memory mechanism described in Figure 7 panel C was not investigated in this thesis. How-
ever, the simulation of future events contributes to the formation of plans and predictions. In (Schacter, Addis,
and Buckner 2008b), the authors review “neuroimaging, neuropsychological, and cognitive studies that have
examined future-event simulation and its relation to episodic memory” and “consider the applications of this
work for research concerning clinical populations suffering from anxiety or depression in which pathological
future thinking is a central feature”. By extending the model developed in this thesis, one could simulate past
and future events associated to positive or negative outcome and simulate the ability of a subject to envision
positive events. Other authors proposed to explain hysteria (Edwards et al. 2012) and psychotic symptoms
(Adams et al. 2013) in terms of false inferences or beliefs. They “use a neurobiologically informed model of
hierarchical Bayesian inference in the brain to explain functional motor and sensory symptoms in terms of
perception and action arising from inference based on prior beliefs and sensory information”. The computa-
tional model developed in this thesis extended with a prospective memory mechanism and neuromodulation
mechanism could be an implementation of a hierarchical Bayesian temporal inference model that are of major
interest for the emerging discipline of computational psychiatry as illustrated in (Klaas E. Stephan,
Diaconescu, and Iglesias 2016; Valton et al. 2017). Computational psychiatry has suddenly made it possible
to mine data from long-standing observations and link it to mathematical theories of cognition. It’s also be-
come possible to develop computer-based experiments that carefully control environments so that specific
behaviors can be studied in detail (MIT 2017).

219

Appendix
Communications

22
0

C
hi

ca
go

, I
L

-U
.S

.A
 2

01
5

Po
st

er
 (S

FN
)

22
1

C
hi

ca
go

, I
L

-U
.S

.A
 2

01
5

Po
st

er
 (S

N
L

)

222

Paris-FRANCE 2016 Poster (CRCNS)

22
3

Sa
n

D
ie

go
, C

A
-U

.S
.A

 2
01

6
D

yn
am

ic
 P

os
te

r
(S

FN
)

22
4

R
om

e-
IT

A
LY

 2
01

7
Pr

es
en

ta
tio

n

22
5

22
6

22
7

22
8

22
9

23
0

23
1

23
2

23
3

23
4

23
5

23
6

23
7

23
8

23
9

24
0

24
1

24
2

24
3

24
4

245

Related work

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

Bibliography
Adams, Rick a, Klaas Enno Stephan, Harriet R Brown, Christopher D Frith, and Karl J Friston. 2013. “The

Computational Anatomy of Psychosis.” Frontiers in Psychiatry 4 (May): 47.
https://doi.org/10.3389/fpsyt.2013.00047.

Alvernhe, Alice, Francesca Sargolini, and Bruno Poucet. 2012. “Rats Build and Update Topological
Representations through Exploration.” Animal Cognition 15 (3): 359–68.
https://doi.org/10.1007/s10071-011-0460-z.

Ambrose, R. Ellen, Brad E. Pfeiffer, and David J. Foster. 2016. “Reverse Replay of Hippocampal Place Cells
Is Uniquely Modulated by Changing Reward.” Neuron 91 (5): 1124–36.
https://doi.org/10.1016/J.NEURON.2016.07.047.

Arleo, Angelo, and Wulfram Gerstner. 2000. “Spatial Cognition and Neuro-Mimetic Navigation: A Model of
Hippocampal Place Cell Activity.” Biological Cybernetics 83 (3): 287–99.
https://doi.org/10.1007/s004220000171.

Arleo, Angelo, Fabrizio Smeraldi, and Wulfram Gerstner. 2004. “Cognitive Navigation Based on Nonuniform
Gabor Space Sampling, Unsupervised Growing Networks, and Reinforcement Learning.” IEEE
Transactions on Neural Networks 15 (3): 639–52. https://doi.org/10.1109/TNN.2004.826221.

Arulkumaran, Kai, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. “Deep
Reinforcement Learning: A Brief Survey.” IEEE Signal Processing Magazine.
https://doi.org/10.1109/MSP.2017.2743240.

Ball, David, Scott Heath, Michael Milford, Gordon Wyeth, and Janet Wiles. 2010. “A Navigating Rat
Animat.” Proceedings of the 12th International Conference on the Synthesis and Simulation of Living
Systems 40 (3): 271–83. https://doi.org/10.1088/0031-9120/36/6/301.

