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ABSTRACT 

Memory plays tricks on us and fails us even for recent events. So for the retrieval of sensory 

information that we have not experienced for decades, surely the memories are gone without a 

trace, but can we be sure of this?  What if the information had been there all along ready to be 

explicitly retrieved through recall or familiarity for example? So far, experimental evidence is 

lacking. The purpose of my thesis was to shed some light on the retrieval of these inactive 

memories. To tackle this problem I developed my research around two main axes: For the 

first part which is theoretical, I suggest that a) reactivations are not necessary to maintain very 

long-term memories if the memories were sufficiently repeated at first; b) it might be possible 

to retrieve explicitly remote inactive memories using specific cues; in the second part which is 

experimental, I show that a) within specific conditions participants are able to retrieve 

explicitly very long-term memories that were left inactive for decades and b) such memory 

traces could be found on the Electroencephalography (EEG) signals. Surprisingly, when 

conditions are met, remote memories that were thought to be lost can again elicit recall or 

familiarity. With these results, a question remains: How do neurons store such information?  

Keywords: Long-Term memory; Sensory information; Explicit memory; Inactive Memory; 

Recall; Familiarity; Electroencephalography; 
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RESUMÉ 

On pense souvent que notre mémoire nous joue des tours et nous fait défaut. Ces oublis 

concernent généralement des souvenirs qui ne sont pourtant pas si vieux. Alors quand il s’agit 

de se rappeler d’informations sensorielles auxquelles nous n’avons pas repensé depuis 

plusieurs dizaines d’années, pas de doute, il ne reste plus rien… Mais en est-on vraiment sûr? 

Et si l’information était toujours là, prête à se manifester de manière explicite -comme sous 

forme de rappel ou de sentiment de familiarité- pour peu que les conditions le lui permettent? 

A ce jour, très peu d’expériences ont été menées sur ce sujet. L’objectif de ma thèse a donc 

été d’apporter des premiers éléments de réponse concernant la récupération de mémoires 

laissées inactives. Ma recherche s’est orientée selon deux axes principaux : une première 

partie théorique où je montre a) qu’il n’est pas nécessaire de réactiver une trace mnésique 

pour la maintenir à très long terme si elle a été suffisamment répétée et b) que la récupération 

explicite de cette mémoire serait possible grâce à la présentation d’informations qui 

cibleraient au mieux le souvenir ; une seconde partie expérimentale où je montre a) que des 

participants sont capables de récupérer de manière explicite des informations laissées en 

dormance pendant au moins une dizaine d’années et b) que cette trace mnésique pourrait être 

détectée sur des tracés d’Electroencéphalographie (EEG). Ainsi, et aussi étonnant que cela 

puisse paraître, dans des conditions favorables à leur réactivation, d’anciennes traces 

mnésiques que l’on croyait disparues, peuvent de nouveau surgir sous la manifestation de 

rappel ou de sentiment de familiarité par exemple. Ces résultats soulèvent des questions 

majeures concernant le stockage neuronal de cette information.  

Mots-clés : Mémoire à long-terme ; Information sensorielle ; Mémoire explicite ; Mémoire 

inactive ; Rappel ; Familiarité ; Electroencéphalographie 
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RESUMÉ SUBSTANTIEL 

Il est communément admis que pour conserver nos souvenirs il vaut mieux y repenser 

régulièrement. En effet, la réactivation d’une information permet le maintien, voire le 

renforcement de la trace mnésique sous-jacente. Cependant, dans certains cas, l’information 

sensorielle peut être perçue suffisamment de fois pour être stockée en mémoire à long terme 

puis ne plus être réactivée. Est-il alors possible de conserver la trace de ces mémoires qui 

n’ont plus été réutilisées ? Ou bien sont-elles tout simplement effacées au bout d’un certain 

nombre d’années ? Récemment, il a été montré que même des images vues à trois reprises et 

pendant quelques secondes pouvaient encore influencer le comportement de participants 

presque 20 ans plus tard (Mitchell, 2006). Il semblerait donc que nos traces mnésiques soient 

toujours disponibles même lorsque celles-ci ne sont pas réactivées. Cependant et comme le 

fait remarquer Mitchell dans son article, la persistance de ces traces mnésiques a été mise en 

évidence dans une tâche de récupération implicite où les participants ne savaient pas qu’ils 

devraient essayer de récupérer en mémoire les images vues auparavant.  

Dans ma thèse, j’ai voulu aller plus loin en testant dans des tâches de mémoire explicite s’il 

serait possible que des participants puissent récupérer des informations sensorielles à très 

long-terme et laissées dormantes. Dans ces tâches les participants étaient donc poussés à 

récupérer une information sensorielle bien précise.  

 

Pour ce faire, j’ai orienté ma thèse selon deux axes principaux : un axe théorique et un axe 

expérimental.  

L’axe théorique est composé des chapitres 1 et 2 de ma thèse. Le chapitre 1 qui s’appuie sur 

une revue de littérature soumise à publication, a pour objectif de montrer que les processus 

mnésiques d’encodage et de récupération seraient le résultat d’inférences statistiques de type 

Bayésien s’inscrivant en continuité directe avec nos mécanismes perceptuels. Ces inférences 

seraient calculées en continu et permettraient l’accumulation d’informations spécifiques à 

l’origine de la récupération d’un souvenir dans des tâches expérimentales bien définies. Ce 

modèle rendrait ainsi compte de l’ensemble des phénomènes de récupération mnésique.  

Dans le chapitre 2, je développe ce modèle dans le cas de la récupération d’information à très 

long terme. Je montre notamment qu’il serait possible de récupérer explicitement des 

mémoires laissées dormantes pendant des dizaines d’années. Pour ce faire, il faudrait arriver à 
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cibler l’information à l’aide d’indices bien spécifiques qui seraient utilisés dans des tâches les 

plus favorables à la récupération explicite.  

 

Le second axe, l’axe expérimental est la partie la plus largement développée dans ma thèse et 

est constituée des chapitres  3, 4,  6 et 7. Les chapitres 3 et 4 correspondent à deux 

expériences où j’ai testé la récupération explicite d’informations sensorielles laissées 

dormantes pendant une dizaine d’années au moins. Les données présentées dans ces deux 

chapitres on fait l’objet d’articles qui ont été acceptés (chapitre 3) ou soumis à publication 

(chapitre 4). Dans le chapitre 3, des participants déclarant posséder une télévision durant les 

années 1960-1970 (N = 34) ont été testés sur leur capacité à se souvenir de programmes 

télévisés (n = 50) diffusés durant ces années-là et non rediffusés depuis. Pour chaque 

programme télévisé, un court extrait du générique était proposé. En moyenne, les participants 

ont jugé que sept à huit de ces extraits audiovisuels (15%) leur étaient familiers. Parmi ces 

réponses, deux participants ont été capables de rappeler spontanément le titre de deux de ces 

programmes télévisés. Lorsqu’un rappel spontané n’était pas possible, les participants étaient 

invités à identifier le titre parmi quatre propositions. Au total 50 réponses correctes ont été 

obtenues. Ces réponses correctes étaient associées d’un sentiment de familiarité, d’une 

certaine confiance dans la réponse que les participants avaient donné, et d’informations 

contextuelles spécifiques au moment de la diffusion de l’épisode télévisé.  

Ces premières données nous permettent de confirmer ce que l’on avait prédit théoriquement, à 

savoir qu’il est possible de réveiller des informations sensorielles laissées à l’état de dormance 

pendant plusieurs décennies, suscitant leur rappel ou la récupération explicite d’informations 

bien spécifiques.  

Dans le chapitre 4, nous allons encore plus loin en montrant que la récupération explicite 

d’informations sensorielles vues en moyenne trois fois et pendant seulement quelques 

secondes est toujours possible dix ans plus tard. En effet 24 participants qui avaient vus des 

images très simples (n = 144) il y a environ 12 ans ont été capables d’identifier de nouveau 

ces images parmi un choix de deux propositions avec des performances meilleures que celles 

du niveau chance. Cet effet s’est vu en moyenne au travers des participants et a été 

particulièrement visible chez huit d’entre eux.  

Les chapitres 6 et 7 correspondent à des expériences où j’ai analysé le signal cérébral mesuré 

par électroencéphalographie (EEG) pendant la récupération explicite d’information 

sensorielle à long terme. Pour des raisons pratiques, ces expériences ont été menées sur une 

échelle de temps bien plus courte que les deux expériences comportementales développées ci-
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dessus (cinq mois maximum). Ces expériences ont été menées de manière très similaire : elles 

comportaient plusieurs sessions d’apprentissages d’extraits audiovisuels très courts et ensuite 

une session de rappel ou les participants étaient invités à jugés si l’image qui leur était 

proposait avait été extraite d’un clip audiovisuel qui leur avait été montré ou non. 

Dans le chapitre 6, je regarde tout particulièrement l’effet de l’intervalle de rétention entre le 

moment de l’apprentissage et le moment de rappel. Je montre ainsi la différence d’activation 

cérébrale mesurée en EEG chez des participants (N = 11) entre des images nouvelles et des 

images présentes dans des clips (n = 375) montrés quelques heures, un jour ou trois semaines 

auparavant. Dans le chapitre 7 je regarde l’effet du nombre de présentations des clips 

audiovisuels lors du rappel trois semaines plus tard. Dans ce cas, les clips (n = 480) étaient 

montrés soient une, deux, trois ou cinq fois chez des participants (N = 12). Cette expérience 

s’est poursuivie d’une seconde où la récupération en mémoire de clips audiovisuels a été 

testée cinq mois plus tard, dans un paradigme où les clips audiovisuels étaient remontrés aux 

participants.  

L’analyse des données récoltées en EEG s’est faite selon des mesures bien spécifiques que je 

développe dans le chapitre 5 de ma thèse. Je montre ainsi que les techniques d’analyses 

multivariées de patterns permettent d’identifier des traces mnésiques à long terme.  

 

En conclusion, cette thèse permet de révéler que nombreuses traces mnésiques seraient 

conservées à l’état latent. En élaborant des tâches expérimentales bien spécifiques, il serait 

possible de réveiller de manière explicite des informations sensorielles répétées seulement 

quelques fois. Ces résultats questionnent le substrat biologique de ces mémoires. Serait-il 

possible de conserver des traces au sein d’un vaste réseau neuronal ? Nous espérons que de 

nouvelles recherches permettront d’apporter de futurs éléments de réponse.  
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“We watch an ant make his laborious way across a wind- and wave-molded beach. He moves 

ahead, angles to the right to ease his climb up a steep dune let, detours around a pebble, 

stops for a moment to exchange information with a compatriot. Thus he makes his weaving, 

halting way back to his home. So as not to anthropomorphize about his purposes, I sketch the 

path on a piece of paper. It is a sequence of irregular, angular segments not quite a random 

walk, for it has an underlying sense of direction, of aiming toward a goal. I show the 

unlabeled sketch to a friend. Whose path is it? An expert skier, perhaps, slaloming down a 

steep and somewhat rocky slope. Or a sloop, beating upwind in a channel dotted with islands 

or shoals.  

Perhaps it is a path in a more abstract space: the course of search of a student seeking the 

proof of a theorem in geometry.  

Whoever made the path, and in whatever space, why is it not straight; why does it not aim 

directly from its starting point to its goal? In the case of the ant (and for that matter the 

others) we know the answer. He has a general sense of where home lies, but he cannot foresee 

all the obstacles between. He must adapt his course repeatedly to the difficulties he 

encounters and often detour uncrossable barriers. His horizons are very close, so that he 

deals with each obstacle as he comes to it; he probes for ways around or over it, without 

much thought for future obstacles. It is easy to trap him into deep detours. Viewed as a 

geometric figure, the ant's path is irregular, complex, hard to describe. But its complexity is 

really a complexity in the surface of the beach, not a complexity in the ant.  

On that same beach another small creature with a home at the same place as the ant might 

well follow a very similar path.”  

 

Herbert A. Simon, The Sciences of the Artificial, 1996 
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GENERAL INTRODUCTION  

1. The essence of the words 

1.1 Brain 

Brain: an organ of soft nervous tissue contained in the skull of vertebrates, functioning as the 

coordinating center of sensation and intellectual and nervous activity (Oxford definition).  

 

This definition goes back to the biological structure of the brain from which high level 

functions emerge. At the end of its development, the brain is composed of several structures: 

the brain stem: with the midbrain, the pons and the medulla, the diencephalon with the 

thalamus and hypothalamus, the cerebellum and the cerebrum. The cortex, the most external 

layer of gray matter of the cerebrum is divided into neocortical and allocortical structures, the 

latter including the hippocampus and the rhinal cortices.  

From an evolutionary perspective, the cerebral cortex can be seen as a tissue that was 

constrained to develop inside rigid boundaries delimited by the skull. This expansion was 

particularly important in primates and especially in humans. To overcome this space 

limitation, the tissue adapted its growth by folding up into gyri (ridges) and sulci 

(depressions). To some extent, gyri are used to delimit cortical areas that have a structural and 

a functional specificity. As an example, the inferior temporal gyrus which corresponds 

approximately to the Brodmann area 20 is particularly involved in recognition memory. 

Cortical areas are included in four main lobes: frontal, parietal, temporal, occipital (figure 

I.1). But as already observed by Ramon y Cajal at the beginning of the 20th century, the 

relative uniformity of the six-layered structure of the neocortex demonstrates its structural 

unity. 
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Figure I.1 Representations of the cortical structures 

Lateral view (A), medial view (B) and brain ontogeny (C) (from (Forstmann et al., 2015)) 

1.2 Information: In-formation 

The vibrations of a djembe after being hit by a musician 

The severe damage on the trunk of the tree following the storm 

My body is still shivering after you kissed me on the neck 

A tissue was in a certain condition but is now in a different state due to physical perturbations 

coming from the environment. This transition shows the integration of new information into 

the system through the reshaping or the deformation of the tissue.  

Like for every organic tissue, the brain is exposed to environmental constraints and is 

constantly deformed by the action of external or internal agents. Deformation allows the 

integration of new inputs by the tissue and through its content creates the IN-FORMATION 

necessary to perceive the world. According to Bohm, “Information is a difference of form that 

makes a difference of content, i.e. meaning” (Bohm, 1989). To explain it simply, Bohm gives 
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the example of letters on a printed page: the difference of meaning is held in the difference in 

the forms of the letters.  

Therefore, any type of information would be revealed through the interaction between two 

entities. If we consider human experiences, information would be generated from the 

interaction between an external object (external input) and the nervous tissue or between an 

internal input and the nervous tissue. While it seems obvious that any external object has a 

specific form, the same would apply for internal inputs. Indeed, internal inputs, commonly 

called thoughts or mental images would originate from the direct abstraction of objects 

present in the outside world. Such new forms might be more subtle than the ones we 

experience in the outside world, yet it does not restrict the potential of information they can 

convey. Again, to explain it simply, writing could be a good example.  

Nowadays, it is hard to see any relationship between letters and their corresponding physical 

objects. However such correspondence does exist. Let’s take the example of the two first 

letters of the Latin alphabet: “A/a” and “B/b” which correspond to alpha and beta in the Greek 

alphabet. Alpha derives from the Phoenician alphabet “aleph” , which means head of ox, 

and this comes directly from the Egyptian hieroglyph .  Beta is equivalent to the “bet” 

letter in the Phoenician alphabet which means house and derives from the Egyptian 

hieroglyph . 

It is interesting to see that every Egyptian hieroglyph corresponds to a symbol that is a direct 

abstraction of an object taken from the outside world. In a way, a living ox or a real house 

would be the external objects and the Egyptian hieroglyphs or the letters A and B, their 

respective mental images.  

The form of these “mental images” can correspond to ideas (logograms) or to sounds 

(phonograms) that combined together provide specific information and can have as much 

influence as real objects.  

One would easily understand why such writing was considered as sacred at the time: the close 

relationship between the symbols and their outside attributes gave them sacred powers which 

would be activated when read.  

1.3 A few musical notes on memory 

Information is in the shape and can be called quale (Balduzzi and Tononi, 2009) in the field 

of neuroscience. A shape is informative because it can be characterized by two invariants: its 

frequency range of resonance also called spectrum and the whole set of possible points in that 
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frequency range. A point in that shape can be seen as a chord and the whole set of possible 

chords as the musical scale of the shape.  

Every time some information is integrated in our brain specific shapes might be created. In 

this perpetual movement which never ends and which does not really stabilize, the brain tries 

to create stable representations based on the information provided by this continuous ballet. 

This choreography of shapes would not have the same substance as the forms we are used to 

experiencing in our daily life and could not be reached by our sense of vision. Instead, a more 

subtle approach would be needed. The major scale with its seven notes (do-re-mi-fa-sol-la-si / 

C–D–E–F–G–A–B) is a beautiful example of such idea by corresponding to the vibration of 

the quantum sphere. As such, any representation we build in mind at any time might 

correspond to the vibration of a specific shape that has emerged from the structural 

organization of assemblies of neurons. Some of these experiences can be frivolous and would 

not have any impact on the nervous tissue while others might have a stronger influence. In the 

latter case, if the information leads to the modification of the structural organization of the 

tissue it results in the encoding of the input. The creation of this memory trace can be seen as 

an imprint in the brain. As a natural extension, memory could be viewed as the preservation 

of those shapes generated by specific neuronal organizations and remembering, literally: 

being “again member”, the reinstatement of those shapes into conscious access. Accordingly, 

human knowledge would be held in subtle shapes that could be used in specific domains. 

From this view, one would better understand why in the Greek mythology, Mnemosyne, the 

goddess of Memory was also the mother of arts, science and literature embodied in the nine 

muses.  

Importantly, the maintenance of these memory traces over time would vary and only specific 

constraints would enable the creation of very long-term memories and their potential retrieval. 

As I will show in the next section, little is known about our ability to retrieve very long-term 

memories explicitly. In this yet to be explored field, my thesis will try to provide a better 

insight.  

2. Studying very long-term memories 

Classically, (very) long-term memories are split into two main categories: explicit memories 

that can be verbalized (declarative) and implicit memories which are reflected in individual’s 

behavior (nondeclarative) (Squire and Zola-morgan, 1991). In my thesis, I will focus on 

explicit memories that rely on the Medial Temporal lobe unlike implicit memories.  
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2.1 Explicit memories 

2.1.1 The Medial Temporal Lobe 

As its name suggests, the Medial Temporal Lobe is part of the temporal lobe which is one of 

the four cortical regions (the green region in the figure I.1). It includes allocortical areas 

including the hippocampus that is part of the archicortex and the rhinal cortices that are part 

of the periarchicortex, a transitional zone between the archicortex and the neocortex (figure 

I.2). The hippocampus is composed of the dentate gyrus, four CA fields and the subiculum. 

The rhinal cortices include the entorhinal and perirhinal cortices. Interestingly, the Medial 

Temporal Lobe is also made of neocortex with the parahippocampal structure located 

posteriorly to the rhinal cortices.  

 
 

Figure I.2 Schematic representations of the hippocampus and the rhinal cortices 

From (Moulin et al., 2013)) 

The Medial Temporal lobe is a critical region from which phenomenological experiences of 

explicit retrieval can emerge. It can lead to familiarity if one can categorize an item as 

previously encountered (it is an “old” item) or to recollection if the categorization as an “old” 

item is associated with contextual details (Mandler, 1980).   

2.1.2 Semantic, episodic, autobiographic 

Explicit memories can be semantic if they reflect general knowledge such as retrieving a 

name, or episodic if a unique specific event can be retrieved within its spatial and temporal 

context such as the first day in college (Tulving, 1985a). When semantic and episodic 

memories are related to the self, they form autobiographical memories that reflect the past of 
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every individual’s life. Therefore, all autobiographical memories are not necessarily episodic 

(Levine et al., 2002; Piolino et al., 2002; Tulving et al., 1988).  

2.1.3 Assessing explicit memories 

Explicit memories are potentially verbalized by the participants. Therefore they have to be 

tested in a task where the participants are voluntarily engaged in the retrieval of specific 

information. This way, participants’ performance is a direct result of a retrieval process that 

they initiated. Several paradigms have been designed to test explicit retrieval and can be split 

into two main categories: recall tasks and recognition tasks. In recall tasks, participants have 

to retrieve a specific piece of information that is not present in their environment (free recall) 

or only partially (cued-recall). In recognition tasks the information is presented to the 

participants -either alone in a Yes/No task or among several propositions in a forced-choice 

task- and participants are asked to identify which item was previously encountered.  

As we see, the amount of information necessary to perform these tasks significantly varies 

and not being able to retrieve a name in a free recall task would not necessarily mean not 

being able to identify it from two instances. This will be discussed at length in chapter 1.  

2.2 A brief literature overview 

The memory literature is huge but when it comes to very long-term or remote memory -that is 

for periods of a few months to decay- less data exist. This is mainly due to practical reasons: 

while it is easy to test the retrieval of sensory information the same day as it was presented, it 

is more difficult to make sure that all conditions will be met again to test the same participants 

several years later. Despite this strong constraint, some studies were able to test the retrieval 

of very long-term memories.  

2.2.1 Lifetime memories 

One possible way for explicitly testing participants’ very long-term memories, is to ask them 

retrieve information acquired in their real life. Using this first method, researchers could 

potentially test lifetime memories for a wide range of “ecological” material related to 

semantic or episodic information such as the memory of old classmates (Bahrick et al., 1975), 

of information learnt in school (Bahrick, 1984) or of specific autobiographical events 

(Rathbone et al., 2008; Rubin and Schulkind, 1997; Viard et al., 2007). These studies showed 

that explicit information acquired during young adulthood could be maintained through the 

individual’s lifetime.  
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Interestingly, data from amnesic patients revealed that very long-term memories could be 

robust to damage in the Medial Temporal lobe (Bayley et al., 2006, 2003; Reed and Squire, 

1998) although this is not very clear for very long-term episodic information (for a review 

see: (Frankland and Bontempi, 2005)). This ambiguity led to the contemporary debate: 

standard model versus Multiple Trace Theory Model (MTT). According to the standard 

model, the Medial Temporal Lobe (MTL) and the hippocampus in particular would be 

involved in supporting declarative memories (semantic or episodic) that were recently formed 

but over time the memories would become independent of the hippocampus and would only 

rely on cortical structures (Squire and Alvarez, 1995). For the MTT, this would be true only 

for semantic information and remote episodic memories would still rely on the hippocampus 

(Nadel and Moscovitch, 1997).   

2.2.2 Forgetting curves 

When possible, the amount of information retrieved in a given task can be assessed for 

different retention intervals. The data can be used to draw forgetting curves with on the x-axis 

of the graph the time elapsed since the acquisition phase and on the y-axis the percentage of 

retrieval in the specific task (see figure I.3 for an example). This graphical representation 

provides valuable information on participants’ performance over long time delays even if they 

do not necessarily encompass the whole lifespan of an individual (for example: (Conway et 

al., 1991; Squire, 1989)). In particular, forgetting curves showed that retrieval performance 

quickly decreases after the learning phase but then stabilizes for several decades. It is hard to 

say which mathematical law follows any of the forgetting curves but the power function of 

time seems to fit well with the data (Anderson and Schooler, 1991; Rubin and Wenzel, 1996; 

Wixted and Ebbesen, 1991). 
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Figure I.3 An illustration of the forgetting curves 

The percentage of correctly recognized concepts and names is plotted for various retention 

intervals. From (Conway et al., 1991). 

2.2.3 Long-term memories: the where under the scope of fMRI studies 

The stabilization of long-term memories comes with a reorganization of its underlying 

neuronal network. This system-level consolidation is a slow process taking at least several 

weeks to be completed. As we mentioned, two main theories: the standard model and the 

Multiple Trace Theory have been proposed to account for this reorganization. This debate, not 

yet closed, provided a great enthusiasm inside the whole neuroscience community. Many 

investigations were carried out to get a better understanding of the role of the hippocampus 

over long retention intervals. The spatial resolution provided by the fMRI technique was 

particularly helpful and provided evidence toward the Multiple Trace Theory (Harand et al., 

2012; Maguire and Frith, 2003; Maguire, 2001). As we see, the role of the hippocampus on 

long-term retrieval focused most of the attention. This would explain the poor amount of data 

concerning the temporal dynamics during long-term retrieval assessed via EEG 

(Electroencephalography) or MEG (Magnetoencephalography). Indeed, only a couple of 

studies examined participants’ EEG activity during the retrieval of items seen the previous 

day (Curran and Friedman, 2004; Jaeger et al., 2010; Wolk et al., 2006) and only one study 

went as far as recording the EEG activity for pictures seen four weeks before (Tsivilis et al., 

2015). 
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2.2.4 Remaining questions 

This brief survey shows that the explicit retrieval of long-term memories that have been 

acquired several decades ago is possible. However, one main limitation comes from the fact 

that the experimenter has little control on the acquisition parameters during new learning. 

Among them, two parameters are difficult to assess: the strict number of times the information 

was presented and the fact that the information could have been encountered again outside the 

original acquisition period. One exception might be the television test that was designed to 

evaluate remote memories of one-season TV programs used in several studies by Squire et al. 

(Squire and Fox, 1980; Squire and Slater, 1975; Squire, 1989).  

Several questions remain unanswered: How long can information that has not been revisited 

since the initial acquisition be maintained? Does this duration depend on the number of 

exposures during the acquisition phase? How do brain processes unfold over time during the 

retrieval of remote memories? These questions are at the core of my thesis.  

2.3 Overall framework 

My thesis would not have been possible without the scientific environment in which it took 

place. After completing my Master’s degree, Simon gave me the opportunity to join his team 

for a new and exciting research project: the M4 project. “M4” stands for Memory 

Mechanisms in Man and Machine but “Man” should now be changed to “Mammals” with 

Danaé Rémon’s work on dogs. The substantial financial support that Simon got from the 

European Research Council for five years (FP7/2007-2013/ERC grant agreement n° 323711) 

allowed him to hire several PhD students, post-docs, managers, and a research assistant to 

create the M4 team. The idea was to gather people from different backgrounds –psychology, 

neuroscience or computation-, to tackle the issue of the formation and the maintenance of 

very long-term memories. Simon used his strong expertise in visual perception and in fast 

visual recognition in particular (Kirchner and Thorpe, 2006; Thorpe et al., 1996; Wu et al., 

2010) together with advanced computational developments (Masquelier and Thorpe, 2007; 

Masquelier et al., 2009) to think memory from a complete different perspective. Ten claims 

are at the core of his radical proposal that the M4-team was invited to investigate: 

 

1/ Humans can recognize visual and auditory stimuli that they have not experienced for 

decades; 

2/ Recognition after very long delays is possible without ever reactivating the memory trace 

in the intervening period;  
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3/ These very long-term memories require an initial memorization phase, during which 

memory strength increases roughly linearly with the number of presentations; 

4/ A few tens of presentations can be enough to form a memory that can last a lifetime; 

5/ Attention-related oscillatory brain activity can help store memories efficiently and rapidly; 

6/ Storing such very long-term memories involves the creation of highly selective 

“Grandmother Cells” that only fire if the original training stimulus is experienced again; 

7/ The neocortex contains large numbers of totally silent cells (“Neocortical Dark Matter”) 

that constitute the long-term memory store; 

8/ Grandmother Cells can be produced using simple spiking neuronal networks models with 

Spike-Time-Dependent-Plasticity (STDP) and competitive inhibitory lateral connections; 

9/ This selectivity only requires binary synaptic weights that are either “on” or “off”, greatly 

simplifying the problem of maintaining the memory over long periods; 

10/ Artificial systems using memristor-like devices can implement the same principles, 

allowing the development of powerful new processing architectures that could replace 

conventional computing hardware.  

2.4 Presentation of the chapters 

With no doubt, this manifesto largely inspired the direction and the content of my thesis. With 

Simon and Nadège Macé, the M4-manager during the first half of my thesis, we agreed that I 

would carry experiments concerning the retrieval of remote memories. Like an archeologist 

my goal was to find evidence for very long-term memories of sensory stimuli that were 

thought to be lost. And for that, I had to respect one major constraint: stimuli should not have 

been presented again for years after the acquisition period. In this adventure I had the support 

from the National Institute of Audiovisual in Toulouse (chapter 3), and from Emmanuel 

Barbeau and Eve Tramoni who gave me access to a list of participants that we could test in a 

well-controlled design (chapter 4). I am very grateful to Sophie Muratot who helped me 

collecting all this precious data.  

In such a pre-defined framework I could have easily fallen in the trap of becoming a mere 

“inspector” that would validate (or reject) one of the claims above. Lucky me, Simon gave me 

the opportunity to express myself in this project. My main motivation was to understand the 

underlying processes at the basis of our subjective experiences during memory retrieval. 

Especially my interest lied in its dynamic component. I decided to carry EEG experiments to 

study how processes unfold in time during long-term retrieval (chapter 5). After the 

conclusive results of the first EEG experiment (chapter 6) I decided to follow-up and to study 
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the impact of repetition for long-term retrieval (chapter 7). This project was successfully 

handled by Méyi Dulème who presented the results in her Master’s thesis. Gathering 

experimental evidence was a first step in understanding the dynamic of retrieval, another step 

was to propose a theoretical framework that could explain it. In this enterprise I had all the 

support from Chris Moulin. It was an extraordinary chance for me that Chris had to evaluate 

my work at the mid-term of my thesis. Following that, he gave me the opportunity to work on 

a literature review about the dynamics of retrieval (chapter 1). This helped me to prepare the 

ground for the topic of very long term retrieval (chapter 2).  

2.4.1 Peer-reviewed articles 

Some chapters of this thesis correspond to articles that were submitted for peer-review in 

scientific journals. For easier reading, I slightly adapted them in my thesis.  

Unifying memory and perception into the same framework: a dynamic Bayesian 
approach 
Christelle Larzabal, Simon J. Thorpe, Chris J.A Moulin  
Review article submitted 
 

Waking up buried memories of old TV programs 
Christelle Larzabal, Nadège Bacon-Macé, Sophie Muratot, Simon J. Thorpe 
Research article accepted in Frontiers in Behavioral Neuroscience (2017) 
 

Long term memory and familiarity after 12 years 
Christelle Larzabal, Eve Tramoni, Sophie Muratot, Simon J. Thorpe, Emmanuel J. Barbeau 
Research article submitted  
 

 

 

 

The landscape is portrayed, the road is opened. I invite you now to follow me on this path. 
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CHAPTER 1. Unifying memory and perception into 

the same framework 

 

Abstract 

Traditionally, memory is split into separate systems and subsystems according to their 

function. Although perception can also be similarly broken down into separate subsystems, 

many neuroscientific views of perception tend to see processing as a meaningful whole, with 

information flowing through a series of stages from low level processing in V1 to conceptual 

categorization in the medial temporal lobe. In this article we draw upon such perceptual 

theories to propose that encoding and retrieval of information is based on the ‘accumulation 

of evidence’, arising directly from perceptual mechanisms. As such, we see memory as a 

single system, but like perception, it involves varying levels of processing based on the 

computational nature of the task in hand, such as subjective awareness, discrimination, 

categorization, and retrieval of context. Episodic memory and recollection lie at the top of this 

information processing hierarchy. We review evidence from experimental data in support of 

this hypothesis and show how it might account for clinical pathologies such as Alzheimer’s 

disease. 
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Chapter presentation 

This first chapter reflects in many aspects all the knowledge I acquired during my Master’s 

degree and that I had time to fully process to integrate it in the field of memory. I started with 

subliminal and bi-stable perception with Jean-Rémi King in Paris, before studying the role of 

intuition in decision-making with Martijn Wokke in Amsterdam. I have to tell that my 6-

month internship with Jean-Rémi was an invaluable experience. With him I really started to 

understand and do cognitive neuroscience. He introduced me to many notions, either 

theoretical like Bayesian inferences, or technical like decoding analyses applied to MEG data. 

Coming from the field of biology all of this was new to me but so exciting! The following 

year I had the chance to go to Amsterdam for a 6-month internship. I remember the first paper 

Martijn told me to read: The neural basis of decision Making (Gold and Shadlen, 2007). It 

was quiet tough and so abstract at first! I did not give up reading and finally I got the essence 

of it. A decision was the result of Bayesian inferences computed over times. While decision-

making is usually associated with motor actions such as going to a specific direction, it is a 

very generic term that also holds for perception or memory. Indeed the task that our 

participants had to perform was like an implicit memory task. It is with this background that I 

started my PhD with for main focus the retrieval of very long-term memories.  

I quickly realized that I was not the only one who started from perception and ended up with 

memory. It was also the case of Simon who just hired me! I knew that we would share the 

same vision: the idea of a continuum between perception and memory. However since the 

beginning Simon was reluctant to the idea of Bayesian inferences. I remember when I 

discussed it with Chris during my mid-thesis committee. He was more interested and 

suggested to write a review on this topic. We dedicated a lot of time for this project. I even 

went to visit Chris in Grenoble for a month to work on this project full time. I thank Karine, 

the lab manager, for making my stay easy in Grenoble.  

The discussion went on for months with Simon and finally we ended up with a review article: 

“Unifying memory and perception into the same framework: a dynamic Bayesian approach” 

that we submitted for peer-review. It has the merit of being a personal view rooted on 

theoretical notions about memory and tries to make the bridge between two main cognitive 

fields: perception and memory. Note that for ease of reading some sections of the review 

article were skipped and a few changes were provided. 
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1. Introduction 

Encoding and retrieving from human memory are complex activities involving many 

dispersed brain regions. For instance, the frontal lobe is often described as being involved in 

the control and monitoring of memory (Goldman-Rakic, 1987; Miller, 2000), the parietal lobe 

is recruited in recognition/episodic memory and decision making (Adolphs et al., 1996; 

Cabeza et al., 2008; Platt and Glimcher, 1999; Shadlen and Newsome, 1996), and the 

occipital lobe is implicated in the generation of visual imagery and in perceptual priming 

experiments (Kosslyn et al., 2001; Roland and Gulyas, 1994; Wiggs and Martin, 1998).  

However, the medial temporal lobe (MTL) - including the hippocampus and the entorhinal, 

perirhinal and parahippocampal cortices - is usually considered to be the critical area for 

memory function.  In particular, the hippocampus is known to be a crucial brain region; if it is 

removed or damaged, memory function is severely impaired with an inability to either store 

new information (anterograde amnesia) or retrieve distant memories (retrograde amnesia). 

The hippocampus is thus seen as playing a critical role in memory (Burgess et al., 2001; Marr, 

1970; Rolls, 1996; Squire, 1992). Contemporary views of hippocampal function see it as 

particularly crucial for episodic memory, the ability to retrieve contextual specifics from 

memory. Some authors consider that it is only involved in the initial formation of 

representations which later rely on neocortical sites (the standard model: e.g (Squire et al., 

1984) ) whereas others see it as a central processor that remains involved in the binding of 

separate sources of information together into a coherent whole (Olsen et al., 2012; Ryan et al., 

2000; Yonelinas, 2013). Here, we will argue that these views concerning hippocampal 

activation and binding can be linked with theories of perception. 

