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Glossary
Vectors
x ≥ y Usual partial ordering : xi ≥ yi ∀i.
x > y Strict ordering : xi > yi ∀i.
min(x, y) Vector whose ith component is min(xi, yi).
xᵀy = 〈x, y〉 Standard euclidean inner product.
x ◦ y Vector whose ith component is xiyi : the Hadamard product.
x ⊥ y xᵀy = 0.
Matrices
A = (Aij) Matrix A with components Aij.
Aᵀ Transpose of matrix A.
AIJ Matrix with entries (Aij)i∈I,j∈J , a submatrix of A.
AI• The rows of A indexed by I.
A−ᵀ (A−1)ᵀ = (Aᵀ)−1

Sets
Bδ(x) For δ > 0, the open ball of radius δ centered at x.
conv A For a set A, the convex hull of A.
cl A For a set A, the closure of A.
distA(x) The Euclidian distance from x to A.
∂A For a set A, border or frontier of A: ∂A =cl A\ int A.
int X Topological interior of a set X
R Extended real line, R = (−∞,+∞]
Rm+ Positive orthant: {y ∈ Rm | y ≥ 0}
f : X ⇒ Y Multimap (or multifunction, or set valued function): for x ∈ X,

f(x) is a subset of Y (possibly empty)
Index sets
n For a given n ∈ N, n = {1, ..., n}
I0+
t (x, u, v) {i : vi(t) = 0 < (Cx(t) +Dv(t) + Eu(t))i}
I+0
t (x, u, v) {i : vi(t) > 0 = (Cx(t) +Dv(t) + Eu(t))i}
I0+
t (x, u, v) {i : vi(t) = 0 = (Cx(t) +Dv(t) + Eu(t))i}
Ic For I ⊂ n, Ic = {i ∈ n; i 6∈ I}
Scalar tools
dxe and bxc Ceil and floor value of x: dxe, bxc ∈ Z, dxe ≥ x ≥ bxc
sgn(x) For x ∈ R, sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, sgn(x) = [−1, 1] if x = 0
Functional analysis
Lp([t0, t1],Rn) Set of functions f : [t0, t1]→ Rn such that

∫ t1
t0
‖f(t)‖pdt <∞.

C p Class of p times continuously differentiable functions.
Dynamical systems
DAE Differential Algebraic Equation, equation of the form f(x, ẋ) = 0.
AccΩ(x0, t) Accessible set from x0 at time t with control taking values in Ω.
Mathematical Programming
MPCC Mathematical Programs with Complementarity Constraints.
MPEC Mathematical Programs with Equilibrium Constraints.
NLP Nonlinear Program.
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Résumé en français
Cette thèse se concentre sur la commande optimale des systèmes de complémentarité linéaires
(notés LCS). Les LCS sont des systèmes dynamiques définis par des équations différentielles al-
gébriques (ÉDA), où une des variables est définie par un problème de complémentarité linéaire,
qu’on écrit comme : 0 ≤ λ ⊥ Dλ+ q ≥ 0.
Ces systèmes se retrouvent dans la modélisation de nombreux phénomènes, tels que les équilibres
dynamiques de Nash, les systèmes dynamiques hybrides, la modélisation des systèmes mécaniques
avec contact frottant ou encore des circuits électriques. Les propriétés des solutions à ces ÉDA
dépendent essentiellement de propriétés que doit vérifier la matrice D présente dans la complé-
mentarité.
Ces contraintes de complémentarité posent des problèmes à deux niveaux. Premièrement, l’analyse
de ces systèmes dynamiques fait souvent appel à des outils pointus, et leur étude laissent encore
des questions non résolues. Deuxièmement, la commande optimale pour ces systèmes pose des
difficultés à cause d’une part de la présence éventuelle de l’état dans les contraintes, et d’autre
part une violation assurée des qualifications des contraintes qui sont une hypothèse récurrente des
problèmes d’optimisation.
La recherche de ce manuscrit se concentre sur la commande optimale de ces systèmes. On s’intéresse
principalement à la commande quadratique (minimisation d’une fonctionnelle quadratique en l’état
et la commande), et à la commande temps minimal. Les résultats se concentrent sur deux pans:
d’un côté, on opère une approche analytique du problème afin de trouver des conditions néces-
saires d’optimalité (si possible, on démontre qu’elles sont suffisantes) ; dans un deuxième temps,
un développement logiciel est effectué, avec le soucis d’obtenir des résultats numériques précis de
manière rapide.

English summary
This thesis focuses on the optimal control of Linear Complementarity Systems (LCS). LCS are
dynamical systems defined through Differential Algebraic Equations (DAE), where one of the
variable is defined by a Linear Complementarity Problem, which can be written as: 0 ≤ λ ⊥
Dλ+ q ≥ 0.
These systems can be found in the modeling of various phenomena, as Nash equilibria, hybrid
dynamical systems or modeling of electrical circuits. Properties of the solution to these DAE
essentially depend on properties that the matrix D in the complementarity must meet.
These complementarity constraints induce two different challenges. First, the analysis of these
dynamical systems often uses state of the art tools, and their study still has some unanswered
questions. Second, the optimal control of these systems causes troubles due to, on one hand, the
presence of the state in the constraints, on the other hand the violation of Constraint Qualifications,
that are a recurring hypothesis for optimisation problems.
The research presented in this manuscript focuses on the optimal control of these systems. We
mainly focus on the quadratic optimal control problem (minimisation of a quadratic functional
involving the state and the control), and the minimal time control. The results present two
different aspects: first, we start with an analytical approach in order to find necessary conditions
of optimality (if possible, these conditions are proved to be sufficient); secondly, a code is developed,
with the aim of getting precise results with a reduced computational time.
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Introduction

This dissertation tackles the problem of Optimal Control of Linear Complementarity Systems
(LCS). Let us review each of these terms.

Linear Complementarity Systems are systems that are described by dynamical linear equations,
which means that there is a variable, often named the state, which is changing with time. The
evolution of this variable is describe by a differential equation, which is linear. But also, this system
has to comply with a constraint, which is expressed with complementarity. Complementarity means
that two quantities can not be simultaneously active. In order to understand this properly, let us
give a simple physical example, found in [21].

L

i2

D λ

C
i1

R

u1

u2

Figure 1: Circuit with an ideal diode and two
voltage sources

Let us consider the circuit in Figure 1 with
a diode D, resistance R and inductance L. The
diode in this case is considered to be ideal in the
following sense: it possesses a voltage/current
characteristic that translates the physical ob-
servation.

• When the voltage λ is positive, then the
current i is cancelled.

• When the current i is negative, then the
voltage λ is cancelled.

This can be written mathematically as λ ≥ 0,
i ≥ 0 and iλ = 0, which we rewrite more
compactly as 0 ≤ −i ⊥ λ ≥ 0. Denote
x1(t) =

∫ t
0
i1(s)ds + x1(0) (the charge of the

capacitor, in coulomb) and x2(t) = i2(t) (the
electric current, in ampere). Then the evolu-
tion of this system is described as:

ẋ1(t) =
−1

RC
x1(t) + x2(t)− 1

R
λ(t) +

1

R
u2(t),

ẋ2(t) =
−1

LC
x1(t)− 1

L
λ(t) +

1

L
(u2(t)− u1(t)),

0 ≤ λ(t) ⊥ 1

RC
x1(t)− x2(t) +

1

R
λ(t)− 1

R
u2(t) ≥ 0,

(1)

Several questions then arise. For instance, is the mathematical model valid? For this example,
it means that the mathematical equation (1) has at least one solution once one sets the source
function u, that the solution is preferably unique, and that it has some nice properties (like
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continuity on initial data for instance). Also, one could ask if the system is controllable. In this
case, the question means that one is wondering if from a given state at time t0 (the capacity and
intensity at time t0), one can reach an other state later, at a prescribed time t1.

The second term concerns the Optimal Control problems. These are problems gathering two
different facets: the control of dynamical systems, and the optimization. Loosely speaking, these
are problems in which one tries to steer a dynamical system from one state to another, while
minimizing (or maximizing) a given criteria. Let us resume the previous example given in Figure
1. Assume one starts from a given state (x1(0), x2(0)), and the goal is to reach an other state
(x1(1), x2(1)) in one second (since it is possible). But it should not be done recklessly. The aim is
to minimize the overall energy at the bounds of the resistance, and the input energy. This can be
written as minimizing the functional

∫ 1

0
[Rx2(t)2 +u1(t)2 +u2(t)2]dt. Overall, the Optimal Control

problem reads as:

min

∫ 1

0

[Rx2(t)2 + u1(t)2 + u2(t)2]dt

such that



ẋ1(t) =
−1

RC
x1(t) + x2(t)− 1

R
λ(t) +

1

R
u2(t),

ẋ2(t) =
−1

LC
x1(t)− 1

L
λ(t) +

1

L
(u2(t)− u1(t)),

0 ≤ λ(t) ⊥ 1

RC
x1(t)− x2(t) +

1

R
λ(t)− 1

R
u2(t) ≥ 0,

(x1(0), x2(0)) fixed
(x1(1), x2(1)) fixed

As expected, the resolution is not trivial. Once again, several questions arise: does there exist at
least one solution to this problem, with nice properties (like x1 and x2 being absolutely continuous
and u square integrable)? How could one characterize the solution(s) with necessary conditions
of optimality? Are these conditions sufficient? In most cases, one can not compute explicitly a
solution; are there ways to compute a numerical approximation?

This thesis focuses on the optimal control problem for LCS in an abstract framework:

min f(T, x, u)

such that


ẋ(t) = Ax(t) +Bv(t) + Fu(t)

0 ≤ v(t) ⊥ Cx(t) +Dv(t) + Eu(t) ≥ 0 a.e. on [0, T ]

(x(0), x(T )) ∈ T

Two problems will be studied: the quadratic optimal control problem (i.e. f is a quadratic func-
tional in x and u), and the minimal time control problem (i.e. f(T, x, u) = T ).

Outline
This manuscript is divided in four parts as follows:

• In a first part, a review of the existing results in the literature is made. We will then
acknowledge the different tools available in order to tackle the optimal control of LCS, and
also why they are eventually too limited.
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• In a second part, a first attempt for tackling the quadratic optimal control problem for LCS
is made. It relies on assumptions on the underlying complementarity conditions which turns
the system into a Lipschitz system, non differentiable. Some first order conditions are then
derived, a first code to approximate the solution is written.

• In a third part, the results of Part 2 on the quadratic optimal control problem of LCS are
enhanced. This time, properly defined multipliers are added to the necessary conditions,
which are in turn transformed in order to be more efficiently handled. Also, these necessary
conditions are proved to be also sufficient. With these results, a code is developed in order
to compute an approximation of the solution. Two different approaches are tested, which
appear to be eventually complementary.

• Finally, the last part focuses on the minimal time problem for LCS. After extending some
results of the existing literature, these results are applied specifically on LCS in order to
derive sufficient first order conditions. Then, a geometrical analysis of the shape of the
complementarity constraints allows us to prove a bang-bang property for LCS.
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Chapter 1

Linear Complementarity Systems

Abstract. In this chapter, the Linear Complementarity Systems (LCS) are presented. After some
results concerning the Linear Complementarity Problem (LCP), which is the specificity of these
systems, some properties of the LCS are shown, with an effort for linking them with other types of
systems appearing in the literature (like hybrid automata or differential inclusions). A last section
focuses on the numerical simulation of LCS.

At the core of the problem tackled by this thesis, one finds Linear Complementarity Systems
(LCS). These dynamical systems are usually described as a linear dynamical system where one of
the components is defined though a complementarity problem. More precisely, we call LCS(A(·),
B(·), C(·), D(·)) the dynamical system:

ẋ(t) = A(t)x(t) +B(t)λ(t)

0 ≤ λ(t) ⊥ C(t)x(t) +D(t)λ(t) ≥ 0

x(0) = x0 ∈ Rn
a.e. on [t0, t1] (1.1)

where t0, t1 ∈ R, t0 < t1, x : [t0, t1]→ Rn, λ : [t0, t1]→ Rm, and A(·), B(·), C(·), D(·) are matrices of
according dimensions. This provides a modeling paradigm for many problems, as Nash equilibrium
games, hybrid engineering systems [19], contact mechanics or electrical circuits [2].
One could use the framework of differential inclusion in order to analyze solutions of problem
(1.1), since λ(t) could be single or set valued depending on properties of the matrix D. Admit
for now that λ(t) is uniquely defined for every t ∈ [t0, t1] (for instance if D(t) is a P-matrix).
As it will be stated in Section 1.1, λ is then a piecewise linear function of x. Therefore, the
right-hand side defining the dynamics in (1.1) is a piecewise linear function of x, and therefore
a Lipschitz function of x. Then, assuming that every matrix is a continuous function of time t,
Cauchy-Lipschitz theorem proves that there exists a unique maximal solution x of (1.1) starting
from x(t0) = x0 ∈ Rn (we could even argue that the solution exists on [t0, t1]).
Since λ is a piecewise linear function of x, it means that the exists ` matrices {Λi(·)}`i=1 such that:

∃i ∈ `; ẋ(t) = Λi(t)x(t), a.e. on [t0, t1]

It shows that there exists a connection between LCS and an other class of systems called switching
systems. The latter ones encompass both continuous and discrete dynamics, and it has been a
popular subject of study in recent years (see for instance [8]). This framework also generalizes
Differential Algebraic Equations (DAE), that are often non sufficient in order to describe mod-
els naturally occurring in engineering problems that contain inequalities (for instance, unilateral
constraints) and disjunctive conditions (for conditional phenomena such as contacts).
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1.1 Linear Complementarity Problems
Roughly speaking, the Linear Complementarity Problem (LCP) is to find z ∈ Rn such that:

0 ≤ z ⊥Mz + q ≥ 0, (1.2)

where M ∈ Rn×n and q ∈ Rn is a given vector. This notation means that each component of z and
Mz+ q must be nonnegative, and both vectors must be perpendicular to each other, which in this
case translates to:

zi(Mz + q)i = 0, ∀i ∈ {1, ..., n}.
One usually denotes the problem by LCP(q,M), and the set of its solution by SOL(q,M). This
problem appears naturally when one searches for first order conditions to a finite-dimensional
optimization problem - also known as KKT conditions. Indeed, KKT conditions to a linear-
quadratic problem of the form:

min
z∈Rn

1

2
zᵀHz + cᵀz

s.t.

{
Az ≥ b,

z ≥ 0,

where H ∈ Rn×n is a symmetric matrix, A ∈ Rm×n, b ∈ Rm, c ∈ Rn, are expressed as follows:

Hz + c− Aᵀλ− y = 0,

0 ≤ λ ⊥ Az − b ≥ 0,

0 ≤ y ⊥ z ≥ 0,

where y ∈ Rn, λ ∈ Rm are multipliers. By extracting y from the first equality, one obtains:

0 ≤
(
z
λ

)
⊥
(
H −Aᵀ
A 0

)(
z
λ

)
+

(
c
−b

)
≥ 0.

The existence of solutions and their properties rely heavily on the structure of the matrix M .
This chapter will present some results concerning the analysis of this problem that will be useful
for the rest of this manuscript. Main information stated here can be found in [45].

1.1.1 Equivalent formulations

In order to analyze properties of the solutions of problem (1.2), we must reformulate the problem
in an other framework.

Optimization problem As suggested by the former example, a first way is to express (1.2) as
an optimization problem. It is easy to state the following proposition:

Proposition 1.1.1. Let q ∈ Rn, M ∈ Rn×n. z ∈ Rn is a solution of LCP (q,M) if and only if it
is a global solution to the following quadratic problem:

min
z∈Rn

zᵀ(Mz + q)

such that Mz + q ≥ 0,

z ≥ 0,

(1.3)

with an objective value of zero.
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C-function A second way is to express this problem as finding the root of a two-argument
function, called C-function.

Definition 1.1.1. We call C-function a function f : R2n → Rn such that:

f(a, b) = 0 ⇐⇒ 〈a, b〉 = 0, a, b ≥ 0

If f is a C-function, then LCP(q,M) is equivalent to find z ∈ Rn such that f(z,Mz + q) = 0.
Most known C-functions are:

• min function: z is a solution of LCP(q,M) iff min(z,Mz + q) = 0.

• Fischer-Burmeister’s C-function: z is a solution of LCP(q,M) iff
√
z2
i + (Mz + q)2

i − (zi +
(Mz + q)i) = 0, ∀i ∈ {1, n}.

• normal map: z is a solution of LCP(q,M) iff Mz+ + q − z− = 0, where z+ = max(z, 0), and
z− = max(−z, 0).

In general, C-functions are not Fréchet-differentiable, in particular at the origin. Even if this
reformulation seems appealing, this non-differentiability makes the use of this technique tricky in
practice. In relation with this fact, we introduce the notion of degeneracy of the solution.

Definition 1.1.2. A solution z of LCP(q,M) is said non-degenerate if for each i ∈ {1, ..., n},
zi 6= (Mz + q)i.

If a solution is non-degenerate, then points in a neighbourhood around the solution are also
non-degenerate. In this case, C-functions are usually Fréchet-differentiable, and locally convergent
method for solving root problems of smooth functions (like the Newton method) will work efficiently
to solve this problem.

Piecewise affine functions The min function is of a special kind: it is a piecewise affine
function. Such functions actually play a major role in the analysis of solutions of LCP. More
formally speaking:

Definition 1.1.3. A function f : D → Rm, where D ⊆ Rn, is said to be piecewise affine function
if f is continuous and D is equal to the union of a finite number of convex polyhedra, called the
pieces of f , on each of which f is an affine function.

The reformulation as the zero of a min-function already underlines the interaction between the
two notions, but it goes even a bit further. Indeed, if f : Rn → Rn is an arbitrary piecewise affine
function, then under a "nonsingularity" assumption, the system f(z) = 0 is equivalent to a certain
LCP.
Another link between these two notions lies in the next proposition:

Proposition 1.1.2. [45] Let M ∈ Rn×n be such that the LCP(q,M) has a unique solution for all
vectors q ∈ Rn. Then the unique solution of the LCP(q,M) is a piecewise linear function of q.

11



Convex subdifferential Eventually, a final way to express the set of solutions is through the
subdifferential of the indicator function IR+

m
, which is defined as:

IRm+ (x) =

{
0 if x ∈ Rm+
+∞ if x 6∈ Rm+ .

Since Rm+ is convex, its indicator function is also convex, and we can use tools of convex analysis, and
in particular the subdifferential of a convex function. It can be proved easily that the subdifferential
of the indicator function ∂IRm+ (x) is equal to the normal cone of convex analysis NRm+ (x). It justifies
the following equivalence:

0 ≤ z ⊥ ζ ≥ 0 ⇐⇒ −z ∈ NRm+ (ζ).

⇐⇒ −ζ ∈ NRm+ (z)

1.1.2 Class of matrices

A sensible question that may be asked is the following: what is the class of matrices M for which
LCP(q,M) has a solution for all vectors q ∈ Rn ? This class is denoted Q, and its elements are
called Q-matrices. Unfortunately, there is no algebraic description allowing to check in finite time
if a matrix is a Q-matrix or not.

Global uniqueness If we narrow the problem by imposing uniqueness of the solution, we have
more comprehensive results.

Definition 1.1.4. A matrix M is said to be a P-matrix if LCP(q,M) admits a unique solution
for all q ∈ Rn. The class of such matrices is denoted P.

The next theorem gives a full description of these P-matrices.

Theorem 1.1.1. [45] Let M ∈ Rn×n. The following statements are equivalent:

1. All principal minors of M are positive.

2. M reverses the sign of no nonzero vector, i.e.:

[zi(Mz)i ≤ 0 for all i] =⇒ [z = 0].

3. All real eigenvalues of M and its principal submatrices are positive.

4. M is a P-matrix.

A special subclass ofP-matrices are the symmetric positive definite matrices. From a symmetric
positive definite matrix M , one can define a norm: for x ∈ Rm, ‖x‖M =

√
xᵀMx. With this, we

define the projection on a convex closed set K ⊂ Rn with the metric defined by M , denoted as
projK,M . In this sense, for all x ∈ Rn, projK,M(x) is the closest point to x in K according to ‖ · ‖M .
Of course, if M is the identity matrix, then the usual projection operator is retrieved (simply
denoted as projK). In this framework, we have a formulation for the solution of an LCP.

Proposition 1.1.3. Let M ∈ Rn×n be a symmetric positive definite matrix and q ∈ Rn. There
exists a unique x, solution of LCP(q,M), and:

x = projRn+,M
(
−M−1q

)
.

Proof. This is a simple application of Propositions 1.5.9 and 4.3.3 of [54].
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Local uniqueness Asking for a global solution may be too restrictive. By pursuing the analogy
with the necessary conditions of the optimization problems, rather than searching for a global
solution, we could search for a local one. In other words, if z∗ is the solution of LCP(q,M), then
there exist no other solution in a neighbourhood around z∗. This problem is entirely described as
follows:

Definition 1.1.5. A matrix M ∈ Rn×n is called nondegenerate if all its principal minors are
nonzero.

Theorem 1.1.2. [45] Let M ∈ Rn×n. The following statements are equivalent:

1. M is nondegenerate.

2. For all vectors q, the LCP(q,M) has a finite number (possibly zero) of solutions.

3. For all vectors q, any solution of the LCP(q,M), if it exists, must be locally unique.

1.1.3 Numerical resolution

Of course, most LCP can not be solved analytically, but there exist several techniques to find an
approximate solution. There are two major families of techniques:

1. Pivoting techniques, based on the idea of pivoting as found in numerical algebra and linear
programming. Examples as the criss-cross algorithm or Lemke’s algorithm show that they
terminate in a finite number of iterations (for a certain class of problems), but are in the worst
case of exponential complexity. Typically, these algorithms produce a sequence of vector pairs
{(yk, zk)} that are extreme points of the feasible region {(y, z)|y ≥ 0, z ≥ 0, y = Mz + q}
by moving inside the kernel of a basis matrix until a new boundary of the feasible region is
encountered. These are good solutions for small to medium size problems, but the efficiency
decreases as the problem dimension increases, due to round-off errors and data storage.

2. Iterative methods, which do not solve the problem in finite number of iterations, but converge
in the limit. They can exploit the sparsity of the problem, and are less sensitive to the round-
off errors. A well known example are the interior point methods, which transform the problem
(1.2) into the unconstrained minimisation problem:

min 〈x, y〉+ ‖y −Mx− q‖ − µ
∑
i

(log xi + log yi)

where µ > 0 is a parameter continuously driven to 0. As such, the solutions (x(µ), y(µ)) of
this problem trace out a central path that leads to a solution of LCP(M, q). Interior methods
are well described in [111] and references therein.

1.2 Properties of the LCS

1.2.1 LCS seen as a hybrid automaton

Let us first describe LCS as hybrid automata to see the connection between them and stress the
limits. Notations exposed here are taken from [17].
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Definition 1.2.1. A hybrid automaton is given by (Q,Σ, J, G) where:

• Q is a finite set of modes (sometimes called discrete states or locations).

• Σ = {Σq}q∈Q is a collection of dynamical systems. For mode q, these are given by the ODE
ẋ = fq(x) or by the DAE fq(ẋ, x) = 0.

• J = {Jq}q∈Q. Jq ⊂ Rn is the jump set for mode q consisting of the states from which a mode
transition and/or state jump occurs.

• G = {Gq} is the set of jump transition maps where Gq is a (possibly multi-valued) map from
Jq to a subset of Rn ×Q.

Let’s now try to describe (1.1) as a hybrid automaton. The following description is inspired
by [63] and [64]. For simplicity of exposition, we denote y = Cx + Dλ and suppose A,B,C,D
autonomous.
First, let us notice that the LCP states that λi(t) = 0 or yi(t) = 0 for each i ∈ n. This results in a
multimodal system with 2m modes, where each mode is characterized by a subset I of m. Hence,
Q = P(m), the power set of m. The dynamics fI in mode I are given by the DAE:

ẋ = Ax+Bλ,

y = Cx+Dλ,

yi = 0, i ∈ I
λi = 0, i ∈ Ic

(1.4)

Also, the LCP imposes the sign condition:

λi(t) ≥ 0, i ∈ I, yi(t) ≥ 0, i ∈ Ic (1.5)

Therefore, the jump set JI is given by

JI = {x0 ∈ Rn | there is no smooth solution (λ, x, y) of (1.4)
for mode I satisfying x(0) = x0 and (1.5) on [0, ε[ for some ε > 0}

A state x0 is said to be consistent for mode I if x0 6∈ JI . The set of consistent states for mode
I is denoted VI . Define the set TI as the limit of the sequence:

T0 = {0}, Ti+1 = {x ∈ Rn|∃λ ∈ Rm, ∃x̄ ∈ Ti such that x̄ = Ax+Bλ, Cx̄+Dλ = y, yI = 0, λIc = 0}

It is proved in [62] that this sequence converges in at most n steps. The jump transition function
G only depends on the state x(τ−) just before the event time τ , and not on the previous mode.
The jump transition map is given by:

G(x) = {(x+, I+) ∈ Rn × P(m̄)|x+ = Π
TI+
VI+

(x)} (1.6)

where ΠTI
VI

is the projection onto VI along TI . There exist then different strategies to select a proper
transition in G(x).

Presented that way, we see many computational drawbacks at converting back the LCS (1.1)
in the framework of hybrid systems. First, the number of modes grow exponentially as m grows.
Secondly, consistent spaces and transition maps are not easy to describe in a useful way. Even in
the case when the LCP condition defines λ uniquely, describing precisely the transition map is not
an easy task: how do you choose the next mode I+?
Even though this hybrid representation is an important tool for analysis, it is not the most efficient
way to handle this system.
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1.2.2 LCS seen as a differential inclusion

As it was shown in Section 1.1.1, the complementarity problem can be equivalently defined as the
inclusion of the solution to a normal cone. Therefore, LCS(A,B,C, 0) can be equivalently defined
as the Differential Inclusion (DI):

ẋ ∈ Ax−BNRm+ (Cx) (1.7)

Suppose that there exists a symmetric positive definite matrix R such that R2B = Cᵀ and define
z = Rx. Then one can prove (see [19, 20, 56]) that LCS(A,B, (R2B)ᵀ, 0) can be equivalently
expressed as the DI:

− ż(t) +RAR−1z(t) ∈ NS(z(t)) (1.8)

where S = {Rx|Cx ≥ 0}. The equivalence is here understood in the sense that the two formalisms
are strictly the same way of writing a mathematical object without consideration on the solution.
A huge study of differential inclusions can be found in [98], where the author focuses on differential
inclusion of the type ẋ ∈ F (x) for some multi-valued map F , but some hypothesis (such as a
boundedness property of F ) put (1.7) out of its scope. The closest results concerning systems such
as (1.8) concern the sweeping process, introduced by Moreau [81]. Originally, a sweeping process
is a differential inclusion defined as −ẋ(t) ∈ NC(t)(x(t)), for some convex valued multifunction
C. These systems, under some hypothesis on C, admit some properties, such as uniqueness of
solution for the Cauchy problem defined with this inclusion. Various forms of such systems have
been analyzed; see for instance [3, 18, 30, 41, 68].

For a general system LCS(A,B,C,D), we have to put the system under the form of a Differential
Algebraic Inclusion (DAI). Create an auxiliary variable λ defined by Cx + Dv − λ = 0. Then,
using the equivalence presented in Section 1.1.1, we know that −v ∈ NRm+ (λ). Reintroducing it
into the remaining equations, we obtain the DAI:{

ẋ− Ax ∈ −BNRm+ (λ)

Cx ∈ λ+DNRm+ (λ)
(1.9)

Such systems are to date little studied. One can find some results in [26, 80].

1.2.3 Control of the LCS

Let us now turn to the control of such systems. There exist also some properties known for a
certain class of LCS. Consider the input/output system:

ẋ(t) = Ax(t) +Bλ(t) + Fu(t), (1.10a)

y(t) = Cx(t) +Dλ(t) + Eu(t), (1.10b)

0 ≤ λ(t) ⊥ y(t) ≥ 0, (1.10c)

where, compared to LCS(A,B,C,D), we just add an input u : [t0, t1] → Rk and F ∈ Rn×k,
E ∈ Rm×k. There exist several results concerning properties satisfied by this system. We present
here a few of them that will highlight some future results exposed later. In particular, these results
show that the set of absolutely continuous functions may be too small in order to define a state
trajectory x(·) solution of (1.10).
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L2 solutions

The well-posedness of those systems have been analyzed in [32]. We summarise here their results.
First of all, in order to state properly well-posedness for LCS, we must define clearly some concepts.

Definition 1.2.2. • LCS(A,B,C,D) is said to be passive (or dissipative with respect to the
supply rate 〈λ, y〉) if there exists a function V : Rn → R+ (called a storage function) such
that:

V (x(t)) +

∫ t′

t

〈λ(t), y(t)〉dt ≥ V (x(t′))

holds for all t, t′ with t ≤ t′, and all (x, λ) ∈ L2([t, t′],Rn+m) satisfying (1.1) and y(t) =
Cx(t) +Dλ(t).

• A function f : R+ → R is called Bohl function if it has a rational Laplace transform. The
set of such functions is denoted by B. We call f a Bohl distribution if f = freg + fimp with
the impulsive part fimp =

∑`
i=0 uiδ

(i)
0 , where δ0 the Dirac function centered at 0, and δ(i)

0 is
its ith derivative, and the regular part freg ∈ B.

• A Bohl distribution f is initially nonnegative if its Laplace transform f̂ satisfies f̂(σ) ≥ 0 for
sufficiently large σ.

• f is said to be a piecewise Bohl function if f is right-continuous and there exists a collection
of isolated points Γw = {τi} ⊆ R+ (called the transition points) such that for every i, there
exists a function g ∈ B such that f (ti,ti+1) = g (ti,ti+1). We denote this space PB.

• The distribution space L2,δ(R+) is defined as the set of all u = uimp + ureg where uimp =∑
θ∈Γ uθδθ for uθ ∈ R with a set of isolated points Γ ⊂ R+ and ureg ∈ L2

loc(R
+).

Definition 1.2.3 (Initial solution). The Bohl distribution (v, x, y) is an initial solution to (1.10)
with initial state x0 and input u ∈ B if:

1. The equations ẋ = Ax+Bv+Eu+ x0δ, y = Cx+Dv+Fu hold in the distributional sense.

2. There exists a J ⊆ m such that vi = 0, i ∈ m\J and yi = 0, i ∈ J , as equalities of
distributions.

3. The distributions v and y are initially nonnegative.

In the following Theorem, we denote by ΓEu the set of times when Eu(·) is discontinuous.

Theorem 1.2.1. [32, Theorem 7.5] Consider an LCS given by (1.10) such that LCS(A,B,C,D) is

passive with the storage function x 7→ 1
2
xᵀKx for some matrix K positive definite, and

(
B

D +Dᵀ

)
has full column rank. Then, for any initial state x0 and any input function u ∈ PBm, (1.10) admits
a unique global solution (x, y, v) ∈

(
L2,δ(R+)

)n+m+m satisfying:

1. ximp = 0, and impulses in (v, y) only show up at times in Γ = {0} ∪ ΓEu.
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2. For any interval (a, b) such that (a, b) ∩ Γ = ∅, xreg (a,b)
is absolutely continuous and satisfy

for almost all t ∈ (a, b):

ẋreg(t) = Axreg(t) +Bvreg(t) + Fu(t)

yreg(t) = Cxreg(t) +Dvreg(t) + Eu(t)

0 ≤ vreg(t) ⊥ yreg(t) ≥ 0

3. For each θ ∈ Γ, the corresponding impulse (yθδθ, vθδθ) is equal to the impulsive part of the
unique initial solution to (1.10) with initial state xreg(θ

−) and input t 7→ u(t− θ).

4. For time θ ∈ Γ, it holds that xreg(θ+) = xreg(θ
−) +Buθ.

Some results where the solutions of LCS encompass higher order derivatives of the Dirac func-
tion may be found in [3, 63].

