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Spécialité de doctorat : mathématiques et informatique
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Je remercie toute l’équipe Géométrica/Datashape pour m’avoir accueil-
lis, en particulier Frédéric et Marc. Je remercie Claire, Mathieu, Harry,
Raphael, Nicolas, Theo et Vincent pour les bons moments passé ensemble
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Chapter 0

Introduction

0.1 Introduction en français

Dans un contexte où des quantités toujours plus colossales de données sont
disponibles, extraire des informations significatives et non triviales devient
toujours plus difficile. Nous cherchons des solutions à des problèmes de diffi-
culté croissante, comme la classification des types de cancer, la détection de
maladie à partir de légères ombres sur des radiographies ou encore automa-
tiser le contrôle qualité en utilisant de la reconnaissance d’image pour n’en
citer que quelques-uns. Souvent, ces données sont sous la forme d’un nuage
de points vivant dans Rn. En général l’information contient beaucoup de
redondance. Il est donc commun de supposer que les points sont situés, au
bruit près, sur une variété de dimension d plus faible. De cette hypothèse
de nombreuses méthodes permettant de réduire la dimension des données
ont été étudiés. Cela comprend les méthodes linéaires comme l’analyse de
composante principale, et celles non linéaires comme les machines à vecteurs
(SVM) de support à noyaux. Quand la dimension est réduite, l’information
initiale est simplifiée, le bruit réduit voir supprimé, et une compréhension
de la répartition des données devient plus accessible. Ceci est vrai sous
l’hypothèse que la méthode de réduction de dimension utilisée est adaptée
à la nature des données.

Afin d’améliorer la classification, régression, ou encore l’analyse exploratoire
de données, l’approche fournie par l’analyse topologique de données (TDA)
est de rechercher la présence de formes dans le jeu de données. En ne
conservant que les informations relativement à ces formes, on applique un
processus qui peut être assimilé à une réduction de dimension. Cette in-
formation de nature topologique est résumé par des descripteurs de divers
types : nombres, vecteurs ou encore ensemble. Dans un contexte de docu-
ments textuels, le descripteur utilisé correspond à la notion de sacs de mots
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2 CHAPTER 0. INTRODUCTION

(bags of words) [45]. Dans le cas de réseau de neurones ayant une structure
d’auto-encodeur [36] c’est la représentation compressée de l’entrée obtenue
dans le goulot d’étranglement du réseau qui joue le rôle de descripteur. Dans
le domaine de l’analyse topologique de données, une approche nommée map-
per consiste à construire un graphe qui résume l’information d’un nuage de
points d’une façon visuelle : une couverture de R par des intervalles est
choisie avec une fonction définie sur le jeu de données et à valeur dans R. Le
nerf des pré-images de la couverture par cette fonction est calculé, donnant
un graphe. Une façon simple de définir une telle fonction est simplement
de supprimer une colonne du jeu de données et d’utiliser ses valeurs. Par
exemple si l’on considère des mesures prises dans une usine chimique [33],
et une colonne représente la qualité de la substance synthétisée, on peut
utiliser cette dernière.

Une autre approche qui ne requiert pas le choix d’une couverture de R est
donnée par l’homologie persistante. Dans le cas de l’homologie persistante,
l’entrée peut être un nuage de points, et la sortie une collection d’intervalles
qui résument les nombreuses caractéristiques topologiques – composantes
connexes, boucles, trous, ... – de la forme sous-jacente. Ces descripteurs
sont calculés en utilisant l’homologie.

0.1.1 Homologie

Certaines caractéristiques de la forme d’une variété peuvent être résumées à
travers un invariant appelé groupes d’homologie. Cet invariant sera introduit
formellement au Chapitre 1. On présente ici l’idée principale. Dans les
grandes lignes, le nième groupe d’homologie encode le nombre de trous n-
dimensionnels en utilisant, à translation et déformation continue le long de
la variété près, des n-sphères (ou n-simplexes) non contractiles1. Le 0ième
groupe d’homologie compte le nombre de composantes connexes. Le premier
groupe d’homologie compte le nombre de cercles non contractiles, alors que
le second compte le nombre de sphères non contractiles.

Pour calculer ces groupes, on peut considérer un espace topologique fait
de simplexes (points, segments de ligne, triangles, tétraèdres, ...) collés en-
semble. On définit alors une algèbre formée des sommes formelles de ces
simplexes à coefficients dans un corps2 k. On définit un opérateur de bord ∂
qui envoie chaque simplex sur la somme alternée3 de ses faces. On étend en-
suite cette définition à toute l’algèbre par linéarité. Les groupes d’homologie

1Contractile signifie homotope à un point.
2Dans le contexte de l’homologie persistance, on considère des espaces vectoriels. Les

groupes d’homologie peuvent être aussi construits avec des coefficients dans Z. Cela donne
plus d’information avec pour coût une complexité de l’objet accrue.

3Le mot alterné signifie que le signe de chacun des simplexes de cette somme alterne
entre +1 et −1.
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sont alors obtenus en prenant le quotient du noyau – moralement les boucles
– de ∂ par l’image de ∂ – moralement les boucles qui sont des bords.

0.1.2 Homologie persistante

Ici, on motive et présente l’homologie persistante à travers un exemple pra-
tique. Soit P ⊂ Rd un nuage de points. On suppose que cet ensemble est
échantillonné sur une surface, comme c’est le cas de l’ensemble représenté
sur la Figure 1 où les points sont pris le long d’une courbe s’enroulant autour
d’un tore.

Figure 1: Points provenant d’une courbe fermée s’enroulant autour d’un
tore.

Une partie de l’information topologique d’un tore T peut être extraite
en calculant ses groupes d’homologie Hi(T), ou pour un invariant encore
plus simple on peut se contenter du rang de ces groupes βi(T), appelé nom-
bre de Betti. Dans cette exemple nous souhaiterions retrouver, au moins
partiellement, l’information que P a été échantillonné sur un tore.

Calculer Hi(P ) ne nous apporte rien de plus, puisque H0(P ) est simple-
ment le nombre de points dans l’ensemble et tous les Hi(P ), i ≥ 1 restants
sont nuls. On peut remplacer P par l’union de boules d’un certain rayon r
centrés en ses points. Notons cet ensemble Fr =

⋃
p∈P B(p, r). L’ensemble

Fr est maintenant un volume et l’on peut calculer ses groupes d’homologie.
Pour une bonne valeur de r, représentant une échelle adaptée, on peut
s’attendre à retrouver les groupes d’homologie de T. De plus, pour une
plus faible valeur de r, on se retrouve à ne connecter que les points adja-
cents le long d’une courbe, et l’on retrouve les groupes d’homologie d’un
cercle. Cela nous informe que les points ont été échantillonnée le long d’une
courbe fermée.

Déterminer les valeurs de r présentant un intérêt est un problème difficile.
Au lieu de chercher directement quelle est la ”bonne échelle”, l’homologie
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persistante les prend toutes en compte au sein d’un même objet. La collec-
tion de tous les volumes Fr sera plus tard appelée une filtration. L’homologie
persistante calcule tous les groupes d’homologie de la collection {Fr, r ≥ 0}
et les lie entre eux. L’invariant calculé, appelé un code barre, décrit quand
une caractéristique topologique apparâıt et combien de temps elle persiste
à travers cette filtration.

0.1.3 Persistance Multidimensionnelle

Comme nous le verrons au Chapitre 3, la persistance comme décrit plus haut
ne peut répondre seule à toutes les questions qui apparaissent naturellement
quand l’on cherche à comprendre la topologie d’un jeu de données. Soit dP
la distance à un nuage de points F ⊆ Rd. Considérer les boules de rayon r
centrées sur les points de P est équivalent à observer les r-sous-niveaux de
la fonction dP (à valeur dans R), c’est-à-dire les ensembles {x| dP (x) ≤ r}.
C’est pourquoi l’homologie persistante fait sens pour n’importe quelle fonc-
tion à valeur dans R. Une généralisation naturelle est de considérer les
sous-niveaux d’une fonction à valeur dans Rn, au lieu de R. Cette no-
tion est appelée multipersistance. Cela signifie que les index des groupes
d’homologie ne sont plus le rayon r d’une boule, mais un élément de Rn. Les
caractéristiques topologiques évoluent maintenant le long de chacun des n
différents axes, et doivent être reliées les unes aux autres par des relations de
commutativité. Cette nouvelle construction accroit dramatiquement la com-
plexité des modules de persistance, rendant invalide nombre de théorèmes
disponibles dans la théorie un-dimensionnelle. Non seulement le théorème
qui énonce l’existence de descripteurs ne s’étend pas, mais le nombre de
candidats à ce que l’on pourrait appeler un code-barre crôıt tellement que
les utiliser directement semble vain. Dans le Chapitre 3 on donne des ex-
emples de sommandes complexes apparaissant en dimension 2 provenant de
la littérature existante. On illustre aussi un phénomène appelé monodromie
se produisant en dimension 3 via un exemple, qui signifie que l’on peut
construire des carquois circulaires à l’intérieur d’un module de persistance
3-dimensionnel.

0.1.4 Contributions

Dans cette thèse nous étudions les propriétés des modules de persistance
multidimensionelle dans le but d’obtenir une meilleure compréhension des
sommandes et décompositions de ces derniers.

Arbres enracinés. Dans le Chapitre 3, nous introduisons un foncteur
qui plonge la catégorie des représentations de carquois dont le graphe est un
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arbre enraciné dans la catégorie des modules de persistance indexé sur R2.

Cup-produit. Au Chapitre 3 nous enrichissons la structure de module de
persistance provenant de l’application du foncteur homologie à une filtra-
tion. En utilisant le cup-produit des anneaux d’homologie, nous définissons
un produit qui permet de construire non pas des modules de persistance
mais des algèbres de persistance. Le produit de deux vecteurs du module
M cöıncide point à point avec le cup-produit de H(Ft) où Ft est l’espace
topologique de la filtration à l’instant t ∈ Rn.

Persistance exacte 2 dimensionnelle point à point finie. Au Chapitre 4
nous généralisons l’approche de Crawley Beovey [26] à la multipersistance et
identifions une classe de modules de persistance indexée sur R2 qui possède
des descripteurs simples et analogues au théorème de décomposition (voir
Théorème 1.4.4) existant en persistance 1-dimensionnelle. Ces descripteurs
sont des collections de certains types de rectangles infinis: bandes verticales,
bandes horizontales, quadrants supérieurs droits et quadrants inférieurs gauches.
Les modules disposant d’une telle décomposition satisfont une certaine pro-
priété appelée exactitude, demandant pour chaque diagramme rectangulaire
traçable dans R2 :

M(sx,ty)

ht
(sx,ty) //Mt

Ms
h

(tx,sy)
s

//

v
(sx,ty)
s

OO

M(tx,sy)

vt
(tx,sy)

OO

(0.1)

que la séquence suivante soit exacte (i.e. Imφ = Kerψ):

Ms

φ=
(
h

(tx,sy)
s , v

(sx,ty)
s

)
//M(tx,sy) ⊕M(sx,ty)

ψ= vt
(tx,sy)

−ht
(sx,ty) //Mt.

0.1.5 Structure du document

Cette thèse est divisée en deux parties. Les deux premiers chapitres traitent
de la persistance 1-dimensionnelle, mentionnent les propriétés principales
et leur utilisation à travers un algorithme. Les deux derniers chapitres
développent le cas de la persistance multidimensionnelle, en se focalisant
essentiellement sur la dimension 2, et présentent quelques résultats dont on
peut espérer qu’ils amènerons un jour à de nouveaux outils et une vision
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plus claire de la persistance multidimensionnelle. Le détail des chapitres est
le suivant :

• Le Chapitre 1 définit l’homologie et la persistance 1-dimensionnelle.
Il présente les théorèmes fondamentaux et le concept de code-barres
(aussi connus sous le nom de diagrammes de persistance). Il termine
par une courte présentation d’un algorithme permettant le calcul de
la persistance d’une filtration.

• Le Chapter 2 suit étape par étape la démonstration de Crawley-Boevey
du théorème de décomposition en des modules de persistance 1-dimensionnelle
point à point de dimension finie. C’est le point de départ pour la
démonstration du Chapitre 4.

• Le Chapitre 3 traite de la persistance multidimensionnelle. La définition
de la persistance 1-dimensionnelle est généralisée. Nombre des théorèmes
principaux ne sont plus valides et nous donnons des exemples de la
complexité des sommandes indécomposables. Nous mentionnons quelques
nouveaux résultats, par exemple concernant les zigzags de persistance
(voir [9, 7]). Finalement, nous présentons deux contributions acessi-
bles: un foncteur de plongement des représentations de carquois sur
les arbres enracinés, et le cup-produit pour les modules de persistance.

• Le Chapitre 4 est essentiellement la démonstration de notre théorème
de décomposition pour les modules 2-dimensionnelles étant exact et
point à point de dimension finie. Nous terminons en mentionnant
quelques applications immédiates de ce résultat.
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0.2 Introduction in english

In a context where huge amounts of data are available, extracting meaningful
and non trivial informations is getting harder. We are looking for solutions
to problems of increasing difficulty, like classifying cancer types, detecting
diseases from light shadows on radiography or automatizing quality control
using image recognition to cite only a few. Often, data comes in the form
of a point cloud living in Rn. Since usually data contains redundancies, it
is common to assume that the points are actually located, up to noise, on a
manifold with lower dimension, say d. From this assumption various meth-
ods to reduce the dimension of the data have been studied. This includes
linear methods like principal component analysis, and non linear ones like
support vector machines using kernels. When the dimension gets reduced,
the initial information is simplified, the noise reduced or removed, and un-
derstanding the distribution of the data becomes easier. This is true under
the hypothesis that a method of reduction adapted to the nature of data
has been used.

In order to improve the tasks of classification, regression, or exploratory
analysis, the approach provided by topological data analysis is to look for
the presence of shapes in data set. By keeping only the information relative
to the shape, we apply a process which can be assimilated to dimensional-
ity reduction. This information of a topological nature is summarized by
descriptors of various kinds: numbers, vectors or even sets. In the context
of summarizing text documents, the descriptors correspond to the notion
of bag of words [45]. In the case of neural networks based on auto-encoder
[36] it is the compressed representations obtained in the bottleneck of the
network that play the role of a descriptor. In the area of topological data
analysis, an approach named mapper consists in building a graph which
summarizes information from the point cloud in a visual way: a covering of
R by intervals is selected along with an R valued function defined on data.
Then the nerve of the pre-image of the cover by this function is computed,
giving a graph. An easy way to define such a function is to remove a column
from the data set and use its values. For example if our data are diverse
measures taken in a chemical plant [33], and one column is the quality of
the product, then one can use this column.

Another approach which does not require a choice of an R covering is
provided by persistent homology. In the case of persistence homology, the
input can be a point cloud, and the output is a collection of intervals sum-
marizing the various topological features – connected components, loops,
holes, ... – of the underlying shape. These descriptors are computed using
homology.
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0.2.1 Homology

Properties of the shape of a manifold can be summarized through an invari-
ant called the homology groups. This invariant will be introduced formally
in Chapter 1 and we present here the underlying idea. Roughly speaking,
the n-th homology group encodes the number of n-dimensional holes us-
ing, up to continuous deformations and translation along the manifold, non
contractible4 n-spheres (or n-simplices). The 0-th homology group counts
the number of connected components. The 1-st homology group counts the
number of non contractible circles whereas the 2-nd homology group counts
the number of non contractible spheres.

To compute such groups, one can consider a topological space made of
simplices (points, line segment, triangles, tetrahedra, ...) glued together.
We then define an algebra made of formal sums of these simplices with
coefficients in some field5 k. We define a boundary operator ∂ which sends
a simplex to the alternated6 sum of its faces and then extend its definition
to the whole algebra by linearity. The homology groups are then obtained
by taking the quotient of the kernel – morally the closed loops – of ∂ modulo
the image of ∂ – morally the loops that are boundaries.

0.2.2 Persistent homology

We motivate and present persistent homology through a practical example.
Let P ⊂ Rd be a point cloud. We assume this set of points to be sampled
on a surface like the set depicted in Figure 2 where points were taken from
a curve rolling around a torus.

Part of the topological information from the torus T can be extracted
by computing its homology groups Hi(T), or for a simpler invariant we can
simply look at the rank of these groups βi(T), called the Betti numbers.
In this example we would like to recover, at least partially, the information
that P was sampled from a torus.

Computing Hi(P ) does not give much information, since H0(P ) gives
the number of points in the set and all the remaining Hi(P ), i ≥ 1, are zero.
One could replace P by the union of balls of some radius r centered on its
points. We name this set Fr =

⋃
p∈P B(p, r). The set Fr is now a volume and

we can compute its homology groups. For a good value of r, representing a

4Contractile means homotopy equivalent to a point.
5In the setting of persistent homology, we actually consider vector spaces. Homology

groups can be constructed using coefficient in the ring of integer Z. This can give more
information with the cost of a more complex object.

6The word alternated means that the sign in front of each simplex in the sum alternates
between 1 and −1.
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Figure 2: Points from a curve rolling on a torus

suitable geometric scale, we can expect to recover the homology groups of T.
Furthermore, for a smaller value of r we will only connect adjacent points
on the curve and recover the homology groups of a circle. This is telling us
that the point cloud was sampled along a closed curve.

Determining the interesting values of r is a difficult problem. Instead
of finding directly the ”good scales”, persistent homology takes all of them
together in a single object. The collection of volumes Fr will later be called
a filtration. Persistent homology computes all the homology groups of the
collection {Fr, r ≥ 0} and links them together. The invariant computed,
called the barcode, describes when a new topological feature appears and
how long it persists through the filtration.

0.2.3 Multidimensional persistence

As we will see in Chapter 3, persistence as described above cannot handle
well all the questions that naturally arise when we are looking for the topol-
ogy of data. Let dP be the distance to a point cloud P ⊆ Rd. Considering
the balls of radius r centered at the points of P is equivalent to looking
at the r-sublevel set of the R valued function dP , namely {x| dP (x) ≤ r}.
Thus, persistence does actually makes sense with any R valued function. A
natural generalization of persistence is to consider sublevel sets of functions
with value in Rn instead of R. It is called multipersistence. This means
that the index of homology groups is not the radius of a ball in R anymore,
but an element of Rn. Topological features can now evolve along each one
of the n different axes, and should be linked to each other by a relation of
commutativity. This new construction dramatically increases the complex-
ity of the persistence modules, breaking many of the theorems available in
the one-dimensional persistence theory. Not only the theorem stating the
existence of descriptors fails to be extended, but the number of candidates
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for what we would call a descriptor increases so much in complexity that
using them directly seams pointless. In Chapter 3 we gives examples of
complex summands arising in dimension 2 taken from the existing litera-
ture. We illustrate by an example the phenomenon of monodromy arising
in dimension 3, which means that one can build circular quivers embedded
in a 3-dimensional persistence module.

0.2.4 Contributions

In this thesis we investigate the properties of multidimensional persistence
modules in order to obtain a better understanding of the summands and
decompositions of such modules.

Rooted trees. In Chapter 3, we introduce a functor that embeds the
representations category of any quiver whose graph is a rooted tree into the
category of R2-indexed persistence modules.

Cup product. In Chapter 3 we also enrich the structure of persistence
module arising from the homology of a filtration. Using the cup product
from homology rings, we describe a product that allows us to build not only
persistence modules but persistence algebras. The product of two vectors of
the module M coincides pointwise with the cup product of H(Ft) where Ft
is the topological space of a filtration at location t ∈ Rn.

Exact pointwise finite dimensional 2d-persistence. In Chapter 4 we
generalize the approach of Crawley Beovey [26] to multipersistence and iden-
tify a class of persistence modules indexed on R2 which have simple de-
scriptor and an analog of the decomposition theorem 1.4.4 available in one
dimensional persistence. This descriptor is a collection of certain kinds of
infinite rectangles: horizontal bands, vertical bands, upper-right quadrants,
and lower-left quadrants. The modules that have this decomposition sat-
isfy a certain exactness condition, stating that for every rectangle diagram
drawn in R2:

M(sx,ty)

ht
(sx,ty) //Mt

Ms
h

(tx,sy)
s

//

v
(sx,ty)
s

OO

M(tx,sy)

vt
(tx,sy)

OO

(0.2)
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the following sequence is exact (i.e. Imφ = Kerψ):

Ms

φ=
(
h

(tx,sy)
s , v

(sx,ty)
s

)
//M(tx,sy) ⊕M(sx,ty)

ψ= vt
(tx,sy)

−ht
(sx,ty) //Mt.

0.2.5 Structure of the document

This thesis can be split into two parts. The first two chapters deal with
one-dimensional persistence, mentioning the main properties and their use
through an algorithm. The last two chapters develop the case of multidimen-
sional persistence, focusing mostly on dimension 2, and then present some
new results that we expect will lead to new tools and a clearer understanding
of multidimensional persistence. The details of the chapter follow:

• Chapter 1 defines homology and one-dimensional persistence. It presents
the main theorems and the concept of barcodes (also known as per-
sistence diagrams). It ends with a short explanation of an algorithm
allowing to compute the persistence of a filtration.

• Chapter 2 is a step-by-step account of Crawley-Boevey’s proof of the
decomposition of one-dimensional pointwise finite-dimensional persis-
tence modules. This is the starting point of the proof from Chapter 4.

• Chapter 3 focuses on multidimensional persistence. The definition of
one-dimensional persistence is generalized. Many of the main theo-
rems from dimension one are now invalid and we give examples of the
complexity of summands. We mention some known results, for ex-
ample regarding zigzag-persistence (see [9, 7]). Finally, we give two
accessible contributions: the embedding functor for representation of
rooted trees and the cup product for persistence modules.

• Chapter 4 is for the most part the proof of our decomposition theorem
for 2-dimensional modules that are both pointwise finite-dimensional
and exact. We finish by mentioning some of the immediate applica-
tions of this result.
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Chapter 1

1D Persistent Homology

In Chapter 4 we generalise the decomposition theorem 1.4.4, proven by
Crawley-Boevey[26] whose proof is detailed in Chapter 2. In order to ex-
press why this theorem is so important in persistence theory, and to under-
stand the applications of its generalization, we first have to introduce the
objects of the theory. We start by introducing our main objects: persistence
modules. We enunciate some of their properties and present an invariant
of persistence modules called the barcode which summarizes the topological
features contained in a persistence module. Thanks to the decomposition
theorem 1.4.4 this invariant is complete.

We endow the space of persistence modules with a structure of pseudo
metric space through the definition of the interleaving distance. Small per-
turbations in this distance can be induced by small perturbations on the
objects – points clouds, and functions – from which persistence modules
are computed. In parallel, we define the bottleneck distance on the space
of barcode, which can be seen as an intuitive and naive way to compare
two barcodes. Persistence modules and barcode having turned into two
pseudo-metric spaces, we can link them between each other. We then recall
the isometry theorem which states that this two spaces are indeed isometric.
This result has a deep meaning. It states that small perturbations on persis-
tence modules through the interleaving distance – induced by perturbations
on the objects which gave rise to this persistence modules – are indeed the
exact same thing as small perturbations on barcode through the bottleneck
distance. It is the main justification of why barcode are in practice well-
behaved to summarize topological information.

13
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1.1 Homology and Cohomology

Throughout the exposition, the field of coefficients is fixed and denoted by
k. For computational purposes, it is often taken to be a finite field and most
of the time for applications k = Z2.

We will recall the definition of singular homology and cohomology. A
reader unfamiliar with homology can find a valuable introduction to sim-
plicial and singular homology, and even more, in Algebraic Topology from
Allen Hatcher [34].

Let X be a topological space, and G an Abelian group. Denote by ∆n

the standard n simplex {x ∈ Rn+1|x0 + · · ·+ xn = 1, xi ≥ 0, i = 0, . . . , n}.
Let σ be a n-singular simplex. We can designate σ by its ordered vertices

[v1, . . . , vn] = [σ(e1), . . . , σ(en)] where the ei are vertices of ∆n. The notation
[v0, . . . , v̂i, . . . , vn] is the restriction of σ to the face of ∆n whose vertices are
all but vi. The boundary operator ∂n : Cn(X) → Cn−1(X) on n-simplices
is defined by

∂n(σ) =
∑
i

(−1)i[v0, . . . , v̂i, . . . , vn].

The sign in the sum is alternating on the faces of ∆n, to take the orientation
into account. For example, the boundary of a simplex [v0, v1] will be ∂2(σ) =
[v1] − [v0]. Two singular simplex are identified up to a minus sign if they
are the same after applying a permutation of two vertices on the simplex
they are defined. For example, [v0, v1] = −[v1, v0]. The boundary operator
respects ∂n ◦ ∂n+1 = 0 and it allows us to define the degree n singular
homology group Hn = Ker ∂n/ Im ∂n+1. The homology group as defined
above is a vector space.

Homology is a functor Hn from the category of topological spaces to
the category of k-vector spaces, which associates to a topological space X
the graded k-module H∗(X) =

⊕
iHi(X). Each element α ∈ Hi(X) has

homology degree i. Similarly, we can build the dual construction: singular
cohomology. The group Cn(X; k) of singular n-cochains with coefficients in
k is Hom(Cn(X),k) the dual of the singular chain group. This collection
forms a chain complex thanks to the operator δ defined by a collection of
map on each chain complex δn : Cn(X; k)→ Cn+1(X; k) given by

δnϕ(σ) = ϕ(∂nσ) =
∑
i

(−1)iϕ([v0, . . . , v̂i, . . . , vn+1]),

for σ = [v0, . . . , vn=1] a n + 1-singular simplex. The homology of this com-
plex is called the singular cohomology, and the n-th cohomology group is
Hn(X; k) = (Ker δn/ Im δn−1). The cohomology Hn is also a functor.
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1.2 A topological construction

We are interested in algebraic objects called persistence modules, which en-
code the evolution of topological features along a notion of time. The values
the time can take is called the index set, and the topological features are
encoded by vector spaces.

We recall that a category C is a collection Ob(C) of objects and a col-
lection of arrows (also called morphism or maps) Hom(C) and a low of
composition of morphisms, following the axioms described bellow. Each
morphism has a source object a ∈ Ob(C) and a target object b ∈ Ob(C).
We write Hom(a, b) for the collection of arrows with source a and target b
and f : a → b for a such morphism. For every three objects a, b, c ∈ Ob(C)
we have a binary operation Hom(a, b)×Hom(b, c)→ Hom(a, c) where the
composition of f : a→ b and g : b→ c is written g ◦ a. The morphisms and
composition low should respect the two folowing axioms :

• (identity) for every object x ∈ Ob(C) there is a morphism idx : x →
x ∈ Hom(x, x) called the identity morphism for x. We require idx
to be a neutral element for the composition law. That is, for any
f : a→ x and g : x→ b, we ask idx ◦ f = f and g ◦ idx = g.

• (associativity) we require the composition law to be associative, that
is for every f : a → b, g : b → c and h : c → d we should have
h ◦ (g ◦ f) = (h ◦ g) ◦ f .

From this definition, there is exactly one identity morphism by object.

Let C and D be two categories. A functor F form C to D is a mapping
that

• associate to each object x in C and object F (x) in D.

• associate to each morphism f : a→ b in C a morphism F (f) : F (x)→
F (b) in D such that

– F (idx) = idF (x) for every object x ∈ C.
– F (g ◦ f) = F (g) ◦ F (f) for every f : a→ b and g : b→ c in C.

For more detail on category theory, the Stack Project [46] is a good
reference.

Definition 1.2.1. Let (S,≤) be a totally ordered set. The set S can be
either finite or infinite, and will be referred as the index set. A 1-dimensional
S-persistence module M , or simply a persistence module, is a functor from
the category (S,≤) to the category of vector spaces Vect. The set S is called
the index set of M . For points s, t ∈ S, the morphisms M t

s = M(s ≤ t)
between the two vector spaces Ms and Mt are called structural morphisms.
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If we state it without using the language of category, a persistence mod-
ule M on S is a collection of vector spaces indexed by elements of S con-
nected with linear applications M t

s for every s, t ∈ S, s ≤ t. In our settings,
asking M to be a functor is asking for the composition of these morphisms,
that is for any s, r, t ∈ S such that s ≤ t ≤ r, we have M r

t ◦M t
s = M r

s .