Interestingly, the hippocampus is located at the end of the visual ventral stream and receives 

input from multiple sensory modalities (Suzuki and Amaral, 1994). The hippocampus is also a 

strategic center that plays a key role in the integration of sensory inputs (Squire et al., 2004). 

Based on this neuroanatomical structure, our hypothesis is that memory lies on a continuum 

with perceptual processes, and that the encoding of information emerges from the routine 

treatment of perceptual input. After having been processed in subcortical regions such as the 

lateral geniculate nucleus (LGN) in the thalamus, sensory inputs have to pass through 

successive cortical areas for the information to be integrated.  For visual stimuli (see Figure 

1.1), the input follows the visual ventral stream by entering the primary visual area V1, where 

the neurons fire for low-level properties of stimuli (e.g. bars, edges). Higher order attributes 

are then encoded through the next regions of the visual cortex (V2, V3) until the Lateral 
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Occipital Complex (LOC) in humans or the Inferior Temporal cortex (IT) in macaques. It is in 

the LOC that we find the most specific or selective neurons in the pathway, such as face-

selective neurons. The hippocampus, at the end of this perceptual stream, is thought to be 

involved in binding of sensory information to other stored representations, and it is here that 

multi-modal selectively firing neurons have been found (such as the ‘Halle Berry’ cell which 

fires for her face, name and for the character she plays in Catwoman (Quiroga et al., 2005). 

By receiving monosynaptic hippocampal projections (Thierry et al., 2000), direct 

communication between the prefrontal cortex and the hippocampus is possible and occurs 

preferentially during the first stages of the formation of the memory trace: encoding and 

consolidation (Benchenane et al., 2010). Recent decoding techniques used on combined MEG 

and fMRI data reveal a dynamic continuum of activation associated with an increase of 

categorization from V1 to IT (Cichy et al., 2014)  that might continue until the MTL and PFC. 

This strongly suggests that early M/EEG effects cannot differentiate different types of 

stimulus, but as activation spreads throughout the brain, it allows the entanglement of such 

representations (DiCarlo and Cox, 2007). 

 

 
Figure 1.1 From perception to memory. 

In the visual ventral stream the processing of visual stimuli starts in the primary visual area 

V1, where the neurons fire for low-level properties of stimuli such as for a specific bar 

orientation (a vertical bar in the figure). The neuronal selectivity increases through the next 

regions and reaches its maximum at the end of the visual ventral stream: in the Inferior 

Temporal cortex (IT) in macaques or in the Lateral Occipital Complex (LOC) in humans. At 

this stage, neurons encode higher order attributes such as specific body parts (faces in the 
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figure) that can be bound to other representations in the medial temporal lobe and in the 

hippocampus in particular, where neurons fire for specific concepts (the footballer Maradona 

in the figure) (from (Quiroga, 2012)) 

 

We make the novel suggestion that this evolution of cells firing according to the 

differentiation of increasingly specific and complex representations (which can be thought of 

as a perceptual process) could ultimately lead to further differentiation, creating a distinct 

percept that contains all information associated with that percept. We propose here that this 

process of differentiation is akin to the perceptual process of evidence accumulation over 

time, such that memory is based on the outputs of a perceptual system making ever fine-

grained evaluations of items in perception.  

We suggest that memory encoding and retrieval are dynamic processes that unfold over time 

and that directly emerge from perceptual mechanisms. We will show that dynamic Bayesian 

inferences can explain both memory encoding and retrieval by relying mainly on the MTL. In 

particular we will show how the interaction between retrieval tasks (e.g. free recall or forced-

choice tasks) and retrieval assessments (e.g. Remember/Know/New judgement) lead to 

different retrieval modes (naming, feeling of knowing, familiarity…) that emerge from the 

same evidence accumulation model. We will review evidence from behavioral and time-

resolved experiments that support this model. We strongly believe that this model can also be 

extended to clinical cases and as an example, we will also illustrate how this evidence of 

accumulation model might account for Alzheimer’s disease.  

2. Memory encoding and retrieval: A dynamic Bayesian framework 

First proposed by von Helmholtz in 1866 (Helmholtz, 1947) perceptual integration is now 

often considered as an inference problem and can be explained in Bayesian terms (Kersten et 

al., 2004; J-R. King and Dehaene, 2014; Ko and Lau, 2012). Given the noisy information 

coming from our senses at a time t and prior knowledge acquired through experience, the 

brain’s role is to decide what the most probable sensory input is. This process of reaching a 

suitable decision based on priors is referred to as the accumulation of evidence. The 

implication is that over time, Bayesian processes drive the acquisition of information that 

enables a final perceptual decision. Here we propose a natural continuum of this idea, and 

propose that memory encoding and retrieval can be similarly modelled as a Bayesian process. 

Note that in itself, the idea of priors in perceptual decision making is, in essence, about 

memory, since priors are in some way merely an agglomeration of activations based on 
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previous experience. Even the very idea of identifying a stimulus rests upon the idea that 

something in the environment is matched with an internal representation, which is again, 

based on memory.  

2.1 Memory encoding: from perceptual processing to the creation of a 

distinct percept 

2.1.1 A dynamic Bayesian approach 

During the encoding of a stimulus, a cascade of brain regions are activated which are reflected 

by the firing of neuronal assemblies associated with an alteration of their synaptic weights. As 

with perceptual decision-making we suggest that the encoding of a stimulus is supported by a 

succession of brain processes performing Bayesian statistics that decide at their own level 

which representation is the most probable given the incoming stimulus. Depending on the 

environmental circumstances, perceptual decisions will tend to focus on specific features and 

will reduce the possibilities into several hypotheses; part of this decision making will involve 

long term memory–such as decisions about the classification of objects (e.g. living or non-

living), their identification (e.g. cat or dog) and simple judgements of familiarity. 

In our view, this diminution of possibilities over time leads to a reduced and clustered 

multidimensional space, where the brain’s role is to find the most probable hypothesis Hi 

given noisy sensory evidence E coming from the selected features. This inference problem is 

expressed in Bayesian terms as finding P(Hi|E), the posterior probability. The posterior is 

defined as being proportional to two parameters that can be known, the likelihood function 

and the prior: 

𝑃(𝐻𝑖|𝐸)~ 𝑃(𝐸|𝐻𝑖)𝑃(𝐻𝑖) 

With P(E|Hi): the likelihood function of obtaining evidence from the sensory input; 

P(Hi): the probability of occurrence of the stimulus Hi called prior;  

 

The posterior probability is calculated for all different hypotheses: H1 to Hx: P(H1|E), P(H2|E) 

… P(Hx|E) with the purpose of extracting the one with the maximal a posteriori probability.  

 

Perceptual decisions and decisions in general are not conducted on a single maximum a 

posteriori value. Instead, to be sure that posterior value has some consistency the same 

calculation is performed over a certain period of time. The idea is to accumulate evidence in 

support of a hypothesis (Gold and Shadlen, 2007). Mathematically, this is done by 
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multiplying the logarithm of the likelihood ratios (log LR, called also weight of evidence) 

obtained at each time i (from 1 to n values). The prior can thus be considered as being the log 

LR at time 0. 

For a binary decision this is expressed as: 

 Log LR12  ≡ log
P(𝑒1,𝑒2,…,𝑒𝑛|ℎ1)

P(𝑒1,𝑒2,…,𝑒𝑛|ℎ2)
 = ∑ log

𝑃(𝑒𝑖|ℎ1)

𝑃(𝑒𝑖|ℎ2)

𝑛

𝑖=1
 

 

This means that at each time i, a decision variable (DV = log LR) is calculated from the 

evidence obtained up to that point. Decisions can be made if a certain criterion is reached or if 

the cost is too high to continue the process (Gold and Shadlen, 2007). This mathematical 

approach might explain the differences observed in terms of subjective report according to the 

criterion level used. Indeed, explicit access would only emerge if the DV reaches a subjective 

threshold that corresponds to a high level criterion. If the DV is too low, but still differs from 

random noise, implicit behaviors can be observed (Dehaene, 2008). In addition, every DV 

comes with an estimate of its level of uncertainty that might be the basis of metacognitive 

judgments. Metacognition commonly described as ‘knowing what we know’ (or what we do 

not know) does not only apply to explicit processes and can be considered as a second order 

judgement performed on unconscious or conscious processes (Charles et al., 2013; Spehn and 

Reder, 2000). A metacognitive estimate of certainty can be translated in terms of confidence 

levels or error detection and is used to initiate and co-ordinate efficient memory behaviors 

(Moulin and Souchay, 2015).  

2.1.2 The creation of a conceptual representation 

During memory encoding, low-level regions such as V1 and V2 for the visual ventral stream 

are first activated by an incoming stimulus. Depending on the stimulus properties and 

according to the task in which participants are involved, brain activity can spread out to 

higher cortical structures such as in IT before reaching the prefrontal cortex and the MTL 

structures. It has been shown in the monkey that the proportion of cells with activity that 

directly corresponds to subjective perception increases along the visual ventral stream: from 

20% in V1 to 90% in IT (Logothetis, 1998). This strong link has also been seen in studies of 

epileptic patients (Kreiman et al., 2002; Quiroga et al., 2008b) where most of the neurons in 

the MTL were activated according to the patient's subjective reports, the MTL getting direct 

input from IT. The MTL has been implicated in the last stages of visual processing as shown 

by deficits in visual spatial cognition in patients with Alzheimer’s disease (Butter et al., 1996; 
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Possin, 2010). But it is important to point out that the MTL does not seem to take part in fast 

perceptual decisions. Indeed, perceptual recognition tasks involving differentiating broad 

categories such as Animal/Non Animal can be achieved in 150 ms (Thorpe et al., 1996) and 

saccades to animals can be made in as little as 120 ms (Kirchner and Thorpe, 2006), which is 

far faster than the latencies of MTL neurons (~300 ms).  

 The hippocampus as a “timer” 

Why does it take so long for the hippocampus to react? In principle, it is just a couple of 

synapses at most, so conduction delays should not be sufficient. Here we suggest that one of 

the key roles of MTL structures, and of the hippocampus in particular, could be to keep track 

of the duration of neuronal activations occurring in IT (Reddy and Thorpe, 2014; Thorpe, 

2011), at the end of the visual ventral stream, as well as in other high-level cortical regions 

such as in LIP, at the end of the visual dorsal stream, or in other multisensory areas. 

According to this idea, though strong, transient activations of cortical neurons would not be 

long enough for hippocampal neurons to kick in and only long-lasting activations (of 

approximately 150-200 ms) would trigger the firing of specific hippocampal neurons. 

Although speculative, this hypothesis gives a simple explanation of the extreme long latency 

of hippocampal neurons -about 300 ms - which have been recorded in epileptic patients 

(Mormann et al., 2008). Therefore, only neuronal representations that remain active for 150 

ms will get recorded in the hippocampus and elicit perceptual awareness (Quiroga et al., 

2008b). These long-lasting activations would lead to the creation of conceptual 

representations both in the hippocampus and in the neocortex that could be explicitly recalled. 

In the case of multimodal stimuli (e.g. audiovisual clips) we suggest that these long-lasting 

cortical activations are processed simultaneously in a global neuronal workspace (Baars, 

1988; Dehaene et al., 1998a) where for example, spatio-temporal information from the dorsal 

pathway, emotional content from the amygdala and self-awareness about the particular 

representation encoded in the prefrontal cortex can be bound together to create a distinct 

percept (Capurro and Quiroga, 2009). This would explain why binding occurs in the presence 

of perceptual awareness (Crick and Koch, 1990; Engel and Singer, 2001). At around 300 ms, 

depth P3b potentials have been recorded in several brain regions with the largest located in 

the hippocampus (Halgren et al., 1998). Scalp and depth P3b are generally presented as ERP 

components reflecting conscious processes (Silverstein et al., 2015). 

We suggest that broadly, this activation can be considered as reflecting the achievement of the 

encoding process with the creation of a stored-representation accessible to the subject. This 
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means that later on this stored-representation will have the capacity of being recalled 

explicitly (verbally, for instance). By contrast, in the case of transient activations, the absence 

of specific hippocampal activity will not allow the formation of any conceptual representation 

that could be explicitly recalled. Nevertheless, because information was encoded in low-level 

structures, changes in perceptual abilities like fluency facilitation (Dehaene et al., 1998b; 

Marcel, 1983) can emerge, demonstrating implicit retrieval.  

As explained above, we consider that the encoding of a stimulus is supported by a cascade of 

brain processes performing Bayesian statistics to decide at their own level which 

representation is the most probable given the incoming stimulus. It seems to be an efficient 

process as demonstrated by the fact that resulting outcomes are usually close to our real-word 

experience except for some cases like visual illusions (Geisler and Kersten, 2002). In the 

following section, we argue that memory retrieval shares a lot in common with the way a 

representation is encoded. More specifically we will use the same dynamic Bayesian 

framework to explain the different retrieval levels than can emerge from a search into the 

memory space. 

2.2 Memory retrieval: a dynamic Bayesian account 

2.2.1 Anatomical considerations 

The hippocampus plays a dual role in human memory, and is involved in both the encoding 

and retrieval of information through two different pathways (Treves and Rolls, 1992). As 

confirmed by experimental data (Leutgeb et al., 2007) the monosynaptic pathway from the 

entorhinal cortex to the CA3 region of the hippocampus enables pattern completion, the 

ability to retrieve past information from incoming inputs. On the other hand, the disynaptic 

pathway recruiting in that order the entorhinal cortex, the dentate gyrus and the CA3 region, 

could allow pattern separation and the ability to encode new stimuli.  

We will argue that in addition to simply being located in the same cerebral structures, 

encoding of new memories and their retrieval are processed through the same dynamic 

Bayesian framework which implies an accumulation of knowledge over time and across 

judgement types in different experimental paradigms. 
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2.2.2 A dynamic Bayesian model for memory retrieval 

We start our argument with reference to recognition memory, where ultimately, a decision 

about prior occurrence is made based on perceptual information in the environment.  

Importantly, in terms of the medial temporal lobe memory system, and most particularly in 

recognition memory, episodic memory judgements can be decomposed into familiarity and 

recollection (Aggleton and Brown, 1999; Eichenbaum et al., 2010). However, the nature of 

these two different retrieval modes remains unclear as illustrated by the debate between a dual 

and single process accounts (Mandler, 2008; Moulin et al., 2013) and reflects the limits of the 

current memory theories. We think that a novel model might be useful to explain these 

different levels of memory access.  

Although a dynamic Bayesian framework has been widely used to model perceptual 

integration of sensory inputs over time and consequently fits well with the Bayesian brain 

hypothesis (Knill and Pouget, 2004), surprisingly, this perspective has rarely been mentioned 

for understanding memory retrieval. One exception comes from the diffusion decision model 

developed by Ratcliff in the late 1970s (Ratcliff, 1978) which can be applied to both 

perception and memory (see (Ratcliff et al., 2016) for an updated version).  In this model, 

evidence for a stimulus is accumulated over time and a decision is made when a certain 

threshold/criterion is reached. The criterion corresponds to the minimal amount of evidence 

required to perform above chance level in a given task, and the amount of evidence directly 

reflects the level of information access. In memory retrieval we have to account for a broad 

range of processes, including the capacity to process items more fluently the second time we 

encounter them (implicit memory), but also including free-recall (such as being able to recall 

Jennifer Aniston’s name) and the accessing of previous events (such as being able to recall the 

last time that we saw Jennifer Aniston). We suggest that these retrieval modes lie on a 

continuum, representing levels of memory accessibility (Tulving, 1985b). In our model, 

higher levels of accessibility in memory are accompanied by higher levels of evidence. One 

strength of our model is to consider participants’ subjective responses according to the related 

experimental task as recently proposed for perceptual judgments (J-R. King and Dehaene, 

2014; Ko and Lau, 2012) and this will vary dynamically over the time-course of the decision. 

The successful retrieval of information varies according to the amount of environmental 

support provided by the context. This factor directly determines the amount of effort needed 

to retrieve any particular information: the self-initiated activity (Craik, 1986; Lindenberger 
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and Mayr, 2014). High levels of environmental support which require little self-initiated 

activity are found when the stimulus appears in the same form as in the environment, such as 

in a recognition task, and the subject merely has to report whether they have seen the stimulus 

or not. In contrast, free recall tasks involve more self-initiated activity because of the low 

level of environmental support available. This directly translates in terms of performance 

where participants have better memory scores in recognition tasks than for free recall 

(Lindenberger and Mayr, 2014).  

 

We will focus on four paradigms commonly used in the literature: two that are related to 

recall tasks: free recall and cued-recall, and two relying on recognition processes: the Yes/No 

task and the forced-choice task. These four paradigms involve, in this order, decreasing 

amounts of self-initiated activity. Placed in a Bayesian framework, we propose that the 

amount of self-initiated activity triggered by the retrieval task reflects the number of 

hypotheses from which the decision is drawn: the less environmental support is provided, the 

more hypotheses must be considered. The top of the posterior probability for these different 

hypotheses is represented in Figure 1.2 by colored circles. The placement of the criterion that 

best separates the different hypotheses into different classes allows the generation of an 

adapted response. We will argue that two different criteria are enough to explain the variety of 

retrieval phenomena: one for familiarity and one for ‘knowing’. They are respectively 

depicted by blue and orange lines in Figure 1.2 Note that knowing here corresponds to 

semantic knowledge concerning facts about the world (semantic generic-knowledge) or about 

our personal life (semantic self-knowledge) that can be explicitly expressed though naming, 

for example. It refers to noetic consciousness in Tulving terms (Tulving, 1985a) and should 

not be confused with Know responses from a Remember/Know/New paradigm that often 

reflect familiarity responses (Gardiner and Richardson-Klavehn, 2000; Williams et al., 2013). 
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Figure 1.2 Memory retrieval: a decision based on the evidence accumulated over time 

towards different hypotheses/classes.  

The top of the posterior probability calculated for each hypothesis is represented by a colored 

circle in the dimension of the retrieval decision. Dimensionality is represented in the figure by 

the number of possible stimuli involved in retrieval. The two potential criteria that are used in 

the decisional process: “familiarity” and “knowing” are represented by the blue and orange 

lines respectively. Over time the class distributions get more and more differentiated and 

facilitate retrieval access. Decision is made on all possible hypotheses for free recall (plot A.1 

from A.4) and is restricted to a subset of classes on a cued recall (plot B.1 from B.3). For 

recognition tasks the number of classes is highly reduced with to 2 classes for a Yes/No task 

(plot C.1 to C.3) and 2 hypotheses for a forced-choice task (plot D.1 to D.3). Several 

examples of retrieval access are detailed: Absence of retrieval (A.1), Familiarity (A.2), 
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Knowing (A.3) and Remembering (A.4) in a free recall task, knowing (B.2 and B.3) in a cued-

recall task, familiarity judgement in a Yes/No task (C.2 and C.3) and categorization in a 

forced-choice task (from D.1 to D.3).  

 

 Free recall  

Consider a question such as, who won the French Open Tennis Championship's women 

singles title in 2013? It is a free recall task: a name has to be retrieved without more 

information. Dealing with that question is not easy because it implies searching in a memory 

space containing all the possible and accessible hypotheses for the feature “Name” which is 

huge. As an illustration, in the top of Figure 1.2 are represented the posterior probability for 

eight hypotheses corresponding to eight different names (colored circles) plus the posterior 

probability distribution corresponding to new items (grey circle).  Retrieval corresponds to a 

response based on a knowing criterion (orange line) that corresponds here to the ability to 

report a name. Depending on the amount of evidence accumulated toward a name, correct 

naming can be performed (diagram A.3, Figure 1.2) or not (diagram A.1 and A.2, Figure 1.2). 

Indeed, semantic knowledge emerges when all the possible hypotheses are well dissociated 

from each other.  

 

 Cued recall  

Free recall can be facilitated by adding a cue (see (Nairne, 2002) for a contemporary 

discussion of cue-target relations). A cue is a partial amount of information directly related to 

the one that has to be retrieved. In our example, it could be the first 3 letters of the name: Wil. 

The cue’s effect will be to reduce the number of possible hypotheses to a subset of classes and 

thus facilitate retrieval (diagram B.1, B.2 and B.3). Behaviorally, this can be translated in 

terms of shift from a simple familiarity judgement to the retrieval of a name (diagram B.2 in 

Figure 1.2).  

 

Information can be added to such an extent that the stimulus presented is not merely a part of 

the stimulus (a cue) but the stimulus itself. The task no longer consists in trying to recall an 

item but relies on the recognition of this item as it appears in the environment. Yes/No and the 

forced-choice recognition tasks are two typical designs to test recognition.  

 

 Yes/No task  
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In a Yes/No paradigm we have to judge if the item presented on its own was previously 

encountered or not. In keeping with our example, the stimulus in the Yes/No task might 

correspond to the name Serena Williams. The task would be to decide whether the fact: 

‘Serena Williams was the Roland Garros’ winner in 2013’ is indeed information that we have 

stored in memory (have encountered before), or is an incorrect, ‘new’ statement. This 

judgement is performed on two classes of response: “Old” and “New” can merely rely on the 

familiarity criterion depicted in blue (diagrams C.1, C.2 and C.3, figure 1.2) that applies to a 

single dimensional feature (one name).  At low levels of evidence (diagram C.1, Figure 1.2) 

the two distributions are both under the familiarity criterion, since not enough evidence has 

accumulated to distinguish an old item from a new one. If more evidence is accumulated 

toward the “Old” item, distributions will disperse from the “New” class and correct 

identification can be based on a familiarity judgement (diagrams C.2 and C.3, Figure 1.2).  

 

 Forced-choice tasks 

In a forced-choice task, the number of possibilities is highly reduced: there are only two 

hypotheses (two possible stimuli), and it is for this reason that it is probably the easiest of all 

memory decision tasks (e.g. (Bayley and Wixted, 2008; Westerberg et al., 2006). In our 

example, we might pick one of the two proposed names: Serena Williams and Victoria 

Azarenka. We again plot the posterior probability reduced to a 2D representational space 

(bottom plot).  On these diagrams the orange diagonal represents the knowing criterion for 

discriminating the two stimuli such that at low levels of evidence, we can differentiate 

between two distributions in the representational space, although the distributions overlap 

(diagram D.1, Figure 1.2) and were not different under the familiarity criterion in the Yes/No 

task (diagram C.1, Figure 1.2). As more evidence is accumulated, distributions will be more 

spread apart.  

2.2.3 Evaluation of responses: Another continuum 

Interestingly, for a given memory task, the amount of environmental support is also 

modulated according to the way retrieval is evaluated. Retrieval measurement is not necessary 

as categorical as right/wrong and can involve a graduation of states that are reflected in the 

amount of evidence accumulated. This is particularly visible in recall tasks where a large 

amount of evidence has to be accumulated. As an example, participants involved in a free 

recall task perform better when asked to report correctly the Feeling of Knowing for a name 

than when required to report the actual name (Koriat and Levy-Sadot, 2001). Moreover, in the 
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above four tasks, we have outlined the lowest level of evidence required to perform certain 

memory evaluations.  It is clear that where excess information exists this will have a bearing 

on retrieval processes (such as being able to recall the correct answer in any case when we are 

presented with the material in a recognition task. 

 

In free recall, not being able to give the correct name does not necessarily mean not being 

able to retrieve any other information. Retrieval judgements can take into account other 

parameters. The first one relies on a familiarity criterion (blue line) which is less conservative 

that a knowing criterion in a free recall task because it is only based on two classes: “Old” and 

“New”.  Therefore, if enough evidence is computed for the “Old” class, familiarity toward the 

response can emerge. In the diagram A.2 (Figure 1.2) the eight hypotheses corresponding to 

the “Old” class are sufficiently spread out from the “New” class to report a familiarity 

judgement.  

 

The second parameter involves a knowing criterion that is based on other features related to 

the response. Indeed, a search for a name into a main feature dimension can be associated 

with a search for other items from secondary feature dimensions (cf. The Source Monitoring 

Framework; e.g.(Johnson et al., 1993)), that involve either personal detail (self-knowledge): I 

remember watching it in a pub in Paris. I was with other friends of mine or more generic 

facts: It was a short match. A very sunny day. Remembering an event can therefore be 

considered as the retrieval of items along several feature dimensions that are closely linked. 

This search of complementary items (e.g. dates and places) follows the same evidence 

accumulation model and is made in parallel with the accumulation of evidence performed on 

the main feature dimension. Depending on the strength of the maximum a posteriori 

computed in these secondary dimensions, retrieval of specifics can emerge. If retrieval of 

related other features occurs before knowing the response it might give rise to a Feeling Of 

Knowing for the item (FOK) (Hart, 1965) (not represented in the Figure 1.2); if it occurs after 

identifying the response or close in time, it might trigger the remembering of the experience 

(diagram A.4, Figure 1.2). According to Tulving’s definition, when some of these items refer 

to self-knowledge, remembering might give raise to autonoetic consciousness and the overall 

experience being part of episodic memory (Tulving, 1985a).  
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2.2.4 First and Second-order judgements  

According to this dynamic Bayesian model we have shown that novelty, familiarity, FOK, 

semantic knowledge and remember responses can be considered as first-order judgements that 

are only based on 2 criteria: familiarity and knowing. These 2 criteria might be supported by 

different brain structures. For example, the entorhinal cortex in the MTL seems to be a perfect 

candidate to support the familiarity criterion because of its crucial role in the process of 

familiarity judgements (Aggleton and Brown, 1999; Brandt et al., 2016; de Vanssay-Maigne 

et al., 2011). On the other hand, the (pre)frontal cortex and the hippocampus might be good 

candidates for the knowing criterion given their importance in episodic and semantic memory. 

Interestingly, this idea of considering episodic and semantic memory through the same 

criterion is in agreement with recent neurobiological findings that showed that episodic and 

semantic retrieval might involve the same brain network and therefore might reflect variation 

along a continuum of processing (Burianova et al., 2010; Ryan et al., 2008). More generally 

frontal structures are proposed to play a role in strategic and conscious memory control (e.g 

(Moscovitch, 1992; Wheeler et al., 1997)) and these control aspects relate to our higher order 

‘knowing’ criteria.  In keeping with this idea, Souchay et al. (Souchay et al., 2000) showed 

that a decline of frontal functions during aging is associated with a decrease in the ability to 

generate episodic memory FOK. This is consistent with our prediction that FOK might 

emerge from processes based on a knowing criterion supported by frontal and hippocampal 

structures. Neuroimaging support for this frontal-hippocampal involvement in metacognition 

comes from Genon et al. (Genon et al., 2016). 

 

Our model is also close to the standard Signal Detection Theory used to explain the difference 

between Remember and Know responses, here referred as remember and familiarity 

judgements, in classical Remember/Know/New paradigms (Dunn, 2004; Wixted, 2009). 

However, it deviates from it in such a way that differences are not explained by confidence 

levels (higher confidence levels for Remember compared to Know responses) but in terms of 

levels of information accessibility. Indeed and as already stressed for perceptual judgements, 

during memory retrieval it is important to dissociate first-order judgements (such as novelty, 

familiarity, semantic/episodic memory) that are based on the class with the highest a 

posteriori for a given task, from second-order confidence judgements that compute to what 

extent the decision is correct or not (J-R. King and Dehaene, 2014). The further the class is 

from the decision criterion, the more confident will be the response. Crucially, confidence 
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judgements should always be considered according to the criterion used because low 

confidence on remember responses might not equate with high confidence of familiarity for 

example. Although first and second-order judgements are interrelated, they are not 

interchangeable (Rajaram et al., 2002), a notion that an experimenter should keep in mind 

when explaining the different response modalities to participants (Williams et al., 2013). 

 

The main strength of this dynamic representation is to show that the different types of 

memory retrieval are due to a difference in terms of information accessibility that are part of a 

continuum going from categorization to a full recollection. 

 

The prior probability distribution of a specific memory refers to what extent we expect to 

use/access a memory again. This value is high for newly encoded events and decreases over 

time, unless the memory is revisited. We suggest that one of the key roles of the hippocampus 

would be to keep track of the memories with high prior values in such a way that it could be 

considered as a dictionary of recently experienced events (Thorpe, 2011). In the next section 

physiological evidence is discussed in support of this hypothesis. 

 

2.3 The hippocampus: a repository of memory with high prior values 

Intracranial recordings in epileptic patients showed that neurons in the hippocampus are very 

selective to recently seen stimuli like celebrities (Quiroga et al., 2005), TV series on air such 

as the Simpsons (Gelbard-Sagiv et al., 2008) or members of the patients’ family. This 

selectivity seems to develop very quickly as shown by the recording of neurons that were 

selectively responding to previously unknown members of the experimental team within just a 

few days  (Viskontas et al., 2009) and might also disappear quickly if the stimuli are not 

experienced anymore leaving space for more recent events. We can imagine that if we could 

record a few months later the same hippocampal neuron that was found selective to an 

experimenter during a 2-week recording, we would notice a change in its selectivity. The 

same would apply for the famous Jennifer Aniston neuron if we do not rehearse the memory 

of the actress.  

Although speculative, we can suppose that the prior value could correspond to the number of 

cells devoted to a particular item in the hippocampus. Over time and in the absence of 

rehearsal, the number of cells dedicated to a stimulus would decrease, and consequently its 
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prior value. As a result, memories with low prior values in the hippocampus would be 

overwritten by newly encoded memories. In contrast, every time a stable memory would be 

revisited, its memory trace would be reactivated and its prior value would be boosted. 

Therefore, memories that are very often rehearsed would be associated with a strong prior 

value that makes these memories more distinguishable from other ones and therefore more 

easily retrievable. Importantly, reactivations do not necessarily result in explicitly retrieving 

the memory trace. Some memory traces can be only reactivated in an implicit manner. Low 

activations of neurons are localized in cortical sites and prior value increases but not enough 

for the hippocampus to take into account that memory. Interestingly, it has been shown that 

the reactivation of a stable memory can sometimes be associated with its reconsolidation 

(Dudai, 2012). Reconsolidation is in fact considered as an update of previous learnt 

information (Alberini, 2005; Dudai and Eisenberg, 2004; McKenzie and Eichenbaum, 2011) 

and can lead to its distortion (Sara, 2000). Frequently rehearsed experiences might be 

therefore completely falsified after some time, a critical point of interest when considering 

eye witness testimony in courtrooms (Lacy and Stark, 2013).  

3. Evidence for a dynamic Bayesian model  

Before technology gave us sophisticated devices to investigate the brain from the inside, the 

only way for scientists to get an idea of the series of processes that were involved in a task, 

was to rely on behavioral responses and in particular participants’ reaction times (Donders, 

1969). Experiments were conducted by varying specific parameters and reaction times were 

compared between conditions.  

This is a very reliable methodology that is still widely used in many laboratories. Indeed, as 

opposed to subjective reports that are coarse-grained judgements, reaction times give more 

subtle details and especially can inform about processes that are not experienced consciously. 

Cognitive processes are usually made well before the motor action that closes up the behavior. 

To get closer to the earliest stages and observe very tiny differences between conditions, it 

can be better to use saccadic responses than more traditional manual responses (Kirchner and 

Thorpe, 2006). Nowadays, tasks using manual or saccadic responses can be combined with 

EEG brain recordings. This is a powerful tool because it allows us to see how brain activity 

unfolds over time with millisecond precision. As we see, reaction times can tell us a lot about 

the underlying brain processes. According to the diffusion model (Ratcliff, 1978) whereas 

timing is represented on the x-axis of a graph representing the time-course of a decision, on 

the y-axis it is the evidence that it is plotted. Evidence can be thought of as the amount of 
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goal-oriented information that has been accumulated since the beginning of the Bayesian 

process. In every computational task: problem-solving but also perception, memory or future 

prediction, the brain is involved in a decision process. We can then directly infer the amount 

of evidence that has been reached at a specific time and for a given task. Applied to memory 

encoding and retrieval, it allows them to be considered as a continuum (Figure 1.3). In this 

section we will review experimental evidence that has been collected until now and that 

support our evidence accumulation model hypothesis described in the previous sections.  

 

 
 

Figure 1.3 Decisions based on the evidence accumulation model.  

Over time more evidence is accumulated and the categorization of the stimulus becomes more 

refined. The fastest timing (in red) and the average timing (in bold black) are shown for 

saccadic, manual and Evoked Response Potentials (ERPs) with the corresponding authors of 

the experiment (in italics). 
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3.1 Timing of early processes 

3.1.1 Priming effects 

Perceptual decisions do not necessarily rely on subjective awareness and can be simply made 

on subliminal perceptions. In a masking paradigm, a stimulus is flashed and quickly followed 

by another masking stimulus that makes the first stimulus invisible. The first stimulus is not 

subjectively perceived, yet it has some influence on further decision processes. This paradigm 

has been used in several similar experiments involving among others number comparison 

(Del Cul et al., 2007) or animal detection (Bacon-Macé et al., 2005). For example, DelCul et 

al. showed that even when participants reported that they had not seen a digit, they were still 

above chance at comparing that digit to 5. EEG was also recorded during the task and a direct 

comparison was possible between conditions in which participants reported having seen the 

stimulus or not. Until 250 ms, brain activity was broadly similar between the two conditions 

with activity originating from both occipital and temporal regions. In agreement with Bacon-

Macé et al. (Bacon-Macé et al., 2005) brain activation increased monotonically during this 

early stage. 

Interestingly, from about 270 ms they noted substantial difference between subjectively ‘seen’ 

and ‘unseen’ stimuli with strong activation in fronto-parieto-temporal regions for seen stimuli  

(Bacon-Macé et al., 2005; Del Cul et al., 2007) associated with a strong non-linear increase 

(sigmoid shape) for stimuli consciously perceived. This all-or-none measurement is correlated 

with subjective perception and means that perceptual awareness has been reached.  

3.1.2 Categorization 

When implicitly or explicitly perceived, a stimulus can be categorized at different conceptual 

levels involving some degrees of precision: superordinate level (e.g. animal), basic level (e.g. 

bird) or subordinate level (e.g. cardinal). While many studies agree that it takes more time to 

process a stimulus at a subordinate level than at the two others, there is a debate about 

whether the superordinate or basic level is processed first. Early work (Mervis and Rosch, 

1981; Murphy and Smith, 1982; Rosch et al., 1976) was in favour of the basic level as the first 

categorization processed in the brain. However recent studies (Joubert et al., 2007; Loschky 

and Larson, 2010; Macé et al., 2009; Poncet and Fabre-Thorpe, 2014; Praß et al., 2013) have 

shown that in fact stimuli were first categorized at the superordinate level and ~ 50 ms later at 

the basic level. Unlike earlier works, the main difference was that categorization did not 
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imply any semantic processing and was mainly based on the analysis of visual input. These 

results collected on manual responses were confirmed in a very fast forced-choice saccade 

task (Wu et al., 2010). This study showed that 120 ms was enough for participants to detect 

the presence of an animal (superordinate) but not to determine if it was a dog (basic level).  

