Hardware Arithmetic Units and Cryptoprocessors for Hyperelliptic Curve Cryptography

Gabriel GALLIN

CNRS - IRISA - Univ. Rennes 1

November 29^{th} , 2018

Ph.D. supervised by Arnaud TISSERAND, CNRS - Lab-STICC

Particular Multipliers HTMM – Hyper-Threaded Modular Multipliers

Cybersecurity Challenges

Digital systems are widely used in many applications

- economy: credit cards, online payments, ...
- medical: medical files, e-Health devices, ...
- Internet of Things (IoT): self-driving cars, smart homes, ...
- communications: telephony, emails, social networks, ...
- ...

Strong needs for efficient digital security

- fast for user convinience
- reduced power consumption for battery-based systems
- small circuit area for embedded systems
- resistant to attacks: theoretical, logical and physical

Example: Simplified Payment with Credit Cards

Cryptographic primitives:

- authentication: asserts identity of user, credit card and bank
- integrity: ensures exchanged data are complete and unmodified
- confidentiality: asserts secrecy of exchanded data

Overview on Cryptography: Symmetric Cryptography

- Also called secret-key cryptography
- Encryption and decryption with shared secret key

- Very efficient and wildely used to ensure confidentiality
- Problems with symmetric cryptography
 - secret key must be shared between sender and receiver
 - communications with several parties \rightarrow many keys to manage

Overview on Cryptography: Asymmetric Cryptography

- Also known as public-key cryptography (PKC)
 - uses a pair of private key and public key
 - extensively used for digital signatures and key exchanges
 - more expensive than symmetric cryptography
- ► First PKC: RSA proposed by Rivest, Shamir and Adleman in 1978
 - huge commercial success and still widely used
 - ► large keys (> 2000 bits recommended) and very costly for embedded applications
- Elliptic Curve Cryptography by Miller in 1985 and Koblitz in 1987
 - ▶ 200 to 500 bits keys recommended: better performances than RSA
 - current PKC standard for various secured applications
 - e.g. french passports or secured Internet browsing

Hyper-Elliptic Curve Cryptography

▶ HECC proposed by Koblitz in 1988

- size of internal values divided by 2 but more arithmetic operations
- before late 2000s, HECC was less efficient than ECC
- ▶ New HECC cryptosystem proposed by Gaudry [1] in 2007
 - requires less arithmetic operations
 - more efficient than ECC in theory
 - ▶ size of internal values is around 128 bits (equiv. to ECC 256b)
- μ Kummer proposed by Renes *et al.* [6] in 2016
 - software implementation of Gaudry's HECC on microcontrollers
 - ► -75% and -35% time for digital signature and key exchange
- Very few recent hardware implementations of recent HECC cryptosystems

HAH Project

- Hardware and Arithmetic for HECC
- ▶ 3-year labex project (2014-2017) involving
 - ► IRISA / Lab-STICC funded by labex CominLabs and Britanny region
 - IRMAR lab. for mathematics funded by labex Lebesgue

HAH Project: Objectives

Propose new units for basic arithmetic operations in HECC

- modular arithmetic for 128–300-bit operands
- design small circuits with high frequencies and low computation time

Design new hardware cryptoprocessors for HECC

- implement best state-of-the-art HECC cryptosystems
- explore various performance vs. cost tradeoffs
- ▶ confirm efficiency of HECC vs. ECC in hardware
- Robust against physical attacks: SPA (Simple Power Analysis)

► Flexible designs to support different curves and parameters

Summary

Particular Multipliers HTMM – Hyper-Threaded Modular Multipliers

Modular Operations in HECC

• HECC requires to compute arithmetic operations (\pm, \times) in GF(P)

- operands and results $\in \{0, 1, ..., P 1\}$
- P is a 100–300-bit prime
- ► Most frequent and costly operation: modular multiplication (MM) e.g. 75% of overall computation time in µKummer [6]
- Example: multiplications modulo small P = 23
 - $2 \times 10 = 20$ $2 \times 10 \mod 23 = 20$ $9 \times 18 = 162$ $9 \times 18 \mod 23 = 1$ $4 \times 10 = 40$ $4 \times 10 \mod 23 = 17$
 - $19 \times 17 = 323$ $19 \times 17 \mod 23 = 1$