BV solutions

Suppose D = 0 and there exists a matrix R symmetric positive definite such that R2B = Cᵀ.
Resuming the presentation made in Section 1.7, one can prove (see [22]) that (1.10) is equivalently
defined as the perturbed sweeping process :

− ż(t) +RAR−1z(t) +RFu(t) ∈ NS(t)(z(t)) (1.11)

where S(t) = {Rx|Cx + Eu(t) ≥ 0}. The term perturbed comes from the fact that the term
RAR−1z(t) + RFu(t) is added. The perturbed sweeping processes offer a framework allowing for
a different analysis.
Let us state first some definitions. The variation of x(·) on [t0, t1] is the supremum of

∑
‖x(ti)−

x(ti−1)‖ over the set of all finite sets of points t2 < ... < tk of [t0, t1]. When this supremum is finite,
the mapping x(·) is said to be of bounded variation on [t0, t1]. x(·) is of locally bounded variation
on [t0, t1] if it is of bounded variation on each compact subinterval of [t0, t1].
Considering a set-valued mapping S : [t0, t1] ⇒ Rn and replacing the above expression ‖z(ti) −
z(ti−1)‖ by the Hausdorff distance haus(S(ti), S(ti−1)), one obtains the concept of set valued map-
pings with (locally) bounded variation on [t0, t1]. The Hausdorff distance between two subsets Q1

and Q2 in Rn is given by

haus(Q1, Q2) = max

{
sup
x∈Q1

inf
y∈Q2

‖x− y‖, sup
x′∈Q2

inf
y′∈Q1

‖x′ − y′‖
}

Denoting by varS(t) the variation of S(·) over [t0, t], S(·) is said locally absolutely continuous on
[t0,+∞[ if varS(·) is locally absolutely continuous on [t0,+∞[.
We make the following assumption on (1.10):

Assumption 1.2.1. Let D = 0. There exists a symmetric positive definite matrix R such that
R2B = Cᵀ.

Given u : [t0,+∞[→ Rm, define K(t) = {x ∈ Rn|Cx + Fu(t) ≥ 0}. We can now state the
well-posedness theorem:
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Theorem 1.2.2. [22, Theorem 3.5] Assume that u(·) ∈ L1
loc([t0,+∞[,Rm), that Assumption 1.2.1

holds and that the set-valued mapping S(·) = R(K(·)) is locally absolutely continuous (resp. right
continuous of locally bounded variation) with nonempty values. Then (1.10) with initial condition
x(0) ∈ R(K(0)) has one and only one locally absolutely continuous (resp. right continuous of
locally bounded variation) solution x(·) on [0,+∞[.

This result can be extended to the case D ≥ 0 or even for nonlinear systems, under some
further hypothesis.
The fact that a solution of the differential equation (1.10) may be only right continuous and of
locally bounded variation may seem unnatural. This is due to a reformulation of (1.10) into a
measure differential inclusion [81], which extends the notion of differential inclusions in order to
include state jumps representations. This result will explain some results obtained in numerical
simulation presented in Chapter 7.
Also, this may seem in contradiction with the results presented in the previous paragraph about
L2 solutions. Actually, these two results are different: the former solution concept proves global
existence and uniqueness of a solution x(·) on L2(R+), and the latter proves the global existence
and uniqueness of a solution right continuous with bounded variation. Since a function may belong
to L2(R+) and not be right continuous of bounded variation (and vice versa), these two results are
actually different.

Complete controllability of a class of LCS

First, let us formulate an Assumption on (1.10):

Assumption 1.2.2. The following conditions are satisfied for the LCS (1.10)

• The matrix D is a P-matrix.

• The transfer matrix E + C(sI − A)−1F is invertible as a rational matrix.

These assumptions are actually really restrictive, but they make the analysis easier. The second
assumption for instance requires that the number of inputs and the number of complementarity
variables be the same. It follows from the first assumption that for each initial state x0 and bounded
locally integrable input u there exist a unique absolutely continuous state trajectory xx0,u and
locally integrable trajectories (λx0,u, yx0,u) such that xx0,u(0) = x0 and the triple (xx0,u, λx0,u, yx0,u)
satisfies the relations (1.10) for almost all t ≥ 0.
A major result concerning (1.10) is on the complete controllability of the system. We recall the
definition here:

Definition 1.2.4. The LCS (1.10) is said completely controllable if for any pair of states (x0, xf ) ∈
Rn+n, there exists a locally integrable input u such that the associated trajectory xx0,u satisfies
xx0,u(t1) = xf .

Theorem 1.2.3. [31] Consider an LCS (1.10) satisfying Assumption 1.2.2. It is completely con-
trollable if and only if the following two conditions hold:

1. The pair (A, [F,B]) is controllable.

2. The system of inequalities
η ≥ 0 (1.12a)
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(
ξᵀ ηᵀ

)(A− νI F
C E

)
= 0 (1.12b)

(
ξᵀ ηᵀ

)(B
D

)
≤ 0 (1.12c)

admits no solution ν ∈ R and 0 6= (ξ, η) ∈ Rn+m.

1.2.4 Zeno behavior

This definition of solution hides a detail. In the community dealing with switching systems, an
assumption is often made: the trajectory admits no Zeno-state, meaning there is no time with an
infinite accumulation of switch events. We define here more precisely what is the Zeno phenomenon.
From LCS(A,B,C,D) (1.1), define three sets of indices, two called the active sets:

I+0
t (x, λ) = {i ∈ m : λi(t) > 0 = Cx(t) +Dλ(t)} (1.13a)

I0+
t (x, λ) = {i ∈ m : λi(t) = 0 < Cx(t) +Dλ(t)} (1.13b)

and the last called the degenerate set:

I00
t (x, λ) = {i ∈ m : λi(t) = 0 = Cx(t) +Dλ(t)} (1.13c)

Definition 1.2.5. Let (x, λ) be a solution trajectory of (1.1), t∗ ∈ [t0, t1], and let x(t∗) = x∗. We
say x∗ is:

• left non-Zeno relative to (x, λ) if a scalar ε− > 0 and a triple of index sets (I0+
− , I+0

− , I00
− )

exists such that (I0+
− , I+0

− , I00
− ) = (I0+

t (x, λ), I+0
t (x, λ), I00

t (x, λ)) for every t ∈ [t∗ − ε−, t∗[.

• right non-Zeno relative to (x, λ) if a scalar ε+ > 0 and a triple of index sets (I0+
+ , I+0

+ , I00
+ )

exists such that (I0+
+ , I+0

+ , I00
+ ) = (I0+

t (x, λ), I+0
t (x, λ), I00

t (x, λ)) for every t ∈]t∗, t∗ + ε+].

When x∗ is left and right non-Zeno, then we say that x∗ is non-Zeno.

The Zeno phenomenon is illustrated in Figure 1.1.

t

λ(t)

0

t∗

Figure 1.1: Illustration of λ when the solution is left Zeno and right non-Zeno

Theorem 1.2.4. [97] If D is a P-matrix, then all states of the LCS(A,B,C,D) (1.1) must be
non-Zeno.

Similar results but with assumptions more or less restrictive than D ∈ P exist: the interested
reader is referred to [33, 97].
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1.2.5 Dependence to initial conditions

Consider the Boundary Value Problem (BVP):

ẋ = Ax+Bλ

0 ≤ λ ⊥ Cx+Dλ ≥ 0

Mx(0) +Nx(T ) = b

(1.14)

where the system is described the same way as in (1.1) but a boundary condition is added (instead
of an initial value), defined with matrices M,N ∈ R2n×n and b ∈ R2n. In the smooth cases, solving
BVP uses a technique called shooting, which needs a sensitivity in the variation of the trajectory
given changes in the initial condition. This sensitivity is usually given by a Jacobian matrix, which
is defined though a differential equation involving the derivative of the right-hand side function
in the dynamical system. In the case of (1.14), since λ is not a differentiable function of x, this
property does not hold. However, Pang and Stewart [85] derived a result giving a sensitivity matrix
(through a weaken sense of derivation), which leads to a non-smooth Newton method.

Definition 1.2.6. • A set-valued map F : X ⇒ Y , where X and Y are normed space, is
said upper semi-continuous at x0 ∈ X if for all open set M containing F (x0), there is a
neighbourhood Ω of x0 such that F (Ω) ⊂ M . F is said upper semi-continuous if it is so at
every point x0 ∈ X.

• Let Φ : D ⊆ Rn → Rn be a vector function defined on the open set D. The function Φ is
said to have a linear Newton approximation at x̄ ∈ D if for an open neighborhood of x̄, a
set-valued map T : N ⇒ Rn×n exists such that:

(a) T (x) is a non empty compact subset of n× n matrices for every x ∈ N ,

(b) T is a upper semicontinuous at x̄,

(c) there exists a scalar function ∆ : R+ → R+ satisfying lim
s↓0

∆(s) = 0 such that for all

x ∈ N and all E ∈ T (x),

‖Φ(x)− Φ(x̄)− E(x− x̄)‖ ≤ ‖x− x̄‖∆(‖x− x̄‖).

If (c) is strengthened to

(c’) a constant c > 0 exists such that for all x ∈ N and all E ∈ T (x),

‖Φ(x)− Φ(x̄)− E(x− x̄)‖ ≤ c‖x− x̄‖2,

then we say that the linear Newton approximation T is strong.

Linear Newton approximations generalize the concept of Jacobian matrix for a broad class of
functions (broader than C 1 functions), and allow us to design a nonsmooth Newton method in
order to solve the equation Φ(x) = 0 with Φ non differentiable.
Let us use this definition for the solution map of (1.14). Define L(z) as the family of index sets
consisting of all α satisfying:

1. there exists a solution λ to the LCP(Cz,D) such that {i : λi > 0} ⊆ α ⊆ J = {i :
(Cz +Dλ)i = 0},
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2. the columns of the matrix DJα are linearly independent.

By convention, we let L(z) consists of only the empty set if no such index set α exists.

Theorem 1.2.5. [85] Suppose B SOL(Cx,D) is a singleton for all x ∈ Rn. For ξ ∈ Rn, denote
by x(·, ξ) a solution of the IVP (1.1) with initial condition x(0, ξ) = ξ.

• Define the family

Th(x) = {−B•α[(DJα)ᵀDJα]−1(DJα)ᵀCJ• : α ∈ L(x)}.

If L(x) = {∅}, then Th(x) consists of only the zero matrix. Then Th provides a linear Newton
approximation for the piecewise linear function x 7→ B SOL(Cx,D).

• Define Φb(ξ) = Mξ+Nx(t1, ξ)−b. Let us consider the Differential Inclusion (DI) in matrix:

Ẏ (t) ∈ AY (t) + (convTh(x(t, ξ)))Y (t), Y (0) = I, (1.15)

where I is the identity matrix. Then TΦ(ξ) = {M + NY (t1) : Y (·) solves the DI (1.15)} is
a linear Newton approximation of Φb.

• Suppose the BVP (1.14) has a solution x(·; ξ∗). If all matrices M+NY ∗(t1) are nonsingular,
where Y ∗ is a solution of the Differential Inclusion (1.15) with ξ = ξ∗, then there exists a
neighbourhood N∗ of ξ∗ such that for any initial iterate ξ0 chosen from N∗, the sequence {ξk}
where

ξk+1 = (M̃ + ÑY k(t1))−1(x̃b + Ñ(Y k(t1)ξk − x(t1, ξ
k))), ∀k ≥ 0

where Y k is a solution of the DI (1.15) with ξ = ξk, is well defined, remains in N∗ and
converges Q-superlinearly to ξ∗, meaning:

lim
k→∞

‖ξk+1 − ξ∗‖
‖ξk − ξ∗‖

= 0.

However, the assumption that x 7→ B SOL(Cx,D) is single-valued for all z is binding. Indeed,
as it was noted in [84, Proposition 5.1], the single-valuedness of x 7→ B SOL(Cx,D) on Rn is a
necessary and sufficient condition for the initial-value LCS (1.1) to have a unique C 1 trajectory
x(·, x0) for all initial conditions x0 ∈ Rn.

1.3 Numerical simulation of LCS

1.3.1 Event-driven method

Following the Hybrid representation presented in Section 1.2.1, the event-driven schemes are based
on the separation between smooth dynamics and switches when a change of mode occurs. Broadly
speaking, the iterations are done as follows:

1. Using a numerical method, the DAE (1.4) is solved between tk and tk+1.

2. We check the constraints (1.5). If one of the constraints is violated (a switch of mode occurs):

(a) Search for a time t∗ ∈ [tk, tk+1] such that: ∃i ∈ I; λi(t∗) = 0 or ∃i ∈ Ic; yi(t∗) = 0, using
a Newton method (for smooth cases) or a dichotomy.
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(b) Compute the reinitialized state x(t∗) using a jump transition map in (1.6), and all the
other variables y(t∗), λ(t∗).

3. Set tk to tk+1 if there was no switch, t∗ if there was one.

The advantage of such method is that we can achieve precise numerical solutions, by choosing
a high order integration method in step 1 (such as Runge-Kutta methods of high order to cite
only the most known ones) and a high order interpolation method for step 2(a). However, the
event-driven method suffers some problems:

• No accumulation of events is allowed for this scheme: the switching events must be well-
separated in time, otherwise step 2 is intractable.

• The detection of events may turn out to be tricky. Since with a floating point arithmetic,
we can not solve exactly in (1.5) λi = 0 or yi = 0, some threshold will be tuned instead.
Step 2(a) then becomes: searching for a time t∗ such that λi(t∗) < τλ or yi(t∗) < τy, for some
positive scalars τλ, τy. It is somehow hard, if not impossible, to have threshold values τλ and
τy that will work for any system, especially when m is large and many thresholds have to be
tuned.

The convergence of such method depends obviously on the order of the interpolation and the
integration methods, as it is proved in [65] for a mechanical system with one degree-of-freedom
without accumulations of impacts. Some results concerning the event-driven method (in the more
general context of dynamical systems with discontinuous right-hand side) may also be found in
[99].

1.3.2 Time-stepping method

A simple approach to compute an approximated trajectory of LCS(A,B,C,D) consists in discret-
izing the system using a backward Euler method: given h > 0, define N =

⌈
t1−t0
h

⌉
and solve, for

all k ∈ N :
xk+1 − xk

h
= Axk+1 +Bλk+1 (1.16a)

0 ≤ λk+1 ⊥ Cxk+1 +Dλk+1 ≥ 0 (1.16b)

In fact, isolating xk+1 in (1.16a) (under the hypothesis that I−hA is invertible), the only problem
to solve is, for each k:

0 ≤ λk+1 ⊥ C(I − hA)−1xk + [D + hC(I − hA)−1B]λk+1 ≥ 0

In order to state a convergence result, we first give some definitions:

Definition 1.3.1. • The matrix triple (A,B,C) is said to be minimal if (A,B) is controllable
and (C,A) is observable.

• For fixed h > 0, we say that the functions (xh, λh) are generated by (1.16) if they are piecewise
constants, with pieces {xk, λk} solution of (1.16) and (xh(t), λh(t)) = (xk, λk), (k − 1)h ≤
t < kh.

The passivity assumption was already met in a related form in Assumption 1.2.1, where R2B =
Cᵀ is a passive input/output constraint.
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Theorem 1.3.1. [27, Theorem 13] Consider LCS(A,B,C,D) such that (A,B,C) is a minimal
representation, B is full column rank and LCS(A,B,C,D) is passive (see Definition 1.2.2). Let
x0 ∈ Rn be given. Then, there exists a unique solution (x, λ) on [t0, t1] with initial state x0 (in
the L2 sense presented in Section 1.2.3). Also, let (xh, λh) be the piecewise functions generated by
(1.16). Then λh converges weakly in L2 to λ, and xh converges (strongly) in L2 to x, as h tends
to 0.

The passivity assumption is rather important (even though it is not proved that it is necessary).
A simple example showing no convergence of the time-stepping method is given in [27] by the triple
integrator:

ẋ1 = x2, ẋ2 = x3, ẋ3 = λ

0 ≤ λ ⊥ x1 ≥ 0

on [0, 1], with initial state x(0) = (0 −1 0)ᵀ. Assume we approximate the solution of this system
with a time-stepping method (which generates a sequence {xk, λk}Nk=0), and build with it a function
x̃ which is piecewise constant:

x̃(t) = xk, (k − 1)h ≤ t < kh

We can prove that {x1k} is defined by

x1k =

{
0 if k = 0
k(k+1)

2
h otherwise

As such, one sees easily that:

‖x̃1‖L1([0,1],R) =
N∑
k=1

∫ kh

(k−1)h

k(k + 1)

2
hdt =

h2

6
N(N + 1)(N + 2) = O

(
h−1
)

So x̃ is not bounded in L1 norm (and therefore for any Lp, p ≥ 1) as h tends to 0. It should be
noted that a scheme overcoming this problem is presented in [3].

Conclusion

The study of LCS, including the control of such systems, is now well developed, even though there
are still some unanswered questions. Once the control of a system is studied, it seems logical to turn
our interest on how to choose the good control in order to respect some criteria, like minimizing a
functional depending on the state and the control. This is the subject of the next chapter.
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Chapter 2

Non-smooth Optimal Control Problems

Abstract. This chapter focuses on the optimal control of various types of dynamical systems
on two different aspects. First of all, the necessary conditions of optimality concerning different
systems are considered, including hybrid automata, differential inclusions, Lipschitz systems and
mixed constraints. Along these lines, the presentation will show the limitations of these results
when they are applied to LCS. Secondly, two methods of numerical approximations of the optimal
solutions are presented, called respectively the Direct and Indirect methods.

Let us now focus on the analysis of Optimal Control Problems. These problems, which find
their origin in the Calculus of Variation, have many applications in a wide variety of topics.
Mathematically speaking, these problems are formulated as the optimization of a functional over
functions satisfying a differential equation (or a differential inclusion), alongside with constraints
over the whole domain of integration and/or at the boundaries. We focus here only on Optimal
Control Problems of Ordinary Differential Equations of the form:

min

∫ T

0

gint(t, x(t), u(t))dt+ gb(x(0), x(T ))

s.t.


ẋ(t) = f(t, x(t), u(t))

gc(t, x(t), u(t)) ∈ E(t)

(x(0), x(T )) ∈ B
a.e. on [0, T ],

(2.1)

where x : [0, T ] → Rn is called the state, u : [0, T ] → Rm is called the control, gint : [0, T ] × Rn ×
Rm → R called the running cost, gb : R2n → R called the final cost, f : [0, T ] × Rn × Rm → Rn,
gc : [0, T ]× Rn × Rm → Rk, E : [0, T ]⇒ Rk, B ⊆ R2n. Further hypothesis can be made concerning
smoothness of functions appearing in (2.1), making the analysis of this problem more or less easy.
Several names are given to this problem whether the running cost gint and the final cost gb are
present or not. We call it a Mayer problem if gint ≡ 0, a Lagrange problem if gb ≡ 0, and a Mayer
problem if none of them is identically 0.
By analogy with what is made for finite-dimensional optimization problems, the analysis of (2.1)
often focuses on two different topics: existence of an optimal solution, and searching for necessary
conditions that the optimal solution should comply with. For Optimal Control Problems, these
conditions take the form of the Pontryagin equations, defining an adjoint state through a Differ-
ential Algebraic Equation. These first order necessary conditions were first proved by Pontryagin
et al in their seminal work (see [88]). Their work focused on optimal control with smooth data,
and only constraints in the control were allowed. We state here their version for illustration:
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Theorem 2.0.1 (Pontryagin’s Maximum Principle). [104]
Consider the Optimal Control problem:

min

∫ T

0

gint(t, x(t), u(t))dt+ gb(x(T ))

s.t.


ẋ(t) = f(t, x(t), u(t))

u(t) ∈ E
x(0) ∈ B0, x(T ) ∈ B1

a.e. on [0, T ],

(2.2)

If (x∗, u∗) is optimal for this problem, then it is the projection of an extremal (x(·), p(·), p0, u(·)),
where p0 ≤ 0 and p(·) : [0, T ] → Rn is an absolutely continuous function called the adjoint state,
with (p(·), p0) 6= (0, 0), such that (x∗, p) solve the Euler equations:

ẋ(t) =
∂H

∂p
(t, x∗(t), p(t), p0, u∗(t)), ṗ(t) = −∂H

∂x
(t, x∗(t), p(t), p0, u∗(t))

almost everywhere in [0, T ], where H(t, x, p, p0, u) = 〈p, f(t, x, u)〉 + p0gint(t, x, u) is the Hamilto-
nian, and there holds:

H(t, x∗(t), p(t), p0, u∗(t)) = max
v∈E

H(t, x∗(t), p(t), p0, v)

Additionally, if B0 and B1 are submanifolds of Rn, then the adjoint vector can be built in order to
satisfy the transversality conditions at both extremities (or just one of them):

p(0) ⊥ Tx∗(0)E0, p(T )− p0 ∂g

∂x
g(x∗(T )) ⊥ Tx∗(T )E1

where TxM denotes the tangent space to M at point x.

Subsequent research focused on searching first-order conditions which resembles much this
Theorem, and also kept the same terminology (Hamiltonian, adjoint state, Pontryagin Maximum
Principle,...).
These equations are defined even for systems with weak smoothness (for instance if gint is only
Lipschitz), but one has to use tools of non-smooth analysis in order to tackle such problems. Even
though the problem of Optimal Control of LCS may seem smooth, the complementarity conditions
makes the use of non-smooth analysis necessary. After going over some definitions, some results
concerning Optimal Control of various systems linked with LCS will be presented, along with their
limits for the application for LCS. Then, the last Section will focus on numerical approximations
of the optimal solutions.

2.1 Optimal control of non-smooth systems

2.1.1 Optimal control of hybrid automata

Before defining the optimal control problem for hybrid automata, we must define a hybrid control
system.

Definition 2.1.1. A hybrid control system is given by a 7-tuple (Q,Σ, J, G,M,U,U), where:
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• (Q,Σ, J, G) is a hybrid automaton as defined in Definition 1.2.1 (where this time, Σ is defined
through ODEs of the form ẋ = fq(t, x, u)).

• M = {Mq}q∈Q is a collection of smooth manifolds where the state can have values for each
mode.

• U = {Uq}q∈Q is a collection of sets defining acceptable values for the control for each mode.

• U = {Uq}q∈Q is a collection of functional sets admissible for controls: u :Dom(u)→ Uq.

Optimal control of such systems have been widely analyzed: see for instance [11, 29, 49, 55,
86, 87, 101, 102, 105, 106]. The functional to minimize may take into account a running cost
partitioned over the different modes followed by the trajectory, along with a cost on the state at
switching times; the switching times may also be part of the optimal solution searched. As it was
underlined in Section 1.2.1, this approach has a lot of drawbacks for LCS:

• First of all, describing the LCS as a switching system is not an easy task, and the resulting
system may become too big to apply properly these results (for instance, because of the 2m

different modes possible);

• Secondly, most results concerning the Optimal Control of Switching Systems only assume
that the dynamical systems are described with ODEs for each mode. However, in most cases
of LCS, the dynamical system will be described with DAEs. Furthermore, adding further
constraints involving at the same time the state and the control does not seem to be taken
into account in the above articles;

• The resulting necessary conditions make strong assumptions on the system, on the admissible
transitions at switching times, or on the number of switches on the interval of integration.
Therefore, the results become intractable for a high number of switches or modes.

For all these reasons, the hybrid approach will not be used in order to tackle the Optimal Control
problem for LCS.

2.1.2 Differential inclusions and the sweeping process

The Optimal Control Problem for Differential Inclusions also attracted a lot of interest. We
summarize here some results concerning this.

Lipschitz bounded differential inclusions

In [98], the problem of optimality of solution is tackled for system of the form ẋ ∈ F (x) for some
multifunction F : Rn ⇒ Rn complying with some assumptions. Let F : Rn ⇒ Rn be a upper
semi-continuous multifunction (see Definition 1.2.6) with compact convex values. The problem is
then to solve:

min φ(x(T ))

s.t.

{
ẋ ∈ F (x)

x(0) ∈ C0, x(T ) ∈ C1

(2.3)

over absolutely continuous functions x : [0, T ] → Rn, where C0, C1 are two closed subsets of Rn,
and φ : Rn → R is a Lipschitz function. One could see this problem as a generalization of optimal
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control of systems defined by the ODE ẋ = f(x, u), u ∈ U (by defining F (x) = f(x, U)). For this
problem, one can prove two results: one concerning existence of an optimal solution, one giving
necessary condition this optimal solution should comply with [98, 109]. These conditions are close
to the PMP.

However, since the multifunction F is supposed to have compact values, we can not apply it
directly to the controlled LCS (1.11). Indeed, except for some peculiar cases, the normal cone,
seen as a multifunction, may admit unbounded values; for instance, NR+(0) = −R+.

Sweeping process

The optimal control of sweeping processes −ẋ ∈ NC(t)(x(t)) (see Section 1.2.3) has been a topic
of research gathering a lot of attention in the recent past years. Of course, as it was mentioned in
Section 1.2.3, a Cauchy problem described with a sweeping process may admit a unique solution;
there is, in these cases, no hope to optimize any trajectory, unlike in many cases of systems defined
with a differential inclusion. In the literature, three different approaches attempt to add control
in the sweeping process:

1. Adding an additive perturbation in the differential inclusion, taking the form

−ẋ ∈ NC(t)(x(t)) + f(t, x(t), a(t))

for some function a : [0, T ]→ Rm and f : [0, T ]× Rn+m → Rn, and where C(·) is unchanged.
The research in this direction mainly focuses on existence and relaxation; see [5, 6, 44, 77]
and references therein.

2. The second approach couples a sweeping process and a controlled ordinary differential equa-
tion, where C(t) is a given multimap but uncontrolled. The results provide necessary optim-
ality conditions [4, 23].

3. The third approach adds control in the definition of the moving set. For instance, [43] focuses
on the case of moving controlled polyhedra:

C(t) = {x ∈ Rn | 〈ui(t), x〉 ≤ bi(t), i = 1, ...,m}

where the control functions are ui and bi, i = 1, ...,m. The results focus on necessary
optimality conditions: see [42, 43]. As noted in [28], the discrete approximation approach
to optimization of the differential inclusions ẋ ∈ F (x) (see [79]) heavily relies on a Lipschitz
property of the multifunction F . However, this assumption is not verified with such controlled
polyhedra, and therefore the approach can not be applied.

The closest result to the optimal control problem of LCS may be found in [28], where the optimal
control problem reads as:

min φ(x(T )) +

∫ T

0

`(t, x(t), u(t), a(t), ẋ(t), u̇(t), ȧ(t))dt

s.t.


− ẋ(t) ∈ NC(t)(x(t)) + f(x(t), a(t))

C(t) = C + u(t), C = {x ∈ Rn | Gx ≥ 0}
‖u(t)‖ = r
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for φ : Rn → R, ` : [0, T ] × R4n+2d → R, a scalar r > 0 and a matrix G ∈ Rm×n, and where the
controls are a : [0, T ]→ Rd and u : [0, T ]→ Rn. If one supposes f(x, a) = −Ax− Fa, the system
can be easily put in the form of a LCS. Notice that C(t) = {x ∈ Rn|Gx + Gu(t) ≥ 0}. Moreover,
using [22, Proposition A.2], we prove that:

∂IC(t)(x) = Gᵀ∂IRm+ (Gx+ Eu(t))

where IK is the indicator function of the setK and ∂ denotes the convex subdifferential (see Section
1.2.2). Therefore, since ∂IK(x) = NK(x), it yields: −ẋ ∈ GᵀNRm+ (Gx + Gu) + Ax + Fa. Finally,
we use the following equivalence (presented Section 1.1.1):

−v ∈ NRn+(Gx+Gu) ⇐⇒ 0 ≤ v ⊥ Gx+Gu ≥ 0

such that we prove the equivalence between the sweeping process and the following LCS:

ẋ(t) = Ax(t) +Gᵀv(t) + Fa(t)

0 ≤ v(t) ⊥ Gx(t) +Gu(t) ≥ 0

‖u(t)‖ = r

The main results of [28] show well-posedness of the system, convergence of the discrete approxima-
tions, and necessary optimality conditions. However, the results developed in [28] do not apply to
our problem because of the presence of decoupled controls (u, a), acting either on the polyhedron
or on the dynamical inclusion.

2.1.3 Lipschitz systems

As presented in Proposition 1.1.2, a certain class of LCS can be described with a piecewise linear
Lipschitz differential equation, but not differentiable. Most results concerning optimality analysis
of non constrained systems require some differentiability of the data, but this assumption has to be
weakened. Clarke in [40] tackled the optimal control problem of a non-constrained system under
minimal hypotheses; namely, the data have to be measurable and Lipschitz in the state variable.
We state here more clearly his results, as they will be used in further development.

Definition 2.1.2. Let g : Rn → Rk be a locally Lipschitz function. We define the Clarke generalized
Jacobian ∂Cg(s) of g at s as:

∂Cg(s) = conv(lim(Dg(si))
ᵀ)

where we consider all sequences {si} converging to s where the usual Jacobian Dg(si) exists, as
well as the limit of the sequence {Dg(si)}. For f : Rn × R` → Rk, we denote by ∂Cs f(t, x) the
Clarke generalized partial Jacobian, which is the generalized Jacobian of the function s 7→ f(t, s)
at point x.

Consider the following optimal control problem:

min

∫ T

0

f 0(t, x(t), u(t))dt

s.t.


ẋ(t) = f(t, x(t), u(t)

u(t) ∈ U(t), x(t) ∈ X
x(0) ∈ C0, x(T ) ∈ C1

(2.4)
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where T > 0 is given, f 0 : [0, T ]× Rn × R, f : [0, T ]× Rn × Rm, U : [0, T ]⇒ Rm is a multifunction,
X, C0 and C1 are closed subsets of Rn. u : [0, T ] → Rm satisfying u(t) ∈ U(t) a.e. t ∈ [0, T ] is
a Lesbesgue measurable function (the control). An admissible trajectory associated with u is an
absolutely continuous function x : [0, T ]→ Rn satisfying the constraints in (2.4) and x(t) ∈ X a.e.
on [0, T ]. x is said interior if moreover, x(t) ∈ int X a.e.

Define f̃ = (f, f0). We do the following hypotheses:

H1 For each s in a neighborhood of X, the function (t, u) 7→ f̃(t, s, u) is L×Bm-measurable1.

H2 There is a function k ∈ L1([0, 1],R) such that for t ∈ [0, T ], u ∈ U(t) and s1, s2 in a neigh-
bourhood of X:

‖f̃(t, s1, u)− f̃(t, s2, u)‖ ≤ k(t)‖s1 − s2‖

H3 The graph of U is L×Bm-measurable.

Theorem 2.1.1. [40] Let (x∗, u∗) be the optimal solution to (2.4), where x∗ is an interior admiss-
ible trajectory associated with u∗. If H1 - H3 are satisfied, there exist an absolutely continuous
function p : [0, T ]→ Rn and a scalar λ ≤ 0 such that |p(t)|+ |λ| 6= 0, and:

−ṗ(t) ∈ ∂Cx f(t, x∗(t), u∗(t))p(t) + λ∂Cx f
0(t, x∗(t), u∗(t))

〈p(t), f(t, x∗(t), u∗(t))〉+ λf 0(t, x∗(t), u∗(t)) =

sup{〈p(t), f(t, x(t), u(t))〉+ λf 0(t, x(t), u(t)), u ∈ U(t)} a.e.,

p(0) is normal to C0 at x∗(0), and −p(T ) is normal to C1 at x∗(T ).

As explained in [40, Remark 4], the state constraint set X may also depend on time, allowing
to define X as an ε-neighbourhood of an optimal state trajectory.

2.1.4 Mixed constraints

In the classical Pontryagin Maximum Principle (PMP) (see [88]), the optimal control problem
tackled only admitted pathwise constraint on the control function (u(t) ∈ U(t) for all t ∈ [0, T ]
and some multifunction U). Subsequently, these results were adapted in order to tackle a broader
problem by adding some pathwise mixed control/state constraints:

φ(t, x(t), u(t)) ∈ Φ(t), a.e. t ∈ [0, T ]

for a given function φ and a multifunction Φ. In order to state necessary conditions with these
constraints, some constraint qualification has to be made on the data. We find in the literature
two different approaches:

• The first one assumes a full-rank condition on the derivative of the data with respect to
u (when the data are smooth enough). Some other qualification can be found, implying
this full-rank condition (such as Mangasarian Fromovitz condition). The idea is then to
analyze an augmented cost, where the integral

∫ T
0
φ(t, x(t), u(t))ᵀζ(t)dt is added, along with

1L × Bm denotes the σ-algebra of subsets of [0, T ] × Rm generated by all products of a Lebesgue measurable
subset of [0, T ] and a Borel subset of Rm.
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complementarity slackness conditions, where ζ is a measurable and bounded function, viewed
as a Lagrange multiplier. Such results may be found in [47, 50, 76]. On a side note, Arutyunov
and al. in [9] extended these previous results to impulsive systems, expressed in form of
measure differential equations. The assumption they make on the mixed constraints enter in
this same framework.