Priming effects and categorization are the earliest processes that can be made without 

necessarily relying on subjective awareness. The results above are compatible with the 

suggestion that those decisions are made based on the evidence accumulation model that we 

described in the previous sections. Information accumulates over time and enables making 

refined decisions (Cichy et al., 2014). Interestingly, these early decisions correspond to the 

first stages of memory encoding. It has been shown that neurons in IT have already enough 

selectivity to make categorizations at the basic level (Cichy et al., 2014; Kriegeskorte et al., 

2008). Subordinate categorization, which needs more expertise is supposed to rely on PFC 

(Mack and Palmeri, 2011). Interestingly, this hierarchical processing observed for visual 

inputs is preserved for the other sensory modalities such as audition (De Lucia et al., 2010; De 

Meo et al., 2015; Murray et al., 2006).  

3.2 Timing of higher level processes 

Whereas a lot of data exist in terms of speed of processing for early decisions far fewer 

studies have measured the timing of later processes. Nevertheless, several paradigms have 

been proposed to measure the differences between high level processes such as familiarity, 

Feeling of Knowing (FOK), semantic and episodic memory.  

3.2.1 Familiarity versus recollection 

The first method to quantify the speed of familiarity and recollection is the Speed Accuracy 

Tradeoff (SAT). In this paradigm, a word is presented and participants have to judge if it was 

already seen or not under different time constraints. By using the SAT, several studies 

(Boldini et al., 2004) have shown that familiarity is processed before recollection. However 

the SAT does not give the precise timing of the two processes. To do so, Besson et al.,(Besson 

et al., 2012) proposed a new paradigm: the Speed Accuracy Boosting procedure (SAB) that 

has been used with visual stimuli. This method is similar to a go/no go task (press a button if 

the stimulus was previously seen/hold the response) but adds a time constraint: responses 

have to be made within 500 ms. Under such conditions, the fastest response occurred at ~ 370 

ms. Using the same paradigm, this result was replicated for famous faces (Barragan-Jason et 

al., 2013). Interestingly Besson et al. 2012 also collected remember and know judgements 
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when participants were performing the SAB. They found that from ~ 370 to ~ 420 ms 

responses were only based on familiarity. Only later are responses possibly based on 

"remember" judgements. Those behavioral results are in agreement with EEG studies that 

separate familiarity and recollection into two respective components: 1/ the FN400 that occurs 

in the frontal region between 300 and 500 ms after stimulus onset and 2/ the Late Positive 

Component localized in the centro-parietal region between 500 and 800 ms (Curran, 2000). 

3.2.2 Feeling of Knowing 

The FOK is the feeling that we can retrieve an item without having it yet in mind. The "game 

show" paradigm (Reder, 1987) has been designed to measure participant’s ability in judging 

information to be possibly retrievable. In a modified version (Reder and Ritter, 1992) 

participants were given 850 ms to decide for a strategy in an arithmetic problem. They had to 

decide if they will be able to solve it by retrieving from memory or by making a calculation. 

Under this strong time constraint, participants were not able to give the answer and could only 

rely on their ‘gut feeling’, but participants were good at evaluating which strategy was the 

optimal. Thus, FOK latencies are shorter than those for giving the correct answer. Several 

other studies have been performed (Koriat, 1995) with the same conclusion: FOK appears 

before the subjects can report the response. Unfortunately in FOK judgement tasks, time 

constraints are usually lenient and do not really offer the opportunity to measure when that 

process starts. Nevertheless it has been possible to track the time-course of FOK by EEG 

recording. By using a new version of the game show paradigm, (Paynter et al., 2009), two 

main components of correct FOK were found: a frontal P2 component between 180 and 280 

ms after onset trial and a fronto-central P3 component between 300 and 550 ms. This shows 

that as early as 180 ms there is enough evidence to start response initiation. 

3.2.3 Semantic and episodic memory 

The Remember/Know paradigm (R/K in short) was first proposed by Tulving (Tulving, 

1985a) to dissociate episodic from semantic memory which corresponded to remember and 

know responses respectively. However, in common experimental designs ‘Know’ responses 

are not semantically related and instead refer to a familiarity judgement (Gardiner and 

Richardson-Klavehn, 2000; Williams et al., 2013). Most of the studies using R/K/N 

paradigms are thus comparing familiarity and recollection processes. However, in an imaging 

study using Positron-Emission Tomography (PET), (Wiggs et al., 1998) directly compared 

semantic and episodic retrieval. In their study they found that naming of an object was 
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processed earlier than semantic and episodic information about the objects. However, 

surprisingly, reaction times were faster for retrieving information based on episodic details 

compared for semantic-based retrieval. This finding does not fit with ERP studies (Curran, 

2000) that showed recollection is a late process that occurs between 600 and 800 ms (late 

positive component) and where semantic information is processed between 200 and 500 ms 

(N400). To our knowledge, no task has been designed to test and compare directly the speed 

of semantic and episodic retrieval in conditions where participants have to make very fast 

responses as in the SAB paradigm. We note that reaction times collected by Wiggs et al. are 

long compared to other studies (Forster and Chambers, 1973; Renoult et al., 2012). In this 

case, the contradictory behavioral finding from Wiggs et al. with ERP studies could be 

explained by the fact that their design was not encouraging participants to respond quickly 

enough (as is done in go no-go designs such as with the SAB) and that, as a consequence, the 

participants’ decisions may have been ‘contaminated’ by other processes. Our evidence 

accumulation model makes a different proposal. As explained in Section 2.2, recollection 

corresponds to a sufficient amount of evidence accumulated for several items related to a 

hypothesis: dashed lines Figure 1.3 Depending on the strength of these distributions, retrieval 

of secondary items- that are related to the self or not- can occur earlier or later than the main 

one which is sought for.  

Overall these studies depict memory encoding as a continuum of processes: categorization, 

familiarity, semantic and episodic information. The crucial point here is that at every point of 

this continuum, the information is encoded at the level it was processed. Retrieval of the 

information will be then computed on the evidence coming from the stored-representation of 

each of these levels. Therefore, if encoding was stopped at an early stage, retrieval will be 

only based on low-level properties of the stimulus. Whereas a small amount of evidence may 

be enough to make judgements based on a mere feeling of knowing, more information has to 

be computed to reach higher levels of retrieval. 

4. Clinical application 

By extracting the maximum a posteriori information after some time of search and computing 

the confidence on the selected option, our model seems optimal in generating reliable memory 

judgements. We have shown that critical regions might support these decisions and especially 

the rhinal cortices, the hippocampus and the (pre)frontal cortex. 
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Brain damage or lesions in these structures or simply momentary dysfunctions of their 

neuronal network might perturb the system and elicit inappropriate memory judgements 

ultimately leading to dementia. In the following we will demonstrate that our model can 

account for such disorders by focusing on Alzheimer’s disease. 

 

Clinical studies of Alzheimer’s disease point to neuronal damage that first occurs in the MTL 

-with the entorhinal cortex as a primary site (Braak and Del Tredici, 2012; Gomez-Isla et al., 

1996; Khan et al., 2014)- which then spreads out to neocortical regions and corresponds to an 

increase of dementia severity from mild amnesic impairment (MCI) to Alzheimer Disease 

(AD)  (Niikura et al., 2006; Serrano-Pozo et al., 2011).   

Numerous studies have shown that recognition memory is particularly impaired in AD 

patients but this is less clear for MCI individuals. The traditional view is that this reflects 

differences in the memory system affected by damage. It is also consistent with our 

accumulation of evidence proposal, even when considering the progression from less severe 

(MCI) to more severe (AD) dementia and the differences between two different types of 

recognition tasks that differ in terms of environmental support. As an example, people with 

MCI are not impaired on forced-choice recognition tasks but showed deficits on Yes/No 

recognition tasks, whereas AD patients are both impaired on Yes/No and forced-choice 

recognition tasks (Clark et al., 2012). 

 

This discrepancy of performance in the MCI population parallels blindsight patients in 

perceptual domain. As a result of strong damage in the primary visual cortex, people with 

blindsight are unable to report seeing a stimulus when it is presented in their ‘blind’ 

hemifield. Nevertheless, they can still perform better than chance level if they are asked to 

discriminate two stimuli. It has been recently suggested that the overall neuronal activation 

during the presence of a stimulus might decrease after such lesions requiring the update of the 

Present/Absent criterion (Ko and Lau, 2012). This inability to shift the criterion in blindsight 

patients -which is the same as considering the absent class with a high prior value (J-R. King 

and Dehaene, 2014)- might explain patients’ performance.  

 

We propose that a similar explanation might account for MCI and AD patients to explain the 

results obtained in recognition tasks. In a Yes/No task the distinction between “Old” and 

“New” items is based on a “familiarity” criterion (see blue line, top diagrams, Figure 1.4) in a 

single dimension (one stimulus). Therefore an item would be considered as “Old” if its 
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posterior probability – which depends on both its prior probability and its likelihood – is 

larger than the posterior probability of encountering a new stimulus which here is equivalent 

to its prior. The posterior probability of an “Old” and “New” item are represented respectively 

by orange and grey circles. Mild cognitive impairment arguably arises due to the reduction of 

neural signals originating in the neuronal assemblies in the entorhinal cortex (see the middle 

top plot, Figure 1.4) that might be a crucial region in the placement of the “familiarity” 

criterion (see (Didic et al., 2011)). Because of this signal decrease, a shift in the familiarity 

criterion would be necessary to adjust the placement of this criterion to a less conservative 

value. This might result in the prior value decrease of new items, that is to say, a decrease in 

expecting new stimuli to appear. The position of this updated criterion is represented by the 

dashed blue line (middle top plot, Figure 1.4). As such, people with MCI will not be able to 

make this shift of prior and decisions might rely on a non-updated criterion that is now too 

conservative (middle top plot, Figure 1.4). As a result, people with MCI would have a trend to 

consider information that they already experienced as new events. This would support our 

hypothesis of considering that the MTL structures are directly involved in updating the prior 

value. However, because the hippocampus and neocortical neurons are still preserved, this 

overall decrease does not impact the ability of people with MCI to perform above chance 

level on a forced-choice task.  In a forced-choice task the distinction between two items: here 

an “Old” and a “New” item is based on the “knowing” criterion (see orange line, bottom 

plots, Figure 1.4) in a two dimensional representation (two stimuli). Unlike in a Yes/No task 

the prior probability of a new item does not depend on individuals’ past history. This prior 

probability is the same for the “Old” and “New” items and is fixed at 0.5 in every trial of a 

forced-choice task. A decision in a forced-choice task would therefore rely on the comparison 

of the likelihood of the two hypotheses which requires less evidence than in a Yes/No task. In 

the case of more severe loss of neurons, (for example in AD patients), the loss of neurons in 

both the hippocampus and the neocortex could result in a large overlap of the two neuronal 

populations which would prevent their differentiation. As such, more severely amnesic people 

are unable to report having seen a stimulus before (top right plot, Figure 1.4), and their 

performance in a forced-choice is also impaired (bottom right diagram, Figure 1.4).   

Ultimately, if there is no capacity to represent two differing neural populations which map 

onto separate concepts, then memory performance in a forced-choice task will be at chance 

levels. Again, this explanation of memory deficits can be viewed in a dynamic way. The 

amount of evidence accumulated by more severely impaired patients (e.g. later stages of AD) 
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would stop at a very early stage and even before the first stage as depicted in Figure 1.2 

whereas less impaired people (e.g. MCI) would be able to reach this first level.  

 
Figure 1.4 Two-dimensional representation of the distribution of the neuronal responses on 

a Yes/No judgement and a on a forced-choice task.  

The neuronal distributions involved in a memory task  are represented for controls, MCI 

individuals and AD patients. The decrease of neuronal signal is depicted by the orange 

arrows. Blue line represents the optimal familiarity criterion for normal neuronal activations 

whereas the dashed blue line corresponds to the optimal familiarity criterion in case of brain 

damage in MCI individuals. Orange line corresponds to the “knowing” criterion.  

 

5. Conclusion 

Perception and memory are not two distinct entities but need to be considered along a 

continuum. A dynamic Bayesian perspective is commonly used in the field of perception but 

until now has been poorly developed in terms of memory retrieval. This chapter is a first 

attempt at trying to define retrieval mechanisms according to that scheme. This model already 

fits experimental data and sheds some light on pertinent memory debates such as the dual 

versus single process debate and the consideration of confidence judgement in familiarity and 

remember responses. But more strikingly, by identifying two crucial parameters, the 

familiarity and knowing criterion, this model gives strong predictions about memory access 

that can be applied to clinical cases. One of the next challenges would be to find a way of 

manipulating these parameters and potentially bring back to mind memory traces that were 

thought to be lost.  
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By our view, the dynamic Bayesian approach developed in this review based on the 

interaction between a prior and a likelihood value is particularly relevant when considering 

the retrieval of recent memories that are associated with a high prior. However, recent or 

frequently rehearsed memories are not the only types of memories that remain in the brain. 

Memories of events/stimuli might stay dormant for years (Dudai, 2004), yet retrieval would 

still be possible. The probability of encountering these stimuli would drop to a value so close 

to zero that the prior value might not have any influence in the retrieval of such memories. 

We suggest that the retrieval of these long-lasting memories might only be supported by the 

similarity between the current input and the stored-pattern: the likelihood in the Bayesian 

formulation.  
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CHAPTER 2. From recent and active memories to 

remote and inactive ones 

 

 

Abstract 

We will argue that the notion of “activity level” might be more relevant to study memory 

retrieval and especially when considering (very) long-term memories. In addition to the time 

variable, the activity level of a memory takes into account the potential re-activations of a 

memory trace. It makes it easier the differentiation between old memories that are often re-

activated and remote memories that were not re-expressed for a long time and that remain in a 

dormant state. To account for the retrieval of memories with various levels of activity we will 

use the same dynamic Bayesian framework that we largely developed in chapter 1. By 

considering that neurons might compute Bayesian inferences which results in the generation 

of spikes, we will show a straightforward link between memory activity and neuronal activity. 

This perspective would enable us to speculate about the maintenance of inactive memories 

over time. 
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Presentation chapter 

In chapter 1 I have presented memory under the scope of a Bayesian framework. Memory 

retrieval would be the result of prior expectation together with the likelihood of a current 

input.  

In a previous version of this chapter review I wanted to integrate a section on very long-term 

memories. Indeed, it is the main topic of my thesis. But as I already said, Simon was not very 

favorable to explain long-term retrieval using the Bayesian theorem. According to him, how 

could we retrieve very long-term memories that were associated with a very small prior? For 

memories that are inactive for years, this value must be almost zero. In the classical Bayesian 

formulation, the posterior probability is the result of the multiplication between the prior and 

the likelihood. If the prior is almost zero, there is almost no chance for retrieval. This was 

problematic because the goal of my thesis was to show evidence for very long-term 

memories.  

I agreed with Simon: the prior value would be close to zero for inactive memories. But in this 

case, retrieval would only be based on the second factor, namely the likelihood. It took me 

months to be able to express it simply. During this time, I thought that it would be helpful to 

show that the retrieval of very long-term memories would be similar to Tversky’s similarity 

asymmetry calculations as already shown by Tenenbaum and Griffiths (Tenenbaum and 

Griffiths, 2002). But it was even worse. I was so stuck that I decided to send an e-mail to Tom 

Griffiths. He replied right away and suggested me to read John Anderson’s articles. Such a 

good advice! From these articles I eventually realized that this problem could be fixed very 

easily: the Bayesian formulation should be written using a logarithm scale where: posterior = 

prior*likelihood-ratio becomes: log(posterior) = log(prior) + log(likelihood-ratio). I should 

have been more careful about the use of the logarithmic scale when I read it first from Gold 

and Shadlen (Gold and Shadlen, 2007). This transformation changes a product into a sum and 

it is now easy to demonstrate that memories with a low prior value could be retrieved if the 

log(likelihood ratio) reaches a certain threshold. 

In addition, John Anderson’s formulation of the Bayesian theorem relied on the notion of 

memory activity/inactivity. To me this was crucial because the main goal of my thesis was to 

demonstrate that we could retrieve memories that were left inactive for years. After months of 

thought, I finally gathered enough information to provide an explanation to how very long-

term memories that were left dormant for years could still be retrieved. I explain it in this 
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second chapter. I also provide biological considerations about how Bayesian inferences might 

be computed in the brain, something that was lacking in chapter 1.



 

70 
 

1. Introduction 

The commonly held view is to categorize memories according to the duration between the 

formation of a memory and its retrieval. The short-term/long-term dichotomy is a classic 

example that can include several subtypes such as “very short-term memories”, “recent 

memories”, “very long-term memories”, “remote memories”. This perspective however 

shows limitations considering that memories can be revisited during the intervening period. In 

that sense, old-memories that are reactivated might share similar properties to new memories. 

To that extent, Lewis (Lewis, 1979) suggested that memories should be considered in terms of 

activity levels. Active memories might refer to newly created memories or to old memories 

recently revisited that can be easily disrupted by amnesic agents such as electroconvulsive 

shocks. Inactive memories might correspond to old memories that were not reactivated 

recently and that are not sensitive to amnesic agents. Accordingly, most of our long-lasting 

memories might remain inactive and immune to changes by staying in a “dormant” state 

(Dudai, 2004).  

 

To be retrieved, memories need to be first available and then accessible (Tulving and 

Pearlstone, 1966). Memory availability relies on the persistence of the memory trace. If 

synaptic connections or neurons are lost, such availability might be disrupted and could lead 

to forgetting. The stabilization of these long-lasting traces occurs slowly through 

consolidation that might depend on the modality of presentation of a stimulus and its 

emotional content. However, availability per se is not sufficient to elicit retrieval. Indeed, 

retrieval is completed when the memory is re-accessed again at a specific time. The temporary 

inability to access information might be considered as a second explanation for forgetting. 

According to a recent study (Habib and Nyberg, 2008) the difference between accessible and 

temporarily inaccessible memories might be simply due to the level of neuronal activation. If 

too low, access might be impaired.  

According to this view, all the memories that were consolidated and that were not reactivated 

for a long time might still be available. By staying “dormant”, inactive memories might 

therefore remain available. They might rely on neocortical structures that provide massive 

storage capacities with their 20 billion neurons. But as illustrated by their level of resistance 

to amnesic agents, one of the main differences between active and inactive memories might 

be the ease to access them again. Inactive memories might be hard to wake up from their 

dormant state compared to active memories that are associated with a high expectation value 

(prior value).  
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In this chapter we will show how consolidation allows the gradual formation of stable 

memories and their long-term availability. To account for the retrieval of memories with 

different activity levels we will use the dynamic Bayesian model that was developed in 

chapter 1 in the context of re-activations. In particular, we will demonstrate that for inactive 

memories, the prior probability might be so small that retrieval might be only elicited by 

specific cues from the environment. Although the Bayesian theory is usually perceived in an 

abstract way, we will suggest that it could be considered at the neuronal level and grounded in 

the overall brain architecture. This would enable us to suggest that in/active neurons might be 

the biological substrate of in/active memories.  

 

2. Memory consolidation 

Memory consolidation corresponds to the formation of a stable memory trace performed in 

two stages (Frankland and Bontempi, 2005). The first one called synaptic consolidation is fast 

(completed within a few hours after learning) and corresponds to the stabilization of synaptic 

weights in localized neuronal networks. The second one, much slower and called system-level 

consolidation refers to a change of brain structures supporting the memory trace.  

2.1 Synaptic consolidation  

2.1.1 Hebbian rule 

“Neurons that fire together, wire together” (Schatz, 1992). This hebbian rule is well known in 

the neuroscience community and is a simplistic view of Hebb’s postulate (Hebb, 1949): 

“When an axon of cell A is near enough to excite a cell B and repeatedly of persistently takes 

part in firing it, some growth process or metabolic change takes place in one or both cells 

such that A’s efficiency, as one of the cells firing B, is increased” (p 62). According to this 

view, synapse strengthening would then require the cell A to fire before the cell B. The 

importance of firing temporal order in the change of synaptic weights was further detailed 

with Spike Timing Dependent Plasticity (STDP) models. 

2.1.2 Spike-Timing Dependent Plasticity (STDP) 

In the standard STDP models, only the synaptic inputs that fire in a time window close to a 

post-synaptic spike are modified: either strengthened or weakened. In a sense, STDP models 

can be considered as an extension of the Hebbian rule by adding the notion of synaptic 



 

72 
 

depression. Synaptic inputs firing before the post-synaptic spike are potentiated whereas 

synaptic inputs firing after are depressed (Bi and Poo, 1998).  

2.2 Repetition: the key for neuronal selectivity and long-term storage 

If a subjective representation contains strong emotional content, one exposure can be enough 

to lead to permanent storage (Buchanan, 2007; Reisberg and Hertel, 2005). In cases where the 

emotional content is lighter, repetition might trigger long-term memory storage in the 

neocortex, as already proposed by David Marr in the 1970s (Marr, 1970). Along this line, we 

suggest that repetition of the same stimulus will indicate per se that information might be 

useful and needs to be consolidated. This can be explained in terms of neuronal mechanism in 

which Spike Time Dependent Plasticity (STDP) rule is applied.  

2.2.1 Repetition-suppression and repetition enhancement 

Repetition might play a crucial role by means of 2 phenomena: repetition-suppression (for a 

review see: (Grill-Spector et al., 2006)) and repetition-enhancement (for a review see: 

(Tartaglia et al., 2015)). Repetition-suppression corresponds to a diminution of neuronal 

activity that can be easily measured at various scales: from single neurons to hundreds of 

thousands of neurons in fMRI voxels. This phenomenon is very robust and has been largely 

replicated through various experimental conditions. More subtle is repetition-enhancement 

that usually comes with repetition-suppression and that might only concern a very small 

amount of neurons.  

Several theories have been proposed to account for repetition-suppression. The fatigue model 

suggests that the repetition of the same stimulus might lead to a general “fatigue” of the 

neurons involved with a decrease of response amplitude in the signal. The facilitation model 

explains this decrease by a switch of signal latency inside the neuronal population. These two 

theories however do not explain the phenomenon of repetition-enhancement.  

The sharpening model accounts for both repetition-suppression and repetition-enhancement 

by suggesting that over repetition, the neuronal population involved in the encoding of the 

stimuli might get smaller and therefore more specialized. While the specific neurons might 

continue to fire the same way or even more strongly than when the stimulus was presented for 

the first time (repetition-enhancement), most of the remaining neurons that are not specifically 

coding for the stimulus might not fire again generating a general activity decrease (repetition-

suppression) (see Figure 2.1). The sharpening model was proposed by Desimone (Desimone, 

1996) in light of intracranial recordings in monkeys and then considered as a potential 
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mechanism for explaining priming effects (Wiggs and Martin, 1998). Importantly, repetition-

suppression is not a passive phenomenon but might be directly caused by the inhibition from 

the small number of neurons that are becoming selective (Thorpe, 1990). 

 

Sharpening is a good model for explaining the increased selectivity for stimuli that become 

highly familiar (Anderson et al., 2008; Freedman et al., 2006). However, it fails to explain the 

suppression in the most selective neurons after the repeated presentation of items that are 

mildly familiar (De Baene and Vogels, 2010; Li et al., 1993).  

 
Figure 2.1 Illustration of the Sharpening model.  

A large neuronal network (bottom of the picture) might encode a stimulus such as an 

umbrella (top of the figure) when it is presented for the first time. Over repetition, neurons 

that are not specific to the stimulus might not fire anymore and only selective neurons might 

be able to fire again. Therefore, the memory trace becomes more specific and smaller, that is, 

sharper (from (Wiggs and Martin, 1998)).  

2.2.2 STDP and computational models 

According to the STDP model, neurons that, by chance, fired when a stimulus was presented 

for the first time might strengthen their connections over the repetitions. Neurons that were 

not responding during the presentation of the stimulus or responding too weakly would be 

then inhibited.  

Some recent computational studies have used a simplified version of the STDP rule, in which 

after a post-synaptic spike, all synaptic inputs are depressed, except the ones that have fired 

just before. As a result, neurons equipped with such simplified STDP-learning rule become 

selective to repeated patterns and only after a ten of repetitions (Bichler et al., 2011; 
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Masquelier and Thorpe, 2007). It is simply over repetition and through this competitive-

STDP-based-learning that the neuronal network encoding a specific stimulus might become 

sharper (Masquelier et al., 2009) and might rely on cortical areas (Norman and O’Reilly, 

2003). 

2.2.3 Neuronal selectivity 

Computational data reveal the need of a few tens of repetitions (defined as the repeat of 

patterns that were previously learnt (Wilson and McNaughton, 1994)) to achieve the 

formation of selective neurons.  

Evidence for rapid selectivity was also shown in participants who incidentally learnt auditory 

noise patterns (Andrillon et al., 2015). The data in the Supplementary Information of the 

article clearly demonstrate that five presentations are enough to create a fully distinct ERP 

component. If such a rule applies for hippocampal and neocortical neurons, it would mean 

that neurons would naturally become selective to input patterns that occur repeatedly.  

 

Synaptic weights in the hippocampus can be modified quickly after a few repetitions of the 

same stimulus but are short-lasting. To be stored in long-term, memories might be supported 

by synaptic changes in the neocortex. Long-lasting selectivity which might be specific to 

neocortical neurons would then explain the extreme long retention of stored-representation in 

these regions. Indeed, if selectivity is high enough, neurons would remain silent and in an 

inactive state until the stimulus they encode is presented again.  

By reactivating a recent memory trace during ‘off-line’ stages, the hippocampus might speed-

up the formation of new neocortical assemblies of neurons supporting the memory (Davis and 

Gaskell, 2009). Neocortical hyper-selectivity might also occur without its support but in such 

case it might require more repetitions from the environment as suggested by hippocampal 

lesions in patients (Freed and Corkin, 1988; Gabrieli et al., 1988; Verfaellie et al., 2000).  

2.2.4 ‘Off-line’ reactivations during consolidation 

Reactivations of a new memory trace can occur spontaneously at rest, right after a new 

learning task (Buzsáki et al., 1983), or during sleep (Peyrache et al., 2009) and correspond to 

sharp wave-ripple (SW-R) complexes. These complexes are constituted by two components: 

large depolarizations called sharp waves and ripples which are brief bursts of fast oscillations. 

A disruption of these SW-R complexes directly impairs memory consolidation (Girardeau et 

al., 2009; Jadhav et al., 2012). During this phase, SW-R complexes in the hippocampus are 
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associated with slow wave oscillations in the prefrontal cortex allowing a dialogue between 

the two structures and the strengthening of the memory in the neocortex.  

2.3 System-level consolidation 

Storing of items and concepts in the hippocampus as they are subjectively perceived occurs 

alongside activations in neocortical regions and in the prefrontal cortex for example (Preston 

and Eichenbaum, 2013). However, because the hippocampus has limited storage capacities, 

consolidation models suggest that long-term memory traces might become independent of the 

hippocampus and will rely only on neocortical structures. Two main theories have been 

proposed to explain such phenomenon: the standard model and the Multiple Trace Theory 

(MTT).  

2.3.1 Standard model  

According to the Standard model (Squire and Alvarez, 1995) both semantic and episodic 

memories might become independent of the hippocampus after consolidation. This was 

proposed first in light of patients with retrograde amnesia who were impaired in retrieving 

information that was encoded before hippocampal damage. While memories encoded just 

before the damage were lost, the older were the memories and the more they were preserved. 

This temporal gradient, extending for several years, was supposed to reflect the increasingly 

independence of declarative memories from the hippocampus.  

2.3.2 Multiple Trace Theory 

The Multiple Trace Theory was developed a few years later, as an alternative to the radical 

Standard model (Nadel and Moscovitch, 1997). If indeed, semantic long-term memories 

might not need the support of the hippocampus, the retrieval of episodic memories might still 

rely on hippocampal functions.  

 

Both theories share the assumption that this structural reorganization comes along with 

memory reactivations. According to the standard model, reactivations would only affect 

cortical regions whereas for the multiple trace theory, every reactivation might generate a new 

memory trace in the hippocampus.  

3. Post-consolidation reactivations, prior and accessibility 

The availability of a memory trace can be defined as the preservation of its biological trace 

(Tulving and Pearlstone, 1966). It is an intrinsic property of a neuronal pattern that has been 
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stabilized through consolidation. As such we consider that any consolidated memory might 

last for a lifetime as long as its biological trace remains intact. Therefore post-consolidation 

reactivations might be not necessary for a memory to be available. Importantly, post-

consolidation reactivations might not necessarily result in explicitly retrieving the memory 

trace. If encoding was restricted to low level activations without involving the hippocampus, 

reactivations might remain implicit. Indeed, studies using meaningless auditory noise have 

shown that it is possible to retrieve information that does not need any reactivation during the 

intervening period and that is not necessarily explicit (Agus et al., 2010; Viswanathan et al., 

2016). But what we usually observe is that over time, it gets harder to retrieve past 

information: the information is still present but its accessibility, the ability to “find” the 

available memory (Tulving and Pearlstone, 1966) becomes restricted. Then the role of post-

consolidation reactivations would be to facilitate the access of a memory trace and as it means 

literally, to turn inactive memories into active and accessible memories.  

3.1 Memory activity in a Bayesian perspective 

The idea to formulate memory activity in a Bayesian framework was already proposed by 

John Anderson in the late 90’s through the idea of rational analysis (Anderson and Matessa, 

2003; Anderson, 1995). In his rational analysis of memory Anderson postulated that the 

“activation-level” (A) of a memory (i) corresponds to the summation of a “base-level” (B) 

and a “contextual-priming”. 

Mathematically, “base-level” is the log prior odds and reflects to what extent a memory is 

likely to be used again; 

“contextual-priming” is the log likelihood ratio that takes into account cues (j) from the 

environment; 

“activation” level is the log(posterior odds) which is an inference about which memory to 

make available given the context. 

The activation level of a memory Ai can be therefore written as follows: 

Ai = Bi + ∑ WjSji

j

 

with Bi the “base level” activation of the memory, Wj the weighting of the cues and Sji the 

strength of the association between the cue j and the memory. 

The prior probability depends on the time since a memory has been activated and on the 

number of times it was encountered. If a stimulus was presented once, the probability to 

encounter it again might be high right after its presentation, but would rapidly decrease over 
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time unless it is presented again. The repeated presentations of a stimulus and their spacing in 

time might be critical to update the prior value. In the next section we explain how 

reactivations of a consolidated memory might help their retrieval.   

3.2 Updating the prior value 

The prior probability distribution of a specific memory reports to what extent we expect to 

encounter again the memory. When a memory was recently formed its probability of re-

occurrence is high, and therefore its prior. As already discussed in chapter 1, in addition to 

being encoded in the neocortex, these memories with high prior values might be supported by 

the hippocampus. After some time, the said recent memories become old and are associated 

with low expectations and might preferentially rely on neocortical structures. We suggest that 

the role of post-consolidation reactivations might be to slow down this shift of prior value: 

every time information is retrieved from memory its prior might be updated to a strong value 

and as such being supported again by hippocampal structures.   

Interestingly, in a dynamic Bayesian framework, only the likelihood value varies over the 

decision time. Decision is the result of the accumulation of the likelihood ratios over time and 

the prior is considered as the likelihood ratio at a time t = 0. As such, the same different levels 

of retrieval -from implicit retrieval to full recollection- can emerge for memories that have not 

been re-experienced for years (inactive memories) or for memories recently encountered 

(active memories).  

We will use this framework to explain how retrieval might emerge considering memories with 

different levels of activity. 

3.2.1 Frequently reactivated memories 

When memories are very often reactivated they acquire a strong prior that make them more 

distinguishable from other memories and therefore more easily retrievable (Figure 2.2.A). 

This is why it’s normally easy to answer the question: ‘Who’s the current president of the 

Unites States?’ This memory is fresh enough to be able to report the name without the need of 

additional support. Active memories can correspond to recently learned information but also 

to (very) long-term memories frequently rehearsed. 

3.2.2 Memories with scarce reactivations 

When memories are reactivated from time to time, the prior value drops-off and it is more 

difficult to get access to them (Figure 2.2.B). To compensate the low prior value, some 
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external support can be given to restrict the dimensional memory space and facilitate retrieval. 

For example, try to remember who was the last former UK prime minister? For most people a 

cue will be at least necessary to get the name back to mind.  

3.2.3 Remote memories that were not reactivated 

A few exposures to a given stimulus can be enough to allow the formation of a stable and 

long-lasting memory trace in the neocortex (Bichler et al., 2012). In many cases however 

these robust memories might not be rehearsed again and are referred in the literature as 

inactive (Lewis, 1979) or dormant memories (Dudai, 2004). These memories can be implicit 

(Mitchell, 2006) but might also involve higher levels of retrieval such as the ability to recall a 

name or to judge an item as familiar.  

For memories that have not been reactivated since then, the expectancy to encounter that 

memory and therefore the value of the prior is very low (Figure 2.2.C). If we want to turn 

them active again, a strong environmental support is necessary. Therefore the more the overall 

new experience will match the old one, in terms of stimulus and overall context associated to 

it (Reed, 1931; Smith et al., 1978) the more will be the chance to bring dormant memories 

back to mind. This could be done by showing the same stimulus again among a limited 

number of options such as in a forced-choice task and/or by using stimuli rich in content such 

as audiovisual clips.  

 
Figure 2.2 Retrieval from inactive to active memories.  

Often-reactivated memories get strong prior values that make them well differentiated from 

each other (A). Weak cues (blue square) or no cue at all are needed to elicit the retrieval of 

those active memories. Barely-reactivated memories get lower prior values that make them 
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less distinguishable from the other memories (B) and therefore need stronger cues to be 

retrieved (orange square). Memories that have never been reactivated after consolidation get 

very low prior values (C) and need strong cues to elicit the retrieval of those inactive 

memories (red square). The amount of activity for eliciting retrieval in a given task is 

represented by the dashed line.  

 

Post-consolidation reactivations are useful to turn inactive memories into active and 

accessible ones but do not seem to play a major role in the availability of the memory per se. 

Moreover, it has been shown that the reactivation of a memory can sometimes be associated 

with its reconsolidation (Dudai, 2012). Reconsolidation is in fact considered as an update of 

previous learnt information (Alberini, 2005; Dudai and Eisenberg, 2004; McKenzie and 

Eichenbaum, 2011) and can lead to its distortion (Sara, 2000). As a consequence, if we want 

to keep a memory intact for decades, reactivations do not seem necessary and might be rather 

harmful.  

