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Résumé

Le but de cette these est d’étudier I'analyse sur les espaces hy (R?, M), la version locale des
espaces de Hardy a valeurs opératorielles construits par Tao Mei. Les espaces de Hardy
locaux a valeurs opératorielles sont définis par les g-fonctions de Littlewood-Paley tron-
quées et les fonctions intégrables de Lusin tronquées associées au noyau de Poisson. Nous
développons la théorie de Calderén-Zygmund sur h;(Rd, M); nous étudions la dualité hy-
bmoj et I'interpolation. D’apres ces résultats, nous obtenons la caractérisation générale de
hzc,(Rd, M) en remplagant le noyau de Poisson par des fonctions tests raisonnables. Ceci
joue un roéle important dans la décomposition atomique lisse de hﬁ(Rd,M). En méme
temps, nous étudions aussi les espaces de Triebel-Lizorkin inhomogenes a valeurs opéra-
torielles F;’C(Rd,/\/l). Comme dans le cas classique, ces espaces sont connectés avec des
espaces de Hardy locaux a valeurs opératorielles par les potentiels de Bessel. Grace a I'aide
de la théorie de Calderén-Zygmund, nous obtenons les caractérisations de type Littlewood-
Paley et de type Lusin par des noyaux plus généraux. Ces caractérisations nous permettent
d’étudier différentes propriétés de F;”(]Rd, M), en particulier, la décomposition atomique
lisse. Ceci est une extension et une amélioration de la décomposition atomique précédente
de h§(R% M). Comme une application importante de cette décomposition atomique lisse,
nous montrons la bornitude d’opérateurs pseudo-différentiels avec les symboles réguliers
a valeurs opératorielles sur des espaces de Triebel-Lizorkin Fpo"c(Rd,M), pour o € R et
1 < p < co. Finalement, grace a la transférence, nous obtenons aussi la F7“-bornitude
d’opérateurs pseudo-différentiels sur les tores quantiques.

Mots-clefs

Espaces L, non commutatifs, espaces de Hardy locaux, espaces BMO locaux, théorie de
Calderon-Zygmund, dualité, caractérisations, espaces de Triebel-Lizorkin inhomogenes, in-
terpolations, décompositions atomiques, opérateurs pseudo-différentiels, tores quantiques.






Abstract

This thesis is devoted to the study of the analysis on the spaces hg(Rd, M), the local ver-
sion of operator-valued Hardy spaces studied by Tao Mei. The operator-valued local Hardy
spaces are defined by the truncated Littlewood-Paley g-functions and the truncated Lusin
square functions associated to the Poisson kernel. We develop the Calderén-Zygmund
theory on hg(Rd,M), and study the hi-bmoj duality and the interpolation. Based on
these results, we obtain general characterization of hg(Rd, M) which states that the Pois-
son kernel can be replaced by any reasonable test function. This characterization plays
an important role in the smooth atomic decomposition of h§(R%, M). We also investi-
gate the operator-valued inhomogeneous Triebel-Lizorkin spaces F;"C(Rd, M). Like in the
classical case, these spaces are connected with the operator-valued local Hardy spaces
via Bessel potentials. Then by the aid of the Calderén-Zygmund theory, we obtain the
Littlewood-Paley type and the Lusin type characterizations of FI?"C(Rd, M) by more gen-
eral kernels. These characterizations allow us to study various properties of F;’C(Rd, M),
in particular, the smooth atomic decomposition. This is an extension and an improvement
of the previous atomic decomposition of h¢(R%, M). As an important application of this
smooth atomic decomposition, we show the boundedness of pseudo-differential operators
with regular operator-valued symbols on Triebel-Lizorkin spaces Fﬁ’c(Rd, M), for a € R
and 1 < p < co. Finally, by virtue of transference, we obtain the F7“-boundedness of
pseudo-differential operators on quantum tori.

Keywords

Noncommutative L,-spaces, local Hardy spaces, local BMO spaces, Calderén-Zygmund
theory, duality, characterizations, inhomogeneous Triebel-Lizorkin spaces, interpolations,
atomic decompositions, pseudo-differential operators, quantum tori.
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Introduction

0.1 Introduction

This thesis consists mainly of two topics: operator-valued local Hardy spaces and pseudo-
differential operators. It follows the current line of investigation of noncommutative har-
monic analysis. The latter field arose from the noncommutative integration theory devel-
oped by Murray and von Neumann, in order to provide a mathematical foundation for
quantum mechanics. The object was to construct and study a linear functional on an
operator algebra which plays the role of the classical integral. In [53], Pisier and Xu devel-
oped a pioneering work on noncommutative martingale theory; since then, many classical
results have been successfully transferred to the noncommutative setting, see for instance,
(28, 29, 31, 32, 55, 50, 56].

Inspired by the above mentioned developments and the Littlewood-Paley-Stein theory
of quantum Markov semigroups (cf. [30, 35, 34]), Mei [42] studied operator-valued Hardy
spaces, which were defined by the Littlewood-Paley g-function and Lusin area integral
function associated to the Poisson kernel. These spaces are shown to be very useful for
many aspects of noncommutative harmonic analysis. In [70], we obtain general charac-
terizations of Mei’s Hardy spaces, which state that the Poisson kernel can be replaced by
any reasonable test function. This is done mainly by using the operator-valued Calderén-
Zygmund theory.

In the classical setting, local Hardy spaces were first introduced by Goldberg [21].
Afterwards, many other inhomogeneous spaces have been studied. Our references for
the classical theory are [21, 64, 18]. However, they have not been investigated so far in
the operator-valued case. Motivated by [71, 70, 42], we provide a localization of Mei’s
operator-valued Hardy spaces on R? in this thesis. The norms of these spaces are partly
given by the truncated versions of the Littlewood-Paley g-function and Lusin area integral
function. Some techniques that we use to deal with our local Hardy spaces are modelled
after those of [70]; however, some highly not trivial modifications are needed. Since with
the truncation, we only know the L,-norms of the Poisson integrals of functions on the
strip R? x (0,1), and lose information when the time is large than 1. This brings some
substantial difficulties that the non-local case does not have, for example, the duality
problem. Moreover, the noncommutative maximal function method is still unavailable in
this setting, while in the classical case it is efficiently and frequently employed. However,
based on tools developed recently, for instance, in [53, 28, 31, 55, 56, 30, 42, 43|, we can
overcome these difficulties. Parallel to Mei’s Hardy spaces, we extend many results in
[42, 70] to the inhomogeneous setting.

Goldberg’s motivation of introducing the local Hardy spaces is the study of pseudo-
differential operators on these spaces. Pseudo-differential operators were first explicitly
defined by Kohn-Nirenberg [37] and Hérmander [25] to connect singular integrals and
differential operators. One of the most important problems in pseudo-differential operator
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theory concerns the mapping properties of these operators on various function spaces,
for instance, L,-spaces, Sobolev, Besov and Triebel-Lizorkin spaces. However, it is known
that pseudo-differential operators are not necessarily bounded on the classical Hardy space
H1(R?). This is the reason why local Hardy spaces were first introduced by Goldberg [21].

In the noncommutative setting, this line of research started with Connes’ work [11] on
pseudo-differential calculus for C*-dynamical systems. But so far, the mapping properties
are rarely studied. In this thesis, we consider the boundedness of noncommutative pseudo-
differential operators on operator-valued Hardy spaces, or more generally, operator-valued
Triebel-Lizorkin spaces. We then apply the outcome to the quantum torus case, and obtain
a parallel theory in the latter case too.

Let us mention that independently and at the same time, Gonzalez-Pérez, Junge and
Parcet developed in [22] the pseudo-differential theory in quantum Euclidean spaces that
are non compact analogues of quantum tori. Although there exists an overlap between
them, the two works are very different in nature in regard to both results and arguments.
Their results concern the boundedness of a pseudo-differential operator on the L,-spaces
with 1 < p < 00, while the ours deal with this boundedness on a column Triebel-Lizorkin
spaces F;’C(Rd,/\/l) with o € R and 1 < p < co. Note that the mixture Triebel-Lizorkin
space F;(Rd,/\/l) coincide with L,(N) when o = 0 and 1 < p < co. On the other hand,
the argument of [22] are based on a careful analysis of the Ly and BMO cases, while our
proof relies entirely on the atomic decomposition for Fy* “(R%, M) and a duality argument
for the case p = oo.

We now describe briefly our main results by gathering them together according to the
three principal themes. All results below are stated only for the column spaces; but almost
all of them admit row and mixture analogues.

Local Hardy spaces. The first family of results concerns the operator-valued local
Hardy spaces h;,(]Rd, M) and bmo®(R% M). The first major result of this part is the hp-
bmoy duality for 1 < p < 2, where ¢ denotes the conjugate index of p. In particular,
when p = 1, we obtain the operator-valued local analogue of the classical Fefferman-Stein
theorem. The pattern of the proof of this theorem is similar to that of Mei’s non-local case.
We also show that h¢(R%, M) = bmo(R?, M) for 2 < ¢ < oo like in the martingale and
non-local settings. Thus the dual of hg(Rd, M) agrees with hg(Rd, M) when 1 < p < 2.

The local Hardy spaces behave well with both complex and real interpolations. In
particular, we have

(bmo®(R?, M), h{(R?, M)), = h5(R?, M),

B =

for 1 < p < co. We reduce this interpolation problem to the corresponding one on the
non-local Hardy spaces in order to use Mei’s interpolation result in [42]. This proof is
quite simple.

Like in [70], the Calderén-Zygmund theory plays a paramount role in this thesis. The
usual M-valued Calderén-Zygmund operators which satisfy the Hérmander condition are
not bounded on inhomogeneous spaces. Thus in order to guarantee the boundedness of a
Calderén-Zygmund operator on hg(Rd, M), we need to impose an extra decay at infinity
to the kernel. Our treatment of this part is similar to [64]. Besides the local nature, there
exists another difference: we also consider Hilbert space valued setting. This Hilbertian
extension will be needed for general characterizations of operator-valued Triebel-Lizorkin
spaces by the Lusin type square function.
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The Calderén-Zygmund theory mentioned above will be applied to the general charac-
terization of hg(Rd, M) with the Poisson kernel replaced by any reasonable test function.
Additionally, to the characterization by the Littlewood Paley g-function, we also obtain
the corresponding one by the Lusin square function. The latter will play an important
role in the atomic decomposition of h§(R%, M).

We show that h§(R? M) admits an atomic decomposition as in the non-local case of
[21]. However, for the study of pseudo-differential operators, we need a smooth atomic
decomposition, that is, the atoms in consideration are required to be smooth and have
size control on their derivatives too. We do this via tent spaces by using the Calderén
reproducing identity. This is a quite technical part, some arguments are very lengthy and
tedious.

Inhomogeneous Triebel-Lizorkin spaces. Local Hardy spaces are closely related to

the inhomogeneous Triebel-Lizorkin spaces. Pursuing the investigation of Triebel-Lizorkin
spaces on quantum tori carried out in [72], we consider operator-valued Triebel-Lizorkin
spaces Fpa’c(Rd,M). The results in this part will be applied to the study of pseudo-
differential operators with operator-valued kernels. We mention here two major results of
this part. The first one gives a general characterization of FI,O"C(Rd,M) by any reason-
able test function. This characterization can be realized either by the Littlewood Paley
type g-function or by the Lusin type integral function. In the classical setting, such a
characterization is achieved usually by virtue of maximal function techniques which are
unfortunately no longer at our disposal in the noncommutative setting. As in [70], our
arguments depend heavily on the Calderén-Zygmund theory mentioned in the previous
part.

The second major result of this part is the atomic decomposition of the Triebel-Lizorkin
spaces F}' “(R%, M). This is an extension as well as an improvement of the previous atomic
decomposition of hf(Rd, M). Compared to the case of Hardy spaces, subatoms enter in the
game; they will play a crucial role in the study of pseudo-differential operators. The proof
of the atomic decomposition of F{"“(R%, M) follows the same set-up as for h§(R¢, M).
Again, the Calderén reproducing identity, via tent spaces, is a key ingredient.

Pseudo-differential operators. Based on the smooth atomic decomposition, we ob-
tain the boundedness of pseudo-differential operators in the class S?’ s With 0 <é <1on

Fﬁc(Rd,M) for any 1 < p < oo and a € R. The main part concerns the case p = 1.
As said before , the key ingredient of the proof for p = 1 is the smooth atomic decom-
position of F{"“(R%, M). Compared to the standard proof, via atomic decomposition, of
the boundedness on H; of a usual Calderén-Zygmund operator with a commutative or
noncommutative kernel, the present proof is much subtler and more technical. We need a
careful analysis of a pseudo-differential operator on subatoms.

By transference, our result yields the corresponding ones for the quantum torus case.
The Euclidean space analogue of the latter case was studied by Gonzalez-Pérez, Junge and
Parcet in [22]. However, our approach is completely different from theirs.

In the remainder of this introduction, we will first introduce the necessary definitions
of the function spaces in consideration and pseudo-differential operators, then describe the
main results.
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0.2 Definitions

0.2.1 Operator-valued local Hardy spaces

Let M be a von Neumann algebra equipped with a normal faithful semifinite trace 7. Let
N = Loo(RY)®M equipped with the tensor trace. For 1 < p < oo, L,(M) denotes the
noncommutative Ly-space associated to (M, 7).

Let P be the Poisson kernel of R%:

1
P(s) =cg —————,
(Isf? + )%
where ¢g4 is the usual normalizing constant. Let
1 ] €
P.(s)==P(-)=cg————~ -
)= GPQ) =

For any function f on R? with values in L;(M)+ M, its Poisson integral, whenever exists,
will be denoted by P.(f):

P:(f)(s) = R P.(s—t)f(t)dt, (s,e) € R(—i&——i_l'

Let us denote the Hilbert space Lo(R, H\fﬁ) by Rg4. Note that the Poisson integral of
f exists if
f € Li(M;RG) + Loo(M;RY).

Now we define the local analogue of the Lusin area square function of f by

2%)%

U6 = ([P +0PSE) serd

where T is the truncated cone {(t,¢) € R . |t] < e < 1}. Tt is the intersection of the
cone {(t,e) € R4 : |t| < ¢} and the strip S € R4 defined by:
S={(s,e):seR%0<e<1}.
For 1 < p < oo define the column local Hardy space hg(Rd, M) to be
hy(R%, M) = {f € Li(M; RY) + Loo(M; RY) : [|f]lng < oo},
where the he(R%, M)-norm of f is defined by
1 1hne®amy = 15 CO L0 + 1P fllo, o)

The row local Hardy space h;(Rd,M) is the space of all f such that f* € hf,(]Rd,M),
equipped with the norm || f|ny = [|f*|lng. Moreover, define the mixture space h,(RY, M)
as follows:

hy (R, M) = he(R%, M) + hi (R, M) for 1 < p <2

equipped with the sum norm

£ 11, (re pty = E{llgllng + 1hllg = f =g+ h,g € hy(RY, M), h € hy(RT, M)},
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and

hy(RY, M) = h§(R%, M) Nhy(R%, M) for 2 < p < o0

equipped with the intersection norm

1l (et a1y = max{[| fllngs [ fllng }-

For any cube @ C R¢ with sides parallel to the axes, we will denote its center by cQ,
side length by [(Q), and volume by |Q|. Let f € Loo(M;RG), the mean value of f over Q
is denoted by fo = @H Jo f(s)ds. For f € Loo(M;RY), set

1 1 1
1 lbmor (et r1) = maX{lztgl H(@/Q f - fc2|2dt)5||M,E?t'lf1 H(/Q HROH WS

Then we define
bmo®(R?, M) = {f € Loo(M;RG) : [|flpmer < 00} -
Respectively, define bmo” (R%, M) to be the space of all f € L°(M;R}) such that

Hf*Hbmoc(]Rd,./\/l) <0

with the norm || f|lbmor = [|f*lbmoc. And bmo(R%, M) is defined as the intersection of
bmo®(R¢, M) and bmo” (R, M).

In order to describe the dual of h;(]Rd,/\/l) for 1 < p < 2, we will define a bmo type
space called bmog(Rd, M) (with ¢ the conjugate index of p).

Let 2 < ¢ < oo, we define bmo{(R%, M) to be the space of all f € Ly(M;RS) such that

1
fllbmog = (|| sup / f(t) = fol?d + / JiQ) ! < 0.
11 HSEQCR Q1 Jo 7O = IRP, HschRd\m | w))
Q<1 Q=1

By this definition, bmo¢, (R, M) coincides with the space bmo®(R%, M) defined above.

0.2.2 Operator-valued inhomogeneous Triebel-Lizorkin spaces

Fix a Schwartz function ¢ on RY satisfying the usual Littlewood-Paley decomposition
property:

suppp C {§: 5 < [¢] <2}

©>0o0n{{: 5 <€ <2},

Skez P27 =1,£ #0.
For each k € N, let ¢ be the function whose Fourier transform is equal to ¢(27%.) and

¢o be the function whose Fourier transform is equal to 1 — 3,- o ©(27%-). Then {¢x }r>0
gives a Littlewood-Paley decomposition on R¢, such that

N D[

supp @ C {¢ € R? . 2F—1 < €] < 2’““}, keN, and supp@y C {£ € R? . €] < 2}

and that -
der(€) =1 VEeR
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Let 1 < p < oo and @ € R. Denote by S'(R% Li(M) + M) the Li(M) + M-valued
tempered distribution on R¢. Then the column inhomogeneous Triebel-Lizorkin space
F¢(R%, M) is defined by

FeRYM) = {f € S' (R Li(M) + M) || fll peoe < 00},

where

| Fllggee = 13 22720; % £(5)2)z] .

Jj=0
We then define the row and mixture inhomogeneous Triebel-Lizorkin spaces in the same
way as for the local Hardy spaces.

0.2.3 Pseudo-differential operators

Let n € Rand 0 < p,§ < 1. Then SZ 5 denotes the collection of all infinitely differentiable

functions o defined on R% x R¢ and with values in M, such that for each pair of multi-
indices of nonnegative integers v, 3, there exists a constant C, g such that

‘|D3D?U(3;€)|’M < C%g(l + ’f‘)n+6|7|1*9\5|1’

where v = (1, ,7a) €N, [Yh =7 + -+ +ya and D} = o - 05

T

Let 0 € S7'5. For any function f € S(R% Li(M) + M), the (left) pseudo-differential
operator is a mapping f — T<f given by
Tef(s) = [ ols. OF(€)emde.

R4

o is called the symbol of T¢.

0.3 Properties

0.3.1 Duality

The first property of Hardy spaces is the duality theorem. We describe the dual of
he(R%, M) (1 < p < 2) as bmo(R?, M) (¢ being the conjugate index of p).

Theorem 0.1. Let 1 < p < 2 and q be its conjugate index. We have hg(Rd,M)* =
bmog(Rd,M) with equivalent norms. More precisely, every g € bmog(Rd,M) defines a
continuous linear functional on h&(R%, M) by

6(F) =7 [ 19" (s)ds, f € Ly(M; L5(RY (1+ ] ).

Conversely, every ¢ € hg(]Rd,M)* can be written as above and is associated to some
g e bmog(Rd, M) with
14l ng)= == [lgllbmog

Denote by I® the Riesz potential (—(27) 2A)2. If a = 1, we will abbreviate I' as I.
For a tempered distribution f on R? with values in L;(M) 4+ M, we have

1f(s) = [ Fgreem=as, vs e R
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The following equalities play an important role in study of the above duality problem:

1
[ 5@ s =4 [ [ 2pu0)(6) 5 Pulo) (e deds

—|—/dP*f(S)(P*g(S))*ds+47r/dP*f(s)(I(P) + g(5))"ds.
r R
— jd/Rd //f %PE(f)(S+t)%P5(g)*(3+t)%ds

—i—/RdP*f(s)(P *g(s))*ds—f—élw/RdP x f(s)(I(P)*g(s))"ds

for nice f, g € L1(M;RG) + Loo(M;RG). The presence of the terms P x g and I(P) * g
makes a main difference between the proofs of the non-local and local cases.

As in the classical theory, the dual of hg(Rd, M) is hg(Rd, M), which comes from the
fact that the Lg-analogue of bmo space is actually equivalent to hg(Rd, M).

Theorem 0.2. Let 2 < ¢ < co. hS(R?, M) = bmo{(R%, M) with equivalent norms.

The proof of the above theorem is modelled after that of [42, Theorem 4.7]. The
main difference between them is that, due to the truncation, we have to deal with the
terms (I(P) g, P*g) concerning the properties of the Fourier transform of the considered
function near the origin as explained above.

As a consequence of the previous two theorems, we obtain

Corollary 0.3. For any 1 < p < oo, hg(Rd,M)* = hg(Rd,M) with equivalent norms.

0.3.2 The relation between h{(R?, M) and H(R?, M)

It should be pointed out that due to the noncommutativity, the column operator-valued
local Hardy spaces hg(Rd,M) and operator-valued Hardy spaces H;(Rd,/\/() defined by
Mei [42] are not equivalent for 1 < p < co. We only have the inclusions:

c(md c(md
Hy(RY, M) C hy(R*, M) for 1<p<2

and
c d c d
he(R% M) € HE(RE, M) for 2 < p < oo

However, if the Fourier transform of the function vanishes near the origin, we will have
the reverse inclusion.

Theorem 0.4. Let ¢ € S such that [za ¢(s)ds = 1.

(1) Let 1 < p < 2. For any f € hg(Rd,./\/l), we have [ — ¢ x f € H;(Rd,/\/l) and
I = 6% Fll S 1l

(2) Let 2 < p < oo. For any f € Hg(Rd7M), we have f — ¢ * f € h;(Rd,M) and
17— 6% Flhg < 171

Moreover, if we consider the mixture versions, both h,(R%, M) and H,(R?, M) coincide
with the space Ly (Loo(RY)@M):

Proposition 0.5. For any 1 < p < 00, hy(R%, M) = H,(RY, M) = L,(N) with equivalent

norms.
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0.3.3 Lifting properties of F"“(R?, M)

We list some basic properties of F]‘,’"C(Rd,/\/l). Much as in the classical case, the local
Hardy spaces coincide with the inhomogeneous Triebel-Lizorkin spaces of order av = 0.

Proposition 0.6. Let 1 < p < oo and o € R. Then
(1) Fﬁ’c(Rd, M) is a Banach space.

(2) Feo(RY, M) C FPRY M) if o> 8.

(3) FIE)’C(Rd, M) = hg(Rd,M) with equivalent norms.

Given a € Ry, we define D;,(&) = (2mi&;)? for € € R and D¢ to be the Fourier
multiplier with symbol D;,(£) on Triebel-Lizorkin spaces F;"C(Rd,./\/l). We set D, =
Dig, -+ Dgga, and D* = Di*--. D for any a = (a1, ,aq) € R‘i. Note that if a is a
positive integer, Di = 0{ is the usual partial derivative, so there does not exist any conflict

of notation. The operator D% can be viewed as a fractional extension of partial derivatives.
The following is the so-called reduction (or lifting) property of Triebel-Lizorkin spaces. For

B € R, let J? be the Bessel potential of order 3, i.e. J% = (1— (27r)*2A)§. For a tempered
distribution f on R? with values in Li(M) 4+ M, it is formulated as

Pie) = [ FO0+ g Eemtie vs e R,
R
Proposition 0.7. Let 1 < p < oo and o € R.

(1) For any B € R, J? is an isomorphism between F;’C(Rd,./\/l) and Fpo‘*ﬁ’C(Rd,./\/l). In
particular, J* is an isomorphism between F&¢(R%, M) and h§(R?, M).

(2) Let B > 0. Then f € F;’C(Rd,/\/l) if and only if ¢o * f € Ly(N) and Diﬁf €
Fpa_ﬁ’c(Rd, M) for alli=1,...,d. Moreover, in this case,

d
£ lggee = oo * £llp + D D7 £l o

i=1

We need to emphasize here that, different from the Triebel-Lizorkin spaces on quantum
tori, the Riesz potential I” is not an isomorphism between F&¢(R%, M) and F¢~7<(R?, M).

0.3.4 Interpolation

As expected, we have the following complex and real interpolation results:
Theorem 0.8. Let 1 < p < oco. We have
(1) (bmo®(R%, M), h§(R% M)), =he(RY, M),

P

(2) (bmo®(R?, M), h{(R?, M)), = hi(R?, M) .

>

The interpolation between any two local Hardy spaces h;(]Rd, M) and hg, (R4, M) with
1 < p,p’ < oo is easy, since for any 1 < p < oo, hf,(]Rd, M) is a complemented subspace of
L,(N; L§(T, %)) @pLy(N). However, the interpolation problem with one end point being
hi-space is much subtler. The above interpolation equalities are obtained by transferring
the problem to that of Hardy spaces in [42].

We also have the following corollary as the mixed version of the above theorem, which
shows that h; (R?, M) and bmo(R%, M) are also good endpoints of L,(N).
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Corollary 0.9. Let 1 < p < oo. Then we have

(1) (X,Y), = Ly(N), where X = bmo(R%, M) or Loo(N), and Y = hy (R, M) or Li(N).
(2) (X,Y)
Ly(N).

= L,(N), where X = bmo(R%, M) or Lo(N), and Y = hy (R4 M) or

P

=

The Bessel potentials J% is an isomorphism between FI,O"C(Rd,M) and hg(Rd,/\/l).
In this way, the interpolation problem of Triebel Lizorkin spaces can be reduced to the
corresponding problem of Hardy spaces. For the interpolation between two Triebel Lizorkin
spaces with the same index «, the real and complex interpolations are simple corollary of
Theorem 0.8. For different «, the real interpolation of two Triebel Lizorkin spaces will give
Besov type spaces, which is not included in this thesis. For the complex interpolation, we
need to use the complex order Bessel potentials and the result is:

Proposition 0.10. Let ap, 1 € R and 1 < p < oco. Then

1,C ,C 1
(P (B, M), F{ (R, M)) y = F<(RY M), o= (1= oo+

0.4 Characterizations

In the classical theory, as far as we know, the existing proofs of the characterizations of
local Hardy and inhomogeneous Triebel-Lizorkin spaces use maximal functions in a crucial
way. As we mentioned earlier, this tool is no longer available in the noncommutative
setting. Instead, we will use the Calderén-Zygmund theory. First, we begin with a general
characterization of local Hardy spaces.

Consider a Schwartz function ® on R? of vanishing mean. We set ®.(s) = e~ ®(£) for
e > 0. We will assume that ® is nondegenerate in the following sense:

vE e RY\ {0} Je >0 s.t. ®(e€) £ 0.

Then there exists a Schwartz function ¥ of vanishing mean such that
®© . =de d
| B0t T =1, veer\ (o).

Next we can find two other functions ¢, ¢ such that ¢, € HS(R), $(0),(0) > 0 and

~

dOdEe) =1~ | 1 B(ee)T(0) .

For any f € Li(M;R3) + Loo(M; R]), we define the local version of the conic and radial
square functions of f associated to ® by

e RY,

506 = ( [L10 0 566+ 0P EEYE

w06 = ([ 10 10PLE) s e mt

where T is the truncated cone {(t,a) cRIT |t <e< 1}.
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Theorem 0.11. Let 1 < p < oo and ¢, ® be as above. For any f € Li(M;RG) +
so(M;RG), f € hi(RE, M) if and only if s5(f) € Ly(N) and ¢ * f € Ly(N) if and only
if 95(f) € Ly(N) and ¢ x f € Lp(N). If this is the case, then

1fllng ~ lge (F)llp + ¢ fllp = 1156 ()lp + 16+ fllp

with the relevant constants depending only on d,p, ® and ¢.

One direction of the above norm equivalence can be deduced from the boundedness
of the Hilbert-valued Calder6n-Zygmund operator from hg(Rd, M) to L,(N;H®) for 1 <
p < 2 and the duality between hg(Rd,./\/l) and hg(Rd,M). The other direction requires
more complicated and technical computation, where the Carleson measure characterization
of bmofl is needed. In order to compare the square functions g3 and sg, we need a
sophisticated inequality, since we no longer have the harmonicity of the Poisson integral.

The above theorem admits a discrete version: The square functions sg and g§ can be
discretized as follows:

[N

95" ( :(Z\@*f ),
PO = (X2 [ ey s

>1 (5,277)

Here B(s,r) denotes the ball of R? with center s and radius r, and ®; is the inverse Fourier
transform of ®(277-). This time to get a resolvent of the unit on R?, we need to assume
that ® satisfies:

VEeRI\ {0} 30<2a<b< oo st. () #0, Ve € (a,b].

There exists another Schwartz function ¥ such that

“+00

S @277 (27ig) =1, vee R\ {0}

j=—o00

and there exists two functions ¢ and 1 such that qAﬁ, 15 € HYg(RY) and

ST B2 U(2E) + dE)P(E) = 1, Ve eRL

j>0
Theorem 0.12. Let ¢ and ® be test functions as above and 1 < p < oo. Then for
any f € Li(M;RS) + Loo(M;RS), f € hS(R%, M) if and only if S%D(f) € Ly(N) and
¢x [ € Lp(N) if and only z'fgfI;D(f) € Ly(N) and ¢ * f € Ly(N'). Moreover,

¢,D ~ c,D
£l = s~ (I, + 1o+ fllp = llgg” (Hllp + [l * fllp
with the relevant constants depending only on d,p, ® and ¢.

Since the noncommutative inhomogeneous Triebel-Lizorkin spaces are subspaces of
Hilbert-valued noncommutative L,-spaces, we develop Fourier multiplier theory for the
later spaces. Then, with the aid of the above discrete characterization of local Hardy
spaces, we obtain a more general characterization of F;’C(Rd,/\/l) which states that the
kernel which appears in the square function does not need to be a Schwartz function
coming from the Littlewood-Paley decomposition.
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Let @@ and @ be two complex-valued infinitely differentiable functions defined respec-
tively on R? and R4\ {0}, which satisfy

2O >0 if |¢f <2,
sup 20| 0025 )| g < oo,

keNy
and 1
Q>0 if 5 <l <2,
sup 27 (|®(2" )| g < oo,

keNp

/Rd(l +15[2)7 | F N @Oy, )(5)|ds < oc.

Recall that here I_,, (&) for € € R? is the symbol of the Fourier multiplier /=%, where
I~ is the Riesz potential (—(2%)_2A)%%.

Let ®) = ®(277.) for j > 1, and ®; be the function whose Fourier transform is equal
to @) for any j € Ny.

Theorem 0.13. Let 1 < p < 00 and o € R. Assume that og < oo < aq, a1 > 0 and <I>(0),
® satisfy conditions above. Then for any f € S'(R% Ly(M) + M), we have

; 1
1 Fllpgee 2 ([0 2%%12; % f17)2 ],
Jj=0
where the relevant constants are independent of f.

The continuous analogue of the above characterization holds as well. For any L1 (M)+
M-valued tempered distribution f on R,

' oo adeyl
Il = 10 % £l + 1 | 72 x RS2,
Much as the local Hardy spaces, we also have the characterization via Lusin area square
functions:

Theorem 0.14. Let 1 < p < oo and o € R. Assume that g < o < a1, a1 > 0 and <I>(0),
® satisfy the conditions above. Then for any f € S'(R% Li(M) + M), we have

)
p

||f||F§’C(Rd7M) ~ Hq)(] * f“p + H(Z 2j(2a+d)/

@ % f(- +1)[2dt)?
= B(0,2-7)

where the relevant constants are independent of f.

Since the local Hardy spaces can be seen as a special case of inhomogeneous Triebel-
Lizorkin spaces, the above two theorems generalize Theorem 0.11 and Theorem 0.12 in
this sense.

Note that the general characterization of Triebel-Lizorkin spaces on quantum tori has
been studied in [72]. In that case, the Fourier transform of an operator = in L (T4) (T4
being the d-dimensional quantum tori) is discrete, so we can always assume Z(0) = 0
and omit the multiplier behaviour near the origin. However, for f in the inhomogeneous
Triebel-Lizorkin spaces on R?, we need to deal with the properties of its Fourier transform
near the origin. This makes our case more complicated than theirs.
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0.5 Atomic decompositions

In the classical theory, atomic decomposition of Hardy or local Hardy spaces plays impor-
tant roles in the analysis of these spaces. In this spirit, we also construct the noncommu-
tative analogue of atoms.

We say that a function a € Li(M; L§(RY)) is an h§-atom if

(1) a is supported in a bounded cube @ with |Q| < 1;

(2) QI <1, Jga(s)ds =0;

(3) T(Jola(s)P ds)? < Q2.

Let hiat(Rd, M) be the space of all f admitting a representation of the form

f=> " Xaj,
j=1

where the a; are h{-atoms and \; € C are such that 3, [Aj] < 0o. We equip h‘iat(Rd, M)
with the following norm:

”f”hf,at = inf{ Z I\l f= Z Ajaj; aj’s are h§ -atoms, \; € (C}.
jeN jeN

By the atomic decomposition of Hardy spaces already studied in [42] and the duality
between Li(M; L5(Q)) and Loo(M; L5(Q)), we deduce the following atomic decomposition
of h§(RY, M).

Theorem 0.15. hiat(Rd,M) = h§(R%, M) with equivalent norms.

The smoothness of the atoms obtained above can be refined. The main idea is to find a
smooth resolution of unit on the Euclidean space; atomic decompositions of tent spaces will
also be of great service. Using the same strategy, we can get smooth atomic decompositions
for F}' “(RY, M), which will be very useful when studying the pseudo-differential operators
on Triebel-Lizorkin spaces.

In the classical theory, there exist several types of smooth atomic decompositions of
Triebel-Lizorkin spaces. See, for instance [16, 47, 68]. However, not all of them can be
transferred to the noncommutative setting by replacing Ls.-atoms with Lo-atoms. The
idea of the following theorem comes from [68, Theorem 3.2.3], but many techniques used
are different from that of [68, Theorem 3.2.3] due to the noncommutativity.

Definition 0.16. Let a € R, and let K and L be two integers such that
K > ([a]+1);+ and L > max{[—a],—1}.
(1) A function b € Li(M; L§(RY)) is called an (a, 1)-atom if

e suppb C 2Qo k;
o 7(fpa|DVb(s)|%ds)2 <1, ¥y eNE, |y} < K.

(2) Let Q = Qu,, a function a € Ly(M;L§ (R9)) is called an (a, Q)-sub-atom if

e suppa C 2Q;
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a Il
7(fga |DVa(s)[2ds)z < |Q|i™ o, Yy NI, 4|1 < K;

o [pas’a(s)ds =0, VB eNZ, |8 < L.

(3) A function g € L1(M; L§(R?)) is called an (a, Qg m)-atom if

1 1
r([ 196 Pd)E < [QunlF and 9= Y dua
B (1)< (ksm)

for some k € Ny and m € Z¢, where the ay’s are (o, Q,)-sub-atoms and the d,,;’s
are complex numbers such that

(> ldu)? < |Quml 2.

(D)< (k,m)

We refer the reader to chapter 8 for the precise definition of D, ;.

Theorem 0.17. Let o € R and K, L be two integers fixed above. Then any f €
F{°(R%, M) can be represented as

F=>"(usb; + Ajg;).
7=1

where the b;’s are (a, 1)-atoms, the g;’s are (a, Q)-atoms, and i, \j are complex numbers
such that

> (gl + 1)) < (0.1)
7=1

Moreover, the infimum of (0.1) with respect to all admissible representations is an equiv-
alent norm in F{*(R%, M).

0.6 Pseudo-differential operators

In the classical theory, local Hardy spaces were first introduced in order to study the
mapping properties of pseudo-differential operators. Now we have developed the the-
ory of operator-valued local Hardy spaces, we can study the the boundedness of pseudo-
differential operators in our noncommutative setting.

Based on the smooth atomic decompositions mentioned above, we prove that the im-
age of an atom under the action of a pseudo-differential operator has bounded norm in
F{°(R%, M). The case 1 < p < oo is deduced from duality and interpolation.

Theorem 0.18. Let 0 <6 <1, 0 € S?’(S and o € R. Then T? is a bounded operator on
Fe(RE, M) for every 1 < p < oo.

The symbols in o € S s with 0 < ¢ < 1 are called regular symbols, which are bounded
on La(N), and behave well on symbolic calculus. When § = 1, we call symbols in o €
5971 forbidden symbols. Similarly to the classical case, they are not bounded on Lo (N);
alternatively, if o > 0, we can prove their boundedness on H§(R%; L2(M)).

Theorem 0.19. Let o € 57 and o > 0. Then Tf is a bounded operator on F{Y(REM).
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A very important application of the above theorem is the study of pseudo-differential
operators over quantum tori through Neuwirth-Ricard’s transference method. We refer
the reader to [72] for details of the Triebel-Lizorkin spaces on quantum tori.

Let 0<d,p<1,neRand~,p€e Ng be multi-indices of nonnegative integers. Then
the toroidal symbol class Sﬂ?g,p, J(Zd) consists of those functions o : Z¢ — T% which satisfy

IDP (Ao (m))]| < Cpn(1 4 [m]) =PI HPR v € 222,

For any = € T¢, we define the corresponding toroidal pseudo-differential operator on Tg
as follows:
Tix = Z o(m)z(m)U™.

meZd

Theorem 0.20. Let o € S% (Z%) and o € R. Then

d
41,6

o If0<4d <1, then TS is a bounded operator on F;"C(Tg) for every 1 < p < .
e If§=1and a >0, then TS is a bounded operator on F{"°(T%).

Finally, it is worthwhile to mention the main results in [22] and compare them with
the above two theorems. In [22], the authors proved that given appropriate assumptions,
pseudo differential operators on quantum Euclidean spaces (denoted by Rg) are bounded
from Loo(RE) to BMO®(RY). With additional symmetric assumption on the pseudo dif-
ferential operators, they can also get the boundedness from Ly (R$) to BMO(RY), and
then by duality and interpolation, L,-boundedness follows. Compared to their method,
our starting point is the local Hardy spaces h§(R%, M) (or F{"*“(R% M) more generally);
by the smooth atomic decompositions, we prove directly the boundedness on h§(R¢, M),
which also gives the boundedness on hlc)(Rd,M) for all 1 < p < oo by duality and inter-
polation. Our result states that T is bounded on h{, and also bounded on bmo®, which
is more precise than the Lo, to BMO®%boundedness in [22]. However, we do not have
Ly,-boundedness result, because no symmetric assumption is made. On the other hand,
Theorems 0.18 and 0.19 do not apply to the quantum Euclidean case directly by transfer-
ence, as our argument for Theorem 0.20. At this point, more work needs to be done for
quantum Euclidean spaces.