• The second approach, whose assumptions actually imply the first results, derives stratified
necessary conditions. In this approach, a measurable radius function is defined in order to
fix a neighbourhood around the optimal control, giving sense to what is a local optimum.
More precisely, denote by J(x, u) =

∫ T
0
gint(t, x(t), u(t))dt+gb(x(0), x(T )) (the cost in (2.1)).

One says that (x∗, u∗) is a local minimum of radius R : [0, T ]→ [0,+∞] if there exists ε > 0
such that, for all admissible functions (x, u) such that:

‖x∗(t)− x(t)‖ ≤ ε, ‖u∗(t)− u(t)‖ ≤ R(t) a.e. on [0, T ],

∫ T

0

‖ẋ∗(t)− ẋ(t)‖dt ≤ ε

one has J(x∗, u∗) ≤ J(x, u). This radius function is now part of the definition of a local
minimum, and the necessary conditions are expressed in its term. Of course, if R(t) = +∞
for almost all t on [0, T ], then one retrieves the classical W 1,1 minimizers (see [109]). This
approach is typified by [37, 38].

In both cases, the necessary conditions take the same form as the PMP, meaning the exist-
ence of an absolutely continuous function (the adjoint state) defined by a differential equation (or
inclusion), maximization of a Hamiltonian and transversality conditions. One could argue that
"pure" state constraints may be added also in this framework. The previous results rest upon
constraint qualification that prevents most constraints of the form φ(t, x(t)) ∈ Φ(t). An other
argument to support this observation is the study of optimal control with unilateral state con-
straints (φ(t, x(t)) ≤ 0). In this context, the necessary conditions involve a discontinuous adjoint
state defined by means of a Radon measure supported on intervals of active constraints. More
details can be found in [13] and references therein.

2.2 Numerical approximations
Obviously, most optimal control problems can not be solved analytically. Therefore, most problems
are approximated by numerical schemes. In order to solve these problems, two different methods
clearly stand out: the direct methods and the indirect methods.

2.2.1 Direct approach

In the direct approach, one discretizes directly the optimal control problem in order to solve a
finite dimensional optimization problem. Once again, many discretization choices can be made.
For ease of presentation, we focus on the Mayer problem (meaning gint ≡ 0 in (2.1)). We identify
three approaches:

• the single shooting, which consists in discretizing only the control. The choice of discret-
ization consists in choosing a finite-dimensional basis in which the control is represented
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(piecewise constant, piecewise affine, splines, etc). The problem then reduces to the optimal
choices of pieces u0, ..., uM for some fixed positive integer M :

min
u0,...,uM

gb(x(0), x(T ))

s.t.


ẋ(t) = f(t, x(t), u(t))

gc(t, x(t), u(t)) ∈ E(t) a.e. on [0, T ]

(x(0), x(T )) ∈ B
u(t) = U(t, ui, ui−1) ∀t ∈ [ti−1, ti], ∀i ∈M,

where t0 = 0 and tM = T . The stage times ti can also be part of the decision variables used for
optimization (especially if the final time T is free). The path constraint gc(t, x(t), u(t)) ∈ E(t)
has to be also re-expressed: either it is satisfied only at stage points ti, or it can also be re-
formulated as an integral constraint. The differential equation is numerically integrated with
any ODE solver, but it should also provide sensitivities, since they are needed by the optim-
ization solver.
The strong points of the single shooting method is that it creates a relatively small optim-
ization problem, with little degrees of freedom, which can use fully adaptive ODE or DAE
solvers. Furthermore, the ODE will be solved at each iteration of the solving algorithm (it
is a feasible path method). However, any knowledge on the trajectory can not be used for
initialization, unstable systems seem to be difficult to treat, the method becomes computa-
tionally demanding, and the sensitivities for the state trajectory x may depend non trivially
on the choices of the pieces ui.

• the simultaneous method, which consists in a full discretization of the control and of the state.
In this case, the ODE ẋ(t) = f(t, x(t), u(t)) is replaced by equalities fh(ti, xi, xi−1, ui, ui−1) =
0, for i ∈ N for some positive integer N . The problem then becomes:

min
u0,...,uN ,x0,...,xN

gb(x0, xN)

s.t.


fh(ti, xi, xi−1, ui, ui−1) = 0

gc(ti, xi, ui) ∈ E(ti) ∀i ∈ N
(x0, xN) ∈ B.

The advantages of the simultaneous method are that we can use an a priori initialization on
the state trajectory x, the local convergence is fast, it can treat unstable systems, and it can
easily handle state or terminal constraints. The disadvantages are a very large NLP, and the
numbers of time stages that must be chosen a priori. Aside these observations, note also that
the dynamical equation will only be satisfied at the converged solution of the optimization
process. This infeasible path method is a drawback if the algorithm is stopped too soon,
but it has the advantage of saving computational efforts and allows to deal with unstable
systems.

• the multiple shooting, that combines the spirit of the two previous methods. We present the
method for controls discretized with constants pieces. Denote by x(·; si, ui) the solution of:

ẋ(t) = f(t, x(t), ui) a.e. on [ti, ti+1], x(ti) = si
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These si, each approximating the state x at time ti, become a new decision variable (as in the
simultaneous method). Of course, some continuity property of the state must be preserved,
which is enforced by imposing si+1 = x(ti+1; si, ui). The problem eventually reads as:

min
u0,...,uN ,s0,...,sN

gb(s0, sN)

s.t.


si+1 − x(ti+1; si, ui) = 0

gc(ti, si, ui) ∈ E(ti) ∀i ∈ N
(s0, sN) ∈ B.

This method mostly has the same advantages as the simultaneous method (a priori initializa-
tion of the state, deals robustly with unstable systems, fast local convergence). Furthermore,
the integration can easily be parallelized. However, the trajectory will be valid on the whole
interval [0, T ] only once the optimization algorithm fully converged (in order to assume
continuity of the trajectory). And again, computing an optimal descent direction will use
sensitivities, normally given by the ODE solver.

Note that there exist also some probabilistic approaches, in which the optimal control is expressed
as searching an occupation measure. This measure is approximated by a finite number of its
moment in order to reduce it to a finite dimensional optimization problem; see [70].

These finite dimensional optimization problems can then be solved by different algorithms, such
as Sequential Quadratic Programming (SQP) or interior-point methods. The direct methods are
often used because of their simple construction and their modularity to change of model (for adding
constraints, for instance). Also, no a priori analysis of the problem is needed, and they are not
so sensitive to the choice of the initial condition. However, reaching high precision becomes really
difficult with this problem. High precision is met for instance by shrinking the time-step, which
causes a rise of variables in the optimization problem. Various variations entering the framework of
direct methods can be found in [25, 48, 53, 57, 89, 93, 104]. We make a special focus on [12], where
the author emphasises the importance of sparsity for the resolution of the optimization problems.

2.2.2 Indirect approach

The indirect approach relies on the Pontryagin’s equations in its Maximum Principle in order to
compute the solution. Let us present the method in the simpler context given in Theorem 2.0.1
(namely, smooth system with only constraint on the control). Suppose we can make explicit the
maximization condition (leading to an expression of u∗ as a function of x∗ and p). Then the
Euler equations can be put in the form ż(t) = F (t, z(t)), where z(t) = (x∗(t), p(t)). Moreover,
initial, final and transversality conditions can be put in the form R(z(0), z(T )) = 0. This forms a
Boundary Value Problem (BVP).
Denote by z(t; z0) the solution of the Cauchy problem ż(t) = F (t, z(t)), z(0) = z0. The BVP
problem is reduced to a root-search of the function G(z0) = R(z0, z(T ; z0)).

This method, called the simple shooting indirect method, is known to suffer from instability.
In order to improve stability, the interval [0, T ] is divided in subinterval [ti, ti+1], where 0 = t0 <
t1 < .... < tN = T are called the shooting nodes, and considering as unknown not only z(0)
but all z(ti) for i between 0 and N . Then on each subinterval [ti, ti+1], the Cauchy problem
ż(t) = F (t, z(t)), z(ti) = zi is solved. Assuring also continuity of the solution leads to add further
constraints zi+1 − z(ti+1; zi) = 0 into the function R. All is reduced eventually to a root-search
problem, with with more variables (namely, zi, i ∈ {0, ..., N}). This is called the multiple shooting
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indirect method. This approach can be generalized to other problems, for instance with pure state
constraints (which add jump in the adjoint state).

There exist many different root-search algorithms, such as the Newton methods or the BFGS
method. These methods use the Jacobian (or an approximation) of the function G in order to
find a descent direction. Augmenting the number of subintervals improves the stability, as the
determinant of this Jacobian, seen as a function of ti+1 − ti, is an exponentially growing function
(see [100]).

The indirect methods are advantageous for obtaining a precise solution, thanks to the root-
finding algorithms that may present fast convergence. Also, shrinking the time-step used for
integrating the Euler equations on each subinterval will just increase the number of iterations but
not the complexity of the integration. Finally, the multiple shooting can be easily parallelized (each
Cauchy problem can be solved in parallel on each subinterval [ti, ti+1]). The drawbacks of such
methods are their complexity, both analytically (deriving the necessary conditions may turn out
to be difficult in presence of pure state constraints), and numerically. The root-finding algorithms
are hard to make convergent unless the initial guess is already in a neighbourhood of the solution.
Also, the optimal control is computed as an open-loop controller; the PMP is only a necessary
condition, thus the obtained solution needs to be checked a posteriori; and the structure of the
switches (in case of bang-bang control for instance) should be known a priori. More details on
these methods can be found in [14, 15, 16, 24, 104] and references therein.

2.2.3 Hybrid numerical approach

There is some duality between the direct and indirect approaches. We could sketch the idea as
follows: the direct approach consists in 1) discretize and 2) dualize, while the indirect approach
consists in 1) dualize and 2) discretize. The hybrid numerical approach consists in applying both
the direct and indirect methods in order to achieve a high precision solution. Broadly speaking,
it consists in applying first a direct method in order to get a rough solution, and then solving
the Pontryagin equations using as first guess the solution given by the direct method. Of course,
the adjoint state and multipliers, appearing in the first order conditions, must be computed from
the rough solution. Since the solution of the direct method should already be in a neighbourhood
of the optimal solution, there is high hope that the indirect method would converge. There are
two reasons for applying such scheme. First, the necessary conditions assure that the solution
found actually is a stationary solution. Secondly, the first rough solution can be recomputed using
a thiner grid while solving the Pontryagin equations. Since it is not an optimization problem
anymore, decreasing the time-step will just increase the number of iterations made to integrate
the equation, but not the complexity of each of them.

We could wonder if passing from the direct method to the indirect method is valid, in the sense
that there exists a mapping such that, when applied to the solution given by the direct method, it
can be used as a good approximation of the solution of the Pontryagin equation, and vice versa.
Stated in an other way, the question is to know if the dualization and discretization steps for
the direct and indirect approaches commute or not. Some examples show that it is not the case.
Even under classical assumptions of consistency and stability of the discretization scheme used,
the indirect method converges while the direct method diverges (see simple examples in [60]).
Nonetheless, some results concerning this commutation theory have been derived, under the name
of Covector Mapping Principle. Denote by B the original optimal control problem (2.1), by BN

its direct approach discretization, and by BN,λ the stationary conditions associated with the op-
timization problem in BN . On the other hand, denote by Bλ the stationary conditions associated
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with B, and by Bλ,N the discretization of Bλ. This is schematized in Figure 2.1.

Problem B Problem BN

Discretization

Convergence

Problem Bλ

Dualization

Problem Bλ,N

Discretization

Convergence

Problem BN,λ

Dualization

Covector
Mapping
Principle

Figure 2.1: Sketch of the different numerical methods for Optimal Control problems (inspired by
[57]).

Obtaining results ensuring commutation is not obvious. The class of Legendre pseudospec-
tral methods is up to now the class of methods with the richest results. These are typified by
[53, 92]. Ross and al in [93] show that the pseudospectral discretization leads to a Covector Map-
ping Theorem, under so-called closure condition. Gong and al in [57] show more precisely the
connection between the covector mapping theorem and convergence of the different methods using
pseudospectral methods. Aside pseudospectral methods, Hager in [60] assert convergence of the
direct method provided that the method be based on Runge-Kutta schemes with positive coeffi-
cients. Dontchev and Hager in [51] show convergence of an Euler approximation scheme for an
optimal control problem with pure state constraints. Other results for RK schemes can be found
in [35, 52, 94] and references therein. In [69], the authors prove convergence of a scheme for an LQ
problem (the state is approximated by a piecewise linear function, and the control by a piecewise
constant function).
However, all these results rely on a certain degree of "smoothness" of the data and/or of the op-
timal solution. Otherwise, it seems that there is no systematic method for designing approximation
leading for sure to convergence of the numerical methods.

Conclusion

The study of optimal control problems is already broad and undertakes a lot of different systems.
However, it can not tackle yet the formulations including complementarity, as it violates most
hypothesis formulated. As shown in the following chapter, some definitions, especially tailored for
optimization problems with complementarity, must first be explained. With these new tools, one
can then properly study the optimal control problem of LCS.
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Chapter 3

Mathematical Programming with
Complementarity Constraints

Abstract. The presence of complementarity in the optimization problem leads us to the study
of Mathematical Programming with Equilibrium Constraints (MPEC). These are problems with
tailored theoretical developments, as they do not suit most hypothesis made in the prior study
of most Nonlinear Programming (NLP) problems. After some theoretical results concerning finite
dimensional MPEC, and their numerical resolution, we will see how it can be adpated to the study
of optimal control problem involving complementarity constraints.

Mathematical Programming with Equilibrium Constraints (MPEC) are optimization problems
in which there are two variables: one which is a vector of parameters, the other one which is a
primary variable submitted to equilibrium constraints. More specifically, for two positive integers
n and m, denote by f : Rn+m → R an objective function to minimize, F : Rn+m → Rm a
function called the equilibrium function, Z ⊆ Rn+m a non-empty closed set, and C : Rn ⇒ Rm

a multimap with (possibly empty) closed convex values. Denote by SOL(C(x), F (x, ·)) the set
{y ∈ C(x) | (v−y)ᵀF (x, y) ≥ 0,∀v ∈ C(x)} (this is the set of solutions of the variational inequality
defined by F (x, ·) and C(x)). Then, we call MPEC the optimization problem:

min f(x, y)

s.t.

{
(x, y) ∈ Z
y ∈ SOL(C(x), F (x, ·))

Suppose that: ∀x ∈ Rn, C(x) = Rm+ . Then the variational inequality defined by F (x, ·) and
C(x) is a complementarity problem [54] and the MPEC becomes:

min f(x, y)

s.t.

{
(x, y) ∈ Z
0 ≤ y ⊥ F (x, y) ≥ 0

which is more usually calles Mathematical Programming with Complementarity Constraints (MPCC).
MPCC may look like any other Nonlinear Program (NLP), but most tools used in order to

analyze NLP do not apply, because of the violation of all standard constraint qualification (CQ),
such as the Magasarian-Fromovitz CQ (MFCQ) or the Linear Independence CQ (LICQ) (see [115,
Proposition 1.1]). Thus, most results concerning MPCC had to first redefine their own tailored
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CQ, in order to derive cases for which first order conditions exist. These definitions are most
important in order to tackle efficiently optimal control of LCS.

3.1 Finite dimension
This section is devoted to the study of the MPCC:

minf(x)

s.t.


g(x) ≤ 0

h(x) = 0

0 ≤ G(x) ⊥ H(x) ≥ 0

(3.1)

with continuously differentiable functions f : Rn → R, g : Rn → Rq, h : Rn → Rp, G,H : Rn → Rm.
For "standard" nonlinear programs, there exist different ways to obtain first-order optimality
conditions:

• a geometric approach (equality of the tangent cone and a linearized version);

• via exact penalty function (see Section 1.1.1 where the LCP is re-expressed with non-smooth
functions), using then non-smooth analysis to derive first order conditions;

• via the Fritz-John conditions, which give first order conditions without using any CQ, but
at the cost of having a multiplier in front of the objective function.

Under suitable CQ, all these methods give eventually the same results: the Karush-Kuhn-Tucker
(KKT) conditions. For MPEC, things are slightly different, in the sense that each method will
give its own results, that under some CQ will happen to be the same.

3.1.1 Analysis

When the Fritz-John conditions are directly applied to MPEC, they do not give efficient results.
Thus, the results had to be refined (as shown in [66, Theorem 3.1]). Moreover, as it was mentioned
in the introduction of this Section, the classical CQs are not verified for MPEC. Therefore, some
special MPEC-tailored CQs have to be defined. A lot of different CQ can be found in the literature
(see a zoology in [114]). We define here three of them. For that, define the index sets:

Ig(x) = {i ∈ q | gi(x) = 0},

I+0(x) = {i ∈ m | Gi(x) > 0 = Hi(x)},

I0+(x) = {i ∈ m | Gi(x) = 0 < Hi(x)},

and the biactive (or degenerate) set:

I00(x) = {i ∈ m | Gi(x) = 0 = Hi(x)}.

Also, denote by I0•(x) = I0+(x) ∪ I00(x) = {i ∈ m | Gi(x) = 0} and I•0(x) = I+0(x) ∪ I00(x) =
{i ∈ m | Hi(x) = 0}

Definition 3.1.1. Let x∗ ∈ Rn.
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• We say that the MPEC LICQ holds at x∗ if the family of gradients

{∇gi(x∗) : i ∈ Ig(x∗)}∪{∇hi(x∗) : i ∈ p}∪{∇Gi(x
∗) : i ∈ I0•(x∗)}∪{∇Hi(x

∗) : i ∈ I•0(x∗)}

is linearly independent.

• The MPEC linear condition holds if all the functions g, h, G, H are affine.

• The MPEC MFCQ holds at x∗ if the family of gradients

{∇hi(x∗) : i ∈ p} ∪ {∇Gi(x
∗) : i ∈ I0•(x∗)} ∪ {∇Hi(x

∗) : i ∈ I•0(x∗)}

is linearly independent, and there exists a vector d ∈ Rn such that:

∇hi(x∗)ᵀd = 0, ∀i ∈ p

∇Gi(x
∗)ᵀd = 0, ∀i ∈ I0•(x∗)

∇Hi(x
∗)ᵀd = 0, ∀i ∈ I•0(x∗)

∇gi(x∗)ᵀd < 0, ∀i ∈ Ig(x∗).

These constraint qualifications are often sufficient conditions for the local error bound condition
to hold, which we define here. For this, define by Cm = {(v, w) ∈ Rm | 0 ≤ v ⊥ w ≥ 0}

Definition 3.1.2. Let S = {x ∈ Rn : g(x) ≤ 0, h(x) = 0, (G(x), H(x)) ∈ Cm}. We say that
the local error bound condition holds (for the constrained system representing S) at x∗ ∈ S if there
exist positive constants τ and δ such that:

distS(x) ≤ τ (‖max{0, g(x)}‖+ ‖h(x)‖+ distCm(G(x), H(x))) , ∀x ∈ Bδ(x∗)

The analysis of MPEC involves different types of stationarity conditions, more or less strong,
which will be verified by a local minimum depending on the CQ it complies with. Among all
stationarity concepts designed for MPEC, we give here three definitions used for the rest of the
manuscript.

Definition 3.1.3. Let x∗ be an admissible point for (3.1).

1. x∗ is a W(eak) stationary point of (3.1) if there exist multipliers (λ, µ, θ, ν) ∈ Rp+q+2m such
that:

∇f(x∗) +∇g(x∗)ᵀλ+∇h(x∗)µ−∇G(x∗)θ −∇H(x∗)ν = 0,

0 ≤ λ ⊥ −g(x∗) ≥ 0,

θi = 0, ∀i ∈ I+0(x∗), νi = 0, ∀i ∈ I0+(x∗). (3.2)

2. x∗ is a C(larke) stationary point of (3.1) if there exist multipliers (λ, µ, θ, ν) ∈ Rp+q+2m such
that it is W-stationary and ∀i ∈ I00(x∗):

θiνi ≥ 0. (3.3)

3. x∗ is a M(ordukovich) stationary point of (3.1) if there exist multipliers (λ, µ, θ, ν) ∈ Rp+q+2m

such that it is W-stationary and ∀i ∈ I00(x∗):

either [θiνi = 0] or [θi > 0 and νi > 0]. (3.4)
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4. x∗ is a S(trong) stationary point of (3.1) if there exist multipliers (λ, µ, θ, ν) ∈ Rp+q+2m such
that it is W-stationary and ∀i ∈ I00(x∗):

θi ≥ 0 and νi ≥ 0. (3.5)

From the definition, it is clear that one has the implication:

S-stationarity =⇒ M-stationarity =⇒ C-stationarity =⇒ W-stationarity

The difference between the different stationarity conditions lies in the biactive (or degenerate) set
I00(x∗). This is illustrated in Figure 3.1.

θi

νi

(a) W-stationarity

θi

νi

(b) C-stationarity

θi

νi

(c) M-stationarity

θi

νi

(d) S-stationarity

Figure 3.1: Geometric illustration of W-, M- and S-stationarity for i in the biactive set I00(x∗)
(taken from [67]).

As explained in [114], these stationarity conditions are actually related to associated programs,
for which they are the usual KKT conditions. For instance, the W-stationarity is the KKT condi-
tion of the tightened MPEC:

min f(z)

s.t.


g(z) ≤ 0, h(z) = 0,

Gi(z) = 0, Hi(z) ≥ 0 ∀i ∈ I0+(x∗),

Gi(z) ≥ 0, Hi(z) = 0 ∀i ∈ I+0(x∗),

Gi(z) = 0, Hi(z) = 0 ∀i ∈ I00(x∗),

C-stationarity condition is the nonsmooth KKT condition (see [36, Chapter 6]) using Clarke sub-
differential (see Definition 2.1.2) of:

min f(z)

s.t.


g(z) ≤ 0, h(z) = 0,

Gi(z) = 0, Hi(z) ≥ 0 ∀i ∈ I0+(x∗),

Gi(z) ≥ 0, Hi(z) = 0 ∀i ∈ I+0(x∗),

min{Gi(z), Hi(z)} = 0 ∀i ∈ I00(x∗),

while S-stationarity is the KKT condition for the relaxed MPEC:

min f(z)

s.t.


g(z) ≤ 0, h(z) = 0,

Gi(z) = 0, Hi(z) ≥ 0 ∀i ∈ I0+(x∗),

Gi(z) ≥ 0, Hi(z) = 0 ∀i ∈ I+0(x∗),

Gi(z) ≥ 0, Hi(z) ≥ 0 ∀i ∈ I00(x∗).
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With the previous definitions, we can now state some first-order conditions for (3.1).

Theorem 3.1.1. 1. [95, Theorem 2 (1)] Let x∗ be a local optimal solution for (3.1), and suppose
MPEC MFCQ holds at x∗. Then x∗ is C-stationary.

2. [114, Theorem 2.2] Suppose the MPEC linear CQ is met. Let x∗ be a local optimal solution
for (3.1). Then x∗ is M-stationary.

3. [83, Theorem 3] Let x∗ be a local optimal solution for (3.1), and suppose MPEC LICQ hold
at x∗. Then x∗ is S-stationary.

The definition of stationarities in Definition 3.1.3 uses some index sets that depend on the
optimal solution (namely, I+0(x∗) and all the other (bi)active sets). This dependence may some-
times be cumbersome, and prevent the resolution of these stationary conditions directly. The next
Theorem reformulates them, in order to get rid of these index sets.

Theorem 3.1.2. [58, Theorem 3.1] For any x admissible for (3.1), we have the following state-
ments:

1. Conditions (3.2) and (3.3) are equivalent to the equations

θiGi(x) = νiHi(x) = 0, θiνi ≥ 0, i ∈ m

2. Conditions (3.2) and (3.4) are equivalent to the equations

θiGi(x) = νiHi(x) = 0, θiνi ≥ 0, max{ui, vi} ≥ 0, i ∈ m

3. Conditions (3.2) and (3.5) are equivalent to the equations

θi = αi − ζHi(x), νi = βi − ζGi(x)

αiGi(x) = βiHi(x) = 0, αiβi ≥ 0, i ∈ m
(3.6)

for α, β ∈ Rm and ζ ∈ R.

Remark 3.1.1. Concerning the reformulation of S-stationarity, one may see α and β as the
multipliers associated with the constraints G(x) ≥ 0, H(x) ≥ 0, and ζ as the multiplier associated
with the constraint G(x)ᵀH(x) = 0, where (3.1) is considered as a standard NLP. Since neither
the (standard) LICQ nor MFCQ apply directly to these constraints, [110, Theorem 1] states that
these multipliers (α, β, ζ) can not be unique, nor can they remain in a bounded set.

Other results related to this problem can be found in the aforementioned references and in
[75, 82, 113].

3.1.2 Numerical resolution

Of course, most MPEC can not be solved analytically. In general, the numerical treatment of
MPEC is not an easy task. Due to the violation of standard CQs, most optimization solvers are
not guaranteed to converge. The algorithms designed for their resolution try to tackle this problem
while focusing on two points:

• Of course, the algorithm has to converge to a local optimum, or at least to a stationary point.

• Preferably, it should fit in the already known algorithms used for classical optimization.

It should be noted also that there exists a benchmark with numerous MPEC problems and their
solution, used for testing the different algorithms; see [72]. We present here two schemes that may
converge to M- or S-stationary points.
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Complementarity relaxation

In [67], the idea is to relax the complementarity condition using the following C-function (see
Definition 1.1.1): define ϕ : R2 → R by:

ϕ(a, b) =

{
ab if a+ b ≥ 0

−1
2
(a2 + b2) if a+ b < 0

and then relax the problem as: let Φ : Rn × R+ → Rm be defined component-wise by:

Φi(z, τ) = ϕ(Gi(z)− τ,Hi(z)− τ)

With this function, we define the relaxed problem NLP(τ) for τ ≥ 0 as:

min f(z)

s.t. g(z) ≤ 0, h(z) = 0

G(z) ≥ 0, H(z) ≥ 0

Φ(z, τ) ≤ 0

(NLP(τ))

Algorithm 1: Relaxation algorithm (z0, τ0, σ, τmin, ε).
Input: A starting vector z0, an initial relaxation parameter τ0, and parameters σ ∈ (0, 1),

τmin > 0, and ε > 0
1 Set k:=0
2 while (τk ≥ τmin and compVio(zk) > ε) or k=0 do
3 Find an approximate solution zk+1 of NLP(τk). To solve NLP(τk), use zk as starting

vector. If NLP(τk) is not feasible, terminate the algorithm
4 Let τk+1 ← σmin{τk, compVio(zk+1)} and k ← k + 1

5 end
Output: The final iterate zopt = zk, the corresponding function value f(zopt), and the

maximum constraint violation maxV io(zopt).
In this algorithm, we denote:

compVio(z) = max{min{Gi(z), Hi(z)}, i ∈ m}

maxVio(z) = max{max{0, gj(z)}, |hk(z)|, |min{Gi(z), Hi(z)}|, j ∈ q, k ∈ p, i ∈ m}

Theorem 3.1.3. [67, Theorem 4.1, 4.2] Let {τk} ↓ 0 and {(zk, λk, µk, γk, νk, δk} be a sequence of
KKT points of NLP(τk) with zk → z∗. If MPEC LICQ holds in z∗, then z∗ is an M-stationary
point of the MPEC (3.1).
Furthermore, if there is a subsequence K ⊆ N such that:

Gi(z
k) ≤ τk, Hi(z

k) ≤ τk, ∀k ∈ K, ∀i ∈ I00(z∗)

then z∗ is a S-stationary point of (3.1).

However, it should be noted that this convergence is actually sensitive to instabilities.
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Definition 3.1.4. Let ε > 0. We say that z∗ is an ε-stationary point of the problem

min f(z) s.t. g(z) ≤ 0, h(z) = 0

if there are multipliers λ and µ such that:

‖∇f(z∗) + (∇g(z∗))ᵀλ+ (∇h(z∗))ᵀµ‖∞ ≤ ε

g(z∗) ≤ 0, λ ≥ 0, λigi(z
∗) ≥ −ε, ∀i

|hi(z∗)| ≤ ε, ∀i

Theorem 3.1.4. [67, Theorem 4.13] Let {τk} ↓ 0, εk = o(τk), and zk be a sequence of εk-stationary
points of NLP(τk) with multipliers (λk, µk, γk, νk, δk). Assume that zk → z∗. If MPEC LICQ holds
at z∗, then z∗ is a W-stationary point of MPEC (3.1). Furthermore, if there is a subsequence
K ⊆ N such that:

Gi(z
k) ≤ τk, Hi(z

k) ≤ τk, ∀k ∈ K, ∀i ∈ I00(z∗)

then z∗ is a C-stationary point of (3.1).

Cost penalization

The technique used in [73] is the penalization of the objective function. The complementarity is
moved to the objective function in the form of an `1-penalty term, so that the objective becomes:

f(z) + πG(z)ᵀH(z)

The associated barrier problem is defined as:

min f(z) + πG(z)ᵀH(z)− µ

(∑
i

log si +
∑
i

logGi(z) +
∑
i

logHi(z)

)
s.t. h(z) = 0

g(z)− s = 0

(3.7)

The Lagrangian of this barrier problem is given by:

Lµ,π(z, s, λ, θ) = f(z) + πG(z)ᵀH(z)− µ

(∑
i

log si +
∑
i

logGi(z) +
∑
i

logHi(z)

)
−
∑
i

θihi(z)−
∑
i

λi(gi(z)− si)
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Algorithm 2: Classic: A Practical Interior-Penalty Method for MPECs.
Input: Let z0, s0, λ0, θ0 be the initial value of the primal and dual variables.

1 Set k = 1.
2 repeat
3 Choose a barrier parameter µk, a stopping tolerance εkpen and εkcomp
4 Find πk and an approximate solution (xk, sk, λk, θk) of problem (3.7) with parameter µk

and πk that satisfy G(zk) > 0, H(zk) > 0, sk > 0, λk > 0 and the following conditions:

‖∇zLµk,πk(zk, sk, λk, θk)‖ ≤ εkpen

‖ski λki − µk‖ ≤ εkpen, ∀i∥∥∥∥ h(zk)
g(zk)− sk

∥∥∥∥ ≤ εkpen

‖min{G(zk), H(zk)}‖ ≤ εkcomp

5 Let k ← k + 1

6 until a stopping test for the MPEC is satisfied

Theorem 3.1.5. [73, Theorem 3.4 and Corollary 3.5] Suppose that Algorithm 2 generates an
infinite sequence of iterates {zk, sk, λk, θk} and parameters {πk, µk}, for sequences {εkpen}, {εkcomp},
{µk} converging to zero. If z∗ is a limit point of the sequence {zk}, and f , g and h are continuously
differentiable in an open neighborhood N (z∗) of z∗, then z∗ is feasible for (3.1). If in addition,
MPEC LICQ holds at z∗, then z∗ is C-stationary. Moreover, if {πk} is bounded, then z∗ is an
S-stationary point of (3.1).

3.2 Optimal control
Recently in [59], different results concerning MPEC have been adapted in order to analyze an
Optimal Control problem with complementarity constraints:

min J(x, ũ) =

∫ T

0

F (t, x(t), ũ(t))dt+ f(x(0), x(T ))

s.t.

ẋ(t) = φ(t, x(t), u(t))

g(t, x(t), u(t)) ≤ 0

h(t, x(t), u(t)) = 0

0 ≤ G(t, x(t), u(t)) ⊥ H(t, x(t), u(t)) ≥ 0

u(t) ∈ U(t)


a.e. t ∈ [0, T ]

(x(0), x(T )) ∈ E .

(3.8)

with F : [0, T ]×Rn×Rm → R, f : Rn×Rn → R, φ : [0, T ]×Rn×Rm → Rn, g : [0, T ]×Rn×Rm → Rq,
h : [0, T ]× Rn × Rm → Rp, G,H : [0, T ]× Rn × Rm → Rl, U : [0, T ]⇒ Rm a multifunction, and E
a closed subset of R2n. This section will use different notions of normal cones and subdifferentials,
which are defined in the Appendix A.
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3.2.1 Necessary conditions

We suppose that F and φ are L × B-measurable, where L × B denotes the σ-algebra of subsets
of appropriate spaces generated by product sets M × N , where M is a Lebesgue (L) measurable
subset in R, and N is a Borel (B) measurable subset in Rn × Rm.