4. Silent neurons for dormant memories: experimental evidence 

So far, little is known on the neuronal substrate of dormant memories. Indeed, most of the 

studies that worked on very long-term memory focused on the impact of subsequent 

reactivations of a stable memory trace. Reactivations strengthen the memory trace and spread 

it out to a larger distributed neuronal circuit involving both the hippocampus and the 

neocortex (Moscovitch et al., 2006). We suggest that the formation of a stable memory trace 

is associated with the creation of a small and specific population of neurons in the neocortex 

that will stay silent until the reactivation of the memory.  

4.1 From STDP to dynamic Bayesian inferences 

4.1.1 Neuronal level 

It has been recently proposed that Bayesian inference might not remain abstract and could be 

simply explained in light of the STDP and neuronal mechanisms (Nessler et al., 2013). 

According to this view, the prior corresponds to the intrinsic excitability level of a neuron 

which directly depends on its firing activity (Daoudal and Debanne, 2003). Therefore, active 

memories that correspond to memories with a high prior value might be supported by highly 

excitable neurons. This means that by having ion channels opened in their axon, dendrites and 

soma, such neurons would easily generate an action potential (the output of the neuron) in 

presence of specific stimuli. Interestingly, the logarithm of the likelihood ratio, might 
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correspond to the sum of the inhibitory and excitatory post-synaptic potentials (I/EPSP) in the 

neuron. The values of these post-synaptic potentials directly depend on the synaptic weights. 

In that sense, one I/EPSP might correspond to one piece of evidence for making the neuron 

fire or not. The interaction between neuronal excitability (prior value) and post-synaptic 

potentials (likelihood ratio over time), might elicit the firing of a neuron. As a response, each 

spike generated by a neuron might correspond to the calculation of the posterior probability at 

a specific time and the whole spike train, showing the accumulation of evidence over time.  

4.1.2 Hierarchical structure 

Neurons in the brain are part of a network which occupies a specific position in the overall 

architecture. Through this hierarchical structure, the prior probability of neurons in low-level 

structures might directly depend on the likelihood ratio computed in the upper-level structures 

(Friston, 2005). This view fits the idea that priors are constantly learnt through experience and 

shows that most of the feedforward models currently used to model recognition might not be 

sufficient to explain memory processes (Serre, 2016).  

4.1.3 Temporal order coding 

By firing neurons convey information to the system. Usually neurons do not generate one 

spike but rather a train of potentials. Information might be therefore encoded in the overall 

firing rate of the neurons according to a “rate-based” coding view or in the temporality of the 

spikes according to “spike-based” models (Brette, 2015) where for example the respective 

order of each spike might be informative (Thorpe, 1990). Indeed, it has been shown that the 

firing rate code hypothesis might present some limitations when considering very fast 

decisions and that a rank order consideration might be more suitable (Gautrais and Thorpe, 

1998; Van Rullen and Thorpe, 2001). Such very fast processing might rely on the first 

spike(s) and would not require waiting until the end of the whole train of potentials as for a 

rate-based coding. Interestingly, this rank order theory might fit well our dynamic Bayesian 

evidence model at the scale of the neuron and could explain the spiking variability found in 

individual neurons during intracranial recordings. The accumulation of spikes might 

correspond to the accumulation of evidence in time that could stop very early if neurons are in 

high level of excitability (high prior). Therefore, one spike generated by a neuron might be 

sufficient to convey enough information. Conversely, if no spike is generated or if the spikes 

occur very late, the chance to get the information to be processed might be very small. As an 

example, the spiking variability recorded in the Medial Temporal lobe of an epileptic patient 
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over eight trials, for four presentation conditions and for two stimuli (Quiroga et al., 2008b) is 

presented in Figure 2.3. Interestingly, when the patient was not able to recognize a picture 

(red trials), the neurons selective to the picture did not fire at all or generated a first spike very 

late after the stimulus presentation. Overall, note the “long” latency of the first spike for the 

two neurons which indicates their selectivity to the stimuli (Mormann et al., 2008).   

 

 
Figure 2.3 Activations of neurons during the presentation of a specific stimulus.  

Neuron specific to the World Trade Center (top of the figure) or to the brother of the patient 

(bottom of the figure, covered for privacy) recorded in the entorhinal cortex and in the 

hippocampus respectively. The eight diagrams correspond to the raster plots of the neurons 

where each line represents the firing of the neuron (1 bar = 1 spike) for each trial (1 line = 1 

trial). Each stimulus was presented eight times (eight lines for each raster plot) and for four 

various durations that are shown by the light red square at the bottom of each raster plot 

(from 33 to 264 ms). Trials where the pictures were recognized by the patient are in blue and 

trials where the pictures were not recognized are in red. (Adapted from (Quiroga et al., 

2008b)). 

 

Unlike many other spiked-based models, the rank-order theory relies on the asynchronous 

firing of the neurons: most of the information might be conveyed by neurons that fire first in a 

winner-take-all-fashion (Thorpe, 1990).   
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4.1.4 Oscillations 

At a more global scale, the asynchronous firing of neurons might generate a decrease of 

power in low-frequency brain oscillations such as in the alpha-beta range and an increase in 

higher frequencies such as in the gamma range (Hanslmayr et al., 2012). Decrease in alpha-

beta power has been shown to be important for both the encoding (Jiang et al., 2015) and the 

retrieval of memories (Düzel et al., 2003). However, and as pointed out recently (Hanslmayr 

and Staudigl, 2014), many studies have tried to correlate specific brain oscillations to memory 

processes resulting in a varieties of conclusions and even sometimes the emergence of 

contradictory results. Therefore, a better view would be to consider brain oscillations in terms 

of level of processing, - a view that is perfectly coherent with our dynamic Bayesian model- 

rather than using generic terms such as memory encoding and retrieval.  

4.2 Inactive neurons for inactive memories 

4.2.1 Local versus distributed representation 

How is a mental representation encoded in the brain? Although simple, this question is still a 

matter of debate and no consensus has been reached. The main view considers that mental 

representations are supported by a large distributed network that would involve millions of 

neurons. On the other side, others have argued that a more restricted population of neurons 

would underlie our percepts and memories (Barlow, 1972; Bowers, 2002; Quiroga, 2012; 

Thorpe, 2011, 1989).  

When one thinks of this second alternative, it is in direct association with the concept of 

“grandmother cell”.  This term was proposed by Jerry Lettvin  in 1969 (unpublished notes, see 

his letter written to Barlow in 1991 (Barlow, 1994) and an excerpt from this letter (Gross, 

2002)) and refers to the idea that one cell could encode a concept such as a “grandmother”.  

This concept was not seriously considered by the whole community if not completely mocked 

but probably because of  misinterpretation (Bowers, 2009). Indeed, and as pointed by Bowers, 

a localist coding does not imply that rich mental representation might be only encoded by 

redundant single neurons. While it might be true for specific concepts such as a grandmother, 

the integration of several concepts into a specific neuronal network might be the key for 

encoding our rich visual representations and memories. Instead of grandmother cells, the use 

of concept cells would be therefore more appropriate (Quiroga, 2012; Quiroga et al., 2013; 

Reddy and Thorpe, 2014). As for words used in language, these concepts cells would be able 
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link low-level features to create a simple but distinct and meaningful representation. The 

combination of these concept cells in a specific order might be able to encode and retrieve 

specific episodes, individual sentences of our life. This localist view might be referred as 

sparse distributed rather than fully localist or fully distributed.  

4.2.2 Sparse coding in the medial temporal lobe 

According to the sparse distributed point of view, encoding and retrieval of even rich 

contextual information might be supported by the activation of a limited amount of neurons. 

Sparse coding is indeed found in the medial temporal lobe and in the hippocampus in 

particular (Quiroga et al., 2008a, 2005; Rolls, 1989; Wixted et al., 2014) where only a 

maximum of 1% of the cells would be active when a stimulus is presented (Waydo et al., 

2006). This means that a neuron would fire for about a couple of hundreds of distinct 

concepts. Sparseness in primates’ or in humans’ hippocampus is not new and shows extreme 

analogies with place cells found in rodents’ hippocampus (O’Keefe and Dostrovsky, 1971). 

4.2.3 Dark matter in the neocortex? 

While active memories might be supported by highly excitable neurons, inactive memories 

might rely on silent neurons. Sparse coding is not restricted to the Medial Temporal Lobe and  

can be found in the neocortex (Graham and Field, 2006) including the prefrontal cortex 

(Abeles et al., 1990). A recent finding (Barron et al., 2016), has shown that it is through an 

excitatory-inhibitory synaptic balance that cortical memories might stay silent and that its 

disruption is able to re-express these dormant memories.  

For many years, studies focused on the detectable differences of brain activity elicited by the 

firing of neuronal populations but interest is growing in the consideration of a kind of 

neocortical “dark matter” (Shoham et al., 2006) corresponding to the whole set of cortical 

neurons with very low firing rate at a given time.  As with dark matter in the universe, it is 

possible that most of the human neocortex could be made up of silent neurons, consistent with 

theoretical calculations that consider that neocortical neurons might fire 0.16 spikes a second 

on average (Lennie, 2003). Although experimental evidence in humans has demonstrated the 

existence of silent and highly specific neurons in the medial temporal lobe (Ison et al., 2011) 

which are directly implicated in the formation and retrieval of recent memories (Gelbard-

Sagiv et al., 2008; Quiroga, 2012), silent neocortical neurons might be the neuronal substrate 

of remote memories (Thorpe, 2011).  
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5. Conclusion 

In this chapter we extended the dynamic Bayesian framework that was developed in chapter 1 

to the retrieval of inactive memories. Using the notion of level of activity we were able to 

close the gap between this theoretical framework and biological mechanisms. In particular, 

the firing of neurons would be the result of Bayesian inferences. As such, inactive memories 

would be encoded by inactive neurons with a low-level of excitability. Yet possible, the 

retrieval of these dormant memories might be therefore difficult and would only rely on the 

stimulation of these neurons. We suppose that the best way to elicit the re-activation of these 

inactive neurons would be to reconstitute with the most details the scenarios in which the 

stimuli were presented. In such a way, some concept cells at the basis of the memories could 

fire again and potentially in a coherent manner to elicit the retrieval of a whole dormant 

episode. Experimental investigations are now required to confirm this hypothesis.  
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Presentation of the behavioral experiments 

In the M4 project, I was the “archeologist” of the team. Like many others, during my 

childhood I was passionate about remote civilizations. I was fascinated by the fact that 

scientists could tell stories from tiny remains that they found in specific spots. From a piece of 

fabric, from a text fragment, they could reconstruct a particular moment of some individuals’ 

life. Fifteen years later and in a different way, I had to play this role for which no name exists. 

My field of investigation was not a lost civilization, it was remote memories. In this 

neuroscientific version of the archeologist, I did not go to an exotic country to find remains of 

remote memories. Instead, I stayed in the south of France, in my lab in Toulouse and also in 

Marseille which was my farthest venture (presented in chapter 4). 

Of course, I was not the first one and some renowned neuroscientists have already 

investigated this field. All together these studies have shown that memories can be maintained 

for years and potentially for a lifetime. However, two main factors remain unclear: do 

memories survive the passage of time because they are reactivated from time to time? In other 

words, can memory persist for decades in a latent way? The second question refers to the 

minimal exposure duration. What is the smallest number of exposures and the shortest time 

required to create a memory trace that could be maintained for decades? 

To answer these questions, the critical point was to test remote memories that individuals 

could not have reactivated since the initial period of exposure. The easiest way would have 

been to find participants that would agree to see stimuli in the lab and to come back let’s say 

20 years later to test their memory. However my thesis had to stick within a 3-year limit… To 

overcome this issue we had to test individuals’ memory for stimuli they had experienced 

already and control that the memory of these stimuli had not been reactivated since then. Such 

stimuli would have been presented in a previous experiment run by colleagues such as the 

colored-drawings used in chapter 4 or acquired from personal experience like TV series that 

individuals watched during their spare time and which is the topic of this next chapter.  
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CHAPTER 3. Waking up buried memories of old TV 

programs 

 

 

Abstract 

Although it has been demonstrated that visual and auditory stimuli can be recalled decades 

after the initial exposure, previous studies have generally not ruled out the possibility that the 

material may have been seen or heard during the intervening period. Evidence shows that 

reactivations of a long-term memory trace play a role in its update and maintenance. In the 

case of remote or very long-term memories, it is most likely that these reactivations are 

triggered by the actual re-exposure to the stimulus. In this study we decided to explore 

whether it is possible to recall stimuli that could not have been re-experienced in the 

intervening period. We tested the ability of French participants (N = 34, 31 female) to recall 

50 TV programs broadcast on average for the last time 44 years ago (from the 60’s and early 

70’s). Potential recall was elicited by the presentation of short audiovisual excerpts of these 

TV programs. The absence of potential re-exposure to the material was strictly controlled by 

selecting TV programs that have never been rebroadcast and were not available in the public 

domain.  

Our results show that 6 TV programs were particularly well identified on average across the 

34 participants with a median percentage of 71.7% (SD = 13.6, range: 48.5% - 87.9%). We 

also obtained 50 single case reports with associated information about the viewing of 23 TV 

programs including the 6 previous ones. More strikingly, for 2 cases, retrieval of the title was 

made spontaneously without the need of a four-proposition choice. These results suggest that 

re-exposures to the stimuli are not necessary to maintain a memory for a lifetime. These new 

findings raise fundamental questions about the underlying mechanisms used by the brain to 

store these very old sensory memories. 
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Presentation chapter 

Without a doubt, testing participants’ memories of old TV programs was not the easiest to set 

up. First of all, I had to find TV series from the 60’s and 70’s which had not been re-broadcast 

and that were not available on websites or video-tapes. In short, I had to find French 

audiovisual archives that were lost from the public domain for about 40 years. Why this 

period? Because at the end of the 70’s, people started to use videocassette recorders and it 

would have been impossible to control for the absence of re-exposure after the original 

broadcast. In addition, it was a great opportunity to test memories that had lasted a lifetime. I 

had the chance that the French Institut National de l’Audiovisuel from Toulouse gave me the 

opportunity to access to its archives. From their database I was able to get short excerpts of 50 

TV programs that would constitute my test videos.   

My material gathered, I was ready to test the memory of individuals who had a television in 

the 60’s and 70’s in France. My colleague Sophie and I visited all the senior clubs of the city, 

the playground of this first experiment. In our hands, we had only a laptop which held the 

experimental set up that Simon, Nadège and I designed together.  

From the beginning, I knew that in such experimental conditions it would be difficult to get a 

lot of results, if we were to get any results at all! A main limit was I could not know which 

TV series were watched by a particular individual. As a consequence, I could only report 

when a participant was able to retrieve some information about a TV program but I could not 

evaluate the truth of the memories or judge which memories were forgotten. In practical terms 

this means no percentage of retrieval. Despite these important limitations it was a formidable 

opportunity to test real-life memories of stimuli that were acquired in ecological conditions. 

These stimuli were not just words or pictures but were short animated clips combining 

auditory and visual components. I knew that if results we got, it would be only thanks to the 

richness of these stimuli.   
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1. Introduction 

As adults, we all have memories of sounds and images that were formed decades ago. For 

people who are now in their 70s and 80s, these memories are part of their very long-term 

memory also called remote memories. Memories can be semantic if they reflect general 

knowledge such as the ability to retrieve a movie title or episodic if they involve the 

recollection of a unique specific event in space and time: for example remembering a 

particular day when someone watched a movie on their first date (Tulving, 1985a). When 

related to the self, both semantic and episodic memories create autobiographical memories 

that are specific to each individual. Therefore, autobiographical memories can involve generic 

facts about personal past events ("I used to watch my favorite TV series with my brother") 

that are not always episodic (Levine et al., 2002; Piolino et al., 2002; Tulving et al., 1988).  

Important neuronal reorganizations are required to create long-lasting memories and involve 

two consolidation stages (Frankland and Bontempi, 2005). The first one which is called 

synaptic consolidation refers to the stabilization of synaptic weights of a new memory in 

localized networks. This process is fast and can be completed within a few hours after 

learning. The second one, involving system-level consolidation, is much slower and 

corresponds to a change of brain regions that support the memory. Both the hippocampus and 

the neocortical structures are initially involved in supporting declarative memories (semantic 

and episodic memories). However, within several months after learning, theories suggest that 

declarative memories might become independent of the hippocampus. This would concern 

semantic and episodic memories in light of the so-called standard model (Squire and Alvarez, 

1995) or simply semantic information regarding the Multiple Trace Theory (Nadel and 

Moscovitch, 1997). Note that the debate is still not closed between these two theories.  

Given the practical difficulties involved, only a small number of studies have tried to test 

recall decades after the acquisition phase. Such studies have looked at memories concerning 

old classmates (Bahrick et al., 1975), information learnt in school (Bahrick, 1984; Conway et 

al., 1991) or even TV programs (Squire and Fox, 1980; Squire and Slater, 1975; Squire, 

1989). Although the stimuli used are different, the results follow the same trend: recall drops 

quickly over the first 6 years and then levels off for several decades.  

As mentioned by the authors, in such studies, one parameter that is hard to control fully is 

potential reactivations of the information during the intervening period which might explain 

the extremely long retention of these memories. It has been shown that memory reactivations 

can be triggered spontaneously during periods when the processing of sensory input is very 

low (‘off-line states’) such as during sleep (Diekelmann and Born, 2010; Peigneux et al., 
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2004; Wilson and McNaughton, 1994) or wakefulness (Foster and Wilson, 2006; Karlsson 

and Frank, 2009; Oudiette et al., 2013; Peigneux et al., 2006) as well as during ‘on-line states’ 

when subjects are actively retrieving memories (Gelbard-Sagiv et al., 2008; Nyberg et al., 

2000; Tayler et al., 2013). While reactivations during ‘off-line states’ are critical for the 

consolidation of a new memory (Gais et al., 2000; Girardeau et al., 2009) and are very 

frequent in the first few hours after learning (Eschenko et al., 2008; Ribeiro et al., 2004), their 

probability of occurrence is likely to decrease exponentially over time (Frankland and 

Bontempi, 2005; McClelland et al., 1995), leaving the memory in a dormant state (Dudai, 

2004; Lewis, 1979; Sara, 2000). This suggests that the reactivation of these dormant or 

inactive memories might occur spontaneously, especially during ‘on-line’ states when sensory 

input is strong enough to elicit memory retrieval, that is, during the re-exposure to the 

stimulus or when it is mentally evoked. For about 15 years now and since the discovery of 

Nader et al. (Nader et al., 2000) it has been shown that reactivations of stable and 

consolidated memories through specific stimulus re-exposure might trigger re-consolidation 

processes. During this temporary unstable stage, memory traces are updated (Dudai, 2006) 

and strengthened (Lee, 2008; Moscovitch et al., 2006) and as a result, become more 

accessible and are less vulnerable to decay (Gisquet-Verrier and Riccio, 2012). Accordingly, 

it might be natural to think that remote memories could be maintained via subsequent re-

consolidations that are triggered by specific stimuli, even if these re- consolidations are 

scattered in time. This leaves open the question of whether it is possible to retrieve very long-

term memories for stimuli that have not been re-experienced for decades and that are left in a 

dormant state in the absence of any subsequent reactivations.  

In this study we tested the ability of French people to recall a selected set of 50 TV programs 

that were originally broadcast with between 6 and 120 episodes between the late 50’s and 

early 70’s. These TV programs have never been rebroadcast and are not available in the 

public domain so we can be certain that the stimuli have not been seen or heard since the 

original broadcast. Furthermore, the participants reported that they had not thought about 

them for years, making it unlikely that they would have involuntarily reactivated the 

memories (Rasmussen and Berntsen, 2009). 

By sorting participants performance over the confidence in their response, we found 6 TV 

programs with a percentage of correct identification (median: 71.7%, SD =13.6, range: 48.5% 

- 87.9%) that was significantly higher than for younger participants. Interestingly, these 6 TV 

programs were part of a set of 23 videos for which we collected single case reports with 

associated information about the viewing at the time of broadcast. Whereas identification was 
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mainly performed by selecting the correct title from four propositions, in two cases, the 

presentation of short excerpts of old opening themes was able to trigger spontaneous naming 

of the title. Overall our data suggests that visual and auditory memories can indeed be 

retrieved even when they have been buried for decades. 

2. Material and Methods 

2.1 Participants 

The protocol was approved by the INSERM Ethical Evaluation Committee (CEEI) and all 

participants gave their written informed consent before experimentation.     
Thirty four subjects, all French (31 female; range = 52-92y, median age = 77y, mean age = 

79y, SD = 7.6) with normal or corrected-to-normal vision and audition participated in the 

study. All of these participants were recruited and tested individually in senior citizen clubs. 

Before starting the experiment participants were invited to respond to a questionnaire to give 

personal details about their TV habits. They were asked to say roughly when their household 

first had a television and how many hours a day they typically watched TV at the time of the 

test (Supplementary information: table S1). The participants reported first having a television 

sometime between 1956 and 1970 with half of them having access to a television before 1964 

(SD = 4.1) and said that they currently were watching TV for an average of 3.5h a day (range 

0.5-9h, SD = 2.1). After the experiment, participants gave their feedback about the TV 

programs they were able to recall. None of them reported thinking about the ones which had 

never been rebroadcast. The overall cognitive abilities of 25 out of the 34 older participants 

were also assessed using the Mini-Mental State Examination (MMSE) (Folstein et al., 1975) 

based on the French GRECO consensual version. No main deficit was found for any of the 

participants (mean score 27.6 out of 30, SD = 1.9, range: 24-30). 

Thirty-four younger participants, (t(66) = -32.0, p < 0.001), all French (23 female; range = 21-

40y, median age = 26y, mean age = 27y, SD = 5.5) with normal or corrected-to-normal vision 

and audition participated in the same study. Younger participants reported having access to a 

TV set from between 1976 and 1999 (mean year = 1992, SD = 5.9) and watching TV for 1.2h 

a day (range = 0-5h, SD = 1.5). 

2.2 Stimuli 

Audiovisual clips (size: 640*480) were presented on a gray background at the center of a 

laptop screen placed in front of the participant (Hewlett Packard EliteBook, screen resolution: 

1366*768). The clips used a 1s count-down followed by a 7s opening theme of a TV program. 



 

94 
 

The clips generally displayed the first seven seconds of the opening themes without any text. 

In total 72 audiovisual clips were shown to each participant. Fifty of the clips were test videos 

that were composed of the opening theme excerpts of French TV programs which had never 

been rebroadcast and were not available in the public domain. With support from the French 

Audiovisual National Institute (INA), the videos were collected directly from an up-to-date 

database which has been collecting information on audiovisual programs broadcast since 

1947. Videos were selected because they seemed original and because they did not change 

from the first to the last episode. The number of episodes was known for 36 of the 50 clips, 

and ranged from a minimum of 6 episodes to a maximum of 120, with a mean of 23.7. One of 

the programs was broadcast in the late 50’s, thirty in the 60’s and nineteen were first 

broadcast in the 70’s. The average year of the last episode broadcast was 1970. The remaining 

22 clips were famous videos of the opening themes of well-known TV programs which in 

some cases were still on air and were not necessarily French (Supplementary information: 

table S2). They were supposed to be easy to recognize and to keep participants’ interest 

during the task. 

2.3 Task 

The experiment involved 72 trials with each video clip being presented only once. Each trial 

started with the presentation of an 8-second video clip (Figure 3.1). During the video or after 

its display, participants’ recall responses were collected as follows: 1/ Does this TV program 

look familiar to you (Yes/No)? 2/ If yes, can you name the title of this TV program? (Free 

title naming). If not, please choose the related-title from the four propositions in the forced-

choice (4-FC). The four propositions included the correct title, a lure (title of another TV 

program) and two foils (fabricated titles). The lures and foils were selected to be as plausible 

as possible. Propositions were displayed in alphabetical order. 3/ Rate your confidence in your 

response on a five-point scale (1: ‘Not sure at all’; 2: ‘A bit sure’; 3: ‘Fairly sure’; 4: ‘Very 

sure’; 5: ‘Completely sure’). Five questions were also asked when participants reported being 

familiar with the TV program in order to get associated information: 1. What day(s) of the 

week did you watch this TV program? 2. Around what time of the day: in the morning, in the 

afternoon or in the evening? 3. How old were you at that time? 4. Did you like this TV 

program? and 5. Give as much information as you can about this TV program (e.g.: Who did 

you usually watch this TV program with? Have you watched a lot of episodes? What details 

could you give about the characters? etc.). Short breaks were made every ten trials. The 

experiment lasted about one hour and was programmed with Psychopy (Peirce, 2007). 
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In addition to the 34 participants tested, 34 younger participants performed the same task to 

make sure that the four titles proposed in the 4-FC would have the same probability of being 

chosen by naïve subjects who could only rely on semantic information to make their choice. 

Although it would have been possible to use age-matched controls, this was not the case here. 

We chose to test younger participants so that we could be certain that all the test videos were 

new to them. This would have been more difficult to control for older participants even if they 

said that they did not have a TV set in their house during that period, because at that time, it 

was relatively common to watch TV in someone else's home.  

 

Figure 3.1 Experimental design.  

Audiovisual clips of the TV programs were shown on a computer screen. Participants decided 

whether the program was familiar using a button press response. If familiar, participants 

attempted to give the title by free naming. Alternatively, they were given a four-proposition 

forced-choice (4-FC). The confidence level in the response was assessed on a five-point scale. 

For the familiar videos, five questions were asked to get associated information about the TV 

program. 

3. Results 

3.1 Participants’ performance for the famous TV programs 

During the presentation of the audiovisual clips or after their display, participants were first 

invited to decide whether the TV program was familiar or not. The older participants reported 
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that they were familiar with 56.5% (SD = 24.8) of the 22 famous audiovisual clips that were 

presented.  

When participants said that a video was familiar, they were invited to name the title of the TV 

program directly (free title naming). On average, each famous video was spontaneously and 

correctly named by nine out of 34 older participants (27.5%, SD = 19.4, range = 0 - 25). This 

shows that the free naming of a title was high for the 22 famous TV programs and was always 

associated with a high confidence level (average = 4.5 up to 5, SD = 0.5). Overall, a median 

number of 6 (SD = 4.3) famous videos were correctly named spontaneously by the older 

participants, which was significantly lower than the 12 (SD = 4.9) correct titles reported 

spontaneously by the younger participants for the same famous videos (Wilcoxon signed-rank 

test: Z = - 4.18, p < 0.001).  

If participants found that it was too difficult to retrieve a title spontaneously, they were asked 

to select a title from four propositions (4-FC). When the older participants reported that they 

were familiar with the famous TV programs, the percentage of correct responses in the 4-FC 

was high (86.6%, SD = 21.7) and was not different from the younger participants (91.5%, SD 

= 14.9). The 4-FC was also directly proposed to the older participants who said that a video 

was not familiar. Overall, 68.8% (SD = 20.0) of the responses for famous clips were collected 

using the 4-FC including both familiar and unfamiliar responses. The older participants’ 

performance was high when they had to choose the title of famous audiovisual clips (74.7%, 

SD = 15.5) and was not different from the younger participants (72.8%, SD = 12.9).  

Interestingly, we found that the average percentage of identification for the famous videos 

was significantly correlated with the older participants’ average confidence on the response (r 

= 0.71, p < 0.001, Pearson’s linear correlation coefficient). The same effect was found in the 

younger participants (r = 0.79, p < 0.001, Pearson’s linear correlation coefficient). 

Overall, the older participants’ performance was high for the 22 famous videos (median = 

81.8%, SD = 9.7, range: 54.5 - 95.4%) showing that they could correctly perform the task. 

However, with a median of 90.9% (SD = 9.1, range: 54.5 – 95.4%) the younger participants’ 

performance on the same videos was even better (Wilcoxon signed-rank test: Z = - 3.37, p < 

0.001). Such high levels of performance are explained by the fact that these famous TV 

programs are still very present in the media or even on TV. To what extent are the older 

participants able to identify old TV programs that have not been re-experienced for decades? 

We now address this question. 
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3.2 Older participants’ performance for the test TV programs 

3.2.1 Single case reports for familiar test videos 

On average, the older participants reported that they were familiar with 15.2% (SD = 13.1) of 

the test videos.  

 Free title naming for test videos 

From the 50 test videos presented to 34 older participants, the titles of two TV programs were 

spontaneously recalled (free title naming). Although this percentage is very small (0.1%) it is 

still above the null score obtained by the 34 younger participants that were expected not to 

know the TV programs. Interestingly, these two free title namings were associated with a 

medium/high level of confidence in addition to associated information about the TV program. 

The following is a detailed description of the two responses:  

On the first free recall, participant 5 (Supplementary information: table S1) said “Balzac”, 

which was close to the correct title “Un grand amour de Balzac”. Her confidence level was 3 

out of 5. She was then asked to give details about her memories:  “I was watching it on 

Saturday afternoon. I was sixty. Yes I’ve always loved sentimental and historical TV serials. I 

remember cousin Bette. I watched a lot of episodes.” 

Actual facts: Episodes were broadcast in 1973 (she was 49 years-old, she is now 90) every 

Thursday at 9 pm. Seven episodes of 52 minutes were screened.   

The other participant, participant 22 (Supplementary information: table S1) said “Camember” 

for “Les facéties du sapeur Camember”, with a confidence response at 4 out of 5.  

The participant then reported:  “I used to watch it on Sunday evening. I was thirty five. I liked 

it but I did not watch it too often. The whole family used to watch it.” 

Actual facts: Episodes were broadcast in 1965 (he was 28 years-old, he is now 77), every day, 

except on Sunday. The TV program had 50 episodes lasting 5 minutes each. Initially the 

program started at 8.30 pm but switched to 9 pm from the 20th episode. 

 4-FC for familiar test videos 

When participants reported to be familiar with a TV program but could not name it 

spontaneously they were asked to select a title from four propositions (4-FC). Overall the 

percentage of responses was 23.7% (SD = 24.8) for the correct titles, 43.8% (SD = 27.2) for 

the lures and 14.6% (SD = 16.7) and 17.9% (SD = 16.1) for the 2 foils (fabricated titles). For 

familiar famous videos, 9.0% (SD = 13.9) of the responses were attributed to lures and 4.4% 

(SD = 17.9) and 0% (SD = 0) to the two foils. This revealed that the older participants were 
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significantly biased toward the lures for the test videos that were associated with a familiarity 

judgment, an effect that was not present for the famous videos (two-way ANOVA, ranked 

data: videos: F(1, 236) = 23.06, p < 0.001, titles: F(3, 236) = 60.81, p < 0.001, videos * titles: 

F(3, 236) = 46.42, p < 0.001, post-hoc comparison using the Tukey-Kramer test).  

Although the older participants were not above chance level on average across the 50 test 

videos we decided to analyze participants’ performance for each TV program. Indeed, given 

the design of our experiment, we do not know whether the participants watched the whole 50 

test TV programs and to what extent. We found that for 23 out of the 24 test TV programs 

that were correctly identified on the 4-FC associated information about the TV program was 

provided. On average these videos were reported 2.2 times (SD = 1.4) by 23 participants with 

a maximum of six times for “Un grand amour de Balzac”. Overall, the older participants were 

then able to report associated information for 2.8% (SD = 3.3) of the 50 old TV programs. 

Those responses were followed by a mean confidence level of 2.1 (SD = 0.9) which was 

significantly lower than the confidence for the correct free namings (mean: 3.5, SD = 0.7) but 

significantly higher than the confidence for the correct responses in the 4-FC for test videos 

judged unfamiliar (mean: 1.6, SD = 0.5) (H(2) = 10.8, p < 0.01, post-hoc comparisons using 

the Tukey-Kramer test). These 48 reports in addition to the 2 reports associated with free 

namings are given in the Table 1. Here are a few examples:  

Report 8 (Table 1): After the presentation of the TV program “Poker d’as”, participant 13 

(Supplementary information: table S1) reported that she was familiar with the TV program 

and chose the correct title on the 4-FC with a confidence rate of 2 out of 5 (“a bit sure”, 

average confidence for all test TV programs: 1.3, SD = 0.4). Then she reported that she liked 

the TV program and watched it during the week, in the evening, when she was 30-35. She 

added that she used to watch it with her husband but without the children and remembered 

having seen several episodes.  

Actual facts: “Poker d’as” was a one-season TV series of 26 episodes broadcast in 1973 from 

Monday to Friday at 8 pm. The participant was 37 at that time and was 78 when tested.  

Report 46 (Table 1): Participant 16 (Supplementary information: table S1) reported she was 

familiar with “Animal Parade” and correctly identified it in the 4-FC. Her confidence rate was 

3 (“medium sure”, average confidence for the 50 test TV programs: 1.4, SD = 0.8). Then she 

reported watching it during the week and at weekends in the afternoon. She could not 

remember how old she was at the time but she remembered that she liked it and watched it 

with her children.  
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Actual facts: “Animal Parade” was a single-season youth TV program broadcast from the 14th 

to the 25th of February (week and weekend) in 1972 at 7.30 pm.  

Report 45 (Table 1) is interesting because of the 21 famous and test videos considered as 

familiar by participant 7 (Supplementary information: table S1), she reported that there were 

only two TV programs she did not like: “30 millions d’amis” an animal TV magazine and 

“Que ferait donc Faber?”, a comedy series broadcast in 1969. We found that there had been a 

large controversy following the broadcast of “Que ferait donc Faber?” with a lot of criticism 

from the French newspapers and the viewers. Other details reported by participant 7 (who was 

91 when tested) and in particular the day and time of broadcast or her age matched the actual 

facts.  

Among the 34 participants that were recruited we had the opportunity to test a couple 

individually on the same day: participants 25 and 30 (Supplementary information: table S1) 

who have had a TV set since 1964.  Interestingly, participant 25 reported being familiar with 

“Poker d’as” and chose the correct title in the 4-FC with a confidence rate of two (“a bit sure”, 

average confidence for the 50 test TV programs: 1.0, SD = 0.1). He said that he used to watch 

it on weekdays during the evening when he was fifty. He added that he liked the TV program 

and watched it with his family but not too often. This was when they were still in Tarn-et-

Garonne (a department in the South of France) a bit before 1976 so when he was 36 (report 7, 

table 1). Interestingly by recollecting this last piece of information, participant 7 corrected 

himself concerning his age at the time of broadcast. And indeed, this TV program was 

broadcast on weekdays at 8 pm in 1976 when he was 33. Unlike her husband participant 30 

did not report any familiarity with “Poker d’as” but picked the correct title from the 4-FC with 

a confidence rate of 3 out of 5 (“medium sure”, average confidence for the 50 test TV 

programs: 1.5, SD = 0.7).  