The index sets considered most of the times are N,Z or R. In practical
applications computer data are finite so the index set will be an interval of
N written J0, NK for N a sufficiently large integer.

One of the most common way of constructing a persistence module is
from a filtration.

Definition 1.2.2. Let (S,≤) be a totally ordered set. A 1-dimensional
S-filtration F , or simply a filtration, is a collection of topological spaces
Fs, s ∈ S such that ∀s, t ∈ S, s ≤ t⇒ Fs ⊆ Ft.

Given a filtration F , one can obtain a persistence module H∗(F) by
applying the homology functor on the family. We then obtain a family of
vector spaces ⊕iHi(Fs), s ∈ S. These spaces are connected by the linear
application ⊕iHi(Fs ⊆ Ft) since the homology functor sends continuous
map (and therefore inclusions) to linear applications.

⊆ ⊆

P0 P1 P2

Figure 1.1: Filtration constructed from a point cloud

Given a point cloud P ⊂ Rm a filtration can be built by taking sublevel
sets of the distance function to the point set dP : Rm → R+ (see Figure 1.1
for a visual example) where Pr = d−1

P ((−∞, r]).
But there is no reason to restrict ourselves to distance functions to a set.

One can take any arbitrary map f : X → R and look at the collection of
sublevelsets Lr = f−1((−∞, r]). They define a filtration Lf and applying
the homology functor give us a persistence module H∗(Lf ).

1.3 Module category

We recal that given two functors F and G from C to D, a natural transfor-
mation η from F to G is a family of morphism that satisfies:
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• The natural transformation associate to every object x ∈ Ob(C) a
morphism ηx : F (x)→ G(x) between objects of D.

• For every morphism f : a→ b in C we have ηb ◦ F (f) = G(f) ◦ ηa.
See the Stack Project [46] for more details.

Since two modules M and N are defined as functors, a morphism ϕ :
M → N is a natural transformation. In simple words ϕ is a collection of
morphisms ϕs : Ms → Ns, s ∈ S such that, ∀s, t ∈ S, s ≤ t the diagram

Ns
Nt
s // Nt

Ms
Mt
s //

ϕs

OO

Mt

ϕt

OO

commutes. We say that ϕ is an isomorphism if each ϕs, s ∈ S is an iso-
morphism. We denote by Hom(M,N) the collection of morphisms from M
to N and by End(M) = Hom(M,M) the collection of endomorphisms. A
morphism ϕ of modules is said injective morphism if each ϕs, s ∈ S is an
injection. It is said surjective if each ϕs is a surjection.

A submodule H of a persistence module M indexed over S is a collection
of subspaces Hs ⊆ Ms. For s ≤ t, the morphisms Ht

s are the restriction of
M t
s to the space Hs with value in Ht. Let ϕ : M → N be a morphism. One

can take for each s ∈ S the image Imϕs ⊆ Ns. Since N t
s ◦ ϕs = ϕt ◦M t

s

for s ≤ t ∈ S, N t
s(Imϕs) ⊆ Imϕt and we get a submodule Imϕ of the

persistence module N named the image of ϕ. Similarly, by taking point-wise
kernels, we can define Kerϕ. If we are given two modules M and N over
S, we can define their direct sum M ⊕N with spaces (M ⊕N)s = Ms ⊕Ns

and morphisms (M ⊕N)ts = M t
s ⊕N t

s for s ≤ t.
Finally, we have a notion of quotient module. Let H be a submodule of

M . We define M/H by taking as spaces the pointwise quotient (M/H)s =
Ms/Hs. It remains to define the morphisms between these spaces. We recall
the universal property of quotient for vector spaces. Let G,H two vector
spaces, N a subspace of G, π : G → G/N the projection and f : G → H a
linear application with N ⊆ ker f . There exists a unique linear application
f : G/N → H such that f = f ◦ π. Let s ≤ t be two elements of S and πt :
Mt → Mt/Ht be the projection of Mt on the quotient space Mt/Ht. Since
H is a persistence module, Ker(πt ◦M t

s) ⊇ Hs and by universal property of
quotient we obtain a linear application (M/H)ts : Ms/Hs → Mt/Ht. This
allows to define co-kernels. The category of persistence modules is indeed
Abelian.

We also have a notion of duality . Given a persistence module M , one
can construct its dual M∗ by taking dual vector spaces M∗t = (Mt)

∗ of linear
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forms and taking transposed linear maps (M∗)st (φ) = φ ◦M t
s. We obtain a

module indexed on Sop, where all the arrows was reversed. If S is R or Z,
there is a re-indexing, namely x 7→ −x, that gives us a dual module with
the same index set as 1M .

Remark 1.3.1. Homology and cohomology theory are dual in the sense
that under some assumption on the topological spaces – if all the topological
spaces in the filtration are closed oriented manifold one can apply Poincaré
duality – the dual of the persistence module obtained with homology is
isomorphic to the persistence module obtained from the same filtration using
cohomology. See [27].

Before going further, one can ask where does the name of persistence
”modules” come from. The persistence modules are indeed graded modules
over a ring, which depend on the index set.

We recall the definition of a group ring. Let G be a group and R a ring.
The group ring R[G] of G over R is essencially a R module made of the
collection of finite linear combination of elements of G with coefficients in
R. Sums and product are defined by linearity and distributivity. Formaly,
let R[G] be the set of mappings f : G → R of finite support. The scalar
product αf of a scalar α ∈ R and a mapping f ∈ R[G] is defined as the
mapping αf : x 7→ αf(x) and the group sum of two mappings f and g is
defined as the mapping f + g : x 7→ f(x) + g(x). The product of two vectors
f and g is given by

x 7→
∑
uv=x

f(u)g(v)

which makes sense because of the finite support hypothesis. Since G can be
embedded into R[G] by associating to g ∈ G the vector x 7→ 1g=x, a vector
of R[G] can be written as a sum

∑
αgg. When R is a field, R[G] is an

algebra over R and is also called the group algebra of G over R. The same
construction can be done with G a semi group. Let S be an sub(semi)group
of R. We denote by k[S] the S-graded (semi)group algebra over k of the
additive (semi)group S. In the case of S = N we get the polynomial ring k[x].
If S = Z we obtain the ring of Laurent polynomials k[x, x−1]. A persistence
module M over S can be endowed with a structure of k[S] graded module
by taking the direct sum of all vector spaces

M =
⊕
s∈S

Ms

and defining the action of xt, t ∈ S on m =
∑
ms,ms ∈ Ms by xt.m =∑

M s+t
s (ms). The grading is with values in S and ms ∈Ms is said to be of

degree s.
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1.4 Barcodes

From now on, we will consider modules whose index set is a subset of R.
Most of the times, S is either N,Z,R+ or R.

When it comes to obtain a deeper understanding of a particular fam-
ily of algebraic objects, a common approach is to find a decomposition of
these objects, and list the smallest summands that can appear. A histori-
cal example is the unscrewing of groups known as the classification of finite
groups. In the case of one dimensional persistence things go very well since
under reasonable hypotheses every module can be written as a direct sum
of small modules called indecomposables, the indecomposables are easy to
describe and unlike group theory there is a unique way, up to isomorphisms,
to reconstruct the original module from its summands.

The elementary blocks used to build one dimensional persistence are the
interval modules.

Definition 1.4.1. Let I be an interval of S. An interval module is a per-
sistence module kI whose spaces are

(kI)s =

{
k if s ∈ I,
0 if s 6∈ I,

and for s ≤ t in S, the morphisms are given by

(kI)
t
s =

{
idk if s, t ∈ I,
0 otherwise.

A persistence module is said to be indecomposable if it cannot be written
as a direct sum of two non-trivial persistence modules. As described in [22]
from Chazal et al. the endormorphism ring of an interval modules End(kI)
is isomorphic to k which implies that interval modules are indecomposable.

Theorem 1.4.2. Let I be an interval of S. The interval module kI is
indecomposable.

Proof. The endormorphism ring of an interval module is indeed isomorphic
to the field (End(kI) ' k) since once a morphism ϕs : (kI)s → (kI)s
between two modules is fixed for a s ∈ S, the commutativity fix the values
of the other morphisms ϕt, t ∈ I. By reductio ad absurdum we suppose
that kI is decomposable. Let π1 be the endormorphism of a projection on
one of the summand of this decomposition. Then π1 is an element of the
endormorphsm ring. Since π1 ◦π1 = π1 and the endomorphism ring is afield,
π1 should be invertible. This is only possible if π1 is the identity, which gives
a contradiction. Therefore kI is indecomposable.
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Furthermore if a decomposition in interval modules exists it is unique
up to reordering.

Theorem 1.4.3 (Krull–Schmidt–Azumaya). Suppose we have an isomor-
phism between the two decompositions into interval modules⊕

k∈K
kIk '

⊕
l∈L

kJl .

Then, there exists a bijection σ : K → L such that ∀k ∈ K, Iσ(k) = Ik.

Proof. The ring of endomorphism of a summand is End(kI) ' k which is a
field, hence a local ring. One can apply Azumaya’s Lemma [2] which give us
a pairing σ of summands from each decomposition, each paired summands
being isomorphic modules. An isomorphism II ' IJ imply that the index
on which II and IJ are non zero should be equal, so I = J and this give us
the expected result.

For finitely indexed families, Gabriel’s theorem (see 3.1.21) ensures the
existence of a decomposition into interval summands. If the dimensions
of vector spaces are finite, one can actually construct a decomposition by
induction. In the case the index set S is infinite, we say that a S-persistence
module M is pointwise finite dimensional(p.f.d.) if, ∀s ∈ S, Ms is finite
dimensional. A result from Cary Webb [47] on modules over the polynomial
ring k[x] imply, as shown in [22], that under the p.f.d. hypothesis the
decomposition into intervals modules still holds when S ' Z. A more general
theorem, from which the previous result can be regarded as a corolary, was
proven by Crawley-Boevey [26]. We state it for p.f.d. modules, although the
original result holds for a wider collection of modules: the ones respecting
the descending chain condition (see chapter 2). See Figure 1.4.

Theorem 1.4.4 (Crawley Boevey). Let M be a persistence module indexed
over S.

Suppose S ⊆ R and M p.f.d. Then M admits a decomposition in interval
modules:

M =
⊕
k∈K

IIk .

This direct sum is locally finite: for t ∈ S the number of summands IIk with
(IIk)t non zero is finite.

The collection of intervals appearing in such a decomposition is unique
and describes completely the persistence module. It is a signature of the
object that gave rise to the persistence module.

Definition 1.4.5. Let M be an interval decomposable persistence module.
We denote by B(M) the multiset of intervals – the collection of intervals
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Index set Decomposable into intervals

Finite Yes
N Yes
Z No
Z and p.f.d. Yes
R No
R and p.f.d. Yes

Figure 1.2: Quick summary of the cases where the decomposition Theorem
holds.

counted with multiplicity – appearing in the decomposition of M . We call
it the barcode of M .

In the case the module M comes for a sublevel set filtration of f : X → R,
we will denote the barcode by B(f).

1.5 Bottleneck distance

It is natural to ask whether one can compare two barcodes. This is done
using the bottleneck pseudo metric. We define this distance in a relatively
naive way, and state first stability result linking functions and the barcode
of their sublevelset filtrations.

We start with the notion of erosion. Let I be an interval. Its ε-eroded
is the interval I−ε = {x | [x − ε, x + ε] ⊆ I}. We say that an interval I is
ε-significant if its ε-erosion is non-empty, and ε-trivial otherwise. We now
define the notion of matching between two barcodes (see [9] and [22]).

Definition 1.5.1. Let B1 and B2 be two barcodes. An ε-matching between
B1 and B2 is a partial bijection:

σ : B1 ⊇ A→ B ⊆ B2

where we name CoImσ = A the coimage and Imσ = B the image, and
require the constraints:

• every interval not in the coimage is ε-trivial: ∀I ∈ B1−CoImσ, I−ε = ∅,
• every interval not in the image is ε-trivial: ∀I ∈ B2 − Imσ, I−ε = ∅,
• matched intervals are ε-close: ∀I ∈ CoImσ, I−ε ⊆ σ(I), σ(I)−ε ⊆ I.

With this definition, an ε-matching is simply a bijection between all
the ε-significant and maybe some ε-trivial intervals of each barcode. A 0-
matching is a bijection and a barcode is always 0-matched to itself. The
composition of an ε-matching with a η-matching gives a (ε + η)-matching.
Hence, the barcodes form a category Mch where arrows are the matchings.
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This notion of matchings allows us to define the distance between two
barcodes as the infinimum on the ε of all existing ε-matchings.

We recall that a pseudometric on a set X is a non negative real valued
function d : X ×X → R≥0 which is symetric (d(x, y) = d(y, x)), is zero on
the diagonal (d(x, x) = 0) and respect the triangular inequality (d(x, y) +
d(y, z) ≥ d(x, z)).

Proposition 1.5.2. The bottleneck distance between two barcodes B1 and
B2 defined as db(B1,B2) = inf{ε | ∃ ε-matching σ : B1 → B2} is a pseudo-
metric.

As a pseudo metric, the bottleneck distance has all the good properties
of a metric but fail to differentiate some barcodes. This clear when it comes
to consider singletons: singletons are 0-significant intervals, but they are
ε-trivial for any ε > 0, and therefore do not need to be matched with any
other interval. Any barcode containing only singletons is then at distance 0
from the empty barcode.

Remark 1.5.3. It was shown in [6] that the space of barcodes with finitely
many ε-significant intervals, for every ε > 0, is complete and separable for
the bottleneck metric.

This metric can seems arbitrary. A result from [25] (see also [31]) states
that it is not. Small perturbation of the filtration induces small perturba-
tions on the diagrams. In order to state it more formally, we introduce the
notion of tame functions.

Definition 1.5.4 (Tame real valued functions). Let X be a topological
space, and f : X → R a real valued function. A homological regular value
a ∈ R of f is a value such that their exits a ε > 0 such that for all pairs
x < y or real in the interval [α − ε, α + ε], the maps Hk(f

−1((−∞, x]) →
Hk(f

−1((−∞, y]) induced by inclusion are isomorphisms for all k. A real
number a that is not a homological regular value of f is called a homological
critical value of f . A real valued function f is tame if it has finitely many
homological critical value and ∀a ∈ R, H∗(f−1((−∞, a])) is finite dimen-
sional.

It is pointed out in [25] that Morse functions on smooth compact man-
ifolds are tame. The distance function to a finite point cloud is tame, and
critical values correspond to a subset of times when the intersection of k balls
become non empty, for k ≥ 2. The following result state that if we perturb
a little a function with respect to the uniform norm1 ‖.‖∞, the barcode do
not move more with respect to the bottleneck distance.

A simplicial complex (see 1.8.1) L is a collection of simplices living in

1The uniform norm on real valued functions f : X → R is defined by ‖f‖∞ =
sup
x∈X
|f(x)|.
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some Rm such that every simplex in L have its faces belonging to L, and
the intersection of two simplices σ1 and σ2 of L is face of σ1 and σ2. We call
a triangulable topological space a topological space X such that there exists
a finite simplicial complex L and a homeomorphism Φ : L→ X.

Theorem 1.5.5 (Cohen-Steiner, Edelsbrunner, Harer). Let X be a triangu-
lable topological space and f, g : X → R two tame functions. The barcodes in-
duced by the sublevel set filtration of this functions satisfies db(B(f),B(g)) ≤
‖f − g‖∞.

Through this chapter we will see stronger versions of this result. But we
can already point out that stability justify the use of persistence barcode as
signature for dataset in real life applications.

1.6 Persistence diagrams

Barcode was introduced by Zomorodian and Carlsson [49]. Later, Edels-
brunner, Cohen-Steiner and Harer introduced the concept of persistence
diagrams in [25]. Persistence barcodes and persistence diagrams are indeed
the same object observed from a different angle of view.

A decorated real x◦ ∈ R± is an element of the extended real line x ∈
R∪−∞,+∞ with a decoration ◦ ∈ {+,−}. Decorated reals are ordered from
the order on reals where we add that ∀x ∈ R, x− < x+. Pair of decorated
reals can be used to represent different types of intervals as follows:

• [a, b] is written (a−, b+),

• (a, b] is written (a+, b+),

• [a, b) is written (a−, b−),

• (a, b) is written (a+, b−).

To represent half lines and R we allow ourselves to use −∞− and +∞+ as
values for a or b.

Definition 1.6.1. Let M be a persistence module. Its persistence diagram
is the multiset D(M) of points (x◦, y◦) ∈ R±×R± such that (x◦, y◦) ∈ D(M)
if and only if I = (x◦, y◦) ∈ B(M).

The closer a point p ∈ D(M) is to the diagonal ∆ = {(x−, x+) |x ∈ R},
the less significant the interval it represents is. If the module M comes from
a sublevelset filtration and since a small perturbation of the function could
remove the points around the diagonal we can think of them as a form of
topological noise. This is not a universal truth. When the module arise
from a different process, this points can be actually an interesting feature.
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Figure 1.3: An undecorated persistence diagram

Since the bottleneck distance does not differentiate between the different
types of intervals, it is common to forget the decoration. We then obtain an
undecorated persistence diagram which can be represented as a subset of2

R2
(see Figure 1.3).

Barcodes endowed with the bottleneck distance allows us to use persis-
tence as a tool for classification and dimension reduction. For other appli-
cations one requires often more structure than a metric space. This thesis
focuses on the generalization of this metric space to higher dimension, but
it is worth mentioning the complementary approaches that have been con-
sidered to use persistence in a broader class of applications.

• One approach in machine learning is to consider Hilbert spaces of
features, allowing access to a large number of existing tools for classi-
fication, dimension reduction, clustering, etc. Different methods have
been developped to send diagrams to Hilbert spaces ([1], [44], [19],
[28])

• After sending diagrams into a Hilbert space, a second approach is
to define kernels, allowing to compute scalar product between two
diagrams ([42], [18]).

• Various approaches have been considered to allow the use of statistic
and definition of mesures on diagrams, notably through landscapes
([10], [37]).

• Another approach is to look for a metric allowing a notion of barycen-
ter. For example by replacing the bottleneck distance by the Wasser-
stein distance, by analogy with optimal transport theory. Comparing
two persistence diagrams is in some sense equivalent to measuring the
amount of mass that should be transported from one diagram to an-
other allowing to put some on the diagonal (see [29]).

2We define R as R ∪ {−∞,+∞}.
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1.7 Interleaving and stability

For simplicity, in this part of the chapter we will assume that the index set
S is either R or R+ unless stated otherwise. The definitions actually make
sense for subsets of R stable by addition, even discrete, but we would have
to be more careful while stating results while decreasing readability.

1.7.1 Interleavings

In order to obtain a better understanding of the stability properties of per-
sistence and get rid of the triangulable space hypothesis in Theorem 1.5.5, in
2009 Chazal et al. introduced the interleaving distance in [21]. A good de-
tailed introduction to interleavings, related properties and the interpolation
lemma would be [22] by Chazal et al.

In Section 1.3 we explained how one can classify persistence modules
by identifying their isomorphism classes. This notion of isomorphism is too
strong when we have to deal with modules containing noise. We would like to
be able to ignore small topological features, namely small intervals modules,
appearing in a decomposition of a persistence module. This motivates the
definition of the relation of interleaving. First, we define a shifted module
and a shifted morphism.

Definition 1.7.1. Let N be a persistence module and δ > 0. The δ-shift
of M , written M [δ], is the persistence module with spaces M [δ]t = Mt+δ

and morphisms M [δ]ts = M t+δ
s+δ . A morphism ϕ of degree δ between two

persistence modules M and N is a morphisms ϕ : M → N [δ]. The δ-
shift of a persistence modules morphism ψ : M → N is the morphism
ψ[δ] : M [δ]→ N [δ] given by ψ[δ]t = ψt+δ.

The δ-shifting is indeed a functorial operation. Given two persistence
modules M and N , we write Homδ(M,N) for the collection of morphisms
from M to N of degree δ, and Endδ(M) for the collection of endomorphisms.
Composition of morphisms gives a map

Homδ2(N,R)×Homδ1(M,N)→ Homδ1+δ2(M,R). (1.1)

Let M be a persistence module. A particular degree δ endomorphism
is the shift map 1δM defined by 1δM : M → M [δ], (1δM )t = M t+δ

t . Given a
persistence modules morphism ϕ : M → N and δ > 0, by definition the shift
map and the morphism ϕ commute: ϕ ◦ 1δM = 1δN ◦ ϕ. Furthermore, the
collection {1δM , δ ∈ R≥0} of shift maps on M endowed with the composition
is a monoid.
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Definition 1.7.2 (Interleaving). Let M and N be two persistence modules
indexed over S. A δ-interleaving is a pair of degree δ morphisms ϕ : M →
N [δ] and ψ : N →M [δ] such that ψ ◦ ϕ = 12δ

M and ϕ ◦ ψ = 12δ
N .

Given the pair (ϕ,ψ) as defined above, we are actually asking the com-
mutativity of the following diagram.

M
1δM //
ϕ

!!

M [δ]
1δ
M [δ] //
ϕ[δ]

##

M [2δ]

N
1δN

//ψ

==

N [δ]
1δ
N [δ]

//ψ[δ]

;;

N [2δ]

Remark 1.7.3. The notion of interleaving comes naturally from the sub-
levelset persistence of functions. Let X be a topological space and f, g :
X → R two real valued functions. Suppose ‖f −g‖∞ < δ. We can construct
the two sublevelset persistence module H∗(L

f ) and H∗(L
g). The inequality

on their infinity distance induces on their filtrations the relations

Lft ⊆ Lgt+δ
Lgt ⊆ Lft+δ

for every t ∈ S. Applying the homology functor we get two degree δ mor-
phisms

ϕ : H∗(L
f )→ H∗(L

g)[δ]

ψ : H∗(L
g)→ H∗(L

f )[δ]

which by functoriality of homology forms an interleaving pair (ϕ,ψ).

1.7.2 Stability

The composability of interleavings allows to define the interleaving pseudo-
distance introduced in [21].

Proposition 1.7.4. Let M and N be two persistence modules. The in-
terleaving distance between M and N is the pseudo distance dI(M,N) =
inf{δ ∈ R≥0 |M and N are δ-interleaved}.

The triangle inequality is an immediate consequence of composition. In-
deed, a δ1 interleaving composed with a δ2 interleaving gives a δ1 + δ2 inter-
leaving by 1.1.

It is only a pseudo distance, since modules whose summands support is
only a singleton are δ-interleaved with the zero module for all δ > 0. In
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order to keep only the summands that are not interleaved with zero we can
define the notion of radical.

Let M be a persistence module. We define its ε-smoothing Sε(M) by
Sε(M)t = ImM t

t−ε ⊆Mt.

Definition 1.7.5 (Radical). Let M be a persistence module. Its radical is
the submodule

radM =
⋃
ε>0

Sε(M)

where the union is taken pointwise since Sε(M)t ⊆Mt,∀t ∈ S.

By construction dI(M, radM) = 0 since the radical of M is ε-interleaved
with M for every ε > 0. This fact is particularly useful when we study
q-tame persistence modules.

Definition 1.7.6 (q-tame). A persistence module M indexed over S is
said to be q-tame if for every s, t ∈ S we have rankM t

s < ∞. A function
f : X → R is said to be q-tame if the module H∗(L

f ) is q-tame.

The radical of a q-tame module is indeed interval decomposable, as
proved in [23], although not always pointwise finite dimensional. It means
that even if a q-tame persistence modules is not decomposable, it can be
approximated by an interval decomposable module.

Example 1.7.7 (Crawley-Boevey). An example from Crawley-Boevey of a
q-tame module which is not interval decomposable was presented in Chap-
ter 4 of [22]. The module

M =
∏
n∈N+

I[0,
1
n

]

is uncountable dimensional at 0 (cardinality of sequences) but countable di-
mensional everywhere else. If it was interval dimensional, its decomposition
should include infinitely many copies of I[0,0] by cardinality of M0. This
gives a contradiction with the fact that any non-zero vector in M0 persists
for some positive time t to a space Mt.

It was noticed in [22] that the space of persistence modules endowed with
the interleaving distance is actually path connected.

Lemma 1.7.8 (Interpolation). Let M and N two δ-interleaved persistence
modules. There exists a 1-parameter family of persistence modules Γx, x ∈
[0, δ] with Γ0 = M and Γδ = N such that the modules Γx and Γy are |x−y|-
interleaved for every x, y ∈ [0, δ].

This result is equivalent to the existence of an extension of a certain
module indexed over R2, a construction that will be introduced in the next
chapter. This module is obtained from the embedding of two one dimen-
sional modules along two parallel diagonal lines. An explicit construction
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is given in [22], but it can be obtained as an immediate corollary of the
existence of Kan extensions. We show a proof later at Remark 3.1.3 in
Chapter 3.

The main motivation behind the introduction of interleaving distance is
the algebraic stability theorem.

Theorem 1.7.9 (Algebraic Stability). Let M and N be two q-tame persis-
tence modules. Then db(B(M),B(N)) ≤ dI(M,N).

This result was proven by Chazal et al. in [22] using rectangle measures.
It was later proved by Ulrich Bauer and Michael Lesnick in [4] with a simpler
approach called induced matching. It shows that given any of the two func-
tions forming an interleaving, one can directly construct a matching. This
construction is non-functorial and the two functions forming an interleaving
can give rise to two different matchings.

The converse inequality is also true, and the proof is more accessible.
Given an ε-matching between the barcode of two decomposable modules,
one can define an ε-interleave for each pair of intervals from this matching.
Unmatched intervals being ε-interleaved with the zero module. The direct
sum of this interleaving give an ε-interleaving between both modules.

In the case of q-tame modules, barcodes are defined through smoothing
which allow to obtain a decomposition (for example, by considering its rad-
ical). A q-tame module is ε-interleaved with its radical for any ε > 0. Two
q-tame modules whose barcodes are η-matched are then (ε+ η)-interleaved
thanks to the composition of interleavings. Since it’s true for any ε > 0,
they are indeed at interleaving distance η.

Theorem 1.7.10 (Converse Stability). Let M and N be two q-tame persis-
tence modules. Then dI(M,N) ≤ db(B(M),B(N)).

This two results, stability and converse stability, together are called the
isometry theorem. The algebraic stability theorem allows us to generalize
Theorem 1.5.5 by removing the hypothesis on the space.

Let f, g : X → R be two real valued functions on a topological space
X. As mentioned in 1.7.3 at the end of the previous section, if the infinity
norm of the two functions is smaller than δ the two sublevelset persistence
modules H∗(L

f ) and H∗(L
g) are δ-interleaved. This induces the inequality

dI(H∗(L
f ), H∗(L

g)) ≤ ‖f − g‖∞. Now suppose that both f and g are q-
tame, one can apply the stability theorem. This is also the case for Morse
functions on a compact manifold, whose persistence modules are p.f.d. We
obtain a new expression of the stability theorem in term of infinity norm on
f and g:

db(B(f),B(g)) ≤ ‖f − g‖∞.
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1.8 Algorithm

The one dimensional persistent homology comes with various algorithms
([49], [35], [29], [41], [3]) which allow to compute the interval decomposition
of a module generated from a simplicial filtration. We start by introducing
simplicial homology which allows to rephrase the computation problem in
simpler terms.

1.8.1 Simplicial homology

A simplex is the convex hull of k+1 vertices3 living in some space Rm,m ≥ k.
A face is the convex hull of k of this vertices, and therefore included in the
simplex.

Definition 1.8.1. A simplicial complex K is a set of simplicies that satisfies

• every face of a simplex of K is in K,

• the intersection of two simplices σ1, σ2 ∈ K is in K

and existing as a subset of a space Rm for a m ≥ 1.

