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Introduction

Cybersecurity Challenges

I Digital systems are widely used in many applications
I economy: credit cards, online payments, ...
I medical: medical files, e-Health devices, ...
I Internet of Things (IoT): self-driving cars, smart homes, ...
I communications: telephony, emails, social networks, ...
I ...

I Strong needs for efficent digital security
I fast for user convinience
I reduced power consumption for battery-based systems
I small circuit area for embedded systems
I resistant to attacks: theoretical, logical and physical

G.Gallin Ph.D. Defense 29.11.2018 3 / 34



Introduction

Example: Simplified Payment with Credit Cards

Terminal BankCredit Card

Cryptographic primitives:

I authentication: asserts identity of user, credit card and bank

I integrity: ensures exchanged data are complete and unmodified

I confidentiality: asserts secrecy of exchanded data
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Introduction

Overview on Cryptography: Symmetric Cryptography

I Also called secret-key cryptography

I Encryption and decryption with shared secret key
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I Very efficient and wildely used to ensure confidentiality

I Problems with symmetric cryptography
I secret key must be shared between sender and receiver
I communications with several parties → many keys to manage
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Introduction

Overview on Cryptography: Asymmetric Cryptography

I Also known as public-key cryptography (PKC)
I uses a pair of private key and public key
I extensively used for digital signatures and key exchanges
I more expensive than symmetric cryptography

I First PKC: RSA proposed by Rivest, Shamir and Adleman in 1978
I huge commercial success and still widely used
I large keys (> 2000 bits recommended) and very costly for embedded

applications

I Elliptic Curve Cryptography by Miller in 1985 and Koblitz in 1987
I 200 to 500 bits keys recommended: better performances than RSA
I current PKC standard for various secured applications

e.g. french passports or secured Internet browsing
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Introduction

Hyper-Elliptic Curve Cryptography

I HECC proposed by Koblitz in 1988
I size of internal values divided by 2 but more arithmetic operations
I before late 2000s, HECC was less efficient than ECC

I New HECC cryptosystem proposed by Gaudry [1] in 2007
I requires less arithmetic operations
I more efficient than ECC in theory
I size of internal values is around 128 bits (equiv. to ECC 256b)

I µKummer proposed by Renes et al. [6] in 2016
I software implementation of Gaudry’s HECC on microcontrollers
I -75% and -35% time for digital signature and key exchange

I Very few recent hardware implementations of recent HECC
cryptosystems
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Introduction

HAH Project

I Hardware and Arithmetic for HECC

I 3-year labex project (2014-2017) involving
I IRISA / Lab-STICC funded by labex CominLabs and Britanny region
I IRMAR lab. for mathematics funded by labex Lebesgue
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Introduction

HAH Project: Objectives

I Propose new units for basic arithmetic operations in HECC
I modular arithmetic for 128–300-bit operands
I design small circuits with high frequencies and low computation time

I Design new hardware cryptoprocessors for HECC
I implement best state-of-the-art HECC cryptosystems
I explore various performance vs. cost tradeoffs
I confirm efficiency of HECC vs. ECC in hardware

I Robust against physical attacks: SPA (Simple Power Analysis)

I Flexible designs to support different curves and parameters
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HTMM – Hyper-Threaded Modular Multipliers
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HTMM – Hyper-Threaded Modular Multipliers

Modular Operations in HECC

I HECC requires to compute arithmetic operations (±,×) in GF(P )
I operands and results ∈ {0, 1, ..., P − 1}
I P is a 100–300-bit prime

I Most frequent and costly operation: modular multiplication (MM)
e.g. 75% of overall computation time in µKummer [6]

I Example: multiplications modulo small P = 23

2× 10 = 20 2× 10 mod 23 = 20

9× 18 = 162 9× 18 mod 23 = 1

4× 10 = 40 4× 10 mod 23 = 17

19× 17 = 323 19× 17 mod 23 = 1
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HTMM – Hyper-Threaded Modular Multipliers

Modular Reduction

I Fast reduction modulo specific primes with specific structures
I e.g. Mersenne prime P = 2127 − 1 ∗ used in µKummer:

I limited to very few primes: not possible with flexibility constraints

I Reduction modulo generic primes
I more complex but supports all primes of a given max. size
I several efficient algorithms for operations modulo generic P