Modular Reduction

Fast reduction modulo specific primes with specific structures

• e.g. Mersenne prime $P = 2^{127} - 1$ * used in μ Kummer:

- Imited to very few primes: not possible with flexibility constraints
- Reduction modulo generic primes
 - more complex but supports all primes of a given max. size
 - \blacktriangleright several efficient algorithms for operations modulo generic P

Modular Multiplication: Montgomery's Algorithm

Montgomery Modular Multiplication proposed in 1985 [5]

- best MM algorithm for generic primes P
- max. size of P: m-2 bits

- MMM operands are split into s words of w bits $(s \times w = m)$
 - ▶ CIOS (Coarsely Integrated Operand Scanning) from Koc et al. [2]
 - iterations over small partial products with partial reduction steps
 - strong dependencies between iterations

- MMM operands are split into s words of w bits $(s \times w = m)$
 - ▶ CIOS (Coarsely Integrated Operand Scanning) from Koc et al. [2]
 - iterations over small partial products with partial reduction steps
 - strong dependencies between iterations

- MMM operands are split into s words of w bits $(s \times w = m)$
 - ▶ CIOS (Coarsely Integrated Operand Scanning) from Koc et al. [2]
 - iterations over small partial products with partial reduction steps
 - strong dependencies between iterations

- MMM operands are split into s words of w bits $(s \times w = m)$
 - ▶ CIOS (Coarsely Integrated Operand Scanning) from Koc et al. [2]
 - iterations over small partial products with partial reduction steps
 - strong dependencies between iterations

Hyper-Threading: Principle

• Dependencies in CIOS \rightarrow idle stages in the pipeline

Our solution: fill idle pipeline stages with independent MMMs

Hyper-Threaded Modular Multiplier

- HTMM: physical unit computing σ independent MMMs concurrently
- hardware ressources are shared among σ Logical Multipliers (LMs)

HTMM Architecture

- Based on 3 pipelined blocks (1 for each partial product in CIOS)
- ▶ Width of internal words fixed to w = 34 bits \rightarrow only 9 DSP slices
- 3 to 4 stages in DSP slices to reach high frequencies

Tools for Architectures Exploration

- ► Many HTMM parameters to explore: size of P (e.g. 128 or 256 bits), w, number of LMs, configurations of memories and DSP slices, algorithmic optimizations, ...
- We designed a software HTMM generator
 - allows fast generation of VHDL codes for many HTMM specifications
 - ▶ and optimized for various FPGAs (e.g. pipeline config. in DSP slices)
 - available as open-source ¹
- HTMM generator also offers support for some third-party softwares
 - Xilinx tools for implementation, simulation and evaluation
 - Sage mathematics software ² for numerical validation of HTMM

¹HTMM generator available at https://sourcesup.renater.fr/htmm/ ²available as open-source at http://www.sagemath.org/

Exploration of 128 bits HTMMs on Virtex-4 and Virtex-7

- Wide exploration space of solutions for time vs. area tradeoffs
- ► Not a lot a "best" solutions (on Pareto fronts)
- Tradeoffs and "best" solutions depend on FPGA

Comparison with 128b MMM from Ma et al. [4]

MA16: reimplementation of multiplier from [4] for 128 bits on Virtex-7

► HTMM is smaller and faster than MA16

HTMM reaches max. frequencies of DSP slices / BRAMs

G.Gallin

Ph.D. Defense

Summary

2 HTMM – Hyper-Threaded Modular Multipliers

Hyperelliptic Curves and Operations for Cryptography

▶ Hyperelliptic curve: points with coordinates verifing a given equation

- ▶ for HECC, points coordinates are in GF(P)
- only secure curves with good properties for crypto are used in HECC
- Main curve operation: scalar multiplication $[k]\mathcal{P}$
 - corresponds to adding k times a point \mathcal{P} of curve to itself
 - ► involves many arithmetic operations on coordinates → very costly e.g. ~ 8000 MMs for 256-bit k
- \mathcal{P} is public but k is the private key
 - the value of k must remain secret during computations of $[k]\mathcal{P}$
 - need robust algorithms and implementations to protect k against physical attacks, e.g. SPA (Simple Power Analysis)