Simplicial complexes are topological spaces and one can compute its
singular homology. But the advantage of these spaces is that a more com-
binatorial way of computing homology arise. Although not obvious, this
definition gives the same homology groups (See [34]).

To compute the homology of a simplicial complex, one defines a boundary
operator on a simplex by taking an alternating sum of its faces. As in
the case of singular homology, one consider an oriented simplex [v0, . . . , vn]
defined by its ordered vertices. We say that two oriented simplices are
equal, up to a sign, if their order differs by a transposition. For example
[v0, v1, v2] = −[v1, v0, v2]. We then define a boundary operator

∂n([p0, . . . , pn]) =
∑

0≤i≤n
(−1)i[p0, . . . , p̂i, . . . , pn]

where p̂i means the term was removed. Quotient of kernels by images of
this collection of operators give us the homology of the complex.

1.8.2 Persistence

We now introduce a graded version of simplicial homology which will allow
to compute persistent homology at once.

3The k+ 1 points should be affinely independent. If the vertices are u0, . . . , uk, we are
asking for u1 − u0, . . . , uk − u0 to be linearly independent.
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Definition 1.8.2. A simplicial filtration K indexed over a finite set T =
J1, . . . ,mK ⊆ N is a collection of simplicial complex Kt, t ∈ T such that
t ≤ t′ ⇒ Kt ⊆ Kt′ and K0 = ∅. We ask our filtration to differ by only one
simplex at each time step. In equation ∀t ∈ T, Kt+1\Kt = {σt}.

A common construction of a filtration, arising from a point cloud, is the
Rips filtration. Let P be a subset of a metric space (M,d). The diameter
of a simplex σ = {p0, . . . , pn} is defined to be sup{d(x, y) |x, y ∈ σ}. For
s > 0, let Fs be the set of simplices with vertices in P which have diameter
at most s. The Rips filtration is the filtration defined by Fs, s ∈ R+.

We denote by Cn the k[x] module generated by taking as basis vectors
the n-simplices from a filtration. Thus, Cn is the space of finite formal sums∑

i αix
kiσi with αi ∈ k, ki ∈ N and σi a n-simplex of the filtration. We

get a structure of graded k[x] module by defining the persistence degree of
a simplex, deg(σ), to be the first index s for which σ appears in Fs. The
degree of an element αxkσ with α ∈ k is k + deg(σ).

For n ≥ 1 the boundary operator ∂n sends an oriented n-simplex to its
boundary:

∂n([p0, . . . , pn]) =
∑

0≤i≤n
(−1)ixdeg([p0,...,pn])−deg([p0,...,p̂i,...,pn])[p0, . . . , p̂i, . . . , pn]

where p̂i means the term was removed. We let ∂0 be the null morphism. One
can check that ∀n ≥ 1, ∂n−1 ◦ ∂n = 0. Notice also the power of x is always
positive since all the simplices composing the boundary have to appear in
the filtration before the whole simplex. This boundary operator encodes the
usual simplicial boundary operators on each Fs.

From [49], to compute the nth persistent homology of this filtration
it is sufficient to find a decomposition of the homology Ker ∂n/ Im ∂n+1.
There are two approaches. First, one could could compute the homology of
each space Fs and the morphism induced by inclusions Fs ⊆ Fs′ in order
to finally build the k[x] module associated to the persistence module (see
Section 1.3 for the k[x] structure associated to a persistence module). A
simpler approach is to directly compute the homology Ker ∂n/ Im ∂n+1.

An element of
⊕
Cn is said to be homogeneous if each of the elements

on its sum have the same persistence degree. We compute a decomposition
of the quotient of the cycles Zn−1 = Ker ∂n−1 by the boundaries Bn = Im ∂n
by induction on n.

Let Mn be the matrix associated to ∂n in the standard basis of the
domain formed of simplices sorted by persistence degree {ei} and a homoge-
neous basis {êj} of Zn−1 (containing the whole image since ∂n−1 ◦ ∂n = 0).
In the initial case M1, the matrice in standard basis is already expressed
in such form since ∂0 is null and any element of the codomain of ∂1 is a
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cycle. Let Mn design the Smith normal form4 of the matrix Mn which can
be obtained by Gaussian elimination on lines and columns. By definition
Mn is a diagonal matrix, and computing the quotient of the kernel by the
image is now trivial thanks to the following theorem.

Theorem 1.8.3 (Decomposition). Every graded module M over a graded
principal ideal domain ring R decomposes uniquely into the form5

(

n⊕
i=1

ΣαiR)⊕ (

m⊕
j=1

ΣγjR/djR)

where dj ∈ R are homogenous elements so that dj |dj+1, αi, γj ∈ Z, and Σα

denotes an α-shift upward in grading.

Zero columns of Mn gives rise to a free k[x] modules, whereas a degree
positive coefficient aii gives rise to the torsion module k[x]/(aii). The homol-
ogy module is therefore given by the Cartesian product k[x]q×k[x]/(ai1i1)×
· · · × k[x]/(aipip) where (aijij ) are the non zero coefficients of Mn and q is
the number of zero column.

Indeed, one can compute less than the Smith normal form. Let M̂n be
the column echelon6 form (Figure 1.4) of Mn using only exchange of columns
and the addition of an existing column multiplied by an integer, in order of
reversing persistence degree.

∗ 0 0
∗ 0 . . .

∗ 0
...

∗ 0
∗ 0 . . . 0


Figure 1.4: Column echelon form of a matrix. Stars are possibly non-zero
values and pivots are boxed.

Actually, we can read the coefficients of the Smith normal form directly
from the column echelon form. We say that a row or a column of a matrix
in its normal form is a pivot row (resp. column) if it contains a pivot
(Figure 1.4). For a column j with pivot on row i we can tell the basis element
êj associated contribute to a submodule xdeg êj .k[x]/(xi) in the direct sum

4Smith normal form is computable for a morphism of module over a PID ring. In our
case the coefficients live in the polynomial ring k[x] which is PID.

5The direct sum is the Cartesian product on which we canonically add a group struc-
ture.

6We recall that in linear algebra a matrix is said to be in column echelon form if all non
zero columns are on the left of all zero columns and the pivot (first non zero coefficient
from the top) is strictly above the pivot of all the column on the right. See Figure 1.4.
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decomposition. The two simplex ej and ei are said to be paired. Therefore,
we obtain a [deg êj , deg êj + i) persistence interval in our barcode. If the
column j is zero and is not paired to any other simplex, the contribution is
the free module xdeg êj .k[x] and the interval in the barcode is [deg êj ,+∞).
The pairing between simplices tells who creates and destroys topological
features. For example a simplex ej can create a loop and an other ei will
close it. A column associated to a simplex ej which is zero is called a positive
simplex. The simplex ei associated to a non zero column is called a negative
simplex.

The computation of the echelon form (see Algorithm 1.5) also give us
a basis of Zn. Indeed, the column operations conserve the homogeneous
of the basis since deg êj + degMn(i, j) = deg ei. See [49] for details. This
basis is given by the vectors associated to the 0 columns of M̂n. To continue
our induction we need to express ∂n+1 in the sorted standard basis of Cn
and the basis we computed for Zn. The column operations on Mn gives
row operations on Mn+1 since the codomain of ∂n+1 matches the domain of
Mn. Thanks to the relation between the operators all we have to do is to
represent ∂n+1 in the matrix Mn+1 in the standard basis of sorted simplices,
and delete the rows j of Mn+1 corresponding to pivot column j in Mn.

chain ComputeEchelonForm (M):
// Loop on each column of the matrix
for j = 1 to m do

while ∃j0 < j with low(j0) = low(j) do
add column j0 times −(Mj0,j)

−1 to column j
end while

end for

Figure 1.5: Computing echelon form on column. We write low(j) for the
lowest non zero coefficient in column j. See [41].

1.8.3 Implementation

The number of simplices appearing in the computation becomes quickly
large, and most of the current algorithms rely on the sparsity of the matrices
to address this limitation. They do not represent all the rows and columns
in memory. We present an elementary implementation taking advantage
of this sparsity from [29] and computing all the homology at once. For
simplification of the algorithm we consider the case where the field is k = Z2.

The idea is to consider a square matrix whose lines and colomns corre-
spond to each simplex of the filtration. The matrix contains only zeroes and
ones. If we write ∂[i, j] for the entry at the i-th line and j-th column, we
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have

∂[i, j] =

{
1 if σi is a face of σj
0 otherwise.

The ones appear in a column j correspond to the boundary7 σj of the simplex
σj . in ∂σj . Each column of the matrix is stored as a list and the collection
of column is stored in an array.

We use an array T containing a slot for each simplex appearing in the
Rips filtration. We order the simplex first by dimension, then by degree,
and we break the remaining ties arbitrarily (for example by lexicographical
order on the names of simplices). Each slot i is filled once a pivot is found
at line i. A slot contain two things. First the index j of the column of
this pivot. Second, the column corresponding of the image ∂dimσj (σ

j) after
Gaussian elimination. The second value may be used repeatedly during
Gaussian elimination. This encode a pairing of the simplices σi and σj .
The last thing is to look for remaining empty column which are not already
paired to gather the infinite intervals.

chain ComputePersistence (∂):
T ← empty array
for j = 1 to m do
L← ∂[j]
while L 6= null and T [i] with i = low(L) is not null do
L = L+ T [i]

end while
if L 6= null then
T [low(L)]← (j, L)

end if
end for
return T

Figure 1.6: Gaussian elimination for a column

7Here ∂σj is the application of ∂n to the simplex σj ∈ Cn.
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Chapter 2

Proof of Crawley-Boevey’s
decomposition theorem

In this chapter we follow step by step the proof of Theorem 1.4.4 from
Crawley-Boevey as presented in [26] and bring some intuition throughout
the proof. This proof can be summarized in 3 main steps. Let M be a
persistence module indexed on R.

• First, for an interval I ⊆ R, we define a way to count the multiplicity
multkI (M) of the summand kI in M . We get a functor CI : VectR →
Vect, M 7→ kmultkI (M).

• We then construct a submodule WI of M isomorphic to k
multkI (M)

I ,
for every interval I.

• Finally, we prove that the sum of this submodules is

– a direct sum,

– generate the whole module M .

2.1 Subspaces

Let M be a persistence module indexed on R. We say that M has the
descending chain condition on kernels and images if for all t, t1, t2, · · · ∈ R
with t ≤ t1 < t2 < . . . the chain

Mt ⊇ KerM t1
t ⊇ KerM t2

t ⊇ . . .

stabilizes and for all t, t1, t2, · · · ∈ R with t ≥ t1 > t2 > . . . the chain

Mt ⊇ ImM t
t1 ⊇ ImM t

t2 ⊇ . . .

35
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stabilizes. This condition is respected when the the module is point-wise
finite dimensional. We want to prove the following result.

Theorem 2.1.1. Let M be a persistence module indexed on R with the
descending chain condition on images and kernel. Then M has a decompo-
sition into interval modules.

We need a tool in order to look at the begining and end of an interval
submodule. A cut is a partition c of R into two (possibly empty) sets c−, c+

such that x < y for all x ∈ c− and y ∈ c+. A pair of cuts can be used
to describe a real interval. The first cut determines the beginning of the
interval, and the second one the end. All types of intervals (open, closed,
half open, ...) can be handled with this representation. Keeping this idea in
mind, we will talk of c− as the left end of the cut c, and c+ at its right end.
The reals in c+ ∩ c− will be designated as the middle of the cut c.

For each real interval, described by two cuts, we are going to retrieve
its multiplicity in the decomposition of a module We use cuts to select
specific subspaces of the module M which will allow later to build interval
submodules of M .

Let c be a cut and t ∈ c+. We define the subspaces Im−ct ⊆ Im+
ct ⊆Mt as

Im−ct =
⋃
s∈c−

ImM t
s, Im+

ct =
⋂

s∈c+, s≤t

ImM t
s.

Symmetrically, let c be a cut and t ∈ c−. We define the subspaces
Ker−ct ⊆ Ker+

ct ⊆Mt by

Ker−ct =
⋃

r∈c−, t≤r

KerM r
t , Ker+

ct =
⋂
r∈c+

KerM r
t .

By convention Im−ct = 0 when c− = ∅ and Ker+
ct = Mt when c+ = ∅.

Im−ct contain vectors which started to come alive on the left of the cut
and stay alive until time t. Im+

ct contain the vectors which are alive along
the right of the cut and stay alive until time t. If we would take the quotient
of Im+

ct by Im−ct we will have only the vectors that started to come to life
right at the beginning of the cut. This is the main idea behind the definition
of the pair (Im−ct, Im

+
ct).

Similarly, Ker+
ct contains all the vectors which are mapped to zero uni-

formly on the right of the cut, whereas Ker−ct contain only the vectors among
them which die on the left of the cut.
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In other words, the Im± control the left of the interval module we want to
recover from M , and the Ker± control the right end of this interval module.
They allow to make the difference between closed or open intervals. The
next lemma will allow us to manipulate the Im± and Ker± in a handy way.
Given one of these four spaces, one can find a structural morphism whose
kernel (or image) is actually equal to it.

Lemma 2.1.2 (Realization). Let c be a cut.

• If t ∈ c+, then ∃s ∈ c+ with s ≤ t such that Im+
ct = ImM t

s.

• If t ∈ c−, c+ 6= ∅, then ∃r ∈ c+ such that Ker+
ct = KerM r

t .

Proof. Suppose for all s ∈ c+, s ≤ t, Im+
ct 6= ImM t

s. Let s1 ∈ c+, s1 ≤ t.
Since Im+

ct 6= ImM t
s1 one can find s2 ∈ c+ such that ImM t

s2 is strictly
contained in ImM t

s1 . Applying this argument again to Im+
ct 6= ImM t

s2 we
obtain ImM t

s3 strictly contained in ImM t
s2 . By repeating this construction

we build a chain ImM t
s1 ⊃ ImM t

s2 ⊃ ImM t
s3 ⊃ . . . that does not stabilize.

Hence a contradiction. The second result is proved similarly.

Using this tool, one can prove that the spaces Im±ct and Ker±ct are not
entirely dependent on the point t. They are related with spaces defined
through the same cut but different location t′.

Lemma 2.1.3 (Transportation). Let c be a cut, and s ≤ t two reals.

a) If s, t ∈ c+, Im±ct = M t
s(Im

±
cs)

b) If s, t ∈ c−, Ker±cs = (M t
s)
−1(Ker±ct).

Proof. We haveM t
s(Im

+
cs) ⊆ ∩uM t

s(ImM t
u)) = Im+

ct. By realization (Lemma 2.1.2),
there exists r ∈ c+, r ≤ s such that Im+

cs = ImM s
r . We get

M t
s(Im

+
cs) = M t

s(ImM s
r ) = ImM t

r ⊇ Im+
ct .

The other cases are either immediate or similar.

2.2 Counting functor

Our next goal is to define an object that does not depend on the location
t ∈ R anymore, but only on cuts. Let I be an interval. It is uniquely
determined by two cuts l and u such that l+ ∩ u− = I (see Figure 2.2).
They are defined by

l− = {t| ∀s ∈ I, t < s}, l+ = {t| ∃s ∈ I, s ≤ t},
u− = {t| ∃s ∈ I, t ≤ s}, u+ = {t| ∀s ∈ I, s < t}.
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l u

I

Figure 2.1: An interval determined by its two cuts.

Given an interval I and t ∈ I we define the spaces V −It ⊆ V +
It ⊆Mt by

V −It = (Im−lt ∩Ker+
ut) + (Im+

lt ∩Ker−ut),

V +
It = Im+

lt ∩Ker+
ut .

The space V +
It keeps track of all vector that stay alive in the interval I

when pushed by structural morphisms, whereas V −It contains the subcollec-
tion of the vectors which started to live and will die outside of the interval
I. See Figure 2.2 for some examples.

I

t

J

K

L

V −
I,t

V +
I,t

Figure 2.2: Examples of support of interval submodules whose vectors at
index t will be contain in V +

I,t and V −I,t.

The following lemma shows that the definition of the quotient space
V +
It /V

−
It do not depend on the point t ∈ I. It is in some sense similar to the

transportation lemma (2.1.3) and happens along the interval I.

Lemma 2.2.1. Let I be an interval and s, t ∈ I with s ≤ t. We have the
relation M t

s(V
±
Is ) = V ±It . Furthermore the quotient map

M t
s : V +

Is/V
−
Is → V +

It /V
−
It

is an isomorphism.
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Proof. The first relations are a consequence of the transportation lemma 2.1.3.
We have M t

s(V
±
Is ) ⊆ V ±It by rules on the image of intersections and sums.

Consider the case V −Is . Suppose h ∈ (Im+
lt ∩Ker−ut). Then by transportation

∃g ∈ Im+
ls such that h = M t

s(g). But g ∈ (M t
s)
−1({h}) ⊆ (M t

s)
−1(Ker−ut) =

Ker−us by transportation. So g ∈ Im+
ls ∩Ker−us and therefore h ∈ M t

s(V
+
It ).

Similarly we can find an inverse image to h′ ∈ (Im−lt ∩Ker+
ut). This proves

M t
s(V

−
Is ) = V −It .

The quotient map is surjective since M t
s(V

+
Is ) = V +

It . To show the injec-
tivity, it is sufficient to prove V +

Is ∩ (M t
s)
−1(V −It ) ⊆ V −Is . Let g ∈ V +

Is and
suppose M t

s(g) = h ∈ V −It . Then h decomposes into the sum h1 + h2 = h
with h1 ∈ Im−lt ∩Ker+

ut and h2 ∈ Im+
lt ∩Ker−ut. We can find g1 ∈ Im−ls ∩Ker+

us

such that M t
s(g1) = h1 by applying transportation to Im−ls and Ker+

us. We
deduce M t

s(g − g1) = h2 ∈ Im+
lt ∩Ker−ut ⊆ Ker−ut. This induces g − g1 ∈

Ker−us by transportation. In the same way g − g1 ∈ Im+
us. Therefore

g ∈ g1 + Im+
us ∩Ker−ut ⊆ V −Is .

We now define a global object V ±I for each interval I which allow us to
retrieve the spaces V ±It , t ∈ R.

Let I be an interval. The collection of spaces V ±It , t ∈ I together with
the maps M t

s : V ±Is → V ±It , s ≤ t ∈ I form two projective systems1. This
allows us to consider the inverse limits

V ±I = lim←−
t∈I

V ±It .

Let πt : V +
I → V +

It be the natural projection of the inverse limit on space
located at t. One can make the identification

V −I =
⋂
t∈I

π−1
t (V −It ) ⊆ V +

I

since all projective limits lim←−V
−
It are isomorphic.

It is natural to ask ourselves whether V +
It /V

−
It is related to V +

I /V
−
I . In

general, these two objects can be different. But in our specific case they are
identical. To prove this result, first we need the following lemma.

Lemma 2.2.2. A subset S ⊆ I of an interval I is said coinitial if ∀t ∈ I,
∃s ∈ S, s ≤ t. Any interval I has a co-initial countable subset.

Proof. If I has a minimum m, take S = {m}. Otherwise, take Q ∩ I.

Now we can prove the following result.

1To actually obtain a projective system, we have to reverse the order on I ⊆ R.
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Lemma 2.2.3. Let I be an interval and t ∈ I. The induced map

πt : V +
I /V

−
I → V +

It /V
−
It

is an isomorphism.

Proof. First, the inverse system V −It is Mittag-Leffler [46, Section 10.85]
which means that for every t the family M t

s(V
−
It ) ⊆ V −It for s ≤ t stabilizes.

This is immediate since ∀s,M t
s(V

−
It ) = V −It .

We now consider the exact sequence

0→ V −It → V +
It → V +

It /V
−
It → 0.

By Lemma 2.2.2 the hypothesis of proposition [32, Chap. 0, (13.2.2)]
holds and by applying the inverse limit functor, we obtain

0→ V −I → V +
I → lim←−

t∈I
V +
It /V

−
It → 0

which is also exact. Since all the M t
s are isomorphism by Lemma 2.2.1, we

have ∀t, lim←−
t∈I

V +
It /V

−
It ' V +

It /V
−
It . Looking at the morphisms between the two

sequences, from this we deduce the result.

We can define a functor CI : VectR → Vect which sends M to the
quotient V +

I /V
−
I . This functor ”counts” the number of modules intervals

of shape I that will appear in a decomposition of the module M . More
precisely, the dimension dimCI(M) will be exactly the multiplicity of the
interval I in the decomposition of M . In order to find this summands as
submodules of M , we first take W 0

I to be a vector space complement of V −I
in V +

I . Then, we can sent it back into the module through πt.

By Lemma 2.2.3 the restriction of πt to W 0
I is injective.

Lemma 2.2.4. Let

(WI)t =

{
πt(W

0
I ) if t ∈ I,

0 if t 6∈ I.

This defines a submodule WI of M .

Proof. For s ≤ t both in I, we have M t
s ◦ πs = πt so M t

s(WIs) = WIt. If
s ∈ I and t 6∈ I then t ∈ u+ which implies WIs ⊆ Ker+

us ⊆ KerM t
s. In case

s 6∈ I, s ≤ t, WIs = 0 implies M t
s(WIs) = 0 ⊆WIt.

By Lemma 2.2.3 we get a pointwise decomposition V +
It = WIt⊕V −It . We

now want a direct sum decomposition of the whole module WI into interval
modules.
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Lemma 2.2.5. For each interval I, we have WI '
⊕
b∈B

kI where |B| =

dimCI(M).

Proof. Let B be a basis of W 0
I and ∀b ∈ B, bt = πt(b). For all t a basis of

WIt is given by {bt, b ∈ B}. Since M t
s(bs) = bt for any s ≤ t in I they span

a submodule of WI isomorphic to kI . Therefore WI '
⊕
b∈B

kI .

We expect the direct sum of WI running over all the possible intervals
I to give us a decomposition of M .

2.3 Decomposition

It remains to show that

• the sum of the WI is direct and,

• it generates the whole module M.

To prove this result we introduce the notion of a section2. We first
expose properties of sections, and then latter apply them to the spaces we
constructed. A section of a vector space U is a pair (F−, F+) of subspaces
such that F− ⊆ F+. A family of sections {(F−λ , F+

λ )|λ ∈ Λ} is said to be
disjoint if ∀λ 6= µ either F+

λ ⊆ F−µ or F+
µ ⊆ F−λ . Disjointness is a notion

of order on a family of sections. It is said to cover U if for all subspaces
X ⊂ U, X 6= U there is λ such that X + F−λ 6= X + F+

λ . It strongly
covers U if for all subspace Y,Z ⊆ U , Z 6⊂ Y we can find a λ such that
Y + (F−λ ∩ Z) 6= Y + (F+

λ ∩ Z). The notion of covering ask, given a proper
vector subspace space X, the possibility to find an element in the family
such that this pair separate X and the whole vector space.

The notion of disjointness gives the direct nature of the sum whereas the
covering property will imply the generativity.

Lemma 2.3.1. Let {(F−λ , F+
λ )|λ ∈ Λ} be a family disjoint of sections cov-

ering U . Let Wλ be a complement vector space Wλ
⊕
F−λ = F+

λ for each
λ ∈ Λ. Then we have the decomposition of the vector space U =

⊕
λ∈Λ

Wλ.

Proof. Let vλ1 + vλ2 + . . . vλn = 0 be a linear relation of elements in
∑
Wλi .

The disjointness give us a total order on the pairs. By reordering one can
assume that F+

λi
⊆ F−λ1

for all i > 1. But since vλ1 = −∑ vλi ∈
∑
F+
λi
⊆ F−λ1

we get vλ1 ∈Wvλ1
∩ F−vλ1

⇒ vλ1 = 0. The sum is therefore direct.

2This notion of section is not related to sections of a sheaf.
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Let X =
⊕
λ∈Λ

Wλ and by absurd suppose X 6= U . By disjointness covering

one can find λ such that F−λ +X 6= F+
λ +X. But F+

λ +X = F−λ +Wλ+X =
F−λ +X which gives a contradiction.

The next lemma tells us how we can combine two families together.

Lemma 2.3.2. Let {(F−λ , F+
λ )|λ ∈ Λ} and {(G−γ , G+

γ )| γ ∈ Γ} be two fami-
lies of disjoint sections. The family

{(F−λ +G−γ ∩ F+
λ , F

−
λ +G+

γ ∩ F+
λ )| (λ, γ) ∈ Λ× Γ}

is disjoint. Let {(F−λ , F+
λ )|λ ∈ Λ} be a family of sections covering U , and

{(G−γ , G+
γ )| γ ∈ Γ} be a family of sections strongly covering U . The family

{(F−λ +G−γ ∩ F+
λ , F

−
λ +G+

γ ∩ F+
λ )| (λ, γ) ∈ Λ× Γ}

is disjoint and covering U .

Proof. Disjointness results immediately from the disjointness of Λ and Γ
indexed families.

Let X 6= U bet a subspace of U . By covering of U by the Λ family, we
can find a λ ∈ λ such that

F−λ +X 6= F+
λ +X.

Let Y = F−λ + X and Z = F+
λ . We have Z 6⊂ Y by choice of λ and by

applying the strong covering property of the Γ family we get a γ such that

Y + (G−γ ∩ Z) 6= Y + (G+
γ ∩ Z).

Developing the expression, we obtain

X + F−λ + (G−γ ∩ F+
λ ) 6= X + F−λ + (G+

γ ∩ F+
λ ).

We now want to apply our tools to our quotient spaces. We start with a
lemma telling us that the families of kernels and images we defined earlier
are disjoint and strongly covering.

Lemma 2.3.3. The families

• {(Im−ct, Im+
ct)| c is a cut and t ∈ c+}, and

• {(Ker−ct,Ker+
ct)| c is a cut and t ∈ c−}

are disjoint and strongly cover Mt.
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Proof. We treat the first case. Let c and d be two cuts with t ∈ c+ ∩ d+.
By renaming one can assume c+ ∩ d− 6= ∅. Let s ∈ c+ ∩ d−. By definition
s < t and

Im+
ct ⊆ ImM t

s ⊆ Im−dt .

This gives the disjointness.

Let Y, Z ⊆Mt with Z 6⊆ Y . We look at the cut c defined3 by

c− = {s|M t
s ∩ Z ⊆ Y }, c+ = {s|M t

s ∩ Z 6⊆ Y }.

It is well define since the two sets form a partition of R : they are disjoint,
any real is in one or another and they both are intervals by inclusions of the
images of structural morphisms.

On one side we have

Y + (Im−ct ∩Z) = Y + (
⋃
s∈c−

ImM t
s ∩ Z) =

⋃
s∈c−

(Y + ImM t
s ∩ Z) = Y.

By realization lemma (2.1.2) we can find s < t, s ∈ c+ such that ImM t
s =

Im+
ct. Hence the strong covering property

Y + Im+
ct ∩Z = Y + ImM t

s ∩ Z 6= Y.

We can now apply the tools developed on sections to our families. We
first combine them using the Lemma 2.3.2. We then prove the sum of our
interval modules is direct and generate the whole module M . To do so, we
prove that this is the case pointwise for every t ∈ R using Lemma 2.3.1.

Proof of Theorem 2.1.1. Let I be an interval. Let l and u be the two cuts
associated to the interval I. We define

F±It = Im−lt +V ±It = Im−lt +
(
Ker±ut ∩ Im+

lt

)
.

The pairs of cuts u, l with t ∈ l+ ∩ u− are in bijection with the real inter-
vals containing t. By Lemma 2.3.2 and Lemma 2.3.3 the family of sections
(F−It , F

+
It) is disjoint and cover Mt.

As mentioned earlier we have V +
It = WIt ⊕ V −It (by Lemma 2.2.3). By

adding Im−lt we deduce F+
It = WIt+F

−
It . Moreover F−It ∩WIt ⊆ (Im−lt +V −It )∩

V +
It ⊆ V −It + Im−lt ∩Ker+

ut ⊆ V −It and therefore F−It ∩WIt ⊆ V −It ∩WIt = {0}
so the sum F+

It = WIt ⊕ F−It is direct.