∗2127 − 1 = (111111111111111111111111...111111111111111111111111)2
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HTMM – Hyper-Threaded Modular Multipliers

Modular Multiplication: Montgomery’s Algorithm

I Montgomery Modular Multiplication proposed in 1985 [5]
I best MM algorithm for generic primes P
I max. size of P : m− 2 bits
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HTMM – Hyper-Threaded Modular Multipliers

Interleaved MMM

I MMM operands are split into s words of w bits (s × w = m)
I CIOS (Coarsely Integrated Operand Scanning) from Koc et al. [2]
I iterations over small partial products with partial reduction steps
I strong dependencies between iterations
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HTMM – Hyper-Threaded Modular Multipliers

Hyper-Threading: Principle

I Dependencies in CIOS → idle stages in the pipeline

time

I Our solution: fill idle pipeline stages with independent MMMs

time

I Hyper-Threaded Modular Multiplier
I HTMM: physical unit computing σ independent MMMs concurrently
I hardware ressources are shared among σ Logical Multipliers (LMs)
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HTMM – Hyper-Threaded Modular Multipliers

HTMM Architecture

I Based on 3 pipelined blocks (1 for each partial product in CIOS)
I Width of internal words fixed to w = 34 bits → only 9 DSP slices
I 3 to 4 stages in DSP slices to reach high frequencies

0

Task 2

Task 3

Task 1

RAM RAM

G.Gallin Ph.D. Defense 29.11.2018 16 / 34



HTMM – Hyper-Threaded Modular Multipliers

Tools for Architectures Exploration

I Many HTMM parameters to explore: size of P (e.g. 128 or 256 bits),
w , number of LMs, configurations of memories and DSP slices,
algorithmic optimizations, ...

I We designed a software HTMM generator
I allows fast generation of VHDL codes for many HTMM specifications
I and optimized for various FPGAs (e.g. pipeline config. in DSP slices)
I available as open-source 1

I HTMM generator also offers support for some third-party softwares
I Xilinx tools for implementation, simulation and evaluation
I Sage mathematics software 2 for numerical validation of HTMM

1HTMM generator available at https://sourcesup.renater.fr/htmm/
2available as open-source at http://www.sagemath.org/
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HTMM – Hyper-Threaded Modular Multipliers

Exploration of 128 bits HTMMs on Virtex-4 and Virtex-7
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I Wide exploration space of solutions for time vs. area tradeoffs

I Not a lot a “best” solutions (on Pareto fronts)

I Tradeoffs and “best” solutions depend on FPGA
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HTMM – Hyper-Threaded Modular Multipliers

Comparison with 128b MMM from Ma et al. [4]

MA16: reimplementation of multiplier from [4] for 128 bits on Virtex-7
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I HTMM is smaller and faster than MA16
I HTMM reaches max. frequencies of DSP slices / BRAMs
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Hardware cryptoprocessors for HECC
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Hardware cryptoprocessors for HECC

Hyperelliptic Curves and Operations for Cryptography

I Hyperelliptic curve: points with coordinates verifing a given equation
I for HECC, points coordinates are in GF(P )
I only secure curves with good properties for crypto are used in HECC

I Main curve operation: scalar multiplication [k]P
I corresponds to adding k times a point P of curve to itself
I involves many arithmetic operations on coordinates → very costly

e.g. ∼ 8000 MMs for 256-bit k

I P is public but k is the private key
I the value of k must remain secret during computations of [k]P
I need robust algorithms and implementations to protect k against

physical attacks, e.g. SPA (Simple Power Analysis)
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Hardware cryptoprocessors for HECC

Scalar Multiplication Algorithms (for µKummer)

Require: nk-bit scalar k =
∑nk−1

i=0 2iki, point P, cst ∈ GF(P )4

Ensure: V1 = [k]P, V2 = [k + 1]P
V1 ← cst
V2 ← P
for i = nk − 1 downto 0 do

(V1,V2)← CSWAP(ki, (V1,V2))
(V1,V2)← xDBLADD(V1,V2,P)
(V1,V2)← CSWAP(ki, (V1,V2))

end for
return (V1,V2)