Scalar Multiplication Algorithms (for μ Kummer)

Require: n_k -bit scalar $k = \sum_{i=0}^{n_k-1} 2^i k_i$, point \mathcal{P} , $cst \in GF(P)^4$ **Ensure:** $\mathcal{V}_1 = [k]\mathcal{P}, \ \mathcal{V}_2 = [k+1]\mathcal{P}$ $\mathcal{V}_1 \leftarrow cst$ $\mathcal{V}_2 \leftarrow \mathcal{P}$ for $i = n_k - 1$ downto 0 do $(\mathcal{V}_1, \mathcal{V}_2) \leftarrow \mathsf{CSWAP}(k_i, (\mathcal{V}_1, \mathcal{V}_2))$ $(\mathcal{V}_1, \mathcal{V}_2) \leftarrow \text{xDBLADD}(\mathcal{V}_1, \mathcal{V}_2, \mathcal{P})$ $(\mathcal{V}_1, \mathcal{V}_2) \leftarrow \mathsf{CSWAP}(k_i, (\mathcal{V}_1, \mathcal{V}_2))$ end for return $(\mathcal{V}_1, \mathcal{V}_2)$ $CSWAP(k_i, (\mathcal{P}_1, \mathcal{P}_2))$ returns $(\mathcal{P}_1, \mathcal{P}_2)$ if $k_i = 0$, else $(\mathcal{P}_2, \mathcal{P}_1)$

- Constant time and uniform operations (independent from k_i bits)
- CSWAP: very simple but involves secret bits: must be protected

xDBLADD Operation

► Complex operation based on 32 MM (M/S) and 32 modular add/sub

▶ Regular patterns of 8 independant operations \rightarrow internal parallelism

Basic Cryptoprocessor Architecture

- ► Various architecture parameters: number of units, width w̃, architecture topology, ...
- ► Full description of many cryptoprocessors in VHDL is not feasible
 - time consuming and validation requires heavy simulations

Units Library in VHDL

- Available units
 - GF(P) adders and subtractors (with various \tilde{w})
 - HTMMs
 - data memories (with various \tilde{w})

Fully described, implemented and validated in VHDL

- behavior is known exactly at each clock cycle (CABA³)
- hardware area cost for each unit is perfectly known for various FPGAs

Implementation results form a small database

³Cycle-Accurate Bit-Accurate

CCABA Exploration Tool

- High-level architectures modeled in CCABA
 - CCABA: Critical CABA⁴
 - only critical cycles and signals at architecture level are CABA e.g. units I/Os and control
- CCABA model is close to TLM⁵ adapted for asymmetric crypto. applications
- ► CCABA simulator for fast validation of architectures models
- Exploration tool for fast evaluation of many architectures
 - performances in clock cycles known exactly from CCABA simulations
 - accurate area estimation based on units library database results

⁴Cycle-Accurate Bit-Accurate ⁵Transaction Level Modeling

Architectures Implemention and Validation in VHDL

- Most interesting architectures have been fully described in VHDL
 - ▶ A2: small architecture with 1 Mem, 1 AddSub, 1 Mult

areas not to scale

- Different versions of memories/interconnect with $\tilde{w} \in \{34, 68, 136\}$
 - complete VHDL description of control for each \tilde{w}
 - implemented and validated on Virtex-4/5, Spartan-6 and Zynq-7

Architectures Implemention and Validation in VHDL

- Most interesting architectures have been fully described in VHDL
 - A2: small architecture with 1 Mem, 1 AddSub, 1 Mult
 - ▶ A3: big architecture with 1 Mem, 2 AddSub, 2 Mult