Chapter 1

Preliminaries

1.1 Noncommutative L, -spaces

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace 7 and
St; be the set of all positive elements z in M with 7(s(z)) < oo, where s(z) denotes the
support of x, i.e., the smallest projection e such that exe = x. Let S be the linear span
of SL. Then every z € Spq has finite trace, and Sxs is a w*-dense *-subalgebra of M.
Let 1 < p < co. For any = € Sjy, the operator |z[P belongs to S}, (recalling |z| =

(SL‘*ZL')%) We define
2l = (r(jz[")) 7.

One can prove that | - ||, is a norm on Syy. The completion of (Saq, || - ||p) is denoted by
L,(M), which is the usual noncommutative L,-space associated to (M, 7). In this thesis,
the norm of L,(M) will be often denoted simply by || - ||, if there is no confusion. But
if different L,-spaces appear in a same context, we will precise their norms in order to
avoid possible ambiguity. We refer the reader to [73] and [54] for further information on
noncommutative Ly-spaces.

Now we introduce noncommutative Hilbert space-valued Lj-spaces L,(M;H¢) and
L,(M; H"), which are studied at length in [30]. Let H be a Hilbert space and v € H with
|lv]] = 1, and p,, be the orthogonal projection onto the one-dimensional subspace generated
by v. Then define the following row and column noncommutative L,-spaces:

Ly(M; H") = (po © 1) Lyp(B(H)@M) and Ly(M; H) = Ly(B(H)@M)(py @ 1m),

where the tensor product B(H)®M is equipped with the tensor trace while B(H) is
equipped with the usual trace, and where 1, denotes the unit of M. For f € L,(M; H®),

1Az, iy = 1P )%l

A similar formula holds for the row space by passing to adjoint: f € L,(M;H") if and
only if f* € L,(M; H®), and || f|lz,m;zry = 1o, (m;re)- Tt is clear that L,(M; H¢) and
L,(M;H") are 1-complemented subspaces of L,(B(H)®M) for any p.

1.2 Facts and notation

In this section, we collect some notation and facts which will be frequently used in this
thesis. Throughout, we will use the notation A < B, which is an inequality up to a
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constant: A < ¢B for some constant ¢ > 0. The relevant constants in all such inequalities
may depend on the dimension d, the test function ® or p, etc, but never on the function
f in consideration. The equivalence A ~ B will mean A < B and B < A simultaneously.
Fix a Schwartz function ¢ on R? satisfying the usual Littlewood-Paley decomposition
property:
suppp C {€: 5 < [¢] <2}
e>0on{{:5 <[ <2}, (1.1)
Skez P(2776) = 1L,V E#O.

For each k € N let ¢ be the function whose Fourier transform is equal to ¢(27%-), and let
o be the function whose Fourier transform is equal to 1 — 3o ¢(27%). Then {¢k}x>0
gives a Littlewood-Paley decomposition on R? such that

supp P C {€ € RT: 281 <Jg| <21V VEkeN, supp@oC {€eRY: €] <2} (1.2)
and that

[T

Y B =1, VEeR” (1.3)
k=0

The homogeneous counterpart of the above decomposition is given by {¢py }xez. This time
for every k € Z, these functions are given by ¢, (&) = ©(27%¢). We have

Y (&) =1, VE#O. (1.4)

kEZ

The Bessel potential and the Riesz potential are J* = (1 — (2r)"2A)2 and I* =
(—(2m)~2A) 2, respectively. If o = 1, we will abbreviate J' as .J and I' as I. We denote
also Jo(€) = (1 + |€[*)2 on R and I,(€) = [¢]* on R?\ {0}. Then J, and I, are the
symbols of the Fourier multipliers J% and I, respectively.

We denote by H§(R?) the potential Sobolev space, consisting of all tempered distri-
butions f such that Jo(f) € La(RY).

Let S(R% X) be the space of X-valued rapidly decreasing functions on R% with the
standard Fréchet topology, and S'(R% X) be the space of continuous linear maps from
S(RY) to X. All operations on S(R?) such as derivations, convolution and Fourier trans-
form transfer to S'(R% X) in the usual way. On the other hand, L,(R% X) naturally
embeds into S'(R% X) for 1 < p < oo, where L,(R% X) stands for the space of strongly
p-integrable functions from R? to X. By this definition, Fourier multipliers on R¢, in
particular the Bessel and Riesz potentials, extend to vector valued tempered distributions
in a natural way.

We will frequently use the following Cauchy-Schwarz type inequality for the operator
square function,

2
[ o@ss)as? < [ jots)Pas [ 156s)ds, (1.5

where ¢ : R — C and f : R* — L;(M) 4+ M are functions such that all integrations
of the above inequality make sense. We also require the operator-valued version of the
Plancherel formula. For sufficiently nice functions f : R — L;(M) 4+ M, for example, for
f € La(R?) @ Ly(M), we have

[ 1r@Pds = [ 17©) (1.6
R R

Given two nice functions f and g, the polarized version of the above equality is

| f@g(s)ds = [ Fe)a)de. (17)
R4 R4
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1.3 Operator-valued Hardy spaces

Throughout the remainder of the thesis, unless explicitly stated otherwise, (M, 1) will be
fixed as before and N = Lo, (RY)®M, equipped with the tensor trace. In this section, we
introduce Mei’s operator-valued Hardy spaces. Contrary to the custom, we will use letters
s, t to denote variables of R? since letters x, y are reserved for operators in noncommutative
L,-spaces. Accordingly, a generic element of the upper half-space Riﬂ will be denoted by
(s,e) with € > 0, where Rff“l ={(s,e) : s € R% & > 0}.

Let P be the Poisson kernel on R%:

1
P(s) =cg —
(s + )%
with ¢4 the usual normalizing constant and |s| the Euclidean norm of s. Let
1 s 3
=GP = ——r.
e e

For any function f on R? with values in L;(M) 4+ M, its Poisson integral, whenever it
exists, will be denoted by P.(f):

P.(f)(s) :/Rd P.(s— O)f(t)dt, (s,e) € R,

Note that the Poisson integral of f exists if

dt
14 [t

dt

f € Li(M; L (R ,W»-

)) + Loo (M; L(R?
This space is the right space in which all functions considered in this thesis live as far as
only column spaces are involved. As it will appear frequently later, to simplify notation,
we will denote the Hilbert space Lo(R, H\fﬁ) by Rg:

dt
= Ly(RY, ——— ). 1.8
Rd 2( 9 1+‘t‘d+1) ( )
The Lusin area square function of f is defined by
SN = ([ 1PN+ 557 s ere, (19)

where T is the cone {(t,) € RT™ : |t| < e}. For 1 < p < co define the column Hardy
space HE(RY, M) to be

Hyp(RE M) = {f : [[fllaeg = I1S°(f)lp < o0}

Note that [42] uses the gradient of P.(f) instead of the sole radial derivative in the defini-
tion of S¢ above, but this does not affect ’H;(Rd, M) (up to equivalent norms). At the same

time, it is proved in [42] that HS(R?, M) can be equally defined by the Littlewood-Paley
g-function:

G°(f)(s) = (/0005|56P5(f)(s)]2d5)2, s € R (1.10)

Thus
1fll2 = 1G(F)llps € Hy(RT, M).
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The row Hardy space H,, (R%, M) is the space of all f such that f* € ’H;(Rd, M), equipped
with the norm || f{ls; = |[f*|lug . Finally, we define the mixture space Hp(RE, M) as

Hy(RT, M) = H;(Rd,M) —i—H;(IR{d,M) for 1<p<2
equipped with the sum norm

1flla, = it {|[ fillug + I follagg = f = f1 + fo}

and
Hp(RE, M) = HE(RY, M) N H (R, M) for 2<p < oo

equipped with the intersection norm
£ 1122, = max (|| f [l , 1f 1)
Observe that
HS(RE, M) = H5(RY, M) = Ly(N) with equivalent norms.
It is proved in [42] that for 1 < p < c©
H,(RY, M) = L,(N) with equivalent norms.

The operator-valued BMO spaces are also studied in [42]. Let @ be a cube in R? (with
sides parallel to the axes) and |@Q| its volume. For a function f with values in M, fg
denotes its mean over Q:

1
fo=io [ ftyit.
“7lal o
The column BMO norm of f is defined to be

1
2

. 1.11
M ( )

o L P
nmmuﬁwmémwmwt

Then
BMO(RY, M) = {f € Loo(M:RY) : [Ifllrior < o0}.

Similarly, we define the row space BMO"(R? M) as the space of f such that f* lies in
BMO¢(R?, M), and BMO(R?, M) = BMO¢(R?, M)NBMO" (R¢, M) with the intersection
norm.

In [42], it is showed that the dual of H§(R? M) can be naturally identified with
BMO¢(R?, M). This is the operator-valued analogue of the celebrated Fefferman H;-BMO
duality theorem.

On the other hand, one of the main results of [70] asserts that the Poisson kernel in
the definition of Hardy spaces can be replaced by more general test functions.

Take any Schwartz function ® with vanishing mean. We will assume that ® is nonde-
generate in the following sense:

VEe R\ {0}, 3e >0, s.t. D(c€) #£0. (1.12)

The radial and conic square functions of f associated to ® are defined by replacing the
partial derivative of the Poisson kernel P in S¢(f) and G°(f) by ® :

S5(f)(s) = (/F@g*f(sﬂ)ﬁfjﬁ)z, s € R (1.13)
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and
Ga(Ns) = ([T 1o f6PE) (114)

The following two lemmas are taken from [70]. The first one says that the two square
functions above define equivalent norms in H;(Rd, M):

Lemma 1.1. Let 1 <p < oo and f € L1(M;R]) + Loo(M;RG). Then f € Hg(Rd,M) if
and only if G$(f) € Lp(N) if and only if S§(f) € Lp(N). If this is the case, then

1Ge(Nllp = 158 (Nlp ~ 11112

with the relevant constants depending only on p,d and ®.

The above square functions Gg and Sg can be discretized as follows:

G57 (N6 = (X 1@ f5))°

T ) (1.15)
c,D o dj . 2 2
SO0 = (3 2 e 0P

Here B(s,r) denotes the ball of R? with center s and radius 7. To prove that these discrete
square functions also describe our Hardy spaces, we need to impose the following condition
on the previous Schwartz function ®, which is stronger than (1.12):

VEeRI\ {0}, 30 <2 <b< oo st. B(ef)£0, Ve € (a, b. (1.16)
The following is the discrete version of Lemma 1.1:

Lemma 1.2. Let 1 < p < oo and f € Li(M;RG) + Loo(M;RG). Then f € ’Hf,(Rd,/\/l) if
and only if GfI;D(f) € L,(N) if and only if SgD(f) € Ly(N). Moreover,

IGS" (Hllp = 1557 (Pl = 11f 1l

with the relevant constants depending only on p,d and ®.






Chapter 2

Operator-valued local Hardy
spaces

2.1 Operator-valued local Hardy spaces

Let f € Li(M;RG) 4+ Loo(M;RY) (recalling that the Hilbert space Ry is defined by (1.8)).
Then the Poisson integral of f is well-defined and takes values in L;(M) + M. Now we
define the local analogue of the Lusin area square function of f by

2 dtdz—:)%

6 = ([l +0PS5E) s e v,

where T is the truncated cone {(t,¢) € R . |t] < e < 1}. Tt is the intersection of the
cone {(t,e) € R4 : |t| < ¢} and the strip S C R4 defined by:
S={(s,e):s€R%0<e<1}.
For 1 < p < oo define the column local Hardy space h;(Rd, M) to be
he(RY, M) = {f € Li(M;RG) + Loo(M;RG) : || flIng < o0},
where the hg(Rd, M)-norm of f is defined by
[fllng = 115 (O L,y + 1P iz, v

The row local Hardy space h;(Rd,M) is the space of all f such that f* € hg(Rd,./\/l),
equipped with the norm || f|ny = [|f*|lng. Moreover, define the mixture space h,(RY, M)

as follows:
hy(R%, M) = he(RY, M) + W) (RE, M) for 1< p <2

equipped with the sum norm
£l = inf{llgllng + 1Al : f =g+ h,g € hG5RY, M), h € hy(RY, M)},

and
hy,(RY, M) = h§(R?, M) Nhy(R%, M) for 2 < p < o0

equipped with the intersection norm

11, = max{|[fug [[flng }-
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The local analogue of the Littlewood-Paley g-function of f is defined by

1

“( )()—(/1’9 (f)( )’2 )5 !
g (f)(s ; 5P5 s)|ede) ™, s € R".
We will see in chapter 6 that

s lp + 1P Fllp &= lg®CHllp + [P+ I

for all 1 <p < oo.

We close this section by some easy facts that will be frequently used later. Firstly, we
have

Is*(HNZ + P = £1I5 = 1 £113- (2.1)
Indeed, by (1.6), we have

—

9 d ~
LGP Pds = [ 1P Pde
= [ anelifoRe e

Then

1 ~
L, [ 1mpans)Pededs = [ (1= el — anlele D) fe) e

Therefore

0 ded
3= [, [I5Per)s + 0 Sods

1 0 o dedt
Skl 0 R Pe S (Ol 2

L9
=car [ [ 15Pe) (o) edds
_ %T (1— e—4mlEl 47r|§|e_47r|§|)|]?(£)|2d£,
Rd

where cg is the volume of the unit ball in R?. Meanwhile,

[P fIg =7 [ o€l fe) g,

Then we deduce (2.1) from the equality

SISIB+ P+ I3 = 7 [ (1 = dlele ) Fle) Pag
d R

and the fact that 0 < 4r|¢le= 47kl < % for every ¢ € R%. Passing to adjoint, (2.1) also tells
us that || flluy e e = [1/*ll2 = [[fl2, whence

B (R, M) = h(RY, M) = Ly(\) (2.2)

with equivalent norms.
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Next, if we apply (1.7) instead of (1.6) in the above proof, we get the following polarized
version of (2.1),

f s)ds _4/Rd/ 85P £(9)*(s)ededs
+/ Px f(s)(Pxg(s)) ds+47r/RdP>kf(s)(I(P)*g(s))*ds.

-2k fPs<f><s+t>§Ps<g>*<s+t>f§%lfds

/ Px f(s)(Pxg(s))” ds+47r/RdP>kf(s)(I(P)*g(s))*ds

(2.3)

for nice f, g € L1(M;RG) + Loo(M;RG) (recalling that I is the Riesz potential).

2.2 Operator-valued bmo spaces

Now we introduce the noncommutative analogue of bmo spaces defined in [21]. For any
cube @ C R?, in the whole thesis, we will denote its center by cq, its side length by 1(Q),
and its volume by |Q|. Let f € Loo(M;Rg). The mean value of f over @ is denoted by

fo = ﬁfQ f(s)ds. We set
~ max L popdn? 24t)’}
1£[lbmee = ma {@uglll(@,/Q\f fal*dt) HMv'gule(/Q!f\ a2 || pf- (24)

Then we define
bmo® (R, M) = {f € Loo(M;RS) : || flbmor < 00}
Respectively, define bmo” (R%, M) to be the space of all f € L>°(M;R}) such that

£ lbmos < 00

with the norm || f|lbmor = ||/ lbmoc. And bmo(R%, M) is defined as the intersection of
these two spaces
bmo(R?, M) = bmo®(R?, M) N bmo" (RY, M)

equipped with the norm

| f1lbmo = max{|| fllbmoe | lbmor }-

Remark 2.1. Let Q be a cube with volume k% < |Q| < (k + 1)? for some positive integer
k. Then @ can be covered by at most (k + 1)¢ cubes with volume 1, say Q;’s. Evidently,

(k+1)¢

L 2 —d 2 d
‘Q|/Q!f\dt§k /detszc Z/\f\dt

Whence,

1 2 1 d 2 1
_ dt) 2 22 dt)2
oo gy [, 1770 < 2% ool 570

Thus, if we replace the second supremum in (2.4) over all cubes of volume one by that
over all cubes of volume not less than one, we get an equivalent norm of bmo®(R%, M).
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Proposition 2.2. Let f € bmo®(R? M). Then

1l zoomire) S N llbmose-
Moreover, bmo(R%, M), bmo®(R%, M) and bmo” (R% M) are Banach spaces.

Proof. Let Qg be the cube centered at the origin with side length 1 and @, = Qo + m for
each m € Z9. For f € Loo(M;RY),

wﬁﬁMw=H4“+wmﬁH ZHA;1HWH’M

$ X g [, 0ral,,

1
S ”f”%moC Z W 5 Hf”%)moc'

meZd
It is then easy to check that bmo®(R% M) is a Banach space. O

Proposition 2.3. We have the inclusion bmo®(R? M) C BMO(R?, M). More precisely,
there exists a uniform constant C' depending only on the dimension d, such that for any
f € bmo®(R%, M),

| flIBMoe < C|lf lbmoe- (2.5)

Proof. By virtue of Remark 2.1, it suffices to compare the term H(ﬁ fQ |f\2dt)% and

1
the term H(ﬁ Jof — fol?dt)?
have

™ for |Q| > 1. By the triangle inequality and (1.5), we

(= [ 172at| + [ follm
QI Jg M

—WWQLVﬁméM

which leads immediately to (2.5). O

[ 15 = Falany

)

Classically, BMO functions are related to Carleson measures (see [20]). A similar
relation still holds in the present noncommutative local setting. We say that an M-valued
measure d\ on the strip S = RY x (0,1) is a Carleson measure if

1
NA:sup—/ dA :Q C R cube } < o0,
(A |Q\§1{|Q|H @) I }
where T(Q) = @ x (0,(Q)]

Lemma 2.4. Let g € bmo®(R4, M). Then d)\, = |%P5(g)(s)|25 dsde is an M-valued

Carleson measure on the strip S and

1
max{N ()2, [[P*gllL o} S lgllbmos-

Proof. Given a cube Q with |Q| < 1, we decompose g = g1+¢2+g3, where g1 = (9—920) 120
and g2 = (9 — 92Q)Lra\ag- Since f%Pg(s)ds = 0 for any € > 0, we have %Pa(g) =

%PE(QI) + %Pe(gz)- By (1.5),

N(Ag) < 2(N(Ag)) + N(Ag,))-
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We first deal with N(Ay, ). By (1.6) and (2.5) we have
/ |QPE( (s) 5dsde < / / s)| edsde
T(Q) O Rd

_/]Rd/ ‘8 ‘ 91(&)?ededs

S [ a@Pds = [ 19— g s $1Q1 gl
R4 20
Thus, N(Ag,) < |lglI2 ¢+ Since |%P€(s)| S W, applying (1.5), we obtain

J 2 1 ‘g( ) 92@’2 /
P < =
| (}E 8(92)(5)‘ ~ /Rd\2(;2 8 ‘5 t‘)d+1 -

The integral on the right hand side of the above inequality can be treated by a standard
argument as follows: for any (s,¢) € T(Q),

2 2
/ Mdt </ lo(t) — 920" 93Q1| dt
Ri\2Q (€ + |5 — t[)4F RI\2Q It—CQ| +

< Z/ gQQPdt

2k+1Q\2kQ !t — cqltt!

k>1
< Losor L[ ) gl
S &7 Qg

L
~ Z(Q) Hf”bmoc7

where ¢ is the center of @. Then, it follows that N(Ag,) < (|91 0c-

Now we deal with the term [|P % g(s)||pm. Let @m = Qo + m be the translate of the
cube with volume one centered at the origin, so R? = U, .74Qm. By (1.5), for any s € R%,
we have

IPxg(s)m =[S /Q P(t)g(s — )],
gZ(/Q PO} - sup \\(/Q lg(s — £)[2d8) ¥ |

g s

N HQHbmoc-

Thus, ||P * gl v) = suPsera [P * g(s)[[m S [|9llbmos, Which completes the proof. O

Reexaming the last step of the above proof, we find that the only fact used for proving
the inequality ||P * gl[z_ (v S [l9llbmoe is that

S ([ PP < o

Recall that H$ (R?) denotes the potential Sobolev space, consisting of distributions f such
that Jo(f) € La(R?). Tt is equipped with the norm HfHHa ray = ([Tl Lymay- I 9 is a

function on R? such that ¢ € HS (RY) for some o > 2, we have
1

S, WP S (0 ) 0+ P s 5 16,

m m
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Then we have the following replacement of the above lemma:

Lemma 2.5. Let g € bmo®(R%, M). If 1 is the (inverse) Fourier transform of a function
in HS(R?Y), we have

1
max{N(Ag)2, [l *gllLon} S lgllbmor- (2.6)
In particular,
1
max{N(Xg)2, [|J(P)*gllLcnn} S l9llbmos- (2.7)
Proof. (2.6) follows from the above discussion; (2.7) is ensured by (2.6) and the fact that
(1+ ]5\2)5672’“5' € HY(RY), which can be checked by a direct computation. O

Remark 2.6. We will see in the next chapter that the converse inequality of (2.7) also
holds.



Chapter 3

Dual spaces of hj, for 1 <p <2

In this chapter, we will describe the dual of hg(Rd, M) for 1 < p < 2 as bmo type spaces.
We will call these spaces bmoj (R9, M) (with ¢ the conjugate index of p). The argument
used here is modelled on the one used in [21] when studying the duality between H5(R?, M)
and BMO¢(R?, M).

3.1 Definition of bmof]

Let 2 < ¢ < co. We define bmof(R?, M) to be the space of all f € Ly(M;RS) such that

o = ([0 2 [ 1560 = doPat} + | sup* -2 [ rtoPar]})” < e

SEQCR s€EQCR?
|QI<1 Q=1

If ¢ = oo, bmog(Rd, M) coincides with the space bmo®(R?, M) introduced in the previous
chapter.

Note that the norm || sup;" a]| 1 is just an intuitive notation since the pointwise supre-
mum does not make any sense in the noncommutative setting. This is the norm of the
Banach space Lg (N lso); we refer to [52, 28, 32] for more information.

If 1 <p < oo and (a;)iez is a sequence of positive elements in L,(N), it has been
proved by Junge (see [28], Remark 3.7) that

[sup *aillp = sup { > 7(aibi) : by € Lg(N), by >0, || Y billg < 1} (3.1)
! i€Z i€Z

It is also known that a positive sequence (z;); belongs to L,(N;lx) if and only if there is
an a € L,(N) such that x; < a for all 4, and moreover,

|y ey = inf{llally @ € Ly(N),2; < a,¥i}.

Then we get the following fact (which can be taken as an equivalent definition): f €
bmog(Rd, M) if and only if

Ja € La(N) s.t. @/ |f(t) — fol*dt < a(s), Vs € Q andVQ C R? with |Q] < 1 (3.2)
? Q

and

Jb e Ly (V) sit. \é,)y/ F(8)2dt < b(s), Vs € Q and VQ € R with |Q| = 1. (3.3)
2 Q



38 CHAPTER 3. DUAL SPACES OF hg FOR 1 <p <2

If this is the case, then
q a1
1 lbmog = inf {(|[allz + [[6]]3) % : a,b as in (3.2) and (3.3) respectively}.
2 2

Observe that the cubes considered in the definition of bmog(Rd,M) can be reduced

to cubes with dyadic lengths. Let Q¥ denote the cube centered at s with side length 27,
k€ Z. Set

2
17 — for|"dt and  f7(s) f@)| dt.
£ = l = 1 1)
Lemma 3.1. If g > 2, then
+ e #) 3 418\
(Isup * £202 + 1£7112)
k>0 2 2
gives an equivalent norm in bmog(Rd,M).
Proof. 1t is obvious from the definition that
+ e#)3 #112
[sup ™ £ 117 < 1 fllbmog  and  [[f7]1Z < || fllbmog-
k>0 2 p)

We notice that for any cube @ with |Q| < 1 and s € @, there exists & > —1 such that
Q C QF and |QF] < 4%Q|. Thus

1 1 1 1
all s 2 [ 170~ soar] 51 sup S < 2 s A2,
seqcrt|@l Jq 2 2
Q<1
Similarly,
1 1 1
all s = [ o] <2411,
schRd|Q‘ Q 2
Q=1
Thus the lemma is proved. O

We can easily see that the analogues of Proposition 2.2 and Lemma 2.4 still hold in
the present setting for the same reason. Thus we leave the proofs to the reader.

Proposition 3.2. Let ¢ > 2 and f € bmog(Rd,M). Then

”fHLq (M;RG) ~ Hbemo

Lemma 3.3. Let [ € bmog(Rd,M) and assume that the operators a and b satisfy (3.2)
and (3.3) respectively. Then d)\, is a q-Carleson measure in the following sense:

1
]Q/( )|§€P5*f(t)]25dtd€ <a(s), Vs € Q and YQ c R with |Q| < 1.
T

Moreover, |t * f(s)|? < b(s) for any s € RY, if 1 is the (inverse) Fourier transform of a
function in HY(RY).
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3.2 A bounded map

In the sequel, we equip the truncated cone T' = {(s,¢) € RE™ ¢ |s| < e < 1} with

the measure gﬂi. For any 1 < p < oo, we will embed hg(Rd,/\/l) into a larger space

Ly,(N; L§(T)) ®p Ly(N). Here L,(N; L§(T)) @p Ly(N) is the £,-direct sum of the Banach
spaces L, (N L§(T)) and L,(N), equipped with the norm

1
_ P P !
1600 = (17, ey + Dln)

for f € L,(N; L§(T)) and g € L,(N), with the usual modification for p = oco.

Definition 3.4. We define a map F' from h§(R%, M) to L, (N; L5(T)) ®p Ly(N) by

0
2PN+ 1. P f(9).

and a map E for sufficiently nice h = (W, h") € L,(N; L§(T)) @, Ly(N) by

F(f)(s,t,e) = (¢

E(h)(u) :/Rd [j‘d //Fh'(s,t,g)ggpa(sﬂ—u)‘ijg+h"(s)(P+4w1(P>)(s—u)]ds.

By definition, the map F' embeds hS(R%, M) isometrically into Ly, (N; L§ () @By Ly(N).
The following results, Theorems 3.8 and 3.17 show that by identifying hg(Rd,M) as a

subspace of Ly, (N; L§(T)) @, Ly(N) via F, he(R?, M) is complemented in Ly, (N L§ @)@,
L,(N) for every 1 < p < oo by virtue of the map E.

Proposition 3.5. Let 1 < p < oo. Then for any nice f € Li(M;R3) + Loo(M;RG), we

have
E(F(f)) = f.
Proof. Applying (2.3), we get, for any nice function g,
[ B @t = [ [2 [P+ 0P+ -0 G gt
P f(s) / (P(s — u) + 4mI(P)(s — u))g(u)du] ds

-2 f T P()(s + 1) Pelg)(s + 1) B

+ Pk f(5)(Px g +4nI(P) * g)(s)] ds
= | flu)g(u)du,
R4
which completes the proof. O

The following dyadic covering lemma is known. Tao Mei ([42]) proved this lemma for
the d-torus and also for the real line. For the case R? with d > 1, we refer the interested
readers to [10, 27] for more details. In the following, we will give a sketch of the way how
we choose the dyadic covering.

Lemma 3.6. There exist a constant C' > 0, depending only on d, and d + 1 dyadic
increasing filtrations D' = {D;}jez of o-algebras on R¢ for 0 < i < d, such that for any
cube Q C R4, there is a cube Dfn’j satisfying Q@ C Dfn,j and \Dfn,j| < C|Q|.
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Proof. Let {a'}{_, be a sequence in the interval (0, 1) such that
min o’ — o | > 0.
14/
Then we define
o, j =0,
af=qa'+ 327 ~1), j<0 and —j even, (3.4)

ol —3(279+1), j<0 and —j odd.

The o-algebra D; is generated by the cubes

Dfmj = (a;'- +m277, aé- +(mp+ 1277 x - x (ozé- + mg277, a} + (mg +1)277],

for all m = (myq,--- ,mq) € Z°.
For any cube Q C R?, there exist a constant C, depending only on {ai}gzo and d, and
a dyadic cube Dy, ; such that Q C D}, ; and |D;, ;| < C|Q|. O

To show the boundedness of the map E, we need the following assertion by Mei, see
[42, Proposition 3.2]; we include a proof for this lemma, since the one in [42] is the one
dimensional case. Let 1 < p < 0o, and f € L,(N) be a positive function. Let @ be a cube
centered at the origin, and denote @ =t 4+ @). Then we define

1

Q
=131 o,

f(s)ds

Lemma 3.7. Let 1 < p < 0o and let (fi)rez be a positive sequence in Ly(N) and (Q¥)rez
be a sequence of cubes centered at the origin. Then

I o S 1Y fellp-

keZ kEZ

Proof. Similarly to the proof of [42, Proposition 3.2], we are going to apply [28, Theo-
rem 0.1] for noncommutative martingales. By Lemma 3.6, we can cover every Q¥ by some
D!, . and thus by some D! which has twice the side length of Dj, . . Moreover,

m’,Ji? m,jr—1

|Di. jk | < O1QF. Obv1ously,]t + Q¥ is still covered by ¢+ Di . ju—1, but the later is not
necessary a dyadic cube in Djk_ Let us adjust the translation vector t = (t1,...,tq) as
follows. Write Q* = (—a,a] X ... x (—a, a] and D} b1, bo] X ... x (b, ba], then either
by —a > 277k or —a — by > 277k, Without loss of generality, we can assume by —a > 277,
Now set t = (t1,...,tq) with t~ the largest real number in the set 277k7, less than t;. Then
we can check that ¢t + QF is covered by t + Di. m,ju—1 and that the later is a dyad1c cube.
Thus,

m,Jr— 1_(

(f@ <c Y E(flD),

0<i<d

where E(-|D}) denotes the conditional expectation with respect to Dj. Then the lemma
follows from [28, Theorem 0.1]. O

Theorem 3.8. For2 < p < oo, E extends to a bounded map from L,(N; L§(T)) @, Ly(N)
to bmo$ (R, M).
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Proof. We have to show that for any h = (k', 1) € L,(N; L§(T)) &, Ly(N),

Fix h = (W', 1h") € Ly(N;L5(T)) @, Ly(N) and set ¢ = E(h). For v € R and k € N,
denote by Q¥ the cube centered at v with side length 27% then we have Q¥ = v+ Qk. We
set

R (s, t,e) = h'(s,t,e)]lefl(s), hy(s,t,e) = h/(S,t,E)l(Qkfl)c(S)

and

1 2
oL () = 1w |, 1) = vyl du

dtde
Qb Q !
B%o( /]Rd// 88 )90 (s,t,v)hy (s,t,z’;‘) ds

with (aa P.)9 (s, t,v) = |Qk\ ka 5cPe(s +t —u)du. Then, we have

Let

~ \Qk\/ — BY% (v) du
9 d dtde
S\Q’“\ o / -/ ~h5<8’tv€>[*Pe<s+t—u>—@Ps)%(s,t,v) s du
dtds = |2
’Qk’ o /kl/ h,8t€ (8+t—u)€—dds‘ du
2
+ |Qk, o /R h”(s)[P(s—u)+4wI(P>(s—u)]ds\ du.

When s € (Q¥~1)¢, u e Q¥ and (t,¢) € T, we have |s+t —u|+¢ ~ |s — v| +& with uniform
constants. Then,

A

// 2dtde / / 22k g de
|8~I—t—u|+a€d+2 gd—1 ~ B0e) (|5 — v + e2)dt2 ™ g1

9—2kg 2~
o T sy
o (s —v[2 +e2)d+2 |S_U|2d+2

Let (ax)ken be a positive sequence such that [| 37~ akH(g), < 1, where r/ denotes the
conjugate index of r. Let

22k 1 , o dtde
A= Z / /Q,;_l)c s — U|d+1ds ' /(Q;;_l)c s — v]dH1 //f |ho(s,t,€) cdt+1 ds - ag(v)dv

k>1
- 9 dide

B= hi t P. t— ds| du - d
i1 /d ’Q’“\ Q’5| Q’;l/’f 15,1, €) 5 Pels + 1 — ) gy ds["du- ag(v)dv

C= Z / h"(s)[P(s — u) + 4wI(P)(s — u)]ds]Qdu -a(v)dv.

= Jre QF] Q’“’ R

Then,
Z /gpk Jag(v)dv S A+ B+ C.

k>1
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First, we estimate the term A. Applying the Fubini theorem and the Holder inequality,

we arrive at
_ dtde
A<Z/2 /k1|v—s\d1//\h'st B

k>1
dtde —d—
<| //f\h;(-,t,g)ﬁ s HZQ k’/ o~ ag (v)dv
2 k (-1)(d+1),

SV o sz Z/J w2 v ,

k>1 <k
y is the norm of Lz, (N) with respect to the variable

ds ag(v)dv

(5

Here and in the context below, || - H
s € R%. Now we apply Lemma 3.7 to estimate the second factor of the last term

2971 ay (v)dv

(j—1)d
PIPILLy N 3y

k>1 <k
S DIPIL I P D orA =
JEL k>j k>1 (2)
E>1
Then we move to the estimate of B:
1 0 dtde
B<Z/ de/ / / R (s, t,e)af (v) P(s+t—u—ds‘dudv
k>1 7R R /QT! Oe
1 0 dtde
< / 2k sup 7'/ /~h’(s,t,€)a2(v)—P (f)*(s+1) —ds dv.
igl Rd ||f2:1’ Qe JJF B oe t ’

Since h§(R%, M) = Ly(N) with equivalent norms, by the Cauchy-Schwarz inequality and
Lemma 3.7, we get

kd
Bey [ J/W
k>1
dtd
62]"’d/k_ ag(v)dvds

SN e
HZde/k1 (v)dv

<|h ||2
< 27|12 - < 24|11 |)? .
<29 IILP(MLS(F))H;% (2 | || Ly (NiLs(©)

% s ar(v)dv - [ f]lng

Ly (N;L5(T)) (zy

The techniques used to estimate the term C are similar to that of B
kd " 2
c=%r /d 2 / B @P(s = ) + 4 (P)(s = w)lds e (v)dvdu

k>1
R (s)[P(s — u) + 4wl (P)(s — “)]ds‘2HB

= HZde/k L 1
< | /Rd B"(s)[P(s — u) + 4m I (P)(

where the |-z is the norm of L» (NV) with respect to the variable u € RY. Take f € Ly (N)
with norm one such that
2
' ($)[P(s — u) + 4wI(P)(s —u)]ds|2Hp = T/ B! ()[P * f(s) + 4mI(P) *f(s)]ds\ .
3

I/,
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Then

2
v [ )P £(5) +ATI(P) = Fo)las] < (WGP = 7+ 4mT(P) x £1
S IR IZ1F1 < IR,
Combining the estimates of A, B and C with (3.1), we obtain

# < 2
su
I kzll) <P Hp |h H (NLC(F))@pL %)

It remains to establish the Lg-norm of ¢ (s) = | QO‘ fQo lo(t | dt, which is relatively
easy. For any positive operator a such that HaHL(%),(N) <1, we have

7/90#(7})@(”)6@ ST/R"Z/Q |/Rd //fh’(s,t,s)aaePE(s+t—u)j§f§d3|2du.a(v)dv
+T/Rd /QO y » " (5)[P(s — u) + 471 (P)(s — u)]ds|*du - a(v)dv
def B/ + C,

The terms B’ and C’ are treated in the same way as B and C respectively. The results are

dtde
, , 2 /112
B<r [ [t M/QS a(o)dvds < I F))ll allg

o <| /Qg oy, 1] p Pt =)+ 4m1ps - s ||h"\|§;.
So we obtain
HQO#HP S ||h||2 Ly (N5L§(D)) @p Lp(N)
Thus, Lemma 3.1 ensures that
1B oo S WAl (s )0 0
whence the theorem. O

Corollary 3.9. Let 1 < p < 2. For any f € L,(M; L§(RY, (1 + |t|9t1)dt)), we have

||f”h ||f” (M Lc Rd (1+|t‘d+l)dt))

Proof. To simplify the notation, we denote Lo (R%, (1 + [t|9*1)dt) by W,. Let g be the
conjugate index of p. By duality, we can choose h = (h/, 1) € Ly(N; L§) ®q Ly(N) with
norm one such that

s° ( )y + 1P fll

. dtde "
/Rd // —PL(f) (s + N (s,t,e)?dstT/RdP*f(s)h” (s)ds]|
:|T/quh (u)dul,

BE(h)(u) :/Rd [/Fh'(s,t,g)ggpg(sﬂ— )@M”(S)P(s—u)]ds. (3.5)

where
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Following the proof of Theorem 3.8, we can easily check that E is also bounded from
Lg(N;L5(T)) &g Lg(N) to bmof (R, M). They applying Proposition 3.2 and Theorem
3.8, we have

I~ [ & EW) (s)ds
S I R CEE

HL‘D”bmog(Rd,M)—

ds
S swr [ O ()
sanLq(M;Rg)q’ 1+ s] 2l
d
= (1 + 81" Fll Ly mire) = 1Ly omswe)-
Thus we obtain the desired assertion. O

3.3 Duality

The following is the main theorem of this section.

Theorem 3.10. Let 1 < p < 2 and q be its conjugate index. We have hg(Rd,M)* =
bmoZ(Rd,./\/l) with equivalent norms. More precisely, every g € bmog(Rd,M) defines a
continuous linear functional on hg(Rd,M) by

(5 =7 [ 15)9"(5)ds, VF € L(MiWE).

Conversely, every { € h;(]Rd,M)* can be written as above and is associated to some
g€ bmo;(Rd, M) with
14l ng)= == [lgllbmog
Proof. We first prove
169 ()] < 11gllbmog 1 lng (3.6)

for f € hy (R?, M) compactly supported (relative to the variable of R?). We assume that f
is sufficiently nice that all calculations below are legitimate. We need two auxiliary square
functions. For s € R? and ¢ € [0, 1], we define

o= ([ [ epnnlri)” (3.7
e = ([ [ e noPEh)’ (33

Both 5¢(f)(s,e) and s°(f)(s,e) are decreasing in € and s°(f)(s,0) = s¢(f)(s). In addition,
it is clear that 5°(f)(s,e) < s°(f)(s,e). Let (ei)ier be an increasing family of 7-finite
projections of M such that e; converges to 1,4 in the strong operator topology. Then we
can approximate s°(f)(s,e) by s(e;ifei)(s,e). Thus we can assume that 7 is finite; under
this finiteness assumption, for any small § > 0 (which will tend to zero in the end of the
proof), consider s°(f)(s,e) + d1rq instead of s¢(f)(s,e), we can assume that s°(f)(s,e) is
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invertible in M for every (s,e) € S. By (2.3) and the Fubini theorem, we have

:T/fs

/Rd/ 8EP <(9)*(s)e deds
+T/de*fs (Prg(s)'ds+7 [ P f)(I(P)g(s))"ds

2d 1 0 0 dedt
== —P —P.(9)*(t)——
. /R d /0 /B gy DTN 5 Pela) () s

7 [ PSP gl ds+7 [ P fs)IP) 5 g(s)ds.