Barrera, Alejandra, Gonzalo Tejera, Martin Llofriu, and Alfredo Weitzenfeld. 2015. “Learning Spatial
Localization: From Rat Studies to Computational Models of the Hippocampus.” Spatial Cognition &
Computation 15 (1): 27–59. https://doi.org/10.1080/13875868.2014.961602.

Barrera, Alejandra, and Alfredo Weitzenfeld. 2008. “Biologically-Inspired Robot Spatial Cognition
Based on Rat Neurophysiological Studies.” Autonomous Robots 25 (1–2): 147–69.
https://doi.org/10.1007/s10514-007-9074-3.

Bartett, F C. 1932. “A Study in Experimental and Social Psychology.” England: Cambridge University Press.
Baum, Leonard E, and Ted Petrie. 1966. “Statistical Inference for Probabilistic Functions of Finite State

Markov Chains.” The Annals of Mathematical Statistics 37 (6): 1554–63.
Bendor, Daniel, and Matthew A Wilson. 2012. “Biasing the Content of Hippocampal Replay during Sleep.”

Nature Neuroscience 15 (10): 1439–44. https://doi.org/10.1038/nn.3203.
Burgess, Neil, Michael Recce, and John O’Keefe. 1994. “A Model of Hippocampal Function.” Neural

Networks 7 (6–7): 1065–81. https://doi.org/10.1016/S0893-6080(05)80159-5.
Caluwaerts, K., M. Staffa, S. Nguyen, C. Grand, L. Dollé, A. Favre-Félix, B. Girard, and M. Khamassi. 2012.

“A Biologically Inspired Meta-Control Navigation System for the Psikharpax Rat Robot.” Bioinspiration
and Biomimetics 7 (2). https://doi.org/10.1088/1748-3182/7/2/025009.

Carr, Margaret F, Shantanu P Jadhav, and Loren M Frank. 2011. “Hippocampal Replay in the Awake State:
A Potential Substrate for Memory Consolidation and Retrieval.” Nature Neuroscience.
https://doi.org/10.1038/nn.2732.

Cenquizca, Lee A., and Larry W. Swanson. 2007. “Spatial Organization of Direct Hippocampal Field CA1
Axonal Projections to the Rest of the Cerebral Cortex.” Brain Research Reviews.
https://doi.org/10.1016/j.brainresrev.2007.05.002.

Chen, Ding Jun, Chung Yeol Lee, Cheol Hoon Park, and Pedro Mendes. 2007. “Parallelizing Simulated
Annealing Algorithms Based on High-Performance Computer.” Journal of Global Optimization 39 (2):
261–89. https://doi.org/10.1007/s10898-007-9138-0.

Chumbley, Justin R, Raymond J Dolan, and Karl J Friston. 2008. “Attractor Models of Working Memory and
Their Modulation by Reward.” Biological Cybernetics 98 (1): 11–18. https://doi.org/10.1007/s00422-
007-0202-0.

Cutsuridis, Vassilis, and Michael Hasselmo. 2011. “Spatial Memory Sequence Encoding and Replay During
Modeled Theta and Ripple Oscillations.” Cognitive Computation 3 (4): 554–74.

264

https://doi.org/10.1007/s12559-011-9114-3.
Cutsuridis, Vassilis, and Jiannis Taxidis. 2013. “Deciphering the Role of CA1 Inhibitory Circuits in Sharp

Wave-Ripple Complexes.” Frontiers in Systems Neuroscience 7 (May): 13.
https://doi.org/10.3389/fnsys.2013.00013.

Davidson, Thomas J, Fabian Kloosterman, and Matthew A Wilson. 2009. “Hippocampal Replay of Extended
Experience.” Neuron 63 (4): 497–507. https://doi.org/10.1016/j.neuron.2009.07.027.

Delatour, B, and M P Witter. 2002. “Projections from the Parahippocampal Region to the Prefrontal Cortex
in the Rat: Evidence of Multiple Pathways.” The European Journal of Neuroscience 15 (8): 1400–1407.
https://doi.org/1973 [pii].

Diba, Kamran, and György Buzsáki. 2007a. “Forward and Reverse Hippocampal Place Cell Sequences during
Ripples SUPPL.” Nature Neuroscience 10: 1241–42.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2039924/pdf/nihms-31548.pdf.

———. 2007b. “Forward and Reverse Hippocampal Place-Cell Sequences during Ripples.” Nature
Neuroscience 10 (10): 1241–42. https://doi.org/10.1038/nn1961.