A detailed analysis of the older participants’ performance shows that the number of famous 

and test TV programs for which associated information was reported ranged between 1 and 23 

(mean = 12.8, SD = 5.3) and were negatively and linearly correlated with participants age (r = 

-0.49, p < 0.05, Pearson’s correlation coefficient). The three male participants who were 

tested (participants 12, 22 and 25) were ranked in the top half.  

Concerning the test TV programs, 10 of the older participants were able to give associated 

information for at least two TV programs, 12 others for only one TV program, whereas the 

remaining 12 participants were not able to give associated information for any of the test TV 

programs including the youngest and oldest participants (participants 19 and 24).  
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These limited examples suggest that it is indeed possible to recall memories of TV programs 

that were not re-experienced for decades. Moreover our data suggest that retrieval can be 

associated with subjective familiarity, some confidence in the response and with information 

about the viewing of the TV programs. Although it is hard to verify fully the accuracy of the 

associated information reported by the participants (such as the fact that participants liked the 

TV program or used to watch it with specific relatives), some information such as 

participants’ age or the days and time of broadcast could give an idea of the accuracy of the 

memory. However, as suggested by the last report (report 50), the memory of old TV 

programs might not always be associated with direct familiarity judgment. In the following 

section we analyzed the data on the 4-FC by including the TV programs considered as not 

familiar.  
 Report 

(n°) 
Participant 

(n°) 
Confidence 

(/5) What day?  
What 
time? 

How 
old?  

Age during 
broadcast 

Did you 
like it? Other details 

Un grand 
amour de 
Balzac (1973) 
Sentimental 
serial 
7 episodes 
Thursday, 9 pm 
 1 5 3 Saturday Afternoon 60 49 

Yes, I 
always 

loved 
sentiment

al and 
historical 

TV 
serials 

I remember cousin 
Bette with Balzac. I 

watched a lot of 
episodes  

2 17 2 Every day Afternoon 50 37 Yes 
I watched it alone, a 

lot of episodes 

3 14 1 Weekdays Evening 50 36 Yes 
I watched it with my 

husband, rarely 
4 8 3 X Evening 75 47 Yes I watched it alone 
5 2 2 X Evening 35 43 Yes I watched it alone 

6 29 2 Weekdays Evening X 43 X 
I have never 

watched it 
          
Poker d'as 
(1973) 
Spy serial 
26 episodes  
from Monday 
to Friday, 8 pm 
 
 
 
 

7 25 2 Weekdays Evening 50 33 Yes 

I watched it with the 
whole family, not 
too often, before 

1976 in Le Tarn Et 
Garonne (French 

department), I was 
36 

8 13 2 Weekdays Evening 30-35 37 Yes 

I watched several 
episodes with my 

husband but without 
the children 

9 11 1 Monday Evening 40 35 
Not 

much 

I watched it with my 
husband, very 

rarely, maybe one 
episode 

10 23 1 X X X 30 
Not 

much I watched it alone 
          
L'Homme de 
l'ombre (1968) 
Police drama 
30 episodes 
from Monday 
to Friday, 7.40 
pm 

11 12 2 Weekdays Evening 43 26 A bit In the bar 
12 23 1 X Evening 37 25 A bit Alone 

13 4 3 X x 45 24 x 

I have never 
watched it, only 

heard it 

14 15 2 X x 45 29 
Not 

much X 
 

          
Frédéric le 
gardian (1965) 
Adventure 15 17 2 Weekdays Evening 26 29 X 

I watched it a few 
times with my 

husband 



 

101 
 

series 
24 episodes 
From Monday 
to Sunday, 
Time: unknown 

16 8 2 X Evening 75 39 Yes X 

17 4 3 X X 45 21 X 

I have never 
watched it but I 

heard it in the bar 
18 20 2 X X X 34 X X 

 
          
Bayard (1964) 
Youth series 
13 episodes 
Every 
Thursday, 6 pm 
 

19 13 2 

Wednesday 
or 

Thursday Afternoon 40 28 Yes a lot 

The children liked it 
a lot, we watched all 

the episodes 

20 4 2 X 
We were in 

the bar 20 20 X 
I remember hearing 

the music 

21 15 2 X X 35 25 No 
I watched it with my 

husband 
          
Champion 
(1964-1966) 
Game show 
Episodes: 
unknown 
Tuesday,8.50p
m 

22 17 2 Every day Evening 50 28-30 Yes 

I watched it with my 
husband, we 

watched a lot of 
episodes 

23 13 1 X X 40 28 X 
I maybe watched it 

with my husband 

24 15 2 X X X 25 
Not 

much X 
          

Courte Echelle 
(1974) 
Youth TV 
program 
~100 episodes 
From Monday 
to Saturday, 
6.35pm 

25 8 3 X Afternoon 70 48 Yes 
I watched it often 

and alone 

26 32 5 X X X 33 Yes 

I don't know if the 
whole family 

watched it but I 
watched it every 

time 
27 24 3 X X X 52 X X 

          
L'arche de 
Samsong 
(1972) 
Youth TV 
program (mini 
musical play) 
37 episodes 
From Monday 
to Saturday, 
3.20pm 

28 30 1 Weekdays Evening 30 34 
Not very 

much 

I watched it a bit 
with the whole 

family 

29 14 1 X X X 35 X 

I have never seen it 
but the music 

reminds me of 
something  

30 13 1 X X X 36 X X 
 

          
Le train bleu 
s'arrête 13 fois 
(1965-1966) 
Police drama 
13 episodes 
Friday every 2 
weeks 
9.35pm (or 
22.35 pm for 
the 4th episode) 

31 14 1 Saturday Afternoon 35 28 Yes 

I watched it 
occasionally with 

the children, when 
we were in the 

house in Toulouse 

32 30 2 Weekdays Evening 35 27 Yes 

I watched it with the 
whole family, 

occasionally 
 

          
 Les facéties 

du sapeur 
Camember 

(1965) 
Adventure 

series 
50 episodes  

Every day 
except Sunday 
8.30pm for the 
1st to the 20th 

episode  

33 22 4 Sunday Evening 35 28 Yes 

The whole family 
used to watch it but 

not too often 
34 8 3 X Evening 60 39 Yes I watched it alone 

 

          
Teuf-Teuf 
(1968-1969) 
Youth game 
show 
~111 episodes 

35 17 3 Wednesday Evening 30 32 Yes 

I watched a lot of 
episodes with the 

children 

36 4 2 X X 
I was 

young 24 X 
I only listened to the 
music, I have never 



 

102 
 

From Monday 
to Saturday, 
about 6pm 

or 
older 

watched it 

 

 
Vol 272 (1964) 
Drama series 
13 episodes 
Every Sunday, 
7.25pm 

37 14 1 Weekdays X X 27 X 
I have never 

watched it 

38 4 3 X X X 20 X 

It was a long time 
ago, I heard it in the 

bar 
 

 
Miss (1979) 

Detective series 
6 episodes  

Day ? Time? 

39 12 2 Weekdays Evening 63 37 Yes 
I occasionally 

watched it in the bar 
40 23 2 X X 35 36 A bit X 

 
 

En direct avec 
(1966-1968) 
Political TV 

program 
Monthly 

Day? Evening 

41 30 3 Weekdays Evening 30 28-30 No 

I watched it a few 
times, with the 

whole family 
 

          
Encore un 
carreau de 

cassé (1960-
1961) 

Youth game 
show 

Episodes, 
day and time: 

unknown 

42 12 2 Wednesday Evening 37 18 A bit 
I was in the bar, I 

watched it a lot 
 

 
La boîte à 

malice (1979) 
Youth game 

show 
Episodes? 

Day? 
Afternoon 

43 11 2 Wednesday Afternoon 40 41 No 

I watched it with my 
children when we 

were in Montauban 
(French town) 

 

 
Le roi qui 

vient du sud 
(1979) 

historical serial 
6 episodes, 
Thursday, 

8.30pm 

44 17 2 Weekend Afternoon 30 43 Yes 

I watched a lot of 
episodes with the 

whole family 
 

 
Que ferait 

donc Faber? 
(1969) 

Comedy series 
8 episodes, 
Thursday, 

9.40pm 

45 7 2 Weekdays Evening 50-62 46 No 

We watched it by 
chance. We watched 
a few episodes when 

we were in Castres 
(French town)  

 

 
Animal 

Parade (1972) 
Youth series 
12 episodes  
Every day, 

7.30pm 

46 16 3 

Weekdays 
and 

weekend Afternoon X 41 Yes 
I watched it with the 

children 
 

 
Candice ce 

n'est pas 
sérieux (1969) 
Comedy series 

20 episodes 
Every day, 1.20 47 13 2 X 

Afternoon 
or evening 40 33 I think so 

I watched it with my 
children and my 
husband. I don't 

know if i watched a 
lot of episodes or 

not 
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pm  

 
Commandant  
X (1962) 

Spy serial 
10 episodes, 

Day: unknown, 
8.50pm 

48 27 1 X Afternoon 30 22 Yes 48 
 

 
Alexandre Bis 

(1974) 
Spy serial 

6 episodes, 
Thursday, 

8.50pm 

49 33 2 X Evening 
About 

50 49 Yes X 
 

 
Objectif 

Demain (1979-
1981) 

Scientific TV 
program 

Episodes and 
day: unknown, 

8.45pm 

50 4 2 X Evening 45 35 X 

I watched it without 
paying much 

attention 
 

 
La vérité sur 
l'espionnage 

(1967) 
Adventures 

series 
13 episodes 

Monday, 
10.30pm 

0 14 1 X X X 30 X 
I have never 

watched it 
 

 
 

Table 3.1 Collection of 50 reports for the test videos judged familiar by the older 

participants.  

The 2 reports in orange (report 1 and 33) were made after spontaneous retrieval of the 

correct title. The other 48 reports were given after correctly choosing the title in the 4-FC. 

The columns: “What day?”, “What time?”, “How old”, “Did you like it?” and “Other 

details” correspond respectively to the responses to the 5 questions asked to get associated 

information about the TV programs. The column “Age during broadcast” was the actual age 

of the participant during the broadcast of the TV program. 

3.2.2 Single case reports for familiar test videos 

Most of the older participants responses were collected via the 4-FC: 97.4% (SD = 3.5) for the 

test TV programs. On average, the older participants were 24.4% (SD = 5.7) correct in 

identifying the title of a test video, which is similar to the younger participants: 22.9% (SD = 

5.3) that were expected to perform at chance level in this task (25%). It is important to notice 

that in our study and as opposed to classical recall experiments we do not know whether all 
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the 50 test videos were watched by every participant and to what extent. We therefore 

analyzed the older participants’ performance on the 4-FC for every audiovisual clip.  

Interestingly, we found that the average percentage of identification of the test videos was 

significantly correlated with the average confidence on the response (r = 0.37, p < 0.01, 

Pearson’s linear correlation coefficient) which was not the case for the younger participants (r 

= 0.06, Pearson’s linear correlation coefficient). As shown in Figure 3.2, by sorting the 

average performance of each test video over the average confidence in the response, six titles 

were particularly well identified by the older participants when they used the 4-FC, namely: 

“Les Facéties du Sapeur Camember” (16 participants out of 33), “Teuf-Teuf” (20 participants 

out of 32), “Vol 272” (26 participants out of 33), “Frédéric le Gardian” (24 participants out of 

34), “Un Grand Amour de Balzac” (29 participants out of 33) and “Courte Echelle” (24 

participants out of 33). The median percentage of correct identification for these six TV 

programs was high: 71.7% (SD = 13.6, range: 48.5% - 87.9%) and significantly different 

from the 33.8% (SD = 20.6, range: 8.8% - 61.8%) obtained by the younger participants from 

the same six TV programs (Wilcoxon Signed-rank test: Z = 21, p < 0.05). Note that all of 

these titles were also found in the reports presented in Table 1, including “Les Facéties du 

Sapeur Camember” and “Un grand Amour de Balzac” which were spontaneously named.  

 

Figure 3.2 Performance in the 4-FC for the 50 test TV programs.  

Videos were sorted according to the average confidence in the response given by the older 

participants in the 4-FC for videos judged familiar or not. The older participants’ 

performance for the six TV programs are shown in red: “Les facéties du sapeur Camember”, 
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“Teuf-Teuf”, “Vol 272”, “Frédéric le gardian”, “Un grand amour de Balzac” and “Courte 

Echelle”. 

3.3 Influencing factors 

In this experiment several factors might explain the variability in the older participants’ 

performance for the test videos. This might be due to variations between the audiovisual clips 

or to individual differences.  

In particular it would be interesting to find out if there was something about the 23 TV 

programs out of 50 that were associated with some contextual information, compared with the 

27 that failed to work with anyone. This could be explained by the number of broadcasts, the 

overall duration of a TV program (episode duration * number) or the time interval since the 

last episode was broadcast. However, for each of these three factors we did not find any 

difference between the 23 TV programs recognized and the other 27. 

Another source of variability might concern the audiovisual content presented during the 7s of 

each clip. In particular, some of the videos were more static than others. We therefore decided 

to count the number of different scenes defined as a specific action in space and time for each 

of the test videos (mean = 1.6, SD = 1.1, range: 1-7). We did not find any difference between 

the number of scenes displayed in the 23 test videos that were recognized compared to the 

other 27.  

The older participants’ performance for the 50 test videos might also be related to inter-

individual differences. In particular we tested for the impact of five factors: age, cognitive 

abilities (given by the MMSE score), the year of TV set acquisition, the number of hours 

participants currently watched TV and the performance obtained for the 22 famous TV 

programs. We found that the percentage of correct responses for the 50 test videos was 

negatively and linearly correlated with participants’ age (r = -0.39, p < 0.05, Pearson’s 

correlation coefficient) and with the year of TV set acquisition (r = -0.40, p < 0.05, Pearson’s 

correlation coefficient). However, we did not find any correlation between participants’ 

performance for the 50 test videos and these following three factors: 1/the time the older 

participants spent watching TV when tested, 2/the older participants’ performance for the 

famous videos, 3/ the older participants’ overall cognitive abilities. For this latter factor, only 

25 participants were tested.  
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4. Discussion 

This study shows that recalling a complex audiovisual stimulus is possible decades after the 

original exposure, under conditions where reactivation in the intervening period is very 

unlikely. The absence of re-exposure to the stimuli was strictly controlled by testing TV 

programs that have never been rebroadcast and are not available in the public domain. 

However we cannot completely rule out the possibility that reactivation might occur during 

exposure to content that was indirectly related to these TV programs. Nor can we totally 

exclude  involuntarily reactivations that might happen during sleep or wakefulness 

(Rasmussen and Berntsen, 2009; Rubin and Berntsen, 2009). Indeed, the stimuli used in this 

study are rich in terms of content and could elicit semantic associations with other items that 

are not directly related to the TV programs for example. Further experiments should use 

abstract/meaningless or simple stimuli to rule out this hypothesis. Nevertheless, given the 

absence of physical re-exposure to the stimuli and the fact that participants reported not 

having thought about these TV programs for years, the probability of occurrence of these 

reactivations might be very small when considering the retention interval between the time of 

broadcast and the recall. This gives enough support to consider that the memories of these old 

TV programs were dormant or in an inactive state. 

Interestingly, all of the information retrieved concerned generic information about the test TV 

programs. They could be personal memories (participants’ age, whether they liked the TV 

program or not, who they used to watch the TV program with and when) or not (title or 

characters’ name of the TV program). The amount of personal details retrieved from 

autobiographical memory varied but even for the most detailed reports, no reference to a 

specific or unique event was mentioned. Several factors could explain participants’ inability 

to retrieve any episodic autobiographical memory: the age (Rubin and Schulkind, 1997) and 

long retention interval between watching the TV programs and doing the test (Piolino et al., 

2002) as well as the contextual similarity in which the episodes of the same TV program were 

watched. In the latter case, each episode of a TV program would be a new episode from which 

participants would create a generic pattern stored semantically (Neisser, 1981). 

The retrieval of semantic autobiographical memory was associated with familiarity together 

with some confidence in the response. This shows that familiarity might be a property of the 

semantic system, a recent view that emerged from lesion studies (Vargha-Khadem et al., 

1997). If this is the case, the recognition of a TV program was based on a judgement of 

previous occurrence performed consciously by the participant (Mandler, 1980). However, and 

as shown by the six TV programs that were identified with better than chance level 
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performance over the 34 participants, most of the recognized test TV titles occurred without 

any familiarity judgment and with low confidence levels. In this case, title recognition might 

only be due to an effect of perceptual fluency of which the participants were unaware of 

(Jacoby and Dallas, 1981; Verfaellie and Cermak, 1999; Voss et al., 2008). Participants might 

select a title because they could process it more readily given the video presented. Judgments 

based on perceptual fluency alone might not be the most optimal (Jacoby and Dallas, 1981) 

but could explain the bias towards lures for the test TV programs. 

In our experiment, 23 out of the 50 test TV programs were able to elicit the retrieval of 

semantic autobiographical memories. We would have expected that a difference in the 

number of original broadcasts would have an impact on the retrieval of personal contextual 

details. However we did not find any difference between these 23 TV programs and the other 

27. Indeed, as shown by reports 1 to 5 and 45 (Table 1) it seems that only a few exposures to a 

TV series or its opening theme (report 6, Table 1) can be enough to create a stable memory 

trace. We also thought that the time elapsed since the last broadcast could be a critical factor, 

but again we did not find any difference between the 23 TV programs that elicited retrieval of 

personal details and the other 27. Nevertheless the chance of getting any recall for these 23 

TV programs was higher than it was for the two oldest TV programs broadcast in the late 

50’s: “Les Aventures de Mic” and “Télé-Pok”, for which no report was collected and for 

which correct identification on the 4-FC was respectively 12.1% and 2.9%.  

Interestingly, the median age of the participants at the time when these 23 TV programs were 

broadcast was 33 years old (SD = 8.4, range 18-52) which corresponds to a critical period in 

the developmental literature: adults above 35 years old are able to retrieve many 

autobiographical memories during this period of early adulthood (Rathbone et al., 2008; 

Rybash, 1999). This might have had an impact on the older participants’ ability to recall the 

test TV programs in semantic memory. 

This age effect was confirmed when considering participants’ overall performance for the 50 

test TV programs. Indeed we found that the best performers were the youngest subjects from 

the older group of participants.  

To get access to the participants’ memories of old TV programs, this study was carried-out in 

an ecological way in comparison to classical lab-based memory paradigms. However these 

real-life conditions lead to two main limitations. 1/ The population we tested was heavily 

biased towards females, with only three males among the 34 participants. This bias is largely 

explained by differences in participants’ willingness to be involved in this study, together 

with a difference of mean life expectancy between the genders in France (French male: 80y, 
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French female: 85y). The small number of male participants made it impossible to find 

significant performance differences between the genders, but further studies would be useful.  

2/ We don’t know whether the 50 test TV programs were watched by all the participants 

tested. However we found that the earlier participants had a television in their house the better 

their overall performance was for the test videos.  

The biggest question raised by this study concerns the nature of the underlying mechanisms of 

these very long-term memories. How is it possible that such dormant memory traces can 

survive for decades, even when there is no possibility of re-exposure to the original stimuli? 

So far, studies have mainly focused on the role of re-consolidation in the maintenance of 

long-term memory. Findings show that reactivations of long-term memories re-consolidate 

and strengthen memory traces and for episodic memories this occurs with the support of a 

more distributed ensemble of hippocampal–neocortical neurons (Moscovitch et al., 2006). 

Because the TV programs used had between 6 and 120 episodes, such re-consolidations might 

have occurred during the initial period of broadcast. At the same time, the retrieval of similar 

episodic events during the original broadcasting would allow the transformation of episodic 

information into semantic representations corresponding to a gist or schema created from all 

the episodes watched for the same TV program (Winocur and Moscovitch, 2011; Winocur et 

al., 2010). For one TV program, an episodic memory of each TV episode would then coexist 

with a generic semantic representation of all its episodes. According to this Trace 

Transformation Theory that follows the Multiple Trace Theory, episodic memories would rely 

on both neocortical and hippocampal structures whereas the semantic representation would be 

specific to the neocortex.  

In the absence of reactivations after the original broadcasting, the synaptic weights of the 

neurons supporting these memories -in the hippocampus and/or in the neocortex- would not 

have been much reinforced. And so far, little is known concerning the maintenance of these 

dormant memories. 

Our paradigm used audiovisual clips to reactivate these dormant memories and it is quite 

possible that such stimuli could be more efficient than static and unimodal stimuli (Furman et 

al., 2007). We strongly believe that the use of dynamic and multimodal stimuli should be 

more widespread and might provide valuable assistance in the diagnosis of memory loss or 

impairment in conditions such as Alzheimer’s disease. We are open to providing the 

audiovisual clips to researchers interested in using the material.  

It is as yet unclear how such long-term memories can be retained over decades and it should 

be noted that synaptic plasticity may not be the only possibility. For example, there is 
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evidence that some forms of memory can be transmitted epigenetically (Carone et al., 2010; 

Crick, 1984; Dias and Ressler, 2014) although it seems unlikely that such mechanisms could 

be involved in memories for old TV themes. We hope that further investigations will be 

carried out to understand the “life” of these dormant memories. 

5. Conclusion 

Compared to classical memory experiments the results we got might sound ridiculous. To me, 

they were by far beyond what I could expect when we started the investigation. About 40 

years later, I had the proof that some individuals could retrieve spontaneously the title of a TV 

program with no more support than a 7s audiovisual excerpt. Even if this happened to only 

two participants out of the 34 we tested, it makes it clear that dormant memory traces can be 

recalled years later.  

With Sophie we spent several months to gather all of this data. Between the lotto game and 

the snack at 4 pm, it was hard to convince our potential participants to perform a one-hour test 

in front of a computer. Especially men seemed to prefer playing pétanque in the backyard. It 

might sound cliché, but it was the reality we faced. Importantly, we were able to identify 23 

TV programs that elicited some recall. Using only these 23 TV programs, we might be able to 

test more participants and make it more attractive to our target population. Indeed, with 

Simon and Nadège we thought of it as a first step before carrying it at a larger scale. So far, 

the data collected are promising but they might be more robust if hundreds of people would 

be tested.   
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7. Supplementary information 
 

Participant Gender Age when tested Year of TV acquisition Hours of TV/day 

1 female 76 1956 3.5 

2 female 84 1960 2 

3 female 81 1970 5 

4 female 70 1958 1 

5 female 90 1959 2 

6 female 85 1963 6 

7 female 91 1958 6 

8 female 88 1967 3 

9 female 84 1958 3 

10 female 75 1963 4 

11 female 76 1962 1 

12 male 72 1956 3 

13 female 78 1965 4 

14 female 77 1963 0.5 

15 female 75 1962 1 

16 female 83 1960 9 

17 female 78 1957 3 

18 female 79 1963 2 

19 female 52 1964 2 

20 female 83 1970 5.25 

21 female 73 1965 2.5 

22 male 77 1963 3 

23 female 71 1968 4 

24 female 92 1966 1 

25 male 74 1964 3 

26 feminine 76 1970 2 

27 female 74 1966 7.5 

28 female 79 1968 6 

29 female 84 1965 8 

30 female 76 1964 5 

31 female 76 1967 3 

32 female 73 1965 2 

33 female 89 1967 2.5 

34 female 84 1970 4 

 

Table 3.S1 Older participants’ detailed information: gender, age, year of TV acquisition 

and daily number of hours of watching TV at the time of the recall. 
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Title Date 1st episode Date last episode Rebroadcast 

Number of 

episodes 

Episodes 

duration 

(min) 

Number of 

seasons 

Famous TV programs 

30 millions d'amis 6 January 1976 On the air the 1 January 2015 No > 1000 25 39 

Age tendre et tête de bois 30 May 1961 1 April 2014 No ? ? ? 

Agence tous risques 1 July 1984 8 March 1987 Yes 98 45 5 

Alerte à Malibu 2 January 1991 1 January 2002 Yes 243 45 11 

Bonne nuit les petits 10 December 1962 1 December 1973 Yes 568 5 5 

Chapeau melon et bottes de cuir 7 January 1961 21 May 1969 Yes 161 52 6 

Dallas 2 April 1978 3 May 1991 Yes 357 45 14 

Des chiffres et des lettres 4 January 1972 On the air the 1 January 2015 No ? ? ? 

Eurovision 24 May 1956 On the air the 1 January 2015 No 58 180 ? 

Fort boyard 7 July 1990 On the air the 1 January 2015 No 277 110 25 

Inspecteur Gadget 24 October 1983 1 January 1986 Yes 86 22 2 

Intervilles 17 July 1962 On the air the 1 January 2015 No 250 120 24 

La petite maison dans la prairie 30 March 1974 21 March 1983 Yes 205 45 9 

Mac Gyver 29 September 1985 21 May 1992 Yes 139 45 7 

Magnum 11 December 1980 1 May 1988 Yes 162 50 8 

Mission impossible 17 September 1966 30 March 1973 Yes 171 50 7 

Motus 25 June 1990 On the air the 1 January 2015 No > 1000 30 24 

Stade2 28 December 1975 On the air the 1 January 2015 No > 1000 70 39 

Starsky et Hutch 30 April 1975 15 May 1979 Yes 93 48 4 

Thalassa 27 September 1975 On the air the 1 January 2015 No > 1000 60 37 

Thierry la fronde 3 November 1963 27 March 1966 No 52 25 4 

Wonder Woman 7 November 1975 11 September 1979 Yes 59 48 3 

Test TV programs 

A dossiers ouverts 18 February 1974 22 March 1974 No 25 13 1 

Acilion et sa bande 3 July 1978 31 August 1980 No ? ? 2 
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Alexandre Bis 25 July 1974 5 September 1974 No 6 78 1 

Alice où es-tu? 16 August 1969 8 September 1969 No 20 13 1 

Animal Parade 14 February 1972 25 February 1972 No 12 7 1 

Bayard 16 January 1964 9 April 1964 No 13 25 1 

Candice ce n'est pas sérieux 9 September 1969 1 October 1969 No 20 13 1 

Champions 21 May 1964 12 July 1966 No ? ? ? 

Commandant X 30 October 1962 17 July 1965 No 10 90 1 

Courte Echelle 8 February 1974 8 July 1974 No ~100 150 1 

En direct avec 3 October 1966 8 April 1968 No ? ? ? 

Encore un carreau de cassé 11 aout 1960 29 April 1961 No ? ? ? 

Fachoda ou la mission Marchand X March 1977 1 April 1977 No 6 60 1 

Faire Face 10 June 1960 9 February 1962 No 11 30 2 

Frédéric le gardian 23 September 1965 16 October 1965 No 24 14 1 

L'arche de Samsong 8 November 1972 26 Decembrer 1972 No 37 15 1 

L'as et la virgule 19 November 1964 23 December 1964 No 8 45 ? 

L'Enjeu X September 1978 13 June 1988 No ? ? ? 

L'homme de l'ombre 29 July 1968 6 September 1968 No 30 13 1 

La Prunelle 10 September 1968 3 December 1968 No 13 30 1 

La boîte à malice 1 July 1979 30 August 1979 No ? ? ? 

La vérité sur l'espionnage 4 December 1967 1 January 1969 No 13 50 ? 

La vie commence à minuit 28 July 1967 6 August 1967 No 20 13 1 

Le blanc et le noir 14 January 1975 9 September 1975 No ? ? ? 

Le comte Yoster a bien l’honneur 30 July 1969 5 October 1974 No 40 25 2 

Le dernier petit ramoneur 6 October 1961 1 January 1961 No ? ? ? 

Le Pèlerinage 5 April 1975 5 May 1975 No 24 13 1 

Le roi qui vient du sud 8 February 1979 15 March 1979 No 6 52 1 

Le Tourniquet  1971 1971 No ? ? ? 

Le train bleu s'arrête 13 fois 8 October 1965 11 March 1966 No 90 13 1 
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Les Atomistes 12 February 1968 18 March 1968 No 26 13 1 

Les Survivants 20 September 1965 6 October 1965 No 13 13 1 

Les Aventures de Mic 2 April 1959 14 September 1960 No 52 15 1 

Les complices de l'aube 1 September 1965 9 September 1965 No 9 15 1 

Les demoiselles de Suresnes 15 April 1968 21 May 1968 No 26 13 1 

Les dernières volontés de Richard 

Lagrange 4 July 1972 7 August 1972 No 30 13 1 

Les diamants de palinos 31 December 1964 14 January 1965 No 13 13 1 

Les facéties du sapeur Camember 20 September 1965 18 November 1965 No 50 5 1 

Les sept de l'escalier 15 3 January 1967 6 February 1967 No 25 13 1 

Malican père et fils 15 July 1967 27 July 1967 No 13 26 1 

Miss 26 July 1979 16 August 1979 No 6 55 1 

Objectif Demain 19 March 1979 16 december 1981 No ? ? ? 

Poker d'as 31 October 1973 7 December 1973 No 26 13 1 

Quand on est deux 18 November 1962 31 January 1964 No 26 13 1 

Que ferait donc Faber ? 3 July 1969 21 August 1969 No 8 55 1 

Télé-Pok 11 September 1957 11 February 1958 No ? ? ? 

Teuf Teuf 30 October 1968 7 March 1969 No ~111 ? 1 

Un grand amour de Balzac 19 April 1973 31 May 1973 No 7 50 ? 

Vacances animées 14 March 1974 1 January 1977 No 120 45 3 

Vol 272 3 May 1964 26 July 1964 No 13 26 1 

 

 

Table 3.S2 Details of famous and test TV programs: broadcast period, number of episodes, 

duration of episodes and number of seasons.  

For some TV programs the number of episodes was not known and an approximate numbers 

(~…) was calculated based on the days of broadcast and the dates of beginning and end of 

broadcast. Question marks represent missing data. 
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CHAPTER 4. Long-term memory and familiarity after 

12 years 

 

 

Abstract 

In 2006 Mitchell demonstrated that implicit memory was robust to decay by showing that the 

identification of fragments of pictures seen 17 years before was significantly higher than for 

new stimuli. Is this true only for implicit memory? In this study, we tested whether explicit 

memory was still possible for drawings (n = 144) that had been presented once or three times, 

two seconds each time on average, about 12 years before. Surprisingly, our data reveal using 

two different but congruent experiments that a third of our participants (8 out of 24) were able 

to recognize pictures above chance levels. Preserved memory was mainly observed in young 

subjects, for stimuli seen 3 times. Despite the fact that confidence judgments were low, 

reports suggest that recognition could be based on a strong sense of familiarity. These data 

extends Mitchell’s findings and show that explicit memory can also be robust to decay. 
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Presentation chapter 

The data collected in the first experiment gave me some confidence. I saw with my own eyes 

the two participants who recalled spontaneously the titles of the TV programs. It was to me 

and to Sophie that participants reported their subjective impressions and memories about the 

TV programs. Yet, it took me some time to really believe in them, until I experienced it 

myself.  

I remember this day when I was in a conference room for a meeting afternoon organized by 

the doctoral school of my university. Researchers were invited to speak about sensory 

information, and how we perceive it. After interesting discussions about the spectrum of light 

and synesthesia, the last speaker started his talk on a movie. Before he started, I remember 

saying to a friend that I did not know this movie. But during the first minutes of his 

introduction it was like his words ringed me a bell. Details about the movies sounded familiar 

to me and I started to think that it was probably due to similarities with a book that I read or 

with a documentary that I could have watched on the same topic. This familiar flavor that I 

got from the general introduction all made sense when the researcher showed a still snapshot 

from a particular scene of the movie. I already watched this movie! And as soon as I realized 

it, it was like being sent back in a specific time and space of my life. I was in my small 

apartment in Paris, at my desk that was also my dining room table. I was at that particular 

place, close to the wall that separated the leaving/bed room from the small kitchen. And I just 

remember this particular moment when I could see a light ray running from the top left of the 

screen to the keyboard of my laptop. In front of this natural lighting I could see all the dust on 

my computer, and especially around the on and off button. It was probably the sunset, at about 

8pm and I know that it was time for diner. I could not tell more. But I had no doubt, what I 

was watching at this time was the movie: “The Taste of Cherry” a title that I completely 

forgot about. But I did not forget the faces of the characters, either the particular scenes of the 

movies, or the overall story… This dormant memory was still pretty young, 2 or 3 years old 

but it gave me the inner feeling that we were in the right direction.  
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From the first experiment I could tell that individuals could maintain the memory of TV 

programs for several decades in an inactive state. Some TV programs were broadcast not even 

a dozen times others more than a hundred and I would have thought that the number of 

broadcasts might have an influence on individuals’ recall. However, I could not find any 

correlation between participants’ performance and the number of episodes of a TV program, 

or with the whole exposure duration (duration of one episode time the number of episodes). 

As discussed in chapter 2, repetition might be the key for storing long-term memories. During 

the watching of a TV series, many repetitions occur. As an example, main characters can be 

seen hundreds of times just in one episode and even by watching a TV episode for a couple of 

minutes we might be able to store the repeated patterns in long-term memory. Therefore, TV 

series might not be the best to tackle the issue of the number of presentations.  

My curiosity pushed me to go for a new project that was even more audacious than the first 

one. I remember when I heard through Nadège that Emmanuel was interested in testing 

participants’ remote memory for very simple drawings. These drawings were seen no more 

than six times and about 10 years ago during a neuropsychological protocol in Marseille. I 

had the chance to conduct this research with the support of Eve who carried out the original 

experiment in Marseille, Sophie and of course Simon who was always looking for new 

challenges! 

Unlike my first experimental design, this one was by far more classical. We knew that 

hundreds of drawings were seen by a group of participants during a specific protocol. We just 

had to contact them again and test their memory. For each participant I could provide precise 

figures such as the percentage of retrieval.  

This time, the stakes were high. Assuming that memories might not be gone, I had to 

reactivate memory traces of drawings that were the most basic pieces of art that one could 

think of: Microsoft cliparts from 2001. Unlike TV programs, these drawings were not part of 

a specific associational network where semantic and contextual information might have been 

potential access doors. And worse, the status of drawings reduced them to frozen shapes on a 

white page. In such extreme conditions, I knew that I should force participants to try to 

retrieve the memory of these drawing even if they said not to have any trace left. For that I 

had to make it simple: every time two drawings will be presented, one they saw and one new. 

Participants would just have to tell which one they already saw. 
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Of course, we had to check that there was nothing different between the new drawings that we 

added in and the ones that were shown in the original experiment. Djamaa helped me 

gathering the new drawings and ran pilot controls. Everything was then ready for Sophie and 

Eve to test our participants.  
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1. Introduction 

Implicit memory does not involve explicit or conscious recollection and the effect of memory 

is inferred from behavioral performance (Roediger, 2003). In 2006, Mitchell (Mitchell, 2006) 

published a research report demonstrating that implicit memory could be preserved on the 

long-term. In his experiment, participants were better at identifying fragments of black-and-

white line drawings they had seen 17 years before than new drawings, even when they could 

not remember having participated in the original study. Even today, this finding holds the 

record for the duration of implicit memories, raising the question of the neurobiological 

mechanisms underpinning such ability. 