Then,
’<‘ L foos t>sC<f><s,e)PT”s%fxs,sf%”%s(g)*(t)f%lfds\
/P* )P xg(s ds‘-i—‘ / Pxf (8))*ds‘)
RS}

The term II is easy to deal with. By the Holder inequality and (2.7), we get
IL< [P s fllpl1P # gllg + [P+ fllpllL(P) = gllq-
Then by [60, Proposition V.3 and Lemma V.3.2] we have

P gllg S 17(P) * gllg, and [[I(P) *gllq < [|J(P) * gllg-

Hence, by Lemma 3.3,
IT S 19 llbmog [1f[Ing.-

Now we estimate the term I. By the Cauchy-Schwarz inequality

Gper [ [ (o) PO 5 )50 2 s
fudy g PO )00 0 s

df 4. B.

Note here that s¢(f)(s,e) is the function of two variables defined by (3.7), which is dif-
ferentiable in the w* sense. We first deal with A. Using 35°(f)(s,e) < s°(f)(s,e), we

have
asr [ o POORE () s ey

-~ L) (a?
_ o /]R d /O L f)(s,e)plif( £)(s, )deds.

(s, E)Q)EC(f)(s, )P 2deds
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Since 1 < p < 2 and 5°(f)(s,€) is decreasing in ¢, 3°(f)(s,)P~! < 5°(f)(s,0)P~L. At the

same time, %Ec(f)(s,a) < 0. Therefore,
A,S—T/* 807’1/ 6—3 (s,e)deds
< T/ s°(f)(s,0)7ds = || fIIy.
R4 P

The estimate of B is harder. For any j € N, we need to create a square net partition

in R as follows:

Qung = (= 1)27, Z2m2 ] x ¢ (= (ma = D27, Z=ma2

d Vd
with m = (mi, -+ ,mq) € Z% Let ¢, ; denote the center of Qy, ;. Define
dtdr\3s
/ / (NOPSGT)? it 5 € Quy. (3.9)
2-7J Cm]

For any s € R? and k € Ny (Ng being the set of nonnegative integers), we define
d(s, k) = S°(f)(s,k)* 7 = S°(f) (s, k = 1)*77

Since B(s,r — 5) C B(cp,j,7) whenever s € @, ; and € > 277, we have
s°(f)(s,6) < S(f)(s,7), Vs € Qgre > 277

It is clear that S°(f)(s,j) is increasing in j, so d(s,k) > 0. At the same time, d(s,k) is
constant on Qy,x and Y-, d(s, k) = S¢(f)(s,5)*7P. Therefore,

B<7-ZZ/ /

meZd j>1

_T/Rdzsc i [ ([ 3P0 5 s
_T/ S d(s,k /2 JH(/B(S,;)’;P()(W at ) deds

9—Jj+1

([ F5EPOOR )80 ) et

71>211<k<j
2—j+1 a dt
_T/ kgd #F) Z/ / ’gf’s(g)(t)l2  )deds
1 ji>k
o 9 dt
2
—T;’;ds g / / / £ 35P (9)(@)] d )dsds

Since g € bmog, Lemma 3.3 ensures the existence of a positive operator a € Lg (./\/ ) such

that HGH% S ||g||bm02 and

Ql / )(t)|?edtde < a(s) and for s € Q and for all cubes @ with |Q| < 1.
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Let @m,k be the cube concentric with @), » and having side length 2-k+1 By the Fubini
theorem and Lemma 2.4, we have

oo

2—k+1 92— k+1

/ 5 8&? ()()\2 dt dads<2d/ / (9)(s)|%ededs

0
:2d/ _P 2
T(@nhk)\ag, -(g) (o) Pededs

< /Q a(s)ds.

m,k

Then we deduce

[ Sl < 1SR Pl

2— 2—
< 171 allg < 17125 19 omes-

A

Combining the estimates of A and B, we complete the proof of inequality (3.6). With
this in mind, a density argument then yields that ¢, extends to a continuous functional on
he(R?, M) with norm

Wallney- S 119 bmot.

Now we prove the converse. Suppose that £ € hg(Rd,M)*. By the Hahn-Banach
theorem, ¢ extends to a continuous functional on L, (N; Lg(f)) @®p Lp(N) with the same
norm. Thus, there exists h = (h/, ") € Ly(N; L§(T")) @q Le(N) such that

0 . dtde .
)= T/Rd //f SP.(f)(s + D (s,t,s)e—dds+7-/RdP*f(s)h” (s)ds,
=7 [ F@E®m) @,
Rd
where E is the map defined in (3.5), and that

1l (@) o0y = Il

Let g = E‘(h) Following the proof of Theorem 3.8, we have

lgllomo; S 1€l -

and

of)=r ” f(s)g*(s)ds, Vf € Ly(M; Wg).

Thus, we have accomplished the proof of the theorem. ]
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Corollary 3.11. Let 2 < q < oo. Then g € bmog(Rd,M) if and only if d\y =

]%Pa(g)(s)]%dsde is an M-valued Carleson g-measure on S and ||J(P) x g||; < co. Fur-
thermore,

g " 1T(P) * gllq-

glomo; ~ | sup* / )(1) Pedtde |
o sEQCRd’Q|
Q<1

Proof. From the proof of Theorem 3.10, we can see that if d\; = |%P5(g)(s)|25dsd5 is an

M-valued Carleson g-measure on S and J(P) * g € Ly(N), then g defines a continuous
functional on h¢(R?, M):

(1h=r [ 1) @)is

and

1 0
)| (hey S || sup
| Hh HschRd|Q’ T(Q)|85
lQl<1

P.(g)(t)|*edtde

1
2 1I(P) * gl
2

By Theorem 3.10 again, there exists a function g’ € bmoj (RY, M) such that

19/ e < || sup / 0P| ; + (P gl
sEQCRd|Q|

lQl<1

and that

T f(s)g*(s)ds =7 | [f(s)g"(s)ds,
Rd R4

for any f € he(R? M). Thus, g = ¢’ with

Iolhones < [ s * =0 / |25dtdeH 1) * g1l
s€EQCR?
|QI<1

The inverse inequality is already contained in Lemmas 2.4 and Lemma 2.7. We obtain the
desired assertion. O

3.4 The equivalence h, = bmo,

We begin with two lemmas concerning the comparison of s¢(f) and g°(f). We require an
auxiliary truncated square function. For s € R% and ¢ € [0, %], we define:
2 a 1
e . 3,0 2 2
Do) = ([ 15Prs) Prar) . (3.10)

€

Lemma 3.12. We have -

gc(f)(svs) 5 Sc(f)(sa 5)7

where the relevant constant depends only on the dimension d.

Proof. By translation, it suffices to prove this inequality for s = 0. Given ¢ € [0, %], for
any r such that e < r < %, let us denote the ball centered at (0,7) and tangent to the
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boundary of the cone {(¢, u) c R |t < —2u} by B,. We notice that the radius of B,
is greater than or equal to f By the harmonicity of P,(f), we have

9
5P DO = o [ G P
Then by (1.5), we arrive at

O (HO)P <

or Cdi1T

\/gd-i-l 8 )
o ® J5. ‘%Pu(f)(t)‘ dt,

where cqy1 is the volume of the unit ball of R%!. Integrating the above inequality, we get

2 2 d+1
3 0 55
—P.(f)(0)rdr < / dtdud 3.11
| g B @Prar < [P0 [P0 Patdudr (3.11)
Since (t,u) € B, implies ﬁl r < \/\g/iu and § < wu < 1, the right hand side of (3.11)

can be majorized by

d+1 1 5 o
o L P [ Gt < el 0. R

Cd+1

where C'is a constant depending only on d. Therefore, g°(f)(0,¢) < s°(f)(0, 5). O
Lemma 3.13. Let 1 <p < oo. Then for any f € hg(Rd,M), we have

15Ol + 1P fllp S lg°()llp + 1P Fllp-

Proof. When 1 < p < 2, let g be a function in bmog(]Rd, M) (¢ being the conjugate index
of p). Following a similar calculation as (2.3), we can easily check that

r [ Hs)g"(5)ds

_ 47 /R d /0 ’ aipf( f)(s)aiPs(g)*(s)edads
+ (T/dP*f(s)(P% *g(s))*ds—i—?T/RdP*f(s)(I(P

dof 4

)+ g(s))"ds)

1
3

The term II can be treated in the same way as in the proof of Theorem 3.10:

LS [P fllp - (1T (P 1) fllp-

1
3

Applying Lemma 3.3, we have

ISP * £llp - lgllmo;.

Concerning the term I, we have

P < // $)2G°(f) (s, )P 2ededs

/Rd/ 2G°(f)(s,€)* Pededs

def A/ B/
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The term A’ is estimated exactly as A in the proof of Theorem 3.10, thus A" < [[g°(f)/3.
To estimate B’, by Lemma 3.12, we have

B < T/Rd/ (ES°() (5, 5 )ededs.

Then we can apply almost the same argument as in the estimate of term B. There is only
one minor difference: when ¢ > 277 and s € Qy,,j, we have s°(f)(s, §) < S°(f)(s,j + 1).
Thus we conclude that

B" < |9lpmogls ()57
Combining the estimates above, we get

15l + 1P Fllp S 1O+ P * Fllp S g (Hllp + 1P+ flp-

The case p = 2 is obvious. For p > 2, choose a positive g € L(g)/(/\f) with norm one

such that,
0 dtd
I = | [L1aepane+ PSS

= T/Rd //1;|68€P5(f)(8+t)|252d§g(s)d5.

Then by (3.1) and Lemma 3.7, we have

0 o dtde B 19 , dide
T/]Rd //F!&Pa(f)(ert)’ FQ(S)CZS—T/RCZ‘/O |$Pa(f)(t)| »5511/]3(7578)9(‘9”8‘

By the noncommutative Hardy-Littlewood maximal inequality (the one dimension R case
is given by [42, Theorem 3.3], the case R? is a simple corollary of (3.1) and Lemma 3.7),
there exists a positive a € L(%),(N) such that HaH(g)/ <1 and

)
2

/ s)ds < a(t), VteRY Ve >0,
B(t,2~ ! B(t,2—F)

Thus,
Lo o dtde 1o 9
—_ bt < —_
T 1P OP S [ e <ear [ [ &Pa(f)(t)l calt)dtds
<cdH/ P () (1)t ol gy
< clg" (1)

Therefore, we obtain
1s“UNlp < Mg (F)llp-

Thus, the assertion for the case p > 2 is also proved. ]

To proceed further, we introduce the definition of tent spaces. In the noncommutative
setting, these spaces were first defined and studied by Mei [43].

Definition 3.14. For any function defined on R? x (0,1) = S with values in L; (M) + M,
whenever it exists, we define

td 1
/|ft+s d;)z,sERd.
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For 1 < p < oo, we define

Ty (R, M) = {f : A°(f) € Ly(N)}

equipped with the norm HfHT;(Rd7M) = [|[A°(f)||p- For p = oo, define the operator-valued
column T2 norm of f as

dsden 3
— 2 2
1 fllze, = s, )

)

M

“‘Hﬁ@rT@

and the corresponding space is
TSR M) = {f : | fllzg, < oo}

Remark 3.15. By the same idea used in the proof of Theorem 3.10, we can prove the
duality that T¢(R?, M)* = TR M) for 1 < p < oo and %—i—% = 1. For the case
p = 1, it suffices to replace %Ps(f)(s) and %Pg(g)(s) in the proof of Theorem 3.10
by f(s,e) and g(s,e) respectively. A similar argument will give us the inclusion that
TS (R4, M) C T¢(RY, M)*. On the other hand, since Lo (N;LS(I)) € TS (R, M), we
get the reverse inclusion. For 1 < p < oo, the tent space T;(Rd,/\/l) we define above is

a complemented subspace of the column tent space defined in [42]. So by Remark 4.6 in
[70], we obtain the duality that T (R, M)* = T¢(RY, M).

Theorem 3.16. For 2 < g < oo, hg(Rd, M) = bmog(Rd,M) with equivalent norms.

Proof. First, we will show the inclusion hg(Rd,M) C bmog(Rd,M). By Theorem 3.10,
it suffices to show that h¢(R% M) C h&(R%, M)*. By (2.3), for any f € h¢(R% M) and
g e hg(Rd,M), we have

0 dtde
[ or s == [ [+ 05 ey (s + 0 55 ds
+ /]Rd Pxg(s)(Px f(s))"ds + 4m /Rd Pxg(s)(I(P)* f(s))*ds

= ct/w //F888135(9)(5+t)§€Pa(f)*(8+t)i§dfd5
-|-/RdP*g(s)(P *f(s))*ds+47r/dI(P) *g(s)(P = f(s))"ds.

R

Then, by the Holder inequality,

0
7 [ 965 @ds| < e 5P, (i I 5P, ()

+WP+I@D*mbWP*ﬂM
< (5@l + 1P+ 1PY) = g, ) 1711

Now, we will show that for any 1 < p <2and g € hg(Rd, M), we have ||[(P+I(P))=*gl|l, S
||g||h5. Since 2 < ¢ < oo, we have 1 < 4 < oco. Applying the noncommutative Hardy-
Littlewood maximal inequality, we get

1 3 1
+ - 2 < 2 2
£ llomes, || sup @Léuundt SRR =151

2
q
sEQCRA 2
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This implies that Ly(N) C bmog(Rd, M) for any 2 < ¢ < oo. Then by Theorem 3.10, we
get he(R?, M) C Ly(N). Therefore we deduce that

I(P+1(P)) *gllp S llgllp < llgllng- (3.12)

Thus,
IT/Rdg(S)f*(S)dSI S g llgllng-
We have proved h¢(R%, M) C bmof (R, M).
Let us turn to the reverse inclusion bmog(Rd, M) C hg(Rd, M). We need to make use

of the tent spaces in Definition 3.14. We claim that for ¢ > 2, any f € bmoj induces a
linear functional on Ty @, Ly(N). Indeed, for any h = (h',h") € TS ©p Ly(N), we define

1 9 *
h) :T/Rd/o W (5,2) 5P f)" (s)deds -
+r /R ()P x 1) (5) + A(1(P) * £)"(5)]ds.

Set

dtdr
W) //S,ﬁ_f (5,
dtdr
)2
AR (s,¢) // |h' (s, pESE
Then by the Cauchy-Schwarz inequality, we arrive at
1 9] dt \—
< o 2 Al N\—c 1y p—2
WIS (7 [, [ (L VPO ) A0, deds)

(T /Rd /01 </B(S,;) %PEU)(OP%)ZC(H)(S,6)2_pd5ds)

+ |T/Rd h//(s)(P *f(s))*ds| + |7-/Rd h"(s)([(P) *f(S))*ds|.

[NIE

N|=

Following a similar argument as in the proof of Theorem 3.10, we obtain that

16y S (1B llzg + A" ) lbmog, S 1Pl zge, 2, - 11 bmog

which implies that [[{f < cg|| fllbmog- So the claim is proved.

Next we show that [|f|lne < Cyl¢[|. By definition, we can regard T as a closed
subspace of Ly(N; L§(T)) in the natural way. Then, ¢y extends to a linear functional on
Ly(N; L§(T)) @p Ly(N). Thus, there exists g = (¢',g") € Ly(N; L§(T, gﬁi ) ®q Le(N)
such that

~ <
and for any h = (I/, 1) € L,(N; L§(T)) @, Lp(N),

dtde
— / /% " 1%
h)—T/Rd//Fh(t,s)g (s,t,€) des—l—T/dh(s)g (s)ds

= T/ /1 h'(s 5)/ g™ (s,t s)dt% +T/ h"(s)g"* (s)ds.
R4 JO ’ B(se) o gd+l R4
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Comparing the equalities above with (3.13), we get

0 1 ,
5PN = g [ oGt e

and
Px f+4nl(P)* f =4".
By Lemma 3.13, we have

1 0 9 1

171 S | 152 o))
< t dtd
cdH / sd“/B( (s,t,¢)? 6)

S, (zs) + P gl

Fllq

flq

Now let us majorize the second term ||P * f||, by ||¢”|l4- Indeed, consider the function
o0
G(s) = 277/ e 2™ P, (s)de.
0

We can easily check that G € Li(R?), |G|l; < 1 and G(£) = (1 + |¢])~!. This means that
the operator (1+ I)~! is a contractive Fourier multiplier on L,(N'). Therefore,

[P fllg < [P+ I(P))  fllg < 4mllg”[lg.
Finally, we conclude that |[fllne < [[¢¢]] < [Iflbmo; and thus he (R, M) = bmo (R, M)

with equivalent norms. O
The following theorem extends the content of Theorem 3.8.

Theorem 3.17.

(1) The map E extends to a bounded map from Lo (N5 L§(T)) oo Loo (N) into bmo®(R?, M)
and

1B oo TP (258 @ e )

(2) For 1 < p < oo, E extends to a bounded map from L,(N;L§(T)) @, Ly(N) into
he(RY, M) and
Eh)||ne < ||k ~ .
Proof. (1) is already contained in Theorem 3.8. When p > 2, (2) follows from Theorem
3.10 and Theorem 3.16. The case p = 2 is trivial. For the case 1 < p < 2, using the duality
between h;(Rd, M) and bmog (R9, M), we have

IE® 5 swp |7 [ E@)s) (s)ds)
I lbmog <1 IR

Then, by Theorem 3.16 and (3.12), for h = (B',h") € L,(N; L§(T)) @, Ly(N), we have

sup |7 [ E(h)(s)f*(s)ds|
[/ lbmog <1 R?

sup / / h'(s,t,e)=—P(f)*(s + t)dtde + 1" (s)([P + 4= I(P)] *f*(s))]ds‘
||f||hC<1 R?

S 1Al

Ly (N;LS(T)) @pLp(N)
The desired inequality is proved. ]
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The above theorem shows that, for any 1 < p < o0, hg(Rd,M) is a complemented

subspace of L,(N; L§(T)) ®, L,(N). Thus, combined with Theorem 3.10, we deduce the
following duality theorem:

Theorem 3.18. hf,(]Rd,M)* = hg(Rd,M) with equivalent norms for any 1 < p < 0.



Chapter 4

Interpolation

In this chapter we study the interpolation of local Hardy and bmo spaces by transferring
the problem to that of the operator-valued Hardy and BMO spaces defined in [42]. We
begin with an easy observation on the difference between bmoj and BMOj norms.

Lemma 4.1. For 2 < q < oo, we have

1
lgllbmos & (I9llEumog + 1I1J(P) * gllg) -

Proof. Repeating the proof of Proposition 2.3 with || - [[s replaced by || - |7, (vie), We
3

have |[g]lBmos < [|9]lbmog- By Lemma 3.3, it is also evident that [|J(P) x gllq < [|g/lbmog-
Then we obtain

Qe

(g0 + 17(P) * gllg)

On the other hand, by Corollary 3.11, we have

< llgllommo;.

1 0 1
lolmog S [ sup ™ = [ | Pe(g)(0) Pedtde] ] + 17P) x gl
! HschRd’@ T(Q) Oe : H% q

Q<1

Clearly, the first term on the right side is estimated from above by ||g[|gymoe (see [70,
Theorem 3.4]). Therefore,

Qe

lgllbmog S lgllmmos + 17(P)  gllg = (lgllEmos + I17(P) = gllg) *
Thus, the lemma is proved. ]

Define Fy,(N) to be the space of all f € L,(M;RG) such that || J(P) = f||; < co. From
the above lemma, we see that bmof(R?, M) and the space BMOS(R?, M) @y Fy(N) have
equivalent norms. By the interpolation between BMO¢(R?, M) and BMO®(R?, M) (sce
[42] for more details), we deduce the following lemma:

Lemma 4.2. Let2 < qg<oo and 0 <8 < 1. Then
(meZ(Rd7M),bmoc(Rd,M))9 C bmoZ(Rd,M) with o= 7

Proof. By Lemma 4.1, we can see that

bmo¢(R?, M) = BMOS(R?, M) &4 Fy(N).
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with equivalent norms. Define a map

Ty Fg(N) — Ly(N)
fr—J(P)xf.
Thus, 7, defines an isometric embedding of F(N) into Ly(N). Then by the interpolation
between BMOS(R?, M) and BMO“(R?, M), we get
(bmof (RY, M), bmo’ (R, M), = (BMOS(RY, M) By Fy(A'), BMO(RY, M) G FuclA))
= (BMOg(R?, M), BMO“(RY, M)),, &, (Fy(N), Foo(N))
C BMOS(RY, M) &, F,(N) = bmo(R?, M),

0

0

which completes the proof. O
Theorem 4.3. Let 1 < p < co. We have

(bmo®(R?, M), h§(R%, M)), = h§(RY, M).

=

Proof. Let 1 < p <2 and 1% = 1]'%0 + 6. Since the map F' in Definition 3.4 is an isometry
from h¢(R%, M) to L,(N; L§(T)) @ Ly(N), we have

(h§ (R, M), h§(RY, M)), C he (R, M). (4.1)

By Theorem 3.18, hg is a reflexive Banach space. Then applying [3, Corollary 4.5.2], we
know that the dual of (h§(R?, M), h§(R% M)), is (bmof(R%, M), bmo®(R?, M)),. There-
fore, if the inclusion (4.1) is proper, we will get the proper inclusion

bmof(R?, M) ¢ (bmoj(R?, M), bmo®(R?, M),

which is in contradiction with Lemma 4.2. Thus, we have
(h§ (R, M), h§(RY, M)), = h, (R, M). (4.2)
By duality and [3, Corollary 4.5.2] again, the above equality implies that for ¢’ = ﬁ,
(h¢(RY, M), bmo®(R?, M), = he, (R, M). (4.3)

For the case where 1 < p1,ps < o0, the interpolation of hy, (R%, M) and he, (R4, M) is
much easier to handle. Indeed, by Theorem 3.17, we have, for any 1 < p < oo, hlc,(Rd, M)

is a complemented subspace of L, (N; L§ (f)) @®p Lp(N) via the maps F and E in Definition
3.4. This implies that, for any 1 < p1,p2 < 00,

(he, (R, M), 1S, (RY, M), = h(RY, M),

) P2

with % = 1p;19 + p%. Combining this equivalence with (4.2), (4.3), and applying Wolff’s
interpolation theorem (see [69]), we get the desired assertion. O

The following theorem is the mixed version of Theorem 4.3, which states that hy (RY, M)
and bmo(R%, M) are also good endpoints of L,(N).

Theorem 4.4. Let 1 < p < co. We have (X,Y ), = L,(N) with equivalent norms, where
P
X = bmo(R%, M) or Loo(N), and Y = hi (R4, M) or Li(N).
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Proof. By the same argument as in the proof of Theorem 4.3, we have the inclusion

(meQ(Rda M)> me(Rd, M>)9 C meq/(Rd, ,/\/l) q/ = %’

which ensures by duality that
(hp(RY, M), by (RE, M), D by (R, M) = Ly (N)

for I% = % + 0. Then by Proposition 6.15,

Ly (N) € (hp(RY, M), by (RY, M)y = (Ly(N), b (R, M)) .
Since hy (R%, M) C L1 (N), then
(b (RY, M), b1 (R, M), C (Lp(N), Li(N)) = Ly ().
Combining the estimates above, we have
(hp(RY, M), by (RT, M) = Ly (N).

Again, using duality and Wolff’s interpolation theorem, we can conclude the proof by the
same trick as in the proof of Theorem 4.3. ]

We end this chapter by some real interpolation results.
Corollary 4.5. Let 1 < p < co. Then we have

(1) (bmo®(R%, M), h§(R%, M), b= he(RY, M) with equivalent norms.

(2) (X,Y), b= Ly(N) with equivalent norms, where X = bmo(R% M) or Le(N), and
p7
Y = hi (R4, M) or Li(N).

Proof. Both (1) and (2) follow from [3, Theorem 4.7.2]; we only prove (1). Let 1 < p; <
p < pa < oo with % = lp_—l” + ;’—2. By [3, Theorem 4.7.2], we write

(bmoC(Rd, M), h‘{(Rd, M)) 1,

(4.4)

r1 P2

_ ((bmoC(Rd,M),th(Rd,M))i, (bmo®(R%, M), h¢(R%, M) | )W.

Then the assertion (1) follows from Theorem 4.4 and the facts that (L, (N'), Ly, (N ))77 b, =

Ly(N) and that h§(R%, M) is a complemented subspace of Ly (N L(D)) @y Ly(N). O






Chapter 5

Calderén-Zygmund theory

In this chapter, we will introduce the Calderén-Zygmund theory on operator-valued in-
homogeneous function spaces and deduce some Fourier multiplier theorems. It is closely
related to the similar results of [24], [36], [49] and [72]. The results in this chapter will be
used in the next several chapters to investigate various square funtions that characterize
local Hardy spaces and inhomogeneous Triebel-Lizorkin spaces.

5.1 Calderén-Zygmund theory on local Hardy spaces

Let K € 8'(R% Ly(M) + M) coincide on R?\ {0} with a locally integrable L;(M) + M-
valued function. We define the left singular integral operator K¢ associated to K by

KA(F)(s) = [, K(s =7 @t.

and the right singular integral operator K" associated to K by
K™ (f)(s) = [ J(OK(s —t)dt.

Both K¢(f) and K"(f) are well-defined for sufficiently nice functions f with values in
Li(M) N M, for instance, for f € S ® (L1(M)NM).

Let bmog(R?, M) denote the subspace of bmo®(R% M) consisting of compactly sup-
ported functions. The following lemma is an analogue of Lemma 2.1 in [70] for inhomoge-
neous spaces. Notice that the usual Calderén-Zygmund operators (the operators satisfying
the condition (1) and (3) in the following lemma) are not necessarily bounded on the local

Hardy space h$(R?, M). Thus, we need to impose an extra decay at infinity on the kernel
K.

Lemma 5.1. Assume that
(1) the Fourier transform of K is bounded: supgcga K (&)l < oo;
(2) K satisfies the size estimate: there exist C1 and p > 0 such that

Cy
[ K (s)[lm < e Vls| > 1;

(3) K has the Lipschitz reqularity: there exist Cy and v > 0 such that

[t

[K (s —1) = K(s)[m < CZW

, V|s| > 2[t].
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Then K¢ is bounded on hg(Rd, M) for1 < p < oo and from bmo§ (R4, M) to bmo®(R?%, M).
A similar statement also holds for K" and the corresponding row spaces.

Proof. First suppose that K¢ maps constant functions to zero. This amounts to requiring
that K¢(Iga) = 0. Let Q@ C R be a cube with |Q| < 1. Since the assumption of Lemma
2.1 in [70] are included in the ones of this lemma, we get

1 / 9 L

7 () = K(f)ql dt)>

ol e o)

Now let us focus on the cubes with side length 1. Let @ be a cube with |Q| = 1 and @ =2Q

be the cube concentric with () and with side length 2. Decompose f as f = fi1 + fo2, where
f1 = ﬂ@f and f2 = ]I]Rd\éjf' Then Kc<f) = Kc(fl) + Kc(f2> We have

| L] s b [ b+ | [ i,
The first term is easy to estimate. By assumption (1) and (L.5),
[ fyeras], <[l [ Rk,
<l L R©Ra,,
~|lg [k,
I f el

To estimate the second term, using assumption (2) and (1.5) again, we have

“ S fliBmoe S I lbmoe-

A

IK°(f2)(s ‘/ K(s—1t)fa(t dt‘ ‘ Rd\QK (s—1) (t)dt‘2

-1
S/Rd\@\K@—t)HMdt-/Rd\@ 1K (s = )| v | K (s = £) f (1) Pt
S [ 1K G =0l
RAQ
S [P

g |s — t[dte

Set @m = @ + 2m for every m € Z¢. Then R¢ \ @ = Um;,go@m. Continuing the estimate
of |[K¢(f2)(s)|?, for any s € @, we have

KNP < 3 | P

m#0
1
~ > [ 1f Pt S| lbmos-
|m|d+p/Q ~
m70 m

Combining the previous estimates, we deduce that K¢ is bounded from bmo§(R? M) to
bmo®(R%, M).

Now we illustrate that the additional requirement that K¢(Igs) = 0 is not needed.
First, a similar argument as above ensures that for every compactly supported f € Loo(N),
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IEC(f)lbmos S || flleo- Then we follow the argument of [19, Proposition I1.5.15] to extend
K¢ on the whole Lo (N), as

K(f)(s) = lim [K°(f1p,)(s) —/1<|t<jK(—t)f(t)dt], Vs € R%,

J

where B; is the ball centered at the origin with radius j. Let us show that the sequence
on the right hand side converges pointwise in the norm | - || o4 and uniformly on compact
sets F C R To this end, we denote by g; the j-th term of this sequence. Let [ be the
first natural number such that [ > 2sup,cp|s|. Then for s € F' and j > [, we have

s =als)+ [ (Kls =)~ K(0)/ @)

By assumption (3), the integral on the right hand side is bounded by a bounded multiple of
|| f|loo, uniformly on s € F. This ensures the convergence of g;, so K¢(f) is a well-defined
function. Now we have to estimate the bmo®-norm of K¢(f). Taking any cube Q C R,
by the uniform convergence of g; on @) in M,

/|KC — (K°(f ))Q| d5)2||/\/1_hm|| /|9J (gj)Q|2dS>%HM'

Similarly,
I 1) = T Loy s) ) o

Hence, by the fact that g; and K°(f1p;) differ by a constant, we obtain

[ (f) lbmoe = li;n 195 |lbmoe < limsup HKc(f]lBj)Hbmoc + 1 flloo S N flloo-
J

Therefore, K¢ defined above extends to a bounded operator from L, (N) to bmo®(RY, M).
In particular, K¢(1ga) determines a function in bmo®(R%, M). Then for f and Q as above,
we have K°(f) = K°(f1) + K*(fo) + K*(L) f, 50

HKC<f)Hbmoc < HKC(fl)”bmoc + ”Kc(f2)Hbmoc + HKC(HRd)HmeC Hf@”/\/l
S [ llbmoe + 1fglae < Ml f fomoe -

Thus we have proved the bmo®-boundedness of K€ in the general case.
By duality, the boundedness of K¢ on h§(R?, M) is equivalent to that of its adjoint map
(K€)* on bmog(R?, M). Tt is easy to see that (K¢)* is also a singular integral operator:

(K (9) = | (s =gt

where K(s) = K*(—s). Obviously, K also satisfies the same assumption as K, so (K¢)*
is bounded on bmo§(R?, M). Thus we get the boundedness of K¢ on h§(R% M). Then,
by the interpolation between h§(R? M) and bmo®(R?, M) in Theorem 4.3, we get the
boundedness of K¢ on h;(IR{d, M) for 1 < p < co. The assertion is proved. O

Remark 5.2. Under the assumption of the above lemma, K¢(I1ga) is a constant, so
K¢(1ga) is zero as an element in BMO®(R?, M).
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A special case of Lemma 5.1 concerns the Hilbert-valued kernel K. Let H be a Hilbert
space and k : R — H be a H-valued kernel. We view the Hilbert space as the column
matrices in B(H) with respect to a fixed orthonormal basis. Put K(s) = k(s) ® 1y €
B(H)®M. For nice functions f : R? — Li(M) + M, K¢(f) takes values in the column
subspace of L1(B(H)®M) + Loo(B(H)®M). Consequently,

||Kc(f)HLp(B(H)®N) = ||Kc(f)‘|Lp(/\/;Hc)-

Since k(s) ® 1y commutes with M, K¢(f) = K"(f) for f € La(N). Let us denote this
common operator by k¢. Here the superscript ¢ refers to the previous convention that H
is identified with the column matrices in B(H). Thus, Lemma 5.1 implies the following

Corollary 5.3. Assume that

(1) supeepe k(&) < oo;

@) ()1 < ks Vls| > 1, for some p > 0;

(3) Ilk(s — ) = k(s)ll i S i, Vls| > 21t for some 5 > 0.

Then the operator k¢ is bounded

(1) from bmo§ (R, M) to bmo®(R%, B(H)®M), where a = ¢, a =1 or we leave out a;
(2) and from hS(R%, M) to he(RY, B(H)@M) for 1 < p < oc.

Remark 5.4. Since Loo(NV) € bmo®(RY, M), we have h§(R?, M) C Li(N). This ensures
he(RY, M) C Ly(N) for 1 < p < 2. Combined with Theorem 4.3, Corollary 5.3 and the
fact that h§(RY, M) = La(N'), we have

KO vy S K g e B@ag S 11 lngra,an)

for any f € h;(Rd,M).

5.2 Multiplier theorems

We are going to develop two Fourier multiplier theorems in this section. They can be
viewed as the special cases of Calderén-Zygmund theory. Our presentation follows closely
the argument in section 4.1 of [72].

Recall again that ¢ is a fixed function satisfying (1.1), ¢¢ is the inverse Fourier trans-
form of 1 — Yoo ¢(27%.) and ¢, is the inverse Fourier transform of »(27%.) when k > 0.
Moreover, we denote by ¢ the Fourier transform of ¢y, for every k € Ny, then they enjoy
the properties in (1.2) and (1.3).

Firstly, let us state the following homogeneous version of [72, Theorem 4.1].

Theorem 5.5. Let 0 € R with o > %. Assume that (¢;)jez and (pj)jez are two sequences
of functions on RN\{0} such that

supp ¢;p; C {€: 277 < |¢| <271}, jez

and .
SUIZ) H¢j(2j+k')<ﬁ”Hg(Rd) < 0.

jE
—2<k<L2
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Let 1 < p < oo. Then for any f € S'(R% Li(M) + M), we have

. v o l . . o l
10> 2%  p; = fI°)2 I, < sup 65 (27 )0l g | 2274 p; = f1?)2 [
where the constant depends on p, o, d and .

Proof. Without loss of generality, we may take o = 0. It suffices to show that for any
integer K,

1O 185+ 5+ FD)E], S sup o5 (2o llug | 15+ F2)2]), (5.1)
J

~ :
2K —9<k<2 jez

with the relevant constant independent of K € Z. To this end, we set
Yi—k = ¢;(25), mj—kx = p;(25), and §= F(2).
By an easy computation, we have
supp;n; C {€: 2771 < [¢| <271}, V>0,

and
&j* P f =245 kw pii + g(28).

This ensures

1O 10s % p  f)2N, =22 (I 19y a0y * g*) ], (5.2)
Jjz2K Jj=0
Similarly,
. 1 (p—1)dK . 1
1S 135£3 = 25 (3 iy g3 (5.3)
J=K Jj=0

Moreover, since 1;(277%) = ¢; 1 k(2977 E.) we have

sup v (27 )pllug = sup (165277 )¢l g
Jj=0 Jj>K
_9<k<2 _2<k<2 (5.4)
< sup (27" )l g
JEZ
—9<k<2

Now applying [72, Theorem 4.1] to v;, p; and g defined above, we obtain

v o l . o l
IQ_ 1y * 912y S sup w327 )pllmg (D 11y * 917)2 -
Putting (5.2), (5.3) and (5.4) into this inequality, we then get (5.1), which yields Theorem
5.5 by approximation. ]

Theorem 5.5 is developed to deal with the multiplier problem of square functions, and
also the multiplier problem of the Hardy spaces ”Hg(Rd,M) by virtue of their charac-
terizations (Lemma 1.2). In order to deal with relative problems on the local versions of
square functions or Hardy spaces, we need the following version of Theorem 5.5. The main
difference is that in the local case, we need to consider a Littlewood-Paley decomposition
which covers the origin.
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Theorem 5.6. Let 1 < p < oo, € R and o > %. Assume that (¢5);>0 and (pj);>0 are
two sequences of functions on R¢ such that

supp (¢jp;) C {€ € R : 2771 < |¢g] < 27F1Y) j e N,
supp (¢opo) C {€ € R [¢] < 2},

and that

SUP ¢, (2j+k')<PHHg(Rd) <oo and |¢o( +<P(1))HHU Rd) < 0. (5.5)
72]<_k<2

Then for any Li(M) + M-valued distribution f,

. v . 1 4k
1279185 % py + f17)7[], S max { sup [|6;(27 ")l g, |0(2® + M)l mg }
720 I E

2| x 2\1
13 2271, = £1)2]],

Jj=0
where the constant depends on p, o, d and .

Proof. This theorem follows easily from its homogeneous version, i.e., Theorem 5.5. In-
deed, we can divide [|(3;50 2% s % s % f|?) || into two parts:

Z22]a’¢3 * Pj* ) ~ ||( ZQQMW)J * Pk fP) Hp + ||<50 * po * fllp

>0 j>1

and treat them separately. Applying Theorem 5.5 to the sequences (¢;);ez, (p;)jez with
¢; =0 and p; = 0 for j <0, we get the estimate of the first term on the right hand side.
The result is

I3 22721+ s+ 172, S sup. |62 el S+ 12,

> >
izl 72<k<2 izl

The second term |\ng50 % po * f ||, is also easy to handle. By the support assumption on ¢gpp,
we have

Gox pox f=F (b0 + M) % po = f.
Hence,
160 % po * fllp S 60(' + M)l mgll50 * £1lp-

The assertion is proved. ]

In the rest of this section, we will develop a more elaborated version of Theorem 5.6.
Assume that we have a sequence of Hilbert spaces H; for every j € Ny, and denote H =
©2oH;. Then an element f € L,(N; H®) has the form f = (f;);>0 with f; € L,(N; HY)
for every j. In this case, it still makes sense to act on it by the Calderén-Zygmund operator
k= (¢5);>o0-

Since it will be frequently used in the following, we introduce an elementary inequality
(see [72, Lemma 4.2]):

178z ey < Wllmg ey [, 1+ [2)71F " (g) )]s, (5.6)
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where o > %, and the functions f : R? — ¢y and ¢ : R — C satisfy
f e H RS t) and [ (14 [sP)7IF (g)(s)lds < oc.
R

Here HY (RY; £5) is the f-valued Potential Sobolev space of order o. Note also that ¢3 could
be an /5-space on an arbitrary index set, depending on the problems in consideration.

The following lemma is an analogue of Lemma 4.3 in [72]. The main difference is that
in order to get a Calderén-Zygmund operator which is bounded on local Hardy or bmo
spaces, we need to use the test functions covering the origin.

Lemma 5.7. Let ¢ = (¢;)j>0 be a sequence of continuous functions on R?, viewed as a
function from R® to ly. For o > %, we assume that

def
pll2,c = maX{igll) ||¢(2k')<ﬁ||Hg(Rd;52)a ||¢90(0)HH5(Rd;62)} < 0. (5.7)

Let k = (k;)j>0 with kj = F~1(¢;). Then k is a Calderén-Zygmund kernel with values in
£y, more precisely,

(1) Kl ot S llDl205

2) S22 Ik(s)llends < ll9ll20-

(3) sup;cge f|s|>2|t\ [k(s =) = k(s)lles

The relevant constants depend only on ¢, o and d.