Different versions of memories/interconnect with $\tilde{w} \in \{34, 68, 136\}$

- complete VHDL description of control for each \tilde{w}
- implemented and validated on Virtex-4/5, Spartan-6 and Zynq-7

Architectures Implemention and Validation in VHDL

- Most interesting architectures have been fully described in VHDL
 - ► A2: small architecture with 1 Mem, 1 AddSub, 1 Mult
 - A3: big architecture with 1 Mem, 2 AddSub, 2 Mult
 - ► A4: big clustered architecture with 2 Mem, 2 AddSub, 2 Mult

areas not to scale

- Different versions of memories/interconnect with $\tilde{w} \in \{34, 68, 136\}$
 - complete VHDL description of control for each \tilde{w}
 - implemented and validated on Virtex-4/5, Spartan-6 and Zynq-7

Implementation Results for Best Cryptoprocessors

FPGA	archi.	ŵ	LUT	FF	logic	DSP	BRAM	freq.	time $[k]\mathcal{P}$
		bits			slices	slices		MHz	ms
Virtex-4	A2	34	863	1689	1081	9	4	327	0.54
	A4	34	1699	3255	2447	18	7	328	0.39
	A3	136	3959	5251	3492	18	9	290	0.37
Virtex-5	A2	34	783	1653	558	9	4	386	0.45
	A4	34	1413	3182	1019	18	7	378	0.34
	A3	136	2658	5170	1657	18	9	356	0.30
Spartan-6	A2	34	911	1619	382	9	4	298	0.59
	A4	34	1565	3120	809	18	7	276	0.46
	A3	136	3128	5040	1182	18	9	238	0.45
Zynq-7	A2	34	855	1619	463	9	4	347	0.50
	A4	34	1475	3020	747	18	7	360	0.36
	A3	136	3147	5033	1143	18	9	322	0.33

• $\tilde{w} = 68$ bits is not interesting in our architectures

► No best solution but various interesting time vs. area tradoffs

G.Gallin

Comparisons with Best State of the Art Cryptoprocessors

- ▶ Ma13: ECC processor with generic primes by Ma et al. (2013) [4]
- Kop18a: μKummer-based HECC processor with very specific prime by Koppermann *et al.* (2018) [3]

FPGA	archi.	ŵ	LUT	FF	logic	DSP	BRAM	freq.	time $[k]\mathcal{P}$
		bits			slices	slices		MHz	ms
Virtex-5	A2	34	783	1653	558	9	4	386	0.45
	A4	34	1370	2953	1013	18	7	358	0.40
	A3	136	2737	4978	1594	18	9	348	0.34
	Ma13	336	4177	4792	1725	37	10	291	0.38
Zynq-7	A2	34	855	1619	463	9	4	347	0.50
	A4	34	1475	3020	747	18	7	360	0.39
	A3	136	3147	5033	1143	18	9	322	0.37
	Kop18a	127	8764	6852	2657	49	-	139	0.08

Summary

2 HTMM – Hyper-Threaded Modular Multipliers

Conclusion and Perspectives

- ▶ HTMM: flexible operators for Montgomery modular multiplication
 - finely pipelined to compute several MMMs at the same time
 - 128-bit HTMM is 2 \times faster and smaller than best state of the art
 - HTMM generator available online as open-source
- ► Flexible HECC cryptoprocessors and exploration tools
 - TLM-inspired CCABA model and tools to explore architectures
 - evaluation of architectures parameters impact on time vs. area tradeoffs
 - prime P and curve parameters can be modified at run time
- ► HECC is more efficient than ECC in hardware

Perspectives

- Evaluate robustness of accelerators against physical attacks
- Explore other types of architectures (*e.g.* data-flow)

G.Gallin

Ph.D. contributions I

Main contributions:

- [GT18] G. Gallin and A. Tisserand. Generation of hyper-threaded GF(P) multipliers for flexible curve based cryptography on FPGAs. submitted to IEEE Transactions on Computers (under major revision), 2018.
- [GCT17] G. Gallin, T. O. Celik, and A. Tisserand. Architecture level optimizations for Kummer based HECC on FPGAs. In Proc. 18th International Conference on Cryptology in India (Indocrypt), December 2017.
- [GT17a] G. Gallin and A. Tisserand. Hyper-threaded multiplier for HECC. In Proc. IEEE Asilomar Conference on Signals, Systems and Computers, October 2017.

