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Résumé

Le but de cette thèse est d'étudier l'analyse sur les espaces h c p (R d , M), la version locale des espaces de Hardy à valeurs opératorielles construits par Tao Mei. Les espaces de Hardy locaux à valeurs opératorielles sont définis par les g-fonctions de Littlewood-Paley tronquées et les fonctions intégrables de Lusin tronquées associées au noyau de Poisson. Nous développons la théorie de Calderón-Zygmund sur h c p (R d , M); nous étudions la dualité h c pbmo c q et l'interpolation. D'après ces résultats, nous obtenons la caractérisation générale de h c p (R d , M) en remplaçant le noyau de Poisson par des fonctions tests raisonnables. Ceci joue un rôle important dans la décomposition atomique lisse de h c 1 (R d , M). En même temps, nous étudions aussi les espaces de Triebel-Lizorkin inhomogènes à valeurs opératorielles F α,c p (R d , M). Comme dans le cas classique, ces espaces sont connectés avec des espaces de Hardy locaux à valeurs opératorielles par les potentiels de Bessel. Grâce à l'aide de la théorie de Calderón-Zygmund, nous obtenons les caractérisations de type Littlewood-Paley et de type Lusin par des noyaux plus généraux. Ces caractérisations nous permettent d'étudier différentes propriétés de F α,c p (R d , M), en particulier, la décomposition atomique lisse. Ceci est une extension et une amélioration de la décomposition atomique précédente de h c 1 (R d , M). Comme une application importante de cette décomposition atomique lisse, nous montrons la bornitude d'opérateurs pseudo-différentiels avec les symboles réguliers à valeurs opératorielles sur des espaces de Triebel-Lizorkin F α,c p (R d , M), pour α ∈ R et 1 ≤ p ≤ ∞. Finalement, grâce à la transférence, nous obtenons aussi la F α,c p -bornitude d'opérateurs pseudo-différentiels sur les tores quantiques.

Introduction 0.1 Introduction

This thesis consists mainly of two topics: operator-valued local Hardy spaces and pseudodifferential operators. It follows the current line of investigation of noncommutative harmonic analysis. The latter field arose from the noncommutative integration theory developed by Murray and von Neumann, in order to provide a mathematical foundation for quantum mechanics. The object was to construct and study a linear functional on an operator algebra which plays the role of the classical integral. In [START_REF] Pisier | Non-commutative Martingale Inequalities[END_REF], Pisier and Xu developed a pioneering work on noncommutative martingale theory; since then, many classical results have been successfully transferred to the noncommutative setting, see for instance, [START_REF] Junge | Doob's inequality for non-commutative martingales[END_REF][START_REF] Junge | A noncommutative version of the John-Nirenberg theorem[END_REF][START_REF] Junge | Non-commutative Burkholder/Rosenthal Inequalities[END_REF][START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF][START_REF] Randrianantoanina | Noncommutative martingale transforms[END_REF][START_REF] Parcet | Gundy's decomposition for non-commutative martingales and applications[END_REF][START_REF] Randrianantoanina | Conditional square functions for noncommutative martingales[END_REF].

Inspired by the above mentioned developments and the Littlewood-Paley-Stein theory of quantum Markov semigroups (cf. [START_REF] Junge | H ∞ -functional calculus and square functions on noncommutative L p -spaces[END_REF][START_REF] Junge | BMO spaces associated with semigroups of operators[END_REF][START_REF] Junge | Noncommutative Riesz transforms -a probabilistic approach[END_REF]), Mei [START_REF] Mei | Operator-valued Hardy Spaces[END_REF] studied operator-valued Hardy spaces, which were defined by the Littlewood-Paley g-function and Lusin area integral function associated to the Poisson kernel. These spaces are shown to be very useful for many aspects of noncommutative harmonic analysis. In [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF], we obtain general characterizations of Mei's Hardy spaces, which state that the Poisson kernel can be replaced by any reasonable test function. This is done mainly by using the operator-valued Calderón-Zygmund theory.

In the classical setting, local Hardy spaces were first introduced by Goldberg [START_REF] Goldberg | A local version of real Hardy spaces[END_REF]. Afterwards, many other inhomogeneous spaces have been studied. Our references for the classical theory are [START_REF] Goldberg | A local version of real Hardy spaces[END_REF][START_REF] Torres | Boundedness results for operators with singular kernels on distribution spaces[END_REF][START_REF] Frazier | The boundedness of Calderón-Zygmund operators on the spaces Ḟ α,q p[END_REF]. However, they have not been investigated so far in the operator-valued case. Motivated by [START_REF] Xiong | Function spaces on quantum tori[END_REF][START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF][START_REF] Mei | Operator-valued Hardy Spaces[END_REF], we provide a localization of Mei's operator-valued Hardy spaces on R d in this thesis. The norms of these spaces are partly given by the truncated versions of the Littlewood-Paley g-function and Lusin area integral function. Some techniques that we use to deal with our local Hardy spaces are modelled after those of [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF]; however, some highly not trivial modifications are needed. Since with the truncation, we only know the L p -norms of the Poisson integrals of functions on the strip R d × (0, 1), and lose information when the time is large than 1. This brings some substantial difficulties that the non-local case does not have, for example, the duality problem. Moreover, the noncommutative maximal function method is still unavailable in this setting, while in the classical case it is efficiently and frequently employed. However, based on tools developed recently, for instance, in [START_REF] Pisier | Non-commutative Martingale Inequalities[END_REF][START_REF] Junge | Doob's inequality for non-commutative martingales[END_REF][START_REF] Junge | Non-commutative Burkholder/Rosenthal Inequalities[END_REF][START_REF] Randrianantoanina | Noncommutative martingale transforms[END_REF][START_REF] Randrianantoanina | Conditional square functions for noncommutative martingales[END_REF][START_REF] Junge | H ∞ -functional calculus and square functions on noncommutative L p -spaces[END_REF][START_REF] Mei | Operator-valued Hardy Spaces[END_REF][START_REF] Mei | Tent spaces associated with semigroups of operators[END_REF], we can overcome these difficulties. Parallel to Mei's Hardy spaces, we extend many results in [START_REF] Mei | Operator-valued Hardy Spaces[END_REF][START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF] to the inhomogeneous setting.

Goldberg's motivation of introducing the local Hardy spaces is the study of pseudodifferential operators on these spaces. Pseudo-differential operators were first explicitly defined by Kohn-Nirenberg [START_REF] Kohn | An algebra of pseudo-differential operators[END_REF] and Hörmander [START_REF] Hörmander | Pseudo-differential operators[END_REF] to connect singular integrals and differential operators. One of the most important problems in pseudo-differential operator theory concerns the mapping properties of these operators on various function spaces, for instance, L p -spaces, Sobolev, Besov and Triebel-Lizorkin spaces. However, it is known that pseudo-differential operators are not necessarily bounded on the classical Hardy space H 1 (R d ). This is the reason why local Hardy spaces were first introduced by Goldberg [START_REF] Goldberg | A local version of real Hardy spaces[END_REF].

In the noncommutative setting, this line of research started with Connes' work [START_REF] Connes | C * -algèbres et géométrie différentielle[END_REF] on pseudo-differential calculus for C * -dynamical systems. But so far, the mapping properties are rarely studied. In this thesis, we consider the boundedness of noncommutative pseudodifferential operators on operator-valued Hardy spaces, or more generally, operator-valued Triebel-Lizorkin spaces. We then apply the outcome to the quantum torus case, and obtain a parallel theory in the latter case too.

Let us mention that independently and at the same time, González-Pérez, Junge and Parcet developed in [START_REF] González-Pérez | Singular integral in quantum Euclidean spaces[END_REF] the pseudo-differential theory in quantum Euclidean spaces that are non compact analogues of quantum tori. Although there exists an overlap between them, the two works are very different in nature in regard to both results and arguments. Their results concern the boundedness of a pseudo-differential operator on the L p -spaces with 1 < p < ∞, while the ours deal with this boundedness on a column Triebel-Lizorkin spaces F α,c p (R d , M) with α ∈ R and 1 ≤ p ≤ ∞. Note that the mixture Triebel-Lizorkin space F α p (R d , M) coincide with L p (N ) when α = 0 and 1 < p < ∞. On the other hand, the argument of [START_REF] González-Pérez | Singular integral in quantum Euclidean spaces[END_REF] are based on a careful analysis of the L 2 and BMO cases, while our proof relies entirely on the atomic decomposition for F α,c 1 (R d , M) and a duality argument for the case p = ∞.

We now describe briefly our main results by gathering them together according to the three principal themes. All results below are stated only for the column spaces; but almost all of them admit row and mixture analogues.

Local Hardy spaces. The first family of results concerns the operator-valued local

Hardy spaces h c p (R d , M) and bmo c (R d , M). The first major result of this part is the h c pbmo c q duality for 1 ≤ p < 2, where q denotes the conjugate index of p. In particular, when p = 1, we obtain the operator-valued local analogue of the classical Fefferman-Stein theorem. The pattern of the proof of this theorem is similar to that of Mei's non-local case. We also show that h c q (R d , M) = bmo c q (R d , M) for 2 < q < ∞ like in the martingale and non-local settings. Thus the dual of h c p (R d , M) agrees with h c q (R d , M) when 1 < p < 2. The local Hardy spaces behave well with both complex and real interpolations. In particular, we have bmo

c (R d , M), h c 1 (R d , M) 1
The Calderón-Zygmund theory mentioned above will be applied to the general characterization of h c p (R d , M) with the Poisson kernel replaced by any reasonable test function. Additionally, to the characterization by the Littlewood Paley g-function, we also obtain the corresponding one by the Lusin square function. The latter will play an important role in the atomic decomposition of h c 1 (R d , M). We show that h c 1 (R d , M) admits an atomic decomposition as in the non-local case of [START_REF] Goldberg | A local version of real Hardy spaces[END_REF]. However, for the study of pseudo-differential operators, we need a smooth atomic decomposition, that is, the atoms in consideration are required to be smooth and have size control on their derivatives too. We do this via tent spaces by using the Calderón reproducing identity. This is a quite technical part, some arguments are very lengthy and tedious.

Inhomogeneous Triebel-Lizorkin spaces. Local Hardy spaces are closely related to the inhomogeneous Triebel-Lizorkin spaces. Pursuing the investigation of Triebel-Lizorkin spaces on quantum tori carried out in [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF], we consider operator-valued Triebel-Lizorkin spaces F α,c p (R d , M). The results in this part will be applied to the study of pseudodifferential operators with operator-valued kernels. We mention here two major results of this part. The first one gives a general characterization of F α,c p (R d , M) by any reasonable test function. This characterization can be realized either by the Littlewood Paley type g-function or by the Lusin type integral function. In the classical setting, such a characterization is achieved usually by virtue of maximal function techniques which are unfortunately no longer at our disposal in the noncommutative setting. As in [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF], our arguments depend heavily on the Calderón-Zygmund theory mentioned in the previous part.

The second major result of this part is the atomic decomposition of the Triebel-Lizorkin spaces F α,c 1 (R d , M). This is an extension as well as an improvement of the previous atomic decomposition of h c 1 (R d , M). Compared to the case of Hardy spaces, subatoms enter in the game; they will play a crucial role in the study of pseudo-differential operators. The proof of the atomic decomposition of F α,c 1 (R d , M) follows the same set-up as for h c 1 (R d , M). Again, the Calderón reproducing identity, via tent spaces, is a key ingredient.

Pseudo-differential operators. Based on the smooth atomic decomposition, we obtain the boundedness of pseudo-differential operators in the class S 0 1,δ with 0 ≤ δ < 1 on F α,c p (R d , M) for any 1 ≤ p ≤ ∞ and α ∈ R. The main part concerns the case p = 1. As said before , the key ingredient of the proof for p = 1 is the smooth atomic decomposition of F α,c 1 (R d , M). Compared to the standard proof, via atomic decomposition, of the boundedness on H 1 of a usual Calderón-Zygmund operator with a commutative or noncommutative kernel, the present proof is much subtler and more technical. We need a careful analysis of a pseudo-differential operator on subatoms.

By transference, our result yields the corresponding ones for the quantum torus case. The Euclidean space analogue of the latter case was studied by González-Pérez, Junge and Parcet in [START_REF] González-Pérez | Singular integral in quantum Euclidean spaces[END_REF]. However, our approach is completely different from theirs.

In the remainder of this introduction, we will first introduce the necessary definitions of the function spaces in consideration and pseudo-differential operators, then describe the main results.

Definitions

Operator-valued local Hardy spaces

Let M be a von Neumann algebra equipped with a normal faithful semifinite trace τ . Let N = L ∞ (R d )⊗M equipped with the tensor trace. For 1 ≤ p < ∞, L p (M) denotes the noncommutative L p -space associated to (M, τ ).

Let P be the Poisson kernel of R d :

P(s) = c d 1 (|s| 2 + 1) d+1 2
, where c d is the usual normalizing constant. Let

P ε (s) = 1 ε d P( s ε ) = c d ε (|s| 2 + ε 2 ) d+1 2
.

For any function f on R d with values in L 1 (M) + M, its Poisson integral, whenever exists, will be denoted by P ε (f ):

P ε (f )(s) = R d P ε (s -t)f (t)dt, (s, ε) ∈ R d+1 + .
Let us denote the Hilbert space L 2 (R d , dt 1+|t| d+1 ) by R d . Note that the Poisson integral of f exists if f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ). Now we define the local analogue of the Lusin area square function of f by

s c (f )(s) = Γ ∂ ∂ε P ε (f )(s + t) 2 dtdε ε d-1 1 2 , s ∈ R d ,
where Γ is the truncated cone {(t, ε) ∈ R d+1 + : |t| < ε < 1}. It is the intersection of the cone {(t, ε) ∈ R d+1 + : |t| < ε} and the strip S ⊂ R d+1 + defined by:

S = {(s, ε) : s ∈ R d , 0 < ε < 1}.
For 1 ≤ p < ∞ define the column local Hardy space h c p (R d , M) to be

h c p (R d , M) = {f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ) : f h c p < ∞},
where the h c p (R d , M)-norm of f is defined by

f h c p (R d ,M) = s c (f ) Lp(N ) + P * f Lp(N ) .
The row local Hardy space h r p (R d , M) is the space of all f such that f * ∈ h c p (R d , M), equipped with the norm f h r p = f * h c p . Moreover, define the mixture space h p (R d , M) as follows:

h p (R d , M) = h c p (R d , M) + h r p (R d , M) for 1 ≤ p ≤ 2 equipped with the sum norm

f hp(R d ,M) = inf{ g h c p + h h r p : f = g + h, g ∈ h c p (R d , M), h ∈ h r p (R d , M)}, and h p (R d , M) = h c p (R d , M) ∩ h r p (R d , M) for 2 < p < ∞ equipped with the intersection norm f hp(R d ,M) = max{ f h c p , f h r p }.
For any cube Q ⊂ R d with sides parallel to the axes, we will denote its center by c Q , side length by l(Q), and volume by |Q|. Let f ∈ L ∞ (M; R c d ), the mean value of f over Q is denoted by

f Q = 1 |Q| Q f (s)ds. For f ∈ L ∞ (M; R c d ), set f bmo c (R d ,M) = max sup |Q|<1 ( 1 |Q| Q |f -f Q | 2 dt) 1 2 M , sup |Q|=1 ( Q |f | 2 dt) 1 2
M .

Then we define bmo

c (R d , M) = {f ∈ L ∞ (M; R c d ) : f bmo c < ∞} .
Respectively, define bmo r (R d , M) to be the space of all f ∈ L ∞ (M; R r d ) such that

f * bmo c (R d ,M) < ∞
with the norm f bmo r = f * bmo c . And bmo(R d , M) is defined as the intersection of bmo c (R d , M) and bmo r (R d , M).

In order to describe the dual of h c p (R d , M) for 1 ≤ p < 2, we will define a bmo type space called bmo c q (R d , M) (with q the conjugate index of p). Let 2 < q ≤ ∞, we define bmo c q (R d , M) to be the space of all f ∈ L q (M; R c d ) such that

f bmo c q = sup + s∈Q⊂R d |Q|<1 1 |Q| Q |f (t) -f Q | 2 dt q 2
L q 2 (N )

+ sup + s∈Q⊂R d |Q|=1 1 |Q| Q |f (t)| 2 dt q 2 L q 2 (N ) 1 q < ∞.
By this definition, bmo c ∞ (R d , M) coincides with the space bmo c (R d , M) defined above.

Operator-valued inhomogeneous Triebel-Lizorkin spaces

Fix a Schwartz function ϕ on R d satisfying the usual Littlewood-Paley decomposition property:

       supp ϕ ⊂ {ξ : 1 2 ≤ |ξ| ≤ 2}. ϕ > 0 on {ξ : 1 2 < |ξ| < 2}, k∈Z ϕ(2 -k ξ) = 1, ξ = 0.
For each k ∈ N, let ϕ k be the function whose Fourier transform is equal to ϕ(2 -k •) and ϕ 0 be the function whose Fourier transform is equal to 1 -k>0 ϕ(2 -k •). Then {ϕ k } k≥0 gives a Littlewood-Paley decomposition on R d , such that p .

supp ϕ k ⊂ {ξ ∈ R d : 2 k-1 ≤ |ξ| ≤ 2 k+1 }, k ∈ N,
We then define the row and mixture inhomogeneous Triebel-Lizorkin spaces in the same way as for the local Hardy spaces.

Pseudo-differential operators

Let n ∈ R and 0 ≤ ρ, δ ≤ 1. Then S n ρ,δ denotes the collection of all infinitely differentiable functions σ defined on R d × R d and with values in M, such that for each pair of multiindices of nonnegative integers γ, β, there exists a constant C γ,β such that

D γ s D β ξ σ(s, ξ) M ≤ C γ,β (1 + |ξ|) n+δ|γ| 1 -ρ|β| 1 , where γ = (γ 1 , • • • , γ d ) ∈ N d 0 , |γ| 1 = γ 1 + • • • + γ d and D γ s = ∂ γ 1 ∂s γ 1 1 • • • ∂ γ d ∂s γ d d .
Let σ ∈ S n ρ,δ . For any function f ∈ S R d ; L 1 (M) + M , the (left) pseudo-differential operator is a mapping f → T c σ f given by

T c σ f (s) = R d
σ(s, ξ) f (ξ)e 2πis•ξ dξ.

σ is called the symbol of T c σ .

Properties

Duality

The first property of Hardy spaces is the duality theorem. We describe the dual of h c p (R d , M) (1 ≤ p < 2) as bmo c q (R d , M) (q being the conjugate index of p).

Theorem 0.1. Let 1 ≤ p < 2 and q be its conjugate index. We have h c p (R d , M) * = bmo c q (R d , M) with equivalent norms. More precisely, every g ∈ bmo c q (R d , M) defines a continuous linear functional on h c p (R d , M) by

g (f ) = τ f (s)g * (s)ds, ∀f ∈ L p (M; L c 2 (R d , (1 + |t| d+1 )dt)).
Conversely, every ∈ h c p (R d , M) * can be written as above and is associated to some g ∈ bmo c q (R d , M) with

(h c p ) * ≈ g bmo c q .
Denote by I α the Riesz potential (-(2π) -2 ∆) α 2 . If α = 1, we will abbreviate I 1 as I. For a tempered distribution f on R d with values in L 1 (M) + M, we have

I α f (s) =
The following equalities play an important role in study of the above duality problem: 

R d f (s)g * (s)ds = 4 R d 1 0 ∂ ∂ε P ε (f )(
for nice f , g ∈ L 1 (M; R c d ) + L ∞ (M; R c d )
. The presence of the terms P * g and I(P) * g makes a main difference between the proofs of the non-local and local cases.

As in the classical theory, the dual of h c p (R d , M) is h c q (R d , M), which comes from the fact that the L q -analogue of bmo space is actually equivalent to h c q (R d , M).

Theorem 0.2. Let 2 < q < ∞. h c q (R d , M) = bmo c q (R d , M) with equivalent norms.

The proof of the above theorem is modelled after that of [START_REF] Mei | Operator-valued Hardy Spaces[END_REF]Theorem 4.7]. The main difference between them is that, due to the truncation, we have to deal with the terms (I(P) * g, P * g) concerning the properties of the Fourier transform of the considered function near the origin as explained above.

As a consequence of the previous two theorems, we obtain Corollary 0.3. For any 1 < p < ∞, h c p (R d , M) * = h c q (R d , M) with equivalent norms.

The relation between h c p (R d , M) and H c p (R d , M)

It should be pointed out that due to the noncommutativity, the column operator-valued local Hardy spaces h c p (R d , M) and operator-valued Hardy spaces H c p (R d , M) defined by Mei [START_REF] Mei | Operator-valued Hardy Spaces[END_REF] are not equivalent for 1 < p < ∞. We only have the inclusions:

H c p (R d , M) ⊂ h c p (R d , M) for 1 ≤ p ≤ 2 and h c p (R d , M) ⊂ H c p (R d , M
) for 2 < p < ∞. However, if the Fourier transform of the function vanishes near the origin, we will have the reverse inclusion. Theorem 0.4. Let φ ∈ S such that R d φ(s)ds = 1.

(1) Let 1 ≤ p ≤ 2. For any

f ∈ h c p (R d , M), we have f -φ * f ∈ H c p (R d , M) and f -φ * f H c p f h c p .
(

) Let 2 < p < ∞. For any f ∈ H c p (R d , M), we have f -φ * f ∈ h c p (R d , M) and f -φ * f h c p f H c p . 2 
Moreover, if we consider the mixture versions, both h p (R d , M) and H p (R d , M) coincide with the space L p (L ∞ (R d )⊗M): Proposition 0.5. For any 1 < p < ∞, h p (R d , M) = H p (R d , M) = L p (N ) with equivalent norms.

Lifting properties of F α,c p (R d , M)

We list some basic properties of F α,c p (R d , M). Much as in the classical case, the local Hardy spaces coincide with the inhomogeneous Triebel-Lizorkin spaces of order α = 0. Proposition 0.6. Let 1 ≤ p < ∞ and α ∈ R. Then

(1) F α,c p (R d , M) is a Banach space.

(2)

F α,c p (R d , M) ⊂ F β,c p (R d , M) if α > β.
(3) F 0,c p (R d , M) = h c p (R d , M) with equivalent norms. Given a ∈ R + , we define D i,a (ξ) = (2πiξ i ) a for ξ ∈ R d , and D a i to be the Fourier multiplier with symbol D i,a (ξ) on Triebel-Lizorkin spaces F α,c p (R d , M). We set

D a = D 1,a 1 • • • D d,a d and D a = D a 1 1 • • • D a d d for any a = (a 1 , • • • , a d ) ∈ R d + .
Note that if a is a positive integer, D a i = ∂ a i is the usual partial derivative, so there does not exist any conflict of notation. The operator D a can be viewed as a fractional extension of partial derivatives. The following is the so-called reduction (or lifting) property of Triebel-Lizorkin spaces. For β ∈ R, let J β be the Bessel potential of order β, i.e. J β = (1 -(2π) -2 ∆) β 2 . For a tempered distribution f on R d with values in L 1 (M) + M, it is formulated as

J β f (s) = R d f (ξ)(1 + |ξ| 2 ) β 2 e 2πis•ξ dξ ∀s ∈ R d .
Proposition 0.7. Let 1 ≤ p < ∞ and α ∈ R.

(1) For any β ∈ R, J β is an isomorphism between F α,c p (R d , M) and F α-β,c p (R d , M). In particular, J α is an isomorphism between F α,c p (R d , M) and h c p (R d , M).

(2) Let β > 0. Then f ∈ F α,c p (R d , M) if and only if ϕ 0 * f ∈ L p (N ) and D β i f ∈ F α-β,c p (R d , M) for all i = 1, . . . , d. Moreover, in this case,

f F α,c p ≈ ϕ 0 * f p + d i=1 D β i f F α-β,c p .
We need to emphasize here that, different from the Triebel-Lizorkin spaces on quantum tori, the Riesz potential I β is not an isomorphism between F α,c p (R d , M) and F α-β,c p (R d , M).

Interpolation

As expected, we have the following complex and real interpolation results:

Theorem 0.8. Let 1 < p < ∞. We have

(1) bmo c (R d , M), h c 1 (R d , M) 1 p = h c p (R d , M).
(

) bmo c (R d , M), h c 1 (R d , M) 1 p ,p = h c p (R d , M) . 2 
The interpolation between any two local Hardy spaces h c p (R d , M) and h c p (R d , M) with 1 < p, p < ∞ is easy, since for any 1 < p < ∞, h c p (R d , M) is a complemented subspace of L p N ; L c 2 ( Γ, dtdε ε d+1 ) ⊕ p L p (N ). However, the interpolation problem with one end point being h 1 -space is much subtler. The above interpolation equalities are obtained by transferring the problem to that of Hardy spaces in [START_REF] Mei | Operator-valued Hardy Spaces[END_REF].

We also have the following corollary as the mixed version of the above theorem, which shows that h 1 (R d , M) and bmo(R d , M) are also good endpoints of L p (N ). Corollary 0.9. Let 1 < p < ∞. Then we have (1) X, Y 1 p = L p (N ), where X = bmo(R d , M) or L ∞ (N ), and Y = h 1 (R d , M) or L 1 (N ).

(2) X, Y 1 p ,p = L p (N ), where X = bmo(R d , M) or L ∞ (N ), and Y = h 1 (R d , M) or L 1 (N ).

The Bessel potentials J α is an isomorphism between F α,c p (R d , M) and h c p (R d , M). In this way, the interpolation problem of Triebel Lizorkin spaces can be reduced to the corresponding problem of Hardy spaces. For the interpolation between two Triebel Lizorkin spaces with the same index α, the real and complex interpolations are simple corollary of Theorem 0.8. For different α, the real interpolation of two Triebel Lizorkin spaces will give Besov type spaces, which is not included in this thesis. For the complex interpolation, we need to use the complex order Bessel potentials and the result is:

Proposition 0.10. Let α 0 , α 1 ∈ R and 1 < p < ∞. Then F α 0 ,c ∞ (R d , M), F α 1 ,c 1 (R d , M) 1 p = F α,c p (R d , M), α = (1 - 1 p )α 0 + α 1 p .

Characterizations

In the classical theory, as far as we know, the existing proofs of the characterizations of local Hardy and inhomogeneous Triebel-Lizorkin spaces use maximal functions in a crucial way. As we mentioned earlier, this tool is no longer available in the noncommutative setting. Instead, we will use the Calderón-Zygmund theory. First, we begin with a general characterization of local Hardy spaces. Consider a Schwartz function Φ on R d of vanishing mean. We set Φ ε (s) = ε -d Φ( s ε ) for ε > 0. We will assume that Φ is nondegenerate in the following sense:

∀ξ ∈ R d \ {0} ∃ ε > 0 s.t. Φ(εξ) = 0.
Then there exists a Schwartz function Ψ of vanishing mean such that

∞ 0 Φ(εξ) Ψ(εξ) dε ε = 1, ∀ξ ∈ R d \ {0} .
Next we can find two other functions φ,

ψ such that φ, ψ ∈ H σ 2 (R d ), φ(0), ψ(0) > 0 and φ(ξ) ψ(ξ) = 1 - 1 0 Φ(εξ) Ψ(εξ) dε ε . For any f ∈ L 1 (M; R c d ) + L ∞ (M; R c d )
, we define the local version of the conic and radial square functions of f associated to Φ by

s c Φ (f )(s) = Γ |Φ ε * f (s + t)| 2 dtdε ε d+1 1 2 , s ∈ R d , g c Φ (f )(s) = 1 0 |Φ ε * f (s)| 2 dε ε 1 2 , s ∈ R d .
where Γ is the truncated cone (t, ε) ∈ R d+1

+ : |t| < ε < 1 .
Theorem 0.11. Let 1 ≤ p < ∞ and φ, Φ be as above. For any

f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ), f ∈ h c p (R d , M) if and only if s c Φ (f ) ∈ L p (N ) and φ * f ∈ L p (N ) if and only if g c Φ (f ) ∈ L p (N ) and φ * f ∈ L p (N ).
If this is the case, then

f h c p ≈ g c Φ (f ) p + φ * f p ≈ s c Φ (f ) p + φ * f p
with the relevant constants depending only on d, p, Φ and φ.

One direction of the above norm equivalence can be deduced from the boundedness of the Hilbert-valued Calderón-Zygmund operator from h c p (R d , M) to L p (N ; H c ) for 1 ≤ p ≤ 2 and the duality between h c p (R d , M) and h c q (R d , M). The other direction requires more complicated and technical computation, where the Carleson measure characterization of bmo c q is needed. In order to compare the square functions g c Φ and s c Φ , we need a sophisticated inequality, since we no longer have the harmonicity of the Poisson integral.

The above theorem admits a discrete version: The square functions s c Φ and g c Φ can be discretized as follows:

g c,D Φ (f )(s) = j≥1 |Φ j * f (s)| 2 1 2 , s c,D Φ (f )(s) = j≥1 2 dj B(s,2 -j ) |Φ j * f (t)| 2 dt 1 2 .
Here B(s, r) denotes the ball of R d with center s and radius r, and Φ j is the inverse Fourier transform of Φ(2 -j •). This time to get a resolvent of the unit on R d , we need to assume that Φ satisfies:

∀ ξ ∈ R d \ {0} ∃ 0 < 2a ≤ b < ∞ s.t. Φ(εξ) = 0, ∀ ε ∈ (a, b].
There exists another Schwartz function Ψ such that

+∞ j=-∞ Φ(2 -j ξ) Ψ(2 -j ξ) = 1, ∀ξ ∈ R d \ {0}
and there exists two functions φ and

ψ such that φ, ψ ∈ H σ 2 (R d ) and j≥0 Φ(2 -j ξ) Ψ(2 -j ξ) + φ(ξ) ψ(ξ) = 1, ∀ξ ∈ R d .
Theorem 0.12. Let φ and Φ be test functions as above and

1 ≤ p < ∞. Then for any f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ), f ∈ h c p (R d , M) if and only if s c,D Φ (f ) ∈ L p (N ) and φ * f ∈ L p (N ) if and only if g c,D Φ (f ) ∈ L p (N ) and φ * f ∈ L p (N ). Moreover, f h c p ≈ s c,D Φ (f ) Lp(N ) + φ * f p ≈ g c,D Φ (f ) p + φ * f p
with the relevant constants depending only on d, p, Φ and φ.

Since the noncommutative inhomogeneous Triebel-Lizorkin spaces are subspaces of Hilbert-valued noncommutative L p -spaces, we develop Fourier multiplier theory for the later spaces. Then, with the aid of the above discrete characterization of local Hardy spaces, we obtain a more general characterization of F α,c p (R d , M) which states that the kernel which appears in the square function does not need to be a Schwartz function coming from the Littlewood-Paley decomposition.

Let Φ (0) and Φ be two complex-valued infinitely differentiable functions defined respectively on R d and R d \{0}, which satisfy

     |Φ (0) (ξ)| > 0 if |ξ| ≤ 2, sup k∈N 0 2 -kα 0 Φ (0) (2 k •)ϕ H σ 2 < ∞,
and

               |Φ(ξ)| > 0 if 1 2 ≤ |ξ| ≤ 2, sup k∈N 0 2 -kα 0 Φ(2 k •)ϕ H σ 2 < ∞, R d (1 + |s| 2 ) σ |F -1 (Φϕ (0) I -α 1 )(s)|ds < ∞.
Recall that here I -α 1 (ξ) for ξ ∈ R d is the symbol of the Fourier multiplier I -α 1 , where

I -α 1 is the Riesz potential (-(2π) -2 ∆) -α 1 2 . Let Φ (j) = Φ(2 -j •) for j ≥ 1,
and Φ j be the function whose Fourier transform is equal to Φ (j) for any j ∈ N 0 .

Theorem 0.13. Let 1 ≤ p < ∞ and α ∈ R. Assume that α 0 < α < α 1 , α 1 ≥ 0 and Φ (0) , Φ satisfy conditions above. Then for any f ∈ S (R d ; L 1 (M) + M), we have f F α,c p ≈ ( j≥0 2 2jα |Φ j * f | 2 ) 1 2 p ,
where the relevant constants are independent of f . The continuous analogue of the above characterization holds as well. For any

L 1 (M) + M-valued tempered distribution f on R d , f F α,c p ≈ Φ 0 * f p + 1 0 ε -2α |Φ ε * f | 2 dε ε 1 2 p .
. Much as the local Hardy spaces, we also have the characterization via Lusin area square functions:

Theorem 0.14. Let 1 ≤ p < ∞ and α ∈ R. Assume that α 0 < α < α 1 , α 1 ≥ 0 and Φ (0) , Φ satisfy the conditions above. Then for any f ∈ S (R d ; L 1 (M) + M), we have f F α,c p (R d ,M) ≈ Φ 0 * f p + ( j≥1 2 j(2α+d) B(0,2 -j ) |Φ j * f (• + t)| 2 dt) 1 2 p ,
where the relevant constants are independent of f .

Since the local Hardy spaces can be seen as a special case of inhomogeneous Triebel-Lizorkin spaces, the above two theorems generalize Theorem 0.11 and Theorem 0.12 in this sense.

Note that the general characterization of Triebel-Lizorkin spaces on quantum tori has been studied in [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF]. In that case, the Fourier transform of an operator x in L 1 (T d θ ) (T d θ being the d-dimensional quantum tori) is discrete, so we can always assume x(0) = 0 and omit the multiplier behaviour near the origin. However, for f in the inhomogeneous Triebel-Lizorkin spaces on R d , we need to deal with the properties of its Fourier transform near the origin. This makes our case more complicated than theirs.

Atomic decompositions

In the classical theory, atomic decomposition of Hardy or local Hardy spaces plays important roles in the analysis of these spaces. In this spirit, we also construct the noncommutative analogue of atoms. We say that a function a

∈ L 1 (M; L c 2 (R d )) is an h c 1 -atom if (1) a is supported in a bounded cube Q with |Q| ≤ 1; (2) If |Q| < 1, Q a(s)ds = 0; (3) τ Q |a(s)| 2 ds 1 2 ≤ |Q| -1 2 .
Let h c 1,at (R d , M) be the space of all f admitting a representation of the form

f = ∞ j=1 λ j a j ,
where the a j are h c 1 -atoms and λ j ∈ C are such that j∈N |λ j | < ∞. We equip h c 1,at (R d , M) with the following norm:

f h c 1,at = inf j∈N |λ j | : f = j∈N λ j a j ; a j 's are h c 1 -atoms, λ j ∈ C .
By the atomic decomposition of Hardy spaces already studied in [START_REF] Mei | Operator-valued Hardy Spaces[END_REF] and the duality between L 1 (M; L c 2 (Q)) and L ∞ (M; L c 2 (Q)), we deduce the following atomic decomposition of h c 1 (R d , M).

Theorem 0.15.

h c 1,at (R d , M) = h c 1 (R d , M) with equivalent norms.
The smoothness of the atoms obtained above can be refined. The main idea is to find a smooth resolution of unit on the Euclidean space; atomic decompositions of tent spaces will also be of great service. Using the same strategy, we can get smooth atomic decompositions for F α,c 1 (R d , M), which will be very useful when studying the pseudo-differential operators on Triebel-Lizorkin spaces.

In the classical theory, there exist several types of smooth atomic decompositions of Triebel-Lizorkin spaces. See, for instance [START_REF] Frazier | The ϕ-transform and applications to distribution spaces[END_REF][START_REF] Yu | Embedding theorems for Lizorkin-Triebel spaces[END_REF][START_REF] Triebel | Theory of function spaces[END_REF]. However, not all of them can be transferred to the noncommutative setting by replacing L ∞ -atoms with L 2 -atoms. The idea of the following theorem comes from [68, Theorem 3.2.3], but many techniques used are different from that of [START_REF] Triebel | Theory of function spaces[END_REF]Theorem 3.2.3] due to the noncommutativity. Definition 0.16. Let α ∈ R, and let K and L be two integers such that

K ≥ ([α] + 1) + and L ≥ max {[-α], -1}. (1) A function b ∈ L 1 (M; L c 2 (R d )) is called an (α, 1)-atom if • supp b ⊂ 2Q 0,k ; • τ ( R d |D γ b(s)| 2 ds) 1 2 ≤ 1, ∀γ ∈ N d 0 , |γ| 1 ≤ K.
(

) Let Q = Q µ,l , a function a ∈ L 1 (M; L c 2 (R d )) is called an (α, Q)-sub-atom if • supp a ⊂ 2Q; • τ ( R d |D γ a(s)| 2 ds) 1 2 ≤ |Q| α d - |γ| 1 d , ∀γ ∈ N d 0 , |γ| 1 ≤ K; • R d s β a(s)ds = 0, ∀β ∈ N d 0 , |β| 1 ≤ L. (3) A function g ∈ L 1 (M; L c 2 (R d )) is called an (α, Q k,m )-atom if τ ( R d |J α g(s)| 2 ds) 1 2 ≤ |Q k,m | -1 2 and g = (µ,l)≤(k,m) d µ,l a µ,l , 2 
for some k ∈ N 0 and m ∈ Z d , where the a µ,l 's are (α, Q µ,l )-sub-atoms and the d µ,l 's are complex numbers such that

( (µ,l)≤(k,m) |d µ,l | 2 ) 1 2 ≤ |Q k,m | -1 2 .
We refer the reader to chapter 8 for the precise definition of D µ,l .

Theorem 0.17. Let α ∈ R and K, L be two integers fixed above. Then any

f ∈ F α,c 1 (R d , M) can be represented as f = ∞ j=1 µ j b j + λ j g j ,
where the b j 's are (α, 1)-atoms, the g j 's are (α, Q)-atoms, and µ j , λ j are complex numbers such that

∞ j=1 (|µ j | + |λ j |) < ∞. (0.1)
Moreover, the infimum of (0.1) with respect to all admissible representations is an equivalent norm in F α,c 1 (R d , M).

Pseudo-differential operators

In the classical theory, local Hardy spaces were first introduced in order to study the mapping properties of pseudo-differential operators. Now we have developed the theory of operator-valued local Hardy spaces, we can study the the boundedness of pseudodifferential operators in our noncommutative setting.

Based on the smooth atomic decompositions mentioned above, we prove that the image of an atom under the action of a pseudo-differential operator has bounded norm in F α,c 1 (R d , M). The case 1 < p < ∞ is deduced from duality and interpolation.

Theorem 0.18. Let 0 ≤ δ < 1, σ ∈ S 0 1,δ and α ∈ R. Then T c σ is a bounded operator on F α,c p (R d , M) for every 1 ≤ p ≤ ∞.
The symbols in σ ∈ S 0 1,δ with 0 ≤ δ < 1 are called regular symbols, which are bounded on L 2 (N ), and behave well on symbolic calculus. When δ = 1, we call symbols in σ ∈ S 0 1,1 forbidden symbols. Similarly to the classical case, they are not bounded on L 2 (N ); alternatively, if α > 0, we can prove their boundedness on

H α 2 (R d ; L 2 (M)). Theorem 0.19. Let σ ∈ S 0 1,1 and α > 0. Then T c σ is a bounded operator on F α,c 1 (R d , M).
Chapter 1

Preliminaries

Noncommutative L p -spaces

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace τ and S + M be the set of all positive elements x in M with τ (s(x)) < ∞, where s(x) denotes the support of x, i.e., the smallest projection e such that exe = x. Let S M be the linear span of S + M . Then every x ∈ S M has finite trace, and

S M is a w*-dense * -subalgebra of M. Let 1 ≤ p < ∞. For any x ∈ S M , the operator |x| p belongs to S + M (recalling |x| = (x * x) 1 2 ). We define x p = τ (|x| p ) 1 p .
One can prove that • p is a norm on S M . The completion of (S M , • p ) is denoted by L p (M), which is the usual noncommutative L p -space associated to (M, τ ). In this thesis, the norm of L p (M) will be often denoted simply by • p if there is no confusion. But if different L p -spaces appear in a same context, we will precise their norms in order to avoid possible ambiguity. We refer the reader to [START_REF] Xu | Noncommutative L p -spaces and martingale inequalities[END_REF] and [START_REF] Pisier | Handbook of the geometry of Banach spaces[END_REF] for further information on noncommutative L p -spaces. Now we introduce noncommutative Hilbert space-valued L p -spaces L p (M; H c ) and L p (M; H r ), which are studied at length in [START_REF] Junge | H ∞ -functional calculus and square functions on noncommutative L p -spaces[END_REF]. Let H be a Hilbert space and v ∈ H with v = 1, and p v be the orthogonal projection onto the one-dimensional subspace generated by v. Then define the following row and column noncommutative L p -spaces:

L p (M; H r ) = (p v ⊗ 1 M )L p (B(H)⊗M) and L p (M; H c ) = L p (B(H)⊗M)(p v ⊗ 1 M ),
where the tensor product B(H)⊗M is equipped with the tensor trace while B(H) is equipped with the usual trace, and where 1 M denotes the unit of M.

For f ∈ L p (M; H c ), f Lp(M;H c ) = (f * f ) 1 2 p .
A similar formula holds for the row space by passing to adjoint:

f ∈ L p (M; H r ) if and only if f * ∈ L p (M; H c ), and f Lp(M;H r ) = f * Lp(M;H c ) .
It is clear that L p (M; H c ) and L p (M; H r ) are 1-complemented subspaces of L p (B(H)⊗M) for any p.

Facts and notation

In this section, we collect some notation and facts which will be frequently used in this thesis. Throughout, we will use the notation A B, which is an inequality up to a constant: A ≤ cB for some constant c > 0. The relevant constants in all such inequalities may depend on the dimension d, the test function Φ or p, etc, but never on the function f in consideration. The equivalence A ≈ B will mean A B and B A simultaneously. Fix a Schwartz function ϕ on R d satisfying the usual Littlewood-Paley decomposition property:

       supp ϕ ⊂ {ξ : 1 2 ≤ |ξ| ≤ 2}. ϕ > 0 on {ξ : 1 2 < |ξ| < 2}, k∈Z ϕ(2 -k ξ) = 1, ∀ ξ = 0. (1.1)
For each k ∈ N let ϕ k be the function whose Fourier transform is equal to ϕ(2 -k •), and let ϕ 0 be the function whose Fourier transform is equal to 1

-k>0 ϕ(2 -k •). Then {ϕ k } k≥0 gives a Littlewood-Paley decomposition on R d such that supp ϕ k ⊂ {ξ ∈ R d : 2 k-1 ≤ |ξ| ≤ 2 k+1 }, ∀ k ∈ N, supp ϕ 0 ⊂ {ξ ∈ R d : |ξ| ≤ 2} (1.2)
and that

∞ k=0 ϕ k (ξ) = 1 , ∀ ξ ∈ R d .
(1.

3)

The homogeneous counterpart of the above decomposition is given by { φk } k∈Z . This time for every k ∈ Z, these functions are given by φk (ξ) = ϕ(2 -k ξ). We have

k∈Z ϕ k (ξ) = 1 , ∀ ξ = 0. (1.4) 
The Bessel potential and the Riesz potential are

J α = (1 -(2π) -2 ∆) α 2 and I α = (-(2π) -2 ∆) α 2
, respectively. If α = 1, we will abbreviate J 1 as J and I 1 as I. We denote also J α (ξ) = (1 + |ξ| 2 ) α 2 on R d and I α (ξ) = |ξ| α on R d \ {0}. Then J α and I α are the symbols of the Fourier multipliers J α and I α , respectively.

We denote by H σ 2 (R d ) the potential Sobolev space, consisting of all tempered distributions f such that

J σ (f ) ∈ L 2 (R d ).
Let S(R d ; X) be the space of X-valued rapidly decreasing functions on R d with the standard Fréchet topology, and S (R d ; X) be the space of continuous linear maps from S(R d ) to X. All operations on S(R d ) such as derivations, convolution and Fourier transform transfer to S (R d ; X) in the usual way. On the other hand, L p (R d ; X) naturally embeds into S (R d ; X) for 1 ≤ p ≤ ∞, where L p (R d ; X) stands for the space of strongly p-integrable functions from R d to X. By this definition, Fourier multipliers on R d , in particular the Bessel and Riesz potentials, extend to vector valued tempered distributions in a natural way.

We will frequently use the following Cauchy-Schwarz type inequality for the operator square function,

R d φ(s)f (s)ds 2 ≤ R d |φ(s)| 2 ds R d |f (s)| 2 ds, ( 1.5) 
where φ : R d → C and f : R d → L 1 (M) + M are functions such that all integrations of the above inequality make sense. We also require the operator-valued version of the Plancherel formula. For sufficiently nice functions f :

R d → L 1 (M) + M, for example, for f ∈ L 2 (R d ) ⊗ L 2 (M), we have R d |f (s)| 2 ds = R d | f (ξ)| 2 dξ. (1.6)
Given two nice functions f and g, the polarized version of the above equality is

R d f (s)g * (s)ds = R d f (ξ) g(ξ) * dξ.
(1.7)

Operator-valued Hardy spaces

Throughout the remainder of the thesis, unless explicitly stated otherwise, (M, τ ) will be fixed as before and N = L ∞ (R d )⊗M, equipped with the tensor trace. In this section, we introduce Mei's operator-valued Hardy spaces. Contrary to the custom, we will use letters s, t to denote variables of R d since letters x, y are reserved for operators in noncommutative L p -spaces. Accordingly, a generic element of the upper half-space R d+1 + will be denoted by (s, ε) with ε > 0, where R d+1

+ = {(s, ε) : s ∈ R d , ε > 0}. Let P be the Poisson kernel on R d : P(s) = c d 1 (|s| 2 + 1) d+1 2
with c d the usual normalizing constant and |s| the Euclidean norm of s. Let

P ε (s) = 1 ε d P( s ε ) = c d ε (|s| 2 + ε 2 ) d+1 2
.