3In the case s > t, for ImM t
s we take the whole space Vt.
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By Lemma 2.3.1 we can break the space Mt in a sum of WIt. Indeed
Mt =

⊕
I⊆R

WIt. Since this is pointwise true for every t ∈ R, we obtain

M =
⊕
I⊆R

WI =
⊕
I⊆R

(kI)
mI

where mI is dimCI(M).

This concludes the proof of the decomposition of p.f.d. persistence mod-
ules, and opens the way to its generalization in higher dimensions.



Chapter 3

Multipersistence

The one dimensional persistence paradigm allows us to recover topological
and some geometrical information from the sampling of an object, even in
high dimension, summarized as a simple collection of intervals B called a
barcode. But one dimensional persistent homology has two major flaws.
Some constructions are not robust with respect to the addition of outliers.
The simple addition of a unique point can change drastically the barcode.
Secondly, if we use a Rips or Cech filtration on a point cloud, it does not
always take into account topological features only present at a specific den-
sity level. More generally, persistence can only take one real valued function
(distance, density, ...) at a time. These two facts make one persistent homol-
ogy unable to recover the topological information we are looking for when
the data contain even a slight uniform noise – See Figure 3.1.

Figure 3.1: Image from [39]. Three Rips filtrations X, Y and Z. One
dimensional persistence barcodes are unstable to the addition of noise and
not sensitive to high density areas. Indeed the points on the circle with the
addition of noise (center) is closer, according to the bottleneck metric, to
pure noise (right) than to the points sampled on this circle without noise
(left).

45
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An approach to solving this problem is to consider, instead of a single
R valued function, a pair or more of functions. For example, one could
consider the distance dP to our point cloud P , and a density function γ
with high value on dense areas, and low value on outliers. We can then
build a filtration indexed by these two functions, namely1

Fx,y = d−1
P ((−∞, x]) ∩ γ−1([−y,+∞)).

More generally we could take any function f : X → R2 defined on a topo-
logical space X and pre-images of bidimensional sublevelsets f−1((−∞, x]×
(−∞, y]).

A second approach is to filter a point cloud by density – for example,
using k-neighbors, or any other density estimate – and for each slice build
the Rips filtration:

Fx,y = Rips(γ−1([−y,+∞))x

All these different constructions give a bifiltration, that is a collection of
topological spaces Fx,y such that x′ ≥ x, y′ ≥ y ⇒ Fx,y ⊆ Fx′,y′ . By apply-
ing the homology functor on it, we obtain a multipersistence module. Mul-
tipersistence does not have decomposition in interval modules as provided
in one dimension by Theorem 1.4.4 and presents to us new challenges.

In this chapter, we define multidimensional persistence formally, recall
some established results from the community and in the second section
present new ones.

3.1 Theory

3.1.1 Multidimensional persistence modules

Multipersistence have already been studied in various way through numerous
articles. Notably [17], [9] and [39].

Definition 3.1.1. Let (S,≤) be a totally ordered set and n be a positive
integer. For s, t ∈ Sn we say s ≤ t when ∀1 ≤ i ≤ n, si ≤ ti. This
defines a partial order on Sn. Let P be a poset (partially ordered set). A
P -filtration F is a collection of topological spaces Fs with s ∈ P such that
∀s, t ∈ P, s ≤ t ⇒ Fs ⊆ Ft. An n-dimensional multifiltration F , or simply
a multifiltration, is an Sn-filtration.

1The presence of a sign in front of y is only an aesthetic trick so that the structural
morphisms compose in the horizontal line from left to right. In the absence of this sign,
the morphisms would be reversed along the horizontal line.
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As we mentioned previously, the application of the homology functor to
a filtration gives rise to a persistence module.

Definition 3.1.2. Let P be a poset. It can be identified with the category
whose objects are elements of P and an arrow corresponds to a relation given
by the partial order on P . A P -persistence module M ∈ VectP is a functor
from the category P to the category of vector spaces Vect. For s, t ∈ Sn, the
morphism M t

s is called a structural morphism. Let (S,≤) be a totaly ordered
set and n be a positive integer. An n-dimensional persistence module M , or
simply a multipersistence module, is an Sn-persistence module.

The special case of q 2-dimensional persistence module is referred to as
bimodules.

Example 3.1.3. An example of a bimodule on J0, 1K2:

k
id // k

0
0
//

0

OO

k

id

OO

An Sn-persistence module M can be associated to a Sn-graded k[Sn]
module

M =
⊕
s∈Sn

Ms.

For m ∈ Mt, we define the degree of m, written deg(m), to be this index t.
Given any t ∈ S, elements which belong to Mt are called homogeneous. Let
t ∈ Sn and m =

∑
s
ms,ms ∈Ms. The multiplication by scalars is given by

xt.m =
∑
s

M (s1+t1,...,sn+tn)
s (ms).

As in the case of one dimensional persistence, we can define the notions
of shifting and interleaving.

Definition 3.1.4. Let N and M be two n-dimensional persistence modules
and δ > 0. Let t = (t1, . . . , tn). By t + δ we mean (t1 + δ, . . . , tn + δ). The
δ-shift of M , written M [δ], is the persistence module with spaces M [δ]t =
Mt+δ and morphisms M [δ]ts = M t+δ

s+δ . A morphism ϕ of degree δ between
M and N is a morphism ϕ : M → N [δ]. The δ-shift of an n-dimensional
persistence modules morphism ψ : M → N is the morphism ψ[δ] : M [δ] →
N [δ] given by ψ[δ]t = ψt+δ.

Definition 3.1.5. Let M and N be two n-dimensional persistence modules.
A δ-interleaving is a pair of degree δ morphisms ϕ : M → N [δ] and ψ : N →
M [δ] such that ψ ◦ ϕ = 12δ

M and ϕ ◦ ψ = 12δ
N .
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This allows again to put a metric structure on the category of n-dimensional
persistence modules.

Proposition 3.1.6. Let M and N be two persistence modules. The inter-
leaving distance dI(M,N) = inf{δ |M and N are δ-interleaved} between M
and N is a pseudo distance.

For a function f : X → Rn, let2 S(f) be the n-dimensional module
defined by S(f)(x1,...,xn) = H(f−1((−∞, x1]× · · · × (−∞, xn])) This implies
a soft result of stability on multidimensional persistence.

Proposition 3.1.7. Let f and g be two functions X → Rn with X a topo-
logical space. Then dI(S(f), S(g)) ≤ ||f − g||∞.

3.1.2 Interval modules

We recall the definition of interval modules introduced in [5].

Definition 3.1.8. A subset I ⊆ Sn is said to be an interval if:

• for all s, r ∈ I and for all t ∈ Sn, s ≤ t ≤ r ⇒ t ∈ I,

• for all s, r ∈ I there exists a finite sequence t1, t2, . . . , tk ∈ I such that
s ≤ t1 ≥ t2 ≤ · · · ≥ tk ≤ r.

This second condition is referred to as connectivity.

Definition 3.1.9. Let I be an interval in Sn. An interval module is a
module II whose spaces are

(kI)s =

{
k if s ∈ I,
0 if s 6∈ I,

and for s ≤ t in Sn, the morphisms are

(kI)
t
s =

{
idk if s, t ∈ I,
0 otherwise.

Proposition 3.1.10. Interval modules are indecomposable.

Proof. As in the one dimensional case (1.4.3), we look at the endomorphism
ring of an interval module. The connectivity and commutativity of modules
implies that a morphism between two interval modules is determined by
only one morphism between two non zero spaces. The endomorphism ring
is then isomorphic to the field k, hence local, and by Azumaya’s Lemma [2]
the module is indecomposable.

2The S stands for sublevel sets.
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We now introduce the category of thin persistence modules. Henceforth,
the dimension n of the indexing poset Sn is fixed.

Definition 3.1.11. The category Thin is the category whose objects are
persistence modules decomposable into direct sums of modules whose point-
wise dimension is one or zero.

Remark 3.1.12. Let M be a module, pointwise one dimensional. Take
its support supp(M) ⊆ Sn to be the set of indexes where the vector space
is non-zero. We defined the relation of connectivity on the support of a
module by x ∼ y ∈ Sn ⇔ ∃ t1, t2, . . . , tk ∈ Sn such that x ≤ t1 ≥ t2 ≤ · · · ≥
tk ≤ y. Each equivalence class with respect to the relation of connectivity
is an interval. Furthermore, there is no non-zero morphism between two
classes. Using Azumaya’s Lemma, one can show that each class gives us an
indecomposable module.

In dimension 2, this gives us a decomposition of M into interval mod-
ules: indeed, let N be an indecomposable submodule of M corresponding to
a class of connectivity. Since M is pointwise one dimensional, any morphism

between a space Nx of a thin indecomposable N and the space Isupp(N)
x ex-

tends to an isomorphism between the two modules by a simple induction.
It is well defined thanks to commutativity. Hence, since all the classes give
submodules in direct sums, cover the whole module M , and each submod-
ule is isomorphic to an interval module, we get the interval decomposition
expected.

Remark 3.1.13. Nicolas Berkouk pointed out to me that starting with
dimension 3, not all thin indecomposable modules are intervals. Here is an
example from Shapira, Petit, Oudot, and Berkouk.

In R3 we consider three generators at coordinates (1, 0, 0), (0, 1, 0) and
(0, 0, 1). We move along the diagonal and take the intersection of the support
of this module with a plane orthogonal to the diagonal line. While moving
this plane along the diagonal (1, 1, 1), in this intersection we see triangles
growing until they touch each other as depicted in Figure 3.2 in a plane
P. We can now kill any vector belonging to the half space above the plane
P. We have the freedom of choosing any isomorphisms from our generators
to the corners of the inner triangle in Figure 3.2. This leaves us with the
following diagram:

Mc==
f

}}

aa
g

!!
Ma
oo

h
//Mb

with a, b and c incomparable, and all three arrows can be any isomorphism
obtained by composing and inversing arrows going from and to the genera-
tors.
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Mc

MbMa

x = y = z

Figure 3.2: Section of a module along a plane orthogonal to the diagonal
~(1, 1, 1).

Consider now the following triangles parametrized by the dimension n
and an element λ ∈ k:

kn

id

}}

Jn(λ)

!!
kn

id
// kn

where Jn(λ) is the nth jordan block with coefficient λ.

Each diagram can be extended into a module thanks to our previous
construction. But none of them can be decomposed into a direct sum of
interval modules. The existence of such family of modules is possible thanks
to the existence of a loop. It was shown by Steffen Oppermann that this
do not happen with 2-dimensional persistence modules. This phenomenon,
called monodromy, prevents us from defining a morphism to an interval
module whose three arrows should be the identity. An other phenomenon
called monodromy was introduced by Patrizio Frosini [20] but it is not clear
in which way it is related to the actual monodromy of persistence modules.

3.1.3 Interpolation lemma and Kan extensions

We present a simple proof of the interpolation lemma (1.7.8) for 1-dimensional
persistence modules. We need to build, given two δ interleaved persistence
module M and N , a parametrized family Γx, x ∈ [0, δ] of one dimensional
persistence modules such that Γ0 ' M , Γδ ' N and dI(Γ

x,Γy) = |x −
y|, ∀x, y,∈ [0, δ]. To do so, we construct a bimodule whose restriction along
diagonal lines gives us the one dimensional modules of the parametrized
family.
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Let M and N be two δ-interleaved persistent modules index on R. We
start by defining a module H on Ω, the disjoint union of the lines ∆M : y =
x+ δ/2 and ∆N : y = x− δ/2.

We letH(x,y) =

{
Mx+y if (x, y) ∈ ∆M ,
Nx+y if (x, y) ∈ ∆N .

Morphisms between two points

of ∆M are given by structural morphisms of M . We do the same for any
two points in ∆N . Let ϕ : M → N [δ] and ψ : N → N [δ] be δ-interleaving
morphisms. The morphism between the space at (x, y) ∈ ∆M and the

space at (x + δ, y) ∈ ∆N is defined by H
(x+δ,y)
(x,y) = ϕx+y. Symmetrically for

(x, y) ∈ ∆N we define H
(x,y+δ)
(x,y) = ψx+y.

y = x+ δ
2

y = x− δ
2

ψ

ϕ

(x, y)

(x, y + δ)

(x+ δ, y + δ)

Figure 3.3: Schematic view of the persistence bimodule H.

The special case of left and right Kan extensions in the context of per-
sistence bimodules has been described in [9]. We recall their definition and
properties.

Let A,B be two posets (partially ordered sets) and a functor of posets
F : A → B. Given b ∈ B let A[F ≤ b] = {a ∈ A |F (a) ≤ b}. Similarly
A[F ≥ b] = {a ∈ A |F (a) ≥ b}. Let M be an A-indexed persistence module.
The left Kan extension is given by

LanF (M)t = lim−→M|A[F≤t]

with the internal maps LanF (M)t → LanF (M)t′ , t ≤ t′ arising from the
universal property of colimits. The right Kan extension is

RanF (M)t = lim←−M|A[F≥t]

with the internal maps given by the universal property of limits.

Let N be a B-indexed persistence module, and f : M → N a mor-
phism. The universal property of colimits induces a morphism LanF (f) :
LanF (M)→ LanF (N). This gives us a functor LanF (−) : VectA → VectB.
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Similarly the right Kan extension is also a functor RanF (−) : VectA →
VectB.

An important property on left and right Kan extensions stated in [9] is
that they preserve respectively product and coproducts.

Proposition 3.1.14. The left Kan extension preserves direct sums of mod-
ules: let Mi be a familly of A-modules,

LanF (
⊕
i

Mi) '
⊕
i

LanF (Mi).

The right Kan extension preserves direct products of modules: let Mi be a
family of A-modules,

RanF (
∏
i

Mi) '
∏
i

RanF (Mi).

If M =
⊕
i
Mi is p.f.d. then

⊕
i

Mi =
∏
i

Mi

and therefore the right Kan extension preserve direct sums.

With theses new tools, we get back to our construction. The poset
Ω is included in the band U = {(x, y) ∈ R2|y ∈ [x − δ

2 , x + δ
2 ]}. Call

F : Ω ↪→ U the inclusion. We can compute the left Kan extension of H given
by LanF (H)t = lim−→H|{s∈Ω,s≤t} for t ∈ U (see Figure 3.4 for an exemple).

k

k

0

0

0

k

k

k

k

k

LanF (H)t = 0

ψ

ϕ

Figure 3.4: An example of left Kan extension.

The left Kan extension is the left adjoin [9] to the restriction (−)|Ω : U→
Ω. One can verify by hand that (−)|∆M

◦ LanF = idVect∆M since pointwise
each colimit in t gives the spaceMt. Similarly (−)|∆N

◦LanF = idVect∆N . We
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call Γt, t ∈ [0, δ], the restriction of LanF (H) to the line ∆t : y = x+ t− δ/2.
We have Γ0 ' M and Γδ ' N . For t ≤ t′ ∈ [0, δ], structural morphisms

LanF (H)
(x+t′−t,y)
(x,y) along the horizontal direction gives a morphism ϕ : Γt →

Γt
′
. Similarly, we have a morphism ψ : γt → Γt

′
along the vertical axis.

The pair (ϕ,ψ) forms a |t′ − t|-interleaving between Γt and Γt
′
. The family

Γt, t ∈ [0, δ], is therefore the collection of persistence modules announced by
the interpolation lemma.

3.1.4 Quivers and their representations

Families of persistence modules defined on a finite index set are best de-
scribed in the language of quivers. We introduce quiver and quiver repre-
sentations (see the annex of [41] for a good reference), show how they can
be turned into modules, and make the link with persistent homology. We
finish this section with examples and a hint of the complexity and richness
of the problem of classification of isomorphism classes.

Definition 3.1.15. A quiver Q is a set Q0 of vertices (0-dimensional ob-
jects) of Q, a set Q1 of edges or arrows (1-dimensional objects) of Q, and two
applications s : Q1 → Q0 returning the source of the edge and t : Q1 → Q0

returning the target of the edge. A quiver Q is said finite if Q0 and Q1 are
both finite sets.

This definition is identical to the one of a multigraphs. Indeed, one can
draw vertices as points in the plane or 3-dimensional space and each edge
by an arrow connecting the source of the edge to its target, and then obtain
a directed multigraph.

Definition 3.1.16. A representation V of a quiver Q is the choice of a
vector space Vp for each vertex p ∈ V , and the choice of a linear application
Va : Vs(a) → Vt(a) for each edge a ∈ Q1. A morphism of representations
f : V → W of Q is a collection of linear applications fp, one by vertex
p ∈ Q0 going from Vp to Wp, such that for every a ∈ Q1 the diagram

Vs(a)

fs(a) //

ρa

��

Ws(a)

λa
��

Vt(a)

ft(a) //Wt(a)

commutes.

• The identity morphism of a representation V is (idV )p = idVp , p ∈ Q0.
The zero representation is the representation with all vector spaces
and morphisms equal to 0.
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• A subrepresentation of V is a a representation W such that ∀p ∈
Q0,Wp ⊆ Vp and ∀a ∈ Q1,Wa = Va|Wp .

• The quotient of V by a subrepresentation W is V/W defined pointwise
by (V/W )p = Vp/Wp and (V/W )a is the map induced by the quotient.

• Given two representations U and V their direct sum U ⊕ V is the
representation obtained by taking pointwise direct sums Up ⊕ Vp, p ∈
Q0 and morphisms Ua ⊕ Va, a ∈ Q1.

• A morphism of representations f : U → V also has a kernel Ker f , the
submodule defined pointwise by (Ker f)p = Ker fp, p ∈ Q0. Similarly
f also has an image and a cokernel defined analogously.

Representations of a quiverQ with their morphisms form a category Rep(Q),
and one can show that Rep(Q) is Abelian.

Representation of a quiver Q over a field k is equivalent to a module
over a ring – actually a k-algebra – called the path algebra of Q.

A sequence of edges γ = a1a2 . . . an, ai ∈ Q1 such that t(ai) = s(ai+1),∀1 ≤
i < n is called a path. The source of γ is the vertex s(a1) and its target is
t(an). The number n is called the length of the path. Given a vertex p ∈ Q0

we associate a trivial path ap whose length is 0.

Definition 3.1.17. The path algebra kQ of a quiver Q is the vector space
having paths of non negative length from the quiver Q as a basis, endowed
with the multiplication γ.γ′ equal to the concatenation of path γγ′ when
the sources and target matches – that is γγ′ is a path – or zero otherwise.

If Q0 is finite, kQ is a unitary ring with unit
∑
p∈Q0

ap.

Modules over kQ are naturally identified with representations of Q.
Given a module M , one can recover a representation V by projecting M
through the 0-length paths to obtain the spaces Vp = ap(M), p ∈ Q0. The
morphisms are given by the 1-length paths Va : Vs(a) → Vt(a), v 7→ a.v. Re-
ciprocally from a representation V one can define the module M =

⊕
p∈Q0

Vp.

The multiplication is derived by linearity from the case of a single arrow
a ∈ Q1 and vector m ∈ Vp from the rule a.m = Va(m) if p = s(a) and 0
otherwise.

Quivers and posets are not directly linked to each other. This is due to
the fact that two paths from a quiver Q with the same source and target are
considered different, whereas they are equal in a poset by transitivity. Some
quivers Q, the ones without undirected cycles, can be regarded as a partial
order on the set Q0. The quiver (3.1) does not correspond to a partially
ordered set, since ad and bc are two different paths. In a poset, we would
expect the relation ad = bc.
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1
a //

b
��

2

d
��

3 c
// 4

(3.1)

The two concepts can be reunified through the introduction of quivers
with relations, or bound quivers.

Definition 3.1.18. A quiver with relations is a pair (Q, I) with Q a quiver
and I ⊆ kQ an ideal of the path algebra. A relation is an element of I,
that is a k linear combination of paths. The path algebra of (Q, I) is the
quotient algebra kQ/I.

A poset P is equivalent to a quiver with relations whose vertices are
Q0 = P , the arrows are given by the order on P , and paths sharing the
same source and target are identified through the quotient by I.

We now focus on the problem of classifying the representation of quivers
(without relations) up to isomorphisms. Let V be a representation of a
quiver Q. A decomposition of V is a direct sum of two or more non-trivial
representations that is isomorphic to V . A representation that cannot be
decomposed into the direct sum of two non-trivial representations is said to
be indecomposable. If all the spaces Vi, i ∈ Q0 are finite dimensional – the
representation V is said to be pointwise finite dimensional – one can show by
recursion on the dimension of the Vi, i ∈ Q0 that V admits a decomposition
into a direct sum of indecomposable representations

⊕
α∈A

V α. If Q is finite,

we have the following result.

Theorem 3.1.19 (Krull, Remak, Schmidt). Let V be a representation of a
finite quiver Q. The representation V decomposes as a finite sum of inde-
composable representations

V =
⊕
α∈A

V α.

Furthermore this decomposition is unique: given a second decomposition⊕
β∈B

W β there is a bijection j : A → B such that V α is isomorph to W j(α), ∀α ∈

A.

The existence is obtained by induction on dimensions. The uniqueness
is non trivial and a consequence of Azumaya’s Lemma [2].

The problem is now reduced to the classification of indecomposables up
to isomorphisms. It appears that depending on the quiver Q the problem
can have different complexities.

Definition 3.1.20.
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• A quiver Q is said to be representation-finite if it has finitely many
isomorphism classes of indecomposable representations.

• A quiver Q is said to be tame if its indecomposable classes can be
described with countably finitely many one parameter families. More
precisely, once fixed the dimension of each vector space of a represen-
tation, the indecomposable can be described with finitely many one
parameter families.

• A quiver Q is said to be wild otherwise.

As shown in [13] quivers can encode various problems of classification of
orbits induced by a group action on objects arising from linear algebra.

The quiver made of a single vertex without arrows • corresponds the clas-
sification of vector spaces up to basis changes. This problem corresponds to
the action of GL(V0) when Q0 = {0} and V0 is the unique space. This prob-
lem is solved by the notion of dimension. There is a single indecomposable,
the field k.

The quiver • → • encode the classification of matrices up to independent
changes of basis on the source and target vector space. This is considering
the action of GL(V0)×GL(V1) on the two vector spaces when Q0 = {0, 1}.
The matrices are classified by the introduction of the notion of rank. There

are only three indecomposable classes, namely 0→ k, k
idk // k and k→ 0.

The quiver correspond to the classification of square matrix up
to a change of basis. This problem occurs when considering the action of
GL(V0) by conjugation. Assuming the field k is algebraically closed, the
indecomposables are described by the Jordan blocks matrices. There are
then countably many 1-parameter families of indecomposables. See [13] for
more details on the group action and some other quivers.

A famous theorem gives conditions for quiver (without relations) is of
finite type. A quiver is said to be connected if its underlying graph, i.e. the
(multi)graph obtained by forgetting the orientation of arrows, is connected.

Theorem 3.1.21 (Gabriel). A connected quiver is of finite type if and only
if its underlying graph is one of the Dynkin diagrams An, Dn, E6, E7, E8

drawn in Figure 3.5.

Donovan-Freislich and Nazarova independently classified the tame case:

Theorem 3.1.22 (Gabriel, Donovan-Freislich, Nazarova). A connected quiver
is of tame type if and only if its underlying graph is one of the Euclidean
diagrams Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8 drawn in Figure 3.6.
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An

Dn

E6

E7

E8

Figure 3.5: Dynkin diagrams An, Dn, E6, E7, E8

Ãn

D̃n

Ẽ6

Ẽ7

Ẽ8

Figure 3.6: Euclidean diagrams Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8. The lines added to the
Dynkin diagrams are dotted.

3.1.5 Multidimensional persistence is wild

In Section 3.1.4 we presented how simple quivers can lead to complex clas-
sification problems. Some wilde quivers can actually be ”embedded” into
persistence bimodules, as we will show in Section 3.2.1.

Given a poset P we say that the category of P -persistence modules is:

• representation finite, if it has finitely many classes of indecomposable
representation.

• Tame, if the indecomposable classes can be indexed with countably
many one parameter families.

• Wild, otherwise.
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It happens that Z-bimodules are wild, and it’s also the case for most of
the J0, nK× J0,mK-modules. In the paper ”The theory of Multidimensional
Persistence” [17] Gunnar Carlsson and Afra Zomorodian present an explicit
construction of a family of one parameter indecomposable classes. It is easy
to imagine how from this construction we can build variations of this con-
struction, leading to infinitely many one parameter indecomposable classes.
We present this construction.

We can actually build this family of indecomposable by considering only
a J0, 4K2 grid. We set the space M(0,0) to be k2. We duplicate this space
everywhere on the module and connect spaces by identities. If we take a
basis for M(0,0) we end up with two generators a and b of the module. Let
(q1, q2, q3, q4) ∈ R4 be four reals. We now look at the four submodules
N1, N2, N3, N4 generated respectively at (0, 3), (1, 2), (2, 1), (3, 0) by the el-
ements y3.b + q1y

3.a, y2x1.b + q2y
2x1.a, y1x2.b + q3y

1x2.a, x3.b + q4x
3.a.

The first submodule spans a line l1 of equation y = q1x given by the vector
y3.b+ q1y

3.a ∈M(3,0) = k2. The three remaining modules behave similarly
and we call l2, l3 and l4 their respective lines.

k2

k

k

k

k

x

y

Figure 3.7: Construction of a continuous family of indecomposable

We can now consider the quotient of M by this four submodules. When
we quotient by a first submodules, the remaining submodules are canoni-
cally sent to submodules of the quotient allowing to take the next quotient.
Furthermore, the order in which we do the quotient doesn’t mater. The
obtained module R = M/N1/N2/N3/N4 is represented in Figure 3.7.

From one of the main results of [17] the automorphism group of R is
GL2(k) acting as a basis change on M(0,0) with the effect propagated to the
spaces with higher degree.

We restrict ourselves to the collection Ω of modules obtained when li 6=
lj , ∀1 ≤ i, j ≤ 4. The other cases are treated in [17] for the curious reader.
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The set of four non equal lines is stable by the action of GL2(k), since
all matrices are invertible. The action of GL2(k) on lines is 3-transitive,
meaning that given l′1, l

′
2, l
′
3 ∈ R, l′i 6= l′j , there exists U ∈ GL2(k) such

that U.l1 = l′1, U.l2 = l′2, U.l3 = l′3. GL2(k) is not 4-transitive (see [13] on
3-transitivity). Let U be a matrix such that

• l1 is sent to the horizontal axis spanned by (1, 0) ∈ k2,

• l2 is sent to the vertical axis spanned by (0, 1) ∈ k2,

• l3 is sent to the diagonal line spanned by (1, 1) ∈ k2.

The remaining line λ4 = U.l4 identifies uniquely the isomorphism class.
Therefore the isomorphism classes are in bijection with the projective line
P1(k) with the axes and diagonal removed since l4 6∈ {l1, l2, l3}. This is
equivalent to considering the cross-ratio (q1, q2; q3, q4) (see [12] on cross-
ratio). This shows that we can construct a 1-parameter family of indecom-
posables. We would require more to show that the grid is wild.

In [11] Mickaël Buchet and Emerson G. Escolar present some families
of indecomposables that appear on small two and three dimensional grids.
One of them is a family on J0, 4K×J0, 1K. Let Jd(λ) ∈Md denote the Jordan
block matrix of size d

Jd(λ) =


λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

. . .
...

0 0 0 λ 1
0 0 0 0 λ

 .

The modules

M(d, λ) : kd

[
I
0

]
// k2d id // k2d [ I 0 ] // kd // 0

0

OO

// kd

[
I

Jd(λ)

] OO
[

0
I

] // k2d
id
//

[
I I
I Jd(λ)

] OO
k2d

[ I I ]

OO

[ I 0 ]
// kd

OO

are non-isomorphic indecomposables (see [11]) and imply that the J0, 4K ×
J0, 1K-modules have infinitely many indecomposables.