Other conferences and workshops:

- [GT17b] G. Gallin and A. Tisserand. Architecture level optimizations for Kummer based HECC on FPGAs. 15th International Workshop on cryptographic architectures embedded in logic devices (CryptArchi), June 2017.
- [GVT15a] G. Gallin, N. Veyrat-Charvillon, and A. Tisserand. Experimental comparison of crypto-processors architectures for elliptic and hyper-elliptic curves cryptography. 13th International Workshop on cryptographic architectures embedded in logic devices (CryptArchi), June 2015.
- [GVT15b] G. Gallin, N. Veyrat-Charvillon, and A. Tisserand. Comparaison expérimentale d'architectures de crypto-processeurs pour courbes elliptiques et hyper-elliptiques. In Proc. Conférence nationale d'informatique en Parallélisme, Architecture et Système (Compas), June 2015. best paper award for computer architecture track

Ph.D. contributions II

Other talks and posters:

[Gal17] G. Gallin. Architectures matérielles pour la cryptographie sur courbes hyper-elliptiques. Séminaire sécurité des systèmes électroniques embarqués DGA – IRISA, December 2017. [inv. talk]

[GT17b] G. Gallin and A. Tisserand. Finite field multiplier architectures for hyper-elliptic curve cryptography. 12ème Colloque national du GDR SOC2, June 2017. [poster]

[GT17c] G. Gallin and A. Tisserand. Hardware architectures exploration for hyper-elliptic curve cryptography. 6ème Colloque national Crypto'Puces, June 2017. [talk]

[GT16] G. Gallin and A. Tisserand. Hardware and arithmetic for hyperelliptic curves cryptography. Colloque annuel international du Jabex CominLabs. November 2016. [poster]

[GT15] G. Gallin and A. Tisserand. Comparaison expérimentale d'architectures de crypto-processeurs pour courbes elliptiques et hyper-elliptiques. Journées nationales Codage et Cryptographie (JC2), October 2015. [talk]

[GVT15c] G. Gallin, N. Veyrat-Charvillon, and A. Tisserand. Hardware and arithmetic for hyperelliptic curves cryptography. Rencontres nationales Arithmétiques de l'Informatique Mathématique (RAIM), 2015. [poster]

[GVT15d] G. Gallin, N. Veyrat-Charvillon, and A. Tisserand. Hardware and arithmetic for hyperelliptic curves cryptography. Colloque annuel international du labex CominLabs, March 2015. [poster] This work is funded by H-A-H project

Thank you for your attention

References

 P. Gaudry. Fast genus 2 arithmetic based on theta functions. Journal of Mathematical Cryptology, 1(3):243–265, August 2007.

- [2] C. K. Koc, T. Acar, and B. S. Kaliski, Jr. Analyzing and comparing Montgomery multiplication algorithms. *IEEE Micro*, 16(3):26–33, June 1996.
- [3] P. Koppermann, F. De Santis, J. Heyszl, and G. Sigl. Fast FPGA implementations of Diffie-Hellman on the Kummer surface of a genus-2 curve. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018(1):1–17, 2018.
- [4] Y. Ma, Z. Liu, W. Pan, and J. Jing. A high-speed elliptic curve cryptographic processor for generic curves over GF(p). In Proc. International Workshop on Selected Areas in Cryptography (SAC), volume 8282, pages 421–437, August 2013.
- [5] P. L. Montgomery. Modular multiplication without trial division. Math. of Comp., 44(170):519–521, April 1985.
- [6] J. Renes, P. Schwabe, B. Smith, and L. Batina. μKummer: Efficient hyperelliptic signatures and key exchange on microcontrollers. In Proc. 18th International Conference on Cryptographic Hardware and Embedded Systems (CHES), volume 9813, pages 301-320, August 2016.