Dollé, Laurent, Denis Sheynikhovich, Benoît Girard, Ricardo Chavarriaga, and Agnès Guillot. 2010. “Path
Planning versus Cue Responding: A Bio-Inspired Model of Switching between Navigation Strategies.”
Biological Cybernetics 103 (4): 299–317. https://doi.org/10.1007/s00422-010-0400-z.

Dominey, Peter Ford. 1995. “Complex Sensory-Motor Sequence Learning Based on Recurrent State
Representation and Reinforcement Learning.” Biological Cybernetics 73 (73): 265–74.
http://link.springer.com/article/10.1007/BF00201428.

———. 1998a. “A Shared System for Learning Serial and Temporal Structure of Sensori-Motor Sequences?
Evidence from Simulation and Human Experiments.” Cognitive Brain Research 6 (3): 163–72.
http://www.sciencedirect.com/science/article/pii/S0926641097000293.

———. 1998b. “Influences of Temporal Organization on Sequence Learning and Transfer: Comments on
Stadler (1995) and Curran and Keele (1993).” Journal of Experimental Psychology 24 (1): 234–48.

Dominey, Peter Ford, Michael Arbib, and Jean-Paul Joseph. 1995. “A Model of Corticostriatal Plasticity for
Learning Oculomotor Associations and Sequences.” Journal of Cognitive Neuroscience 7 (3): 311–36.
http://www.mitpressjournals.org/doi/abs/10.1162/jocn.1995.7.3.311.

Dominey, Peter Ford, Toshio Inui, and Michel Hoen. 2009. “Neural Network Processing of Natural Language:
II. Towards a Unified Model of Corticostriatal Function in Learning Sentence Comprehension and Non-
Linguistic Sequencing.” Brain and Language 109 (2–3): 80–92.
https://doi.org/10.1016/j.bandl.2008.08.002.

Dominey, Peter Ford, and Franck Ramus. 2000. “Neural Network Processing of Natural Language: I.
Sensitivity to Serial, Temporal and Abstract Structure of Language in the Infant.” Language and
Cognitive Processes 15 (1): 87–127. http://www.tandfonline.com/doi/abs/10.1080/016909600386129.

Dorigo, M, and L M Gambardella. 1997. “Ant Colonies for the Travelling Salesman Problem.” Bio Systems
43 (2): 73–81. https://doi.org/10.1016/S0303-2647(97)01708-5.

Dugad, Rakesh, and Ub Desai. 1996. “A Tutorial on Hidden Markov Models.” … of Electrical Engineering
Indian Institute of …, no. February: 1–16. https://doi.org/10.1109/5.18626.

Edwards, Mark J, Rick a Adams, Harriet Brown, Isabel Pareés, and Karl J Friston. 2012. “A Bayesian Account
of ‘Hysteria’.” Brain : A Journal of Neurology 135 (Pt 11): 3495–3512.
https://doi.org/10.1093/brain/aws129.

Eichenbaum, Howard. 2014. “Time Cells in the Hippocampus: A New Dimension for Mapping Memories.”
Nature Reviews Neuroscience. https://doi.org/10.1038/nrn3827.

Enel, Pierre, Emmanuel Procyk, René Quilodran, and Peter Ford Dominey. n.d. “Dynamical Mixed Selectivity
in Reservoir Computing and Primate Prefrontal Cortex.”

Euston, David R, Masami Tatsuno, and Bruce L McNaughton. 2007. “Fast-Forward Playback of Recent
Memory Sequences in Prefrontal Cortex during Sleep.” Science (New York, N.Y.) 318 (5853): 1147–50.
https://doi.org/10.1126/science.1148979.

Filliat, David, and Jean-Arcady Meyer. 2002. “Global Localization and Topological Map-Learning for Robot
Navigation.” Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior
on From Animals to Animats, 131–40. http://portal.acm.org/citation.cfm?id=773380.773400.

Fine, Shai, Yoram Singer, and Naftali Tishby. 1998. “Hierarchical Hidden Markov Model: Analysis and
Applications.” Machine Learning 32 (1): 41–62. https://doi.org/10.1023/A:1007469218079.

265

Foster, David J., and Matthew A. Wilson. 2006a. “Reverse Replay of Behavioural Sequences in Hippocampal
Place Cells during the Awake State.” Nature 440 (7084): 680–83. https://doi.org/10.1038/nature04587.

———. 2006b. “Reverse Replay of Behavioural Sequences in Hippocampal Place Cells during the Awake
State.” Nature 440 (7084): 680–83. https://doi.org/10.1038/nature04587.