3.1.6 Zigzag persistence

The theory of one-dimensional persistence with indexes over a finite set is
the study of indecomposable of the quivers An (see Section 3.1.4) where all
the arrows are pointing rightward. The Z-indexed persistence modules are
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the case of the quiver A∞ with once again all the arrows pointing rightward.
A generalization of these objects, introduced in [14] is to allow the arrows
to point either rightward or leftward: these objects are named persistence
zigzags.

Definition 3.1.23. A finite zigzag module is a sequence of vector spaces
and linear maps

V1 ↔ V2 ↔ · · · ↔ Vn

where Vi, 1 ≤ i ≤ n are finite and each ↔ is a morphism either pointing
rightward Vi → Vi+1 or leftward Vi ← Vi+1.

Definition 3.1.24. An infinite zigzag module, or simply a zigzag, is a se-
quence of finite vector spaces and linear maps index by integers

· · · ↔ V−1 ↔ V0 ↔ V1 ↔ . . .

where each ↔ is pointing either rightward or leftward.

Gabriel’s theorem ensures the existence of decompositions for any finite
quivers – both the quiver and the dimension of spaces are finite – of type
An, and therefore finite zigzags are decomposable.

By adding identity arrows and duplicating spaces, one can restrict to the
modules with alternating arrows of the form

· · · ← V−1 ← V0 → V1 ← . . .

where even coordinates are source and odd coordinates are sink. One can
also extend finite zigzags to Z indexed zigzags by repeating the first and last
spaces and adding identity morphisms.

Definition 3.1.25. The interval zigzag module I[a,b], a, b ∈ Z, is the zigzag

(k[a,b])s =

{
k if s ∈ [a, b],
0 if s 6∈ [a, b],

whose arrows are the identity between two non zero spaces and zero other-
wise.

Magnus Botnan [7] proved that like one dimensional persistence p.f.d.
modules, p.f.d. zigzags over Z have a decomposition into interval modules.
The uniqueness comes from Azumaya’s Lemma [2] since the endomorphism
ring of interval zigzag is isomorphic to k and therefore local.

Theorem 3.1.26. Let V be a p.f.d. zigzag module. There exists a multiset
of intervals F such that V decomposes into

V =
⊕
I∈F

kI ,

Furthermore, this decomposition is unique up to reordering.
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Since the decomposition of a zigzag V exists, one can define the barcode
B(V ) to be the multiset of intervals occurring in the decomposition. Zigzag
are usually constructed from a zigzag diagram of topological spaces

Definition 3.1.27. A (finite) zigzag diagram of (finitely many) topological
spaces is a (finite) sequence

· · · ↔ X−1 ↔ X0 ↔ X1 ↔ . . .

of topological spaces and continuous maps pointing each rightward or left-
ward.

Applying the homology functor gives then a zigzag module.

Given a continuous map f : X→ R a common construction is to consider
interlevel set zigzag. For any interval I ⊆ R one can define the slice XI =
f−1(I). Suppose now given a cover I2i, i ∈ Z of R by intervals indexed on
even integers such that two consecutive intervals intersect I2i ∩ I2(i+1) 6= ∅
but all others do not I2i ∩ I2j = ∅, |i − j| > 1. We can build a zigzag
diagram · · · ← X−1 → X0 ← X1 → . . . where X2i = f−1(I2i) and X2i+1 =
f−1(I2i)∩f−1(I2(i+1)). By applying the homology functor we obtain a zigzag
module.

In practical applications the map f is a real valued function on a simpli-
cial complex. Various algorithms have been developed for computing zigzag
persistence, notably in [14], [15] and [40]. One of the main advantages of
zigzag persistence is that the simplicial complexes do not grow as much
as in usual persistence. This leads to a lower memory footprint than the
one-dimensional persistence during computation.

Zigzag can be seen as a restriction of a two dimensional persistence
module. In [9] the authors give a method to reconstruct a bimodule from
a zigzag. See Chapter 4 and Section 4.6.3. But interlevel set zigzag can be
directly obtained as the restriction of an interlevel set bimodule M given
by the filtration Fx,y = f−1([−x, y]) defined on the half-plane y > −x.
Given a cover by intervals I2i, i ∈ Z, of R, we can restrict the bimodule M
to the pair of endomorphisms of intervals I2i, i ∈ Z and the intersections
I2i ∩ I2i+2, i ∈ Z. We obtain the interlevel set zigzag associated with the
cover (I2i)i.

In [9] the algebraic stability theorem for one dimensional persistence is
extended to the case of zigzags. Here is a sketch of the main idea. First, the
authors define a fully faithful functor E from the category of zigzag modules
to the category of bimodules on the half upper half-plane {(x, y), −x < y}.
This functor allows to define an interleaving distance also denoted by dI on
two zigzags V and W by dI(V,W ) = dI(E(V ), E(W )) by using the inter-
leaving distance on bimodules (see 3.1.4). The bottleneck distance consid-
ered is the usual bottleneck distance on the set of intervals. The inequality
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strengthens into an equality thanks to [5].

Theorem 3.1.28 (Algebraic stability for zigzags). Let V and W be two
zigzag modules.

db(B(V ),B(W )) = dI(V,W ).

3.2 Contributions

3.2.1 Rooted trees quivers as bimodules

We are interested in the particular class of quivers whose oriented graph is
a rooted tree. Under this assumption, we describe a process which allows to
send representations of such a quiver to VectR

2
the category of persistence

bimodules indexed by reals. We show that this operation is indeed a fully
faithful functor.

Definition 3.2.1. A tree is a connected graph with no cycles. The vertices
of the graph are called nodes. A tree is countable if the set of its nodes is
countable. A rooted tree is a tree with one node designated as the root. An
oriented rooted tree will designate a rooted tree with edges oriented away
from the root3.

An oriented rooted tree is a special case of quiver, since the vertices and
edges of the rooted tree give vertices and edges of a quiver. In what follows,
we will design a rooted tree by its associated quiver Q = (Q0, Q1). In order
to explicit the construction of bimodules from oriented rooted trees it will
be convenient to consider the depth of a node.

Definition 3.2.2. Let G be a rooted tree, and v a node. The depth d(v)
of v is the length of the path – number of edges in the unique path – from
the root to v. The height of G is the supremum of d over the nodes of G. A
tree composed only of its root is therefore of height 0.

An oriented rooted tree will be called bounded when its height is finite.

Theorem 3.2.3. Let Q = (Q0, Q1) be a countable bounded oriented rooted

tree. There exists a non-zero functor FQ : Rep(Q) → VectR
2

sending
representations of Q to R2-indexed bimodules.

Proof. We show this result by induction on the maximum depth of nodes
in the quiver Q. Let V be a representation of Q and S = [0, 1)2 ⊆ R2 the
unit square. Suppose Q is of height 0, it is composed of only the root a. To
build M = FQ(V ) one can set ∀x ∈ S, Mx = Va and ∀x 6∈ S,Mx = 0. The
morphisms of M are set to be either zero or the identity when possible.

3This special case of oriented rooted tree is referred to as branching or out-tree in the
literature.
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d(a) = 0

d(b) = 1

d(c) = 1 d(e) = 1

a

b

c e

c1

c2

c3

b1 b2 b3 b4

e1

e2

e3

Figure 3.8: A bounded rooted tree with nodes’ depths.

If the height of Q is 1, we denote by a the root of Q and by a1, a2, . . . , an
the nodes of depth 1. Let S1, S2, . . . , Sn be squares of the form [a, b)2 in-
cluded in S and aligned along the anti-diagonal {(x, y) ∈ S |y+ x = 1}. We
ask the Si to have bottom left corner incomparable for the partial order we
defined on R2 and to intersect each others. We also ask the closure of the
squares Si to cover {(x, y) ∈ S |y+x = 1}. The collection of ai can indeed be
countably infinite. In a such case, we can still build a collection of squares.
For example, one could take each Si to be of size (1

2)i. See Figure 3.9 for an
illustration. We will say that Si is the square associated to ai. This choice
of squares is done only once while defining FQ, and the same collection of
squares are used for all representations of Q.

To build M = FQ(V ) we set Mx to be the vector space Vai for the x
belonging to the support of the ith square. In equation, Mx = Vai ,∀x ∈ Si.
Then, for all locations x in S below Si, we set the space to be Va. In equation
∀x ∈ S,∀i, p ∈ Si, x < p ⇒ Mx = Va. All the remaining locations are set
to zero. The morphisms are defined in a straightforward way. Arrows Mai

a

from Va to Vai are set to be V ai
a . This is well defined since for i 6= j the

points in Si and Sj are incomparable and therefore there is no arrow between
them.

Let now f : V → W be a morphism between two representations of
Q. As pointed earlier the choice of the partition of R2 depends only on Q
and not on a specific representation. One can define a morphism FQ(f) :
FQ(V )→ FQ(W ) by setting FQ(f)x : FQ(V )x → FQ(W )x to be equal to:

• zero if Fq(V )x = 0,

• fa if Fq(V )x = Va.
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The relations resulting from f being a morphism of representations give the
commutativity relations required into the category of modules to allow for
FQ(f) to be a morphism.

A

B

C

D

B1

C1

C2

C3

B2

B3

B4

D1

D2

D3

0

0

0

0

Figure 3.9: Construction of the bimodule associated to a representation5 of
a tree of height 2.

One can repeat this process by induction on the height of Q. We keep
the squares already chosen for n−1 and subdivide each square Sq associated
to a node q into as many rectangles as arrows leaving the node q. Since there
is always a unique path γ = e1 . . . en from the root to a node of depth n, the
structural morphisms are well defined. See Figure 3.9 for the construction
in the case of a tree of height 2.

The functor we constructed does not forget information about mor-
phisms.

Proposition 3.2.4. Let Q = (Q0, Q1) be a countable bounded oriented
rooted tree. The functor constructed above is fully faithful.

Proof. Here is the main idea of the proof developed below. Let V be a rep-
resentation of Q. The restriction to the bottom left corner of the rectangles
Sa, a ∈ Q0 constructed in the definition of FQ is a left inverse to FQ. Let
xa ∈ Sa design the bottom left corner of Sa. We can retrieve each vector
space Va from FQ(V )xa . The structural morphisms of the module obtained

5We implicitly expect the morphism from A to B4 to be given by the composition
A→ B → B4.
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by this restriction are indeed the structural morphisms of the representation
V . Not only the restriction is a left inverse to the functor FQ, but it is also
a right inverse on the morphisms. This is possible because sending each
element a ∈ Q0 to the point xa ∈ R2 is a morphism of poset : xa ≤ xb if
and only if there exists a path a→ b in Q.

Let V and W be two representations of Q. Let f and g be two morphisms
V →W . Suppose FQ(f) = FQ(g). Let a be a node and Sa be the rectangle
associated. Let x be the bottom left corner of Sa. By definition FQ(V )x =
Va, FQ(W )x = Wa and fa = FQ(f)x = FQ(g)x = ga. This gives immediately
f = g.

Let φ : Fq(V )→ FQ(W ) be a morphism of modules. Let a ∈ Q0 a node
and x ∈ Sa the bottom left corner of the square Sa associated to the node
a. We define fa : Fq(V )x = Va → Fq(W )x = Wa. Let f : V → W be the
morphism given by the family over all nodes. Since on each square Sa (minus
the squares included in Sa) the modules FQ(V ) and FQ(W ) are constant,
the value of φx : FQ(V )x → FQ(W )x is constant for any x ∈ Sa\

⋃
Sb(Sa

Sb.

Therefore FQ(f)x = φx, ∀x ∈ Sa. This applies to every squares, so FQ(f) =
φ.

By using limits we can extend the previous result to the case of un-
bounded trees.

Theorem 3.2.5. Let Q = (Q0, Q1) be a coutable oriented rooted tree. There

exists a fully faithful functor FQ : Rep(Q)→ VectR
2
.

Proof. We suppose Q unbounded since the bounded case is already treated.
Let V be a representation of Q. We start with the truncation Q1, Q2, . . .
of Q where we keep in Qi only the nodes a ∈ Q0 of depth d(a) ≤ i. We
can also restrict V into V i a representation of Qi by keeping only the spaces
and morphism associated with nodes and edges present in Qi. In the pre-
vious construction, we were careful to ensure that squares selected in the
construction of FQi are still used in the construction of FQi+1 . This allows
us to consider the modules Mi = FQi(V

i).

We define a morphism M i →M i+1 in the following way. Let a be a node
of depth i present in Qi with edges pointing to a1, a2, . . . (possibly an infinite
countable number of nodes). Let S1, S2, . . . be the squares associated with
the nodes aj . We define f i on the x ∈ Sa by:

• f ix = idVa at any x ∈ Sa such that M i+1
x = Va. This is the case when

x is bellow the squares Sj ,

• f ix = V
aj
a at any x ∈ Sj ,



66 CHAPTER 3. MULTIPERSISTENCE

• f ix = 0 in the case M i+1
x = 0 where x is above the squares Sj .

Va Va

Va1

Va1

Va3

0

id

V a3
a

V a2
a

V a1
a

0

Figure 3.10: Definition of a morphism between two modules M i on the left
and M i+1 on the right for x ∈ Sa.

See Figure 3.2.1 for an example. This applications commute with struc-
tural morphisms of M i and M i+1 inside the square Sa. The modules M i

and M i+1 being identical outside of the locations belonging to the rectangle
associated to nodes of depth i, we put f ix = id on the remaining locations.
Since any morphism going into Sa can be split in the composition of two
morphism, one going on the border of Sa and another whith domain and
codomain in Sa, this ensures the commutativity with f i. Similarly f i com-
mutes with morphisms leaving Sa. Therefore f i is a morphism of modules.

This gives us a sequence M i, i ∈ N of modules and a sequence f i : M i →
M i+1 of morphisms. We can take its direct limit M∞ = lim−→M i. It exists

since VectR
n

is a complete6 category.

We define FQ(V ) = M∞.

It remains to show that FQ is fully faithful. Once again, we can define
a left inverse. Like in the previous case, we can look at the collection of
squares Sa and the bottom left corners xa ∈ Sa. The only difference is that
the number of points is countable. The operator which sends a ∈ Q0 on
xa ∈ R2 is a poset morphism and the same exact proof applies.

3.2.2 Cup product and Persistence Algebras

In Section 3.1.1 we presented multipersistence modules and how they are
associated to a graded module over a ring depending on the index set. We
mentioned in Chapter 1 that one can use interchangeably homology or coho-
mology while generating (multi)persistence modules from a filtration. The

6Indeed one can take the pointwise limit over the index i in the category of vector
spaces of M i

x, x ∈ Rn, and since the direct limit is functorial it and give us the structural
morphism of M∞ from the limits of the morphisms M iy

x.
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interesting property with cohomology is that instead of homology, it comes
with a notion of product named cup product. Their already was an attempt
to link the cup product with persistence homology, notably in [48]. We now
enhance the structure of persistence module by extending the cup product
arising from cohomology. This turns persistence modules arising from a
topological filtration into persistence algebras.

Cohomology and cup product

Let R be a ring, X a topological space and let ϕ ∈ Ck(X;R) and ψ ∈
C l(X;R) be two cochains. The cup product ϕ ^ ψ ∈ Ck+l(X;R) is given
by the formula

ϕ ^ ψ(σ) = ϕ(σ|[v0, . . . , vk])ψ(σ|[vk, . . . , vk+l])

where the product is taken in the ring R. This product induces a product
on the cohomological level, also called cup product, which can be expressed
on representatives of cohomology class by the expression above.

For α ∈ Hk(X;R) and β ∈ H l(X;R), the cup product satisfies the
identity α ^ β = (−1)klβ ^ α.

The cup product defines a product on H∗(X;R) in the obvious way,
and therefore H∗(X;R) is actually an R algebra. A ring respecting the
commutativity relation of the cup product written above is said to be graded
commutative. Indeed, the functoriality of the homology functor extends to
the ring structure, and gives a functor from the category of topological spaces
to the category of R-algebras. Thus, given two topological spaces X ⊆ Y ,
we have a ring morphism H(X ⊆ Y ) : H∗(Y ) → H∗(X). The reader can
refer to [34] for the proof of the stated properties.

Construction of the ring structure

We now extend the notion of multidimensional persistent modules defined
in 3.1.1 first studied in [17] to a notion of persistent algebras. This result
also applies to one dimensional persistence.

Let X be a topological space. Let Ft, t ∈ Rn be an n-filtration of X, that
is a collection of subsets of X such that Ft ⊂ Ft′ , ∀t ≤ t′. Let Mt = H∗(Ft)
be the cohomology ring (

⊕
iH

i(Ft),^). Since cohomology is functorial, for
two reals s ≤ t we have a ring morphism M t

s : H∗(Fs)→ H∗(Ft).

Let M be a persistence module indexed on Rn obtained from a filtration
(see Definition 3.1.1). We would like to extend the ring structure of Mt, t ∈
Rn to the whole persistence module M . For t, s ∈ Rn, we define t ∨ s =
(max(t1, s1), . . . ,max(tn, sn)).
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Definition 3.2.6. Let m,n ∈ M be two homogeneous elements with re-
spective degrees s = degm and t = deg n. The cup product of m and n
is

m^ n =
(
xs∨t−s.m

)
^
(
xs∨t−t.n

)
∈Ms∨t

This definition means that given two elements m and n of degree s and
t, we look at the space with the smallest degree in the direct sum

⊕
uMu

where both elements have an image. We then compute the cup product in
this space. Notice that if the two elements have same degree t we end up
computing the usual cup product in Mt.

We now extend this definition to any two elements of the module.

Definition 3.2.7 (Cup product). Let α, β ∈ M . They can be written in a
unique way as α =

∑
ms, β =

∑
nt where ∀s,ms ∈ Ms, ∀t,mt ∈ Mt. The

cup product of these two elements is

α ^ β =
∑
s

∑
t

(
xs∨t−s.ms

)
^
(
xs∨t−t.nt

)
Theorem 3.2.8. (M,^) is a graded-commutative (non-unital) ring.

Proof. The first condition to check is the associativity. Let α =
∑

sms,
β =

∑
t nt and γ =

∑
r wr be three elements of M , and their decomposition

as a sum of homogeneous elements. By associativity of the cup product in
cohomology and of the shifts in degrees, we have :

(α ^ β) ^ γ =

(∑
s

∑
t

(
xs∨t−s.ms

)
^
(
xs∨t−t.nt

))
^
∑
r

wr

=
∑
s

∑
t

∑
r

(
xs∨t∨r−s.ms

)
^
(
xs∨t∨r−t.nt

)
^
(
xs∨t∨r−r.wr

)
=
∑
s

ms ^

(∑
t

∑
r

(
xt∨r−t.nt

)
^
(
xt∨r−r.wr

))
= α ^ (β ^ γ).

We now have a look at the distributivity, taking α, β and γ as above.
We compute the left distributivity, and let the right one to the reader.
Once again, it comes from the (left) distributivity of the cup product in
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cohomology and Definition 3.2.7:

γ ^ (α+ β) =

(∑
r

wr

)
^ (

∑
s∈I

ms +
∑
t∈J

nt)

=

(∑
r

wr

)
^

 ∑
l∈I∩J

(ml + nl) +
∑
s∈I\J

ms +
∑
t∈J\I

nt


by def.

=
∑
r

∑
l∈I∩J

xr∨l−r.wr ^ xr∨l−l.(ml + nl)

+
∑
r

∑
s∈I\J

xr∨s−r.wr ^ xr∨s−s.ms

+
∑
r

∑
t∈J\I

xr∨t−r.wr ^ xr∨t−t.nt

by dist.
=

∑
r

∑
s∈I

xr∨s−r.wr ^ xr∨s−s.ms

+
∑
r

∑
t∈J

xr∨t−r.wr ^ xr∨t−t.nt

=

(∑
r

wr ^
∑
s∈I

ms

)
+

(∑
r

wr ^
∑
t∈J

nt

)
= γ ^ α+ γ ^ β

The last property claimed is that the cup product is graded commutative.
Notice that we are working with two different gradings on M . The first one
is the grading given by the structure of k[Rn] module on M , which to an
element m ∈ Mt associate degm = t. The second one is the homological
dimension. For a given i, M i =

⊕
tH

i(Ft; k) is actually a submodule of M .
We can then rewrite M as a direct sum of submodules

⊕
iM

i. An element
m ∈ M i can be written uniquely as a sum m =

∑
tmt where ∀t,mt ∈

H i(Ft; k). The element m is said to have homology degree degh(m) = i.
This gives us a second grading. The cup product is then graded commutative
respectively to this grading. Indeed, the homology degree of m ∈ M i is
preserved by multiplication by xa ∈ k[Rn]. Therefore, given α =

∑
sms of

homology degree degh α = i, and β =
∑

t nt of homology degree degh β = j,
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we have

α ^ β =

(∑
s

ms

)
^

(∑
t

nt

)
=
∑
s

∑
t

(
xs∨t−s.ms

)
^
(
xs∨t−t.nt

)
=
∑
s

∑
t

(−1)ij
(
xs∨t−t.nt

)
^
(
xs∨t−s.ms

)
= (−1)ij (β ^ α)

Examples

A well known example of two topological spaces whose cohomology groups
are the same but the ring structure given by the cup product allows to
differentiate the spaces is the torus T and the wedge sum X = S2 ∨ S1 ∨ S1

of two circles with a sphere. The cohomology groups of both X and T are
H0 = Z, H1 = Z2, H2 = Z and H i = 0, ∀i ≥ 3. Thus, the two topological
filtrations of T and X given in Figure 3.11 give rise to the same persistence
module. The main point is that the cup product of the cochains given by
each colored circle is zero in the case of X. In the case of the torus, this
product give rise to a generator of the 2-cohomology, and therefore non zero.

S1 ∨ S1S1 ∨ S1

S1S1

S1

S1 S2 ∨ S1 ∨ S1

∅

S1 ∨ S1

S1

S1 S1

S1 S1 ∨ S1

S1 ∨ S1 S1 ∨ S1

T

∅

Figure 3.11: Two topological filtration wich give the same persistence bi-
modules, but two different persistence algebras.



Chapter 4

Decomposition of exact p.f.d.
2-dimensional modules

As we saw in 3.1.5, we cannot expect a general classification of multidimen-
sional persistence modules, since this configuration is wild. In this chapter
based on a previously prepublished article on ArXiv [24] we characterize
the class of persistence modules indexed over R2 that are decomposable into
summands whose support has the shape of a block—i.e. a horizontal band,
a vertical band, an upper-right quadrant, or a lower-left quadrant. Assum-
ing the modules are pointwise finite dimensional (p.f.d.), we show that they
are decomposable into block summands if and only if they satisfy a certain
local property called exactness (see Equation 4.1 and following discussion
below). This can be seen as an extension of the decomposition theorem
introduced in Chapter 2 for 2-dimensional modules (also called bimodules
for short). The proof follows the same scheme as the proof of decomposi-
tion for p.f.d. persistence modules indexed over R. Since the product order
on R2 is not total, the complexity of the proof is increased and some steps
require more direct arguments. This work is motivated primarily by the
stability theory for zigzags and interlevel-sets persistence modules, in which
block-decomposable bimodules play a key part (see Chapter 3). Our results
allow us to drop some of the conditions under which that theory holds, in
particular the Morse-type conditions.

4.1 Main result

In a related work, Carlsson et al. [17], and Botnan [7] show that bimodules
indexed on Z2 respecting our exactness condition can be decomposed like
one dimensional persistence modules. Our result generalizes this property
by considering an indexing over R2. Since this construction arises natu-

71
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rally considering functions (Section 4.6.5), it is a step further toward the
understanding of multidimensional persistence.

The set on which the vector spaces of our modules will be indexed is R2,
equipped with the usual product order:

∀s, t ∈ R2, s ≤ t ⇐⇒ sx ≤ tx and sy ≤ ty.

Given a persistence module M over R2 we will sometimes write ρts, s ≤
t ∈ R2 for its constituent linear maps, when it makes expressions easier to
read. For clarity, ρts will be sometimes renamed vts when sx = tx (‘v’ for
‘vertical’), and hts when sy = ty (‘h’ for ‘horizontal’).

By definition of a persistence bimodule (see Chapter 3), for any s ≤ t ∈
R2 we have the following commutative diagram where the spaces and maps
are taken from M :

M(sx,ty)

ht
(sx,ty) //Mt

Ms
h

(tx,sy)
s

//

v
(sx,ty)
s

OO

M(tx,sy)

vt
(tx,sy)

OO

(4.1)

A module M is called exact if, for every s ≤ t ∈ R2, the following
sequence induced by (4.1) is exact (i.e. Imφ = Kerψ):

Ms

φ=
(
h

(tx,sy)
s , v

(sx,ty)
s

)
//M(tx,sy) ⊕M(sx,ty)

ψ= vt
(tx,sy)

−ht
(sx,ty) //Mt.

Equivalently, whenever a vector in Mt has preimages in both M(tx,sy)

and M(sx,ty), these preimages have a common preimage in Ms.

Remark 4.1.1. Exactness induces two properties, on images and kernels:

ImM t
s = Imht(sx,ty) ∩ Im vt(tx,sy) (4.2)

KerM t
s = Kerh

(tx,sy)
s + Ker v

(sx,ty)
s (4.3)

These properties will be used repeatedly through this chapter.

Remark 4.1.2. Let M∗ designate the dual module obtained by taking
point-wise the dual space M∗t of linear forms Mt → R and (M∗)ts. Since
∗ is functorial, M∗ is well defined as a pfd persistence bimodule. Let ⊥
be the orthogonal operator which associates to a space V the space V ⊥ =
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{f ∈ V ∗ | ∀v ∈ V, f(v) = 0}. We get the relations (ImM t
s)
⊥ = KerM∗st and

(KerM t
s)
⊥ = ImM∗st . Furthermore, (A+B)⊥ = A⊥ ∩B⊥ and (A ∩B)⊥ =

A⊥ + B⊥. This means that the two relations given by exactness can be
understood as, in some weak sense, dual of each other.

Here we are interested in exact p.f.d. bimodules. Our analysis extends
verbatim to exact bimodules that satisfy the ascending and descending chain
conditions on kernels and images.

Block modules

We focus on a special type of rectangles in the plane, called blocks, and we
use cuts (see Chapter 2) to parametrize them.

In Chapter 2 we presented a cut as a partition c of R into two (possibly
empty) sets c−, c+ such that x < y for all x ∈ c− and y ∈ c+.

A non-empty rectangle R in the plane R2 is then uniquely defined by
four cuts: two horizontal (say c and c ), and two vertical (say c and c), so
that R = (c+ ∩ c−)× (c+ ∩ c−). Note that R may not necessarily be open
or closed, in fact the nature of each cut determines which boundaries belong
to the rectangle.

A block is a certain type of rectangle where two of the cuts lie at infinity.
Depending on which ones do so, we have four types of blocks:

• birth quadrants, for which c+ = c+ = ∅; each such block B is then
given by supp(B) = c+ × c+;

• death quadrants, for which c− = c− = ∅; each such block B is given
by supp(B) = c− × c−;

• horizontal bands, for which c− = c+ = ∅; each such block B is given
by supp(B) = R× (c+ ∩ c−);

• vertical bands, for which c− = c+ = ∅; each such block B is given by
supp(B) = (c+ ∩ c−)× R.

Note that these types are not mutually exclusive, for instance R2 itself
belongs to all four of them. In the following, we denote a block by B when
its type is unspecified or irrelevant.