In contrast, in explicit memory tests, participants are directly involved in the retrieval of 

previously learned items. This holds for recognition memory tasks where participants have to 

determine if an item has already been experienced or not. It is generally assumed that 

recognition in such tasks relies on two processes: familiarity, which is the ability to identify 

that an item has previously been encountered, and recollection, which implies the retrieval of 

contextual details associated with the item (Mandler, 1980). Some studies have suggested that 

explicit memory can extend to a few decades if not for a lifetime. Such studies have focused, 

for example, on the memory of old classmates (Bahrick et al., 1975) or on knowledge learned 

in school (Conway et al., 1991). However, all these studies used ecological material for which 

the duration of acquisition -reflected through the number of exposures and the duration time- 

was far longer than in Mitchell’s experiment. Indeed, priming lasting for 17 years was found 

for drawings that had been presented for 1 to 3 seconds and at most 3 times. Furthermore, the 

material used in the explicit memory tasks was probably rehearsed either purposefully 

(knowledge learned at school) or simply by interest (recurring discussions about old 

classmates with friends, etc.). Therefore, it is unknown how long explicit memory can be 

maintained if exposure to the material is brief and if no rehearsal has taken place. 

Recent neuronal models based on Spike Time Dependent Plasticity (Masquelier and Thorpe, 

2007) show that a few exposures to simple stimuli can be enough to create hyper-selective 

neurons. Such neurons could potentially remain silent and their synaptic weights preserved 

until the same stimulus or a close representation would be presented again (Barron et al., 

2016). According to this view, implicit but also explicit memories might be maintained for a 

life-time (Thorpe, 2011). We therefore hypothesized that subjects exposed to simple stimuli 

may be able to recognize at least some of them several years later, even with no exposure in 

the meantime. 
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In the present paper, we tested participants’ explicit memory (n = 24, 14 female) for simple 

colored drawings (n = 144) that had been presented once or three times for roughly 2 seconds 

each time on average, from 8 to 14 years before. Because the stimuli were simple and not 

particularly interesting (a third of them were actually abstract figures difficult to verbalize), 

we thought that it was unlikely that the participants ever thought about them between 

encoding and test about a decade later. 

2. Method 

2.1  Participants 

From 2002 to 2008 (mean year = 2004, SD = 2.2), 243 healthy control subjects participated in 

a neuropsychological protocol in the Timone University Hospital in Marseille (France). This 

protocol included four cognitive tasks among which a visual recognition memory test that we 

used as the basis of the current study.  

We could contact 63 of these subjects, of whom 25 agreed to participate in a second 

experiment in 2016. One of them was discarded because of macular degeneration. None of the 

24 other participants reported the presence of important neurological, psychological or 

psychiatric troubles since 2002 and are referred to as test participants in this paper (14 

females, mean age = 60.8y, SD = 17.5, range: 34-84y). All subjects had normal or corrected-

to-normal vision and audition. The overall cognitive abilities of participants beyond age 60 

were assessed in 2002-2008 using the Mini-Mental State Examination (MMSE) (Folstein et 

al., 1975) from the French GRECO consensual version (mean MMSE score 29.5 out of 30, 

SD = 0.7, range: 28-30). All participants were tested again with the MMSE in the context of 

the current study with no deficit found for any of the participants (mean score = 29.5 out of 

30, SD = 0.9, range: 27 – 30). 

A control group of 24 naïve subjects (14 females, M = 62.5, SD = 20.7, range: 33-94y), who 

had never seen any of the drawings from the first experiment also took part in this study. 

The current study was approved by the INSERM Ethical Evaluation Committee (CEEI, N°15-

263) and all participants gave informed written consent before experimentation. 

2.2 Initial test: the DMS-48 

The basis of the current study is a visual recognition memory test, the DMS-48, that is widely 

used in memory clinics in French-speaking countries and has been described extensively 

before (see for example Barbeau et al., 2004; Didic et al., 2013). The DMS-48 is freely 

available for research purpose (http://cerco.ups-tlse.fr/~barbeau/dms48.html). 

http://cerco.ups-tlse.fr/~barbeau/dms48.html
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During an incidental encoding phase (participants were not told that it was a memory test), 48 

pictures were first presented one after the other. For each stimulus, participants were simply 

instructed to tell if the picture was made of more or less than 3 colors. Two forced-choice 

recognition memory phases took place after 3 and 60 minutes. Different neuropsychological 

tasks were presented during the interfering phases. Participants were asked to identify the 

picture previously seen among two presented simultaneously (one old and one distractor each 

time). There were three conditions (examples in Figure 4.1). In the ‘Unique’ conditions, both 

old and distractors pictures were concrete objects with names and shapes (e.g. a rooster and a 

digger). In the ‘Paired’ condition old and distractors items had the same name and similar 

shapes and colors (e.g. two different snowmen). The ‘Abstract’ condition involved abstract 

patterns that were difficult to verbalize. A separate set of 48 new distractors was used for each 

of the test phase. All stimuli were presented on A4 white sheets of papers. 

Performance on the DMS-48 is expressed in percentage (maximum performance 100%). 

 

 
 
Figure 4.1 Examples of pairs of stimuli used in the DMS-48 for the three conditions 

“Unique”, “Paired” and “Abstract”. 

 

2.2.1 Initial number of presentations of the stimuli 

Overall, the 48 old stimuli were seen 3 times (during the incident encoding phase and the 

recognition phases at 3 and 60 minutes), whereas the other 96 stimuli that served as 

distractors during the recognition phases at 3 and 60 minutes were seen only once. This  was  

the case for 19 participants. However, 2 subjects (participant 4 aged 64 and participant 5 aged 
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67) underwent a third recognition phase after 6 weeks in 2007 and were thus exposed 4 times 

to the old stimuli. The remaining 3 subjects (participant 2 aged 83, participant 3 aged 84 and 

participant 6 aged 63) underwent the whole protocol again 18 months later and were thus 

exposed 6 times to the old stimuli and twice to the distractors. 

2.2.2 Initial time spent on the stimuli 

The time spent to perform the incidental encoding of the 48 stimuli and to complete each of 

the 2 recognition tests was calculated for 19 out of the 24 participants. For 5 participants the 

time to perform the 2 recognition tests was not measured.   

Participants spent on average 212 s (SD = 42.5, range: 150 - 327s) to perform the incidental 

learning task, 166 s (SD = 52, range: 83 - 310s) to complete the first recognition test and 159 

s (SD = 47.4, range: 76-279s) to finish the second recognition test. By dividing the duration of 

these 3 experimental runs by the number of stimuli presented, we were able to get an estimate 

of the exploration time for each of the 144 pictures. On average, the 48 stimuli presented 3 

times were seen for 7.8 s (SD = 1.7, range: 5-12.9s), whereas the 96 stimuli presented once 

were seen for 1.7 s (SD = 0.5, range: 0.8-3.2s). 

2.2.3 Initial results 

Participants’ performance was at ceiling (after 3 minutes: mean = 98.4%, SD = 2.0, range: 92 

– 100% and after 60 minutes, mean = 98.5%, SD = 1.9, range: 92 – 100%) thus, 

demonstrating that essentially all the targets had been fully processed and memorized at least 

for an hour. 

2.3 Current tasks 

In the present study, we used two successive recognition memory tasks to assess participants’ 

ability to recognize the stimuli seen between 8 and 14 years earlier: a forced-choice task as 

close as possible to the initial one, but using a new set of distractor stimuli, and a Yes/No task 

to assess whether the findings could be replicated in a different context, i.e., were robust to 

experimental changes (Figure 4.2). 

Because this is the first study of its kind as far as we know, we were careful in trying to keep 

environmental variables the same from the initial exposure to the present experiment, thus 

trying to respect the encoding specificity principle (Tulving and Thomson, 1973). We used a 

similar way to present the stimuli (printed on A4 white sheets presented in binders) and 

subjects were seen in the same hospital as initially. 
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The forced-choice task was based on 144 pairs of coloured drawings. Each pair was made of 

an old stimulus seen in the initial task 8 to 14 years earlier and a new one. Old stimuli were 

either the 48 targets seen several times or the 96 distractors seen only once in the initial test. 

The new items were chosen with respect to the original combination of categories ‘Unique’, 

‘Paired’, and ‘Abstract’ (n = 48 for each). For each trial, the two items were displayed on the 

right and left-hand side of the sheet (counterbalanced). The pairing of the new items and the 

ones seen initially was shuffled across participants for the categories ‘Unique’ and ‘Abstract’. 

However, because it would have been difficult to find enough new pictures that would match 

the items of the ‘Paired’ category presented in the DMS-48, the same “Paired” combination 

was presented for all participants. The order of the presentation of the pairs of the stimuli was 

randomized across participants. The forced-choice task was divided into 3 blocks of 48 pairs 

of pictures. Trials were pseudo-randomized to equalize within each block the number of 

stimuli seen 3 times and once as well as the number of stimuli belonging to each combination 

categories (‘Unique’, ‘Paired’, ‘Abstract’). 

For each trial, participants were invited to identify the picture that was presented in the initial 

experiment several years before. 

This task was also presented to the 24 naive control subjects. Of course, they had not seen any 

of the stimuli before, so they were asked to say which one they “thought” had previously been 

presented. The reason for this procedure was that the new items used in the forced choice 

were selected in 2016. There could thus have been a risk that these new items were 

inadvertently systematically different from the previous ones, which would have introduced a 

bias in the experiment. 

After completing the forced-choice task, the participants were invited to respond on a Yes/No 

recognition memory task. 144 out of the 288 stimuli shown in the forced-choice were 

individually presented, centred on A4-printed white sheets. These stimuli were equalized 

across the 3 categories ‘Unique’, ‘Paired’, ‘Abstract’ and included the 48 stimuli seen 3 times 

in the initial test, 48 stimuli seen once in the initial test and 48 stimuli from the new set of 

stimuli added to perform the forced-choice task of the current experiment. Only 48 stimuli 

were used for each condition to limit the duration of the Yes/No task. Thus, all stimuli used in 

the yes/no task had been presented in the forced-choice task. 

For each stimulus, participants were asked to say whether the picture had been shown to them 

in the initial experiment (a “yes” response was expected) or if it was a new picture just seen in 

the previous forced-choice task (a “no” response was expected in this case). 
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Two participants refused to perform this task. One because she said she saw too many similar 

pictures in her life (she used to work with children in a day nursery) and the other one because 

it was too hard for him to differentiate drawings seen in the initial test from those seen 

previously. 

2.3.1 Confidence responses and verbal reports 

For each trial in the forced-choice and the Yes/No tasks participants were asked to rate the 

confidence of their response on a 5-point scale: 0: ‘guess’, 1: ‘not sure at all’, 2: ‘not very 

sure’, 3: ‘fairly sure’ and 4: ‘sure’. Importantly, the participants were also invited to report the 

reason for their choice verbally if they used a confidence score of 3 or 4. As high confidence 

responses can be based on recollection, we wanted to assess whether participants would 

spontaneously recollect elements of the initial test that would help them recognize some 

stimuli. 

 
Figure 4.2 The current experimental procedure consisted in two explicit memory tests: a 

forced-choice (task 1) and a Yes/No recognition (task 2).  

In the forced-choice, test participants (N = 24) and control participants (N = 24) were 

presented with 144 pairs of stimuli and participants were asked to identify which of the two 

stimuli was presented in the first experiment (DMS-48 performed in 2002-2008). In the 

Yes/No task the participants (N = 22) were asked to evaluate if the 144 individual stimuli 

corresponded to ‘old’ (seen in the DMS-48 about 10 years ago) or ‘new’ items (seen only in 

the previous forced-choice). In both tasks the stimuli were presented on A4-paper sheets and 

each response was followed by a confidence score rated on a 5-point scale. 
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2.3.2 Performance and presentation of the results 

Performance in the forced-choice task was expressed as a percentage (maximum performance 

100%). 

To take into account the ratio imbalance between the “Yes” and “No” responses in the 

Yes/No task, performance was calculated using a sensitivity index: d-prime = Z(Hit rate) – 

Z(False Alarm rate) with Z being a z-score. Within each analysis, Z-score values were 

corrected (following Snodgrass & Corwin, 1988) for every participant if some of them had 

infinite scores. A d-prime value of 0 corresponds to chance-level performance and larger d-

prime values correspond to better performance. As previously done for correct responses in 

the forced-choice task, a continuous representation of the data was used. 

To get a better apprehension of the data, the estimated number of participants for a given 

correct percentage was also calculated using a kernel density estimation (Allen et al., 2012). 

This allowed us to get a continuous representation of the data that cannot be visualized via 

classical bar or box plots. 

2.3.3 Statistical analyses 

We followed the new statistics guidelines to test any potential effect in the data (Cumming, 

2014). As recommended, we did not use null-hypothesis significance testing (NSHT) that 

relies on p-values. Instead we presented confidence intervals that offer a better 

understandability of the data and in our case of the chance level. 

Chance level on the forced-choice was calculated based on the estimate of a binomial 

distribution (50%) associated with its 95% confidence interval (CI). This value gives an 

estimate of the chance level for one participant with an upper (50% + 95%CI) and a lower 

(50% - 95%CI) chance limit. As an example, for the 144 pairs of drawings presented in the 

forced-choice task, chance level ranged between 60 and 84 items (144/2 ± 95%CI). In this 

case, participants would perform better than the chance level if they could correctly identify 

more than 84 items. Repeating such measure across participants could lead to some 

uncertainty of this estimate at the group level. We considered that 95% of the participants 

should fall within the 95% confidence interval of the chance level. For 24 participants, this 

means that 22-23 participants should perform within the chance limits and only 1 or 2 

participants should be out of the CI limits. In the case where more than two participants have 

performance beyond these chance limits, the population deviates from chance level.  
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The material and the data are freely available here: 

https://drive.google.com/drive/folders/0B1akb3XjfkiyWHc3SW52QmEydlE?usp=sharing 

3. Results 

3.1 Naïve control participants 

The new items used in the forced choice task were selected for the purpose of the current 

study and could have been inadvertently systematically different from the stimuli chosen at 

the time the recognition memory task was designed, which would have introduced a bias in 

the experiment. To control for this, the performance of naive control subjects who had never 

seen any of the stimuli and could thus in principle not perform the task was compared to the 

chance level expected from a binomial distribution delimited by its 95% confidence interval 

limits. Control participants were on average 50.9% correct on the forced-choice task (SD = 

5.9, range 41.7% - 63.2%) and were not different from the 50% chance level expected from a 

binomial distribution for 144 items (CI95 = [41.6% – 58.4 %]) with only 2 participants 

performing above the upper limit.  

3.2 Test participants’ performance 

In the forced-choice task, two drawings were simultaneously presented: one corresponding to 

a picture presented in the initial experiment about 12 years before, one corresponding to a 

new picture. Interestingly, the median distribution of test participants’ performance was 

significantly different from the one obtained by the control group (55.2%, vs 51.4%, U = 387, 

CI95 = [0 – 8.3], Mann-Whitney-Wilcoxon-test) showing a general upper shift of the whole 

population of test participants from chance level (Figure 4.3). 

The probability to identify by chance the picture presented in the first experiment 

corresponded to the 50% of a binomial distribution, which varies according to the number of 

trials. The minimum and the maximum values around the 50% chance level corresponded 

respectively to the lower and upper 95% confidence intervals of the binomial distribution. 

Test participants’ mean performance on the forced-choice was 55.3% (SD = 7.2, range: 

40.3% - 69.4%) with 8 participants above the upper chance limit of 58.4%. This means that 

these 8 best participants could identify from 1 to 15 pictures (mean = 7.4, SD = 3.9) more 

than the maximum 84 pictures expected by chance (144/2 + 95% CI). 

In addition, for the 22 test participants who performed the Yes/No task the d-prime was low 

(mean = 0.3, SD = 0.3, range: -0.5 to 1.1) but larger for the 8 best participants in the forced-

choice task (mean = 0.5, SD = 0.3, range = 0.1- 1.1). Performance in the forced-choice and 

https://drive.google.com/drive/folders/0B1akb3XjfkiyWHc3SW52QmEydlE?usp=sharing
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Yes/No tasks was positively correlated (r = 0.44, CI95 = [0.0 - 0.7], Pearson’s correlation 

coefficient).  

 

Figure 4.3 Test participants’ performance on the current experiment.  

(A) Performance on the forced-choice task (N = 24) for the 144 pairs of pictures. (B) 

Performance on the Yes/No task (N = 22) for 144 pictures. One dot is the performance of one 

participant. The upper chance limit in the forced-choice task is represented by the dashed line 

and the chance average by the dotted line in the forced-choice and in the Yes/No task. The 

number of the eight best participants in the forced-choice task is provided as well as the 

number of the participants who saw the old stimuli four times (green dots) or six times (blue 

dots). The estimation of the number of participants for a given correct level of response was 

also calculated to get a continuous representation of the performance. This kernel density 

estimation is represented by the surrounding shape (Allen et al., 2012). The cross represents 

the mean of the distribution. 

3.2.1 Effect of the number of exposures 

In the initial test performed between 2002 and 2008, 48 stimuli were seen 3 times (= old 

stimuli at the time) and 96 only once (= distractors at the time) except for 2 participants 

(participants 4 and 5) who were exposed 4 times to the old stimuli and 3 others (participants 

2, 3 and 6) who were exposed 6 times to the old stimuli and 2 times to the distractors. Two of 

the subjects who had seen the stimuli more times than the others were among the 8 best 

subjects mentionned above (participants 2 and 6).  In the current forced-choice task, the 24 

participants were on average 57.4% correct (SD =  11.0, range: 37.5% - 72.9%) for the stimuli 

seen at least 3 times and 54.3% correct (SD = 6.4, range: 41.7% - 68.7%) for stimuli seen less 
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than 3 times (Figure 4.4A). Seven participants were above the upper chance limit of 64.8% 

for stimuli seen at least 3 times. These participants were able to correctly identify from 2 to 4 

pictures more than the maximum 31 pictures expected by chance level in the forced-choice 

task. Four of them corresponded to participants who saw the stimuli only 3 times and 3 of 

them to the participants who were exposted 6 times to the stimuli. In comparison, only 2 

participants were above the upper chance limit of 60.4% for stimuli seen less than 3 times. 

In the Yes/No task, participants’ performance was higher for stimuli seen at least 3 times with 

an average d-prime of 0.4 (SD = 0.4, range: -0.4 – 1.0) compared to stimuli seen less than 3 

times (n = 48) with an averaged d-prime of 0.1 (SD = 0.4, range: -0.6 – 1.1) (paired t-test 

t(21) = 6.3, CI95-difference  for d-prime seen 3 times vs d-prime seen once = [0.2 – 0.4]) 

(Figure 4.4B).  

 

Figure 4.4 Participants’ performance on the forced-choice and Yes/No tasks according to 

the number of times stimuli were seen in the DMS-48 (2002-2008): less than three times (< 

3) or 3 times and more (≥ 3).  

A. The distribution of the correct percentages in the forced-choice is presented with their 

respective kernel density estimation to get a continuous representation of the data. The upper 

chance limit is represented by the dashed line. The number of participants above the upper 

limit is displayed as well as the number who saw the old stimuli four times (green dots) or six 

times (blue dots) (1 dot = 1 participant). B. d- prime values for test participants in the Yes/No 

task are presented with their respective kernel density estimation. The eight best participants 

in the forced-choice task are shown as well as the number of the participants who saw the old 

stimuli four times (green dots) or six times (blue dots) (1 dot = 1 participant).  

Chance average is shown by the dotted line in the forced-choice and in the Yes/No task and 

the cross represents the mean of each distribution in the two tasks. 



 

129 
 

3.2.2 Stimulus type 

The stimuli used in this experiment belonged to three categories: ‘Unique’, ‘Paired’ and 

‘Abstract’. No difference was found between these three categories for both the forced-choice 

and the Yes/No task. 

3.2.3 Other influencing factors 

We tested the potential influence of different general factors in the forced-choice task. We 

found that the performance of the participants was negatively correlated with their age (r = -

0.44, CI95 = [-0.7 to 0.0], Pearson’s correlation coefficient), but not with gender (r = -0.11, 

CI95 = [-0.49 to 0.3], Pearson’s correlation coefficient) or educational level (r = -0.0, 

Pearson’s correlation coefficient).  

3.2.4 Confidence rating 

Every response was followed by a 5-point scale confidence level ranging from 0: ‘guess’ to 4: 

‘sure’. 

On average test participants were not sure of their responses for both the forced-choice (mean 

= 1, SD = 0.9, range: 0 - 2.4) and the Yes/No task (mean = 1.1, SD = 1.0, range: 0 – 3.2). In 

the forced-choice task, 46.8% (SD = 41.1) of the responses were rated as a “guess” (rate 0) 

and 23.3% (SD = 31.1) as “not sure at all” (rate 1). In the Yes/No task, 38.9% (SD = 42.3) of 

the responses were rated as a “guess” and 24.7% (SD = 24.7) as “not sure at all”. 

Performance increased with confidence in both the forced-choice task (Figure 4.5) and the 

Yes/No task but this increase was not significant. The mean confidence of the 8 best 

participants was low in the forced-choice task (mean = 0.7, SD = 0.9) and in the Yes/No task 

(mean = 0.8, SD = 0.9) except for participant 2 who reported the highest score over the whole 

test participants: mean = 2.4 both in the forced-choice and the Yes/No task. 
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Figure 4.5 Participants performance over the confidence level in the forced-choice task.  

0: “guess”, 1: “not sure at all”, 2: “a bit sure”, 3: “fairly sure” and 4: “sure”. The 

responses associated to “fairly sure” and “sure” responses were grouped together because 

of their small number. Chance average is shown by the dotted line and the crosshairs 

represent the means of the distributions.  

3.2.5 Participants’ reports 

Participants were invited to provide a justification when they were ‘fairly sure’ (rate 3) or 

‘sure’ (rate 4) of their responses.  

Fairly sure responses were made 9.7% (SD = 16.8) of the time in the forced-choice and 10.3% 

(SD = 14.1) in the Yes/No task whereas sure responses were made 1.1% (SD = 3.2) of the 

time in the forced-choice task and 3.4% (SD = 10.1) in the Yes/No task (Table 1). Overall 

61.7% (SD = 32.1, range: 19.7% - 100%) of the responses with a confidence of 3 or 4 were 

associated with some verbal reports in the forced-choice task and 25.8% (SD = 35.4, range: 0 

- 100%) in the Yes/No task. Drawings associated with comments were correctly identified 

71.4% (SD = 17.9, range: 46% - 100%) of the time in the forced-choice task and 77.3% of the 

time (SD = 32.6, range: 0 - 100%) in the Yes/No task. 

Importantly, justifications reported were all about visual properties of the stimuli but did not 

make any reference to any contextual details (see Table 1 for examples from 3 representative 

participants for stimuli seen 3 times). 



 

131 
 

3.2.6 Participants’ recollection of the initial test 

Two participants out of 22 who were asked whether they recollected the initial test were not 

able to remember that they had performed it several years before. Interestingly, participant 5 

was one of the eight best performers in the forced-choice task. None of the 22 participants 

reported having seen again or rehearsed any of the stimuli presented. 

 

 Participant 3 times New Confidence Report 

U
N

IQ
U

E 

1 

 
 

3 It speaks to me 

1 

  
3 The drawing speaks 

more to me than the 
other one 

11 

  

4 I can’t remember having 
seen the sweater at all 

11 
  

4 I remember having seen 
marine animals but not 
specifically the dolphin 

11 

  

4 By elimination 

11 

  

3 The shape of the 
building makes me think 
that I saw this drawing 

16 

 
 

3 I think I saw it 

PA
IR

E
D

 

1 
  

3 I cannot tell why 

1 
  

3 I do not think I saw 
anything symmetrical 

1 

  

3 A matter of color 

11 
  

3 Because of the 
originality of the 
drawing 

11 
  

3 The shape seems more 
real 

A
B

ST
R

A
C

T 

1 

  

3 Because of the color 

11 

  

3 By default because I 
cannot remember having 
seen the other picture 



 

132 
 

16 

  

3 It speaks well to me 

 

Table 4.1: Examples of reports in the forced-choice task for stimuli seen 3 times. The reports 
from 3 representative participants for which correct identification was associated with a 
confidence of 3 or 4 are presented according to the 3 categories: ‘Unique’, ‘Paired’ and 
‘Abstract’. 

 

4. Discussion 

In this study we found that our group of participants was able to recognize simple colored 

pictures seen for a few seconds between 8 and 14 years before, above a group of naive 

participants who had not been exposed to the stimuli. Furthermore, a third of the participants 

(8 out of 24) performed above an estimate of chance that included an upper 95% confidence 

interval. Our best performer, who had been exposed to the pictures at most three times, was 

able to identify 15 pictures more than the 84 pictures expected by chance. Note that no 

instruction to specifically learn the stimuli was ever given to the subjects, even at initial 

encoding, which makes this performance even more remarkable. Mitchell’s findings (2006) 

revealed that the memory of stimuli seen briefly and not rehearsed could be maintained for 

more than a decade and retrieved implicitly. Our data provide strong evidence that memory 

can be retrieved explicitly. Indeed, subjects were able to choose between two propositions the 

picture they had seen before and endorsing it as old or new. 

Importantly, an analysis of verbal reports provided for high confidence responses revealed 

that retrieval was never associated with the recollection of contextual details or any reference 

to the initial encoding stage. In contrast, subjects emphasized that details or feelings helped 

their recognition: they referred to the shape or to the color of the stimulus, the stimulus 

“spoke” to them, or they “thought” they had seen it. Hence, high confidence recognition of 

these items seems to rely on a sense of familiarity suggesting that familiarity may be used to 

recognize pictures seen only a few seconds even a decade after initial presentation. Although 

familiarity is supposed to be a mechanism used in long-term memory, it had never been 

demonstrated that it could be used so long after the initial encoding stage. Interestingly, some 

subjects also appeared to assess the novelty of the distractor in the forced-choice task, 

suggesting that correct recognition might have relied on a balance between familiarity and 

novelty assessment in some instances. 
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Most of the items (~ 85%) however were recognized with low confidence levels suggesting 

that participants were unsure exactly why they chose one picture over the other. In this case 

recognition might have relied on a fluency effect, the increased ease with which subjects 

process a picture due to repetition, which is in agreement with Mitchell’ findings (2006). 

However, subjects were able to capture this signal and to attribute it to a previous exposure to 

make an explicit choice, even if unsure (Besson et al., 2015; Jacoby and Whitehouse, 1989; 

Voss et al., 2008). Even these responses thus appear to be based on familiarity. 

The ability to maintain precise information about sensory stimuli has already been found in a 

couple of experiments where participants were able to discriminate pictures seen a few hours 

before from highly similar pictures (Brady et al., 2013). Other evidence indicate that 

memories can be maintained from a few days (Standing, 1973) to almost a year (Urgolites and 

Wood, 2013). They might constitute “episodic elements” that -if combined with contextual 

details- would help form an episodic memory (Conway, 2009). In this experiment we go even 

further and show strong evidence that perceptual memories can explicitly impact behavior for 

a decade. 

However, this ability seems to depend on participants’ age at encoding. Indeed, performance 

was negatively related to age. Interestingly, many memories from the early adulthood can still 

be recalled years later and is defined as a ‘critical bump’ in the developmental literature 

(Conway and Pleydell-Pearce, 2000). The critical bump is sometimes related to the important 

events that usually occur during this period of life such as first job, wedding, etc. Our results 

suggest that it could also be related to an intrinsic ability to form and maintain perceptual 

memories.  

Importantly, we used a strict criterion to identify 8 participants with above chance level in the 

forced-choice task. However, we found also participants with performance around or even 

below 50%, demonstrating that explicit retrieval was not possible for them. The reason why 

some subjects perform above chance is unclear at present although age could be an important 

factor to take into account. It might be interesting to test the participants with poor 

performance on an implicit task to know whether some memory traces can still be captured. 

In this study we tested the recognition of simple colored-drawings. Evidence has shown that 

memory of pictures is better than words (Paivio and Csapo, 1973), a phenomenon known as 

the “picture superiority effect”. Our results might only hold true for pictures. We used 

different types of visual stimuli (concrete or abstract) and different pairings of distractors. 

Surprisingly, our data do not show any strong difference between these categories, reinforcing 
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the idea that what we tested is mainly a pictorial memory rather than a combination of verbal 

or semantic and visual memory. 

As opposed to priming, it has been shown that for explicit memory tests retrieval is influenced 

by the environmental context (McKone and French, 2001). Because we were unsure of what 

to expect, we were careful in trying to keep these environmental variables the same from the 

initial exposure to the present experiment, thus respecting the encoding specificity principle 

(Tulving and Thomson, 1973): subjects were tested in the same hospital and stimuli were 

presented on similar white sheets in similar binders using a similar forced-choice task. The 

impact of the respect of the encoding specificity on our results remains to be clarified. 

Memory reactivations can occur during “on-line states” when an individual is voluntarily 

retrieving a specific memory (Nyberg et al., 2000) or during “off-line” states” when memories 

can emerge spontaneously during sleep or at rest (Diekelmann and Born, 2010; Peigneux et 

al., 2006; Wilson and McNaughton, 1994). “Off-line” reactivations play a critical role in the 

consolidation of a memory and occur within a few hours after learning (Gais et al., 2000; 

Girardeau et al., 2009). Although we can be confident that none the stimuli was ever seen 

between the initial encoding phase and the current experiment or that the subjects did not 

think about the initial encoding stage during this period, we could not control for any 

involuntary rehearsal that might have occurred during sleep or wakefulness (Rubin and 

Berntsen, 2009). However, “off-line” reactivations probably decrease exponentially over time 

(Frankland and Bontempi, 2005) and whether they still occur several years after encoding 

seems unlikely. 

We show here that three presentations of a stimulus might be enough to create a familiar 

representation in very long-term memory, particularly in young subjects. The precise 

mechanisms allowing such feat remain to be clarified. 
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Discussion of the behavioral results 

The results we got from two complete different experimental designs showed that long-term 

memories can be maintained in an inactive state. Collecting behavioral evidence was a first 

step that we initiated and that is far from being fully accomplished. As developed in chapter 1, 

every experimental design constrains participants’ responses. Without such limitations it 

would have been impossible to make emerge specific experiences of retrieval. However, it is 

very likely that we might have missed interesting aspects during memory retrieval. In 

particular I think of all the episodic content of these memories. Indeed no episodic memory 

was retrieved in these two behavioral experiments. Is it because of the age of the participants? 

It is generally assumed that the retrieval of episodic information as well as the ability to 

predict the retrieval of episodic information is more difficult for older participants than 

younger ones (e.g: (Souchay et al., 2007)). To overcome such a deficit it is proposed to 

increase the amount of cues that would elicit the retrieval of a specific episode (Taconnat et 

al., 2007, 2004). This will be discussed at length in the general discussion. 

A crucial point that remains to be understood is how is it biologically possible that simple 

pictures that have been presented just 3 times and for a few seconds only, are still able to 

drive explicit choices a decade later?  

Indeed, in such extreme conditions, it seems unlikely that rehearsal of the stimuli could have 

played a key role in the preservation of the memory trace. The same question applies for old 

TV programs from which participants could not re-access since the acquisition period. These 

memories were in a dormant state (Dudai, 2004; Lewis, 1979) and they were again woken-up 

through the presentation of a specific stimulus such as a picture or an audiovisual clip. At the 

synaptic level, in the absence of reactivations after the original exposure, the synaptic weights 

of the neurons supporting these memories would not have been much reinforced. And so far, 

little is known concerning the maintenance of these dormant memories. 

It is hard to conceive the preservation of these synaptic weights over time when considering a 

very large population of neurons as the support of the memory trace. In such networks the 

constant incoming of new inputs might interfere with previous memories that tend to be 

overwritten (Gardner, 1987; Hopfield, 1982). We suggest that the initial consolidation phase 

that enables the formation of a stable memory trace could be associated with the increased 

selectivity of a small number of neocortical neurons. This selectivity might rely on a simple 

STDP (Spike Time Dependent Plasticity) mechanism that allows simulated neurons to 

become selective to arbitrary input patterns if they occur repeatedly (Bichler et al., 2011; 
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Klampfl and Maass, 2013; Masquelier and Thorpe, 2007) and even after a small number of 

repetitions (Andrillon et al., 2015). One of the characteristics of this sort of spike based 

learning is that synaptic weights are only modified if the target neuron fires (D’amour and 

Froemke, 2015; Markram et al., 1997). Selective neurons, that are not firing for any new 

incoming stimuli, would therefore be able to keep memories for a long time (Thorpe, 2011) in 

a silent way until their excitatory-inhibitory balance might be disrupted (Barron et al., 2016). 

It has been suggested that all of these inactive cortical neurons might form a kind of “dark 

matter” in the brain (Binzegger et al., 2004; Shoham et al., 2006; Thorpe, 2011). Re-exposure 

to a specific stimulus might elicit the firing of the otherwise inactive neurons which might 

trigger its recall and potentially the recollection of contextual specifics through binding in the 

hippocampus 

Note that such STDP mechanisms do not rely on hippocampal circuitry and could occur in the 

neocortex. Interestingly, convergent evidence show that performance on the recognition 

memory task used in this study can be independent from the hippocampus (Barbeau et al., 

2011) reinforcing the idea that these silent neurons coud be localized in the neocortex using 

mechanisms independent of the memory system supported by the hippocampus. Re-exposure 

to a specific stimulus might elicit the firing of the otherwise inactive neurons which might 

trigger its recall and potentially the recollection of contextual specifics through binding in the 

hippocampus.
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Presentation of the imaging experiments 

Although positive and exciting, our behavioral results were tiny effects that could have been 

easily missed if our designs were not well focused or rigorous enough. Even before starting 

the experiment we used to hear participants saying that they were sorry for us because they 

might have forgotten everything! If they accepted to participate in our studies it was more for 

having a bit of fun and/or for being kind with young scientists, than to prove that they had 

good remote memories. Interestingly, for many participants this severe self-judgment 

tempered throughout the experiment. In the strict framework of the task, participants could 

themselves judge with more subtlety if they could retrieve the memory of a particular item or 

not.  

Behavioral results are the end of a cascade of brain processes that unfold in space and time. I 

was therefore curious to investigate all of these stages together. To see them from closer, I 

had to record the brain when participants would be retrieving long-term memories. Although 

techniques evolve, it is still difficult to get the precise location and timing of specific neuronal 

activations at the same time. Because my particular focus was on the temporal dynamics of 

retrieval, I decided to get time-resolved signals that I could acquire easily using 

electroencephalography (EEG) techniques. And to my surprise, I realized that very few 

studies had been carried on this topic. It was a great opportunity for me to start my 

investigations! But given the subtlety of the effects, it was risky to rely only on classical EEG 

analyses such as Evoked Response Potentials (ERPs) and time-frequency analyses. Too 

coarse, they might fail to work. In addition, I decided to use decoding analyses that have 

already shown their power to detect small effects in a large variety of paradigms.   