For any function f on R d with values in L 1 (M) + M, its Poisson integral, whenever it exists, will be denoted by P ε (f ):

P ε (f )(s) = R d P ε (s -t)f (t)dt, (s, ε) ∈ R d+1 + .
Note that the Poisson integral of f exists if

f ∈ L 1 M; L c 2 (R d , dt 1 + |t| d+1 ) + L ∞ M; L c 2 (R d , dt 1 + |t| d+1 ) .
This space is the right space in which all functions considered in this thesis live as far as only column spaces are involved. As it will appear frequently later, to simplify notation, we will denote the Hilbert space L 2 (R d , dt 1+|t| d+1 ) by R d :

R d = L 2 (R d , dt 1 + |t| d+1 ).
(1.8)

The Lusin area square function of f is defined by

S c (f )(s) = Γ ∂ ∂ε P ε (f )(s + t) 2 dt dε ε d-1 1 2 , s ∈ R d , (1.9)
where Γ is the cone [START_REF] Mei | Operator-valued Hardy Spaces[END_REF] uses the gradient of P ε (f ) instead of the sole radial derivative in the definition of S c above, but this does not affect H c p (R d , M) (up to equivalent norms). At the same time, it is proved in [START_REF] Mei | Operator-valued Hardy Spaces[END_REF] that H c p (R d , M) can be equally defined by the Littlewood-Paley g-function:

{(t, ε) ∈ R d+1 + : |t| < ε}. For 1 ≤ p < ∞ define the column Hardy space H c p (R d , M) to be H c p (R d , M) = f : f H c p = S c (f ) p < ∞ . Note that
G c (f )(s) = ∞ 0 ε ∂ ∂ε P ε (f )(s) 2 dε 1 2 , s ∈ R d . (1.10) Thus f H c p ≈ G c (f ) p , f ∈ H c p (R d , M).
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The row Hardy space

H r p (R d , M) is the space of all f such that f * ∈ H c p (R d , M), equipped with the norm f H r p = f * H c p .
Finally, we define the mixture space H p (R d , M) as

H p (R d , M) = H c p (R d , M) + H r p (R d , M) for 1 ≤ p ≤ 2
equipped with the sum norm

f Hp = inf f 1 H c p + f 2 H r p : f = f 1 + f 2 , and H p (R d , M) = H c p (R d , M) ∩ H r p (R d , M) for 2 < p < ∞ equipped with the intersection norm f Hp = max f H c p , f H r p . Observe that H c 2 (R d , M) = H r 2 (R d , M) = L 2 (N ) with equivalent norms. It is proved in [42] that for 1 < p < ∞ H p (R d , M) = L p (N ) with equivalent norms.
The operator-valued BMO spaces are also studied in [START_REF] Mei | Operator-valued Hardy Spaces[END_REF]. Let Q be a cube in R d (with sides parallel to the axes) and |Q| its volume. For a function f with values in M, f Q denotes its mean over Q:

f Q = 1 |Q| Q f (t)dt.
The column BMO norm of f is defined to be

f BMO c = sup Q⊂R d 1 |Q| Q f (t) -f Q 2 dt 1 2 M . (1.11) Then BMO c (R d , M) = f ∈ L ∞ M; R c d : f BMO c < ∞ . Similarly, we define the row space BMO r (R d , M) as the space of f such that f * lies in BMO c (R d , M), and BMO(R d , M) = BMO c (R d , M) ∩ BMO r (R d , M) with the intersection norm.
In [START_REF] Mei | Operator-valued Hardy Spaces[END_REF], it is showed that the dual of H c 1 (R d , M) can be naturally identified with BMO c (R d , M). This is the operator-valued analogue of the celebrated Fefferman H 1 -BMO duality theorem.

On the other hand, one of the main results of [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF] asserts that the Poisson kernel in the definition of Hardy spaces can be replaced by more general test functions.

Take any Schwartz function Φ with vanishing mean. We will assume that Φ is nondegenerate in the following sense:

∀ ξ ∈ R d \ {0}, ∃ ε > 0, s.t. Φ(εξ) = 0.
(1.12)

The radial and conic square functions of f associated to Φ are defined by replacing the partial derivative of the Poisson kernel P in S c (f ) and G c (f ) by Φ :

S c Φ (f )(s) = Γ |Φ ε * f (s + t)| 2 dtdε ε d+1 1 2 , s ∈ R d (1.13)
and

G c Φ (f )(s) = ∞ 0 |Φ ε * f (s)| 2 dε ε 1 2 . (1.14)
The following two lemmas are taken from [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF]. The first one says that the two square functions above define equivalent norms in

H c p (R d , M): Lemma 1.1. Let 1 ≤ p < ∞ and f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ). Then f ∈ H c p (R d , M) if and only if G c Φ (f ) ∈ L p (N ) if and only if S c Φ (f ) ∈ L p (N ). If this is the case, then G c Φ (f ) p ≈ S c Φ (f ) p ≈ f H c p
with the relevant constants depending only on p, d and Φ.

The above square functions G c Φ and S c Φ can be discretized as follows:

G c,D Φ (f )(s) = ∞ j=-∞ |Φ 2 -j * f (s)| 2 1 2 S c,D Φ (f )(s) = ∞ j=-∞ 2 dj B(s,2 -j ) |Φ 2 -j * f (t)| 2 dt 1 2 .
(1.15)

Here B(s, r) denotes the ball of R d with center s and radius r. To prove that these discrete square functions also describe our Hardy spaces, we need to impose the following condition on the previous Schwartz function Φ, which is stronger than (1.12):

∀ ξ ∈ R d \ {0}, ∃ 0 < 2a ≤ b < ∞ s.t. Φ(εξ) = 0, ∀ ε ∈ (a, b]. (1.16)
The following is the discrete version of Lemma 1.1:

Lemma 1.2. Let 1 ≤ p < ∞ and f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ). Then f ∈ H c p (R d , M) if and only if G c,D Φ (f ) ∈ L p (N ) if and only if S c,D Φ (f ) ∈ L p (N ). Moreover, G c,D Φ (f ) p ≈ S c,D Φ (f ) p ≈ f H c p
with the relevant constants depending only on p, d and Φ.

Chapter 2

Operator-valued local Hardy spaces 

Operator-valued local Hardy spaces

Let f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ) (
s c (f )(s) = Γ ∂ ∂ε P ε (f )(s + t) 2 dtdε ε d-1 1 2 , s ∈ R d ,
where Γ is the truncated cone {(t, ε) ∈ R d+1 

+ : |t| < ε < 1}. It
S = {(s, ε) : s ∈ R d , 0 < ε < 1}. For 1 ≤ p < ∞ define the column local Hardy space h c p (R d , M) to be h c p (R d , M) = {f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ) : f h c p < ∞},
where the h c p (R d , M)-norm of f is defined by

f h c p = s c (f ) Lp(N ) + P * f Lp(N ) .

The row local Hardy

space h r p (R d , M) is the space of all f such that f * ∈ h c p (R d , M), equipped with the norm f h r p = f * h c p . Moreover, define the mixture space h p (R d , M) as follows: h p (R d , M) = h c p (R d , M) + h r p (R d , M) for 1 ≤ p ≤ 2 equipped with the sum norm f hp = inf{ g h c p + h h r p : f = g + h, g ∈ h c p (R d , M), h ∈ h r p (R d , M)},
and h p (R d , M) = h c p (R d , M) ∩ h r p (R d , M) for 2 < p < ∞ equipped with the intersection norm f hp = max{ f h c p , f h r p }.
The local analogue of the Littlewood-Paley g-function of f is defined by

g c (f )(s) = 1 0 | ∂ ∂ε P ε (f )(s)| 2 εdε 1 2 , s ∈ R d .
We will see in chapter 6 that

s c (f ) p + P * f p ≈ g c (f ) p + P * f p for all 1 ≤ p < ∞.
We close this section by some easy facts that will be frequently used later. Firstly, we have

s c (f ) 2 2 + P * f 2 2 ≈ f 2 2 .
(2.1) Indeed, by (1.6), we have

R d ∂ ∂ε P ε (f )(s) 2 ds = R d ∂ ∂ε P ε (ξ) 2 | f (ξ)| 2 dξ = R d 4π 2 |ξ| 2 | f (ξ)| 2 e -4πε|ξ| dξ. Then R d 1 0 ∂ ∂ε P ε (f )(s) 2 εdεds = 1 4 R d (1 -e -4π|ξ| -4π|ξ|e -4π|ξ| )| f (ξ)| 2 dξ.
Therefore

s c (f ) 2 2 = τ R d Γ ∂ ∂ε P ε (f )(s + t) 2 dεdt ε d-1 ds = τ R d 1 0 B(s,ε) ∂ ∂ε P ε (f )(t) 2 dεdt ε d-1 ds = c d τ R d 1 0 ∂ ∂ε P ε (f )(s) 2 εdεds = c d 4 τ R d (1 -e -4π|ξ| -4π|ξ|e -4π|ξ| )| f (ξ)| 2 dξ,
where c d is the volume of the unit ball in R d . Meanwhile,

P * f 2 2 = τ R d e -4π|ξ| | f (ξ)| 2 dξ.
Then we deduce (2.1) from the equality

4 c d s c (f ) 2 2 + P * f 2 2 = τ R d (1 -4π|ξ|e -4π|ξ| )| f (ξ)| 2 dξ
and the fact that 0 ≤ 4π|ξ|e -4π|ξ| ≤ 1 e for every ξ ∈ R d . Passing to adjoint, (2.1) also tells us that

f h r 2 (R d ,M) ≈ f * 2 = f 2 , whence h c 2 (R d , M) = h r 2 (R d , M) = L 2 (N ) (2.2)
with equivalent norms.

Next, if we apply (1.7) instead of (1.6) in the above proof, we get the following polarized version of (2.1),

R d f (s)g * (s)ds = 4 R d 1 0 ∂ ∂ε P ε (f )(s) ∂ ∂ε P ε (g) * (s)ε dεds + R d P * f (s)(P * g(s)) * ds + 4π R d P * f (s)(I(P) * g(s)) * ds. = 4 c d R d Γ ∂ ∂ε P ε (f )(s + t) ∂ ∂ε P ε (g) * (s + t) dtdε ε d-1 ds + R d P * f (s)(P * g(s)) * ds + 4π R d P * f (s)(I(P) * g(s)) * ds (2.3) for nice f , g ∈ L 1 (M; R c d ) + L ∞ (M; R c d ) (recalling that I is the Riesz potential).

Operator-valued bmo spaces

Now we introduce the noncommutative analogue of bmo spaces defined in [START_REF] Goldberg | A local version of real Hardy spaces[END_REF]. For any cube Q ⊂ R d , in the whole thesis, we will denote its center by c Q , its side length by l(Q), and its volume by

|Q|. Let f ∈ L ∞ (M; R c d ). The mean value of f over Q is denoted by f Q := 1 |Q| Q f (s)ds. We set f bmo c = max sup |Q|<1 ( 1 |Q| Q |f -f Q | 2 dt) 1 2 M , sup |Q|=1 ( Q |f | 2 dt) 1 2
M .

(2.4)

Then we define bmo c (R d , M) = {f ∈ L ∞ (M; R c d ) : f bmo c < ∞}.
Respectively, define bmo r (R d , M) to be the space of all f ∈ L ∞ (M; R r d ) such that

f * bmo c < ∞ with the norm f bmo r = f * bmo c . And bmo(R d , M) is defined as the intersection of these two spaces bmo(R d , M) = bmo c (R d , M) ∩ bmo r (R d , M)
equipped with the norm

f bmo = max{ f bmo c , f bmo r }.
Remark 2.1. Let Q be a cube with volume k d ≤ |Q| < (k + 1) d for some positive integer k. Then Q can be covered by at most (k + 1) d cubes with volume 1, say Q j 's. Evidently,

1 |Q| Q |f | 2 dt ≤ k -d Q |f | 2 dt ≤ k -d (k+1) d j=1 Q j |f | 2 dt. Whence, sup |Q|≥1 ( 1 |Q| Q |f | 2 dt) 1 2 M ≤ 2 d 2 sup |Q|=1 ( Q |f | 2 dt) 1 2
M .

Thus, if we replace the second supremum in (2.4) over all cubes of volume one by that over all cubes of volume not less than one, we get an equivalent norm of bmo c (R d , M).

Proposition 2.2. Let f ∈ bmo c (R d , M). Then f L∞(M;R c d ) f bmo c . Moreover, bmo(R d , M), bmo c (R d , M
) and bmo r (R d , M) are Banach spaces.

Proof. Let Q 0 be the cube centered at the origin with side length 1 and

Q m = Q 0 + m for each m ∈ Z d . For f ∈ L ∞ (M; R c d ), f 2 L∞(M;R c d ) = R d |f (t)| 2 1 + |t| d+1 dt M ≤ m∈Z d Qm |f (t)| 2 1 + |t| d+1 dt M m∈Z d 1 1 + |m| d+1 Qm |f (t)| 2 dt M f 2 bmo c m∈Z d 1 1 + |m| d+1 f 2 bmo c .
It is then easy to check that bmo c (R d , M) is a Banach space.

Proposition 2.3. We have the inclusion bmo c (R d , M) ⊂ BMO c (R d , M). More precisely, there exists a uniform constant C depending only on the dimension d, such that for any

f ∈ bmo c (R d , M), f BMO c ≤ C f bmo c . (2.5)
Proof. By virtue of Remark 2.1, it suffices to compare the term ( 1

|Q| Q |f | 2 dt) 1 2
M and the term (

1 |Q| Q |f -f Q | 2 dt) 1 2

M

for |Q| ≥ 1. By the triangle inequality and (1.5), we have

( 1 |Q| Q |f -f Q | 2 dt) 1 2 M ≤ ( 1 |Q| Q |f | 2 dt) 1 2 M + f Q M ≤ 2 ( 1 |Q| Q |f | 2 dt) 1 2

M

, which leads immediately to (2.5).

Classically, BMO functions are related to Carleson measures (see [START_REF] Garnett | Bounded analytic functions[END_REF]). A similar relation still holds in the present noncommutative local setting. We say that an M-valued measure dλ on the strip S = R d × (0, 1) is a Carleson measure if

N (λ) = sup |Q|≤1 { 1 |Q| T (Q) dλ M : Q ⊂ R d cube } < ∞,
where

T (Q) = Q × (0, l(Q)]. Lemma 2.4. Let g ∈ bmo c (R d , M). Then dλ g = | ∂ ∂ε P ε (g)(s)| 2 ε dsdε is an M-valued Carleson measure on the strip S and max{N (λ g ) 1 2 , P * g L∞(N ) } g bmo c .
Proof. Given a cube Q with |Q| ≤ 1, we decompose g = g 1 +g 2 +g 3 , where g 1 = (g-g 2Q )1 2Q and g 2 = (g -g 2Q )1 R d \2Q . Since ∂ ∂ε P ε (s)ds = 0 for any ε > 0, we have

∂ ∂ε P ε (g) = ∂ ∂ε P ε (g 1 ) + ∂ ∂ε P ε (g 2 )
. By (1.5),

N (λ g ) ≤ 2(N (λ g 1 ) + N (λ g 2 )).
We first deal with N (λ g 1 ). By (1.6) and (2.5), we have

T (Q) ∂ ∂ε P ε (g 1 )(s) 2 εdsdε ≤ R d ∞ 0 ∂ ∂ε P ε (g 1 )(s) 2 εdsdε = R d ∞ 0 ∂ ∂ε P ε (ξ) 2 | g 1 (ξ)| 2 εdεds R d |g 1 (s)| 2 ds = 2Q |g -g 2Q | 2 ds |Q| g 2 bmo c .
Thus, N (λ g 1 ) g 2 bmo c . Since ∂ ∂ε P ε (s) 1 (ε+|s|) d+1 , applying (1.5), we obtain

∂ ∂ε P ε (g 2 )(s) 2 1 ε R d \2Q |g(t) -g 2Q | 2 (ε + |s -t|) d+1 dt.
The integral on the right hand side of the above inequality can be treated by a standard argument as follows: for any (s, ε) ∈ T (Q),

R d \2Q |g(t) -g 2Q | 2 (ε + |s -t|) d+1 dt R d \2Q |g(t) -g 2Q | 2 |t -c Q | d+1 dt k≥1 2 k+1 Q\2 k Q |g(t) -g 2Q | 2 |t -c Q | d+1 dt 1 l(Q) k≥1 2 -k 1 |2 k+1 Q| 2 k+1 Q |g(t) -g 2Q | 2 dt 1 l(Q) f 2 bmo c ,
where c Q is the center of Q. Then, it follows that N (λ g 2 ) g 2 bmo c . Now we deal with the term P * g(s) M . Let Q m = Q 0 + m be the translate of the cube with volume one centered at the origin, so R d = ∪ m∈Z d Q m . By (1.5), for any s ∈ R d , we have

P * g(s) M = m Qm P(t)g(s -t)dt M ≤ m Qm |P(t)| 2 dt) 1 2 • sup m∈Z d ( Qm |g(s -t)| 2 dt 1 2 M sup |Q|=1 ( 1 |Q| Q |g(t)| 2 dt) 1 2 M g bmo c .
Thus, P * g L∞(N ) = sup s∈R d P * g(s) M g bmo c , which completes the proof.

Reexaming the last step of the above proof, we find that the only fact used for proving the inequality P * g L∞(N )

g bmo c is that m ( Qm |P(t)| 2 dt) 1 2 < ∞.
Recall that H σ 2 (R d ) denotes the potential Sobolev space, consisting of distributions f such that

J σ (f ) ∈ L 2 (R d ). It is equipped with the norm f H σ 2 (R d ) = J σ f L 2 (R d ) . If ψ is a function on R d such that ψ ∈ H σ 2 (R d ) for some σ > d 2 , we have m Qm |ψ(s)| 2 dt 1 2 m 1 (1 + |m| 2 ) σ 1 2 R d (1 + |s| 2 ) σ |ψ(s)| 2 ds 1 2 ψ H σ 2 .
Then we have the following replacement of the above lemma:

Lemma 2.5. Let g ∈ bmo c (R d , M). If ψ is the (inverse) Fourier transform of a function in H σ 2 (R d ), we have max{N (λ g ) 1 2 , ψ * g L∞(N ) } g bmo c . (2.6)
In particular, max{N (λ g ) Remark 2.6. We will see in the next chapter that the converse inequality of (2.7) also holds.

Chapter 3

Dual spaces of h c p for 1 ≤ p < 2

In this chapter, we will describe the dual of h c p (R d , M) for 1 ≤ p < 2 as bmo type spaces. We will call these spaces bmo c q (R d , M) (with q the conjugate index of p). The argument used here is modelled on the one used in [START_REF] Goldberg | A local version of real Hardy spaces[END_REF] when studying the duality between H c p (R d , M) and BMO c q (R d , M).

Definition of bmo c q

Let 2 < q ≤ ∞. We define bmo c q (R d , M) to be the space of all f ∈ L q (M; R c d ) such that

f bmo c q = sup + s∈Q⊂R d |Q|<1 1 |Q| Q |f (t) -f Q | 2 dt q 2 q 2 + sup + s∈Q⊂R d |Q|=1 1 |Q| Q |f (t)| 2 dt q 2 q 2 1 q < ∞.
If q = ∞, bmo c q (R d , M) coincides with the space bmo c (R d , M) introduced in the previous chapter.

Note that the norm sup + i a i q 2 is just an intuitive notation since the pointwise supremum does not make any sense in the noncommutative setting. This is the norm of the Banach space L q 2 (N ; ∞ ); we refer to [START_REF] Pisier | Noncommutative vector valued L p spaces and completely p-summing maps[END_REF][START_REF] Junge | Doob's inequality for non-commutative martingales[END_REF][START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF] for more information. If 1 ≤ p < ∞ and (a i ) i∈Z is a sequence of positive elements in L p (N ), it has been proved by Junge (see [START_REF] Junge | Doob's inequality for non-commutative martingales[END_REF], Remark 3.7) that sup i

+ a i p = sup i∈Z τ (a i b i ) : b i ∈ L q (N ), b i ≥ 0, i∈Z b i q ≤ 1 . (3.1)
It is also known that a positive sequence (x i ) i belongs to L p (N ; ∞ ) if and only if there is an a ∈ L p (N ) such that x i ≤ a for all i, and moreover,

(x i ) Lp(N ; ∞) = inf{ a p : a ∈ L p (N ), x i ≤ a, ∀i}.
Then we get the following fact (which can be taken as an equivalent definition):

f ∈ bmo c q (R d , M) if and only if ∃ a ∈ L q 2 (N ) s.t. 1 |Q| Q |f (t) -f Q | 2 dt ≤ a(s), ∀ s ∈ Q and ∀ Q ⊂ R d with |Q| < 1 (3.2)
and

∃ b ∈ L q 2 (N ) s.t. 1 |Q| Q |f (t)| 2 dt ≤ b(s), ∀ s ∈ Q and ∀ Q ⊂ R d with |Q| = 1. (3.3) Chapter 3. Dual spaces of h c p for 1 ≤ p < 2
If this is the case, then

f bmo c q = inf a q 2 q 2 + b q 2 q 2
1 q : a, b as in (3.2) and (3.3) respectively .

Observe that the cubes considered in the definition of bmo c q (R d , M) can be reduced to cubes with dyadic lengths. Let Q k s denote the cube centered at s with side length 2

-k , k ∈ Z. Set f # k (s) = 1 |Q k s | Q k s f (t) -f Q k s 2 dt and f # (s) = 1 |Q 0 s | Q 0 s f (t) 2 dt. Lemma 3.1. If q > 2, then sup k>0 + f # k q 2 q 2 + f # q 2 q 2 1 q
gives an equivalent norm in bmo c q (R d , M).

Proof. It is obvious from the definition that sup k>0

+ f # k 1 2 q 2 ≤ f bmo c q and f # 1 2 q 2 ≤ f bmo c q .
We notice that for any cube

Q with |Q| < 1 and s ∈ Q, there exists k ≥ -1 such that Q ⊂ Q k s and |Q k s | ≤ 4 d |Q|. Thus 1 4 d sup + s∈Q⊂R d |Q|<1 1 |Q| Q |f (t) -f Q | 2 dt 1 2 q 2 sup k≥-1 + f # k 1 2 q 2 2 d sup k>0 + f # k 1 2 q 2 .
Similarly,

1 4 d sup + s∈Q⊂R d |Q|=1 1 |Q| Q |f (t)| 2 dt 1 2 q 2 ≤ 2 d f # 1 2 q 2 .
Thus the lemma is proved.

We can easily see that the analogues of Proposition 2.2 and Lemma 2.4 still hold in the present setting for the same reason. Thus we leave the proofs to the reader.

Proposition 3.2. Let q > 2 and f ∈ bmo c q (R d , M). Then f Lq(M;R c d ) f bmo c q . Lemma 3.3. Let f ∈ bmo c q (R d , M
) and assume that the operators a and b satisfy (3.2) and (3.3) respectively. Then dλ g is a q-Carleson measure in the following sense:

1 |Q| T (Q) | ∂ ∂ε P ε * f (t)| 2 εdtdε a(s), ∀ s ∈ Q and ∀ Q ⊂ R d with |Q| < 1. Moreover, |ψ * f (s)| 2 b(s) for any s ∈ R d , if ψ is the (inverse) Fourier transform of a function in H σ 2 (R d ).

A bounded map

In the sequel, we equip the truncated cone Γ = {(s, ε) ∈ R d+1 

+ : |s| < ε < 1}
F (f )(s, t, ε) = ε ∂ ∂ε P ε (f )(s + t), P * f (s) ,
and a map E for sufficiently nice h = (h , h

) ∈ L p N ; L c 2 ( Γ) ⊕ p L p (N ) by E(h)(u) = R d 4 c d Γ h (s, t, ε) ∂ ∂ε P ε (s + t -u) dtdε ε d + h (s)(P + 4πI(P))(s -u) ds .
By definition, the map

F embeds h c p (R d , M) isometrically into L p N ; L c 2 ( Γ) ⊕ p L p (N ).
The following results, Theorems 3.8 and 3.17 show that by identifying h

c p (R d , M) as a subspace of L p N ; L c 2 ( Γ) ⊕ p L p (N ) via F , h c p (R d , M) is complemented in L p N ; L c 2 ( Γ) ⊕ p L p (N ) for every 1 < p < ∞ by virtue of the map E. Proposition 3.5. Let 1 ≤ p < ∞. Then for any nice f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ), we have E(F (f )) = f.
Proof. Applying (2.3), we get, for any nice function g,

R d E(F (f ))(u)g(u)du = R d 4 c d Γ ∂ ∂ε P ε (f )(s + t) ∂ ∂ε P ε (s + t -u) dtdε ε d-1 g(u)du + P * f (s) (P(s -u) + 4πI(P)(s -u))g(u)du ds = R d 4 c d Γ ∂ ∂ε P ε (f )(s + t) ∂ ∂ε P ε (g)(s + t) dtdε ε d-1 + P * f (s)(P * g + 4πI(P) * g)(s) ds = R d f (u)g(u)du ,
which completes the proof.

The following dyadic covering lemma is known. Tao Mei ([42]) proved this lemma for the d-torus and also for the real line. For the case R d with d > 1, we refer the interested readers to [START_REF] Conde | A note on dyadic coverings and nondoubling Calderón-Zygmund theory[END_REF][START_REF] Hytönen | The real-variable Hardy space and BMO[END_REF] for more details. In the following, we will give a sketch of the way how we choose the dyadic covering. Lemma 3.6. There exist a constant C > 0, depending only on d, and d + 1 dyadic increasing filtrations

D i = {D i j } j∈Z of σ-algebras on R d for 0 ≤ i ≤ d, such that for any cube Q ⊂ R d , there is a cube D i m,j satisfying Q ⊂ D i m,j and |D i m,j | ≤ C|Q|. p for 1 ≤ p < 2
Proof. Let {α i } d i=0 be a sequence in the interval (0, 1) such that min

i =i |α i -α i | > 0.
Then we define

α i j =        α i , j ≥ 0, α i + 1 3 (2 -j -1)
, j < 0 and -j even, α i -1 3 (2 -j + 1), j < 0 and -j odd.

(3.4)

The σ-algebra D i j is generated by the cubes To show the boundedness of the map E, we need the following assertion by Mei, see [42, Proposition 3.2]; we include a proof for this lemma, since the one in [START_REF] Mei | Operator-valued Hardy Spaces[END_REF] is the one dimensional case. Let 1 ≤ p < ∞, and f ∈ L p (N ) be a positive function. Let Q be a cube centered at the origin, and denote

D i m,j = (α i j + m 1 2 -j , α i j + (m 1 + 1)2 -j ] × • • • × (α i j + m d 2 -j , α i j + (m d + 1)2 -j ], for all m = (m 1 , • • • , m d ) ∈ Z d . For any cube Q ⊂ R d ,
Q t = t + Q. Then we define f Q (t) = 1 |Q| Qt f (s)ds.
Lemma 3.7. Let 1 ≤ p < ∞ and let (f k ) k∈Z be a positive sequence in L p (N ) and (Q k ) k∈Z be a sequence of cubes centered at the origin. Then

k∈Z (f k ) Q k p k∈Z f k p .
Proof. Similarly to the proof of [42, Proposition 3.2], we are going to apply [28, Theorem 0.1] for noncommutative martingales. By Lemma 3.6, we can cover every Q k by some D i m ,j k , and thus by some D i m,j k -1 , which has twice the side length of

D i m ,j k . Moreover, |D i m,j k -1 | ≤ C|Q k |. Obviously, t + Q k is still covered by t + D i m,j k -1
, but the later is not necessary a dyadic cube in D i j k -1 . Let us adjust the translation vector t = (t 1 , ..., t d ) as follows. Write

Q k = (-a, a] × ... × (-a, a] and D i m,j k -1 = (b 1 , b 2 ] × ... × (b 1 , b 2 ], then either b 2 -a ≥ 2 -j k or -a -b 1 ≥ 2 -j k .
Without loss of generality, we can assume b 2 -a ≥ 2 -j k . Now set t = ( t 1 , ..., t d ) with t j the largest real number in the set 2 -j k Z less than t j . Then we can check that t + Q k is covered by t + D i m,j k -1 and that the later is a dyadic cube. Thus,

(f k ) Q k ≤ C 0≤i≤d E(f k |D i j k ),
where E(•|D i j ) denotes the conditional expectation with respect to D i j . Then the lemma follows from [28, Theorem 0.1].

Theorem 3.8. For 2 < p ≤ ∞, E extends to a bounded map from L p N ; L c 2 ( Γ) ⊕ p L p (N ) to bmo c p (R d , M).
Proof. We have to show that for any h = (h , h

) ∈ L p N ; L c 2 ( Γ) ⊕ p L p (N ), E(h) bmo c p h Lp N ;L c 2 ( Γ) ⊕pLp(N ) . Fix h = (h , h ) ∈ L p N ; L c 2 ( Γ) ⊕ p L p (N ) and set ϕ = E(h). For v ∈ R d and k ∈ N, denote by Q k v the cube centered at v with side length 2 -k , then we have Q k v = v + Q k 0 . We set h 1 (s, t, ε) = h (s, t, ε)1 Q k-1 v (s), h 2 (s, t, ε) = h (s, t, ε)1 (Q k-1 v ) c (s) and ϕ # k (v) = 1 |Q k v | Q k v ϕ(u) -ϕ Q k v 2 du. Let B Q k 0 (v) = R d Γ ( ∂ ∂ε P ε ) Q k 0 (s, t, v)h 2 (s, t, ε) dtdε ε d ds with ( ∂ ∂ε P ε ) Q k 0 (s, t, v) = 1 |Q k v | Q k v ∂ ∂ε P ε (s + t -u)du. Then, we have ϕ # k (v) 1 |Q k v | Q k v |ϕ(u) -B Q k 0 (v)| 2 du 1 |Q k v | Q k v (Q k-1 v ) c Γ h 2 (s, t, ε) ∂ ∂ε P ε (s + t -u) -( ∂ ∂ε P ε ) Q k 0 (s, t, v) dtdε ε d ds 2 du + 1 |Q k v | Q k v Q k-1 v Γ h 1 (s, t, ε) ∂ ∂ε P ε (s + t -u) dtdε ε d ds 2 du + 1 |Q k v | Q k v R d h (s)[P(s -u) + 4πI(P)(s -u)]ds 2 du. When s ∈ (Q k-1 v ) c , u ∈ Q k v and (t, ε) ∈ Γ, we have |s + t -u| + ε ≈ |s -v| + ε with uniform constants. Then, Γ ∂ ∂ε P ε (s + t -u) -( ∂ ∂ε P ε ) Q k 0 (s, t, v) 2 dtdε ε d-1 Γ 2 -k (|s + t -u| + ε) d+2 2 dtdε ε d-1 1 0 B(0,ε) 2 -2k (|s -v| 2 + ε 2 ) d+2 dt dε ε d-1 = c d 1 0 2 -2k ε (|s -v| 2 + ε 2 ) d+2 dε 2 -2k |s -v| 2d+2 .
Let (a k ) k∈N be a positive sequence such that k≥1 a k ( p 2 ) ≤ 1, where r denotes the conjugate index of r.

Let A = k≥1 τ R d (Q k-1 v ) c 2 -2k |s -v| d+1 ds • (Q k-1 v ) c 1 |s -v| d+1 Γ |h 2 (s, t, ε)| 2 dtdε ε d+1 ds • a k (v)dv B = k≥1 τ R d 1 |Q k v | Q k v Q k-1 v Γ h 1 (s, t, ε) ∂ ∂ε P ε (s + t -u) dtdε ε d+1 ds 2 du • a k (v)dv C = k≥1 τ R d 1 |Q k v | Q k v R d h (s)[P(s -u) + 4πI(P)(s -u)]ds 2 du • a k (v)dv.
Then,

k≥1 τ ϕ # k (v)a k (v)dv A + B + C.
First, we estimate the term A. Applying the Fubini theorem and the Hölder inequality, we arrive at

A k≥1 τ R d 2 -k (Q k-1 s ) c |v -s| -d-1 Γ |h 2 (s, t, ε)| 2 dtdε ε d+1 ds a k (v)dv ≤ Γ |h 2 (•, t, ε)| 2 dtdε ε d+1 p 2 • k≥1 2 -k (Q k-1 s ) c |v -s| -d-1 a k (v)dv ( p 2 ) h 2 Lp(N ;L c 2 ( Γ)) • k≥1 2 -k j≤k Q j-2 s \Q j-1 s 2 (j-1)(d+1) a k (v)dv ( p 2 )
.

Here and in the context below,

• ( p 2 )
is the norm of L ( p 2 ) (N ) with respect to the variable s ∈ R d . Now we apply Lemma 3.7 to estimate the second factor of the last term:

k≥1 j≤k 2 (j-1)d Q j-2 s \Q j-1 s 2 j-k-1 a k (v)dv ( p 2 )
j∈Z k≥j k≥1

2 j-k-1 a k ( p 2 ) k≥1 a k ( p 2 ) ≤ 1.
Then we move to the estimate of B:

B ≤ k≥1 R d 2 kd τ R d Q k-1 v Γ h 1 (s, t, ε)a 1 2 k (v) ∂ ∂ε P ε (s + t -u) dtdε ε d ds 2 dudv ≤ k≥1 R d 2 kd sup f 2 =1 τ Q k-1 v Γ h 1 (s, t, ε)a 1 2 k (v) ∂ ∂ε P ε (f ) * (s + t) dtdε ε d ds 2 dv. Since h c 2 (R d , M) = L 2 (N )
with equivalent norms, by the Cauchy-Schwarz inequality and Lemma 3.7, we get

B ≤ k≥1 R d 2 kd τ Q k-1 v Γ |h 1 (s, t, ε)| 2 dtdε ε d+1 ds a k (v)dv • f h c 2 k≥1 τ R d Γ |h 1 (s, t, ε)| 2 dtdε ε d+1 2 kd Q k-1 s a k (v)dvds ≤ h 2 Lp N ;L c 2 ( Γ) k≥1 2 kd Q k-1 s a k (v)dv ( p 2 ) ≤ 2 d h 2 Lp N ;L c 2 ( Γ) k≥1 a k ( p 2 ) ≤ 2 d h 2 Lp N ;L c 2 ( Γ)
.

The techniques used to estimate the term C are similar to that of B:

C = k≥1 τ R d 2 kd Q k-1 v R d h (s)[P(s -u) + 4πI(P)(s -u)]ds 2 a k (v)dvdu ≤ k≥1 2 kd Q k-1 s a k (v)dv ( p 2 ) R d h (s)[P(s -u) + 4πI(P)(s -u)]ds 2 p 2 R d h (s)[P(s -u) + 4πI(P)(s -u)]ds 2 p 2
, where the

• p 2 is the norm of L p 2 (N ) with respect to the variable u ∈ R d . Take f ∈ L p (N ) with norm one such that R d h (s)[P(s -u) + 4πI(P)(s -u)]ds 2 p 2 = τ R d h (s)[P * f (s) + 4πI(P) * f (s)]ds 2 . Then τ R d h (s)[P * f (s) + 4πI(P) * f (s)]ds 2 ≤ h 2 p P * f + 4πI(P) * f 2 p h 2 p f 2 p ≤ h 2 p .
Combining the estimates of A, B and C with (3.1), we obtain

sup k≥1 + ϕ # k p 2 h 2 Lp N ;L c 2 ( Γ) ⊕pLp(N )
.

It remains to establish the L p 2 -norm of ϕ # (s) = 1 |Q 0 s | Q 0 s ϕ(t)
2 dt, which is relatively easy. For any positive operator a such that a L ( p 2 ) (N ) ≤ 1, we have

τ ϕ # (v)a(v)dv τ R d Q 0 v R d Γ h (s, t, ε) ∂ ∂ε P ε (s + t -u) dtdε ε d+1 ds 2 du • a(v)dv + τ R d Q 0 v R d h (s)[P(s -u) + 4πI(P)(s -u)]ds 2 du • a(v)dv def = B + C .
The terms B and C are treated in the same way as B and C respectively. The results are

B ≤ τ R d Γ |h (s, t, ε)| 2 dtdε ε d+1 Q 0 s a(v)dvds ≤ h 2 Lp N ;L c 2 ( Γ) a ( p 2 ) C ≤ Q 0 s a(v)dv ( p 2 ) R d h (s)[P(s -•) + 4πI(P)(s -•)]ds 2 p 2 h 2 p .
So we obtain

ϕ # p 2 h 2 Lp N ;L c 2 ( Γ) ⊕pLp(N )
.

Thus, Lemma 3.1 ensures that

E(h) bmo c p h Lp N ;L c 2 ( Γ) ⊕pLp(N )
, whence the theorem.

Corollary 3.9. Let 1 ≤ p < 2. For any f ∈ L p M; L c 2 (R d , (1 + |t| d+1 )dt) , we have f h c p f Lp M;L c 2 (R d ,(1+|t| d+1 )dt)
.

Proof. To simplify the notation, we denote L 2 R d , (1 + |t| d+1 )dt by W d . Let q be the conjugate index of p. By duality, we can choose h = (h , h ) ∈ L q (N ; L c 2 ) ⊕ q L q (N ) with norm one such that

s c (f ) p + P * f p = τ R d Γ ∂ ∂ε P ε (f )(s + t)h * (s, t, ε) dtdε ε d ds + τ R d P * f (s)h * (s)ds = τ f (u) E(h) * (u)du ,
where

E(h)(u) = R d Γ h (s, t, ε) ∂ ∂ε P ε (s + t -u) dtdε ε d + h (s)P(s -u) ds . (3.5)
Following the proof of Theorem 3.8, we can easily check that E is also bounded from L q N ; L c 2 ( Γ) ⊕ q L q (N ) to bmo c q (R d , M). They applying Proposition 3.2 and Theorem 3.8, we have

τ f (s) E(h) * (s)ds sup ϕ bmo c q (R d ,M) ≤1 τ f (s)ϕ * (s)ds sup ϕ Lq (M;R c d ) ≤1 τ (1 + |s| d+1 )f (s)ϕ * (s) ds 1 + |s| d+1 = (1 + |s| d+1 )f Lp(M;R c d ) = f Lp(M;W c d ) .
Thus we obtain the desired assertion.

Duality

The following is the main theorem of this section.

Theorem 3.10. Let 1 ≤ p < 2 and q be its conjugate index. We have

h c p (R d , M) * = bmo c q (R d , M) with equivalent norms. More precisely, every g ∈ bmo c q (R d , M) defines a continuous linear functional on h c p (R d , M) by g (f ) = τ f (s)g * (s)ds, ∀f ∈ L p (M; W c d ).
Conversely, every ∈ h c p (R d , M) * can be written as above and is associated to some g ∈ bmo c q (R d , M) with

(h c p ) * ≈ g bmo c q .
Proof. We first prove

| g (f )| g bmo c q f h c p (3.6) for f ∈ h c p (R d , M) compactly supported (relative to the variable of R d ).
We assume that f is sufficiently nice that all calculations below are legitimate. We need two auxiliary square functions. For s ∈ R d and ε ∈ [0, 1], we define

s c (f )(s, ε) = 1 ε B(s,r-ε 2 ) ∂ ∂r P r (f )(t) 2 dtdr r d-1 1 2 , ( 3.7 
)

s c (f )(s, ε) = 1 ε B(s, r 2 ) ∂ ∂r P r (f )(t) 2 dtdr r d-1 1 2 . (3.8) Both s c (f )(s, ε) and s c (f )(s, ε) are decreasing in ε and s c (f )(s, 0) = s c (f )(s). In addition, it is clear that s c (f )(s, ε) ≤ s c (f )(s, ε).
Let (e i ) i∈I be an increasing family of τ -finite projections of M such that e i converges to 1 M in the strong operator topology. Then we can approximate s c (f )(s, ε) by s c (e i f e i )(s, ε). Thus we can assume that τ is finite; under this finiteness assumption, for any small δ > 0 (which will tend to zero in the end of the proof), consider

s c (f )(s, ε) + δ1 M instead of s c (f )(s, ε), we can assume that s c (f )(s, ε) is invertible in M for every (s, ε) ∈ S. By (2.
3) and the Fubini theorem, we have

g (f ) = τ f (s)g * (s)ds τ R d 1 0 ∂ ∂ε P ε (f )(s) ∂ ∂ε P ε (g) * (s)ε dεds + τ R d P * f (s)(P * g(s)) * ds + τ R d P * f (s)(I(P) * g(s)) * ds = 2 d c d τ R d 1 0 B(s, ε 2 ) ∂ ∂ε P ε (f )(t) ∂ ∂ε P ε (g) * (t) dεdt ε d-1 ds + τ R d P * f (s)(P * g(s)) * ds + τ R d P * f (s)(I(P) * g(s)) * ds.
Then,

| g (f )| 2 d c d τ R d 1 0 B(s, ε 2 ) ∂ ∂ε P ε (f )(t)s c (f )(s, ε) p-2 2 s c (f )(s, ε) 2-p 2 ∂ ∂ε P ε (g) * (t) dεdt ε d-1 ds + τ R d P * f (s)(P * g(s)) * ds + τ R d P * f (s)(I(P) * g(s)) * ds def = I + II.
The term II is easy to deal with. By the Hölder inequality and (2.7), we get

II ≤ P * f p P * g q + P * f p I(P) * g q .
Then by [60, Proposition V.3 and Lemma V.3.2] we have P * g q J(P) * g q , and I(P) * g q J(P) * g q .

Hence, by Lemma 3.3, II g bmo c q f h c p . Now we estimate the term I. By the Cauchy-Schwarz inequality

c 2 d 4 d I 2 ≤ τ R d 1 0 B(s, ε 2 ) | ∂ ∂ε P ε (f )(t)| 2 dt ε d-1 s c (f )(s, ε) p-2 dεds • τ R d 1 0 B(s, ε 2 ) | ∂ ∂ε P ε (g)(t)| 2 dt ε d-1 s c (f )(s, ε) 2-p dεds def = A • B.
Note here that s c (f )(s, ε) is the function of two variables defined by (3.7), which is differentiable in the w * sense. We first deal with A.

Using s c (f )(s, ε) ≤ s c (f )(s, ε), we have A ≤ τ R d 1 0 B(s, ε 2 ) | ∂ ∂ε P ε (f )(t)| 2 s c (f )(s, ε) p-2 dεdt ε d-1 ds = -τ R d 1 0 ∂ ∂ε s c (f )(s, ε) 2 s c (f )(s, ε) p-2 dεds = -2τ R d 1 0 s c (f )(s, ε) p-1 ∂ ∂ε s c (f )(s, ε)dεds. Since 1 ≤ p < 2 and s c (f )(s, ε) is decreasing in ε, s c (f )(s, ε) p-1 ≤ s c (f )(s, 0) p-1 . At the same time, ∂ ∂ε s c (f )(s, ε) ≤ 0. Therefore, A -τ R d s c (f )(s, 0) p-1 1 0 ∂ ∂ε s(f ) c (s, ε)dεds τ R d s c (f )(s, 0) p ds = f p h c p .
The estimate of B is harder. For any j ∈ N, we need to create a square net partition in R d as follows:

Q m,j = ( 1 √ d (m 1 -1)2 -j , 1 √ d m 1 2 -j ] × • • • × ( 1 √ d (m d -1)2 -j , 1 √ d m d 2 -j ] with m = (m 1 , • • • , m d ) ∈ Z d . Let c m,j denote the center of Q m,j . Define S c (f )(s, j) = 1 2 -j B(c m,j ,r) | ∂ ∂r P r (f )(t)| 2 dtdr r d-1 1 2 if s ∈ Q m,j . (3.9)
For any s ∈ R d and k ∈ N 0 (N 0 being the set of nonnegative integers), we define

d(s, k) = S c (f )(s, k) 2-p -S c (f )(s, k -1) 2-p . Since B(s, r -ε 2 ) ⊂ B(c m,j , r) whenever s ∈ Q m,j and ε ≥ 2 -j , we have s c (f )(s, ε) ≤ S c (f )(s, j), ∀s ∈ Q m,j , ε ≥ 2 -j . It is clear that S c (f )(s, j) is increasing in j, so d(s, k) ≥ 0. At the same time, d(s, k) is constant on Q m,k and k≤j d(s, k) = S c (f )(s, j) 2-p . Therefore, B τ m∈Z d j≥1 Q m,j 2 -j+1 2 -j B(s, ε 2 ) | ∂ ∂ε P ε (g)(t)| 2 dt ε d-1 S c (f )(s, j) 2-p dεds = τ R d j≥1 S c (f )(s, j) 2-p 2 -j+1 2 -j B(s, ε 2 ) | ∂ ∂ε P ε (g)(t)| 2 dt ε d-1 dεds = τ R d j≥1 1≤k≤j d(s, k) 2 -j+1 2 -j B(s, ε 2 ) | ∂ ∂ε P ε (g)(t)| 2 dt ε d-1 dεds = τ R d k≥1 d(s, k) j≥k 2 -j+1 2 -j B(s, ε 2 ) | ∂ ∂ε P ε (g)(t)| 2 dt ε d-1 dεds = τ m k≥1 d(s, k) Q m,k 2 -k+1 0 B(s, ε 2 ) | ∂ ∂ε P ε (g)(t)| 2 dt ε d-1 dεds .
Since g ∈ bmo c q , Lemma 3.3 ensures the existence of a positive operator

a ∈ L q 2 (N ) such that a q 2 g 2 bmo c q and 1 |Q| T (Q) | ∂ ∂ε P ε (g)(t)| 2 εdtdε ≤ a(s) and for s ∈ Q and for all cubes Q with |Q| < 1.
Let Q m,k be the cube concentric with Q m,k and having side length 2 -k+1 . By the Fubini theorem and Lemma 2.4, we have

Q m,k 2 -k+1 0 B(s, ε 2 ) | ∂ ∂ε P ε (g)(t)| 2 dt ε d-1 dεds ≤ 2 d Q m,k 2 -k+1 0 | ∂ ∂ε P ε (g)(s)| 2 εdεds = 2 d T ( Q m,k ) | ∂ ∂ε P ε (g)(s)| 2 εdεds Q m,k a(s)ds.
Then we deduce

B τ m k≥1 Q m,k d(s, k)a(s)ds = τ R d k≥1 d(s, k)a(s)ds = τ R d S c (f )(s, +∞) 2-p a(s)ds = τ R d S c (f )(s) 2-p a(s)ds ≤ S c (f ) 2-p p a q 2 ≤ f 2-p h c p a q 2 f 2-p h c p g 2 bmo c q .
Combining the estimates of A and B, we complete the proof of inequality (3.6). With this in mind, a density argument then yields that g extends to a continuous functional on

h c p (R d , M) with norm g (h c p ) * g bmo c q .
Now we prove the converse. Suppose that ∈ h c p (R d , M) * . By the Hahn-Banach theorem, extends to a continuous functional on L p N ; L c 2 ( Γ) ⊕ p L p (N ) with the same norm. Thus, there exists h = (h , h

) ∈ L q N ; L c 2 ( Γ) ⊕ q L q (N ) such that (f ) = τ R d Γ ∂ ∂ε P ε (f )(s + t)h * (s, t, ε) dtdε ε d ds + τ R d P * f (s)h * (s)ds, = τ R d f (u) E(h) * (u)du,
where E is the map defined in (3.5), and that

h Lq N ;L c 2 ( Γ) ⊕qLq(N ) = (h c p ) * .