To any block B we associate a unique kB (an interval module) having
a copy of the field k at every point t ∈ supp(B) and zero vector spaces
elsewhere, the copies of k being connected by identities and the rest of the
maps being zero. It is immediate that any such bimodule is both p.f.d.
and exact. Moreover, being exact it is invariant under taking direct sums,
therefore any p.f.d. bimodule that is decomposable into blocks (or block-
decomposable for short) is also exact. Similarily one can associate for any
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v

h

b

d

Figure 4.1: The four different type of blocks.

rectangle R in the plane a rectangle modules whose support is R. Such
modules are p.f.d. but not necessarily exact. A module decomposable into
rectangle is said rectangle-decomposable. Our main result states that the
converse is also true:

Theorem 4.1.3 (Decomposition of exact p.f.d. bimodules). Any exact
p.f.d. bimodule M decomposes as a direct sum of block modules:

M '
⊕

B∈B(M)

kB, (4.4)

where B(M) is some multiset of blocks that depends on M . The decomposi-
tion is unique up to isomorphism and reordering of the terms.

We recall from Chapter 2 that a module M has the ascending chain
condition on images if for any sequence t ≥ · · · ≥ s2 ≥ s1 the chain 0 ⊆
Im ρts1 ⊆ Im ρts2 ⊆ . . . stabilizes. We now introduce the notion of descending
chain: it has the descending chain condition on images if for any sequence t ≥
s1 ≥ s2 ≥ . . . the chain Mt ⊇ Im ρts1 ⊇ Im ρts2 ⊇ . . . stabilizes. Ascending
and descending chain conditions on kernels are defined similarly.

Remark 4.1.4. Theorem 4.1.3 holds more generally for exact bimodules
that satisfy both the ascending and the descending chain conditions on ker-
nels and images. It also holds when the modules are indexed over some open
subset U of R2 that is stable under positive translations (i.e. translations by
vectors with non-negative coordinates) thanks to Kan extensions as shown
in Section 4.6.3.

Thus, among the p.f.d. bimodules, the ones that are block-decomposable
are exactly the ones that are exact. Several applications of this result are
described in Section 4.6. Among them, the study of the stability of zigzags in
the context of interlevel-sets persistence (Section 4.6.5) served as the initial



4.1. MAIN RESULT 75

motivation for this work. Exactness in that setting is ensured by the Mayer-
Vietoris theorem.

Proof outline

The uniqueness of the decomposition is a straightforward consequence of
Azumaya’s Lemma [2], the endomorphism ring of any block module being
isomorphic to k and therefore local.

As in the one dimensional case, we proceed in three steps. Counting
the number of instances of a specific interval module, realizing them as
submodules of the main module, and finally proving that they are all in
direct sum and cover the whole module.

Given a block decomposable persistence module M , and a specific block
B, in Section 4.3 we construct a functor CB that count the number of copies
of kB present in the decomposition of M . Informally, this is done by taking
a vector space representing the vectors ”alive” throughout B quotiented out
by the vectors who already lived before entering B, or died after leaving B

We see this block modules as a submoduleWB ofM . Sections 4.2 and 4.4
of this paper follow [26] for the most part. Section 4.2 provides preliminary
technical material, in particular it shows some important basic properties of
exact bimodules. This material is used later to prove that the submodules
WB of M constructed form an internal decomposition of the module M .

Section 4.5 shows that the submodules WB cover the whole module M ,
i.e. at each point t ∈ R2 their constituent vector spaces WB,t generate the
whole space Mt. For this we use the language of sections1. Specifically,
we define sections for kernels and images independently, then we combine
them into sections for the spaces WB,t. The key idea of Section 4.5 is that
when a family of sections respects a certain property called covering, some
families of complement spaces constructed from this family generate the
whole space. The combination turns out to be trickier to analyze than in
the 1-dimensional case, requiring extra and more direct arguments. This
is mainly because sections for kernels and images are less powerful in 2
dimensions, losing both the disjointness and strong covering properties that
we relied on in Chapter 2 (used heavily in [26]) due to the product order
on R2 being only a partial order. Finally, Section 4.4 shows that the WB

are in direct sum, which is equivalent to checking that their constituent
spaces WB,t at each point t ∈ R2 are in direct sum. For this we have to
use more direct arguments again because the direct sum can no longer be
obtained as a byproduct of the disjointness property of sections.

1As in [26] the word section is used in a non-standard way, it is not a section of a sheaf.
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4.2 Images and kernels

Similarly to the one-dimensional setting [26], the basic ingredients in our
study are certain limits of images and kernels. We begin with restrictions
of the module along the horizontal and vertical axes.

Definition 4.2.1. Let t ∈ R2. We focus on the R-indexed modules {Ms, sy =
ty} and {Mu, ux = tx} obtained by restricting M to the horizontal and ver-
tical lines passing through t. Given a rectangle R = (c+ ∩ c−) × (c+ ∩ c−)
and assuming t ∈ R, we define:

Im−c,t =
⋃
x∈ c−

Imht(x,ty) Im+
c,t =

⋂
x∈ c+, x≤tx

Imht(x,ty)

Ker−c ,t =
⋃

x∈c−, tx≤x

Kerh
(x,ty)
t Ker+

c ,t =
⋂
x∈c+

Kerh
(x,ty)
t

Im−c,t =
⋃
y∈c−

Im vt(tx,y) Im+
c,t =

⋂
y∈c+, y≤ty

Im vt(tx,y)

Ker−c,t =
⋃

y∈c−, ty≤y

Ker v
(tx,y)
t Ker+

c,t =
⋂
y∈c+

Ker v
(tx,y)
t

See Figure 4.2 for an illustration. By convention we let Im−c,t = 0 when

c− = ∅ and Ker+
c,t = Mt when c+ = ∅. Furthermore, we have Im−c,t ⊆ Im+

c,t

and Ker−c,t ⊆ Ker+
c,t whenever the spaces are defined.

We combine the spaces in this definition together to define the notions
of images and kernels2 for a rectangle R :

Im+
R,t := Im+

c,t ∩ Im+
c,t,

Im−R,t := (Im−c,t + Im−c,t) ∩ Im+
R,t

= Im−c,t ∩ Im+
c,t + Im−c,t ∩ Im+

c,t

Ker+
R,t := (Ker+

c ,t + Ker−c,t) ∩ (Ker+
c,t + Ker−c ,t),

= Ker+
c ,t ∩Ker+

c,t + Ker−c ,t + Ker−c,t,

Ker−R,t := Ker−c ,t + Ker−c,t .

(4.5)

Remark finally from (4.5) that we do have the inclusions Im−R,t ⊆ Im+
R,t

and Ker−R,t ⊆ Ker+
R,t for any rectangle R and point t ∈ supp(R).

Remark 4.2.2. It is worth noting that the image and kernel definitions
can be related through duality. Let M∗ be the vector space dual of M .

2Some of the equalities come from the inclusion Im−c ⊆ Im+
c and Ker−c ⊆ Ker+

c . Indeed
U ⊆ U ′ and V ⊆ V ′ implies (U+V )∩(U ′∩V ′) = U∩V ′+V ∩U ′ and (U ′+V )∩(V ′+U) =
U ′ ∩ V ′ + U + V .
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c+c−

c+

c−

Mt
⋃
Imht

s

⋃
Imvts

c+c−

c+

c−

Mt
⋂
Imht

s

⋂
Imvts

c+

c−

c+c−

Mt

⋃
Kervrt

⋃
Kerhr

t

c+

c−

c+c−

Mt

⋂
Kervrt

⋂
Kerhr

t

Figure 4.2: From top to bottom and from left to right: the spaces Im−c,t,

Im+
c,t, Ker−

c ,t
and Ker+

c ,t
.

Since the orthogonal operator ⊥ transform intersection in sum and sum in
intersection, we have the expressions :

Im+
M∗,B =

(
Ker−

M,B⊥

)⊥
Im−M∗,B =

(
Ker+

M,B⊥

)⊥
Ker+

M∗,B =
(

Im−
M,B⊥

)⊥
Ker−M∗,B =

(
Im+

M,B⊥

)⊥

where B⊥ is the block obtained by reversing the horizontal and vertical axis
of B.

We recall a result from the one dimensional case introduced in Chapter 2
which states that the subspaces from Definition 4.2.1 can be realized along
one dimensional restrictions of our bimodule.

Lemma 4.2.3 (Realization). Let M be an exact bimodule with ascending
and descending chain condition on image and kernels. We extend M to
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a representation of the extended plane [−∞,+∞]2 by letting M(±∞,·) =
M(·,±∞) = 0. Then:

Im+
c,t = Imht(x,ty) for some x ∈ c+ ∩ (−∞, tx] and any lower x ∈ c+

Im−c,t = Imht(x,ty) for some x ∈ c− ∪ {−∞} and any greater x ∈ c−

Ker+
c ,t = Kerh

(x,ty)
t for some x ∈ c+ ∪ {+∞} and any lower x ∈ c+

Ker−c ,t = Kerh
(x,ty)
t for some x ∈ c− ∩ [t,+∞) and any greater x ∈ c−

And similarly for the vertical cuts c, c. Note that the spaces Im±c,t and Ker±c,t
mentioned here, which are those of the extension of M , are the same as
those of M since t ∈ R2 and the cuts considered are cuts of R.

Proof. This is Lemma 2.1 from [26], and a direct consequence of the ascend-
ing and descending chain conditions on Mt.

4.3 The counting functor

First, we establish a result on the behavior of the spaces we defined when
transported through the structural morphisms.

Lemma 4.3.1. Let M be a persistence bimodule, and write ρts, s ≤ t its
structural morphisms. Let R = (c+ ∩ c−)× (c+ ∩ c−) a rectangle, s ≤ t two
points in R and /, . ∈ {+,−}. Then

• ρts(Im/
c,R,s ∩ Im.

c,R,s) = Im/
c,R,t ∩ Im.

c,R,t

• ρts−1
(Ker/c ,R,t ∩Ker.c,R,t) = Ker/c ,R,s ∩Ker.c,R,s.

Proof. We extend the module M on the extended plane [−∞,+∞]2 by
M(±∞,.) = M(.,±∞) = 0.

First we consider images. By applying the Realization Lemma 4.2.3 we
obtain x ≤ sx ≤ tx and y ≤ sy ≤ ty (possibly equal to −∞) such that

Im/
c,s = Imhs(x,sy), Im/

c,t = Imht(x,ty),

Im.
c,s = Im vs(sx,y), Im.

c,s = Im vt(tx,y).

We then have the following commutative diagram:
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M(x,ty)
//Mt

M(x,sy)
//

OO

Ms

::

M(x,y)

OO ::

//M(sx,y)

OO

//M(tx,y)

OO

Chasing through this diagram gives:

Imht(x,ty) ∩ Im vt(tx,y)

(Eq. 4.2)
= Im ρt(x,y) = ρts(Im ρs(x,y))

(Eq. 4.2)
= ρts(Imhs(x,sy) ∩ Im vs(sx,y)).

We now consider kernels. The Realization Lemma 4.2.3 gives us x ≥
tx ≥ sx and y ≥ ty ≤ sy (possibly equal to +∞) such that

Ker/c ,s = Kerh
(x,sy)
s and Ker/c ,t = Kerh

(x,ty)
t

Ker.c,s = Ker v(sx,y)
s and Ker.c,s = Ker v

(tx,y)
t

We then have the following commutative diagram:

M(sx,y)
//M(tx,y)

//M(x,y)

Mt
//

OO ::

M(x,ty)

OO

Ms

OO

::

//M(x,sy)

OO

Chasing through this diagram gives:

(ρts)
−1(Kerh

(x,ty)
t + Ker v

(tx,y)
t )

(Eq. 4.3)
= (ρts)

−1(Ker ρ
(x,y)
t ) = Ker ρ(x,y)

s

(Eq. 4.3)
= Kerh

(x,sy)
s + Ker v(sx,y)

s .

The next lemma is an analog of the Lemma 2.1.3.
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Lemma 4.3.2 (Transportation). Let R = (c+∩c−)×(c+∩c−) be a rectangle,
s ≤ t two points in R. Then

• ρts(Im±R,s) = Im±R,t

• ρts−1
(Ker±R,t) = Ker±R,s.

Proof. Using lemma 4.3.1 and properties f(A + B) = f(A) + f(B) and
f−1(A ∩ B) = f−1(A) ∩ f−1(B) of structural morphisms, the result is im-
mediate.

We now look at specific combinations of such spaces that, intuitively,
encode the generators that appear on the bottom and left boundaries of the
block and die on the top and right boundaries.

Let R be a rectangle and let t ∈ supp(B). We define:

V +
R,t = Im+

R,t ∩Ker+
R,t,

V −R,t = Im+
R,t ∩Ker−R,t + Im−R,t ∩Ker+

R,t .
(4.6)

Since Im−R,t ⊆ Im+
R,t and Ker−R,t ⊆ Ker+

R,t, we have V −R,t ⊆ V +
R,t. The space

V +
R,t contains vector from rectangle modules with support R included in M,

up to some other vectors contained in V −R,t. So indeed, we are interested by

the quotient in V +
R,t/V

−
R,t as it corresponds to vectors living in submodules

of M with support R.

These spaces depend on the location t in the rectangle considered, whereas
we would like to have an intrinsic object that does not have this dependency.
The following results will allow us to build such an object. The following
lemma is analog to lemma 2.2.1.

Lemma 4.3.3. Let R be a rectangle. Then, for all s ≤ t ∈ R we have
ρts(V

±
R,s) = V ±R,t. Furthermore, the induced map ρts : V +

R,s/V
−
R,s → V +

R,t/V
−
R,t

is an isomorphism.

Proof. This follows from the transportation lemma (4.3.2). First of all, we
have

ρts(V
+
R,s) = ρts(Im

+
R,s ∩Ker+

R,s) ⊆ ρts(Im+
R,s) ∩ ρts(Ker+

R,s) ⊆ Im+
R,t ∩Ker+

R,t = V +
R,t

ρts(V
−
R,s) = ρts(Im

+
R,s ∩Ker−R,s + Im−R,s ∩Ker+

R,s)

⊆ ρts(Im+
R,s) ∩ ρts(Ker−R,s) + ρts(Im

−
R,s) ∩ ρts(Ker+

R,s)

⊆ Im+
R,t ∩Ker−R,t + Im−R,t ∩Ker+

R,t = V −R,t

Thus, ρts(V
±
R,s) ⊆ V ±R,t and the induced map ρts is well-defined. We will now

show that it is both injective and surjective.
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Surjectivity: Take α ∈ V +
R,t = Im+

R,t ∩Ker+
R,t. Then, α = ρts(β) for some

β ∈ Im+
R,s. But then β ∈ ρts−1

(α) ⊆ ρts
−1

(Ker+
R,t) = Ker+

R,s. Thus, β ∈ V +
R,s

and so ρts(V
+
R,s) = V +

R,t. It follows that the induced map ρts is surjective.

Injectivity: Take α ∈ V +
R,s such that β = ρts(α) ∈ V −R,t. Then, β =

β1 + β2 with β1 ∈ Im−R,t ∩Ker+
R,t and β2 ∈ Im+

R,t ∩Ker−R,t. Then, by the

same reasoning as above, we have β1 = ρts(α1) for some α1 ∈ Im−R,s ∩Ker+
R,s.

Now, ρts(α−α1) = β2 ∈ Ker−R,t so α−α1 ∈ Ker−R,s. Moreover, α−α1 ∈ Im+
R,s,

so α ∈ V −R,s. This implies that the induced map ρts is injective. It also implies

that ρts(V
−
R,s) = V −R,t since we already know that ρts(V

−
R,s) ⊆ V −R,t ⊆ V +

R,t =

ρts(V
+
R,s).

We can now define an intrinsic quotient, independent of the location of
t ∈ R:

CR(M) = lim←−
t∈R

V +
R,t/V

−
R,t (4.7)

By Lemma 4.3.3, this quotient is isomorphic to V +
R,t/V

−
R,t for all t ∈ R.

Moreover, its construction is functorial, since for any morphism of modules
φ : M → N there are canonically induced maps Im±R,t(M)→ Im±R,t(N) and

Ker±R,t(M) → Ker±R,t(N), then V +
R,t/V

−
R,t(M) → V +

R,t/V
−
R,t(N), and CR(φ) :

CR(M) → CR(N) by universality of the limit. Thus, CR is a functor from
the category of p.f.d. bimodules satisfying the equalities of (4.2) and (4.3)
to the category of finite-dimensional vector spaces. This functor is additive
because the inverse limit commutes with direct products, and direct products
coincide with direct sums in the category of pdf bimodules. We refer to CR
as the counting functor associated to the rectangle R because, as we shall
see in the following, what it does is, literally, to count the multiplicity of
the summand kR in the direct-sum decomposition of M . In particular, we
can already prove the following fact (for rectangle modules and therefore
block-modules):

Lemma 4.3.4. Assume M is p.f.d. and decomposes as a direct sum of rect-
angle modules. Then, for any rectangle R, the multiplicity of the summand
kR in the direct-sum decomposition of M is given by dimCR(M).

Proof. Since CR is an additive functor, it is enough to prove the result
on a single summand kR′ . Let us write R = (c+ ∩ c−) × (c+ ∩ c−) and
R′ = (c′+ ∩ c ′−)× (c′+ ∩ c′−).

Suppose first that R′ 6= R. Then, there is a cut that differs between R
and R′, i.e. there is some c ∈ {c, c, c , c} such that c 6= c′. For all t ∈ R,
we then have •+c,t(kR′) = •−c,t(kR′), where • stands for either Im or Ker
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depending on whether c ∈ {c, c} or c ∈ {c , c}. Then, by (4.5) we have
•+R,t(kR′) = •−R,t(kR′), which by (4.6) implies that V +

R,t(kR′) = V −R,t(kR′) and

so V +
R,t(kR′)/V

−
R,t(kR′) = 0, which, taking the inverse limit as in (4.7), gives

CR(kR′) = 0.

Suppose now that R′ = R. For any t ∈ R and c ∈ {c, c, c , c}, we have
•+c,t(kR) = (kR)t ' k and •−c,t(kR) = 0, where • stands for either Im or
Ker depending on whether c ∈ {c, c} or c ∈ {c , c}. Then, by (4.5) we have
Im+

R,t(kR) = Ker+
R,t(kR) = (kR)t ' k while Im−R,t(kR) = Ker−R,t(kR) = 0,

which by (4.6) implies that V +
R,t(kR) = (kR)t ' k while V −R,t(kR) = 0, and

so V +
R,t(kR)/V −R,t(kR) ' k, which, taking the inverse limit as in (4.7), gives

CR(kR) ' k and so dimCR(kR) = 1 as desired.

Submodules

Although dimCR allows us to retrieve the multiplicity of a summand given
a decomposition, it is not enough to prove the existence of such a decompo-
sition. This is why we specify a submodule WR of M for each block R and
exhibit an internal direct-sum decomposition. To define this submodule we
rely on the V ±R,t.

Lemma 4.3.5. For any rectangle R, there exists some set S ⊆ R that is
countable and co-initial for the partial order ≤.

Proof. If there is no minimum in R, then take S = Q2 ∩ supp(R).

Now we can apply the construction of [26] to assign a particular sub-
module WR of M to each rectangle R. The details are the same as in [26,
§ 4-5] but we recall them for completeness.

Consider the inverse limits:

V ±R (M) = lim←−
t∈R

V ±R,t

Letting πt : V +
R (M) → V +

R,t(M) denote the natural map, we can make the
following identification:

V −R (M) =
⋂
t∈R

π−1
t (V −R,t) ⊆ V +

R (M)

The next lemma is the analog to Lemme 2.2.3.

Lemma 4.3.6. For any rectangle R and any point t ∈ R, the induced map
πt : V +

R (M)/V −R (M)→ V +
R,t/V

−
R,t is an isomorphism.
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Proof. Recall from Lemma 4.3.3 that ρts(V
−
R,s) = V −R,t for any s ≤ t ∈ R.

It follows that the Mittag-Leffler condition [32, Chap. 0, (13.1.2)] holds for
the family of spaces {V ±R,t : t ∈ supp(R)}. Thanks to Lemma 4.3.5, the
hypotheses of Proposition 13.2.2 from [32, Chap. 0] hold for the following
system of exact sequences:

0→ V −R,t → V +
R,t → V +

R,t/V
−
R,t → 0 (4.8)

Hence the following sequence is exact:

0→ V −R (M)→ V +
R (M)→ CR(M)→ 0. (4.9)

By Lemma 4.3.3, the ρts are isomorphisms, so the inverse limit lim←−
t∈supp(B)

V +
R,t/V

−
R,t

is isomorphic to V +
R,t/V

−
R,t for all t ∈ supp(R). By uniqueness of the limit,

we obtain the result.

From equation (4.9) we get the following corollary analog to Lemme 2.2.4.

Corollary 4.3.7. The quotient of limits V +
R (M)/V −R (M) is isomorphic to

CR(M).

We now introduce a property that we will be using repeatedly. For an
exact module M and B a block, kernels are included in images as follows:

Lemma 4.3.8. Assume M is pfd and exact. Then, for any fixed t ∈ R2

and block B = (c+ ∩ c−)× (c+ ∩ c−) containing t:

• Ker−c ,t ⊆ Im+
c,t and Ker−c,t ⊆ Im+

c,t.

• If c+ 6= ∅ (resp. c+ 6= ∅ ) then Ker+
c ,t ⊆ Im+

c,t (resp. Ker+
c,t ⊆ Im+

c,t).

• If c− 6= ∅ (resp. c− 6= ∅ ) then Ker−c ,t ⊆ Im−c,t (resp. Ker−c,t ⊆ Im−c,t).

• If both c+ 6= ∅ 6= c− (resp. c+ 6= ∅ 6= c−) then Ker+
c ,t ⊆ Im−c,t (resp.

Ker+
c,t ⊆ Im−c,t).

Proof. All four cases are proven by the same argument. We detail here the
first case. The Realization Lemma 4.2.3 tells us that there exist finite values
x ≥ tx and y ≤ ty such that Ker−c ,t = Kerh

(x,ty)
t and Im+

c,t = Im vt(tx,y). We
then have the following exact square:

Mt
//M(x,ty)

M(tx,y)
//

OO

M(x,y)

OO

The exactness of this square implies that every α ∈ Kerh
(x,ty)
t has a common

antecedent β ∈ M(tx,y) with 0 ∈ M(x,y), meaning that α = vt(tx,y)(β) ∈
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Im vt(tx,y). Therefore, Ker−c ,t ⊆ Im+
c,t. The inclusion Ker−c,t ⊆ Im+

c,t is obtained
symmetrically, with the Realization Lemma 4.2.3 giving some finite x ≤ tx
and y ≥ ty such that Ker−c,t = Ker v

(tx,y)
t and Im+

c,t = Imht(x,ty).

The next construction will be fundamental to our argument. We know
how to prove it for blocks, but not for rectangle.

Proposition 4.3.9. Assume M is exact. Then, for each block B there is a
vector space W 0

B complement of V −B (M) in V +
B (M) such that the family of

subspaces defined by

(WB)t =

{
πt(W

0
B) (t ∈ B)

0 (t /∈ B)

defines a submodule WB of M .

Proof. Given an arbitrary block B, let us first observe that, whatever choice
of subspace W 0

B we make such that V +
B (M) = W 0

B ⊕ V −B (M), the following
properties will be satisfied:

• For any s ≤ t both sitting in B, ρts((WB)s) ⊆ (WB)t. This is because
ρts ◦ πs = πt by definition of π.

• For any s ≤ t such that s /∈ B and t ∈ B, ρts((WB)s) = ρts(0) = 0 ⊆
(WB)t.

There only remains to show that, for a suitable choice of the subspace W 0
B,

we also have ρts(πs(W
0
B)) = 0 for all s ≤ t with s ∈ B and t /∈ B. For this

we let B = (c+ ∩ c−) × (c+ ∩ c−) and we distinguish between the various
block types:

Case B is a birth quadrant (possibly with c− = ∅ or c− = ∅). Then
any choice of W 0

B works trivially, because there are no indices s ≤ t with
s ∈ B and t /∈ B.

Case B is a death quadrant and not a band (c+, c+ 6= ∅). Then
we will enforce πs(W

0
B) ⊆ Ker+

c ,s ∩Ker+
c,s for every s ∈ B, which will imply

that ρts(πs(W
0
B)) ⊆ ρts(Ker+

c ,s ∩Ker+
c,s) = 0 for every t ≥ s with t /∈ B. Let

then K+
B,s = Ker+

c ,s ∩Ker+
c,s for each s ∈ B, and consider the system formed

by these vector spaces with the transition maps ρus for s ≤ u ∈ B. Since
K+
B,s ⊆ Im+

B,s by Lemma 4.3.8, we have K+
B,s ⊆ V +

B,s and so the inverse limit

K+
B (M) of the system can be identified as follows:

K+
B (M) = lim←−

s∈B
K+
B,s =

⋂
s∈B

π−1
s (K+

B,s) ⊆ V +
B (M)
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We claim that V −B (M) +K+
B (M) = V +

B (M). Indeed, this equality holds at
every index s ∈ B because K+

B,s ⊆ Im+
B,s:

V +
B,s = Im+

B,s ∩(Ker−B,s +K+
B,s) = Im+

B,s ∩Ker−B,s +K+
B,s = V −B,s +K+

B,s.

In other words, at every index s ∈ B we have the following exact sequence:

0 // V −B,s ∩K+
B,s

α 7→(α,−α) // V −B,s ⊕K+
B,s

(α,β)7→α+β // V +
B,s

// 0

Thus, we have an exact sequence of systems. Since every space V −B,s ∩
K+
B,s is finite-dimensional, the Mittag-Leffler condition is satisfied and so,

by Proposition 13.2.2 of [32, Chap. 0], the limit sequence is exact:

0 // V −B (M) ∩K+
B (M) // V −B (M)⊕K+

B (M) // V +
B (M) // 0

It follows that V −B (M)+K+
B (M) = V +

B (M). We can then choose3 our vector
space complement W 0

B(M) inside K+
B (M), which ensures that πs(W

0
B) ⊆

K+
B,s for every s ∈ B.

Case B is a horizontal band and not a birth quadrant (c+ 6= ∅).
Then we will enforce πs(W

0
B) ⊆ Im+

c,s ∩Ker+
c,s for every s ∈ B, which will

imply that ρts(πs(W
0
B)) ⊆ ρts(Ker+

c,s) = 0 for every t ≥ s with t /∈ B. Let

then K+
B,s = Im+

c,s ∩Ker+
c,s for each s ∈ B. We have:

V +
B,s = Im+

B,s ∩Ker+
B,s = Im+

c,s ∩ Im+
c,s ∩(Ker−c ,s + Ker+

c,s).

Since Ker−c ,s ⊆ Im+
c,s and Ker−c,s ⊆ Ker+

c,s ⊆ Im+
c,s by Lemma 4.3.8, we get:

V +
B,s = Im+

c,s ∩Ker−c ,s + Im+
c,s ∩Ker+

c,s = Im+
c,s ∩Ker−c ,s +K+

B,s.

Meanwhile, we have:

V −B,s = Im+
B,s ∩Ker−B,s + Im−B,s ∩Ker+

B,s

= Im+
c,s ∩ Im+

c,s ∩(Ker−c ,s + Ker−c,s) + Im−B,s ∩Ker+
B,s

= Im+
c,s ∩Ker−c ,s + Im+

c,s ∩Ker−c,s + Im−B,s ∩Ker+
B,s ⊇ Im+

c,s ∩Ker−c ,s .

Hence, V −B,s +K+
B,s = V +

B,s. By the same argument as in the previous case,

we deduce that the limits satisfy V −B (M)+K+
B (M) = V +

B (M). We can then
choose our vector space complement W 0

B(M) inside K+
B (M), which ensures

that πs(W
0
B) ⊆ K+

B,s for every s ∈ B.

3This is done by a finite induction since V +
B (M)/V −B (M) is finite-dimensional by

Lemma 4.3.6.
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Case B is a vertical band and not a birth quadrant (c+ 6= ∅). This
case is symmetric to the previous one.

Remark 4.3.10. Since we have chosen W 0
B such that V +

B (M) = V −B (M)⊕
W 0
B, for every t ∈ B we have W 0

B

πt' (WB)t and V +
B,t = V −B,t ⊕ (WB)t by

Lemma 4.3.6.