Definition 3.2.1. • We refer to any absolutely continuous function as an arc.

• An admissible pair for (3.8) is a pair of functions (x, u) on [0, T ] for which u is a control
and x is an arc, that satisfy all the constraints in (3.8).

• The complementarity cone is defined by

Cm = {(v, w) ∈ Rm | 0 ≤ v ⊥ w ≥ 0}

• We define the set constraint at time t ∈ [0, T ], S(t), by:

S(t) = {(x, u) ∈ Rn × U(t) : g(t, x, u) ≤ 0, h(t, x, u) = 0, (G(t, x, u), H(t, x, u)) ∈ Cm} .

• We say that the local error bound condition holds (for the constrained system representing S)
at (x∗, u∗) ∈ S if there exist positive constants τ and δ such that: ∀(x, u) ∈ Bδ(x∗, u∗)

distS(x, u) ≤ τ (‖max{0, g(x, u)}‖+ ‖h(x, u)‖+ distCl(G(x, u), H(x, u)))

• For every given t ∈ [0, T ] and two positive constants R and ε, we define a neighbourhood of
the point (x∗(t), u∗(t)) as:

Sε,R∗ (t) = {(x, u) ∈ S(t) : ‖x− x∗(t)‖ ≤ ε, ‖u− u∗(t)‖ ≤ R}. (3.9)

(x∗, u∗) is a local minimizer of radius R if there exists ε such that for every pair (x, u)
admissible for (3.8) such that:

(x(t), u(t)) ∈ Sε,R∗ (t), a.e. t ∈ [0, T ],

∫ T

0

‖ẋ∗(t)− ẋ(t)‖dt ≤ ε

we have J(x∗, u∗) ≤ J(x, u).

Assumption 3.2.1. (a) There exist measurable functions kφx , kFx , kφw, kFw such that for almost
every t ∈ [0, T ] and for every (x1, w1), (x2, w2) ∈ Sε,R∗ (t), we have:

(a) ‖φ(t, x1, w1)− φ(t, x2, w2)‖ ≤ kφx(t)‖x1 − x2‖+ kφw(t)‖w1 − w2‖
(b) |F (t, x1, w1)− F (t, x2, w2)| ≤ kFx (t)‖x1 − x2‖+ kFw(t)‖w1 − w2‖.

(3.10)

(b) There exists a positive measurable function kS such that for almost every t ∈ [0, T ], the
bounded slope condition holds:

(x,w) ∈ Sε,R∗ (t), (α, β) ∈ N P
S(t)(x,w) =⇒ ‖α‖ ≤ kS(t)‖β‖. (3.11)

(c) The functions kφx , kFx and kS[kφw + kFw ] are integrable, and there exists a positive number η
such that R(t) ≥ ηkS(t) a.e. t ∈ [0, T ].
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(d) F and φ are L × B-measurable, f is locally Lipschitz continuous, g, h, G and H are L-
measurable in variable t and strictly differentiable in variable (x, u), f is locally Lipschitz
continuous, and E is a closed subset in R2n. U is a L measurable multifunction with convex
values.

Assumption 3.2.1(b) is the central in [46], but it is rarely trivial to check if a given system
complies with this assumption. As it is stated at the end of Section 2 in [46], this bounded slope
condition excludes unilateral state constraints; that is, constraints of the type x(t) ∈ X(t) (since
in this case, there exists normals of the form (α, 0) in (3.11)).

Define the sets
I−t (x, u) = {i ∈ q : gi(t, x(t), u(t)) < 0},

I+0
t (x, u) = {i : Gi(t, x(t), u(t)) > 0 = Hi(t, x(t), u(t))},

I0+
t (x, u) = {i : Gi(t, x(t), u(t)) = 0 < Hi(t, x(t), u(t))},

I00
t (x, u) = {i : Gi(t, x(t), u(t)) = 0 = Hi(t, x(t), u(t))},

and for any (λg, λh, λG, λH) ∈ Rq+p+m+m, denote:

Ψ(t, x, u;λg, λh, λG, λH) = g(t, x, u)ᵀλg + h(t, x, u)ᵀλh −G(t, x, u)ᵀλG −H(t, x, u)ᵀλH . (3.12)

Theorem 3.2.1. [59] Let (x∗, u∗) be a local minimizer of radius R for (3.8) and let Assumption
3.2.1 hold. If for almost every t ∈ [0, T ] the local error bound condition for the system representing
S(t) holds at (x∗(t), u∗(t)), then there exist a number λ0 ∈ {0, 1}, an arc p and measurable functions
λg : R→ Rq, λh : R→ Rp, λG, λH : R→ Rm such that the following conditions hold:

1. the non-triviality condition: (λ0, p(t)) 6= 0, ∀t ∈ [0, T ]

2. the transversality condition:

(p(0),−p(T )) ∈ λ0∂
Lf(x∗(0), x∗(T )) +NE (x∗(0), x(T )) (3.13)

3. the Euler adjoint inclusion: for almost every t ∈ [0, T ],

(ṗ(t), 0) ∈ ∂C {〈−p(t), φ(t, ·, ·)〉+ λ0F (t, ·, ·)} (x∗(t), u∗(t))

+∇x,uΨ(t, x∗(t), u∗(t);λg(t), λh(t), λG(t), λH(t))

+ {0} × NU(t)(u
∗(t))

(3.14)

λg(t) ≥ 0, λgi (t) = 0, ∀i ∈ I−t (x∗, u∗)

λGi (t) = 0, ∀i ∈ I+0
t (x∗(t), u∗(t)), λHi (t) = 0, ∀i ∈ I0+

t (x∗(t), u∗(t))

4. the Weierstrass condition for radius R: for almost every t ∈ [0, T ],

(x∗(t), u) ∈ S(t), ‖u− u∗(t)‖ < R(t)

=⇒ 〈p(t), φ(t, x∗(t), u)〉 − λ0F (t, x∗(t), u) ≤ 〈p(t), φ(t, x∗(t), u∗(t))〉 − λ0F (t, x∗(t), u∗(t))
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The Weierstrass condition can be re-expressed as searching a local minimizer of the following
MPEC:

max 〈p(t), φ(t, x∗(t), u)〉 − λ0F (t, x∗(t), u)

s.t.

{
(G(t, x∗(t), u), H(t, x∗(t), u)) ∈ Cm

g(t, x∗(t), u) ≤ 0, h(t, x∗(t), u) = 0

(3.15)

where Cm is defined in Definition 3.2.1. For each t ∈ [0, T ], this is an MPEC which admits
stationarity conditions as exposed in Section 3.1.

Definition 3.2.2. Let (x∗, u∗) be an admissible pair for (3.8).

• The Fritz-John (FJ) type W-stationarity holds at (x∗, w∗) if there exist a number λ0 ∈ {0, 1},
an arc p and measurable functions λG, λH such that Theorem 3.2.1 (1)-(4) hold.

• The FJ-type M-stationarity holds at (x∗, u∗) if (x∗, u∗) is W-stationarity with arc p and there
exist measurable functions ηg, ηh, ηG, ηH such that, for almost every t ∈ [0, T ],

0 ∈ ∂L {〈−p(t), φ(t, x∗(t), ·) + λ0F (t, x∗(t), ·)} (u∗(t))

+∇uΨ(t, x∗(t), u∗(t); ηg(t), ηh(t), ηG(t), ηH(t)) +NU(t)(u
∗(t))

ηg(t) ≥ 0, ηgi (t) = 0, ∀i ∈ I−t (x∗, u∗)

ηGi (t) = 0, ∀i ∈ I+0
t (x∗(t), u∗(t)), ηHi (t) = 0, ∀i ∈ I0+

t (x∗(t), u∗(t))

either [ηGi (t)ηHi (t) = 0] or [ηGi (t) > 0 and ηHi (t) > 0], ∀i ∈ I00
t (x∗(t), u∗(t)).

• The FJ-type S-stationarity holds at (x∗, u∗) if (x∗, u∗) is W-stationarity with arc p and there
exist measurable functions ηG, ηH such that, for almost every t ∈ [0, T ],

0 ∈ ∂L {〈−p(t), φ(t, x∗(t), ·) + λ0F (t, x∗(t), ·)} (u∗(t))

+∇uΨ(t, x∗(t), u∗(t); ηg(t), ηh(t), ηG(t), ηH(t)) +NU(t)(u
∗(t))

ηg(t) ≥ 0, ηgi (t) = 0, ∀i ∈ I−t (x∗, u∗)

ηGi (t) = 0, ∀i ∈ I+0
t (x∗(t), u∗(t)), ηHi (t) = 0, ∀i ∈ I0+

t (x∗(t), u∗(t))

ηGi (t) ≥ 0, ηHi (t) ≥ 0, ∀i ∈ I00
t (x∗(t), u∗(t)).

We refer to the FJ-type W-, M- and S-stationarities as the W-, M- and S-stationarities, respect-
ively, if λ0 = 1.

Notice that we have now two different sets of multipliers, and as shown in [59, Example 3.4],
these new multipliers ηG, ηH can be different in measure from the corresponding λG, λH . Non-
etheless, the results concerning stationarity for MPEC still can be applied to (3.15):

Theorem 3.2.2. [59, Theorem 3.5] Let (x∗, u∗) be a local minimizer of radius R for (3.8), and
let Assumption 3.2.1 hold. Suppose also that the MPEC linear condition holds for S(t) for almost
every t ∈ [0, T ], i.e. functions g(t, ·, ·), h(t, ·, ·), G(t, ·, ·) and H(t, ·, ·) are affine and U(t) is a
union of finitely many polyhedral sets. Then the FJ-type M-stationarity holds at (x∗, u∗).

The difference between these two sets however vanishes if we further suppose that MPEC-LICQ
holds:
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Theorem 3.2.3. [59] Let (x∗, u∗) be a local minimizer of radius R for (3.8), and let Assumption
3.2.1 hold. If for almost every t ∈ [0, T ], the functions F (t, ·, ·) and φ(t, ·, ·) are strictly differentiable
at (x∗(t), u∗(t)), and the MPEC LICQ holds at u∗(t) for problem (3.15), i.e., the family of gradients

{∇ugi(t, x
∗(t), u∗(t)) : i ∈ I0

t (x∗(t), u∗(t)} ∪ {∇uh(t, x∗(t), u∗(t)) : i ∈ p}∪
{∇uGi(t, x

∗(t), u∗(t)) : i ∈ I0•
t (x∗(t), u∗(t))} ∪ {∇uHi(t, x

∗(t), u∗(t)) : i ∈ I•0t (x∗(t), u∗(t))}

is linearly independent, where

I0
t (x, u) = {i ∈ q : gi(t, x(t), u(t)) = 0}

I0•
t (x∗(t), u∗(t)) = I0+

t (x∗(t), u∗(t)) ∪ I00
t (x∗(t), u∗(t)),

I•0t (x∗(t), u∗(t)) = I+0
t (x∗(t), u∗(t)) ∪ I00

t (x∗(t), u∗(t)),

then the FJ-type S-stationarity holds at (x∗, u∗). Moreover, the multipliers ηg, ηh, ηG, ηH can be
taken as equal to λg, λh, λG, λH , respectively, almost everywhere.

3.2.2 Sufficient condition for the Bounded Slope Condition (3.11)
The Bounded Slope Condition (3.11) is not an easy assumption to check. There are, however,
some results that give sufficient conditions for it to hold. We give here two of them.

Proposition 3.2.1. [59] Assume that the local error bound condition holds at every (x, u) ∈ Sε,R∗ (t)
and:

(x, u) ∈ Sε,R∗ (t), ζ ∈ N L
U(t)(u),

λg ≥ 0, λgi = 0 ∀i ∈ I−t (x, u),

λGi = 0, ∀i ∈ I+0
t (x, u), λHi = 0, ∀i ∈ I0+

t (x, u),

λGi > 0, λHi > 0, or λGi λ
H
i = 0, ∀i ∈ I00

t (x, u)


=⇒ ‖∇xΨ(t, x, u;λg, λh, λG, λH)‖ ≤ kS(t)‖∇uΨ(t, x, u;λg, λh, λG, λH) + ζ‖,

where Ψ is defined in (3.12). Then the bounded slope condition (3.11) holds.

Let us define the following set:

Cε,R
∗ = cl{(t, x, u) ∈ [0, T ]× Rn × Rm : (x, u) ∈ Sε,R∗ (t)}

Proposition 3.2.2. [59] Let the mappings g, h, G, H, U be autonomous. Assume that Cε,R
∗ is

compact for some ε > 0, the local error bound holds, and that, for every (x, u) such that (t, x, u) ∈
Cε,R, the system complies with the following implication:

0 ∈ ∇uΨ(t, x, u;λg, λh, λG, λH) +N L
U(t)(u)

λg ≥ 0, λgi = 0 ∀i ∈ I−t (x, u),

λGi = 0, ∀i ∈ I+0
t (x, u), λHi = 0, ∀i ∈ I0+

t (x, u),

λGi > 0, λHi > 0, or λGi λ
H
i = 0, ∀i ∈ I00

t (x, u)

 =⇒ ∇xΨ(t, x, u;λg, λh, λG, λH) = 0,

where Ψ is defined in (3.12). Then there exists a positive constant kS such that for every t ∈ [0, T ],
the bounded slope condition (3.11) holds with kS(t) = kS.
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Conclusion

This presentation of MPEC showed how specific is the study of such systems, and which tools are
needed to tackle them properly. These will enable us to tackle efficiently the optimal control of
LCS, both analytically and numerically, as shown in the following chapters.
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Part II

Quadratic optimal control of LCS: the 1D
complementarity case
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Chapter 4

First order conditions using Clarke’s
subdifferential

Abstract. The optimal control of LCS is first tackled when the complementarity is one dimen-
sional. In this case, the system can be re-expressed as a Lipschitz dynamical system, and Clarke’s
results concerning the optimal control of such system is used. After that, the optimality conditions
are equivalently expressed in a different form. All these results are used to derive the analytical
solution of a simple 1D class of problems. This Chapter has been published in [107].

We start the analysis of this problem with a simplified problem, with a complementarity which
is one dimensional: 

ẋ(t) = Ax(t) +Bλx(t) + Fu(t),
0 ≤ λx(t) ⊥ Cx(t) + dλx(t) + eu(t) ≥ 0,
x(0) = x0, x(T ) free

a.e. on [0, T ] (4.1)

where A ∈ Rn×n, B,F ∈ Rn, C ∈ R1×n, d, e ∈ R, d > 0, T > 0, x : [0, T ] → Rn is absolutely
continuous, u : [0, T ] → R is square integrable, and λx : [0, T ] → R is measurable. In order to
avoid trivial cases, we assume that (C, e) 6= (0, 0).

We define now the optimal control problem of finding the trajectories of (4.1) minimizing the
functional:

C(x, u) =

∫ T

0

f 0(x(t), u(t))dt =

∫ T

0

(x(t)ᵀx(t) + u(t)2)dt. (4.2)

In this case, an optimal trajectory (x∗, u∗) is a W 1,1 local minimizer, meaning: there exists ε > 0
such that, for any admissible trajectory for (4.1) (x, u) which verifies:

‖x− x∗‖W 1,1 =

∫ T

0

‖ẋ(t)− ẋ∗(t)‖dt ≤ ε

one has C(x∗, u∗) ≤ C(x, u).
The reason to focus on this simplified problem is that basic convex analysis proves that λx(t) =

1
d
ΠR+ (−Cx(t)− eu(t)), where ΠK(x) is the projection of x on the set K. Therefore, (4.1) becomes

(where the argument t is omitted for simplification):

ẋ = fx(x, u),

= Ax+ Fu+
B

d
ΠR+(−Cx− eu),

=

{
Ax+ Fu if Cx+ eu ≥ 0,(

A− BC
d

)
x+

(
F − e

d
B
)
u otherwise,

(4.3)
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with obvious definition for fx. With this simple system, some first order conditions of optimality
will be derived, that will show some advantages that LCS possess over other modeling paradigms.

4.1 Derivation of the maximum principle

4.1.1 Preliminary results

Remark that (4.3) is actually a Lipschitz differential equation, and the optimal control problem
(4.1)(4.2) admits no further constraints. Therefore, we can use Theorem 2.1.1. It yields the
following result:

Proposition 4.1.1. Let (x∗, u∗) be a local minimizer. There exists an absolutely continuous func-
tion p : [0, T ]→ Rn such that:

− ṗ(t) ∈ fp(x∗(t), p(t), u∗(t)) = ∂Cx f
x(x∗(t), u∗(t))p(t)− 1

2
∂Cx f

0(x∗(t), u∗(t)), (4.4)

p(0) is free, and p(T ) = 0. It also complies with the Weierstrass condition:

〈fx(x∗(t), u∗(t)), p(t)〉 − 1

2
f 0(x∗(t), u∗(t)) = sup

v∈Rm

{
〈fx(x∗(t), v), p(t)〉 − 1

2
f 0(x∗(t), v)

}
(4.5)

Recall that ∂Cx denotes the Clarke subdifferential with respect to the x variable, defined in the
Appendix A.

Proof. First, we need to define properly the set X in (2.4). As it has been remarked in [40, Remark
4], X can depend on time as long as an ε-neighbourhood of x∗(t) lies in the interior of X(t). Let
us define X(t) as an ε̃-neighbourhood of x∗(t) with ε̃ big enough.
Since x∗(T ) is free, it implies p(T ) = 0. We easily prove that the non-positive number λ appearing
in Theorem 2.1.1 can not be 0 (since otherwise, |p(T )|+λ = 0). Therefore it can be chosen as −1

2
.

The differential inclusion and the Weierstrass condition are just simple transcripts of the result.
We just need to verify the hypotheses H1-H3. H1 and H3 are easily verified. Concerning H2
(which asserts that the dynamical system is Lipschitz with respect to x), since fx and f 0 are both
locally Lipschitz, and since X(t) is bounded for all t in [0, T ], the inequality trivially holds.

Let us compute these differential inclusions. Since f 0 is smooth, its subdifferential only contains
the gradient:

∂Cx f
0(x, u) = {2x}

Concerning the right-hand side of the dynamical system, its subdifferential is expressed as:

∂Cx f
x(x, u) =


{A} if Cx+ eu > 0,{

A− BC
d

}
if Cx+ eu < 0,[

A− BC
d
, A
]

if Cx+ eu = 0.

using the notation:
[M1,M2] = conv{M1,M2}

for any pair (M1, M2) of according dimensions matrices and where conv{M1,M2} stands for the
convex hull of M1 and M2.
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Therefore, (4.4) becomes:

− ṗ(t) ∈


{−x(t) + Aᵀp(t)} if Cx+ eu > 0,{
−x(t) +

(
A− BC

d

)ᵀ
p(t)

}
if Cx+ eu < 0,

{−x(t)}+
[(
A− BC

d

)ᵀ
, Aᵀ

]
p(t) if Cx+ eu = 0.

(4.6)

In order to compute an optimal control, the system should obviously be controllable between
the initial and final points. We will only focus on completely controllable systems, relying on
Theorem 1.2.3 stating the complete controllability of some LCS.

4.1.2 Equations (4.1) and (4.6) as a mixed LCS (MLCS)

We denote z =

(
x
p

)
. Let us rewrite (4.1) and (4.6) in the compact form:

ż ∈
(
fx(z, u)
fp(z, u)

)
(4.7)

where the right-hand side is a set-valued function defined by:

• if Cx+ eu > 0: (
fx(z, u)
fp(z, u)

)
=

{(
Ax+ Fu
x− Aᵀp

)}
,

• if Cx+ eu < 0: (
fx(z, u)
fp(z, u)

)
=

{((
A− CB

d

)
x+

(
F − e

d
B
)
u

x+
(
CᵀBᵀ

d
− Aᵀ

)
p

)}
,

• if Cx+ eu = 0: (
fx(z, u)
fp(z, u)

)
=

( (
A− FC

e

)
x

x+
[
CᵀBᵀ

d
− Aᵀ,−Aᵀ

]
p

)
.

We can recast the differential inclusion (4.7) in the framework of complementarity systems with
linear dynamics:

ż =

(
gx(z, u)
gp(z, u)

)
=

(
A 0
I −Aᵀ

)
z +

(
B 0
0 CᵀBᵀ

d

)(
λx

λp1

)
+

(
F
0

)
u, (4.8)

0 ≤ λx ⊥ Cx+ dλx + eu ≥ 0, (4.9a)

0 ≤ |λpj1 | ⊥ Cx+ eu+ |Cx+ eu| ≥ 0, (4.9b)

0 ≤ |λpj2 | ⊥ |Cx+ eu| − (Cx+ eu) ≥ 0 j = 1...n, (4.9c)

|λpj1 |+ |λ
pj
2 | = |pj| j = 1...n, (4.9d)

λp1 + λp2 = p, (4.9e)

where the subscript j denotes the j-th component of a vector, and λpi = (λp1i , ..., λ
pn
n )ᵀ.

Proposition 4.1.2. The right-hand side of (4.7) is the same as the right-hand side of (4.8) defined
with the complementarity conditions in (4.9).
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Proof. The first line (4.9a) gives obviously the same right-hand side as in the second line of (4.1),
which is fx(z, p). Then, fx(z, u) = gx(z, u). Therefore, we have to check that the other lines in
(4.9) are the same as in (4.6). To do so, we have to distinguish 3 cases:

• if Cx+ eu > 0, then from (4.9b), we deduce that λp1 = 0. It follows that:

gp(z, u) = x− Aᵀp = fp(z, u).

• if Cx + eu < 0, then from (4.9c), λ2
p = 0, and therefore from (4.9e), λp1 = p. We then have

the following equality:

gp(z, u) = x+

(
CᵀBᵀ

d
− Aᵀ

)
p = fp(z, u).

• if Cx + eu = 0, then from (4.9d), we have that |λpj1 | + |λ
pj
2 | = |pj|, so that λpji ∈ [−pj, pj],

i = 1, 2, j = 1, ...n. But, in order to comply with the last equality (4.9e), we must have
λ
pj
i ∈ [0, 1]pj, i = 1, 2, j = 1, ..., n, and hence, λpi ∈ [0, 1]p, i = 1, 2. This gives us

gp(z, u) = {x− Aᵀp}+ [0, 1]
CᵀBᵀ

d
p

= {x}+

[
CᵀBᵀ

d
− Aᵀ,−Aᵀ

]
p

= fp(z, u).

We can still have an even more interesting form of (4.9) by noticing that the function | · | is
piecewise linear and so, admits a representation in the form of an LCP. This is the topic of the
next lemma:

Lemma 4.1.1. Define 1n = (1, ..., 1)ᵀ ∈ Rn. The multipliers λx and λp1 given by system (4.9) are
equally defined by the following system:

0 ≤ λx ⊥ Cx+ dλx + eu ≥ 0
0 ≤ µx,u ⊥ µx,u − 2(Cx+ eu) ≥ 0
0 ≤ µp ⊥ µp − 2p ≥ 0
0 ≤ λabs1 ⊥ µx,u1n ≥ 0
0 ≤ λabs2 ⊥ (µx,u − 2(Cx+ eu))1n ≥ 0
0 ≤ µ1 ⊥ µ1 − 2λp1 ≥ 0
0 ≤ µ2 ⊥ µ2 − 2λp2 ≥ 0

λabs1 + λabs2 = µp − p
λp1 + λp2 = p
µ1 − λp1 = λabs1

µ2 − λp2 = λabs2

(4.10)

where (4.10) is a mixed LCP (MLCP).
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Proof. First, we need to establish the following simple result: for any scalar x, |x| = µ− x where
µ is given by:

0 ≤ µ ⊥ µ− 2x ≥ 0.

Indeed, if x ≤ 0, then we must take µ = 0, so that µ− x = −x = |x|. If x > 0, then we must
take µ = 2x, and µ− x = x = |x|. Let us use (4.9) to rewrite equivalently the absolute values as:

0 ≤ µx,u ⊥ µx,u − 2(Cx+ eu) ≥ 0,

0 ≤ µ1 ⊥ µ1 − 2λp1 ≥ 0,

0 ≤ µ2 ⊥ µ2 − 2λp2 ≥ 0,

0 ≤ µp ⊥ µp − 2p ≥ 0,

λabsx,u = µx,u − (Cx+ eu) = |Cx+ eu|,
λabs1 = µ1 − λp1 = |λp1|,
λabs2 = µ2 − λp2 = |λp2|,
λabsp = µp − pᵀ = |p|,

where notation |x| on a vector x is here understood component-wise, e.g. |x| = (|x1|, ..., |xn|)ᵀ.
Therefore, (4.9) becomes: 

0 ≤ λx ⊥ Cx+ dλx + eu ≥ 0
0 ≤ µx,u ⊥ µx,u − 2(Cx+ eu) ≥ 0
0 ≤ µ1 ⊥ µ1 − 2λp1 ≥ 0
0 ≤ µ2 ⊥ µ2 − 2λp2 ≥ 0
0 ≤ µp ⊥ µp − 2p ≥ 0
0 ≤ λabs1 ⊥ (Cx+ eu+ λabsx,u)1n ≥ 0
0 ≤ λabs2 ⊥ (λabsx,u − (Cx+ eu))1n ≥ 0

λabs1 + λabs2 = λabsp
λp1 + λp2 = p

λabsx,u = µx,u − (Cx+ eu)
λabs1 = µ1 − λp1
λabs2 = µ2 − λp2
λabsp = µp − p

Noticing that we can use the two equalities on λabsx,u and λabsp and insert them above, we have
proven that λx and λp1 are equally defined by (4.9) or (4.10).

Therefore, we infer that the right-hand side of the differential inclusion in (4.7) is equal to the
right-hand side of system (4.8):

ż = Ãz + B̃Λ + F̃ u, (4.11)

where Ã, B̃, F̃ and Λ are easily identifiable from (4.8), and subject to the MLCP (4.10).
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4.2 Analytical solution for a 1D example
This result can be used in order to find the unique stationary trajectory of a special class of LCS.
Suppose in (4.1) that n = 1 and C = 0; it means we try to tackle the following problem:

minimize
∫ T

0

(
x(t)2 + u(t)2

)
dt,

such that:


ẋ(t) = ax(t) + bλ(t) + fu(t),

0 ≤ λ(t) ⊥ dλ(t) + eu(t) ≥ 0, a.e. on [0, T ]

x(0) = x0, x(T ) free,

(4.12)

where all variables are scalar, d > 0, b, e 6= 0.

4.2.1 Complete controllability conditions for this 1D example

In order to analyze this problem, we will first specify the necessary and sufficient complete con-
trollability conditions in the 1D case. Applying Theorem 1.2.3, we must check that the following
system:

(a− λ)ζ = 0, (4.13)
fζ + eη = 0, (4.14)

η ≥ 0, (4.15)
bζ + dη ≤ 0, (4.16)

has no solution λ ∈ R and (ζ, η) 6= 0

If e > 0: we deduce through (4.14): η = −fζ
e
.

1. If f = 0, then η = 0. In (4.13), we can take λ = a. However, with (4.16), we have that
ζb ≤ 0. Let us take ζ = −sign(b). Then we found a solution with ζ 6= 0: the system is
not completely controllable.

2. If f < 0, then with (4.15), we have that ζ ≥ 0. Through (4.13), we take λ = a.
• If b ≥ 0, then (4.16) is a sum of positive terms which must be nonpositive, so η = 0

and ζ = 0: the system is completely controllable.
• If b < 0, then (4.16) becomes ζ(b− fd

e
) ≤ 0 with ζ ≥ 0.

– If b − fd
e
≤ 0 then we can take any ζ ≥ 0: the system is not completely

controllable.
– Otherwise, only ζ = 0 suits, so η = 0, and then the system is completely controllable.

3. If f > 0, then in (4.13), we take λ = a. Through (4.15), we have that ζ ≤ 0.
• If b ≤ 0, then (4.16) is a positive terms sum which must be nonpositive, so η = 0

and ζ = 0: the system is completely controllable.
• If b > 0, then (4.16) becomes ζ(b− fd

e
) ≤ 0 with ζ ≤ 0.

– If b − fd
e
≥ 0 then then we can take any ζ ≤ 0: the system is not completely

controllable.
– Otherwise, only ζ = 0 suits, so η = 0, and then the system is completely controllable.

If e < 0: we have the same cases as with e > 0 by inverting the sign of f .
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4.2.2 Search for the explicit optimal solution

The dynamic system in (4.12) can be rewritten as:

ẋ = ax+ fu+
b

d
ΠR+(−eu). (4.17)

Therefore, the Hamiltonian function is written as:

H(x, p, u) = p

(
ax+ fu+

b

d
ΠR+(−eu)

)
− 1

2

(
x2 + u2

)
. (4.18)

We notice that this equation is smooth in x. Therefore, using (4.6), the adjoint equation is
smooth, and is written as:

ṗ(t) = −ap(t) + x(t).

We can even differentiate twice p, and obtain the following second-order differential equation:

p̈ = −aṗ+ ẋ

= a2p+ fu+
b

d
ΠR+(−eu)

=

{
a2p+ fu if eu ≥ 0

a2p+
(
f − be

d

)
u if eu ≤ 0.

We now search for an expression of the optimal control u∗, function of x and p, maximizing the
Hamiltonian function H(x, p, u∗). To that aim, we use the subdifferential of H with respect to u,
written ∂CuH(x, p, u), and the fact that if u∗ maximizes H, then

0 ∈ ∂CuH(x, p, u∗).

In our problem, the subdifferential is written as

∂CuH(x, p, u) =


{fp− u} if eu > 0,{(
f − eb

d

)
p− u

}
if eu < 0,

−
[
f − eb

d
, f
]
p if eu = 0.

We now only focus on the complete controllable cases in order to find a control u maximizing this
function:

If e > 0: In that case, sgn(eu) =sgn(u).

1. We consider first f < 0.

• If b > 0, then if p ≤ 0, then fp ≥ 0,
(
f − eb

d

)
p ≥ 0, and if p ≥ 0, then fp ≤ 0,(

f − eb
d

)
p ≤ 0. We also notice that 0 6∈

[
f, f − eb

d

]
. So we have:

u∗ =

{
fp if p ≤ 0,(
f − eb

d

)
p if p ≥ 0.
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• If b < 0, then we must make sure that f < eb
d
. We notice that in this case,

0 6∈
[
f, f − eb

d

]
. We are then in the exact same case as the previous one, and

therefore, the control is expressed the same way:

u∗ =

{
fp if p ≤ 0,(
f − eb

d

)
p if p ≥ 0.

2. We consider now f > 0.

• If b < 0, then if p ≤ 0, then fp ≤ 0,
(
f − eb

d

)
p ≤ 0, and if p ≥ 0, then fp ≥ 0,(

f − eb
d

)
p ≥ 0. We also notice that 0 6∈

[
f, f − eb

d

]
. So we have:

u∗ =

{
fp if p ≥ 0,(
f − eb

d

)
p if p ≤ 0.

• If b > 0, then we must make sure that f > eb
d
. We notice that in this case,

0 6∈
[
f, f − eb

d

]
. We are then in the exact same case as the previous one, and

therefore, the control is expressed the same way:

u∗ =

{
fp if p ≥ 0,(
f − eb

d

)
p if p ≤ 0

.

If e < 0: we have the same cases as with e > 0 by inverting the sign of f .

Therefore, we can summarize this result as follows:

u∗ =

{
fp if efp ≥ 0,(
f − eb

d

)
p if efp ≤ 0.

(4.19)

Finally, we use the optimal control found in (4.19) in the equation found on p̈. Surprisingly,
we end up with a rather simple equation:

p̈ =

{
(a2 + f 2) p if efp ≥ 0,(
a2 +

(
f − be

d

)2
)
p if efp ≤ 0,

which we rewrite in the more simple form:

p̈ = γ(p)p (4.20)

with γ(p) > 0 and piecewise constant.
We need now to find p(0) such that p(T ) = 0 (since x(T ) is free, according to the maximum

principle). Moreover, we know that the initial value for the derivative ṗ is given by:

ṗ(0) = x(0)− ap(0)

The phase portrait is depicted in Figure 4.1.
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Figure 4.1: Phase portrait of (4.20) - a = 1, b =
−0.5, d = 1, e = −2, f = 3, x(0) = −1,

It is clear that, in order to have p(T ) = 0,
the sign of p(0) is determined by the sign of the
constants in the model:

• If a > 0, x(0) > 0, then p(T ) = 0 =⇒
p(0) < 0,

• If a > 0, x(0) < 0, then p(T ) = 0 =⇒
p(0) > 0,

• If a < 0, x(0) > 0, then p(T ) = 0 =⇒
p(0) < 0,

• If a < 0, x(0) < 0, then p(T ) = 0 =⇒
p(0) > 0.