CSWAP(ki, (P1,P2)) returns (P1,P2) if ki = 0, else (P2,P1)

I Constant time and uniform operations (independent from ki bits)

I CSWAP: very simple but involves secret bits: must be protected
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Hardware cryptoprocessors for HECC

xDBLADD Operation
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I Complex operation based on 32 MM (M/S) and 32 modular add/sub

I Regular patterns of 8 independant operations → internal parallelism
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Hardware cryptoprocessors for HECC

Basic Cryptoprocessor Architecture

C
tr

l 
D

M
U

X
Data

Memory

Control

Program
Memory
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I arithmetic units

I data memory

I interconnect

I program memory

I central control unit

I Various architecture parameters: number of units, width w̃,
architecture topology, ...

I Full description of many cryptoprocessors in VHDL is not feasible
I time consuming and validation requires heavy simulations
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Hardware cryptoprocessors for HECC

Units Library in VHDL

I Available units
I GF(P ) adders and subtractors (with various w̃)
I HTMMs
I data memories (with various w̃)

I Fully described, implemented and validated in VHDL
I behavior is known exactly at each clock cycle (CABA3)
I hardware area cost for each unit is perfectly known for various FPGAs

I Implementation results form a small database

3Cycle-Accurate Bit-Accurate
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Hardware cryptoprocessors for HECC

CCABA Exploration Tool

I High-level architectures modeled in CCABA
I CCABA: Critical CABA4

I only critical cycles and signals at architecture level are CABA
e.g. units I/Os and control

I CCABA model is close to TLM5 adapted for asymmetric crypto.
applications

I CCABA simulator for fast validation of architectures models

I Exploration tool for fast evaluation of many architectures
I performances in clock cycles known exactly from CCABA simulations
I accurate area estimation based on units library database results

4Cycle-Accurate Bit-Accurate
5Transaction Level Modeling
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Hardware cryptoprocessors for HECC

Architectures Implemention and Validation in VHDL

I Most interesting architectures have been fully described in VHDL
I A2: small architecture with 1 Mem, 1 AddSub, 1 Mult

I A3: big architecture with 1 Mem, 2 AddSub, 2 Mult
I A4: big clustered architecture with 2 Mem, 2 AddSub, 2 Mult
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Memory areas not to scale

I Different versions of memories/interconnect with w̃ ∈ {34, 68, 136}
I complete VHDL description of control for each w̃
I implemented and validated on Virtex-4/5, Spartan-6 and Zynq-7
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Hardware cryptoprocessors for HECC

Implementation Results for Best Cryptoprocessors

FPGA archi. w̃ LUT FF logic DSP BRAM freq. time [k]P
bits slices slices MHz ms

Virtex-4
A2 34 863 1689 1081 9 4 327 0.54
A4 34 1699 3255 2447 18 7 328 0.39
A3 136 3959 5251 3492 18 9 290 0.37

Virtex-5
A2 34 783 1653 558 9 4 386 0.45
A4 34 1413 3182 1019 18 7 378 0.34
A3 136 2658 5170 1657 18 9 356 0.30

Spartan-6
A2 34 911 1619 382 9 4 298 0.59
A4 34 1565 3120 809 18 7 276 0.46
A3 136 3128 5040 1182 18 9 238 0.45

Zynq-7
A2 34 855 1619 463 9 4 347 0.50
A4 34 1475 3020 747 18 7 360 0.36
A3 136 3147 5033 1143 18 9 322 0.33

I w̃ = 68 bits is not interesting in our architectures

I No best solution but various interesting time vs. area tradoffs
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Hardware cryptoprocessors for HECC

Comparisons with Best State of the Art Cryptoprocessors

I Ma13: ECC processor with generic primes by Ma et al. (2013) [4]

I Kop18a: µKummer-based HECC processor with very specific prime
by Koppermann et al. (2018) [3]

FPGA archi. w̃ LUT FF logic DSP BRAM freq. time [k]P
bits slices slices MHz ms

Virtex-5

A2 34 783 1653 558 9 4 386 0.45
A4 34 1370 2953 1013 18 7 358 0.40
A3 136 2737 4978 1594 18 9 348 0.34

Ma13 336 4177 4792 1725 37 10 291 0.38

Zynq-7

A2 34 855 1619 463 9 4 347 0.50
A4 34 1475 3020 747 18 7 360 0.39
A3 136 3147 5033 1143 18 9 322 0.37

Kop18a 127 8764 6852 2657 49 - 139 0.08
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Conclusion and Perspectives