Proof. For any ¢ € R and k > 1, by the Cauchy-Schwarz inequality, we have

6240l = || [ FH @R (s)e s,
< ||¢<2k->soHHg<Rd;@< [+ 1) ods)t < 10l

In other words, we have [|¢@(27%) |1 gty S [|@ll2,0- Likewise, |60 |1 g S [6]l2,0

also holds. Thus, by (1.2) and (1.3), we easily deduce that HﬁHLw(Rd;gz) S oll2,0-
To show the third property of k, we decompose ¢ into

o= oo

k>0

The convergence of the above series can be proved by a limit procedure of its partial sums,
which is quite formal. By (1.2) and (1.3), we write

b = (p* D + g0 4 DM L g0 k> 0
Here we make the convention that o*) = 0 if k < 0. Then for s € R?,
") (s) = F ) * F M) (5) = 2MF ey (27) # FH(0)(2%s), k0.

By (5.6), we have

kd
2

_ 1
(/Rd(l + 128N F (@™ (9)17,d5)2 S 27 160 (25 arg (met)-
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Notice that if & > 1, we have o*)(2%.) = . Thus, if k > 2,

1
H¢(k)(2k‘)HHg(Rd;£2) < Z H¢(2k')¢(kﬂ)(2k‘)HHg(Rd;ﬁz)
j=—1

1
S 30 16T * D (25 | e mayey)
j=—1

1
= 3 162 )0l g ety < 319120
j=—1

For k = 0,1, we treat them in the same way,

||¢(1)(2')||H5(Rd;€2) S ||¢SO(O)HH§(R‘1;€2) + ||¢(2')SOHH§(R‘1;€2) + ||¢(4')SOHH§(]R‘1;€2);
b0l g Resen) S 1162 g (Rasey) + 10(2) ] g (st -
In summary, we obtain

kd

([, A+ R8P 17 o))k dst <2 1o

2,0
Thus, by the Cauchy-Schwarz inequality, for any ¢t € R?\ {0} and & > 0, we have

/ 17 (0 ®) ()]l epls < ﬁ\laﬁllz,o(/ (1+|25s]?)~7ds)>
|s|> ¢l [s|>]¢] (58)

d
< N2 7719 )20

Consequently,
- _ ‘.,
S 106906 = 0615 — Dl < HeDE

We notice that g — 0 < 0, so the estimate above is good only when 2¥|t| > 1. Otherwise,
we need another estimate (with e;(€) = e2™¢?)

F o™ (s) — F ™) (s — 1)
= F Houe® (1 — e))(s)
= 2K (g (2F)) % [F () — F () (- — 2F0)](2Fs).

Thus,
([ A+ 125717 00 (5) = F 1 (0p (s — D), o)’
S 2% 0llas 28] [ (141717 (05 - 02°0)1ds
< 250l 0 21 [ 177 (e ) 2
<27 [9l202"1t,

where 6 € [0,1]. Then as before, for 2¥|t| < 1, we have

o I 091005) = F7 0605 = Dllesds £ 2Vl
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Combining the previous estimates, we obtain

sup/ k(s — £) — k(s)||,ds
[s|>2[¢|

teRd
<sup 3 [ IF 00 (8) = F 099 s = 1) rads
teR? k>0 s[>2[t]
S 19ll2 sup 3~ min(2e], (24D %) <
teR? k>0

Finally, the second estimate of k can be deduced from (5.8) by letting |t| =

JILCIEDS / IF @)l

k>0

<2

k>0

The proof is complete. O

We keep the notation H = @52, H;. By the above lemma, we can apply the Calder6n-
Zygmund theory developed earlier in this chapter, to deduce the following lemma:

Lemma 5.8. Let ¢ = (¢;);>0 be a sequence of continuous functions on R? satisfying (5.7)
and 1 < p < oco. For any f = (fj)j>0 € Lp(N; H®), we have

(05 * fi)jz0llL,v:me) S NBll2.oll(fi)i>oll L, wv;me)s
where the relevant constant depends only on ¢, o, p and d.

Proof. Consider k as a diagonal matrix with diagonal entries (k;) ;>0 determined by Ej = ¢j
and f = (f;);>o0 as a column matrix. The associated Calderén-Zygmund operator is defined
on L,(B(H)®N) by

k(H)(s) = [ k(s =) f(B)dt.
Now it suffices to show that k is a bounded operator on L,(N; H®).

We claim that k is bounded from Lo, (N; H¢) into bmo(RY, B(H)®M). For any s € R?,
put K (s) = k(s) & Ly € BIH)EM. Then we have [k(s) s > [k(3)lleo. = 1K (5) [ anyend
and || f|lz.. ey = | f | B(r)year- Thus, the claim is equivalent to saying that K is bounded
from Loo(N; HC) into bmo(Rd, (H)®M), if we regard Loo(N;H®) as a subspace of
B(H)®N.

First, we show that K is bounded from L..(N; H¢) into bmo®(R?, B(H)®M). Let Q
be a cube in R? centered at c. We decompose f as f = g+ h with g = f]légv where Q =2Q
is the cube which has the same center as () and twice the side length of (). Set

Then
K(f)(s) —a=K(g)(s) + /[K(s —t) = K(c— t)|h(t)dt.

Thus, for @ such that |Q| < 1, we have

@ /Q K(f) — af?ds < 2(A + B),



68 CHAPTER 5. CALDERON-ZYGMUND THEORY

where

1
A=— [ |K(9)|*d
ar K@),
_ ) — K(e— 2
B=15 /Q|/[K(s 1) — K(c — t)]h(t)dt|*ds.
The term A is easy to estimate. By Lemma 5.7 and the Plancherel formula (1.6),
QIA < [IR©7©PE = [ 5RO TEOUE < [ IR 5rymlal) P
< [ 1IR3 Pds S 1613, /é 7(s)Pds
< |QUISIE & 1 F 15 eryzar = 1QUIBHE o ILFNIT o 1)

whence
1Al sy S N3N FI17 o avsey:
To estimate B, writing h = (h;);>0, by Lemma 5.7, we get

\/ (s — t) — K(c— )]h(t)dt]*

G =) = Ko = Dllagnaedt [, K =) = K= Dll gl

RI\Q
< g ks =)~ k(e = Dlegdt [ IK(s =) = k(e = Dlllh(0)Pde
e STOBAAE v
Hence,
IBlmnan < g7 111G =1) = Ke = )t s S 10BN e

Combining the previous inequalities, we deduce that, for any |Q] < 1

1 1
Gy () = aPas)?

Now we consider the case when |Q| = 1. We have

2
’Q‘/ K (f |ds<2’Q|/ K (g ]ds—|—2’Q|/ K (h)[2ds.

The first term on the right hand side of the above inequality is equal to the term A, so
it remains to estimate the second term. When t € RN\Q, s € Q and |Q| = 1, we have
|s —t] > % Then by (2) in Lemma 5.7 and the Cauchy-Schwarz inequality, we easily
deduce that

< ey
BEM 9ll2,0 1 f1| oo (A7 Ee)

= !/\K(s — t)h(t)dt|*
S/Rd\é’K(s—t)HB(H)@)Mdt/Rd\éHK(s )l s(yzamlh(t)*dt

S I v 5 s = Dl

SNME o FIT o vtz
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Thus, we have, for any |Q| = 1,

1 1
(G U Pas)

Therefore, K is bounded from Ly (N; H®) into bmo®(R?, B(H)@M).
Next we show that K is bounded from L..(N; H¢) into bmo” (R?, B(H)®M). We still
use the same decomposition f = g 4+ h, then we obtain

BH)@M ™

(NGHe)-

‘Q’/| f) — a]*2ds < 2(A' + B'),

where

;1 124
A= o [ V@) Pas,
r 1 s — _ c— * 7112 S
B =10 /Q\/[(K( t) — K(c —t))h(t)]*dt|*ds.

The estimate of B’ can be reduced to that of B. Indeed,
. 112
1Bz < @ o 10 =) = K O]ty s

= g s = 1) = K e = (et

S H¢||2,U”fHLoc(N%HC)'

However, for A’, we need a different argument. A’ can be viewed as a bounded operator
on H® La(M). So

4 seman = sty | ) Drorang dsh

where the supremum runs over all b in the unit ball of H ® La(M). By the Plancherel
formula (1.6), we have

L Ik o ayds = | l)(5) 0, K(9) () Do acan

< [ (€3 b.KOTE) Brroraaade.

Let diag(f;); be the diagonal matrix in B(H)®N with entries in B(H;)®@N. By the
Cauchy-Schwarz inequality, the Plancherel formula (1.6) and Lemma 5.7, we continue the
estimate above as

J () b RO Do s < sup IR, [ (€56 Borade

< 612, /é | diag(f;);(5) bll2re Ly anyds
S 1QUIGI | ding )12 1B oy
< 1QUIBIZ NI ntzey

whence,

1A Bz S NOI3 M FIZ ey
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Following the estimate of ﬁ Jo |K(f)(s)|>ds, we get, when |Q| =1,

K(f 2ds<2A’+2—/ K(h)*|*ds
@m/' Q] JoEWF

<2A’+2@|/ TSN [—

_2A/+2@|/ I (M) 1 11y el

N3He):

Therefore, K is bounded from Lo, (N H¢) into bmo” (R?, B(H)®M). Then k is bounded
from Lo (N; H®) into bmo(R?, B(H)®@M). Tt is clear that k is bounded from Lo(N; H®)
into Ly(B(H)®N), then by interpolation, k is bounded from L,(N; H¢) into L,(B(H)QN)
for any 2 < p < co. The case 1 < p < 2 is obtained by duality. O

Note that when all H; degenerate to one dimensional Hilbert spaces, then H = /5, the
above lemma gives a sufficient condition for (¢;),>0 being a bounded Fourier multiplier on
L,(N;5). So we can also use Lemmas 5.7 and 5.8 to prove Theorem 5.6 by an argument
similar to the proof of [72, Theorem 4.1]; details are left to the reader. But here we intend
to extend Theorem 5.6 to a more general setting.

Theorem 5.9. Let p, o, 0, (¢j)j>0 and (pj)j>o be the same as in Theorem 5.6. Then, for
any f € S'(RY Ly(M) + M),

e ]

v . 1
gy gk (- +1)]PdE)2
J) p

>0 B(0,2~
< max { sup llos( 2j+k')<,0HHg, 6o (@ + LP(l))HHi,’}
72]<_k<2
. 9 (2a+d) 5. % f(-+ 8)2db) 2 ,
o oy 71 £+ O

where the constant depends only on p, o, d and .

Proof. Set Hj = La(B(0,277),2/4dt) and H = &32H;. So we have

> 9 (20-+d) /

0|97 P £ SO O, = 12265 % 5y ¢ S+ Dl
320 ’

Let

G = (U™ + oW + U j > 2,

G =d1(p+ o + o),

Co= o +¢) and ¢;=0ifj <0.
By the support assumption on ¢;p;, we have that ¢;p; = (jp;. So that for any f €
SEL LM+ M), v

¢j* pjx f=Ci*pjxf, j€No.

Now we show that { = ({;);>0 satisfies (5.7) with ( instead of ¢. Indeed, by the support

assumption of ¢, the sequence ¢(2¥)p = (¢;(2%-)) o has at most five nonzero terms of
indices j with £ —2 < j < k 4+ 2. Thus for any k € Nj

k+2

162" )l mg @iy < D 162" )l

j=k—2
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Moreover, by (5.6), we have
12" )ellmg S N6;2%)ellmg, k-2<j<k+2.
Therefore, the condition (5.5) yields

sup 1625 el g (reten) S sup 652745l g + [0 (® + M) g < o0,
= J=
_5<k<2

where the relevant constant depends only on o, ¢ and d. In a similar way, we have

1o g raeny < 3 169l S swp 16527 )llug + Io(e® +oW)llag < o0
0<y<2 J

—2<k<2
Now applying Lemma 5.8 with (; instead of ¢; and f; = 2jaﬁj x f(-+t), we prove the
theorem. O

The above theorem will be useful when we consider the conic square functions of
local Hardy spaces and inhomogeneous Triebel-Lizorkin spaces in Chapter 8. Note that
both Theorem 5.6 and Theorem 5.9 do not deal with the case p = 1. So we include the
corresponding Fourier multiplier results for hy with 1 <p <2 in the following. When the
Hilbert space H degenerates to {2, we have

Corollary 5.10. Let ¢ = (¢;)j>0 be a sequence of continuous functions on R? satisfying
(5.7) and 1 < p < 2. For f € h§(R%, M),

1185+ 22, S Illa.ollFlng

j=0
The relevant constant depends only on ¢, o and d.

Proof. Now we view k = (k;);>0 as a column matrix and the associated Calderén-Zygmund
operator k is defined on Ly,(N):

k(f)(s) = /Rd k(s — ) f(t)dt, Vs € R.

Thus k maps function with values in L,(M) to sequence of functions. Then we have to
show that k is bounded from h§(R% M) to L,(N;£5) for 1 < p < 2. The case p = 2 is
trivial, so by interpolation, it suffices to consider the case p = 1. To prove that k is bounded
from h§(RY, M) to Li(N;/5), passing to the dual spaces, it is equal to proving that the
adjoint of k is bounded from Ls(N;£5) to bmo®(R%, M). We keep all the notation in the
proof of Lemma 5.8. For any finite sequence f = (f;);>0 (viewed as a column matrix), the
adjoint of k is defined by

() = [ S kits = 0f 0,

where K(s) = k(—s)* (s0 it is a row matrix). Put K(s) = k(s) ® 1p¢. In this case,
1K () lbmoe ra, A1) = K (f) lomoe (R4, B(e2)@A1)- Then we apply the estimates used in the

previous lemma by replacing K with K. It follows that k’ is bounded from Lo (N £5) into
bmo®(R?, M), the desired assertion is proved. O
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In the setting where /3 is replaced by H = ©52,H; with H; = L2(B(0, 2779),2744t),
the counterpart of Corollary 5.10 is the following:

Corollary 5.11. Let ¢ = (¢;);j>0 be a sequence of continuous functions on R? satisfying
(5.7). Then for 1 <p <2 and any f € h§(R%, M),

(229 [ 18y £+ 0P, S Il Flh.

>0 B(0,277)
The relevant constants depend only on ¢, o and d.

Proof. The proof of this corollary is similar to Corollary 5.10; let us point out the necessary
change. Consider the H-valued Calder6n-Zygmund operator k defined on L,(N') given by

K(f)j(-+1) = &+ f(- +1).

The lemma is then reduced to showing that k is bounded from h((R%, M) to Ly, (N; H¢) for
1 < p < 2. Since each H; is a normalized Hilbert space, such that the constant function
1 has Hilbert norm one, the kernel estimates of our k here are the same as the ones in
Lemma 5.8. So we can repeat the proof in Lemma 5.8 and Corollary 5.10. The desired
assertion follows. O



Chapter 6

General characterizations of
hi(RY, M)

Applying the operator-valued Calderén-Zygmund theory developed in the last chapter, we
will show in this chapter that the Poisson kernel in the square functions which are used
to define hg(IR{d, M) can be replaced by any reasonable test functions. As an application,
we are able to compare the operator-valued local Hardy spaces h;,(IRd7 M) defined in this
thesis with the operator-valued Hardy spaces ”H;';(Rd, M) in [42].

6.1 General characterizations

Consider a Schwartz function ® on R? of vanishing mean. We set ®.(s) = £ ?®(£) for
e > 0. We will assume that ® is nondegenerate in the sense of (1.12). Then there exists a
Schwartz function ¥ of vanishing mean such that

/OOO cf(gg)\i(ag)% _ 1, ve e RO\ {0} (6.1)

This is a well-known elementary fact (ef. e.g. [61, p. 186]).

We will use multi-index notation. For m = (my,--- ,mg) € Nd and s = (s1,--- ,54) €
RY, we set s™ = s]"' - "%, Let |m|y = mq + -+ 4+ mg and D™ = (,ngl -~-888nfld.
1 d

Lemma 6.1. fol @(E-)@(é-)% is an infinitely differentiable function on R? if we define its
value at the origin as 0.

Proof. To prove the assertion, it suffices to show that fol (/ﬁ(a)\fl(a)% is infinitely dif-
B(e) i

ferentiable at the origin. Given ¢ € (0, 1], we expand n the Taylor series at the

origin
~ ~ gy
€
q)(gg) = Z D'Y(I>(O) ’Y' Z R’Y(Eg) 577
Il <N [vi=N+1
with the remainder of integral form be
(N +1)eN+!

1 _
R (c) = /0 (1= 0)ND®(0e¢)db.

V!
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Since @(O) = 0, the above Taylor series implies that

~ [v]1
b= Y DO Y R(=)€

1<y €N gl \7\1=N+1

Similarly, we have

V(g = >, Do) S Rj(e€) €,

|
1<|Bli<N Al |Bli=N+1

5'/8‘155

where R} is the integral form remainder of U. Thus, both @(5{ ) and U(e€) contain only

powers of € with order at least 1. Therefore, the integral fol (e€ ) IR (e€) & (and the integrals
of arbitrary order derivatives of ®(e£) and W (e€)) converge uniformly for & € R? close to

the origin. We then obtain that fol @(5{)\1/( §)% is infinitely differentiable at the origin
£=0. O

It follows immediately from Lemma 6.1 that [;° </I\>(5)\I/( )% is a Schwartz function
if we define its value at the origin by 1. Then we can find two other functions ¢, ¢ such
that ¢,v € HJ(R?), ¢(0) > 0,7 (0) > 0 and

0O =1- [ Beo¥EoT, veer! (6.2)

Indeed, for 3 > 0 large enough, the function (1 4 |- |?)~® belongs to HS(R?). On the
other hand, if ' € S(R?), the function (14 |- |2)°F is still in Hg(R?). Thus we obtain
(6.2). The main target in this section is to use the test functions in (6.2) to characterize
the space he(R%, M).

For any f € Li(M;R3) + Loo(M;RYG), we define the local versions of the conic and
radial square functions of f associated to @ by

dtd5> seRY

5N = ([[1es s+ 0255
de 3
g5(f)(s) = /0|<I>5*f(s)|2€€) s cRY

Fix the four test functions ®, ¥, ¢,7 as in (6.2). The following is one of our main
results in this section.

Theorem 6.2. Let 1 < p < oo and ¢, ¢ be as above. For any f € Li(M;R3) +
so(M;RG), f € hi(RE M) if and only if s5(f) € Ly(N) and ¢ * f € Ly(N) if and only
if 9$(f) € Ly(N) and ¢ x f € L,(N). If this is the case, then

1fllng = [lge (Hllp + 16 fllp = lsa(H)llp + ¢+ fllp (6.3)

with the relevant constants depending only on d,p, ® and ¢.

First, we deal with the case 1 < p < 2 We apply Corollary 5.3 to the square function
operators s§ and g§. Let H = Ly((0,1), ¢ %). Define the kernel k : R? — H by k(s) = ®.(s)
with ®.(s) : € — ®.(s). Then we can check that

_ 1
s [2(e)llr <00, [|Pe(s)]ar S [5[dT vs € R\ {0}
€
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and that

VP (s) Vs € RY\ {0}.

1
ez < |s|d+1’

Thus, k satisfies the assumption of Corollary 5.3. By Remark 5.4, we have, for any
1<p<2,
1@ fll,vmey = 98 ()l < N lng-

The treatment of s§ is similar. In this case, we take the Hilbert space H = LQ(F gjﬁi)

On the other hand, ¢ € HY(R?) implies ¢ € Li(R?), then ||¢ fl,on S 1l S
[ fllng- Thus, combining the above estimates, we obtain one direction of (6.3) for the case
1<p<2:

198 (Nllp + 110+ Fllp < 1 lIng (6.4)

[s&(Nllp + 1o fllp < 11 lIng- (6.5)

The proof of the other direction of (6.3) is long and technical. We follow the duality
method used in [70], which involves unavoidably bmo spaces. Thus we need a Carleson
measure characterization of bmoj by general test functions, which is analogous to Lemma
3.3, in the more general setting.

Lemma 6.3. Let 2 < q < 00, g € bmo$(RY, M) and dAg = |V, * g(s)|*%E. Then d),
is an M-valued q-Carleson measure on the strip R? x (0,1). Furthermore, let 1) be any
function on R? such that

R d
Y e HJ(RY)  with o > 5 (6.6)

We have

1 1

+ 2

max sup 7/ dXg||2, 1V * g < g .

Ul sup* 151 gy Polld 1 alla} < Nothomes
Q<1

Proof. Replacing 5%&- by ¥, in Lemma 3.3, we have

%
g HgHbmo
B

sup /
sEQCRd |Q|
lQI<1
We obtain the desired conclusion. O
Lemma 6.4. Let 1 < p < 2 and q be its conjugate index. For f € hg(]Rd,M) N La(N)
and g € bmog(Rd, M),

7 [ 1" (s)ds| S (857l + 165 £l lgllomos.

Proof. The proof of this Lemma is very similar to that of Theorem 3.10, we will just
point out the necessary modifications to avoid duplication. We need two auxiliary square
functions associated with ®. For s € R%, ¢ € [0, 1], we define

o= ([ [ e sorg)” (6.7

3 // |c1> « () Pfﬁf)é. (6.8)
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By (6.2), we have

r [ $s)g"(5)ds

— o [ [ e f6) W g ELE w1 [ pe p(s)w gl ds
/ ) ]
B /R/ / (W 9(0) s +7 [ 6 [0+ (5)"ds

- /Rd// ()5 (f)(s, e)p?s;(f)(s,g)%‘”(qza*g(t))*j%ds
+T/d¢*f(8)(¢*g(s)) ds

def I

Then by the Cauchy-Schwarz inequality,

RS [ [ L B r PR )0 22

d
s o2 (O —7) 86 () (5, ) Pdeds
A B.

Replacing sng(f) and 5%P€(g) in the proof of Theorem 3.10 by ®. * f and ¥, x g
respectively and applying Lemma 6.3, we get the estimates for the terms A and B that

A Ise(HIE and B < llgllimeellse ()15

The term II is easy to deal with. By the Holder inequality and Lemma 6.3 again, we get

v [ 65 5@ g(5))ds| < 6% Sl glly < 165 Fllgllomo;.

Combining the estimates for A, B and II, we finally get the desired inequality. O

We will also need the radial version of Lemma 6.4. To this end, we need to majorize
the radial square function by the conic one. When we consider the Poisson kernel, this
result follows from the harmonicity of the Poisson integral (see Lemma 3.12). However,
in the general case, the harmonicity is no longer available. To overcome this difficulty,
a more sophisticated inequality has been developped in [70] to compare non-local radial
and conic functions. Observe that the result given in [70, Lemma 4.3] is a pointwise one,
which also works for the local version of square functions if we consider integration over
the interval 0 < ¢ < 1. The following lemma is an obvious consequence of [70, Lemma
4.3].

Lemma 6.5. Let f € Li(M;R) + Loo(M;RG). Then

5)2 < Z 55me(f)(5)%, Vs € RY
Im[1<d

Lemma 6.6. Let 1 <p<2. For f € hg(Rd,M) N La(N) and g € bmoZ(Rd,M),

r [ 151" (5)ds| < (g (Dl + 16 5 F1) 21 g gllmos.
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Proof. This proof is similar to that of Lemma 6.4 and we keep the notation there. Let

fe hg(IRid, M) with compact support (relative to the variable of R?). We assume that f

is sufficiently nice so that all calculations below are legitimate. Now we need the radial

version of s§(f)(s,¢),

e
r

956(f)(s,€) = (/51 D, * f(s) )%

for s € R? and 0 < & < 1. By approximation, we can assume that g5 (f)(s,e) is invertible
for every (s,¢) € S. By (6.1), (6.2), (1.7) and the Fubini theorem, we have

’T/Rd f(s)g"‘(s)als’2
N 7‘/Rd /01 B, * f(s)’2g<cb(f)(s7€)p—2
* ‘T/Rﬂ’* f(s) (¥ *9(8))*615‘2

df 4B 1T

9—pdeds

deds . /Rd /01 |W. * 9(5)|29<61>(f)(57 €)

9 9

IT' is treated exactly in the same way as before,
2—
< Nl fliplie * gllg < Nl FIPIF g gl Bmos -

A’ is also estimated similarly as in Lemma 6.4, we have A" < [lgg(f)I[b.
To estimate B’, we notice that the proof of [70, Lemma 1.3] also gives

95(N(s.2* S Y shmalf)(s,9)%,

|m[1<d

where $Gmg(f)(s,€) is defined by (6.7) with D™® instead of ®. Then by the above
inequality, Lemma 6.3 and inequality (6.5) with D™ ® instead of ®, we obtain

! _deds
DR B A A O O
R2 JO 9
|m|1<d
<Y IIQII%mog|!8§f>mq>(f)llf,_p
|m|1<d

2—
S gl Rmog Il -

Therefore,

* 2—
\T/Rd F(£)g(s)dsl* < (196 (N)llp + 165 Iz, F g 9l Emos
which completes the proof. O

Proof of Theorem 6.2. From Lemmas 6.4, 6.6 and Theorem 3.10, we conclude that for
I<p<2

1fllng < N85 (Hllp + 6% Fllps
1fllng < lga (Do + 1o fllp-

Therefore, combined with (6.4) and (6.5), we have proved the assertion for the case 1 <
p < 2.
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Now we turn to the case 2 < p < co. By Theorem 3.18, we can choose g € hg(Rd, M)
(with ¢ the conjugate index of p) with norm one such that

Iflhg ~7 [, 0" @ s =7 [ [ o) (Werglo) EE 7 [ 6 5)wg(s))'d

Then by the Holder inequality and (6.4) (applied to g, ¥ and q),

1fllng < 1198 (Hlpllgs (9)llg + 16 fllplle* gllg
S (lge (Dllp + o+ Flip)llglng = e (FH)llp + ¢ fllp-

Similarly,
£ llbg < 1186 (Ao + N9+ Fllp-

It remains to show the two reverse inequalities for 2 < p < oo. First, we define a map
Eg 4 for sufficiently nice h = (W', h") € L,(N; L§(T)) &p Lp(N) by

E¢,¢(h)(u):/Rd [/fh'(s,t,g)q%(sﬂ— )ddtf‘ﬁ W' (s)b(s — u)|ds

This map can be seen as an analogue of the map F in Theorem 3.8. By modelling on
the proof of Theorem 3.8 and Theorem 3.17, we can check that Eg 4 is also a bounded
map from Lg(N; L§(T)) ©q Le(N) to hS(RY, M) for 1 < ¢ < 2. Now, we estimate the sum

155 (F)llp + l|¢ * fll,- Note that there exists a function ho = (hly, hf) € Ly(N; LS(T)) @,
Ly(N) with norm one such that

dtd
I+ 65 Fll = |7 [ [ 0o #ls+ O, tie) Gds 4 [ 6« (s)mf(s)"ds|

- ’/Rd f(“)E¢,¢(h8)(u)du)
S 1 Ba(ho) g I fllng < 11 f 1l -

On the other hand, Lemma 6.5 gives the inequality

l9a(N)llp + ¢ fllp S 11f1ng,
which completes the proof. O

6.2 Discrete characterizations

The square functions s§ and g§ can be discretized as follows:

g@ (Z‘(I) * f(s )

j>1
G0 = (22 Loy 15 FOA)

Here ®; is the inverse Fourier transform of ®(277.). This time, to get a resolvent of the
unit on R?, we need to assume that & satisfies (1.16). Then adapting the proof of [61,
Lemma V.6] , we can find a Schwartz function ¥ of vanishing mean such that

Z D277 W(2-9¢) =1, VEe R\ {0}. (6.9)

_]_700
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There exist two other functions ¢ and 1 such that 3,1 € HY (RY), $(0) > 0,1(0) > 0 and

Z (2796) T(279€) + $(©)D(E) =1, Ve RY (6.10)

The following discrete version of Theorem 6.2 will play a crucial role in the study of
operator-valued Triebel-Lizorkin spaces on R? in chapter 8. Now we fix the pairs (®, ¥)
and (¢, 1) satisfying (6.9) and (6.10).

Theorem 6.7. Let ¢ and ® be test functions as in (6.10) and 1 < p < oo. Then for
any f € Li(M;RS) + Loo(M;RY), [ € hg(Rd,M) if and only if sgD(f) € L,(N) and
¢ * [ € L,(N) if and only z'fg(%’D(f) € L,(N) and ¢« f € Lp(N'). Moreover,

D D
s (Dllp + llé = fllp = llgg™ (Hllp + 16 % fllp ~ [[flIng
with the relevant constants depending only on d,p, ® and ¢.

The following paragraphs are devoted to the proof of Theorem 6.7, which is similar to
that of Theorem 6.2. We will just indicate the necessary modifications. We first prove the
discrete counterparts of Lemmas 6.4 and 6.6.

Lemma 6.8. Let 1 < p < 2 and q be the conjugate index of p. For any f € hg(Rd,M) N
Lay(N) and g € bmoS (R, M),
* C,D
= [ 55" )ds| 1567 ()l + 165 1) lllomo; -

Proof. First, note that by (6.10), we have
r [ 6" s = [ ST fs) (¥ gls) ds 7 [ 65 1) g(s)"d
Jj=1

The second term on the right hand side of the above formula is exactly the same as the
corresponding term II in the proof of Lemma 6.4. Now we need the discrete versions of
sp and Sg: For j > 1, s € R?, let

"N = (X 2%

“k_o9—j—1
1<k<j B(s,27k—2-7—1)

5N =( X 2 [

1<k<j (5,275~

1
@« F(1)2dt)”
%
|05 = FOPdE)”.
Denote st;D(f)(s,j) and EE’D(f)(s,j) simply by s(s,j) and 3(s,j), respectively. By ap-

proximation, we may assume that s(s,j) and 3(s, j) are invertible for every s € R? and
j > 1. By the Cauchy—Schwarz inequality,

/ D> @ f(s) (T xg(s ))*ds‘2

]>1
/RdZQd"/ i) D« f()(T; * g(t)" dtds
S T/]Rd;8(8’j)p (2d] /B(872j1)) ’(I)j *f(t)|2 dt)ds

T E [)2P de/ v 12 dt)d
/d - 5(57]) < (3’2_],_1)| j*g( )‘ ) S
def

= A-B.

‘ 2
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The term A is less easy to estimate than the corresponding term A in the proof of Lemma
6.4. To deal with it we simply set 5; = 3(s, j) and 3 = 3(s, +00) < 5P (f)(s). Then

_T/ ZSPQS —55_)ds

j>1

—p—2,-2 2
< T/d Zsj (37 —55-1)ds
Rd =
j
_ . _ 7. P22 (s _ .
= 7-/Rd Z(s] s]_1)ds—i—7'/RdZsj 5;-1(3; — 5j_1)ds,
j j
where 55 = 0. Since 1 < p < 2, §§_1 < sP~1 we have

5. _ < Pds < || &L p
/Rdg 5 5 1)d5NT/Rds ds < ||s (f)Hp
On the other hand,

_p—92_ _9 _l1-p p—-1 _ _p—1
T/dg s? 5i-1(5; sjlds—r/dg 5 p s]_132s2(sj—sj_1)s2ds,
Rd < R
J

1— 1—
since 5; > §;_1 for any j > 1, we have 571]3?7253-_1571) < 1. Thus, by the Holder
inequality,

< (5;—5 = sPds < ||sSP ()P
/}Rdzs 5j-1(5j—35j-1)ds < T/Rdzs 2 S 1)5 T ds = 7'/Rd5 ds < ||sg (/)IH

Combining the preceding inequalities, we get the desired estimate of A:
D
A < 2llsg (H)Ip-

The estimate of the term B is, however, almost identical to that of B in the proof
of Lemma 6.4. There are only two minor differences. The first one concerns the square
function S¢(f)(s,7) in (3.9): it is now replaced by

(s = (3 2% [

1
|« f(t)|2dt)” if € Q.
Gy IBeng2 ) ’

Then we have s(s,j) < S°(f)(s,7). The second difference is about the Carleson char-
acterization of bmog; we now use its discrete analogue. Namely, for g € bmog(Rd,M),
define
dAp(g) =D |V * g(s)|*ds x dby—;(e),
g2l
where 65— () is the unit Dirac mass at the point 277, considered as a measure on (0, 1).
Then dAp(g) is a Carleson measure on the strip S and

sup o [ S g(s) s oy @), 5 19
sEQCRd|Q| Q) j>1
Q<1

The proof of this inequality is the same as that of Lemma 6.3. Apart from these two
differences, the remainder of the argument is identical to that in the proof of Lemma
6.4. O
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Lemma 6.9. Let 1 <p <2 and f € h§(R%, M) N Ly(N), g € bmof;(R?, M). Then

1-P

7 | S0 )ds| < (leg” (Dl + 16 % 1) * 1A gllomes -

Proof. We use the truncated version of gfI;D( f):

95" (F)(s.3) = (D 1@k f()?) 7

k<j

N

The proof of [70, Lemma 4.3] is easily adapted to the present setting to ensure
95" (NS Y0 spmalf)(s, )
Im|1<d
Then
/ Fs)g"(s)ds| <110+ [ox 1)@yl

where

=7 [ DAy ¢ o),
_T/Rng £)(s,5)*7P|W; * g(s)|ds .

Both terms I’ and II' are estimated exactly as before, so we have
2— 2
I'<2|lga (NI and TS| fllhe” 9llomog -
This gives the announced assertion. O

Armed with the previous two lemmas and the Calderén-Zygmund theorem (see Corol-
lary 5.3), we can prove Theorem 6.7 in the same way as Theorem 6.2.

Remark 6.10. We notice that the assumption ® € & can be relaxed in both Theorems
6.2 and 6.7, similarly to the test functions used in [70]. So far, we have used the following
properties of ® to prove the characterizations:

(1) Every D™® in Lemma 6.5 with 0 < |m|; < d makes f — $Hmef and f — ghHmef
Calderén-Zygmund singular integral operators in Corollary 5.3.

(2) There exist functions ¥, and ¢ such that (6.2) (or (6.10) for discrete characteriza-
tions) holds.

(3) The above ¥ makes du(f) = |We * f (s)|2@ a g-Carleson measure, satisfying Lemma
6.3.

Even though the Poisson kernel and its potentials are not Schwartz functions, they can
still be used to characterize hZ(Rd, M). Let us take ® = —271(P) and ¢ = P for example.
A simple calculation shows that we can choose ¥ = —87I(P) and ¢ = 47I(P)+P to fulfill
(6.2). By the inverse Fourier transform formula, we have

—27f « I(P):(t) = _27.[./eQWit{f(é-)|€£’e—27r5|§\d£

886/ 27r1t£f(§)€27F5|§d§:5§€(135(f)(t)).



82 CHAPTER 6. GENERAL CHARACTERIZATIONS OF hg(Rd,M)

So we return back to the original definition of hg(]Rd, M). Therefore, Theorem 6.2 implies
that

[ fllng ~ llsa(F)llp + ¢ fllp = lga (Hllp + 16+ fllp-

In particular, we have the following equivalent norm of hZ(Rd, M).

Theorem 6.11. Let 1 < p < oco. Then for any f € hg(Rd,M), we have

[fllng = lg®(H)lp + I[P flp-

6.3 The relation between h,(R?, M) and H,(R? M)

Due to the noncommutativity, for any 1 < p < oo and p # 2, the column operator-valued
local Hardy space h;(Rd,./\/l) and the column operator-valued Hardy space H;(Rd,/\/l)
are not equivalent. On the other hand, if we consider the mixture spaces hp(]Rd7 M) and
’Hp(Rd, M), then we will have the same situation as in the classical case.

Since [P« fllp S Ifllp S [[fllng for any 1 < p <2, we deduce the inclusion

HE(RY, M) C h(RT, M) for 1<p<2. (6.11)
Then by the duality obtained in Theorem 3.18, we have
he (R, M) C HE(RT, M) for 2 <p < oco. (6.12)

However, we can see from the following proposition that we do not have the inverse
inclusion of (6.11) or (6.12).

Proposition 6.12. Let ¢ be a function on R? such that $(0) > 0 and ¢ € HS(RY) with
o> g. Let 2 < p < oo. If for any f € H;(Rd,/\/l),

16 fllp S 11f 1l (6.13)

then we must have $(0) = 0.

Proof. We will prove the assertion by contradiction. Suppose that there exists ¢ such that
#(0) > 0, ¢ € HY(R?) and (6.13) holds for any f € ’Hg(Rd,M). Since both H;(Rd,/\/l)
and L,(N) are homogeneous spaces, we have, for any £ > 0,

16 % F(e)llp = (@2 % N)(E)lp = #[l6 * fll, and 1 (eMllg = 5_%||f||Hg-

This implies that
[0 fllp S [1f 12, (6.14)

for any € > 0 with the relevant constant independent of . Now we consider a function
[ € Ly(N) which takes values in S/'Cl and such that supp f is compact, i.e. there exists
a positive real number N such that supp f C {¢ e R?: |¢] < N}. Since QAS(O) > 0, we
can find g9 > 0 and ¢ > 0 such that ¢(g0¢) > ¢ whenever |¢| < N. Thus, in this case,
lloe * fllp > || fllp- Then by (6.14), we have

11l < N N2

which leads to a contradiction when p > 2. Therefore, ¢(0) = 0. O
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By the definition of the hi-norm and the duality in Theorem 3.18, we get the following
result:

Corollary 6.13. Let 1 < p < co and p # 2. hg(Rd, M) and Hg(Rd, M) are not equivalent.

Although h§(R%, M) and HS(R?, M) do not coincide when p # 2, for those functions
whose Fourier transforms vanish at the origin, their hj-norms and Hj-norms are still
equivalent.

Theorem 6.14. Let ¢ € S such that [pa ¢(s)ds = 1.