We can summarize this by:

sgn(p(0)) = −sgn(x(0))

Furthermore, p will always have the same sign
on [0, T ], so the optimal control u∗ given in equation (4.19) always has the same sign on [0, T ], and
is smooth (since p is smooth). Furthermore, γ will be constant on [0, T ]. Consequently, we know
explicitly the solution p(t) on [0, T ], namely:

p(t) =
1
√
γ

[(
√
γ cosh(

√
γt)− a sinh(

√
γt))p(0) + sinh (

√
γt)x(0)]

where cosh and sinh are the hyperbolic cosine and sine functions. In order to have p(T ) = 0, we
must take:

p(0) = −
sinh

(√
γT
)
x(0)(√

γ cosh(
√
γT )− a sinh(

√
γT
)
)
.

From that, it is easy to have the expression of the optimal trajectory x, using the fact that

x(t) = ṗ(t) + ap(t).

Conclusion

This approach enabled us to obtain some stationarity results that have a convenient formulation.
Furthermore, an analytical result have been also obtained. This will let us design, in the next
Chapter, numerical schemes for approximating the optimal solution. Using the analytical solution,
we will be able to appreciate the exactness of the solution.
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Chapter 5

Numerical simulations

Abstract. Three numerical schemes are presented here: one which is a naive Direct method,
and two other Indirect methods, based on the optimality condition derived in Chapter 4. Thanks
to the analytical solution on which these schemes are tested, the correctness of the solutions is
illustrated. This Chapter has been published in [107].

Obviously, there is little hope to solve analytically all possible problems of the form (4.1)(4.2).
Therefore, some numerical schemes are designed in order to obtain a numerical approximations.
Following the presentation of Section 2.2, we present here two numerical methods in order to
approximate the solution of (4.1)(4.2): a direct method, and an indirect method.

5.1 Numerical schemes

5.1.1 Direct method

A first way to solve the optimal problem is to discretize directly the dynamics (4.1) and the cost
(4.2) in order to obtain a constrained optimization problem. In fact, a simple discretization that
we can use here is the following one:

min
u∈RN

N∑
i=0

f 0(xi, ui),

s.t.

{
0 ≤ λxk ⊥ Cxk+1 + dλxk + euk ≥ 0
xk+1−xk

h
= Axk+1 +Bλxk + Fuk

k = 0...N − 1,

where the subscript k in zk denotes the k-th step in the discretization of the variable z(t) at time
tk, and h denotes the (here uniform) time-step. Moreover, we can choose to integrate the dynamics
with an implicit (as presented here) or an explicit method. This is a Mathematical Program (MP)
constrained by a Mixed Linear Complementarity Problem with parameters (G(·, u, ·), H(·, u, ·))
where G : Rn(N+1) × RN+1 × RN+ → RnN and H : Rn(N+1) × RN+1 × RN+ → RN are defined
component-wise by:

Gk(x, u, λ) =
xk+1 − xk

h
− Axk+1 −Bλxk − Fuk,

Hk(x, u, λ) = Cxk+1 + dλxk + euk,
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k = 0, ..., N − 1. We notice that we can isolate xk+1 in the dynamics, and reintroduce it in the
complementarity conditions:

0 ≤ λxk ⊥ (d+ hC(I − hA)−1B)λxk + (e+ hC(I − hA)−1F )uk + C(I − hA)−1xk ≥ 0

5.1.2 Indirect method

A second way to compute an approximate solution of the optimal control problem is to discretize
(4.11) under the constraints (4.10) and with the condition (4.5). This method is known as the
indirect method (since it is using an a priori study of the system, and the result obtained with the
Pontryagin equations). Obviously, the choice of the discretization will eventually have an impact
on the accuracy and the stability of the numerical solution. So as to have a first idea of the extent
of these issues, these equations are discretized with an Euler scheme which will use implicit or
explicit terms in its formulation, and we will investigate how these choices affect the solution. We
present two formulations, that we name of explicit and implicit type. As we will see, these two
formulations lead to different types of optimization problems.

Explicit type

This first formulation leads to a problem where we can identify two (almost) independent problems
at each step. Let us assume we already know variables values of x and p at time tk, e.g. zk, and
we want to compute the solution at time tk+1. We first solve the following discretization of (4.5)
with (4.10):

max
v∈R
{〈pk, fx(xk, v)〉+ p0f 0(xk, v)},

s.t.



0 ≤ λxk ⊥ Cxk + dλxk + ev ≥ 0
0 ≤ µx,u ⊥ µx,u − 2(Cxk + ev) ≥ 0
0 ≤ µp ⊥ µp − 2pk ≥ 0
0 ≤ λabs1 ⊥ µx,u1n ≥ 0
0 ≤ λabs2 ⊥ (µx,u − 2(Cxk + ev))1n ≥ 0
0 ≤ µ1 ⊥ µ1 − 2λp1k ≥ 0
0 ≤ µ2 ⊥ µ2 − 2λp2k ≥ 0

λabs1 + λabs2 = µp − pk
λp1k + λp2k = pk
µ1 − λp1k = λabs1

µ2 − λp2k = λabs2

Solving this problem will give us uk and the associated Λk, which is unique for a given uk as we
have seen from the derivation of system (4.10), except in the case where Cxk + euk = 0. We can
rewrite the complementarity conditions of this MPEC in the following compact form :

0 ≤ Ωk ⊥ ∆Ωk + Ψ ≥ 0

59



where Ωk = (λxk, µx,u, µp, λ
abs
1 , λabs2 , µ1, µ2)ᵀ,

∆ =



d 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1n 0 0 0 0
0 1n 0 0 0 0 0
0 1n 0 0 0 0 0
0 0 0 0 0 1n 0
0 0 0 0 0 0 1n


(5.1)

and Ψ is easily identifiable. Finally, we just need to integrate the dynamics (4.11), which is
integrated with the following discretization:

zk+1 − zk
h

= Ãzk+1 + B̃Λk + F̃ uk.

Here again, we can use an implicit integration, or an explicit one by introducing zk instead of zk+1

in the right-hand side.

Implicit type

This second formulation is expressed in the form of a single MPEC solved at each timestep. Here,
every variable will be used implicitly, as the dynamics is introduced inside the constraints of the
MP. Namely, we need to solve at each step the following MPEC:

max
v∈R
{〈pk+1, f(xk+1, v)〉+ p0f 0(xk+1, v)}

s.t.



0 ≤ λxk+1 ⊥ Cxk+1 + dλxk+1 + ev ≥ 0
0 ≤ µx,u ⊥ µx,u − 2(Cxk+1 + ev) ≥ 0
0 ≤ µp ⊥ µp − 2pk+1 ≥ 0
0 ≤ λabs1 ⊥ µx,u1n ≥ 0
0 ≤ λabs2 ⊥ (µx,u − 2(Cxk+1 + ev))1n ≥ 0
0 ≤ µ1 ⊥ µ1 − 2λp1k+1 ≥ 0
0 ≤ µ2 ⊥ µ2 − 2λp2k+1 ≥ 0

λabs1 + λabs2 = µp − pk+1

λp1k+1 + λp2k+1 = pk+1

µ1 − λp1k+1 = λabs1

µ2 − λp2k+1 = λabs2
zk+1−zk

h
= Ãzk+1 + B̃Λk+1 + F̃ v

5.2 Numerical results

5.2.1 Direct method

Consider the system given in (4.12). The direct method gives good, whatever the parameters
used. We used the solver GAMS (available at http://www.gams.com/) which includes a powerful
MPEC solver. The only trouble noticed was that some fluctuations around the analytical solution
were found (see Figure 5.1 for t ∈ [0.5, 1]), thus the results were difficult to achieve thin precision.
Nonetheless, these fluctuations are still admissible in all the calculations we made. Some results are
shown in Figure 5.1. The numerical performance of the direct method (including curves showing
its order) are further extended in Section 7.1.
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Figure 5.1: Numerical solution: direct approach - a = 1, b = −0.5, d = 1, e = −2, f = 3,
x(0) = −1, N = 60

5.2.2 Indirect method

The indirect method gives more disappointing results. As shown in Figure 5.2, even with the good
initial value p(0), this approach fails to give a good solution, close to the analytical one. Hope
for a better solution with this method seems small since in general application, p(0) should be
found numerically. Here again, GAMS was used to solve the MPEC at each step. The reason why
this is not working still is unknown to us: changing the parameters does not seem to enhance the
precision of the numerical solution, nor the reduction of the timestep h. At each time step, the
resolution of the MPEC seems to fail, the constraints being often largely violated. A first way to
explain this may be found in matrix ∆ introduced in (5.1): even in this scalar example, it is of
rank 5, when ∆ is 7× 7. In order to tackle this instability, the Forward-Backward Sweep Method
(FBSM) could be applied. This method consists in solving the differential equation on x with
p fixed between 0 and T (forward), and then solving the differential equation on p with x fixed
between T and 0 (backward), and iterate until the boundary conditions are met. This method has
been analysed in [78]. So far, the convergence results relies on restrictive assumptions (such as T
being small enough). Also, since the good solution for p(0) is already given, one should not need
to converge to the boundary conditions. For all these reasons, this method has not been tested.
However, an enhanced version of the indirect method, working properly, is shown in Section 7.2.

Conclusion

The two main families of numerical methods for Optimal Control problems were tested here. It
shows that the Direct methods gives satisfactory results, while the Indirect method seem to fail.
The formulation of the necessary conditions may be the problem; a different approach, using
multipliers, is presented in the subsequent Chapters 6 and 7.
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Figure 5.2: Numerical solution: indirect approach - a = 1, b = −0.5, d = 1, e = −2, f = 3,
x(0) = −1, N = 60

62



Part III

Quadratic optimal control of LCS: the
general case
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Chapter 6

Derivation of the first order conditions

Abstract. In this chapter, we will derive necessary conditions for the quadratic optimal control
of a general class of LCS. The first results involve index sets that are not convenient. These
conditions are therefore re-expressed in the form of an LCS. In a second part, we will also show
that the weakest form of stationarity is actually a sufficient condition for optimality. This chapter
has been submitted to IEEE Transactions on Automatic Control [108].

The objective of this chapter is to analyze the quadratic optimal control of LCS. More precisely,
we wish to investigate properties and numerical resolution of the problem:

min J(x, u, v) =

∫ T

0

(x(t)ᵀQx(t) + u(t)ᵀUu(t) + v(t)ᵀV v(t)) dt, (6.1)

subject to


ẋ(t) = Ax(t) +Bv(t) + Fu(t),
w(t) = Cx(t) +Dv(t) + Eu(t),
0 ≤ v(t) ⊥ w(t) ≥ 0,
Mx(0) +Nx(T ) = xb,

(6.2)

where T > 0, A,Q ∈ Rn×n, V,D ∈ Rm×m, U ∈ Rmu×mu , E ∈ Rm×mu , B ∈ Rn×m, F ∈ Rn×mu ,
C ∈ Rm×n, M,N ∈ R2n×n, x : [0, T ] → Rn, u, v : [0, T ] → Rm, xb ∈ R2n. In order to avoid trivial
cases, we assume that (C,E) 6= (0, 0) and xb is in the image set of (M N). Also, we choose U
symmetric and positive-definite, and Q and V semi-positive definite.

The problem of existence of solutions of the Optimal Control Problem (6.1)(6.2) is actually
twofold. First, the existence of a trajectory for the LCS (6.2) is not straightforward, even if
the system is expressed as an Initial Value Problem (IVP), as it was explained in Section 1.2.
Secondly and most importantly, the existence of solution for (6.1)(6.2) is still an open question.
A famous result due to Filipov [34, Theorem 9.2i] states the existence of an optimal control
under convexity of the so-called velocity set V(x). In our case, V(x) = {(u, v) ∈ R2m|0 ≤ v ⊥
Cx+Dv + Eu ≥ 0} is clearly not convex, due to the complementarity. Therefore throughout this
chapter, we admit that an optimal solution exists (in the sense of Definition 6.1.2 below), and the
focus is on necessary conditions this optimal solution must comply with (relying strongly on the
seminal work in [59], presented in Section 3.2), together with their numerical computation which
relies on MPEC algorithms (see Section 3.1.2).

This section uses normal cones that are defined in the Appendix A.
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6.1 First-order necessary conditions for the optimal control
problem (6.1)(6.2)

6.1.1 Preliminaries

Let us begin by recalling some definitions given in Sections 3.1 and 3.2 and particularized for the
problem (6.1)(6.2). First, let us fix some notations and definitions related to MPEC:

Definition 6.1.1. Let m ∈ N.

• The complementarity cone is defined as Cm = {(v, w) ∈ Rm × Rm : 0 ≤ v ⊥ w ≥ 0}.

• Three different index sets are defined from this complementarity constraint, called the active
sets and the degenerate set:

I+0(v̄, w̄) = {i ∈ m : v̄ > 0 = w̄},

I0+(v̄, w̄) = {i ∈ m : v̄ = 0 < w̄},

I00(v̄, w̄) = {i ∈ m : v̄ = 0 = w̄}.

The sets I•0(v̄, w̄) and I0•(v̄, w̄) are defined as I•0(v̄, w̄) = I+0(v̄, w̄) ∪ I00(v̄, w̄), I0•(v̄, w̄) =
I0+(v̄, w̄) ∪ I00(v̄, w̄).

Definition 6.1.2. Let n,m,mu ∈ N.

• We refer to any absolutely continuous function on [0, T ] as an arc, and to any measurable
function on [0, T ] as a control.

• An admissible pair for (6.2) is a 3-tuple of functions (x, u, v) on [0, T ] for which u, v are
controls and x is an arc, that satisfy all the constraints in (6.2).

• Let us define the constraint set S, by

S = {(x, u, v) ∈ Rn × Rmu × Rm : (v, Cx+Dv + Eu) ∈ Cm} .

• Given a constant R > 0, we say that an admissible pair (x∗, u∗, v∗) is a local minimizer
of radius R for (6.1)(6.2) if there exists ε > 0 such that for every pair (x, u, v) admissible
for (6.2), which also satisfies ‖x(t) − x∗(t)‖ ≤ ε,

∥∥∥(uv)− (u∗(t)v∗(t)

)∥∥∥ ≤ R a.e. t ∈ [0, T ] and∫ T
0
‖ẋ(t)− ẋ∗(t)‖dt ≤ ε, we have J(x∗, u∗, v∗) ≤ J(x, u, v).

• For every given t ∈ [0, T ], and constant scalars ε > 0 and R > 0, we define the neighborhood
of the point (x∗(t), u∗(t), v∗(t)) as

Sε,R∗ (t) =

{
(x, u, v) ∈ S : ‖x− x∗(t)‖ ≤ ε,

∥∥∥∥(uv
)
−
(
u∗(t)

v∗(t)

)∥∥∥∥ ≤ R

}
.

• The dependence on time of index sets is denoted as I0+
t (x, u, v) = {i ∈ m : vi(t) >

0 = (Cx(t) + Dv(t) + Eu(t))i}. The same definition follows for I+0
t (x, u, v), I00

t (x, u, v),
I•0t (x, u, v), I0•

t (x, u, v).
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• For a positive measurable function kS defined for almost every t ∈ [0, T ], the bounded slope
condition is defined as the following implication:

(x, u, v) ∈ Sε,R∗ (t), (α, β, γ) ∈ N P
S (x, u, v) =⇒ ‖α‖ ≤ kS(t)

∥∥∥∥(βγ
)∥∥∥∥ . (6.3)

As exposed in Section 3.2, the bounded slope condition (6.3) does not trivially hold. The next
Proposition gives a sufficient condition for the LCP (6.2) to comply with it.

Proposition 6.1.1. Suppose E 6= 0 and im(C) ⊆ im(E). Then the local error bound condition
(see Definition 3.1.2) holds at every admissible point, and the bounded slope condition for (6.2)
holds.

In order to prove this, one needs first the following lemma:

Lemma 6.1.1. Let A ∈ Rn×m, B ∈ Rmu×m such that B 6= 0 and ker(B) ⊆ ker(A). Then there
exists α > 0 such that: ∀x ∈ Rm, ‖Ax‖ ≤ α‖Bx‖.

Proof. Let x ∈ Rm. We decompose x in the following way:

x = xB + xA + x⊥, xB ∈ kerB, xA ∈ kerA\kerB ∪ {0}, x⊥ ∈ (kerA)⊥

such that Ax = Ax⊥, Bx = B(xA + x⊥). Thus:

‖Ax‖2 ≤ ‖A‖2‖x⊥‖2

≤ ‖A‖2
[
‖x⊥‖2 + ‖xA‖2

]
≤ ‖A‖2‖xA + x⊥‖2 because xA ⊥ x⊥

However, xA + x⊥ ∈ (kerB)⊥. Therefore, the linear application B : (kerB)⊥ → imB (we
write the same way the linear application and the associated matrix in the canonic basis) is
an isomorphism, which admits an inverse B†, which is the Moore-Penrose inverse. It yields:
∃!y ∈ imB; B(xA + x⊥) = y ⇐⇒ xA + x⊥ = B†y, and thus

‖xA + x⊥‖ ≤ ‖B†‖‖y‖ = ‖B†‖‖B(xA + x⊥)‖.

We can then prove that:

‖Ax‖2 ≤ ‖A‖2‖xA + x⊥‖2

≤ ‖A‖2‖B†‖2‖B(xA + x⊥)‖2

≤ ‖A‖2‖B†‖2‖Bx‖2

It easily yields the desired result.

Proof of Proposition 6.1.1. Since the MPEC Linear Condition holds (see Definition 3.1.1),
the local error bound condition also holds at every admissible points (see [59, Proposition 2.3]).
Applying Proposition 3.2.1, a sufficient condition for the bounded slope condition to hold is:

∀λH , λG ∈ Rm, ‖CᵀλH‖ ≤ kS(t)

∥∥∥∥λG +DᵀλH

EᵀλH

∥∥∥∥
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Since im(C) ⊆ im(E) (or equivalently, ker(Eᵀ) ⊆ ker(Cᵀ)), applying Lemma 6.1.1 with Cᵀ and
Eᵀ, we prove that:

∃α > 0, ∀λH ∈ Rm, ‖CᵀλH‖2 ≤ α2‖EᵀλH‖2

Therefore, it easily proves:

∃α > 0, ∀λG, λH ∈ Rm, ‖CᵀλH‖2 ≤ α2

∥∥∥∥λG +DᵀλH

EᵀλH

∥∥∥∥2

Therefore, the sufficient condition for the bounded slope condition holds.

6.1.2 Necessary first-order conditions

Let us now apply [59, Theorem 3.2], recalled in Theorem 3.2.1, to the Problem (6.1)(6.2).

Proposition 6.1.2. Let (x∗, u∗, v∗) be a local minimizer of constant radius R > 0 for (6.1)(6.2).
Suppose im(C) ⊆ im(E). Then there exist an arc p : [0, T ]→ Rn, a scalar λ0 ≤ 0 and measurable
functions λG : R→ Rm, λH : R→ Rm such that the following conditions hold:

1. The non-triviality condition: (λ0, p(t)) 6= 0, ∀t ∈ [0, T ].

2. The transversality condition:
(
p(0)
−p(T )

)
∈ im

(
Mᵀ

Nᵀ

)
.

3. The Euler adjoint equation: for almost every t ∈ [0, T ],

ṗ(t) = −Aᵀp− 2λ0Qx
∗ − CᵀλH

0 = F ᵀp+ 2λ0Uu
∗ + EᵀλH

0 = Bᵀp+ 2λ0V v
∗ + λG +DᵀλH

0 = λGi (t), ∀i ∈ I+0
t (x∗, u∗, v∗)

0 = λHi (t), ∀i ∈ I0+
t (x∗, u∗, v∗).

(6.4)

4. The Weierstrass condition for radius R: for almost every t ∈ [t0, t1],

(x∗(t), u, v) ∈ S,
∥∥∥∥(uv

)
−
(
u∗(t)

v∗(t)

)∥∥∥∥ < R

=⇒ 〈p(t), Ax∗(t) +Bv∗(t) + Fu∗(t))〉+ λ0 (x∗(t)ᵀQx∗(t) + u∗(t)ᵀUu∗(t) + v∗(t)ᵀV v∗(t))

≥ 〈p(t), Ax∗(t) +Bv + Fu)〉+ λ0 (x∗(t)ᵀQx∗(t) + uᵀUu+ vᵀV v) .
(6.5)

Proof. Let us check that the problem complies with [59, Assumption 3.1]. These assumptions are
recalled in Assumption 3.2.1 in Section 3.2. We check these in the same order:

1. Let t ∈ [0, T ] and (x1, u1, v1), (x2, u2, v2) ∈ Sε,R∗ (t). First, let us check (3.10)(a):

‖(Ax1 +Bv1 +Fu1)− (Ax2 +Bv2 +Fu2)‖ ≤ ‖A‖‖x1− x2‖+ ‖B‖‖v1− v2‖+ ‖F‖‖u1− u2‖.
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Secondly, we must check the inequality concerning the cost in (3.10)(b). For that, remark
first that:

|xᵀ1Qx1 − xᵀ2Qx2| = |(x1 + x2)ᵀQ(x1 − x2)|
≤ ‖x1 − x∗(t) + x2 − x∗(t) + 2x∗(t)‖‖Q‖‖x1 − x2‖
≤ (‖x1 − x∗(t)‖+ ‖x2 − x∗(t)‖+ 2‖x∗(t)‖) ‖Q‖‖x1 − x2‖
≤ 2‖Q‖ (‖x∗(t)‖+ ε) ‖x1 − x2‖.

Similarly, one proves that |uᵀ1Uu1 − uᵀ2Uu2| ≤ 2‖U‖(‖u∗(t)‖+R)‖u1−u2‖ and |vᵀ1V v1 − vᵀ2V v2| ≤
2‖V ‖(‖v∗(t)‖+R)‖v1 − v2‖. Therefore:

|(xᵀ1Qx1 + uᵀ1Uu1)− (xᵀ2Qx2 + uᵀ2Uu2)| ≤ |xᵀ1Qx1 − xᵀ2Qx2|+ |uᵀ1Uu1 − uᵀ2Uu2|
≤ kx(t)‖x1 − x2‖+ ku(t)‖u1 − u2‖.

where kx(t) = 2‖Q‖ (‖x∗(t)‖+ ε) and ku(t) = 2‖U‖(‖u∗(t)‖ + R). kx, ku are measurable
functions of time, and ‖A‖, ‖B‖ and ‖F‖ are all constant and therefore measurable functions.
Thus (3.10) holds true.

2. Since im(C) ⊆ im(E), and using Lemma 6.1.1, the bounded slope condition and the error
bound condition for the system (6.2) holds at (x∗(t), u∗(t), v∗(t)) for all t ∈ [0, T ] hold, with
a positive constant kS.

3. The terms kS[‖B‖+ ‖F‖+ ku], kx and ‖A‖ are all integrable on [0, T ], and there obviously
exists a positive number η such that R ≥ ηkS on [0, T ] (just take η = R/kS).

4. Since all involved functions are smooth, all conditions of measurability and differentiability
are met.

Calculations of the non-triviality and Weierstrass conditions are straightforward. Since all func-
tions are differentiable, the Clarke subdifferential in (3.14) contains only the gradient, i.e.

∇x,u,v (〈p(t), Ax+Bv + Fu〉 − λ0(xᵀQx+ uᵀUu)) ,

and U(·) is in our case the whole space R2m, so the normal cone reduces to {0}. Simple calculations
from (3.14) yield the Euler equation (6.4). Concerning the transversality condition (3.13), notice
first that we did not impose any boundary cost. Denote Pb =

{(
x0
xT

)
: Mx0 +NxT = xb

}
, then for(

x0
xT

)
∈ Pb, since Pb is an affine vector space,

NPb
(
x0

xT

)
= −

(
Pb −

(
x0

xT

))∗
= −ker(M N)∗ = im

(
Mᵀ

Nᵀ

)
.

Remark 6.1.1. • The tuple consisting of a trajectory and the associated multipliers solution
of (6.4) is called an extremal. The case λ0 = 0 is often called the abnormal case [59], and the
corresponding extremal an abnormal extremal. In this case, no information can be derived
from these necessary conditions. In other cases, we can choose this value most conveniently,
since the adjoint state p is defined up to a multiplicative positive constant. In the rest of this
paper, λ0 will always be chosen as −1

2
. The optimal trajectory is normal when, for instance,

the initial point x(0) or the final point x(T ) are free.
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• In (6.5), all parts containing x∗(t) can actually be subtracted from each side of the inequality.

The Weierstrass condition (6.5) can be re-expressed as searching a local maximizer of the
following MPEC:

max
u,v
〈p(t), Bv + Fu〉+ λ0 (uᵀUu)

s.t. 0 ≤ v ⊥ Cx∗(t) +Dv + Eu ≥ 0.
(6.6)

For each t ∈ [0, T ], this is an MPEC, as presented in Section 3.1. These programs admit first-order
conditions, the weak and strong stationarity: this motivates the next definition.

Definition 6.1.3. Let (x∗, u∗, v∗) be an admissible pair for (6.2). Then:

• The FJ-type W(eak)-stationarity holds at (x∗, u∗, v∗) if there exist an arc p, a scalar λ0 ≤ 0
and measurable functions λG, λH such that Proposition 6.1.2 (1)-(4) hold.

• The FJ-type S(trong)-stationarity holds at (x∗, u∗, v∗) if (x∗, u∗, v∗) is FJ-type W-stationary
with arc p and there exist measurable functions ηG, ηH such that, for almost every t ∈ [0, T ],

0 = F ᵀp+ 2λ0Uu
∗ + EᵀηH

0 = Bᵀp+ 2λ0V v
∗ + ηG +DᵀηH

0 = ηGi (t), ∀i ∈ I+0
t (x∗, u∗, v∗)

0 = ηHi (t), ∀i ∈ I0+
t (x∗, u∗, v∗),

ηGi (t) ≥ 0, ηHi (t) ≥ 0, ∀i ∈ I00
t (x∗, u∗, v∗).

• We simply call W-stationarity or S-stationarity the FJ-type W- or S-stationarity with λ0 =
−1

2
.

The multipliers ηG, ηH can be different in measure from the corresponding λG, λH in Proposition
6.1.2. The next theorem, whose proof follows directly from [59, Theorem 3.6] as recalled in Theorem
3.2.3, addresses this problem:

Theorem 6.1.1. Let (x∗, u∗, v∗) be a local minimizer of radius R for (6.1)(6.2). Suppose that for
almost every t ∈ [0, T ], the MPEC LICQ holds at (u∗(t), v∗(t)) for problem (6.6), i.e., the family
of gradients {(

0
ei

)
: i ∈ I0•

t (x∗, u∗, v∗)

}⋃{(
(Ei•)

ᵀ

(Di•)
ᵀ

)
: i ∈ I•0t (x∗, u∗, v∗)

}
. (6.7)

is linearly independent, where ei is a vector such that its j-th component is equal to δji , the Kro-
necker delta. Then the S-stationarity holds at (x∗, u∗, v∗). Moreover, in this case, the multipliers
ηG, ηH can be taken equal to λG, λH , respectively, almost everywhere.

We can now state the following result:

Corollary 6.1.1. Suppose m = mu and E is invertible. Then the local minimum (x∗, u∗, v∗) is
S-stationary, and the multipliers ηG, ηH can be chosen equal to λG, λH almost everywhere.

69



Proof. Let us first show that E invertible is equivalent to rank
(

0m Eᵀ

Im Dᵀ

)
= 2m. Notice that

rank
(

0m Eᵀ

Im Dᵀ

)
= rank

(
0m Im
E D

)
. Since

(
0
E

)
and

(
Im
D

)
are linearly independent, we have:

rank
(

0m Im
E D

)
= rank

(
0m
E

)
+ rank

(
Im
D

)
= rank(E) +m.

Thus, if E is invertible, then rank
(

0m Eᵀ

Im Dᵀ

)
= 2m. Conversely, if rank

(
0m Eᵀ

Im Dᵀ

)
= 2m, then

rank(E) = m, so E is invertible.

Let us now prove the corollary. Since E is invertible, rank
(

0m Eᵀ

Im Dᵀ

)
= 2m.This rank condition

ensures the fact that the family{(
0
ei

)
: 1 ≤ i ≤ m

}⋃{(
(Ei•)

ᵀ

(Di•)
ᵀ

)
: 1 ≤ i ≤ m

}
is linearly independent. The family in (6.7) being a subfamily of this one, it is necessarily linearly
independent. So the MPEC LICQ holds at (u∗(t), v∗(t)) for problem (6.6) (see Definition 3.1.1),
and (x∗, u∗, v∗) is S-stationary.

Remark 6.1.2. It is actually sufficient to suppose that rank(E) = m. In this case, E is not
necessarily invertible.

Let us now state a result that allows us to reformulate the S-stationarity conditions through a
complementarity system in order to remove the active sets. One can simply see it that way: for
almost all t ∈ [0, T ], the conditions on the multipliers λH and λG are:

λGi (t) = 0, ∀i ∈ I+0
t (x, u, v)

λHi (t) = 0, ∀i ∈ I0+
t (x, u, v)

λGi (t) ≥ 0, λHi (t) ≥ 0, ∀i ∈ I00
t (x, u, v).

(6.8)

The presence of the active and degenerate sets is tedious, since they depend on the optimal solution,
not in a useful way. Nonetheless, the conditions in (6.8) look almost like a linear complementarity
problem. The only thing missing is the sign of λGi for i ∈ I0+

t (x, u, v) (and the same thing with
λHi on I+0

t (x, u, v)). On these index sets, the multipliers could be negative. But we could for
instance create new variables, say α and β, that will both be non-negative and comply with these
conditions. This is the purpose of the next Proposition.

Proposition 6.1.3. Suppose m = mu and (x, u, v) is an S-stationary trajectory. Then there exist
measurable functions β : [0, T ]→ Rm, ζ : [0, T ]→ R such that:

u(t) = U−1 (F ᵀp(t) + Eᵀβ(t)− ζ(t)Eᵀv(t))

and (
ẋ
ṗ

)
=

(
A FU−1F ᵀ

Q −Aᵀ
)(

x
p

)
+

(
B − ζFU−1Eᵀ

ζCᵀ

)
v +

(
FU−1Eᵀ

−Cᵀ
)
β

0 ≤
(
v
β

)
⊥

(
D − ζEU−1Eᵀ EU−1Eᵀ

D − ζEU−1Eᵀ EU−1Eᵀ

)(
v
β

)
+

(
C EU−1F ᵀ

C EU−1F ᵀ

)(
x
p

)
≥ 0

0 ≤ v ⊥ ζ(D +Dᵀ + V − ζEU−1Eᵀ)v + (ζEU−1Eᵀ −Dᵀ)β + (ζEU−1F ᵀ −Bᵀ)p+ ζCx ≥ 0.
(6.9)
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To prove this Proposition, we first need the following Lemma.

Lemma 6.1.2. Let (x, u, v) be an S-stationary trajectory, and λG, λH be the associated multipliers.

Then there exists a measurable function ζ : [0, T ] → R such that
(
λG(t) + ζ(t)w(t)
λH(t) + ζ(t)v(t)

)
≥ 0, where

w is defined in (6.2).

Proof. First, remark that, for all t ∈ [0, T ], a candidate ζ(t) has been defined in (3.6), Theorem

3.1.2 in Section 3.1. Denote F : [0, T ]×R→ R2m, F (t, ζ) =

(
λG(t) + ζw(t)
λH(t) + ζv(t)

)
. F is a Carathéodory

mapping, since λG, λH , v and w are measurable, so F (·, ζ) is measurable for each fixed ζ ∈ R, and
F (t, ·) is an affine function, and as such it is continuous, for each fixed t. By the Implicit Measurable
Function Theorem [90, Theorem 14.16], there exists a measurable function ζ : [0, T ]→ R such that
F (t, ζ(t)) ∈ R2m

+ , which is the intended result.

Proof of Proposition 6.1.3. As proved in Lemma 6.1.2, there exists a measurable function
ζ : [0, T ]→ R such that: (

λG(t) + ζ(t)w(t)
λH(t) + ζ(t)v(t)

)
≥ 0.