Foster, David J, and James J Knierim. 2012. “Sequence Learning and the Role of the Hippocampus in Rodent
Navigation.” Current Opinion in Neurobiology 22 (2): 294–300.
https://doi.org/10.1016/J.CONB.2011.12.005.

Friston, Karl. 2003. “Learning and Inference in the Brain.” Neural Networks : The Official Journal of the
International Neural Network Society 16 (9): 1325–52. https://doi.org/10.1016/j.neunet.2003.06.005.

———. 2008. “Hierarchical Models in the Brain.” PLoS Computational Biology 4 (11): e1000211.
https://doi.org/10.1371/journal.pcbi.1000211.

———. 2009. “The Free-Energy Principle: A Rough Guide to the Brain?” Trends in Cognitive Sciences 13
(7): 293–301. https://doi.org/10.1016/j.tics.2009.04.005.

Friston, Karl, Michael Breakspear, and Gustavo Deco. 2012. “Perception and Self-Organized Instability.”
Frontiers in Computational Neuroscience 6 (July): 44. https://doi.org/10.3389/fncom.2012.00044.

Friston, Karl, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck, John O Doherty, and Giovanni
Pezzulo. 2016. “Active Inference and Learning.” Neuroscience & Biobehavioral Reviews 68
(September): 862–79. https://doi.org/10.1016/J.NEUBIOREV.2016.06.022.

Friston, Karl J., Richard Rosch, Thomas Parr, Cathy Price, and Howard Bowman. 2017. “Deep Temporal
Models and Active Inference.” Neuroscience & Biobehavioral Reviews 77 (June): 388–402.
https://doi.org/10.1016/J.NEUBIOREV.2017.04.009.

Friston, Karl J, Jean Daunizeau, and Stefan J Kiebel. 2009. “Reinforcement Learning or Active Inference?”
PloS One 4 (7): e6421. https://doi.org/10.1371/journal.pone.0006421.

Gaussier, P., A. Revel, J. P. Banquet, and V. Babeau. 2002. “From View Cells and Place Cells to Cognitive
Map Learning: Processing Stages of the Hippocampal System.” Biological Cybernetics 86 (1): 15–28.
https://doi.org/10.1007/s004220100269.

Gaussier, Philippe, and Stéphane Zrehen. 1995. “PerAc: A Neural Architecture to Control Artificial Animals.”
Robotics and Autonomous Systems 16 (2–4): 291–320. https://doi.org/10.1016/0921-8890(95)00052-6.

Glover, Fred, and Rafael Martí. 1986. “Tabu Search.” Tabu Search, 1–16.
Goldberg, David E., and John H. Holland. 1988. “Genetic Algorithms and Machine Learning.” Machine

Learning, 1988. https://doi.org/10.1023/A:1022602019183.
Goller, C., and A. Kuchler. 1996. “Learning Task-Dependent Distributed Representations

By\nbackpropagation through Structure.” Proceedings of International Conference on Neural Networks
(ICNN’96) 1. https://doi.org/10.1109/ICNN.1996.548916.

Greff, Klaus, Sjoerd van Steenkiste, and Jürgen Schmidhuber. 2017. “Neural Expectation Maximization.”
https://doi.org/10.1093/ajae/aas111.

Guazzelli, Alex, Fernando J. Corbacho, Mihail Bota, and Michael A. Arbib. 1998. “Affordances. Motivations,
and the World Graph Theory.” Adaptive Behavior 6 (3/4): 435–71.
https://doi.org/10.1177/105971239800600305.

Gupta, Anoopum S., Matthijs A.A. van der Meer, David S. Touretzky, and A. David Redish. 2010.
“Hippocampal Replay Is Not a Simple Function of Experience.” Neuron 65 (5): 695–705.
https://doi.org/10.1016/j.neuron.2010.01.034.

Hebb, D. O. 1949. “The Organization of Behaviour.” Organization, 62. https://doi.org/citeulike-article-
id:1282862.

Hendriks-Jansen, Horst. 1996. Catching Ourselves in the Act : Situated Activity, Interactive Emergence,
Evolution, and Human Thought. Complex Adaptive Systems.

Hinaut, Xavier, and Peter Ford Dominey. 2013. “Real-Time Parallel Processing of Grammatical Structure in
the Fronto-Striatal System: A Recurrent Network Simulation Study Using Reservoir Computing.” PloS
One 8 (2): e52946. https://doi.org/10.1371/journal.pone.0052946.