(1) If1 <p<2and f € hy(RY, M), then f — ¢ f € HHRE,M) and ||f — ¢ fllyye <
[l -
(2) If2 < p < oo and f € HERE M), then f— ¢+ f € hi(RE M) and Hf—¢>>x<f||h§ <

1 s

Proof. (1) Let f € hg(Rd, M) and ® be a nondegenerate Schwartz function with vanishing
mean. By the general characterization of %g(Rd, M) in Lemma 1.1, || f — ¢ fHHz(Rd7M) ~
|GG (f — @ = f)|lp. Let us split [|GG(f — ¢ * f)||, into two parts:

1G5 — 6% Dl

S| [ 10an s -on P L H(f o )P S
([ 1oen(f =0 L) (@~ @)+ 125
S A

In order to estimate the first term in the last equality, we notice that ¢ x f € hg(Rd, M),
thus we have f — ¢ x f € h;’(]Rd,M). Then by Theorem 6.2, this term can be majorized
from above by || fl];c-

p

To deal with the second term, we express it as a Calderén-Zygmund operator with
Hilbert-valued kernel. Let H = Lo((1,+00), %) and define the kernel k : R — H by
k(s) = @.(s) — ®. x ¢(s) (P.(s) being the function € — P®.(s)). Now we prove that k
satisfies the hypotheses of Corollary 5.3. The condition (1) of that corollary is easy to
verify. So we only check the conditions (2) and (3) there. By the fact that [pa ¢(s)ds =1
and the mean value theorem, we have

(@2 — ®. * @) (s |_‘/ (s —1)] gzﬁ(t)dt‘

1
g/}Rdem sup [V(*—)] lo(0)] dr

Then we split the last integral into two parts:

H(@._@m)(s)qu(/IOO(/WM !tlgd% sup. vo(® Ht)\lqﬁ( \dt)2d€)

o0 1
t| —— [
SRV E St

L 5

o)1 any* E)
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1
If |t]| < L;', we have |s — 0t] > %, thus |V<I>(S*Tet)| < ‘;d;?% for any 0 < 6 < 1. Then
1 L1 1
s (/ )’ d+3 S d+3
Loe [s[772 |s|"2

When |t| > %, since ¢ € S, we have [, |, [t||¢(t)|dt < —-. Hence
It1>3 |s|9t3

© 1 de.1 1 1
< V2. <
HN(/l c2d+2 &‘) L~ ’S’d-i-%'

The estimates of I and II imply

(@2 — @0 5 6)(3)]lir S —

s 42

In a similar way, we obtain

1
[V(®: — @ % 0)(s)|lm < ‘S‘Tﬂ'

1

Thus, it follows from Corollary 5.3 that H(floo [(Be — D * @) % f|? &)z

is also majorized
p

from above by Hthg'

(2) The case p > 2 can be deduced from the duality between hj and hg and that
between H; and H (g being the conjugate index of p). There exists g € hg(Rd, M) with
norm one such that

1f =& fllng = ‘T/ (f — <Z>*f)(s)g*(s)ds‘

R4
=|r [ 16" =0 x g s)ds

< fllrgllg = & * gllag S N fllagllgling = 1f 12,
which completes the proof. ]

From the interpolation result of mixture local hardy spaces in Proposition 4.4, we can
deduce the equivalence between mixture local Hardy spaces and L,-spaces.

Proposition 6.15. For any 1 < p < oo, hy(R%, M) = H, (R4, M) = L,(N) with equiva-
lent norms.
Proof. Tt is known that H,(R%, M) = L,(N) with equivalent norms. One can see [42,
Corollary 5.4] for more details. One the other hand, since Loo(N) C bmo®(R?% M), by
duality, we get h§(RY, M) C L;(N). Combining (2.2) and the interpolation result in
Theorem 4.3, we deduce that hf(R?, M) C Ly(N) for any 1 < p < 2 and L,(N) C
he(R%, M) for any 2 < p < oo. Similarly, we also have hl(R% M) C Ly(N) for any
l1<p<2and L,(N) C h;(]Rd,/\/l) for any 2 < p < oco. Combined with (6.11) and (6.12),
we get

H,y(RE, M) C hy(RE M) C Ly(N) for 1<p<2, (6.15)
and

Ly(N) C hy(RT, M) € Hpy(RE, M) for 2 < p < 0. (6.16)
Then (6.15), (6.16) and [42, Corollary 5.4] imply that

h,(RY, M) = H,y(RE M) = Ly(N) for 1< p< oo,

which completes the proof. O



Chapter 7

The atomic decomposition

We start this chapter by showing that h{(Rd,M) admits an atomic decomposition as in
the non-local case [42]. Then, we will give a smooth atomic decomposition of h§(R¢, M),
that is, the atoms in consideration are required to be smooth and admit size control on
their derivatives too. This refinement will play an important role in the study of pseudo-
differential operators in chapter 9.

7.1 The atomic decomposition

In this section, we will focus on the atomic decomposition of h§(R% M). The atomic
decomposition of H§(R?, M) studied in [42] will be very useful for us.

Definition 7.1. Let @ be a cube in R? with |Q| < 1. If |Q| = 1, an h{-atom associated
with @ is a function a € L1(M; L§(R?)) such that

e suppa C Q;
1 1
o 7(Jgla(s)l?ds)? <|Q|=.
If |Q| < 1, we assume additionally:
e Jga(s)ds=0.

Let hiat(Rd, M) be the space of all f admitting a representation of the form

F=>Xaj,
j=1

where the a;’s are hf-atoms and A; € C such that 72, [\;| < co. The above series
converges in the sense of distribution. We equip hiat(Rd, M) with the following norm:

oo o0
Hthi,at = inf{z I\ f = Z Ajaj; a;’s are h{ -atoms, \; € C}.
j=1 j=1
Similarly, we define the row version hf ,(R%, M). Then we set

hiae(RY, M) = hi o (R, M) + b (R?, M).

Theorem 7.2. We have h§ ,(R%, M) = h§(R?, M) with equivalent norms.
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Proof. First, we show the inclusion h{ ,; (R4, M) C h§(R?, M). To this end, it suffices to
prove that for any atom a in Definition 7.1, we have

e < 1. (7.1)

Recall that the atomic decomposition of H$(R% M) has been considered in [42]. An
H§-atom is a function b € Ly (M; L§(R?)) such that, for some cube Q,

e suppb C Q;
e Job(s)ds =0;

o 7(Jolb(s)2ds)* < QI 7.

If a is supported in @ with [Q] < 1, then a is also an H{-atom, whence [la[lns < [lall#s S 1.

1 ~Y
Now assume that the supporting cube @ of a is of side length one. We use the discrete
characterization obtained in Theorem 6.7, i.e.

o)
1
lallng = (D125 al*) |, + ll¢ = a1
=1

Apart from the assumption on ® and ¢ in Theorem 6.2, we may take ® and ¢ satisfying
supp ®, suppp C By = {s e R? : |s| < 1}.

Then
supp¢ xa C 3QQ and suppP.*xa C3Q forany 0<e<]1.

By the Cauchy-Schwarz inequality we have

16 % all, < /3@ (/Q|¢(t—s)12ds)5 -T(/]a(s)|2ds)%dt§ 1.

Similarly,
oo 1 oo
I 1 al) il =7 [ (3" 105« a(s)f?)bds
j=1 3Q ;4
<T / ®;xa(s)|’ds)”
( 3sz11 j * a(s)ds)

Il
\]
/N
%\
U
.
(e
S
—~
[N}
<
I
S~—
5
o
T
o8
I
~—
[

Therefore, b (R?, M) C h(R%, M).

Now we turn to proving the converse inclusion. Observe that H{-atoms are also
h§-atoms. Then by the atomic decomposition of H§(R% M) and the duality between
H{(R?, M) and BMO®(R?, M), every continuous functional £ on h (R, M) corresponds
to a function g € BMO%(R%, M). Moreover, since for any cube @ with side length one,
Ly(M; L§(Q)) C h§,(R?, M), £ induces a continuous functional on Ly (M; L§(Q)) with
norm less than or equal to ||¢ H(hiat)*' Thus, the function g satisfies the condition that

g € BMO“(R?, M) and C;Q'lll)d||g|QHLOO(M;Lg(Q)) < [l o+ (7.2)
CR
Q=1
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Consequently, g € bmo®(R?, M) and
_T/ £()g"(s)ds, VI € bS (R, M),

Thus, hiat(Rd,M)* - bmoc(Rd M). On the Other hand, by the previous result, we
have bmo®(R%, M) C h{ (R, M)*. Thus, h{ (R, M)* = bmo(R?, M) with equivalent
norms. Since h§ ,;(R?, M) C h§(R?, M) and by the density of h , in hf, we deduce that
h§ . (R%, M) = h§(R?, M) with equivalent norms. O

Remark 7.3. In Definition 7.1, we can replace the support @ of atoms by any bounded
multiple of ). For the convenience of the discussion of the smooth atoms in the rest of
this chapter, we will replace @ by 20Q).

7.2 Refinement on smoothness

The smoothness of the atom in hf(Rd, M) can be improved. In the classical theory, the
smooth atoms have been widely studied and they play a crucial role when studying the
mapping properties of pseudo-differential operators acting on local Hardy spaces, or more
generally, on Triebel-Lizorkin spaces. Further details can be found in [8], [16] and [68]. In
this section, we will show that in our operator-valued case, the atoms in Definition 7.1 can
also be refined to be infinitely differentiable.

First, we introduce a lemma concerning the atomic decomposition of the tent space
T¢(RY, M) defined in Definition 3.14. A function a € Ly (M; La(S, %)) is called a T7-

atom if

e supp a C T(Q) for some cube @ in R? with |Q| < 1;

1
2 _1
o 7(Jrg la(s, ) PLLE)* < Q|72

Let Tf ,,(R%, M) be the space of all f: S — Li(M) admitting a representation of the
form

f = Z)\jaj, (73)
j=1

where the a;’s are T7-atoms and A; € C such that } 72, [A;| < co. We equip 77 at(RELM)
with the following norm

oo o0
||f||Tlc,at = inf{z Nl f = Z)\jaj; a;’s are Ty-atoms, \; € C}.
j=1 j=1

Lemma 7.4. We have Tﬁat(Rd,M) = T¢(R4, M) with equivalent norms.

Proof. In order to prove Tf ,,(R?, M) C T{(R?, M), it is enough to show that any T¢-atom
a satisfies |lal|re < 1. By the support assumption of a, we have

! dsde\ 3
c 2 2
lallry = sl == [ ([ [, laG-aP 55) o
dsds 3
2 2
2
Wl ) fy o5

Lo dtde\ 3
=%@”U¥W@M2€Y§L

N
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Then by the duality TF(RY, M)* = TS (RY, M) mentioned in Remark 3.15, we have
T50<Rd7M) C Tlc,at(Rd7M)*'
Now let @ be a cube in R? with |Q| < 1. If f € Ly (M; L§(T(Q), £%)), then

£

a =R f

MLE(T(Q), 225) )
is a Tf-atom supported in 7'(Q). Therefore,
1
17l < 1QPIAN L, (aging iy, 2

Thus, L1 (M; L§(T(Q), ¥%)) ¢ Tﬁat(Rd,M) for every cube Q. Therefore, every con-

€
tinuous functional ¢ on 77, induces a continuous functional on L; (M; L§(T(Q), dssda))

with norm smaller than or equal to ]Q|% [€]l(ze )+~ Let Qo be the cube centered at the

origin with side length 1 and @Q,, = Qo + m for each m € Z% Then R? = Upnezd@m.
Consequently, we can choose a sequence of functions (g, ),,eze such that

dsd
l(a) = T/ a(s,e)g;‘n(s,e)ﬁ, VT7-atom a with suppa C T(Qn),
T(Qm) €
and

Let g(s,e) = gm(s,¢) for (s,e) € T(Qy,). Therefore, we have

dsd
l(a) = T/ a(s,€)g”(s,€) SE 8, vV T-atom a.
S

It follows that, for any cube Q with |Q] < 1, glr(Q) € Loo(M; L5(T(Q), dsde)) and

&
1
HQIT(Q)HLOO(M;LS(T(Q"L)’EIST&)) < QI Il erg )+

which implies g € TS (R?, M). Therefore, Y ,, (R, M)* C TS (R?, M). Thus, we have
that TS (R4 M) = T fm(Rd,M)* with equivalent norms. Finally, by the density of
TY ot (R4, M) in T{(RY, M), we get the desired equivalence. O

The following Lemma shows the connection between T¢(R?, M) and h(R%, M). The
proof is modelled on the classical argument of [8, Theorem 6].

Lemma 7.5. Fiz a Schwartz function ® on R? satisfying:

P is supported in the cube with side length 1 and centered at the origin,
Jra ®(s)ds = 0; (7.4)

® is nondegenerate in the sense of (1.12).

Let mg be the map given by

dtd
—8, s € R%,
€

me(N) = [ [ @ls = 0)5(0,0

Then g is bounded from Tg(Rd,M) to hg(Rd,M) forany 1 <p < oo.
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Proof. For any 1 < p < 00, let ¢ be its conjugate index. By Theorem 3.18, it suffices to
estimate 7 [ 7o (f)(s)g*(s)ds, for any g € h¢(R?, M). Note that
dtde

7'/Rd7r¢)(f)(3)g*(3)d8: /Rd/ O (s —t)f(t,e)— g(S)dS
- /Rd/ Ft,e)(P. *g)()dgdt

where ®(s) = ®(—s). Then by the Hélder inequality,

Cd /Rd// F(te)( 9)()d§ffd\

:Cd /Rd/fs+t€)(q) 2 (S+t)d§ffd’

< 1A ol s (9)1lg
< 1 £llrs lglne.

[ ma () ()

Now we deal with the case p = 1. The arguement below is based on the atomic
decompositions of h§(R%, M) and T{(R?, M). By Lemma 7.4, it is enough to show that
me maps a If-atom to a bounded multiple of an h{-atom. Let a be an atom in 7T} based
on some cube @ with |@Q] < 1. Since ® is supported in the unit cube, it follows from
the definition of m¢ that mg(a) is supported in 2Q). Moreover, it satisfies the moment
cancellation that [ 7 (a)(s)ds = 0 since ®(0) = 0. So it remains to check that mq(a)
satisfies the size estimate. To this end, we use the Cauchy-Schwarz inequality and the
Plancherel formula (1.6),

I (@) vz = 7 / o (@) (©)dg)

(L1 ] dtea.o )L a)’?

—
7.5)
~ de de N\ (
< D 2—/ a 2 —d
<o( [, [ 1Beor® [ o Ea)
dsde 3 _1
<r( [ lalePE) <l
U9 )
Therefore we obtain the boundedness of m¢ from Tﬁat(Rd, M) to h§ at( ,M). O

Theorem 7.6. For any f € L1(M;RS) + Loo (M;RS), f belongs to h§(RY, M) if and only
if it can be represented as

f= Z wib; + Xjg;), (7.6)

J=1

where

o the bj’s are infinitely differentiable atoms supported in 2Qq; with |Qo ;| = 1. For
any multiple index v € Ng, there exists a constant C which depends on v satisfying

T(/ IDVb;(s)|%ds)? < C; (7.7)
2Qo,;
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e the g;’s are infinitely differentiable atoms supported in 2Q; with |Q;| < 1, and such
that

N

r(f, loi(s)as) < jsl”

J

and / gj(s)ds = 0; (7.8)
2Q;

o the coefficients pu; and A\; are complex numbers such that
o
Z il + A1) < (7.9)

Moreover, the infimum of (7.9) with respect to all admissible representations gives rise to
an equivalent norm on h§(R%, M).

Proof. Since the b;’s and g;’s are atoms in h§(R%, M), it suffices to show that any f €
h$(R?, M) can be represented as in (7.6) and

[eS)
D (gl + 1251 S 1 f Il
7j=1

Let x be a radial, real and infinitely differentiable function on R? which is supported in
the unit cube centered at the origin. Moreover, we assume that (§) > 0 if [{] < 1. We
take ® = | - |?&, which can be normalized as:

[T T =1 cerio,

And we define )
p(&) =1-— / @(55)2%, ¢ e R (7.10)
0

By the Paley-Wiener theorem, ® can be extended to an analytic function @(z) of d complex
variables z = {z1,..., 24}, and for any A > 0, there exists a constant C'y such that

~ vd
1B(2)] < CreGHDEl(|g 2 + (&)

holds for any z = & 4 i&2. Therefore,

1 1
[ BT <63 [ et o + jopy
0 0

1
<@} [ e BN 1 g
0

< Qe VDRI 416221 + |6l

< CReATVDIEN (1 4 ey ).
Now applying the Paley-Wiener-Schwartz theorem to distributions, we obtain that ¢ is a
distribution with support in {s € R?: |s| < 2v/d}. On the other hand, by Lemma 6.1, we

know that ¢ is a Schwartz function, thus, supp¢ C {s € R?: |s| < 2v/d}. By (7.10), we
arrive at the decomposition of f:

f:(;ﬁ*f—i-/()l(ba*cba*fd;. (7.11)
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We first deal with ¢ * f. By Theorem 7.2, we obtain an atomic decomposition of f:
f = Zﬂjaj, (7.12)
J
where the a;’s are h{-atoms and 3=, /| < [/ fl|lng. Thus,
G f = hjo*aj.
J

We now show that every ¢ *a; can be decomposed into smooth atoms supported in cubes
with side length two. Let X, be a nonnegative infinitely differentiable function on R% such
that supp Xy C 2Qo (with Qo the unit cube centered at the origin), and > cza Xo(s—Fk) =1
for every s € RZ. See [61, Section VII.2.4] for the existence of such Xy. Set Xj, = Xo(-— k).
Then each X}, is supported in the cube 2Q, = k + 2Qo, and all A}’s form a smooth
resolution of the unit:

1=Y" X(s), VseR% (7.13)

kezd

Take a to be one of the atoms in (7.12) supported in Q). Since ¢ has compact support, i.e.
there exists a constant C' such that supp ¢ C CQp, then ¢ * a is supported in (C' + 1)Qo.
Thus, we get the decomposition

N

(ﬁ*a:Zbk with by = Xy - (¢ x a),
k=1

where N is a positive integer depending only on the dimension d and C'. For any 3,~v € Ng,
denote 3 <y if B; < 5 for every 1 < j < d. Then, by the Cauchy-Schwarz inequality, for
any k,

P[Pt < S w( [ 1076 % als)- D7 2 (s) )

B<y
1
< / DPG(s — t)a(t)dt|*ds)?
i e e |
<Z// |D’8¢S—t|dsdt%-7'/|a |dt%
B<y

1
S IQIF( [ latt)an)* <

where the relevant constants depend on v, ¢ and the X}’s. Thus, we have proved that
¢ * f can be decomposed as follows:

G f = uibj,
J

with b; as desired. Furthermore, > 15| < || f|Ine-
Now it remains to deal with the second term on the right hand side of (7.11). It follows
from the definition of the tent space and Theorem 6.2 that ®. x f € Tf(R% M) and

[ fllv + 1@ # fllre S N1 lng-

By Lemma 7.4, we can decompose &, * f as follows:

9 =3 Nijls,e) with Y [N S (1@ * fllry. (7.14)
) 2
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where the a;’s are T7-atoms based on cubes with side length less than or equal to 1. For
each a@;(s, ) based on @); in (7.14), we set

1 d
gi(s) = / O, * Zij(s,f;)?E = 1pa;(s), Vs R (7.15)
0

We observe from the proof of Lemma 7.5 that g; is a bounded multiple of an h{-atom
supported in 2(); with vanishing mean. Moreover, g; is infinitely differentiable. Thus,

gj satisfies (7.8) with the relevant constant depending only on ®. Combining (7.14) and
(7.15), we obtain the decomposition

1 de &
/ q)g*q)s*f—:Z/\jgj,
0 N

with 33721 [Aj| < [|fllng. The proof is complete. O



Chapter 8

Operator-valued Triebel-Lizorkin
spaces

In this chapter, we will focus on the study of the inhomogeneous Triebel-Lizorkin spaces.
These spaces can be seen as the generalization of local Hardy spaces. We will see that
the operator-valued inhomogeneous Triebel-Lizorkin spaces have two parameters p and
«, in particular, if a = 0, they will be equivalent to h;(]Rd,M). The first main task of
this chapter is to give general characterizations by the Littlewood-Paley type g-function
and by the Lusin type integral function. Since the maximal function techniques are no
longer available in the noncommutative setting, as in [70], the Fourier multiplier theorem
mentioned in chapter 5 will be an essential tool for us.

The second main task of this chapter is to give a subtle atomic decomposition of
operator-valued inhomogeneous Triebel-Lizorkin spaces. This can be realized via tent
spaces by using the Calderén-reproducing identity. We will see in the next chapter that
this decomposition will be very useful in the study of continuity of pseudo-differential
operators.

8.1 Definitions and basic properties

Recall that ¢ is a Schwartz function satisfying (1.1). For each j € N, ¢; is the function
whose Fourier transform is equal to ¢(277-), and g is the function whose Fourier transform
isequal to 1 -3, ©(2779-). Moreover, the Fourier transform of ¢; is denoted by o) for
j € Np.

Definition 8.1. Let 1 <p < o0 and a € R.

(1) The column Triebel-Lizorkin space Fﬁ’c(Rd, M) is defined by
Fe R, M) = {f € S'RY Li(M) + M) : || fll e < 00},
where
o 1
1Fllmge = 11D 227wy * f12)2]],-

720

(2) The row space F;“"(Rd,./\/l) consists of all f such that f* € Fpo"C(Rd,/\/l), equipped
with the norm || fllpmr = |f*]l o
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(3) The mixture space F}' (R4, M) is defined to be

E&e(RE, M) + Fr(RE M) if 1<p<2

Fa(Rd’M):{ a,c a,r :
P FeeREM)NEST(RE, M) i 2 < p < oo,

equipped with

1fllpe = 4 P9l - Mllpr = f =g + R} AE 1<p<2
’ ma’X{HfHFg’ca‘|f||F§’T} if 2<p<oo.

In the sequel, we will focus on the study of the column Triebel-Lizorkin spaces. All
results obtained in this chapter also admit the row and mixture versions.

Before moving further, let us first include the following useful multiplier lemma for
the case p = 1. This lemma is a complement of Theorem 5.6, which relies heavily on the
characterization of h§(R%, M) given in Theorem 6.7.

Lemma 8.2. We keep the assumption in Theorem 5.6. Assume additionally that for any
j>1, pj = p(279:) for some Schwartz function p with suppp C {£ : 271 < |¢] < 2} and
p(&) > 0 for any 271 < |€] < 2, and that supp pg C {€ : |£] < 2} and po(€) > 0 for any
€| < 2. Then for any f € S'(R% Ly(M) + M),

a v o l .
1> 27165 = pj * fI?) 2|, S max { sup 16527 Yol g s 190 (2 + M)l g }

~ >
320 9<k<2

il v 1
Q2755+ £1)2 ),

Jj=0

Proof. By the assumptions of p and pg, we can select a Schwartz function p with the same
properties as p and a Schwartz function py satisfying the same conditions as pg, such that

S HEIOTZTE) + po( Ol = 1. Ve € R

Jj=1

Let U, = (I_ap)(2772), U; = (Inp)(2779-) for j > 1 and Wo = J_opo, Yo = Japo. We have

i W(E)W;(E) + Wo(6)Wo(€) =1, VEeR™

j=1

Applying Theorem 6.7 to g = Jf with the text functions in the above identity, we get

. 1
lglne = || 1% % g*)2|,-

>0

Now let us show the following equivalence:

I 1, 5 g2, =~ |02 22905, + £12)7 .-

J=0 j=0

It is easy to see that T * g = po* [ and 2j0‘ﬁj x f = \ilj x 1% f so it suffices to prove

IO 1y = T fP)E]], = [ [y« 1 f2)2 ), (8.1)

j=21 j=21
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First, let us consider the case a > 0. By [60, Lemma 3.2.2|, there exists a finite measure
o on R% such that

€1% = Aa(&) (1 + )%
Thus, we have 5
Uik I%f = poxV*x Jf, Vj>1

This implies that
v 1 v o 1
Q15+ 1)z S Qo 1y T f1)2 -

i1 j>1

Then, we move to the case @ < 0. Also by [60, Lemma 3.2.2], there exist two finite
measures v, and A\, on R? such that

L+ €)% = Dal€) + €] 72 Nal€).

Let (¢ )rez be the homogeneous resolution of the unit defined in (1.4). It follows that

1+[6P)~2
<+‘§l|€!>];]@ —W%@k Aa(€) 3 416

k>0

Thus, by the support assumption of p, we have
*Io‘f:wa*\i/j*Jo‘f,

with

wa—Va*Zf aSOk +/\ *F Z‘Pk
k>0 k>0

Both F~ (Y p50¢k) and Yoo F'(Ia) are finite measures. Since Y p5o@r = 1 —
S keo Pk, and >p_o @k is a Schwartz function, we know that F~1(X,~o@k) = do —
F Y (<o $r) is a finite measure, where dy denotes the Dirac measure at the origin.
Moreover, it is known in [72, Lemma 3.4] that | F 1 (Io¢%)|1 < 25, Then we have

IF O Lagw)llh S 25 < 0.
k>0 k>0

Therefore, w, is a finite measure on R?. Thus,

D 1y 1222 | S O 1y T2 23

j=21 j=21

Similarly, for o € R, we can prove that

O 1= T2 f12)3 ]|, < 1 [y = 12 £12) .

i1 j>1

In summary, we have proved (8.1), which yields that

. 1
lgllg = 117 Fllng & [1(3_ 227155+ f17) 21, -

Jj=0

Now define a new sequence ¢ = ((;);>0 by setting ¢; = 2/I_,¢;p; for j > 1 and
Go = J—apopo. Then

Grg=2xpjx 1% and (oxg=do*fo+f.
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Repeating the argument for (8.1) with ¢ = ((;);j>0 instead of ¥ = (¥;);>0, we get

12 29165 % 6y fP)2 = (216 * IF)2 ], ~ (2165 # 91)2 -

>0 >0 >0

Then, we apply Corollary 5.10 to g with this new ( instead of ¢ to get

v 1 S 1
116+ 921, S Icl2ollglng = Cllzo (3 22155+ 172 -

Jj=0 j>0

It suffices to estimate the term [|([|2,». By the definition of ¢ = ({;);>, we have

sup (G2 ) ollmg S sup (|27 )¢l g
>1 i>1
—2<k<2 —2<k<2

1600 + eM)llmg < 0@ + M) 1z

So we can use the same argument at the end of the proof of Theorem 5.9, to get

I¢llzo S max { sup 6527 %) ol g, lldo (0 + M)l mg }-

—2<k<2
Combining the above inequalities, we get the desired assertion. O

The above lemma will play a very important role in this section. Let us take a first
view of its effect in the following proposition, which shows that F*“-norm is independent
of the choice of the function ¢ satisfying (1.1).

Proposition 8.3. Let ¢ be another Schwartz function satisfying the same condition (1.1)
as @. For each j € N, let 1; be the function whose Fourier transform is equal to ¢(277-),
and let 1o be the function whose Fourier transform is equal to 1 — 3% ;¢ ¥(279.). Then

. 1
g = 1 2% s+ f17)2 ],
j=0

Proof. For any f € S'(R?% Li(M) + M), by the support assumption of ¢ and ¢, we have,
for any j > 0,

1
bixf= D Uj*oney* [,

k=—1

with the convention ¢_; = 0. Thus by Theorem 5.6 and Lemma 8.2,

13" 229w = £12)3]),

j=0
1
] 1
< D0 Q- 2%y + prgy + f17)2]],
k=—1 j>0
Smax{ sup (162" )elmg. lo(e® + e M)llag I (2 27e; * F12)H],

—2sks >0

; 1
SN 2%+ 1)),

320

Changing the role of ¢ and ¢, we get the reverse inequality. O
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Proposition 8.4. Let 1 < p < oo and a € R. Then
(1) Fg"c(Rd,M) is a Banach space.

(2) F&¢(RY, M) C FPe(REM) if o> .

(3) FY¢(R%, M) = h§(R%, M) with equivalent norms.

Proof. (1) Let {f;} be a Cauchy sequence in F(R% M). Then, the sequence {a;} with

ai = (o * fir...,27%j = fi,...) is also a Cauchy sequence in Ly,(N;¢5(Np)). Thus, a;

converges to a function f = (f°,..., f7,...) in L,(N;£5(Np)). Formally we take
F=>_r. (8.2)

>0

Since for each j € N, suppﬁ C{¢: 271 < ¢l <271} and supp J/CB C {£:|¢] < 2}, the

series (8.2) converges in S'(R% L,(M)). Let p; = 0 if j < 0. By the support assumption

of ¢, when ¢ — oo, we get

41 41
pixfi= Y prr@ixfi— Y. pixff=g;xf,
k=j—1 k=j—1

which implies that f/ = 2/%; x f, for any j > 0. Thus, f € F;’C(Rd,M) and {f;}
converges to f in F;“C(Rd,/\/l).

(2) is obvious.

(3) It is easy to see that for any ¢ satisfying (1.1) also satisfies (1.16). Then by the
discrete characterization of hf,(Rd, M) given in Theorem 6.7, we get the assertion. O

Given a € Ry, we define D;,(&) = (2mi&;)? for € € R and D¢ to be the Fourier
multiplier with symbol D; ,(£) on Triebel-Lizorkin spaces F;"C(Rd,/\/l). We set D, =
Dig, -+ Dgga, and D* = D{*--- D for any a = (a1, ,aq) € ]R‘i. Note that if a is a
positive integer, D{ = 0¢, so there does not exist any conflict of notation. The operator
D% can be viewed as a fractional extension of partial derivatives. The following is the
so-called lifting (or reduction) property of Triebel-Lizorkin spaces.

Proposition 8.5. Let 1 < p < o0 and a € R.

(1) For any B € R, J? is an isomorphism between Fz‘f"c(Rd,M) and F;_B’C(Rd,/\/l). In
particular, J% is an isomorphism between FI,O"C(Rd,M) and h;(Rd,M).

(2) Let B > 0. Then f € F&°(RY M) if and only if ¢o * f € Ly(N) and D;Bf €
Fﬁ_ﬁvc(Rd, M) for alli=1,...,d. Moreover, in this case,

d
£ lgee =l * Fllp + 3 1D 1l pase.
i=1
Proof. (1) Let f € F;’C(Rd,M). Applying Theorem 5.6 and Lemma 8.2 with p = ¢, we
obtain
(o 1
172l pese = D2 2P JOfP)2 ],
j=0
< max{ sup 27901527 * )0l g, 175 (0@ + ) g }

(8.3)
—2<k<2
NI 22995 % £17)2]l,

320
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It is easy to check that all partial derivatives of 2778 J5(2j +£.) of order less than or equal to
[0]41 are bounded uniformly in j > 0 and —2 < k < 2, and that J3(¢© +¢M)) € HY (R?).
Thus HJﬂfHF;%,C S 1 fllzgee- So JP is continuous from F&¢(RY, M) to Fe— <R, M),
and its inverse J ¥ is also continuous from FI?*B’C(Rd, M) to F¢(RY, M).

(2) If we take o € (%, + 2), then we have | Dippollug < oo and ||D; gellug < oo.
Replacing J? by Diﬁ in (8.3), we obtain that, for any i =1,...,d,

107 fll go-s.e S I Fllggee,

which implies immediately that

d
o fllp + D107 fll go-se < 1l gee-
=1

To show the reverse inequality, we choose a nonnegative infinitely differentiable function
x on R such that x(s) = 0 if |s] < 2—\1/3 and x(s) = 1if |s| > %. Fori=1,...,d, we

define y; on R? as follows:

_ 1 x(&)[&)°
(€& + .+ x(Ca)|€al® (2mig)P

whenever the first denominator is positive, which is the case when || > 1. Then for any
j > 1, xip; is a well-defined infinitely differentiable function on R4\ {¢ : & = 0} and

xi(§)

d
o) = Z Xz‘Dz,ﬁ@m-
i=1
Then by Theorem 5.5, we have

d . 1
1 mge < llwox Fllp + DN 27%1X * @5+ DY F17) 2],
=1 j>1

d . : , 1
S oo fllp+ 32 sup 2@ )glug [0 2% Dy« DY),

— s ~
= 55k< gzl

However, ' .
236\|Xi(2]+k')<ﬂHHg(Rd) = ||¢z‘(2k')<PHHg(Rd)7
where .
_ 1 X(2&)|&1°
X(2&)|& P + .. 4 x(27€)1&al®  (2mi&;)P

Since all partial derivatives of ¢¢g0(2k~), of order less than a fixed integer, are bounded
uniformly in j, k and 4, and the norm of ¢;(2%.) in HY(RY) are bounded from above by
a constant independent of j, k and i. Then we deduce

¢i(§)

d . 1
1 pge S llvo = Fllo+ - 11227 Pl « DI f1P)2 |
=1 j>1

d
< llgo * fllp + 32 1DF Fll -
=1

The assertion is proved. ]
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Definition 8.6. For a € R, we define F&¢(R%, M) as the space of all f € S’(R%; M) such
that

1
2jay, . 2 2
o 7l + sup H’Q‘/ N Z(Q))2 i+ fs)Pds| < oo
J>—logy(

We endow the space F%¢(R?, M) with the norm:

1
1752 = llpo = Fl + sup H,@ / 229%) 5+ (s) P

Q> log Q)

Proposition 8.7. Let 1 < p < 00, a € R and q be the conjugate index of p. Then the
dual space of FZ?’C(Rd, M) coincides isomorphically with Fq_O‘7C(Rd,M).

Proof. First, we show that J® is an isomorphism between F.%¢(R%, M) and bmo®(R¢, M).
To this end, we now use the discrete Carleson characterization of bmo®(R%, M) that for
any Schwartz function ® and ¢ € HJ(R?) satisfying (6.10),

(8.4)

1
I Fllomer = 165 fllc + sup || o= [ 9+ /(5)%ds]
|QI<1 H ’Q‘ Q@ j>— log 1(Q)) ! M

We can check the above equivalence by combining Lemma 6.8 and the argument of Corol-
lary 3.11. By taking ¢ = @9 and ® = J %y, we apply (8.4) to J*f:

1
147 s ~ ol + sup i /) ((T7%); * (J°F)(s) s
@ j>—log, (l Q)
1
= oo flc+ s [ 220 « f(s)ds|
|Q<1H‘Q| Q j>_1og, (z Q) ’ M
= I/l e

Since J% is also an isomorphism between F;’C(Rd, M) and hf,(Rd, M) for any 1 < p < o0,
by the h{-bmo® duality in Theorem 3.10 and the hj-hg duality in Theorem 3.18, we obtain
that F;"C(Rd, M)* = Fq*a’c(Rd, M) with equivalent norms. O

8.2 Interpolation

The main result in this section is the following complex interpolation of Triebel-Lizorkin
spaces. It is deduced from the interpolation of local Hardy and bmo spaces in Theorem
4.3, and the boundedness of complex order Bessel potentials on them.

Proposition 8.8. Let ag,a1 € R and 1 < p < oco. Then

1 o
= FRLM), a=(1->)ag+ —.

Foo¢(RE M), FPMO(RE, M
( ( ), F1( ) » »

3=

Proof. Let [ € F;’C(Rd,/\/l). By Proposition 8.5, we have J*f € hg(Rd,M). Therefore,
according to Theorem 4.3, there exists a continuous function on the strip {z € C : 0 <
Rez < 1}, analytic in the interior, such that J*f = F(%) € h5(R%, M) and such that

sup || F(it)|[bmee < 00 and  sup [|[F(1 + it)|ne < oo.
teR teR
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We will use Bessel potentials of complex order. For z € C, define .J,(€) = (14 [¢]?)Z, and
J# to be the associated Fourier multiplier. We set

ﬁ*(z) — 6(2*%)2J*(lfz)aofzan(z).
For any t € R,
~ 42, 1 )
1E ()| pove m " 27| @000 B (it) e

and
|F L+ i) pore v e O itle0—an (1 it e

We claim that J is a bounded Fourier multiplier on h§(R?, M), so by duality, it is bounded
on bmo®(R%, M) too. Therefore, we will have

sup || F(it) || peoe < 0o and  sup ||[F(1 4 it)|| per.e < oc.
teR °° teR !

This will imply that f = F(1) € (F20¢(R%, M), F{4(RY, M))

1
: . Hence,

B =

EPe(RY, M) C (F2OC(RY, M), F{4 (R, M)) 5

=

Then the reverse inclusion follows by duality.
Now, we prove the claim. First, we can easily check that J;; is d-times differentiable
on R%\ {0}, and for any m € N¢ and |m|; < d, we have

sup {[¢["™" D™ ()] 1 € # 0} S (1+ [t
Then, we can check that (with Ji;(28¢) = (1 + |2k§]2)%),

751%6}622||Jn(2k')90\|gg S+[)? and [ Je(e@ + eM)lgg S (14 12D

By (3) in Proposition 8.4, if we take (¢;);>0 to be the Littlewood-Paley decomposition on
RY satisfying (1.2) and (1.3), we have

1T Fllne = (O e+ 05 % £19)2]

Jj=0

and

1F e = 1S Igs * F12)2 ],
§>0

Then, we can apply Lemma 8.2 with p; = ¢;, ¢;(27-) = Jit, Vj > 0 and a = 0, 0 = d,
17 £llng < max { max 156 2%) @l s 1T (0 @+ @) g HIFllng S (1 DS g

The desired assertion is proved. ]

Remark 8.9. The real interpolation of the couple (F¢(RY, M), F{"“(R4, M)) follows
easily from Proposition 8.5 and Corollary 4.5. But if a1 # a9, the real interpolation
of (F21¢(RY, M), F{*¢(R%, M)) will give Besov type spaces. We will not consider this
problem in this thesis, and refer the reader to [72] for similar results on homogeneous
Triebel-Lizorkin (and Besov) spaces.
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8.3 Triebel-Lizorkin spaces with a > 0

The following result shows that when a > 0, the F{"“(R%, M)-norm can be rewritten as the
sum of two homogeneous norms. Recall that for a fixed Schwartz function ¢ in (1.1), the
functions ¢;’s determined by gAbj(g ) = ©(2779¢), j € Z give a homogeneous Littlewood-Paley
decomposition on R? satisfying (1.4).

Proposition 8.10. Let a > 0. If 1 < p < o0, then

+o0
T 1 a.c
I llmgee = o fllp + 1€ 32 2%+ f1)2],. ¥ f € Fe(RY, M).

Jj=—00
If1<p<2,

+oo
1Fllpee = 1 Fllp +1C D2 22y = fIP)2[],, ¥ f € Fre®E, M),

j=—o00
Proof. By the definition of the Fg*“norm, it is obvious that

+o0
il - 1
1 llmgee S lwo* fllp + 10 D2 22%0¢;  f17)2]),-

j=—o00

To prove the reverse inequality, it suffices to show:

0 +o00
jof, 1 il . 1
1CSS 22200 % F2)2], < o * Fllo + 1Y 2905 £2)2),

j=—00 j=1
By the support assumption of ¢, we have ¢(®) =1 for any |¢| < 1. Thus, when j < 0,

p(27:) = p(27)p0).

Then
Gjx f=pjxpoxf. (8.5)
By the triangle inequality, (8.5) and [71, Lemma 1.7], we obtain

0 —1
10 2725+ IR, S 0 20y wo* Fllp + llo * Fl
j=—00 j=—00
-1 )
S 2 20Ubillllvo * fllp + le(eo + o1 +02) * £,
J=—00
0 +o0
S X Poleo Sl + 10 295+ 1)),
j=—00 j=1
400 ) 1
S Nl fllp + 13- 227205 # £12)2]],
7j=1

Therefore, we have proved that ||¢g * f|, + H(Zjﬁ‘f 2279 * f]z)%Hp gives rise to an

equivalent norm on F¢(R% M) when o > 0.
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For any 1 < p <2 and a > 0, we have F®“(R%, M) C h§(R%, M) C L,(N). Therefore
I fllp S pe-e. Combined with the equivalence obtained above, we see that

“+o0o
i) - 1
1l +11C D2 227« 12, S I flpge.