Let g = E(h).

Following the proof of Theorem 3.8, we have

g bmo c q (h c p ) * and (f ) = τ R d f (s)g * (s)ds, ∀f ∈ L p M; W c d .
Thus, we have accomplished the proof of the theorem.

Corollary 3.11. Let 2 < q ≤ ∞. Then g ∈ bmo c q (R d , M) if and only if dλ g = | ∂ ∂ε P ε (g)(s)| 2
εdsdε is an M-valued Carleson q-measure on S and J(P) * g q < ∞. Furthermore,

g bmo c q ≈ sup + s∈Q⊂R d |Q|<1 1 |Q| T (Q) | ∂ ∂ε P ε (g)(t)| 2 εdtdε 1 2 q 2
+ J(P) * g q .

Proof. From the proof of Theorem 3.10, we can see that if

dλ g = | ∂ ∂ε P ε (g)(s)| 2 εdsdε is an M-valued Carleson q-measure on S and J(P) * g ∈ L q (N ), then g defines a continuous functional on h c p (R d , M): (f ) = τ R d f (s)g * (s)ds,
and

(h c p ) * sup + s∈Q⊂R d |Q|<1 1 |Q| T (Q) | ∂ ∂ε P ε (g)(t)| 2 εdtdε 1 2 q 2
+ J(P) * g q .

By Theorem 3.10 again, there exists a function g ∈ bmo c q (R d , M) such that

g bmo c q sup + s∈Q⊂R d |Q|<1 1 |Q| T (Q) | ∂ ∂ε P ε (g)(t)| 2 εdtdε 1 2 q 2
+ J(P) * g q and that τ

R d f (s)g * (s)ds = τ R d f (s)g * (s)ds,
for any f ∈ h c p (R d , M). Thus, g = g with

g bmo c q sup + s∈Q⊂R d |Q|<1 1 |Q| T (Q) | ∂ ∂ε P ε (g)(t)| 2 εdtdε 1 2 q 2 + J(P) * g q .
The inverse inequality is already contained in Lemmas 2.4 and Lemma 2.7. We obtain the desired assertion.

The equivalence h q = bmo q

We begin with two lemmas concerning the comparison of s c (f ) and g c (f ). We require an auxiliary truncated square function. For s ∈ R d and ε ∈ [0, 2 3 ], we define:

g c (f )(s, ε) = 2 3 ε | ∂ ∂r P r (f )(s)| 2 rdr 1 2 .
(3.10) Lemma 3.12. We have

g c (f )(s, ε) s c (f )(s, ε 2 ),
where the relevant constant depends only on the dimension d.

Proof. By translation, it suffices to prove this inequality for s = 0. Given ε ∈ [0, 2 3 ], for any r such that ε ≤ r ≤ 2 3 , let us denote the ball centered at (0, r) and tangent to the boundary of the cone

{(t, u) ∈ R d+1 + : |t| < r-ε 2
r u} by B r . We notice that the radius of B r is greater than or equal to r √ 5 . By the harmonicity of ∂ ∂r P r (f ), we have

∂ ∂r P r (f )(0) = 1 | B r | Br ∂ ∂u P u (f )(t)dt.
Then by (1.5), we arrive at

| ∂ ∂r P r (f )(0)| 2 ≤ √ 5 d+1 c d+1 r d+1 Br | ∂ ∂u P u (f )(t)| 2 dt,
where c d+1 is the volume of the unit ball of R d+1 . Integrating the above inequality, we get

2 3 ε | ∂ ∂r P r (f )(0)| 2 rdr ≤ 2 3 ε √ 5 d+1 c d+1 r d Br | ∂ ∂u P u (f )(t)| 2 dtdudr. (3.11) Since (t, u) ∈ B r implies √ 5 √ 5+1 u ≤ r ≤ √ 5 √ 5-1 u and ε 2 ≤ u ≤ 1, the right hand side of (3.11) can be majorized by √ 5 d+1 c d+1 1 ε 2 Br | ∂ ∂u P u (f )(t)| 2 2u u 2 1 r d drdtdu ≤ C|s c (f )(0, ε 2 )| 2 ,
where C is a constant depending only on d. Therefore,

g c (f )(0, ε) s c (f )(0, ε 2 ). Lemma 3.13. Let 1 ≤ p < ∞. Then for any f ∈ h c p (R d , M), we have s c (f ) p + P * f p g c (f ) p + P * f p .
Proof. When 1 ≤ p < 2, let g be a function in bmo c q (R d , M) (q being the conjugate index of p). Following a similar calculation as (2.3), we can easily check that τ

R d f (s)g * (s)ds = 4τ R d 2 3 0 ∂ ∂ε P ε (f )(s) ∂ ∂ε P ε (g) * (s)εdεds + τ R d P * f (s)(P 1 3 * g(s)) * ds + 8π 3 τ R d P * f (s)(I(P 1 3 ) * g(s)) * ds def = I + II.
The term II can be treated in the same way as in the proof of Theorem 3.10:

II P * f p • J(P 1 3 ) * f p .
Applying Lemma 3.3, we have

II P * f p • g bmo c q .
Concerning the term I, we have

|I| 2 τ R d 2 3 0 | ∂ ∂ε P ε (f )(s)| 2 g c (f )(s, ε) p-2 εdεds • τ R d 2 3 0 | ∂ ∂ε P ε (g)(s)| 2 g c (f )(s, ε) 2-p εdεds def = A • B .
The term A is estimated exactly as A in the proof of Theorem 3.10, thus A g c (f ) p p . To estimate B , by Lemma 3.12, we have

B ≤ τ R d 2 3 0 | ∂ ∂ε P ε (g)(s)| 2 s c (f )(s, ε 2 )εdεds. 
Then we can apply almost the same argument as in the estimate of term B. There is only one minor difference: when ε ≥ 2 -j and s ∈ Q m,j , we have

s c (f )(s, ε 2 ) ≤ S c (f )(s, j + 1). Thus we conclude that B g 2 bmo c q s c (f ) 2-p p .
Combining the estimates above, we get

s c (f ) p + P * f p g c (f ) p + P * f p g c (f ) p + P * f p .
The case p = 2 is obvious. For p > 2, choose a positive g ∈ L ( p 2 ) (N ) with norm one such that,

s c (f ) 2 p = Γ | ∂ ∂ε P ε (f )(• + t)| 2 dtdε ε d-1 p 2 = τ R d Γ | ∂ ∂ε P ε (f )(s + t)| 2 dtdε ε d-1 g(s)ds.
Then by (3.1) and Lemma 3.7, we have τ

R d Γ | ∂ ∂ε P ε (f )(s + t)| 2 dtdε ε d-1 g(s)ds = τ R d 1 0 | ∂ ∂ε P ε (f )(t)| 2 dtdε ε d-1 B(t,ε) g(s)ds.
By the noncommutative Hardy-Littlewood maximal inequality (the one dimension R case is given by [42, Theorem 3.3], the case R d is a simple corollary of (3.1) and Lemma 3.7), there exists a positive a

∈ L ( p 2 ) (N ) such that a ( p 2 ) ≤ 1 and 1 |B(t, 2 -k )| B(t,2 -k ) g(s)ds ≤ a(t), ∀t ∈ R d , ∀ε > 0. Thus, τ R d 1 0 | ∂ ∂ε P ε (f )(t)| 2 dtdε ε d-1 B(t,ε) g(s)ds ≤ c d τ R d 1 0 | ∂ ∂ε P ε (f )(t)| 2 εa(t)dtdε ≤ c d 1 0 | ∂ ∂ε P ε (f )(t)| 2 εdtdε p 2 a ( p 2 ) ≤ c d g c (f ) p .
Therefore, we obtain

s c (f ) p g c (f ) p .
Thus, the assertion for the case p > 2 is also proved.

To proceed further, we introduce the definition of tent spaces. In the noncommutative setting, these spaces were first defined and studied by Mei [START_REF] Mei | Tent spaces associated with semigroups of operators[END_REF]. Definition 3.14. For any function defined on R d × (0, 1) = S with values in L 1 (M) + M, whenever it exists, we define

A c (f )(s) = Γ |f (t + s, ε)| 2 dtdε ε d+1 1 2 , s ∈ R d .
For 1 ≤ p < ∞, we define

T c p (R d , M) = {f : A c (f ) ∈ L p (N )} equipped with the norm f T c p (R d ,M) = A c (f ) p . For p = ∞, define the operator-valued column T c ∞ norm of f as f T c ∞ = sup |Q|≤1 1 |Q| T (Q) |f (s, ε)| 2 dsdε ε 1 2 M ,
and the corresponding space is

T c ∞ (R d , M) = {f : f T c ∞ < ∞}.
Remark 3.15. By the same idea used in the proof of Theorem 3.10, we can prove the duality that

T c p (R d , M) * = T c q (R d , M) for 1 ≤ p < ∞ and 1 p + 1 q = 1.
For the case p = 1, it suffices to replace ∂ ∂ε P ε (f )(s) and ∂ ∂ε P ε (g)(s) in the proof of Theorem 3.10 by f (s, ε) and g(s, ε) respectively. A similar argument will give us the inclusion that

T c ∞ (R d , M) ⊂ T c 1 (R d , M) * . On the other hand, since L ∞ (N ; L c 2 ( Γ)) ⊂ T c ∞ (R d , M), we get the reverse inclusion. For 1 < p < ∞, the tent space T c p (R d , M)
we define above is a complemented subspace of the column tent space defined in [START_REF] Mei | Operator-valued Hardy Spaces[END_REF]. So by Remark 4.6 in [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF], we obtain the duality that

T c p (R d , M) * = T c q (R d , M). Theorem 3.16. For 2 < q < ∞, h c q (R d , M) = bmo c q (R d , M) with equivalent norms.
Proof. First, we will show the inclusion h c q (R d , M) ⊂ bmo c q (R d , M). By Theorem 3.10, it suffices to show that h

c q (R d , M) ⊂ h c p (R d , M) * . By (2.3), for any f ∈ h c q (R d , M) and g ∈ h c p (R d , M), we have τ R d g(s)f * (s)ds = 4 c d R d Γ ∂ ∂ε P ε (g)(s + t) ∂ ∂ε P ε (f ) * (s + t) dtdε ε d-1 ds + R d P * g(s)(P * f (s)) * ds + 4π R d P * g(s)(I(P) * f (s)) * ds = 4 c d R d Γ ∂ ∂ε P ε (g)(s + t) ∂ ∂ε P ε (f ) * (s + t) dtdε ε d-1 ds + R d P * g(s)(P * f (s)) * ds + 4π R d I(P) * g(s)(P * f (s)) * ds.
Then, by the Hölder inequality,

τ R d g(s)f * (s)ds ≤ ε • ∂ ∂ε P ε (g) Lp N ;L 2 ( Γ) ε • ∂ ∂ε P ε (f ) Lq N ;L 2 ( Γ) + (P + I(P)) * g p • P * f q s c (g) p + (P + I(P)) * g p f h c q .
Now, we will show that for any 1 ≤ p < 2 and g ∈ h c p (R d , M), we have (P + I(P)) * g p g h c p . Since 2 < q < ∞, we have 1 < q 2 < ∞. Applying the noncommutative Hardy-Littlewood maximal inequality, we get

f bmo c q sup s∈Q⊂R d + 1 |Q| Q |f (t)| 2 dt 1 2 q 2 |f | 2 1 2 q 2 = f q 2 .
This implies that L q (N ) ⊂ bmo c q (R d , M) for any 2 < q ≤ ∞. Then by Theorem 3.10, we get h c p (R d , M) ⊂ L p (N ). Therefore we deduce that

(P + I(P)) * g p g p g h c p . (3.12) Thus, τ R d g(s)f * (s)ds f h c q g h c p .
We have proved h

c q (R d , M) ⊂ bmo c q (R d , M). Let us turn to the reverse inclusion bmo c q (R d , M) ⊂ h c q (R d , M).
We need to make use of the tent spaces in Definition 3.14. We claim that for q > 2, any f ∈ bmo c q induces a linear functional on

T c p ⊕ p L p (N ). Indeed, for any h = (h , h ) ∈ T c p ⊕ p L p (N ), we define f (h) = τ R d 1 0 h (s, ε) ∂ ∂ε P ε (f ) * (s)dεds + τ R d h (s)[(P * f ) * (s) + 4π(I(P) * f ) * (s)]ds. (3.13) Set A c (h )(s, ε) = 1 ε B(s,r-ε 2 ) |h (s, ε)| 2 dtdr r d+1 , A c (h )(s, ε) = 1 ε B(s, r 2 ) |h (s, ε)| 2 dtdr r d+1 .
Then by the Cauchy-Schwarz inequality, we arrive at

| f (h)| τ R d 1 0 B(s, ε 2 ) | ∂ ∂ε P ε (f )(t)| 2 dt ε d-1 A c (h )(s, ε) p-2 dεds 1 2 • τ R d 1 0 B(s, ε 2 ) | ∂ ∂ε P ε (f )(t)| 2 dt ε d-1 A c (h )(s, ε) 2-p dεds 1 2 + τ R d h (s)(P * f (s)) * ds + τ R d h (s)(I(P) * f (s)) * ds .
Following a similar argument as in the proof of Theorem 3.10, we obtain that

| f (h)| ( h T c p + h Lp ) f bmo c q h T c p ⊕pLp • f bmo c q , which implies that f ≤ c q f bmo c q . So the claim is proved. Next we show that f h c q ≤ C q f
. By definition, we can regard T c p as a closed subspace of L p N ; L c 2 ( Γ) in the natural way. Then, f extends to a linear functional on

L p N ; L c 2 ( Γ) ⊕ p L p (N ). Thus, there exists g = (g , g ) ∈ L q N ; L c 2 ( Γ, dtdε ε d+1 ) ⊕ q L q (N ) such that g Lq N ;L c 2 ( Γ) ⊕qLq(N ) ≤ f and for any h = (h , h ) ∈ L p N ; L c 2 ( Γ) ⊕ p L p (N ), f (h) = τ R d Γ h (t, ε)g * (s, t, ε) dtdε ε d+1 ds + τ R d h (s)g * (s)ds = τ R d 1 0 h (s, ε) B(s,ε) g * (s, t, ε)dt dsdε ε d+1 + τ R d h (s)g * (s)ds.
Comparing the equalities above with (3.13), we get

∂ ∂ε P ε (f )(s) = 1 ε d+1 B(s,ε) g (s, t, ε)dt and P * f + 4πI(P) * f = g .
By Lemma 3.13, we have

f h c q 1 0 | ∂ ∂ε P ε (f )| 2 εdε 1 2 q + P * f q ≤ c d 1 0 1 ε d+1 B(s,ε) |g (s, t, ε)| 2 dtdε 1 2 q + P * f q g Lq N ;L c 2 ( Γ) + P * f q .
Now let us majorize the second term P * f q by g q . Indeed, consider the function

G(s) = 2π ∞ 0 e -2πε P ε (s)dε.
We can easily check that

G ∈ L 1 (R d ), G 1 ≤ 1 and G(ξ) = (1 + |ξ|) -1
. This means that the operator (1 + I) -1 is a contractive Fourier multiplier on L q (N ). Therefore,

P * f q ≤ (P + I(P)) * f q ≤ 4π g q .
Finally, we conclude that

f h c q f f bmo c q and thus h c q (R d , M) = bmo c q (R d , M) with equivalent norms.
The following theorem extends the content of Theorem 3.8. Theorem 3.17.

(1) The map E extends to a bounded map from

L ∞ N ; L c 2 ( Γ) ⊕ ∞ L ∞ (N ) into bmo c (R d , M) and E(h) bmo c h L∞ N ;L c 2 ( Γ) ⊕∞L∞(N )
.

(

) For 1 < p < ∞, E extends to a bounded map from L p N ; L c 2 ( Γ) ⊕ p L p (N ) into h c p (R d , M) and E(h) h c p h Lp N ;L c 2 ( Γ) ⊕pLp(N ) 2 
.

Proof. (1) is already contained in Theorem 3.8. When p > 2, (2) follows from Theorem 3.10 and Theorem 3.16. The case p = 2 is trivial. For the case 1 < p < 2, using the duality between h c p (R d , M) and bmo c q (R d , M), we have

E(h) h c p sup f bmo c q ≤1 τ R d E(h)(s)f * (s)ds .
Then, by Theorem 3.16 and (3.12), for h

= (h , h ) ∈ L p N ; L c 2 ( Γ) ⊕ p L p (N ), we have sup f bmo c q ≤1 τ R d E(h)(s)f * (s)ds sup f h c q ≤1 τ R d Γ h (s, t, ε) ∂ ∂ε P ε (f ) * (s + t)dtdε + h (s)([P + 4πI(P)] * f * (s)) ds h Lp N ;L c 2 ( Γ) ⊕pLp(N )
.

The desired inequality is proved.

The above theorem shows that, for any 1

< p < ∞, h c p (R d , M) is a complemented subspace of L p N ; L c 2 ( Γ) ⊕ p L p (N )
. Thus, combined with Theorem 3.10, we deduce the following duality theorem:

Theorem 3.18. h c p (R d , M) * = h c q (R d , M) with equivalent norms for any 1 < p < ∞.
Chapter 4

Interpolation

In this chapter we study the interpolation of local Hardy and bmo spaces by transferring the problem to that of the operator-valued Hardy and BMO spaces defined in [START_REF] Mei | Operator-valued Hardy Spaces[END_REF]. We begin with an easy observation on the difference between bmo c q and BMO c q norms. Lemma 4.1. For 2 < q ≤ ∞, we have

g bmo c q ≈ g q BMO c q + J(P) * g q q 1 q .
Proof. Repeating the proof of Proposition 2.3 with

• M replaced by • L q 2 (N ; ∞) , we have g BMO c q g bmo c q
. By Lemma 3.3, it is also evident that J(P) * g q g bmo c q . Then we obtain g q BMO c q + J(P) * g q q 1 q g bmo c q . On the other hand, by Corollary 3.11, we have

g bmo c q sup + s∈Q⊂R d |Q|<1 1 |Q| T (Q) | ∂ ∂ε P ε (g)(t)| 2 εdtdε 1 2 q 2 + J(P) * g q .
Clearly, the first term on the right side is estimated from above by g BMO q c (see [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF]Theorem 3.4]). Therefore,

g bmo c q g BMO q c + J(P) * g q ≈ g q BMO c q + J(P) * g q q 1 q .
Thus, the lemma is proved.

Define F q (N ) to be the space of all f ∈ L q (M; R c d ) such that J(P) * f q < ∞. From the above lemma, we see that bmo c q (R d , M) and the space BMO c q (R d , M) ⊕ q F q (N ) have equivalent norms. By the interpolation between BMO c q (R d , M) and BMO c (R d , M) (see [START_REF] Mei | Operator-valued Hardy Spaces[END_REF] for more details), we deduce the following lemma:

Lemma 4.2. Let 2 < q < ∞ and 0 < θ < 1. Then bmo c q (R d , M), bmo c (R d , M) θ ⊂ bmo c (R d , M) with = q 1 -θ .
Proof. By Lemma 4.1, we can see that

bmo c q (R d , M) = BMO c q (R d , M) ⊕ q F q (N ).
Chapter 4. Interpolation with equivalent norms. Define a map

Υ q : F q (N ) -→ L q (N ) f -→ J(P) * f.
Thus, Υ q defines an isometric embedding of F q (N ) into L q (N ). Then by the interpolation between BMO c q (R d , M) and BMO c (R d , M), we get

bmo c q (R d , M), bmo c (R d , M) θ = BMO c q (R d , M) ⊕ q F q (N ), BMO c (R d , M) ⊕ ∞ F ∞ (N ) θ = BMO c q (R d , M), BMO c (R d , M) θ ⊕ F q (N ), F ∞ (N ) θ ⊂ BMO c (R d , M) ⊕ F (N ) = bmo c (R d , M),
which completes the proof.

Theorem 4.3. Let 1 < p < ∞. We have bmo c (R d , M), h c 1 (R d , M) 1 p = h c p (R d , M). Proof. Let 1 < p < 2 and 1 p = 1-θ p + θ. Since the map F in Definition 3.4 is an isometry from h c p (R d , M) to L p N ; L c 2 ( Γ) ⊕ p L p (N ), we have h c p (R d , M), h c 1 (R d , M) θ ⊂ h c p (R d , M). (4.1) 
By Theorem 3.18, h c p is a reflexive Banach space. Then applying [3, Corollary 4.5.2], we know that the dual of h

c p (R d , M), h c 1 (R d , M) θ is bmo c q (R d , M), bmo c (R d , M) θ .
Therefore, if the inclusion (4.1) is proper, we will get the proper inclusion bmo

c (R d , M) bmo c q (R d , M), bmo c (R d , M) θ ,
which is in contradiction with Lemma 4.2. Thus, we have

h c p (R d , M), h c 1 (R d , M) θ = h c p (R d , M). (4.2) 
By duality and [3, Corollary 4.5.2] again, the above equality implies that for q = q 1-θ ,

h c q (R d , M), bmo c (R d , M) θ = h c q (R d , M). (4.3) 
For the case where 1

< p 1 , p 2 < ∞, the interpolation of h c p 1 (R d , M) and h c p 2 (R d , M
) is much easier to handle. Indeed, by Theorem 3.17, we have, for any 1

< p < ∞, h c p (R d , M) is a complemented subspace of L p N ; L c 2 ( Γ) ⊕ p L p (N )
via the maps F and E in Definition 3.4. This implies that, for any 1 < p 1 , p 2 < ∞,

h c p 1 (R d , M), h c p 2 (R d , M) θ = h c p (R d , M), with 1 p = 1-θ p 1 + θ p 2 .
Combining this equivalence with (4.2), (4.3), and applying Wolff's interpolation theorem (see [START_REF] Wolff | A note on interpolation spaces[END_REF]), we get the desired assertion.

The following theorem is the mixed version of Theorem 4.3, which states that h 1 (R d , M) and bmo(R d , M) are also good endpoints of L p (N ). 

X = bmo(R d , M) or L ∞ (N ), and Y = h 1 (R d , M) or L 1 (N ).
Proof. By the same argument as in the proof of Theorem 4.3, we have the inclusion bmo

q (R d , M), bmo(R d , M) θ ⊂ bmo q (R d , M) q = q θ ,
which ensures by duality that

h p (R d , M), h 1 (R d , M) θ ⊃ h p (R d , M) = L p (N )
for 1 p = 1-θ p + θ. Then by Proposition 6.15,

L p (N ) ⊂ h p (R d , M), h 1 (R d , M) θ = L p (N ), h 1 (R d , M) θ . Since h 1 (R d , M) ⊂ L 1 (N ), then h p (R d , M), h 1 (R d , M) θ ⊂ L p (N ), L 1 (N ) θ = L p (N ).
Combining the estimates above, we have

h p (R d , M), h 1 (R d , M) θ = L p (N ).
Again, using duality and Wolff's interpolation theorem, we can conclude the proof by the same trick as in the proof of Theorem 4.3.

We end this chapter by some real interpolation results.

Corollary 4.5. Let 1 < p < ∞. Then we have

(1) bmo c (R d , M), h c 1 (R d , M) 1 p ,p = h c p (R d , M) with equivalent norms.
(2) X, Y 1 p ,p = L p (N ) with equivalent norms, where X = bmo(R d , M) or L ∞ (N ), and

Y = h 1 (R d , M) or L 1 (N ).
Proof. Both (1) and (2) follow from [3, Theorem 4.7.2]; we only prove [START_REF] Amann | Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications[END_REF]. Let 

1 < p 1 < p < p 2 < ∞ with 1 p = 1-η p 1 + η p 2 . By [3, Theorem 4.7.2], we write bmo c (R d , M), h c 1 (R d , M) 1 p ,p = bmo c (R d , M), h c 1 (R d , M) 1 p 1 , bmo c (R d , M), h c 1 (R d , M) 1 p 2 η,p . (4.4)
Then the assertion (1) follows from Theorem 4.4 and the facts that

L p 1 (N ), L p 2 (N ) η,p = L p (N ) and that h c p (R d , M) is a complemented subspace of L p N ; L c 2 ( Γ) ⊕ p L p (N ).
Chapter 5

Calderón-Zygmund theory

In this chapter, we will introduce the Calderón-Zygmund theory on operator-valued inhomogeneous function spaces and deduce some Fourier multiplier theorems. It is closely related to the similar results of [START_REF] Hong | Calderón-Zygmund operator associated to matrix-valued kernels[END_REF], [START_REF] Junge | Smooth Fourier multipliers on group von Neumann algebras[END_REF], [START_REF] Parcet | Pseudo-localization of singular integrals and noncommutative Calderón-Zygmund theory[END_REF] and [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF]. The results in this chapter will be used in the next several chapters to investigate various square funtions that characterize local Hardy spaces and inhomogeneous Triebel-Lizorkin spaces.

Calderón-Zygmund theory on local Hardy spaces

Let K ∈ S (R d ; L 1 (M) + M) coincide on R d \ {0} with a locally integrable L 1 (M) + M- valued function.
We define the left singular integral operator K c associated to K by

K c (f )(s) = R d K(s -t)f (t)dt,
and the right singular integral operator K r associated to K by

K r (f )(s) = R d f (t)K(s -t)dt.
Both K c (f ) and K r (f ) are well-defined for sufficiently nice functions f with values in

L 1 (M) ∩ M, for instance, for f ∈ S ⊗ (L 1 (M) ∩ M). Let bmo c 0 (R d , M) denote the subspace of bmo c (R d , M
) consisting of compactly supported functions. The following lemma is an analogue of Lemma 2.1 in [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF] for inhomogeneous spaces. Notice that the usual Calderón-Zygmund operators (the operators satisfying the condition (1) and (3) in the following lemma) are not necessarily bounded on the local Hardy space h c 1 (R d , M). Thus, we need to impose an extra decay at infinity on the kernel K.

Lemma 5.1. Assume that

(1) the Fourier transform of K is bounded:

sup ξ∈R d K(ξ) M < ∞;
(2) K satisfies the size estimate: there exist C 1 and ρ > 0 such that

K(s) M ≤ C 1 |s| d+ρ , ∀|s| ≥ 1;
(3) K has the Lipschitz regularity: there exist C 2 and γ > 0 such that

K(s -t) -K(s) M ≤ C 2 |t| γ |s -t| d+γ , ∀|s| > 2|t|. Then K c is bounded on h c p (R d , M) for 1 ≤ p < ∞ and from bmo c 0 (R d , M) to bmo c (R d , M).
A similar statement also holds for K r and the corresponding row spaces.

Proof. First suppose that K c maps constant functions to zero. This amounts to requiring that

K c (1 R d ) = 0. Let Q ⊂ R d be a cube with |Q| < 1.
Since the assumption of Lemma 2.1 in [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF] are included in the ones of this lemma, we get

1 |Q| Q |K c (f ) -K c (f ) Q | 2 dt 1 2 M f BMO c f bmo c .
Now let us focus on the cubes with side length 1. Let Q be a cube with |Q| = 1 and Q = 2Q be the cube concentric with Q and with side length 2. Decompose f as f = f 1 + f 2 , where

f 1 = 1 Q f and f 2 = 1 R d \ Q f . Then K c (f ) = K c (f 1 ) + K c (f 2 ). We have 1 |Q| Q |K c (f )| 2 ds M 1 |Q| Q |K c (f 1 )| 2 ds M + 1 |Q| Q |K c (f 2 )| 2 ds M .
The first term is easy to estimate. By assumption ( 1) and (1.5),

1 |Q| Q |K c (f 1 )| 2 ds M ≤ 1 |Q| R d | K(ξ) f 1 (ξ)| 2 dξ M 1 |Q| R d | f 1 (ξ)| 2 dξ M = 1 |Q| Q |f (s)| 2 ds M sup |Q|=1 1 |Q| Q |f (s)| 2 ds M .
To estimate the second term, using assumption (2) and (1.5) again, we have

|K c (f 2 )(s)| 2 = R d K(s -t)f 2 (t)dt 2 = R d \ Q K(s -t)f (t)dt 2 ≤ R d \ Q K(s -t) M dt • R d \ Q K(s -t) -1 M |K(s -t)f (t)| 2 dt R d \ Q K(s -t) M |f (t)| 2 dt R d \ Q 1 |s -t| d+ρ |f (t)| 2 dt. Set Q m = Q + 2m for every m ∈ Z d . Then R d \ Q = ∪ m =0 Q m . Continuing the estimate of |K c (f 2 )(s)| 2 , for any s ∈ Q, we have |K c (f 2 )(s)| 2 ≤ m =0 Qm 1 |s -t| d+ρ |f (t)| 2 dt ≈ m =0 1 |m| d+ρ Qm |f (t)| 2 dt f bmo c .
Combining the previous estimates, we deduce that

K c is bounded from bmo c 0 (R d , M) to bmo c (R d , M).
Now we illustrate that the additional requirement that K c (1 R d ) = 0 is not needed. First, a similar argument as above ensures that for every compactly supported f ∈ L ∞ (N ),

K c (f ) bmo c f ∞ .
Then we follow the argument of [START_REF] García-Cuerva | Weighted norm inequalities and related topics[END_REF]Proposition II.5.15] to extend K c on the whole L ∞ (N ), as

K c (f )(s) = lim j K c (f 1 B j )(s) - 1<|t|≤j K(-t)f (t)dt , ∀s ∈ R d ,
where B j is the ball centered at the origin with radius j. Let us show that the sequence on the right hand side converges pointwise in the norm • M and uniformly on compact sets F ⊂ R d . To this end, we denote by g j the j-th term of this sequence. Let l be the first natural number such that l ≥ 2 sup s∈F |s|. Then for s ∈ F and j > l, we have

g j (s) = g l (s) + l<|t|≤j K(s -t) -K(-t) f (t)dt.
By assumption (3), the integral on the right hand side is bounded by a bounded multiple of f ∞ , uniformly on s ∈ F . This ensures the convergence of g j , so K c (f ) is a well-defined function. Now we have to estimate the bmo c -norm of K c (f ). Taking any cube

Q ⊂ R d , by the uniform convergence of g j on Q in M, Q |K c (f )(s) -(K c (f )) Q | 2 ds 1 2 M = lim j Q |g j (s) -(g j ) Q | 2 ds 1 2 M .
Similarly,

Q |K c (f )(s)| 2 ds 1 2 M = lim j Q |g j (s)| 2 ds 1 2 M .
Hence, by the fact that g j and K c (f 1 B j ) differ by a constant, we obtain

K c (f ) bmo c = lim j g j bmo c lim sup j K c (f 1 B j ) bmo c + f ∞ f ∞ .
Therefore, K c defined above extends to a bounded operator from L ∞ (N ) to bmo c (R d , M).

In particular, K c (1 R d ) determines a function in bmo c (R d , M). Then for f and Q as above, we have

K c (f ) = K c (f 1 ) + K c (f 2 ) + K c (1 R d )f Q , so K c (f ) bmo c ≤ K c (f 1 ) bmo c + K c (f 2 ) bmo c + K c (1 R d ) bmo c f Q M f bmo c + f Q M f bmo c .
Thus we have proved the bmo c -boundedness of K c in the general case. By duality, the boundedness of

K c on h c 1 (R d , M) is equivalent to that of its adjoint map (K c ) * on bmo c 0 (R d , M).
It is easy to see that (K c ) * is also a singular integral operator:

(K c ) * (g) = R d K(s -t)g(t)dt,
where K(s) = K * (-s). Obviously, K also satisfies the same assumption as K, so (K c ) * is bounded on bmo c 0 (R d , M). Thus we get the boundedness of K c on h c 1 (R d , M). Then, by the interpolation between h c 1 (R d , M) and bmo c (R d , M) in Theorem 4.3, we get the boundedness of K c on h c p (R d , M) for 1 < p < ∞. The assertion is proved.

Remark 5.2. Under the assumption of the above lemma,

K c (1 R d ) is a constant, so K c (1 R d ) is zero as an element in BMO c (R d , M).
A special case of Lemma 5.1 concerns the Hilbert-valued kernel K. Let H be a Hilbert space and k : R d → H be a H-valued kernel. We view the Hilbert space as the column matrices in B(H) with respect to a fixed orthonormal basis. Put

K(s) = k(s) ⊗ 1 M ∈ B(H)⊗M. For nice functions f : R d → L 1 (M) + M, K c (f ) takes values in the column subspace of L 1 (B(H)⊗M) + L ∞ (B(H)⊗M). Consequently, K c (f ) Lp(B(H)⊗N ) = K c (f ) Lp(N ;H c ) . Since k(s) ⊗ 1 M commutes with M, K c (f ) = K r (f ) for f ∈ L 2 (N ).
Let us denote this common operator by k c . Here the superscript c refers to the previous convention that H is identified with the column matrices in B(H). Thus, Lemma 5.1 implies the following Corollary 5.3. Assume that

(1) sup ξ∈R d k(ξ) H < ∞; (2) k(s) H 1 |s| d+ρ , ∀|s| ≥ 1, for some ρ > 0; (3) k(s -t) -k(s) H |t| γ |s-t| d+γ , ∀|s| > 2|t|, for some γ > 0.
Then the operator k c is bounded

(1) from bmo α 0 (R d , M) to bmo α (R d , B(H)⊗M)
, where α = c, α = r or we leave out α;

(2) and from

h c p (R d , M) to h c p (R d , B(H)⊗M) for 1 ≤ p < ∞. Remark 5.4. Since L ∞ (N ) ⊆ bmo c (R d , M), we have h c 1 (R d , M) ⊆ L 1 (N ). This ensures h c p (R d , M) ⊆ L p (N ) for 1 ≤ p ≤ 2.
Combined with Theorem 4.3, Corollary 5.3 and the fact that h c 2 (R d , M) = L 2 (N ), we have

k c (f ) Lp(N ;H c ) k c (f ) h c p (R d ,B(H)⊗M) f h c p (R d ,M)
for any f ∈ h c p (R d , M).

Multiplier theorems

We are going to develop two Fourier multiplier theorems in this section. They can be viewed as the special cases of Calderón-Zygmund theory. Our presentation follows closely the argument in section 4.1 of [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF].

Recall again that ϕ is a fixed function satisfying (1.1), ϕ 0 is the inverse Fourier transform of 1

-k>0 ϕ(2 -k •) and ϕ k is the inverse Fourier transform of ϕ(2 -k •) when k > 0.
Moreover, we denote by ϕ (k) the Fourier transform of ϕ k for every k ∈ N 0 , then they enjoy the properties in (1.2) 

supp φ j ρ j ⊂ {ξ : 2 j-1 ≤ |ξ| ≤ 2 j+1 }, j ∈ Z and sup j∈Z -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 (R d ) < ∞. Let 1 < p < ∞. Then for any f ∈ S (R d ; L 1 (M) + M), we have ( j∈Z 2 2jα | φj * ρj * f | 2 ) 1 2 p sup j∈Z -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 ( j≥K 2 2jα |ρ j * f | 2 ) 1 2 p ,
where the constant depends on p, σ, d and ϕ.

Proof. Without loss of generality, we may take α = 0. It suffices to show that for any integer K,

( j≥K | φj * ρj * f | 2 ) 1 2 p sup j∈Z -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 ( j∈Z |ρ j * f | 2 ) 1 2 p , ( 5.1) 
with the relevant constant independent of K ∈ Z. To this end, we set

ψ j-K = φ j (2 K •), η j-K = ρ j (2 K •), and g = f (2 K •).
By an easy computation, we have

supp ψ j η j ⊂ {ξ : 2 j-1 ≤ |ξ| ≤ 2 j+1 }, ∀ j ≥ 0, and φj * ρj * f = 2 dK ψj-K * ρj-K * g(2 K •).
This ensures

( j≥K | φj * ρj * f | 2 ) 1 2 p = 2 (p-1)dK p ( j≥0 | ψj * ηj * g| 2 ) 1 2
p .

(

Similarly,

( j≥K |ρ j * f | 2 ) 1 2 p = 2 (p-1)dK p ( j≥0 |η j * g| 2 ) 1 2
p .

(5.3)

Moreover, since ψ j (2 j+k •) = φ j+K (2 j+k+K •), we have sup j≥0 -2≤k≤2 ψ j (2 j+k •)ϕ H σ 2 = sup j≥K -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 ≤ sup j∈Z -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 .
(5.4)

Now applying [72, Theorem 4.1] to ψ j , ρ j and g defined above, we obtain

( j≥0 | ψj * ηj * g| 2 ) 1 2 p sup j≥0 -2≤k≤2 ψ j (2 j+k •)ϕ H σ 2 ( ( j≥0 |η j * g| 2 ) 1 2 p .
Putting (5.2), (5.3) and (5.4) into this inequality, we then get (5.1), which yields Theorem 5.5 by approximation.

Theorem 5.5 is developed to deal with the multiplier problem of square functions, and also the multiplier problem of the Hardy spaces H c p (R d , M) by virtue of their characterizations (Lemma 1.2). In order to deal with relative problems on the local versions of square functions or Hardy spaces, we need the following version of Theorem 5.5. The main difference is that in the local case, we need to consider a Littlewood-Paley decomposition which covers the origin.

Theorem 5.6. Let 1 < p < ∞, α ∈ R and σ > d 2 .
Assume that (φ j ) j≥0 and (ρ j ) j≥0 are two sequences of functions on R d such that

supp (φ j ρ j ) ⊂ {ξ ∈ R d : 2 j-1 ≤ |ξ| ≤ 2 j+1 }, j ∈ N, supp (φ 0 ρ 0 ) ⊂ {ξ ∈ R d : |ξ| ≤ 2},
and that

sup j≥1 -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 (R d ) < ∞ and φ 0 (ϕ (0) + ϕ (1) ) H σ 2 (R d ) < ∞.
(5.5)

Then for any L 1 (M) + M-valued distribution f , ( j≥0 
2 2jα | φj * ρj * f | 2 ) 1 2 p max sup j≥1 -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 , φ 0 (ϕ (0) + ϕ (1) ) H σ 2 • ( j≥0 2 2jα |ρ j * f | 2 ) 1 2 p ,
where the constant depends on p, σ, d and ϕ.

Proof. This theorem follows easily from its homogeneous version, i.e., Theorem 5.5. Indeed, we can divide ( j≥0

2 2jα | φj * ρj * f | 2 ) 1 2
p into two parts:

( j≥0 2 2jα | φj * ρj * f | 2 ) 1 2 p ≈ ( j≥1 2 2jα | φj * ρj * f | 2 ) 1 2
p + φ0 * ρ0 * f p and treat them separately. Applying Theorem 5.5 to the sequences (φ j ) j∈Z , (ρ j ) j∈Z with φ j = 0 and ρ j = 0 for j ≤ 0, we get the estimate of the first term on the right hand side. The result is

( j≥1 2 2jα | φj * ρj * f | 2 ) 1 2 p sup j≥1 -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 ( j≥1 |ρ j * f | 2 ) 1 2
p .

The second term φ0 * ρ0 * f p is also easy to handle. By the support assumption on φ 0 ρ 0 , we have φ0

* ρ0 * f = F -1 φ 0 (ϕ (0) + ϕ (1) ) * ρ0 * f. Hence, φ0 * ρ0 * f p φ 0 (ϕ (0) + ϕ (1) ) H σ 2 ρ0 * f p . The assertion is proved.
In the rest of this section, we will develop a more elaborated version of Theorem 5.6. Assume that we have a sequence of Hilbert spaces H j for every j ∈ N 0 , and denote H = ⊕ ∞ j=0 H j . Then an element f ∈ L p (N ; H c ) has the form f = (f j ) j≥0 with f j ∈ L p (N ; H c j ) for every j. In this case, it still makes sense to act on it by the Calderón-Zygmund operator k = ( φj ) j≥0 .

Since it will be frequently used in the following, we introduce an elementary inequality (see [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF]Lemma 4.2]):

f g H σ 2 (R d ; 2 ) ≤ f H σ 2 (R d ; 2 ) R d (1 + |s| 2 ) σ |F -1 (g)(s)|ds, (5.6) 
where σ > d 2 , and the functions f : R d → 2 and g :

R d → C satisfy f ∈ H σ 2 (R d ; 2 ) and R d (1 + |s| 2 ) σ |F -1 (g)(s)|ds < ∞.
Here H σ 2 (R d ; 2 ) is the 2 -valued Potential Sobolev space of order σ. Note also that 2 could be an 2 -space on an arbitrary index set, depending on the problems in consideration.

The following lemma is an analogue of Lemma 4.3 in [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF]. The main difference is that in order to get a Calderón-Zygmund operator which is bounded on local Hardy or bmo spaces, we need to use the test functions covering the origin. Lemma 5.7. Let φ = (φ j ) j≥0 be a sequence of continuous functions on R d , viewed as a function from R d to 2 . For σ > d 2 , we assume that

φ 2,σ def = max sup k≥1 φ(2 k •)ϕ H σ 2 (R d ; 2 ) , φϕ (0) H σ 2 (R d ; 2 ) < ∞.
(5.7)

Let k = (k j ) j≥0 with k j = F -1 (φ j ). Then k is a Calderón-Zygmund kernel with values in 2 , more precisely, (1) k L∞(R d ; 2 ) φ 2,σ ; (2) |s|≥ 1 2 k(s) 2 ds φ 2,σ . (3) sup t∈R d |s|>2|t| k(s -t) -k(s) 2 ds φ 2,σ ;
The relevant constants depend only on ϕ, σ and d.

Proof. For any ξ ∈ R d and k ≥ 1, by the Cauchy-Schwarz inequality, we have

φ(2 k ξ)ϕ(ξ) 2 = F -1 (φ(2 k •)ϕ)(s)e -2πis•ξ ds 2 ≤ φ(2 k •)ϕ H σ 2 (R d ; 2 ) ( (1 + |s| 2 ) -σ ds) 1 2 φ 2,σ .
In other words, we have φϕ(2

-k •) L∞(R d ; 2 ) φ 2,σ . Likewise, φϕ (0) L∞(R d ; 2 )
φ 2,σ also holds. Thus, by (1.2) and (1.3), we easily deduce that k L∞(R d ; 2 ) φ 2,σ . To show the third property of k, we decompose φ into φ = k≥0 φϕ (k) .

The convergence of the above series can be proved by a limit procedure of its partial sums, which is quite formal. By (1.2) and (1.3), we write

φϕ (k) = φ(ϕ (k-1) + ϕ (k) + ϕ (k+1) )ϕ (k) def = φ (k) ϕ (k) , k ≥ 0.
Here we make the convention that ϕ

(k) = 0 if k < 0. Then for s ∈ R d , F -1 (φϕ (k) )(s) = F -1 (φ (k) ) * F -1 (ϕ (k) )(s) = 2 kd F -1 (φ (k) (2 k •)) * F -1 (ϕ)(2 k s), k ≥ 0.
By (5.6), we have

( R d (1 + |2 k s| 2 ) σ F -1 (φϕ (k) )(s) 2 2 ds) 1 2 2 kd 2 φ (k) (2 k •) H σ 2 (R d ; 2 ) . Notice that if k ≥ 1, we have ϕ (k) (2 k •) = ϕ. Thus, if k ≥ 2, φ (k) (2 k •) H σ 2 (R d ; 2 ) ≤ 1 j=-1 φ(2 k •)ϕ (k-j) (2 k •) H σ 2 (R d ; 2 ) 1 j=-1 φ(2 k-j •)ϕ (k-j) (2 k-j •) H σ 2 (R d ; 2 ) = 1 j=-1 φ(2 k-j •)ϕ H σ 2 (R d ; 2 ) ≤ 3 φ 2,σ .
For k = 0, 1, we treat them in the same way,

φ (1) (2•) H σ 2 (R d ; 2 ) φϕ (0) H σ 2 (R d ; 2 ) + φ(2•)ϕ H σ 2 (R d ; 2 ) + φ(4•)ϕ H σ 2 (R d ; 2 ) ; φ (0) H σ 2 (R d ; 2 ) φϕ (0) H σ 2 (R d ; 2 ) + φ(2•)ϕ H σ 2 (R d ; 2 ) . In summary, we obtain ( R d (1 + |2 k s| 2 ) σ F -1 (φϕ (k) )(s) 2 2 ds) 1 2 2 kd 2 φ 2,σ .
Thus, by the Cauchy-Schwarz inequality, for any t ∈ R d \ {0} and k ≥ 0, we have |s|>|t|

F -1 (φϕ (k) )(s) 2 ds 2 kd 2 φ 2,σ ( |s|>|t| (1 + |2 k s| 2 ) -σ ds) 1 2 (2 k |t|) d 2 -σ φ 2,σ .
(

Consequently,

|s|>2|t|

F -1 (φϕ (k) )(s) -F -1 (φϕ (k) )(s -t) 2 ds (2 k |t|) d 2 -σ φ 2,σ .
We notice that d 2 -σ < 0, so the estimate above is good only when 2 k |t| ≥ 1. Otherwise, we need another estimate (with e t (ξ) = e 2πiξ•t )

F -1 (φϕ (k) )(s) -F -1 (φϕ (k) )(s -t) = F -1 (φ (k) ϕ (k) (1 -e t ))(s) = 2 kd F -1 (φ (k) (2 k •)) * [F -1 (ϕ) -F -1 (ϕ)(• -2 k t)](2 k s). Thus, ( R d (1 + |2 k s| 2 ) σ F -1 (φϕ (k) )(s) -F -1 (φϕ (k) )(s -t) 2 2 ds) 1 2 2 kd 2 φ 2,σ 2 k |t| (1 + |s| 2 ) σ |F -1 (ϕ)(s -θ2 k t)|ds 2 kd 2 φ 2,σ 2 k |t|( |J σ [ϕ(s)e 2πis•θ2 k t ]| 2 ds) 1 2 2 kd 2 φ 2,σ 2 k |t|,
where θ ∈ [0, 1]. Then as before, for 2 k |t| < 1, we have |s|>2|t|

F -1 (φϕ (k) )(s) -F -1 (φϕ (k) )(s -t) 2 ds 2 k |t| φ 2,σ .
Combining the previous estimates, we obtain sup

t∈R d |s|>2|t| k(s -t) -k(s) 2 ds ≤ sup t∈R d k≥0 |s|>2|t| F -1 (φϕ (k) )(s) -F -1 (φϕ (k) )(s -t) 2 ds φ 2,σ sup t∈R d k≥0 min(2 k |t|, (2 k |t|) d 2 -σ ) φ 2,σ .
Finally, the second estimate of k can be deduced from (5.8) by letting |t| = 1 2 :

|s|≥ 1 2 k(s) 2 ds ≤ k≥0 |s|≥ 1 2 F -1 (φϕ (k) )(s) 2 ds ≤ k≥0 (2 k-1 ) d 2 -σ φ 2,σ φ 2,σ .
The proof is complete.