Define α, β : [0, T ]→ Rm as α = λG+ζw, β = λH+ζv. The variables α and β are, by construction,
measurable and non-negative. From the fact that (x, u, v) is an S-stationary trajectory, we also
have that, for almost every t ∈ [0, T ], λGi (t)vi(t) = 0 and λHi (t)wi(t) = 0 for all i ∈ m. Therefore,
we can deduce that: 

λG = α− ζw
λH = β − ζv
0 ≤ α ⊥ v ≥ 0

0 ≤ β ⊥ w ≥ 0.

(6.10)

In (6.4), let us isolate u, using U symmetric positive definite. Inserting the redefinition of λH
yields:

u(t) = U−1(F ᵀp(t) + EᵀλH(t)) = U−1 (F ᵀp(t) + Eᵀβ(t)− ζ(t)Eᵀv(t)) . (6.11)

Recall that w = Cx+Dv + Eu. Inserting this u in (6.10), we obtain:

λG = α− ζ(Cx+Dv + Eu) = α− ζ(Cx+ (D − ζEU−1Eᵀ)v + EU−1F ᵀp+ EU−1Eᵀβ)).

Inserting (6.10) and (6.11) into (6.2) and (6.4) allows us to rewrite the differential equations
defining x and p as :{

ẋ = Ax+Bv + Fu = Ax+ FU−1F ᵀp+ (B − ζFU−1Eᵀ)v + FU−1Eᵀβ

ṗ = −Aᵀp+Qx− CᵀλH = −Aᵀp+Qx+ ζCᵀv − Cᵀβ.

The only equation left is the third equation in (6.4). Replacing λG and λH with the expressions
(6.10) yields:

Bᵀp− V v + α− ζ
(
Cx+ (D − ζEU−1Eᵀ)v + EU−1F ᵀp+ EU−1Eᵀβ

)
+Dᵀ(β − ζv) = 0

=⇒ α = (ζEU−1F ᵀ −Bᵀ)p+ ζCx+ (ζEU−1Eᵀ −Dᵀ)β + ζ(D +Dᵀ + V − ζEU−1Eᵀ)v.

Replacing α and u in the complementarity conditions appearing in (6.2) and in (6.10) yields the
complementarity conditions in (6.9).
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Remark 6.1.3. • The decomposition of (λG, λH) into (α, β, ζ) proposed in (6.10) is not unique,
as it has been hinted in Remark 3.1.1. There actually is a single degree of freedom. Indeed,
if this decomposition works for (α, β, ζ), then for any ρ ≥ 0, we can decompose (λG, λH) as
(α+ρw, β+ρv, ζ+ρ). Therefore, for a fixed t ∈ [0, T ], any scalar greater than ζ(t) is suitable.
Thus, if we can find an upper-bounded function ζ decomposing (λG, λH) into (α, β, ζ), then
(λG, λH) can be decomposed into (ᾱ, β̄, ζ̄), where ζ̄ is a constant along [0, T ] greater or equal
to the supremum of ζ.

• A second remark concerns the three complementarity conditions defining β and v in (6.9). It
is not written as a classical Variational Inequality (VI), since it involves 2m unknowns but
3m complementarity problems. The next proposition addresses this problem.

Proposition 6.1.4. Let r be any given positive scalar. Denote (P ) the complementarity conditions
appearing in (6.9), and denote (Pr) the problem:

0 ≤ β + rv ⊥ (D − ζEU−1Eᵀ)v + EU−1Eᵀβ + EU−1F ᵀp+ Cx ≥ 0

0 ≤ v ⊥ ζ(D +Dᵀ + V − ζEU−1Eᵀ)v + (ζEU−1Eᵀ −Dᵀ)β + (ζEU−1F ᵀ −Bᵀ)p+ ζCx ≥ 0

β ≥ 0.
(Pr)

Then (v, β) is a solution of (P ) if and only if it is a solution of (Pr).

Proof. We rewrite more simply the two problems as follows:
0 ≤ v ⊥ D̃v + Ũβ + q1 ≥ 0

0 ≤ β ⊥ D̃v + Ũβ + q1 ≥ 0

0 ≤ v ⊥ D̃2v + Ũ2β + q2 ≥ 0

(P1)

(P2)

(P3)


0 ≤ β + rv ⊥ D̃v + Ũβ + q1 ≥ 0

β ≥ 0

0 ≤ v ⊥ D̃2v + Ũ2β + q2 ≥ 0

(Pr1)
(Pr2)

(Pr3)

where D̃ = (D−ζEU−1Eᵀ), Ũ = EU−1Eᵀ, D̃2 = ζ(D+Dᵀ+V−ζEU−1Eᵀ), Ũ2 = (ζEU−1Eᵀ−Dᵀ),
q1 = EU−1F ᵀp+ Cx, q2 = (ζEU−1F ᵀ −Bᵀ)p+ ζCx.

• Let (v, β) be a solution of (P ). Denote:

I0+ = {i : vi = βi = 0, (D̃v + Ũβ + q1)i > 0},

I•0 = {i : (D̃v + Ũβ + q1)i = 0}.
These two sets form a partition of {1, ...,m}. Since CP (P3) and (Pr3) are the same problem,
(v, β) is also solution of (Pr3). Using (P2), we find that β complies with (Pr2). We are just
left with (Pr1). By assumption it follows that ∀i ∈ I0+, βi + rvi = 0, (D̃v + Ũβ + q1)i > 0
and ∀i ∈ I•0, βi + rvi ≥ 0, (D̃v + Ũβ + q1)i = 0. So (v, β) is also a solution of (Pr1). This
proves that (v, β) is a solution of (Pr).

• Conversely, let (v, β) be a solution of (Pr). Since it is a solution of (Pr1), denote I0+
r = {i :

βi + rvi = 0, (D̃v + Ũβ + q1)i > 0} and I•0r = {i : (D̃v + Ũβ + q1)i = 0}. These two sets
form a partition of {1, ...,m}. Since CP (Pr3) and (P3) are the same problem, (v, β) is also
solution of (P3). For all i ∈ I0+

r , βi + rvi = 0 and (D̃v + Ũβ + q1)i > 0. Thanks to (Pr3)
and (Pr2), we know that βi ≥ 0, vi ≥ 0. Since r > 0, we have a sum of positive terms that
must equal 0, so βi = vi = 0. For all i ∈ I•0r , (D̃v + Ũβ + q1)i = 0 and using (Pr3) and
(Pr2), βi ≥ 0, vi ≥ 0. So (v, β) is also a solution of (P1) and (P2). It proves that (v, β) is a
solution of (P ).
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Let us define β̃ = β + rv and replace β in (Pr). Thus we end up with the following LCP and
inequality constraints:

0 ≤
(
β̃
v

)
⊥
(

EU−1Eᵀ D − (ζ + r)EU−1Eᵀ

ζEU−1Eᵀ −Dᵀ ζ(D + V ) + (ζ + r) (Dᵀ − ζEU−1Eᵀ)

)(
β̃
v

)
+

(
EU−1F ᵀp+ Cx

(ζEU−1F ᵀ −Bᵀ)p+ ζCx

)
≥ 0

β̃ ≥ rv.

To sum up, by Propositions 6.1.2, 6.1.3 and 6.1.4, the following theorem holds:

Theorem 6.1.2. Let (x∗, u∗, v∗) be a local minimizer of constant radius R > 0 for (6.1)(6.2).
Suppose m = mu, E is invertible and (x∗, u∗, v∗) is not the projection of an abnormal extremal.
Then there exist an arc p : [0, T ] → Rn, and measurable functions β̃ : [0, T ] → Rm, ζ : [0, T ] → R
such that, for an arbitrary scalar r > 0:

u∗(t) = U−1
(
F ᵀp(t) + Eᵀβ̃(t)− (ζ(t) + r)Eᵀv∗(t)

)
and the following conditions hold:

1. The transversality condition:
(
p(0)
−p(T )

)
∈ im

(
Mᵀ

Nᵀ

)
.

2. The Euler adjoint equation: for almost every t ∈ [0, T ],(
ẋ∗

ṗ

)
=

(
A FU−1F ᵀ

Q −Aᵀ
)(

x∗

p

)
+

(
FU−1Eᵀ B − (ζ + r)FU−1Eᵀ

−Cᵀ (ζ + r)Cᵀ

)(
β̃
v∗

)
(6.12)

0 ≤
(
β̃
v∗

)
⊥
(

EU−1Eᵀ D − (ζ + r)EU−1Eᵀ

ζEU−1Eᵀ −Dᵀ ζ(D + V ) + (ζ + r) (Dᵀ − ζEU−1Eᵀ)

)(
β̃
v∗

)
+

(
C EU−1F ᵀ

ζC ζEU−1F ᵀ −Bᵀ
)(

x∗

p

)
≥ 0

β̃ ≥ rv∗.

3. The Weierstrass condition for radius R: for almost every t ∈ [t0, t1],

(x∗(t), u, v) ∈ S,
∥∥∥∥(uv

)
−
(
u∗(t)

v∗(t)

)∥∥∥∥ < R

=⇒ 〈p(t), Ax∗(t) +Bv∗(t) + Fu∗(t))〉 − 1

2
(x∗(t)ᵀQx∗(t) + u∗(t)ᵀUu∗(t))

≥ 〈p(t), Ax∗(t) +Bv + Fu)〉 − 1

2
(x∗(t)ᵀQx∗(t) + uᵀUu) .

The importance of this result is twofold. First, it gives a way to analyze the optimal trajectory
using these necessary conditions. All results concerning the analysis of LCS can be used to prove
some properties of possible trajectories of (6.12) and to derive results on continuity, jumps or
sensitivity on parameters, and therefore to prove some properties of the optimal trajectory. The
analysis of LCS relies heavily on the matrix appearing in front of

(
β̃
v

)
in the complementarity

conditions of (6.12). However, with no more hypothesis on matrices appearing in (6.12), we were
not able to derive sharper results.
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6.2 Sufficiency of the W-stationarity
Surprisingly, the weakest form of stationarity for the problem (6.1)(6.2) turns to be also sufficient,
in some sense. For this, we need to define trajectories with the same history. The development
shown here is directly inspired by [46, Proposition 3.1] and by [101].

Definition 6.2.1. Let (x, u, v) and (x∗, u∗, v∗) be two admissible trajectories for (6.2) (associated
with w = Cx+Dv + Eu and w∗, defined the same way). We say that they have the same history
on [0, T ] if the following condition holds for almost every t ∈ [0, T ]:

[vi(t) = 0 ⇐⇒ v∗i (t) = 0] and [wi(t) = 0 ⇐⇒ w∗i (t) = 0]

From the point of view of the switching systems, two trajectories have the same history on [0, T ]
if they visit the same modes at the same time along [0, T ]. In the following sufficient condition
for optimality, the comparison of the different trajectories is done with respect to this history
condition.

Theorem 6.2.1. Suppose that (x∗, u∗, v∗) is an admissible W-stationary trajectory (with λ0 = −1
2
).

Then, (x∗, u∗, v∗) minimizes (6.1)(6.2) among all admissible trajectories for (6.2) having the same
history.

Proof. Since (x∗, u∗, v∗) is a W-stationary trajectory, there exist an arc p and measurable functions
λG and λH satisfying (6.4). Notice that (6.4) implies, for almost all t ∈ [0, T ] and all i ∈ m,

λGi (t)v∗i (t) = 0 and λHi (t)w∗i (t) = 0. (6.13)

Let (x, u, v) be a second admissible trajectory for (6.2) with the same history as (x∗, u∗, v∗). Since
they both have the same history, it also satisfies, for almost all t ∈ [0, T ] and all i ∈ m:

λGi (t)vi(t) = 0 and λHi (t)wi(t) = 0. (6.14)

Denote L(x, u, v) = 1
2

(xᵀQx+ uᵀUu+ vᵀV v). The goal is to prove:

∆ =

∫ T

0

(L(x(t), u(t), v(t))− L(x∗(t), u∗(t), v∗(t))) dt ≥ 0

For this, let us first transform the expression of ∆.

∆ =

∫ T

0

(L(x(t), u(t), v(t))− L(x∗(t), u∗(t), v(t))) dt

+

∫ T

0

p(t)ᵀ(ẋ(t)− Ax(t)−Bv(t)− Fu(t)− (ẋ∗(t)− Ax∗(t)−Bv∗(t)− Fu∗(t)))dt

=

∫ T

0

(L(x(t), u(t), v(t))− L(x∗(t), u∗(t), v∗(t))) dt+

∫ T

0

d

dt
[p(t)ᵀ(x(t)− x∗(t))] dt

−
∫ T

0

ṗ(t)ᵀ(x(t)− x∗(t))dt

−
∫ T

0

p(t)ᵀ (A(x(t)− x∗(t)) +B(v(t)− v∗(t)) + F (u(t)− u∗(t))) dt
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The last equality is obtained by integration by parts of
∫ T

0
pᵀ(ẋ− ẋ∗).

∆ =

∫ T

0

(L(x(t), u(t), v(t))− L(x∗(t), u∗(t), v∗(t))) dt+

∫ T

0

d

dt
[p(t)ᵀ(x(t)− x∗(t))] dt

−
∫ T

0

(ṗ(t) + Aᵀp(t) + CᵀλH(t))ᵀ(x(t)− x∗(t))dt+

∫ T

0

(CᵀλH(t))ᵀ(x(t)− x∗(t))dt

−
∫ T

0

(F ᵀp(t) + EᵀλH(t))ᵀ(u(t)− u∗(t))dt+

∫ T

0

(EᵀλH(t))ᵀ(u(t)− u∗(t))dt

−
∫ T

0

(Bᵀp(t) + λG(t) +DᵀλH(t))ᵀ(v(t)− v∗(t))dt

+

∫ T

0

(λG(t) +DᵀλH(t))ᵀ(v(t)− v∗(t))dt

=

∫ T

0

L(x(t), u(t), v(t))− L(x∗(t), u∗(t), v∗(t))

−

 ṗ(t) + Aᵀp(t) + CᵀλH(t)
F ᵀp(t) + EᵀλH(t)

Bᵀp(t) + λG(t) +DᵀλH(t)

ᵀx(t)− x∗(t)
u(t)− u∗(t)
v(t)− v∗(t)

 dt

+

∫ T

0

λH(t)ᵀ(C(x(t)− x∗(t)) +D(v(t)− v∗(t)) + E(u(t)− u∗(t)))dt

+

∫ T

0

λG(t)ᵀ(v(t)− v∗(t))dt+

∫ T

0

d

dt
[p(t)ᵀ(x(t)− x∗(t))] dt

As it is proved in Proposition 6.1.2,

 ṗ(t) + Aᵀp(t) + CᵀλH(t)
F ᵀp(t) + EᵀλH(t)

Bᵀp(t) + λG(t) +DᵀλH(t)

 = ∇L(x∗(t), u∗(t), v∗(t)). Since

L is a convex function, it yields for almost all t in [0, T ]:

L(x(t), u(t), v(t))− L(x∗(t), u∗(t), v∗(t))− (∇L(x∗(t), u∗(t), v∗(t)))ᵀ

x(t)− x∗(t)
u(t)− u∗(t)
v(t)− v∗(t)

 ≥ 0 (6.15)

Therefore, this proves:

∆ ≥
∫ T

0

λH(t)ᵀ(w(t)− w∗(t))dt+

∫ T

0

λG(t)ᵀ(v(t)− v∗(t))dt+

∫ T

0

d

dt
[p(t)ᵀ(x(t)− x∗(t))] dt

≥
∫ T

0

d

dt
[p(t)ᵀ(x(t)− x∗(t))] dt,

the last inequality being obtained with (6.13) and (6.14). Furthermore:∫ T

0

d

dt
[p(t)ᵀ(x(t)− x∗(t))] dt = −

(
p(0)
−p(T )

)ᵀ(
x(0)− x∗(0)
x(T )− x∗(T )

)
But the boundary conditions in (6.2) yield (M N)

(
x(0)− x∗(0)
x(T )− x∗(T )

)
= 0, such that(

x(0)− x∗(0)
x(T )− x∗(T )

)
∈ ker(M N) =

(
im

(
Mᵀ

Nᵀ

))⊥
.

75



And since
(
p(0)
−p(T )

)
∈ im

(
Mᵀ

Nᵀ

)
, it proves

∫ T
0

d
dt

[p(t)ᵀ(x(t)− x∗(t))] dt = 0. Finally, we conclude

that ∆ ≥ 0.

Remark 6.2.1. One could want to get rid of the history hypothesis, since it "fixes" the switching
times and does not render optimality according to these times. Very formally, it is easy to see
where the problem has some leeway. Without the history hypothesis, one still can prove:

∆ =

∫ T

0

L(x(t), u(t), v(t))− L(x∗(t), u∗(t), v∗(t))

−

 ṗ(t) + Aᵀp(t) + CᵀλH(t)
F ᵀp(t) + EᵀλH(t)

Bᵀp(t) + λG(t) +DᵀλH(t)

ᵀx(t)− x∗(t)
u(t)− u∗(t)
v(t)− v∗(t)

 dt

+

∫ T

0

(λH(t)ᵀw(t) + λG(t)ᵀv(t))dt

Suppose that u(t) 6= u∗(t) on a measurable subset J of [0, T ]. Then, by strict convexity of L in
variable u, for almost all t in J :

L(x(t), u(t), v(t))− L(x∗(t), u∗(t), v∗(t))− (∇L(x∗(t), u∗(t), v∗(t)))ᵀ

x(t)− x∗(t)
u(t)− u∗(t)
v(t)− v∗(t)

 > 0

Therefore, using again (6.15), one proves:

∆ >

∫ T

0

λH(t)ᵀw(t)dt+

∫ T

0

λG(t)ᵀv(t)dt

In order to simplify the problem, suppose that v and w have a different history than v∗ and w∗ in
the neighbourhood of a single switching point t∗. Then, the inequality becomes, for some ε > 0:

∆ >

∫ t∗+ε

t∗−ε

(
λH(t)ᵀw(t) + λG(t)ᵀv(t)

)
dt

If for some ε > 0 small enough,
∣∣∣∫ t∗+εt∗−ε

(
λH(t)ᵀw(t) + λG(t)ᵀv(t)

)
dt
∣∣∣ is small enough, then ∆ ≥ 0.

Therefore, the first order conditions also render optimality according to small variations of the
switching times.

Remark 6.2.2. All these considerations about sufficiency of the W-stationarity still hold true if
L is replaced by any other convex function, possibly non differentiable. Also, Remark 6.2.1 also
holds the same way as long as L is strictly convex in one of its variable.

Conclusion

Using the results exposed in Section 3.2, we were able to derive necessary conditions for optimality;
these conditions were then re-expressed in the more suitable form of a linear system defined via
a complementarity problem. As it has been proved, these stationarity conditions turns to be also
sufficient. These results can therefore be used to develop an efficient numerical method: this is the
topic of the next chapter.
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Chapter 7

Numerical implementations

Abstract. Using the results of Chapter 6, we will describe two numerical schemes used for
approximating the optimal trajectory: the direct method and the indirect method. The code
developed for these methods is presented, along with several numerical results. The performances
of both methods are tested, and eventually we show the advantages of both methods. This chapter
has been submitted to IEEE Transactions on Automatic Control [108].

This chapter aims at providing numerical schemes that compute an approximation of a solution
of (6.1)(6.2). As it has been exposed in Section 2.2, two approaches are followed in this manuscript:

• the direct approach, designed in Section 7.1;

• the hybrid direct/indirect approach, designed in Section 7.2.

7.1 Direct method

7.1.1 Description and properties

The direct method consists in discretizing directly the problem (6.1)(6.2) in order to solve a
finite-dimensional optimization problem. To this aim let us propose the following explicit Euler
discretization:

min
L∑
k=0

xᵀkQxk + uᵀkUuk + vᵀkV vk

s.t.


xk+1 − xk

h
= Axk +Bvk + Fuk, k = 0, ..., L− 1

0 ≤ vk ⊥ Cxk +Dvk + Euk ≥ 0, k = 0, ..., L− 1

Mx0 +NxL = xb,

(7.1)

where h = T
L
is the time-step, considered constant. By simple application of [75, Theorem 1.4.3],

one easily prove the following Proposition:

Proposition 7.1.1. For all fixed positive scalar h, (7.1) admits a global minimum.

The discretization of the complementarity conditions, appearing in (7.1), differs from the impli-
cit Euler methods found in [1, 2, 27, 61, 71]. For this optimal control problem, the complementarity
should not be seen as a way to express the variable vk, but as a mixed constraint. Therefore, its
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discretization must hold at all discrete times tk, and the trajectory, solution of this discretized
LCS, will be computed not step by step but for all k in one shot.
The problem is then to solve the program (7.1) numerically. To this end, we use one of the two
Algorithms 1 or 2 described in Section 3.1.2. The reason to use these algorithms is that, under
some hypothesis, they converge to M- or S-stationary points, and the analysis of (6.1)(6.2) made
in Chapter 6 shows that the optimal trajectories are M- or S-stationary.

Problem (7.1)

Problem (7.1)
with relaxation
of the comple-
mentarity

Algorithm in [67] or [73]

M- or S-Stationary point

First-
order
condi-
tion

Convergence
to

Figure 7.1: Sketch of the direct method for problem (6.1)(6.2).

Consistency of the scheme

Let us first compute the stationarity conditions for problem (7.1). Since the MPEC Linear Condi-
tion holds and if we suppose E invertible, according to Theorem 3.1.1, a local minimizer must be
S-stationary. We denote {pi}L−1

i=0 the multipliers for the discretized differential equations, {θi}Li=1

and {νi}Li=1 the multipliers for each side of the complementarity constraints. The stationarity
conditions for the MPEC (7.1) read as:

xi+1 − xi
h

− Axi −Bvi − Fui = 0

Qxi −
(
A+

1

h
I

)ᵀ
pi +

1

h
pi−1 − Cᵀνi = 0

Uui − F ᵀpi − Eᵀνi = 0

−Bᵀpi − θi −Dᵀνi = 0

θi = 0 ∀i ∈ I+0(x, u, v)

νi = 0 ∀i ∈ I0+(x, u, v)

νi ≥ 0, λi ≥ 0, ∀i ∈ I00(x, u, v),

(7.2)

for all i ∈ {1, ..., L− 1}, h = T
L
, L being a fixed positive integer.

Proposition 7.1.2. The stationarity conditions (7.2) define a scheme consistent with the Euler
adjoint equation of an S-stationary trajectory.

Proof. Let us check that the consistency error goes to 0 when h goes to 0. For this, we take the
solutions (x, u, v, p, λH , λG) at discretisation times ti. For k = 1, .., L − 1, let us denote εhk the
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consistency error at time tk :

εhk =



−x(tk+1)

h
+

(
A+

1

h
I

)
x(tk) +Bv(tk) + Fu(tk)

Qx(tk)−
(
A+

1

h
I

)ᵀ
p(tk) +

1

h
p(tk−1)− CᵀλH(tk)

Uu(tk)− F ᵀp(tk)− EᵀλH(tk)

−Bᵀp(tk)− λG(tk)−DᵀλH(tk)



=


Ax(tk) + ẋ(tk) +Bv(tk−1) + Fu(tk−1) +O(h)

Qx(tk)− Aᵀp(tk)− ṗ(tk)− CᵀλH(tk) +O(h)

Uu(tk)− F ᵀp(tk)− EᵀλH(tk)

−Bᵀp(tk)− λG(tk)−DᵀλH(tk)

 =


O(h)

O(h)

0

0

 .

(7.3)

It follows that lim
h→0

(
maxk=1,...,L ‖εhk‖∞

)
= 0. In addition, discrete multipliers ν and θ respect the

same equality and inequality conditions as the multipliers λH and λG of a S-stationary trajectory
at discrete times tk.

Remark 7.1.1. It should be noted that this result holds thanks to the discretization made in (7.1)
that admits some asymmetry. Indeed, the discretization made for x is not the same for discretizing
the cost (where x is discretized as a piecewise constant function), and the dynamics (where x is
discretized as a piecewise affine function). If one chooses to discretize x in the running cost also
as a piecewise affine function, then the proof of Proposition 7.1.2 is more involved.

7.1.2 Description of the code

A code in Python has been written in order to implement this method. The codes were de-
signed using the library CasADi [7], which offers a framework for symbolic computation and
most importantly a convenient way for interfacing with optimization solvers. The optimiza-
tion solver used is IPOPT [111]. All the codes produced in this thesis are available for test at
https://gitlab.inria.fr/avieira/optLCS. A class diagram showing the architecture of the
code is presented Figure 7.2. The direct method was implemented in the class OptLCSDirect.
Concerning the direct method, the main focus was on two features:

1. The code has to be easily launched, needing only the constants of the model. The constructor
of the class only needs the matrices A, B, C, D, E, F , Q and U , and initial and final
times t0 and tf . The code also automatically identifies the dimensions n and m, and treats
initial, final and/or mixed boundary constraints. The resolution is typified by the method
compute_optimal, which already has default values and can be launched directly.

2. The Algorithms 1 and 2 need an NLP solver, and the optimization problem has to be ac-
cordingly defined. This has been done in optimLoop_augment and optimLoop_relax.

7.1.3 Numerical examples

Order for 1D examples

Let us apply the direct method on the following example:
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lcs

optimal

OptLCSDirect

Q,U : matrices
t0, tf : double
x0, xf : vectors
matCondInit, matCondFinal : matrices
valCondMixed : vector
initConstrained, finalConstrained, mixedConstrained : boolean
hDirect : double
nbStepDirect : int

setMixedConstraints(M,N: matrices,b: vector):void
compVio(g: vector, h: vector) : double
optimLoop_augment(print_level_ipopt:boolean, verbose:boolean,

maxIter:int,eps:double,gamma:double,delta:double):dict
optimLoop_relax(print_level_ipopt:boolean, verbose:boolean,

maxIter:int,eps:double,tmin:double,sigma:double):dict
dualSolv(result:dict, lam_x:vector, lam_g:vector,

print_level_ipopt:boolean):dict
compute_optimal(method:string, dual:boolean,

print_level_ipopt:boolean, verbose:boolean):dict
resultVis(result:dict, dual:boolean, resol:int, font:dict,

styleLines:array[string], save:boolean, saveFolder=string):void

OptLCSIndirect

r, theta : double

setNbStep(nbStepDirect:int ,nbStepIndirect:int,
nbIntervShooting:int): void

integDVIShooting(initPoints:dict, guessSol:dict,
A, B, C, D, M, N: matrices,
b: vector, theta: scalar, printlvl: boolean): dict

newtonSolveShooting(jacobian:matrix,gap:vector,
guessPrev:vector):dict

compute_optimal(M, R : matrices, b: vector, theta:double,
methodDirect: string, maxLoops:int,
print_level_ipopt:int, verbose:int, epsLam:double):

LCS

A,B,C,D,E,F : Matrices

Figure 7.2: Class diagram for optLCS.
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Example 7.1.1.

minimize
∫ T

0

(
x(t)2 + u(t)2

)
dt,

such that:


ẋ(t) = ax(t) + bv(t) + fu(t),

0 ≤ v(t) ⊥ dv(t) + eu(t) ≥ 0, a.e. on [0, T ]

x(0) = x0, x(T ) free,

(7.4)

where all variables are scalars, d > 0, b, e 6= 0. Using the results in [31], the constants in the
LCS are chosen such that the system is completely controllable. As proved in Section 4.2, the only
stationary trajectory is given by:

x∗(t) = ṗ(t) + ap(t)

u∗(t) =

{
fp(t) if efx(0) ≤ 0,(
f − eb

d

)
p(t) if efx(0) ≥ 0.

v∗(t) =
1

d
max(0,−eu∗(t))

(7.5)

where:
p(t) =

1

2
√
γ

[(
(
√
γ − a)e

√
γt + (

√
γ + a)e−

√
γt
)
p(0) +

(
e
√
γt − e−

√
γt
)
x(0)

]
p(0) = − x(0)(e2

√
γT−1)

(
√
γ−a)e2

√
γT+
√
γ+a

and γ =

{
(a2 + f 2) if efx(0) ≤ 0,(
a2 +

(
f − be

d

)2
)

if efx(0) ≥ 0.
. Figures 7.3-7.5 show the

evolution of error with time-step in log-log scales, using the two different algorithms presented in
Section 3.1.2, with the parameters a = 3, b = −0.5, d = 1, e = −2, f = 3, T = 1, and either
x0 = 1 or x0 = −1.

In these examples, we clearly see convergence of both algorithms, with an order close to 1.
However, Figures 7.3b and 7.5c suggest that in some cases, the algorithms face difficulties when
the time-step is decreasing. This is actually something known with direct methods: often they fail
to be precise. We can simply understand it, since decreasing the time-step increases the dimension
of the optimization problem to solve. In order to tackle such problems, one has to choose a different
method presented in Section 7.2.

Example with D = 0

As alluded to in Section 1.2, a crucial parameter in LCS is the relative degree between w and v,
which determines the solution set as a subclass of Schwarz’ distributions [3]. Let us consider now
a case with D = 0 and relative degree one.
Example 7.1.2.

minimize
∫ T

0

(
‖x(t)‖2

2 + u(t)2
)
dt

such that:


ẋ(t) =

(
0 1
0 0

)
x(t) +

(
−1
1

)
v(t) +

(
0
1

)
u(t),

0 ≤ v(t) ⊥
(
−1 1

)
x(t) + u(t) ≥ 0,

x(0) = (−0.5, 1), x(T ) free.

(7.6)

The numerical results for Example 7.1.2 are shown in Figure 7.6. They demonstrate that the direct
method can also succeed when D is not a P-matrix.
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(a) Algorithm in [67], x0 = −1
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(b) Algorithm in [73], x0 = −1

10-4 10-3 10-2 10-1

Time step h

10-5

10-4

10-3

10-2

10-1

Error on state x

Ch a,  a=1. 02

(c) Algorithm in [67], x0 = 1
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(d) Algorithm in [73], x0 = 1

Figure 7.3: Error on state x when using Algorithms in [67] or in [73] with a = 3, b = −0.5, d = 1,
e = −2, f = 3, T = 1 and x0 = −1 or x0 = 1 in Example 7.1.1.

Higher dimensional examples

For higher dimension or when C 6= 0, we do not have an analytical solution to compare with the
numerical one, but still we can check if the multipliers comply with an S-stationary trajectory. For
this purpose, let us test them on a third example:

Example 7.1.3.

minimize
∫ 1

0

(
‖x(t)‖2

2 + 25‖u(t)‖2
2

)
dt,

such that:



ẋ(t) =

(
1 2
2 1

)
x(t) +

(
−1 1
−1 1

)
v(t) +

(
1 3
2 1

)
u(t),

0 ≤ v(t) ⊥
(

3 −1
−2 0

)
x(t) + v(t) +

(
1 −1
−1 2

)
u(t) ≥ 0, a.e. on [0, 1]

x(0) =

(
−1

2

1

)
, x(T ) free,

(7.7)

where x, u and v are functions [0, 1]→ R2. As shown in Figure 7.7, the Algorithm in [73] seems
to fail to respect the complementarity condition between v2 and w2 at the beginning. The Algorithm
in [67] seems to behave better. Comparing first Figure 7.8b and Figure 7.7a, then Figure 7.8c and
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(a) Algorithm in [67], x0 = −1
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(b) Algorithm in [73], x0 = −1
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(c) Algorithm in [67], x0 = 1
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(d) Algorithm in [73], x0 = 1

Figure 7.4: Error on control u when using Algorithms in [67] or in [73] with a = 3, b = −0.5,
d = 1, e = −2, f = 3, T = 1 and x0 = −1 or x0 = 1 in Example 7.1.1.

Figure 7.7c, results suggest that we retrieve an S-stationary trajectory (according to the sign of the
multipliers, and their complementarity with v and w), as expected.

Since v is not upper-bounded nor present in the running cost in previous examples, the optimal
trajectory may present big variations due to v. It is the case for the following Example 7.1.4, where
x takes values in R2, u and v take values in R.