Jj=—00
The reverse inequality can be easily deduced by the fact that || * f|l, < |l@olli|[f]lp- O

We also have a continuous counterpart of Proposition 8.10. For any € > 0, we define
pe = F 1 (p(e)).
Corollary 8.11. Let 1 < p <2 and a > 0. Then, for any f € F;‘vc(Rd,M),
)
0

9 - de. 1
£l = 1f 1+ [ &0 D)3
€ P

(8.6)

We notice that (8.6) is the sum of two homogeneous norms. For A > 0, || f(\-)|[, =

d

d
A~ 7| f]lp and for the second term in (8.6), we have a corresponding assertion with o — 7

instead of g, since [Pz * f(A)](8) = @ae * f(As).

8.4 General characterizations

We have seen in section 8.1 that the definition of Triebel-Lizorkin spaces is independent
of the choice of ¢ satisfying (1.1). In this section, we will show that this kernel is not
necessarily a Schwartz function. Since the local Hardy spaces are included in the family
of inhomogeneous Triebel-Lizorkin spaces, the following characterizations can be seen as
generalizations of those in chapter 6. The multiplier in section 5.2 will be very useful in
the following.

Let ®(© and ® be two complex-valued infinitely differentiable functions defined respec-
tively on R? and R%\ {0}, which satisfy

2O >0 if ¢ <2,

—ka 8.7
sup 2720|9028 g5 < oo, (87)
keNy
and 1
2] >0 if S <lel<2,
sup 27k ||p(2k. o < 00,
keIif)o H ( )‘P”HQ (8.8)

/Rd(l +15[2)7 | F 1 @Oy, )(5)|ds < oc.

Recall that here I_,, (&) for € € R? is the symbol of the Fourier multiplier 1=, where
I=*1 is the Riesz potential (—(27r)*2A)_Tal.

Let ®U) = &(277.), j > 1 and ®; be the function whose Fourier transform is equal to
®U) for any j € N.

Theorem 8.12. Let 1 < p < 0o and o € R. Assume that g < o < a1, aq > 0 and O,
® satisfy conditions (8.7), (8.8). Then for any f € S'(R%; L1(M) + M), we have
e = (X 2290, )3 (5.9)
Jj=0

where the relevant constants are independent of f.



8.4. GENERAL CHARACTERIZATIONS 103

Proof. We follow the pattern of the proof of [72, Theorem 4.17]. Denote the norm on the
right hand side of (8.9) by || f||pe.c.
p

Step 1. Let ¢, = 0 (and so is ¢¥)) if k < 0. Given a positive integer K, for any j € N,
we write

K-1
el — Z QUTh) 4 Z L) Utk
k=—o00
Then
D f= > D f+ Y ik f (8.10)
k<K—1 k>K

Temporarily, we take for granted that the second series above is convergent not only in
S'(R% L1(M) + M) but also in F¢(R%, M), which is to be settled up in the last step.
Then we obtain

1 £llee <T4+TT+IL,

where

1 1
L= > Q- 272, = pjun* fIP)Z]],

k<K—-1 j>1

M= %" [[®*¢k*flp
k<K-1

=3 (3 22°1®; « oy + £,
E>K  §>0

The term II is easy to deal with. By [71, Lemma 1.7] and (8.7), we obtain

K-1 K—1
> NP0+ or  fllp = D [P0 * (et + P + Prt1) * ok * fllp
k=0 k=0
K1
S0 Nk = flipll®o * (Yr—1 + 0k + wr+1)lln
k=0
K1
< sup 27F0 | 0O 2k )| e N7 oMo ke p)),
keNy k=0
S Ck || || e

Now let us treat the terms I and III separately. By the support assumption of ¢(*)
and the property that it is equal to 1 when [¢| < 1, for k < K — 1, we have

(0) (o0—K
R

= 2M1p(€)pM(¢),

€11 ") ()

(8.11)

where 7, p are defined by

(&)@ (27K¢)
€|

Let n) = n(277.), j € Z. For j > 1, define n; = F~1(n")). Then for any j > 1, we have

and  p(§) = [£[*p(€).

n(§) =

‘I)*90J+k*f_2 N5 * Pj+k * f-
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Now we are ready to estimate I. Applying Theorem 5.6 and Lemma 8.2 twice, we get

T= Y 2Memo)|(3 2200y w oo f2)3|)

k<K-1 j=1
o o L

= > 2T 2Pk fP)2,

k<K—1 §>k+1
< Z ok(a1—a) 1o {Hn(fk)(go(O) + 80(1))||Hg» _max ||77(7k7€)<PHHg}

k<K -1 -

, 1
1G22+ f1)2 1,
5>0 (8.12)

< > 2 max {InTP (@ + oW)lmg, max |In" g}

kE<K-1 -

-max {[[ L, (07 + )l g.s [Lay ollzg I 22705 £12) 7],

730

= > 2" max {|nP (O + o)y, max |In'""eug )

k<K—1 ==

-max {[| T, (' + ¢l g, [ o ell g I fl e

First, it is obvious that ||la, ¢||mg < co. Then we deal with the term I, (0O + M) which
can be reduced to Ialgo(o) by dilation. Let N be a positive integer such that a; > % If
) : ) ; : _ o) e|en— - E 1+ E)z ,(0)
the dimension d is odd, we consider the function F(z) = """ 2N+2/ [¢|*1 727N N2\
which is continuous on the strip {z € C : 0 < Re(z) < 1}, and analytic in the interior. A

direct computation shows that sup,cp ||F'(it)|| ¢_3 < oo and sup,cg | F'(1+it)| 11 <
H; H.

N,

1 1
7+7

oo. Then for 6 = 2> %, we have
N

F(0) = L, € HY(RY) = (B} *(RY), B} T2 (RY),,

for some ¢ > 4. On the other hand, if d is even, set F(z) = e(zfﬁ)ﬂ{\]val”%lgo(o). We
can also check that sup,cp || F(it)|| ¢ <00, and that sup;cp I|F(1 + it) 441 < 00. Then
H2

|
H2

— 1
for 6 = 55, we have

d 1 d
staN 3

F(0) = Lo, 00 € HE V2N (RY) = (13 (RY), HE T (RY)),,

Thus, for any aq > 0, we can always choose a positive ¢ > % such that Ialgo(o) € Hg(Rd).
Next, we have to estimate ||n(*k)<pHHg and Hn(*k)cp(o)HHQo uniformly in %k, which will yield
the convergence of the last sum in (8.12) by dilation again. To this end, note that by (8.8),

7 is integrable on RY, then we use the Cauchy-Schwarz inequality in the following way:

F M o) (s))? = | . i(OF Hp)(s — 2" t)dt[?

< il /]R (0)] - 151 (0) (s — 280) 2.
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For k < K — 1, we have

Py = [ (1152717 0 o)) s
<l [+ [ O] 177 o) = 240 Prds
R4 R4
Sl [+ PR [+ ls = 24407 F () (s~ 20Pdsdt (313
<25l [ (L RO [0+ Js)7IF ) ) s

ol v 2
< Coperac [ L+ Pl (010,

The other term is dealt with in the same way. Combining the previous inequalities, we
obtain

LS Cagormpapc [, (1 [EE7HO)dE e (8.14)
In order to return from 7 back to ¢g, we write
n=T 0,0 27%) = O]+ 1,000

Since I_q, ®(¢© (275.)—¢(9) is an infinitely differentiable function with compact support,
we have

L R T, @602 = GOt = Cly 0y e <
Then (8.8) implies that

/Rd(l + [t12)°|7(t)|dt < C‘/ID,go(O),al,a,K + /Rd(l + |812) | F T (I g, @) (s)]ds < .

Therefore,
LSl

Step 2. Now it remains to estimate the third term III. Let H be a Schwartz function
such that

supp H C {¢ € RY % <le<4) and H(E) =1 if % <le <2 (8.15)

Let H®) = H(27*.). For k > K, we have

(&)

= WH“”’ ™ (©)lg|, (8.16)

(&)™ ()

and

o)
PO () = T HP O Olef (8.17)
For any j € Ny, we keep using the notation ®; = F~H(®V)) and H; = F~1(HY). Thus,
we have

CI)]' * Ok * f = 2ka0(1—o¢0q})j * Hj+k * (Iaocp)j-s—k * f
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Therefore,

. 1
= gk(ao—a)||( 3 22UFR)| (T_, @) % Hjyy, + (Zag®) 14 * f1?)2 Hp

E>K j=0
) 1
= 3 oMo || (30 2% (1o @)y % Hy # (Tngip); * f12)2] -
E>K >k

Since both H and ¢ vanish near the origin, by Theorem 5.6 and Lemma 8.2, we obtain

) 1
3 20| (30 2% (Iag®);_i # Hj * (Tap0); * /)7,
E>K Jjzk

< sup 277 max { max _[[1_q, @2 ) H(2 )¢l g, [ T-ae® V(25 H (0@ + )| g }
keNg —2<4<2

2D 2K f e

k>K
Then by (5.6), (8.7) and (8.8), we have, for any —2 < ¢ < 2,
27K o, @(25 ) H (2 )l g

<2 RO gl [ (1 PN (g H ) Ol (8.18)

S 2,]{&0”@(2]64*@)90”1{5 S :élI\I]) 2*]?&0”@(2]6)(’0”}[2‘7 < oo,
0

and
27k I_, @O (2" ) H (@ + o) g

1
gk 0O H S o2 g
0="2
1

§2—koco Z H[_ao@(o)(2k+€’_>H(25/.)¢HH§ (819)
0'==2
1

<27h0 37 @O Yol [ (1-+ )7 1F T (B ) Ol
=2 R

< sup 2770|8028 )| g < o0
keNy

Then we get that
I < Co,a0,a,k [|f]| pove-

Combining this estimate with those of I and II, we finally get
«,C < «,C
e S W Fllmgoe-

Step 3. We turn to the reverse inequality. Note that ¢(9)(€) = 1 when |¢| < 1, then by
(8.7) and (8.8), for any j € N, we write

V(&) (o)

(&) = ) (€) O (27T Mg) = 205" 2 Meol)(g), je Ny, (8.20)
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where M is a positive integer which will be chosen later. By Theorem 5.6 and Lemma 8.2,

1 lege = [1(30 2220 # £7) 2],

>0

< max { 555, 1271 (2) (2% )|l g (@) 1@ (@ + )| g }
1
|(Z 22ja|(900)j+]\/[ * Dok f|2) ? ||p
j=0
. 1

< (S 25 B 5 FD)

j=0

where (o) 47 is the Fourier inverse transform of p(®(2777M.). Let h = 1 — (). Write
P 027771V (€) = dU(€) — U (E)DU)(S). Then, we have

) 1
1 g S M Nmeg + 11032 27 hygr = 5+ £12) %],
j20

where the relevant constant depends on p, o, d and (). Applying the arguments in the
estimate of II1, (8.16) with h(*)® in place of ® and (8.17) with R &) in place of &),
we deduce

. 1
1D 2% Ay + @5 % f17)2 ],

>0
< €y sup 2759 max { _max |yh(2k*M+f.)q>(2k+f.)¢||Hg,Hh(z’f*M.)q><0>(2’f.)¢||Hg}
k>M
Sy ok “O‘a)llfHF;m
k>M
= sup 27 max { _max [R(2E M D (28 o g, [[R(25 M) @O (28 )| g }
k> M <e<2 2 2

2M(ao a)
' C m”f”b—'ac

where C] is a constant which depends on p, o, d, H and ag. Now we replace h in the
above Sobolev norm by 1 — ¢(©):

1R M2 el g < 225 )pllag + 0@ (@MY @25 )| g

The support assumptions of ¢(®) and ¢ imply that when k > M, o0 (28=M+L), £ 0 if
and only if k+¢ = M or k+ ¢ = M + 1. Then by (5.6), we have

[ (2 M (25 )| g < Co| @25 )| g
where Cy depends on ¢(©, ¢ and d. Thus,
IR (25 M) @2 ) ol g < (1 + Co) @28 )¢ g
Similarly, we have
1R 2% ol g < (1+ C2) 2 (2" )¢ g

Putting all the estimates that we have obtained so far together, we get
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1f 1| e

2M(ao—a)
< C3(C1(1+ Co)

sup 275 max ([ B(2+ )l g 9O (2" )i g} L e

1 — 200~ E>M
+ 1 fllpee )

where the three constants Cq, (5, C3 are independent of M, so we could take M large
enough to make sure the multiple of || f||po.c above is less than %, so that we have

[ llge S Nl

Step 4. We now settle the convergence issue of the second series in (8.10). For every
J>0,®5%pj1p* fisan L(M) + M-valued tempered distribution on R?. We now show
that the series converges in S’'(R%; Ly (M) + M). By (8.18) and (8.19), for any L > K, we
have

L

290 125 % @ * fllp
k=K

S M agspllug D 20~ sup max {2750 @ (2% )| g , 2750 | @O (28 )| g Y| 1| e
k>K

<1l

Therefore, for any j > 0, >ps 1 @ @jyx * f converges in Ly(N), so in S'(RY; Li(M) +
M) too. In the same way, we can show that the series also converges in Fl‘f"c( d M M),
which completes the proof. O

The following is the continuous analogue of Theorem 8.12. We will use similar notation
for continuous parameters: given € > 0, ®. denotes the function whose Fourier transform
is ) = d(e-).

Theorem 8.13. Keep the assumption of the previous theorem. For f € S'(R% Li(M) +
M), we have

' oo 2de\ ]
£l 10« Sl + ([ 25 725 (8.21)

)
Proof. This proof is very similar to the previous one. We keep the notation there and only

point out the necessary modifications. First, we need to discretize the integral on the right
hand side of (8.21). There exist two constants C7, Cy such that

012223“/ @ JPE < [Tepe e 2L < 0 222”/ e g
0

By approximation, we can assume that f is good enough so that each integral over the
interval (277~1,277) can be approximated uniformly by discrete sums. Instead of ®U)(¢) =
®(277¢), we have now ®C)(€) = ®(ef) with 27771 < ¢ < 277, We transfer the splitting
(8.11) into:

©(277 - Yeg)p (27K

|2 j£|a1 |2_]§|altp]+k(§)

(&) pj4k(8) =
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Thus,
O g x f =25 % pjag xS

with A

_ 2(27e6)pV (27K

77(5) - |€’a1

We proceed as in step 1 of the previous theorem, where we can transfer (8.13) to the
present setting:

and  p(§) = [£[*p(€).

0P pllag S Coo g [ (141170t
= Co gt [ (L 71 (L 000516 (277)) (1)t
< Co o [ (1 1717 (L, @006 2 1)
where §; = 2/¢ and % < 0; < 1. The last integral is estimated as follows:
L 1 F (T 00 (0727 )) (1)
< [ IRIF (L ) 0
[ A+ IRF (oo, @1 — (6512 1)
< [ IIF (L ) 0

+ sup /Rd(l + 1) F T (e, @[ = GO (67127 )] (1) dt.

Note that the above supremum is finite since I_,, ®[0(?) — 00 (571275)] is a compactly
supported and infinitely differentiable function and its inverse Fourier transform depends
continuously on §. Then it follows that for 27771 < ¢ < 277,

1—0¢ de 1 al—a
> () e sPDH S X 2 g S Iflege.

E<K—1 P ok<Kk-1

We can make similar modifications in step 2 of the previous theorem and then establish
the third part. Moreover, by the previous theorem, [[®¢ * fl, < || f[|fo-c. Thus, we have
proved

1
<1l
0 p

For the reverse inequality, we follow the argument in step 3 in the previous proof. By
(8.8), there exists 2 < a < 2v/2 such that ®(¢) > 0 on {¢ : a™! < €] < al. Then for

j>1, Rj={e:a1277" <& <a27771} are disjoint sub intervals on (0, 1], and gii)) is

9%, de 1
20 % fllp+ | ([ 210« £125)

well-defined for any € € R;. We slightly modify (8.20) as follows: for any ¢ € R;, we have
: : : ) _
PO = o0 Ke) = LB SO (K ale), e,

Since for any —2 < £ < 2,

@127 202 )pllug < sup [ @T(02%)p(2% )|l g < oo
2a71<6<¢



110 CHAPTER 8. OPERATOR-VALUED TRIEBEL-LIZORKIN SPACES

and

1@ 27O + W)y < sup  (1(BD) ()@ (0P + o) g < oo,

we follow the argument in step 3 in the previous theorem to get

1£lrpe SICE 250 [ 1g0)on s e v 7],

]>O 3

1 de, 1
S 120 S+ ([ &0« 125)?

(Z22ja/ |k * D % f|2§)%
R; B

320

The remaining of the proof follows step 3 with necessary modifications. 0

8.5 Characterizations via Lusin functions

We are going to give some characterizations for Triebel-Lizorkin spaces via Lusin square
functions. As what we did in the last section, we will keep using Fourier multiplier theorems
as our main tool. For the case p > 1, we already have Theorem 5.9. For p = 1, we need
the following lemma. By virtue of Corollary 5.11, its proof is similar to that of Lemma
8.2, and is left to the reader.

Lemma 8.14. Keep the assumption in Theorem 5.9 and assume additionally that for any
j>1, pj = p(277-) for some Schwartz function with suppp C {€ : 271 < |¢| < 2} and
p(&) > 0 for any 271 < |€] < 2, and that supp po C {€ : |£] < 2} and po(€) > 0 for any
€| < 2. Then for any f € S'(R% Ly(M) + M),

e )

INCAY SO t)[2dt)s

>0 B(0,2
Smax{ sup 6,27 Jolug, 6o + ) g
—2J<_k<2
N [t st oPant
J>0 B(0,2

Combining the above Lemma with Theorem 5.9, we obtain the following characteri-
zation via Lusin square functions associated to ¢ given by the condition (1.1). We keep
using the notation ¢; being the function whose Fourier transform is equal to ©(277+) for
J € N, and ¢ being the function whose Fourier transform is equal to 1 —3-,5; 0(277).

Proposition 8.15. For 1 <p < oo and f € Fpo‘ﬁ(Rd,./\/l), we have

| Fllrge = llpo * Fllp + || (3 27+ g+ f(+ 1)z (8.22)

= B(0,2-9)
Proof. For any f € F;"C(Rd,/\/l), by the lifting property in Proposition 8.5, we have
Jof € hzc,(Rd,M). Then, we apply the discrete characterization in Theorem 6.7 with
¢=J %o and & = 1% to J*f,

,D
1flpgee = 17 fling = llo * fllp + l[s750 (T ) lp-
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Following the argument in the proof of (8.1), we can prove

575, (IoDN, ~ 1575, (12Ol

Moreover, we can easily check that

652, Pl = (S 2 [ gy £+ o)}

P’

i>1 B(0,277) p
Therefore, we conclude
1
£~ oo« Sl + [(C 20 [ oy £+ 1) Pa?
i>1 B(0,277) p
The assertion is proved. ]

Theorem 8.16. Let 1 < p < 0o and o € R. Assume that ag < o < a1, aq > 0 and ),
® satisfy conditions (8.7), (8.8). Then for any f € S'(R%; L1(M) + M), we have

Iy = 100 = £l + (S 2CD [y« f(+ 1) ey

= B(0,279)

9

where the equivalent constant is independent of f.

Proof. This proof is very similar to that of Theorem 8.12. The main target is to replace
the standard test functions ¢ and ¢g in Proposition 8.15 with ® and ®( satisfying (8.7)
and (8.8). This time we need to use the Lusin type multiplier theorem i.e. Theorem 5.9,
instead of Theorem 5.6. For the special case p = 1, we apply Lemma 8.14 instead of
Lemma 8.2. O

Using a similar argument as in Theorem 8.13, we also have the following continuous
analogue of the above theorem. This is the general characterization of Triebel-Lizorkin
spaces by Lusin square functions.

Theorem 8.17. Keep the assumption in the previous theorem. Then for any Ly (M)+ M-
valued tempered distribution f on R%, we have

9% dtde | 1
£ e nny = 90 £l + | L2100 5 £+ 0P S5

8.6 Atomic decomposition

For every | = (I1,--- ,13) € Z%, u € Ny, we define Qu, in R? to be the cubes centered at
27#[, and with side length 27#.
Let Dy be the collection of all the cubes @,,; defined above. We write (u,1) < (¢, 1) if
p>p and  Quu C2Qu .

For a € R, let ay = max{a,0} and [a] the largest integer less than or equal to a. Recall
that [y]1 = y1 4+ -+ 4+ 7q for v € N¢, 58 = s?l‘usgd for s € R% B € Ng and J* is the
Bessel potential of order «.

Definition 8.18. Let a € R, and let K and L be two integers such that

K > ([a]+ 1)+ and L > max{[—a],—1}.
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(1) A function b € L1 (M; L§(R?)) is called an (a, 1)-atom if
e suppb C 2Qox;
o 7( fpa |Db(s)2ds)? < 1, ¥y € N, |1 < K.
(2) Let @ = Q1 € Dy, a function a € Ly (M; L§(R?)) is called an («, Q)-subatom if

e suppa C 2Q);

1 a |l
o 7(Jpa|DVa(s)Pds)? <|Q|i~ 0", Yy NI, Wi < K;

o JpasPa(s)ds =0, VB eNg, |81 < L.
(3) A function g € Ly (M; L§(RY)) is called an (o, Qg m)-atom if

« 2 % < -1
7( Rd\J 9(s)Pds)? S |Qrml™2 and g= > dyiauy, (8.23)
(1) <(kym)

for some k € Ny and m € Z%, where the ay’s are (o, Quyl)—subatoms and the d,;’s are
complex numbers such that

1 |
(> 1dulP)? < |Quml 2.

(1) <(k,m)

Remark 8.19. If L < 0, the third assumption of an («,@)-subatom means that no
moment cancellation is required. In the second assumption of an (a, 1)-atom b and that
of an («, @)-subatom a, it is tacitly assumed that b and a have derivatives up to order K.

For such a, we can define a norm by
— 2l
ol = 1B 1D, 1y

Then the convergence in (8.23) is understood in this norm, and we will see that the atom
g in (8.23) belongs to F{"“(RY, M).

Remark 8.20. In the classical case, the first size estimate in (8.23) is not necessary. In
other words, if g = Z(M7l)§(,€7m) d,a,; with the subatoms a,,;’s and the complex numbers

1
dy,1’s such that (32, 1)<k.m) dui]?)? < |Qk7m|_%, then ¢ satisfies that estimate in (8.23)
automatically. We refer the readers to [68] for more details. Unfortunately, in the current
setting, we are not able to prove this estimate, so we just add it in (8.23) for safety.

The following is our main result on the atomic decomposition of F{"“(R%, M). The
idea comes from [68, Theorem 3.2.3], but many techniques used are different from those
of [68, Theorem 3.2.3] due to the noncommutativity.

Theorem 8.21. Let o € R and K, L be two integers fized as in Definition 8.18. Then
any f € F*°(R%, M) can be represented as

[ = Z f5b; +)‘ng (8.24)
7=1

where the bj’s are (o, 1)-atoms, the g;’s are (o, Q)-atoms, and pij, \j are complex numbers
with

o0
D (gl + 1A < oo (8.25)
j=1
Moreover, the infimum of (8.25) with respect to all admissible representations is an equiv-
alent norm in F{*°(R%, M).
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Proof. Step 1. First, we show that any f € F{"“(R?, M) admits the representation (8.24)
and

> (gl + 151 S NF Il

7=1
The proof of this part is similar to the proof of Theorem 7.6. Let k be the Schwartz

function defined in the proof of Theorem 7.6. We take ® = | - |N% with N a positive even
integer such that N > max{L, a}, then ® can be normalized as follows:

/OOO @(gg)Q% =1, VéEeR {0}

Since —a+ N > 0, we have

S (o) @270 = 8(6), Ve e RN\ {0}, (8.26)
j=—00

and -
D D)2 =), vEeR!\ {0}, (8.27)

where @ and &' are two functions which are rapidly decreasing and infinitely differentiable
on R?\ {0}. Applying the Paley-Wiener-Schwartz theorem, we get a compactly supported

function ®g € S such that )
o=1- [ B
0

Denote by ®. the Fourier inverse transform of ®(e-). For any f € F{"“(R%, M), we have

1 de
f=oft [ Ooxdnf T (8.28)
0

Let us deal with the two terms on the right hand side of (8.28) separately.

The term ®q * f is easy to treat. If a > 0, Proposition 8.4 ensures that F{"“(R%, M) C
h§(R% M). Then we can repeat the first part of the proof of Theorem 7.6: for any
f e F(R% M), &g * f admits the decomposition

Do f =D psbj,
J

with
Dol S Mg S N llpees
J

where the b;’s, together with their derivatives D7Vb;’s, satisfy (7.7) with some constants
C, depending on 7. When K is fixed, we can normalize the b;’s by max, <x |C,],
then the new b;’s are (a,1)-atoms. If o < 0, by Propositions 8.4 and 8.5, we have

Jelf e Floz_[o‘]’C C h§. Then JI¥®; « f admits the decomposition

T« f =3 by,
J

with 3, 151 S 1790 fllug < ]l pee. Then

(I)() * f = ZMJJ_[a]bj.

J
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If —[a] is even, it is obvious that supp J _[O‘]bj C supp bj. Moreover, for any v € Ng such
that ‘7’1 < K,

r([ D) PasE s S ([ IDThi(s)Pds)® < Cic
R4 Rd
171 <K —2[a]

We normalize J e b; by this constant Cx depending on K, then we can make it an («, 1)-
atom. Now we deal with the case when —[a] is odd. Since —[a] + 1 is even, it suffices to
replace [o] in the above argument by [«] — 1, and then we get the desired decomposition.

Step 2. Now we turn to the second term on the right hand side of (8.28). It follows
from Theorem 8.17 and the definition of the tent space that e~ *®. x f € T¢(R% M) and

le™®e * fllze S ISl ppe-
By Lemma 7.4, we have

e x f(s) = i Ajbj(s,€), (8.29)
j=1

where the b;’s are Tf-atoms based on the cubes Q;’s with |Q;| < 1. Then, if we set
aj(s,e) = e%bj(s, €), we obtain

Ok f(5) =D Njaj(s,e)
j=1

and -
YN S e @e * fllrg S | fllpoe (8.30)
j=1
In particular,
—2a 2d8d€ % _ 1
suppa; C T(Q;) and 7( / e 2y (s,0) P )T < Q]2 (8.31)
T(Q;)
For every aj, we set
1 de
9i(s) = mala)(s) = [ @.vas(s.9. (8.32)

Then supp g; C 2Q);. We arrive at the decomposition
1 de &
/ ok @ox f— =3 Njgj.
0 e 4
7=1
Now we show that every g; is an (a, Qk; m,)-atom. Firstly, for any @, there exist
k; € Ng and s € R? such that
27kl < 1(Q;) <27% and cq; = 1(Qy)s.
Take m; = [s] € Z%, where [s] = ([s1], -, [s4]). Then, we can check that
Q] C 2Q1€j,mj7 ij,mj E ]D)d (833)
Next, by the argument similar to that in (7.5) and by (8.31), we have

N NETII oy o dtdey 3 -1 1
(L emaa)olat s7( [ e oyt P TE) T <107 S 1@k m, I
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If a <0, it is clear that
([ 1o mela(s)Pds)t < ([ 11ma(a)()Pds)* S 1041 S 1Quym, | H.
If a > 0, we have
o[ 1o ma(a)()Pds)* S [ mala)@)Pds)* +7( [ 1oma(ay)()[ds)?
() g
So( [ ey’
(@5)

1 1
< 2[Q572 S Qkymy |2

Then we get that, for any a € R,

r([ 10 (s) )t = ([ 17oma(a)(0)Pds)® S 1Qum|F (839

+1Q;172

Finally, we decompose the slice T'(Q;)N{27#~! < e < 27#} into (d+1)-dimensional dyadic
cubes whose projections on R¢ belong to Dy, and with side length 27#, 1 € Ny. Let Q be
one of those dyadic cubes with side length 27# and @ be its projection on R?. Let

dtda
/ P (s —t)a;(t,e)— 5
By the support assumption of @, it follows that

suppa C 2@, suppa C 2Q; C 4Qk; m;,-

Then

9—H+1

a© = [ 10T

—p E.

Since DB@(O) =0 for any |8|1 < N, we obtain

/ (=2ris)?a(s)ds = Da(0) =0, V|8 < L.
R4

Furthermore, by the Cauchy-Schwarz inequality, we have

1 2t dtde 2 3
T(/|a(s)|2ds)2 _ / / /@s(s—t)aj(t,s)—g ds)’
5Q 2— Q
dtde 3 27 it dtde\ 3
([ [ 7 Loty
2~
27mt dsden 3
< 2 2
se(f, [l ares)

o 27 dsde 3
siQEr( [ [ e s PTE)”
2-n Q €

Similarly, we have

1 -t 27 dsdey 3
/|Da |d82§ % T /2 / 2a’a3 ’2 88)2

Q-\
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The above discussion gives

g= > law, (8.35)
() <(kj,my)

where each ai’l is an (o, Q,)-subatom. The normalizing factor is given by

9—nu+1 1
da=mas cye([L [ e (5,2 P2EY
Y1 2— Q

By the elementary fact that ¢o(L1(M)) D Li(M;(5), we get

odsde
€

i 1
(> P sor(f P TE) <0 T (539

(1)< (kj,m;)

where C is independent of f. We may assume C' = 1, otherwise, we can put C in (8.29)
in the numbers \;, which does not change (8.30). In summary, (8.33), (8.34), (8.35) and
(8.36) ensure that g; is an (o, Q;,m,)-atom.

Step 3. Now we show the reverse assertion that if f is given by (8.24), then f €
F{°(RY M) and

(e 9]
1A le S 3 (gl + g)-
J=1

To this end, it is enough to show that every (a, 1)-atom b and every (a, Q)-atom g belong
to F{"°(R% M) and

bl poe S1 and  |lg[|poe S 1.
Let b be an (a, 1)-atom in F{*“(R% M). We observe that b is also an atom in h§(R¢, M).

For a < 0, by Proposition 8.4, h{ C F{"“. Then, we have [|b|pee < [[bllng < 1. If & > 0,
by Proposition 8.5, we have

[1B]] e & [lpo * b1 + Z IIDKbIIFa K-
=1

Note that for any 1 < i < d, DXb is an atom in h§(R% M). Since a — K < 0, by
Proposition 8.4, we have

[1B]] e S Hlepo * b1 + Z 1D bllng < 1.
=1

On the other hand, let g be an (o, Qj 1, )-atom in the sense of Definition 8.18. We may
use the discrete general characterization of Fy"‘(R%, M) given in Theorem 8.12, i.e.

o0
, 1
lgllpoe = |Q2 2%7%1@; % g[*)2 |,
§=0

We split 372 into two parts Z and > j2k- When j >k, by the support assumption
of ®, we have supp @ x g C 5Qk,m If o> 0 by (8.27), (8.23) and the Plancherel formula,
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we obtain
1 1
- ZW@ coPat =r([ Y w) 1P’
5Qk moj— k m j =k
~ , 1
<o [ 310 a®) e Plate) i)}
j=k
1 1
S7( [ 1g©Pde)* = 7( [ 117g()ds)
Rd Rd
1 1
<ol [ 179()Pds)* < 1Qual .
If o <0, by (8.26), (8.23) and the Plancherel formula again, we have
1 1
/ 2221%1» v g(s)2ds)? < 7 / S 92001100, « Jg(s)Pds)
Qk m oj— k m = =k
~ . 1
<o [, 1B Plag(e) i)
j=k
1 1
ST [ g P = ([ 1779(s)ds)*
Rd Rd
< |Qmkl "2
It follows that
. 1
I 225 % g2, $1
j=k
In order to estimate the sum Z] —o> we begin with a technical modification of g. Let
§ _ 2k(a7d)g(2fk‘).
Then it is easy to see that g is an (a, Qo ,m)-atom. Moreover, we have
q)j * g = 2k(dia)@j,k * §(2k),
which implies that
= 2j 22 = 2j 2\ 2 k
1D 227915+ g2 ]|, < (I D2 2%9(@5 % gI)2 ||y + 27" ((@o) - * gll1- (8.37)
j=0 J=—00

In other words, we can assume, by translation, that the atom g is based on a cube @) with
side length 1 and centered at the origin. Then, let us estimate the right hand side of (8.37)

with ¢ instead of g.
By the triangle inequality, we have

-1 -1

10X 2@y gyt < 30 207 [ 1@y glo)lds

j:—oo jzfoo

—1
<Y X 207 [ 1055 au(s)lds.

500 (1) <(0,0)



118 CHAPTER 8. OPERATOR-VALUED TRIEBEL-LIZORKIN SPACES

Now we estimate 2797 [pa |®; *a,(s)|ds for every (u,1) < (0,0). Let M = [—a]+1. Then
M +a>0and L > M — 1. By the moment cancellation of a,;, we have

Qjxay,(s)
- gjd/ [B(27s — 27t) — B(2s — 22711)]a,,, ()dt
QQ/,LZ

— 2j(d+M)

. M+1 _—51_Mﬁj_j o
mlz::M p! /QQu,z@ ) /0(1 0)" DP0(27s — 2(0t + (1 — 6)27"1)) ay, (t)ddt.

It follows that
D % a,(s Z 92i(d+M) /Q / 0)*M|DP® (275 — 29(0t + (1 — 0)2711)) |2 dfdt
w,l
- /2@ [t — 27112 |a, (1) |dt.
,l

If ®;xa,,;(s) # 0, then we have [2/s — 27¢| < 1 for some t € 2Q,,;. Hence, ®; xa,;(s) =0
if [s—27H]| >3- 2-7-1y/d. Consequently,

-1
S odor /Rd @ % ay,(s)|ds

j=—00
-1 1
<Y o (d+M+a) (/ It — 271112 M |ay, (1) *dt) 2
j=—00 2%,
1
/ / / 0)2M | DP®(275 — 20(0t + (1 — 0)271))Pdbdt ) *ds
|6 | |s—2-n1|< 2L N2,
1
9i(d+M+a) o NM‘Q 1‘27' / la l(t)‘th §/ ds
j;oo . ( 2Qu, . ) |s—2*f‘l|§23jﬁ

-1
Z 9i(d+M+a)  9—jd 2*#(a+M)‘QM|%

j=—00
-1
- . 1o 3
_ g-n(atM) Z 2](M+a)|Qu,l|2 <2 “(a+M)|Qu,l|2'
j=—00

Similarly, we also have
2757 [ (@) x apuls)|ds 27O eI k< gmetn g,
Rd

Therefore, by the Cauchy-Schwarz inequality, we get

-1 -1
(3 2oy g)i], < S0 2607 [ 1@« g(s)lds
j=—o0 j=—o0 R
e 1

<Y 2 (3 |4, 2% Z|@,M| E
n=0 l

00
< Z 2fp(a+M) < oo,
pu=0
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and -
27k || (Dg) g # gt S D 27O <o,
©=0

Therefore, ||g[|e-c < 1. The proof is complete. O

We close this chapter by a very useful result of pointwise multipliers, which can be
deduced from the above atomic decomposition. Let k € N and £F(R?, M) be the collection
of all M-valued functions on R? such that DYh € Lo, (N) for all v with 0 < |y|; < k.

Corollary 8.22. Let a € R and let k € N be sufficiently large and h € LF(R?, M). Then
the map f — hf is bounded on F{"“(R% M)

Proof. First, consider the case a > 0. We apply the atomic decomposition in Theorem
8.21 with K = k and L = —1. In this case, no moment cancellation of subatoms is
required. We can easily check that, multiplying every (sub)atom in Definition 8.18 by h,
we get another (sub)atom. Moreover,

[Bflpee < D sup [[DTh(s)|lag - |1 f ]| pee. (8.38)
! MngERd !

The case o < 0 can be deduced by induction. Assume that (8.38) is true for a« > N € Z.
Let « > N — 1. Any f € F{"° can be represented as f = J%g = (1 — (27r)"2A)g with
g€ FO™¢ and [l peve = ||g||F1a+2,c. Since

hf = (1 - (27)72A)(hg) + ((27) 2Ah)g + (27) 2Vh - Vg,

we deduce
d
1of e S 11 = (27)"28) (hg) e + I(AR)g e + 3 05h - Bigl e
; = (8.39)
< Nl gz + [(AR)gl porec + D 105k Bigll o
i=1

If k € N is sufficiently large, we have
[(A)gl sz S lgllpmsaes 10 - Bigll g S 10igl o
Continuing the estimate in (8.39), we obtain

1 fllpgee < gl posze + 3 19igl porne < Nl porae < 171 ges
7

which completes the induction procedure. O






Chapter 9

Pseudo-differential operators on
Triebel-Lizorkin spaces

In this chapter, we study the continuity of pseudo-differential operators in the context of
operator-valued Triebel-Lizorkin spaces. We start by introducing some basic definitions
and properties. The symbols of pseudo-differential operators defined in the first section are
B(X)-valued, where X is a Banach space. However, in the later sections of this chapter,
we will only consider those symbols with values in M.

9.1 Definitions and basic properties

Let X be a Banach space, n € R and 0 < §,p < 1. Then SZ s denotes the collection of all
infinitely differentiable functions o defined on R? x R% and with values in B(X), such that
for each pair of multi-indices of nonnegative integers v, /3, there exists a constant C, g
such that
) —
IDID{o(s,)llpx) < Cra(1 + [g])HoNh=rh,

where v = (y1,-+ ,7a) €N{, [y =m + - +7ya and DY = 2. 2ZF

— 5.1 "9 d
0s Js,

Definition 9.1. Let 0 € S7;. For any function f € S(R?; X)), the pseudo-differential
operator T, is a mapping f — T, f given by

T,1(5)= [ o(5.6)

o~

(&)e* ™ 4de. (9.1)

We call o the symbol of T.

Proposition 9.2. Let 0 < §,p < 1 and n € R. For any o € S To is continuous on
S(RY; X).

Proof. By integration by parts, for any s € R? and v € N¢, we have

o~

I(mis) o fllx = |[2mis) [ o(s.0f(€erm<ag]|
= | [, ot 03D e

= || [, pllots.aene=de| < co.