Hirel, J., P. Gaussier, M. Quoy, J. P. Banquet, E. Save, and B. Poucet. 2013. “The Hippocampo-Cortical Loop:
Spatio-Temporal Learning and Goal-Oriented Planning in Navigation.” Neural Networks 43: 8–21.
https://doi.org/10.1016/j.neunet.2013.01.023.

Hoffman, K. L., and B. L. McNaughton. 2002. “Coordinated Reactivation of Distributed Memory Traces in
Primate Neocortex.” Science 297 (5589): 2070–73. https://doi.org/10.1126/science.1073538.

266

Holland, Jh H, and Js S Reitman. 1977. “Cognitive Systems Based on Adaptive Algorithms.” ACM SIGART
Bulletin, no. 63: 49. https://doi.org/10.1145/1045343.1045373.

Jadhav, Shantanu P., Caleb Kemere, P. Walter German, and Loren M. Frank. 2012. “Awake Hippocampal
Sharp-Wave Ripples Support Spatial Memory.” Science 336 (6087): 1454–58.
https://doi.org/10.1126/science.1217230.

Jaeger, Herbert. 2001. “The ‘Echo State’ Approach to Analysing and Training Recurrent Neural Networks-
with an Erratum Note.” Bonn, Germany: German National Research Center for Information Technology
GMD Technical Report 148 (34): 13.

———. 2007. “Discovering Multiscale Dynamical Features with Hierarchical Echo State Networks.”
http://jpubs.jacobs-university.de/handle/579/147.

———. 2014. “Controlling Recurrent Neural Networks by Conceptors Controlling Recurrent Neural Net-
Works by Conceptors (Revision 2).” http:

Jaeger, Herbert, and Harald Haas. 2004. “Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
Energy in Wireless Communication.” Science 304 (5667): 78–80.
https://doi.org/10.1126/science.1091277.

Ji, Daoyun, and Matthew A Wilson. 2007. “Coordinated Memory Replay in the Visual Cortex and
Hippocampus during Sleep.” Nature Neuroscience 10 (1): 100–107. https://doi.org/10.1038/nn1825.

Johnson, Adam, and David A Crowe. 2008. “Revisiting Tolman, His Theories and Cognitive Maps.”
Cognitive Critique 1: 43–72.

Jong, Laurel Watkins De, Brian Gereke, Gerard M. Martin, and Jean Marc Fellous. 2011. “The Traveling
Salesrat: Insights into the Dynamics of Efficient Spatial Navigation in the Rodent.” Journal of Neural
Engineering 8 (6). https://doi.org/10.1088/1741-2560/8/6/065010.

Jurafsky, Daniel, and James Martin. 2017. “Hidden Markov Models.” Speech and Language Processing, no.
Chapter 20: 21. https://doi.org/10.1016/S0959-440X(96)80056-X.

Karlsson, Mattias P, and Loren M Frank. 2009. “Awake Replay of Remote Experiences in the Hippocampus.”
Nature Neuroscience 12 (7): 913–18. https://doi.org/10.1038/nn.2344.

Kiebel, Stefan J, Katharina von Kriegstein, Jean Daunizeau, and Karl J Friston. 2009. “Recognizing Sequences
of Sequences.” PLoS Computational Biology 5 (8): e1000464.
https://doi.org/10.1371/journal.pcbi.1000464.

Kirkpatrick, S, C D Gelatt, and M P Vecchi. 1983. “Optimization by Simulated Annealing.” Science (New
York, N.Y.) 220 (4598): 671–80. https://doi.org/10.1126/science.220.4598.671.

Kudrimoti, H S, C A Barnes, and B L McNaughton. 1999. “Reactivation of Hippocampal Cell Assemblies:
Effects of Behavioral State, Experience, and EEG Dynamics.” The Journal of Neuroscience : The Official
Journal of the Society for Neuroscience 19 (10): 4090–4101. https://doi.org/10.1523/JNEUROSCI.19-
10-04090.1999.

Lansink, Carien S, Pieter M Goltstein, Jan V Lankelma, Ruud N J M A Joosten, Bruce L Mcnaughton, and
Cyriel M A Pennartz. n.d. “Behavioral/Systems/Cognitive Preferential Reactivation of Motivationally
Relevant Information in the Ventral Striatum.” Accessed June 13, 2018.
https://doi.org/10.1523/JNEUROSCI.1054-08.2008.

Lee, Albert K., and Matthew A. Wilson. 2002. “Memory of Sequential Experience in the Hippocampus during
Slow Wave Sleep.” Neuron 36 (6): 1183–94. https://doi.org/10.1016/S0896-6273(02)01096-6.