Example 7.1.4.

minimize
∫ 1

0

(
‖x(t)‖2

2 + u(t)2
)
dt,

such that:


ẋ(t) =

(
5 −6
3 9

)
x(t) +

(
4
5

)
v(t) +

(
0
−4

)
u(t),

0 ≤ v(t) ⊥
(
−1 5

)
x(t) + v(t) + 6u(t) ≥ 0, a.e. on [0, 1]

x(0) =

(
−1

2

−1

)
, x(T ) free,

(7.8)

As shown in Figure 7.9, the optimal solution admits a peak on v at the very beginning of the
interval. One could think that the state x admits a jump, which could mean that the solution of the
LCS is distributional (in which case the dynamics in (6.2) has to be recast into measure differential
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(a) Algorithm in [67], x0 = −1
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(b) Algorithm in [73], x0 = −1
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(c) Algorithm in [67], x0 = 1
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Figure 7.5: Error on v when using Algorithms in [67] or in [73] with a = 3, b = −0.5, d = 1,
e = −2, f = 3, T = 1 and x0 = −1 or x0 = 1 in Example 7.1.1.

inclusions), but shrinking the time-step does not change this peak on v, which is always positive on
a non-shrinking interval whatever the time-step h.

One could wonder what happens in Example 7.1.4 if a quadratic cost vᵀV v (with V symmetric
positive definite) is added in the running cost. This could prevent the initial huge peak on v.
This is the investigation of Example 7.1.5. The code has been slightly changed in order to add a
quadratic cost in v.

Example 7.1.5.

minimize
∫ 1

0

(
‖x(t)‖2

2 + u(t)2 + αv(t)2
)
dt,

such that:


ẋ(t) =

(
5 −6
3 9

)
x(t) +

(
4
5

)
v(t) +

(
0
−4

)
u(t),

0 ≤ v(t) ⊥
(
−1 5

)
x(t) + v(t) + 6u(t) ≥ 0, a.e. on [0, 1]

x(0) =

(
−1

2

−1

)
, x(T ) free,

(7.9)

where α > 0. The numerical results are shown Figure 7.10, and a special focus on v for α ∈
{10, 5, 10−1, 10−3, 0} is shown Figure 7.11 for t ∈ [0, 0.1]. We clearly see a continuity property of
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Figure 7.6: Numerical results for Example 7.1.2 using Algorithm in [67], h = 10−3.

the solution with respect to α when it shrinks to 0. Adding this quadratic cost on v may then be a
way to smoothen the solution, getting rid of the initial huge peak.
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Figure 7.7: Numerical results for Example 7.1.3 using Algorithms in [67] and in [73], for comparison
concerning complementarity. h = 10−3.
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Figure 7.8: Computed multipliers for Example 7.1.3 using Algorithm in [67]. h = 10−3.
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Figure 7.9: Numerical results for Example 7.1.4 using Algorithm in [67], h = 10−3.
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Figure 7.10: Numerical x and v found for Example 7.1.5 using Algorithm in [67], h = 10−3, and
different values of α.
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Figure 7.11: Numerical v on [0, 0.1] found for Example 7.1.5 using Algorithm in [67], h = 10−3,
and different values of α.
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In the previous numerical simulations, the optimal control seems always continuous. The next
example suggests that the optimal control may jump. Let us consider the following problem, where
for all t in [0, 1], x(t) ∈ R2 and u(t) ∈ R.

Example 7.1.6. [Discontinuous optimal controller]

minimize
∫ 1

0

(
‖x(t)‖2

2 + u(t)2
)
dt,

such that:


ẋ(t) =

(
1 −3
−8 10

)
x(t) +

(
−3
−1

)
v(t) +

(
4
8

)
u(t),

0 ≤ v(t) ⊥
(
1 −3

)
x(t) + 5v(t) + 3u(t) ≥ 0, a.e. on [0, 1]

x(0) =

(
−1

2

−1

)
, x(T ) free,

(7.10)

The numerical results are shown in Figure 7.12. The associated multipliers and adjoint state,
retrieved from these calculations, are shown in Figure 7.13. The complementarity constraint is
satisfied, and the associated multipliers suggest that the trajectory indeed is an S-stationary tra-
jectory. It is clear that u admits a switch around t1 = 0.112 and is not continuous (see Figure
7.12b). It is noteworthy to take a look at the different modes activated along the solution. In
this case where the complementarity constraint is of dimension 1, we have three possible cases :
v = 0 < w (happening on [0, t1]), v > 0 = w (happening on [t1, 0.87] approximately), v = 0 = w
(happening on [0.87, 1]). It shows that, compared with some other methods for optimal control
of switching systems (see for instance [86, 96]), this method does not require to guess a priori
the number of switches nor the times of commutation in order to approximate the solution. The
tracking of the switches is taken care of by the MPEC solver. This is a major advantage of the
complementarity approach over event-driven, hybrid-like approaches.

Eventually, the class of solution considered may actually be too small, and the direct method
may converge to a solution with the state admitting jumps. This is the main focus of the Example
7.1.7.

Example 7.1.7.

minimize
∫ 10

0

(
‖x(t)‖2

2 + u(t)2 + αv(t)2
)
dt,

such that:



ẋ(t) =

0 1 0
0 0 1
0 0 0

x(t) +

0
0
1

 v(t) +

0
0
1

u(t),

0 ≤ v(t) ⊥
(
1 0 0

)
x(t) + u(t) ≥ 0, a.e. on [0, 10]

x(0) =

−2
1
−1

 , x(T ) free,

(7.11)

with α ∈ {0, 1, 10}. As shown Figure 7.14, the solution with α = 0 admits a huge peak around
t = 4.85, that yields a jump on x3. When α > 0, this peak disappears, but a smaller at t = 0
is recovered. Even though adding v in the running cost smoothen the solution, it shows that the
optimal solution still admits huge variation.
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Figure 7.12: Numerical results for Example 7.1.6 using Algorithm in [67], h = 10−3.
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Figure 7.13: Numerical results for Example 7.1.6 using Algorithm in [67], h = 10−3.
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Figure 7.14: Numerical results for x and v for Example 7.1.7 using Algorithm in [67], h = 10−3,
using different values for α.
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7.1.4 A physical example

Let us now focus on a physical example, directly taken in [21].

Example 7.1.8. Consider the electrical circuit of Figure 7.15, where D is an ideal diode, L the
inductance, R the resistance, C the capacitor.

L

i2

D λ

C
i1

R

u1

u2

Figure 7.15: Circuit with an ideal diode and two voltage sources

Denote x1(t) =
∫ t

0
i1(s)ds + x1(0) (the charge of the capacitor, in coulomb) and x2(t) = i2(t)

(the electric current, in ampere). Then the evolution of this system is described as:
ẋ1(t) =

−1

RC
x1(t) + x2(t)− 1

R
λ(t) +

1

R
u2(t),

ẋ2(t) =
−1

LC
x1(t)− 1

L
λ(t) +

1

L
(u2(t)− u1(t)),

0 ≤ λ(t) ⊥ w(t) =
1

RC
x1(t)− x2(t) +

1

R
λ(t)− 1

R
u2(t) ≥ 0,

The constants are chosen as R = 10Ω, C = 80 000µF, and L = 2H. Let us first remark that the
complementarity condition impose in particular that ẋ1(t) ≤ 0 (the capacitor can not be charged).
Suppose the initial state is x(0) = (200C, 50A). Three different problems are solved:

1. Minimizing the cost: ∫ 1

0

[Rx2(t)2 + u1(t)2 + u2(t)2]dt (7.12)

with final state x(1) = (50C, 0A).

2. Minimizing the cost (7.12) with final state x(1) = x(0).

3. Minimizing the cost: ∫ 1

0

[
1

2C
x1(t)2 +Rx2(t)2 + u1(t)2 + u2(t)2

]
dt (7.13)

with final state x(1) = (50C, 0A).

The numerical results for this problem are plotted in Figure 7.16. One remarks that cases 1 and
3 gives similar trajectories. In case 2, it is interesting to see that since the control u2 maintaining
ẋ1 = 0 is admissible, this path is followed. Actually, this is the only path available (since ẋ1 must
be nonnegative).
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Figure 7.16: Numerical results for Example 7.1.8 using Algorithm in [67], h = 10−3.
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7.2 Combining direct and indirect methods: the hybrid ap-
proach

The indirect method consists in solving the first-order necessary conditions derived in Chapter 6
in order to solve the optimal control problem. Since these conditions are necessary and sufficient,
solving these equations is equivalent to solving the optimal control problem (6.1)(6.2). As pointed
out in [104], it has the advantage that the numerical solutions are usually very precise, but the
method suffers from a huge sensitivity on the initial guess. Indeed, if the initial guess is not close
enough to a solution, then the method may fail to converge.
A natural approach is then to use both the direct and the indirect methods in order to obtain a
very precise solution, taking advantage of both methods: this is called the hybrid approach. In
our framework, we have to face two problems. First, the active index sets appearing in the Euler
equations (6.4), used to impose conditions on the multipliers, are not useful as they are. This
problem has been tackled by re-expressing these equations in Theorem 6.1.2.

7.2.1 Properties of the indirect approach

BVP solver for the indirect method

Solving the first order conditions boils down to solving a Boundary Value Problem (BVP). This is
the case for instance when x(T ) is free; the transversality conditions impose in that case p(T ) = 0.
The problem is then to find a solution (x, p) of (6.12) such that x(0) = x0 and p(T ) = 0. Finding
such a solution is not trivial, especially in this case since the dynamical system is an LCS.

Denote by z =
(
x
p

)
and suppose we can rewrite boundary values on z as a linear equation

M̃z(0)+ Ñz(T ) = x̃b. Then Theorem 6.1.2 implies that the extremal is a solution of the Boundary
Value Problem (BVP): 

(a) ż = Az + Bλ
(b) 0 ≤ λ ⊥ Dλ+ Cz ≥ 0

(c) Eᵀλ ≥ 0

(d) M̃z(0) + Ñz(T ) = x̃b,

(7.14)

where the matrices A, B, C, D and E are easily identifiable from (6.12), and λ =
(
β̃
v

)
. This is

a Boundary Value Problem (BVP) formulated for an LCS with constraint (7.14)(c). The shoot-
ing method is usually employed to solve such a problem: roughly speaking, given z0 ∈ R2n, we
compute the solution z(·; z0) of (7.14)(a)(b)(c) with initial data z(0) = z0. Letting F (z0) =
M̃z0 + Ñz(T ; z0) − x̃b, the BVP becomes a root-search of F . In practice, we employ multiple
shooting: we also take into account in F shooting nodes inside the interval [0, T ], where we make
sure that z(·, z0) is continuous. In the smooth case, we would use a Newton method, which needs
the Jacobian F ′(z0) to compute each iteration leading to the root of F . In our case, the dependence
on z0 of z(T ; z0) is not smooth. Some properties concerning such dependence for LCS have been
derived in [85], as recalled in Section 1.2.5. Broadly speaking, the authors built a linear New-
ton Approximation, which allow them to design a non-smooth Newton method for solving BVP
for LCS. However, their result can not be directly applied here for two reasons. First, aside the
complementarity conditions, we also have to take into account the inequality condition (7.14)(c).
Secondly, their result relies on the fact that B SOL(Cz(t),D) is a singleton for all t ∈ [0, T ]. How-
ever, this method still could work for (7.14), since the research will only be local. Section 7.2.1
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shows numerical results where this non-smooth Newton method has been used successfully.

An efficient method to solve the LCS

In the first simulations we ran, we noticed that the integration step by step of the LCS IVP
(7.14)(a)(b)(c), z(0) = z0, admitted some numerical instability that multiple shooting could not
solve. This problem was solved using the following proposition:

Proposition 7.2.1. Let ti, ti+1 ∈ [0, T ], ti < ti+1. (z, λ) is a solution of
ż = Az + Bλ
0 ≤ λ ⊥ Dλ+ Cz ≥ 0

Eᵀλ ≥ 0

z(ti) = zi,

(7.15)

on [ti, ti+1], if and only if it is a global minimum of the optimal control problem:

min

∫ ti+1

ti

λ(t)ᵀ(Dλ(t) + Cz(t))dt

s.t.

ż(t) = Az(t) + Bλ(t)

λ(t) ≥ 0

Dλ(t) + Cz(t) ≥ 0

Eλ(t) ≥ 0

 a.e. on [ti, ti+1]

z(ti) = zi

(7.16)

with minimum equal to 0.

Proof. ( =⇒ ) Suppose (z, λ) is a solution of (7.15), then (z, λ) is obviously admissible for (7.16),
and

∫ ti+1

ti
λ(t)ᵀ(Dλ(t) + Cz(t))dt = 0. Suppose there exists an admissible solution (z̃, λ̃) of (7.16)

such that
∫ ti+1

ti
λ̃(t)ᵀ(Dλ̃(t) + Cz̃(t))dt < 0. It then means that there exists τ1, τ2 ∈ [ti, ti+1] such

that [τ1, τ2] is of positive measure and λ̃(t)ᵀ(Dλ̃(t) + Cz̃(t)) < 0 a.e. on [τ1, τ2]. This contradicts
the fact that λ̃ ≥ 0 and Dλ̃ + Cz̃ ≥ 0 a.e. on [ti, ti+1]. Then the minimum is non-negative, and
(λ, z) is a global minimum.
(⇐=) Suppose (z, λ) is a solution of (7.16). Notice that λ(t)ᵀ(Dλ(t) + Cz(t)) ≥ 0 a.e. on [ti, ti+1],
so
∫ ti+1

ti
λ(t)ᵀ(Dλ(t) +Cz(t))dt = 0 implies that λ(t)ᵀ(Dλ(t) +Cz(t)) = 0 a.e. on [ti, ti+1]. So (z, λ)

is a solution of (7.15).

Numerically, problem (7.16) will be solved for each interval [ti, ti+1] using a classical direct
method, where ti is a node for the Multiple Shooting method. One could ask why this formulation
is more stable than just discretizing directly equation (7.15). Intuitively, we can explain it as
follows:

• Using for instance an implicit Euler a discretization of (7.15), one solves at each step the
problem:

zk+1 − zk = h (Azk+1 + Bλk+1)

0 ≤ λk+1 ⊥ Dλk+1 + Czk+1 ≥ 0

Eᵀλk+1 ≥ 0,
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which takes the form of an LCP with unknown λk+1 and an inequality constraint. But the ex-
act solution (z∗k+1, λ

∗
k+1) will not be found. Instead, an approximated solution (zk+1, λk+1) =

(z∗k+1 + εk, λ
∗
k+1 + ελ) will be sought. Then the error will propagate along the solution on

[0, T ], causing instabilities.

• However, if one solves (7.16), all errors will appear under the integral sign. Since this integral
is minimized (and we expect the result to be 0), the errors on the whole interval can also be
expected to be minimized.

7.2.2 Description of the code

As for the direct method, a code in Python has been written in order to implement this method.
The codes were once again designed using the library CasADi and IPOPT. A class diagram showing
the architecture of the code is presented Figure 7.2. The indirect method was implemented in the
class OptLCSIndirect. Concerning the indirect method, the main focus was on two features:

1. The code has to be as easily launched as the direct method. It only needs, aside what is
needed for the direct method, the matrices M and N appearing in (7.14) and a number of
steps and shooting nodes for the integration of this equation (via setNbSetp).

2. The multiple shooting has been implemented. There are two aspects to this feature:

• the integration of the dynamics between each shooting node using (7.16). This has been
solved using kind of a direct method with an Euler discretization (since (7.16) is seen
as an optimal control problem). This is coded in the method integDVIShooting;

• the non-smooth Newton method, presented in Section 7.2.1. The main focus was on
solving the DI (1.15), and then solving a linear system in order to obtain a descent
direction. It was implemented in newtonSolveShooting.

The shooting algorithm was stopped as soon as the maximum gap at shooting nodes was of
the order of the time-step (in order to assure continuity of the state and the adjoint state).

7.2.3 Numerical results

Analytical 1D example revisited

First, let us check the convergence of the method of Section 7.2.1 on the 1D Example 7.1.1. Since
the Direct Method achieved to reach a satisfactory precision, one can expect also the Indirect
method to converge. The results are presented in Figures 7.17 and 7.18. Overall, the method
reaches the precision of the time step, even for very small precision. Concerning the state x and
the adjoint state p, the convergence is even faster. Concerning λH , λG and v, it seems however
harder to converge. But still, the desired precision is met, and it is often more precise than the
Direct Method.

Example 7.1.3 revisited

In order to compare the Hybrid Approach with the raw direct method, we ran simulations on
Example 7.1.3 using different time-steps, and comparing the time spent for solving it at the desired
precision. The results are shown in Tables 7.1 and 7.2. It appears clearly that, even though the
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Figure 7.17: Errors with the Hybrid Approach for Example 7.1.1 with a = 3, b = −0.5, d = 1,
e = −2, f = 3, T = 1 and x0 = −1.

Indirect method is not that interesting for rough precisions, it becomes necessary for really high
precisions. The Newton Method developed in this context is also satisfying, as shown in Figure
7.19, which shows the maximum gap left on x and p at shooting nodes. The program assumes
to reach convergence as soon as the continuity on

(
x
p

)
is met with precision h. As shown in this

example, convergence is achieved in two iterations.

Conclusion

In this chapter, two codes for solving numerically the quadratic optimal control of LCS have been
designed: a direct method, and a hybrid direct/indirect method. These results highlight some
properties of the optimal solution and offer some new perspectives. The methods developed here
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Figure 7.18: Errors with the Hybrid Approach for Example 7.1.1 with a = 3, b = −0.5, d = 1,
e = −2, f = 3, T = 1 and x0 = 1.

work well for the quadratic case. One could wonder what kind of solution one gets for a different
cost. The next chapter focuses on a different problem: the minimal time optimal control problem.
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hD Time spent (s)
10−2 1.31
10−3 37.50
10−4 400.65
10−5 ∞
10−6 ∞

Table 7.1: Time spent for computing an
approximate solution of Example 7.1.3
using the direct method, with differ-
ent time steps hD. ∞ means that the
calculations did not end (segmentation
fault).

Parameters Time spent (s)
hD = 10−1, hI = 10−2, nS = 5 1.39
hD = 10−1, hI = 10−3, nS = 10 11.26
hD = 10−2, hI = 10−4, nS = 20 97.56
hD = 10−3, hI = 10−5, nS = 50 1 298.62
hD = 10−4, hI = 10−6, nS = 100 32 163.36

Table 7.2: Time spent for computing an approximate
solution of Example 7.1.3 using the Hybrid approach,
with different time steps: hD for the first guess, and final
solution with hI , using nS intervals of shooting.
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Figure 7.19: Maximum gaps on (x, p) at each iteration of the Newton Method used for the Indirect
Method for computation of Example 7.1.3. hI = 10−5.
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Part IV

Optimality conditions for the minimal time
problem
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Chapter 8

Extension of the nonlinear first order
conditions

Abstract. In this chapter, we extend the results of Section 3.2 in order to tackle the minimal
time problem for systems with complementarity constraints. A special focus is then made on LCS,
and we investigate a bang-bang property.

This chapter focuses on finding first order conditions for the minimal time problem:

T ∗ = min T (x, u) (8.1)

s.t.



ẋ(t) = φ(x(t), u(t)),

g(x(t), u(t)) ≤ 0,

h(x(t), u(t)) = 0, a.e. on [0, T (x, u)]

0 ≤ G(x(t), u(t)) ⊥ H(x(t), u(t)) ≥ 0,

u(t) ∈ U
(x(0), x(T (x, u))) = (x0, xf ),

(8.2)

with φ : Rn × Rm → Rn, g : Rn × Rm → Rq, h : Rn × Rm → Rp, G,H : [t0, t1] × Rn × Rm → Rl,
U ⊂ Rmu , x0, xf ∈ Rn given. We suppose that F and φ are L×B-measurable, where L×B denotes
the σ-algebra of subsets of appropriate spaces generated by product sets M × N , where M is a
Lebesgue (L) measurable subset in R, and N is a Borel (B) measurable subset in Rn × Rm.
We denote a solution of this problem by (T ∗, x∗, u∗). If we don’t bound u with the constraint U ,
then the solution will most probably be T ∗ = 0 (i.e. an impulsive control, provided (8.2) is given
a mathematical meaning).

The first order conditions given in [59] do not tackle this problem, since therein, the final
time T ∗ is fixed beforehand. However, slight changes in the proof made for [109, Theorem 8.7.1]
allow us to derive first order conditions for (8.1)(8.2). This chapter is organized as follows: first,
the necessary conditions for (8.1)(8.2) will be derived. Then, we will show how these results are
adapted to the problem of minimal time control for LCS, and some cases where the hypothesis are
met. Finally, the result will be illustrated for a certain class of one dimensional LCS, deriving the
analytical solution.
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8.1 Necessary conditions
Since we have to compare different trajectories that are defined on different time-intervals, it should
be understood that for T > T ∗, a function w defined on [0, T ∗] is extended to [0, T ] by assuming
constant extension: w(t) = w(T ∗) for all t ∈ [T ∗, T ].

Definition 8.1.1. • We refer to any absolutely continuous function as an arc, and to any
measurable function on [0, T ∗] as a control.

• An admissible pair for (8.1)(8.2) is a pair of functions (x, u) on [t0, t1] for which u is a control
and x is an arc, that satisfy all the constraints in (8.2).

• The complementarity cone is defined by

Cl = {(v, w) ∈ Rm | 0 ≤ v ⊥ w ≥ 0}.

• We define the set constraint by:

S =
{

(x, u) ∈ Rn × U : g(x, u) ≤ 0, h(x, u) = 0, (G(x, u), H(x, u)) ∈ Cl
}
.

• We say that the local error bound condition holds (for the constrained system representing S)
at (x, u) ∈ S if there exist positive constants τ and δ such that:

distS(x, u) ≤ τ (‖max{0, g(x, u)}‖+ ‖h(x, u)‖+ distCl(G(x, u), H(x, u))) , ∀(x, u) ∈ Bδ(x, u).

• For every given t ∈ [t0, t1] and a positive constants R and ε, we define a neighbourhood of
the point (x∗(t), u∗(t)) as:

Sε,R∗ (t) = {(x, u) ∈ S : ‖x− x∗(t)‖ ≤ ε, ‖u− u∗(t)‖ ≤ R}. (8.3)

(x∗, u∗) is a local minimizer of radius R if there exists ε such that for every pair (x, u)
admissible for (8.1)(8.2) such that:

‖x∗ − x‖W 1,1 = ‖x∗(0)− x(0)‖+

∫ min{T (x,u),T (x∗,u∗)}

0

‖ẋ∗(t)− ẋ(t)‖dt ≤ ε,

‖u(t)− u∗(t)‖ ≤ R a.e. [0,min{T (x, u), T (x∗, u∗)}],

we have T (x∗, u∗) ≤ T (x, u).

We will have to do the following assumptions on the problem:

Assumption 8.1.1. 1. There exist measurable functions kφx , kφu, such that for almost every
t ∈ [0, T ∗] and for every (x1, u1), (x2, u2) ∈ Sε,R∗ (t), we have:

‖φ(t, x1, u1)− φ(t, x2, u2)‖ ≤ kφx(t)‖x1 − x2‖+ kφu(t)‖u1 − u2‖. (8.4)

2. There exists a positive measurable function kS such that for almost every t ∈ [0, T ∗], the
bounded slope condition holds:

(x, u) ∈ Sε,R∗ (t), (α, β) ∈ N P
S(t)(x, u) =⇒ ‖α‖ ≤ kS(t)‖β‖. (8.5)
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3. The functions kφx , and kSk
φ
u are integrable, and there exists a positive number η such that

R ≥ ηkS(t) a.e. t ∈ [0, T ∗].

4. φ is L × B-measurable, g, h, G and H are strictly differentiable in variable (x, u).

Let (x∗, u∗) be a local minimizer of (8.1)(8.2). In order to compute the first order condition
of this problem, one introduces a new state variable (as inspired by [109]), absolutely continuous,
which will represent time. For any T > 0, denote this variable τ : [0, T ] → [0, T ∗], and let us
introduce x̃ = x ◦ τ , ũ = u ◦ τ . Then, for any t ∈ [0, T ]:

˙̃x(t) = τ̇(t)ẋ(τ(t)) = τ̇(t)φ(x̃(t), ũ(t)),

0 ≤ G(x̃(t), ũ(t)) ⊥ H(x̃(t), ũ(t)) ≥ 0.

This method is at the core of the proof for the following Theorem.
Define the sets

I−t (x, u) = {i ∈ q : gi(x(t), u(t)) < 0},

I+0
t (x, u) = {i : Gi(x(t), u(t)) > 0 = Hi(x(t), u(t))},

I0+
t (x, u) = {i : Gi(x(t), u(t)) = 0 < Hi(x(t), u(t))},

I00
t (x, u) = {i : Gi(x(t), u(t)) = 0 = Hi(x(t), u(t))},

and for any (λg, λh, λG, λH) ∈ Rp+q+2m, denote:

Ψ(x, u;λg, λh, λG, λH) = g(x, u)ᵀλg + h(x, u)ᵀλh −G(x, u)ᵀλG −H(x, u)ᵀλH . (8.6)

Theorem 8.1.1. Suppose Assumption 8.1.1 holds. Let (x∗, u∗) be a local minimizer for (8.1)(8.2).
If for almost every t ∈ [0, T ∗] the local error bound condition for the system representing S holds
at (x∗(t), u∗(t)) (see Definition 8.1.1), then (x∗, u∗) is W-stationary; i.e. there exist an arc p :
[0, T ∗] → Rn, a scalar λ0 ∈ {0, 1} and multipliers λg : [0, T ∗] → Rq, λh : [0, T ∗] → Rp, λG, λH :
[0, T ∗]→ Rm such that:

(λ0, p(t)) 6= 0 ∀t ∈ [0, T ∗], (8.7a)

(ṗ(t), 0) ∈ ∂C {〈−p(t), φ(·, ·)〉} (x∗(t), u∗(t))

+∇x,uΨ(x∗(t), u∗(t);λg(t), λh(t), λG(t), λH(t))

+ {0} × NC
U (u∗(t)),

(8.7b)

λg(t) ≥ 0, λgi (t) = 0, ∀i ∈ I−t (x∗, u∗), (8.7c)

λGi (t) = 0, ∀i ∈ I+0
t (x∗, u∗), (8.7d)

λHi (t) = 0, ∀i ∈ I0+
t (x∗, u∗), (8.7e)

λ0 = 〈p(t), φ(x∗(t), u∗(t))〉. (8.7f)

Moreover, the Weierstrass condition of radius R holds: for almost every t ∈ [0, T ∗] :

(x∗(t), u) ∈ S, ‖u− u∗(t)‖ < R =⇒ 〈p(t), φ(x∗(t), u)〉 ≤ 〈p(t), φ(x∗(t), u∗(t))〉. (8.7g)
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Proof. Let a ∈ C2([0, T ∗],Rn) be such that a(0) = x∗(0) and ‖a−x∗‖W 1,1 =
∫ T ∗

0
‖ȧ(t)−ẋ∗(t)‖dt < ε

2
.

Let b : [0, T ∗] → Rm be a function such that ‖u∗(t) − b(t)‖ < R
2
. Let us introduce the following

fixed-end time optimal control problem:

min τ(T ∗) (8.8)

s.t.



˙̃x(t) = α(t)φ(x̃(t), ũ(t)),
τ̇(t) = α(t),
ż(t) = α(t)‖φ(x̃(t), ũ(t))− ȧ(τ(t))‖
g(x̃(t), ũ(t)) ≤ 0,
h(x̃(t), ũ(t)) = 0, a.e. on [0, T ∗]
0 ≤ G(x̃(t), ũ(t)) ⊥ H(x̃(t), ũ(t)) ≥ 0,
α(t) ∈

[
1
2
, 3

2

]
,

ũ(t) ∈ U ,
‖ũ(t)− b(τ(t))‖ ≤ R

2
,

(x̃(0), x̃(T ∗)) = (x0, xf ),
τ(0) = 0, |z(0)− z(T ∗)| ≤ ε

2
.

(8.9)

Denote by (x̃, τ, z, ũ, ṽ, α) an admissible trajectory for (8.8)(8.9), where (x̃, τ, z) are state variables
and (ũ, ṽ, α) are controls. We claim that a minimizer for this problem is(

x∗, τ ∗ : t 7→ t, z : t 7→
∫ t

0

‖ẋ∗(s)− ȧ(s)‖ds, u∗, v∗, α∗ ≡ 1

)
(8.10)

with minimal cost τ ∗(T ∗) = T ∗. To prove this, let us assume that another admissible trajectory
(x̃, τ, z, ũ, ṽ, α) has a lower cost T = τ(T ∗) < T ∗. Therefore, τ(0) = 0, τ(t) =

∫ t
0
α(s)ds, and since

α > 0, τ is a continuous strictly increasing function from [0, T ∗] to [0, T ]. Hence it admits an
inverse τ−1. Define on [0, T ]:

x = x̃ ◦ τ−1, u = ũ ◦ τ−1

and extend these functions to [0, T ∗] by assuming that x(t) = x(T ) for all t ∈ [T, T ∗] (the same
goes for u). Obviously, (x, u) is an admissible trajectory for (8.1)(8.2), with minimal time T . Also,
it is in the neighborhood of (x∗, u∗), since for almost all t ∈ [0, T ],

‖u∗(t)− u(t)‖ ≤ ‖u∗(t)− b(t)‖+ ‖u(t)− b(t)‖

≤ R

2
+ ‖ũ(σ)− b(τ(σ))‖ where t = τ(σ)

≤ R
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and:

‖x− x∗‖W 1,1 =

∫ T

0

‖ẋ(t)− ẋ∗(t)‖dt

≤
∫ T

0

‖ẋ(t)− ȧ(t)‖dt+

∫ T

0

‖ẋ∗(t)− ȧ(t)‖dt

≤
∫ T

0

‖φ(x(t), u(t))− ȧ(t)‖dt+
ε

2

≤
∫ T ∗

0

‖φ(x̃(σ), ũ(σ))− ȧ(τ(σ))‖τ̇(σ)dσ +
ε

2

≤
∫ T ∗

0

‖φ(x̃(σ), ũ(σ))− ȧ(τ(σ))‖α(σ)dσ +
ε

2

≤ z(T ∗)− z(0) +
ε

2
≤ ε.

Therefore, since they are in the same neighbourhood, the two trajectories can be compared.
Since (x∗, u∗) is supposed to be a local minimizer for (8.1)(8.2), we should have T ∗ ≤ T . This is a
contradiction, so the claim that (8.10) is the minimizer was right.
Remark that since we supposed that Assumption 8.1.1 is verified, the same assumptions adapted
for problem (8.8)(8.9) are also valid. Therefore, the results of [59, Theorem 3.2] for (8.8)(8.9) state
that there exists an arc p : [0, T ∗] → Rn, a scalar λ0 ∈ {0, 1} and multipliers λg : [0, T ∗] → Rq,
λh : [0, T ∗] → Rp, λG, λH : [0, T ∗] → Rm such that (8.7a)-(8.7e) hold, along with the Weierstrass
condition (8.7g).
Notice that since z∗(T ∗) − z∗(0) < ε

2
and ‖u∗(t) − b(t)‖ < R

2
(the constraints are inactive), these

inequalities do not appear in the first order conditions (the normal cone associated with these
constraints reduces to {0}). Also, one could argue that there should be an adjoint state associated
with z, but simple calculations show that it is identically 0.
Moreover, we should have another arc pτ associated with τ , but it must comply with ṗτ ≡ 0,
pτ (T

∗) = −λ0, such that pτ ≡ −λ0. Also, the stationary inclusion associated with α leads to
0 ∈ −〈p, φ(x∗(t), u∗(t))〉− pτ (t) +NC

[ 12 ,
3
2 ]

(α(t)). But since α ≡ 1 and 1 ∈
]

1
2
, 3

2

[
, NC

[ 12 ,
3
2 ]

(α(t)) = {0}
for almost every t ∈ [0, T ∗], and so, it yields (8.7f).

8.2 Application to LCS

8.2.1 Sufficient condition for the bounded slope condition

These results still rely on assumptions, among which the bounded slope condition is a stringent,
non-intuitive, and hard to verify condition. A sufficient condition for the bounded slope condition
to hold is given by [59, Proposition 3.7], and recalled in Proposition 3.2.1. We give some cases for
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which this condition holds when the underlying system is an LCS:

T ∗ = min T (x, u, v) (8.11)

s.t.


ẋ(t) = Ax(t) +Bv(t) + Fu(t),

0 ≤ v(t) ⊥ Cx(t) +Dv(t) + Eu(t) ≥ 0, a.e. on [0, T ∗]

u(t) ∈ U
(x(0), x(T ∗)) = (x0, xf ),

(8.12)

where A ∈ Rn×n, D ∈ Rm×m, E ∈ Rm×mu , B ∈ Rn×m, F ∈ Rn×mu , C ∈ Rm×n, U ⊆ Rmu . Since
u is constrained (u(t) ∈ U), in contrast to Chapter 6 for the Linear Quadratic case, the MPEC
LICQ cannot be used, and therefore we can not prove easily the existence of an S-stationary
trajectory with the same multipliers λG, λH . However, a direct application of [59, Theorem 3.5(b)]
to (8.8)(8.9) proves the following proposition.

