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Abstract
After a thirty-year history of development, the polyhedral model has evolved into a powerful

solution to exploiting automatic parallelization and locality optimization. As bridging soft-

ware between the high-level description of programs and the underlying implementation of

hardware, polyhedral compilation is increasingly challenged by the diversity of programming

languages and heterogeneity of architectures. A long standing limitation of the model has

been its restriction to static control affine programs, resulting in an emergent demand for the

support of non-affine extensions. This is particularly acute in the context of heterogeneous

architectures where a variety of computation kernels need to be analyzed and transformed to

match the constraints of hardware accelerators and to manage data transfers across memory

spaces.

We explore multiple non-affine extensions of the polyhedral model, in the context of a well-

defined intermediate language combining affine and syntactic elements. The thesis is orga-

nized as follows.

In the first part, we explain the challenges faced by the polyhedral model with respect to

programming languages and architectures, and provide a brief introduction to polyhedral

compilation.

In the second part, we present a method to parallelize and optimize loop nests for an impor-

tant class of programs where counted loops have a dynamic data-dependent upper bound.

Such loops are amenable to a wider set of transformations than general while loops with

inductively defined termination conditions: for example, the substitution of closed forms for

induction variables remains applicable, removing the loop-carried data dependences induced

by termination conditions.

Our approach relies on affine relations only, as implemented in state-of-the-art polyhedral

libraries. Revisiting a state-of-the-art framework to parallelize arbitrary while loops, we

introduce additional control dependences on data-dependent predicates. Our method goes

beyond the state of the art in fully automating the process, specializing the code generation

algorithm to the case of dynamic counted loops and avoiding the introduction of spurious

loop-carried dependences. We conduct experiments on representative irregular computations,

from dynamic programming, computer vision and finite element methods to sparse matrix

linear algebra. We validate that the method is applicable to general affine transformations for
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locality optimization, vectorization and parallelization.

In the third part, we propose an automatic implementation of non-affine transformations

by revisiting overlapped tiling in polyhedral compilation. Polyhedral frameworks implement

classical forms of rectangular/parallelogram tiling affine transformations, but these forms lead

to pipelined start and rather inefficient wavefront parallelism. Some experimental branches

of existing polyhedral compilers evaluated sophisticated shapes such as trapezoid or diamond

tiles, enabling concurrent start along the axes of the iteration space, but leading to custom

scheduling and code generation methods insufficiently integrated with the general framework.

Overlapped tiling is a technique designed to eliminate pipelined start by modifying tile shapes

obtained from existing frameworks, but no implementations in a general-purpose polyhedral

framework has been available until now, preventing its application in general-purpose loop-

nest optimizers and hampering the fair comparison with other techniques.

We revisit overlapped tiling in polyhedral compilation and demonstrate how to derive tighter

tile shapes with less redundant computations, by enabling overlapped tiles in a schedule-

tree-based algorithm. Our method allows the generation of both acute and right trapezoid

shapes. It goes beyond the state of the art by avoiding the restriction to a domain-specific

language or introducing post-pass rescheduling and custom code generation. We conduct

experiments on the PolyMage benchmarks and representative iterated stencils, validating the

effectiveness and general applicability of our technique on both general-purpose multicores

and accelerators.

Finally, we summarize our work and present concluding remarks as well as future research

directions. We believe the contributions collected in this dissertation extend the reach fof

the polyhedral model to wider ranges of real-world programs. We also believe this work

contributes to the integration of polyhedral methods with other compilation techniques.
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Résumé
Après trente ans de développement, le modèle polyédrique est devenu une solution puissante

pour exploiter la parallélisation automatique et l’optimisation de la localisation. En tant que

logiciel de transition entre la description de haut niveau des programmes et la mise en œuvre

sous-jacente du matériel, la compilation polyédrique est de plus en plus remise en cause par

la diversité des langages de programmation et l’hétérogénéité des architectures. Un défaut

de longue date du modèle est sa restriction aux programmes affines de contrôle statique,

entraînant une demande émergente pour la prise en charge des extensions non affines, en

particulier à l’ère des architectures hétérogènes.

Nous étudions les extensions non affines dans le modèle polyédrique en le combinant avec

un langage intermédiaire bien défini. La thèse est organisée comme ci-dessous.

Dans la première partie, nous expliquons les défis rencontrés par le modèle polyédrique en

ce qui concerne les langages de programmation et les architectures, et décrivons une brève

introduction à la compilation polyédrique pour aider les lecteurs à comprendre le principe du

travail.

Dans la seconde partie, nous présentons l’approche du traitement des applications non affines

en étudiant la compilation parallélisante et l’optimisation d’imbrication en boucle d’une classe

importante de programmes où les boucles comptées ont une limite supérieure dynamique

dépendante des données. De telles boucles se prêtent à un ensemble de transformations plus

large que les boucles générales while avec des conditions de terminaison inductives : par

exemple, la substitution des formes fermées par les variables d’induction reste applicable,

éliminant les dépendances induites par les conditions de terminaison. Nous proposons une

méthode de compilation automatique pour paralléliser et optimiser les boucles comptées

dynamiques.

Notre approche repose uniquement sur des relations affines, mises en œuvre dans des bi-

bliothèques polyédriques à la pointe de la technologie. En revisitant un cadre de pointe pour

paralléliser des boucles arbitraires while, nous introduisons des dépendances de contrôle

supplémentaires sur les prédicats dépendant des données. Notre méthode va au-delà de l’état

de la technique en automatisant complètement le processus, en spécialisant l’algorithme de

génération de code au cas des boucles comptées dynamiques et en évitant l’introduction de

dépendances parasites en boucle. Nous effectuons des expériences sur des calculs irréguliers
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représentatifs, allant de la programmation dynamique, de la vision par ordinateur et des

méthodes par éléments finis à l’algèbre linéaire à matrice fragmentée. Nous validons que

la méthode est applicable aux transformations affines générales pour l’optimisation de la

localité, la vectorisation et la parallélisation.

Dans la troisième partie, nous proposons une implémentation automatique des transforma-

tions non affines en revisitant les mosaïques superposées dans la compilation polyédrique. Les

structures polyédriques mettent en œuvre des formes classiques de transformations affines

de carrelage rectangulaire/parallélogramme, mais ces formes conduisent à un démarrage en

pipeline et à un parallélisme de front d’onde plutôt inefficace. Certaines branches expérimen-

tales de compilateurs polyédriques existants ont évalué des formes sophistiquées telles que

des carreaux trapézoïdaux ou diamantés, permettant un démarrage simultané sur les axes de

l’espace d’itération, mais conduisant à des méthodes de planification et de génération de code

insuffisamment intégrées au cadre général. Le pavage superposé est une technique conçue

pour éliminer le démarrage en pipeline en modifiant les formes de pavés obtenues à partir de

structures existantes, mais aucune implémentation dans une structure polyédrique polyva-

lente n’était disponible jusqu’à présent, empêchant son application dans les optimiseurs de

boucle comparaison avec d’autres techniques.

Nous revisitons les mosaïques superposées dans la compilation polyédrique et montrons

comment obtenir des formes de mosaïques plus étroites avec des calculs moins redondants,

en activant des mosaïques superposées dans un algorithme basé sur un calendrier. Notre

méthode permet de générer des formes trapézoïdales aiguës et droites. Cela dépasse l’état de

la technique en évitant la restriction à un langage spécifique à un domaine ou en introduisant

une reprogrammation post-pass et une génération de code personnalisée. Nous effectuons

des expériences sur les repères PolyMage et les gabarits itératifs représentatifs, validant ainsi

l’efficacité et l’applicabilité générale de notre technique sur les multicœurs et les accélérateurs

polyvalents.

Enfin, nous résumons notre travail et discutons de quelques remarques de conclusion pour

les futures directions de recherche. Le travail de cette thèse met le modèle polyédrique en

application dans des programmes réels, en étendant les champs applicables du modèle et en

soutenant l’intégration avec d’autres algorithmes de compilation.
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PART I

INTRODUCTION & BACKGROUND





1 Introduction

In the early stage of high-performance computing, increasing clock frequencies was the main

source of performance gain. Since the breakdown of Dennard scaling a dozen years ago, most

CPU manufacturers have been focusing on multicore processors as an alternative of raising

clock frequencies from one generation to next. Figure 1.1 shows the semi-centennial trend of

clock frequency and number of cores per chip.

Multicore processors are nowadays ubiquitous on almost all platforms, ranging from super-

computers ranked on the TOP500 list to personal laptops and mobile devices. In addition, their

pervasiveness in the embedding computing domain of multimedia and image processing due

to the recent process of neural networks also validates the dominance of multicore processors

in all realms of computing.
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Figure 1.1 – The trend of clock frequency and number of cores per chip in the past 50 years
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Chapter 1. Introduction

Apart from the resulting improvements in performance due to the introduction of multicore

processors, one of the most challenging issues is the difficulty to effectively exploit parallelism

on such devices. On the one hand, a multicore processor is allowed to implement multipro-

cessing freely by coupling the cores on the device either tightly or loosely, leading to a variety

of memory hierarchies and resulting in the diversity in architectures. On the other hand, the

evolution of parallel architectures also calls for the innovation of programming languages

amenable to the memory hierarchy, giving rise to the design of both general-purpose and

domain-specific parallel programming languages and complicating the programmability issue

further.

Even though end users may be equipped with the knowledge of the high-level program-

ming language of a platform after a long-term study or training, it is still a complex and

error-prone task to deploy the code written by end users on the target architecture. An opti-

mizing compiler is not only responsible for translating the code implemented by a high-level

general-purpose/domain-specific language into a low-level executable program, but is also

expected to automatically apply both high-level and low-level transformations, especially

those performance-critical loop transformations, for exploiting parallelism and improving

locality, thus releasing the burden of end users from taking the hardware information into

consideration at the beginning of programming.

In the domain of scientific and engineering applications, a large number of computationally

intensive applications spend most of the execution time on nested loops, making the polyhe-

dral model [FL11] a very competitive and promising approach to solving the above problems.

The polyhedral model is a powerful mathematical abstraction of loop nests, providing a way to

reason about loop transformations by abstracting each iteration of a statement as an integer

point in a “polyhedron” and mapping a multi-dimensional logical execution date [Fea92b] for

defining its lexicographic execution order. As a role of bridging the gap between high-level

programming interfaces and underlying hardware, the polyhedral model has made a great

deal of progress in the past few decades, but it is now facing new emergent challenges brought

by both modern architectures and programming languages.

1.1 From General-purpose Languages to Domain-specific Languages

Thanks to the significant advances in dependence analysis [Fea91, Pug91, VBCG06, BCVT13],

schedule transformation [Fea92a, Fea92b, LL97, BHRS08, BAC16, UC13, ABC18] and code

generation [AI91, Che, QRW00, Bas04, VBC06, GVC15], the polyhedral model has been brought

to the front scene in automatic parallelization and locality optimization. There exist a large

number of mature polyhedral compilation frameworks and loop optimizers, including both

research projects [BHRS08, CCH08, VCJC+13] and commercial productions [TCE+10, GGL12,

CSG+05, BGDR10, LLS06]. Such compilers usually take a general-purpose (intermediate)

language as input and generate optimized high-level/low-level code amenable to the target

architecture as demand. Despite that, the optimality of the code generated by such polyhedral
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compilers still remains elusive, falling behind the performance of heavily hand-tuned codes

written by an expert.

Part of the reason of performance gap between the generated codes of optimizing compilers

and hand-written programs is due to the conservativeness that a compiler has to possess in

nature as system software, reducing the optimization space of automatic transformations.

Worse yet, the absence of the ability to reason about the domain knowledge about the imple-

mentation strategies from a piece of code also constraints such compilers, missing aggressive

and/or global optimizations that can be performed by hand.

Domain-specific languages (DSLs) are proposed to obtain high performance and now very

prevalent in many application domains. The polyhedral model was successfully integrated

with DSLs, such as those for optimizing DSLs for graphical dataflow language [BB13, SSPS16],

stencil computations [HVF+13], etc. Recently, due to the revolution in machine learning

caused by the success of deep learning, the polyhedral community is also expected to resolve

the problem of bridging neural network applications and high-performance hardware acceler-

ators. A DSL may be a standalone language or more often embedded in a general-purpose

language, like Halide [RKBA+13] in C++, TensorComprehensions [VZT+18] and TVM [CMJ+18]

in Python1, DeepDSL [ZHC17] in Scala, etc. A domain-specific compiler leverages specialized

internal representations for expressing domain-specific knowledge, extending its optimiza-

tion space by enabling such domain-specific high-level transformations. Representative DSL

compilers for such applications include the TensorComprehension framework for automating

the deployment of neural network applications on multicore platforms and the PolyMage

compiler [MVB15, MAS+16] for Halide [RKBA+13], a DSL for writing high-performance image

processing code.

While the polyhedral model eases the translation of both general-purpose languages and

DSLs on modern architectures, it often suffers from scalability challenges to various input

languages. Even though some internal representations like Hailde IR and PENCIL [BBC+15]

were proposed as the solution to this problem, the polyhedral model still faces many painful

problems due to its incompetence for dynamic control and non-affine applications.

1.2 Architecture Diversity

Generally speaking, a multicore system is supposed as homogeneous if the system includes

only identical cores, or heterogeneous otherwise. The Pluto optimizer [BHRS08] provides a

systematic, end-to-end way for automatic parallelization and locality optimization on ho-

mogeneous multicore systems, taking into consideration the memory hierarchy problem by

automating simply/complex tile shapes [BBP17]. The emergence of Graphics Processing Units

(GPUs) brought new challenges not found in homogeneous systems to the polyhedral model,

calling for source-to-source polyhedral compilers capable of generating correct codes for both

1TensorComprehensions and TVM here are used to refer to the DSLs rather than the compiler stacks.
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host processors and device accelerators, further complicating the code generation issue.

Unlike CPUs that can run efficiently when data is resident in Caches, GPUs have a variety of

different kinds of processing units, leading to a more complicated memory hierarchy. For

instance, Table 1.1 lists the memory hierarchy of fastest NVIDIA Tesla GPUs in the past five

years.

Table 1.1 – The memory hierarchy of NVIDIA Tesla GPUs in the past five years

Tesla Product Tesla K40 Tesla M40 Tesla P100 Tesla V100

GPU GK180 (Kepler) GM200 (Maxwell) GP100 (Pascal) GV100 (Volta)

Memory Size Up to 12 GB Up to 24 GB 16 GB 16 GB

L2 Cache Size 1536 KB 3072 KB 4096 KB 6144 KB

Shared Memory Size 16/32/48 KB 96 KB 64 KB 96 KB*

Register File Size/SM 256 KB 256 KB 256 KB 256 KB

Register File Size/GPU 3840 KB 6144 KB 14336 KB 20480 Kb

* The shared memory size of GV100 (Volta) is confinable up to 96 KB.

PPCG [VCJC+13] is considered as one of the most successful polyhedral compilers for heteroge-

neous systems, exploiting parallelism and locality optimization as in traditional homogeneous

systems but also automating the management of memory system on devices and communica-

tions between host and device. Like the diamond tiling technique in Pluto, a hybrid/hexagonal

tiling approach [GCH+14] is also implemented in PPCG for further improving the perfor-

mance of generated code. Some follow-up PPCG-based researches focus on parametric tiling

[JGTC14] and the mapping and separation of multi-level parallelisms in the accelerators of a

heterogeneous system [SHS17].

Besides shared memory strategy, message passing is also used as the inter-core communica-

tion method in distributed systems and heterogeneous systems, requiring the code generator

of an optimizing compiler to express the explicit communication with libraries like Message

Passing Interface (MPI). Polyhedral compilation frameworks targeting on minimizing com-

munication volume [Bon13, RB14] or handling the mixture of regular/irregular loop nests

[RDE+15] were proposed for such multicore systems.

Similarly, accelerators in heterogeneous systems are not restricted to GPUs. For example,

configurable devices like Field-Programmable Gate Array (FPGA) [BRS07, PZSC13] can also

be the target of an optimizing compiler, followed by some researches in high-level synthesis

area [ZLC+13, WLC14]. These together with the above mentioned architectures are calling

for a strict portability of the polyhedral model to multiple platforms. Recent work integrating

multicore parallelism and Single Instruction Multiple Data (SIMD) vectorization [TNC+09,

KVS+13] not only addressed the code generation issue but also implemented a different
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scheduling strategy in a tile.

Even though the advances made by the polyhedral community on so many accelerators,

there still exits a long way to achieving architectural portability. The emergence of artificial

intelligence applications has brought new challenges for this issue. For instance, Table 1.2

summarizes the latest xPUs used for modern artificial intelligence accelerators.

Table 1.2 – List of xPUs used for AI Accelerators

Abbreviation Full name Manufacturer Released year

APU Accelerated Processing Unit AMD 2011

BPU Brain Processing Unit Horizon Robotics 2017

DPU
Deep Learning Processing Unit Deephi Tech 2016

Dataflow Processing Unit Wave Computing 2017

EPU Emotion Processing Unit Emoshape 2017

HPU Holographic Processing Unit Microsoft 2017

IPU

Intelligence Processing Unit GraphCore 2017

Intelligence Processing Unit Mythic 2018

Image Processing Unit Google 2017

NPU Neural Network Processing Unit Vimicro 2016

SPU Stream Processing Unit AMD 2006

TPU Tensor Processing Unit Google 2016

VPU Vision Processing Unit Intel 2016

ZPU Zylin CPU Zylin AS 2015

1.3 Beyond Parallelization and Locality Optimization

On modern multicore processors, parallelism due to the increased core numbers on a single

chip and locality caused by memory hierarchy are the two main objectives considered by

compiler designers. As a result, optimizing compilers like a polyhedral optimizer are usually

expected to be capable of automatic parallelization and locality optimization. Unfortunately,

parallelization and locality optimization are sometimes contradictory with each other by

putting conflict constraints on the objective function of scheduling algorithms, forcing them

to make a tradeoff between parallelism and locality for achieving optimality of performance.

As a loop transformation aiming at improving locality while preserving the parallelism that

has been exploited by a scheduling algorithm, loop tiling [IT88] has been long considered as

foreign to optimizing compilers; even for the polyhedral model, it could not be easily expressed

using an affine function a decade ago. Thanks to its recent advances, the polyhedral model

has been proved to be promising in automating loop tiling. A cost-model-based scheduling
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algorithm like the Pluto scheduler [BHRS08] or its variants put into practice the automation of

simple tile shapes in the polyhedral model. A follow-up trend on the automatic tiling technique

focuses on more complex tile shapes like diamond [BBP17] and hexagonal [GCH+14] working

with arbitrary affine dependences, and overlapped and split shapes [KBB+07] restricted to

constant dependence vectors.

Loop fusion [KA02] is another loop transformation to enhance locality and reduce synchro-

nizations across multiple loop nests. There have also been successful advances on loop fusion

in the polyhedral model [BGDR10, MLY14, JB18], providing a variety of fusion heuristics to

modern optimizers.