We keep the notation H = ⊕ ∞ j=0 H j . By the above lemma, we can apply the Calderón-Zygmund theory developed earlier in this chapter, to deduce the following lemma: Lemma 5.8. Let φ = (φ j ) j≥0 be a sequence of continuous functions on R d satisfying (5.7) and 1 < p < ∞. For any f = (f j ) j≥0 ∈ L p (N ; H c ), we have

( φj * f j ) j≥0 Lp(N ;H c ) φ 2,σ (f j ) j≥0 Lp(N ;H c ) ,
where the relevant constant depends only on ϕ, σ, p and d.

Proof. Consider k as a diagonal matrix with diagonal entries (k j ) j≥0 determined by k j = φ j and f = (f j ) j≥0 as a column matrix. The associated Calderón-Zygmund operator is defined on L p (B(H)⊗N ) by

k(f )(s) = R d k(s -t)f (t)dt. Now it suffices to show that k is a bounded operator on L p (N ; H c ). We claim that k is bounded from L ∞ (N ; H c ) into bmo(R d , B(H)⊗M). For any s ∈ R d , put K(s) = k(s) ⊗ 1 M ∈ B(H)⊗M. Then we have k(s) 2 ≥ k(s) ∞ = K(s) B(H)⊗M and f L∞(N ;H c ) = f B(H)⊗N . Thus, the claim is equivalent to saying that K is bounded from L ∞ (N ; H c ) into bmo(R d , B(H)⊗M), if we regard L ∞ (N ; H c ) as a subspace of B(H)⊗N . First, we show that K is bounded from L ∞ (N ; H c ) into bmo c (R d , B(H)⊗M). Let Q be a cube in R d centered at c. We decompose f as f = g + h with g = f 1 Q , where Q = 2Q
is the cube which has the same center as Q and twice the side length of Q. Set

a = R d \ Q K(c -t)f (t)dt. Then K(f )(s) -a = K(g)(s) + [K(s -t) -K(c -t)]h(t)dt.
Thus, for Q such that |Q| < 1, we have

1 |Q| Q |K(f ) -a| 2 ds ≤ 2(A + B),
where

A = 1 |Q| Q |K(g)| 2 ds, B = 1 |Q| Q | [K(s -t) -K(c -t)]h(t)dt| 2 ds.
The term A is easy to estimate. By Lemma 5.7 and the Plancherel formula (1.6),

|Q|A ≤ | K(ξ) g(ξ)| 2 dξ = g(ξ) * K(ξ) * K(ξ) g(ξ)dξ ≤ K(ξ) 2 B(H)⊗M | g(ξ)| 2 dξ k(ξ) 2 2 | g(ξ)| 2 dξ φ 2 2,σ Q |f (s)| 2 ds ≤ | Q| φ 2 2,σ f 2 B(H)⊗N = | Q| φ 2 2,σ f 2 L∞(N ;H c ) , whence A B(H)⊗M φ 2 2,σ f 2 L∞(N ;H c ) . To estimate B, writing h = (h j ) j≥0 , by Lemma 5.7, we get [K(s -t) -K(c -t)]h(t)dt 2 R d \ Q K(s -t) -K(c -t) B(H)⊗M dt R d \ Q K(s -t) -K(c -t) B(H)⊗M |h(t)| 2 dt R d \ Q k(s -t) -k(c -t) 2 dt R d \ Q k(s -t) -k(c -t) 2 |h(t)| 2 dt φ 2 2,σ f 2 B(H)⊗N φ 2 2,σ f 2 L∞(N ;H c ) .
Hence,

B B(H)⊗M ≤ 1 |Q| Q [K(s -t) -K(c -t)]h(t)dt 2 B(H)⊗M ds φ 2 2,σ f 2 L∞(N ;H c ) .
Combining the previous inequalities, we deduce that, for any |Q| < 1

( 1 |Q| Q |K(f ) -a| 2 ds) 1 2 B(H)⊗M φ 2,σ f L∞(N ;H c ) .
Now we consider the case when |Q| = 1. We have

1 |Q| Q |K(f )| 2 ds ≤ 2 1 |Q| Q |K(g)| 2 ds + 2 1 |Q| Q |K(h)| 2 ds.
The first term on the right hand side of the above inequality is equal to the term A, so it remains to estimate the second term. When

t ∈ R d \ Q, s ∈ Q and |Q| = 1, we have |s -t| ≥ 1 2 .
Then by (2) in Lemma 5.7 and the Cauchy-Schwarz inequality, we easily deduce that

|K(h)(s)| 2 = |K(s -t)h(t)dt 2 ≤ R d \ Q K(s -t) B(H)⊗M dt R d \ Q K(s -t) B(H)⊗M |h(t)| 2 dt f 2 L∞(N ;H c ) ( R d \ Q k(s -t) 2 dt) 2 φ 2 2,σ f 2 L∞(N ;H c ) .
Thus, we have, for any |Q| = 1,

1 |Q| Q |K(f )| 2 ds 1 2 B(H)⊗M φ 2,σ f L∞(N ;H c ) . Therefore, K is bounded from L ∞ (N ; H c ) into bmo c (R d , B(H)⊗M). Next we show that K is bounded from L ∞ (N ; H c ) into bmo r (R d , B(H)⊗M).
We still use the same decomposition f = g + h, then we obtain

1 |Q| Q |[K(f ) -a] * | 2 ds ≤ 2(A + B ),
where

A = 1 |Q| Q |K(g) * | 2 ds, B = 1 |Q| Q | [(K(s -t) -K(c -t))h(t)] * dt| 2 ds.
The estimate of B can be reduced to that of B. Indeed,

B B(H)⊗M ≤ 1 |Q| Q [(K(s -t) -K(c -t))h(t)] * dt 2 B(H)⊗M ds = 1 |Q| Q [K(s -t) -K(c -t)]h(t)dt 2 B(H)⊗M ds φ 2 2,σ f 2 L∞(N ;H c ) .
However, for A , we need a different argument. A can be viewed as a bounded operator on H ⊗ L 2 (M). So

A B( 2 )⊗M = sup b { 1 |Q| Q k(g)(s) b 2 H⊗L 2 (M) ds},
where the supremum runs over all b in the unit ball of H ⊗ L 2 (M). By the Plancherel formula (1.6), we have

Q k(g)(s) b 2 H⊗L 2 (M) ds = Q k(g)(s) b, k(g)(s) b H⊗L 2 (M) ds ≤ k(ξ) g(ξ) b, k(ξ) g(ξ) b H⊗L 2 (M) dξ.
Let diag(f j ) j be the diagonal matrix in B(H)⊗N with entries in B(H j )⊗N . By the Cauchy-Schwarz inequality, the Plancherel formula (1.6) and Lemma 5.7, we continue the estimate above as

k(ξ) g(ξ) b, k(ξ) g(ξ) b H⊗L 2 (M) dξ ≤ sup ξ k(ξ) 2 2 g(ξ) b, g(ξ) b H⊗L 2 (M) dξ φ 2 2,σ Q diag(f j ) j (s) b 2 H⊗L 2 (M) ds |Q| φ 2 2,σ diag(f j ) j 2 B(H)⊗N b 2 H⊗L 2 (M) ≤ |Q| φ 2 2,σ f 2 L∞(N ;H c ) , whence, A B( 2 )⊗M φ 2 2,σ f 2 L∞(N ;H c ) .
Following the estimate of

1 |Q| Q |K(f )(s)| 2 ds, we get, when |Q| = 1, 1 |Q| Q |K(f ) * | 2 ds ≤ 2A + 2 1 |Q| Q |K(h) * | 2 ds ≤ 2A + 2 1 |Q| Q K(h) * 2 B(H)⊗M ds = 2A + 2 1 |Q| Q K(h) 2 B(H)⊗M ds φ 2 2,σ f 2 L∞(N ;H c ) . Therefore, K is bounded from L ∞ (N ; H c ) into bmo r (R d , B(H)⊗M). Then k is bounded from L ∞ (N ; H c ) into bmo(R d , B(H)⊗M). It is clear that k is bounded from L 2 (N ; H c ) into L 2 (B(H)⊗N ), then by interpolation, k is bounded from L p (N ; H c ) into L p (B(H)⊗N )
for any 2 ≤ p < ∞. The case 1 < p < 2 is obtained by duality.

Note that when all H j degenerate to one dimensional Hilbert spaces, then H = 2 , the above lemma gives a sufficient condition for (φ j ) j≥0 being a bounded Fourier multiplier on L p (N ; c

2 ). So we can also use Lemmas 5.7 and 5.8 to prove Theorem 5.6 by an argument similar to the proof of [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF]Theorem 4.1]; details are left to the reader. But here we intend to extend Theorem 5.6 to a more general setting. Theorem 5.9. Let p, α, σ, (φ j ) j≥0 and (ρ j ) j≥0 be the same as in Theorem 5.6. Then, for any

f ∈ S (R d ; L 1 (M) + M), ( j≥0 2 j(2α+d) B(0,2 -j ) | φj * ρj * f (• + t)| 2 dt) 1 2 p max sup j≥1 -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 , φ 0 (ϕ (0) + ϕ (1) ) H σ 2 • ( j≥0 2 j(2α+d) B(0,2 -j ) |ρ j * f (• + t)| 2 dt) 1 2 p ,
where the constant depends only on p, σ, d and ϕ.

Proof. Set H j = L 2 B(0, 2 -j ), 2 jd dt and H = ⊕ ∞ j=0 H j . So we have ( j≥0 2 j(2α+d) B(0,2 -j ) | φj * ρj * f (• + t)| 2 dt) 1 2 p = (2 jα φj * ρj * f (• + •)) j Lp(N ;H c ) .
Let

ζ j = φ j (ϕ (j-1) + ϕ (j) + ϕ (j+1) ), j ≥ 2, ζ 1 = φ 1 (ϕ + ϕ (1) + ϕ (2)
),

ζ 0 = φ 0 (ϕ (0) + ϕ) and ζ j = 0 if j < 0.
By the support assumption on φ j ρ j , we have that 

φ j ρ j = ζ j ρ j . So that for any f ∈ S (R d ; L 1 (M) + M), φj * ρj * f = ζj * ρj * f, j ∈ N 0 .
ζ(2 k •)ϕ H σ 2 (R d ; 2 ) ≤ k+2 j=k-2 ζ j (2 k •)ϕ H σ 2 .
Moreover, by (5.6), we have

ζ j (2 k •)ϕ H σ 2 φ j (2 k •)ϕ H σ 2 , k -2 ≤ j ≤ k + 2.
Therefore, the condition (5.5) yields

sup k≥1 ζ(2 k •)ϕ H σ 2 (R d ; 2 ) sup j≥1 -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 + φ 0 (ϕ (0) + ϕ (1) ) H σ 2 < ∞,
where the relevant constant depends only on σ, ϕ and d. In a similar way, we have

ζϕ (0) H σ 2 (R d ; 2 ) ≤ 0≤j≤2 ζ j ϕ (0) H σ 2 sup j≥1 -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 + φ 0 (ϕ (0) + ϕ (1) ) H σ 2 < ∞.
Now applying Lemma 5.8 with ζ j instead of φ j and f j = 2 jα ρj * f (• + t), we prove the theorem.

The above theorem will be useful when we consider the conic square functions of local Hardy spaces and inhomogeneous Triebel-Lizorkin spaces in Chapter 8. Note that both Theorem 5.6 and Theorem 5.9 do not deal with the case p = 1. So we include the corresponding Fourier multiplier results for h c p with 1 ≤ p ≤ 2 in the following. When the Hilbert space H degenerates to 2 , we have Corollary 5.10. Let φ = (φ j ) j≥0 be a sequence of continuous functions on R d satisfying (5.7) and

1 ≤ p ≤ 2. For f ∈ h c p (R d , M), ( j≥0 | φj * f | 2 ) 1 2 p φ 2,σ f h c p .
The relevant constant depends only on ϕ, σ and d.

Proof. Now we view k = (k j ) j≥0 as a column matrix and the associated Calderón-Zygmund operator k is defined on L p (N ):

k(f )(s) = R d k(s -t)f (t)dt, ∀s ∈ R.
Thus k maps function with values in L p (M) to sequence of functions. Then we have to

show that k is bounded from h c p (R d , M) to L p (N ; c 2 ) for 1 ≤ p ≤ 2.
The case p = 2 is trivial, so by interpolation, it suffices to consider the case p = 1. To prove that k is bounded from h c 1 (R d , M) to L 1 (N ; c 2 ), passing to the dual spaces, it is equal to proving that the adjoint of k is bounded from L ∞ (N ; c

2 ) to bmo c (R d , M). We keep all the notation in the proof of Lemma 5.8. For any finite sequence f = (f j ) j≥0 (viewed as a column matrix), the adjoint of k is defined by

k * (f )(s) = R d j k j (s -t)f j (t)dt,
where k(s) = k(-s) * (so it is a row matrix). Put

K(s) = k(s) ⊗ 1 M . In this case, K(f ) bmo c (R d ,M) = K(f ) bmo c (R d ,B( 2 )⊗M) .
Then we apply the estimates used in the previous lemma by replacing K with K. It follows that k is bounded from L ∞ (N ; c 2 ) into bmo c (R d , M), the desired assertion is proved.

In the setting where 2 is replaced by H = ⊕ ∞ j=0 H j with H j = L 2 B(0, 2 -j ), 2 jd dt , the counterpart of Corollary 5.10 is the following: Corollary 5.11. Let φ = (φ j ) j≥0 be a sequence of continuous functions on R d satisfying (5.7). Then for 1 ≤ p ≤ 2 and any

f ∈ h c p (R d , M), ( j≥0 
2 dj B(0,2 -j ) | φj * f (• + t)| 2 dt) 1 2 p φ 2,σ f h c p .
The relevant constants depend only on ϕ, σ and d.

Proof. The proof of this corollary is similar to Corollary 5.10; let us point out the necessary change. Consider the H-valued Calderón-Zygmund operator k defined on L p (N ) given by

k(f ) j (• + t) = φj * f (• + t).
The lemma is then reduced to showing that k is bounded from

h c p (R d , M) to L p (N ; H c ) for 1 ≤ p < 2.
Since each H j is a normalized Hilbert space, such that the constant function 1 has Hilbert norm one, the kernel estimates of our k here are the same as the ones in Lemma 5.8. So we can repeat the proof in Lemma 5.8 and Corollary 5.10. The desired assertion follows.

Chapter 6

General characterizations of

h c p (R d , M)
Applying the operator-valued Calderón-Zygmund theory developed in the last chapter, we will show in this chapter that the Poisson kernel in the square functions which are used to define h c p (R d , M) can be replaced by any reasonable test functions. As an application, we are able to compare the operator-valued local Hardy spaces h c p (R d , M) defined in this thesis with the operator-valued Hardy spaces H c p (R d , M) in [START_REF] Mei | Operator-valued Hardy Spaces[END_REF].

General characterizations

Consider a Schwartz function Φ on R d of vanishing mean. We set Φ ε (s) = ε -d Φ( s ε ) for ε > 0. We will assume that Φ is nondegenerate in the sense of (1.12). Then there exists a Schwartz function Ψ of vanishing mean such that

∞ 0 Φ(εξ) Ψ(εξ) dε ε = 1, ∀ξ ∈ R d \ {0} . (6.1)
This is a well-known elementary fact (ef. e.g. [61, p. 186]). We will use multi-index notation. For m = (m

1 , • • • , m d ) ∈ N d 0 and s = (s 1 , • • • , s d ) ∈ R d , we set s m = s m 1 1 • • • s m d d . Let |m| 1 = m 1 + • • • + m d and D m = ∂ m 1 ∂s m 1 1 • • • ∂ m d ∂s m d d . Lemma 6.1. 1 0 Φ(ε•) Ψ(ε•) dε ε is an infinitely differentiable function on R d if

we define its value at the origin as 0.

Proof. To prove the assertion, it suffices to show that 1 0 Φ(ε•) Ψ(ε•) dε ε is infinitely differentiable at the origin. Given ε ∈ (0, 1], we expand Φ(ε•) in the Taylor series at the origin

Φ(εξ) = |γ| 1 ≤N D γ Φ(0) ε |γ| 1 ξ γ γ! + |γ| 1 =N +1 R γ (εξ) ξ γ ,
with the remainder of integral form be

R γ (εξ) = (N + 1)ε N +1 γ! 1 0 (1 -θ) N D γ Φ(θεξ)dθ .
Since Φ(0) = 0, the above Taylor series implies that

Φ(εξ) = 1≤|γ| 1 ≤N D γ Φ(0) ε |γ| 1 ξ γ γ! + |γ| 1 =N +1 R γ (εξ) ξ γ .
Similarly, we have

Ψ(εξ) = 1≤|β| 1 ≤N D β Ψ(0) ε |β| 1 ξ β β! + |β| 1 =N +1 R β (εξ) ξ β ,
where R β is the integral form remainder of Ψ. Thus, both Φ(εξ) and Ψ(εξ) contain only powers of ε with order at least 1. Therefore, the integral 1 0 Φ(εξ) Ψ(εξ) dε ε (and the integrals of arbitrary order derivatives of Φ(εξ) and Ψ(εξ)) converge uniformly for ξ ∈ R d close to the origin. We then obtain that 1 0 Φ(εξ) Ψ(εξ) dε ε is infinitely differentiable at the origin ξ = 0.

It follows immediately from Lemma 6.1 that ∞ 1 Φ(ε•) Ψ(ε•) dε ε is a Schwartz function if we define its value at the origin by 1. Then we can find two other functions φ,

ψ such that φ, ψ ∈ H σ 2 (R d ), φ(0) > 0, ψ(0) > 0 and φ(ξ) ψ(ξ) = 1 - 1 0 Φ(εξ) Ψ(εξ) dε ε , ∀ξ ∈ R d . ( 6.2) 
Indeed, for β > 0 large enough, the function

(1 + | • | 2 ) -β belongs to H σ 2 (R d ). On the other hand, if F ∈ S(R d ), the function (1 + | • | 2 ) β F is still in H σ 2 (R d ).
Thus we obtain (6.2). The main target in this section is to use the test functions in (6.2) to characterize the space h c p (R d , M).

For any f ∈ L 1 (M; R c d ) + L ∞ (M; R c d )
, we define the local versions of the conic and radial square functions of f associated to Φ by

s c Φ (f )(s) = Γ |Φ ε * f (s + t)| 2 dtdε ε d+1 1 2 , s ∈ R d , g c Φ (f )(s) = 1 0 |Φ ε * f (s)| 2 dε ε 1 2 , s ∈ R d .
Fix the four test functions Φ, Ψ, φ, ψ as in (6.2). The following is one of our main results in this section. Theorem 6.2. Let 1 ≤ p < ∞ and φ, Φ be as above. For any

f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ), f ∈ h c p (R d , M) if and only if s c Φ (f ) ∈ L p (N ) and φ * f ∈ L p (N ) if and only if g c Φ (f ) ∈ L p (N ) and φ * f ∈ L p (N ).
If this is the case, then

f h c p ≈ g c Φ (f ) p + φ * f p ≈ s c Φ (f ) p + φ * f p (6.3)
with the relevant constants depending only on d, p, Φ and φ.

First, we deal with the case 1 ≤ p ≤ 2. We apply Corollary 5.3 to the square function operators s c Φ and g c Φ . Let H = L 2 ((0, 1), dε ε ). Define the kernel k :

R d → H by k(s) = Φ • (s) with Φ • (s) : ε → Φ ε (s). Then we can check that sup ξ∈R d Φ(εξ) H < ∞, Φ ε (s) H 1 |s| d+1 , ∀s ∈ R d \ {0} and that ∇Φ ε (s) H 1 |s| d+1 , ∀s ∈ R d \ {0}.
Thus, k satisfies the assumption of Corollary 5.3. By Remark 5.4, we have, for any

1 ≤ p ≤ 2, Φ • * f Lp(N ;H c ) = g c Φ (f ) p f h c p . The treatment of s c
Φ is similar. In this case, we take the Hilbert space

H = L 2 ( Γ, dtdε ε d+1 ). On the other hand, φ ∈ H σ 2 (R d ) implies φ ∈ L 1 (R d ), then φ * f Lp(N ) f Lp(N ) f h c
p . Thus, combining the above estimates, we obtain one direction of (6.3) for the case 1 ≤ p ≤ 2:

g c Φ (f ) p + φ * f p f h c p , ( 6.4 
)

s c Φ (f ) p + φ * f p f h c p . (6.5)
The proof of the other direction of (6.3) is long and technical. We follow the duality method used in [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF], which involves unavoidably bmo spaces. Thus we need a Carleson measure characterization of bmo c q by general test functions, which is analogous to Lemma 3.3, in the more general setting.

Lemma 6.3. Let 2 < q < ∞, g ∈ bmo c q (R d , M) and dλ g = |Ψ ε * g(s)| 2 dsdε ε .
Then dλ g is an M-valued q-Carleson measure on the strip R d × (0, 1). Furthermore, let ψ be any function on R d such that

ψ ∈ H σ 2 (R d ) with σ > d 2 . ( 6.6) 
We have max sup

+ s∈Q⊂R d |Q|<1 1 |Q| T (Q) dλ g 1 2 q 2
, ψ * g q g bmo c q .

Proof. Replacing ε ∂ ∂ε P ε by Ψ ε in Lemma 3.3, we have

sup + s∈Q⊂R d |Q|<1 1 |Q| T (Q) dλ g 1 2 q 2 g bmo c q .
We obtain the desired conclusion.

Lemma 6.4. Let 1 ≤ p ≤ 2 and q be its conjugate index. For

f ∈ h c p (R d , M) ∩ L 2 (N ) and g ∈ bmo c q (R d , M), τ R d f (s)g * (s)ds ( s c Φ (f ) p + φ * f p ) g bmo c q .
Proof. The proof of this Lemma is very similar to that of Theorem 3.10, we will just point out the necessary modifications to avoid duplication. We need two auxiliary square functions associated with Φ. For s ∈ R d , ε ∈ [0, 1], we define

s c Φ (f )(s, ε) = 1 ε B(s,r-ε 2 ) |Φ r * f (t)| 2 dtdr r d+1 1 2 , ( 6.7 
)

s c Φ (f )(s, ε) = 1 ε B(s, r 2 ) |Φ r * f (t)| 2 dtdr r d+1 1 2 . (6.8) p (R d , M)
By (6.2), we have τ

R d f (s)g * (s)ds = τ R d 1 0 Φ ε * f (s)(Ψ ε * g(s)) * dsdε ε + τ R d φ * f (s)(ψ * g(s)) * ds = 2 d c d τ R d 1 0 B(s, ε 2 ) Φ ε * f (t)(Ψ ε * g(t)) * dtdε ε d+1 ds + τ R d φ * f (s)(ψ * g(s)) * ds = 2 d c d τ R d 1 0 B(s, ε 2 ) Φ ε * f (t)s c Φ (f )(s, ε) p-2 2 s c Φ (f )(s, ε) 2-p 2 (Ψ ε * g(t)) * dtdε ε d+1 ds + τ R d φ * f (s)(ψ * g(s)) * ds def = I + II.
Then by the Cauchy-Schwarz inequality,

|I| 2 τ R d 1 0 B(s, ε 2 ) |Φ ε * f (t)| 2 dt ε d+1 s c Φ (f )(s, ε) p-2 dεds • τ R d 1 0 B(s, ε 2 ) |Ψ ε * g(t)| 2 dt ε d+1 s c Φ (f )(s, ε) 2-p dεds def = A • B.
Replacing ε ∂ ∂ε P ε (f ) and ε ∂ ∂ε P ε (g) in the proof of Theorem 3.10 by Φ ε * f and Ψ ε * g respectively and applying Lemma 6.3, we get the estimates for the terms A and B that

A s c Φ (f ) p p and B g 2 bmo c q s c Φ (f ) 2-p p .
The term II is easy to deal with. By the Hölder inequality and Lemma 6.3 again, we get

τ R d φ * f (s)(ψ * g(s)) * ds ≤ φ * f p ψ * g q φ * f p g bmo c q .
Combining the estimates for A, B and II, we finally get the desired inequality.

We will also need the radial version of Lemma 6.4. To this end, we need to majorize the radial square function by the conic one. When we consider the Poisson kernel, this result follows from the harmonicity of the Poisson integral (see Lemma 3.12). However, in the general case, the harmonicity is no longer available. To overcome this difficulty, a more sophisticated inequality has been developped in [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF] to compare non-local radial and conic functions. Observe that the result given in [70, Lemma 4.3] is a pointwise one, which also works for the local version of square functions if we consider integration over the interval 0 < ε < 1. The following lemma is an obvious consequence of [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF]Lemma 4.3].

Lemma 6.5. Let f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ). Then g c Φ (f )(s) 2 |m| 1 ≤d s c D m Φ (f )(s) 2 , ∀s ∈ R d . Lemma 6.6. Let 1 ≤ p ≤ 2. For f ∈ h c p (R d , M) ∩ L 2 (N ) and g ∈ bmo c q (R d , M), τ R d f (s)g * (s)ds ( g c Φ (f ) p + φ * f p ) p 2 f 1-p 2 h c p g bmo c q .
Proof. This proof is similar to that of Lemma 6.4 and we keep the notation there. Let f ∈ h c p (R d , M) with compact support (relative to the variable of R d ). We assume that f is sufficiently nice so that all calculations below are legitimate. Now we need the radial version of

s c Φ (f )(s, ε), g c Φ (f )(s, ε) = 1 ε |Φ r * f (s)| 2 dr r 1 2
for s ∈ R d and 0 ≤ ε ≤ 1. By approximation, we can assume that g c Φ (f )(s, ε) is invertible for every (s, ε) ∈ S. By (6.1), (6.2), (1.7) and the Fubini theorem, we have τ

R d f (s)g * (s)ds 2 τ R d 1 0 |Φ ε * f (s)| 2 g c Φ (f )(s, ε) p-2 dεds ε • τ R d 1 0 |Ψ ε * g(s)| 2 g c Φ (f )(s, ε) 2-p dεds ε + τ R d φ * f (s)(ψ * g(s)) * ds 2 def = A B + II .
II is treated exactly in the same way as before,

II φ * f 2 p ψ * g 2 q φ * f p p f 2-p h c p g 2 bmo c q .
A is also estimated similarly as in Lemma 6.4, we have A g c Φ (f ) p p . To estimate B , we notice that the proof of [70, Lemma 1.3] also gives

g c Φ (f )(s, ε) 2 |m| 1 ≤d s c D m Φ (f )(s, ε) 2 ,
where s c D m Φ (f )(s, ε) is defined by (6.7) with D m Φ instead of Φ. Then by the above inequality, Lemma 6.3 and inequality (6.5) with D m Φ instead of Φ, we obtain

B |m| 1 ≤d τ R d 1 0 |Ψ ε * g(s)| 2 s c D m Φ (f )(s, ε) 2-p dεds ε |m| 1 ≤d g 2 bmo c q s c D m Φ (f ) 2-p p g 2 bmo c q f 2-p h c p . Therefore, |τ R d f (s)g * (s)ds| 2 ( g c Φ (f ) p + φ * f Lp ) p f 2-p h c p g 2 bmo c q ,
which completes the proof.

Proof of Theorem 6.2. From Lemmas 6.4, 6.6 and Theorem 3.10, we conclude that for 1 ≤ p ≤ 2,

f h c p s c Φ (f ) p + φ * f p , f h c p g c Φ (f ) p + φ * f p .
Therefore, combined with (6.4) and (6.5), we have proved the assertion for the case 1 ≤ p ≤ 2. Now we turn to the case 2 < p < ∞. By Theorem 3.18, we can choose g ∈ h c q (R d , M) (with q the conjugate index of p) with norm one such that

f h c p ≈ τ R d f (s)g * (s)ds = τ R d 1 0 Φ ε * f (s)•(Ψ ε * g(s)) * dsdε ε +τ R d φ * f (s)(ψ * g(s)) * ds.
Then by the Hölder inequality and (6.4) (applied to g, Ψ and q),

f h c p g c Φ (f ) p g c Ψ (g) q + φ * f p ψ * g q ( g c Φ (f ) p + φ * f p ) g h c q = g c Φ (f ) p + φ * f p .
Similarly,

f h c p s c Φ (f ) p + φ * f p . It remains to show the two reverse inequalities for 2 < p < ∞. First, we define a map E Φ,φ for sufficiently nice h = (h , h ) ∈ L p N ; L c 2 ( Γ) ⊕ p L p (N ) by E Φ,φ (h)(u) = R d Γ h (s, t, ε)Φ ε (s + t -u) dtdε ε d+1 + h (s)φ(s -u) ds .
This map can be seen as an analogue of the map E in Theorem 3.8. By modelling on the proof of Theorem 3.8 and Theorem 3.17, we can check that E Φ,φ is also a bounded map from L q N ; L c 2 ( Γ) ⊕ q L q (N ) to h c q (R d , M) for 1 < q < 2. Now, we estimate the sum

s c Φ (f ) p + φ * f p . Note that there exists a function h 0 = (h 0 , h 0 ) ∈ L q N ; L c 2 ( Γ) ⊕ q L q (N ) with norm one such that s c Φ (f ) p + φ * f p = τ R d Γ Φ ε * f (s + t)h 0 (s, t, ε) * dtdε ε d+1 ds + τ R d φ * f (s)h 0 (s) * ds = R d f (u)E Φ,φ (h * 0 )(u)du E Φ,φ (h 0 ) h c q f h c p f h c p .
On the other hand, Lemma 6.5 gives the inequality

g c Φ (f ) p + φ * f p f h c
p , which completes the proof.

Discrete characterizations

The square functions s c Φ and g c Φ can be discretized as follows:

g c,D Φ (f )(s) = j≥1 |Φ j * f (s)| 2 1 2 , s c,D Φ (f )(s) = j≥1 2 dj B(s,2 -j ) |Φ j * f (t)| 2 dt 1 2 .
Here Φ j is the inverse Fourier transform of Φ(2 -j •). This time, to get a resolvent of the unit on R d , we need to assume that Φ satisfies (1.16). Then adapting the proof of [61, Lemma V.6] , we can find a Schwartz function Ψ of vanishing mean such that

+∞ j=-∞ Φ(2 -j ξ) Ψ(2 -j ξ) = 1, ∀ξ ∈ R d \ {0}. (6.9) 
There exist two other functions φ and ψ such that ϕ, ψ ∈ H σ 2 (R d ), φ(0) > 0, ψ(0) > 0 and

∞ j=1 Φ(2 -j ξ) Ψ(2 -j ξ) + φ(ξ) ψ(ξ) = 1, ∀ξ ∈ R d . (6.10)
The following discrete version of Theorem 6.2 will play a crucial role in the study of operator-valued Triebel-Lizorkin spaces on R d in chapter 8. Now we fix the pairs (Φ, Ψ) and (φ, ψ) satisfying (6.9) and (6.10). Theorem 6.7. Let φ and Φ be test functions as in (6.10) and 1 ≤ p < ∞. Then for

any f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ), f ∈ h c p (R d , M) if and only if s c,D Φ (f ) ∈ L p (N ) and φ * f ∈ L p (N ) if and only if g c,D Φ (f ) ∈ L p (N ) and φ * f ∈ L p (N ). Moreover, s c,D Φ (f ) p + φ * f p ≈ g c,D Φ (f ) p + φ * f p ≈ f h c p
with the relevant constants depending only on d, p, Φ and φ.

The following paragraphs are devoted to the proof of Theorem 6.7, which is similar to that of Theorem 6.2. We will just indicate the necessary modifications. We first prove the discrete counterparts of Lemmas 6.4 and 6.6. Lemma 6.8. Let 1 ≤ p < 2 and q be the conjugate index of p. For any

f ∈ h c p (R d , M) ∩ L 2 (N ) and g ∈ bmo c q (R d , M), τ R d f (s)g * (s)ds s c,D Φ (f ) p + φ * f p g bmo c q .
Proof. First, note that by (6.10), we have

τ R d f (s)g * (s)ds = τ R d j≥1 Φ j * f (s) Ψ j * g(s) * ds + τ R d φ * f (s) ψ * g(s) * ds.
The second term on the right hand side of the above formula is exactly the same as the corresponding term II in the proof of Lemma 6.4. Now we need the discrete versions of s c Φ and s c Φ : For j ≥ 1, s ∈ R d , let

s c,D Φ (f )(s, j) = 1≤k≤j 2 dk B(s,2 -k -2 -j-1 ) |Φ j * f (t)| 2 dt 1 2 s c,D Φ (f )(s, j) = 1≤k≤j 2 dk B(s,2 -k-1 ) |Φ j * f (t)| 2 dt 1 2 .
Denote s c,D Φ (f )(s, j) and s c,D Φ (f )(s, j) simply by s(s, j) and s(s, j), respectively. By approximation, we may assume that s(s, j) and s(s, j) are invertible for every s ∈ R d and j ≥ 1. By the Cauchy-Schwarz inequality,

τ R d j≥1 Φ j * f (s) Ψ j * g(s) * ds 2 = 2 d c d τ R d j 2 dj B(s,2 -j-1 ) Φ j * f (t) Ψ j * g(t) * dt ds 2 τ R d j s(s, j) p-2 2 dj B(s,2 -j-1 )) |Φ j * f (t)| 2 dt ds • τ R d j s(s, j) 2-p 2 dj B(s,2 -j-1 ) |Ψ j * g(t)| 2 dt ds def = A • B.
The term A is less easy to estimate than the corresponding term A in the proof of Lemma 6.4. To deal with it we simply set s j = s(s, j) and s = s(s, +∞) ≤ s c,D (f )(s). Then

A = τ R d j≥1 s p-2 j (s 2 j -s 2 j-1 )ds ≤ τ R d j s p-2 j (s 2 j -s 2 j-1 )ds = τ R d j (s j -s j-1 )ds + τ R d j s p-2 j s j-1 (s j -s j-1 )ds,
where

s 0 = 0. Since 1 ≤ p < 2, s p-1 j ≤ s p-1 , we have τ R d j s p-1 j (s j -s j-1 )ds τ R d s p ds ≤ s c,D (f ) p p .
On the other hand, τ

R d j s p-2 j s j-1 (s j -s j-1 )ds = τ R d j s 1-p 2 s p-2 j s j-1 s 1-p 2 s p-1 2 (s j -s j-1 )s p-1
2 ds, since s j ≥ s j-1 for any j ≥ 1, we have s

1-p 2 s p-2 j s j-1 s 1-p 2 ≤ 1. Thus, by the Hölder inequality, τ R d j s p-2 j s j-1 (s j -s j-1 )ds ≤ τ R d j s p-1 2 (s j -s j-1 )s p-1 2 ds = τ R d s p ds ≤ s c,D Φ (f ) p p .
Combining the preceding inequalities, we get the desired estimate of A:

A ≤ 2 s c,D Φ (f ) p p .
The estimate of the term B is, however, almost identical to that of B in the proof of Lemma 6.4. There are only two minor differences. The first one concerns the square function S c (f )(s, j) in (3.9): it is now replaced by

S c (f )(s, j) = 1≤k≤j 2 dk B(c m,j ,2 -k ) |Φ j * f (t)| 2 dt 1 2 if s ∈ Q m,j .
Then we have s(s, j) ≤ S c (f )(s, j). The second difference is about the Carleson characterization of bmo c q ; we now use its discrete analogue. Namely, for g

∈ bmo c q (R d , M), define dλ D (g) = j≥1 |Ψ j * g(s)| 2 ds × dδ 2 -j (ε),
where δ 2 -j (ε) is the unit Dirac mass at the point 2 -j , considered as a measure on (0, 1). Then dλ D (g) is a Carleson measure on the strip S and sup

+ s∈Q⊂R d |Q|<1 1 |Q| T (Q) j≥1 |Ψ j * g(s)| 2 ds × dδ 2 -j (ε) q 2 g 2 bmo c
q .

The proof of this inequality is the same as that of Lemma 6.3. Apart from these two differences, the remainder of the argument is identical to that in the proof of Lemma 6.4. Lemma 6.9.

Let 1 ≤ p < 2 and f ∈ h c p (R d , M) ∩ L 2 (N ), g ∈ bmo c q (R d , M). Then τ R d f (s)g * (s)ds g c,D Φ (f ) p + φ * f p p 2 f 1-p 2 h c p g bmo c q .
Proof. We use the truncated version of g c,D Φ (f ):

g c,D Φ (f )(s, j) = k≤j |Φ k * f (s)| 2 1 2 .
The proof of [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF]Lemma 4.3] is easily adapted to the present setting to ensure

g c,D Φ (f )(s, j) 2 |m| 1 ≤d s c,D D m Φ (f )(s, j) 2 .
Then τ

R d f (s)g * (s)ds 2 ≤ I • II + τ φ * f (s) ψ * g(s) * ds ,
where

I = τ R d j g c,D Φ (f )(s, j) p-2 |Φ j * f (s)| 2 ds , II = τ R d j g c,D Φ (f )(s, j) 2-p |Ψ j * g(s)| 2 ds .
Both terms I and II are estimated exactly as before, so we have

I ≤ 2 g c Φ (f ) p p and II f 2-p h c p g 2 bmo c
q . This gives the announced assertion.

Armed with the previous two lemmas and the Calderón-Zygmund theorem (see Corollary 5.3), we can prove Theorem 6.7 in the same way as Theorem 6.2. Remark 6.10. We notice that the assumption Φ ∈ S can be relaxed in both Theorems 6.2 and 6.7, similarly to the test functions used in [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF]. So far, we have used the following properties of Φ to prove the characterizations:

(1) Every D m Φ in Lemma 6.5 with 0

≤ |m| 1 ≤ d makes f → s c D m Φ f and f → g c D m Φ f Calderón-Zygmund singular integral operators in Corollary 5.3.
(2) There exist functions Ψ, ψ and φ such that (6.2) (or (6.10) for discrete characterizations) holds.

(3) The above Ψ makes dµ(f ) = |Ψ ε * f (s)| 2 dεds ε a q-Carleson measure, satisfying Lemma 6.3.

Even though the Poisson kernel and its potentials are not Schwartz functions, they can still be used to characterize h c p (R d , M). Let us take Φ = -2πI(P) and φ = P for example. A simple calculation shows that we can choose Ψ = -8πI(P) and ψ = 4πI(P) + P to fulfill (6.2). By the inverse Fourier transform formula, we have

-2πf * I(P) ε (t) = -2π e 2πit•ξ f (ξ)|εξ|e -2πε|ξ| dξ = ε ∂ ∂ε e 2πit•ξ f (ξ)e -2πε|ξ| dξ = ε ∂ ∂ε (P ε (f )(t)).
So we return back to the original definition of h c p (R d , M). Therefore, Theorem 6.2 implies that

f h c p ≈ s c Φ (f ) p + φ * f p ≈ g c Φ (f ) p + φ * f p .
In particular, we have the following equivalent norm of h c p (R d , M).

Theorem 6.11. Let 1 ≤ p < ∞. Then for any f ∈ h c p (R d , M), we have 

f h c p ≈ g c (f ) p + P * f p .

The relation between

H c p (R d , M) ⊂ h c p (R d , M) for 1 ≤ p ≤ 2. (6.11)
Then by the duality obtained in Theorem 3.18, we have

h c p (R d , M) ⊂ H c p (R d , M) for 2 < p < ∞. (6.12) 
However, we can see from the following proposition that we do not have the inverse inclusion of (6.11) or (6.12). Proposition 6.12. Let φ be a function on

R d such that φ(0) ≥ 0 and φ ∈ H σ 2 (R d ) with σ > d 2 . Let 2 < p < ∞. If for any f ∈ H c p (R d , M), φ * f p f H c p , (6.13) 
then we must have φ(0) = 0.

Proof. We will prove the assertion by contradiction. Suppose that there exists φ such that φ(0) > 0, φ ∈ H σ 2 (R d ) and (6.13) holds for any f ∈ H c p (R d , M). Since both H c p (R d , M) and L p (N ) are homogeneous spaces, we have, for any ε > 0,

φ * f (ε•) p = (φ ε * f )(ε•) p = ε -d p φ ε * f p and f (ε•) H c p = ε -d p f H c p .
This implies that

φ ε * f p f H c p , ( 6.14) 
for any ε > 0 with the relevant constant independent of ε. Now we consider a function f ∈ L p (N ) which takes values in S + M and such that supp f is compact, i.e. there exists a positive real number N such that supp f ⊂ {ξ ∈ R d : |ξ| ≤ N }. Since φ(0) > 0, we can find ε 0 > 0 and c > 0 such that φ(ε 0 ξ) ≥ c whenever |ξ| ≤ N . Thus, in this case, φ ε * f p ≥ c f p . Then by (6.14), we have

f p f H c p ,
which leads to a contradiction when p > 2. Therefore, φ(0) = 0.

By the definition of the h c p -norm and the duality in Theorem 3.18, we get the following result: (1)

If 1 ≤ p ≤ 2 and f ∈ h c p (R d , M), then f -φ * f ∈ H c p (R d , M) and f -φ * f H c p f h c p .
(

) If 2 < p < ∞ and f ∈ H c p (R d , M), then f -φ * f ∈ h c p (R d , M) and f -φ * f h c p f H c p . Proof. (1) Let f ∈ h c p (R d , M 2 
) and Φ be a nondegenerate Schwartz function with vanishing mean. By the general characterization of

H c p (R d , M) in Lemma 1.1, f -φ * f H c p (R d ,M) ≈ G c Φ (f -φ * f ) p . Let us split G c Φ (f -φ * f ) p into two parts: G c Φ (f -φ * f ) p 1 0 |Φ ε * (f -φ * f )| 2 dε ε 1 2 p + ∞ 1 |Φ ε * (f -φ * f )| 2 dε ε 1 2 p = 1 0 |Φ ε * (f -φ * f )| 2 dε ε 1 2 p + ∞ 1 |(Φ ε -Φ ε * φ) * f | 2 dε ε 1 2 p .
In order to estimate the first term in the last equality, we notice that φ * f ∈ h c p (R d , M), thus we have f -φ * f ∈ h c p (R d , M). Then by Theorem 6.2, this term can be majorized from above by f h c p . To deal with the second term, we express it as a Calderón-Zygmund operator with Hilbert-valued kernel. Let H = L 2 ((1, +∞), dε ε ) and define the kernel k :

R d → H by k(s) = Φ • (s) -Φ • * φ(s) (Φ • (s) being the function ε → Φ ε (s)
). Now we prove that k satisfies the hypotheses of Corollary 5.3. The condition (1) of that corollary is easy to verify. So we only check the conditions (2) and (3) there. By the fact that R d φ(s)ds = 1 and the mean value theorem, we have

(Φ ε -Φ ε * φ)(s) = R d [Φ ε (s) -Φ ε (s -t)] φ(t)dt ≤ R d |t| 1 ε d+1 sup 0<θ<1 ∇Φ s -θt ε |φ(t)| dt.
Then we split the last integral into two parts:

(Φ • -Φ • * φ)(s) H ∞ 1 |t|< |s| 2 |t| 1 ε d+1 sup 0<θ<1 ∇Φ s -θt ε |φ(t)| dt 2 dε ε 1 2 + ∞ 1 |t|> |s| 2 |t| 1 ε d+1 sup 0<θ<1 ∇Φ s -θt ε |φ(t)| dt 2 dε ε 1 2 def = I + II. If |t| < |s| 2 , we have |s -θt| ≥ |s| 2 , thus |∇Φ( s-θt ε )| ε d+ 1 2 |s| d+ 1 2 for any 0 ≤ θ ≤ 1. Then I ∞ 1 1 ε 2 dε 1 2 1 |s| d+ 1 2 1 |s| d+ 1 2 . When |t| > |s| 2 , since φ ∈ S, we have |t|> |s| 2 |t| |φ(t)| dt 1 |s| d+ 1 2 . Hence II ∞ 1 1 ε 2d+2 dε ε 1 2 • 1 |s| d+ 1 2 1 |s| d+ 1 2 .
The estimates of I and II imply

(Φ ε -Φ ε * φ)(s) H 1 |s| d+ 1 2 .
In a similar way, we obtain

∇(Φ ε -Φ ε * φ)(s) H 1 |s| d+1 .
Thus, it follows from Corollary 5.3 that

( ∞ 1 |(Φ ε -Φ ε * φ) * f | 2 dε ε ) 1 2
p is also majorized from above by f h c p .