Lukoševičius, M. 2012. “A Practical Guide to Applying Echo State Networks.” Neural Networks: Tricks of
the Trade, Reloaded. https://doi.org/10.1007/978-3-642-35289-8-36.

Lukoševičius, Mantas, and Herbert Jaeger. 2009. “Reservoir Computing Approaches to Recurrent Neural
Network Training.” Computer Science Review 3: 127–49. https://doi.org/10.1016/j.cosrev.2009.03.005.

Ma, Sheng, and Chuanyi Ji. 1998. “Fast Training of Recurrent Networks Based on the EM Algorithm.” IEEE
Transactions on Neural Networks 9 (1): 11–26. https://doi.org/10.1109/72.655025.

Maass, Wolfgang, Thomas Natschläger, Henry Markram, and Natschläger T Maass W. 2002. “Real-Time
Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations.”
Neural Computation 14 (11): 2531–60. https://doi.org/10.1162/089976602760407955.

Markov, Andrey A. 1913. “Essai d’une Recherche Statistique Sur Le Texte Du Roman ‘Eugène Oneguine.’”
Bull. Acad. Imper. Sci. St. Petersburg 7.

Marr, David. 1971. “A Simple Theory for Archicortex.” Philosophical Transactions of the Royal Society B:
Biological Sciences. https://doi.org/10.1098/rstb.1984.0053.

267

McClelland, James L, Bruce L McNaughton, and Randall O’Reilly. 1995. “Why There Are Complementary
Learning Systems in the Hippocampus and Neocortex: Insights Form the Successes and Failures of
Connectionist Models of Learning and Memory.” Psychological Review 102 (3): 419–57.
https://doi.org/10.1037/0033-295X.102.3.419.

Milford, Michael, and Gordon Wyeth. 2010. “Persistent Navigation and Mapping Using a Biologically
Inspired Slam System.” International Journal of Robotics Research 29 (9): 1131–53.
https://doi.org/10.1177/0278364909340592.

MIT. 2017. “The Emerging Science of Computational Psychiatry - MIT Technology Review.” July 21. 2017.
Nádasdy, Zoltán, Hajime Hirase, András Czurkó, Jozsef Csicsvari, and György Buzsáki. 1999. “Replay and

Time Compression of Recurring Spike Sequences in the Hippocampus.” The Journal of Neuroscience 19
(21): 9497–9507. https://doi.org/10.1126/science.1182395.

Nikolić, Danko, Stefan Häusler, Wolf Singer, and Wolfgang Maass. 2009. “Distributed Fading Memory for
Stimulus Properties in the Primary Visual Cortex.” PLoS Biology 7 (12): e1000260.
https://doi.org/10.1371/journal.pbio.1000260.

Pearson, K. 1896. “Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and
Panmixia.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 187 (0): 253–318. https://doi.org/10.1098/rsta.1896.0007.

Pennartz, C. M. A. 2004. “The Ventral Striatum in Off-Line Processing: Ensemble Reactivation during Sleep
and Modulation by Hippocampal Ripples.” Journal of Neuroscience 24 (29): 6446–56.
https://doi.org/10.1523/JNEUROSCI.0575-04.2004.

Peyrache, Adrien, Mehdi Khamassi, Karim Benchenane, Sidney I Wiener, and Francesco P Battaglia. 2009.
“Replay of Rule-Learning Related Neural Patterns in the Prefrontal Cortex during Sleep.” Nature
Neuroscience 12 (7): 919–26. https://doi.org/10.1038/nn.2337.

Pezzulo, Giovanni, Caleb Kemere, and Matthijs A.A. van der Meer. 2017. “Internally Generated Hippocampal
Sequences as a Vantage Point to Probe Future-Oriented Cognition.” Annals of the New York Academy of
Sciences. https://doi.org/10.1111/nyas.13329.

Pezzulo, Giovanni, Matthijs A.A. van der Meer, Carien S. Lansink, and Cyriel M.A. Pennartz. 2014.
“Internally Generated Sequences in Learning and Executing Goal-Directed Behavior.” Trends in
Cognitive Sciences 18 (12): 647–57. https://doi.org/10.1016/j.tics.2014.06.011.

Pezzulo, Giovanni, Francesco Rigoli, and Karl J. Friston. 2018. “Hierarchical Active Inference: A Theory of
Motivated Control.” Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2018.01.009.