Storage optimization is also a research direction of polyhedral compilation. Array contraction,

for example, is a long considered automatic memory footprint optimization in the polyhedral

world. The applicable domain is still constrained to special cases like stencil computations

although researchers made a lot of efforts in this direction, including the universal-occupancy-

vector-based [SCFS98], lattice-based [DSV05] and storage-hyperplane-based [BBC16] tech-

niques, etc.

In spite of the exciting progresses made by the polyhedral community on automatic paral-

lelization and locality optimization, there still exist a large number of opening issues awaiting

supports and efforts. The latest research trend also tried to integrate the polyhedral model

with dynamic/runtime techniques [KPP+15, SRC15, BKP+16, SPR17] for extending the scope

of the tool, leaving much room for the extensions in this field.

1.4 Combining Languages and the Polyhedral Model

The polyhedral model so far is successful in so-called “static control parts” (SCoPs) where

loop nests satisfy certain statically predictable restrictions. There is an increasingly emergent

demand on its applicability to non-affine domains to cope with the complexity of modern mul-

ticore architectures. A notable direction among the open challenges is the incompetence of

the polyhedral model to handle non-affine applications and transformations. Such non-affine

applications usually involve dynamic data-dependent control flow and/or non-affine expres-

sions that go beyond the scope of the polyhedral model, while non-affine transformations2

are usually not expressible using existing techniques.

A representative polyhedral-based approach on non-affine applications are the work of han-

dling while loops [BPCB10], along with a great deal of work with special focus on sparse

matrix computations [SGO13, VSHS14, VHS15, SLC+16, VMP+16]. The former misses more

aggressive optimizations when handling less expressive dynamic conditions than a general

while loop, while an inspector/executor scheme is usually constrained to a subset of sparse

matrix computations.

2An affine transformation should be “signle-valued”, i.e., an one-to-one mapping function of the integer points

on iteration space.
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With regard to non-affine transformations, overlapped tiling [KBB+07] is a representative

technique gaining much attentions recently due to its compatibility with other optimizations

like fusion, scratchpad memory allocation, etc. when optimizing image processing pipelines.

Unlike a standard tile shape exploited by current polyhedral compilers, additional overlapped

regions are introduced for exploiting inter-tile parallelism in such transformation by jointing

consecutive tiles. Unfortunately, no implementations of overlapped tiling in a general-purpose

polyhedral framework have been reported except PolyMage [MVB15] , a DSL compiler for

image processing pipelines.

This dissertation describes a combined language and polyhedral approach to extend the

application domain of the polyhedral model in non-affine applications and express non-affine

transformations in the model. On the one hand, we study the parallelizing compilation and

loop nest optimization of an important class of programs where counted loops have a dynamic

data-dependent upper bound. Such loops are amenable to a wider set of transformations

than general while loops with inductively defined termination conditions: for example, the

substitution of closed forms for induction variables remains applicable, removing the loop-

carried data dependences induced by termination conditions; such loops can also be viewed

a generalization of sparse matrix computations using compressed data layout stores nonzero

elements only as the latter can be easily generalized by subtracting the lower bound from the

upper bound.

On the other hand, we revisit overlapped tiling in polyhedral compilation and demonstrate

how to derive tighter tile shapes with less redundant computations, by enabling overlapped

tiles based on a well-defined general-purpose intermediate representation. It releases the

overlapped tiling in polyhedral model from being restricted to a domain-specific language

while not introducing sophisticated rescheduling and custom code generation in a polyhedral

framework.

Given the diversity of multicore architectures and the difficulty of programming on these

platforms, a polyhedral compilation approach has become a compelling alternative for writ-

ing parallel code on these targets. Our approach is driven by combining an intermediate

language and the polyhedral model, not only removing the conservativeness caused by using

a general-purpose language hindered by the difficulty of static analysis but also avoiding the

implementation of a DSL compiler for the portability to different architectures. By coupling

with such an intermediate language, one may define coding rules predominantly related to

restricting the non-statically predictable manners, allowing for better optimizations when

translating such programs into the code on target machines using a polyhedral framework.

More importantly, leveraging such an intermediate language also eases the code generation

for different architectures, making the portability issue a straightforward task.

Our method on counted loops with a dynamic data-dependent upper bound goes beyond the

state of the art in fully automating the process, specializing the code generation algorithm to

the case of dynamic counted loops and avoiding the introduction of spurious loop-carried
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dependences. The experimental results on representative irregular computations ranging

from dynamic programming, computer vision and finite element methods to sparse matrix

linear algebra validate that the method is applicable to general affine transformations for

locality optimization, vectorization and parallelization.

Our algorithm to generalize overlapped tiling allows for tighter overlapped tile shapes than the

state of the art, further improving the performance of image pipelines on both general-purpose

multicores and heterogeneous accelerators by integrating with transformations including

alignment and scaling of stages in the pipeline, loop fusion, scratchpad allocation, hybrid

tiling, etc. The experimental evaluation on the PolyMage benchmarks and representative

iterated stencils validates the effectiveness and general applicability of our technique on both

general-purpose multicores and accelerators.

The organization of the dissertation is as follows. In the first part, we described in this chapter

an introduction to the problem we aim at in this dissertation, followed by Chapter 2 providing

the technical background on the polyhedral model and the intermediate language used in

our approach. The second part presents our method to handle non-affine application, i.e.,

parallelization and optimization of counted loops with a dynamic data-dependent upper

bound, including the motivation and related work in Chapter 3, scheduling algorithm in

Chapter 4, code generation method in Chapter 5 and experimental results in Chapter 6. Gener-

alizing overlapped tiling in the polyhedral model regarding the non-affine transformations is

introduced in the third part, comprising Chapter 7 describing the motivation and related work,

Chapter 8 explaining the polyhedral implementation of the method and Chapter 9 evaluating

the proposed technique on both homogeneous and heterogeneous architectures. We finally

conclude the dissertation in the last part, Chapter 10, by summarizing the topics studied in

the dissertation and discussing directions for further research.
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2 Background

After a thirty-year evolution, the polyhedral model has become a powerful optimizer in the

domain of automatic parallelization and optimization. There have been a great number of

open-source and/or commercial implementations of polyhedral compilation in both research

and industry worlds. Comparing with unimodular matrices [Ban93, WL91] used in parallelizing

compilers, the polyhedral model is equipped with (1) wider range of applications due to the

capability to transform imperfect loop nests, (2) more powerful expressiveness by modeling

almost each kind of loop transformations and (3) greater optimization space by compositing

more transformations at one time.

As a consequence, polyhedral compilation nowadays is gradually becoming the state of the art

of almost each domain of parallelizing compilers. In this chapter, we would first introduce the

background of polyhedral compilation for a better understanding of the underlying principle

of the polyhedral model. To cope with polyhedral compilation for non-affine applications and

transformations, we would next present the intermediate language used in the dissertation.

2.1 Polyhedral Compilation

As we introduced in the previous section, the polyhedral community so far has made a great

deal of progress in all realms of computing. Nonetheless, polyhedral compilation is long

considered as too abstract for those people outside the polyhedral world. Part of the reason

is due to the painfully theoretical descriptions in existing polyhedral publications; more

importantly, the underlying principle of the polyhedral model involves a variety of concepts

from linear algebra, static analysis, etc., making the use of the tools elusive for end users.

To make it easier to understand the polyhedral model, we introduce the background of poly-

hedral compilation in this section. One may refer to [FL11] for a much detailed description on

fundamental concepts and definitions. In general, we would first give an overview of modern

polyhedral compilation and then explain how programs are represented in the model. Next,

the transformations that can be modeled in the polyhedral model are presented by comparing
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Dependence analysis. First, polyhedral extraction is serving as the frontend, parsing the

code fragment of input languages and extracting polyhedral representations with regard to

statement instances and array elements for the program. The duty of a parser is checking

whether the input is a “SCoP”, meaning the code fragment is statically predictable and polyhe-

dral compilation would represent the input program with finite internal representations if true.

pet [VG12] and clan [cla] are two representative, practical parsers for polyhedral compilation,

generally used in a variety of mature polyhedral compilers. Such representations of statement

instances and their relationships with the array elements they access are used to compute

dependence relations by solving an integer linear programming (ILP) problem.

Polyhedral compilation differentiates dependence analysis from conventional methods by

refining the analysis from statement-wise to instance-wise [Fea91]. Dependence relations can

be further separated into value-based dependences, the result of data flow analysis [MAL93,

Mas94], used for preserving the semantic of programs, and memory-based dependences,

studied for the purpose of improving data reuse [PW92, VBCG06, BCVT13].

Schedule transformation. Secondly, schedule transformation is the core of polyhedral com-

pilation, producing a new schedule by taking into consideration target architectures. In other

words, schedule transformation is the process of mapping a new logical execution date for

each integer point in a polyhedron, accomplished by invoking the underlying ILP solver. The

process of schedule transformation could also be considered as a composition of different

loop transformations with the purpose to fully exploit parallelism and data locality.

We take the 1D iterated stencil shown in Figure 2.2(a) as an illustrative example. Iterated

stencils are a class of computations updating an array element using its neighbors, commonly

found in computational fluid dynamics, image processing, partial differential equations, etc.

The original iteration space of the 1D stencil code is shown in Figure 2.2(b), indicating the

computation proceed first along t axis and then i axis. Instead, the transformed iteration

space after schedule transformation in Figure 2.2(c) implies the computation should first

follow t axis and then t + i axis. The instances of the statement are represented by integer

points in iteration space, coordinated with each other by a blue arrow denoting a dependence

relation.

Tiling along t axis and i axis in Figure 2.2(b) is illegal since such tiling may produce dependence

cycles between tiles along i axis, prohibiting the data locality along t axis of the original

iteration space. On the contrary, one may benefit from the data locality along both axes on the

transformed iteration space as tiling along the axes may not result in dependence conflicts.

In fact, schedule transformation could be understood as the reconstruction of the basis of

iteration space, attained by a scheduling algorithm like [Fea92a, Fea92b, LL97, BHRS08, BAC16,

UC13, ABC18] and their variants in libraries. While the scheduling algorithm proposed by

Feautrier [Fea92a, Fea92b] was complained due to the missing of considering communication
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for (t=0; t<T; t++)

for (i=1; i<N-1; i++)

A[t+1][i]=0.25*(A[t][i+1]+2.0*A[t][i]+A[t][i-1]);

(a) 1d iterated stencil

i

t

(b) Original iteration space of the code in Figure 2.2(a)

t + i

t

(c) Transformed iteration space of the code in Figure 2.2(a)

Figure 2.2 – 1D iterated stencil and its iteration space before and after scheduling

overhead, the hyperplane1 partitioning technique [LL97] also failed to minimize the order of

synchronization even though it takes into account communications. The cost-model-based

scheduler [BHRS08] developed in the Pluto compiler was designed to overcome such flaws

and has been demonstrated as effective in practice by a variety of implementations.

Schedule transformation is considered as the most difficult component of polyhedral com-

pilation. A scheduling algorithm is tightly coupled with dependence relations produced by

the frontend: while it should preserve the semantic of the program by being constrained to

dependence relations, it is also expected to minimize dependence distances for reuse pur-

poses, thereby improving data locality. A scheduling algorithm is not only responsible for

exploiting different compositions of loop transformations, e.g., the composition of loop tiling

and skewing could be triggered in the example of Figure 2.2, but also obligated to exploit

both fine-grained and coarse-grained parallelisms. Moreover, a scheduling algorithm should

1A hyperplane is the projection of an n dimensional space on its n °1 dimensional sub-space.
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also take into consideration the requirements from follow-up code generation: for example,

schedule transformation should allow the insert of thread-/warp2-level synchronizations

when generating CUDA code on GPUs.

Code generation. Finally, code generation constitutes the backend of polyhedral compila-

tion, made up by two phases with one building abstract syntax trees (ASTs) from the results

of polyhedral extraction and schedule transformation while the other generating expected

high-performance code executable on target platforms. As code generation would not change

the execution order of programs, it is allowed to not take into consideration dependence

relations, scanning the iteration space and generating code according to execution dates

defined by the transformed schedule. As a consequence, code generation is also referred to as

polyhedral scanning.

When building ASTs from the results of previous steps, a code generator manages to determine

loop bounds and conditionals of control flow by seeking solutions for an optimization problem

subject to integers. The generated ASTs could then be passed to emit instructions amenable

to different programming models on target machines, facilitating the portability to different

architectures.

One representative implementation of code generation in polyhedral compilation is the

convex-based algorithm [AI91], generating code by first constructing a convex for all polyhedra

in the iteration space. Figure 2.3(a) shows an illustrative iteration space composed of two

polyhedra with one comprising all red square points and the other made of blue circle points,

followed by a diagram of convex-based algorithm in Figure 2.3(b). One of the flaws of this

algorithm is the generated code may include multiple nested if conditionals governing the

correct execution of each polyhedron in the iteration space, promoting some code generators

like Codegen+ working on hoisting if conditionals [Che]. The other code generation technique

was proposed by Quilleré et al. [QRW00] and implemented in the CLooG generator and its

variants [Bas04, VBC06, GVC15]. Unlike the convex-based algorithm, the method used in

CLooG may first split the polyhedra into distinct regions as shown in Figure 2.3(c), producing

code by scanning each of such regions individually.

As one may also find in Figure 2.1, an ILP solver is at the core of polyhedral compilation, pro-

viding each step with minimal flexible integer solutions, thereby achieving the manipulation

of polyhedral transformations. There exist a variety of libraries for solving ILP, including isl

[Ver10], Omega [KMP+96], PIP [Fea88], PolyLib [Loe99] and PPL [BHZ08], etc., differing each

other by using different algorithms and data structures.

2A warp is a set of threads arranged lengthwise on a loom and crossed by the woof.
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some widely used optimizers like LLVM/Polly, PPCG, etc. One is without doubt free to choose

any other combinations of representations for their implementation, as such representations

could always be mutually transformed.

Before the introduction to polyhedral representations, we prefer to first present some mathe-

matical concepts. This is because such mathematical concepts are the underlying expressions

in integer manipulation libraries. More importantly, it would be a painful task to explain poly-

hedral representations if bypassing such mathematical concepts. If the readers are interested

in a more detailed description or some more concentrated examples on such mathematical

descriptions, we would suggest to refer to the work of Grosser [Gro14].

Integer sets. An integer set is a set of n-tuple integers subject to a group of affine constraints

relating such n-tuple integers with m-tuple constant parameters, with n representing the di-

mensionality of the set, m the dimensionality of the parameters in constraints. Mathematically,

an integer set can be written as

S = {(i1, i2, ..., in) : f ((i1, i2, ..., in), (p1, p2, ..., pm))} (2.1)

An integer set is called named integer set when assigning a name to the integer tuple. In

practice, one may think an n-tuple integer set as the collection of loop iterators, m-tuple

constant parameters the parameters of programs. A constraint function usually comes as the

conjunction of multiple inequalities.

Integer maps. An integer map is a binary relation mapping an n1-dimensional integer set,

i.e., the domain of the map, to another n2-dimensional integer set, i.e., the range of the map,

subject to a set of affine constraints on the integer sets and constant parameters. An integer

map can be generalized as

M = {(i1, i2, ..., in1
) ! (i1, i2, ..., in2

) : f ((i1, i2, ..., in1
), (i1, i2, ..., in2

), (p1, p2, ..., pm))} (2.2)

An integer map can be interpreted as the relation between statement instances with their

accessed data locations or dependence relations. In the same way, a named integer map

represents an integer map between two named integer tuples.

Named union sets and Named union maps. We use named union sets to refer to the union

of different named integer sets, and named union maps for the union of different named

integer maps. Named union sets can be used to express all statement instances of a SCoP,
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while named union maps may either define execution order on statement instances or relate

statements and the data they access.

Given the above mathematical concepts, we can explain polyhedral representations in a

much easier way. Following the previous subsection, we still use an illustrative example for

explanation. One may obtain the iteration space of the loop nest listed in Figure 2.4(a) as

shown in Figure 2.4(b), with one polyhedron for statement S1, composed of blue points, and

the other for statement S2, depicted with the collection of all red points. f and g are affine

functions of their indices. In our work, we would use the following representations.

for (i=1; i<=4; i++) {

S1: a[i] = f(i);

for (j=1; j<=i; j++)

S2: b[i][j]=g(a[i]);

}

(a) An illustrative loop nest

1 2 3 4

1

2

3

4

j

i

(b) The iteration space of the loop nest shown

in Figure 2.4(a)

Figure 2.4 – An illustrative loop nest and its iteration space in polyhedral compilation

Iteration Domain. Iteration domain is the collection of all statement instances, represented

using a named union set with each named component covering all instances of one statement

followed by a set of inequalities for bounds. The iteration domain of the code above can be

expressed with (2.3).

Domai n = {S1(i ) : 1 ∑ i ∑ 4;S2(i , j ) : 1 ∑ i ∑ 4^1 ∑ j ∑ i } (2.3)

Access Relations. Access relations are a set of relations coordinating statement instances

with the data locations they access, modeled by a set of named union maps together with

some inequalities for bounds. (2.4) describes the access relations of the example, consisting of

a Write relation and a Read relation. By refining access relations with read and write relations,

polyhedral compilation is free to compute dependence relations easily. Furthermore, a write

relation can also be split into may-write and must-write relations for the purpose of aggressive

optimizations.
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W r i te = {S1(i ) ! a(i ) : 1 ∑ i ∑ 4;S2(i , j ) ! b(i , j ) : 1 ∑ i ∑ 4^1 ∑ j ∑ i }

Read = {S2(i , j ) ! a(i ) : 1 ∑ i ∑ 4^1 ∑ j ∑ i }
(2.4)

Schedule. As we already mentioned in previous context, polyhedral compilation would map

a multi-dimensional logical execution date to each statement instance. Schedule is such a

multi-dimensional execution date assigned to a statement instance, expressed using a binary

relation between two different multi-dimensional integer tuples. A lexicographically smaller

schedule implies an earlier execution of the statement instance. An original schedule is the

execution date assigned to a statement instance before schedule transformation. For example,

the original schedule of the code in Figure 2.4(a) can be written as (2.5). A new schedule would

be computed after schedule transformation if the scheduling algorithm may find a better

execution date with respect to parallelism and data locality.

Schedule = {S1(i ) ! (i ,0);S2(i , j ) ! (i ,1, j )} (2.5)

Dependences. Dependences represent the access conflicts between statement instances,

written as named union maps and used for guaranteeing the execution date of a producer

be lexicographically smaller than that of the consumer, therefore enforcing the correctness

of any transformations enabled by polyhedral compilation. A refinement from traditional

statement-level dependences to instance-level dependences in the polyhedral model makes

the expression of dependences more complicated, like the constraints after the named maps

shown in (2.6) indicating the dependences are described with regard to statement instances.

Dependence = {S1(i ) ! S2(i , j ) : 1 ∑ i ∑ 4^1 ∑ j ∑ i } (2.6)

2.1.3 Loop Transformations

Given the polyhedral representations, one may apply any loop transformations and/or their

compositions. Loop transformations could be attained by schedule transformations, i.e.,

reordering the statement instances. Considering the example shown in Figure 2.2, schedule

transformation triggers loop skewing by specifying a new execution date to the statement

instances of 1D iterated stencil.