(2) The case p > 2 can be deduced from the duality between h c p and h c q and that between H c p and H c q (q being the conjugate index of p). There exists g ∈ h c q (R d , M) with norm one such that

f -φ * f h c p = τ R d (f -φ * f )(s)g * (s)ds = τ R d f (s)(g * -φ * g * )(s)ds ≤ f H c p g -φ * g H c q f H c p g h c q = f H c p , which completes the proof.
From the interpolation result of mixture local hardy spaces in Proposition 4.4, we can deduce the equivalence between mixture local Hardy spaces and L p -spaces. Proposition 6.15. For any 

1 < p < ∞, h p (R d , M) = H p (R d , M) = L p (N ) with equiva- lent norms. Proof. It is known that H p (R d , M) = L p (N )
p (R d , M) = H p (R d , M) = L p (N ) for 1 < p < ∞,
which completes the proof.

Chapter 7

The atomic decomposition

We start this chapter by showing that h c 1 (R d , M) admits an atomic decomposition as in the non-local case [START_REF] Mei | Operator-valued Hardy Spaces[END_REF]. Then, we will give a smooth atomic decomposition of h c 1 (R d , M), that is, the atoms in consideration are required to be smooth and admit size control on their derivatives too. This refinement will play an important role in the study of pseudodifferential operators in chapter 9.

The atomic decomposition

In this section, we will focus on the atomic decomposition of h c 1 (R d , M). The atomic decomposition of H c 1 (R d , M) studied in [START_REF] Mei | Operator-valued Hardy Spaces[END_REF] will be very useful for us.

Definition 7.1. Let Q be a cube in R d with |Q| ≤ 1. If |Q| = 1, an h c 1 -atom associated with Q is a function a ∈ L 1 (M; L c 2 (R d )) such that • supp a ⊂ Q; • τ Q |a(s)| 2 ds 1 2 ≤ |Q| -1 2 .
If |Q| < 1, we assume additionally:

• Q a(s)ds = 0. Let h c 1,at (R d , M
) be the space of all f admitting a representation of the form

f = ∞ j=1 λ j a j ,
where the a j 's are h c 1 -atoms and λ j ∈ C such that ∞ j=1 |λ j | < ∞. The above series converges in the sense of distribution. We equip h c 1,at (R d , M) with the following norm:

f h c 1,at = inf{ ∞ j=1 |λ j | : f = ∞ j=1 λ j a j ; a j 's are h c 1 -atoms, λ j ∈ C}.
Similarly, we define the row version h r 1,at (R d , M). Then we set

h 1,at (R d , M) = h c 1,at (R d , M) + h r 1,at (R d , M). Theorem 7.2. We have h c 1,at (R d , M) = h c 1 (R d , M) with equivalent norms.
Proof. First, we show the inclusion h

c 1,at (R d , M) ⊂ h c 1 (R d , M).
To this end, it suffices to prove that for any atom a in Definition 7.1, we have

a h c 1 1. (7.1)
Recall that the atomic decomposition of H c 1 (R d , M) has been considered in [START_REF] Mei | Operator-valued Hardy Spaces[END_REF]. An

H c 1 -atom is a function b ∈ L 1 (M; L c 2 (R d )) such that, for some cube Q, • supp b ⊂ Q; • Q b(s)ds = 0; • τ Q |b(s)| 2 ds 1 2 ≤ |Q| -1 2 . If a is supported in Q with |Q| < 1, then a is also an H c 1 -atom, whence a h c 1 a H c 1
1. Now assume that the supporting cube Q of a is of side length one. We use the discrete characterization obtained in Theorem 6.7, i.e.

a h c 1 ≈ ( ∞ j=1 |Φ j * a| 2 ) 1 2 1 + φ * a 1 .
Apart from the assumption on Φ and φ in Theorem 6.2, we may take Φ and φ satisfying supp Φ, supp

φ ⊂ B 1 = {s ∈ R d : |s| ≤ 1}.
Then supp φ * a ⊂ 3Q and supp Φ ε * a ⊂ 3Q for any 0 < ε < 1.

By the Cauchy-Schwarz inequality we have

φ * a 1 ≤ 3Q Q |φ(t -s)| 2 ds 1 2 • τ |a(s)| 2 ds 1 2 dt 1.
Similarly,

( ∞ j=1 |Φ j * a| 2 ) 1 2 1 = τ 3Q ( ∞ j=1 |Φ j * a(s)| 2 ) 1 2 ds τ 3Q ∞ j=1 |Φ j * a(s)| 2 ds 1 2 = τ R d ∞ j=1 | Φ(2 -j ξ) a(ξ)| 2 dξ 1 2 ≤ τ |a(s)| 2 ds 1 2 ≤ 1. Therefore, h c 1,at (R d , M) ⊂ h c 1 (R d , M
). Now we turn to proving the converse inclusion. Observe that H c 1 -atoms are also h c 1 -atoms. Then by the atomic decomposition of H c 1 (R d , M) and the duality between H c 1 (R d , M) and BMO c (R d , M), every continuous functional on h c 1,at (R d , M) corresponds to a function g ∈ BMO c (R d , M). Moreover, since for any cube Q with side length one,

L 1 M; L c 2 (Q) ⊂ h c 1,at (R d , M)
, induces a continuous functional on L 1 M; L c 2 (Q) with norm less than or equal to (h c 1,at ) * . Thus, the function g satisfies the condition that g ∈ BMO c (R d , M) and sup

Q⊂R d |Q|=1 g| Q L∞(M;L c 2 (Q)) ≤ (h c 1,at ) * . (7.2)
Consequently, g ∈ bmo c (R d , M) and

(f ) = τ R d f (s)g * (s)ds, ∀f ∈ h c 1,at (R d , M). Thus, h c 1,at (R d , M) * ⊂ bmo c (R d , M).
On the other hand, by the previous result, we have bmo 

c (R d , M) ⊂ h c 1,at (R d , M) * . Thus, h c 1,at (R d , M) * = bmo c (R d , M) with equivalent norms. Since h c 1,at (R d , M) ⊂ h c 1 (R d , M)

Refinement on smoothness

The smoothness of the atom in h c 1 (R d , M) can be improved. In the classical theory, the smooth atoms have been widely studied and they play a crucial role when studying the mapping properties of pseudo-differential operators acting on local Hardy spaces, or more generally, on Triebel-Lizorkin spaces. Further details can be found in [START_REF] Coifman | Some new function spaces and their applications to Harmonic analysis[END_REF], [START_REF] Frazier | The ϕ-transform and applications to distribution spaces[END_REF] and [START_REF] Triebel | Theory of function spaces[END_REF]. In this section, we will show that in our operator-valued case, the atoms in Definition 7.1 can also be refined to be infinitely differentiable.

First, we introduce a lemma concerning the atomic decomposition of the tent space

T c 1 (R d , M) defined in Definition 3.14. A function a ∈ L 1 M; L 2 (S, dsdε ε ) is called a T c 1 - atom if • supp a ⊂ T (Q) for some cube Q in R d with |Q| ≤ 1; • τ T (Q) |a(s, ε)| 2 dsdε ε 1 2 ≤ |Q| -1 2 .
Let T c 1,at (R d , M) be the space of all f : S → L 1 (M) admitting a representation of the form

f = ∞ j=1 λ j a j , ( 7.3) 
where the a j 's are T c 1 -atoms and

λ j ∈ C such that ∞ j=1 |λ j | < ∞. We equip T c 1,at (R d , M) with the following norm f T c 1,at = inf{ ∞ j=1 |λ j | : f = ∞ j=1 λ j a j ; a j 's are T c 1 -atoms, λ j ∈ C}. Lemma 7.4. We have T c 1,at (R d , M) = T c 1 (R d , M) with equivalent norms.
Proof. In order to prove

T c 1,at (R d , M) ⊂ T c 1 (R d , M), it is enough to show that any T c 1 -atom a satisfies a T c 1 1
. By the support assumption of a, we have

a T c 1 = A c (a) 1 = τ R d 1 0 B(t,ε) |a(s, ε)| 2 dsdε ε d+1 1 2 dt |Q| 1 2 τ R d 1 0 B(t,ε) |a(s, ε)| 2 dsdε ε d+1 dt 1 2 = c 1 2 d |Q| 1 2 τ T (Q) |a(t, ε)| 2 dtdε ε
Then by the duality

T c 1 (R d , M) * = T c ∞ (R d , M) mentioned in Remark 3.15, we have T c ∞ (R d , M) ⊂ T c 1,at (R d , M) * . Now let Q be a cube in R d with |Q| ≤ 1. If f ∈ L 1 M; L c 2 (T (Q), dsdε ε ) , then a = |Q| -1 2 f -1 L 1 M;L c 2 (T (Q), dsdε ε ) f is a T c 1 -atom supported in T (Q). Therefore, f T c 1,at ≤ |Q| 1 2 f L 1 M;L c 2 (T (Q), dsdε ε )
.

Thus, L 1 M; L c 2 (T (Q), dsdε ε ) ⊂ T c 1,at (R d , M
) for every cube Q. Therefore, every continuous functional on T c 1,at induces a continuous functional on L 1 M; L c 2 (T (Q), dsdε ε ) with norm smaller than or equal to |Q| 1 2 (T c 1,at ) * . Let Q 0 be the cube centered at the origin with side length 1 and

Q m = Q 0 + m for each m ∈ Z d . Then R d = ∪ m∈Z d Q m . Consequently, we can choose a sequence of functions (g m ) m∈Z d such that (a) = τ T (Qm) a(s, ε)g * m (s, ε) dsdε ε , ∀ T c 1 -atom a with supp a ⊂ T (Q m ),
and

g m L∞ M;L c 2 (T (Qm), dsdε ε ) ≤ (T c 1,at ) * . Let g(s, ε) = g m (s, ε) for (s, ε) ∈ T (Q m ). Therefore, we have (a) = τ S a(s, ε)g * (s, ε) dsdε ε , ∀ T c 1 -atom a.
It follows that, for any cube 

Q with |Q| ≤ 1, g| T (Q) ∈ L ∞ M; L c 2 (T (Q), dsdε ε ) and g| T (Q) L∞ M;L c 2 (T (Qm), dsdε ε ) ≤ |Q| 1 2 (T c 1,at ) * , which implies g ∈ T c ∞ (R d , M). Therefore, T c 1,at (R d , M) * ⊂ T c ∞ (R d , M). Thus, we have that T c ∞ (R d , M) = T c 1,at (R d ,
      
Φ is supported in the cube with side length 1 and centered at the origin; R d Φ(s)ds = 0; Φ is nondegenerate in the sense of (1.12). (7.4) Let π Φ be the map given by

π Φ (f )(s) = 1 0 R d Φ ε (s -t)f (t, ε) dtdε ε , s ∈ R d . Then π Φ is bounded from T c p (R d , M) to h c p (R d , M) for any 1 ≤ p < ∞.
Proof. For any 1 < p < ∞, let q be its conjugate index. By Theorem 3.18, it suffices to estimate τ π Φ (f )(s)g * (s)ds, for any g ∈ h c q (R d , M). Note that

τ R d π Φ (f )(s)g * (s)ds = τ R d 1 0 Φ ε (s -t)f (t, ε) dtdε ε g * (s)ds = τ R d 1 0 f (t, ε)( Φ ε * g) * (t) dεdt ε ,
where Φ(s) = Φ(-s). Then by the Hölder inequality,

τ R d π Φ (f )(s)g * (s)ds = 1 c d τ R d 1 0 B(s,ε) f (t, ε)( Φ ε * g) * (t) dεdt ε d+1 ds = 1 c d τ R d Γ f (s + t, ε)( Φ ε * g) * (s + t) dεdt ε d+1 ds A c (f ) p s c Φ (g) q ≤ f T c p g h c q .
Now we deal with the case p = 1. The arguement below is based on the atomic decompositions of h c 1 (R d , M) and T c 1 (R d , M). By Lemma 7.4, it is enough to show that π Φ maps a T c 1 -atom to a bounded multiple of an h c 1 -atom. Let a be an atom in T c 1 based on some cube Q with |Q| ≤ 1. Since Φ is supported in the unit cube, it follows from the definition of π Φ that π Φ (a) is supported in 2Q. Moreover, it satisfies the moment cancellation that π Φ (a)(s)ds = 0 since Φ(0) = 0. So it remains to check that π Φ (a) satisfies the size estimate. To this end, we use the Cauchy-Schwarz inequality and the Plancherel formula (1.6),

π Φ (a) L 1 (M;L c 2 (R d )) = τ R d | π Φ (a)(ξ)| 2 dξ 1 2 = τ R d | 1 0 Φ(εξ) a(ξ, ε) dε ε | 2 dξ 1 2 ≤ τ R d 1 0 | Φ(εξ)| 2 dε ε 1 0 | a(ξ, ε)| 2 dε ε dξ 1 2 ≤ τ T (Q) |a(s, ε)| 2 dsdε ε 1 2 ≤ |Q| -1 2 . (7.5)
Therefore we obtain the boundedness of • the coefficients µ j and λ j are complex numbers such that

π Φ from T c 1,at (R d , M) to h c 1,at (R d , M). Theorem 7.6. For any f ∈ L 1 (M; R c d ) + L ∞ (M; R c d ), f belongs to h c 1 (R d , M) if

and only if it can be represented as

f = ∞ j=1 (µ j b j + λ j g j ), ( 7 
∞ j=1 (|µ j | + |λ j |) < ∞. (7.9)
Moreover, the infimum of (7.9) with respect to all admissible representations gives rise to an equivalent norm on h c 1 (R d , M).

Proof. Since the b j 's and g j 's are atoms in h c 1 (R d , M), it suffices to show that any f ∈ h c 1 (R d , M) can be represented as in (7.6) and

∞ j=1 (|µ j | + |λ j |) f h c 1 .
Let κ be a radial, real and infinitely differentiable function on R d which is supported in the unit cube centered at the origin. Moreover, we assume that κ(ξ) > 0 if |ξ| < 1. We take Φ = | • | 2 κ, which can be normalized as:

∞ 0 Φ(εξ) 2 dε ε = 1, ξ ∈ R d \{0}.
And we define

φ(ξ) = 1 - 1 0 Φ(εξ) 2 dε ε , ξ ∈ R d . (7.10)
By the Paley-Wiener theorem, Φ can be extended to an analytic function Φ(z) of d complex variables z = {z 1 , . . . , z d }, and for any λ > 0, there exists a constant C λ such that

| Φ(z)| ≤ C λ e ( λ 4 + √ d 2 )|ξ 2 | (|ξ 1 | 2 + |ξ 2 | 2 )
holds for any z = ξ 1 + iξ 2 . Therefore,

1 0 | Φ(εz)| 2 dε ε ≤ C 2 λ 1 0 e ε( λ 2 + √ d)|ξ 2 | ε 3 dε • (|ξ 1 | 2 + |ξ 2 | 2 ) 2 ≤ C 2 λ 1 0 ε 3 dε • e ( λ 2 + √ d)|ξ 2 | (|ξ 1 | 2 + |ξ 2 | 2 ) 2 ≤ C 2 λ e ( λ 2 + √ d)|ξ 2 | (1 + |ξ 1 | 2 ) 2 (1 + |ξ 2 | 2 ) 2 ≤ C 2 λ e (λ+2 √ d)|ξ 2 | (1 + |ξ 1 |) 4 .
Now applying the Paley-Wiener-Schwartz theorem to distributions, we obtain that φ is a distribution with support in {s ∈ R d : |s| ≤ 2 √ d}. On the other hand, by Lemma 6.1, we know that φ is a Schwartz function, thus, supp φ ⊂ {s ∈ R d : |s| ≤ 2 √ d}. By (7.10), we arrive at the decomposition of f :

f = φ * f + 1 0 Φ ε * Φ ε * f dε ε . (7.11)
We first deal with φ * f . By Theorem 7.2, we obtain an atomic decomposition of f :

f = j µ j a j , (7.12)
where the a j 's are h c 1 -atoms and

j | µ j | f h c 1 . Thus, φ * f = j µ j φ * a j .
We now show that every φ * a j can be decomposed into smooth atoms supported in cubes with side length two. Let X 0 be a nonnegative infinitely differentiable function on R d such that supp X 0 ⊂ 2Q 0 (with Q 0 the unit cube centered at the origin), and

k∈Z d X 0 (s-k) = 1 for every s ∈ R d . See [61, Section VII.2.4] for the existence of such X 0 . Set X k = X 0 (• -k).
Then each X k is supported in the cube 2Q k = k + 2Q 0 , and all X k 's form a smooth resolution of the unit:

1 = k∈Z d X k (s), ∀ s ∈ R d . (7.13)
Take a to be one of the atoms in (7.12) supported in Q. Since φ has compact support, i.e. there exists a constant C such that supp φ ⊂ CQ 0 , then φ * a is supported in (C + 1)Q 0 . Thus, we get the decomposition

φ * a = N k=1 b k with b k = X k • (φ * a),
where N is a positive integer depending only on the dimension d and C. For any β, γ ∈ N d 0 , denote β ≤ γ if β j ≤ γ j for every 1 ≤ j ≤ d. Then, by the Cauchy-Schwarz inequality, for any k, τ

R d |D γ b k (s)| 2 ds 1 2 β≤γ τ 2Q k |D β φ * a(s) • D γ-β X k (s)| 2 ds 1 2 β≤γ τ 2Q k | R d D β φ(s -t)a(t)dt| 2 ds 1 2 ≤ β≤γ Q 2Q k |D β φ(s -t)| 2 dsdt 1 2 • τ Q |a(t)| 2 dt 1 2 |Q| 1 2 τ Q |a(t)| 2 dt 1 2 ≤ 1,
where the relevant constants depend on γ, φ and the X k 's. Thus, we have proved that φ * f can be decomposed as follows:

φ * f = j µ j b j ,
with b j as desired. Furthermore, j |µ j | f h c 1 . Now it remains to deal with the second term on the right hand side of (7.11). It follows from the definition of the tent space and Theorem 6.

2 that Φ • * f ∈ T c 1 (R d , M) and φ * f 1 + Φ • * f T c 1 f h c 1 . By Lemma 7.4, we can decompose Φ ε * f as follows: Φ ε * f (s) = ∞ j=1 λ j a j (s, ε) with ∞ j=1 |λ j | Φ ε * f T c 1 , (7.14)
where the a j 's are T c 1 -atoms based on cubes with side length less than or equal to 1. For each a j (s, ε) based on Q j in (7.14), we set

g j (s) = 1 0 Φ ε * a j (s, ε) dε ε = π Φ a j (s), ∀s ∈ R d . (7.15)
We observe from the proof of Lemma 7.5 that g j is a bounded multiple of an h c 1 -atom supported in 2Q j with vanishing mean. Moreover, g j is infinitely differentiable. Thus, g j satisfies (7.8) with the relevant constant depending only on Φ. Combining (7.14) and (7.15), we obtain the decomposition

1 0 Φ ε * Φ ε * f dε ε = ∞ j=1 λ j g j , with ∞ j=1 |λ j | f h c 1 .
The proof is complete.

Chapter 8

Operator-valued Triebel-Lizorkin spaces

In this chapter, we will focus on the study of the inhomogeneous Triebel-Lizorkin spaces. These spaces can be seen as the generalization of local Hardy spaces. We will see that the operator-valued inhomogeneous Triebel-Lizorkin spaces have two parameters p and α, in particular, if α = 0, they will be equivalent to h c p (R d , M). The first main task of this chapter is to give general characterizations by the Littlewood-Paley type g-function and by the Lusin type integral function. Since the maximal function techniques are no longer available in the noncommutative setting, as in [START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF], the Fourier multiplier theorem mentioned in chapter 5 will be an essential tool for us.

The second main task of this chapter is to give a subtle atomic decomposition of operator-valued inhomogeneous Triebel-Lizorkin spaces. This can be realized via tent spaces by using the Calderón-reproducing identity. We will see in the next chapter that this decomposition will be very useful in the study of continuity of pseudo-differential operators.

Definitions and basic properties

Recall that ϕ is a Schwartz function satisfying (1.1). For each j ∈ N, ϕ j is the function whose Fourier transform is equal to ϕ(2 -j •), and ϕ 0 is the function whose Fourier transform is equal to 1 -j≥1 ϕ(2 -j •). Moreover, the Fourier transform of ϕ j is denoted by ϕ (j) for j ∈ N 0 . Definition 8.1. Let 1 ≤ p < ∞ and α ∈ R.

(1) The column Triebel-Lizorkin space F α,c p (R d , M) is defined by

F α,c p (R d , M) = {f ∈ S (R d ; L 1 (M) + M) : f F α,c p < ∞}, where f F α,c p = ( j≥0 2 2jα |ϕ j * f | 2 ) 1 2
p .

(2) The row space

F α,r p (R d , M) consists of all f such that f * ∈ F α,c p (R d , M), equipped with the norm f F α,r p = f * F α,c p .
(3) The mixture space F α p (R d , M) is defined to be

F α p (R d , M) = F α,c p (R d , M) + F α,r p (R d , M) if 1 ≤ p ≤ 2 F α,c p (R d , M) ∩ F α,r p (R d , M) if 2 < p < ∞, equipped with f F α p =    inf{ g F α,c p + h F α,r p : f = g + h} if 1 ≤ p ≤ 2 max{ f F α,c p , f F α,r p } if 2 < p < ∞.
In the sequel, we will focus on the study of the column Triebel-Lizorkin spaces. All results obtained in this chapter also admit the row and mixture versions.

Before moving further, let us first include the following useful multiplier lemma for the case p = 1. This lemma is a complement of Theorem 5.6, which relies heavily on the characterization of h c 1 (R d , M) given in Theorem 6.7.

Lemma 8.2. We keep the assumption in Theorem 5.6. Assume additionally that for any j ≥ 1, ρ j = ρ(2 -j •) for some Schwartz function ρ with supp ρ ⊂ {ξ : 2 -1 ≤ |ξ| ≤ 2} and ρ(ξ) > 0 for any 2 -1 < |ξ| < 2, and that supp ρ 0 ⊂ {ξ : |ξ| ≤ 2} and ρ 0 (ξ) > 0 for any

|ξ| < 2. Then for any f ∈ S (R d ; L 1 (M) + M), ( j≥0 
2 2jα | φj * ρj * f | 2 ) 1 2 1 max sup j≥1 -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 , φ 0 (ϕ (0) + ϕ (1) ) H σ 2 • ( j≥0 2 2jα |ρ j * f | 2 ) 1 2
1 .

Proof. By the assumptions of ρ and ρ 0 , we can select a Schwartz function ρ with the same properties as ρ and a Schwartz function ρ 0 satisfying the same conditions as ρ 0 , such that

∞ j=1 ρ(2 -j ξ) ρ(2 -j ξ) + ρ 0 (ξ) ρ 0 (ξ) = 1, ∀ξ ∈ R d . Let Ψ j = (I -α ρ)(2 -j •), Ψ j = (I α ρ)(2 -j •) for j ≥ 1 and Ψ 0 = J -α ρ 0 , Ψ 0 = J α ρ 0 . We have ∞ j=1 Ψ j (ξ) Ψ j (ξ) + Ψ 0 (ξ) Ψ 0 (ξ) = 1, ∀ ξ ∈ R d .
Applying Theorem 6.7 to g = J α f with the text functions in the above identity, we get

g h c 1 ≈ ( j≥0 | Ψj * g| 2 ) 1 2
1 .

Now let us show the following equivalence:

( j≥0 | Ψj * g| 2 ) 1 2 1 ≈ ( j≥0 2 2jα |ρ j * f | 2 ) 1 2
1 .

It is easy to see that Ψ0 * g = ρ0 * f and 2 jα ρj * f = Ψj * I α f , so it suffices to prove

( j≥1 | Ψj * J α f | 2 ) 1 2 1 ≈ ( j≥1 | Ψj * I α f | 2 ) 1 2 1 . (8.1)
First, let us consider the case α ≥ 0. By [60, Lemma 3.2.2], there exists a finite measure

µ α on R d such that |ξ| α = µ α (ξ)(1 + |ξ| 2 ) α 2 .
Thus, we have Ψj *

I α f = µ α * Ψj * J α f, ∀ j ≥ 1.
This implies that (

j≥1 | Ψj * I α f | 2 ) 1 2 1 ( j≥1 | Ψj * J α f | 2 ) 1 2
1 .

Then, we move to the case α < 0. Also by [60, Lemma 3.2.2], there exist two finite measures ν α and λ α on R d such that

(1 + |ξ| 2 ) -α 2 = ν α (ξ) + |ξ| -α λ α (ξ).
Let ( φk ) k∈Z be the homogeneous resolution of the unit defined in (1.4). It follows that

(1 + |ξ| 2 ) -α 2 |ξ| -α k≥0 φk (ξ) = ν α (ξ) |ξ| -α k≥0 φk (ξ) + λ α (ξ) k≥0 φk (ξ).
Thus, by the support assumption of ρ, we have

Ψj * I α f = ω α * Ψj * J α f, with ω α = ν α * k≥0 F -1 (I α φk ) + λ α * F -1 ( k≥0 φk ).
Both F -1 ( k≥0 φk ) and k≥0 F -1 (I α φk ) are finite measures. Since k≥0 φk = 1 -k<0 φk , and k<0 φk is a Schwartz function, we know that F -1 ( k≥0 φk ) = δ 0 -F -1 ( k<0 φk ) is a finite measure, where δ 0 denotes the Dirac measure at the origin. Moreover, it is known in [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF]Lemma 3.4] that F -1 (I α φk ) 1 2 kα . Then we have

F -1 ( k≥0 I α φk ) 1 k≥0 2 kα < ∞.
Therefore, ω α is a finite measure on R d . Thus,

( j≥1 | Ψj * I α f | 2 ) 1 2 1 ( j≥1 | Ψj * J α f | 2 ) 1 2 1 .
Similarly, for α ∈ R, we can prove that

( j≥1 | Ψj * J α f | 2 ) 1 2 1 ( j≥1 | Ψj * I α f | 2 ) 1 2 1 .
In summary, we have proved (8.1), which yields that Repeating the argument for (8.1) with ζ = (ζ j ) j≥0 instead of Ψ = (Ψ j ) j≥0 , we get

g h c 1 = J α f h c 1 ≈ j≥0 2 2jα |ρ j * f |
( j≥0 2 2jα | φj * ρj * f | 2 ) 1 2 1 = ( j≥0 | ζj * I α f | 2 ) 1 2 1 ≈ ( j≥0 | ζj * g| 2 ) 1 2
1 .

Then, we apply Corollary 5.10 to g with this new ζ instead of φ to get

( j≥0 | ζj * g| 2 ) 1 2 1 ζ 2,σ g h c 1 ≈ ζ 2,σ ( j≥0 2 2jα |ρ j * f | 2 ) 1 2
1 .

It suffices to estimate the term ζ 2,σ . By the definition of ζ = (ζ j ) j≥ , we have

sup j≥1 -2≤k≤2 ζ j (2 j+k •)ϕ H σ 2 sup j≥1 -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 ,
ζ 0 (ϕ (0) + ϕ (1) ) H σ 2 φ 0 (ϕ (0) + ϕ (1) ) H σ 2 . So we can use the same argument at the end of the proof of Theorem 5.9, to get

ζ 2,σ max sup j≥1 -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 , φ 0 (ϕ (0) + ϕ (1) ) H σ 2 .
Combining the above inequalities, we get the desired assertion.

The above lemma will play a very important role in this section. Let us take a first view of its effect in the following proposition, which shows that F α,c p -norm is independent of the choice of the function ϕ satisfying (1.1). Proposition 8.3. Let ψ be another Schwartz function satisfying the same condition (1.1) as ϕ. For each j ∈ N, let ψ j be the function whose Fourier transform is equal to ψ(2 -j •), and let ψ 0 be the function whose Fourier transform is equal to 1 -j≥1 ψ(2 -j •). Then

f F α,c p ≈ ( j≥0 2 2jα |ψ j * f | 2 ) 1 2 p .
Proof. For any f ∈ S (R d ; L 1 (M) + M), by the support assumption of ψ and ϕ, we have, for any j ≥ 0,

ψ j * f = 1 k=-1 ψ j * ϕ k+j * f,
with the convention ϕ -1 = 0. Thus by Theorem 5.6 and Lemma 8.2, ( j≥0

2 2jα |ψ j * f | 2 ) 1 2 p ≤ 1 k=-1 ( j≥0 2 2jα |ψ j * ϕ k+j * f | 2 ) 1 2 p max sup -2≤k≤2 ψ(2 k •)ϕ H σ 2 , ψ 0 (ϕ (0) + ϕ (1) ) H σ 2 ( j≥0 2 2jα |ϕ j * f | 2 ) 1 2 p ( j≥0 2 2jα |ϕ j * f | 2 ) 1 2 p .
Changing the role of ϕ and ψ, we get the reverse inequality. (

) F α,c p (R d , M) ⊂ F β,c p (R d , M) if α > β. 2 
(

) F 0,c p (R d , M) = h c p (R d , M 3 
) with equivalent norms. Proof. (1) Let {f i } be a Cauchy sequence in F α,c p (R d , M). Then, the sequence {a i } with a i = (ϕ 0 * f i , . . . , 2 jα ϕ j * f i , . . .) is also a Cauchy sequence in L p (N ; c 2 (N 0 )). Thus, a i converges to a function f = (f 0 , . . . , f j , . . .) in L p (N ; c 2 (N 0 )). Formally we take

f = j≥0 f j . (8.2)
Since for each j ∈ N, supp f j ⊂ {ξ : 2 j-1 ≤ |ξ| ≤ 2 j+1 } and supp f 0 ⊂ {ξ : |ξ| ≤ 2}, the series (8.2) converges in S (R d ; L p (M)). Let ϕ j = 0 if j < 0. By the support assumption of ϕ, when i → ∞, we get

ϕ j * f i = j+1 k=j-1 ϕ k * ϕ j * f i → j+1 k=j-1 ϕ j * f k = ϕ j * f, which implies that f j = 2 jα ϕ j * f , for any j ≥ 0. Thus, f ∈ F α,c p (R d , M) and {f i } converges to f in F α,c p (R d , M). (2) is obvious.
(3) It is easy to see that for any ϕ satisfying (1.1) also satisfies (1.16). Then by the discrete characterization of h c p (R d , M) given in Theorem 6.7, we get the assertion.

Given a ∈ R + , we define D i,a (ξ) = (2πiξ i ) a for ξ ∈ R d , and D a i to be the Fourier multiplier with symbol D i,a (ξ) on Triebel-Lizorkin spaces F α,c p (R d , M). We set

D a = D 1,a 1 • • • D d,a d and D a = D a 1 1 • • • D a d d for any a = (a 1 , • • • , a d ) ∈ R d + .
Note that if a is a positive integer, D a i = ∂ a i , so there does not exist any conflict of notation. The operator D a can be viewed as a fractional extension of partial derivatives. The following is the so-called lifting (or reduction) property of Triebel-Lizorkin spaces. Proposition 8.5. Let 1 ≤ p < ∞ and α ∈ R.

(1) For any

β ∈ R, J β is an isomorphism between F α,c p (R d , M) and F α-β,c p (R d , M). In particular, J α is an isomorphism between F α,c p (R d , M) and h c p (R d , M).
(

) Let β > 0. Then f ∈ F α,c p (R d , M) if and only if ϕ 0 * f ∈ L p (N ) and D β i f ∈ F α-β,c p (R d , M) for all i = 1, . . . , d. Moreover, in this case, f F α,c p ≈ ϕ 0 * f p + d i=1 D β i f F α-β,c p . Proof. (1) Let f ∈ F α,c p (R d , M 2 
). Applying Theorem 5.6 and Lemma 8.2 with ρ = ϕ, we obtain

J β f F α-β,c p = ( j≥0 2 2j(α-β) |ϕ j * J β f | 2 ) 1 2 p max{ sup j≥1 -2≤k≤2 2 -jβ J β (2 j+k •)ϕ H σ 2 , J β (ϕ (0) + ϕ (1) ) H σ 2 } • ( j≥0 2 2jα |ϕ j * f | 2 ) 1 2
p .

(8.3)
It is easy to check that all partial derivatives of 2 -jβ J β (2 j+k •)ϕ of order less than or equal to [σ]+1 are bounded uniformly in j ≥ 0 and -2 ≤ k ≤ 2, and that J β (ϕ (0) +ϕ (1) )

∈ H σ 2 (R d ). Thus J β f F α-β,c p f F α,c p . So J β is continuous from F α,c p (R d , M) to F α-β,c p (R d , M),
and its inverse J -β is also continuous from

F α-β,c p (R d , M) to F α,c p (R d , M). (2) If we take σ ∈ ( d 2 , β + d 2 ), then we have D i,β ϕ 0 H σ 2 < ∞ and D i,β ϕ H σ 2 < ∞. Replacing J β by D β i in (8.
3), we obtain that, for any i = 1, . . . , d,

D β i f F α-β,c p f F α,c p ,
which implies immediately that

ϕ 0 * f p + d i=1 D β i f F α-β,c p f F α,c p .
To show the reverse inequality, we choose a nonnegative infinitely differentiable function d, we define χ i on R d as follows:

χ on R such that χ(s) = 0 if |s| < 1 2 √ d and χ(s) = 1 if |s| ≥ 1 √ d . For i = 1, . . . ,
χ i (ξ) = 1 χ(ξ 1 )|ξ 1 | β + . . . + χ(ξ d )|ξ d | β χ(ξ i )|ξ i | β (2πiξ i ) β ,
whenever the first denominator is positive, which is the case when |ξ| ≥ 1. Then for any j ≥ 1, χ i ϕ j is a well-defined infinitely differentiable function on R d \{ξ : ξ i = 0} and

ϕ (j) = d i=1 χ i D i,β ϕ (j) .
Then by Theorem 5.5, we have

f F α,c p ≤ ϕ 0 * f p + d i=1 j≥1 2 2jα | χi * ϕ j * D β i f | 2 1 2 p ϕ 0 * f p + d i=1 sup j≥1 -2≤k≤2 2 jβ χ i (2 j+k •)ϕ H σ 2 j≥1 2 2j(α-β) |ϕ j * D β i f | 2 1 2 p . However, 2 jβ χ i (2 j+k •)ϕ H σ 2 (R d ) = φ i (2 k •)ϕ H σ 2 (R d )
, where

φ i (ξ) = 1 χ(2 j ξ 1 )|ξ 1 | β + . . . + χ(2 j ξ d )|ξ d | β χ(2 j ξ i )|ξ i | β (2πiξ i ) β .
Since all partial derivatives of φ i ϕ(2 k •), of order less than a fixed integer, are bounded uniformly in j, k and i, and the norm of

φ i ϕ(2 k •) in H σ 2 (R d
) are bounded from above by a constant independent of j, k and i. Then we deduce

f F α,c p ϕ 0 * f p + d i=1 j≥1 2 2j(α-β) |ϕ j * D β i f | 2 1 2 p ≤ ϕ 0 * f p + d i=1 D β i f F α-β,c p .
The assertion is proved.

Definition 8.6. For α ∈ R, we define F α,c ∞ (R d , M) as the space of all f ∈ S (R d ; M) such that

ϕ 0 * f N + sup |Q|<1 1 |Q| Q j≥-log 2 (l(Q)) 2 2jα |ϕ j * f (s)| 2 ds 1 2 M < ∞.
We endow the space F α,c ∞ (R d , M) with the norm:

f F α,c ∞ = ϕ 0 * f N + sup |Q|<1 1 |Q| Q j≥-log 2 (l(Q)) 2 2jα |ϕ j * f (s)| 2 ds 1 2 M .
Proposition 8.7. Let 1 ≤ p < ∞, α ∈ R and q be the conjugate index of p. Then the dual space of

F α,c p (R d , M) coincides isomorphically with F -α,c q (R d , M).
Proof. First, we show that J α is an isomorphism between F α,c ∞ (R d , M) and bmo c (R d , M). To this end, we now use the discrete Carleson characterization of bmo c (R d , M) that for any Schwartz function Φ and φ ∈ H σ 2 (R d ) satisfying (6.10),

f bmo c ≈ φ * f N + sup |Q|<1 1 |Q| Q j≥-log 2 (l(Q)) |Φ j * f (s)| 2 ds 1 2 M . (8.4)
We can check the above equivalence by combining Lemma 6.8 and the argument of Corollary 3.11. By taking φ = ϕ 0 and Φ = J -α ϕ, we apply (8.4) to J α f :

J α f bmo c ≈ ϕ 0 * f N + sup |Q|<1 1 |Q| Q j≥-log 2 (l(Q)) |(J -α ϕ) j * (J α f )(s)| 2 ds 1 2 M = ϕ 0 * f N + sup |Q|<1 1 |Q| Q j≥-log 2 (l(Q)) 2 2jα |ϕ j * f (s)| 2 ds 1 2 M = f F α,c ∞ .
Since J α is also an isomorphism between F α,c p (R d , M) and h c p (R d , M) for any 1 < p < ∞, by the h c 1 -bmo c duality in Theorem 3.10 and the h c p -h c q duality in Theorem 3.18, we obtain that

F α,c p (R d , M) * = F -α,c q (R d , M) with equivalent norms.

Interpolation

The main result in this section is the following complex interpolation of Triebel-Lizorkin spaces. It is deduced from the interpolation of local Hardy and bmo spaces in Theorem 4.3, and the boundedness of complex order Bessel potentials on them.

Proposition 8.8. Let α 0 , α 1 ∈ R and 1 < p < ∞. Then

F α 0 ,c ∞ (R d , M), F α 1 ,c 1 (R d , M) 1 p = F α,c p (R d , M), α = (1 - 1 p )α 0 + α 1 p . Proof. Let f ∈ F α,c p (R d , M)
. By Proposition 8.5, we have J α f ∈ h c p (R d , M). Therefore, according to Theorem 4.3, there exists a continuous function on the strip {z ∈ C : 0 ≤ Rez ≤ 1}, analytic in the interior, such that

J α f = F ( 1 p ) ∈ h c p (R d , M) and such that sup t∈R F (it) bmo c < ∞ and sup t∈R F (1 + it) h c 1 < ∞.
We will use Bessel potentials of complex order. For z ∈ C, define J z (ξ) = (1 + |ξ| 2 ) z 2 , and J z to be the associated Fourier multiplier. We set

F (z) = e (z-1 p ) 2 J -(1-z)α 0 -zα 1 F (z).
For any t ∈ R,

F (it) F α 0 ,c ∞ ≈ e -t 2 + 1 p 2 J it(α 0 -α 1 ) F (it) bmo c and F (1 + it) F α 1 ,c 1 ≈ e -t 2 +(1-1 p ) 2 J it(α 0 -α 1 ) F (1 + it) h c 1 .
We claim that J it is a bounded Fourier multiplier on h c 1 (R d , M), so by duality, it is bounded on bmo c (R d , M) too. Therefore, we will have

sup t∈R F (it) F α 0 ,c ∞ < ∞ and sup t∈R F (1 + it) F α 1 ,c 1 < ∞.

This will imply that

f = F ( 1 p ) ∈ F α 0 ,c ∞ (R d , M), F α 1 ,c 1 (R d , M) 1 p . Hence, F α,c p (R d , M) ⊂ F α 0 ,c ∞ (R d , M), F α 1 ,c 1 (R d , M) 1 p .
Then the reverse inclusion follows by duality. Now, we prove the claim. First, we can easily check that J it is d-times differentiable on R d \ {0}, and for any m ∈ N d 0 and |m| 1 ≤ d, we have

sup |ξ| |m| 1 |D m J it (ξ)| : ξ = 0 (1 + |t|) d .
Then, we can check that (with

J it (2 k ξ) = (1 + |2 k ξ| 2 ) it 2 ), max -2≤k≤2 J it (2 k •)ϕ H d 2 (1 + |t|) d and J it (ϕ (0) + ϕ (1) ) H d 2 (1 + |t|) d .
By (3) in Proposition 8.4, if we take (ϕ j ) j≥0 to be the Littlewood-Paley decomposition on R d satisfying (1.2) and (1.3), we have

J it f h c 1 ≈ ( j≥0 | Jit * ϕ j * f | 2 ) 1 2 1 and f h c 1 ≈ ( j≥0 |ϕ j * f | 2 ) 1 2
1 .

Then, we can apply Lemma 8.2 with

ρ j = ϕ j , φ j (2 j •) = Jit , ∀j ≥ 0 and α = 0, σ = d, J it f h c 1 max max -2≤k≤2 J it (2 k •)ϕ H d 2 , J it (ϕ (0) + ϕ (1) ) H d 2 f h c 1 (1 + |t|) d f h c 1 .
The desired assertion is proved.

Remark 8.9. The real interpolation of the couple

F α,c ∞ (R d , M), F α,c 1 (R d , M
) follows easily from Proposition 8.5 and Corollary 4.5. But if

α 1 = α 2 , the real interpolation of F α 1 ,c ∞ (R d , M), F α 2 ,c 1 (R d , M
) will give Besov type spaces. We will not consider this problem in this thesis, and refer the reader to [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF] for similar results on homogeneous Triebel-Lizorkin (and Besov) spaces.

Triebel-Lizorkin spaces with α > 0

The following result shows that when α > 0, the F α,c 1 (R d , M)-norm can be rewritten as the sum of two homogeneous norms. Recall that for a fixed Schwartz function ϕ in (1.1), the functions φj 's determined by φj (ξ) = ϕ(2 -j ξ), j ∈ Z give a homogeneous Littlewood-Paley decomposition on R d satisfying (1.4).

Proposition 8.10. Let α > 0. If 1 ≤ p < ∞, then f F α,c p ≈ ϕ 0 * f p + ( +∞ j=-∞ 2 2jα | φj * f | 2 ) 1 2 p , ∀ f ∈ F α,c p (R d , M). If 1 ≤ p ≤ 2, f F α,c p ≈ f p + ( +∞ j=-∞ 2 2jα | φj * f | 2 ) 1 2 p , ∀ f ∈ F α,c p (R d , M).
Proof. By the definition of the F α,c p -norm, it is obvious that

f F α,c p ϕ 0 * f p + ( +∞ j=-∞ 2 2jα | φj * f | 2 ) 1 2
p .

To prove the reverse inequality, it suffices to show:

( 0 j=-∞ 2 2jα | φj * f | 2 ) 1 2 p ϕ 0 * f p + ( +∞ j=1 2 2jα | φj * f | 2 ) 1 2 p .
By the support assumption of ϕ, we have ϕ (0) = 1 for any |ξ| ≤ 1. Thus, when j < 0,

ϕ(2 j •) = ϕ(2 j •)ϕ (0) . Then φj * f = φj * ϕ 0 * f. (8.5)
By the triangle inequality, (8.5) and [71, Lemma 1.7], we obtain

( 0 j=-∞ 2 jα | φj * f | 2 ) 1 2 p -1 j=-∞ 2 jα φj * ϕ 0 * f p + φ0 * f p -1 j=-∞ 2 jα φj 1 ϕ 0 * f p + ϕ(ϕ 0 + ϕ 1 + ϕ 2 ) * f p 0 j=-∞ 2 jα ϕ 0 * f p + ( +∞ j=1 2 2jα |ϕ j * f | 2 ) 1 2 p ϕ 0 * f p + ( +∞ j=1 2 2jα |ϕ j * f | 2 ) 1 2
p .

Therefore, we have proved that

ϕ 0 * f p + ( +∞ j=1 2 2jα |ϕ j * f | 2 ) 1 2
p gives rise to an equivalent norm on F α,c p (R d , M) when α > 0.

For any 1 ≤ p ≤ 2 and α > 0, we have

F α,c p (R d , M) ⊂ h c p (R d , M) ⊂ L p (N ). Therefore f p f F α,c p .
Combined with the equivalence obtained above, we see that

f p + ( +∞ j=-∞ 2 2jα | φj * f | 2 ) 1 2 p f F α,c p .
The reverse inequality can be easily deduced by the fact that ϕ 0 * f p ≤ ϕ 0 1 f p .

We also have a continuous counterpart of Proposition 8.10. For any ε ≥ 0, we define φε = F -1 (ϕ(ε•)).

Corollary 8.11. Let 1 ≤ p ≤ 2 and α > 0. Then, for any 

f ∈ F α,c p (R d , M), f F α,c p ≈ f p + ( ∞ 0 ε -2α | φε * f | 2 dε ε ) 1 2 p . ( 8 

General characterizations

We have seen in section 8.1 that the definition of Triebel-Lizorkin spaces is independent of the choice of ϕ satisfying (1.1). In this section, we will show that this kernel is not necessarily a Schwartz function. Since the local Hardy spaces are included in the family of inhomogeneous Triebel-Lizorkin spaces, the following characterizations can be seen as generalizations of those in chapter 6. The multiplier in section 5.2 will be very useful in the following. Let Φ (0) and Φ be two complex-valued infinitely differentiable functions defined respectively on R d and R d \{0}, which satisfy

     |Φ (0) (ξ)| > 0 if |ξ| ≤ 2, sup k∈N 0 2 -kα 0 Φ (0) (2 k •)ϕ H σ 2 < ∞, (8.7) 
and

               |Φ(ξ)| > 0 if 1 2 ≤ |ξ| ≤ 2, sup k∈N 0 2 -kα 0 Φ(2 k •)ϕ H σ 2 < ∞, R d (1 + |s| 2 ) σ |F -1 (Φϕ (0) I -α 1 )(s)|ds < ∞. (8.8)
Recall that here I -α 1 (ξ) for ξ ∈ R d is the symbol of the Fourier multiplier I -α 1 , where

I -α 1 is the Riesz potential (-(2π) -2 ∆) -α 1 
2 . Let Φ (j) = Φ(2 -j •), j ≥ 1 and Φ j be the function whose Fourier transform is equal to Φ (j) for any j ∈ N 0 . Theorem 8.12. Let 1 ≤ p < ∞ and α ∈ R. Assume that α 0 < α < α 1 , α 1 > 0 and Φ (0) , Φ satisfy conditions (8.7), (8.8). Then for any f ∈ S (R d ; L 1 (M) + M), we have

f F α,c p ≈ ( j≥0 2 2jα |Φ j * f | 2 ) 1 2 p , (8.9)
where the relevant constants are independent of f .

Proof. We follow the pattern of the proof of [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF]Theorem 4.17]. Denote the norm on the right hand side of (8.9) by f F α,c p,Φ .