Assuming that M decomposes as a direct sum of block modules, we have
by construction and Lemma 4.3.4 that dimW 0

B = dimCB(M) is equal to the
multiplicity of the summand kB in the decomposition of M . More generally,
assuming merely that M is p.f.d. and satisfies (4.2, 4.3), we have:

Lemma 4.3.11. WB is isomorphic to a direct sum of copies of the block
module kB.

Proof. Take a basis B of W 0
B. For each b ∈ B, the element πt(b) is non-zero

and π satisfies ρts(πs(b)) = πt(b) for all s ≤ t, so π spans a submodule S(b)
of WB that is isomorphic to kB. Now, for all t the family {πt(b) : b ∈ B} is
a basis of WB,t, so WB =

⊕
b∈B S(b).

4.4 Sections and direct sum

We now show that the summands WB are in direct sum (Propositions 4.4.2
and 4.4.3), which constitute half the proof of Theorem 4.1.3. For this step
we use the concept of sections and disjointness as in [26] (see Chapter 2),
however we combine it with more direct arguments.

We recall the following results from [26], also mentioned in Chapter 2

Lemma 4.4.1. Given a fixed t ∈ R2, each of the families {(Im−c,t, Im+
c,t) :

c+ 3 ty}, {(Ker−c,t,Ker+
c,t) : c− 3 ty}, {(Im−c,t, Im+

c,t) : c+ 3 tx}, and

{(Ker−c ,t,Ker+
c ,t) : c− 3 tx} is disjoint in Mt.

Note that this results and Lemma 2.3.2 do not allow us to conclude
directly as in [26], because in our case the full family of sections is not
disjoint. In fact the subfamily indexed by the birth quadrants is already not
disjoint — the reader can refer to Example 4.5.5 for a counterexample. This
means that we need a special treatment to establish the direct sum.

From now on, let t ∈ R2 be fixed. The proof that the family of subspaces
{WB,t : supp(B) 3 t} is in direct sum is divided into two parts: first, we
show that, for each individual block type, the associated subfamily is in
direct sum (Proposition 4.4.2); second, we show that the sum is also direct
across block types (Proposition 4.4.3).
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We introduce the family Ft = {(F−B,t, F+
B,t) : supp(B) 3 t}, where the

spaces F±B,t are defined as follows:

F+
B,t = Im−B,t +V +

B,t = Im−B,t + Ker+
B,t ∩ Im+

B,t,

F−B,t = Im−B,t +V −B,t = Im−B,t + Ker−B,t ∩ Im+
B,t .

(4.10)

The reason is purely technical: it is somewhat easier to work with the
spaces F±B,t than with the spaces V ±B,t because their definitions are more
symmetric. Since we have:

WB,t ∩ F−B,t = WB,t ∩ V +
B,t ∩ F−B,t = WB,t ∩ (V −B,t + V +

B,t ∩ Im−B,t)

⊆WB,t ∩ V −B,t = 0,

we deduce F+
B,t = WB,t⊕F−B,t. This allows us to consider either F±B,t or V ±B,t

when it comes to prove properties of the spaces WB,t.

Proposition 4.4.2. For any fixed block type (horizontal band, vertical band,
birth quadrant and death quadrant), the summands WB,t are in direct sum.

Proof. We focus on each block type individually:

1. Horizontal bands (including ones that extend to infinity verti-
cally, either upwards or downwards or both) Let c denote the trivial
horizontal cut with c− = ∅. By Lemma 4.4.1, the family {(Im−c,t, Im+

c,t) :
c+ 3 ty} is disjoint. It follows, by intersecting all the spaces of this disjoint
family with Im+

c,t, that {(Im−c,t ∩ Im+
c,t, Im

+
c,t ∩ Im+

c,t) : c+ 3 ty} is also dis-

joint. By definition this is the same family as {(Im−B,t, Im+
B,t) : supp(B) 3

t, B a horizontal band}. Then, by Lemma 2.3.2 the family {(F−B,t, F+
B,t) :

supp(B) 3 t, B a horizontal band} itself is disjoint. Hence, by Lemma 2.3.1
the family of subspaces {WB,t : supp(B) 3 t} is in direct sum.

2. Vertical bands (including ones that extend to infinity horizon-
tally, either to the left or to the right or both) The treatment is
symmetric.

3. Death quadrants (including ones that extend to infinity up-
wards or to the right or both) Take any finite family of distinct
death quadrants B1, · · · , Bn whose supports contain t. Because they are
all distinct, there must be one of them (say B1) whose support is not in-
cluded in the union of the other supports. Hence there is some r ≥ t such
that r ∈ supp(B1) \ ⋃i>1 supp(Bi). Now, suppose there is some relation∑n

i=1 xi = 0 with xi ∈ WBi nonzero for all i. Then, by linearity of ρrt we
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have
∑n

i=1 ρ
r
t (xi) = 0. But each xi with i > 1 is sent to zero through ρrt be-

cause r lies outside the support of Bi. Hence, ρrt (x1) = −∑n
i=2 ρ

r
t (xi) = 0.

Meanwhile, we have ρrt (x1) 6= 0 because the restriction of ρrt to WB1 is
injective by Lemma 4.3.11. This raises a contradiction.

4. Birth quadrants (including ones that extend to infinity down-
wards or to the left or both) All we need to prove is that, for any finite
family of distinct birth quadrants B1, · · · , Bn, there is at least one of them
(say B1) whose corresponding subspace WB1,t ⊆ Mt is in direct sum with
the ones of the other quadrants in the family. The result follows then from
a simple induction on the size n of the family.

Let then B1, · · · , Bn be such a family. Each quadrant Bi is delimited to
the left by a horinzontal cut ci and to the bottom by a vertical cut ci. Up
to reordering, we can assume that B1 has the rightmost horizontal cut and,
in case of ties, it has the uppermost vertical cut among the quadrants with
the same horizontal cut. Formally:

c+
1 ⊆

n⋂
i=2

c+
i

c+
1 ⊆

⋂
i>1
ci= c1

c+
i

It follows that (the support of) B1 contains none of the other quadrants.
Those can be partitioned into two subfamilies: the ones (say B2, · · · , Bk)
contain B1 strictly, while the others (Bk+1, · · · , Bn) neither contain B1 nor
are contained in B1. See Figure 4.3 for an illustration. We analyze the two
subfamilies separately.

Bk+1

B1

Bk

B3

Bn

B2

MtB̃

B

Figure 4.3: Birth quadrants partitioned into two subfamilies

For every i ∈ (1, k], we have both c+
i ⊇ c+

1 and c+
i ⊇ c+

1 , moreover we
have either c+

i ) c+
1 or c+

i ) c+
1 or both. It follows that Im+

ci,t
⊆ Im+

c1,t
and

Im+
ci,t
⊆ Im+

c1,t
, moreover either Im+

ci,t
⊆ Im−c1,t or Im+

ci,t
⊆ Im−c1,t or both.
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Hence,

Im+
Bi,t

= Im+
ci,t
∩ Im+

ci,t
⊆ Im+

c1,t
∩ Im−c1,t + Im−c1,t ∩ Im+

c1,t
= Im−B1,t

.

Summing over i = 2, · · · , k we obtain:

k∑
i=2

Im+
Bi,t
⊆ Im−B1,t

. (4.11)

For every i ∈ (k, r], we have c+
i ) c+

1 and c+
i ( c+

1 . Let B̃ be the quadrant
whose support is the intersection of Bk+1, · · · , Bn. We then have c̃+ ) c+

1

and c̃+ ( c+
1 , which means that B̃ neither contains B1 nor is contained in B1.

Let now B be the smallest quadrant containing both B1 and B̃ — this new
quadrant strictly contains them. It follows from the same arguments as in
the case i ∈ (1, k] that

Im+
B1,t
∩
(

n∑
i=k+1

Im+
Bi,t

)
⊆ Im+

B1,t
∩ Im+

B̃,t
= Im+

B,t ⊆ Im−B1,t
. (4.12)

Combining (4.11) and (4.12), we obtain:

WB1,t ∩
(

k∑
i=2

WBi,t +
n∑

i=k+1

WBi,t

)
⊆ Im+

B1,t
∩
(

k∑
i=2

Im+
Bi,t

+
n∑

i=k+1

Im+
Bi,t

)

=
k∑
i=2

Im+
Bi,t

+ Im+
B1,t
∩
(

n∑
i=k+1

Im+
Bi,t

)
⊆ Im−B1,t

⊆ F−B1,t
,

which is itself in direct sum with WB1,t. Hence the result.

To establish the direct sum across block types, we adopt the following
convention regarding blocks that belong to more than one type:

• All the blocks whose support extends to infinity both upwards and to
the right are assigned to the birth quadrants.

• Among the remaining blocks, the ones whose support extends to infin-
ity upwards are assigned to the vertical bands, while the ones whose
support extends to infinity to the right are assigned to the horizontal
bands.

Proposition 4.4.3. Under the previous convention, the subspaces ⊕B:birthWB:birth,t,
⊕B:vbandWB:vband,t, ⊕B:hbandWB:hband,t and ⊕B:deathWB:death,t are in direct
sum.

Proof. We order the block types as follows: birth quadrants, vertical bands,
horizontal bands, death quadrants. We will prove that the summands of
each block type are in direct sum with the summands of the following block
types in the sequence.



90CHAPTER 4. DECOMPOSITION OF EXACT P.F.D. 2-DIMENSIONAL MODULES

1. Birth quadrants Suppose that( ⊕
B:birth

WB,t

)
∩
( ⊕
B:vband

WB,t +
⊕

B:hband

WB,t +
⊕

B:death

WB,t

)
6= 0,

where by our convention we treat all the blocks extending to infinity both
upwards and to the right as birth quadrants. Take then a nonzero vec-
tor x in the intersection. It can be written as a linear combination of
nonzero vectors x1, · · · , xn taken from the summands of finitely many birth
quadrants (B′1, · · · , B′n), but also as a linear combination of nonzero vectors
y1, · · · , ym taken from the summands of finitely many blocks of other types
(B′1, · · · , B′m):

∑n
i=1 xi = x =

∑m
j=1 yj .

Pick a point r ≥ t ∈ R2 that is large enough so that it lies outside the
supports of the blocks B′1, · · · , B′m. Such a point r exists because, by our
convention, none of the blocks B′1, · · · , B′m extends to infinity both upwards
and to the right. Meanwhile, r still lies in the supports of the birth quadrants
B1, · · · , Bn. Let us then consider the image of x in Mr through the map
ρrt . On the one hand it is zero since ρrt (yj) = 0 for all j. On the other
hand it is nonzero since the restriction of ρrt to

⊕n
i=1WBi,t is injective by

Lemma 4.3.11 and Proposition 4.4.2. This raises a contradiction.

2. Vertical bands Suppose that( ⊕
B:vband

WB

)
∩
( ⊕
B:hband

WB +
⊕

B:death

WB

)
6= 0,

where by our convention we treat the blocks extending to infinity upwards
as vertical bands4. Then we can reproduce the reasoning of case 1. Take a
nonzero vector x in the intersection and decompose it as a sum of nonzero
vectors taken from the summands of vertical bands on the one hand, as
a sum of nonzero vectors taken from the summands of horizontal bands or
death quadrants on the other hand. Pick then a point r ≥ t with rx = tx and
with ry large enough so that r lies outside the supports of all the horizontal
bands and death quadrants involved in the decomposition of x. By looking
at the image ρrt (x) ∈Mr we can raise the same contradiction as in case 1.

3. Horizontal bands. They are treated symmetrically to the vertical
bands.

4The horizontal bands extending to infinity upwards have already been taken care of
in case 1.
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4.5 Sections and covering

In this section we show that, assuming our module M is exact, the sub-
modules WB, for B ranging over all blocks, cover the whole module M
(Corollary 4.5.6). Notice that a rectangle module kR is exact if and only if
R is actually a block. Therefore, only the WB with B a block are non zero
and need to be considered. For this we use the notion of covering introduced
in Chapter 2. From Chapter 2 we can extract the following result.

Lemma 4.5.1. Suppose that {(F−λ , F+
λ ) : λ ∈ Λ} is a family of sections that

covers U . For each λ ∈ Λ, let Wλ be a subspace with F+
λ = Wλ⊕F−λ . Then,

U =
∑

λ∈ΛWλ.

In light of Lemma 4.5.1 and Remark 4.3.10, given a fixed t ∈ R2 we
want to show that the family of sections Vt = {(V −B,t, V +

B,t) : B 3 t}
covers Mt. Nevertheless, we will use another family instead, the family
Ft = {(F−B,t, F+

B,t) : supp(B) 3 t} introduced previously through Equa-

tion 4.10. Since F+
B,t = WB,t ⊕ F−B,t, we can work with either Vt or Ft to

show the coverage of M by the submodules WB.

Let us try to follow the same strategy as in the 1-dimensional setting [26]
to show that Ft is a covering family. Consider the following ‘elementary’
families:

It =
{

(Im−B,t, Im
+
B,t) : B 3 t

}
,

Kt =
{

(Ker−B,t,Ker+
B,t) : B 3 t

}
.

we have:

WB,t ∩ F−B,t = WB,t ∩ V +
B,t ∩ F−B,t = WB,t ∩ (V −B,t + V +

B,t ∩ Im−B,t)

⊆WB,t ∩ V −B,t = 0,

therefore F+
B,t = WB,t ⊕ F−B,t.

We want to apply the following result from Chapter 2 to combine these
two families into the family Ft and show that the latter still cover Mt:

Lemma 4.5.2. If {(F−λ , F+
λ ) : λ ∈ Λ} is a family of sections that covers U ,

and {G−σ , G+
σ ) : σ ∈ Σ} is a family of sections that strongly covers U , then

the following family covers U :

{(F−λ +G−σ ∩ F+
λ , F

−
λ +G+

σ ∩ F+
λ ) : (λ, σ) ∈ Λ× Σ}.

Unfortunately, applying this lemma is not possible here, because, while
the family It does cover Mt (Proposition 4.5.3), it does not strongly cover
it (Example 4.5.5). Futhermore, Kt does not always cover Mt.
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Proposition 4.5.3. The family It covers Mt, more precisely: for any X (
Mt there are two cuts c and c such that t ∈ c+× c+ and Im−B,t ⊆ X + Im+

B,t

for any block B = (c+ ∩ •)× (c+ ∩ •).
The proof of this result relies on the strong covering properties of im-

ages and kernels induced by horizontal and vertical cuts. Indeed, by re-
stricting the module M to the horizontal or vertical line passing through t,
we have from [26] that each of the four families {(Im−c,t, Im+

c,t) : c+ 3 tx},
{(Ker−c ,t,Ker+

c ,t) : c− 3 tx}, {(Im−c,t, Im+
c,t) : c+ 3 ty}, and {(Ker−c,t,Ker+

c,t) :
c− 3 ty} strongly covers Mt, more precisely:

Lemma 4.5.4. For any subsets Y ( Mt and Z * Y , there is a horizontal
cut c with tx ∈ c+ such that Im−c,t ∩Z ⊆ Y + Im+

c,t ∩Z. Similarly, there is

a vertical cut c with ty ∈ c+ such that Im−c,t ∩Z ⊆ Y + Im+
c,t ∩Z. Same for

kernels.

Proof of Proposition 4.5.3. Let X be a subset of Mt. We apply Lemma 4.5.4
with Z = Mt to get a cut c such that tx ∈ c+ and Im−c,t ⊆ X + Im+

c,t.

We then apply this lemma again with Z = Im+
c,t to get a cut c such that

ty ∈ c+ and Im−c,t ∩ Im+
c,t ⊆ X + Im+

c,t ∩ Im+
c,t. Now, take any block B =

(c+ ∩ •)× (c+ ∩ •) containing t. Then:

Im+
B,t = Im+

c,t ∩ Im+
c,t * X

Im−B,t = Im−c,t ∩ Im+
c,t + Im−c,t ∩ Im+

c,t

⊆ Im−c,t + Im−c,t ∩ Im+
c,t ⊆ X.

Thus, It covers Mt.

Example 4.5.5 (see Figure 4.4 for an illustration). Take for M the direct
sum of the modules associated with two birth quadrants B and B′ whose
lower-left corners are not comparable in the product order on R2 (see Fig-
ure 4.4 for an illustration). Take t in the intersection of the two quadrants.
Call β a generator of the 1-dimensional subspace of Mt spanned by B, and
call β′ a counterpart for B′. Then, take X = 0, and for Z take the lin-
ear span of β + β′. Since Z is 1-dimensional, for any block C such that
Im+

C,t ∩Z 6= 0, Im+
C,t must contain at least Z, therefore C must be included

in B∩B′. But then Im−C,t = Im+
C,t = Mt 6= 0, which means that the family It

does not strongly cover Mt.

From Example 4.5.5 it follows that Lemma 4.5.2 cannot be applied
with It and Kt. This calls for a different approach to prove that Ft cov-
ers Mt.

Consider the submodule L = Im+
R2 of M, given at every point t ∈ R2

by Lt = Im+
R2,t

. By transportation lemma this submodule has surjective

interval morphism (although this property will not be used).
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B

B′

< β >

< β′ >

Mt ⊇ Z =< β + β′ >

Figure 4.4: Two incomparable birth quadrants.

Consider now the submodule N = Im+
R2 ∩Ker−R2 , given at every point

t ∈ R2 by Nt = Im+
R2,t
∩ Ker−R2,t

. It turns out that

L = Im+
R2 = V +

R2 = F+
R2

and
N = Im+

R2 ∩Ker−R2 = V −R2 = F−R2 .

Therefore, by definition of WR2 we have L = N ⊕WR2 .

We first prove that we can generate the whole space with N and a sub-
collection of WB. We designate by strict bands the vertical and horizontal
bands with two non-trivial cuts. This are the bands which are not birth or
death quadrant at the same time.

Proposition 4.5.6.

M = N +

 ⊕
B:strict band

WB

⊕
B:birth quadrant

WB

 .

Notice the direct sum includes also WR2.

Proof. First recall that Lt = Nt+WR2,t. Suppose thatX := Lt+
∑

B: not death

WB,t (

Mt.

Since the family It is covering, we can find two cuts c, c such that

Im−c,c,t ⊆ Lt +
∑

B: not death

WB,t,

Im+
c,c,t 6⊆ Lt +

∑
B: not death

WB,t.

Now, notice that (c, c) cannot be part of a death quadrant. Indeed, for
(c, c) both trivial we have Im+

c,c,t = Im+
c ∩ Im+

c = Lt ⊆ X.

We now consider the three different configurations that can arise for the
cuts (c, c) and show that in each case we can find a block B such that we
have F−B,t ⊆ X 6⊇ F+

B,t.
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1 Both c and c are nontrivial (c− 6= ∅ and c− 6= ∅). Then take (c , c) both
trivial to form a birth quadrant B, and by Lemma 4.3.8 we have:

F+
B,t = Im−B,t + Im+

B,t ∩Ker+
B,t = Im−B,t + Im+

B,t ∩Mt = Im+
B,t * X

F−B,t = Im−B,t + Im+
B,t ∩Ker−B,t = Im−B,t ⊆ X.

2 c is trivial while c is nontrivial. Then, (c, c) is part of an horizontal
band B, possibly extending to infinity upwards. Take c trivial. In order
to determine the upper limit of the band precisely, we invoke the strong
covering property of kernels on restrictions to vertical lines (Lemma 4.5.4),
which gives us a pair (Ker−c,t,Ker+

c,t) such that5:

Im−c,t ∩ Im+
c,t + Im+

c,t ∩ Im+
c,t ∩Ker+

c,t * X

Im−c,t ∩ Im+
c,t + Im+

c,t ∩ Im+
c,t ∩Ker−c,t ⊆ X.

Note that the cut c may be trivial (c+ = ∅), in which case we have Ker+
c,t =

Mt. In any case, the same argument as in the proof of Lemma 4.3.8 gives
Ker−c,t ⊆ Im+

c,t and Ker−c ,t ⊆ Im−c,t ⊆ Im+
c,t, where c is the trivial horizontal

cut with c+ = ∅. Then:

F+
B,t = Im−c,t ∩ Im+

c,t + Im+
c,t ∩ Im+

c,t ∩Ker+
c,t * X

F−B,t = Im−c,t ∩ Im+
c,t + Im+

c,t ∩ Im+
c,t ∩(Ker−c,t + Ker−c ,t)

= Im−c,t ∩ Im+
c,t + Im+

c,t ∩ Im+
c,t ∩Ker−c,t + Im+

c,t ∩ Im+
c,t ∩Ker−c ,t

= Im−c,t ∩ Im+
c,t + Im+

c,t ∩ Im+
c,t ∩Ker−c,t ⊆ X.

3 c is nontrivial while c is trivial. Then, (c, c) is part of a vertical band B,
possibly extending to infinity rightwards. This case is symmetric to the
previous one.

Now, consider the space WB,t. We have

WB,t ⊆ X = Lt +
∑

B′: not death

WB′,t.

Therefore F+
B,t = F−B,t ⊕WB,t ⊆ X 6⊇ F+

B,t which is a contradiction.

We now want to replace N in the expression of Proposition 4.5.6 by a
direct sum with blocks.

We start by first breaking the summands in two groups.

5Recall that Im−c,t ∩ Im+
c,t = Im−B,t ⊆ X while Im+

c,t ∩ Im+
c,t = Im+

B,t * X.
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Proposition 4.5.7.

(N +
⊕

B:strict band

WB) ∩ (
⊕

B:birth quadrant

WB) = 0.

Notice that the birth quadrants include those with lower left corner at infin-
ity, horizontally, vertically, or both.

Proof. Suppose the contrary and let t ∈ R2 be such that the intersection at
location t is not trivial. Then, there are α 6= 0 ∈ Nt, x1 6= 0 ∈WB1,t, . . . xr 6=
0 ∈ WBr,t (where the blocks are strict bands), y1 6= 0 ∈ WB1,t, . . . ys 6= 0 ∈
WBs,t (where the blocks are quadrants), such that α+

∑
i xi =

∑
j yj .

Now, the strict bands being not birth quadrants, and α being in Ker−R2,t
,

there exists u > t such that ρut (α+
∑

i xi) = 0. However, for birth quadrants
we have ρut (

∑
j yj) 6= 0. This is a contradiction.

We now look at the specific case of the submodule N , which is as we saw
before closely related to L.

Proposition 4.5.8.

N ∩ (
⊕

B:strict bands

WB) = 0

Proof. Since N ⊆ L, it is sufficient to show that L ∩ (
⊕

B:strict bands

WB) = 0.

Suppose the contrary. Let t ∈ R2 such that the intersection at location t is
non trivial. Then, there is α ∈ Lt
{0}, x1 6= 0 ∈ B1, . . . , xs 6= 0 ∈ Bs strict bands such that α =

∑
i xi.

Assume without loss of generality that B1, . . . Br are horizontal bands and
Br+1, . . . Bs are vertical bands. We have

α−
r∑
i=1

xi =

s∑
i=r+1

xi.

Let u ≥ t with uy = ty and u 6∈ Bj ∀j = r + 1, . . . , s. Such a u exists since
the Bj are vertical bands and not birth quadrants. Then:

∀j = r + 1, . . . , s, ρut (xj) = 0⇒ β := ρut (α) =

r∑
i=1

ρut (xi) 6= 0

since the xi are linearly independent and belong to horizontal bands which
do not go to 0 at u.
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Hence:

Lu ∩ (
⊕

B:strict bands

MB,u) 6= 0.

Now, β ∈ Lu = Im+
R2,u

= F+
R2,u

while each ρut (xi) for 1 ≤ i ≤ r belongs

to MBi,u such that F−Bi,u
⊕
WBi,u = F+

Bi,u
. Since the Bi are not death

quadrants, we have F+
R2,u

= Im+
R2,u
⊆ Im−Bi,u ⊆ F

−
Bi,u

.

Since by Lemma 2.3.2 the family

{(F−R2,u
, F+

R2,u
)} ∪ {(F−B,u, F+

B,u) : B strict band}

is disjoint, MR2,u and MBi,u are in direct sum. But since (F−R2,u
, F+

R2,u
) is

the minimum of the family, we have in fact that F+
R2,u

and the WBi,u are in
direct sum.

Then, β = 0 and ρut (xi) = 0, ∀i, which implies xi = 0,∀i, and so α = 0
which contradicts our initial assumption.

We can now combine our previous results to obtain a direct sum with N
generating the whole module M .

Corollary 4.5.9.

M = N ⊕

 ⊕
B: strict band

WB ⊕
⊕

B: birth quadrant

WB


Proof. It follows from Propositions 4.5.6, 4.5.7 and 4.5.8.

The last remaining thing to do is to understand the structure of the
sub-module N . As we can expect, it is composed of the remaining death
quadrants (plus possibly some bands).

Lemma 4.5.10. The module N is p.f.d. and exact.

Proof. The fact that N is p.f.d. is immediate as a submodule of the p.f.d.
module M .

We show the exactness. Let s ≤ t ∈ R2. Let δ ∈ Nt such that
vt(tx,sy)(β) = δ = ht(sx,ty)(γ) for some β ∈ N(tx,sy) and γ ∈ N(sx,ty). Then, by

exactness of M , ∃α ∈ Ms such that β ∈ h(tx,sy)
s (α) and γ = v

(sx,ty)
s (α). By

transportation lemma on M , we have α ∈ (ρts)
−1(Ker−

(M,R2,t)
) = Ker−

(M,R2,s)
.

Let us show that α also belong to Im+
(M,R2,s)

which will conclude the proof.
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γ ∈M(sx,ty)
//Mt 3 δ

α ∈Ms
//

OO

M(tx,sy) 3 β

OO

αu ∈Mu
//

OO

M(tx,uy) 3 βu

OO

Figure 4.5: Diagram with spaces considered

Let u ≤ s such that ux = sx (see Figure 4.5). Since β ∈ Im+
M,R2,(tx,sy)

⊆
Im+

M,∞,(tx,sy), there exists βu ∈M(tx,uy) such that v(βu) = β. By exactness of

M , there exists αu ∈Mu such that vsu(αu) = α and h
(tx,uy)
u (αu) = βu. Hence

α ∈ Im vsu. Since this is true for every u ≤ s with ux = sx, we conclude that
α ∈ Im+

M,∞,s. Symmetrically, α ∈ Im+
M,∞,s, and so α ∈ Im+

M,R2,s
. Finally

α ∈ Im+
M,R2,s

∩Ker−
(M,R2,s)

= Ns.

Proposition 4.5.11.

N '
⊕
i∈I

kBi

where the sum is on the blocks Bi which are not a birth quadrant. This
includes band starting at a finite location or at infinity, and death quadrants.

Proof. First, take N∗ the dual module of N . Since the operator which
associates to a vector space its linear form is functorial, N∗ comes with a
structure of bimodule on (Rop)2 ' R2.

Since N is exact (by Lemma 4.5.10), every rectangle

C
δ // D

A

β

OO

α // B

γ

OO

in N is exact, i.e. the sequence

A
Φ=(α,β)// B ⊕ CΨ=γ−δ // D

is exact.

Since the dual operator ∗ is an additive and exact functor, the sequence

A B ⊕ CΦ∗oo D
Ψ∗oo
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with Φ∗ = α∗ − β∗ and Ψ∗ = (γ∗,−δ∗) is also exact. This implies that
indeed, N∗ is an exact p.f.d. module.

We consider the othogonal operator ⊥ on subspaces of Nt. Since this op-
erator sends sums to intersections and kernels to images, we have Im+

N∗,R2 =(
Ker−

N,R2

)⊥
= N⊥ = 0.

Therefore, by Corollary 4.5.9,

N∗ =
⊕
i∈I

kB′i

where the B′i are blocks that are not death quadrants in (Rop)2.