If we use the polyhedral representations introduced in the last subsection to express the

transformation, we may obtain the original schedule as {S1(t , i ) ! (t , i )} and {S1(t , i ) ! (t , t +

i )} for the new schedule after applying loop skewing. As a result, a transformation could be
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expressed as (t , i ) ! (t , t + i ) for representing loop skewing. Suppose t and i as variables, the

underlying principle of schedule transformation could be interpreted as seeking a coefficient

matrix and a constant vector such that

"

c11 c12

c21 c22

#"
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i

#

+

"

c10

c20

#
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t

t + i
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(2.7)

It is straightforward to solve the above system of linear equations by hand as the problem is

heavily simplified for the sake of illustration. However, polyhedral compilation may have to

solve it automatically by resorting to an ILP solver; worse yet, the practical problems faced by

the polyhedral model would be much more complicated. We would not go further into the

underlying structure of schedule transformation but invent the readers to refer to the work of

Bondhugula [Bon08] for a detailed mathematical explanation.

To generalize, schedule transformation can be understood as solving a coefficient matrix and

a constant vector such that a transformation between two integer tuples can be accomplished.

Each row of the coefficient matrix can be interpreted as a hyperplane. Note that the two

integer tuples could differ with regard to dimensionality: for example, a scalar dimension

could be introduced to achieve loop fusion. Besides, a more complex example of loop trans-

formation would be loop tiling, increasing the dimension of the input tuple by doubling those

components requiring tiling.

Schedule transformation by manipulating integer sets broadens the optimization space of

polyhedral compilation and simplifies the composition of different loop transformations

compared with traditional compilation models like unimodular matrices [Ban93, WL91],

while the latter applies loop transformations by means of elementary matrix operations.

Besides, the loop transformations covered by unimodular matrices are also very restricted,

including loop interchange, skewing and reversal; the polyhedral model is rather capable for

automating a wider set of loop transformations, widening the optimization space by enabling

loop fission, fusion, index set splitting [GFL00], peeling, strip-mining [KP95], tiling, unroll

and jam [Bon08, BF03], unrolling, unswitching, etc.3 A recent work [YGK+13] also makes

it possible to model algorithmic changes which could not be achieved by other techniques,

further enriching the transformations of polyhedral compilation.

2.1.4 Schedule Trees

Apart from index set splitting, all the loop transformations modeled by polyhedral compilation

could be facilitated by operating on the schedule representation, i.e., named union maps.

3Some of these loop transformations, i.e., loop peeling, unrolling, unswitching, are achieved by code generation

rather than schedule transformation, since these transformations change the loop structure rather than reorder

statement instances.
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This, however, does not mean the operations on named union maps would be ease of use.

A typical drawback of such method can be found when comparing the lexicographic order

of two integer sets, since such operations can only be applied on integer sets with the same

dimension.

More importantly, the above mentioned schedule representation could not be easily extended

to handle non-affine transformations as named union maps hold the “injectivity” and “single-

valuedness” properties. “injectivity” indicates a schedule representation allows different

statement instances to be assigned the same logical execution date for expressing inner par-

allelism; “single-valuedness” refers to a schedule representation would only assign a single

execution date to a statement instance, preventing the statement instance from being exe-

cuted more than once. Clearly, the latter would not allow the implementation of non-affine

transformations like overlapped tiling requiring multiple executions of a statement instance.

In this dissertation, we rely on a well-defined schedule representation that would make the

expression of non-affine transformations possible in polyhedral compilation. As the schedule

construction may decompose a dependence graph recursively and compute a partial schedule

for each component independently, a schedule representation would naturally have the form

of a tree [GVC15]. The schedule representation is thus called “schedule tree”.

There have been some schedule representations proposed in the past, including the Kelly’s

abstraction [KPR95], “2d+1”-schedules [GVB+06], etc., that can be viewed as an encoding of

schedule trees. Like named union maps, such encoding methods are usually restricted due to

missing the ability to facilitate non-affine applications and transformations.

To give an intuitive impression on schedule trees, we depict the schedule tree representation

of the code shown in Figure 2.4(a) in Figure 2.5. A schedule tree is constructed by recursively

building partial schedule trees which in turn constructed by schedule nodes. For example, the

schedule tree in the figure is composed of two sub-trees rooted at one filter node representing

statement S1(i ) and the other for statement S2(i , j ). A partial schedule tree comprises one or

more schedule nodes for expressing different semantics. We would next introduce the basic

node types in schedule trees. For a complete description of schedule trees and nodes, please

refer to [GVC15].

Domai n. A domain node in schedule trees is a named union set, appearing as the root of a

schedule tree and covering the collection of all statement instances that should be scheduled

by the schedule tree. For the sake of simplicity, we would sometimes represent a domain node

as “domain” like what we have done in Figure 2.5 rather than writing in the form like (2.3).

Context . A context node is used to introduce constraints on symbolic constants of the

schedule tree. Symbolic constants introduced by a context node could serve as parameters of

programs, usually omitted when they are only referenced by the domain node. In practice,

parameters passed to compilers like tiling sizes are usually introduced in a context node for

determining bounds of new schedules.
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domain

[S0(i ) ! (i );S1(i , j ) ! (i )]

sequence

{S0(i )} {S1(i , j )}

[S1(i , j ) ! ( j )]

Figure 2.5 – The schedule tree of the code in Figure 2.4(a)

F i l ter . A filter node can be the root of a partial schedule tree, expressed with a named union

set and representing the statement instances to be scheduled by its descendants. The partial

schedule tree rooted at a filter node has to be retained to another rooted at a domain node,

constructing the final schedule tree recursively. A filter node is guarded by a pair of braces.

B and . A band node is used to express the partial schedule on its parent node, written as a

named union map. A band node in schedule trees is also integrated with more operations

governing code generation, allowing for flexibility for more complicated cases. Named union

maps in a band node could be piecewise quasi-affine for expressing schedules like tiling. We

use square brackets to denote band nodes in schedule trees.

Sequence/Set . A sequence/set node always appears as the parent node of a group of filter

nodes, forcing the children to be executed in a given/arbitrary order. An explicit support for a

sequence/set representation makes it possible to break up the instances of a statement into

separated parts.

M ar k. A mark node can introduce any kinds of information to schedule trees. The use of

mark nodes provides a great compatibility to schedule trees with other intermediate represen-

tations. For example, one may use a mark node to attain the information about representation

mismatching, informing the follow-up code generator to handle this mark node with a custom

implementation.

We introduce the basic node types for schedule trees here because we believe they are sufficient

to understand the principle of schedule tree representation. Some other node types would be

introduced in the following context, together with their uses in our work. The readers may

also find more examples of schedule trees throughout the thesis.

2.2 A Platform-Neutral Compute Intermediate Language

In this subsection, we would introduce a platform-neutral compute intermediate language,

PENCIL [BBC+15], that we rely on to facilitate non-affine extensions. Combining languages
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with polyhedral approaches have been proved effective in many applications as we introduced

in Section 1. We choose PENCIL as an intermediate representation in addition to polyhedral

representations by taking into consideration the following properties.

PENCIL provides a sequential semantic in accordance with the philosophy of widely used

programming languages by hiding target-specific hardware information, allowing program-

mers to follow existing way of programming with such languages by only adding lightweight

annotations. This allows for the compatibility of integrating with both general-purpose and

domain-specific languages.

PENCIL simplifies the analysis of non-affine expressions and eases the implementation of

such extensions. With PENCIL, arrays must be declared through the C99 variable-length

array syntax [ISO99]. The C99 type qualifiers/keywords static const restrict or a macro

pencil_attributes expending to these type qualifiers/keywords must be used to declare the

array function arguments. This allows the polyhedral model know about the length of arrays,

and that arrays do not overlap during optimizations.

Pointer declarations and definitions are allowed in PENCIL, but pointer manipulation (in-

cluding arithmetic) is forbidden except that C99 array references are allowed as arguments in

function calls. Pointer dereferencing is neither allowed except for accessing C99 arrays. The

restricted use of pointers can essentially eliminate aliasing problems for moving data between

different address spaces of hardware accelerators.

A PENCIL for loop must have a single iterator, an invariant start value, an invariant stop

value and a constant increment (step). Invariant here requires the value must not change

in the loop body. To some extent, such structured for loops may simplify the polyhedral

transformations. Considering the fact that recursive calls are not supported by accelerator

programming languages like CUDA and OpenCL, recursive calls are excluded from PENCIL.

However, we are allowed to extend the semantic of PENCIL for such extensions as long as they

are needed.

As shown in Figure 2.6 is the high level overview of PENCIL compilation flow. PENCIL can

be the target of a domain-specific compiler, followed by a polyhedral framework, therefore

delivering information between a domain-specific language and polyhedral compilation. A

typical representative application in DSLs of PENCIL is its use in the early stage of TensorCom-

prehensions [VZT+18]4. One is also allowed to write a general-purpose language with PENCIL

specifications to model non-affine extensions, extending the polyhedral approaches to handle

more complex cases. For example, a combined polyhedral technique with PENCIL was used to

handle user-define reductions [RKC16] which would not be possible without PENCIL.

With regard to the code generation of the PENCIL compilation flow, there have already been

4PENCIL was introduced for bridging the Halide IR and polyhedral representations in the prototype imple-

mentation but was later removed from the framework due to simplification considerations. However, it helps the

developers construct the early prototype implementations and lays a solid foundation for follow-up development

of the framework.
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Figure 2.6 – A high level overview of the PENCIL compilation flow

a variety of backends supporting the generation of different parallel programming models,

including OpenMP directives and CUDA, OpenCL APIs, etc. Retargeting the compilation

flow to support other kinds of high-level APIs is straightforward thanks to the introduction of

generating ASTs in polyhedral compilation, providing a great portability to a large number of

modern multicore platforms.
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3 Dynamic Counted Loops

While a large number of computationally intensive applications spend most of their time in

static control loop nests—with affine conditional expressions and array subscripts, several

important algorithms do not meet such statically predictable requirements, going beyond the

scope of polyhedral compilation. A well-known non-affine extension to remove the limitation

of the polyhedral model in this direction is the work of Benabderrahmane et al. [BPCB10]

for handling general while loops. We are interested in the class of computational kernels

involving dynamic counted loops. These are regular counted loops with numerical constant

strides, iterating until a dynamically computed, data-dependent upper bound. Such bounds

are loop invariants, but often recomputed in the immediate vicinity of the loop they control;

for example, their definition may take place in the immediately enclosing loop.

Dynamic counted loops play an important role in numerical solvers, media processing appli-

cations, and data analytics, as we will see in the experimental evaluation. They can be seen as

a special case of while loop that does not involve an arbitrary, inductively defined termination

condition. The ability to substitute their counter with a closed form—an affine induction

variable—makes them amenable to a wider set of transformations than while loops. Dynamic

counted loops are commonly found in sparse matrix computations, but not restricted to this

class of algorithms. They are also found together with statically unpredictable, non-affine

array subscripts.

The purpose of this part is to further extend the ability of polyhedral compilation for handling

such non-affine applications by enabling a wider set of loop transformations. We will first

present the background along this research direction and then introduce our solution in the

next two chapters, followed by some experimental results and discussions.

3.1 Background and Motivation

The polyhedral framework of compilation unifies a wide variety of loop and array transforma-

tions using affine (linear) transformations. The availability of a general-purpose method to
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generate imperative code after the application of such affine transformations [QRW00, Bas04,

GVC15] brought polyhedral compilers to the front scene, in the well-behaved case of static

control loops.

3.1.1 Limitations of Previous Work

While significant amount of work targeted the affine transformation and parallelization of

while loops [GL94, Col94, GC95, Col95, GGL98, GGL99, BPCB10, JCD+14], these techniques

face a painful problem: the lack of a robust method to generate imperative code from the

polyhedral representation. One representative approach to model while loops in a polyhedral

framework, and in the code generator in particular, is the work of Benabderrahmane et al.

[BPCB10].

This work uses over-approximations to translate a while loop into a static control loop iter-

ating from 0 to infinity that can be represented and optimized in the polyhedral model. It

introduces exit predicates and the associated data dependences to preserve the computation

of the original termination condition, and to enforce the proper termination of the generated

loops the first time this condition holds. These data dependences severely restrict the applica-

tion of loop transformations involving a while loop, since reordering of the iterations of the

latter is not permitted, and loop interchange is also restricted.

The framework was also not fully automated at the time of its publication, leaving much room

for the interpretation of its applicable cases and the space of legal transformations it effectively

models. Speculative approaches like the work of Jimborean et al. also addressed the issue

[JCD+14], but a general “while loop polyhedral framework” compatible with arbitrary affine

transformations has yet to emerge. In this dissertation, we make a more pragmatic, short term

step: we focus on the special case of dynamic counted loops where the most difficult of these

problems do not occur.

There has also been a significant body of research specializing on high-performance imple-

mentations of sparse matrix computations. Manually-tuned libraries [BAA+14, BG09, BG11,

LBG+12, MCG04, VDY05] are a commonly used approach, but it is tedious to implement and

tune for each representation and target architecture. A polyhedral framework that can handle

non-affine subscripts has a greater potential to achieve transformations and optimizations on

sparse matrix computations, as illustrated by Venkat et al. [VHS15].

As a result, we would like to propose an automatic polyhedral compilation approach to paral-

lelize and optimize dynamic counted loops that can express arbitrary affine transformations

and achieve performance portability. We are allowed to make full use of systems of affine

inequalities as implemented in state-of-the-art polyhedral libraries [Ver10] for our purpose.

Moreover, following what has been implemented in the work [SCF03, SLC+16], we expect not

to resort to more expressive first-order logic with non-interpreted functions/predicates such

as the advanced analyses and code generation techniques of Wonnacott et al. [PW94b], while
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avoiding the complexity and overhead of speculative execution.

3.1.2 Static Control Parts

The polyhedral compilation framework was traditionally limited to static control loop nests. It

represents a program and its semantics using iteration domains, access relations, dependences

and schedules. The statement instances are included in iteration domains. Access relations

map statement instances to the array elements they access. Dependences capture the partial

order on statement instances accessing the same array element (one of which being a write).

The schedule implements a (partial or total) execution order on statement instances that is

compatible with dependences.

Consider the running example in Figure 3.1. The upper bounds, m and n, of the j-loop and

k-loop are computed in their common enclosing loop and updated dynamically as the i-

loop iterates. As a result, it is not possible to classify the whole loop nest as a SCoP, and

traditional polyhedral techniques do not directly apply. Tools aiming at a greater coverage of

benchmarks—such as PPCG or LLVM/Polly—will abstract the offending inner loops into a

black box, greatly limiting the potential for locality-enhancing and parallelizing optimizations.

#pragma scop //begin of our scop

for (i=0; i<100; i++) {

S0: m = f(i);

S1: n = g(i);

//begin of the scop of traditional techniques

for (j=0; j<m; j++)

for (k=0; k<n; k++)

S2: S(i, j, k);

//end of the scop of traditional techniques

}

#pragma endscop //end of our scop

Figure 3.1 – Example with dynamic counted loops

As an alternative, one may narrow the SCoP by only considering the j-/k-loop nest and treating

the dynamic upper bounds as symbolic parameters, enabling polyhedral transformations

without problems. This, however, either introduces more frequent synchronizations by exploit-

ing fine-grained parallelism when targeting on CPU targets, or misses the data locality along

the outermost loop dimension and the opportunity to exploit full-dimensional parallelism on

GPU platforms.
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3.1.3 Our Solution

To extend the polyhedral framework to dynamic computed loops, we may need to address the

following problems.

Modeling Control Dependences. Undeniably, the polyhedral model in its current form

cannot handle dynamic counted loops. We would first derive a static upper bound for such

dynamic conditions to make dynamic counted loops amenable to polyhedral compilation. To

solve this problem, we may rely on the computation of an affine upper bound for all dynamic

trip counts that a given loop may reach, using a combination of additional static analysis and

dynamic inspection. Revisiting the polyhedral compilation framework [BPCB10] of arbitrary

while loops, we introduce exit predicates for dynamic counted loops, modeling the control

dependence of the original loop through additional data dependences from the definition of

these exit predicates to every statement in the loop body.

Achieving Exact Dependence Analysis. Dynamic counted loops are commonly found in

sparse matrix computations involving indirect array subscripts, preventing polyhedral model

from achieving exact dependence analysis. We leverage the PENCIL language for eliminat-

ing alias suspicion and ambiguous analysis in the polyhedral model, allowing for the exact

dependence analysis even in the presence of indirect array subscripts.

Eliminating the Effect of Over-approximations. Due to the over-approximation caused by

deriving a static upper bound, we need to eliminate the introduced empty iterations for per-

formance improvement. We extend the schedule-tree-based algorithm [GVC15] to enable the

full automation of imperative code generation after the application of affine transformations,

targeting both CPU and GPU architectures.

Our method goes beyond the state of the art [BPCB10, JCD+14, VHS15] in fully automating the

process, specializing the code generation algorithm to the case of dynamic counted loops, and

avoiding the introduction of spurious loop-carried dependences or resorting to speculative

execution. We conduct experiments on representative irregular computations, including

dynamic programming, computer vision, finite element methods, and sparse matrix linear

algebra. We validate that the method is applicable to general affine transformations for locality

optimization, vectorization and parallelization.

3.2 Extension Nodes in Schedule Trees

Our work follows the idea behind the work of Benabderrahmane et al. [BPCB10] by using over-

approximations and modeling control dependences, the latter, however, misses a systematic

code generation algorithm. The difficulty to generate early exits for over-approximations is
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because such statements are not included in the iteration domain modeled by polyhedral com-

pilation. It is difficult to model such statements at the time of the publication of the approach

on general while loops. Fortunately, we may now leverage the schedule tree representation

for such purpose.

The schedule tree representation has the same expressiveness with traditional polyhedral rep-

resentations but it allows for the modeling of non-affine extensions in polyhedral compilation.

In the case of dynamic counted loops, we may rely on the extension node of schedule trees to

introduce additional domain elements to be scheduled.

Recall the mathematical concepts and polyhedral representations we introduced in Subsection

2.1.2, an extension node can be expressed using a named union map relating the outer

schedule dimensions with the set of array elements accessed by the statement. In our case,

we may abstract an early exit statement as a virtual statement accessing a scalar data named

“exit”. As a result, we may express a general extension node for such early exit statements as

the following

{(d1,d2, ...,dn) ! exi t ()} (3.1)

with (d1,d2, ...,dn) representing the outer schedule dimensions and exi t() for the data ac-

cessed by the statements.

A similar use of extension nodes in PPCG [VCJC+13] is the creation of data copying statements

for locality optimization and the introduction of thread-level synchronization instructions. A

statement introduced by an extension node may be scheduled even it is originally excluded by

the iteration domain of schedule trees.

3.3 An Overview of Our Approach

We may explain our approach by starting with dependence analysis. As shown in Figure 3.1,

statement S2 does not have data dependences on other statements. However, there are output

dependences among definition statements of dynamic parameters m and n. To faithfully

capture the scheduling constraints, one should also model the control dependences of S2

over both headers of the enclosing dynamic counted loops. Such control dependences can

be represented as data dependences between the definition statements of dynamic upper

bounds and S2.