Proposition 8.2.1. Suppose Assumption 8.1.1 for the problem (8.11)(8.12) holds. Suppose also
that U is a union of finitely many polyhedral sets. Let (x∗, u∗, v∗) be a local minimizer for (8.11)(8.12).
Then, (x∗, u∗, v∗) is M-stationary, meaning it is W-stationary with arc p, and moreover, there exist
measurable functions ηG, ηH : [0, T ∗]→ Rm such that:

0 = Bᵀp+DᵀηH + ηG,

0 ∈ −F ᵀp− EᵀηH +NC
U (u∗(t)),

ηGi (t) = 0, ∀i ∈ I+0
t (x∗, u∗, v∗),

ηHi (t) = 0, ∀i ∈ I0+
t (x∗, u∗, v∗),

ηGi η
H
i = 0 or ηGi > 0, ηHi > 0, ∀i ∈ I00

t (x∗, u∗, v∗).

Since the system is linear, [59, Proposition 2.3] asserts that the local error bound condition
holds at every admissible point. There is one case for which one can check that the bounded slope
condition hold: when U = Rmu , as proved in Proposition 6.1.1. However, this case of unbounded
U is rather unrealistic, since it could lead to T ∗ = 0 (in the sense that the target xf can be
reached from x0 given any positive time T ∗ > 0; see for instance [74] for an example). When
one attempts to add a constraint U to the previous proof, Proposition 3.2.1 adds a normal cone
that prevents checking the inequality, unless one supposes that the optimal trajectory is inside an
R-neighbourhood which lies in the interior of U .

Nonetheless, there are two cases when (8.12) verifies the bounded slope condition, even with
constraints on u.

Proposition 8.2.2. Suppose:

• either C = 0,

• or D is a diagonal matrix with positive entries.

Then the bounded slope condition for (8.12) holds.
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Proof. The case when C = 0 is obvious, when one applies directly Proposition 3.2.1. Assume
D =diag(d1, ..., dm), where the di > 0, i ∈ m, are the diagonal entries of D, and diag means that
D is a diagonal matrix built with these entries. First of all, remark that:

∀λH ∈ Rm, ‖CᵀλH‖ ≤ ‖CᵀD−1‖‖DλH‖.

Now, for t ∈ [0, T ∗] and (x, u) ∈ Sε,R∗ (t), take λG and λH in Rm such that:

λGi = 0, ∀i ∈ I+0
t (x, u), λHi = 0, ∀i ∈ I0+

t (x, u),

λGi > 0, λHi > 0, or λGi λ
H
i = 0, ∀i ∈ I00

t (x, u).

It yields:
‖DλH‖2 =

∑
i∈I+0

t (x,u)

(Diiλ
H
i )2 +

∑
i∈I0+t (x,u)

(Diiλ
H
i )2 +

∑
i∈I00t (x,u)

(Diiλ
H
i )2

One can easily see that: ∑
i∈I+0

t (x,u)

(Diiλ
H
i )2 =

∑
i∈I+0

t (x,u)

(Diiλ
H
i + λGi )2,

0 =
∑

i∈I0+t (x,u)

(Diiλ
H
i )2 ≤

∑
i∈I0+t (x,u)

(Diiλ
H
i + λGi )2,

∀i ∈ I00
t (x, u), (Diiλ

H
i )2 ≤ (Diiλ

H
i )2 + (λGi )2 + 2Diiλ

H
i λ

G
i = (Diiλ

H
i + λGi )2.

Therefore, it yields:

‖DλH‖2 ≤
m∑
i=1

(Diiλ
H
i + λGi )2 = ‖DᵀλH + λG‖2.

One finally proves: ∀ζ ∈ NU(u),

‖CᵀλH‖ ≤ ‖CᵀD−1‖‖DᵀλH + λG‖ ≤ ‖CᵀD−1‖
∥∥∥∥DᵀλH + λG

EᵀλH + ζ

∥∥∥∥ .
Using Proposition 3.2.1, we see that (8.12) complies with the bounded slope condition.

8.2.2 A bang-bang property

Reachable set for linear systems

We turn ourselves to the reachability set of linear systems in order to state a result that will be
useful in order to prove a bang-bang property for LCS. Consider the following system:{

ẋ(t) = Mx(t) +Nu(t),

u(t) ∈ V ,
(8.13)

for some matrices M ∈ Rn×n and N ∈ Rn×m. We define the reachable (or accessible) set from
x0 ∈ Rn at time t ≥ 0, with controls taking values in V , denoted by AccV(x0, t), the set of points
x(t), where x : [0, t] → Rn is a solution of (8.13), with u(s) ∈ V for almost all s ∈ [0, t] and
x(0) = x0. As stated in [103, Corollary 2.1.2], which is proved using Aumann’s theorem (see for
instance [39]), the following Proposition shows that the set of constraints V can be embedded in
its convex hull:
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Proposition 8.2.3. [103, Corollary 2.1.2] Suppose that V is compact. Then:

AccV(x0, t) = Accconv(V)(x0, t)

where conv(V) denotes the convex hull of V.

Thanks to Krein-Milman’s Theorem (see Appendix B), this justifies that minimal-time optimal
controls can be searched as bang-bang controls (meaning, u only takes values that are extremal
points of V if one supposes in addition that V is convex).

Extremal points for LCS

For this section, let us state the following Assumption:

Assumption 8.2.1. In (8.12), C = 0, D is a P-matrix, and U is a finite union of polyhedral
compact convex sets.

As it can be expected for a minimal time problem with linear dynamics, a bang-bang property
can be proved, where the bang-bang controls have to be properly defined. Let us define first some
notions. Denote by Ω the constraints on the controls (u, v) in (8.12), meaning:

Ω = {(u, v) ∈ U × Rm|0 ≤ v ⊥ Dv + Eu ≥ 0}. (8.14)

The set AccΩ(x0, t) denotes the reachable set from x0 ∈ Rn at time t ≥ 0 with controls with values
in Ω. For a convex set C, a point c ∈ C is called an extreme point if C\{c} is still convex. This is
equivalent to say that:

c1, c2 ∈ C, c =
c1 + c2

2
=⇒ c = c1 = c2.

The set of extreme points of C will be denoted Ext(C).
Suppose Ω is compact (which is not necessarily the case: take for instance D = 0 with 0 ∈ U).

Applying Proposition 8.2.3, one proves that:

AccΩ(x0, t) = Accconv(Ω)(x0, t).

The set Ω is not convex and has empty interior; finding its boundary or extreme points is not
possible in this case. However, Krein-Milman’s Theorem (see Appendix B) proves that conv(Ω)
can be generated by its extreme points. In what follows, we will prove that the extreme points of
conv(Ω) are actually points of Ω that can be easily identified from the set U .

For an index set α ⊆ m, denote by Rmα the set of points q in Rm such that qα ≥ 0, qm\α ≤ 0,
and define E−1Rmα = {ũ ∈ Rmu|Eũ ∈ Rmα } (E is not necessarily invertible).

Lemma 8.2.1. Suppose Assumption 8.2.1 holds true. For a certain α ⊆ m, denote by Pα the set:

Pα = {(u, v) ∈
(
U ∩ E−1Rmα

)
× Rm|vα = 0, Dα•v + Eα•u = 0, v ≥ 0, Dv + Eu ≥ 0},

and by Eα the set:

Eα = {(u, v) ∈ Ext
(
U ∩ E−1Rmα

)
× Rm|vα = 0, Dα•v + Eα•u = 0, v ≥ 0, Dv + Eu ≥ 0}.

Then Ext(Pα) = Eα.
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Proof. If U ∩E−1Rmα is empty, then the equality is obvious. Choose α such that U ∩E−1Rmα is not
empty.

• Eα ⊆ Ext(Pα): Let (u, v) ∈ Eα. Suppose that (u, v) 6∈ Ext(Pα). Thus, there exist (u1, v1)
and (u2, v2) in Pα, both different than (u, v), such that (u, v) = 1

2
[(u1, v1) + (u2, v2)]. But

this implies that u = 1
2
(u1 + u2), and since u ∈ Ext(U ∩ E−1Rmα ), u = u1 = u2. Therefore,

since D is a P-matrix, v = SOL(D,Eu) = SOL(D,Eui) = vi for i ∈ {1, 2}. Therefore,
(u, v) = (u1, v1) = (u2, v2), and (u, v) is an extremal point of Pα. This is a contradiction.

• Ext(Pα) ⊆ Eα: Let (u, v) ∈ Ext(Pα). Suppose that u 6∈ Ext(U ∩ E−1Rmα ). Therefore, there
exists u1 and u2 in U∩E−1Rmα , different than u, such that u = 1

2
(u1+u2). Define for i ∈ {1, 2}

vi =SOL(D,Eui). Since Eu1 and Eu2 are members of Rmα , for i ∈ {1, 2}:

viα = −(Dαα)−1(Eui)α, v
i
α = 0.

So:
vα = −(Dαα)−1(Eu)α =

1

2

(
v1
α + v2

α

)
,

vα = 0 =
1

2

(
v1
α + v2

α

)
.

So (u, v) = 1
2

[(u1, v1) + (u2, v2)] with (ui, vi) ∈ Pα, i ∈ {1, 2}. But since (u, v) ∈ Ext(Pα),
u = u1 = u2. This is a contradiction.

Remark 8.2.1. If ker(E) = {0} (and in particular, if E is invertible), it may be easier to search
for extreme points of the set EU ∩ Rmα , as one can prove easily that:

Ext(U ∩ E−1Rmα ) = E−1Ext(EU ∩ Rmα )

Proposition 8.2.4. Suppose Assumption 8.2.1 holds true. Denote by E the set E =
⋃
α⊆m Eα,

where Eα is defined in Lemma 8.2.1. Then, for all t > 0 and all x0 ∈ Rn,

AccΩ(x0, t) = AccE(x0, t),

where Ω is defined in (8.14).

Proof. The function SOL(D, ·) : q 7→ v =SOL(D, q) is piecewise linear and continuous, according
to Proposition 1.1.2. The pieces of SOL(D, ·) are the sets Rmα , for α ranging over the subsets of
m. Therefore, for each α ⊆ m, the set U ∩ E−1Rmα is the union of compact convex polyhedra
(possibly empty), and therefore it admits a finite number of extreme points. Thus, each Pα =
{(u, SOL(D,Eu)) | u ∈ U ∩ E−1Rmα } in Lemma 8.2.1 is the union of compact convex polyhedra.
In order to simplify the proof, suppose that U (and therefore, each non empty Pα) is a single
compact convex polyhedron (and not a union of several; the proof would still be the same by
reasoning on each of them). Therefore, by Lemma 8.2.1 and Krein-Milman’s theorem (see Appendix
B), Pα = conv(Eα) for each subset α of m. Since it can be shown that Ω =

⋃
α⊆mPα, it proves:

conv(Ω) = conv

(⋃
α⊆m

Pα

)
.

Let us prove that conv(Ω) =conv(E):
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• conv(Ω) ⊆conv
(⋃

α⊆m Eα
)
: Remark that for all β ⊆ m, Eβ ⊆

⋃
α⊆m Eα. Therefore, Pβ =conv(Eβ) ⊆

conv
(⋃

α⊆m Eα
)
, and thus, since β was arbitrary, Ω =

⋃
α⊆mPα ⊆ conv

(⋃
α⊆m Eα

)
. It then

leads to: conv(Ω) ⊆conv
(⋃

α⊆m Eα
)
.

• conv
(⋃

α⊆m Eα
)
⊆conv(Ω):

∀β ⊆ m, Eβ ⊆ conv(Eβ) = Pβ =⇒
⋃
α⊆m

Eα ⊆
⋃
α⊆m

Pα = Ω

=⇒ conv

(⋃
α⊆m

Eα

)
⊆ conv(Ω).

Applying now Proposition 8.2.3, it proves the following equalities:

AccE(x0, t) = Accconv(E)(x0, t) = Accconv(Ω)(x0, t) = AccΩ(x0, t).

The interest of Proposition 8.2.4 is twofold: first, the complementarity constraints does not
affect the bang-bang property that is shared with linear system (it is preserved even for this kind
of piecewise linear system); secondly, it is actually sufficient to search for the extreme points of
U ∩ E−1Rmα , as proved in Lemma 8.2.1 with the sets Eα. This result is illustrated in the next
examples.

Example 8.2.1.

T ∗ = min T (x, u, v) (8.15)

s.t.


ẋ(t) = ax(t) + bv(t) + fu(t),

0 ≤ v(t) ⊥ dv(t) + eu(t) ≥ 0, a.e. on [0, T ∗]

u(t) ∈ U = [−1, 1]

(x(0), x(T ∗)) = (x0, xf ),

(8.16)

where a, b, d, f, e are scalars, and we suppose d > 0 and e 6= 0. We suppose also that there exist at
least one trajectory stirring x0 to xf .

In this case, there are two index sets α as described in Lemma 8.2.1: ∅ or {1}. Therefore, we
should have a look at the extreme points of U ∩R1

∅ = U ∩R− = [−1, 0] and of U ∩R1
{1} = U ∩R+ =

[0, 1]. Thus, it is sufficient to look at input functions u with values in {−1, 0, 1}. Suppose that the
constants in (8.16) (with u(t) supposed unconstrained for the moment) is completely controllable,
which means:

If e > 0 : • if f < 0, then b ≥ 0 or [b < 0 and b− fd
e
> 0].

• if f > 0, then b ≤ 0 or [b > 0 and b− fd
e
< 0].

If e < 0 : the same cases as with e > 0 hold by inverting the sign of f .

All other cases (like f = 0 or e = 0) are discarded.
Let us now deduce from Theorem 8.1.1 the only stationary solution. First of all, the equation

(8.7b) tells us that the adjoint state complies with the ODE ṗ = −ap. Therefore there exists p0

such that:
p(t) = p0e

−at, ∀t ∈ [0, T ∗].
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Could we have p0 = 0 ? It would imply that p ≡ 0 and then, λ0 = 〈p(t), ax(t) + bv(t) + fu(t)〉 = 0,
so (p(t), λ0) = 0 for almost all t in [0, T ∗]. This is not allowed, so p0 6= 0. Moreover, there exist
multipliers λG and λH such that, for almost all t in [0, T ∗]:

λG(t) = −bp(t)− dλH(t), (8.17)

λG(t) = 0 if v(t) > 0 = dv(t) + eu(t), (8.18)

λH(t) = 0 if v(t) = 0 < dv(t) + eu(t), (8.19)

fp(t) + eλH(t) ∈ N[−1,1](u(t)) =


{0} if |u(t)| 6= 1,

R+ if u(t) = 1,

−R+ if u(t) = −1,

(8.20)

λ0 = max 〈p(t), ax(t) + bṽ + fũ〉,
s.t. 0 ≤ ṽ ⊥ dṽ + eũ ≥ 0

(8.21)

(all these equations are derived from (8.7) with g ≡ h ≡ 0, G ≡ v, H ≡ Cx + Dv + Eu,
φ ≡ Ax+Bv + Fu). Since d > 0, one can easily prove that:

v =
1

d
max(0,−eu).

Let us suppose for now that e > 0 (all subsequent work is easily adapted for e < 0 by replacing
u by −u). In this case:

v =

{
0 if u ∈ [0, 1],

− eu
d

if u ∈ [−1, 0].
(8.22)

Let us now discuss all possible cases for u. If u(t) = 0, then v(t) = 0 = dv(t) + eu(t). We use
stationarity conditions for (8.21): since the MPEC Linear Condition holds, there exists multipliers
ηH and ηG such that ηH = −f

e
p(t), ηG =

(
df
e
− b
)
p(t), and

ηGηH = 0 or ηH > 0, ηG > 0

(one has M-stationarity, see Definition 3.1.3). However, ηH 6= 0 and ηG 6= 0. Furthermore, ηH
has the same sign as −fp0 and ηG has the same sign as fp0. Therefore, the two have opposite
signs, and u(t) = 0 can not be an M-stationary solution. Therefore, it proves that necessarily, the
optimal control u∗ complies with |u∗(t)| = 1 for almost all t on [0, T ∗].

• If u(t) = 1, then v(t) = 0 < dv(t)+eu(t), and by (8.19), λH(t) = 0. Then by (8.20), fp0 ≥ 0.

• If u(t) = −1, then v(t) > 0 = dv(t) + eu(t), and by (8.17)(8.18), λH(t) = − b
d
p(t). Then by

(8.20),
(
f − eb

d

)
p0 ≤ 0.

It is impossible to have fp0 ≥ 0 and
(
f − eb

d

)
p0 ≤ 0 at the same time, since f and f − eb

d
have

the same sign by the complete controllability conditions. Therefore, u∗ take only one value along
[0, T ∗]: 1 or −1. Then we have two possible optimal state x∗ starting from x0:

if a 6= 0:

x∗(t) =

{(
x0 + f

a

)
exp(at)− f

a
if u∗(t) = 1,(

x0 + be−fd
ad

)
exp(at)− be−fd

ad
if u∗(t) = −1.
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One must then find the solution that complies with x(T ∗) = xf . One can isolate the optimal
time T ∗:

T ∗ =


1
a

ln
(
axf+f

ax0+f

)
if ax0 + f 6= 0 and axf+f

ax0+f
> 0,

1
a

ln
(
adxf+be−fd
adx0+be−fd

)
if adx0 + be− fd 6= 0 and adxf+be−fd

adx0+be−fd > 0.
(8.23)

Since we supposed that there exists at least one trajectory stirring x0 to xf , one of these two
expressions of T ∗ must be positive. Therefore, one can infer that:

u∗ ≡

{
1 if ax0 + f 6= 0 and axf+f

ax0+f
> 0,

−1 if adx0 + be− fd 6= 0 and adxf+be−fd
adx0+be−fd > 0.

if a = 0:

x∗(t) =

{
ft if u∗(t) = 1,
be−fd
d
t if u∗(t) = −1.

With the same calculations made in the case a 6= 0, one proves that:

u∗ ≡

{
1 if f 6= 0 and xf

f
> 0,

−1 if be− fd 6= 0 and dxf
be−fd > 0.

The proof of Proposition 8.2.4 relies on the fact that when D is a P-matrix, Ω is the union of
compact convex polyhedra. However, some examples show that even when D is not a P-matrix,
then this property may hold.

Example 8.2.2.

T ∗ = min T (x, u, v) (8.24)

s.t.


ẋ(t) = ax(t) + bv(t) + fu(t),

0 ≤ v(t) ⊥ −v(t) + u(t) ≥ 0, a.e. on [0, T ∗],

u(t) ∈ U = [−1, 1],

(x(0), x(T ∗)) = (x0, xf ).

(8.25)

It is clear that there exists no solution to the LCP(−1, u) appearing in (8.25) for u ∈ [−1, 0), so U
can actually be restricted to [0, 1]. A graphic showing the shape of Ω and its convex hull is shown
in Figure 8.1.

It clearly appears that conv(Ω) is generated by three extreme points:

(u, v) ∈ E = {(0, 0), (1, 0), (1, 1)}.

Exactly the same way as in the proof of Proposition of 8.2.4, one can simply show that for all t ≥ 0
and for all x0 ∈ R, AccΩ(x0, t) =AccE(x0, t). Therefore, the optimal trajectory can be searched
with controls (u, v) with values in E. It is also interesting to note that this bang-bang property can
be guessed from the condition of maximisation of the Hamiltonian in (8.7g) and from Figure 8.1.
Indeed, (8.7g) state that at almost all time t, the linear function Λ : (u, v) 7→ 〈p(t), Bv+Fu〉 must
be maximized with variables (u, v) in Ω. When one tries to maximize Λ over conv(Ω) it becomes a
Linear Program (LP) over a simplex. It is well known that linear functions reach their optimum
over simplexes at extreme points; in this case, the extreme points are the points of E.
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Figure 8.1: Ω and its convex hull for (8.25)

8.2.3 Characterisation through HJB equation

An other way to solve the minimal time optimal control problem is through the Dynamic Program-
ming Principle and the Hamilton-Jacobi-Bellman (HJB) equation. The theory needs pure control
constraints, but not convexity of the set of constraints. Therefore, the Assumption that C = 0 in
(8.12) still holds. However, one doesn’t need D to be a P-matrix anymore. The only necessary
Assumption needed is an assumption of compactness.

Assumption 8.2.2. In (8.12), C = 0, and the set Ω defined in (8.14) is a compact subset of
Rmu × Rm.

The HJB equation is a non-linear PDE that the objective cost must comply with. In this
framework, the minimal time T ∗ is seen as a function of the target xf . However, the equation will
not be directly met by T ∗(xf ), but by a discounted version of it, called the Kružkov transform,
and defined by:

z∗(xf ) =

{
1− e−T ∗(xf ) if T ∗(xf ) < +∞
1 if T ∗(xf ) = +∞

(8.26)

This transformation comes immediately when one tries to solve this optimal control problem with
the running cost:

C(t(xf )) =

∫ t(xf )

0

e−tdt = 1− e−t(xf )

where t(xf ) is a free variable. Minimizing C(t(xf )) amounts to minimizing T ∗. Once one finds the
optimal solution z(xf ), it is easy to recover T ∗, since T ∗(xf ) = − ln(1− z(xf )).

The concept of solution for the HJB equation needs the concept of viscosity solution. A
reminder of the definitions of sub- and supersolutions appears in Appendix C. But the most useful
definitions are recalled here. First of all, one needs the notion of lower semicontinuous envelope.
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Definition 8.2.1. Denote z : X → [−∞,+∞], X ⊆ Rn. We call lower semicontinuous envelope
of z the function z˜ defined pointwise by:

z˜(x) = lim inf
y→x

z(y) = lim
r→0+

inf{z(y) : y ∈ X, |y − x| ≤ r}

One can see easily that z˜ = z at every point where z is (lower semi-)continuous.
Secondly, one needs the definition of an envelope solution.

Definition 8.2.2. Consider the Dirichlet problem{
F (x, z(x),∇z(x)) = 0 x ∈ κ
z(x) = g(x) x ∈ ∂κ

(8.27)

with κ ⊆ Rn open, F : κ× R× Rn → R continuous, and g : ∂κ→ R. Denote S = {subsolutions of
(8.27)} and S = {supersolutions of (8.27)}. Let z : κ→ R be locally bounded.

1. z is an envelope viscosity subsolution of (8.27) if there exists S(z) ⊆ S, S(z) 6= ∅, such that:

z(x) = sup
w∈S(z)

w(x), x ∈ κ

2. z is an envelope viscosity supersolution of (8.27) if there exists S(z) ⊆ S, S(z) 6= ∅, such
that:

z(x) = inf
w∈S(z)

w(x), x ∈ κ

3. z is an envelope viscosity solution of (8.27) if it is an envelope viscosity sub- and supersolu-
tion.

With these definitions, one can formulate the next Theorem, stating the HJB equation for z∗:

Theorem 8.2.1. z∗ is the envelope viscosity solution of the Dirichlet problem:{
z +H(x,∇z) = 1 in Rn\{xf},
z = 0 on {xf},

(8.28)

where
H(x, p) = sup

(u,v)∈Ω

〈−p,Ax+Bv + Fu〉.

In case Assumption 8.2.1 is met, then H can be defined as:

H(x, p) = sup
(u,v)∈E

〈−p,Ax+Bv + Fu〉, (8.29)

where E has been defined in Proposition 8.2.4.

Proof. By [10, Chapter V.3.2, Theorem 3.7], the lower semicontinuous envelope of z∗, z∗˜ , is the
envelope viscosity solution of the Dirichlet problem (8.28). Thanks to Proposition 8.2.3, one can
analyse the problem equivalently on Ω or on convΩ. Reasoning on convΩ rather than on Ω, one
can prove using [112, Proposition 2.6] that T ∗(·) is a lower semicontinuous function; therefore, so
is z∗. It proves that z∗ = z∗˜ and therefore, z∗ is the envelope viscosity solution of (8.28).
Finally, Proposition 8.2.4 justifies the expression of H in (8.29).
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Remark 8.2.2. The target {xf} could be changed to any closed nonempty set T with compact
boundary.

Example 8.2.3. Example 8.2.1 revisited.
Let us check that the Kružkov transform of T ∗ found in (8.23) complies with (8.28). The verification
will be carried in the case when axf+f

ax0+f
> 0, the other cases being treated with the same calculations.

In this case, the Kružkov transform of T ∗ defined in (8.26) amounts to:

z∗(xf ) = 1−
(
ax+ f

ax0 + f

)− 1
a

.

Therefore, one must check that

1− z∗(xf ) = −
(
axf + f

ax0 + f

)− 1
a

= sup
(u,v)∈Ω̃

{
(axf + bv + fu)

dz∗

dx
(xf )

}
(8.30)

where Ω is defined as Ω̃ = {(u, v) ∈ {−1, 0, 1} × R | 0 ≤ v ⊥ dv + eu ≥ 0}.
As it has been shown in Example 8.2.1, the sup in (8.30) is attained at u = 1, v = 0. Therefore:

sup
(u,v)∈Ω

{
(axf + bv + fu)

dz∗

dx
(xf )

}
= (axf + f)

(
− 1

ax0 + f

(
axf + f

ax0 + f

)− 1
a
−1
)

= −
(
axf + f

ax0 + f

)− 1
a

= 1− z∗

Therefore, using the same definition of H made in (8.29), it is proven that z∗ complies with the
equation:

z∗ +H

(
xf ,

dz∗

dx

)
= 1,

which is the HJB Equation (8.28).

Conclusion

The necessary conditions for optimality exposed in Section 3.2 were extended to the case of minimal
time problem. These results were precised for LCS, and some special properties that the optimum
possesses in the case of LCS, were also shown. As future work, one could extend the class of LCS
complying for the Bounded Slope Condition, and also prove the bang-bang property for a broader
class of LCS, as Example 8.2.2 suggests. Finally, most results presented here do not present state
in the constraints: this needs to be enhanced.
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Conclusion

In this thesis, the optimal control of Linear Complementarity Systems (LCS) has been studied.
Two problems were treated: the Linear Quadratic (LQ) optimal control problem with linear com-
plementarity, and the minimal time problem for LCS. These two problems show that different
aspects of the study of these systems produce useful results.

For the LQ problem, the main tool we studied are the necessary (and sufficient) conditions of
optimality. The study of Mathematical Programming with Equilibrium Constraints (MPEC) hints
us that the definition of the multipliers, that are needed for defining properly the stationary condi-
tions, are not expressed in a convenient way, neither for analytical purposes nor for computational
ones. The main goal in this thesis has been to re-express these conditions in a more numerically
tractable way. Eventually, these conditions are expressed as an LCS (with an additional inequal-
ity), for which different results are already available. For instance, since these necessary conditions
are often expressed as a Boundary Value Problem (BVP), some results let us construct a way for
solving this problem. This, in turn, leads to the definition of two numerical methods for solving
the LQ problem, based on the literature. These methods were implemented in a Python code,
made in a way such that it is easy to use and to incorporate to a bigger library. The numerical
approximations suggest some properties that the optimal solutions may have, and lead to further
perspectives.

Concerning the minimal time problem, necessary conditions of optimality were firstly derived
for a more general, non-linear system with complementarity constraints, that did not appear in
the literature. However, these results, once applied to the case of LCS, seem not as fruitful and
instructive as they are for the LQ case (at least if one want to use them for numerical resolution).
A more geometrical approach is then used, in order to prove a bang-bang property for LCS in
some cases. This, in turn, can be used in order to simplify the search for an optimal solution.

Perspectives

Of course, as it is customary with any topic of research, this study stimulates other questions.

• Concerning the LQ problem, the set of admissible solutions (the state absolutely continuous,
the control in L2) seems definitely too narrow: this is called the Lavrentiev effect. The
necessary conditions obtained here should be extended to the case of RCBV solutions, as
suggested in Section 1.2.3. Some results in [9] may help building these.

• Even in the case of absolutely continuous solutions, the optimality conditions for the LQ
problem, written as a BVP where the underlying system is an LCS, is not fully analyzed.
For instance, the Theorem 1.2.5 concerning the dependence of the BVP to the initial condition
still needs to be fully adapted to this problem.
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• The numerical methods work well for systems of low dimensional complementarity, but it
seems harder to make them converge when the dimension is high. A work for enhancing the
used algorithms is needed.

• Different assumptions were made across this manuscript, covering different aspects, like the
existence of an optimal solution, or properties that the constraints must meet (like E in-
vertible for the LQ problem, D P-matrix for the minimal time problem, or the somewhat
restricting Bounded Slope Condition). Solving these questions or dropping some of these
assumptions, will allow one to apply these results to a bigger range of systems, some of them
already appearing in some engineering problems. A first approach may resemble to the one
found in [13]; it can most certainly be extended to complementarity constraints.
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Appendix A

Non-smooth Analysis

Different tools of non-smooth analysis were used in this manuscript. First, let us define the different
notions of normal cones.

Definition A.0.1. Let Ω ⊆ Rn, and x ∈ cl Ω.

• The proximal normal cone to Ω at x is defined as:

N P
Ω (x) = {v ∈ Rn : ∃σ > 0; 〈v, y − x〉 ≤ σ‖y − x‖2 ∀y ∈ Ω}.

• The limiting normal cone to Ω at x is defined as:

N L
Ω (x) = {v ∈ Rn : ∃(xk, vk)→ (x, v); vk ∈ N P

Ω (xk) ∀k}.

• The Clarke normal cone to Ω at x is defined as NC
Ω (x) = cl conv N L

Ω (x).

One can obtain the following inclusions:

N P
Ω (x) ⊆ N L

Ω (x) ⊆ NC
Ω (x) ∀x ∈ clΩ

Note that when Ω is convex, all these normal cones coincide with the normal cone of convex
analysis (see [91]).

Aside normal cones, one can also define subdifferential of various functions.

Definition A.0.2. Let φ : Rn → R∪{+∞} a proper lower semicontinuous function, and x a point
such that φ(x) is finite. The limiting subdifferential of φ at x is defined as:

∂Lφ(x) =

{
v ∈ Rn : ∃(vk, xk)→ (x, v); lim

y→xk

φ(y)− φ(xk)− 〈vk, y − xk〉
‖y − xk‖

≥ 0, ∀k
}

If φ is Lipschitz near x, then the Clarke subdifferential of φ at x can be defined as ∂Cφ(x) = cl
conv ∂Lφ(x).
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Appendix B

Krein-Milman Theorem

Since the Krein-Milman Theorem is heavily used in Chapter 8, it is worth recalling its statement.
Let us start with a definition.

Definition B.0.1. Let C be a convex compact subset of a Hausdorff locally convex set. Let c ∈ C.
The point c is called an extremal point of C if C\{c} is still convex. Equivalently, c is an extreme
point of C if the following implication holds:

c1, c2 ∈ C, c =
1

2
(c1 + c2) =⇒ c = c1 = c2

The set of extreme points of C is denoted by Ext(C).

Theorem B.0.1 (Krein-Milman). Let C be a convex compact subset of a Hausdorff locally convex
set. Then

C = cl conv (Ext(C))

120



Appendix C

Viscosity solutions

In order to understand some results concerning the HJB equation in Chapter 8, one needs to know
some definitions related to the concept of viscosity solutions. The definitions given here, extracted
from [10], are only the ones useful for this manuscript. In particular, the definitions given here are
the ones useful to handle the concept of discontinuous viscosity solutions. The interested reader
can find broader results in [10] and the references therein.

Let us first define the notion of subsolution and supersolution of a first order equation

F (x, u,∇u) = 0 in Ω, (C.1)

with Ω ⊆ Rn and F : Ω× R× Rn → R continuous. For this, let us fix some notations: for E ⊆ Rn,
denote

USC(E) = {u : E → R upper semicontinuous},

LSC(E) = {u : E → R lower semicontinuous}.

Definition C.0.1. A function u ∈USC(Ω) (resp. LSC(Ω)) is a viscosity subsolution (resp. super-
solution) of (C.1) if, for any φ ∈ C 1(Ω) and x ∈ Ω such that u − φ has a local maximum (resp.
minimum) at x,

F (x, u(x),∇φ(x)) ≤ 0 (resp. ≥ 0).
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