By additivity

N '
⊕
i∈I

(kB′i)
∗ '

⊕
i∈I

(kBi)

where each Bi is the same block as B′i with the orientation of arrows reversed.
Therefore, Bi is not a birth quadrant in R2.

We finally obtain the expected decomposition:

Corollary 4.5.12.

M =
⊕
B

WB

Proof. Thanks to Corollary 4.5.9 and Proposition 4.5.11 we knows that M
decomposes as a direct sum of blocks modules. Now, since the WB are in
direct sum, Lemma 4.3.4 ensures that each WB has pointwise dimension
equal to dimCB(M), which counts each summand of the decomposition
exactly once.

This proves Theorem 4.1.3.

4.6 Extensions and Applications

4.6.1 Barcodes and stability for exact pfd bimodules

Thanks to Theorem 4.1.3, to any exact pfd persistence bimodule M we can
associate the multiset of blocks B(M) involved in its decomposition (4.4).
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This multiset is called the barcode of M . The following isometry result
follows6 from our Theorem 4.1.3 and from [5, 9]:

Corollary 4.6.1. For any exact p.f.d. persistence bimodules M and N :

dI(M,N) = db(B(M), B(N)),

where dI and db denote respectively the interleaving distance between bimod-
ules and the bottleneck distance between barcodes using the same definition
as presented in [22, 38] where intervals are replaced by support of summand
of a decomposition.

4.6.2 Tame persistence bimodules

With Theorem 4.1.3 and Corollary 4.6.1 at hand, we can define barcodes
for a larger class of (possibly indecomposable) persistence bimodules that
are not pfd but satisfy a certain tameness condition, much like in the 1-
dimensional setting [4, 22, 41].

Following the argument in [6], we begin by a completeness result we will
require later, that is interesting in itself.

We denote by B the space of ”countable non-ephemeral blocks barcodes”.
It is the space of barcodes B ∈ B such that B contains only countably many
closed7 blocks, and all vertical and horizontal bands of B have non-zero
width.

Theorem 4.6.2. The space of countable non-ephemeral block barcodes B is
complete.

Proof. Since the bottleneck distance is only a pseudo metric, any open or
half open block is at distance 0 from a closed block. Therefore we choose
arbitrarily to construct the limit of a Cauchy sequence as a collection of
closed blocks.

First, notice that a barcode B ∈ B can be broken up to the four subsets
BB:birth, BB:death, BB:vband BB:hband. Respectively the birth shapes, death
shapes, vertical band and horizontal bands of B.

Since it is not possible to construct a matching between elements of
two different collections, we can treat each type of shape independently.
We will prove completeness when restricting on barcodes containing only
vertical bands, the 3 other cases being almost identical, the birth and death
quadrants being simpler.

6Strictly speaking, the result in [5, 9] is stated for bimodules indexed over the open
half-plane above the minor diagonal x+y = 0. However, a careful look at the proof reveals
that the result extends easily to bimodules indexed over R2.

7We consider only the blocks that are closed subsets of R2 for the usual topology.
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Let (Bn)n∈N be a Cauchy sequence of barcodes containing only vertical
bands. By extracting a subsequence we can suppose db(Bn,Bn+1) < 2−(n+1).

We denote by I1
1 (i1), i1 ≤ m1 (if the family is infinite, we say m1 = +∞)

the family of vertical bands with width strictly greater than 1/4 in B1,
which is at most countable. Take a 1/4 matching between B1 and B2. By
restricting this matching to only bands of width strictly greater than 1/4
in B1 we get a 1/2 matching. Each of the I1

1 (i1) is matched to an interval
I1

2 (i1) in B2. We then define the family of I2
2 (i2), i2 ≤ m2 to be the remaining

elements in B2 that are not matched and of width strictly greater than 1/8.
By induction, given the families (Ikl (il))il≤ml , l ≤ k and a 2−k-matching φ
between Bk and Bk+1 matching only bands of width greater than 2−(k+1)

from Bk, we define (I1
k+1(i1))i1≤m1 , . . . , (I

k
k+1(ik))ik≤mk to be the images of

the families (Ikl (il))il≤ml , l ≤ k through φ. Then we complete with the
family Ik+1

k+1 (ik+1), ik+1 ≤ mk+1 of the bands remaining untouched in Bk+1

with width greater than 2−(k+1).

As previously stated, at rank k, two bands I lk(il) and I lk+1 are 2−k

matched. We write (xk, yk) for the horizontal coordinates of the beginning
and ending of the band I lk(il), and similarly (xk+1, yk+1) for I lk+1. It implies

|xk−xk+1| < 2−k and |yk−yk+1| < 2−k. Therefore, our sequence of vertical
bands (I ll+n(il))l∈N gives a Cauchy sequence of points in R2. It converges
to a point with coordinates (limxn, lim yn) which can be identified with a
closed band, with beginning limxn and ending lim yn, possibly ephemeral8.

Let B∞ be the set of all the non-ephemeral limit intervals constructed,
containing vertical and horizontal bands, birth quadrants and death quad-
rants. By construction, B∞ is countable, and contain only non-ephemeral
blocks.

It remains to show that (Bn)n∈N converges to B∞ for the bottleneck
metric. We need to define a matching between Bn and B∞. Given l ≤ n and
il ≤ ml, let (xn, yn) be the coordinates of I ln(il). We match each I ln(il) ∈ Bn
with the closed bands of coordinates (limxn, lim yn) from B∞. In the case the
limit should be an ephemeral band, we let the interval unmatched. All bands
with width strictly greater than 21−n from Bn are matched, by definition of
the I ln(il), l ≤ n, il ≤ ml. The unmatched elements from B∞ are obtained as
limits from interval whose width is at most 21−n. Therefore all unmatched
B∞ have width bounded by 21−n + 2−n

∑
j∈N 2−j = 21−n + 2−n.

This gives us db(Bn,B∞) ≤ 21−n + 2−n, ∀n. Therefore B∞ is the limit
of the sequence (Bn)n∈N for the bottleneck metric.

8This is the case when limxn = lim yn.
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We now define the notion of tameness, a property that allows a wide
variety of modules to be considered even if they are not pfd.

Definition 4.6.3. Given a fixed vector line l, a persistence bimodule M is
tame in direction l if the map ρt+εt has finite rank for all points t ∈ R2 and
for all nonzero nonnegative vectors ε aligned with l. M is called tame if it
is tame in all directions.

Note that pfd modules are tame in all directions. Note also that being
tame in at least two linearly independent directions implies being tame in all
directions. Futhermore, being tame in at least one non-horizontal and non-
vertical direction induces tameness in any other direction9. The properties
of tame modules can be studied via their so-called smoothings.

Definition 4.6.4. Given a bimodule M and a nonzero nonnegative vector
ε > 0, the ε-smoothing of M is the bimodule M ε with vector spaces M ε

t =
Im ρtt−ε for t ∈ R2, connected by the linear maps induced from M .

By definition, when M is tame, its ε-smoothings in that direction are
pfd.

Lemma 4.6.5. If M is exact, then for any nonzero nonnegative vector ε,
the module M ε is also exact.

Proof. We prove the result for a vertical vector ε for simplicity. The case of
a horizontal vector ε is treated symmetrically. The general case follows by
decomposing the vector into its horizontal and vertical components.

In the vertical case we want to show that the following commutative
diagram is exact for all s ≤ t ∈ R2:

M ε
(sx,ty)

//M ε
t

M ε
s

//

OO

M ε
(tx,sy)

OO

(4.13)

The result follows from a simple chasing argument in the diagram below,

9Any non-horizontal and non-vertical line is directed by a vector with two non zero
coordinate. It is possible to compose a small smoothing along l and a smoothing along
the vertical or horizontal line to obtain an arbitrary small smoothing in direction l′. The
tameness in direction l′ results immediately.
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using the exactness of the upper and lower quadrangles:

M(sx,ty)
//Mt

Ms

OO

//M(tx,sy)

OO

Ms−ε

OO

//M(tx,sy)−ε

OO
(4.14)

Take a vector (α, β) ∈M ε
(sx,ty)⊕M ε

(tx,sy) ⊆M(sx,ty)⊕M(tx,sy). Assume that
it belongs to the kernel of the map h−v, where h and v are respectively the
horizontal and vertical arrows pointing to M ε

t in (4.13). Then, by exactness
of the upper quadrangle in (4.14), there is a vector γ ∈ Ms such that α =

v
(sx,ty)
s (γ) and β = h

(tx,sy)
s (γ). In the meantime, there is a vector δ ∈

M(tx,sy)−ε such that β = v
(tx,sy)
(tx,sy)−ε(δ) since by assumption β ∈ M ε

(tx,sy).

Then, by exactness of the lower quadrangle in (4.14), there is a vector η ∈
Ms−ε such that γ = vss−ε(η) and δ = h

(tx,sy)−ε
s−ε (η). Hence, γ ∈ M ε

s and so
(α, β) belongs to the image of (v′, h′), where v′ and h′ are respectively the
vertical and horizontal arrows originating at M ε

s in (4.13).

Thus, when M is exact and tame, its ε-smoothings M ε along any di-
rection are exact and pfd therefore they are block decomposable by Theo-
rem 4.1.3. Given now any sequence (M εn)n∈N of smoothings where ‖εn‖ goes
to zero as n goes to infinity, the induced sequence of barcodes (B(M εn))n∈N
is a Cauchy sequence in the bottleneck distance, by Corollary 4.6.1. Fur-
thermore, we are going to show that B(M εn) is countable. Let K ⊆ R2

be a compact. If the blocks from B(M εn) which intersect K are not in
a finite number, there would exist a point p where the dimension of Mp

is unbounded. This is not possible since M is supposed p.f.d. Since R2

can be covered by the collection of balls (B(0,m))m∈N, and any block in
B(M εn) intersects one of these balls, we deduce that the number of blocks
is countable. Since the space B equipped with the bottleneck distance is
complete by Theorem 4.6.2, this Cauchy sequence converges to some limit
barcode B(M), which is independent of the choice of sequence (εn)n∈N and
can therefore be assigned to the module M . Then, Corollary 4.6.1 and the
triangle inequality induce the following isometry result:

Corollary 4.6.6. For any exact and tame persistence bimodules M and N ,
the barcodes B(M) and B(N) are well-defined and we have:

dI(M,N) = db(B(M), B(N)).
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4.6.3 Extensions

We stated, at Remark 4.1.4 that we can use Kan extension to obtain a more
general result of our main theorem. We here detail rigorously why any exact
module on an open subset U ⊆ R2 stable by non-negative translation can
be extended to an exact bimodule on R2. The special case of left and right
Kan extension applied to bimodules have been detailed in Section 3.1.3.

Theorem 4.6.7. Let M be an exact p.f.d. bimodule on an open subset U
of R2 stable by positive translations (i.e. for all x ∈ U, v ∈ R2

≥0 we have

x+ v ∈ U). The module M can be extended to M indexed over R2 by taking
its right Kan extension. This extension M is exact.

Proof. For any t ∈ R2 such that ∀u ∈ U, t ≤ u ∈ U we compute the right
Kan extension Ran(M)(t) = lim←−M|{s≥t}∩U.

This, by construction, gives us a module on R2 defined byM t := Ran(M)(t)
if t 6∈ U and M t := Mt if t ∈ U. It remains to prove that taking this Kan
extension conserves exactness.

Consider the diagram:

Mx
//M t

M z
//

OO

My

OO

where t ∈ U and x, y, z 6∈ U. Let u ∈ Mx and v ∈ My having same image
in M t. Because Mx and My are cone, the projection gives us two families
of vectors Fx and Fy, defined respectively on U ∩ Qx and U ∩ Qy, where
Qr = {s| s ≥ r}. Since u and v have same image in M t, the commutativity
with structural morphisms implies that these two families coincide on U ∩
(Qx ∩ Qy). To find a preimage of u and v in M z, we have to construct a
family Fz defined on U ∩Qz. This will be possible thanks to the exactness
and stability by positive translation of U.

Let (xn)n∈N be a dense sequence of the open set Γ = U∩(Qz \(Qx∪Qy))
for the usual R2 topology. Let Ω0 = U ∩ (Qx ∪ Qy), and start with the
family F0 = Fx∪Fy defined on Ω0. Since U is stable by positive translation
and x0 ∈ U, Qx0 ⊆ U. Therefore, the border of Qx0 \ Ω0 is a rectangle.
Inductively, for each point xn, we extend Ωn to Ωn+1 = Ωn ∪Qxn . At each
step n, the border of Ωn \Ω0 is piecewise linear, constituted only of finitely
many vertical and horizontal lines. Therefore, Ωn+1 is the union of Ωn and
a birth quadrant. We extend the family Fn defined on Ωn to a family Fn+1

on Ωn+1 in the following way. Since the border of Ωn+1 \ Ωn is piecewise
linear with finitely many horizontal and vertical segments, we can apply



104CHAPTER 4. DECOMPOSITION OF EXACT P.F.D. 2-DIMENSIONAL MODULES

Ωn

Qxn

Figure 4.6: The set Ωn+1 as the union of Ωn and Qxn .

finitely many time exactness on a subdivision of Ωn+1 \ Ωn in rectangles
(see Figure 4.6). This lead to a vector in Mxn generating a family defined
on Qxn and coinciding with the the family previously defined on Ωn. The
family Fn+1 is obtained by adding this vector and its images to Fn. Notice
that if xn ∈ Ωn, then nothing have to be done and we let Fn+1 = Fn.

By induction we obtain a family Fz defined on
⋃
n∈N

Ωn = Qz ∩ U. This

family is an element of the limit Ran(M)(z) = M z. This element is sent to
u and v through the structural morphisms of M .

In the case x ∈ U or y ∈ U, we can still define similar families, and the
result hold. The case t 6∈ U is the easiest: the families Fz is simply obtained
as the union Fx ∪ Fy since (Qx ∪Qy) ∩ U = Qz ∩ U.

Therefore, the extended module is exact.

4.6.4 Restriction principle

We now turn to another property of persistence bimodules that relates them
to zigzags. We link the decomposition obtained from our result of an exact
bimodule to the decomposition of a restriction. Special cases of restrictions
of bi-modules frequently studied are one dimensional modules and zigzags.

Given a subposet (U,�) of (R2,≤) (i.e. one such that U is a subset of
R2 and � is a subset of ≤ as a binary relation on U), any bimodule M on
(R2,≤) restricts naturally to (U,�) by taking the spaces Mt for t ∈ U and
the maps ρts for s � t. The resulting module is denoted by M |(U,�). If M
is block decomposable, then each of its summands restricts to (U,�) in the
same way, although its restriction may no longer be indecomposable.
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Lemma 4.6.8. Given a block B and a subposet (U,�) of (R2,≤), the re-
striction of kB to (U,�) decomposes as follows:

kB|(U,�) '
⊕
i∈I

kCiB
,

where the CiB are the equivalence classes of the symmetric closure of � on
supp(B)∩U, and where kCiB

denotes the module having a copy of k at each

element t ∈ CiB and the identity map between any pair of points s � t ∈ CiB,
the rest of the spaces and maps being zero. Moreover, the decomposition is
unique up to isomorphism and reordering of the terms, and each MCiB

is
indecomposable.

Proof. The fact that the CiB partition supp(B) ∩ U with no order relation
between them implies that their associated modules cover kB|(U,�) and are
in direct sum. The fact that they are themselves indecomposable comes from
the fact that their endomorphism ring is isomorphic to k (by restriction of
the one of kB) and therefore local. This proves also the uniqueness of the
decomposition, by Azumaya’s Lemma.

By additivity, we deduce the following restriction principle:

Corollary 4.6.9 (Restriction principle). Given a subposet (U,�) of (R2,≤),
the restriction of any block decomposable bimodule M over R2 to (U,�)
decomposes as follows:

M |(U,�) '
⊕

B∈B(M)

⊕
i∈IB

kCiB
,

where the CiB are the equivalence classes of the symmetric closure of � on
supp(B)∩U. Moreover, the decomposition is unique up to isomorphism and
reordering of the terms, and each kCiB

is indecomposable.

Combined with Theorem 4.1.3, this result describes the decomposition
of any module that is the restriction of some exact pfd bimodule to some
subposet of (R2,≤). The special case of zigzag subposets is of particular
interest:

Remark 4.6.10. Take an injective sequence of points (si)i∈Z in R2, such
that for each i ∈ Z we have either si ≤ si+1 or si+1 ≤ si. Call (U,�) the
resulting zigzag, viewed as a subposet of (R2,≤). Then, given any exact pfd
(or, more generally, block decomposable) bimodule M , the zigzag module
obtained from M by restriction to (U,�) is interval decomposable, and its
summands are obtained from those of M by restriction. More precisely, each
summand SB of M gives rise to as many summands as the number of times
the zigzag intersects supp(B).
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4.6.5 Interlevel-sets persistence

We now consider a particular type of persistence bimodule that arises in
the study of interlevel-sets persistence. Let Rop denote the set R equipped
with the opposite order, and let U be the subset of Rop × R consisting of
the points s such that sx < sy, equipped with the order induced from the
product order on Rop×R. U is naturally identified with the set of nonempty
bounded open intervals of R, equipped with the inclusion order.

Given a topological space T and an R-valued function γ : T → R, let
Sγ denote the interlevel-sets filtration of γ, which assigns the space Sγ(s) =
γ−1((sx, sy)) to any point s ∈ U. Sγ can be viewed as a functor from the
poset U to the category of topological spaces. The composition H(Sγ) (where
H stands for the singular homology functor with field coefficients) is then
a functor from U to the category of vector spaces over k. The map γ is
called pfd (resp. tame) whenever H(Sγ) is a pfd (resp. tame) module. Note
that this module is always exact because, for any s < t ∈ U, the following
diagram

γ−1((tx, ty)) γ−1((sx, ty))
⊇oo

γ−1((tx, sy))

⊆

OO

γ−1((sx, sy))⊆
oo

⊇

OO

induces an exact diagram in homology, by the Mayer-Vietoris theorem. For
a pfd function whose bimoduleextend to a p.f.d. bimodule we get a de-
composition by combining Theorem 4.1.3 and Theorem 4.6.7. The main
decomposition theorem of [8] can be used to prove a stronger result:

Corollary 4.6.11. For any topological space T and pfd function γ : T → R
the bimodule H(Sγ) is block decomposable.

This result answers partially a conjecture of Botnan and Lesnick [9,
Conjecture 8.3]. Combined with Corollary 4.6.1, it induces a general stability
result for interlevel-sets persistence, in which the functions considered do not
have to be of Morse type [9, 30]:

Corollary 4.6.12. For any pfd functions γ, γ′ : T → R whose bimodules
H(Sγ) and H(S ′γ) extends to a p.f.d. bimodule on R2 , the barcodes B(H(Sγ))
and B(H(Sγ′)) are well-defined and we have:

db(B(H(Sγ)), B(H(Sγ′))) ≤ ‖γ − γ′‖∞.

This result extends verbatim to tame functions with p.f.d module ex-
tension by Corollary 4.6.6. Besides, we can extend it to interlevel-sets fil-
trations obtained by taking preimages of bounded closed intervals, provided
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we only consider closed intervals that are not singletons10. The reason for
this restriction is that the hypothesis of the Mayer-Vietoris theorem does
not always hold for preimages of singletons, so the resulting bimodule may
behave wildly on the diagonal. This can be avoided e.g. by using Steenrod-
Sitnikov homology instead of singular homology. We refer the reader to [30,
Section 3.2] for a more detailed treatment of this matter.

4.6.6 Z2-indexed modules

Let M be an exact pfd bimodule indexed over Z2. This means that every
space Mt for t ∈ Z2 is finite-dimensional, and furthermore every instance of
the quadrangle (4.1) with s ≤ t ∈ Z2 commutes and is exact.

We can extend M to a piecewise-constant module M̄ indexed over R2 as
follows (where for t = (tx, ty) ∈ R2 the notation btc stands for (btxc, btyc)):

∀t ∈ R2, M̄t = Mbtc

∀s ≤ t ∈ R2, M̄ t
s = M

btc
bsc

Obviously, since M is exact and pfd, so is M̄ . Therefore, M̄ decomposes into
block summands by Theorem 4.1.3, and so does M itself by restriction to the
poset (N2,≤) (Proposition 4.6.9). The same reasoning applies to bimodules
indexed over N2, which are extended over R2

+ (which is stable under positive
translations). Hence:

Theorem 4.6.13. Any exact pfd bimodule M indexed over Z2 (resp. N2)
decomposes as a direct sum of block modules indexed over Z2 (resp. N2).

Remark 4.6.14. It is interesting to point out that, due to the piecewise
constant structure of the extension M̄ , the block modules involved in its de-
composition are of the form B ∈ {B : birth,B : death,B : hband,B : vband}
with its cuts respecting sup c− = inf c+ ∈ Z. The same holds for the sum-
mands in the decomposition of M . Note that a cut (−∞, x], (x,+∞) can
also be written as (−∞, x+ 1), [x+ 1,+∞).

Suppose now that M is indexed over some finite grid, say J0, nK× J0,mK.
We can extend M to an exact pfd bimodule over N2 as follows. First, we
extend it over J0, n+ 1K× J0,m+ 1K by duplicating the last row and column
and by inserting identity maps. It is clear that this module is still exact and
pfd. We now iterate the process in order to get an exact pfd extension of M
over the entire lattice N2. By Theorem 4.6.13, this extension is decomposable
as a direct sum of block modules. Since M is its restriction to the finite grid

10This means that our bimodules are once again indexed over the open half-plane above
the diagonal sx = sy, whereas closed intervals are naturally parametrized by the closed
half-plane above the diagonal.
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J0, nK × J0,mK, M itself decomposes as a direct sum of block modules by
Corollary 4.6.9. Hence:

Corollary 4.6.15. Any exact pfd bimodule M indexed over the finite grid
J0, nK × J0,mK decomposes as a direct sum of block modules over the same
grid.

Remark 4.6.16. Note that in this case it is already known that M de-
composes as a direct sum of indecomposables — see e.g. [43]. Our theorem
identifies the summands as being blocks restricted to the finite grid. It might
be possible to do so by using exactness in a more direct way though.

4.6.7 Z-indexed zigzag modules

It is a well-known fact that pfd zigzag modules over Z decompose as di-
rect sums of interval modules — see e.g. [7] for a recent treatment with
a simple and elegant proof. This result is also a consequence of our main
theorem. The connection happens through an extension of zigzag modules
to R2 inspired from the one in [9].

Given a pfd zigzag module N indexed over R, we can assume without
loss of generality (by inserting in isomorphisms at the right places) that the
arrow orientations in the module are alternating:

· · · N2i−2
oo // N2i−1 N2i

oo // N2i+1 N2i+2
oo // · · ·

Then we can embed the module into R2 by letting M(i,−i) = N2i and
M(i,−i+1) = N2i−1 for all i ∈ Z, with the obvious embedding of the maps
fromN . The moduleM is indexed over the staircase S0 =

⋃
i∈Z{(i,−i), (i,−i+

1)} that runs along the antidiagonal and is equipped with the partial order ≤
on R2. Now we extend11 M to S1, the one-step shift (upwards) of S0, by let-
tingM(i,−i+2) be the pushout12 of M(i−1,−i+2) M(i−1,−i+1)

oo //M(i,−i+1)

for all i ∈ Z. We continue this process to further extend M to the two-steps
shift S2 of S0, and so on, until M has been extended to the whole part of
the integer lattice that lies above S0. Symmetrically, we extend M to the
part of the integer lattice that lies below S0 via pullbacks13.

The pushouts and pullbacks ensure that every quadrangle (4.1) with
s ∈ Z2 and t = s + (1, 1) ∈ Z2 commutes and is exact. Moreover, a simple

11We could use Kan extensions introduced earlier, but we present here a simple elemen-
tary way to do it, by hand.

12The pushout of B A
foo g // C is the space D = (B ⊕ C)/ Im(f,−g) together

with the maps b 7→ (b, 0) + Im(f,−g) : B → D and c 7→ (0, c) + Im(f,−g) : C → D.

13The pullback of B
f // D C

goo is the space A = Ker(f − g) ⊆ B ⊕C together
with the natural projections B ⊕ C → B and B ⊕ C → C restricted to A.
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diagram chasing argument shows that if each one of the small quadrangles
commutes and is exact in the following diagram (where s ≤ t ≤ u ∈ Z2)
then so does the big quadrangle:

M(sx,uy)
//M(tx,uy)

//Mu

M(sx,ty)
//

OO

Mt
//

OO

M(ux,ty)

OO

Ms
//

OO

M(tx,sy)
//

OO

M(ux,sy)

OO

Thus, M is an exact Z2-indexed bimodule. It is also pfd because N was pfd
to start with. Hence, M decomposes as a direct sum of block modules by
Theorem 4.6.13. Since N is the restriction of M to the staircase S0, N itself
decomposes as a direct sum of interval modules by Corollary 4.6.9.

4.7 Conclusion

In this thesis, we first presented two results on multidimensional persistence
in chapter 3. We showed a way to send a family of quiver representations
into the category of bimodules. Then we defined a richer structure for both
persistence and multidimensional persistence by introducing a product to the
module structure, occurring naturally from the cohomology functor applied
to a filtration.

In the last chapter which constitute the heart of this thesis (Chapter 4),
we extended the decomposability result from [26] to a two dimensional ver-
sion. This resulted in an answer to a conjecture from Botnan and Lesnick,
and a deeper understanding of a subclass of bimodules.

The next steps will be to either extend this type of result to a wider
class of modules, or find other classes which properties that allow to describe
their indecomposables. One can hope that further research will lead to the
definition of new invariants, easily computable, that would give an analog
of persistence barcode for n-dimensional persistence modules, and allow to
transpose the existing pipeline of persistence into higher dimensions. Some
results have already been obtained notably in [16], but we are still far from
the toolkit available in dimension one.



110CHAPTER 4. DECOMPOSITION OF EXACT P.F.D. 2-DIMENSIONAL MODULES



Bibliography

[1] H. Adams, T. Emerson, M. Kirby, C. Neville, R.and Peterson, P. Ship-
man, S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier. Per-
sistence images: A stable vector representation of persistent homology.
Journal Machine Learning Research, 2017.

[2] G. Azumaya. Corrections and supplementaries to my paper concerning
Krull-Remak-Schmidt’s theorem. Nagoya Mathematical Journal, 1:117–
124, 1950.

[3] U. Bauer, M. Kerber, and J. Reininghaus. Clear and com-
press: Computing persistent homology in chunks. Technical Report
arXiv:1303.0477 [math.AT], March 2013.

[4] U. Bauer and M. Lesnick. Induced matchings and the algebraic stability
of persistence barcodes. Journal of Computational Geometry, 6(2):162–
191, 2015.

[5] H. Bjerkevik. Stability of higher-dimensional interval decomposable
persistence modules. Research Report arXiv:1609.02086 [math.AT],
April 2016.

[6] A. Blumberg, I. Gal, M. Mandell, and M. Pancia. Robust statistics,
hypothesis testing, and confidence intervals for persistent homology on
metric measure spaces. Foundations of Computational Mathematics,
14(4):745–789, 2014.

[7] M. Botnan. Interval decomposition of infinite zigzag persistence mod-
ules. Proc. Amer. Math. Soc., 145, 2017.

[8] M. Botnan and W. Crawley-Boevey. Decomposition of persistence mod-
ules. Technical Report arXiv:1811.08946 [math.RT], 2018.

[9] M. Botnan and M. Lesnick. Algebraic stability of zigzag persistence
modules. Research Report arXiv:1604.00655 [math.AT], April 2016.

[10] P. Bubenik. Statistical topological data analysis using persistence land-
scapes. Journal of Machine Learning Research, 16:77–102, 2015.

111



112 BIBLIOGRAPHY

[11] M. Buchet and Escolar E. Realizations of indecomposable per-
sistence modules of arbitrarily large dimension. Technical Report
arXiv:1803.05722 [math.AT], March 2018.

[12] P. Caldero and J. Germoni. Histoires hédonistes de groupes et de
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