To establish such a dependence relation, an exit predicate may be introduced before each

statement of the loop body, like in the framework of Benabderrahmane et al. [BPCB10]. The

resulting dependence graph is shown in Figure 3.2. The solid arrows represent the origi-

nal (output) dependences between definition statements of dynamic parameters, and the
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dashed arrows represent the data dependences converted from the exit conditions’ control

dependences.

S2

S1S0

es0!s0
es1!s1

es0!s2
es1!s2

Figure 3.2 – Dependence graph of the example

By capturing control dependences as affine relations from the definition of exit predicates to

dominated statements in loop bodies, one may build a sound abstraction of the scheduling

constraints for the loop nest. This technique is applicable to arbitrary while loops, in conjunc-

tion with a suitable code generation strategy to recover the exact control flow protected by the

exit predicate, and by over-approximating the loop upper bound as +1. This is the approach

explored by Benabderrahmane et al., but the resulting polyhedral representation is plagued by

additional spurious loop-carried dependences to update the exit predicate, removing many

useful loop nest transformations from the affine scheduling space. In the more restricted

context of dynamic counted loops, it is possible to eliminate those loop-carried dependences

as the exit predicate only depends on loop-invariant data.

We base our formalism and experiments on the schedule tree representation [GVC15]. Sched-

ule trees can be flattened into a union of relations form, with each relation mapping the

iteration domain of individual statements to a unified logical execution time space.

Since dynamic counted loops cannot be appropriately represented in the iteration domain, a

state-of-the-art polyhedral compiler like PPCG may only model the outer loop, abstracting

away the j-loop and k-loop, as the schedule tree of Figure 3.3. Following Benabderrahmane’s

work [BPCB10], we can derive two static upper bounds, u1 and u2, that are greater than or

equal to m and n. The domain and access relations of statement S2 can be over-approximated

accordingly, and represented parametrically in u1 and u2. This representation can be used to

compute a conservative approximation of the dependence relation for the whole schedule

tree.

Based on this dependence information, one may derive a correct schedule using the Pluto

algorithm or one of its variants [BHRS08, VCJC+13], to optimize locality and extract paral-

lelism. The resulting schedule tree may indeed be seen as a one-dimensional external domain

and schedule enclosing a two-dimensional inner domain and schedule controlled by two

additional parameters, u1 and u2, as will be seen in Figure 4.4.

The final step is to generate code from the schedule tree to a high level program. The generation

of the abstract syntax tree (AST) follows the approach implemented in isl [Ver10], traversing

the schedule tree and specializing the code generation algorithm to integrate target-specific
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constraints, e.g., nested data parallelism and constant bounds. Before encountering a filter

node associated with a dynamic counted loop, the exit predicate and its controlled loop body

is seen as a single black-box statement by the AST generation algorithm. When passing the

filter node constraining the dynamic upper bound, it is necessary to complement the standard

code generation procedure with dedicated “dynamic counted loop control flow”. This involves

either (on GPU targets) the reconstruction of the exit predicate and the introduction of an

early exit (goto) instruction guarded by the predicate or (on CPU targets) the replacing the

over-approximated static upper bound with the dynamic condition and the removing of the

introduced control flow. Our algorithm generates code in one single traversal of the schedule

tree1.

domain

[S0(i ) ! (i );S1(i ) ! (i );S2(i ) ! (i )]

sequence

{S0(i )} {S1(i )} {S2(i )}

Figure 3.3 – Original schedule tree of the example

3.4 Related Work

The polyhedral framework is a powerful compilation technique to parallelize and optimize

loops. It has become one of the main approaches for the construction of modern parallelizing

compilers. Its application domain used to be constrained to static control, regular loop nests.

But the extension of the polyhedral framework to handle irregular applications is increasingly

important given the growing adoption of the technique. The polyhedral community invested

significant efforts to make progress in this direction.

A representative application of irregular polyhedral techniques is the parallelization of while

loops. The polyhedral model is expected to handle loop structures with arbitrary bounds that

are typically regarded as while loops. Collard [Col94, Col95] proposed a speculative approach

based on the polyhedral model that extends the iteration domain of the original program and

performs speculative execution on the new iteration domain. Parallelism is exposed at the

expense of an invalid space-time mapping that needs to be corrected at run time.

Beyond polyhedral techniques, Rauchwerger [RP95] proposed a speculative code transfor-

mation and hybrid static-dynamic parallelization method for while loops. An alternative,

conservative technique, consists in enumerating a super-set of the target execution space

[GL94, GC95, GGL98, GGL99], and then eliminating invalid iterations by determining termi-

nation detection on the fly. The authors present solutions for both distributed and shared

1Another difference with [BPCB10] where multiple traversals were needed.
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memory architectures.

Benabderrahmane et al. [BPCB10] introduce a general framework to parallelize and optimize

arbitrary while loops by modeling control-flow predicates. They transform a while loop

as a for loop iterating from 0 to +1. Compared to these approaches to parallelizing while

loops in the polyhedral model, our technique relies on systems of affine inequalities only, as

implemented in state-of-the-art polyhedral libraries. It does not need to resort to the first-order

logic such as non-interpreted functions/predicates, it does not involve speculative execution

features, and it makes dynamic counted loops amenable to a wider set of transformations

than general while loops.

A significant body of work addressed the transformation and optimization of sparse ma-

trix computations. The implementation of manually tuned libraries [BAA+14, BG09, BG11,

LBG+12, MCG04, VDY05] is the common approach to achieve high-performance, but it is

difficult to port to each new representation and to different architectures.

Sparse matrix compilers based on polyhedral techniques have been proposed [VHS15], ab-

stracting the indirect array subscripts and complex loop-bounds in a domain-specific fashion,

and leveraging conventional Pluto-based optimizers on an abstracted form of the sparse

matrix computation kernel. We ought to extend the applicability of polyhedral techniques

one step further, considering general PENCIL code as input, and leveraging the semantical

annotations expressible in PENCIL to improve the generated code efficiency and to abstract

non-affine expressions.
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4 Scheduling Dynamic Counted Loops

in the Polyhedral Model

4.1 Preparation

A dynamic counted loop with a dynamic counted upper bound and a static lower bound is

referred to as the normalized format of dynamic counted loops. For example, the code shown

in Figure 3.1 is such a normalized format.

for (i=0; i<M; i++)

for (j=idx[i]; j<idx[i+1]; j++)

y[i] += A[j]*x[col[j]];

(a) An illustrative code of sparse matrix computation

A =

2

6

6

6

4

1 2 0 0

3 4 0 0

0 0 5 0

0 0 0 6

3

7

7

7

5

i d x[5] = {0,2,4,5,6}

col [6] = {0,1,0,1,2,3}

(b) Sparse representations

for (i=0; i<M; i++)

for (j=0; j<idx[i+1]-idx[i]; j++)

y[i] = A[j+idx[i]]*x[col[j+idx[i]]];

(c) Normalized format

Figure 4.1 – A sparse matrix computation and its normalized format
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Sparse matrix computations represent an important class of dynamic counted loops. They are

a class of computations using compressed data layout stores nonzero elements only. Loops

iterating on the compressed layout may have dynamic lower and upper bounds. In practice,

such nonzero elements could be stored in different formats, leading to a variation among

different formats on the sparse matrix. However, most of such formats could be transformed

mutually, as explained by Venkat et al. [VHS15]. Figure 4.1(a) shows an example of such

computations using Compressed Sparse Row (CSR) format. One may represent the sparse

matrix as in Figure 4.1(b), with the additional arrays for storing the information about dynamic

conditions.

However, these loops can be easily normalized by subtracting the lower bound from the

upper bound, as shown in Figure 4.1(c). This transformation may introduce non-affine array

subscripts since the lower bound may not be affine; we assume the dependence analysis will

conservatively handle such subscripts, leveraging PENCIL annotations to refine its precision

[CBF95, BBC+15]; we may also symbolically eliminate identical non-affine expressions on the

left and right-hand side.

for (i=0; i<nodes; i++) {

Anext=...

Alast=...

...

while(Anext<Alast) {

S(i, Anext);

Anext++;

}

...

}

(a) A illustrative while loop

for (i=0; i<nodes; i++) {

Anext=...

Alast=...

...

for (j=0; j<Alast-Anext; j++) {

S(i, j+Anext);

}

...

}

(b) Normalized format

Figure 4.2 – A while loop and its normalized format
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4.2. Deriving a Static Upper Bound

Some forms of while loops may also be modeled, as long as an affine induction variable can

be identified and assuming the variant part of the exit condition reduces to this induction

variable. For example, the while loop shown in Figure 4.2(a) is extracted from the equake

program of SPEC2000 benchmarks. It could be normalized to the format shown in Figure

4.2(b) without changing the semantic of the program.

4.2 Deriving a Static Upper Bound

To make a dynamic counted loop amenable to a polyhedral representation, our approach

assumes that a static control upper bound u on the dynamic number of iterations is available.

The general idea is that a dynamic counted loop can always be converted into a static for loop

enclosing an if statement whose condition checks the dynamic bound.1 One may determine

the u parameter statically or dynamically.

4.2.1 Static Approaches

The u parameter can be approximated statically, as the dynamic upper bounds are functions

of outer enclosing loop variables: a typical solution relies on Fourier-Motzkin elimination,

projecting out enclosing dimensions and eliminating non-affine constraints.

For instance, the following set of dynamic conditions is extracted from the HOG benchmark of

the PENCIL benchmark suite, which we may use Fourier-Motzkin elimination for eliminating

the max/mi n operations and finally deriving a static upper bound.

8

>

>

>

>

<

>

>

>

>

:

lbx = max( fx (x),1)

lby = max( fy (y),1)

ubx = mi n(gx (x),1)

uby = mi n(g y (y),1)

(4.1)

The u parameter can also be determined in other ways, from array size declarations or addi-

tional user-defined predicates in PENCIL [BBC+15]. We use the C99 type qualifiers/keywords

static const restrict when declaring an array argument of a PENCIL function, guarantee-

ing the array argument do not alias and thereby allowing for the static derivation of the u

parameter. When such static methods fail, MAXINT or any type-dependent bound remains a

valid approximation, but a tighter bound is preferable to avoid lifting induction variables to a

wider integral type.

1This is easier than a general while loop, since the dynamic bound check remains continuously false after its

first falsification.
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4.2.2 Dynamic Approaches

Besides static analysis, dynamic inspection prior ahead of the loop nest of interest may be

practical in some cases. For example, in sparse matrix computations, u may be computed

by inspecting the maximum number of non-zero entries in a CSR format. We may infer that

the static upper bound of the sparse matrix shown in Figure 4.1(b) is 2 with an inspection.

Alternatively, one may think about the transformation changes the sparse matrix into the form

of

A =

2

6

6

6

6

4

1 2

3 4

5 °

6 °

3

7

7

7

7

5

All in all, affine bounds on the u parameter can generally be derived automatically, at compila-

tion or run time, and the tightness of the approximation does not have an immediate impact

on performance.

4.3 Modeling Control Dependences

To model control dependences on dynamic conditions, we introduce additional data depen-

dences associated with exit predicates and their definition statements.

An exit predicate definition and check is inserted at the beginning of each iteration of a

dynamic counted loop. At code generation time, all statements in the body of the counted loop

will have to be dominated by an early exit instruction conditioned by its predicate. This follows

Benabderrahmane’s method for while loops [BPCB10], but without the inductive computation

and loop-carried dependence on the exit predicate. Of course, we delay the introduction of

goto instructions/changing back to the dynamic conditions until code generation, to keep

the control flow in a statically manageable form for a polyhedral compiler. For example, the

code in Figure 4.3(a) is preprocessed as the version in Figure 4.3(b) before constructing the

affine representation.

The control dependences are therefore converted into data dependences between definition

statements and the body of dynamic counted loops. Each statement in a dynamic counted

loop is associated with a list of exit predicates. These predicates should be attached to the

band node dominating the dynamic counted loop, and will be used to guard or terminate the

execution within the over-approximation iteration domain bounded by the u parameters.
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for (i=0; i<100; i++){

m=f(i);

n=g(i);

for (j=0; j<m; j++)

for (k=0; k<n; k++)

S(i, j, k);

}

(a) Dynamic counted loops

for (i=0; i<100; i++){

m=f(i);

n=g(i);

for (j=0; j<u1; j++)

for (k=0; k<u2; k++)

if (j<m && k<n)

S(i, j, k);

}

(b) if conditional

Figure 4.3 – Conditional abstraction

4.4 Scheduling

The u parameter and conversion of control dependences make it possible to approximate

dynamic counted loops in the polyhedral model, at the expense of traversing a larger itera-

tion space. We may thus apply any affine scheduling on this “approximated static control

program”, to safely compute a correct schedule tree preserving all dependences. Based on the

result of scheduling, we may leverage the mark node and extension node for accomplishing

transformations for dynamic counted loops while preserving the correctness of the program.

4.4.1 Schedule Construction

The original domain node, as shown in Figure 3.3 can be expressed as

Domai n = {S0(i );S1(i );S2(i ) : 0 ∑ i < 100} (4.2)

Note that statement S2 is modeled as an one-dimensional statement without our technique.

With the introduction of the u parameter and conversion of control dependences, we may
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obtain a new domain node as

Domai n = {S0(i );S1(i ) : 0 ∑ i < 100;S2(i , j ,k) : 0 ∑ i < 100^0 ∑ j ∑ u1 ^0 ∑ k ∑ u2}

(4.3)

and a correct schedule tree representation shown as below.

domain

[S0(i ) ! (i );S1(i ) ! (i );S2(i , j ,k) ! (i )]

sequence

{S0(i )} {S1(i )} {S2(i , j ,k)}

[S2(i , j ,k) ! ( j );S2(i , j ,k) ! (k)]

Figure 4.4 – A correct schedule tree of the example

Note that this schedule tree has not been applied any transformations and can be viewed as the

original schedule tree representation. The dynamic parameters are assigned at their definition

statements, and then virtually read by statement S2 implicitly guarded by the negation of the

exit predicates. This can be modeled as read and write (affine) access relations:

Read = {S2(i , j ,k) ! m[] | 0 ∑ i < 100^0 ∑ j < u1 ^0 ∑ k < u2;

S2(i , j ,k) ! n[] | 0 ∑ i < 100^0 ∑ j < u1 ^0 ∑ k < u2}
(4.4)

W r i te = {S0(i ) ! n[];S1(i ) ! m[] | 0 ∑ i < 100} (4.5)

According to the variant of the Pluto algorithm implemented in isl [Ver10], one may set the

validity dependences, associated with semantics preservation, to

Validity = (Read°1
±W r i te 0+W r i te°1

±Read 0
+W r i te°1

±W r i te 0)

\(Schedule ¡ Schedul e 0)
(4.6)

and the proximity dependences, associated with locality enhancement, to
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Proximity = (Read°1
±W r i te 0+W r i te°1

±Read 0
+W r i te°1

±W r i te 0

+Read°1
±Read 0)\ (Schedule ¡ Schedul e 0)

(4.7)

where Schedule represents the original schedule constructed from the original code according

to the procedure above, and the 0 (primed) maps distinguish iterations in dependence.

We can then compute a new schedule that applies the variant of the Pluto algorithm using

New_Schedul e = schedule Domai n under Schedule

respecting V ali di t y and minimizing Pr oxi mi t y
(4.8)

In other words, the scheduling algorithm may safely compute a new schedule, starting from

the original one shown in Figure 4.4, preserving all dependences and attempting to minimize

the reuse distance.

4.4.2 Schedule Transformation

Once a correct schedule tree representation can be obtained, we are allowed to leverage any

types of schedule nodes to apply schedule transformations. Indeed, it is possible to apply

transformations and generate code without any special handlings on the current schedule

tree. However, the generated code would waste a great number of iterations due to the over-

approximations caused by the u parameters and conversion of control dependences, thereby

inhibiting performance improvements.

Marking Dynamic Counted Loops. As we introduced before, a mark node can be used for

retaining any pieces of information to schedule trees. We therefore are allowed to insert

mark nodes above the nodes representing the dynamic counted loops, implying the child

node would be considered as dynamic counted loops. As a consequence, one may obtain a

schedule tree with a mark node shown in Figure 4.5. The only information we need to retain to

a mark node is a string, i.e., “d ynami c_counted_loops00. The reason behind our intention

to leverage a mark node comes from the strategy used in PPCG [VCJC+13] for generating

thread-level synchronization instructions.

One may now use the schedule tree with mark nodes shown in Figure 4.5 for schedule trans-

formation. As there are two separated, tilable band nodes in the schedule tree, a scheduling

algorithm would identify the outer band node, corresponding the outermost i -loop in Figure

3.1, leading to a coarser parallelism. Without such abstraction, it would be impossible to

model the whole program as a SCoP, as the polyhedral model could only obtain a schedule
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domain

[S0(i ) ! (i );S1(i ) ! (i );S2(i , j ,k) ! (i )]

sequence

{S0(i )} {S1(i )} {S2(i , j ,k)}

mark: “d ynami c_counted_l oops00

[S2(i , j ,k) ! ( j );S2(i , j ,k) ! (k)]

Figure 4.5 – Inserting mark nodes in the schedule tree

tree like Figure 3.3 shows, missing dependence information about S2 and therefore failing to

identify the outer tilable band.

Recall that we have mentioned in the previous section, an alternative way is to narrow the

SCoP by only considering the j-/k-loop nest and treating the dynamic upper bounds as sym-

bolic parameters, but such modeling strategy may introduce more frequent synchronizations

by exploiting fine-grained parallelism or misses the data locality along the outermost loop

dimension.

After applying schedule transformation, we need to handle the introduced mark node. One

may notice that there exist two dynamic counted loops in the example, but we only introduce

one mark node since the j -loop and k-loop are combined into one band node. The Pluto

algorithm or its variants would always try to combine loops into one tilable band because

such combination would exploit nested parallelism and hereby creating opportunities for

more transformations. As transformations have been applied (for example, the scheduling

algorithm may strip-mine the outer band or tile the inner band), we are free to split such

combined band node. As a result, the schedule tree would be transformed into the following

format (we do not represent the transformations that may have been applied in the figure).

In other words, a mark node would be broadcast to each dimension of a combined band node

after splitting no matter whether such dimension is a dynamic counted loop. In case where a

normal loop is also marked with such mark node, one can determine by checking whether the

loop iterator appears in the predicates introduced for conversion of dynamic control. We will

explain this issue further in the next section.