In chapter 5 I introduce EEG and I provide technical information about the analyses 

performed in chapters 6 and 7.  
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CHAPTER 5. Detecting the retrieval of long-term 

memories on a EEG signal 

 

1. Introduction 

While behavioral measurements can already tell us a lot about the underlying neuronal 

activity involved during a specific task, functional brain imaging techniques have been 

developed to get a direct access to the brain activity. These techniques are more or less 

invasive and allow spatial and/or temporal fine-grained resolution resulting in a variety of 

neural signals (see Figure 5.1 for a non-exhaustive list).  

 

  
Figure 5.1 Spatiotemporal scale of neural signals for commonly used neuroimaging 

techniques.  

Note that this list is non-exhaustive. Among the non-invasive techniques EEG and MEG have 

a very good temporal resolution whereas fMRI provides a good spatial resolution. Invasive 

techniques: EcoG and iEEG allow both good temporal and spatial resolution with especially 

iEEG that can record LFP and spikes generated by a very small numbers of neurons. From 

(Kim et al., 2015). 

 

Non-invasive techniques are separated into two main classes: techniques that allow direct 

measurement of brain activity such as EEG (Electroencephalography) and MEG 
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(Magnetoencephalography) and techniques that indirectly measure neural activity such as 

fMRI (functional Magnetic Resonance Imaging).  

2. EEG compared to other neuroimaging techniques 

2.1 EEG 

Discovered in 1929 by Hans Berger, EEG is the oldest neuroimaging technique which is still 

broadly used because of its simplicity. It consists in putting electrodes on the scalp of 

participants to record in real-time the electrical activity generated by neuronal depolarizations.  

Nowadays, electrodes are about 1cm of diameter and can be fixed on a cap that participants 

put directly on the head. An electrolytic gel (e.g. Ag/Cl) is applied to maximize the 

conduction between the scalp and the electrode. The number of electrodes present on an EEG 

cap would vary depending on the required spatial resolution. While a 256-electrode cap is 

commonly used to monitor patients sleep activity, a 64-electrode cap would be usually 

enough to cover the different scalp regions. Electrodes position follows international 

standards such as the 10/20 system that covers the occipital, parietal, temporal, central and 

frontal regions of the scalp (Figure 5.2).  

 
Figure 5.2 Lay-out of a 64-electrode cap using the BIOSEMI system.  

At the top: frontal region and at the bottom: occipital region.   

2.2 Comparison  

The magnetic field produced by the electrical brain activity can also be recorded using MEG, 

a technique available since the 70’s. The generated magnetic field being very weak (about 10-

100 Femtotesla; 1 Femtotesla = 10-15 tesla) compared to the magnetic fields from the 

surrounding environment (about 10-8 tesla), specific (and expensive) requirements are 
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necessary to get access to the signal. Participants are recorded in a magnetically shielded 

room with very sensitive magnetometers: SQUIDs (superconducting quantum interference 

device) on top of the head.  

 

Because the nature of the signal that is recorded by EEG and MEG is different: electrical or 

magnetic, the source of the brain activity captured is different. EEG records activity 

perpendicular to the scalp that is mostly generated by the pyramidal cells in cortical gyri and 

in the depth of the sulci. MEG records activity parallel to the scalp that is mostly generated by 

the pyramidal cells from superficial part of the sulci. EEG and MEG signals provide high 

temporal but poor spatial resolution. 

Conversely, fMRI techniques have a high spatial but poor temporal resolution. Using the MRI 

technique which measures the hydrogen nuclei to reconstitute an image of the brain, fMRI 

allows the detection of changes of blood oxygenation (BOLD for Blood-Oxygen-Level-

Dependent) in a specific region indicative of the neuronal activity in that region.  

 

It is important to note that the signal acquired by M/EEG techniques contains very rich spatial 

information (Stokes et al., 2015). Indeed, it has been recently demonstrated that it is possible 

to differentiate orientations of specific gratings using MEG signal (Cichy et al., 2015). 

Considering that every different type of orientation is encoded in specific cortical columns in 

the visual cortex that are made of not more than a few hundred neurons each, this shows the 

extreme spatial precision of MEG and EEG. EEG and MEG are nevertheless considered as 

techniques of poor spatial resolution given the extreme difficulty to identify which specific 

region (source) generates the signal recorded at the scalp level. Indeed, source localization 

corresponds to an inverse problem for which there is never a unique solution… 

 

Non-invasive techniques offer a lot of potential for research investigation and can even be 

coupled (such as combined EEG/fMRI) but remain limited to a certain time-space-scale. 

Higher precision can be provided using two invasive techniques: EcoG (electrocorticography) 

and intracranial electroencephalography (iEEG). It is important to note that such invasive 

techniques are used at first for medical purposes and in specific cases such as for patients with 

pharmacology intractable epilepsy. The EcoG consists in placing a grid of electrodes directly 

on the cerebral cortex. It covers a large and superficial area compared to the implanted 

electrodes in iEEG. Indeed intracranial electrodes used in iEEG can detect spikes and Local 



 

142 
 

Field Potential (LFP) generated by the activity of single neurons or small neuronal assemblies 

into deep brain structures.  

 

The selection of a technique might depend on the scientific question we want to investigate. 

For long-term retrieval we might want to ask:  

1/ What brain regions are activated? and 

2/ How does retrieval unfold over time? 

 

The first question deals with spatial mapping and can be addressed using the fMRI technique 

whereas the second question can be more easily tackled via EEG. As we have presented it in 

the General introduction, very few data exist on the time-course of long-term retrieval. We 

therefore decided to investigate this field by using the EEG technique. In the following 

section we describe the techniques that we will use in the next two chapters. 

3. Description of the techniques used 

3.1 ERPs analyses  

To compare two experimental conditions, the simplest way is to look at the ERPs that are 

small voltage (in µV) evoked by the brain in response to a specific stimulus. ERPs are already 

visible in the raw EEG signal and need little data processing. Because in principle, no 

transformation needs to be applied to the data, ERPs can provide a very precise estimate of 

the brain activity in the range of the millisecond. They are therefore of considerable interest 

when we want to study the time-course of the brain activity. 

Along the history of ERP analyses, several main components were found to be consistent 

across many experiments such as the N100, P300.... A common way for naming these 

components consists in associating the letter P or N for respectively positive and negative 

peaks with their latency. Classical components corresponding to memory retrieval processes 

are the FN 400 for familiarity judgement and the LPC (Late Positive Component) for stimulus 

recollection (Curran, 2000). The FN 400 is a mid-frontal negativity occurring from 300 to 500 

ms after stimulus onset and the LPC corresponds to a positive component between 500 and 

800 ms after stimulus onset visible on parietal channels.  

 

It is assumed that ERPs are both time-locked and phase-locked to an event, meaning that for a 

given time point we expect to get roughly the same voltage amplitude and phase across trials. 

For this reason, ERPs of a given condition are usually averaged across trials to get rid of the 
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noise present at a single-trial level. Because of this restriction, ERPs cannot capture 

information that is not time or phase locked to a particular event. Useful information might be 

therefore lost. Another issue is that it is hard to clearly know from which underlying neuronal 

activity the ERPs emerge. Indeed, little is known regarding the correspondence between 

neuronal activity and ERPs.  

3.2 Time-Frequency analyses 

While ERPs analyses are the best to provide temporal information they can miss valuable 

information and are difficult to interpret in terms of neurophysiological substrate. Time-

frequency analyses have been proposed to give additional information and in particular about 

the contribution of specific oscillations in the EEG signal.  

3.2.1 Brain oscillations 

Brain oscillations are usually divided into five main wave categories or rhythms that have 

been linked to specific cognitive functions: the delta (0.5 - 3 Hz), theta (4-7 Hz), alpha (8-12 

Hz), beta (13-30 Hz) and the gamma rhythm (30-100 Hz). In addition to these five main brain 

rhythms other types of oscillations can be found such as the ripples and fast-ripples that are 

oscillations of very high frequency generated in the hippocampus.  

Frequencies in the theta and the gamma band are particularly interesting for studying memory 

retrieval. Indeed, theta waves are generated both in the hippocampus and in the neocortex and 

are strongly linked to memory encoding and retrieval (e.g.: (Hasselmo and Stern, 2014; 

Jacobs et al., 2006)) The role of gamma oscillations is less clear but evidence support their 

contribution to retrieval process (Düzel et al., 2003; Gruber and Tsivilis, 2008).  

Interestingly oscillations are present in the brain at any spatial scale of investigation: from the 

recording of single neurons to the EEG signal. This fractal organization makes it easier to link 

oscillations recorded at the scalp level and the underlying neuronal mechanisms. The 

relationship between the two is far from being fully understood but increasingly advances 

have been made. As an example, a recent study showed that the restoration of gamma 

oscillations in mice enables the clearance of the Aβ-protein accumulated in the brain region, a 

protein that is known to be a clear factor of development of the Alzheimer disease (Iaccarino 

et al., 2016).  
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3.2.2 Time-Frequency analyses 

The contribution of specific frequencies during a task can quickly change over time. Time-

frequency analyses have been developed to track these differences.  

 

 Basic example: Fourier Transform 

To get the different frequencies that composed an EEG signal the basic idea is to apply a 

Fourier Transform to the signal. This corresponds to multiplying the signal with sine waves of 

different frequencies. Because this multiplication applies to vectors (EEG signal, sine wave) 

the multiplication is in fact a dot product where each element of the EEG signal is multiplied 

by the corresponding element of the sine wave. To get the involvement of each of these 

frequencies over time, the different sine waves are simply slid over time. This approach is 

called convolution and corresponds here to the dot product successively calculated at each 

time window using a given sin wave. 

 

 Morlet wavelets 

Sine waves are used in the Fourier Transform but cannot describe any changes over time 

because their amplitude always varies between positive and negative values without ever 

stabilizing. Other functions are therefore used to compute the convolution with the EEG 

signal and in particular Morlet wavelets that correspond to a sine wave windowed by a 

Gaussian (Cohen, 2014; Grossman and Morlet, 1984). The shape of this kernel provides a 

good trade-off between temporal and frequency resolution and was therefore used in the 

studies presented in the next two chapters. To prevent edge artifacts when the kernel is 

applied to a new time window, Morlet wavelets can be tapered using a specific function called 

window. Again specific windows exist and their use would vary depending on the precision 

wanted (Hanning, Hamming, Gaussian…). We decided to use the Hanning or Hann window 

which is an inverted cosine function that has for main advantage to taper fully the data to 0 at 

the beginning and at the end of a time-window (Cohen, 2014). 

 

 Length of the time-window? 

The length of the time window used to perform the analysis is critical to get a trade-off 

between frequency and time resolution. This length should be at least long enough to measure 

1 cycle of a given frequency (which means 1sec for 1Hz) and preferentially 3 cycles of the 

given frequency meaning that the lowest frequency would be 3 Hz for a 1s-window. The 
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length of the time-window can then be reduced for higher frequencies to maintain a good 

resolution.  

 

Since Ebbinghaus’s first experiments in the late 19th century (Ebbinghaus, 1885) we know 

that in the absence of any rehearsal, there is a fast decrease of retrieval capacities in the days 

following learning. This decrease might come from a drop of neuronal activity that might be 

difficult to detect using the classical techniques that we have just presented above. To have 

more chance to dissociate the cerebral activity corresponding to a picture seen let’s say, one 

month ago compared to a new picture, we decided to use multivariate pattern analyses 

(Haxby, 2012; Haxby et al., 2001).  

3.3 MVPA for decoding subtle effects 

3.3.1 MVPA for spatial and time resolved signals 

 MVPA for fMRI 

MVPA was first developed in fMRI studies. Over the years, the gain of spatial resolution of 

the fMRI resulted in the increase of number of voxels (pixels in 3D) in a specific region. 

Nowadays, a typical voxel size is about 2*2*2 mm. In classical fMRI analyses the voxels that 

respond significantly to a specific condition are selected and averaged together to reduce the 

noise in the data. However these two steps: voxel selection and spatial averaging lead to a 

reduction of the signal. Indeed, the information contained by the voxels that do not reach 

significance might be lost as well as the fine-grained spatial resolution of the pattern of 

voxels. To increase the power of the signal by taking into account the multidimensionality of 

the data -represented by multiple voxels in fMRI- multivariate pattern analyses were 

developed. Using MVPA all the pieces of information coming from individual voxels that 

contribute specifically to a condition are gathered. It allowed the detection of very detailed 

information about specific mental states such as edge orientation (e.g (Kamitani and Tong, 

2005)). 

 

 MVPA for MEG and EEG data 

When considering time-resolved signal (such as MEG or EEG) the same multidimensional 

problem arises. Data multidimensionality comes from the high number of channels that record 

the same signal for a given time. Indeed several dimensions are contained in the cerebral 

activity: space (from multi-electrodes), time, frequency, phase and power. MVPA on time-
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resolved signal was first applied for Brain Computing Interfaces (BCI) (for a review see: 

(Curran, 2003)) and its only since 2010 that decoding was used in cognitive tasks (Duncan et 

al., 2010; Schaefer et al., 2011). Following that, an increasingly number of studies 

demonstrated the power of MVPA for MEG and EEG data in the field of perception (Carlson 

et al., 2013; Cauchoix et al., 2016, 2014; Isik et al., 2014), memory (Fuentemilla et al., 2010; 

Jafarpour et al., 2014), audition (King et al., 2014) or even for taste discrimination (Crouzet et 

al., 2015). 

3.3.2 MVPA: how does it work? 

MVPA or also decoding is based on machine learning where the basic idea is to predict 

specific characteristics of new information. It is performed by an algorithm in two steps: 

training and testing. When the data used by the algorithm are individual trials rather than the 

average across several trials, it is called single-trial decoding analyses. 

 

 Training 

The algorithm is first trained on a subset of data so that it can learn specific characteristics of 

the data set. If the characteristics to be learnt were selected in advance and attributed to a 

specific type of signal (data were labeled) it is called supervised learning. In the case of 

unsupervised learning the signal was not labeled meaning that the algorithm has to find the 

relevant characteristics to be learnt.1 It has been shown that repetition of similar patterns 

might be a characteristic that can be easily learned without any supervision (Masquelier and 

Thorpe, 2007). In the experiments developed in the next two chapters we decided to use 

supervised learning to train the algorithm on two categories (e.g ‘seen 3 weeks before’ and 

‘new’).  

 

 Testing 

Once trained on a subset of data, the algorithm is tested on the remaining data subset. It is 

important to note the strict independence of the training and the testing data sets: if some data 

was used for training the algorithm it must not be used again for testing the algorithm. In 

addition, the same number of trials should be used for each category tested.  The sample size 

of the training and testing sets varies according to the type of classification performed. In the 

experiments presented in chapters 6 and 7, 90% of the data were randomly used for the 
                                                
1 Note that this distinction is not always as simple and that semi-supervised learning exists as 
well. 
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training set and the remaining 10% of the data for the testing set. This random split is called 

Monte Carlo cross-validation and is performed multiple times with each time the generation 

of a new random training set (and its corresponding testing set). Monte-Carlo cross-

validations give a larger range of possible combinations than k-fold cross validations where 

data are split into fixed and exclusive folds (Refaeilzadeh et al., 2009). In the case of 10-fold 

cross validations, the data are split into 10 fixed folds, with one fold being considered once as 

the testing set.  

 

 Which algorithm to use? 

Several types of algorithms can be used to compute decoding analyses. The ones 

preferentially used for time-resolved signals correspond to generalized linear models or 

Support Vector Machines (SVM). In generalized linear models the outputs can be 

discriminated by a line whereas SVM tries to find the hyperplane that best separates the data, 

where the hyperplane could involve multiple dimensions. In the next two chapters we 

performed a logistic regression that belongs to the class of generalized linear models, to get 

the probability that a given trial in the testing set belongs to one of the two categories trained 

on. A L2-regularization was applied to the logistic function to decrease the effect of very high 

or very low probability values. This penalization was performed by setting a Gaussian prior 

value to the regression coefficients. Note than L1-regularization exists as well and 

corresponds to the setting of a Laplacian prior value but does not give better results than the 

L2-penalty.  

 

 Performance 

Decoding performance is usually measured using the Area Under the ROC Curve calculated 

using the ratio between the Hits rate and the False Alarm rate. This sensitivity measure ranges 

from 0 to 1 where 0.5 is the chance level and 1 corresponds to the best performance.  

When the same time point is used for training and testing the algorithm, the performance of 

the algorithm can be plotted for each testing time in a graph where the x-axis corresponds to 

the testing time and the y-axis to the decoding performance.   

It is also possible to test the algorithm on other time points than the one used for training to 

see if the algorithm can generalize its predictions to the other time points. This creates a time 

generalization matrix where the y and x-axes now correspond to the training and testing times. 

In this representation, the diagonal of the matrix corresponds to the decoding with the same 

training and testing point. Unlike its simple diagonal, the matrix representation reveals 
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information concerning the temporal dynamic underlying the cognitive process. For example, 

a single square-shape pattern might reflect the activation of a single neuronal network 

whereas a diagonal-shape pattern might involve the rapid succession of several neuronal 

networks (J-R King and Dehaene, 2014). 

4. Conclusion 

We described three different methods to study the time-course of retrieval in long-term 

memory and adapted to EEG studies: ERPs, Time-Frequency and MVPA. This list is far from 

being exhaustive (or even optimal) but they might already provide some interesting 

information. 
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CHAPTER 6. Decoding long-term memories of short 

audiovisual clips 

 

 

Abstract 

Access to memories becomes harder as time elapses. Extensive literature exists on subsequent 

Remember/Know/NEW differences on brain activity but little is known about the direct 

impact of the retention interval length between the learning of new information and its recall. 

In this study, the EEG activity of 11 participants was recorded while snapshots from videos 

that had been watched 3 weeks (n = 125), 1 day (n = 125) or a few hours before (n = 125) 

were displayed among snapshots from videos never seen before (n = 375). Whereas ERPs and 

Time-Frequency analyses were only able to differentiate snapshots recently seen from new 

ones we showed that MVPA analyses could decode memories of snapshots seen 3 weeks 

before. As for snapshots seen a few hours or one day before, decoding matrices revealed a 

sustained pattern suggesting the involvement of a unique network of brain areas in the 

retrieval of audiovisual content. Importantly, we found that decoding scores were correlated 

with participants’ retrieval performance.  
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Chapter presentation 

In the previous chapter I discussed the interest of the EEG technique for analyzing the 

temporal dynamics of long-term retrieval. I presented three methods for measuring 

differences between experimental conditions: ERPs, time-frequency and decoding analyses. I 

had now to find my experimental conditions that I wanted to compare with. I was surprised to 

find that most of the EEG literature that designed memory paradigms used the contrast 

retrieved/forgotten. I could have done the same for long-term memories. But I was not very 

convinced that it might be the best contrast to study because I had no control for this 

subjective variable. I could have ended up with a strong imbalance between the number of 

retrieved and forgotten items making it impossible any comparison. Especially for decoding 

analyses I knew that I would need about a hundred of trials by condition. So to test a specific 

effect, I wanted to create a design that would directly control for this effect. To me this makes 

sense, and I was reassured when I read a paper of Rufin VanRullen that directly points out the 

“common fallacy” of analyzing EEG data based on subject reports (VanRullen, 2011). 

Therefore I decided to design an EEG experiment that was very similar to behavioral 

paradigms. My variable would be the time and more precisely the retention interval between 

the encoding and the testing phase. I could therefore compare the brain processes involved 

during long-term retrieval according to this variable.  

Memory retrieval can be associated with a wide range of subjective experiences that strongly 

depend on the experimental design. Recall tasks are demanding because retrieval occurs 

spontaneously or from partial information (cued-recall). The completion of such process 

would take some time, a benefit when we want to study the whole cascade of brain processes 

involved in the retrieval of the items. Therefore, I decided to create a recall task where a cue 

would be presented at the beginning of the trials to elicit retrieval.  

Most of the memory paradigms use words or pictures but I was not really convinced that they 

would be the best stimuli to study recall after a few weeks especially if hundreds of stimuli 

had to be learnt. To have more chance to be retrieved, I wanted to make sure that every 

stimulus that I would present would correspond to a distinct subjective experience. After 

having done my first experiment with TV programs I was sure that audiovisual clips would be 

the best. In addition, they were like short scenarios of everyday life events that could provide 

a better insight of what is recall in real-life conditions than simple words or pictures. And a 

great thing from using clips is that the cue to elicit recall would be just a still frame from the 

whole animation. I decided to collect short audiovisual clips from the Internet that were the 
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most diversified as possible. With Estelle’s help I ended up with 750 of them, enough for me 

to test the same participants for three different retention intervals plus having a set of new 

stimuli. I decided to test this variable for each participant instead of having separate groups to 

make sure that performance would only be a result of the retention interval.  

I remember when I said to Nadège that I would test participants for clips that they had to 

watch a few hours, one day or three weeks earlier, she looked at me like I was getting mad. 

How come? By showing them so many clips they won’t be able to retrieve anything! This was 

her word: interference. Participants might get confused if they had to take in more than 100 

clips in less than an hour. But I had in mind the experiment from Brady et al. (Brady et al., 

2008) that Simon liked to talk about. In this study, participants were presented with 2500 

pictures of real-world objects displayed for only 3 seconds. Surprisingly, six hours later, 

participants were about 90% correct in identifying the items previously seen from closely 

similar new items. How was it possible? The answer is that every picture corresponded to a 

specific basic level category, thus limiting potential interference between the items. 

I was then sure that if I would present about 100 short audiovisual clips to my participants, 

they would be able to retrieve the information at least several hours later. To make sure that 

the memory trace would be maintained for longer delays I thought that it might be better to 

present the clips twice.  

My job was then to try to get clips that would be as diversified as possible. Indeed, first, I 

tested some pilot participants and I could tell that after watching about 30 western clips 

participants got confused when they had to tell if the picture presented corresponded to a new 

western clip or one they already saw. But then, my set being more diversified, I got better 

behavioral results for a week of interval. Nadège seemed more relaxed and everything was 

ready for me to test and record participants’ EEG activity until three weeks after having seen 

the first clips.  
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1. Introduction 

As time goes on, memories fade away (Ebbinghaus, 1885). Successful recall can be the 

demonstration of a recollection process that retrieves contextual details about the memory or 

only based on familiarity judgment (Mandler, 2008, 1980; Yonelinas, 2002). In general, the 

ability to retrieve contextual details is high for recent memories but decreases quickly over 

time. After a few weeks, it is more likely that the retrieval of long-term memories relies on 

familiarity judgment or semantic knowledge rather than on recollection processes (Conway et 

al., 1997; Herbert and Burt, 2004; Piolino et al., 2009). Recollection and familiarity can be 

measured in a cued-recall task where partial information is provided to elicit memory retrieval 

(a cue). In such a task, the Remember/Know/New paradigm (R/K/N in short) is a typical 

procedure to assess participants’ subjective recall. The R/K paradigm was originally 

developed to evaluate episodic knowledge and semantic knowledge (Tulving, 1985a) with 

respectively Remember and Know responses. This experimental procedure is now currently 

used to assess recollection (Remember) and familiarity (Know) although the equivalence 

familiarity = “Know” is not always true (Gardiner and Richardson-Klavehn, 2000; Williams 

et al., 2013). Several markers from electroencephalographic (EEG) recordings have been 

linked to familiarity and recollection processes. Specifically, studies showed that familiar and 

remember responses of visual stimuli (words or pictures) emerge from 2 different Evoked 

Response Potentials (ERPs) components. The first one, the FN400, a midfrontal negativity 

occurring within 300-500 ms after stimulus onset has been linked to familiarity. The second 

one is a late positive component (LPC) that kicks in between 500 and 800 ms in the left 

parietal region and has been linked to remembering ((Curran, 2000; Duarte et al., 2004; Düzel 

et al., 1997; Tsivilis et al., 2001) and for a review see (Rugg and Curran, 2007)). 

The difference between familiarity and remembering is also reflected in terms of frequency 

bands, with an increase of power in the theta band (4-7 Hz) and in the gamma range (30-100 

Hz) during respectively recollection and familiarity judgments (Gruber and Tsivilis, 2008). 

Despite the vast EEG literature on the topic of recollection and familiarity only a few of them 

directly tested the effect of retention interval between the learning and the recall of new 

material. ERPs studies showed that the 2 components persist over retention intervals ranging 

from several seconds (Nessler and Mecklinger, 2003) to several minutes and until one day 

(Curran and Friedman, 2004; Wolk et al., 2006). Interestingly, oscillations studies show an 

increase in gamma power with memory load (Duzel 2003, Gruber 2004, Howard 2004) 

suggesting a link between gamma frequency and long retention intervals (Jacobs et al., 2006). 

ERPs and Time-Frequency analyses are respectively classical univariate and bivariate 
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analyses that are usually performed on specific (or across) channels and across trials. This 

considerably reduces the multidimensional aspect of brain activity resulting in a decrease of 

overall information that can be partially overcome by Multivariate Pattern Analysis (Cauchoix 

et al., 2012). Indeed, it has been shown that MVPA improves signal-to-noise ratio and enable 

the detection of subtle details otherwise invisible (e.g (Kamitani and Tong, 2005; Nishimoto 

et al., 2011)). This technique has been recently used to study episodic memory using MEG 

data (Jafarpour et al., 2014, 2013) and is particularly interesting for dealing with the dynamics 

of the neuronal processes involved (J-R King and Dehaene, 2014). However, to the best of 

our knowledge, no EEG data exist concerning participants’ recall of material acquired a few 

weeks before. In addition to short retention intervals: a few hours and one day, we decided to 

investigate participants’ EEG activity (n = 11) during the recall of short audiovisual clips 

learnt 3 weeks before. Recall was elicited by a short presentation of snapshots of previously 

seen or new audiovisual clips and assessed by a R/K/N paradigm to track familiar or fully 

recollected items. We combined ERPs, Time frequency and MVPA analyses to study the 

brain dynamics involved during recall. 

2. Materials and methods 

2.1 Participants 

Eleven healthy subjects (6 females, mean age = 24 y, SD = 1.9) gave written informed 

consent and participated to the experiment approved by the INSERM Ethical Evaluation 

Committee (CEEI). 

2.2 Stimuli 

Seven-second audiovisual clips (n = 750) downloaded from the internet were used in the 

experiment. Clips were selected to be diversified and unknown from participant, speechless 

and without lyrics. Half of them were shown to a group of participants (N = 6) during the 

learning sessions and the other half of the clips to the second group of participants (N = 5). 

For all audiovisual clips, one frame of the 7s-clip was chosen as a representative snapshot of 

the clip and presented during the recall phase. The same 750 snapshots were presented for all 

the participants: snapshots new for a group of participants corresponded to the ones seen by 

the other group of participants during the learning sessions.  

2.3 Procedure 

 The experiment included two phases: an explicit learning of audiovisual clips and a recall test 

of these clips (Figure 6.1). The explicit learning phase was composed of 3 viewing sessions 
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occurring respectively 3 weeks (3W, mean interval = 21days 2h43min, SD = 16h54min), 1 

day (1D, mean interval = 1day 2h21min, SD = 2h39min) and several hours (Hours, mean 

interval = 4h37min, SD = 1h06min) before the recall phase. In every session, 125 audiovisual 

clips (duration: 7 s, size: 320*240) were shown to participants (N = 11) on a computer screen. 

Every session was split in two blocks of 65 and 60 videos. All clips were repeated once inside 

a block but were not presented again in any other session blocks. To control for participants 

attention during viewing, subjects were asked to make a button-press response every time a 

clip was shown for the second time. Participants could also indicate that they already knew a 

clip by pressing a key assigned to this purpose during the clip presentation and the 

corresponding trials were discarded from further analysis. Overall, participants watched 375 

audiovisual clips during the 3 learning sessions. Every clip was presented twice. The duration 

of a learning session was about 50 min. Participants were instructed that a recall test on the 

audiovisual clips will be performed 3 weeks after the first learning session. The testing phase 

performed 3 weeks after the first learning session was a cued-recall task of 750 trials and 

during which participants EEG activity was recorded. Each trial started with a fixation cross 

of varying duration (600-1000 ms) followed by either a snapshot of a clip seen during the 

learning sessions (n = 375) or a new one (NEW) (n = 375) and presented for 400 ms. After 

picture offset, participants were asked to press as fast and as accurate as possible, with the 

same hand, one of the 3 keys (randomized between participants) corresponding to R, K, N 

judgements. Before testing, participants were instructed about the meaning of those 3 

response possibilities as follows: ‘Remember’: you identify the picture as previously seen in 

one of the 3 learning sessions and you can replay the related video in your mind by 

anticipating the following scenes of the short scenario. ‘Know’: you identify the picture as 

previously seen in one of the 3 learning sessions but you can’t retrieve to which video it 

belongs to. ‘New’: the picture does not belong to any of the videos shown during the 3 

learning sessions. Participants were then invited to judge their response on a 5-point 

confidence scale (1: “Not sure at all”; 2: “A bit sure”; 3: “Fairly sure”; 4:”Very sure”; 5: 

“Completely sure”). The duration of the recall phase was about 1h15. Learning and recall 

phases were programmed using the Psychtoolbox, a Matlab toolbox. 
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Figure 6.1 Experimental design.  

Every participant watched 375 different videos during 3 learning sessions: 3 weeks (Learning 

1), 1 day (Learning 2) and a few hours (Learning 3) before the recall test. For each learning 

session 125 short audio-video clips (7s) were shown twice on screen and participants had to 

make a button-press response every time a video was presented for the second time. Memory 

test was a cued-recall in which snapshots of clips seen during the learning sessions (n = 375) 

or new ones (n = 375) were briefly presented on screen (400 ms). After picture offset, 

participants were invited to make as fast and as accurate as possible a R/K/N judgement on 

the picture and rate the confidence on their response on a 5-point scale. EEG was only 

recorded during the recall phase. 

 

2.4 EEG acquisition and analysis 

All the 11 participants were included in the EEG analysis. 

2.4.1 EEG acquisition and preprocessing 

During the recall phase, participants’ brain activity was recorded with a 64-channel cap 

connected to a BioSemi EEG amplifier (5 kHz) and with a sampling frequency of 1024 Hz. 

Data were filtered with a finite impulse response Blackman band-pass filter with a lower 

cutoff frequency of 0.1 Hz to avoid filtering artifacts (Acunzo et al., 2012) and a higher cutoff 
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frequency of 100 Hz with a transition bandwidth = 1 and then down sampled to 256 Hz. Trials 

were then epoched from -1s to 2 s relatively to picture onset, their baseline [-0.2 s 0] removed 

and re-referenced based to average reference. Artefacts were removed by performing ICA.  

For all participants, trials with extreme values for a channel (>100 µV or < -100 µV) or 

abnormal trend (slope max: 75 µV, R2>0.3) or abnormal distribution (kurtosis outside 5 

standard deviations of the kurtosis for each single electrode) were excluded from the analysis 

after visual inspection. All the preprocessing steps were done with EEGlab (Delorme and 

Makeig, 2004).  

2.4.2 ERPs analysis  

Trials were split according to the four retention intervals: HOURS, 1D, 3W and NEW for 

snapshots respectively seen a few hours, 1 day and 3 weeks before or never seen in the 

learning sessions or according to participants subjective responses: REMEMBER, KNOW 

and NEW responses. Differential activity was measured on 2 by 2 analysis by contrasting one 

condition with a NEW condition (retention interval or subjective response) and statistical 

difference was performed using Student t-test with a statistical threshold of p < 0.05 after 

False Discovery Rate (FDR) to correct for multiple comparisons.  

2.4.3 Time-frequency analysis 

Time-frequency analysis on every channel across participants was performed on the whole 

epoch from -1s to 2s by using a 3-cycles wavelet with a Hanning-tapered window for the 

lowest frequencies and increased half as fast as number of cycles. The window: 256 

samples/1s wide was applied 200 times at an average step size of 2.57 samples (10.04 ms) and 

the results were oversampled 16 times. Significance level was calculated by using 50 

bootstrap windows computed on the baseline (p-value < 0.05). A mask was then applied to 

restrict significant results to values that were significant for every participant and across at 

least 20 channels. 

2.4.4 Decoding  

Multivariate pattern analyses were conducted on the same data used for the ERPs analysis. 

The classification was performed on a 2 by 2 analysis with one condition constituted by trials 

of NEW snapshots and the second condition containing snapshots seen during a specific 

learning session (HOURS, 1D or 3W). Trials were randomly split 120 times according to the 

Monte-Carlo cross-validation procedure: 120 Cross Validations (CV). For each cross-
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validation (CV), the number of trials was equalized between conditions 90% of the trials were 

used by the algorithm as a training set, the remaining 10% as a test set. Signal was normalized 

for the training and test sets. A linear classifier (L2 –regularized logistic regression, (Fan et 

al., 2008)) was trained on individual trials at each time point from -200 to 800 ms and tested 

on individual trials on the same and all the other time points (temporal generalization). The 

performance of the classifier for every participant and at each test time point was evaluated by 

using the Area Under the Curve (AUC). The average decoding performance across 

participants resulted in a matrix decoding where the x- and y-axes respectively represented 

training and testing times. Chance level decoding was calculated by performing the same 

classification on randomly permuted labels. Statistical significance was reached when the 

average across the 11 participants was higher than chance level for a duration of at least 30 ms 

of the training or testing time (paired t-test, p <0.05, FDR corrected). Decoding analyses were 

performed by using an open source script developed by Sebastien Crouzet that can be 

downloaded at https://github.com/scrouzet/classifyEEG and that was used in (Crouzet et al., 

2015) and in (Cauchoix et al., 2016).  

3. Results 

On average, eight out of 375 videos (SD = 9.8) were considered already known by 

participants and for each subject, the corresponding trials were discarded from behavioral and 

EEG analysis.  