Step 1. Let ϕ k = 0 (and so is ϕ (k) ) if k < 0. Given a positive integer K, for any j ∈ N 0 , we write

Φ (j) = K-1 k=-∞ Φ (j) ϕ (j+k) + ∞ k=K Φ (j) ϕ (j+k) . Then Φ j * f = k≤K-1 Φ j * ϕ j+k * f + k≥K Φ j * ϕ j+k * f. ( 8.10) 
Temporarily, we take for granted that the second series above is convergent not only in

S (R d ; L 1 (M) + M) but also in F α,c p (R d , M)
, which is to be settled up in the last step. Then we obtain

f F α,c p,Φ ≤ I + II + III,
where

I = k≤K-1 ( j≥1 2 2jα |Φ j * ϕ j+k * f | 2 ) 1 2 p , II = k≤K-1 Φ 0 * ϕ k * f p , III = k≥K ( j≥0 2 2jα |Φ j * ϕ j+k * f | 2 ) 1 2 p .
The term II is easy to deal with. By [71, Lemma 1.7] and (8.7), we obtain

K-1 k=0 Φ 0 * ϕ k * f p = K-1 k=0 Φ 0 * (ϕ k-1 + ϕ k + ϕ k+1 ) * ϕ k * f p K-1 k=0 ϕ k * f p Φ 0 * (ϕ k-1 + ϕ k + ϕ k+1 ) 1 sup k∈N 0 2 -kα 0 Φ (0) (2 k •)ϕ H σ 2 K-1 k=0 2 k(α 0 -α) 2 kα ϕ k * f p C K f F α,c p .
Now let us treat the terms I and III separately. By the support assumption of ϕ (k) and the property that it is equal to 1 when |ξ| ≤ 1, for k ≤ K -1, we have

Φ(ξ)ϕ (k) (ξ) = Φ(ξ)ϕ (0) (2 -K ξ) |ξ| α 1 |ξ| α 1 ϕ (k) (ξ) = 2 kα 1 η(ξ)ρ (k) (ξ), (8.11) 
where η, ρ are defined by

η(ξ) = Φ(ξ)ϕ (0) (2 -K ξ) |ξ| α 1 and ρ(ξ) = |ξ| α 1 ϕ(ξ). Let η (j) = η(2 -j •), j ∈ Z. For j ≥ 1, define η j = F -1 (η (j)
). Then for any j ≥ 1, we have

Φ j * ϕ j+k * f = 2 kα 1 η j * ρ j+k * f.
Now we are ready to estimate I. Applying Theorem 5.6 and Lemma 8.2 twice, we get

I = k≤K-1 2 k(α 1 -α) ( j≥1 2 2(j+k)α |η j * ρ j+k * f | 2 ) 1 2 p = k≤K-1 2 k(α 1 -α) ( j≥k+1 2 2jα |η j-k * ρ j * f | 2 ) 1 2 p k≤K-1 2 k(α 1 -α) max η (-k) (ϕ (0) + ϕ (1) ) H σ 2 , max -2≤ ≤2 η (-k-) ϕ H σ 2 • ( j≥0 2 2jα |ρ j * f | 2 ) 1 2 p k≤K-1 2 k(α 1 -α) max η (-k) (ϕ (0) + ϕ (1) ) H σ 2 , max -2≤ ≤2 η (-k-) ϕ H σ 2 • max I α 1 (ϕ (0) + ϕ (1) ) H σ 2 , I α 1 ϕ H σ 2 ( j≥0 2 2jα |ϕ j * f | 2 ) 1 2 p = k≤K-1 2 k(α 1 -α) max η (-k) (ϕ (0) + ϕ (1) ) H σ 2 , max -2≤ ≤2 η (-k-) ϕ H σ 2 • max I α 1 (ϕ (0) + ϕ (1) ) H σ 2 , I α 1 ϕ H σ 2 f F α,c p . (8.12)
First, it is obvious that

I α 1 ϕ H σ 2 < ∞.
Then we deal with the term I α 1 (ϕ (0) +ϕ (1) ), which can be reduced to I α 1 ϕ (0) by dilation. Let N be a positive integer such that

α 1 > 1 N . If the dimension d is odd, we consider the function F (z) = e (z-N +2 2N +2 ) 2 |ξ| α 1 -1 2 -1 N +(1+ 1 N )z ϕ (0)
, which is continuous on the strip {z ∈ C : 0 ≤ Re(z) ≤ 1}, and analytic in the interior. A direct computation shows that sup t∈R F (it)

H d 2 -1 2 2
< ∞ and sup t∈R F (1 + it)

H d 2 + 1 2 2 < ∞. Then for θ = 1 N + 1 2 1 N +1 > 1 2
, we have

F (θ) = I α 1 ϕ (0) ∈ H σ 2 (R d ) = H d 2 -1 2 2 (R d ), H d 2 + 1 2 2 (R d ) θ , for some σ > d 2 . On the other hand, if d is even, set F (z) = e (z-1 2N ) 2 |ξ| N α 1 z+ α 1 2 ϕ (0)
. We can also check that sup t∈R F (it)

H d 2 2
< ∞, and that sup t∈R F (1 + it)

H d 2 +1 2 < ∞. Then for θ = 1
2N , we have

F (θ) = I α 1 ϕ (0) ∈ H d 2 + 1 2N 2 (R d ) = H d 2 2 (R d ), H d 2 +1 2 (R d ) θ .
Thus, for any α 1 > 0, we can always choose a positive σ > d 2 such that

I α 1 ϕ (0) ∈ H σ 2 (R d ). Next, we have to estimate η (-k) ϕ H σ 2 and η (-k) ϕ (0)
H σ 2 uniformly in k, which will yield the convergence of the last sum in (8.12) by dilation again. To this end, note that by (8.8), η is integrable on R d , then we use the Cauchy-Schwarz inequality in the following way:

|F -1 (η (-k) ϕ)(s)| 2 = | R d η(t)F -1 (ϕ)(s -2 k t)dt| 2 ≤ η 1 R d |η(t)| • |F -1 (ϕ)(s -2 k t)| 2 dt. For k ≤ K -1, we have η (-k) ϕ 2 H σ 2 = R d (1 + |s| 2 ) σ |F -1 (η (-k) ϕ)(s)| 2 ds ≤ η 1 R d (1 + |s| 2 ) σ R d |η(t)| • |F -1 (ϕ)(s -2 k t)| 2 dtds η 1 R d (1 + |2 k t| 2 ) σ |η(t)| R d (1 + |s -2 k t| 2 ) σ |F -1 (ϕ)(s -2 k t)| 2 dsdt ≤ 2 Kσ η 1 R d (1 + |t| 2 ) σ |η(t)|dt R d (1 + |s| 2 ) σ |F -1 (ϕ)(s)| 2 ds ≤ C ϕ 0 ,σ,K R d (1 + |t| 2 ) σ |η(t)|dt 2 . (8.13)
The other term is dealt with in the same way. Combining the previous inequalities, we obtain

I C Φ,ϕ (0) ,α 1 ,α,K R d (1 + |t| 2 ) σ |η(t)|dt f F α,c p . ( 8.14) 
In order to return from η back to ϕ 0 , we write

η = I -α 1 Φ[ϕ (0) (2 -K •) -ϕ (0) ] + I -α 1 Φϕ (0) . Since I -α 1 Φ(ϕ (0) (2 -K •)-ϕ (0)
) is an infinitely differentiable function with compact support, we have

R d (1 + |t| 2 ) σ |F -1 (I -α 1 Φ(ϕ (0) (2 -K •) -ϕ (0) ))(t)|dt = C Φ,ϕ (0) ,α 1 ,α,K < ∞.
Then (8.8) implies that

R d (1 + |t| 2 ) σ |η(t)|dt C Φ,ϕ (0) ,α 1 ,α,K + R d (1 + |s| 2 ) σ |F -1 (I -α 1 Φϕ (0) )(s)|ds < ∞. Therefore, I f F α,c p .
Step 2. Now it remains to estimate the third term III. Let H be a Schwartz function such that

supp H ⊂ {ξ ∈ R d : 1 4 ≤ |ξ| ≤ 4} and H(ξ) = 1 if 1 2 ≤ |ξ| ≤ 2. (8.15) Let H (k) = H(2 -k •). For k ≥ K, we have Φ(ξ)ϕ (k) (ξ) = Φ(ξ) |ξ| α 0 H (k) (ξ)ϕ (k) (ξ)|ξ| α 0 , ( 8.16) 
and

Φ (0) (ξ)ϕ (k) (ξ) = Φ (0) (ξ) |ξ| α 0 H (k) (ξ)ϕ (k) (ξ)|ξ| α 0 . ( 8.17) 
For any j ∈ N 0 , we keep using the notation Φ j = F -1 (Φ (j) ) and H j = F -1 (H (j) ). Thus, we have

Φ j * ϕ j+k * f = 2 kα 0 (I -α 0 Φ) j * H j+k * (I α 0 ϕ) j+k * f. Therefore, III = k≥K 2 k(α 0 -α) j≥0 2 2(j+k)α |(I -α 0 Φ) j * H j+k * (I α 0 ϕ) j+k * f | 2 1 2 p = k≥K 2 k(α 0 -α) j≥k 2 2jα |(I -α 0 Φ) j-k * H j * (I α 0 ϕ) j * f | 2 1 2 p .
Since both H and ϕ vanish near the origin, by Theorem 5.6 and Lemma 8.2, we obtain

k≥K 2 k(α 0 -α) j≥k 2 2jα |(I -α 0 Φ) j-k * H j * (I α 0 ϕ) j * f | 2 1 2 p sup k∈N 0 2 -kα 0 max max -2≤ ≤2 I -α 0 Φ(2 k+ •)H(2 •)ϕ H σ 2 , I -α 0 Φ (0) (2 k •)H(ϕ (0) + ϕ (1) ) H σ 2 • k≥K 2 k(α 0 -α) f F α,c p .
Then by (5.6), (8.7) and (8.8), we have, for any -2 ≤ ≤ 2,

2 -kα 0 I -α 0 Φ(2 k+ •)H(2 •)ϕ H σ 2 ≤ 2 -kα 0 Φ(2 k+ •)ϕ H σ 2 R d (1 + |t| 2 ) σ |F -1 (I -α 0 H(2 •))(t)|dt 2 -kα 0 Φ(2 k+ •)ϕ H σ 2 ≤ sup k∈N 0 2 -kα 0 Φ(2 k •)ϕ H σ 2 < ∞, (8.18) 
and

2 -kα 0 I -α 0 Φ (0) (2 k •)H(ϕ (0) + ϕ (1) ) H σ 2 = 2 -kα 0 I -α 0 Φ (0) (2 k •)H 1 =-2 ϕ(2 -•) H σ 2 2 -kα 0 1 =-2 I -α 0 Φ (0) (2 k+ •)H(2 •)ϕ H σ 2 ≤ 2 -kα 0 1 =-2 Φ (0) (2 k+ •)ϕ H σ 2 R d (1 + |t| 2 ) σ |F -1 (I -α 0 H(2 •))(t)|dt sup k∈N 0 2 -kα 0 Φ (0) (2 k •)ϕ H σ 2 < ∞. (8.19) 
Then we get that III ≤ C Φ,α 0 ,α,K f F α,c p . Combining this estimate with those of I and II, we finally get

f F α,c p,Φ f F α,c p .
Step 3. We turn to the reverse inequality. Note that ϕ (0) (ξ) = 1 when |ξ| ≤ 1, then by (8.7) and (8.8), for any j ∈ N, we write

ϕ (j) (ξ) = ϕ (j) (ξ) ϕ (0) (2 -j-M ξ) = ϕ (j) (ξ) Φ (j) (ξ) ϕ (0) (2 -j-M ξ)Φ (j) (ξ), j ∈ N 0 , (8.20) 
where M is a positive integer which will be chosen later. By Theorem 5.6 and Lemma 8.2,

f F α,c p = j≥0 2 2jα |ϕ j * f | 2 1 2 p max max -2≤ ≤2 Φ -1 (2 •)ϕ(2 •)ϕ H σ 2 , (Φ (0) ) -1 ϕ (0) (ϕ (0) + ϕ (1) ) H σ 2 • j≥0 2 2jα |(ϕ 0 ) j+M * Φ j * f | 2 1 2 p j≥0 2 2jα |(ϕ 0 ) j+M * Φ j * f | 2 1 2 p ,
where (ϕ 0 ) j+M is the Fourier inverse transform of

ϕ (0) (2 -j-M •). Let h = 1 -ϕ (0) . Write ϕ (0) (2 -j-M ξ)Φ (j) (ξ) = Φ (j) (ξ) -h (j+M ) (ξ)Φ (j) (ξ)
. Then, we have

f F α,c p f F α,c p,Φ + j≥0 2 2jα |h j+M * Φ j * f | 2 1 2 p ,
where the relevant constant depends on p, σ, d and ϕ (0) . Applying the arguments in the estimate of III, (8.16) with h (M ) Φ in place of Φ and (8.17) with h (M ) Φ (0) in place of Φ (0) , we deduce

j≥0 2 2jα |h j+M * Φ j * f | 2 1 2 p ≤ C 1 sup k≥M 2 -kα 0 max max -2≤ ≤2 h(2 k-M + •)Φ(2 k+ •)ϕ H σ 2 , h(2 k-M •)Φ (0) (2 k •)ϕ H σ 2 • k≥M 2 k(α 0 -α) f F α,c p = sup k≥M 2 -kα 0 max max -2≤ ≤2 h(2 k-M + •)Φ(2 k+ •)ϕ H σ 2 , h(2 k-M •)Φ (0) (2 k •)ϕ H σ 2 • C 1 2 M (α 0 -α) 1 -2 α 0 -α f F α,c p ,
where C 1 is a constant which depends on p, σ, d, H and α 0 . Now we replace h in the above Sobolev norm by 1 -ϕ (0) :

h(2 k-M + •)Φ(2 k+ •)ϕ H σ 2 ≤ Φ(2 k+ •)ϕ H σ 2 + ϕ (0) (2 k-M + •)Φ(2 k+ •)ϕ H σ 2 .
The support assumptions of ϕ (0) and ϕ imply that when

k ≥ M , ϕ (0) (2 k-M + •)ϕ = 0 if and only if k + = M or k + = M + 1.
Then by (5.6), we have

ϕ (0) (2 k-M + •)Φ(2 k+ •)ϕ H σ 2 ≤ C 2 Φ(2 k+ •)ϕ H σ 2 ,
where C 2 depends on ϕ (0) , σ and d. Thus,

h(2 k-M + •)Φ(2 k+ •)ϕ H σ 2 ≤ (1 + C 2 ) Φ(2 k+ •)ϕ H σ 2 .
Similarly, we have

h(2 k-M •)Φ (0) (2 k •)ϕ H σ 2 ≤ (1 + C 2 ) Φ (0) (2 k •)ϕ H σ 2 .
Putting all the estimates that we have obtained so far together, we get

f F α,c p ≤ C 3 C 1 (1 + C 2 ) 2 M (α 0 -α) 1 -2 α 0 -α sup k≥M 2 -kα 0 max{ Φ(2 k+ •)ϕ H σ 2 , Φ (0) (2 k •)ϕ H σ 2 } f F α,c p + f F α,c p,Φ
, where the three constants C 1 , C 2 , C 3 are independent of M , so we could take M large enough to make sure the multiple of f F α,c p above is less than 1 2 , so that we have

f F α,c p f F α,c p,Φ .
Step 4. We now settle the convergence issue of the second series in (8.10). For every j ≥ 0, Φ j * ϕ j+k * f is an L 1 (M) + M-valued tempered distribution on R d . We now show that the series converges in S (R d ; L 1 (M) + M). By (8.18) and (8.19), for any L > K, we have

2 jα L k=K Φ j * ϕ j+k * f p I α 0 ϕ H σ 2 k≥K 2 k(α 0 -α) sup k∈N 0 max 2 -kα 0 Φ(2 k •)ϕ H σ 2 , 2 -kα 0 Φ (0) (2 k •)ϕ H σ 2 f F α,c p f F α,c p .
Therefore, for any j ≥ 0, k≥K+1 Φ j * ϕ j+k * f converges in L p (N ), so in S (R d ; L 1 (M) + M) too. In the same way, we can show that the series also converges in F α,c p (R d , M), which completes the proof.

The following is the continuous analogue of Theorem 8.12. We will use similar notation for continuous parameters: given ε > 0, Φ ε denotes the function whose Fourier transform is Φ (ε) = Φ(ε•). Theorem 8.13. Keep the assumption of the previous theorem. For f ∈ S (R d ; L 1 (M) + M), we have

f F α,c p ≈ Φ 0 * f p + 1 0 ε -2α |Φ ε * f | 2 dε ε 1 2 p . (8.21)
Proof. This proof is very similar to the previous one. We keep the notation there and only point out the necessary modifications. First, we need to discretize the integral on the right hand side of (8.21). There exist two constants

C 1 , C 2 such that C 1 ∞ j=0 2 2jα 2 -j 2 -j-1 |Φ ε * f | 2 dε ε ≤ 1 0 ε -2α |Φ ε * f | 2 dε ε ≤ C 2 ∞ j=0 2 2jα 2 -j 2 -j-1 |Φ ε * f | 2 dε ε .
By approximation, we can assume that f is good enough so that each integral over the interval (2 -j-1 , 2 -j ) can be approximated uniformly by discrete sums. Instead of Φ (j) (ξ) = Φ(2 -j ξ), we have now Φ (ε) (ξ) = Φ(εξ) with 2 -j-1 < ε ≤ 2 -j . We transfer the splitting (8.11) into:

Φ (ε) (ξ)ϕ j+k (ξ) = Φ(2 -j • 2 j εξ)ϕ (0) (2 -K ξ) |2 -j ξ| α 1 |2 -j ξ| α 1 ϕ j+k (ξ). Thus, Φ ε * ϕ j+k * f = 2 kα 1 η j * ρ j+k * f with η(ξ) = Φ(2 j εξ)ϕ (0) (2 -K ξ) |ξ| α 1 and ρ(ξ) = |ξ| α 1 ϕ(ξ).
We proceed as in step 1 of the previous theorem, where we can transfer (8.13) to the present setting:

η (-k) ϕ H σ 2 C ϕ (0) ,σ,k R d (1 + |t| 2 ) σ |η(t)|dt = C ϕ (0) ,σ,k R d (1 + |t| 2 ) σ F -1 I -α 1 Φ(δ j •)ϕ (0) (2 -K •) (t) dt ≤ C ϕ (0) ,σ,k δ α 1 j R d (1 + |t| 2 ) σ F -1 I -α 1 Φϕ (0) (δ -1 j 2 -K •) (t) dt,
where δ j = 2 j ε and 1 2 < δ j ≤ 1. The last integral is estimated as follows:

R d (1 + |t| 2 ) σ F -1 I -α 1 Φϕ (0) (δ -1 j 2 -K •) (t) dt ≤ R d (1 + |t| 2 ) σ |F -1 (I -α 1 Φϕ (0) )(t)|dt + R d (1 + |t| 2 ) σ F -1 I -α 1 Φ[ϕ (0) -ϕ (0) (δ -1 j 2 -K •)] (t) dt ≤ R d (1 + |t| 2 ) σ |F -1 (I -α 1 Φϕ (0) )(t)|dt + sup 1 2 <δ≤1 R d (1 + |t| 2 ) σ F -1 I -α 1 Φ[ϕ (0) -ϕ (0) (δ -1 2 -K •)] (t) dt.
Note that the above supremum is finite since

I -α 1 Φ[ϕ (0) -ϕ (0) (δ -1 2 -K •)
] is a compactly supported and infinitely differentiable function and its inverse Fourier transform depends continuously on δ. Then it follows that for 2

-j-1 ≤ ε ≤ 2 -j , k≤K-1 1 0 ε -2α |Φ ε * f | 2 dε ε 1 2 p k≤K-1 2 k(α 1 -α) f F α,c p f F α,c p .
We can make similar modifications in step 2 of the previous theorem and then establish the third part. Moreover, by the previous theorem, Φ 0 * f p f F α,c p . Thus, we have proved

Φ 0 * f p + 1 0 ε -2α |Φ ε * f | 2 dε ε 1 2 p f F α,c p .
For the reverse inequality, we follow the argument in step 3 in the previous proof. By (8.8), there exists 2 < a ≤ 2 √ 2 such that Φ(ξ) > 0 on {ξ : a -1 ≤ |ξ| ≤ a}. Then for j ≥ 1, R j = {ε : a -1 2 -j+1 < ε ≤ a2 -j-1 } are disjoint sub intervals on (0, 1], and ϕ (j) Φ (ε) is well-defined for any ε ∈ R j . We slightly modify (8.20) as follows: for any ε ∈ R j , we have

ϕ (j) (ξ) = ϕ (j) ϕ (0) (2 -j-K ξ) = ϕ (j) (ξ) Φ (ε) (ξ) ϕ (0) (2 -j-K ξ)Φ (ε) (ξ), j ∈ N 0 .
Since for any -2 ≤ ≤ 2,

Φ -1 (2 -j ε -1 2 •)ϕ(2 •)ϕ H σ 2 ≤ sup 2a -1 ≤δ≤ a 2 Φ -1 (δ2 •)ϕ(2 •)ϕ H σ 2 < ∞ and (Φ (0) ) -1 (2 -j ε -1 •)ϕ (0) (ϕ (0) + ϕ (1) ) H σ 2 ≤ sup 2a -1 ≤δ≤ a 2 (Φ (0) ) -1 (δ•)ϕ (0) (ϕ (0) + ϕ (1) ) H σ 2 < ∞,
we follow the argument in step 3 in the previous theorem to get

f F α,c p j≥0 2 2jα R j |(ϕ 0 ) j+k * Φ ε * f | 2 1 2 p Φ 0 * f p + 1 0 ε -2α |Φ ε * f | 2 dε ε 1 2 p + j≥0 2 2jα R j |h j+k * Φ ε * f | 2 dε ε 1 2 p .
The remaining of the proof follows step 3 with necessary modifications.

Characterizations via Lusin functions

We are going to give some characterizations for Triebel-Lizorkin spaces via Lusin square functions. As what we did in the last section, we will keep using Fourier multiplier theorems as our main tool. For the case p > 1, we already have Theorem 5.9. For p = 1, we need the following lemma. By virtue of Corollary 5.11, its proof is similar to that of Lemma 8.2, and is left to the reader.

Lemma 8.14. Keep the assumption in Theorem 5.9 and assume additionally that for any j ≥ 1, ρ j = ρ(2 -j •) for some Schwartz function with supp ρ ⊂ {ξ : 2 -1 ≤ |ξ| ≤ 2} and ρ(ξ) > 0 for any 2 -1 < |ξ| < 2, and that supp ρ 0 ⊂ {ξ : |ξ| ≤ 2} and ρ 0 (ξ) > 0 for any |ξ| < 2. Then for any f ∈ S (R d ; L 1 (M) + M),

( j≥0 2 j(2α+d) B(0,2 -j ) | φj * ρj * f (• + t)| 2 dt) 1 2 1 max sup j≥1 -2≤k≤2 φ j (2 j+k •)ϕ H σ 2 , φ 0 (ϕ (0) + ϕ (1) ) H σ 2 • ( j≥0 2 j(2α+d) B(0,2 -j ) |ρ j * f (• + t)| 2 dt) 1 2 1 .
Combining the above Lemma with Theorem 5.9, we obtain the following characterization via Lusin square functions associated to ϕ given by the condition (1.1). We keep using the notation ϕ j being the function whose Fourier transform is equal to ϕ(2 -j •) for j ∈ N, and ϕ 0 being the function whose Fourier transform is equal to 1

-j≥1 ϕ(2 -j •). Proposition 8.15. For 1 ≤ p < ∞ and f ∈ F α,c p (R d , M), we have f F α,c p ≈ ϕ 0 * f p + ( j≥1 2 j(2α+d) B(0,2 -j ) |ϕ j * f (• + t)| 2 dt) 1 2 p . ( 8.22) 
Proof. For any f ∈ F α,c p (R d , M), by the lifting property in Proposition 8.5, we have

J α f ∈ h c p (R d , M
). Then, we apply the discrete characterization in Theorem 6.7 with φ = J -α ϕ 0 and Φ = I -α ϕ to J α f ,

f F α,c p ≈ J α f h c p ≈ ϕ 0 * f p + s c,D I -α ϕ (J α f ) p .
Following the argument in the proof of (8.1), we can prove

s c,D I -α ϕ (J α f ) p ≈ s c,D I -α ϕ (I α f ) p .
Moreover, we can easily check that

s c,D I -α ϕ (I α f ) p = ( j≥1 2 j(2α+d) B(0,2 -j ) |ϕ j * f (• + t)| 2 dt) 1 2 p .
Therefore, we conclude

f F α,c p ≈ ϕ 0 * f p + ( j≥1 2 j(2α+d) B(0,2 -j ) |ϕ j * f (• + t)| 2 dt) 1 2 p .
The assertion is proved.

Theorem 8.16. Let 1 ≤ p < ∞ and α ∈ R. Assume that α 0 < α < α 1 , α 1 > 0 and Φ (0) , Φ satisfy conditions (8.7), (8.8). Then for any f ∈ S (R d ; L 1 (M) + M), we have

f F α,c p (R d ,M) ≈ Φ 0 * f p + ( j≥1 2 j(2α+d) B(0,2 -j ) |Φ j * f (• + t)| 2 dt) 1 2 p ,
where the equivalent constant is independent of f .

Proof. This proof is very similar to that of Theorem 8.12. The main target is to replace the standard test functions ϕ and ϕ 0 in Proposition 8.15 with Φ and Φ 0 satisfying (8.7) and (8.8). This time we need to use the Lusin type multiplier theorem i.e. Theorem 5.9, instead of Theorem 5.6. For the special case p = 1, we apply Lemma 8.14 instead of Lemma 8.2.

Using a similar argument as in Theorem 8.13, we also have the following continuous analogue of the above theorem. This is the general characterization of Triebel-Lizorkin spaces by Lusin square functions. Theorem 8.17. Keep the assumption in the previous theorem. Then for any L 1 (M)+Mvalued tempered distribution f on R d , we have

f F α,c p (R d ,M) ≈ Φ 0 * f p + ( Γ ε -2α |Φ ε * f (• + t)| 2 dtdε ε d+1 ) 1 2 p .

Atomic decomposition

For every l

= (l 1 , • • • , l d ) ∈ Z d , µ ∈ N 0 , we define Q µ,l in R d
to be the cubes centered at 2 -µ l, and with side length 2 -µ . Let D d be the collection of all the cubes Q µ,l defined above. We write (µ, l) ≤ (µ , l ) if

µ ≥ µ and Q µ,l ⊂ 2Q µ ,l .
For a ∈ R, let a + = max{a, 0} and [a] the largest integer less than or equal to a. Recall that

|γ| 1 = γ 1 + • • • + γ d for γ ∈ N d 0 , s β = s β 1 1 • • • s β d d for s ∈ R d , β ∈ N d 0 and
J α is the Bessel potential of order α. Definition 8.18. Let α ∈ R, and let K and L be two integers such that

K ≥ ([α] + 1) + and L ≥ max {[-α], -1}. (1) A function b ∈ L 1 M; L c 2 (R d ) is called an (α, 1)-atom if • supp b ⊂ 2Q 0,k ; • τ R d |D γ b(s)| 2 ds 1 2 ≤ 1, ∀γ ∈ N d 0 , |γ| 1 ≤ K. (2) Let Q = Q µ,l ∈ D d , a function a ∈ L 1 M; L c 2 (R d ) is called an (α, Q)-subatom if • supp a ⊂ 2Q; • τ R d |D γ a(s)| 2 ds 1 2 ≤ |Q| α d - |γ| 1 d , ∀γ ∈ N d 0 , |γ| 1 ≤ K; • R d s β a(s)ds = 0, ∀β ∈ N d 0 , |β| 1 ≤ L. (3) A function g ∈ L 1 M; L c 2 (R d ) is called an (α, Q k,m )-atom if τ R d |J α g(s)| 2 ds 1 2 |Q k,m | -1 2 and g = (µ,l)≤(k,m) d µ,l a µ,l , (8.23) 
for some k ∈ N 0 and m ∈ Z d , where the a µ,l 's are (α, Q µ,l )-subatoms and the d µ,l 's are complex numbers such that

(µ,l)≤(k,m) |d µ,l | 2 1 2 ≤ |Q k,m | -1 2 .
Remark 8.19. If L < 0, the third assumption of an (α, Q)-subatom means that no moment cancellation is required. In the second assumption of an (α, 1)-atom b and that of an (α, Q)-subatom a, it is tacitly assumed that b and a have derivatives up to order K.

For such a, we can define a norm by

a * = sup |γ| 1 ≤K D γ a L 1 M;L c 2 (R d )
.

Then the convergence in (8.23) is understood in this norm, and we will see that the atom g in (8.23) belongs to F α,c 1 (R d , M). Remark 8.20. In the classical case, the first size estimate in (8.23) is not necessary. In other words, if g = (µ,l)≤(k,m) d µ,l a µ,l with the subatoms a µ,l 's and the complex numbers

d µ,l 's such that (µ,l)≤(k,m) |d µ,l | 2 1 2 ≤ |Q k,m | -1 2
, then g satisfies that estimate in (8.23) automatically. We refer the readers to [START_REF] Triebel | Theory of function spaces[END_REF] for more details. Unfortunately, in the current setting, we are not able to prove this estimate, so we just add it in (8.23) for safety.

The following is our main result on the atomic decomposition of F α,c 1 (R d , M). The idea comes from [68, Theorem 3. 

f ∈ F α,c 1 (R d , M) can be represented as f = ∞ j=1 µ j b j + λ j g j , (8.24) 
where the b j 's are (α, 1)-atoms, the g j 's are (α, Q)-atoms, and µ j , λ j are complex numbers with

∞ j=1 (|µ j | + |λ j |) < ∞. (8.25)
Moreover, the infimum of (8.25) with respect to all admissible representations is an equivalent norm in F α,c 1 (R d , M).

Proof.

Step 1. First, we show that any f ∈ F α,c 1 (R d , M) admits the representation (8.24) and

∞ j=1 (|µ j | + |λ j |) f F α,c 1 .
The proof of this part is similar to the proof of Theorem 7.6. Let κ be the Schwartz function defined in the proof of Theorem 7.6. We take Φ = | • | N κ with N a positive even integer such that N ≥ max{L, α}, then Φ can be normalized as follows:

∞ 0 Φ(εξ) 2 dε ε = 1, ∀ ξ ∈ R d \ {0}. Since -α + N ≥ 0, we have ∞ j=-∞ (J -α Φ)(2 -j ξ) 2 = Φ(ξ), ∀ ξ ∈ R d \ {0}, (8.26) 
and

∞ j=-∞ (I -α Φ)(2 -j ξ) 2 = Φ (ξ), ∀ ξ ∈ R d \ {0}, (8.27) 
where Φ and Φ are two functions which are rapidly decreasing and infinitely differentiable on R d \ {0}. Applying the Paley-Wiener-Schwartz theorem, we get a compactly supported function Φ 0 ∈ S such that

Φ 0 (ξ) = 1 - 1 0 Φ(εξ) 2 dε ε .
Denote by Φ ε the Fourier inverse transform of Φ(ε•). For any f ∈ F α,c 1 (R d , M), we have

f = Φ 0 * f + 1 0 Φ ε * Φ ε * f dε ε . ( 8.28) 
Let us deal with the two terms on the right hand side of (8.28) separately.

The term Φ 0 * f is easy to treat. If α ≥ 0, Proposition 8.4 ensures that

F α,c 1 (R d , M) ⊂ h c 1 (R d , M).
Then we can repeat the first part of the proof of Theorem 7.6: for any

f ∈ F α,c 1 (R d , M), Φ 0 * f admits the decomposition Φ 0 * f = j µ j b j , with j |µ j | f h c 1 f F α,c 1 ,
where the b j 's, together with their derivatives D γ b j 's, satisfy (7.7) with some constants C γ depending on γ. When K is fixed, we can normalize the b j 's by max |γ| 1 ≤K |C γ |, then the new b j 's are (α, 1)-atoms. If α < 0, by Propositions 8.4 and 8.5, we have

J [α] f ∈ F α-[α],c 1 ⊂ h c 1 . Then J [α] Φ 0 * f admits the decomposition J [α] Φ 0 * f = j µ j b j , with j |µ j | J [α] f h c 1 f F α,c 1 . Then Φ 0 * f = j µ j J -[α] b j . If -[α] is even, it is obvious that supp J -[α] b j ⊂ supp b j . Moreover, for any γ ∈ N d 0 such that |γ| 1 ≤ K, τ ( R d |D γ J -[α] b j (s)| 2 ds) 1 2 |γ | 1 ≤K-2[α] τ ( R d |D γ b j (s)| 2 ds) 1 2 ≤ C K .
We normalize J -[α] b j by this constant C K depending on K, then we can make it an (α, 1)atom. Now we deal with the case when -[α] is odd. Since -[α] + 1 is even, it suffices to replace [α] in the above argument by [α] -1, and then we get the desired decomposition.

Step 2. Now we turn to the second term on the right hand side of (8.28). It follows from Theorem 8.17 and the definition of the tent space that ε

-α Φ ε * f ∈ T c 1 (R d , M) and ε -α Φ ε * f T c 1 f F α,c
1 . By Lemma 7.4, we have

ε -α Φ ε * f (s) = ∞ j=1 λ j b j (s, ε), (8.29)
where the b j 's are T c 1 -atoms based on the cubes Q j 's with

|Q j | ≤ 1. Then, if we set a j (s, ε) = ε α b j (s, ε), we obtain Φ ε * f (s) = ∞ j=1 λ j a j (s, ε) and ∞ j=1 |λ j | ε -α Φ ε * f T c 1 f F α,c 1 . (8.30)
In particular, supp a j ⊂ T (Q j ) and τ

T (Q j ) ε -2α |a j (s, ε)| 2 dsdε ε 1 2 ≤ |Q j | -1 2 . (8.31)
For every a j , we set

g j (s) = π Φ (a j )(s) = 1 0 Φ ε * a j (s, ε) dε ε . (8.32)
Then supp g j ⊂ 2Q j . We arrive at the decomposition

1 0 Φ ε * Φ ε * f dε ε = ∞ j=1 λ j g j .
Now we show that every g j is an (α, Q k j ,m j )-atom. Firstly, for any Q j , there exist

k j ∈ N 0 and s ∈ R d such that 2 -k j -1 ≤ l(Q j ) ≤ 2 -k j and c Q j = l(Q j )s. Take m j = [s] ∈ Z d , where [s] = ([s 1 ], • • • , [s d ]
). Then, we can check that

Q j ⊂ 2Q k j ,m j , Q k j ,m j ∈ D d . (8.33)
Next, by the argument similar to that in (7.5) and by (8.31), we have

τ R d |I α π Φ (a j )(s)| 2 ds 1 2 τ T (Q j ) ε -2α |a j (t, ε)| 2 dtdε ε 1 2 ≤ |Q j | -1 2 |Q k j ,m j | -1 2 . If α ≤ 0, it is clear that τ R d |J α π Φ (a j )(s)| 2 ds 1 2 ≤ τ R d |I α π Φ (a j )(s)| 2 ds 1 2 |Q j | -1 2 |Q k j ,m j | -1 2 .
If α > 0, we have τ

R d |J α π Φ (a j )(s)| 2 ds 1 2 τ R d |π Φ (a j )(s)| 2 ds 1 2 + τ R d |I α π Φ (a j )(s)| 2 ds 1 2 τ T (Q j ) |a j (t, ε)| 2 dtdε ε 1 2 + |Q j | -1 2 τ T (Q j ) ε -2α |a j (t, ε)| 2 dtdε ε 1 2 + |Q j | -1 2 ≤ 2|Q j | -1 2 |Q k j ,m j | -1 2 .
Then we get that, for any α ∈ R,

τ R d |J α g j (s)| 2 ds 1 2 = τ R d |J α π Φ (a j )(s)| 2 ds 1 2 |Q k j ,m j | -1 2 . (8.34)
Finally, we decompose the slice T (Q j )∩{2 -µ-1 ≤ ε ≤ 2 -µ } into (d+1)-dimensional dyadic cubes whose projections on R d belong to D d , and with side length 2 -µ , µ ∈ N 0 . Let Q be one of those dyadic cubes with side length 2 -µ and Q be its projection on R d . Let

a(s) = Q Φ ε (s -t)a j (t, ε) dtdε ε .
By the support assumption of Φ, it follows that supp a ⊂ 2Q, supp a ⊂ 2Q j ⊂ 4Q k j ,m j .

Then

a(ξ) = 2 -µ+1 2 -µ Φ(εξ) a j (•, ε)1 Q (ξ) dε ε .
Since D β Φ(0) = 0 for any |β| 1 ≤ N , we obtain

R d (-2πis) β a(s)ds = D β a(0) = 0, ∀ |β| 1 ≤ L.
Furthermore, by the Cauchy-Schwarz inequality, we have

τ |a(s)| 2 ds 1 2 = τ 5Q 2 -µ+1 2 -µ Q Φ ε (s -t)a j (t, ε) dtdε ε 2 ds 1 2 |Q| 1 2 2 -µ+1 2 -µ Q ε -2d dtdε ε 1 2 • τ 2 -µ+1 2 -µ Q |a j (t, ε)| 2 dtdε ε 1 2 τ 2 -µ+1 2 -µ Q |a j (s, ε)| 2 dsdε ε 1 2 |Q| α d τ 2 -µ+1 2 -µ Q ε -2α |a j (s, ε)| 2 dsdε ε 1 2 .
Similarly, we have

τ |D γ a(s)| 2 ds 1 2 ≤ C γ |Q| α d - |γ| 1 d τ 2 -µ+1 2 -µ Q ε -2α |a j (s, ε)| 2 dsdε ε 1 2 .
The above discussion gives

g j = (µ,l)≤(k j ,m j ) d j µ,l a j µ,l , (8.35) 
where each a j µ,l is an (α, Q µ,l )-subatom. The normalizing factor is given by

d j µ,l = max |γ| 1 ≤K {C γ }τ 2 -µ+1 2 -µ Q µ,l ε -2α |a j (s, ε)| 2 dsdε ε 1 2 .
By the elementary fact that 2 (L 1 (M)) ⊃ L 1 (M; c 2 ), we get

(µ,l)≤(k j ,m j ) |d j µ,l | 2 1 2 ≤ Cτ T (Q j ) ε -2α |a j (s, ε)| 2 dsdε ε 1 2 ≤ C|Q k j ,m j | -1 2 , (8.36)
where C is independent of f . We may assume C = 1, otherwise, we can put C in (8.29) in the numbers λ j , which does not change (8.30). In summary, (8.33), (8.34), (8.35) and (8.36) ensure that g j is an (α, Q k j ,m j )-atom.

Step 3. Now we show the reverse assertion that if f is given by (8.24), then f ∈ F α,c 1 (R d , M) and

f F α,c 1 ∞ j=1 (|µ j | + |λ j |).
To this end, it is enough to show that every (α, 1)-atom b and every (α, Q)-atom g belong to 

F α,c 1 (R d , M) and b F α,c
F α,c 1 ≈ ϕ 0 * b 1 + d i=1 D K i b F α-K,c 1 .
Note that for any 1

≤ i ≤ d, D K i b is an atom in h c 1 (R d , M). Since α -K < 0, by Proposition 8.4, we have b F α,c 1 ϕ 0 * b 1 + d i=1 D K i b h c 1 1.
On the other hand, let g be an (α, Q k,m )-atom in the sense of Definition 8.18. We may use the discrete general characterization of F α,c 1 (R d , M) given in Theorem 8.12, i.e.

g F α,c 1 ≈ ( ∞ j=0 2 2jα |Φ j * g| 2 ) 1 2
1 .

We split ∞ j=0 into two parts k-1 j=0 and ∞ j=k . When j ≥ k, by the support assumption of Φ, we have supp Φ j * g ⊂ 5Q k,m . If α ≥ 0, by (8.27), (8.23) and the Plancherel formula, we obtain

τ 5Q k,m ∞ j=k 2 2jα |Φ j * g(s)| 2 ds 1 2 = τ 5Q k,m ∞ j=k |(I -α Φ) j * I α g(s)| 2 ds 1 2 ≤ τ R d ∞ j=k |(I -α Φ)(2 -j ξ)| 2 |I α g(ξ)| 2 dξ 1 2 τ R d |I α g(ξ)| 2 dξ 1 2 = τ R d |I α g(s)| 2 ds 1 2 ≤ τ R d |J α g(s)| 2 ds 1 2 ≤ |Q m,k | -1 2 .
If α < 0, by (8.26), (8.23) and the Plancherel formula again, we have

τ 5Q k,m ∞ j=k 2 2jα |Φ j * g(s)| 2 ds 1 2 ≤ τ 5Q k,m ∞ j=k 2 2jα |J -α Φ j * J α g(s)| 2 ds 1 2 ≤ τ R d ∞ j=k |(J -α Φ)(2 -j ξ)| 2 |J α g(ξ)| 2 dξ 1 2 τ R d |J α g(ξ)| 2 dξ 1 2 = τ R d |J α g(s)| 2 ds 1 2 ≤ |Q m,k | -1 2 .
It follows that

( ∞ j=k 2 2jα |Φ j * g| 2 ) 1 2 1 
1.

In order to estimate the sum k-1 j=0 , we begin with a technical modification of g. Let

g = 2 k(α-d) g(2 -k •).
Then it is easy to see that g is an (α, Q 0,m )-atom. Moreover, we have

Φ j * g = 2 k(d-α) Φ j-k * g(2 k •), which implies that ( k-1 j=0 2 2jα |Φ j * g| 2 ) 1 2 1 ≤ ( -1 j=-∞ 2 2jα |Φ j * g| 2 ) 1 2 1 + 2 -kα (Φ 0 ) -k * g 1 . (8.37)
In other words, we can assume, by translation, that the atom g is based on a cube Q with side length 1 and centered at the origin. Then, let us estimate the right hand side of (8.37) with g instead of g. By the triangle inequality, we have

( -1 j=-∞ 2 2jα |Φ j * g| 2 ) 1 2 1 ≤ -1 j=-∞ 2 jα τ R d |Φ j * g(s)|ds ≤ -1 j=-∞ (µ,l)≤(0,0) |d µ,l | 2 jα τ R d
|Φ j * a µ,l (s)|ds. Now we estimate 2 jα τ R d |Φ j * a µ,l (s)|ds for every (µ, l) ≤ (0, 0). Let M = [-α] + 1. Then M + α > 0 and L ≥ M -1. By the moment cancellation of a µ,l , we have

Φ j * a µ,l (s) = 2 jd 2Q µ,l Φ(2 j s -2 j t) -Φ(2 j s -2 j 2 -µ l) a µ,l (t)dt = 2 j(d+M ) • |β| 1 =M M + 1 β! 2Q µ,l (2 -µ l -t) β 1 0 (1 -θ) M D β Φ 2 j s -2 j (θt + (1 -θ)2 -µ l) a µ,l (t)dθdt.
It follows that

|Φ j * a µ,l (s)| 2 |β| 1 =M 2 2j(d+M ) 2Q µ,l 1 0 (1 -θ) 2M |D β Φ 2 j s -2 j (θt + (1 -θ)2 -µ l) | 2 dθdt • 2Q µ,l |t -2 -µ l| 2M |a µ,l (t)| 2 dt.
If Φ j * a µ,l (s) = 0, then we have |2 j s -2 j t| ≤ 1 for some t ∈ 2Q µ,l . Hence, Φ j * a µ,l (s

) = 0 if |s -2 -µ l| > 3 • 2 -j-1 √ d. Consequently, -1 j=-∞ 2 jα τ R d |Φ j * a µ,l (s)|ds -1 j=-∞ 2 j(d+M +α) τ 2Q µ,l |t -2 -µ l| 2M |a µ,l (t)| 2 dt 1 2 • |β| 1 =M |s-2 -µ l|≤ 3 √ d 2 j+1 2Q µ,l 1 0 (1 -θ) 2M |D β Φ(2 j s -2 j (θt + (1 -θ)2 -µ l))| 2 dθdt 1 2 ds -1 j=-∞ 2 j(d+M +α) • 2 -µM |Q µ,l | 1 2 τ 2Q µ,l |a µ,l (t)| 2 dt 1 2 |s-2 -µ l|≤ 3 √ d 2 j+1 ds -1 j=-∞ 2 j(d+M +α) • 2 -jd • 2 -µ(α+M ) |Q µ,l | 1 2 = 2 -µ(α+M ) -1 j=-∞ 2 j(M +α) |Q µ,l | 1 2 2 -µ(α+M ) |Q µ,l | 1 2 .
Similarly, we also have

2 -kα τ R d |(Φ 0 ) -k * a µ,l (s)|ds 2 -k(M +α) 2 -µ(α+M ) |Q µ,l | 1 2 ≤ 2 -µ(α+M ) |Q µ,l | 1 2 .
Therefore, by the Cauchy-Schwarz inequality, we get

( -1 j=-∞ 2 2jα |Φ j * g| 2 ) 1 2 1 ≤ -1 j=-∞ 2 2jα τ R d |Φ j * g(s)|ds ∞ µ=0 2 -µ(α+M ) l |d µ,l | 2 1 2 l |Q µ,l | 1 2 ∞ µ=0 2 -µ(α+M ) < ∞, and 2 -kα (Φ 0 ) -k * g 1 ∞ µ=0 2 -µ(α+M ) < ∞.
Therefore, g F α,c 1 1. The proof is complete.

We close this chapter by a very useful result of pointwise multipliers, which can be deduced from the above atomic decomposition. Let k ∈ N and L k (R d , M) be the collection of all M-valued functions on R d such that D γ h ∈ L ∞ (N ) for all γ with 0 ≤ |γ| 1 ≤ k. 