Piaget, Jean. 1967. The Child’s Conception of the World... Transl... Adams & Company.
Popa, Daniela, Sevil Duvarci, Andrei T Popescu, Clément Léna, and Denis Paré. 2010. “Coherent

Amygdalocortical Theta Promotes Fear Memory Consolidation during Paradoxical Sleep.” Proceedings
of the National Academy of Sciences of the United States of America 107 (14): 6516–19.
https://doi.org/10.1073/pnas.0913016107.

Preston, Alison R, and Howard Eichenbaum. 2013. “Interplay of Hippocampus and Prefrontal Cortex in
Memory.” Current Biology. https://doi.org/10.1016/j.cub.2013.05.041.

Puskorius, Gintaras V., and Lee A. Feldkamp. 1994. “Neurocontrol of Nonlinear Dynamical Systems with
Kalman Filter Trained Recurrent Networks.” IEEE Transactions on Neural Networks 5 (2): 279–97.
https://doi.org/10.1109/72.279191.

Redish, A. David, and David S. Touretzky. 1997. “Cognitive Maps beyond the Hippocampus.” Hippocampus
7 (1): 15–35. https://doi.org/10.1002/(SICI)1098-1063(1997)7:1<15::AID-HIPO3>3.0.CO;2-6.

Ribeiro, Sidarta, Damien Gervasoni, Ernesto S Soares, Yi Zhou, Shih-Chieh Lin, Janaina Pantoja, Michael
Lavine, and Miguel A. L Nicolelis. 2004. “Long-Lasting Novelty-Induced Neuronal Reverberation
during Slow-Wave Sleep in Multiple Forebrain Areas.” Edited by Wolfram Schultz. PLoS Biology 2 (1):
e24. https://doi.org/10.1371/journal.pbio.0020024.

Rigotti, Mattia, Omri Barak, Melissa R Warden, Xiao-Jing Wang, Nathaniel D Daw, Earl K Miller, and
Stefano Fusi. 2013. “The Importance of Mixed Selectivity in Complex Cognitive Tasks.” Nature 497
(7451): 585–90. https://doi.org/10.1038/nature12160.

Rigotti, Mattia, Daniel Ben Dayan Rubin, Xiao-Jing Wang, and Stefano Fusi. 2010. “Internal Representation
of Task Rules by Recurrent Dynamics: The Importance of the Diversity of Neural Responses.” Frontiers
in Computational Neuroscience 4 (October): 24. https://doi.org/10.3389/fncom.2010.00024.

Sanger, Terence D. 1989. “Optimal Unsupervised Learning in a Single-Layer Linear Feedforward Neural

268

Network.” Neural Networks 2 (6): 459–73. https://doi.org/10.1016/0893-6080(89)90044-0.
Schacter, Daniel L., Donna Rose Addis, and Randy L. Buckner. 2008a. “Episodic Simulation of Future

Events.” Annals of the New York Academy of Sciences 1124 (1): 39–60.
https://doi.org/10.1196/annals.1440.001.

———. 2008b. “Episodic Simulation of Future Events.” Annals of the New York Academy of Sciences 1124
(1): 39–60. https://doi.org/10.1196/annals.1440.001.

Schwindel, C. Daniela, and Bruce L. McNaughton. 2011. “Hippocampal-Cortical Interactions and the
Dynamics of Memory Trace Reactivation.” Progress in Brain Research 193: 163–77.
https://doi.org/10.1016/B978-0-444-53839-0.00011-9.

Sharp, Patricia E., Hugh T. Blair, and Michael Brown. 1996. “Neural Network Modeling of the Hippocampal
Formation Spatial Signals and Their Possible Role in Navigation: A Modular Approach.” Hippocampus
6 (6): 720–34. https://doi.org/10.1002/(SICI)1098-1063(1996)6:6<720::AID-HIPO14>3.0.CO;2-2.

Shin, Justin D., and Shantanu P. Jadhav. 2016. “Multiple Modes of Hippocampal–prefrontal Interactions in
Memory-Guided Behavior.” Current Opinion in Neurobiology.
https://doi.org/10.1016/j.conb.2016.07.015.

Singer, Annabelle C., and Loren M. Frank. 2009. “Rewarded Outcomes Enhance Reactivation of Experience
in the Hippocampus.” Neuron 64 (6): 910–21. https://doi.org/10.1016/J.NEURON.2009.11.016.