Thus, T, f is rapidly decreasing. A similar argument works for the partial derivatives of
T, f, then we easily check that T, f maps S(R?; X) continuously to itself. O
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Another way to write (9.1) is as a double integral:

/Rd /Rd (s,6) f(£)e* =D E qtae. (9.2)

However, the above &-integral does not necessarily converge absolutely, even for f €
S (Rd; X). To overcome this difficulty, we will approximate o by symbols with compact
support. To this end, let us fix a compactly supported infinitely differentiable 1 defined
on R? x R? such that 7 = 1 near the origin. Then we define

0j(s,8) = o(s,6)n(2775,277¢)  with j € N. (9.3)

Note that o; converges pointwise to o and o; € Sg,(s uniformly in j. Thus, for any

f e SR X), T,; [ converges to 15, f in S(RY; X) as j — oo. Since the 0;’s have compact

supports, the formula (9.2) works for T, f(s). Then we can define the integral (9.2) as

follows:

= lim / / o;(s )2 gt e (9.4)
Re JR4

]—)OO

Proposition 9.3. Let 0 < < 1,0<p<1andn €R. Foranyo € 5,5, the adjoint of
T, is continuous on S(R%; X*).

Proof. For any f € S(R% X) and g € S(R?; X*), by the duality relation

(Tof,9) = ([, (T5)"9),
we check that

(T,)*g(s) = lim / / o (1, €)g(t)e*™ =D Edrde. (9.5)
R4 JRA

.]*)OO

By integration by parts, it is clear that (7,,)* is continuous on S(R%; X*). O

Since S'(R%; X**) = (S(R?; X*))* (see [66, Section 51] for more details of this duality),
in the usual way, we extend T, to an operator on &' (R% X**).

Definition 9.4. Let f € S'(R% X**). We define T, f by the formula
(Tof.9) = (. (To)"g), Vg€ SR:XY).
By Proposition 9.3, (T,)*g € S(R% X*) whenever g € S(R% X*). So the bracket on
the right hand side of the above definition is well defined. Therefore, T, f is well defined,

and takes value in S’(R%; X**) as well.

Proposition 9.5. Let0 << 1,0<p<1andn e R. Foranyo € Sp(;, T, is continuous
on S'(R%; X*).

Proof. For any f € §'(R% X**), we take a sequence (f;) such that f; — f in S'(R%; X**).
Then we have

(T, f5,9) = (i, (To)*q) — (f, (T5)*g) = (T, f.g) Vg€ SR X™).

Thus, T, f; converges to T, f in S'(R%; X**). So T, is continuous on &'(R%; X**). O
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The pseudo-differential operator defined above has a parallel description in terms of a
distribution kernel:

Tof(e) = [ K(s.s =7 (),

where K is the inverse Fourier transform of o with respect to the variable &, i.e.

K(s,1) = /R (s, )T de. (9.6)

In the sequel, we will focus on the symbols in the class 575 with 0 < 0 <1 and
n € R. Similarly to the classical case (see [7], [26], [61] and [64]), we prove that for
any operator-valued symbol o € 575, the corresponding kernel K satisfies the following
estimates:

Lemma 9.6. Let o € S7'; and 0 <6 < 1. Then the kernel K(s,t) in (9.6) satisfies
IDIDYE (s, 1) 3(x) < Copplt] 1m0 vr e RYN {0}, (9.7)

IDIDY K (5,6)|px) < Copnlt] ™, VYN >0 if [t| > 1. (9.8)

Proof. This lemma can be deduced easily from the corresponding scalar-valued results,
which can be found in many classical works on pseudo-differential operators, for instance,
[65, Lemma 5.1.6]. Given z € X and z* € X* with norm one, it is clear that (z*, o(s,t)z)
is a scalar-valued symbol in S7';, with distribution kernel (z*, K(s,t)z). Thus, we have

(%, DID{ K (s, t)x) = DI D{ [(a*, K (s, t)a)] < C glt|~h=1Ph=d=nyp e R\ {0}
and
(z*, DYD} K (s,t)z) = DY D/ [(x*, K(s,t)z)] < Cy anlt|™N, VN >0if [t > 1.
Then, taking the supremum over z and z* in the above two inequalities, we get the desired

assertion. OJ

In the classical case, the proof the above lemma makes use of the decomposition of the
symbol o into dyadic pieces. Let (@)r>0 be the resolution of the unit satisfying (1.3). Set

oi(s,€) = o(s,)@r(€), V(s,€) € R x R% (9.9)

By a similar argument as in the above proof, we also have the following estimates of the
corresponding kernels of these pieces oy’s.

Lemma 9.7. Let 0 € ST'5 and oy, be as in (9.9) and Ki(s,t) = [ga or(s, £)e?™Ede. Then
1D D} K (s, )| px) S |72 2HPhhhird=2Mem) - yg e N,

Now we study the composition of pseudo-differential operators. The following propo-
sition gives a rule of the composition of two pseudo-differential operators. In particular,
it shows that the symbol class 5?7 s is closed under product.

n2

Proposition 9.8. Let 0 < § < 1 and o1, o2 be two symbols in ST% and S7'% respectively.
There exists a symbol o3 in S5 such that

Ty =15 Tp,.
Moreover,

(Qﬂi)—hh

—— D{01 D]y € S5Oy > 0. (9.10)
7! ’

S

711 <No
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Proof. Firstly, we assume that o1 and oy have compact supports, so we can use (9.2) as
an alternate definition of 7}, and T,. In this way, 15, T, can be written as follows:

02f / / 0_3 s § 27rls r ng’d{,

where

oa(5.9) = [, [ or(smoalt, 00 9anay

' (9.11)
— /Rd o1(s, & +n)az(n, &)e 2 dy

with &5 the Fourier transform of o9 with respect to the first variable. We expand o1 (s, £+n)
by the Taylor formula:

1 1
oi(s,6+n) = Y Do+ Y SDioi(s,&n" + Rn(s,& ),
[Yl1<No ' No<|vi<N '
with the remainder
Rx(s6m= Y 2 [ Dlor(s.e+ om0y yas
\7\1 N v

Now we replace 01(s,€ + 1) in (9.11) by the above Taylor polynomial and remainder.
Notice that

1 ~ —oris- omi)~I7h
J /]Rd Dzal(s,g)qﬂ()—?(mg)e 2mis ndn = (;ngl(s,f)Dzag(s,f),

Thus,

7i)~hh
S b Y O)E T b (5,6 D70 (5,6)

|
hi<No No<hh<n 7 (9.12)

+ /Rd Rn(s,&,n)52(n, £)e™ 2T dy.

For every ~, the term Dgal(s,g)Dz@(s,f) is a symbol in Sn1+n2 (=9l Indeed, it is
clear that

1D o1 (s,€)DY02(s,€) | pxy S (14 EN™ I (L 4 [g)2toPi = (1 4 Jgyrtna=(=ohi,

Moreover, for any f1,32 € N&, we have DSoy € Sﬁg%wl'l,D?Q@ € Sﬁ?éwlh and
Dﬁla € Sn1 |2l Dﬁza € Sn2 1Bals, Thus, we get

IDZ(D{o1(s,)DYs(s, Ml gy S Do IDP DYori(5,€) D2 DYoa(s, )|l
B1+B2=0
<1+ ’é“)n1+”2_(1_5)|’Y|1+5\5\17
and
ID{[D{o1(5,6)Dioa(s, Ml py S Do D7 01(5,€)DID0a(5.6) | g )
B1+p2=p

<1+ ’5‘)ﬂ1+n2*(1*5)|7|1*|/3\1.
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By the above estimates, we see that when Ny < |y|; < N, Dgol(s,f)Dzag(s,@ €

Sn1+n2—(1—5)N0
1,6 :
Now we have to treat the last term in (9.12). For the remainder Ry(s,§,n), we easily

check that for any |y|; = N and 0 <6 <1,
ID{o1(s,€ + 0n)llpxy < On(L+[€)™ N, if €] = 2[n], (9.13)

and
IDZo1(s,€ +0n)llpx) < Chy V0, & € RY (9.14)

For Go, by integration by parts, we see that for any 3 € Nd such that |3]; = N,
(~2min) a0, €) = [ (~2min)’e " ay(t, )ds
R
= [, D ot et
R4
— (_1)5/ e 2N DB o (8, €)dt
Rd

Denote the compact t-support of oa(t,£) by Q. Then the above calculation immediately
implies that

15207, )l 5y S 1211+ o)~ (1 + gy oV (9.15)

We keep the constant || in this inequality for the moment, and will see in the next step
that our final result does not depend on this support. Take N large enough so that

d (1—5)N[) d—n1+(1—5)N0

N =
>max{ 5 5 5 95 },

and take N = 6N with 0 < § < § < 1. Continuing the estimate of the last term in (9.12),
inequalities (9.13) and (9.15) give

1 .
| [ o ] Dlorts.c+om =) pasm. e rapan]
In|<3 /0

SJ /]Rd ’n’N(l + ’n’)_ﬁdn . (1 + ’é“)nl-}-nQ_N_HSN

< [ )y (14 [glyrtner oD
R

< (14 [¢]yratnatG-ON

. > 1—
Moreover, since N > %, we have

(1+ ]f\)"1+”2+(5—5)ﬁ < (1 + [g))rmatn2—(1=0)No

By (9.14) and (9.15), we get
by N 2
_ 5 —2mis
H /| o | DEoi(s.g 4 0m)(1 = )Nl e agan|

S [ ) (e

S, (1 + |§’)n2+N+d7(175)ﬁ < (1 + ‘§|)n1+n27(176)N0
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Therefore, Ry(s,&,n) € Sn1+n2 (1=8)No Combining the estimates above, we see that,

if we set Rn,(s,&,m) = ZN0§\7|1<N %Dgal(s,f)n'y + Rn(s,&,m), then Ry, (s,&,m) €

Sﬁ %er_(l_é)No. This proves the assertion (9.10) when o2 has compact support with re-

spect to the first variable.

Noticing that the above proof depends on the constant || in (9.15), we now make
use of the resolution of the unit in (7.13) to deal with general symbol o9 with arbitrary
s-support. For each k € Z¢, denote a9 1 (s, &) = Xk (s)o2(s, &) and

o34 (s / / o1 (5, 7). (£, €)X = dt iy
R4 JRd

It has already been established that

O3k — Z

7|1 <No

(1-8)No

o)~ Ih e tn
%D O']_D'YO'Qk € S 1+ 2T , VNy>0,ke Zd, (9.16)

~!

with relevant constants uniform in k. Observe that if two symbols b1, bs in some 5’711’ s have
disjoint s-supports, with

IDYDZbi(s5.€) | px) < Cip(1+ €Y TOPIIBh i =1 2,

then b1 4 by € Sf(; with

1DI D (b1 (s, €) + ba(s5,)) | (x) < max{C1,y.5, Cays}(1 + [€])FHoR=IA

For our use, we construct a partition of Z¢ with subsets Uy, Us, - - - , Usa such that for any
k1, ko in each Uj, the supports supp Xj, and supp X}, are disjoint. More precisely, let :
Z — 7./27 be the canonical projection sending even integer to 0 and odd integer to 1. Let
7. 7% — (Z/27)% be the d-fold product of w. Then (Uj)je@/2mys = ((Trd)_l(j))je(Z/ZZ)d
gives the desired partition of Z¢. Summing over (9.16) in each U;, we get a symbol still in

Si?nz_(l_é)%, that is,

I'Y‘ n1+n2 (1 6)

ZUBk—Z Z (27i)

0'1D o2k € S
7! 5
keU; keU; |v]1<No

Taking the finite sum over {Uj};< <24, we get the asymptotic formula (9.10) in this case.
Finally, let us get rid of the additional assumption that o1 and oy have compact
supports. We define ¢4 as follows:

T, =T,T,.
where al(s &) =o1(s,8)n (2 75,279¢) and 02(5 €) = 09(s,6)n(277s5,277¢) with 7 given in

(9.3). Notice that the of’s and the ¢J’s are in the class S?é and S{lé respectlvely with

symbolic constants uniform in j. Therefore, the above arguments ensure that o} belongs
to S"1+"2 and satisfies (9.10) uniformly in j. Passing to the limit, we get that o3 € S”1+”2
and satlsﬁes (9.10). Furthermore, by (9.4), we get

Ty, =T5,1Ty,.

The proof is complete. ]
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We end this section with the asymptotic formula for the adjoint of a pseudo-differential
operator with symbol in the class Sﬁ 5

Proposition 9.9. Let 0 < d <1, n € R and o be a symbol in Sﬁa. There exists a symbol
o € S5 such that T; = (T,)*. Moreover,

2 7] e
i- 3 %DVD'YU e sy 1Ny > 0.

711 <No 7

Proof. The proof is similar to that of Proposition 9.8. By (9.5), we get the formal expres-

sion of & that
55,6 = [ [ o (t.merm 0O ey
R2 JRd
—/ (n,& + n)e*™"dn,

where ¢* is the Fourier transform of o* with respect to the first variable. By the same
argument used in the proof of the previous proposition, we may focus on the symbol with
compact t-support. Taking the Taylor expression of 6*(n,£ + 1), we get

1 1
FmEtn = Y SDE WO+ Yo DT + Ry (& n).

[vli<No ' No<|yl1<N

As before, we can show that

~% Tis- 2mi s
'Y (77 5) e? ndn — L

= Y Y a* n—(1=8)ll1
T Jea o D¢D]5%(s,€) € S5

On the other hand, we can also show that

I, Rl me™=dn] ) < (1 + fg- 0=

by splitting the integral over 7 into two parts. Moreover, repeating the above procedure
to its derivatives, we have [pa Rn(&,m)e misndy Sn (- N, Thus, the proposition is
proved. O

9.2 Some lemmas

In order to study the boundedness of pseudo-differential operators on the Triebel-Lizorkin
spaces, we will use the atomic decomposition stated in the last chapter. In other words,
we will focus on the images of the atoms under the action of pseudo-differential operators
instead of the images of general functions in the Triebel-Lizorkin spaces.

In the sequel, we will only consider pseudo-differential operators whose symbols take
values in M. If we take X = Li(M) + M, then M admits an isometric embedding into
B(X) by left or right multiplication. In this way, these M-valued symbols can be seen as
a special case of the B(X)-valued symbols defined in the previous section. On the other
hand, if we embed M into B(X) by right multiplication, we get another kind of M-valued
symbol actions. Accordingly, we define

~

Tef(9) = [ ols, T (€)™
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and

135(5) = [ F(©)o(s, e

All the conclusions proved in the previous section still hold for both 7)Y and 7. parallel.
In the following sections, we mainly focus on the operators T7.

The first lemma in this section concerns the image of an (o, @,;)-subatom under the
action of pseudo-differential operators.

Lemma 9.10. Let « € R, ¢ € 5?75 and TS be the corresponding pseudo-differential op-

erator. In addition, we assume that K > %. Then for any (o, Q,)-subatom a,;, we

have
[7]1

1 a_ v d
P[22 =2 ) D () Pds)® S 1Quil I bl < K =5 (017)

where M € R such that M < 2L + 2 and the relevant constant depends on M, K, L, ~
and d.

Proof. We split the integral on the left hand side of (9.17) into f4Qul and f(4QM)C. To

estimate the term with f4Qu o we begin with a technical modification of a,;. For every
a1, we define ’

@ 1
a = ’Qu,lrEJrﬁau,l(ziu(' + l))

It is easy to see that a is an (a, Qo 0)-subatom. By translation, we may assume that [ = 0.
Then by the Cauchy-Schwarz inequality, for any s € R?, we have

a_ 1
I T5a(s)? = 272441Qu P42

. 2
| ots a2 reemecae
—1QuiP 8] [ ats, 201> ag
< 1QuiPE D [ o5, 2OlRa(1 +16%) " d
LA+ R o (s 291" (©lo(s, 27 Pal6)de
2(5-3) 2\-K j¢ . 2K (¢ [2
SIQuPEY [ (1g) s [ (1 +16) " a(o)Pde

R4
a_ 1
< QX4 2)/Rd|JKa(t)|2dt,

where JX is the Bessel potential of order K. Combining the second assumption on Ay, in
Definition 8.18 and the above estimates, we obtain

1 1
P TSP+ 2 S ([ TP’
4Qu,l Qu,l
S 1Quilfr( [ 17%a(t) P
Rd
[e] l @
S10ulT X ([ I07awPd)’ £ 10l

[v1 <K

If s € (4Q,,)¢, since a,; has the moment cancellations of order less than or equal to L,
we can subtract a Taylor polynomial of degree L from the kernel associated to 7. Then,
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applying the estimate (9.7) and the Cauchy-Schwarz inequality, we get
| Tay(s)?
= / K(s t)a (t dt‘
2
_ /d[K(s, $ 1) = K(s.5)]a, ) (6)di]
R

_ L+1s ("1 _p8ps — 0t)db |’
A LT [ 0= 0P DK s, — 00181

/QQ/,L,Z

1 -2 1 2
/ (1= 0)° DK (s, — o0)a| '/O (1~ 0 DPK (s. s — 01)d0 a,.1(1)| dt

AN

1 2
/ (1= 0)’DPK (5,5 — ot)de| |124+dt
0 M

|Bli=L+1

./Rd

< Z / sup ||D5K(5,s — 9t)||3\4 |t|2L+2dt / |au,l(t)‘2dt
1Bl =L+1 7 2Qu.1 0<0<1 »

S ’s’—Qd—QL—2 /2Q ’t’2L+2dt . Ad |au7l(t)|2dt

w,l

< 27#(2L+2+d) |8|72d72L72 / |a,u,l(t) ’2dt'
R4

~

(9.18)

This estimate implies
1
([ TS P 2 s ds)
(4Qpu1)¢
1 1
S 2,“(L+1,%) / ‘8‘7d72L72+Md8 2.7 / |CL l(t)yzdt 3
( a0 )2, o, )

S 2751, | = |Ql.

If we take M = —d in the above inequality, we have T<a,,; € L1 (M; L%(Rd)). By approx-
imation, we can assume that o(s, &) has compact {-support, so

Ta,(s) = [ ols, Om(e)em<ds

is uniformly convergent. Moreover, one can differentiate the integrand and obtain always
uniformly convergent integrals. Then, for any |y[; < K — 2, we have

1
([ 1D TSR+ 2] )’
4Qul

S Quilir( [ 17%a(oPdn} [ 0+ e -2ras (9.19)
SIQult X ([ IDTa(®dt)* < 1Qul?.
[Yhi<K R

By a similar argument to that of (9.18), we have, for any v € N& and s € (4Qu0)¢,

DTy (s)2 S 222 [ o (o)Rde (920
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Therefore, we deduce that
1
([ D TEaa(s) P+ 2] M ds)
(4Qu,l)c

< 9—nu(L+1-4) ( /
(4Q,u,l)c

M M
< 2—M(L+1—7)QM(L+1—7+\7\1)|QM

1 1
|S|—d—2L—2+M—2|v|1d8) 2 T(/ |au,l(t>’2dt) 2
Rd

4= |Qual

Combining the estimates above, we get (9.17). O

On the other hand, we have the following lemma concerning the image of (a, 1)-atoms
under the action of pseudo-differential operators.

Lemma 9.11. Let o € R, o be a symbol in the class S(fﬁ and TS be the corresponding

pseudo-differential operator. Let K > % and b be an (o, 1)-atom based on the cube Qo m.
Then for any M € R, we have

1 d
T(/d(l + |5 —m|)"M|DYTEb(s)Pds) 2 S 1, |yvh < K — 2 (9.21)
R

where the relevant constant depends on M, K, v and d.

Proof. The proof of this lemma is similar to that of the previous one. The only difference
is that for an (a,1)-atom, we do not necessarily have the moment cancellation; in this
case, we need to use the extra decay of the kernel when |t| > 1.

If s € 4Q0,m, we follow the estimate for subatoms in the previous lemma. Applying
the size estimate of b, we get

1
([ s m) TSR ) S 7 TSNP S 1.
4Q0,m R4
If s € (4Qo,m)¢ and t € 2Q , we have |s —t| > 1. Then (9.8) gives
2
ITb(s)[2 = ’/d K (s, 5 — 1)b(t)di]

R

< [ NG 0ladt [ b
2QO,'m 2Q0,m

Sls—ml™Y [ o)

2Qo,m

where the positive integer N can be arbitrarily large. Thus
1
([ s = ml) M Tgb(s) )
(4Q0,m)c

1 1
SO[ o Js=mNas ([ o Pa® St
(4Qo,m)¢ 2Qo,m
Then, the estimates obtained above imply that
1
([ (U fs = m) M T5b(s) Ps) S L.
R

Similarly, we treat DVTSb(s) as
3 d
T(/Rd(l + ’S — m‘)d-i-M’D'YTgb(s)’?dSV g 17 "Y’l < K — 5

Therefore, (9.21) is proved. O
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The following lemma shows that, if the symbol o satisfies some support condition, we
can even establish the Fi"“-norm of the image of (o, Q,;)-subatom under T,

Lemma 9.12. Let 0 € S?,é and TS be the corresponding pseudo-differential operator.

Assume that a € R, K € N satisfy K > % and K > o+ d. If the s-support of o is in
(27H1 4+ 4Q0,0)¢, then for any (a, Q. )-subatom a,, we have

T Eay | e S 27HEH),

Fy
where 1 is a positive real number.

Proof. Without loss of generality, we still assume [ = 0. We keep the assumption of the
test functions ® = | - |V&, ®() € S in the proof of Theorem 8.21. In addition, we assume

N € Ny such that o + % —-1<N<K- %l and supp ®9 C Qo,0. To simplify the notation,
we denote T ja,; by 1,,;. Then

b o 2de\ 1
Il e = 190 muall + (|20 mu25)%

We notice that ® satisfies the moment cancellation up to order N. It follows that

@ m(s) = [ e uals = 1) = ma(s))dt

N1 1 (9.22)
— [ e S (e / (1— 0)N D y(s — 6t)do dt.
B e 0
Applying the Cauchy-Schwarz inequality, we have
N+1 1 2
’/ Len Y ﬂ/ (1~ 6)N DV — 01)dB i
> Wh=N+1 7 0
1
< ¥ /R/O (1= 0)2N [ D7ni(s — 00)2d0(1 + [t))~"dt (9-23)
[v]1=N+1
TR OR IR+ e e
By (9.20), if s — 6t € (4Qo,0)¢, we have
D (s = 02 § 2R — g2kl [ o, ) B,
Therefore, using the Cauchy-Schwarz inequality again, we have
1 de . 1
—2a 2
@ —_—\2
H(/O £ Pe 1y 6) 1
—p(L+1+4 Y ooN—dro—2qdE\L N—d—L—N—-2 3./ —d—1
< 9 il ++2>(/ 2N+ af)z/ 15/ ds/ (1 +|¢)~4dt
0 9 (2Q070)C Rd
(9.24)

1
RPN ) ([ ()
R4 R4
1
S ([ a0

< 27u(L+1+g+a) )

~
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It remains to estimate the Li-norm of ®q * 7, ;, where ®; does not have the moment
cancellation. Since suppn,; C (4Qo,0)¢ and by the support assumption of ®y, we have
supp ®o*n,; C {s € R?: |s| > 1}. By Lemma 9.11 and the fact that [®o(s)| < (1+|s]) 4~
for any R € N, we have

2
@05 mu(@F = | [ @ols = mui(t)d
2 2
<| / Do(s — na(t)de] + | / Do(s — 1) (1)d|
|t/>max{ 1] 1} 1<t< el
< (14 280y 2R (s — )t [ (1 2412442 ()Pl
|t/ >max{ 5l 1} R¢
A2 (s — )P [ (1 2 1)
<)< 2l Rd
S [ 1@o(e) Pt (14 2445 2R (1 202442y )P
R4 R4
+ . (14 2¢0¢)) > de (1 4 |8|)_2d_2R/d(1 + 2122, () Pt
{1>1 R

S [+ 2¢]s]) 72020 4 27 2HE R (1 |s]) 20720 /d(l + 2t )RRy (1) Pt
R

Then we can use (9.17) to get, for any R € N,

D * < /
@0 < muall < f

1
=32

1
([ 2R ()Pt

< 2—u(d+R+a) )

(1-+ 2¢]s]) = Fds 4 27140 [

(14 ]s)) =" "ds)
51>

N |=

Combining the estimates above, we get that, there exists ¢ > 0 such that
_u(d
| Tsaullpoe = Il poe S 27#EF),
which completes the proof. O

Since every (o, Qg m)-atom is a linear combination of subatoms, the above lemma helps
us to estimate the image of (o, Qk m)-atom under T¢.

Corollary 9.13. Let 0 € 5?75 and TS be the corresponding pseudo-differential operator.

Assume that o € R, K € N satisfy K > % and K > a + d. If the s-support of o is in
(27Fm 4+ 6Qo,0)¢, then for any (o, Qg.m)-atom g,we have

1159l poe S 1.
Proof. For any (o, Qg m)-atom g, it admits the form

g = Z du,lau,l with Z |d,u,l‘2 < |Qk,m|71 = de’
(m)<(k,m) (D)< (kym)

By the support assumption of o, o(s,&) = 0 if s € 27#1 + 4Qp0 C 27%m + 6Qo 0. Then,
we can apply the previous lemma to every a,; with (u,1) < (k,m). The result is

|TSapll pee <27+ with ¢ > 0.
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Applying the Cauchy-Schwarz inequality, we get

IT5gllpee < Y0 dpal - 1 T5aull peoe
() <(k,m)
< Z ’dul‘ . 2-#(%4-&)
(1,1) < (k,m)
SO ldue( Y 2 (9.25)
(w)<(k;m) (w.1)<(k,m)
1 12Qk,m | (d+20)\ 2
2 2 /J’ +21’) 2
Z ‘ ,U«l’ Z ’Q,u,l| )
(psl) u>k
< 1QumlE 27 =1
Thus, the assertion is proved. O

Likewise, we can estimate the image of (a, 1)-atom under the pseudo-differential oper-
ator T%.

Lemma 9.14. Let 0 € 5?75 and TS be the corresponding pseudo-differential operator.

Assume that o € R, K € N satisfy K > % and K > a+d. If the s-support of o is in
(k+4Qo,0)¢ for some k € Z2, then for any (o, 1)-atom b such that suppb C 2Qo 1, we have

IZ5b e S 1.

Proof. The proof of this lemma is very similar to that of Lemma 9.12; it suffices to apply
(the proof of) Lemma 9.11 instead of Lemma 9.10. O

Corollary 9.15. Let 0 € 5?75 and T be the corresponding pseudo-differential operator.
Given a € R, K € N such that K > g and K > a+d, then for any («, 1)-atom b, we have
7Bl e S 1.

Proof. Let (X});cza be the smooth resolution of the unit in (7.13). We decompose Tgb as
Tob= Y XTob= ) Tyb,
jEZA jeZA
where 0; = Xj(s)o(s,§) € 5?75 uniformly. Suppose that b is supported in 2Qq; with

k € 7. We split the above summation into two parts:
Th= > XTsh+ > XTeh. (9.26)
JEE+6Q0,0 JEE+6Qo,0

Applying Lemma 9.11 with M = —d to the symbol X;(s)o(s, &), we get, for any j € Z4,
1
o[ DT S 1 Yk < ]+ L
1+2Qo0,0

Thus, X; TS is a bounded multiple of an (o, 1)-atom. So the first term on the right hand
side of (9.26) is a finite sum of («, 1)-atoms, and thus has bounded F}"“-norm. Now we
deal with the second term. Note that the s-support of the symbol 3~ g1 60, Xj(s)o(s,§)
is in (k + 4Qo,0)¢. Then, it suffices to apply Lemma 9.14 to this symbol, so that

Y XToblpee ST
J¢k+6Qo,0

The proof is complete. ]
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9.3 Regular symbols

In this section, we study the continuity of the pseudo-differential operators with regular
symbols in S? 5 (0 <6 < 1) on Triebel-Lizorkin spaces. We start by presenting an Lo-
theorem. It is a noncommutative analogue of the corresponding classical theorem, which
can be found in many works, for instance, [61, 63, 59]. Then, we will use the atomic
decomposition obtained in the last chapter to deduce the F*“-boundedness. Different
from the pseudo-differential operators with the forbidden symbols in Sf ;, which will be
treated in the next section, our proof stays at the level of atoms; in other words, we do
not need the subtler decomposition that every (a,@)-atom can be written as a linear
combination of subatoms.

Theorem 9.16. Let 0<d < 1,0 € 5975 and o € R. Then TY is bounded on FI?’C(Rd,M)
for any 1 < p < 0.

In order to fully understand the image of an («, @)-atom under the action of a pseudo-
differential operator, we need to study its Li(M; L§(R?))-boundedness. We will work on
the exotic class 5’35 with 0 < § < 1, since we have the inclusion 535 C ngé. The Cotlar-
Stein almost orthogonality lemma plays a crucial role in our proof. Namely, given a family
of operators (T};); C B(H) with H a Hilbert space, and a positive sequence {c(j)}; such
that 3=, c(j) = C < oo, if the T}’s satisfy:

1T T sy < le(k = 5)I7,

and
TR T | ey < le(k = 5)I,
then we have
|2 T3l < €
J

We begin with a simpler case where § = p = 0. The following lemma is modelled after
[61, Proposition VII.2.4]; we include a proof for the sake of completeness.

Lemma 9.17. Assume o € S3 . Then T¢ is bounded on La(N).

Proof. By the Plancherel formula, it is enough to prove the Ls(AN)-boundedness of the
following operator:

SE()() = [ ol O fe e,

Let us make use of the resolution of the unit (X})cz¢ introduced in (7.13) to decompose
S¢ into almost orthogonal pieces. Denote k = (k, k') € Z¢ x Z%, and set

ox(s,€) = Xi(s)a(s,§) X (§),

Then, the series )y cza, 74 S5, converges in the strong operator topology and

Ss= > 5.

keZx 74

We claim that (Sg, )i satisfies the almost-orthogonality estimates, i.e., for any N € N,

1(S5,)* S5, | BeLovy < Cn(L+ [k =),
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and
156, (S5,) " | B(Loy) < Cn (1 + [k —j[) 72N

where the constant C)y is independent of k = (k, k') and j = (4, j'). Armed with this claim,
we can then apply the Cotlar-Stein almost orthogonality lemma stated previously to the
operators (S¢ )i with ¢(j) = (1 + [j|)~", N > 2d. Then, we will have

1SS Baovy =11 Y. Se By < C.
keZadx74d

Now we prove the claim. Note that for any f € Lo(N),

(85" S5, = [ owi(&.nf ).

where

ni(n) = [ oils.oy(s. e Ods. (927

By the definition of oy, we see that if k — j ¢ 2Qo o (recalling that Qoo is the unit cube
centered at the origin), oy and oj have disjoint s-support, so

ooy = 0.
When k — j € 2Qo,0, using the identity
(1 — AN 2= — (1 1 472]y — ¢2)N2mis:(1-6),
we integrate (9.27) by parts, which gives

lloweg (& m)llae < OnXir (€)X () (L + |€ —n]) 7

Whence,

maX{/Rd Hok,j(ﬁ,n)HMds,/Rd IIGk,j(i,n)llMdn} < Oh(1+ [k =), (9.28)

For any f € La(N), there exists g € Lo(N') with norm one such that

155,85, Ly = |7 [, [, st m o dmg*(€) .

Applying the Holder inequality and (9.28), we get

/Rd/ 01c3(€m) () dn g7(€) de|
<(r [ ] JonimiadsmPands) (- [ [ log(€n)lwlo(©)Pdedn)?
< O+ k= )21 Lo,

Thus, [|(55,)" S5, B(Lo(v)) < Cn(L+ [k — j)72N. On the other hand, a similar argument
also shows that
155, (S5 | B(Lay < Ch(L+ [k =)~

which proves the claim. ]
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A weak form of Cotlar-Stein almost orthogonality lemma also plays a crucial role. As
before, we suppose that 3 ¢(j) = C < oo. This time we assume that the Tj’s satisfy:

sup || 1| gy < C (9.29)
J

and the following conditions hold for j # k:
1T Ty =0 and [T Tl < c(G)elh). (9.30)

Then we have

|3 Ty < V2C.
J

Lemma 9.18. Let 0 € S5 with 0 < § < 1. Then T is bounded on La(N').

Proof. To prove this lemma, we apply Cotlar’s lemma as stated above. Let (@) >0 be the
resolution of the unit defined in (1.3). We can decompose T as follows:

[e.e]
J=

7 even j odd

where 0;(s,&) = ¢;(§)o(s,€). Note that the symbols in either odd or even summand have
disjoint &-supports. We will only treat the odd part, since the other part can be dealt with
in a similar way. It is clear that T7 (17, )* = 0if j # k, since Tg (T7, )" = TyM;, Mék (T%)
and @;, @; have disjoint supports. Now let us estimate the second inequality in (9.30), i.e.
the norm of (77, )*T7,. Since

T (D@ = [ [ il 5@ g,

and

75 (D0 = [, [ ot ) drdy,

Then we have

(T5,)"T5,()(s) = | K(s,m)f(r)dr,
with
Koy = [ [ ] it ot mem et tlaanag,
Re JRE JRE
Writing
627ri(77—§)~t _ (1 - At)N 627ri(7]—§)~t
(1 +4m2[§ —n2)N ’
e27ri(t—7‘)~77 _ (1 — AU>N 627ri(t—7‘)~7]
(1 + 4m2|t — r|2)N ’
and N
e2mi(s—t)€ _ (1- A&) e2mi(s—t)-€

(14 4m2|s — t|2)N

we use the integration by parts with respect to the variables ¢, £ and n. By standard
calculation (see [61, Theorem 2, p. 286] for more details), we get

I (s, S 470N [ Qs — )Q(t )i,
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where Q(t) = (1 + [t|)72N, if k # j. Denote Ko(s,7) = [ Q(s — t)Q(t — r)dt, then

Ko(s,r)ds = | Ko(s,r)dr = (/ (1+ \t!)72th)2 < 0. (9.31)
Rd Rd Rd

For any f € La(N), there exists g € Lo(N') with norm one such that

H(Tgk)*ngfHLQ(N) = ‘T/]Rd » K(s,r)f(r)g(s)drds‘.

Applying the Holder inequality and (9.31), we get

/]Rd/]Rd s,7) ()drds‘

/ / 1K (s, 7) | f ()P dsdr) 2 ( / / 1K (s, 7)|lalg(s)|2dsdr) 2

<4max k,j)((6—1)N—+d) Hf”

which implies that
||(T§k)*T§j||B(L2(N)) Sc(felk), JF#k,

with c(j) = 2/(O=DN+d)_If we take N > 125, the sequence (c(j))j is summable.
In order to apply Cotlar-Stein’s lemma, it remains to show that 77 ’s satisfy (9.29).
To this end, we do some technical modifications. Set

5j = O'j(2_j6-,2j5-).

We can easily check that the o;’s belong to 5870, uniformly in j. Then, by Lemma 9.17,
the T< ’s are bounded on Lo (NV) uniformly in j. If A; denotes the dilation operator given
J

by ‘
Aj(f) = f(279),

then, we can easily verify that
c __ e A —1
15, = AJngAj .

Thus,
175, | B(Lo(vy) < HT'EJ.HB(LQ(N)) < 0.

Therefore, (ng )j>o0 satisfy the assumptions of Cotlar’s lemma. So we get

1751 B(LaAy) = |l Z By < oo

Thus, T¢ is bounded on La(N). O

Let 0 < 6 < 1. Since we have the inclusion 5’?75 C 5’85, then we clearly have the
following corollary:

Corollary 9.19. Let o € S?’é with 0 < 6 < 1. Then TS is bounded on La(N).

Furthermore, we can deduce the boundedness of T on L (M; L§(R?)) from the above
corollary.

Lemma 9.20. Let o € SY 5 with 0 <8 < 1. Then Ty is bounded on Ly (M; L§(RY)).
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Proof. Since 0 < § < 1, Proposition 9.9 tells us that the adjoint (7)* of TS is still
in the class S?ﬁ. Thus, by duality, it is enough to prove the boundedness of (T)* on
Leo (M; L§(RY)). Indeed, there exists u € Ly(M) with norm one such that

- (/Rd<|(TUC)*(f)(3)|2U, U>L2(M)d8)%
= ([, 0T ()6 nds)

Then, applying Corollary 9.19 to (T5)*, we get

([ 1@ (ispas)

M

([0 )@ ads)” 5 ([ 15 ads)” < ([, 17060 Pas)*

Rd‘ M

Thus, we conclude that T¢ is bounded on Li(M; L§(R%)). O
Now we are ready to prove the main theorem in this section.

Proof of Theorem 9.16. Step 1. We begin with the special case p = 1 and a = 0. Since
F10 “(R%, M) = h§(R?, M) with equivalent norms, the assertion is equivalent to saying that
when o € S(i s With 0 < § < 1, T¢ is bounded on h§(R%, M). By the atomic decomposition
introduced in Theorem 7.6, it suffices to prove that, for any atom b based on a cube with
side length 1 and any atom ¢ based on a cube with side length less than 1, we have

[T5bllng 1 and  [|T7glns < 1.
Corollary 9.15 tells us that
[T50][ns < 1.

Thus, it remains to consider the atom ¢ based on cube @ with |Q] < 1. Without loss
of generality, we may assume that () is centered at the origin. Let (Xj)jezd be the res-

olution of the unit defined in (7.13) and X]Q = X;(I(Q)~%) for j € Z%. Then, we have

supp X C 1(Q)j + 2Q. Now, set h1 = jcu0,, X and hy = Yja40,, X By the

support assumption of X]-Q, it is obvious that supp h1 C 6Q), supp he C (4Q)¢. Moreover,
hi(s) + ha(s) =1 ,Vs € RY

Now we decompose o into two parts:

def

0(87 6) = hl(S)U(S, 5) + hQ(S)U(Sa 5) = 01(87 é) + 02(87 5)
Note that o! and o2 are still in the class 8?75 and
T;g = T‘flg + TO.CQQ.

Firstly, we deal with the symbol ¢! which has compact s-support. We consider the adjoint
operator (T5)* of T¢. Since § < 1, by Proposition 9.9, there exists o € 5?75 such that
(T5)" =T

If we take (;(s) = (;E(s, 0)* = XJQ(s)?f(s, 0)* for j € 4Qo 0, then (; is an M-valued infinitely
differentiable function with all derivatives belonging to Lo (N'). Therefore, we have

supp mzjg C Q)] +2Q,
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and . )

7 [ Img(s)Pds)* £ 1QI%, (9.32)
This indicates that, except for the vanishing mean property, mzj g coincides with a bounded
multiple of an h{-atom defined in Definition 7.1. Now let us set ajl»(s,g) = XJQ(S)U(S,E)
for j € 4Qo and set T} = T;Jl — mzj. It is clear that suppTyg C I(Q)j + 2Q. Since

('mg])* = mgj* and (ngl)*x = le»(s,()):r = (;"x for every x € M, then we have

T(/l(Q)j+2Q Tig(s)ds -x) = (Tjg,x) = (g, (T)"x) = (g, (T;.:Jl —mt )a) = 0.