∈ L k (R d , M). Then the map f → hf is bounded on F α,c 1 (R d , M)
Proof. First, consider the case α > 0. We apply the atomic decomposition in Theorem 8.21 with K = k and L = -1. In this case, no moment cancellation of subatoms is required. We can easily check that, multiplying every (sub)atom in Definition 8.18 by h, we get another (sub)atom. Moreover,

hf F α,c 1 ≤ |γ|≤k sup s∈R d D γ h(s) M • f F α,c 1 . (8.38)
The case α ≤ 0 can be deduced by induction. Assume that (8.38) 

is true for α > N ∈ Z. Let α > N -1. Any f ∈ F α,c 1 can be represented as f = J 2 g = (1 -(2π) -2 ∆)g with g ∈ F α+2,c 1 and f F α,c 1 ≈ g F α+2,c 1 . Since hf = (1 -(2π) -2 ∆)(hg) + ((2π) -2 ∆h)g + (2π) -2 ∇h • ∇g, we deduce hf F α,c 1 (1 -(2π) -2 ∆)(hg) F α,c 1 + (∆h)g F α,c 1 + d i=1 ∂ i h • ∂ i g F α,c 1 g F α+2,c 1 + (∆h)g F α+2,c 1 + d i=1 ∂ i h • ∂ i g F α+1,c 1 . (8.39) If k ∈ N is sufficiently large, we have (∆h)g F α+2,c 1 g F α+2,c 1 , ∂ i h • ∂ i g F α+1,c 1 ∂ i g F α+1,c 1 .
Continuing the estimate in (8.39), we obtain

hf F α,c 1 g F α+2,c 1 + i ∂ i g F α+1,c 1 g F α+2,c 1 f F α,c 1 ,
which completes the induction procedure.

Chapter 9

Pseudo-differential operators on Triebel-Lizorkin spaces

In this chapter, we study the continuity of pseudo-differential operators in the context of operator-valued Triebel-Lizorkin spaces. We start by introducing some basic definitions and properties. The symbols of pseudo-differential operators defined in the first section are B(X)-valued, where X is a Banach space. However, in the later sections of this chapter, we will only consider those symbols with values in M.

Definitions and basic properties

Let X be a Banach space, n ∈ R and 0 ≤ δ, ρ ≤ 1. Then S n ρ,δ denotes the collection of all infinitely differentiable functions σ defined on R d × R d and with values in B(X), such that for each pair of multi-indices of nonnegative integers γ, β, there exists a constant C γ,β such that 

D γ s D β ξ σ(s, ξ) B(X) ≤ C γ,β (1 + |ξ|) n+δ|γ| 1 -ρ|β| 1 , where γ = (γ 1 , • • • , γ d ) ∈ N d 0 , |γ| 1 = γ 1 + • • • + γ d and D γ s = ∂ γ 1 ∂s γ 1 1 • • • ∂ γ d
T σ f (s) = R d σ(s, ξ) f (ξ)e 2πis•ξ dξ. (9.1)
We call σ the symbol of T σ .

Proposition 9.2. Let 0 ≤ δ, ρ ≤ 1 and n ∈ R. For any σ ∈ S n ρ,δ , T σ is continuous on S(R d ; X). Proof. By integration by parts, for any s ∈ R d and γ ∈ N d 0 , we have

(2πis) γ T σ f X = (2πis) γ R d σ(s, ξ) f (ξ)e 2πis•ξ dξ X = R d σ(s, ξ) g(ξ)D γ ξ (e 2πis•ξ )dξ X = R d D γ ξ [σ(s, ξ) g(ξ)]e 2πis•ξ dξ X < ∞.
Thus, T σ f is rapidly decreasing. A similar argument works for the partial derivatives of T σ f , then we easily check that T σ f maps S(R d ; X) continuously to itself.

Another way to write (9.1) is as a double integral:

T σ f (s) = R d R d σ(s, ξ)f (t)e 2πi(s-t)•ξ dtdξ. (9.2)
However, the above ξ-integral does not necessarily converge absolutely, even for f ∈ S(R d ; X). To overcome this difficulty, we will approximate σ by symbols with compact support. To this end, let us fix a compactly supported infinitely differentiable η defined on R d × R d such that η = 1 near the origin. Then we define

σ j (s, ξ) = σ(s, ξ)η(2 -j s, 2 -j ξ) with j ∈ N. (9.3) 
Note that σ j converges pointwise to σ and σ j ∈ S n ρ,δ uniformly in j. Thus, for any f ∈ S(R d ; X), T σ j f converges to T σ f in S(R d ; X) as j → ∞. Since the σ j 's have compact supports, the formula (9.2) works for T σ j f (s). Then we can define the integral (9.2) as follows:

T σ f (s) = lim j→∞ R d R d σ j (s, ξ)f (t)e 2πi(s-t)•ξ dtdξ. (9.4) Proposition 9.3. Let 0 ≤ δ < 1, 0 ≤ ρ ≤ 1 and n ∈ R. For any σ ∈ S n ρ,δ , the adjoint of T σ is continuous on S(R d ; X * ).
Proof. For any f ∈ S(R d ; X) and g ∈ S(R d ; X * ), by the duality relation

T σ f, g = f, (T σ ) * g , we check that (T σ ) * g(s) = lim j→∞ R d R d σ * j (t, ξ)g(t)e 2πi(s-t)•ξ dtdξ. (9.5)
By integration by parts, it is clear that (T σ ) * is continuous on S(R d ; X * ).

Since S (R d ; X * * ) = (S(R d ; X * )) * (see [START_REF] Trèves | Topological vector spaces, distributions and kernels[END_REF]Section 51] for more details of this duality), in the usual way, we extend T σ to an operator on S (R d ; X * * ). Definition 9.4. Let f ∈ S (R d ; X * * ). We define T σ f by the formula

T σ f, g = f, (T σ ) * g , ∀g ∈ S(R d ; X * ).
By Proposition 9.3, (T σ ) * g ∈ S(R d ; X * ) whenever g ∈ S(R d ; X * ). So the bracket on the right hand side of the above definition is well defined. Therefore, T σ f is well defined, and takes value in S (R d ; X * * ) as well. Proposition 9.5. Let 0 ≤ δ < 1, 0 ≤ ρ ≤ 1 and n ∈ R. For any σ ∈ S n ρ,δ , T σ is continuous on S (R d ; X * * ).

Proof. For any f ∈ S (R d ; X * * ), we take a sequence (f j ) such that f j → f in S (R d ; X * * ). Then we have

T σ f j , g = f j , (T σ ) * g -→ f, (T σ ) * g = T σ f, g ∀g ∈ S(R d ; X * ). Thus, T σ f j converges to T σ f in S (R d ; X * * ). So T σ is continuous on S (R d ; X * * ).
The pseudo-differential operator defined above has a parallel description in terms of a distribution kernel:

T σ f (s) = R d K(s, s -t)f (t)dt,
where K is the inverse Fourier transform of σ with respect to the variable ξ, i.e.

K(s, t) = R d σ(s, ξ)e 2πit•ξ dξ. (9.6)
In the sequel, we will focus on the symbols in the class S n 1,δ with 0 ≤ δ ≤ 1 and n ∈ R. Similarly to the classical case (see [START_REF] Coifman | Au delá des operateurs pseudo-différentiels[END_REF], [START_REF] Hörmander | Pseudo-differential operators and hypoelliptic equations. Singular integrals[END_REF], [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF] and [START_REF] Torres | Boundedness results for operators with singular kernels on distribution spaces[END_REF]), we prove that for any operator-valued symbol σ ∈ S n 1,δ , the corresponding kernel K satisfies the following estimates: Lemma 9.6. Let σ ∈ S n 1,δ and 0 ≤ δ ≤ 1. Then the kernel K(s, t) in (9.6) satisfies

D γ s D β t K(s, t) B(X) ≤ C γ,β |t| -|γ| 1 -|β| 1 -d-n , ∀t ∈ R d \ {0}, (9.7) 
D γ s D β t K(s, t) B(X) ≤ C γ,β,N |t| -N , ∀N > 0 if |t| > 1. (9.8)
Proof. This lemma can be deduced easily from the corresponding scalar-valued results, which can be found in many classical works on pseudo-differential operators, for instance, [START_REF] Torres | Continuity properties of pseudodifferential operators of type 1,1[END_REF]Lemma 5.1.6]. Given x ∈ X and x * ∈ X * with norm one, it is clear that x * , σ(s, t)x is a scalar-valued symbol in S n 1,δ , with distribution kernel x * , K(s, t)x . Thus, we have

x * , D γ s D β t K(s, t)x = D γ s D β t [ x * , K(s, t)x ] ≤ C γ,β |t| -|γ| 1 -|β| 1 -d-n , ∀t ∈ R d \ {0} and x * , D γ s D β t K(s, t)x = D γ s D β t [ x * , K(s, t)x ] ≤ C γ,β,N |t| -N , ∀N > 0 if |t| > 1.
Then, taking the supremum over x and x * in the above two inequalities, we get the desired assertion.

In the classical case, the proof the above lemma makes use of the decomposition of the symbol σ into dyadic pieces. Let ( ϕ k ) k≥0 be the resolution of the unit satisfying (1.3). Set

σ k (s, ξ) = σ(s, ξ) ϕ k (ξ), ∀(s, ξ) ∈ R d × R d .
(9.9)

By a similar argument as in the above proof, we also have the following estimates of the corresponding kernels of these pieces σ k 's.

Lemma 9.7. Let σ ∈ S n 1,δ and σ k be as in (9.9) and +n) , ∀M ∈ N 0 . Now we study the composition of pseudo-differential operators. The following proposition gives a rule of the composition of two pseudo-differential operators. In particular, it shows that the symbol class S 0 1,δ is closed under product. Proposition 9.8. Let 0 ≤ δ < 1 and σ 1 , σ 2 be two symbols in S n 1 1,δ and S n 2 1,δ respectively. There exists a symbol σ 3 in S n 1 +n 2 1,δ such that

K k (s, t) = R d σ k (s, ξ)e 2πit•ξ dξ. Then D γ s D β t K k (s, t) B(X) |t| -2M 2 k(|β| 1 +|γ| 1 +d-2M
T σ 3 = T σ 1 T σ 2 .
Moreover,

σ 3 - |γ| 1 <N 0 (2πi) -|γ| 1 γ! D γ ξ σ 1 D γ s σ 2 ∈ S n 1 +n 2 -(1-δ)N 0 1,δ
, ∀N 0 ≥ 0. (9.10)

Proof. Firstly, we assume that σ 1 and σ 2 have compact supports, so we can use (9.2) as an alternate definition of T σ 1 and T σ 2 . In this way, T σ 1 T σ 2 can be written as follows:

T σ 1 (T σ 2 f )(s) = R d R d σ 3 (s, ξ)f (r)e 2πi(s-r)•ξ drdξ,
where

σ 3 (s, ξ) = R d R d σ 1 (s, η)σ 2 (t, ξ)e 2πi(s-t)•(η-ξ) dtdη = R d σ 1 (s, ξ + η) σ 2 (η, ξ)e -2πis•η dη (9.11)
with σ 2 the Fourier transform of σ 2 with respect to the first variable. We expand σ 1 (s, ξ+η) by the Taylor formula:

σ 1 (s, ξ + η) = |γ| 1 <N 0 1 γ! D γ ξ σ 1 (s, ξ)η γ + N 0 ≤|γ| 1 <N 1 γ! D γ ξ σ 1 (s, ξ)η γ + R N (s, ξ, η),
with the remainder

R N (s, ξ, η) = |γ| 1 =N 1 γ! 1 0 D γ ξ σ 1 (s, ξ + θη)(1 -θ) N η γ dθ.
Now we replace σ 1 (s, ξ + η) in (9.11) by the above Taylor polynomial and remainder. Notice that

1 γ! R d D γ ξ σ 1 (s, ξ)η γ σ 2 (η, ξ)e -2πis•η dη = (2πi) -|γ| 1 γ! D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ).
Thus,

σ 3 (s, ξ) = |γ| 1 <N 0 + N 0 ≤|γ| 1 <N (2πi) -|γ| 1 γ! D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ) + R d R N (s, ξ, η) σ 2 (η, ξ)e -2πis•η dη.
(9.12)

For every γ, the term

D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ) is a symbol in S n 1 +n 2 -(1-δ)|γ| 1 1,δ
. Indeed, it is clear that

D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ) B(X) (1 + |ξ|) n 1 -|γ| 1 (1 + |ξ|) n 2 +δ|γ| 1 = (1 + |ξ|) n 1 +n 2 -(1-δ)|γ| 1 .
Moreover, for any

β 1 , β 2 ∈ N d 0 , we have D β 1 s σ 1 ∈ S n 1 +δ|β 1 | 1 1,δ , D β 2 s σ 2 ∈ S n 2 +δ|β 1 | 1 1,δ and 
D β 1 ξ σ 1 ∈ S n 1 -|β 2 | 1 1,δ , D β 2 ξ σ 2 ∈ S n 2 -|β 2 | 1 1,δ
. Thus, we get

D β s [D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ)] B(X) β 1 +β 2 =β D β 1 s D γ ξ σ 1 (s, ξ)D β 2 s D γ s σ 2 (s, ξ) B(X) (1 + |ξ|) n 1 +n 2 -(1-δ)|γ| 1 +δ|β| 1 ,
and

D β ξ [D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ)] B(X) β 1 +β 2 =β D γ+β 1 ξ σ 1 (s, ξ)D γ s D β 2 ξ σ 2 (s, ξ) B(X) (1 + |ξ|) n 1 +n 2 -(1-δ)|γ| 1 -|β| 1 .
By the above estimates, we see that when

N 0 ≤ |γ| 1 < N , D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ) ∈ S n 1 +n 2 -(1-δ)N 0 1,δ
. Now we have to treat the last term in (9.12). For the remainder R N (s, ξ, η), we easily check that for any |γ| 1 = N and 0 ≤ θ ≤ 1,

D γ ξ σ 1 (s, ξ + θη) B(X) ≤ C N (1 + |ξ|) n 1 -N , if |ξ| ≥ 2|η|, (9.13) 
and

D γ ξ σ 1 (s, ξ + θη) B(X) ≤ C N , ∀ η, ξ ∈ R d . (9.14)
For σ 2 , by integration by parts, we see that for any

β ∈ N d 0 such that |β| 1 = N , (-2πiη) β σ 2 (η, ξ) = R d (-2πiη) β e -2πit•η σ 2 (t, ξ)dt = R d D β t (e -2πit•η )σ 2 (t, ξ)dt = (-1) β R d e -2πit•η D β t σ 2 (t, ξ)dt.
Denote the compact t-support of σ 2 (t, ξ) by Ω. Then the above calculation immediately implies that

σ 2 (η, ξ) B(X) |Ω|(1 + |η|) -N (1 + |ξ|) n 2 +δ N . ( 9.15) 
We keep the constant |Ω| in this inequality for the moment, and will see in the next step that our final result does not depend on this support. Take N large enough so that

N > max d 1 -δ , (1 -δ)N 0 δ -δ , d -n 1 + (1 -δ)N 0 1 -2δ ,
and take N = δ N with 0 ≤ δ < δ < 1. Continuing the estimate of the last term in (9.12), inequalities (9.13) and (9.15) give

|η|≤ |ξ| 2 1 0 D γ ξ σ 1 (s, ξ + θη)(1 -θ) N η γ σ 2 (η, ξ)e -2πis•η dθdη B(X) R d |η| N (1 + |η|) -N dη • (1 + |ξ|) n 1 +n 2 -N +δ N ≤ R d (1 + |η|) ( δ-1) N dη • (1 + |ξ|) n 1 +n 2 +(δ-δ) N (1 + |ξ|) n 1 +n 2 +(δ-δ) N . Moreover, since N ≥ (1-δ)N 0 δ-δ
, we have

(1 + |ξ|) n 1 +n 2 +(δ-δ) N ≤ (1 + |ξ|) n 1 +n 2 -(1-δ)N 0 .
By (9.14) and (9.15), we get

|η|> |ξ| 2 1 0 D γ ξ σ 1 (s, ξ + θη)(1 -θ) N η γ σ 2 (η, ξ)e -2πis•η dθdη B(X) |η|> |ξ| 2 |η| N (1 + |η|) -N dη • (1 + |ξ|) n 2 +δ N (1 + |ξ|) n 2 +N +d-(1-δ) N ≤ (1 + |ξ|) n 1 +n 2 -(1-δ)N 0 . Therefore, R N (s, ξ, η) ∈ S n 1 +n 2 -(1-δ)N 0 1,δ
. Combining the estimates above, we see that, if we set R N 0 (s, ξ, η)

= N 0 ≤|γ| 1 <N 1 γ! D γ ξ σ 1 (s, ξ)η γ + R N (s, ξ, η), then R N 0 (s, ξ, η) ∈ S n 1 +n 2 -(1-δ)N 0 1,δ
. This proves the assertion (9.10) when σ 2 has compact support with respect to the first variable.

Noticing that the above proof depends on the constant |Ω| in (9.15), we now make use of the resolution of the unit in (7.13) to deal with general symbol σ 2 with arbitrary s-support. For each k ∈ Z d , denote σ 2,k (s, ξ) = X k (s)σ 2 (s, ξ) and

σ 3,k (s, ξ) = R d R d σ 1 (s, η)σ 2,k (t, ξ)e 2πi(s-t)•(η-ξ) dtdη .
It has already been established that 

σ 3,k - |γ| 1 <N 0 (2πi) -|γ| 1 γ! D γ ξ σ 1 D γ s σ 2,k ∈ S n 1 +n 2 -(1-δ)N 0 1,δ , ∀ N 0 > 0, k ∈ Z d , ( 9 
D γ s D β ξ b i (s, ξ) B(X) ≤ C i,γ,β (1 + |ξ|) n+δ|γ| 1 -|β| 1 , i = 1, 2, then b 1 + b 2 ∈ S n 1,δ with D γ s D β ξ b 1 (s, ξ) + b 2 (s, ξ) B(X) ≤ max{C 1,γ,β , C 2,γ,β }(1 + |ξ|) n+δ|γ| 1 -|β| 1 .
For our use, we construct a partition of Z d with subsets U 1 , U 2 , • • • , U 2 d such that for any k 1 , k 2 in each U j , the supports supp X k 1 and supp X k 2 are disjoint. More precisely, let π: Z -→ Z/2Z be the canonical projection sending even integer to 0 and odd integer to 1. Let

π d : Z d -→ (Z/2Z) d be the d-fold product of π. Then (U j ) j∈(Z/2Z) d = (π d ) -1 (j) j∈(Z/2Z) d
gives the desired partition of Z d . Summing over (9.16) in each U j , we get a symbol still in

S n 1 +n 2 -(1-δ)N 0 1,δ
, that is,

k∈U j σ 3,k - k∈U j |γ| 1 <N 0 (2πi) -|γ| 1 γ! D γ ξ σ 1 D γ s σ 2,k ∈ S n 1 +n 2 -(1-δ)N 0 1,δ .
Taking the finite sum over {U j } 1≤j≤2 d , we get the asymptotic formula (9.10) in this case. Finally, let us get rid of the additional assumption that σ 1 and σ 2 have compact supports. We define σ j 3 as follows:

T σ j 3 = T σ j 1 T σ j 2 .
where σ j 1 (s, ξ) = σ 1 (s, ξ)η(2 -j s, 2 -j ξ) and σ j 2 (s, ξ) = σ 2 (s, ξ)η(2 -j s, 2 -j ξ) with η given in (9.3). Notice that the σ j 1 's and the σ j 2 's are in the class S n 1 1,δ and S n 2 1,δ respectively with symbolic constants uniform in j. Therefore, the above arguments ensure that σ j 3 belongs to S n 1 +n 2 1,δ and satisfies (9.10) uniformly in j. Passing to the limit, we get that σ 3 ∈ S n 1 +n 2 1,δ and satisfies (9.10). Furthermore, by (9.4), we get

T σ 3 = T σ 1 T σ 2 .
The proof is complete.

We end this section with the asymptotic formula for the adjoint of a pseudo-differential operator with symbol in the class S n 1,δ .

Proposition 9.9. Let 0 ≤ δ < 1, n ∈ R and σ be a symbol in S n 1,δ . There exists a symbol σ ∈ S n 1,δ such that T σ = (T σ ) * . Moreover, σ -

|γ| 1 <N 0 (2πi) -|γ| 1 γ! D γ ξ D γ s σ * ∈ S n-(1-δ)N 0 1,δ , ∀N 0 ≥ 0.
Proof. The proof is similar to that of Proposition 9.8. By (9.5), we get the formal expression of σ that

σ(s, ξ) = R d R d σ * (t, η)e 2πi(s-t)•(η-ξ) dtdη = R d σ * (η, ξ + η)e 2πis•η dη,
where σ * is the Fourier transform of σ * with respect to the first variable. By the same argument used in the proof of the previous proposition, we may focus on the symbol with compact t-support. Taking the Taylor expression of σ * (η, ξ + η), we get

σ * (η, ξ + η) = |γ| 1 <N 0 1 γ! D γ ξ σ * (η, ξ)η γ + N 0 ≤|γ| 1 <N 1 γ! D γ ξ σ * (η, ξ)η γ + R N (ξ, η).
As before, we can show that

1 γ! R d D γ ξ σ * (η, ξ)η γ e 2πis•η dη = (2πi) -|γ| 1 γ! D γ ξ D γ s σ * (s, ξ) ∈ S n-(1-δ)|γ| 1 1,δ . 
On the other hand, we can also show that

R d R N (ξ, η)e 2πis•η dη B(X) (1 + |ξ|) n-(1-δ)N 0
by splitting the integral over η into two parts. Moreover, repeating the above procedure to its derivatives, we have

R d R N (ξ, η)e 2πis•η dη ∈ S n-(1-δ)N 0 1,δ
. Thus, the proposition is proved.

Some lemmas

In order to study the boundedness of pseudo-differential operators on the Triebel-Lizorkin spaces, we will use the atomic decomposition stated in the last chapter. In other words, we will focus on the images of the atoms under the action of pseudo-differential operators instead of the images of general functions in the Triebel-Lizorkin spaces.

In the sequel, we will only consider pseudo-differential operators whose symbols take values in M. If we take X = L 1 (M) + M, then M admits an isometric embedding into B(X) by left or right multiplication. In this way, these M-valued symbols can be seen as a special case of the B(X)-valued symbols defined in the previous section. On the other hand, if we embed M into B(X) by right multiplication, we get another kind of M-valued symbol actions. Accordingly, we define

T c σ f (s) = R d σ(s, ξ) f (ξ)e 2πis•ξ dξ and T r σ f (s) = R d f (ξ)σ(s, ξ)e 2πis•ξ dξ.
All the conclusions proved in the previous section still hold for both T c σ and T r σ parallel. In the following sections, we mainly focus on the operators T c σ . The first lemma in this section concerns the image of an (α, Q µ,l )-subatom under the action of pseudo-differential operators. Lemma 9.10. Let α ∈ R, σ ∈ S 0 1,δ and T c σ be the corresponding pseudo-differential operator. In addition, we assume that K > d 2 . Then for any (α, Q µ,l )-subatom a µ,l , we have

τ R d (1 + 2 µ |s -2 -µ l|) d+M |D γ T c σ a µ,l (s)| 2 ds 1 2 |Q µ,l | α d - |γ| 1 d , |γ| 1 < K - d 2 , (9.17)
where M ∈ R such that M < 2L + 2 and the relevant constant depends on M , K, L, γ and d.

Proof. We split the integral on the left hand side of (9.17) into 4Q µ,l and (4Q µ,l ) c . To estimate the term with 4Q µ,l , we begin with a technical modification of a µ,l . For every a µ,l , we define

a = |Q µ,l | -α d + 1 2 a µ,l (2 -µ (• + l)).
It is easy to see that a is an (α, Q 0,0 )-subatom. By translation, we may assume that l = 0. Then by the Cauchy-Schwarz inequality, for any s ∈ R d , we have

|T c σ a µ,l (s)| 2 = 2 -2µd |Q µ,l | 2( α d -1 2 ) R d σ(s, ξ) a(2 -µ ξ)e 2πis•ξ dξ 2 = |Q µ,l | 2( α d -1 2 ) R d σ(s, 2 µ ξ) a(ξ)e 2πis•2 µ ξ dξ 2 ≤ |Q µ,l | 2( α d -1 2 ) R d σ(s, 2 µ ξ) 2 M (1 + |ξ| 2 ) -K dξ R d (1 + |ξ| 2 ) K σ(s, 2 µ ξ) -2 M a * (ξ)|σ(s, 2 µ ξ)| 2 a(ξ)dξ |Q µ,l | 2( α d -1 2 ) R d (1 + |ξ| 2 ) -K dξ • R d (1 + |ξ| 2 ) K | a(ξ)| 2 dξ |Q µ,l | 2( α d -1 2 ) R d |J K a(t)| 2 dt,
where J K is the Bessel potential of order K. Combining the second assumption on a µ,l in Definition 8.18 and the above estimates, we obtain

τ 4Q µ,l |T c σ a µ,l (s)| 2 (1 + 2 µ |s|) d+M ds 1 2 τ 4Q µ,l |T c σ a µ,l (s)| 2 ds 1 2 |Q µ,l | α d τ ( R d |J K a(t)| 2 dt) 1 2 |Q µ,l | α d |γ| 1 ≤K τ R d |D γ a(t)| 2 dt 1 2 |Q µ,l | α d .
If s ∈ (4Q µ,l ) c , since a µ,l has the moment cancellations of order less than or equal to L, we can subtract a Taylor polynomial of degree L from the kernel associated to T c σ . Then, applying the estimate (9.7) and the Cauchy-Schwarz inequality, we get

|T c σ a µ,l (s)| 2 = R d K(s, s -t)a µ,l (t)dt 2 = R d [K(s, s -t) -K(s, s)]a µ,l (t)dt 2 = R d [ |β| 1 =L+1 L + 1 β! t β 1 0 (1 -θ) β D β K(s, s -θt)dθ]a µ,l (t)dt 2 |β| 1 =L+1 2Q µ,l 1 0 (1 -θ) β D β K(s, s -θt)dθ 2 M |t| 2L+2 dt • R d 1 0 (1 -θ) β D β K(s, s -θt)dθ -2 M 1 0 (1 -θ) β D β K(s, s -θt)dθ a µ,l (t) 2 dt ≤ |β| 1 =L+1 2Q µ,l sup 0≤θ≤1 D β K(s, s -θt) 2 M |t| 2L+2 dt • R d |a µ,l (t)| 2 dt |s| -2d-2L-2 2Q µ,l |t| 2L+2 dt • R d |a µ,l (t)| 2 dt 2 -µ(2L+2+d) |s| -2d-2L-2 R d |a µ,l (t)| 2 dt. ( 9.18) 
This estimate implies

τ (4Q µ,l ) c |T c σ a µ,l (s)| 2 (1 + 2 µ |s|) d+M ds 1 2 2 -µ(L+1-M 2 ) (4Q µ,l ) c |s| -d-2L-2+M ds 1 2 • τ R d |a µ,l (t)| 2 dt 1 2 2 -µ(L+1-M 2 ) 2 µ(L+1-M 2 ) |Q µ,l | α d = |Q µ,l | α d .
If we take M = -d in the above inequality, we have T c σ a µ,l ∈ L 1 M; L c 2 (R d ) . By approximation, we can assume that σ(s, ξ) has compact ξ-support, so 

T c σ a µ,l (s) = R d σ(s, ξ) a µ,l (ξ)e
|D γ T c σ a µ,l (s)| 2 (1 + 2 µ |s|) d+M ds 1 2 |Q µ,l | α d τ ( R d |J K a(t)| 2 dt) 1 2 R d (1 + |ξ|) 2|γ| 1 -2K dξ |Q µ,l | α d |γ| 1 ≤K τ R d |D γ a(t)| 2 dt 1 2 |Q µ,l | α d . (9.19)
By a similar argument to that of (9.18), we have, for any γ ∈ N d 0 and s ∈ (4Q µ,l ) c ,

|D γ T c σ a µ,l (s)| 2 2 -µ(2L+2+d) |s| -2d-2L-2-2|γ| 1 R d |a µ,l (t)| 2 dt. (9.20)
Therefore, we deduce that

τ (4Q µ,l ) c |D γ T c σ a µ,l (s)| 2 (1 + 2 µ |s|) d+M ds 1 2 2 -µ(L+1-M 2 ) (4Q µ,l ) c |s| -d-2L-2+M -2|γ| 1 ds 1 2 • τ R d |a µ,l (t)| 2 dt 1 2 2 -µ(L+1-M 2 ) 2 µ(L+1-M 2 +|γ| 1 ) |Q µ,l | α d = |Q µ,l | α d - |γ| 1 d .
Combining the estimates above, we get (9.17).

On the other hand, we have the following lemma concerning the image of (α, 1)-atoms under the action of pseudo-differential operators. Lemma 9.11. Let α ∈ R, σ be a symbol in the class S 0 1,δ and T c σ be the corresponding pseudo-differential operator. Let K > d 2 and b be an (α, 1)-atom based on the cube Q 0,m . Then for any M ∈ R, we have

τ R d (1 + |s -m|) d+M |D γ T c σ b(s)| 2 ds 1 2 1, |γ| 1 < K - d 2 , ( 9.21) 
where the relevant constant depends on M , K, γ and d.

Proof. The proof of this lemma is similar to that of the previous one. The only difference is that for an (α, 1)-atom, we do not necessarily have the moment cancellation; in this case, we need to use the extra decay of the kernel when |t| > 1.

If s ∈ 4Q 0,m , we follow the estimate for subatoms in the previous lemma. Applying the size estimate of b, we get

τ 4Q 0,m (1 + |s -m|) d+M |T c σ b(s)| 2 ds 1 2 τ ( R d |J K b(t)| 2 dt) 1 2 1.
If s ∈ (4Q 0,m ) c and t ∈ 2Q 0,m , we have |s -t| ≥ 1. Then (9.8) gives

|T c σ b(s)| 2 = R d K(s, s -t)b(t)dt 2 ≤ 2Q 0,m K(s, s -t) 2 M dt 2Q 0,m |b(t)| 2 dt |s -m| -2N 2Q 0,m |b(t)| 2 dt,
where the positive integer N can be arbitrarily large. Thus

τ (4Q 0,m ) c (1 + |s -m|) d+M |T c σ b(s)| 2 ds 1 2 (4Q 0,m ) c |s -m| d+M -2N ds 1 2 τ 2Q 0,m |b(t)| 2 dt 1 2 1.
Then, the estimates obtained above imply that

τ R d (1 + |s -m|) d+M |T c σ b(s)| 2 ds 1 2
1.

Similarly, we treat

D γ T c σ b(s) as τ R d (1 + |s -m|) d+M |D γ T c σ b(s)| 2 ds 1 2 1, |γ| 1 < K - d 2 .
Therefore, (9.21) is proved.

The following lemma shows that, if the symbol σ satisfies some support condition, we can even establish the F α,c 1 -norm of the image of (α, Q µ,l )-subatom under T c σ .

Lemma 9.12. Let σ ∈ S 0 1,δ and T c σ be the corresponding pseudo-differential operator. Assume that α ∈ R, K ∈ N satisfy K > d 2 and K > α + d. If the s-support of σ is in (2 -µ l + 4Q 0,0 ) c , then for any (α, Q µ,l )-subatom a µ,l , we have

T c σ a µ,l F α,c 1 2 -µ( d 2 +ι) ,
where ι is a positive real number.

Proof. Without loss of generality, we still assume l = 0. We keep the assumption of the test functions Φ = | • | N κ, Φ (0) ∈ S in the proof of Theorem 8.21. In addition, we assume

N ∈ N 0 such that α + d 2 -1 < N < K -d 2 and supp Φ 0 ⊂ Q 0,0 .
To simplify the notation, we denote T c σ a µ,l by η µ,l . Then

η µ,l F α,c 1 ≈ Φ 0 * η µ,l 1 + 1 0 ε -2α |Φ ε * η µ,l | 2 dε ε 1 2 1 .
We notice that Φ satisfies the moment cancellation up to order N . It follows that

Φ ε * η µ,l (s) = R d Φ ε (t)[η µ,l (s -t) -η µ,l (s)]dt = R d Φ ε (t) |γ| 1 =N +1 N + 1 γ! (-t) γ 1 0 (1 -θ) N D γ η µ,l (s -θt)dθ dt. ( 9.22) 
Applying the Cauchy-Schwarz inequality, we have

|t|> |s| 2 Φ ε (t) |γ| 1 =N +1 N + 1 γ! t γ 1 0 (1 -θ) N D γ η µ,l (s -θt)dθ dt 2 |γ| 1 =N +1 R d 1 0 (1 -θ) 2N |D γ η µ,l (s -θt)| 2 dθ(1 + |t|) -d-1 dt • R d |Φ ε (t)| 2 |t| 2N +2 (1 + |t|) d+1 dt. (9.23) By (9.20), if s -θt ∈ (4Q 0,0 ) c , we have |D γ η µ,l (s -θt)| 2 2 -µ(2L+2+d) |s -θt| -2d-2L-2-2|γ| 1 R d |a µ,l (r)| 2 dr.
Therefore, using the Cauchy-Schwarz inequality again, we have

1 0 ε -2α |Φ ε * η µ,l | 2 dε ε 1 2 1 2 -µ(L+1+ d 2 ) 1 0 ε 2N -d+2-2α dε ε 1 2 (2Q 0,0 ) c |s | -d-L-N -2 ds R d (1 + |t|) -d-1 dt • R d |Φ(t )| 2 |t | 2N +2 (1 + |t |) d+1 dt • τ R d |a µ,l (r)| 2 dr 1 2 2 -µ(L+1+ d 2 ) τ R d |a µ,l (t)| 2 dt 1 2 2 -µ(L+1+ d 2 +α) . (9.24)
It remains to estimate the L 1 -norm of Φ 0 * η µ,l , where Φ 0 does not have the moment cancellation. Since supp η µ,l ⊂ (4Q 0,0 ) c and by the support assumption of Φ 0 , we have supp Φ 0 * η µ,l ⊂ {s ∈ R d : |s| ≥ 1 2 }. By Lemma 9.11 and the fact that |Φ 0 (s)| (1+|s|) -d-R for any R ∈ N, we have

|Φ 0 * η µ,l (s)| 2 = R d Φ 0 (s -t)η µ,l (t)dt 2 ≤ |t|≥max{ |s| 2 ,1} Φ 0 (s -t)η µ,l (t)dt 2 + 1≤|t|< |s| 2 Φ 0 (s -t)η µ,l (t)dt 2 ≤ |t|≥max{ |s| 2 ,1} (1 + 2 µ |t|) -2d-2R |Φ 0 (s -t)| 2 dt • R d (1 + 2 µ |t|) 2d+2R |η µ,l (t)| 2 dt + 1≤|t|< |s| 2 (1 + 2 µ |t|) -2d-2R |Φ 0 (s -t)| 2 dt • R d (1 + 2 µ |t|) 2d+2R |η µ,l (t)| 2 dt R d |Φ 0 (t)| 2 dt (1 + 2 µ |s|) -2d-2R R d (1 + 2 µ |t|) 2d+2R |η µ,l (t)| 2 dt + |t|≥1 (1 + 2 µ |t|) -2d-2R dt (1 + |s|) -2d-2R R d (1 + 2 µ |t|) 2d+2R |η µ,l (t)| 2 dt (1 + 2 µ |s|) -2d-2R + 2 -2µ(d+R) (1 + |s|) -2d-2R R d (1 + 2 µ |t|) 2d+2R |η µ,l (t)| 2 dt.
Then we can use (9.17) to get, for any R ∈ N,

Φ 0 * η µ,l 1 |s|≥ 1 2 (1 + 2 µ |s|) -d-R ds + 2 -µ(d+R) |s|≥ 1 2 (1 + |s|) -d-R ds • τ ( R d (1 + 2 µ |t|) 2d+2R |η µ,l (t)| 2 dt) 1 2 2 -µ(d+R+α) .
Combining the estimates above, we get that, there exists ι > 0 such that

T c σ a µ,l F α,c 1 = η µ,l F α,c 1 2 -µ( d 2 +ι) ,
which completes the proof.

Since every (α, Q k,m )-atom is a linear combination of subatoms, the above lemma helps us to estimate the image of (α, Q k,m )-atom under T c σ .

Corollary 9.13. Let σ ∈ S 0 1,δ and T c σ be the corresponding pseudo-differential operator.

Assume that α ∈ R, K ∈ N satisfy K > d 2 and K > α + d. If the s-support of σ is in (2 -k m + 6Q 0,0 ) c , then for any (α, Q k,m )-atom g,we have T c σ g F α,c 1 1.
Proof. For any (α, Q k,m )-atom g, it admits the form

g = (µ,l)≤(k,m) d µ,l a µ,l with (µ,l)≤(k,m) |d µ,l | 2 ≤ |Q k,m | -1 = 2 kd .
By the support assumption of σ, σ(s, ξ) = 0 if s ∈ 2 -µ l + 4Q 0,0 ⊂ 2 -k m + 6Q 0,0 . Then, we can apply the previous lemma to every a µ,l with (µ, l) ≤ (k, m). The result is

T c σ a µ,l F α,c 1 2 -µ( d 2 +ι) with ι > 0.
Applying the Cauchy-Schwarz inequality, we get

T c σ g F α,c 1 ≤ (µ,l)≤(k,m) |d µ,l | • T c σ a µ,l F α,c 1 ≤ (µ,l)≤(k,m) |d µ,l | • 2 -µ( d 2 +ι) ( (µ,l)≤(k,m) |d µ,l | 2 ) 1 2 ( (µ,l)≤(k,m) 2 -µ(d+2ι) ) 1 2 ≤ ( (µ,l) |d µ,l | 2 ) 1 2 ( µ≥k |2Q k,m | |Q µ,l | • 2 -µ(d+2ι) ) 1 2 |Q k,m | -1 2 • 2 -kd 2 = 1. (9.25)
Thus, the assertion is proved.

Likewise, we can estimate the image of (α, 1)-atom under the pseudo-differential operator T c σ . Lemma 9.14. Let σ ∈ S 0 1,δ and T c σ be the corresponding pseudo-differential operator.

Assume that α ∈ R, K ∈ N satisfy K > d 2 and K > α + d. If the s-support of σ is in (k + 4Q 0,0 ) c for some k ∈ Z d , then for any (α, 1)-atom b such that supp b ⊂ 2Q 0,k , we have T c σ b F α,c 1 1. 
Proof. The proof of this lemma is very similar to that of Lemma 9.12; it suffices to apply (the proof of) Lemma 9.11 instead of Lemma 9.10. Proof. Let (X j ) j∈Z d be the smooth resolution of the unit in (7.13). We decompose T c σ b as

T c σ b = j∈Z d X j T c σ b = j∈Z d T c σ j b,
where σ j = X j (s)σ(s, ξ) ∈ S 0 1,δ uniformly. Suppose that b is supported in 2Q 0,k with k ∈ Z d . We split the above summation into two parts:

T c σ b = j∈k+6Q 0,0 X j T c σ b + j / ∈k+6Q 0,0 X j T c σ b. (9.26)
Applying Lemma 9.11 with M = -d to the symbol X j (s)σ(s, ξ), we get, for any j ∈ Z d ,

τ j+2Q 0,0 |D γ (X j T c σ b(s))| 2 ds 1 2 1, ∀|γ| 1 ≤ [α] + 1.
Thus, X j T c σ b is a bounded multiple of an (α, 1)-atom. So the first term on the right hand side of (9.26) is a finite sum of (α, 1)-atoms, and thus has bounded F α,c 1 -norm. Now we deal with the second term. Note that the s-support of the symbol j / ∈k+6Q 0,0 X j (s)σ(s, ξ) is in (k + 4Q 0,0 ) c . Then, it suffices to apply Lemma 9.14 to this symbol, so that j / ∈k+6Q 0,0

X j T c σ b F α,c 1 1.
The proof is complete.

and

S c σ k (S c σ j ) * B(L 2 (N )) ≤ C N (1 + |k -j|) -2N ,
where the constant C N is independent of k = (k, k ) and j = (j, j ). Armed with this claim, we can then apply the Cotlar-Stein almost orthogonality lemma stated previously to the operators (S c σ k ) k with c(j) = (1 + |j|) -N , N > 2d. Then, we will have

S c σ B(L 2 (N )) = k∈Z d ×Z d S c σ k B(L 2 (N )) ≤ C.
Now we prove the claim. Note that for any f ∈ L 2 (N ),

(S c σ k ) * S c σ j (f )(ξ) = R d σ k,j (ξ, η)f (η)dη, where σ k,j (ξ, η) = R d σ * k (s, ξ)σ j (s, η)e 2πis•(η-ξ) ds. (9.27)
By the definition of σ k , we see that if k -j / ∈ 2Q 0,0 (recalling that Q 0,0 is the unit cube centered at the origin), σ k and σ j have disjoint s-support, so

σ * k σ j = 0.
When k -j ∈ 2Q 0,0 , using the identity

(1 -∆ s ) N e 2πis•(η-ξ) = (1 + 4π 2 |η -ξ| 2 ) N e 2πis•(η-ξ) ,
we integrate (9.27) by parts, which gives

σ k,j (ξ, η) M ≤ C N X k (ξ)X j (η)(1 + |ξ -η|) -2N . Whence, max R d σ k,j (ξ, η) M dξ, R d σ k,j (ξ, η) M dη ≤ C N (1 + |k -j|) -2N . ( 9.28) 
For any f ∈ L 2 (N ), there exists g ∈ L 2 (N ) with norm one such that

(S c σ k ) * S c σ j f L 2 (N ) = τ R d R d σ k,j (ξ, η)f (η) dη g * (ξ) dξ .
Applying the Hölder inequality and (9.28), we get τ

R d R d σ k,j (ξ, η)f (η) dη g * (ξ) dξ ≤ τ R d R d σ k,j (ξ, η) M |f (η)| 2 dηdξ 1 2 τ R d R d σ k,j (ξ, η) M |g(ξ)| 2 dξdη 1 2 ≤ C N (1 + |k -j|) -2N f L 2 (N ) . Thus, (S c σ k ) * S c σ j B(L 2 (N )) ≤ C N (1 + |k -j|) -2N
. On the other hand, a similar argument also shows that

S c σ k (S c σ j ) * B(L 2 (N )) ≤ C N (1 + |k -j|) -2N ,
which proves the claim.

A weak form of Cotlar-Stein almost orthogonality lemma also plays a crucial role. As before, we suppose that j c(j) = C < ∞. This time we assume that the T j 's satisfy:

sup j T j B(H) ≤ C (9.29)
and the following conditions hold for j = k:

T j T * k B(H) = 0 and T * j T k B(H) ≤ c(j)c(k). (9.30)
Then we have

j T j B(H) ≤ √ 2C. Lemma 9.18. Let σ ∈ S 0 δ,δ with 0 ≤ δ < 1. Then T c σ is bounded on L 2 (N ).
Proof. To prove this lemma, we apply Cotlar's lemma as stated above. Let ( ϕ j ) j≥0 be the resolution of the unit defined in (1.3). We can decompose T c σ as follows:

T c σ = ∞ j=0 T c σ j = j even T c σ j + j odd T c σ j ,
where σ j (s, ξ) = ϕ j (ξ)σ(s, ξ). Note that the symbols in either odd or even summand have disjoint ξ-supports. We will only treat the odd part, since the other part can be dealt with in a similar way. It is clear that

T c σ j (T c σ k ) * = 0 if j = k, since T c σ j (T c σ k ) * = T c σ M ϕ j M ϕ k (T c σ )
* and ϕ j , ϕ j have disjoint supports. Now let us estimate the second inequality in (9.30), i.e. the norm of (T

c σ k ) * T c σ j . Since (T c σ k ) * (f )(s) = R d R d σ * k (t, ξ)f (t)e 2πiξ•(s-t) dtdξ,
and

T c σ j (f )(t) = R d R d σ j (t, η)f (r)e 2πiη•(t-r) drdη. Then we have (T c σ k ) * T c σ j (f )(s) = R d K(s, r)f (r)dr, with K(s, r) = R d R d R d σ * k (t, ξ)σ j (t, η)e 2πi[η•(t-r)+ξ•(s-t)] dtdηdξ. Writing e 2πi(η-ξ)•t = (1 -∆ t ) N (1 + 4π 2 |ξ -η| 2 ) N e 2πi(η-ξ)•t , e 2πi(t-r)•η = (1 -∆ η ) N (1 + 4π 2 |t -r| 2 ) N e 2πi(t-r)•η , and e 2πi(s-t)•ξ = (1 -∆ ξ ) N (1 + 4π 2 |s -t| 2 ) N e 2πi(s-t)•ξ ,
we use the integration by parts with respect to the variables t, ξ and η. By standard calculation (see [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]Theorem 2,p. 286] for more details), we get

K(s, r) M 4 max(k,j)((δ-1)N +d) Q(s -t)Q(t -r)dt,
Proof. Since 0 ≤ δ < 1, Proposition 9.9 tells us that the adjoint (T c σ ) * of T c σ is still in the class S 0 1,δ . Thus, by duality, it is enough to prove the boundedness of (T c σ ) * on L ∞ M; L c 2 (R d ) . Indeed, there exists u ∈ L 2 (M) with norm one such that

R d |(T c σ ) * (f )(s)| 2 ds 1 2 M = R d |(T c σ ) * (f )(s)| 2 u, u L 2 (M) ds 1 2 = R d (T c σ ) * (f u)(s) 2 L 2 (M) ds 1 2 .
Then, applying Corollary 9.19 to (T c σ ) * , we get

R d (T c σ ) * (f u)(s) 2 L 2 (M) ds 1 2 R d f (s)u 2 L 2 (M) ds 1 2 ≤ R d |f (s)| 2 ds 1 2 M .
Thus, we conclude that

T c σ is bounded on L 1 (M; L c 2 (R d )).
Now we are ready to prove the main theorem in this section.

Proof of Theorem 9.16.