Non-affine Extensions. Extension nodes can now be used to replace each occurrence of the

mark node. A mark node can only be used to attach additional information but not for custom

implementations. As can be found from Figure 4.6, the loop dimension information is not

present in a mark node as such information cannot be determined when introducing mark
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domain

[S0(i ) ! (i );S1(i ) ! (i );S2(i , j ,k) ! (i )]

sequence

{S0(i )} {S1(i )} {S2(i , j ,k)}

mark: “d ynami c_counted_loops00

[S2(i , j ,k) ! ( j )]

mark: “d ynami c_counted_loops00

[S2(i , j ,k) ! (k)]

Figure 4.6 – Mark nodes with split band nodes

nodes. Besides, a mark node may also be broadcast after schedule transformation, making the

retaining of further information like loop dimensions impractical at that stage.

domain

[S0(i ) ! (i );S1(i ) ! (i );S2(i , j ,k) ! (i )]

sequence

{S0(i )} {S1(i )} {S2(i , j ,k)}

extension: [i , j ] ! exi t ()

[S2(i , j ,k) ! ( j )]

extension: [i , j ,k] ! exi t ()

[S2(i , j ,k) ! (k)]

Figure 4.7 – Replace each mark node with an extension node

Figure 4.7 shows the schedule tree with each mark node being substituted by an extension

node. Unlike mark nodes, an extension node can be used for recording loop nest information,

calling for a custom implementation during code generation. We use an explicit expression in

each extension node for the illustrative purpose, followed by the context used in the imple-

mentation of schedule trees. An extension node can be represented with a map, relating the
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loop nest information to an early exit statement which implies an early exit instruction should

be emitted.

Emitting early exit statements could be implemented differently depending on the target

architecture. Generally, we force the code generator to change the introduced u parameters

back to the original dynamic conditions when targeting CPUs, while a goto statement would

be introduced for GPUs. The reason behind the different implementations is due to the

different programming models used on different targets, as we will explain in detail next

section.
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5 Generation of Imperative Code

Once a new schedule is produced, additional transformations can be applied on band nodes,

to implement loop tiling or additional permutations, strip-mining for vectorization, etc. Even-

tually, one needs to return to imperative code through a so-called code or AST generation

algorithm. AST generation is a performance-critical step in any polyhedral framework. We

extend the code generation scheme of Grosser et al. [GVC15], itself derived from the algorithm

by Quilleré et al. [QRW00] and its CLooG enhancements and implementation [Bas04].

When the Grosser et al. algorithm traverses the band nodes in a schedule, it projects out the

local schedule constraints from the domain node. As the dynamic upper bounds are not

modeled in the iteration domain (the domain node in the schedule tree and subsequent filter

nodes), the generated loops will iterate from 0 to u. It is thus necessary to emit an early exit

statement (for GPU architectures) or change the over-approximated static upper bound back

to the original dynamic condition (for CPU architectures). Besides, the introduced control flow

can also be removed when generating code for CPU targets, reducing the control overhead.

5.1 Extending the Schedule Tree

Let us first recall the extensions we made to the schedule tree in the last section. The Grosser

et al. algorithm is not able in its original form to generate semantically correct code for our

extended schedule tree. However, it can be easily modified to handle the special case of exit

predicates that are homogeneous over all statements in a sequence or set node of the schedule

tree (e.g., all statements in a band of permutable loops).

This is facilitated through the syntactic annotation of dynamic counted loops using so-called

mark nodes in the schedule tree. A mark node may attach any kind of information to a subtree;

we used it here to specify which band nodes and which dimensions in those bands involve

dynamic counted loops. To account for affine transformations combining static and dynamic

counted loops (e.g., loop skewing), mark nodes are inserted at every dimension.

One may insert an extension node in a schedule tree to extend its iteration domain, e.g., to
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insert a new statement with a specific iteration domain. In our case, we replace each mark

node with an extension node, inserting a guard statement with the proper exit predicate. In

a first pass, all exit predicates are attached to the band node; a follow-up traversal through

the predicate list lets the AST generator detect whether a dimension of the band node is a

dynamic counted loop, and position early exits at the right level.

In fact, the code generation scheme is designed to complement the standard code generation

procedure with a dedicated “dynamic counted loop template”. This template serves as a

post-processing step after code generation, involving the reconstruction of the exit predicate.

To this stage, we may have to consider the features of target architectures and branch the code

generation template.

We generate CUDA code when targeting on GPU architectures. However, it does not mean

our technique is only restricted to such programming APIs. When launching a CUDA kernel,

a fix-length loop bound should be specified for execution configuration. We may therefore

emit an exit statement every time when an extension node is encountered to force the over-

approximated loops terminate correctly. When we implement a custom code generation

scheme for CPU architectures, we may generate loops amenable to OpenMP directives, im-

plying an exit statement is not allowed to jump out of the parallel region but a dynamic loop

bound is permitted. As a result, we choose to change the introduced u parameters back the

original dynamic computed bounds and remove the associated predicates for eliminating

control overheads.

5.2 Generating Early Exits

When scanning the schedule tree to generate early exits for GPU targets, the AST generator

creates a goto AST node for each of the above-mentioned extension nodes. A goto statement

can be generated from the AST node using the following steps.

Positioning a goto Statement. As shown in (3.1) and Figure 4.7, an extension node is ex-

pressed with a named union map, relating the outer schedule dimensions with the introduced

exit statement. Such outer schedule dimensions could be used for positioning the goto of

each exit statement.

Generating the Guard. During modeling control dependences, a predicate was introduced

at the beginning of each iteration of a dynamic counted loop. Such predicates would be

recorded and passed over to the AST generator. A goto statement should also be guarded

by a predicate by negating one of the conditions of the introduced predicate dominating the

body of the corresponding dynamic counted loop, as the conditions may be a conjunction of

multiple dynamic counted loops, e.g., the code shown in Figure 4.3(b). This can be attained by

checking the appearance of the loop iterator of current dimension in the conditions.
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Determining Whether the Loop is a Dynamic Counted Loop. As we explained in subsec-

tion 4.4.2, the band node with a mark node specifying dynamic counted loop would be split

after schedule transformation, with each dimension marked with the same mark node by

broadcasting the latter. This broadcast may also mark a static loop as dynamic. Of course, all of

the mark nodes would be replaced with extension nodes. When generating a goto statement

by checking each occurrence of such extension nodes, the AST generator should determine

whether the current dimension is a dynamic counted loop. Following the idea of generating

the guard, this can also be achieved by inspecting the appearance of the loop iterator of current

dimension in the conditions of the predicate. One may determine the current dimension is a

static, normal loop provided the loop iterator is not present in the conditions.

Counting Labels. A label destination is required when using a goto statement. As a result,

the AST generator should maintain a global label counter, enforcing the exit statements jump

to the corresponding destinations. The label counter is incremented each time a dynamic

counted loop is encountered, enforcing uniqueness.

5.3 Changing Back to Dynamic Conditions

When targeting on CPU architectures, it may not be allowed to jump in or out of the parallel

region using an early exit statement like goto, but one may change the over-approximated

static upper bound u back to the original dynamic condition. The information to facilitate

such replacement can be attached to an AST annotation node and be the same with those of

the goto AST node in GPU case except the label counter. The code generation is similar to

the case of GPU case, being accomplished by the following steps.

Positioning Dynamic Counted Loops. Like what we have explained in GPU case, the AST

generator has to pick out dynamic counted loops from the band node due to the broadcast of

mark nodes. The method has been introduced above, and the AST generator can follow the

same scheme used in GPU case for recognizing such dynamic counted loops.

Substituting the u Parameters. The AST code generator may look up the predicate list and

extract the condition corresponding to the current dimension. The right-hand side of the

condition can be taken out to substitute the introduced u parameter of a dynamic counted

loop.

Removing Control Overheads. Similarly, each occurrence of the earlier introduced dynamic

conditions at the beginning of each iteration can now be degenerated for eliminating such

control overheads.
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5.4 Code Generation for a Single Loop

The final step is converting the AST to a high level program. When a goto AST node of a

dynamic counted loop is captured, a goto statement conditioned by its predicates is enforced

after the loop body, as well as a label destination after the loop itself. The associated pred-

icates are gathered in a conjunction and wrapped as one conditional, with loop iterators

instantiated according to the loop level. A label is inserted after each dynamic loop as a target

for a goto statement.

for (i =0; i<N; i++) {

for (j =0; j<u1; j ++) {

m=f(i);

if(j<m)

S1(i,j);

}

}

for (i =0; i<N; i++) {

for (j =0; j<u2; j ++) {

n=g(i);

if(j<n)

S2(i,j);

}

}

(a) Before fusion

for (i =0; i<N; i++) {

for (j =0; j< max (u1 ,u2); j ++) {

m=f(i);

n=g(i);

if(j<m)

S1(i,j);

if(j<n);

S2(i,j);

if(j >=m && j >=n)

goto label0 ;

}

label0 : ;

}

(b) After fusion

Figure 5.1 – Fusing two dynamic counted loops
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Changing back to the dynamic condition for a dynamic counted loop is straightforward, but

special cares have to be taken to handle cases with multiple associated predicates. One may

construct a max operation comprising all the associated predicates as the upper bound of a

dynamic counted loop, without removing these introduced control flow since they have to be

there to preserve the semantic of the code.

This schedule-tree-based code generation algorithm enables all kinds of loop transformations,

with the most challenging one being loop fusion. When fusing two dynamic counted loops,

the two sets of predicates are considered, and the early exit statements/max-operation-based

dynamic upper bounds are guarded by/composed of their statementwise conjunction/them.

As shown in Figure 5.1 is the original and fusion result of two dynamic counted loops. One

may conclude from the figure for CPU architectures easily. A normal loop can be treated as a

specific case of dynamic counted loop by reasoning on its static upper bound as a predicate.

Unfortunately this scheme efficiently supports a single dynamic counted loop only, and does

not deal with the expression of parallelism in these loops.

5.5 Flat and Nested Parallelisms

As shown in Figure 4.4, the canonically constructed schedule tree isolates two nested band

nodes to represent different levels of the loop nest. This works fine when the target architecture

is a shared memory multiprocessor. As an illustrative example, Figure 5.2 is the generated

code for a shared memory multiprocessor after the application of loop tiling on the code in

Figure 3.1 with the outermost i-loop being parallelized. We also depict the corresponding

schedule tree representation in Figure 5.3 for reference.

#pragma omp parallel for

for (i=0; i<100; i++) {

m = f(i);

n = g(i);

for (jj=0; jj<m/BB+1; jj++)

for (kk=0; kk<n/CC+1; kk++)

for (j=0; j<min(m, jj*BB+BB); j++)

for (k=0; k<min(n, kk*CC+CC); k++)

S(i, jj, kk, j, k);

}

Figure 5.2 – Code generation with loop tiling for CPU

However, when targeting GPU accelerators or producing fix-length vector code, we usually

expect to combine nested bands to express parallelism at multiple levels, and a constant

iteration count may also be required for data-parallel dimensions. We therefore consider two

49



Chapter 5. Generation of Imperative Code

cases depending on the need to extract parallelism across more than one band.

domain

[S0(i ) ! (i );S1(i ) ! (i );S2(i , j ,k) ! (i )]

sequence

{S0(i )} {S1(i )} {S2(i , j ,k)}

extension: [i , j /BB ] ! exi t ()

[S2(i , j ,k) ! ( j /BB)]

extension: [i , j /BB ,k/K K ] ! exi t ()

[S2(i , j ,k) ! (k/CC )]

extension: [i , j /BB ,k/CC , j ] ! exi t ()

[S2(i , j ,k) ! ( j )]

extension: [i , j /BB ,k/CC , j ,k] ! exi t ()

[S2(i , j ,k) ! (k)]

Figure 5.3 – The schedule tree representation of code shown in Figure 5.2

5.5.1 Flat parallelism within a band

Let us first discuss the case of regenerating imperative code for one or more nested dynamic

counted loops within a single band. As a first step, one may systematically generate condi-

tional statements on exit predicates at the innermost level. Figure 4.3(b) shows an example

illustrating this approach. The predicates of both loops are included in a single conditional,

and generated under the inner loop. Notice that this approach is compatible with affine loop

transformations such as loop interchange, not expressible in [BPCB10] due to the presence of

spurious loop-carried dependences.

Our approach is generally applicable in the context of loop interchange except when one

attempts to permute a dynamic counted loop with its enclosing affine loop governing the

dynamic condition. As we introduce redundant, empty iterations to dynamic counted loops,

we inject early exits for eliminating the effect of such over-approximation. In this special

interchange case, the introduction of early exits may not guarantee the semantic of original

programs. We therefore leave out the introduction of such early exits in this special interchange
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case. As an illustrative example, Figure 5.4(b) shows the result of permuting the dynamic

counted loop with its governing affine loop in the example of Figure 5.4(a). Such treatment

may not remove the empty iterations introduced by the over-approximation but the semantic

of the program could be preserved. In summary, our approach always tries to remove or

minimize the introduced empty iterations but puts the correctness of the program in the first

place, implying that we may have to sacrifice the performance by skipping the injection of

early exits in some rare cases.

for (i=0; i<N; i++) {

m = f(i);

for (j=0; j<m; j++)

S(i,j);

}

(a) Original code

for (j=0; j<u; j++) {

for (i=0; i<N; i++) {

m = f(i);

if (j<m)

S(i,j);

}

}

(b) After interchange

Figure 5.4 – An interchange example

Yet one still needs to generate early exits in order to avoid traversing a potentially large number

of empty iterations. We may extract the iterators one by one from the predicate list and

generate the corresponding exit statements from the innermost outwards. The exit predicates

are generated in the form of multiple conditionals rather than else branches, as shown in

Figure 5.4 and 5.6. Unlike Jimborean et al. [JCD+14], we do not need speculation on the

number of iterations, since we do not deal with general while loops; our technique always

executes the same number of iterations as the original programs.

Loop tiling is a special case that should be taken into account. Loop tiling involves the insertion

of one or more additional schedule dimensions through strip-mining. When strip-mining

a dynamic counted loop, there should be an exit statement at both levels. For the point

loop—iterating within a tile—the common case above applies. For the tile loop—iterating

among tiles—we align its bounds and strides to follow the structure of the inner loop, so that

its counter can also be compared systematically with the same bound.
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5.5.2 Nested parallelism across bands

Targeting GPU accelerators or producing fix-length vector code motivates the exploitation of

data parallelism within dynamic counted loops, in combination with other nested loops. Since

dynamic counted loops result in nested bands in the schedule tree, the combined exploitation

of multiple levels of parallelism including one or more dynamic counted loops requires special

treatment that is not directly modeled by affine sets and relations. The constraints on the

grid of multi-level data parallelism require the collection of bound information across nested

bands: when launching a kernel, the parameters of the grid must be known and may not

evolve during the whole run of the kernel.

Unfortunately, the statements between nested bands that occur in dynamic counted loops are

used to initialize dynamic upper bounds. Statements in the body of these dynamic counted

loops depend on those definition statements, through the added dependences modeling the

original dependence of the dynamic loop. Still, one can sink these definition statements inside,

within the dynamic counted loops, as a preprocessing step. Figure 5.5(a) shows the code after

sinking the definition statements of the example in Figure 3.1, followed by a depiction on its

schedule tree in Figure 5.5(b).

Note that both dynamic definition statements change into 3-dimensional statements due

to the inward movement. In the schedule representation, we use a “band” to represent the

band node after such operation, which can be expressed as a piecewise schedule, [{S0(i , j ,k) !

(i );S1(i , j ,k) ! (i );S2(i , j ,k) ! (i )}, {S0(i , j ,k) ! ( j );S1(i , j ,k) ! ( j );S2(i , j ,k) ! ( j )}, {S0(i , j ,k) !

(k);S1(i , j ,k) ! (k);S2(i , j ,k) ! (k)}]. As a result, the nested bands can be combined again,

with no intervening computation or control flow.

The inward movement of these definition statements is safe with the introduction of the upper

bound u-parameter. Yet as a side-effect of this movement, each definition will be redundantly

evaluated as many times as the number of iterations of the dynamic counted loop itself. This

is the price to pay for a fixed upper bound on the iterations.

Once again, this overhead may be mitigated with additional strip-mining of the outer loops,

to better control the value of u, effectively partitioning the loop nest into coarse-grain sub

computations amenable to execution on a heterogeneous target. Figure 5.6 shows an example

after the application of loop tiling on the code in Figure 3.1, and one may also refer to Figure

5.7 for the schedule representation.

As the nested bands are combined into a single one, a polyhedral framework would identify it

with multiple dimensions of parallelism, partitioning the loop nest into coarse sub-problems

that can be solved independently on heterogeneous platforms.
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for (i=0; i<100; i++)

for (j=0; j<u1; j++)

for (k=0; k<u2; k++){

m=f(i);

n=g(i);

if (j<m && k<n)

S(i, j, k);

}

(a) Sinking the dynamic definitions of the example in Figure 3.1

domain

band

sequence

{S0(i , j ,k)} {S1(i , j ,k)} {S2(i , j ,k)}

(b) The schedule tree of the code shown in Figure 5.5(a)

Figure 5.5 – Sinking the dynamic definition and its schedule tree representation

5.6 General Applicability to Loop Transformations

One of the benefits of our approach with respect to Benabderrahmane et al.’s work [BPCB10]

is its compatibility to various loop transformations. We analyze in this subsection the general

applicability of our approach for each loop transformation presented in Subsection 2.1.3 and

their combinations.

5.6.1 Loop Transformations of Unimodular Matrices

We first analyze the case of loop transformations covered by unimodular matrices [Ban93,

WL91], i.e., loop interchange, skewing and reversal. One may view unimodular matrices as

loop transformations for a single statement because the loop body may always be abstracted

as a black box and the structure stays unchanged under such transformations.

Our approach is compatible to loop interchange, as we explained in Subsection 5.5.1 with a

special treatment designed for permuting dynamic counted loops with the enclosing affine

loop. Similarly, such strategy can also be applicable to loop reversal since the iterations of a

dynamic counted loop would be traversed in a reversed order, guaranteeing the correctness

of our technique by introducing over-approximations. Fortunately, such cases rarely happen

in practice as the control dependences caused by the dynamic conditions prevent such

permutation and they are not seen in our experiments.

53



Chapter 5. Generation of Imperative Code

for (ii=0; ii<100/AA+1; ii++) {

for (jj=0; jj<u1/BB+1; jj++) {

for (kk=0; kk<u2/CC+1; kk++) {

for (i=ii*AA; i<min(100, ii*AA+AA); i++) {

for (j=jj*BB; j<min(u1, jj*BB+BB); j++) {

for (k=kk*CC; k<min(u2, kk*CC+CC); k++) {

m = f(i);

n = g(i);

if (j<m && k<n)

S(j, k);

if (k>=n)

goto label0;

}

label0: ;

if (j>=m)

goto label1;

}

label1: ;

}

if (kk*CC>=n)

goto label2;

}

label2: ;

if (jj*BB>=m)

goto label3;

}

label3: ;

}

Figure 5.6 – Code generation with loop tiling for GPU

In fact, the injection of early exits may only be affected by the iteration reordering of a dy-

namic counted loop, i.e., loop reversal, and/or the change of the dynamic condition, i.e., the

interchange with the governing affine loop. As a result, the validation of the correctness of our

method on loop skewing is straightforward, as no such transformations happen in skewing

and the introduced predicates before each iteration of the dynamic counted loop would also

be updated with respect to the result of skewing.