Stephan, Klaas E., Andreea O. Diaconescu, and Sandra Iglesias. 2016. “Bayesian Inference, Dysconnectivity
and Neuromodulation in Schizophrenia.” Brain. https://doi.org/10.1093/brain/aww120.

Stephan, Klaas Enno, W. D. Penny, Rosalyn J. Moran, E. M. den Ouden, Hanneke, Jean Daunizeau, and Karl
J. Friston. 2010. “Ten Simple Rules for Dynamic Causal Modeling.” NeuroImage 49 (4): 3099–3109.
https://doi.org/10.1016/j.neuroimage.2009.11.015.

Stickgold, Robert, and Matthew P. P. Walker. 2007. “Sleep-Dependent Memory Consolidation and
Reconsolidation.” Sleep Medicine 8 (4): 331–43. https://doi.org/10.1016/j.sleep.2007.03.011.

Sutherland, Gary R, and Bruce McNaughton. 2000. “Memory Trace Reactivation in Hippocampal and
Neocortical Neuronal Ensembles.” Current Opinion in Neurobiology 10 (2): 180–86.
https://doi.org/10.1016/S0959-4388(00)00079-9.

Sutskever, Ilya. 2013. “Training Recurrent Neural Networks.” PhD Thesis, 101.
Sutton, Richard S, and Andrew G Barto. 1998. “Introduction.” Reinforcement Learning.
Tani, J., and S. Nolfi. 1999. “Learning to Perceive the World as Articulated: An Approach for Hierarchical

Learning in Sensory-Motor Systems.” Neural Networks 12 (7–8): 1131–41.
https://doi.org/10.1016/S0893-6080(99)00060-X.

Tatsuno, M., P. Lipa, and B. L. McNaughton. 2006. “Methodological Considerations on the Use of Template
Matching to Study Long-Lasting Memory Trace Replay.” Journal of Neuroscience 26 (42): 10727–42.
https://doi.org/10.1523/JNEUROSCI.3317-06.2006.

Tolman, Edward C. 1948. “Cognitive Maps in Rats and Men.” Psychological Review 55 (4): 189–208.
https://doi.org/10.1037/h0061626.

Unkelbach, Jan, Sun Yi, and J Schmidhuber. 2009. “An EM Based Training Algorithm for Recurrent Neural
Networks.” Artificial Neural Networks--ICANN 2009, 964--974.
http://link.springer.com/chapter/10.1007/978-3-642-04274-4_99.

Valton, Vincent, Liana Romaniuk, J. Douglas Steele, Stephen Lawrie, and Peggy Seriès. 2017.
“Comprehensive Review: Computational Modelling of Schizophrenia.” Neuroscience and Biobehavioral
Reviews. https://doi.org/10.1016/j.neubiorev.2017.08.022.

Vertes, Robert P., Walter B. Hoover, Klara Szigeti-Buck, and Csaba Leranth. 2007. “Nucleus Reuniens of the
Midline Thalamus: Link between the Medial Prefrontal Cortex and the Hippocampus.” Brain Research
Bulletin 71 (6): 601–9. https://doi.org/10.1016/j.brainresbull.2006.12.002.

Viterbi, Andrew. 1967. “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding
Algorithm.” IEEE Transactions on Information Theory 13 (2): 260–69.

Welch, Lloyd R. 2003. “Hidden Markov Models and the Baum-Welch Algorithm.” IEEE Information Theory
Society Newsletter 53 (4): 10–13.

Werbos, Paul J. 1990. “Backpropagation Through Time: What It Does and How to Do It.” Proceedings of the
IEEE 78 (10): 1550–60. https://doi.org/10.1109/5.58337.

Wikenheiser, Andrew M., and A. David Redish. 2014. “Decoding the Cognitive Map: Ensemble Hippocampal
Sequences and Decision Making.” Current Opinion in Neurobiology 32: 8–15.

269

https://doi.org/10.1016/j.conb.2014.10.002.
Wilson, Stewart W. 1991. “The Animat Path to AI.” From Animals to Animats 1, 15–21.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.2047.
Yamashita, Y, and J Tani. 2008. “Emergence of Functional Hierarchy in a Multiple Timescale Neural Network

Model: A Humanoid Robot Experiment.” PLOS Computational Biology 4 (11).
Yang, Jinhui, Xiaohu Shi, Maurizio Marchese, and Yanchun Liang. 2008. “An Ant Colony Optimization

Method for Generalized TSP Problem.” Progress in Natural Science 18 (11): 1417–22.
https://doi.org/10.1016/j.pnsc.2008.03.028.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