Step 1. We begin with the special case p = 1 and α = 0. Since

F 0,c 1 (R d , M) = h c 1 (R d , M) with equivalent norms, the assertion is equivalent to saying that when σ ∈ S 0 1,δ with 0 ≤ δ < 1, T c σ is bounded on h c 1 (R d , M)
. By the atomic decomposition introduced in Theorem 7.6, it suffices to prove that, for any atom b based on a cube with side length 1 and any atom g based on a cube with side length less than 1, we have Thus, it remains to consider the atom g based on cube Q with |Q| < 1. Without loss of generality, we may assume that Q is centered at the origin. Let (X j ) j∈Z d be the resolution of the unit defined in (7.13) and

T c σ b h c 1 1 and T c σ g h c
X Q j = X j (l(Q) -1 •) for j ∈ Z d . Then, we have supp X Q j ⊂ l(Q)j + 2Q. Now, set h 1 = j∈4Q 0,0 X Q j and h 2 = j / ∈4Q 0,0 X Q j . By the support assumption of X Q j , it is obvious that supp h 1 ⊂ 6Q, supp h 2 ⊂ (4Q) c . Moreover, h 1 (s) + h 2 (s) = 1 , ∀ s ∈ R d .
Now we decompose σ into two parts:

σ(s, ξ) = h 1 (s)σ(s, ξ) + h 2 (s)σ(s, ξ) def = σ 1 (s, ξ) + σ 2 (s, ξ).
Note that σ 1 and σ 2 are still in the class S 0 1,δ and

T c σ g = T c σ 1 g + T c σ 2 g.
Firstly, we deal with the symbol σ 1 which has compact s-support. We consider the adjoint operator (T c σ ) * of T c σ . Since δ < 1, by Proposition 9.9, there exists σ ∈ S 0 1,δ such that

(T c σ ) * = T c σ .
If we take ζ j (s) = σ 1 j (s, 0) * = X Q j (s) σ(s, 0) * for j ∈ 4Q 0,0 , then ζ j is an M-valued infinitely differentiable function with all derivatives belonging to L ∞ (N ). Therefore, we have .32) This indicates that, except for the vanishing mean property, m c ζ j g coincides with a bounded multiple of an h c 1 -atom defined in Definition 7.1. Now let us set σ 1 j (s, ξ) = X Q j (s)σ(s, ξ) for j ∈ 4Q 0,0 and set T c j = T c

supp m c ζ j g ⊂ l(Q)j + 2Q, and τ R d |m c ζ j g(s)| 2 ds 1 2 |Q| -1 2 . ( 9 
1. Thus, T c σ is bounded on h c 1 (R d , M).

Step 3. For the case where p = 1 and α = 0, we use the lifting property of Triebel-Lizorkin spaces stated in Proposition 8.5. By the property of the composition of pseudodifferential operators stated in Proposition 9.8, we see that

T c σ α = J α T c σ J -α is still a pseudo-differential operator with symbol σ α in S 0 1,δ . Then for f ∈ F α,c 1 (R d , M), we have T c σ f F α,c 1 = J -α • T c σ α • J α f F α,c 1 ≈ T c σ α • J α f h c 1 J α f h c 1 ≈ f F α,c 1 . Hence, T c σ is bounded on F α,c 1 (R d , M).
Step 4. Finally, we deal with the case 1 < p ≤ ∞. By the previous steps, (T

c σ ) * = T c σ is bounded on F -α,c 1 (R d , M) with α ∈ R, then it is clear that T c σ is bounded on F α,c ∞ (R d , M). Given 1 < p < ∞ and α ∈ R, by interpolation F α,c ∞ (R d , M), F α,c 1 (R d , M) 1 p = F α,c p (R d , M),
we get the boundedness of T c σ on F α,c p (R d , M).

Remark 9.21. A special case of Theorem 9.16 is that if the symbol is scalar-valued, then R d σ(s, ξ) f (ξ)e 2πis•ξ dξ = R d f (ξ)σ(s, ξ)e 2πis•ξ dξ. In this case, T c σ is also bounded on h r p (R d , M) for any 1 ≤ p ≤ ∞. By Proposition 6.15, we deduce that T c σ is bounded on L p (N ).

Corollary 9.22. Let n, α ∈ R, 0 ≤ δ < 1 and σ ∈ S n 1,δ . Then T c σ is bounded from F α,c p (R d , M) to F α-n,c p (R d , M) for any 1 ≤ p ≤ ∞.
Proof. Recall that the Bessel potential of order n maps F α,c p isomorphically onto F α-n,c p . If σ ∈ S 0 1,δ , by Proposition 9.8, we see that

σ(s, ξ)(1 + |ξ| 2 ) n 2 ∈ S n 1,δ ,
and its corresponding pseudo-differential operator is given by T c σ • J n . Then the assertion follows obviously from Theorem 9.16.

Forbidden symbols

The purpose of this section is to extend the boundedness results obtained in the previous one to the pseudo-differential operators with forbidden symbols, i.e. the symbols in the class S n 1,1 . There are two main differences between these operators and those with symbols in S n 1,δ with 0 ≤ δ < 1. The first one is that when σ ∈ S 0 1,1 , T c σ is not necessarily bounded on L 2 (N ). The second one is that S 0 1,1 is not closed under the products and adjoints. Fortunately, if the function spaces have a positive degree of smoothness, the operators with symbols in S 0 1,1 will be bounded on them. In the classical theory, the regularity of operators with forbidden symbols on Sobolev spaces H α p (R d ), Besov spaces B α pq (R d ) and Triebel Lizorkin spaces F α pq (R d ) with α > 0 has been widely investigated, see [START_REF] Meyer | Régularité des solutions des équations aux dérivées partielles non linéaires[END_REF][START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF][START_REF] Bourdaud | Une algèbre maximale d'opérateurs pseudo-différentiels de type 1,1. Séminaire sur les Équations aux Dérivées Partielles 1987-1988[END_REF][START_REF] Runst | Pseudodifferential operators of the "exotic" class L 0 1,1 in spaces of Besov and Triebel-Lizorkin type[END_REF][START_REF] Torres | Continuity properties of pseudodifferential operators of type 1,1[END_REF].

Our first result in this section concerns the regularity of pseudo-differential operators with forbidden symbols on the operator-valued Sobolev spaces. Let us give some background on these function spaces.

For α ∈ R, 1 ≤ p ≤ ∞ and a Banach space X, the potential Sobolev space H α p (R d ; X) is the space of all distributions in S (R d ; X) which have finite Sobolev norm f H α p = J α f Lp(R d ;X) . It is well known that the potential Sobolev spaces are closely related to Besov spaces. In our case, we still use the resolution of the unit (ϕ k ) k≥0 introduced in (1.3) to define Besov spaces. Given α ∈ R d and 1 ≤ p, q ≤ ∞, the Besov space B α p,q (R d ; X) is defined to be the subspace of S (R d ; X) consisting of all f such that

f B α p,q = k≥0 2 qkα ϕ k * f q Lp(R d ;X) 1 q < ∞.
The above vector-valued Besov spaces B α p,q (R d ; X) have been studied by many authors, see for instance [START_REF] Amann | Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications[END_REF]. Instead of the above defined Banach-valued spaces, we prefer to study the operator-valued spaces H α p (R d ; L p (M)) and B α p,q (R d ; L p (M)). Obviously, the main difference is that the Banach space X varies for different p. The following inclusions are easy to check for every 1 ≤ p ≤ ∞, Besov spaces are stable under real interpolation. More precisely, if α 0 , α 1 ∈ R, α 0 = α 1 and 0 < θ < 1, then B α 0 p,q 0 (R d ; L p (M)), B α 1 p,q 1 (R d ; L p (M)) θ,q = B α p,q (R d ; L p (M)), (9.34) for α = (1 -θ)α 0 + θα 1 , p, q, q 0 , q 1 ∈ [1, ∞]. This result can be deduced from its Banachvalued counterpart in [START_REF] Amann | Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications[END_REF]; similar results in operator-valued setting can be found in [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF].

The following lemma states the regularity of pseudo-differential operators with forbidden symbols on H α 2 (R d ; L 2 (M)) for α > 0. Lemma 9.23. Let σ ∈ S 0 1,1 . Then T c σ is bounded on H α 2 (R d ; L 2 (M)) for any α > 0. Proof. Let (ϕ j ) j≥0 be the resolution of the unit satisfying (1.3). It is straightforward to show that H α 2 (R d ; L 2 (M)) admits an equivalent norm:

f H α 2 (R d ;L 2 (M)) ≈ j≥0 2 2jα ϕ j * f 2 L 2 (N ) 1 2 = f B α 2,2 (R d ;L 2 (M)) . (9.35)
Let σ k with k ∈ N 0 be the dyadic decomposition of σ given in (9.9). By the support assumptions of ϕ and ϕ 0 , we have

T c σ k (f ) = T c σ k (f k ),
where f k = (ϕ k-1 + ϕ k + ϕ k+1 ) * f for k ≥ 1, and f 0 = (ϕ 0 + ϕ 1 ) * f . Applying Lemma 9.7 to K k with M = 0, we get 

D γ s T c σ k (f ) 2 L 2 (N ) = τ R d D γ s T c σ k (f )(s)g * k (s)ds 2 = τ R d R d D γ s K k (s, s -t)f k (t)dt g * k (s) ds 2 ≤ τ R d D γ s K k (s, s -t) M |g k (s)| 2 dtds • τ R d D γ s K k (s, s -t) M |f k (t)| 2 dsdt 2 2k|γ| 1 • f k 2 L 2 (N ) .
(9.36)

Taking γ = 0, the above calculation implies that

T c σ (f ) L 2 (N ) ≤ k≥0 T c σ k (f ) L 2 (N ) k≥0 f k L 2 (N ) f B 0 2,1 , (9.37) 
which says that T c σ is bounded from B 0 2,1 (R d ; L 2 (M)) to L 2 (N ). On the other hand, if we take a 0 = ϕ 0 , a j (ξ) = (1 -ϕ 0 (ξ)) for any j, and if |γ| 1 < l, σ j γ = 0 if and only if j = 0 and j = 1. If j ≤ k + 1, by the Plancherel formula and (9.36), we have

2 jα ϕ j * T c σ k (f ) L 2 (N ) 2 jα T c σ k (f ) L 2 (N ) 2 jα f k L 2 (N ) 2 kα f k L 2 (N ) .
If j ≥ k + 2, adapting the proof of (9.36) with σ j γ in place of σ k , we deduce that

T c σ j γ (D γ s T c σ k (f )) L 2 (N ) ≤ C γ 2 -j|γ| 1 D γ s T c σ k (f ) L 2 (N ) . (9.39)
For any |γ| 1 < l, by the previous observation, σ j γ = 0. Therefore, estimates (9.36), (9.38) and (9.39) imply that

ϕ j * T c σ k (f ) L 2 (N ) = |γ| 1 =l T c σ j γ (D γ s T c σ k (f )) L 2 (N ) |γ| 1 =l 2 -jl D γ s T c σ k (f ) L 2 (N ) |γ| 1 =l 2 (k-j)l f k L 2 (N ) .
Thus, if we take l to be the smallest integer larger than α, we have

2 jα ϕ j * T c σ k (f ) L 2 (N ) 2 (j-k)(α-l) 2 kα f k L 2 (N ) ≤ 2 kα f k L 2 (N ) .
Combining the above estimate for j ≥ k + 2 and that for j ≤ k + 1, we get sup j∈N 0

2 jα ϕ j * T c σ k (f ) L 2 (N ) 2 kα f k L 2 (N ) , whence, T c σ k (f ) B α 2,∞ 2 kα f k L 2 (N ) .
Then by the triangle inequality, we have

T c σ (f ) B α 2,∞ ≤ k≥0 T c σ k (f ) B α 2,∞ k≥0 
2 kα f k L 2 (N ) f B α 2,1 , (9.40) 
which says that T c σ is bounded from B α 2,1 (R d ; L 2 (M)) to B α 2,∞ (R d ; L 2 (M)). Applying (9.37), (9.40) and the real interpolation (9.34) with p = 2, q = 2 and α 0 = 0, α 1 = α, we obtain the following boundedness:

T c σ (f ) B β 2,2 f B β 2,2
, ∀β > 0.

Finally, (9.35) together with the above inequality yields the desired assertion.

Remark 9.24. Even though it is not the main subject of this paper, the regularity of pseudo-differential operators on operator-valued Besov spaces is already obtained in the above proof. Let us record it specifically in the below. Let 1 ≤ p, q ≤ ∞.

(i) If σ ∈ S 0 1,δ for some 0 ≤ δ ≤ 1, then T c σ is bounded from B 0 p,1 (R d ; L p (M)) to L p (N ), and bounded on B α p,q (R d ; L p (M)) for any α > 0.

(ii) If σ ∈ S 0 1,δ with 0 ≤ δ < 1, then T c σ is bounded on B α p,q (R d ; L p (M)) for any α ∈ R.

Indeed, the argument in (9.36) still works for all 1 ≤ p ≤ ∞. Then we get the boundedness of T c σ from B 0 p,1 (R d ; L p (M)) to L p (N ) as in (9.37). Likewise, we can deduce the L p version of (9.40), i.e. the boundedness from B α p,1 to B α p,∞ for α > 0. Thus, for α > 0, the boundedness of T c σ on B α p,q (R d ; L p (M)) is ensured by interpolation. If δ < 1, by Proposition 9.8 and the lifting property of Besov spaces, we get the boundedness for general α ∈ R. Finally, we note that, different from the Triebel-Lizorkin spaces, the above assertions hold for T r σ as well.

Since for σ ∈ S 0 1,1 , T c σ is not necessarily bounded on L 2 (N ), we cannot expect its boundedness on L 1 M; L c 2 (R d ) . However, by Lemma 9. . By approximation, we may assume that A is invertible. Thus, f admits the decomposition

f = f A -1 A, where A L 1 (M) = f L 1 M;H α 2 (R d ) c and f A -1 L∞ M;H α 2 (R d ) c = 1.
From this decomposition, we establish the L 1 M; H α 2 (R d ) c -norm of T c σ (f ) as follows:

T c σ (f ) L 1 M;H α 2 (R d ) c = T c σ (f A -1 )A L 1 M;H α 2 (R d ) c ≤ T c σ (f A -1 ) L∞ M;H α 2 (R d ) c A L 1 (M) f A -1 L∞ M;H α 2 (R d ) c A L 1 (M) = f L 1 M;H α 2 (R d ) c , which implies that T c σ is bounded on L 1 M; H α 2 (R d ) c .
Based on the previous lemma and the atomic decomposition obtained in Theorem 8.21, we are able to study the boundedness of pseudo-differential operators with forbidden symbols on the operator-valued Triebel-Lizorkin spaces F α,c 1 (R d , M).

Theorem 9.26. Let σ ∈ S 0 1,1 and α > 0. Then T c σ is bounded on F α,c 1 (R d , M).

Proof. Let f ∈ F α,c 1 (R d , M). We fix K, L to be two integers such that K > α + d and L > d. By the atomic decomposition in Theorem 8.21, f can be written as

f = ∞ j=1 (µ j b j + λ j g j ),
where the b j 's are (α, 1)-atoms and the g j 's are (α, Q)-atoms, µ j and λ j are complex numbers such that

∞ j=1 (|µ j | + |λ j |) ≈ f F α,c
1 .

In order to prove the assertion, by the above atomic decomposition, it suffices to prove that T c σ b F α,c Thus it remains to consider T c σ g. This is the main part of the proof which will be divided into several steps for clarity.

Step 1. By translation, we may assume that the supporting cube Q of the atom g is centered at the origin. We begin with a split of the symbol σ: Let h 1 , h 2 be two nonnegative infinitely differentiable functions on R d such that supp h 1 ⊂ (Q) c , supp h 2 ⊂ 2Q and

1 = h 1 (ξ) + h 2 (ξ), ∀ ξ ∈ R d .
For any (s, ξ) ∈ R d × R d , we write σ(s, ξ) = h 1 (ξ)σ(s, ξ) + h 2 (ξ)σ(s, ξ) def = σ 1 (s, ξ) + σ 2 (s, ξ).

It is clear that σ 1 and σ 2 are still two symbols in S 0 1,1 , and

T c σ g F α,c 1 ≤ T c σ 1 g F α,c 1 + T c σ 2 g F α,c
1 . First, we consider the case where the cube Q is of side length one, i.e. Q = Q 0,0 , and deal with the term T c σ 1 g F α,c 1 in the above split. Let (X j ) j∈Z d be the resolution of the unit defined in (7.13) and X j = X j (2•) for j ∈ Z d . We write where σ j 1 (s, ξ) = σ 1 (s, ξ) X j (s). We claim that for every j ∈ Z d , T c σ j 1 g is the bounded multiple of an (α, Q 0, j 2 )-atom (with the convention Q 0, j 2 = j 2 + Q 0,0 ). No loss of generality, we prove the claim just for j = 0. Applying Lemma 9.25 to the symbol σ 0 1 , we get τ

R d |J α T c σ 0 1 g(s)| 2 ds 1 2 τ R d |J α g(s)| 2 ds 1 2 |Q 0,0 | -1 2 .
Thus, in order to prove the claim, it remains to show that T c σ 0 1 g can be written as the linear combination of subatoms and the coefficients satisfy a certain condition. By Definition 8.18, g admits the following representation: g = (µ,l)≤(0,0) d µ,l a µ,l , (9.43) where the a µ,l 's are (α, Q µ,l )-subatoms and the coefficients d µ,l 's are complex numbers with Since α > 0, no moment cancellation for subatoms is required. Thus, we have proved that the G µ,m 's are bounded multiple of (α, Q µ,m )-subatoms, whence the claim. Therefore, G 1 in (9.42) is the finite sum of (α, Q 0,j )-atoms, which yields G 1 F α,c 1 1 by Theorem 8.21.

The term H 1 in (9.42) is much easier to handle. Observe that H 1 corresponds to the symbol σ(s, ξ) j / ∈8Q 0,0 X (s), whose s-support is in (6Q 0,0 ) c . Thus, we apply Corollary 9.13 directly to get that H 1 F α,c 1 1.

Step 2. Let us consider now the case where the supporting cube Q of g has side length less than one. As above, we may still assume that Q is centered at the origin. Let g be an (α, Q k,0 )-atom with k ∈ N. Then g is given by g = Since the ξ-support of σ 1 is away from the origin, we have

D γ s D β ξ σ 1,k (s, ξ) M ≤ C γ,β |ξ| |γ| 1 -|β| 1 ≈ C γ,β (1 + |ξ|) |γ| 1 -|β| 1 , ∀k ∈ N.
Thus, σ 1,k is still a symbol in the class S 0 1,1 . Then, applying the result for (α, Q 0,0 )-atoms obtained in Step 1 to the symbol σ 1,k , we get T c σ 1,k h F α,c 1 1. Moreover, since α > 0, we can apply the homogeneity argument stated after Corollary 8.11 to get

T c σ 1 g F α,c 1 T c σ 1,k h F α,c 1 1.
Step 3. It remains to deal with the symbol σ 2 . Note that σ 2 = h 2 (ξ)σ(s, ξ) with σ ∈ S 0 1,1 and supp h 2 ∈ 2Q. Then for δ < 1, say δ = 9 10 , we have σ 2 ∈ S 0 1,δ . Indeed, by definition, we have, for every s ∈ R, When studying the toroidal pseudo-differential operators T c σ on T d , especially its action on operator-valued Triebel-Lizorkin spaces on T d , a very useful tool is to extend the toroidal symbol to a symbol defined on T d × R d , which reduces the torus case to the Euclidean one. This allows us to use the arguments in the last section. The extension of scalar-valued toroidal symbol has been well studied in [START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF]. With some minor modifications, the arguments used in [START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF] can be adjusted to our operator-valued setting.

D γ s D β ξ σ 2 (s, ξ) M β 1 +β 2 =β D γ s D β 1 ξ σ(s, ξ) • D β 2 h 2 (ξ) M ≤ β 1 +β 2 =β C γ,β 1 (1 + |ξ|) |γ| 1 -|β 1 | 1 • |D β 2 h 2 (ξ)|.
The following lemma is taken from [START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF]. Denote by δ 0 (ξ) the Kronecker delta function at 0, i.e., δ 0 (0) = 1 and δ 0 (ξ) = 0 if ξ = 0. 

Applications to Quantum tori

We now apply the results of the previous section to the quantum case. To this end, we first recall the relevant definitions. 

U m = U m 1 1 • • • U m d d .
A polynomial in U is a finite sum

x = m∈Z d α m U m with α m ∈ C.
The involution algebra P θ of all such polynomials is dense in A θ . For any polynomial x as above, we define τ (x) = α 0 .

Then τ extends to a faithful tracial state τ on A θ . Let T d θ be the w * -closure of A θ in the GNS representation of τ . This is our d-dimensional quantum torus. The state τ extends to a normal faithful tracial state on T d θ that will be denoted again by τ . Note that if θ = 0, then T d θ = L ∞ (T d ) and τ coincides with the integral on T d against normalized Haar measure dz.

Any x ∈ L 1 (T d θ ) admits a formal Fourier series:

x ∼ m∈Z d

x(m)U m with x(m) = τ ((U m ) * x).

In [START_REF] Neuwirth | Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group[END_REF], a transference method has been introduced to overcome the full noncommutativity of quantum tori and to use methods of operator-valued harmonic analysis. Let N θ = L ∞ (T d )⊗T d θ , equipped with the tensor trace ν = dz⊗τ . For each z ∈ T d , define π z to be the isomorphism of T d θ determined by

π z (U m ) = z m U m = z m 1 1 • • • z m d d U m 1 1 • • • U m d d . ( 10.3) 
This isomorphism preserves the trace τ . Thus for every 1 ≤ p < ∞, π z (x) p = x p , ∀x ∈ L p (T d θ ).

The main points of the transference method are contained in the following lemma from [START_REF] Chen | Harmonic analysis on quantum tori[END_REF]. 

E(f )(z) = π z T d π w f (w) dw , z ∈ T d , f ∈ N θ .
Moreover, E extends to a contractive projection from L p (N θ ) onto L p ( T d θ ) for 1 ≤ p ≤ ∞.

2

  and supp ϕ 0 ⊂ {ξ ∈ R d : |ξ| ≤ 2} and that∞ k=0 ϕ k (ξ) = 1 ∀ ξ ∈ R d . Let 1 ≤ p < ∞ and α ∈ R. Denote by S R d ; L 1 (M) + M the L 1 (M) + M-valued tempered distribution on R d . Then the column inhomogeneous Triebel-Lizorkin space F α,c p (R d , M) is defined by F α,c p (R d , M) = {f ∈ S R d ; L 1 (M) + M : f F α,c p 2jα |ϕ j * f (s)| 2 ) 1 2

  recalling that the Hilbert space R d is defined by (1.8)). Then the Poisson integral of f is well-defined and takes values in L 1 (M) + M. Now we define the local analogue of the Lusin area square function of f by

  is the intersection of the cone {(t, ε) ∈ R d+1 + : |t| < ε} and the strip S ⊂ R d+1 + defined by:

Theorem 4 . 4 .

 44 Let 1 < p < ∞. We have X, Y 1 p = L p (N ) with equivalent norms, where

  Now we show that ζ = (ζ j ) j≥0 satisfies (5.7) with ζ instead of φ. Indeed, by the support assumption of ϕ, the sequence ζ(2 k •)ϕ = ζ j (2 k •)ϕ j≥0 has at most five nonzero terms of indices j with k -2 ≤ j ≤ k + 2. Thus for any k ∈ N 0 ,

Corollary 6 . 13 .Theorem 6 . 14 .

 613614 Let 1 ≤ p < ∞ and p = 2. h c p (R d , M) and H c p (R d , M) are not equivalent. Although h c p (R d , M) and H c p (R d , M) do not coincide when p = 2, for those functions whose Fourier transforms vanish at the origin, their h c p -norms and H c p -norms are still equivalent. Let φ ∈ S such that R d φ(s)ds = 1.

Lemma 7 . 5 .

 75 M) * with equivalent norms. Finally, by the density ofT c 1,at (R d , M) in T c 1 (R d , M), we get the desired equivalence.The following Lemma shows the connection between T c p (R d , M) and h c p (R d , M). The proof is modelled on the classical argument of[START_REF] Coifman | Some new function spaces and their applications to Harmonic analysis[END_REF] Theorem 6]. Fix a Schwartz function Φ on R d satisfying:

2 1 2 1 .

 1 Now define a new sequence ζ = (ζ j ) j≥0 by setting ζ j = 2 jα I -α φ j ρ j for j ≥ 1 and ζ 0 = J -α φ 0 ρ 0 . Then ζj * g = 2 jα φj * ρj * I -α g and ζ0 * g = φ0 * ρ0 * f.

Proposition 8 . 4 .

 84 Let 1 ≤ p < ∞ and α ∈ R. Then (1) F α,c p (R d , M) is a Banach space.

Theorem 8 . 21 .

 821 2.3], but many techniques used are different from those of [68, Theorem 3.2.3] due to the noncommutativity. Let α ∈ R and K, L be two integers fixed as in Definition 8.18. Then any

1 . 1 b h c 1 1.

 111 Let b be an (α, 1)-atom in F α,c 1 (R d , M). We observe that b is also an atom in h c 1 (R d , M). For α ≤ 0, by Proposition 8.4, h c1 ⊂ F α,c 1 . Then, we have b F α,c If α > 0, by Proposition 8.5, we have b

Corollary 8 . 22 .

 822 Let α ∈ R and let k ∈ N be sufficiently large and h

Definition 9 . 1 .

 91 Let σ ∈ S n ρ,δ . For any function f ∈ S(R d ; X), the pseudo-differential operator T σ is a mapping f → T σ f given by

Corollary 9 . 15 .

 915 Let σ ∈ S 0 1,δ and T c σ be the corresponding pseudo-differential operator. Given α ∈ R, K ∈ N such that K > d 2 and K > α + d, then for any (α, 1)-atom b, we have T c σ b F α,c 1 1.

B α p, 1 (

 1 R d ; L p (M)) ⊂ H α p (R d ; L p (M)) ⊂ B α p,∞ (R d ; L p (M)).

ξ j |ξ| 2 , then we get 1 = 1 1, 1 .

 2111 a 0 (ξ) + d j=1 a j (ξ)ξ j , ∀ ξ ∈ R d . ξ)ξ j ) l = |γ| 1 ≤l σ γ (ξ)ξ γ , ∀ l ∈ N 0 , ∀ ξ ∈ R d ,where the σ γ (ξ)'s are symbols in S The above identity allows us to decompose the term ϕ j * T c σ k (f ) in the following way:ϕ j * T c σ k (f ) = |γ| 1 ≤l T c σγ (ϕ j * D γ s T c σ k (f )) = |γ| 1 ≤l T c σ j γ (D γ s T c σ k (f )),(9.38)where σ j γ = σ γ ϕ j . Note that the symbol σ j γ ∈ S

  α, 1)-atom b and (α, Q)-atom g. We have shown in Corollary 9.15 that

= G 1 + H 1 ,

 11 

1 a 1 . 1 a 2 l( 1 + 2 µ 1 a µ,l (s)| 2 ds 1 2 .( 9 . 47 ) 2 < 2 |Q µ,m | α d - |γ| 1 d

 11121212947221 (µ,l)≤(0,0) |d µ,l | 2 ≤ 1. Then we haveT c σ 0 1 g = (µ,l)≤(0,0) d µ,l T c σ 0 µ,l . Given µ ∈ N 0 , let (X µ,m ) m∈Z d be a sequence of infinitely differentiable functions on R d such that 1 = m∈Z d X µ,m (s), ∀ s ∈ R d , (9.44)and each X µ,0 is nonnegative, supported in 2Q µ,0 and X µ,m (s) = X µ,0 (s -2 -µ m). It is the 2 -µ -dilated version of the resolution of the unit in(7.13). We decompose T only m's that contribute to the above sum m are those m ∈ Z d such that 2Q µ,m ∩ Q 0,0 = ∅, so Q µ,m ⊂ 2Q 0,0 . Thus, we obtain the decomposition m)≤(0,0)D µ,m G µ,m ,(9.46)whereD µ,m = l |d µ,l | 2 (1 + |m -l|) -(d+1)Now we show that the G µ,m 's are bounded multiple of (α, Q µ,m )-subatoms. Firstly, we have supp G µ,m ⊂ supp X µ,m ⊂ 2Q µ,m . Secondly, by the Cauchy-Schwarz inequality, µ,l (s)| 2 ds1 |d µ,l | 2 (1 + |m -l|) -(d+1) (s -2 -µ l)) d+M |T c σ 0If we take M = 2L + 1, since L > d, we have 1-M -d. Applying Lemma 9.10, we get τ ( R d |G µ,m (s)| 2 ds) derivative estimates in Lemma 9.10 ensure that τ ( |D γ G µ,m (s)| 2 ds) 1 , ∀|γ| 1 ≤ [α] + 1.

  (µ,l)≤(k,0) d µ,l a µ,l with(µ,l) |d µ,l | 2 ≤ |Q k,0 | -1 = 2 kd .We normalize g ash = 2 k(α-d) g(2 -k •) = (µ,l)≤(k,0) 2 -kd 2 d µ,l 2 k(α-d 2 ) a µ,l (2 -k •) = (µ,l)≤(k,0) d µ,l a µ,l , where a µ,l = 2 k(α-d 2 ) a µ,l (2 -k •) and d µ,l = 2 -kd 2 d µ,l . Then it is easy to see that each a µ,l is an (α, Q µ-k,l )-subatom and h is an (α, Q 0,0 )-atom. Define σ 1,k (s, ξ) = σ 1 (2 -k s, 2 k ξ), then we have T c σ 1 g(s) = R d σ 1 (s, ξ) g(ξ)e 2πis•ξ dξ = 2 -kα R d σ 1 (s, ξ) h(2 -k ξ)e 2πis•ξ dξ = 2 k(d-α) R d σ 1,k (2 k s, ξ) h(ξ)e 2πi 2 k s•ξ dξ = 2 k(d-α) T c σ 1,k h(2 k s).

Definition 10 . 3 .

 103 Let σ ∈ S n ρ,δ (T d × Z d ).For any f ∈ S (T d ; L 1 (M)), we define the corresponding toroidal pseudo-differential operator as follows:T c σ f (s) = m∈Z d σ(s, m) f (m)e 2πis•m .

Lemma 10 . 4 .Lemma 10 . 5 . 1 ( 1 +Theorem 10 . 6 .

 10410511106 For each β ∈ N d 0 , there exists a function φ β ∈ S(R d ) and a function ζ ∈ S(R d ) such thatk∈Z d ζ(s + k) ≡ 1, ζ | Z d (ξ) = δ 0 (ξ) and D β ξ ( ζ)(ξ) = ∆ β ξ φ β (ξ), for any ξ ∈ R d .The following lemma is the operator-valued analogue of Theorem 4.5.3 in[START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF].Let 0 ≤ ρ, δ ≤ 1 and n ∈ R. A symbol σ ∈ S n ρ,δ (T d ×Z d ) is atoroidal symbol if and only if there exists an Euclidean symbolσ ∈ S n ρ,δ (T d × R d ) such that σ = σ | T d ×Z d .Proof. We first prove the "if" part. Let σ ∈ S n ρ,δ (T d × R d ). If |β| 1 = 1, then by the mean value theorem for vector-valued functions, we have∆ β m D γ s σ(s, m) M ≤ sup 0≤θ≤1 ∂ β ξ D γ s σ(s, m + θβ) M .For a general multi-index β ∈ N d 0 , we use induction. Writing β = β + δ j and using the induction hypothesis, we get∆ β m D γ s σ(s, m) M = ∆ δ j m (∆ β m D γ s σ(s, m)) ≤ sup 0≤θ≤1 ∂ j (∆ β m D γ s σ(s, m + θδ j )) M = sup 0≤θ≤1 ∆ β m (∂ j D γ s σ(s, m + θδ j )) s, m + θ β) M .Thus we deduce that∆ β m D γ s σ(s, m) M ≤ sup 0≤θ ≤1 D β ξ D γ s σ(s, m + θ β) M ≤ C α,β,m (1 + |m|) n-ρ|β| 1 +δ|γ| 1 .Now let us show the "only if" part. In the proof of Theorem 4.5.3 in[START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF], the desired Euclidean symbol is constructed with the help of the functions in Lemma 10.4. We can transfer directly the arguments in[START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF] to our setting. But we still include a proof for completeness. Let ζ ∈ S(R d ) be as in Lemma 10.4. Define a function σ :T d × R d → M by σ(s, ξ) = m∈Z d ζ(ξ -m)σ(s, m).Thus, σ = σ | T d ×Z d . Moreover, using summation by parts, we haveD γ s D β ξ σ(s, ξ) M = m∈Z d D β ξ ζ(ξ -m)D β s σ(s, m) M = m∈Z d ∆ β ξ φ β (ξ -m)D γ s σ(s, m) M = (-1) |β| 1 m∈Z d φ β (ξ -m)∆ β m D γ s σ(s, m) M m∈Z d |φ β (ξ -m)|(1 + |m|) n-ρ|β| 1 +δ|β| 1 m∈Z d |φ β (ξ -m)|(1 + |ξ -m|) n-ρ|β| 1 +δ|γ| 1 (1 + |ξ|) n-ρ|β| 1 +δ|γ| |ξ|) n-ρ|β| 1 +δ|γ| 1 , whence, σ ∈ S n ρ,δ (T d × R d ). Let σ ∈ S 0 1,δ (T d × Z d ) and α ∈ R. Then • If 0 ≤ δ < 1, then T c σ is a bounded operator on F α,c p (T d , M) for every 1 ≤ p ≤ ∞.• If δ = 1 and α > 0, then T c σ is a bounded operator on F α,c 1 (T d , M).• If δ = 1 and (T c σ ) * admits a symbol in the classS 0 1,1 (T d × Z d ), then T c σ is bounded on F α,c p (T d , M) for any 1 < p < ∞.Proof. By Lemma 10.5, there existsσ in S n ρ,δ (T d × R d ) such that σ = σ | T d ×Z d . Let f ∈ F α,c p (T d , M).By the identification T d ≈ I d , for any z ∈ T d , there exists s ∈ I d such that T c σ f (z) = m∈Z d σ(s, m) f (m)e 2πis•m = R d σ(s, ξ) f pe (ξ)e 2πis•ξ dξ = T c σ f pe (s). Now we apply Theorems 9.16, 9.26 and 9.27 to the symbol σ and f pe . Then by the equivalence (10.2), we get the boundedness of T c σ on F α,c p (T d , M).

  Let d ≥ 2 and θ = (θ kj ) be a real skew symmetric d × d-matrix. The associated d-dimensional noncommutative torus A θ is the universal C*algebra generated by d unitary operators U 1 , . . . , U d satisfying the following commutation relation U k U j = e 2πiθ kj U j U k , j, k = 1, . . . , d.We will use standard notation from multiple Fourier series.Let U = (U 1 , • • • , U d ). For m = (m 1 , • • • , m d ) ∈ Z d , define

Lemma 10 . 7 . ( 1 )

 1071 Let 1 ≤ p ≤ ∞. For any x ∈ L p (T d θ ), the function x : z → π z (x) is continuous from T d to L p (T dθ ) (with respect to the w*-topology for p = ∞).

( 2 )

 2 If x ∈ L p (T d θ ), then x ∈ L p (N θ ) and x p = x p , that is, x → x is an isometric embedding from L p (T d θ ) into L p (N θ ).

( 3 )

 3 Let T d θ = { x : x ∈ T d θ }. Then T d θ isa von Neumann subalgebra of N θ and the associated conditional expectation is given by

  Let σ ∈ R with σ > d 2 .Assume that (φ j ) j∈Z and (ρ j ) j∈Z are two sequences of functions on R d \{0} such that

	and (1.3).
	Firstly, let us state the following homogeneous version of [72, Theorem 4.1].
	Theorem 5.5.

  h p (R d , M) and H p (R d , M) Due to the noncommutativity, for any 1 < p < ∞ and p = 2, the column operator-valued local Hardy space h c p (R d , M) and the column operator-valued Hardy space H c p (R d , M) are not equivalent. On the other hand, if we consider the mixture spaces h p (R d , M) and H p (R d , M), then we will have the same situation as in the classical case.

	Since P * f p	f p	f H c

p for any 1 ≤ p ≤ 2, we deduce the inclusion

  with equivalent norms. One can see[START_REF] Mei | Operator-valued Hardy Spaces[END_REF] Corollary 5.4] for more details. One the other hand, sinceL ∞ (N ) ⊂ bmo c (R d , M), by duality, we get h c 1 (R d , M) ⊂ L 1 (N ). Combining (2.2) and the interpolation result in Theorem 4.3, we deduce that h c

		for any
	1 < p ≤ 2 and L p (N ) ⊂ h r p (R d , M) for any 2 < p < ∞. Combined with (6.11) and (6.12),
	we get	
	H p (R d , M) ⊂ h p (R d , M) ⊂ L p (N ) for 1 < p ≤ 2,	(6.15)
	and	
	L p (N ) ⊂ h p (R d , M) ⊂ H p (R d , M) for 2 < p < ∞.	(6.16)

p (R d , M) ⊂ L p (N ) for any 1 < p ≤ 2 and L p (N ) ⊂ h c p (R d , M) for any 2 < p < ∞. Similarly, we also have h r p (R d , M) ⊂ L p (N )

Then (6.15),

(6.16

) and

[START_REF] Mei | Operator-valued Hardy Spaces[END_REF] Corollary 5.4

] imply that h

  In Definition 7.1, we can replace the support Q of atoms by any bounded multiple of Q. For the convenience of the discussion of the smooth atoms in the rest of this chapter, we will replace Q by 2Q.

	and by the density of h c 1,at in h c 1 , we deduce that
	h c 1,at (R d , M) = h c 1 (R d , M) with equivalent norms.
	Remark 7.3.

  .16) with relevant constants uniform in k. Observe that if two symbols b 1 , b 2 in some S n 1,δ have disjoint s-supports, with

  2πis•ξ dξ is uniformly convergent. Moreover, one can differentiate the integrand and obtain always uniformly convergent integrals. Then, for any |γ| 1 < K -d

	2 , we have
	τ
	4Q µ,l

  If d + 1 is even, applying Lemma 9.7 again to K k with 2M = d + 1, we get|s-t|>2 -k D γ s K k (s, s -t) M dt |s-t|>2 -k 2 k(|γ| 1 -1) |s -t| -d-1 dt ≈ 2 k|γ| 1 ;if d + 2 is even, letting 2M = d + 2 in Lemma 9.7, we get the same estimate. Therefore, summing up the above estimates of |s-t|≤2 -k and |s-t|>2 -k , we obtainR d D γ s K k (s, s -t) M dt 2 k|γ| 1 .Since the estimate of D γ s K k (s, s -t) M is symmetric in s and t, the same proof also shows thatR d D γ s K k (s, s -t) M ds 2 k|γ| 1 .For any f ∈ H α 2 (R d ; L 2 (M)) and k ∈ N 0 , there existsg k ∈ L 2 (N ) with norm one such that D γ s T c σ k (f ) L 2 (N ) = τ R d D γ s T c σ k (f )(s)g * k (s)ds. Then,

|s-t|≤2 -k D γ s K k (s, s -t) M dt |s-t|≤2 -k 2 k(|γ| 1 +d) dt ≈ 2 k|γ| 1 .

  [START_REF] Grafakos | Classical Fourier analysis[END_REF], we are able to prove its boundedness onL 1 M; H α 2 (R d ) c when α > 0. Note that the classical Sobolev space H α 2 (R d ) is a Hilbert space with the inner product f, g = R d J α f (s)J α g(s)ds. By the definition of Hilbertvalued L p -spaces, we see that f ∈ L 1 M; H α 2 (R d ) c if and only if J α f ∈ L 1 M; L c 2 (R d ) . Let σ ∈ S 0 1,1 . Then T c σ is bounded on L 1 (M; H α 2 (R d ) c) for any α > 0.Proof. Following the argument for lemma 9.20 by replacing (T c σ ) * with J α T c σ , we see thatT c σ is bounded on L ∞ M; H α 2 (R d ) c . Let f ∈ L 1 M; H α 2 (R d ) c and A = ( R d |J α f (s)| 2 ds)

	Lemma 9.25. 1
	2
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Regular symbols

In this section, we study the continuity of the pseudo-differential operators with regular symbols in S 0 1,δ (0 ≤ δ < 1) on Triebel-Lizorkin spaces. We start by presenting an L 2theorem. It is a noncommutative analogue of the corresponding classical theorem, which can be found in many works, for instance, [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF][START_REF] Taylor | Pseudodifferential operator[END_REF][START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF]. Then, we will use the atomic decomposition obtained in the last chapter to deduce the F α,c p -boundedness. Different from the pseudo-differential operators with the forbidden symbols in S 0 1,1 , which will be treated in the next section, our proof stays at the level of atoms; in other words, we do not need the subtler decomposition that every (α, Q)-atom can be written as a linear combination of subatoms. Theorem 9.16. Let 0 ≤ δ < 1, σ ∈ S 0 1,δ and α ∈ R. Then T c σ is bounded on

In order to fully understand the image of an (α, Q)-atom under the action of a pseudodifferential operator, we need to study its L 1 (M; L c 2 (R d ))-boundedness. We will work on the exotic class S 0 δ,δ with 0 ≤ δ < 1, since we have the inclusion S 0 1,δ ⊂ S 0 δ,δ . The Cotlar-Stein almost orthogonality lemma plays a crucial role in our proof. Namely, given a family of operators (T j ) j ⊂ B(H) with H a Hilbert space, and a positive sequence {c(j)} j such that j c(j) = C < ∞, if the T j 's satisfy:

and

We begin with a simpler case where δ = ρ = 0. The following lemma is modelled after [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]Proposition VII.2.4]; we include a proof for the sake of completeness. Lemma 9.17. Assume σ ∈ S 0 0,0 . Then T c σ is bounded on L 2 (N ).

Proof. By the Plancherel formula, it is enough to prove the L 2 (N )-boundedness of the following operator:

Let us make use of the resolution of the unit (X k ) k∈Z d introduced in (7.13) to decompose

Then, the series k∈Z d ×Z d S c σ k converges in the strong operator topology and

We claim that (S c σ k ) k satisfies the almost-orthogonality estimates, i.e., for any N ∈ N,

where

For any f ∈ L 2 (N ), there exists g ∈ L 2 (N ) with norm one such that

Applying the Hölder inequality and (9.31), we get τ

with c(j) = 2 j((δ-1)N +d) . If we take N > d 1-δ , the sequence c(j) j is summable. In order to apply Cotlar-Stein's lemma, it remains to show that T c σ j 's satisfy (9.29). To this end, we do some technical modifications. Set

We can easily check that the σ j 's belong to S 0 0,0 , uniformly in j. Then, by Lemma 9.17, the T c σ j 's are bounded on L 2 (N ) uniformly in j. If Λ j denotes the dilation operator given by Λ j (f ) = f (2 jδ •), then, we can easily verify that

Thus, Therefore,(T c σ j ) j≥0 satisfy the assumptions of Cotlar's lemma. So we get

Let 0 ≤ δ < 1. Since we have the inclusion S 0 1,δ ⊂ S 0 δ,δ , then we clearly have the following corollary:

Furthermore, we can deduce the boundedness of

But since h 2 is an infinitely differentiable function with support 2Q, it is clear that for ξ ∈ 2Q,

Putting these two inequalities into the estimate of D γ s D β ξ σ 2 (s, ξ) M , we obtain

. Therefore, it follows from Theorem 9.16 that

Combining this with the estimates in the first two steps, we complete the proof of the theorem.

If σ ∈ S 0 1,1 , it is not true in general that (T c σ ) * corresponds to a symbol in the class S 0 1,1 . However, if we assume additionally this last condition, duality and interpolation arguments will give the following boundedness of T c σ :

A similar argument as in the proof of Corollary 9.22 gives the following results concerning the symbols in S n 1,1 with n ∈ R.

Corollary 9.28.

Chapter 10

Applications 10.1 Applications to tori

We will first recall the definitions and relevant results of the operator-valued Triebel-Lizorkin spaces on tori stated in [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF]. Then we extend the results of the pseudo-differential operators in the previous chapter to the torus case. The main idea is to reduce the torus case to the Euclidean one that we discussed previously by a periodization argument. In this section, M still denotes a von Neumann algebra with a normal semifinite faithful trace τ , but N = L ∞ (T d )⊗M.

We identify T d with the unit cube Recall that ϕ is a Schwartz function satisfying (1.1). Then for every m

This tells us that in the torus case {ϕ(2 -j •)} j≥0 gives a resolvent of the unit. According to this, we make a slight change of the notation that we used in the previous chapters :

Let ϕ j = F -1 (ϕ (j) ) for any j ≥ 0. Now we periodize ϕ j as

Then, we can easily see that ϕ j admits the following Fourier series:

Thus, for any f ∈ S (R d ; L 1 (M) + M), whenever it exists,

The following definition was given in [72, Section 4.5].

Definition 10.1. Let 1 ≤ p < ∞ and α ∈ R d . The column operator-valued Triebel-Lizorkin space F α,c p (T d , M) is defined to be

Lp(N ) .

The row and mixture spaces F α,r p (T d , M) and F α p (T d , M) are defined similarly to the Euclidean case.

By the discussion before (10.1), if we identify a function f on T d as a 1-periodic function f pe on R d , then the convolution ϕ j * f on T d coincides with the convolution ϕ j * f pe on R d . More precisely:

By the almost orthogonality of the Littlewood-Paley decomposition given in (1.3), we get the following easy equivalent norm of F α,c p (I d , M):

Hence, combining the estimates above, we have

Thus F α,c p (T d , M) embeds into F α,c p (R d , M) isomorphically. The equivalence (10.2) allows us to reduce the treatment of T d to that of R d ; and by periodicity, all the functions considered now are restricted on I d .

We are not going to state the properties of F α,c p (T d , M) specifically, and refer the reader to [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF]Section 4.5]. But we note that the characterizations for F α,c p (T d , M) are better than the ones obtained in the previous chapter for F α,c p (R d , M), since in the torus case, we do not need to worry about the properties of the test functions near the origin.

Let us turn to the study of toroidal symbols. In the discrete case, the derivatives degenerate into discrete difference operators. Let σ : Z d → M. For 1 ≤ j ≤ d, let e j be the j-th canonical basis of R d . We define the forward and backward partial difference operators ∆ m j and ∆ m j :