To conclude, our method on dynamic counted loops are always correct for loop transforma-

tions covered by unimodular matrices, and any combinations of these transformations.
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domain

extension: [i /A A] ! exi t ()

[S0(i , j ,k) ! (i /A A);S1(i , j ,k) ! (i /A A);S2(i , j ,k) ! (i /A A)]

extension: [i /A A, j /BB ] ! exi t ()

[S0(i , j ,k) ! ( j /BB);S1(i , j ,k) ! ( j /BB);S2(i , j ,k) ! ( j /BB)]

extension: [i /A A, j /BB ,k/CC ] ! exi t ()

[S0(i , j ,k) ! (k/CC );S1(i , j ,k) ! (k/CC );S2(i , j ,k) ! (k/CC )]

extension: [i /A A, j /BB ,k/CC , i ] ! exi t ()

[S0(i , j ,k) ! (i );S1(i , j ,k) ! (i );S2(i , j ,k) ! (i )]

extension: [i /A A, j /BB ,k/CC , i , j ] ! exi t ()

[S0(i , j ,k) ! ( j );S1(i , j ,k) ! ( j );S2(i , j ,k) ! ( j )]

extension: [i i /A A, j /BB ,k/CC , i , j ,k] ! exi t ()

[S0(i , j ,k) ! (k);S1(i , j ,k) ! (k);S2(i , j ,k) ! (k)]

sequence

{S0(i , j ,k)} {S1(i , j ,k)} {S2(i , j ,k)}

Figure 5.7 – The schedule tree representation of the code shown in Figure 5.6

5.6.2 Loop Transformations in Code Generation

As we explained in Subsection 2.1.3, some loop transformations including loop peeling, un-

rolling, unswitching, are achieved by code generation. Our approach is valid for such cases

since the code generator may only change the loop structure instead of reordering statement

instances. For example, we are allowed to apply our method on each version after loop peeling

and/or unswitching, and the predicate may be introduced before each instance after unrolling.

Similar to the case of unimodular matrices, loop transformations achieved by code generation

can also be viewed as transformations applied on loop nests with a single statement, since the

loop body of each version after such transformations stays unchanged.
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5.6.3 Other Loop Transformations

The analysis on index set splitting [GFL00] can follow the case of loop transformations achieved

by code generation, as we always split the index set by introducing an affine parameter,

implying the loop structure after splitting may stay unchanged.

Strip-mining [KP95], unrolling-and-jam [Bon08, BF03] and loop tiling can be put together as

the first two transformations can be viewed as special case of loop tiling. The interchange

involved in tiling will not change the order of a dynamic counted loop and its governing loop,

neither the iterations of the dynamic counted loop, meaning the introduction of early exits

should always be correct.

The solution to loop fusion are discussed in Subsection 5.4 and the validation of the correctness

is therefore straightforward. One may see loop fission as a reverse transformation of fusion,

and the general applicability of our method for fission is also validated. Loop fusion and

fission are transformations that apply on multiple statements since they change the body of

the loop nest.

As our method is correct on each loop transformation, it should also be correct on all combi-

nations of these transformations.
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Our framework takes a C program as input, and resorts to PENCIL [BBC+15] extensions only

when dealing with indirect accesses (subscripts of subscripts), implying that all arrays are

declared through the C99 variable-length array syntax with the static const restrict quali-

fiers, allowing PPCG to derive the size of the arrays offloaded on the accelerator despite the

presence of indirect accesses, and telling that these arrays do not alias.

We use PPCG [VCJC+13] to generate target codes, a polyhedral compiler that performs loop

nest transformations, parallelization, data locality optimization, and generates OpenCL or

CUDA code. The version ppcg-0.05-197-ge774645-pencilcc is used in our work. In a

follow-up auto-tuning step, we look for optimal parameter values for tile sizes, block sizes,

grid sizes, etc. for a given application and target architecture.

The experiments are conducted on a 12-core, two-socket workstation with an NVIDIA Quadro

K4000 GPU. Each CPU is a 6-core Intel Xeon E5-2630 (Ivy Bridge). Sequential and OpenMP

code are compiled with the icc compiler from Intel Parallel Studio XE 2017, with the flags

-Ofast -fstrict-aliasing (-qopenmp). CUDA code is compiled with the NVIDIA CUDA 7.5 toolkit

with the -O3 optimization flag. We run each benchmark 9 times and retain the median value.

Median rather than the mean, for more stability. Long discussion there, this is not idea either

in general, but more suitable here. Note that the median pushes for an odd number of runs.

6.1 Dynamic Programming

Dynamic programming is an alternative method of greedy algorithms to guarantee an optimal

solution. In computer science, dynamic programming implies the optimal solution of the

given optimization problem can be obtained by the combination of optimal solutions of its sub-

problems, by solving the same sub-problems recursively rather generating new ones. Dynamic

counted loops are usually involved in these problems. We investigate two representative

dynamic programming problems—change-making and bucket sort.

Typically, the change-making problem is used to find the minimum number of coins that can
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add up to a certain amount W and to count how often a certain denomination is used, but

it has a much wider application than just currency. The algorithm is also used to count how

often a certain denomination is used.

Suppose N denominations are provided, each of which is di (0 ∑ i < N ). As long as the given

amount W > di , the frequency of the i -th denomination will be incremented by 1. As a result,

di appears as a bound of the inner dynamic counted loop, enclosed by an outer loop iterating

over the total number of denominations. Our technique successfully parallelizes the inner

dynamic counted loop and generates the CUDA code in conjunction with a loop interchange

optimization. We show the performance with different number of denominations N under

different amount constraints W in Figure 6.1. It can be concluded from the figure that the

performance improvement grows with the rise of the the number of denominations.
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Figure 6.1 – Performance of change-making on GPU

Bucket sort is a generalization of counting sort, sorting by first scattering the N elements of a

given array into a set of M buckets, sorting each bucket individually, and finally gathering the

sorted elements in each bucket in order. Due to the comparison operations, a sorting algorithm

is inherently not the candidate for parallelization. However, it is possible to parallelize and

optimize the gathering step of bucket sort.

We consider a uniform random distribution of elements of the input array. The algorithm

has to gather size[i ] elements in the i -th bucket, whose static upper bound can be set as

N . The dynamic counted loop controlled by the bucket size is captured by our method and

parallelized in the form of CUDA code on GPUs. The performance with different array sizes N

and different bucket numbers M is shown in Figure 6.2, indicating the speedup rises along

with the increase of the number of buckets involved.
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Figure 6.2 – Performance of the bucket sort on GPU

6.2 HOG Benchmark

The HOG benchmark is extracted from the PENCIL benchmark suite1, a collection of appli-

cations and kernels for evaluating PENCIL compilers. The distribution of intensity gradients

or edge directions describe the local object appearance and shape within an image. When

processing an image, the HOG descriptor divides it into small connected regions called cells. A

histogram of gradient directions is then compiled for the pixels within each cell. The descriptor

finally concatenates these histograms together. The descriptor also contrast-normalize local

histograms by calculating an intensity measure across a block, a larger region of the image,

and then using this value to normalize all cells within the block to improve accuracy, resulting

in better invariance to changes in illumination and shadowing.

The kernel of the HOG descriptor contains two nested, dynamic counted loops. The upper

bounds of these inner loops are defined and vary as the outermost loop iterates. The dynamic

parameter is an expression of max and mi n functions of the outer loop iterator and an array

of constants. We derive the static upper bound parameter u from the BLOCK_SIZE constant, a

global parameter of the program to declare the size of an image block.

Since we target a GPU architecture, we ought to extract large degrees of parallelism from

multiple nested loops. As explained in the previous section, we sink the definition statements

of dynamic parameters within inner dynamic counted loops and apply our AST generation

scheme for a combined band for GPU architecture. We may then generate the CUDA code

with parameter values for tile sizes, block sizes, grid sizes, etc. We show performance results

with and without host-device data transfer time, in Figure 6.3, considering multiple block sizes.

The detection accuracy improves with the increase of the block size. Our algorithm achieves

a promising performance improvement for each block size, and our technique can obtain

a speedup ranging from 4.4£ to 23.3£ while the PENCIL code suffers from a degradation by

1https://github.com/pencil-language/pencil-benchmark
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we apply a non-affine shift by the dynamic lower bound as discussed earlier. The maximum

number of non-zero entries in a row is the static upper bound and may be set as the u

parameter. It can be derived through an inspection. As a result, the references of indirect array

subscripts can be sunk under the inner dynamic counted loop, exposing a combined band in

the schedule tree.

Venkat et al. [VSHS14] generate two optimized versions for the CSR format on GPU target. The

first version parallelizes the outer loop by strip-mining the latter into two dimensions with the

outer dimension mapped to thread blocks and the inner dimension to threads, mapping each

row of the sparse matrix to a thread; the inner loop is executed sequentially. This version is

referred to as “scalar”. The second version, i.e., “vector”, also parallelizes the outer loop but

assigns multiple threads to each row of the sparse matrix; in addition, the inner loop is further

strip-mined to allow for intra-wrap reduction. In both cases, only the outer loop is identified

as a permutable band while the “vector” version exploits intra-wrap reduction by assigning

multiple thread to a row, parallelizing the inner loop in without combining it with its outer

loop and missing loop transformations across loop nest.

Our technique can identify the inner dynamic counted loop and parallelize both loops, expos-

ing a higher degree of parallelism and allowing for loop tiling rather than (nested) strip-mining

when comparing with Venkat et al.’s scalar/vector version. Tiling on CSR format may reduce

the impact of thread imbalance issue when the input sparse matrix is unstructured, i.e., the

number of non-zero entries in each varies greatly. We introduce an atomic operation in the

generated code for preserving the correctness of reduction of sparse matrix computations.

We show the performance in Figure 6.5, using the matrices obtained from the University of

Florida sparse matrix collection [DH11] as input, and the properties of the input matrices are

listed in Table 6.1. We also show the performance of a manually-tuned library–CUSP [BG09] in

the figure for a comparison with hand-written implementations.

Table 6.1 – Summary of the input sparse matrices

Matrices Symmetric # of Nonzero Entries Rows£Columns

cant yes 4007383 62451£62451

consph yes 6010480 83334£83334

cop20k_A yes 2624331 121192£121192

mac_econ_fwd500 no 1273389 206500£206500

mc2depi no 2100225 525825£525825

pdb1HYS yes 4344765 36417£36417

Pres_Poisson yes 715804 14822£14822

pwtk yes 11634424 217918£217918

rma10 no 2374001 46835£46835

tomographic1 no 647495 73159£59498

Our method beats the scalar version of Venkat et al. in most cases due to the higher degree of

parallelism. Benefiting from the intra-wrap parallel reduction, the vector version of Venkat
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7 Overlapped Tiling

A large number of efforts have been taken to improve data locality and parallelism for compu-

tationally intensive applications especially for iterated stencils, resulting in various loop tiling

transformations including simple shapes like rectangular, parallelogram [BHRS08, VCJC+13]

and complex shapes like overlapped, split [KBB+07], diamond [BBP17], hexagonal [GCH+14],

etc.

The polyhedral framework has been brought to the front scene by its ability to analyze and

optimize general-purpose loop nests. Its main scheduling and code generation algorithm

remain limited to classical tile shapes however, leading to inefficient wavefront inter-tile

parallelism with pipelined startup, while custom solutions with more complex tile shapes

exist to exploit inter-tile parallelism along the axes of the iteration domain and data while

improving data locality.

There have been several loop tiling techniques specializing on time-iterated stencils, either

constrained to constant dependence vectors [KBB+07] or being difficult to extend to other

areas like image processing pipelines [BBP17, GCH+14]. Image processing pipelines are a

class of computations arising in computer vision and computational photography, consisting

of a directed acyclic graph of filtering stages and edges representing dependences between

stages. The stages in a pipeline usually exhibit abundant data parallelism but require locality

optimization to achieve high performance, making manually exploiting a difficult task.

PolyMage [MVB15] is the state-of-the-art polyhedral compilation framework automatically

generating high-performance schedules for such image processing pipelines, benefiting from

the full inter-tile parallelism enabled by overlapped tiling [KBB+07]. It takes a DSL inspired

by Halide [RKBA+13] as input, computes manually-written-competitive schedules for image

processing pipelines, and generates high-performance imperative code. The PolyMage frame-

work implements overlapped tiling by finding bounding hyperplanes of a tile, implying these

bounding hyperplanes have to be as inclined as possible to preserve the dependence vectors

at all levels of the pipeline, leading to a looser tile shape than expected.
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In this part, we intend to implement a schedule-tree-based overlapped tiling technique.

Compared with the “DSL+compiler” approach of the PolyhMage framework, we still leverage

the PENCIL language and the well-defined polyhedral representation for achieving such non-

affine transformation. Due to the introduction of overlapped regions, a statement instance

may be assigned multiple execution dates, violating the “single-valuedness” property hold

by many previous polyhedral representations. We would show how such violation can be

preserved and implemented in the schedule tree representation.

7.1 Background and Motivation

7.1.1 Loop Tiling

Loop tiling has been integrated into polyhedral compilation frameworks, being implemented

as a post-scheduling transformation for exploiting data locality and parallelism. Typically,

a polyhedral compiler, e.g., PPCG, abstracts the input program as sets and maps defined by

systems of affine inequalities, before constructing an affine schedule respecting all depen-

dences carried by statement instances to better exploit data locality and expose parallelism. A

follow-up tiling transformation is performed automatically, embedding the computation into

a higher dimensional space of tile and point dimensions, but currently limited to classical,

rectangular or parallelogram tile shapes.

Decoupling loop tiling from the scheduler may prohibit tile-level concurrent start. An alterna-

tive way allowing full inter-tile parallelism involves a tighter coupling of loop tiling and affine

scheduling, like the Pluto compiler does by introducing diamond tiling [BBP17]. Tile-level

concurrent start along a face of the iteration space is possible if there are no inter-tile depen-

dences parallel to this face, forcing the face to be evicted or linearly independent from the

candidate bounding hyperplanes of the scheduler1.

The schedule found by such evictions could not be better than those found by the standard

scheduling algorithm with respect to the dependence distance minimizing cost function,

implying a different schedule has to be used for intra-tile parallelism and/or vectorization,

complicating the scheduling process and follow-up code generation.

An alternative way to eliminate pipelined startup and drain is to modify the tile shape obtained

by existing polyhedral compilation frameworks [KBB+07]. Overlapped tiling is constructed by

adding an additional (shaded) region to the left of the tile obtained by existing frameworks,

jointing consecutive tiles for exploiting inter-tile parallelism. The shaded regions between

consecutive tiles have to be recomputed. Split tiling is obtained by splitting the overlapped tile

shape into two sub-tiles, with one being the shaded region and the other consisting of all the

remaining points executed in order. Each sub-tile can be executed concurrently with those

of neighboring tiles. As an illustrative example, Figure 7.1 shows the comparison between

1A hyperplane can also be understood as the higher dimensional analog of a face in 3D space.
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tile. In the example shown in Figure 7.3, the (dashed) slopes caused by dependences between

stages A and B are extended, constructing a looser shaded region between tiles, leading to

more redundant computations than one expects.

7.1.4 Our solution

We propose an overlapped tiling technique for eliminating the redundant (circled) points in

shaded regions. To construct a tighter overlapped tile, we first fuse the stages in this example

and let a general polyhedral framework perform a rectangular tiling on the iteration space

regardless of the correctness. We then expand the bounding faces of a tile by taking into

consideration the inter-tile dependences, without necessitating further extending the slopes

between stages A and B . This can be implemented by modifying the schedule tree intermedi-

ate representation [GVC15] in general polyhedral frameworks. As a result, we can construct a

bounding face like the dashed slopes shown in Figure 7.3, eliminating the redundant points

from shaded regions. Such overlapped tile is referred to as acute trapezoid tile.

One may also construct an overlapped tile by first resorting to the scheduler of a polyhedral

compiler, transforming the iteration space into the form shown in Figure 7.4. In this case, a

PolyMage-like technique may construct an overlapped tile shape like the solid slopes show,

but we can still achieve a tighter shape by (1) resorting to a scheduler to shift the iteration

space, (2) performing a rectangular tiling and (3) extending the left bounding face of a tile by

operating on the schedule tree representation, still eliminating the redundant points from

shaded regions. This shape is referred to as right trapezoid tile.

We design and implement our approach in a source-to-source polyhedral compiler targeting

on image processing pipelines written in a general-purpose language. As a result, our method

would be neither restricted to a domain-specific language nor does it introduce sophisticated

rescheduling and custom code generation in a polyhedral framework. We leverage the sched-

ule tree representation instead, and this allows us to construct tighter tile shapes than the state

of the art, minimizing the shaded region of redundant computations across overlapped tiles.

Our technique also goes beyond the state of the art by generating code for both general-

purpose multicores and heterogeneous accelerators. We validate its general applicability by

conducting additional experiments on iterated stencils, providing a comparison between

overlapped tiling and other state-of-the-art techniques.

7.2 Expansion Nodes in Schedule Trees

As we introduced before, the “single-valuedness” property is usually hold by many existing

polyhedral representations, preventing such encoding methods from expressing non-affine

transformations like overlapped tiling. The reason is the overlapped regions introduced by

overlapped tiling require the polyhedral representation may map more than one execution

73





7.3. Related Work

by the Pluto scheduling algorithm or its variants is missing concurrent start, limiting the

performance of the generated code especially those stencil-based applications.

Overlapped tiling and split tiling [KBB+07] were proposed targeting on concurrent start by

modifying the tile shape obtained by a Pluto-like scheduler. The latter should be imple-

mented by either splitting the shaded region of overlapped tiles or introducing more difficult

scheduling process for finding different bounding faces of a tile. No implementations of over-

lapped tiling on general-purpose platforms have been reported though it was implemented in

domain-specific compilers for image processing pipelines [MVB15, RKBA+13] or stencil code

generator [HPS12] with OpenCL [ZGG+12]. There was also an implementation of split tiling

for iterated stencils on GPU architectures [GCK+13]. Comparing with these approaches, our

technique covers a wider application domain, improving performance over the state of the art

by constructing a much tighter overlapped tile.

Davis et al. [DSO18] proposed to construct the fusion-based and shifting-based overlapped

tiles for improving performance of applications involving stencil computations. The image

processing pipeline used in their work only involves stencil operations but not sampling nor

histogram operations. Our work covers all the basic operations involved in image processing

pipelines. The work of Davis et al. was neither trying to minimize the redundant computation

of overlapped tiling.

Bondhugula et al. [BPB12, BBP17] proposed a generalizing formalism for diamond tiling in

the polyhedral model by introducing a rescheduling step in the Pluto compiler. There has

been a great amount of work [EM90, GV15, MHLK17, OG09, SGM+15, SSPS11] reported on

the evaluation of diamond tiling. It was also generalized to handle iterated stencils defined

over periodic data domain with index set splitting technique [BBC+14] and Lattice-Boltzmann

method [PAVB15]. Unlike overlapped tiling and split tiling, diamond tiling may work with

arbitrary affine dependences. The introduction of scheduling to find tiling dimensions does

not only complicate the scheduling but also increase the code generation time in practice. We

show in our evaluation section that our technique could achieve competitive performance

on iterated stencils with diamond tiling by carefully selecting tile sizes. Our technique is also

applicable to image processing pipelines.

Hybrid hexagonal/classical tiling was proposed by Grosser et al. [GCH+14] to exploit full

inter-tile parallelism of iterated stencils on GPU architectures. It can be seen as a generaliza-

tion of diamond tiling, allowing for partial concurrent start by constructing a hexagonal tile

shape along the time and the first space dimension and classical tiling along the other space

dimensions. Grosser et al. [GVCS14] also show a comparison between diamond tiling and

hexagonal tiling. We compare our technique with hexagonal tiling in our experiments on GPU

architectures.