Hence, T7g has vanishing mean. Moreover, applying Lemma 9.20 and (9.32), we get
1 1 1
W[ me@Pat ([ mhgPds) ([t (o) Pds)?
UQ)j+2Q (Q)j+2Q Y Qi+
L 1 1
St( ] lol)ds)® + 1@ S jQl .
2Q
Combining the above estimates with Remark 7.3, we see that 77 maps h{-atoms to hf-
atoms. Thus, T¥ is bounded on h{ (R?, M) and so is T¢,.
Step 2. Now let us consider T%%,. By Theorem 8.21, we may assume that g has moment

cancellations of order L > £ —1. Note that supp T%g C (4Q)°. And if s € (4Q)¢, following
the argument in (9.18) with g in place of a,,;, we get

Toag()? S UQ2Hs] 2202 [ jg(t) 2at.
2Q
Then for M < 2L + 2,
1
T(/(4 e | T529(s) (1 + 1Q) " |s[) ¥+ ds) 2
L1-4 —d—2L—24+M ; \3 2 02 9.33
SUQM ([ s as)® 7| lg(t)Pa)? (9:33)
(4Q)° 2Q
SUQMFuQ T TR IQIE = 1l
Moreover, we claim that T%,g can be decomposed as follows:
Tg-cgg = Z VmHm’
mezd

where Y, |vm| S 1 and the Hy,’s are hf-atoms. Then, by Theorem 7.2, we will get
[T529llne < 1. Now let us prove the claim. Since L > ¢ — 1, we can choose M such that

M >dand M < 2L + 2. Take vy, = [Q"2(1+1(Q)~!|m|)™ "2 and H,, = v;,! X TSy,
where (X,),,cz¢ denotes again the smooth resolution of the unit (7.13), i.e.

1= Y Xn(s), VseR%

mezZd

Applying (9.33), we have

(o, MHn)Pds)?

< Vi (L UQ) ™ m))

_d+M

2 T(/(4Q)c ‘T52g(3>‘2<1 + Z(Q>_1‘5‘)d+Mds)% S .
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And the normalizing constants v, satisfy

> lvml = 1QI7F (1 +1Q) ml) ™

m m

<lat [ Qs s < .

Combining the estimates of T;, g and Ty, g, we conclude that ||T;gllne < 1. Thus, Ty is
bounded on h§(R?, M).

Step 3. For the case where p = 1 and a # 0, we use the lifting property of Triebel-
Lizorkin spaces stated in Proposition 8.5. By the property of the composition of pseudo-
differential operators stated in Proposition 9.8, we see that

Toa =JT5J ¢

is still a pseudo-differential operator with symbol o® in S{ 5. Then for f € F/"“(R%, M),
we have

TG f | e = 1T7% 0 Tga 0 J* fll pove & [ Tga © J* fllng S 1 fllng = [[f [l mpe-

Hence, T¢ is bounded on F{"“(R9, M).
Step 4. Finally, we deal with the case 1 < p < co. By the previous steps, (75)* = T(}? is

bounded on F; ““(R%, M) with o € R, then it is clear that T is bounded on F¢(R, M).
Given 1 < p < o0 and a € R, by interpolation

(FSARE, M), F{(RY, M), = F(RY, M),

Sl

we get the boundedness of T¢ on F¢(R%, M). O

Remark 9.21.AA special case ofATheorem 9.16 is that if the symbol is scalar-valued,
then [pa (s, &) f(£)e*™8dE = [ra f(€)a(s,&)e*™4dE. In this case, T is also bounded on
h;(Rd,./\/l) for any 1 < p < co. By Proposition 6.15, we deduce that 7¢ is bounded on
Ly(N).

Corollary 9.22. Let n,a € R, 0 < § < 1 and o € ST'5. Then T; is bounded from
Fpe(RY, M) to Fp=™¢(RY, M) for any 1 < p < oo.

Proof. Recall that the Bessel potential of order n maps F*¢ isomorphically onto £ ™°.
If 0 € 585, by Proposition 9.8, we see that

o(s,&)(1+1€1)7 € 57,

and its corresponding pseudo-differential operator is given by 75 o J". Then the assertion
follows obviously from Theorem 9.16. O

9.4 Forbidden symbols

The purpose of this section is to extend the boundedness results obtained in the previous
one to the pseudo-differential operators with forbidden symbols, i.e. the symbols in the
class S7';. There are two main differences between these operators and those with symbols
in S5 with 0 < 6 < 1. The first one is that when o € 5(1)71, T¢ is not necessarily

bounded on Ly(N). The second one is that S?; is not closed under the products and
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adjoints. Fortunately, if the function spaces have a positive degree of smoothness, the
operators with symbols in S?’l will be bounded on them. In the classical theory, the
regularity of operators with forbidden symbols on Sobolev spaces H]‘}(Rd), Besov spaces
By, (R%) and Triebel Lizorkin spaces F&(Rd) with o > 0 has been widely investigated, see
[44, 45, 4, 58, 65].

Our first result in this section concerns the regularity of pseudo-differential operators
with forbidden symbols on the operator-valued Sobolev spaces. Let us give some back-
ground on these function spaces.

For a« € R, 1 < p < 0 and a Banach space X, the potential Sobolev space Hg(Rd; X)
is the space of all distributions in S’(R%; X) which have finite Sobolev norm || f|| He =
[J%f Nz, me;x)- 1t is well known that the potential Sobolev spaces are closely related to
Besov spaces. In our case, we still use the resolution of the unit (¢x)g>o introduced in
(1.3) to define Besov spaces. Given a € R? and 1 < p,q < oo, the Besov space ng(Rd; X)
is defined to be the subspace of S'(R%; X) consisting of all f such that

1
HfHB;?‘,q = (];)qua‘ﬁpk * fHC[I,p(Rd;X)) " < oo

The above vector-valued Besov spaces Bf,iq(]Rd; X) have been studied by many authors,
see for instance [1]. Instead of the above defined Banach-valued spaces, we prefer to study
the operator-valued spaces HS(R?; L,(M)) and BS (R L,(M)). Obviously, the main
difference is that the Banach space X varies for different p. The following inclusions are
easy to check for every 1 < p < o0,

01 (RY Ly(M)) C Hp (RY Ly(M)) C By oo (R% Ly(M)).
Besov spaces are stable under real interpolation. More precisely, if ag, a1 € R, ag # a3

and 0 < 6 < 1, then

Pp,q0 p,a1

(Bpgo RY Lp(M)), Byg, (RE Ly(M))), . = Bpy(RY Ly(M)), (9.34)

for a = (1 —)ap + a1, p,q,q0,q1 € [1,00]. This result can be deduced from its Banach-
valued counterpart in [1]; similar results in operator-valued setting can be found in [72].

The following lemma states the regularity of pseudo-differential operators with forbid-
den symbols on HS(R%; Ly(M)) for a > 0.

Lemma 9.23. Let 0 € S{ . Then Tf is bounded on H§(R% Ly(M)) for any a > 0.

Proof. Let (¢;)j>0 be the resolution of the unit satisfying (1.3). It is straightforward to
show that H§(R% Ly(M)) admits an equivalent norm:

(D_27%ps * fllZon)

Jj=0

=

&Q

1 Wl g (s Lo (M) = [1£ll By, (re; Lo (M) (9.35)

Let o with k& € Ny be the dyadic decomposition of o given in (9.9). By the support
assumptions of ¢ and @y, we have

15,.(f) = T5,(fk),

where f, = (k-1 + ¢r + pr41) * f for k > 1, and fo = (po + ¢1) * f. Applying Lemma
9.7 to K} with M = 0, we get

ls—t|<2—F |s—t|<2—Fk
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If d + 1 is even, applying Lemma 9.7 again to Kj with 2M = d + 1, we get

/ |1 D) Kk(s, s — t)[| mdt 5/ okl =1)|5 — ¢|=d=1q¢ ~ 2khI1
|s=t[>27% |s—t|>2~ k

if d + 2 is even, letting 2M = d + 2 in Lemma 9.7, we get the same estimate. Therefore,
summing up the above estimates of f|s—t|<2*k and f‘s_t|>2,k, we obtain

/d |DIK(s, 5 — t)|| pdt < 2811
R

Since the estimate of [|[DYKg(s,s — t)|[am is symmetric in s and ¢, the same proof also
shows that

/d | DY K (s,s —t)|[|mds S oklvh
R

For any f € H§$(R? Ly(M)) and k € Ny, there exists gx € L2(N) with norm one such
that | DITS, (Hllay = T Jaa DITS, (£)(3)95(5)ds. Then,

IDIT7, ()17,

/ DITy (f (s)ds‘2
_|r / / DY (s,5 = ) fu(t)dt gi(s) ds| (9.36)
rd JRrd

< T/Rd DY Ky (s, 5 — t)|| mlgr(s)[*dtds - T/Rd DY K (s, s — £)||a| fu(£)2dsdt

S22 1, o

Taking v = 0, the above calculation implies that

175 (Do < D MT5 (D llzaony £ D Mallzoevy S 11y, (9.37)

k>0 k>0

which says that T is bounded from Bj | (R%; Ly(M)) to La(N).
On the other hand, if we take

&

ao = o, a;j(§) =(1—po(§))5 T

then we get

d
L=ao(§) +>_a;(§)g, VEER

This identity implies

d
O+> a;(9)&) = 04(0)¢, VIeNy, VEeRY,
j=1

[y <l

where the 0(§)’s are symbols in S} (|)7|1 C Sy, ‘17‘1. The above identity allows us to decom-
pose the term ¢; * Ty (f) in the following way:
pjx Ty (f) = > Ty (pj* DIT5 () = Y T, (DIT%, (1)), (9.38)

s O’k
[yl <i [v]1<t
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where a%' = 0,9;. Note that the symbol a% € Sl_,‘ovh for any j, and if |v|; <, UZ, # 0 if
and only if j =0 and j = 1. If j < k + 1, by the Plancherel formula and (9.36), we have

2705 * T, (Dl vy S 2T (Fllnaovy S 27N fell aovy S 2511 full 2oy

If j > k + 2, adapting the proof of (9.36) with 0% in place of o, we deduce that

172 (DT, (Il oy < Cy2 M DITS () )- (9-39)

stoy

For any |v|1 <[, by the previous observation, U% = 0. Therefore, estimates (9.36), (9.38)
and (9.39) imply that

s * T, (Nl =1 D T2, (DT, (Il o)
[v[1=l
< S 27NDITE (Dl
[v|1=l
<3 25 il o
[vl1=l

Thus, if we take [ to be the smallest integer larger than «, we have
2% lps TS, (Nl Loy S 2979025 fill Ly vy < 251 fiell oy -
Combining the above estimate for j > k£ + 2 and that for j <k + 1, we get

sup 2910 * T, ()l ooy S 27l Loy
J€No

whence,
15, (NlBg . S 25 fell Loy

Then by the triangle inequality, we have

IT5 (g < D NT5, (Dlisg . S D2 2% ellaon S 1fllsg, (9.40)
k>0 k>0

which says that 7 is bounded from B (R% Ly(M)) to BS o (R% Lay(M)).
Applying (9.37), (9.40) and the real interpolation (9.34) with p =2, ¢ = 2 and ag = 0,
a1 = «a, we obtain the following boundedness:

T, < 1l 8 >0
Finally, (9.35) together with the above inequality yields the desired assertion. O

Remark 9.24. Even though it is not the main subject of this paper, the regularity of
pseudo-differential operators on operator-valued Besov spaces is already obtained in the
above proof. Let us record it specifically in the below. Let 1 < p, ¢ < oc.

(i) If o € S?’a for some 0 < 6 <1, then T is bounded from Bgvl(Rd; L,(M)) to Ly(N),
and bounded on Bg (R%; L,(M)) for any a > 0.

(ii) If o € SY 5 with 0 <4 <1, then Ty is bounded on B& (R% Ly(M)) for any a € R.
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Indeed, the argument in (9.36) still works for all 1 < p < co. Then we get the boundedness
of T¢ from BY;(R% Ly(M)) to Ly(N) as in (9.37). Likewise, we can deduce the L,
version of (9. 40) i.e. the boundedness from By to By, for a > 0. Thus, for a > 0, the
boundedness of T¢ on By q(Rd; L,(M)) is ensured by interpolation. If § < 1, by Proposition
9.8 and the lifting property of Besov spaces, we get the boundedness for general a € R.
Finally, we note that, different from the Triebel-Lizorkin spaces, the above assertions hold
for T as well.

Since for o € 5?71, T¢ is not necessarily bounded on La(N'), we cannot expect its bound-
edness on Ly (M; L§(RY)). However, by Lemma 9.23, we are able to prove its boundedness
on Ly (M; H(R?)¢) when « > 0. Note that the classical Sobolev space H'(R?) is a Hilbert
space with the inner product (f,g) = [ga J*f(5)J%g(s)ds. By the definition of Hilbert-
valued L,-spaces, we see that f € Ly (M; H$(RY)¢) if and only if J*f € Li(M; L§(R?)).

Lemma 9.25. Let 0 € S{ . Then Tf is bounded on Ly(M:; HS(RH®) for any a > 0.

Proof. Following the argument for lemma 9.20 by replacing (7.2)* with J*T¢, we see that T
is bounded on Lo (M; H(RY)). Let f € Li(M; HS(R?)¢) and A = (fga |J0‘f(s)|2ds)%.
By approximation, we may assume that A is invertible. Thus, f admits the decomposition

f=r1A714,

where [|A| z, (a) = HfH Ly (MsHg (R1)e) and ||fA71||LOO(M;Hg(Rd)C) = 1. From this decom-
position, we establish the L (M; HS(R%)¢)-norm of TS(f) as follows:

TSN, (titag raye) = 116 (AT HAll, L (MsHS (R)e)

S HTO'C(fA )” (M H& Rd )H ||L1
S IPA™M,_ (e o) Ml 2080
= ||f||L1(M;H§‘(Rd)C>’
which implies that T is bounded on L (M; H$(RY)®). O

Based on the previous lemma and the atomic decomposition obtained in Theorem
8.21, we are able to study the boundedness of pseudo-differential operators with forbidden
symbols on the operator-valued Triebel-Lizorkin spaces F{"“(R9, M).

Theorem 9.26. Let o € SY, and a > 0. Then T¢ is bounded on Fy"“(R%, M).

Proof. Let f € F{"(R% M). We fix K, L to be two integers such that K > a + d and
L > d. By the atomic decomposition in Theorem 8.21, f can be written as

= (ubj + Xjg;),
7=1

where the b;’s are (o, 1)-atoms and the g;’s are (o, Q)-atoms, p; and \; are complex
numbers such that

[e.9]
> (gl + M0 = 1 fllpe-
J=1
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In order to prove the assertion, by the above atomic decomposition, it suffices to prove
that
[T5b]|peve 1 and || T5gl[poe S 1,

for any (o, 1)-atom b and (o, @)-atom g. We have shown in Corollary 9.15 that
T30l pee S 1. (9.41)

Thus it remains to consider T¢g. This is the main part of the proof which will be divided
into several steps for clarity.

Step 1. By translation, we may assume that the supporting cube @) of the atom g is
centered at the origin. We begin with a split of the symbol o: Let h1, ho be two nonnegative
infinitely differentiable functions on R such that supp hy C (Q)¢, supp he C 2Q and

1=hi(€) + ha(§), VEeR™

For any (s,£) € R? x RY, we write

o(5,6) = h1(€)a(s,€) + ha(€)a(s,) % 01(s,€) + aa(s, €).

It is clear that o1 and o9 are still two symbols in 5(1)71, and

1759l poe < 11T, 91l poe + 1T, 9l move-

First, we consider the case where the cube @ is of side length one, i.e. Q = Qo,, and
deal with the term |77, g|[pe«c in the above split. Let (X;);cze be the resolution of the
unit defined in (7.13) and X~j = X;(2:) for j € Z9. We write

Ty9= Z Tacjl-g—i— Z T;{-g

J€8Q0,0 J¥8Qo,0 (9.42)

def G+ Hq,

where (s, &) = o1(5,€)X;(s).
We claim that for every j € Z<, T(‘;j g is the bounded multiple of an (a, @, ;)-atom
1 72

(with the convention Q, ; = % + Qo,0). No loss of generality, we prove the claim just for
]

j = 0. Applying Lemma 9.25 to the symbol o¥, we get
1 1
([ VT Pas)t 7 ( [ 170 ds)* < [Qool 2.
R4 1 R4

Thus, in order to prove the claim, it remains to show that 7'% g can be written as the linear
1

combination of subatoms and the coefficients satisfy a certain condition. By Definition
8.18, g admits the following representation:

g= > duau, (9.43)
(1,1)<(0,0)

where the a,,’s are (a, Q,,;)-subatoms and the coefficients d,,;’s are complex numbers with
2 (1)<(0,0) ’du,l|2 < 1. Then we have

T599: Z du,nggau,l-
(1,1)<(0,0)
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Given p € Ny, let (X, m),eze be a sequence of infinitely differentiable functions on R?
such that
1= Y Xum(s), VseR% (9.44)

meZd

and each X, is nonnegative, supported in 2Q, 0 and X, n,(s) = Xy o0(s —27#m). It is
the 27#-dilated version of the resolution of the unit in (7.13). We decompose T5g in the

1
following way:

Thog = Z > Xum Z dy Tyoa,- (9.45)

p=0 m

Observe that the only m’s that contribute to the above sum Y, are those m € Z? such
that 2Qum N Qo0 # 0, 0 Qum C 2Qo,0. Thus, we obtain the decomposition

Tog= >, DumGum, (9.46)
(1:m)<(0,0)

where
1
Dym = (Z |y (1 + |m — 1))~ )z,
]

1
Dy,

Gum = X dy T ay,,.
m,m ﬂvmzl: le 0'(1) u7l

,m

It is evident that

(2 DS 1) <

(1,m)<(0,0) (1,1)<(0,0)

Now we show that the G ,’s are bounded multiple of (o, @, )-subatoms. Firstly, we
have supp G, ;m C supp Xm C 2Q,m- Secondly, by the Cauchy-Schwarz inequality,

1
r( / 3 AT, (s)2ds)
2Qum ] 1
1
S (- [P (1 + | — 1)) ~(*FD)2 (9.47)
[

D+ m =1

l

1
T(/ (14 20(s — 2P0 M [T a (s)[2ds) 2.
2Qu,m !
If we take M = 2L + 1, since L > d, we have % < —d. Applying Lemma 9.10, we get
1
| Guan (&Pds)E S 32+ o= 1) |l 5 Q.

Similarly, the derivative estimates in Lemma 9.10 ensure that

7l

([ 107 Gn(9)ds)* S Qunl 8=, Vil <[] +1.

Since o > 0, no moment cancellation for subatoms is required. Thus, we have proved that
the G, m’s are bounded multiple of (o, @, m)-subatoms, whence the claim. Therefore, G4
in (9.42) is the finite sum of (a, Qo,j)-atoms, which yields [[G1[|pec <1 by Theorem 8.21.
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The term H;i in (9.42~) is much easier to handle. Observe that H; corresponds to the
symbol o (s, &) 3¢50, X (8), whose s-support is in (6Qo,0)°. Thus, we apply Corollary
9.13 directly to get that

|Hyll e S 1.

Step 2. Let us consider now the case where the supporting cube @ of g has side length
less than one. As above, we may still assume that @ is centered at the origin. Let g be
an (o, Qko)-atom with k € N. Then g is given by

g = Z du,law with Z ’dﬂyl|2 < |Qk’0 1 = gkd
(1) <(k,0) (1)

We normalize g as

h — 2k3(a—d)g(2—k)

= 3 2754, 2M0 g, 270
()< (k,0)

= D duduy,

(1) <(k,0)

where @, = 2’“(0‘7%)@“’1(2_’“) and JM = 27%ddw. Then it is easy to see that each a,; is
an (o, Q,—r,)-subatom and h is an (o, Qo 0)-atom. Define oy 1 (s, &) = 01(27%s,2k¢), then
we have

T5,9(5) = [ o1(s,9()™de
_ g-ha / o1 (s, E)h(27Fe) 2 e
Rd

-2 /R o11(2"s, O)R(§)e ™ dg

= gkld=e)e  p(okg),

01,k

Since the &-support of o is away from the origin, we have
IDY D14 (s, &)l < Cole] M0 &~ € (1 4 (g, Wk e N,

Thus, o1 1 is still a symbol in the class S?J. Then, applying the result for (o, Qo,0)-atoms
obtained in Step 1 to the symbol o1y, we get |75, kh||F1a,c < 1. Moreover, since o > 0, we
can apply the homogeneity argument stated after Corollary 8.11 to get

I8 gll e S ITE

o1,k

hlpee S 1.

Step 3. It remains to deal with the symbol o3. Note that oo = ha(&)o(s,§) with
o€ 5?71 and supp he € 2Q). Then for § < 1, say § = 1%, we have g9 € S?’g. Indeed, by

definition, we have, for every s € R,

IDYD{oa(s,€)lm S D, DIDo(s,€) - DPha(8)l|m
B1+p2=0

< 3 CLa (M [ghhTIBh DRy g
B1+B2=0
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But since ho is an infinitely differentiable function with support 2@Q), it is clear that for

€ €2Q,
(14 ‘§|)|’Y|1*|51|1 <C,(1+ |§’)%|’Y|1*\f31|17 and ‘Dﬁth(O‘ < Cp(1+ |€’)7|,32|1.

Putting these two inequalities into the estimate of HDQD? 02(s,€)|| m, we obtain

9 —
|D3D{o2(5.8) [l < Cop(1 -+ [e) 01170,

which yields o9 € S? o - Therefore, it follows from Theorem 9.16 that |77, g|| pec < [|gl| poe
710

for g € F{"°(R%, M). Combining this with the estimates in the first two steps, we complete

the proof of the theorem. O

If o € 57, it is not true in general that (T)* corresponds to a symbol in the class
S%l. However, if we assume additionally this last condition, duality and interpolation
arguments will give the following boundedness of T%:

Theorem 9.27. Let 1 < p < 0o and let o € Sﬂl, aeR.If (TS)* admits a symbol in the
class S 1, then T¢ is bounded on F;’C(Rd,/\/l).

A similar argument as in the proof of Corollary 9.22 gives the following results con-
cerning the symbols in STy with n € R.

Corollary 9.28. Letn € R, 0 € Sy and o > 0. If a > n, then Ty is bounded from
F(RE M) to FY(RY, M).

Corollary 9.29. Let n,a € R, 0 € STy and 1 < p < co. If (T5)* admits a symbol in the
class STy, then T is bounded from F;’C(Rd,./\/l) to F;‘*”’C(Rd,./\/l).



Chapter 10

Applications

10.1 Applications to tori

We will first recall the definitions and relevant results of the operator-valued Triebel-
Lizorkin spaces on tori stated in [72]. Then we extend the results of the pseudo-differential
operators in the previous chapter to the torus case. The main idea is to reduce the torus
case to the Euclidean one that we discussed previously by a periodization argument.

In this section, M still denotes a von Neumann algebra with a normal semifinite faithful
trace 7, but N = Lo (TY)@M.

We identify T¢ with the unit cube 1¢ = [0,1)? via (e2™s1,... €2™%d) & (s1,--- , 84).
Under this identification, the addition in I? is the usual addition modulo 1 coordinatewise;
an interval of I¢ is either a subinterval of I or a union [b, 1] U [0,a] with 0 < a < b < 1,
the latter union being the interval [b—1,a] of I (modulo 1). So the cubes of I? are exactly
those of T?. Accordingly, functions on T?¢ and I? are identified too.

Recall that ¢ is a Schwartz function satisfying (1.1). Then for every m € Z¢\ {0},

doe@7m) =) @(27m) =1

JEL >0

This tells us that in the torus case {p(277+)};>0 gives a resolvent of the unit. According
to this, we make a slight change of the notation that we used in the previous chapters :

Let p; = F1(p1)) for any j > 0. Now we periodize ¢; as
Pi(z) = Z @i(s+m) with 2= (™1, . M),
mezZd
Then, we can easily see that ¢; admits the following Fourier series:
©i(z) = Z ©(277m) 2™, (10.1)
mezd

Thus, for any f € S'(R%; L1 (M) + M), whenever it exists,

B+ ()= [ Biew ) @dw= 3 p@m)fm)e" 2 e T

meZd

The following definition was given in [72, Section 4.5].
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Definition 10.1. Let 1 < p < co and o € R% The column operator-valued Triebel-
Lizorkin space F¢(T%, M) is defined to be

Fe(Th M) = {f € (T Li(M)) « || fl| e < 00},

where

1 1[mge = 1FO) |z, 0y + H(;)?Q” %5 % FI2)2 |, -
Jj=Z

The row and mixture spaces F5" (T4, M) and F(T?%, M) are defined similarly to the
Euclidean case.
By the discussion before (10.1), if we identify a function f on T¢ as a 1-periodic function

fpe Oon R?, then the convolution @ * [ on T? coincides with the convolution ©j * fpe O0
R?. More precisely:

B f(2) = @) * fpe(s) with z = (e2™1 ... ¢?misd),

By the almost orthogonality of the Littlewood-Paley decomposition given in (1.3), we get
the following easy equivalent norm of F}f"c(]ld, M):

; 1
preHF,?‘*c(]Id,M) ~ || g0 * fpellp + H(Z 22”’%’ * f(2)]%)2 I

320

p7

where ng(f) =1->">0 ©(277¢). Since (;ASO is supported in {£ : || < 1} and qASO(g) =1if
€] < 3, it then follows that

160 % foellp = IF (O],

Hence, combining the estimates above, we have
1 ez pty = I fpell e py (10.2)

Thus F;"C(Td, M) embeds into F;"C(Rd, M) isomorphically. The equivalence (10.2) allows
us to reduce the treatment of T¢ to that of RY; and by periodicity, all the functions
considered now are restricted on I%.

We are not going to state the properties of F;’C(Td,./\/l) specifically, and refer the
reader to [72, Section 4.5]. But we note that the characterizations for F5-¢(T?, M) are
better than the ones obtained in the previous chapter for FZ?"C(Rd, M), since in the torus
case, we do not need to worry about the properties of the test functions near the origin.

Let us turn to the study of toroidal symbols. In the discrete case, the derivatives
degenerate into discrete difference operators. Let o : Z¢ — M. For 1 < j < d, let €j
be the j-th canonical basis of R?. We define the forward and backward partial difference
operators A, and ij:

Apo(m) :=o(m+e;) —a(m), Ap,o(m):=o(m)—o(m—e;),
and for any § € N¢,

AB = AP L AB ZB A
m * mi

mq’ m * my T P my

Definition 10.2. Let 0 < §,p < 1 and 7,8 € N&. Then the toroidal symbol class
Sy s(T? x Z) consists of those M-valued functions o(s,m) which are smooth in s for all

m € Z4, and satisfy

IDIAR o (s,m)[|m < Caygan(L + [ml])" = HDE,
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Definition 10.3. Let o € Szé(']l‘d x Z4). For any f € &'(T9 Li(M)), we define the
corresponding toroidal pseudo-differential operator as follows:

T5f(s) = D ols,m)f(m)e*™* ™.

mezZa

When studying the toroidal pseudo-differential operators T on T, especially its ac-
tion on operator-valued Triebel-Lizorkin spaces on T¢, a very useful tool is to extend the
toroidal symbol to a symbol defined on T? x R?, which reduces the torus case to the Eu-
clidean one. This allows us to use the arguments in the last section. The extension of
scalar-valued toroidal symbol has been well studied in [59]. With some minor modifica-
tions, the arguments used in [59] can be adjusted to our operator-valued setting.

The following lemma is taken from [59]. Denote by do(§) the Kronecker delta function
at 0, i.e., 9p(0) = 1 and dp(§) = 0 if £ # 0.

Lemma 10.4. For each 3 € N4, there exists a function op € S(RY) and a function
¢ € S(RY) such that

Z C(s+k)=1,
kezd

-~

> N
Clz (€)= 60(€) and D (C)(€) = D&,
for any & € R?.
The following lemma is the operator-valued analogue of Theorem 4.5.3 in [59].

Lemma 10.5. Let0 < p,d <1 andn € R. A symbol o € SZ(;(TdXZd) is a toroidal symbol
if and only if there exists an Euclidean symbol o € S;ﬁ(;(']l‘d x RY) such that 0 = G |rayza.

Proof. We first prove the “if” part. Let o € SZ(;(Td x R%). If |8]; = 1, then by the mean
value theorem for vector-valued functions, we have

1A%.Do(s;m)llsa < sup [0/ DI5(s,m +65)]| .

For a general multi-index 8 € Ng, we use induction. Writing 8 = ' + §; and using the
induction hypothesis, we get

9 / ~
|A2, Do (s,m)||m = | AR(AS DG (s,m))]|
< sup [|0;(A8DYG(s,m +605;))|
0<60<1
= sup ||AZ(9;D15(s,m + 05;))||m
0<6<1

sup [|D{ 9;D7&(s,m + 0'B)|| m
0<0’<1

= sup ||D{DIG(s,m+0'B)| pm-
0<0’<1

IN

Thus we deduce that

185D (s, m)lam < sup [|DEDIF(sm +0'8) L

<Clgm(l+ )PPl +oh
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Now let us show the “only if” part. In the proof of Theorem 4.5.3 in [59], the desired
Euclidean symbol is constructed with the help of the functions in Lemma 10.4. We can
transfer directly the arguments in [59] to our setting. But we still include a proof for
completeness. Let ¢ € S(R?) be as in Lemma 10.4. Define a function & : T? x R — M
by

5(575) = Z C(f - m)g(87m)'

meZa

Thus, 0 = 7 |pa,ze. Moreover, using summation by parts, we have

IDIDL5(s,6) | = || S DEC(E — m)DEa(s,m)],,

meZa
= | % A/ ¢p(& —m)DYo(s,m)||
= u<m—€1>ﬁ'1 > d5l¢ = m)AL DY (s m)]Lu
S wﬁ(? 6—Zm><1+ [rm)=PlBh+ol5h
< mz [6p(€ — m)|(1+ |€ — ml)r=PIBhoHdhl (1 4 |gyrrlBhotdhls
meZa

<1+ |£Dn—plﬂ\1+5|7|1’
whence, o € Sg(;('ﬂ‘d x RY). O
Theorem 10.6. Let o € 5?75(11“1 x Z%) and o € R. Then
o If0<{d <1, then TS is a bounded operator on F;’C(Td,/\/l) for every 1 < p < oo.

e If6 =1 and a >0, then TS is a bounded operator on F{"°(T% M).

o If§ =1 and (T5)* admits a symbol in the class S%l(Td x 73), then T¢ is bounded
on F;’C(Td,/\/l) for any 1 < p < co.

Proof. By Lemma 10.5, there exists ¢ in S;},J(Td x RY) such that 0 = & |paygze. Let
fe Fﬁ’C(Td,M). By the identification T? ~ 1%, for any z € T¢, there exists s € I% such
that

Tf(z) = Y o(s,m)f(m)e*™™

meZa

- /Rd 5(87 5)%6(5)62”1876615 - Tgfpe(S)-

Now we apply Theorems 9.16, 9.26 and 9.27 to the symbol ¢ and fp.. Then by the
equivalence (10.2), we get the boundedness of T on F&¢(T4, M). O

10.2 Applications to Quantum tori

We now apply the results of the previous section to the quantum case. To this end, we
first recall the relevant definitions. Let d > 2 and 6 = (6i;) be a real skew symmetric
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d x d-matrix. The associated d-dimensional noncommutative torus Ay is the universal C*-
algebra generated by d unitary operators Uy, ..., Uy satisfying the following commutation
relation

UpU; = 2" U0y, 4k =1,...,d.

We will use standard notation from multiple Fourier series. Let U = (Uy,---,Uy). For
m = (mq,---,mg) € Z¢, define

un=u"... .U
A polynomial in U is a finite sum

T = Z a, U™ with  «,, € C.
mezZd
The involution algebra Py of all such polynomials is dense in 4y. For any polynomial z
as above, we define
7(z) = .

Then 7 extends to a faithful tracial state 7 on Ay. Let ’]I‘g be the w*-closure of Ay in the
GNS representation of 7. This is our d-dimensional quantum torus. The state 7 extends
to a normal faithful tracial state on ’]I‘g that will be denoted again by 7. Note that if
0 = 0, then T¢ = Loo(T?) and 7 coincides with the integral on T against normalized Haar
measure dz.

Any x € L1(T4) admits a formal Fourier series:

x ~ Z Z(m)U™ with z(m)=7((U™)*x).
mezd

In [48], a transference method has been introduced to overcome the full noncommu-
tativity of quantum tori and to use methods of operator-valued harmonic analysis. Let
Ny = Loo(TH)@TY, equipped with the tensor trace v = [dz®7. For each z € T¢, define
7, to be the isomorphism of ']I‘g determined by

m(U™) =2"0" = 2" -z U™ - U (10.3)
This isomorphism preserves the trace 7. Thus for every 1 < p < o0,
d
7= (@) llp = llzllp, Vo € Lp(Th).

The main points of the transference method are contained in the following lemma from
[6].

Lemma 10.7. (1) Let 1 < p < co. For any x € L,(T%), the function 7 : z — m,(x) is
continuous from T to L,(T4) (with respect to the w*-topology for p = o).

(2) If z € Ly(T4), then T € Ly(Np) and |Z|, = ||z|lp, that is, x +— T is an isometric
embedding from L,(T4) into L,(Np).

(3) Let ']I‘g ={Z:z¢€ Tg}. Then ’]Tgl is a von Neumann subalgebra of Ny and the associated
conditional expectation is given by

E(f)(z):wz(Adw@[f(w)]dw), ZET, feN,

Moreover, E extends to a contractive projection from Ly(Ny) onto L,(T4) for 1 < p <
0.
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To avoid complicated notation, we will use the same notation for the derivation for the
quantum tori ’]I‘g as for functions on T%. For every 1 < j < d, define the derivation to be
the operator 0; satisfying:

8j(Uj) = 271'in and @(Uk.) =0 for k 75 j

Given m € N4, the associated partial derivation D™ is 9;™ - - 9. We keep using the
resolvent of unit given by functions in (10.1). The Fourier multiplier on ’]I‘g with symbol
©(277) is then
Qjxx = Z ©(279m) Z(m)U™.
mezd

The analogue of Schwartz class on the quantum torus is given by

S(Tg) =1 Z amU™ : {am } meza rapidly decreasing}.

meZd

This is a w*-dense *-subalgebra of Tg and contains all polynomials. It is equipped with a
structure of Fréchet x-algebra, and has a locally convex topology induced by a family of
semi-norms. We denote the tempered distribution on T¢ by S’(T%) which is the space of
all continuous linear functional on S (Tg). Then by duality, both partial derivations and
the Fourier transform extend to S'(T4). Triebel-Lizorkin spaces on the quantum torus are
defined and well studied in [72]. Let us recall the definition.

Definition 10.8. Let 1 < p < oo and a € R% The column Triebel-Lizorkin space
F;"C(Tg) is defined by

FOe(T4) = {o € §/(TH) : [l e < o0},

where

N o)~ 1
2l pge = [20)] + | (D2 22215 * )2 |-
j=0

The row space F®"(T%) and mixture space F¢(T%) are then defined similarly.
D 0 p\-0

The transference method in Lemma 10.7 allows us to connect F;,"(’]I‘g) with operator-
valued spaces F;’C(Td, T4). The result is

Lemma 10.9. For any 1 < p < oo, the map x — T extends to an isometric embedding
from F;‘vc(’ll‘g) to F;‘vc(’ﬂ‘d,’ﬂ‘g) with complemented image.

Let us turn to the definition of pseudo-differential operators on ’]I‘g.

Definition 10.10. Let 0 < §,p < 1, n € R and ~,5 € Ng be multi-indices. Then the
toroidal symbol class Sz, ) §(Zd) consists of those functions o : Z¢ — T¢ which satisfy
97 bl

IDP(AY,o(m))]| < Cpa (1 + [m|)" =PI+ ym € 2,

Definition 10.11. Let o € S’%dpé(Zd). For any z € T4, we define the corresponding

97 b
toroidal pseudo-differential operator on Tg as follows:
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Now we are ready to prove the mapping property of pseudo-differential operators on
quantum torus.

Theorem 10.12. Let o € S) (Z%) and o € R. Then

41,6
o If0<§ <1, then TS is a bounded operator on FI?“C(']I‘g) for every 1 < p < co.
e If5=1and a >0, then TS is a bounded operator on F{"°(T%).

o If§ =1 and (TS)* admits a symbol in the class S,(J%
FI?’C(’]I'g) for any 1 < p < oco.

3,175(Zd), then T¢ is bounded on

Proof. Recall that m, denotes the isomorphism of ']I'g determined by (10.3). We claim that,
given m € Z%, the function z + m,(c(m)) from T¢ to T¢ satisfies

1D AR m=(a(m)|| < Cyp(1+ |m])+o0 =A% (10.4)

Since 7, commutes with the derivations on T¢, we have DYAPr,0(m) = 7,(DYAPo(m)).
Therefore,

IDYAPm.o(m)| = |lm= (DY A o(m))|| < [|IDYA o(m)|| < Cyp(L + [m])"+OPh=rlfh,

Denote &(z,m) = m,(c(m)) for (z,m) € T¢ x Z% and consider the pseudo-differential
operator TE—C" Combining (10.4) and Theorem 10.6, we obtain the boundedness of TEC on
Fpo"c(']l‘d, T4). Moreover, for any polynomial z on T4 and f(z) = 7, (x), we have

TEf(z) = 3 F(zm)f(m)e"

meZd
= Z . (o(m))x(m)U™z"
= Y m(a(m)T(m)U™) = m.(T5(x)).
mezZd
Finally, by Lemma 10.9 and Theorem 10.6, we have
HTg(ﬂf)HF;’c(Tg) = H77~(T5(95))HF;’C(T¢1,T3) = HT}c'fHF;’C(’Jl’d7Tg)
S HfHF;’C(’]Td,’H‘g) = ||iUHF;’“C(1rg)'
The three assertions are proved. ]

Finally, let Sgé(Zd) be the scalar-valued toroidal symbol class, consisting of those
functions ¢ : Z% — C which satisfy

|DP(AY,0(m))| < Cp(1 4 [m|)n—Ph+alBh - ym e 74,

In this setting, it is evident that Ty and T, give the same pseudo-differential operator on
Tg, denoted by T, simply. Then, we have the following

Corollary 10.13. Let o € S%(Zd) and o € R. Then

o If0 <8 <1, then T, is a bounded operator on F(Tq), F"(T§) and F2(T§) for
every 1 < p < oco.

e If6 =1anda >0, then T, is a bounded operator on F{"(T%), F*"(T%) and F{(TY).
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