Conclusion and Perspectives

I HTMM: flexible operators for Montgomery modular multiplication
I finely pipelined to compute several MMMs at the same time
I 128-bit HTMM is 2 × faster and smaller than best state of the art
I HTMM generator available online as open-source

I Flexible HECC cryptoprocessors and exploration tools
I TLM-inspired CCABA model and tools to explore architectures
I evaluation of architectures parameters impact on time vs. area tradeoffs
I prime P and curve parameters can be modified at run time

I HECC is more efficient than ECC in hardware

Perspectives

I Evaluate robustness of accelerators against physical attacks

I Explore other types of architectures (e.g. data-flow)
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Conclusion and Perspectives

Ph.D. contributions I

Main contributions:
[GT18] G. Gallin and A. Tisserand.

Generation of hyper-threaded GF(P ) multipliers for flexible curve based cryptography on FPGAs.
submitted to IEEE Transactions on Computers (under major revision), 2018.

[GCT17] G. Gallin, T. O. Celik, and A. Tisserand.
Architecture level optimizations for Kummer based HECC on FPGAs.
In Proc. 18th International Conference on Cryptology in India (Indocrypt), December 2017.

[GT17a] G. Gallin and A. Tisserand.
Hyper-threaded multiplier for HECC.
In Proc. IEEE Asilomar Conference on Signals, Systems and Computers, October 2017.

Other conferences and workshops:
[GT17b] G. Gallin and A. Tisserand.

Architecture level optimizations for Kummer based HECC on FPGAs.
15th International Workshop on cryptographic architectures embedded in logic devices (CryptArchi), June 2017.

[GVT15a] G. Gallin, N. Veyrat-Charvillon, and A. Tisserand.
Experimental comparison of crypto-processors architectures for elliptic and hyper-elliptic curves cryptography.
13th International Workshop on cryptographic architectures embedded in logic devices (CryptArchi), June 2015.

[GVT15b] G. Gallin, N. Veyrat-Charvillon, and A. Tisserand.
Comparaison expérimentale d’architectures de crypto-processeurs pour courbes elliptiques et hyper-elliptiques.
In Proc. Conférence nationale d’informatique en Parallélisme, Architecture et Système (Compas), June 2015.
best paper award for computer architecture track
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Conclusion and Perspectives

Ph.D. contributions II

Other talks and posters:
[Gal17] G. Gallin.

Architectures matérielles pour la cryptographie sur courbes hyper-elliptiques.
Séminaire sécurité des systèmes électroniques embarqués DGA – IRISA, December 2017. [inv. talk]

[GT17b] G. Gallin and A. Tisserand.
Finite field multiplier architectures for hyper-elliptic curve cryptography.
12ème Colloque national du GDR SOC2, June 2017. [poster]

[GT17c] G. Gallin and A. Tisserand.
Hardware architectures exploration for hyper-elliptic curve cryptography.
6ème Colloque national Crypto’Puces, June 2017. [talk]

[GT16] G. Gallin and A. Tisserand.
Hardware and arithmetic for hyperelliptic curves cryptography.
Colloque annuel international du labex CominLabs, November 2016. [poster]

[GT15] G. Gallin and A. Tisserand.
Comparaison expérimentale d’architectures de crypto-processeurs pour courbes elliptiques et hyper-elliptiques.
Journées nationales Codage et Cryptographie (JC2), October 2015. [talk]

[GVT15c] G. Gallin, N. Veyrat-Charvillon, and A. Tisserand.
Hardware and arithmetic for hyperelliptic curves cryptography.
Rencontres nationales Arithmétiques de l’Informatique Mathématique (RAIM), 2015. [poster]

[GVT15d] G. Gallin, N. Veyrat-Charvillon, and A. Tisserand.
Hardware and arithmetic for hyperelliptic curves cryptography.
Colloque annuel international du labex CominLabs, March 2015. [poster]
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