By revisiting overlapped tiling in polyhedral compilation frameworks especially for image

processing pipelines, we construct a much tighter overlapped tile shape for improving the

performance of such applications. Halide [RKAP+12, RKBA+13] is a domain-specific language
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for image processing pipelines, decoupling algorithms from schedules for easy optimiza-

tions for such benchmarks, allowing users to experiment with schedules without touching

the algorithms. Manually or autotuning approaches [AKV+14] to finding schedules usually

takes a long time to facilitate fascinating performance. The polyhedral model is a promising

solution to automatically search schedules for image processing pipelines by integrating with

transformations like overlapped tiling, fusion, scratchpad allocation, etc.
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8 Acute Trapezoid Tiling and Right

Trapezoid Tiling

Overlapped tiling is an efficient tiling technique allowing for tile-level concurrent start. As

we described above, one may choose to obtain an acute or a right trapezoid tile by fusing or

shifting first, with both achievable by operating on the schedule tree representation.

8.1 Representations in Schedule Trees

As we would leverage schedule trees to express both acute trapezoid tiles and right trapezoid

tiles, let us recall the schedule tree representation and explain how we can make use of it. In

polyhedral compilation, schedules in the polyhedral model are used to define the execution

order of programs, including both the original and those generated by scheduling algorithms

like the Pluto scheduler or its variants. A schedule has in nature the form of a tree, making an

explicit tree representation have the same expressiveness with previous encoding methods

but simplify the implementation of non-polyhedral operations.

A statement instance is expressed by a named multi-dimensional vector with the name identi-

fying the statement and the coordinates corresponding to iteration variables of the enclosing

loops. The collection of all statement instances, i.e., the iteration domain, is expressed using

Presburger formulas [PW94c], retained in a domain node. For example, the iteration domain

of the code shown in Figure 7.2 can be expressed as

{S A(i ) : 1 ∑ i < N ;SB (i ) : 2 ∑ i < N °1;SC (i ) : 4 ∑ i < N °3}

with loop boundaries included.

A statement instance is also mapped to a multi-dimensional logical execution date [Fea92b]

for defining its lexicographic execution order. Such mapping is referred to as a schedule,

expressed by a piecewise multi-dimensional quasi-affine function over the iteration domain
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and contained in a band node. A band node is derived from tilable band in the Pluto framework

[BHRS08], defining permutability and/or parallelism properties on a group of statements as

well. A rectangular tiling regardless of the correctness of the example in Figure 7.2 is written as

[{S A(i ) ! (i /T );SB (i ) ! (i /T );SC (i ) ! (i /T )}, {S A(i ) ! (i );SB (i ) ! (i );SC (i ) ! (i )}]

with the former piece representing tile loops (iterating among tiles) and the latter representing

point loops (iterating within tiles).

A filter node selects a subset of statement instances introduced by an outer domain/filter node.

Filter nodes usually appear as children of a sequence/set node expressing a given/arbitrary

order on its children. As an illustrative example, Figure 8.1 is the original schedule tree of the

example shown in Figure 7.2, indicating each filter node selects a subset (a stage) of the domain

node. The sequence node defines the three stages should be executed in order, followed by a

loop iterating over the iteration space of each stage.

domain

sequence

{S A(i )}

[S A(i ) ! (i )]

{SB (i )}

[SB (i ) ! (i )]

{SC (i )}

[SC (i ) ! (i )]

Figure 8.1 – The original schedule tree of the code in Figure 7.2

There have been many other node types existing in schedule trees [GVC15], among which we

focus on the expansion node as introduced in subsection 7.2. An expansion node can expand

a statement instance to one or more instances, constituting a new set of statement instances

to be scheduled by the schedule tree. A standard loop tiling would partition the iteration space

into smaller blocks, each of which is disjoint with each other, making it difficult to construct

an overlapped tile without an expansion node. With an expansion node, we are free to choose

one statement instance of a stage in a tile and expand it to as many instances as we expect.

These expanded statement instances would joint with those of neighboring tiles, resulting in

overlapped tiles over the whole iteration space.

8.2 Acute Trapezoid Tiling

Let us first consider implementing overlapped tiling by modifying both sides of a tile. Figure 8.2

shows the result of rectangular tiling on the iteration space of the example listed in Figure 7.2

regardless of the correctness. Such rectangular tile can be obtained by first strip-mining
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8.4 Schedule Generation

We can now generate schedules for both acute and right trapezoid tiling. Considering acute

trapezoid tiling, strip-mining is performed on each stage, followed by fusing the tile loops

iterating among tiles. Correctness is enforced by introducing expansion nodes below the point

loops of stage A and B iterating within a tile, with boundaries updated as explained in the last

subsection. We finally get a schedule tree for acute trapezoid tiling as shown in Figure 8.6.

domain

[S A(i ) ! (i /T );SB (i ) ! (i /T );SC (i ) ! (i /T )]

sequence

{S A(i )}

expansion: [S A(i ) ! S A( j )]

[S A(i ) ! (i )]

{SB (i )}

expansion: [SB (i ) ! SB ( j )]

[SB (i ) ! (i )]

{SC (i )}

[SC (i ) ! (i )]

Figure 8.6 – Schedule tree of acute trapezoid tiling

If we let a scheduling algorithm transform the iteration space of the pipeline, we may get a

shifted schedule before tiling, leading to a two-dimensional tilable band. However, we need to

separate the point loops from the band, making it possible for introducing expansion nodes to

stages A and B , as the generated schedule tree shown in Figure 8.7.

domain

[S A(i ) ! (i /T );SB (i ) ! ((i +1)/T );SC (i ) ! ((i +3)/T )]

sequence

{S A(i )}

expansion: [S A(i ) ! S A( j )]

[S A(i ) ! (i )]

{SB (i )}

expansion: [SB (i ) ! SB ( j )]

[SB (i ) ! (i +1)]

{SC (i )}

[SC (i ) ! (i +3)]

Figure 8.7 – Schedule tree of right trapezoid tiling

The code generator of a polyhedral compilation framework can take these schedule trees for

code generation, with overlapped tiling enabled in the generated code.
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8.5 Removal of Control Overheads

Let us still consider the stage B of the code in Figure 7.2 and suppose the tile size be T. An

expansion node in schedule trees is used to map each domain element of a domain/filter

node to one or more images, forming a wider set of elements scheduled by the domain/filter

node. Expanding the point loop may change a rectangular/parallelogram tile obtained from

existing polyhedral compilation frameworks into an overlapped tile, avoiding necessitating a

scheduling algorithm like the PolyMage framework does. We may therefore insert an expansion

node below a filter node representing the point loop as shown in Figure 8.6 and 8.7. An

expansion node here is represented as a map expanding the original domain SB (i ) to its image

set SB ( j ).

Introduced for iterating the images of the expansion node, j is an unbounded parameter in

the schedule tree, producing an unbounded domain for the subtree of stage B . One may take

into consideration the (upper and lower) bounds of j by adding the original bounds on all

elements of stage B , guaranteeing the images of the expansion node would not exceed the

original bounds. We can write it formally as

l b ∑ j ∑ ub (8.1)

where lb and ub represent the lower and upper bounds.

This condition alone cannot produce an overlapped tile, as the boundaries of a tile are still

remain unchanged. To expand the boundaries of a rectangular/parallelogram tile as explained

in previous subsections, we let b(i /T )c denote the greatest integer less than or equal to its

parameter, representing the tile number in our case. The original points executed by the

(b(i /T )c+1)-th tile (b(i /T )c is 0 for the first tile) can be expressed by

T £b(i /T )c ∑ j ∑ T £ (b(i /T )c+1)°1 (8.2)

We can change it into

T £b(i /T )c° l ∑ j ∑ T £ (b(i /T )c+1)°1+ r (8.3)

where l represents the number of expanded points introduced by expansion nodes to the left

boundary, and r to the right boundary. In practice, l or r may be 0, e.g., right trapezoid tiling.

Expanding the first point of a stage in a tile is straightforward, simplifying schedule transfor-

mations when changing a rectangular/parallelogram tile into an overlapped one. We find,

however, that the selection of the point from which the images of an expansion node should

be generated may have heavy impact on the control overheads in generated code.

One may obtain a bounded map representing an expansion node by conjuncting constraints
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(8.1) and (8.3), implying the point at T +2 for L-tile and the point at T for R-tile are selected

for expansion, isolating a partial tile (L-tile) from full tiles (R-tile and all the remaining if they

exist)1 and introducing more control overheads in generated code. This isolation may lead to

a performance degradation when there are much more stages in a group.

A better solution to remove control overheads in generated code is integrating partial tiles

with full tiles. Each starting point of stage B executed by a full (other than the first) tile can

be expressed as T £b(i /T )c, while T £b(i /T )c+2 (T £b(i /T )c is equal to 0) being used for the

partial (the first) tile. One is free to choose any point of a stage covered by a tile for generating

images of expansion nodes without changing the meaning of the generated code, implying

one may choose any point other than T £b(i /T )c in a full tile. We thus choose the point at

T £b(i /T )c+2 as starting point for full tiles, enforcing the uniqueness with the partial tile and

removing control overheads.

Finally, one may write another condition constraining the selection of starting point of full

tiles as

i = T £b(i /T )c+ s (8.4)

where s represents the shifting of the starting point in each tile due to the bounds on the whole

domain. We may finally obtain an expansion node by constraining the map of an expansion

node with a set of conditions consisting of (8.1), (8.3) and (8.4) as follows.

{SB (i ) ! SB ( j ) : (8.1)^ (8.3)^ (8.4)} (8.5)

Similarly, we may also obtain the map of expansion nodes like (8.5) and the schedule tree

as shown in Figure 8.7, with r in (8.3) being equal to 0, removing control overheads for right

trapezoid tiling.

8.6 Comparing the Two Trapezoid Tile Shapes

Given a schedule tree with expansion nodes written as (8.5), one may obtain an acute trapezoid

tile by first fusing the stages of an image processing pipeline or a right trapezoid tile by first

shifting the iteration space. One may distinguish the difference between the two trapezoid tile

shapes by comparing Figure 8.3 and Figure 8.5.

Apart from the shape, the two tile shapes also differ from each other with respect to data

locality. For the sake of simplicity, we first show the generated code with different tile shapes

of the example in Figure 7.2 in Figure 8.8 and Figure 8.9.

1A full tile is completely contained in the iteration space while a partial one is not but has a non-empty

intersection with the iteration space [KRR+07].
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In Figure 8.8, the point loops of individual stages are distributed. In other words, the tiles

of individual stages are executed one after another in an acute trapezoid tile shape. On the

contrary, the point loops of these stages are fused in Figure 8.9, minimizing the intra-tile

producer-consumer relation distances.

for (c0=0; c0<N/T+1; c0++){

for (c1=max(T*c0-3,1);c1<min(T*(c0+1)+3,N); c1++)

A[c1] = f(c1);

for (c1=max(T*c0-2,2);c1<min(T*(c0+1)+2,N-1); c1++)

B[c1-1] = 0.25*(A[c1-1]+A[c1]+A[c1+1]);

for (c1=max(T*c0,4);c1<min(T*(c0+1),N-3); c1++)

C[c1-1] = 0.25*(B[c1-2]+A[c1]+A[c1+2]);

}

Figure 8.8 – Code generated by acute trapezoid tiling

for (c0=0; c0<N/T+1; c0++){

for (c1=max(T*c0-6,1); c1<min(T*(c0+1),N); c1++){

A[c1] = f(c1);

if(c1>=3){

B[c1-1] = 0.25*(A[c1-2]+2*A[c1-1]+ A[c1]);

if(c1>=7)

C[c1-3] = 0.25*(B[c1-5]+B[c1-3]+B[c1-1]);

}

}

}

Figure 8.9 – Code generated by right trapezoid tiling

The right trapezoid tile should be preferred as it holds a better intra-tile data locality than

the acute one. However, such data locality has a very little impact on the performance of

the generated code when targeting on image processing pipelines since the tile height is

usually not large enough for benefiting from the former. Iterated stencils may exploit such

data locality when the tile size along the time dimension is large enough, as we will explain in

the experiment.
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8.7 Handling Multi-statement/-dimensional Cases

8.7.1 Multiple Statements

The ability to handle multiple statements is important since such cases may happen in practice,

as we will show in the evaluation. Suppose we have a similar schedule tree as shown in

Figure 8.6 and let the filter node of stage B consist of two statements, SB1
and SB2

. For the sake

of simplicity, we do not show the context in expansion node of stage A.

Following the cases of single statement, we schedule SB1
and SB2

as a macro statement SB ,

fusing the tile loop with those of stage A and C , and obtain a schedule tree regardless of the

correctness similar to Figure 8.6. An expansion node is allowed to insert right underneath the

filter node consisting of SB1
and SB2

, followed by a band node representing the map of their

point loops and its child sequence node defining their execution order. We finally obtain a

schedule tree as shown in Figure 8.10. Right trapezoid tiling can be handled in the same way.

domain

[S A(i ) ! (i /T );SB1
(i ) ! (i /T );SB2

(i ) ! (i /T );SC (i ) ! (i /T )]

sequence

{S A(i )}

expansion

[S A(i ) ! (i )]

{SB1
(i );SB2

(i )}

expansion: [SB1
(i ) ! SB1

( j );SB2
(i ) ! SB2

( j )]

[SB1
(i ) ! (i );SB2

(i ) ! (i )]

sequence

{SB1
}

[SB1
(i ) ! (i )]

{SB2
}

[SB2
(i ) ! (i )]

{SC (i )}

[SC (i ) ! (i )]

Figure 8.10 – Schedule tree of multiple statements

8.7.2 Multi-dimensional Statements

Considering the cases of multi-dimensional statements, we are allowed to handle a single

dimension each time without impacting on other dimensions, implying that handling the

cases of multi-dimensional statements is a process of invoking the cases of one-dimensional

statement recurrently, with both acute and right trapezoid tiling cases being taken into ac-

count.
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8.8 Complementary Transformations

One of the main purposes of our technique is to enhance the performance of image processing

pipelines by optimizing overlapped tiling in polyhedral compilation frameworks. Following

the domain-specific code generator PolyMage, we may also need some other transformations

for further improving the performance of such benchmarks.

On the other hand, to cover a wider coverage of benchmarks, we also target on iterated stencil

code. We design our technique to handle all cases of iterated stencil code, including multi-

dimensional cases and multiple statements as explained in the last subsection. Exploiting

full-dimensional parallelism in practice may not be necessary, especially when targeting

multi-dimensional cases on general-purpose multicores for single-thread performance. We

therefore also need to take it into consideration.

8.8.1 Alignment and Scaling

Constructing overlapped tiling is allowed only in the case of constant dependence vectors,

making it not straightforward to exploit inter-tile parallelism in practice when heterogeneous

stages exhibiting different dimensions and/or complex access patterns are grouped together.

Alignment and scaling of stages can be introduced, following the PolyMage framework, to

achieve near-neighbor dependences, changing the dependence vectors into constant.

Alignment can be achieved by introducing a scalar dimension in dependence vectors, followed

by shifting among dimensions for eliminating non-constant dependences. Up-sampling and

down-sampling are introduced for scaling schedules of stages appropriately, obtained by

multiplying a scaling factor for each stage in a group.

8.8.2 Fusion

Loop fusion is an important transformation implemented by polyhedral compilers for exploit-

ing data locality. Benefiting from alignment and scaling, some stages of the pipeline may be

fused together, creating opportunities for exploiting overlapped tiling across more stages.

One can make full use of the fusion heuristic adopted by a polyhedral compiler by setting

compilation options, but it may not be good enough for image processing pipelines even

with the aggressive fusion heuristic. The criteria the PolyMage code generator provides

is fusing a successor stage with its only child when it has only one child by viewing the

pipeline as a directed acyclic graph consisting of nodes representing stages and edges denoting

dependences between stages, followed by iteratively attempts for fusing opportunities until

no fusion can be found. We reimplement this heuristic in our technique.
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8.8.3 Reducing Memory Footprint

Loop fusion transforms the pipeline into several groups, each of which consists of a set

of intermediate stages and an output stage, requiring storage allocation optimization for

improving performance.

Those values produced by intermediate stages are only used within a tile, implying they can be

discarded when they are not live after the computation of the tile. These intermediate values

can therefore be allocated in small scratchpad memory rather than full buffers, leading to

better locality and improving the performance when integrating with overlapped tiling and

the transformations mentioned above. Indexing expressions generated for such scratchpads

can be determined according to the conditions defined in expansion nodes.

8.8.4 Hybrid Tiling

When targeting on multi-dimensional iterated stencils, we are allowed to restrict overlapped

tiling only to the time dimension and a subset of space dimensions, leveraging existing

polyhedral frameworks to perform rectangular/parallelogram tiling on the remaining space

dimensions, just like diamond tiling [BBP17] and hybrid hexagonal/classical tiling [GCH+14].

This lower dimensional overlapped tiling may change the tile shapes for a multi-dimensional

case, as we show in Figure 8.11 comparing the difference between a full and partial dimensional

overlapped tile shapes for 2d stencil code. A full dimensional overlapped tiling would form

a base of a pyramid, extending along both dimensions of the space, while a partial one only

overlaps along one dimension.

i

j

t

full partial

Figure 8.11 – Full and partial dimensional overlapped tiling
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9 Evaluations

We conduct experiments on both the PolyMage benchmarks and representative iterated

stencils. The image processing pipelines covered by the PolyMage benchmarks are extracted

from the Halide benchmarks, varying widely in structure and complexity.

9.1 Experimental Setup

We implement both trapezoid tiling techniques as well as the complementary transformations

explained in Section 8.8 in PPCG, a polyhedral compiler that exploits parallelism and data

locality of programs automatically. All transformations are applied automatically by default

when passing --acute and --right flags to PPCG for switching between acute and right trapezoid

tiling. The PPCG version we use is ppcg-0.07-26-g236d559. PPCG can take C programs as

input, automatically generating OpenMP code on general-purpose multicores and CUDA

code on heterogeneous accelerators.

The experiments are conducted on a 32-core, dual-socket workstation with an NVIDIA Quadro

P6000 GPU. Each CPU is a 2.10GHz 16-core Intel Xeon(R) E5-2683 v4. We use the icc compiler

(18.0.1) from Intel Parallel Studio XE 2018, with the flags -fast -qopenmp. CUDA code is

compiled with the NVIDIA CUDA (9.1.95) toolkit with the -O3 optimization flag. Each

benchmark is executed 11 times, of which the first run is discarded and the average of the

remaining is recorded.

9.2 Image Processing Pipelines

The PolyMage framework takes a DSL as input and generates both naïve and optimized

OpenMP codes. A naïve version is generated by PolyMage without schedule transformations

and overlapped tiling, of which the sequential code is used as the baseline and also as the

input PPCG. The image processing benchmarks used in our experiments are listed in Table 9.1,

together with the number of stages and the actual execution times of each baseline. One
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may obtain the execution time of each case by multiplying the factors shown in Figure 9.1-9.7

and 9.11.

Table 9.1 – Summary of the PolyMage benchmark

Benchmark Stages CPU execution time (ms) Speedup over PolyMage

naïve

(1 core)

PolyMage

(32 cores)

Our work

(32 cores)
(32 cores)

Bilateral Grid 7 66.01 5.57 5.41 1.03

Camera Pipeline 32 116.32 5.95 5.87 1.01

Harris Corner Detection 11 246.88 5.10 5.10 1.00

Local Laplacian Filter 99 480.48 35.35 27.08 1.31

Multiscale Interpolation 49 209.10 20.07 16.44 1.22

Pyramid Blending 44 350.49 17.18 15.41 1.11

Unsharp Mask 4 142.16 5.01 3.68 1.36

Benchmark Stages GPU execution time (ms) Speedup over PPCG

PPCG Our work

Bilateral Grid 7 4.67 4.25 1.10

Camera Pipeline 32 4.29 2.18 1.97

Harris Corner Detection 11 1.89 1.07 1.77

Local Laplacian Filter 99 16.73 11.12 1.50

Multiscale Interpolation 49 12.86 7.76 1.66

Pyramid Blending 44 8.33 5.78 1.44

Unsharp Mask 4 2.17 1.29 1.68

We compare the performance of our generated code with both the naïve and optimized version

generated by PolyMage. Table 9.1 also shows the speedup of our code over the optimized

version of PolyMage by only differentiating the overlapped tiling shapes, validating the ef-

fectiveness of our tiling techniques. We also show the performance of the Halide1 manual

schedule written by experts and automatic scheduling algorithm [MAS+16] inspired from

PolyMage. The OpenCV version we use is 2.4.9.1. We set the overlapped tile sizes the same

as the optimized version of the PolyMage framework. Acute trapezoid tiling is used in our

experiment, as the data locality exploited by right trapezoid tiling does not make sense in this

case, as we have already explained.

9.2.1 Bilateral Grid

Bilateral Grid [CPD07, PKT+09] is a data structure enabling fast edge-aware image process-

ing, localizing operations involved including bilateral filtering, edge-aware painting, local

histogram equalization, etc. This benchmark smoothes images while preserving their edges by

first constructing a bilateral grid and then sampling the grid along each dimension, producing

1Version: commit: 8c23a1970faba9b06bf7145d2653618fb978479e.

90













Chapter 9. Evaluations

9.3 Iterated Stencils

To validate the general applicability of our technique, we also conduct experiments on three

representative iterated stencils. The detailed information about the examples and tiling sizes

we use in this subsection is list in Table 9.2, with the execution times of each sequential code

shown in the last column. One can obtain the execution time of each CPU/GPU case by

combining with Figure 9.8, 9.9, 9.10 and 9.12. We use right trapezoid tiling for experimenting

because it has a better locality for iterated stencils than acute trapezoid tiling.

Table 9.2 – Problem sizes and tile sizes of the iterated stencils

Problem sizes Tile sizes Baselinetime (s)

standard diamond overlapped

heat-1d 1000£160000 128£1024 20482 32£8192 6.99

heat-2d 1000£40002 16£642 643 4£642 7.17

heat-3d 100£1503 163 £256 163 £256 4£162 £256 1.21

We first run the sequential code of the stencils and record the execution time as a baseline

reference. We compare the performance with state-of-the-art diamond tiling enabled by the

Pluto compiler and parallelogram tiling enabled default by PPCG, showing the speedups of

different techniques.

The 1/2/3d-heat benchmarks we use in this subsection are iterated stencils solving the heat

equations, iteratively updating data element using three-point and five-point stencils respec-

tively. When selecting tile sizes, we follow the sizes chosen by diamond tiling [BBP17]. However,

one may have to choose the sizes of parallelogram tiling carefully. The diamond tiling paper

selects 1024£1024 for parallelogram tiling when comparing the performance, preventing the

tiles from executing in wavefront parallelization because the tile size along time dimension is

greater than the iteration time. We therefore choose to sacrifice locality to enable wavefront

parallelization and ensure enough tiles on the wavefront.

One flaw of overlapped tiling is the redundant computation caused by shaded regions between

neighboring tiles. One may thus have to select tile sizes for constructing a sharp overlapped

tile, minimizing redundant computations as much as possible. We find 32£8192, 4£64£

64 and 4 £ 162 £ 256 in practice for these stencils as the best tile sizes. The selection of

diamond tile sizes follows its publication. We show the performance comparisons of these

stencils in Figure Figure 9.8, 9.9 and 9.10, demonstrating overlapped tiling may achieve similar

performance to diamond tiling by enabling inter-tile parallelization but without introducing

complex rescheduling step and compilation overhead penalty.

Note that the slight performance gap between overlapped tiling and diamond tiling is due

to the recomputation nature of overlapped tiling although an implementation of the latter

can save compilation time. The purpose of our experiment by comparing with diamond tiling
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10 Conclusions and Perspectives

In this chapter, we conclude the thesis with an overview of our contributions and a prospect

of future work.

10.1 Conclusions

The polyhedral model has become a powerful candidate for compilation tools achieving auto-

matic parallelization and locality optimization. Its success is due to its impressive effectiveness

on a variety of computational problems, and to its encouraging integration efforts into both

research and industry compilers. Its applicability has also witnessed several extensions, resolv-

ing various challenges in domain specific areas and at different scales. However, polyhedral

compilation was long criticized for its restrictions to affine applications and transformations.

In this dissertation, we overcome some static control limitations of the polyhedral model from

the following angles.

Handling Non-affine Applications. We first studied the parallelizing compilation and opti-

mization of an important class of loop nests where counted loops have a dynamically com-

puted, data-dependent upper bound. Such loops are amenable to a wider set of transforma-

tions than general while loops. To achieve this, we introduce a static upper bound and model

control dependences on data-dependent predicates by revisiting a state-of-the-art framework

to parallelize arbitrary while loops. We specialize this framework to facilitate its integration in

schedule-tree-based affine scheduling and code generation algorithms, covering all scenarios

from a single dynamic counted loop to nested parallelism across bands mapped to GPUs with

fixed-size data-parallel grids.

Our method relies on systems of affine inequalities, as implemented in state-of-the-art poly-

hedral libraries. It takes a C program with PENCIL functions as input, covering a wide range of

non-static control application encompassing the well studied class of sparse matrix computa-

tions. The experimental evaluation using the PPCG source-to-source compiler on representa-
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tive irregular computations, from dynamic programming, computer vision and finite element

methods to sparse matrix linear algebra, validated the general applicability of the method and

its benefits over black-box approximations of the control flow.

Automating Non-affine Transformations. As the second contribution of the dissertation,

we revisited overlapped tiling in a polyhedral compilation framework for optimizing image

processing pipelines and iterated stencils. These classes of computations exhibit abundant

data parallelism but require locality optimizations for improving performance. Our technique

allows for tighter overlapped tile shapes than the state of the art, further improving the perfor-

mance of such pipelines on both general-purpose multicores and heterogeneous accelerators

by integrating with transformations including alignment and scaling of stages in the pipeline,

loop fusion, scratchpad allocation, hybrid tiling, etc. Our technique can generate both acute

and right trapezoid tile shapes, and has been implemented in the PPCG source-to-source

compiler running on a general-purpose C input. We validated the general applicability of the

approach and its benefits over a state-of-the-art framework.

10.2 Future Work

The thesis extends the application domain of polyhedral compilation to non-affine cases

by combining the polyhedral model with a well-defined intermediate language, allowing

for aggressive program transformations and automatic code generation strategies without

resorting to speculative optimizations nor custom time-consuming rescheduling algorithms.

There still exist a large number of remaining challenges along the non-affine extensions.

Dynamic Control Extensions to Deep Learning. In this dissertation, we studied the dy-

namic control issue in polyhedral compilation. The polyhedral model nowadays has been

integrated with deep learning by automatically converting a high-level description of convolu-

tional/recurrent networks into high-performance implementations amenable to the target

processors and accelerators [VZT+18, BRR+18]. Such polyhedral-model-based software stacks

are widely welcomed as a promising solution to optimizing custom operators that do not fit

existing library calls. What is missing is the support of dynamic control extensions in such

compiler stacks, restricting the applicable cases to dense tensor operations only.

The taco library [KKC+17] models sparse tensor algebra and allows for the automatic code

generation of such operations. However, the library still remains being a prototype imple-

mentation for sparse tensors, leaving a variety of performance-crucial optimizations includ-

ing tiling, autotuning, etc. that have already been implemented in or integrated with the

polyhedral-model-based tools outside their frameworks. More importantly, the missing of

code generation for heterogeneous platforms is still an opening issue. The parallelization

and optimization of dynamic counted loops may inspire existing polyhedral tensor compiler

stacks for supporting dynamic control cases, achieving an end-to-end compilation flow of
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sparse tensor operations for both homogeneous and heterogeneous architectures.

Trade-off between Memory Locality and Redundant Computation. Tiling and fusion are

two effective transformations for exploiting locality optimization. While a much larger space

of different compositions of loop transformations could be exploited by the polyhedral model,

the difficulty to reason about trade-offs between different criteria is also heavily exacerbated.

In spite of the redundant computations, overlapped tiling is chosen to benefit from inter-tile

parallelism while preserving locality in image processing pipelines due to its ability to allow

for aggressive storage optimization. However, such redundant computations would be heavily

exacerbated when fusing excessive stages in an image pipeline.

By constructing tighter trapezoid shapes, we successfully minimized the introduced recompu-

tations in overlapped tiling. A fusion heuristic based on dynamic programming [JB18] was

also proposed for optimizing the fusion strategy. Overlapped tiling would not be effective

without storage reduction, while the latter in turn could be exploited by fusing as many stages

as possible but result in more recomputations between tiles. However, we may still expect for

a well-defined cost model to maximize locality and parallelism while minimizing redundant

computations by integrating overlapped tiling and fusion heuristic.

Support to Dynamic High Performance Languages. In a similar way, the evolution of pro-

gramming languages in the field of scientific computing also has to make a compromise with

regard to ease of optimization, generality of coverage, difficulty in development, support

of dynamism, etc. The scope of polyhedral compilation has been extensively widened by

increasing the kinds of supported languages, from general-purpose languages to domain-

specific languages with regard to the generality of coverage or from high-level descriptions to

intermediate representations in respect of abstraction level of programming philosophy.

An interesting possible direction to further broaden the scope of polyhedral compilation

is to model dynamic features of languages like C++ or the recently released Julia [BEKS17].

Particularly, the invention Julia integrates the merits of numerous programming languages,

raising a variety of new challenges to optimizing system software. The dynamic control

extensions made in this dissertation open the door to addressing new research problems in

such dynamic languages by combining an intermediate language with the polyhedral model,

providing a flexible compilation flow for lowering high-level, dynamic features into static

controls amenable to polyhedral compilation and expanding the support to runtime dynamic

checks.

Scalability of Polyhedral Compilation. The polyhedral compilation was long considered

outside the domain of real-world applications due to its missing to handle dynamic control

and non-affine programs. We provided a systematic way for handling dynamic, non-affine

applications and generalizing non-affine transformations, evaluating the scalability of the idea
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behind our techniques to a great number of real-world applications. Still, the performance

of our generated code falls behind manually written libraries in some cases, leaving further

room to optimize existing techniques. For example, we may further extend the framework to

leverage the dynamic parallelism APIs provided by CUDA programming; we may also consider

the compositions of overlapped tiling with other transformations like fusion and unrolling as

mentioned before.

Finally, compilation time complexity also limits the scalability due to the underlying princi-

ples of polyhedral methods. Recently, some efforts attempted to relax the complexity of the

underlying integer linear programming problem [ABC18] or leveraging statement clustering

methods [MY15]. Nonetheless, such approaches rely heavily on exact dependence analyses

which is still a very time-consuming step. A well-defined frontend capable of relaxing the

time complexity of both dependence analysis and schedule transformation might be a promis-

ing solution, possibly in conjunction with a helper intermediate language for optimization

purposes.

106



Bibliography

[ABC18] Aravind Acharya, Uday Bondhugula, and Albert Cohen. Polyhedral auto-

transformation with no integer linear programming. In Proceedings of the 39th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2018, pages 529–542, New York, NY, USA, 2018. ACM.

[AI91] Corinne Ancourt and François Irigoin. Scanning polyhedra with do loops. In

Proceedings of the Third ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPOPP ’91, pages 39–50, New York, NY, USA, 1991. ACM.

[AKV+14] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey

Bosboom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner: An extensible

framework for program autotuning. In Proceedings of the 23rd International

Conference on Parallel Architectures and Compilation, PACT ’14, pages 303–316,

New York, NY, USA, 2014. ACM.

[APH+14] Mathieu Aubry, Sylvain Paris, Samuel W. Hasinoff, Jan Kautz, and Frédo Du-

rand. Fast local laplacian filters: Theory and applications. ACM Trans. Graph.,

33(5):167:1–167:14, September 2014.

[BA83] Peter J. Burt and Edward H. Adelson. A multiresolution spline with application to

image mosaics. ACM Trans. Graph., 2(4):217–236, October 1983.

[BAA+14] S Balay, S Abhyankar, M Adams, J Brown, P Brune, K Buschelman, V Eijkhout,

W Gropp, D Kaushik, M Knepley, et al. Petsc users manual revision 3.5. Argonne

National Laboratory, 2014.

[BAC16] Uday Bondhugula, Aravind Acharya, and Albert Cohen. The pluto+ algorithm:

A practical approach for parallelization and locality optimization of affine loop

nests. ACM Trans. Program. Lang. Syst., 38(3):12:1–12:32, April 2016.

[Ban93] Utpal Banerjee. Unimodular Matrices, pages 21–48. Springer US, Boston, MA,

1993.

[Bas04] Cedric Bastoul. Code generation in the polyhedral model is easier than you think.

In Proceedings of the 13th International Conference on Parallel Architectures and

107



Bibliography

Compilation Techniques, PACT ’04, pages 7–16, Washington, DC, USA, 2004. IEEE

Computer Society.

[BB13] Somashekaracharya G. Bhaskaracharya and Uday Bondhugula. Polyglot: A poly-

hedral loop transformation framework for a graphical dataflow language. In Pro-

ceedings of the 22Nd International Conference on Compiler Construction, CC’13,

pages 123–143, Berlin, Heidelberg, 2013. Springer-Verlag.

[BBC+14] Uday Bondhugula, Vinayaka Bandishti, Albert Cohen, Guillain Potron, and Nicolas

Vasilache. Tiling and optimizing time-iterated computations on periodic domains.

In Proceedings of the 23rd International Conference on Parallel Architectures and

Compilation, PACT ’14, pages 39–50, New York, NY, USA, 2014. ACM.

[BBC+15] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael Kruse,

Chandan Reddy, Sven Verdoolaege, Adam Betts, Alastair F. Donaldson, Jeroen

Ketema, Javed Absar, Sven van Haastregt, Alexey Kravets, Anton Lokhmotov,

Robert David, and Elnar Hajiyev. Pencil: A platform-neutral compute intermediate

language for accelerator programming. In Proceedings of the 2015 International

Conference on Parallel Architecture and Compilation (PACT), PACT ’15, pages

138–149, Washington, DC, USA, 2015. IEEE Computer Society.

[BBC16] Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, and Albert Cohen.

Smo: An integrated approach to intra-array and inter-array storage optimization.

In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL ’16, pages 526–538, New York, NY, USA, 2016.

ACM.

[BBP17] Uday Bondhugula, Vinayaka Bandishti, and Irshad Pananilath. Diamond tiling:

Tiling techniques to maximize parallelism for stencil computations. IEEE Trans-

actions on Parallel and Distributed Systems, 28(5):1285–1298, October 2017.

[BCVT13] Riyadh Baghdadi, Albert Cohen, Sven Verdoolaege, and Konrad Trifunović. Im-
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Résumé 
 

De nos jours, l'optimisation des compilateurs 

est de plus en plus mise à l'épreuve par la 

diversité des langages de programmation et 

l'hétérogénéité des architectures. Le modèle 

polyédrique est un puissant cadre 

mathématique permettant aux programmes 

d’exploiter la parallélisation automatique et 

l’optimisation de la localité, jouant un rôle 
important dans le domaine de l’optimisation 
des compilateurs. Une limite de longue date 

du modèle réside dans sa restriction aux 

programmes affines à contrôle statique, ce 

qui a entraîné une demande émergente de 

prise en charge d'extensions non affines. 

Cela est particulièrement aigu dans le 

contexte d'architectures hétérogènes où une 

variété de noyaux de calcul doivent être 

analysés et transformés pour répondre aux 

contraintes des accélérateurs matériels et 

pour gérer les transferts de données à travers 

des espaces mémoire. Nous explorons 

plusieurs extensions non affines du modèle 

polyhédral, dans le contexte d'un langage 

intermédiaire bien défini combinant des 

éléments affines et syntaxiques. D'un côté, 

nous expliquons comment les transformations 

et la génération de code pour des boucles 

avec des limites de boucle dynamiques non 

dépendantes des données et dynamiques 

sont intégrées dans un cadre polyédrique, 

élargissant ainsi le domaine applicable de la 

compilation polyédrique dans le domaine des 

applications non affines. D'autre part, nous 

décrivons l'intégration du pavage en 

recouvrement pour les calculs de pochoir 

dans un cadre polyhédral général, en 

automatisant les transformations non affines 

dans la compilation polyhédrique. Nous 

évaluons nos techniques sur des 

architectures de CPU et de GPU, en validant 

l'efficacité des optimisations en effectuant 

une comparaison approfondie des 

performances avec des frameworks et des 

librairies écrites à la pointe de la technologie.  

 

Mots Clés 
 

Programmation parallèle, compilation 

polyédrique, parallélisation automatique 

Abstract 
 

Nowadays, optimizing compilers are 

increasingly challenged by the diversity of 

programming languages and heterogeneity of 

architectures. The polyhedral model is a 

powerful mathematical framework for 

programs to exploit automatic parallelization 

and locality optimization, playing an important 

role in the field of optimizing compilers. A 

long standing limitation of the model has been 

its restriction to static control affine programs, 

resulting in an emergent demand for the 

support of non-affine extensions. This is 

particularly acute in the context of 

heterogeneous architectures where a variety 

of computation kernels need to be analyzed 

and transformed to match the constraints of 

hardware accelerators and to manage data 

transfers across memory spaces. We explore 

multiple non-affine extensions of the 

polyhedral model, in the context of a well-

defined intermediate language combining 

affine and syntactic elements. On the one 

hand, we explain how transformations and 

code generation for loops with non-affine, 

data-dependent and dynamic loop bounds are 

integrated into a polyhedral framework, 

extending the applicable domain of polyhedral 

compilation in the realm of non-affine 

applications. On the other hand, we describe 

the integration of overlapped tiling for stencil 

computations into a general polyhedral 

framework, automating non-affine 

transformations in polyhedral compilation. We 

evaluate our techniques on both CPU and 

GPU architectures, validating the 

effectiveness of the optimizations by 

conducting an in-depth performance 

comparison with state-of-the-art frameworks 

and manually-written libraries. 
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