3.1 Behavioral results 

3.1.1 Learning phase 

Three learning sessions were done respectively 3 weeks (3W), one day (1D) and a few hours 

(Hours) before the recall phase. To make sure that participants were attending the videos, they 

were asked to make a button-press response whenever a video was presented for the second 

time. The percentage of HITs (correct button press) and FAs (wrong button press) were 

almost at ceiling and was stable over the different learning sessions: 3W: HITs = 96.7% (SD 

= 3.2, range: 90.2% - 100%) and FAs = 0.3% (SD = 0.4, range: 0-0.8%), 1D: 96.3% (SD = 

4.7, range: 86.5% - 100%) and FAs = 0.5% (SD = 0.6, range: 0-1.7%), HOURS: 95.9% (SD = 

5.5, range: 83.1% - 100%) and FAs = 0.2% (SD = 0.4, range: 0-0.8%). These results show 

that the encoding of the videos was similar across the 3 learning sessions (one-way ANOVA 

for HITS: F(2,30) = 0.1, CI95-Difference (Learning 1 vs Learning 2) = [-4.4 5.3], CI95-

https://github.com/scrouzet/classifyEEG
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Difference (Learning 1 vs Learning 3) = [-4.0 5.8], CI95-Difference (Learning 2 vs Learning 

3) = [-4.4 5.3]).  

Inside a learning session, videos were presented twice inside a block of 65 or 60 videos. On 

average, the median number of videos between the two presentations of the same video was 

30.4 (SD = 0.7, range: 30-32) and varied between 0.5 (SD = 0.5, range: 0-1) and 112.4 (SD = 

3.4, range: 110-121) for each participant. We found that participants missed a repeat when the 

median number of videos between the first and the second presentation was 48 videos (SD = 

22.0, range: 9.5-75.5) whereas for repeats that were correctly identified this number was 30.2 

(SD = 0.7, range: 29-31). Because the number of misses was very small compared to the 

number of Hits (participants were almost at ceiling), we could not test whether the number of 

videos between a repeat significantly affect participants’ performance. 

3.1.2 Recall phase 

During the recall phase, snapshots from videos seen by the participant (n = 375) or new 

pictures (n = 375) were briefly presented on screen. Participants were asked to make a R/K/N 

judgment as fast and as accurate as possible and to rate the confidence on their response on a 

5-point scale. 

 Performance over the retention interval 

Participants were 90.06% (SD = 9.5), 85.1% (SD = 10.3) and 64.5% (SD = 18.1) correct in 

identifying snapshots seen respectively HOURS, 1D and 3W before and were 79.7% (SD = 

13.3) correct for to identify NEW pictures. The percentage of correct responses for snapshots 

seen 3W before was significantly different from the performance for snapshots seen HOURS 

(CI95-Difference = [10.4 - 40.7]) and 1D before (CI95-Difference = [5.4 - 37.7]) (one-way 

ANOVA: F(3,40) = 7.68) (Figure 6.2A). 

Participants’ confidence average was 4.7 (SD = 0.3), 4.6 (SD = 0.4) and 3.9 (SD = 0.8) for the 

conditions HOURS, 1 D and 3W respectively and 3.5 (SD = 0.9) for NEW snapshots. The 

condition HOURS was significantly different from the conditions 3W (CI95-Difference = [0.0 

- 1.5]) and NEW (CI95-Difference = [0.4 - 1.9]) (one-way ANOVA: F(3,40) = 7.64). It shows 

that participants were not only able to consciously retrieve the information but they also had a 

conscious access to the probability of being right or wrong. Subjective report was strongly 

negatively correlated (r = -0.65, Pearson’s correlation coefficient) with the speed of the recall. 

Median reaction times increased over retention intervals: 1.04 s (SD = 0.12), 1.14 s (SD = 

0.16) and 1.53 s (SD = 0.34) for snapshots correctly identified and respectively seen in the 
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conditions HOURS, 1D and 3W with the condition 3W significantly different from the 

conditions HOURS (CI95-Difference = [0.23 – 0.74]) and 1D (CI95-Difference = [0.13 – 

0.64]) and was at 1.27 s (SD = 0.20) for NEW snapshots (one-way ANOVA: F(3,40) = 9.5) 

(Figure 6.2B) . 

 
Figure 6.2 Behavioral performance: HITs responses on average across participants.   

A. Percentage of HITs over the retention interval: snapshots seen hours, 1 day or 3 weeks 

before (mean and standard deviation). B. Reaction times (s) for HITs over the retention 

intervals (median and standard deviation). C. Repartition of Remember and Know for HITs 

responses over the 3 retention intervals (%). D. Reaction times (s) for correct Remember and 

correct Know responses over the 3 retention intervals (median and standard deviation).  

 

 Remember, Know, NEW analysis 

Overall participants ‘subjective responses were distributed as follows: Remember = 33.9% 

(SD = 11.4), Know = 15.8% (SD = 7.4) and New = 50.3% (SD = 11.8). This shows that for 

snapshots previously seen, participants reported being able to recollect the related video than 

simply knowing it (paired t-test: t(10) = 3.9, p < 0.01, CI95-Difference = [7.9 – 28.3]). Recall 

performance was high for Remember and New responses with respectively 93.0% (SD = 6.0) 

and 81.4% (SD = 7.4) of correct responses and significantly lower for Know responses: 

55.3% (SD = 20.4) (one-way ANOVA: F(2,30) = 24.34, CI95-Difference = [24.0 – 51.3], CI95-
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Difference = [12.5 - 39.8]). The average confidence was significantly the highest for 

Remember responses: 4.7 (SD = 0.2), and lower for NEW: 3.4 (SD = 0.9) and Know 

responses: 3.0 (SD = 0.5) (one-way ANOVA: F(2,30) = 23.19, CI95-Difference = [1.1 – 2.4], 

CI95-Difference = [0.6 – 1.9], CI95-Difference = [-1.1 – 0.2]). 

The ratio of correct ‘Remember’ over correct ‘Know’ responses decreased over retention 

intervals: 87.4% (SD = 15.7), 81.4% (SD = 16.4), 55.6% (SD = 23.31) for snapshots 

respectively seen in the conditions HOURS, 1D and 3W with the condition 3W significantly 

different from the conditions HOURS (CI95-Difference = [12.0 – 51.6]) and 1D (CI95-

Difference = [5.9 – 45.5]), (one-way ANOVA: F(30,2) = 8.85). This is consistent with the 

literature showing a decrease in the ability to recollect past information for retention interval 

of weeks and more (Conway et al., 1997; Herbert and Burt, 2004; Piolino et al., 2009) (Figure 

6.2C).  

Reaction times for correct Remember responses was on average 1.01 s (SD = 0.1), 1.07s (SD 

= 0.2) and 1.30 s (SD = 0.3) for snapshots seen in the conditions HOURs, 1D and 3W 

respectively (Figure 6.2D) with a significant difference between the conditions HOURS and 

3W (CI95-Difference = [0.04 – 0.52]; one-way ANOVA: F(2,30) = 4.69). These objective 

measures were negatively correlated with subjective reports (r = -0.58). By contrast correct 

‘Know’ responses were stable over retention intervals: 2.08 s (SD = 0.7), 2.11 s (SD = 0.7) 

and 1.99 s (SD = 0.7) for the conditions HOURS, 1D or 3W respectively (F(2,29) = 0.09). 

Overall, median reaction time was slower for KNOW (mean = 2.00s, SD = 0.7) compared to 

REMEMBER (mean = 1.07 s, SD = 0.1, CI95-Difference = [0.49 1.37]) and NEW responses 

(mean = 1.27s, SD = 0.2, CI95-Difference = [0.29- 1.17]) (one-way ANOVA: F(2,30) = 

15.17). Slower reaction times for KNOW responses are due to our experimental design that 

pushes participants to make preferentially fast ‘Remember’ responses. Late KNOW responses 

simply indicate that they were done when recollection failed after about 2 s.  

 

To summarize, behavioral results indicate that participants were explicitly retrieving 

information from memory either on a recollection mode or based on familiarity judgment. 

Participants’ performance showed that recall directly depends on the time since videos were 

seen. To better understand how recall is performed and varies according to the retention 

interval, EEG analyses were carried on during the recall phase. Our investigation used 

classical uni and bivariate analyses (ERPs and Time-frequency) as well as multivariate 

patterns analyses (MVPA).  
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3.2 EEG analysis 

3.2.1 Differential analysis, ERPs and time-frequency 

Trials corresponding to the 3 retention intervals: HOURS, 1D and 3W were compared with 

trials of NEW pictures. ERPs analysis was performed on the mean average across participants 

for t = -200-800 ms after picture onset. Significant channels were found for a threshold at p < 

0.05 (paired t-test, FDR corrected). The ERP topography (Figure 6.3A) shows that significant 

difference for HOURS/NEW appeared at t = 500 ms after picture onset in a first central 

channel (C3) and became stronger at t = 600 ms after picture onset mostly in the central and 

parietal electrodes. This differential activity remained stable until the end of the epoch (t = 

800 ms). For 1D/NEW, significant channels were found at t = 500 ms post-stimulus onset and 

involved a distributed network of fronto-centro-parietal sites. Overall, until the end of the 

epoch, the same topography applied for 1D/NEW as for HOURS/NEW but with less 

significant channels. This topography was representative of the contrast Remember/NEW 

performed independently of the retention interval (Supplementary information, Figure 6.S1A) 

that might be a marker of the recollection of audiovisual clips. For the contrast 3W/NEW no 

significant channels were found in the whole epoch.  

Time-frequency analysis on the band-pass signal (0.1-100 Hz) revealed significant positive 

difference only in the theta band. Difference was found for the early retention intervals: 

HOURS and 1D but not for the condition 3W when compared respectively to NEW pictures 

(Figure 6.3B). More precisely, for the condition HOURS/NEW a significant positive 

difference (bootstrap p < 0.05, mask applied) emerged in the slow theta band (~3 Hz) from 

the picture offset (t = 400 ms) to the end of the epoch (t = 800 ms) and in the fast theta band 

(~ 6Hz). For the condition 1D/NEW a significant positive difference (bootstrap p < 0.05, 

mask applied) was also found in the slow theta band from 400 to 800 ms post-stimulus onset 

but not in the fast theta range. Interestingly, the combination of a positive difference in the 

slow and fast theta range is strongly present when contrasting all the REMEMBER responses 

with NEW responses (bootstrap p < 0.05, mask applied) (Figure 6.S1B) and might be 

representative of the recollection of the audiovisual clips. By contrast, when collapsing all the 

KNOW with the NEW responses a strong positive difference (bootstrap p < 0.05, mask 

applied) in the 3-5 Hz frequency range was present from about 200 to 400 ms post-stimulus 

onset. This component did not show up on the analysis performed on the retention intervals 

probably canceled out by the significant negative difference (bootstrap p < 0.05, mask 

applied) for the same time-frequency points in the case of REMEMBER responses. 
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Overall, by using classical uni- (ERPs) or bivariate (Time-Frequency) analyses we 

demonstrated that the processing of snapshots seen at most a day before revealed to be 

significantly different from NEW pictures. Difference was mainly captured on the late ERPs 

component: t = 500-800 ms by involving the theta band (3-7 Hz) in particular and might 

correspond to the recollection of the audiovisual clip as shown by the analysis performed on 

REMEMBER/NEW responses. However, these analyses failed to capture significant 

differences for longer retention intervals whereas 3 weeks after learning participants’ 

performance show some recall. We decided to use MultiVariate Pattern Analyes on our EEG 

data to test whether snapshots seen 3 weeks can be differentiated from NEW snapshots. 
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Figure 6.3 Differential EEG activity between snapshots seen in the 3 learning sessions 

(HOURS, 1D and 3W before the recall) and NEW snapshots.  

Figures represent the average across the 11 participants for t = -200-800 ms post-stimulus 

onset. A. ERPs topography. Red dots correspond to significant channels (p < 0.05, FDR 

corrected). B. Time-frequency analysis. Only significant values (bootstrap p < 0.05, mask 

applied for 20 channels, all participants) are colored; non-significant values are plotted in 

green. 

3.2.2 Early ERPs 

The early time-course of memory recall on average across participants was analyzed before 

snapshot offset (t= -200-400 ms) for every channel and for 2 conditions (t-test, FDR 

corrected, threshold at p < 0.05) (Figure 6.4). When comparing the conditions HOURS versus 

NEW, the earliest difference was found for channel TP8 at t = 100 ms post-stimulus onset 

followed by a significant difference on the fronto-parietal sites: FP2 and FPz at respectively t 

= 110 and t = 120 ms post-stimulus onset.  Difference were also found for the centro-parietal 

channel CP1 at t = 120 ms and t = 140 ms and CP3 at t = 160 ms post-stimulus onset. When 

contrasting the conditions 1D versus NEW, early activity was found for the channel C1 at t = 

280 ms, then in in the channel PO3 at t = 290 ms and in the frontal sites: AF8 at t = 290 ms, 

F7 at t = 370 ms and t = 390 ms. No significant difference for the condition 3W vs NEW were 

found in the ERPs neither before or after stimulus offset. 
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Figure 6.4 Early ERPs analysis on average across 11 participants for snapshots seen 

HOURS or 1D before and compared to New pictures.  

Four channels are presented: TP8 and Fpz for the contrast HOURS versus NEW and C1 and 

F7 for the contrast 1D versus NEW. Significant t-test (p < 0.05, FDR corrected) for the time 

before stimulus offset (t = -200-400 ms) are shown by vertical purple dashed lines and 

highlighted by a black arrow. Significant t-test (p < 0.05, FDR corrected) outside the time of 

interest are shown by vertical dashed grey lines. 

 

3.2.3 Multivariate Pattern Analysis (MVPA) 

We performed MVPA analyses on our EEG data by comparing the activity for snapshots seen 

in one of the 3 learning sessions (HOURS, 1D or 3W) and NEW snapshots. For each 

participant, classifier performance was measured for the trial tests at the same time point as 

for the training sets (diagonal matrix) or for any other time points (off-diagonal matrix). 

Performance was averaged across the 11 participants and calculated using the Area Under the 

Curve (AUC) where chance level corresponded to the same classification performed on 

random labels (Figure 6.5). The resulting matrix decoding for the 3 contrasts were squared-

shape as found for REMEMBER versus NEW snapshots (Supplementary information Figure 

6.S2) but that faded away over the retention intervals. Classification performance was found 
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significantly different from chance level from around t = 500 ms post-stimulus onset and until 

the end of the epoch for the comparisons HOURS/NEW, 1D/NEW and 3W/NEW.  

Similarity analyses on the differential correct response percentages and on the decoding 

matrices were performed for each participant. Interestingly we found that the differential 

correct response percentages for the conditions HOURS/NEW, 1D/NEW and 3W/NEW was 

correlated with the respective decoding matrix performance (mean: r = 0.57, SD = 0.7, range: 

-0.99 – 1.00, Pearson’s correlation coefficient). This suggests that it might be possible to infer 

participants’ recall performance on very long term memories from the matrix decoding 

obtained through MVPA. 

 

 
 

Figure 6.5 Decoding analysis for the comparisons between the 3 learning session (Hours, 

1D, 3W) and New pictures on average across participants.  

Significant values that lasted for a minimal duration of 30 ms are contoured in black (paired 

t-test, p <0.05, FDR corrected). 

4. Discussion 

In this study we showed that MVPA techniques are sensitive enough to decode long-term 

memory traces. Whereas classical ERPs and Time-Frequency analyses were only able to 

differentiate memory traces of videos seen a few hours or one day before, MVPA allowed us 

to reveal a difference of pattern for snapshots seen 3 weeks before that was correlated with 

participants’ performance. The dynamic of activation revealed by MVPA showed a sustained 

activity for the 3 retention intervals suggesting that a unique network of brain areas is 

involved in the retrieval of audiovisual content (J-R King and Dehaene, 2014). Whereas this 

activation is strong for stimuli recently encoded and corresponds to broad activations in 

centro-parietal region, the decrease of power for stimuli seen 3 weeks ago could be explained 
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by the involvement of a smaller brain network in frontal regions according to the ERP 

topography (not significant though) and/or in the hippocampus (Harand et al., 2012).  

Theta band activations reflect long-range interactions that are linked to recollection processes 

(Doppelmayr et al., 1998; Klimesch et al., 1994; Nyhus and Curran, 2010; Osipova et al., 

2006) and it has been found that an increase in the slow theta power (~3 Hz) correlates with 

recollection success (Pastötter and Bäuml, 2014). Intracranial recordings in humans have 

shown that slow theta oscillations are generated in the hippocampus to support the encoding 

of contextual details (Lega et al., 2016). These oscillations resemble the theta frequency band 

found in rodents between 4 and 10 Hz that play a critical role in spatial navigation (Jacobs, 

2014). However, because in this study EEG recording was collected on the scalp of the 

participants, it is hard to make sure that this slow theta activity was generated by the 

hippocampus.  

Although speculative, the decrease of power in the theta band over the retention intervals 

might reflect the involvement of a more localized pattern of neurons. However no significant 

activity was found in the gamma band during the retrieval of snapshots seen 3 weeks before, 

which is supposed to reflect more local activity (Nyhus and Curran, 2010; von Stein and 

Sarnthein, 2000). Sustained activity was strong for recent memories but weaker for longer 

retention intervals, the latter being associated with longer participants’ reaction times. These 

results are consistent with the idea that memory recall can be interpreted in terms of diffusion 

model (Ratcliff and Mckoon, 2008; Ratcliff, 1978) whereby a decision is made based on the 

evidence accumulated over time and until a certain threshold. This perspective is already 

commonly held in the perception domain (Dehaene, 2009; Gold and Shadlen, 2007; Norris 

and Kinoshita, 2008; Ploran et al., 2007) and comes within the scope of the  Bayesian brain 

(Knill and Pouget, 2004) but has not been so much investigated in the memory field (Koriat 

and Levy-Sadot, 2001; Moulin and Souchay, 2015; Shadlen and Shohamy, 2016; Wixted, 

2009). In our case, we suggest that this decision criterion will be reached fast for recent 

memories whereas for older memories with a slight activation level, the process will take 

more time to be achieved. In agreement with this hypothesis we found that participants were 

faster to remember snapshots seen recently compared to the ones seen 3 weeks before. This 

suggests that remember responses emerge when a supposed-high criterion is reached. If 

activity is strong, but not sufficient to reach this criterion, judgment would correspond to 

Know response. In our experiment, failure to reach this criterion was associated with slow 

reaction times for Know responses. Although the differentiation between familiarity and 

recollection has been extensively reported and is supported by experimental evidence, it is not 
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clear yet whether they can be considered as variations of the same process (Dunn, 2004; 

Wixted, 2009) or emerge from distinct ones (Jacoby, 1991; Mandler, 1980; Yonelinas et al., 

2010). Our data suggest a continuum between familiarity and recollection processes. It is 

important to point out that both participants’ percentage of correct responses and reaction 

times for new responses were found in between the performance obtained for the condition 

1D and 3W. This means that it might be easier for participants to compare new stimuli from 

old ones but that participants are better to detect recently seen stimuli than new ones. 

Participants’ performance 3 weeks after the encoding phase was high which demonstrates that 

audiovisual clips are good material to study the recollection of long lasting memories though 

under-used in the literature (Ferguson et al., 2016; Furman et al., 2007; Tang et al., 2016). 

Importantly, sleep might have played a crucial role in the change of sustained activity found 

for the different retention interval. Indeed, numerous studies have shown that during sleep, a 

memory trace can be reactivated several times and therefore be consolidated into a stable 

neuronal pattern (Buzsáki, 1989; Girardeau et al., 2009; Peyrache et al., 2009; Sirota et al., 

2003).  However, in this design we could not isolate this variable to measure independently its 

impact.  

Overall, we showed that long-term memory traces can be decoded based on single EEG trials. 

In this study 3 weeks was the longest retention interval.  Knowing that memories can be 

maintained for several decades, it would be interesting to test whether decoding still applies 

for remote memories.   

5. Conclusion 

From this first EEG experiment I was happy to see that it was possible to differentiate pictures 

of audiovisual clips presented three weeks ago from pictures belonging to new clips. As I 

expected it, ERPs and time-frequency analyses were not powerful enough to detect slight 

differences for long retention intervals. Decoding techniques performed on single EEG trials 

were therefore necessary.  

However, I am still surprised about the timing of these differences. Being in a lab that 

extensively studied recognition for very short latencies, it is quiet disappointing to see that for 

a three week interval I was not able to see any early effect. Using decoding analyses I was 

only able to detect differences from about 400 ms after picture onset. For shorter retention 

intervals I found a couple of significant effects before 400 ms after picture onset. It is 

interesting to note that the earlier effects were found for images belonging to audiovisual clips 

seen just a few hours before and that for audiovisual clips seen one day before, early effects 
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occurred about 100 ms later. Such a delay might explain the differences of reaction time to 

recollect the memory of the audiovisual clips.  

One of the benefits of decoding analyses is that we can get geometrical patterns that provide 

information concerning the dynamics of the underlying processing that we caught. I was quiet 

surprised to see that the same long lasting square pattern held for the three retention intervals. 

The difference was more in the power of the signal rather than in its nature. This suggested 

that the same neuronal pattern was at the basis of the retrieval process whatever the delay, at 

least until 800 ms after picture onset. I did not go even further, to make sure that the signal 

studied would not be “polluted” by any motor component. Given our experimental design and 

according to the subjective reports, it is very likely that this square pattern was at the basis of 

the recollection of the audiovisual clips.  
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Figure 6.S1 Differential EEG activity between REMEMBER or KNOW snapshots and 

NEW snapshots.  

Figures represent the average across the 11 participants for t = -200-800 ms post-stimulus 

onset. A. ERPs topography. Red dots correspond to significant channels (p < 0.05, FDR 

corrected). B. Time-frequency analysis. Only significant values (bootstrap p < 0.05, mask 

applied for 20 channels, all participants) are colored; non-significant values are plotted in 

green. 
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Figure 6.S2 Decoding analysis for the comparisons between Remember or Know responses 

and New pictures on average across participants.  

Significant values that lasted for a minimal duration of 30 ms are contoured in black (paired 

t-test, p <0.05, FDR corrected)
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CHAPTER 7. Effect of repetition on explicit long-term 

memory: an EEG study 

 

Chapter presentation 

In the previous chapter the critical variable that I manipulated was the retention interval. 

However and as I developed it all along the manuscript, repetition might play an important 

role for retrieval in long-term memory. For short-term memory, the effect of repetition has 

been particularly studied with EEG but I could not find any article that tested its effect for 

longer delays such as a few weeks. I had this simple question in mind: what is the effect of 

repetition on the EEG signal during long-term retrieval? 

The data from my first EEG experiment convinced me to that I had the tools to investigate 

this question. I would use the same experimental set up but this time, I would leave the 

retention interval fixed at 3 weeks and I would play around with the number of times the 

audiovisual clips would be presented. Simon and I agreed that the strongest effects would be 

seen for a couple of repetitions and that it was not necessary to play the same audiovisual clip 

ten times. So we decided to present the clips either once, twice, three or five times.  

After having done my first EEG experiment, I knew that I would get data that I could exploit 

in about 6 months. I could use again most of the scripts that I wrote to run the experiment and 

the analysis of the behavioral and the EEG data. Everything was well set for me to hire an 

intern on this project. To me, this was an important part of my PhD. I was an intern myself 

just a couple of years before and I knew how much I gained from the PhD students I worked 

with. Simon was happy with this idea and gave me a free hand to hire anyone who would fit . 

One interview was enough for me: Meyi was excited by the project and full of enthusiasm. 

She will be the one to work with me on this topic.  

  



 

172 
 

 

1. Introduction 
“Every one knows that repetition plays an important part in the process of acquiring 

knowledge, but hitherto there has been no attempt experimentally to study this factor beyond 

the experiments of Ebbinghaus relating to the effect of repetition on the duration of memory” 

(Smith, 1896).  

This sentence was written by W.G. Smith at the end of the nineteenth century but sounds very 

relevant today and especially when considering explicit long-term memory. Explicit memory 

reflects an intentional attempt to recollect an event. It is traditionally viewed as being the 

result of two potential processes: a recollection process when a memory is retrieved with 

contextual details or based on a familiarity judgment (Mandler, 2008, 1980; Yonelinas, 2002). 

These two subjective judgments can be assessed using a Remember/Know/New paradigm in 

which remember and know responses reflect respectively recollection and familiarity even if 

this equivalence might not be always true (Gardiner and Richardson-Klavehn, 2000; Williams 

et al., 2013). Two different Evoked Response Potentials (ERPs) components have been 

identified to characterize these processes: the FN400, a midfrontal negativity occurring within 

300-500 ms after stimulus onset which corresponds to familiarity judgments and the LPC, a 

late positive component, that kicks in between 500 and 800 ms in the left parietal region and 

that reflects recollection processes ((Curran, 2000; Duarte et al., 2004; Düzel et al., 1997; 

Tsivilis et al., 2001) and for a review see (Rugg and Curran, 2007)). In addition to differences 

of ERP latencies, an increase of power in the theta band (4-7 Hz) and in the gamma range (30-

100 Hz) characterizes respectively recollection and familiarity judgments (Gruber and 

Tsivilis, 2008). Evidence showed that both remember and know responses can be influenced 

by the number of presentations an item was presented during learning. In particular, the 

repeated presentation of an item is able to enhance remember responses (Dewhurst and 

Anderson, 1999; Gardiner et al., 1996; Mäntylä and Cornoldi, 2002). This repetition effect 

corresponds to an increase of activity in the parietal region (de Chastelaine et al., 2009; 

Friedman et al., 2010; Nessler et al., 2007) that was associated with shorter latencies: from 

300 to 500 ms (de Chastelaine et al., 2009; Friedman et al., 2010) and therefore called “early 

parietal old/new effect” by de Chastelaine et al. Enhanced theta activity was also found for a 

repeated item compared to a new one (Klimesch et al., 2000) but with no difference across the 

number of presentations (Van Strien et al., 2005). Whereas it has been shown that repetition 

might affect explicit memory for several decades (Bahrick et al., 1975) EEG studies mainly 
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focused on the effect of repetition for very short retention intervals between the learning and 

the explicit retrieval of the repeated stimuli. To our knowledge, no EEG data exist for 

retention intervals exceeding a day. This is important to point out because the consolidation of 

a memory trace which involves both a synaptic and a system-level consolidation might take 

several weeks to be completed (Frankland and Bontempi, 2005). This gradual stabilization 

can be even picked out in some situations with the increase of performance after a day of 

sleep (Walker and Stickgold, 2010). Repetition effect might be therefore different for longer 

retention times.  

Here we decided to test the effect of repetition during the recall of short audiovisual clips 

three weeks (experiment 1) and five months (experiment 2) after the learning phase while 

participants’ EEG activity was recorded. Note that the data have not been yet fully analyzed 

but already provide interesting information.  

 

EXPERIMENT 1 

 

2. Material and Methods 

2.1 Participants 

Twelve healthy subjects (mean age = 24.5 y, SD = 2.9, 6 females) gave written informed 

consent and participated to the experiment approved by the INSERM Ethical Evaluation 

Committee (CEEI). 

2.2 Stimuli 

Overall, 840 4-seconds audiovisual clips (size = 320*240) and downloaded from the internet 

were used in the experiment. Among them 120 clips of Michael Jackson were only used for 

controlling participants’ attention during learning sessions and were not used in the recall test. 

The remaining 720 audiovisual clips were selected to be as diversified as possible and 

unknown from the participants. Two-third of them (n = 480) were shown during learning 

sessions and were counterbalanced between participants. One frame of each of the 720 clips 

was selected to be presented during the recall phase as a video snapshot. The same 720 

snapshots were presented for all the participants.   
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2.3 Task 

The experiment included two phases: a learning phase and a test 3 weeks later to assess long-

term recall (Figure 7.1). 

During the learning phase, 480 audiovisual clips were shown to the participants on a computer 

screen. The audiovisual clips were presented either once, twice, three or five times with the 

same number of clips by presentation condition (n = 120). Because of the massive number of 

trials, the learning phase was split into two independent sessions performed on two 

consecutive days where half of the audiovisual clips were presented. Participants were 

instructed to pay as much attention as possible to all the video clips and were informed that 

they will be tested on the recall of these videos three weeks later. To control for participants 

attention during viewing, subjects were asked to make a button-press response whenever 

Michael Jackson appeared on an audiovisual clip (n = 60 by session). Participants could also 

indicate that they already knew a clip by pressing a key assigned to this purpose during the 

clip presentation and the corresponding trials were discarded from further analysis. The 

duration of a learning session was about 1.30 h. 

The recall test performed three weeks after the first learning session (mean = 21days, 

2h37min, SD = 14h02 min) was a cued-recall task of 720 trials and during which EEG’s 

participants was recorded. Memory recall was assessed with a classical 

Remember/Know/New judgment (Tulving, 1985a). Each trial started with a fixation cross of 

varying duration (600-1000 ms) followed by either a snapshot of a clip seen during the 

learning sessions (n = 480) or a new one (NEW) (n = 240) that was presented for 400 ms. 

After picture offset, participants were asked to press as fast and as accurate as possible, with 

the same hand, one of the three keys corresponding to Remember, Know and New judgments 

(randomized between participants).  Before testing, participants were informed of the meaning 

of these three response possibilities as follows: ‘Remember’: you identify the picture as 

previously seen in one of the two learning sessions and you can replay the related-video in 

your mind by anticipating the following scenes of the short scenario. ‘Know’: you identify the 

picture as previously seen in one of the two learning sessions but you can’t retrieve to which 

video it belongs to. ‘New’: the picture does not belong to any of the videos shown during the 

two learning sessions. 

Participants were then invited to judge their response on a five-point confidence scale (1: 

“Not sure at all”; 2: “A bit sure”; 3: “Fairly sure”; 4:”Very sure”; 5: “Completely sure”). The 
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duration of the recall phase was about 1h15. Learning and recall phases were programmed 

using the Psychtoolbox, a Matlab toolbox. 

 

Figure 7.1 Experimental design.  

Every participant watched 480 different audiovisual clips during 2 learning sessions with a 

24-hour time interval between the two. A recall test was performed 3 weeks after learning. 

For each learning session 240 short audiovisual clips (3s) were presented either once, twice, 

three or five times on screen. Over the 2 learning sessions, participants watched 120 different 

clips for a given number of presentations. Memory test was a cued-recall in which snapshots 

of clips seen during the learning sessions (n = 480) or new ones (n = 240) were briefly 

presented on screen (400 ms). After picture offset, participants were invited to make as fast 

and as accurate as possible a R/K/N judgement on the picture and rate the confidence on 

their response on a 5-point scale. EEG was only recorded during the recall phase. 

2.4 EEG acquisition and analysis 

All the 12 participants were included in the EEG analysis. 

2.4.1 EEG acquisition and preprocessing 

During the recall phase, participants’ brain activity was recorded with a 64-channel cap 

connected to a BioSemi EEG amplifier (5 kHz) and with a sampling frequency of 1024 Hz. 

Data were filtered with a finite impulse response Blackman band-pass filter with a lower 

cutoff frequency of 0.1 Hz to avoid filtering artifacts (Acunzo et al., 2012) and a higher cutoff 
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frequency of 100 Hz with a transition bandwidth = 1 and then down sampled to 256 Hz. Trials 

were then epoched from -1s to 2 s relatively to picture onset, their baseline [-0.2 s 0] removed 

and re-referenced based to average reference. Artefacts were removed by performing ICA.  

For all participants, trials with extreme values for a channel (>100 µV or < -100 µV) or 

abnormal trend (slope max: 75 µV, R2>0.3) or abnormal distribution (kurtosis outside 5 

standard deviations of the kurtosis for each single electrode) were excluded from the analysis 

after visual inspection. All the preprocessing steps were done with EEGlab (Delorme and 

Makeig, 2004).  

2.4.2 ERPs analysis  

Trials were split according to the five numbers of presentations: ONE, TWO, THREE, FIVE 

and NEW for snapshots respectively seen once, twice, three times and five times or never 

seen in the learning sessions, or according to participants subjective responses: REMEMBER, 

KNOW and NEW responses. Differential activity was measured on a two by two analysis by 

contrasting one condition with a NEW condition (retention interval or subjective response) 

and statistical difference was performed using Student t-test with a statistical threshold of p < 

0.05 after False Discovery Rate (FDR) to correct for multiple comparisons.  

2.4.3 Decoding  

Multivariate pattern analyses were conducted on the same data used for the ERPs analysis. 

The classification was performed on a two by two analysis with one condition constituted by 

trials of NEW snapshots and the second condition containing snapshots seen for a specific 

number of times (ONE, TWO, THREE or FIVE). Trials were randomly split 120 times 

according to the Monte-Carlo cross-validation procedure: 120 Cross Validations (CV). For 

each cross-validation (CV), the number of trials was equalized between conditions 90% of the 

trials were used by the algorithm as a training set, the remaining 10% as a test set. Signal was 

normalized for the training and test sets. A linear classifier (L2 –regularized logistic 

regression, (Fan et al., 2008)) was trained on individual trials at each time point from -200 to 

800 ms and tested on individual trials on the same and all the other time points (temporal 

generalization). The performance of the classifier for every participant and at each test time 

point was evaluated by using the Area Under the Curve (AUC). The average decoding 

performance across participants resulted in a matrix decoding where the x- and y-axes 

respectively represented training and testing times. Chance level decoding was calculated by 

performing the same classification on randomly permuted labels. Statistical significance was 
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reached when the average across the 12 participants was higher than chance level for a 

duration of at least 30 ms of the training or testing time (paired t-test, p <0.05, FDR 

corrected). Decoding analyses were performed by using an open source script developed by 

Sebastien Crouzet that can be downloaded at https://github.com/scrouzet/classifyEEG and 

that was used in (Crouzet et al., 2015) and in (Cauchoix et al., 2016).  

3. Results 

On average, five out of the 480 videos (SD = 5.0) were considered already known by 

participants and the corresponding trials were discarded from behavioral and EEG analysis for 

each subject. 

3.1   Behavioral results 

3.1.1 Learning phase 

Participants watched the audiovisual clips during two learning sessions of respectively 240 

clips each that were done on two consecutive days. To make sure that participants were 

attending the videos, they were asked to press the space bar whenever a video of Michael 

Jackson was presented (60 videos by learning session). The high percentage of HITs and the 

low False Alarm (FA) rate for the two learning sessions show that participants were paying 

attention to the videos presented on screen (session 1: HITS = 96.4% (SD = 6.8); FAs = 

0.01% (SD = 0.04) and session 2: HITs = 98.7% (SD = 2.0); FAs = 0.09 % (SD = 0.2). 

3.1.2 Recall phase 

During the recall phase performed three weeks after the first learning session, snapshots from 

the clips seen by the participants: the TEST pictures (n = 480) or NEW pictures (n = 240) 

were briefly presented on screen. Participants were asked to make a Remember-Know-New 

judgment as fast and as accurate as possible and to rate the confidence on their response on a 

five-point scale. 

 Correct response analyses 

On average participants were 59.8% (SD = 6.4, range: 46.9% - 69.9%) correct at 

discriminating pictures as new or already seen with ‘Remember’ and ‘Know’ responses 

pooled together. This shows that on average participants were able to recall short audiovisual 

clips seen three weeks ago based only on the presentation of single snapshots. This reflects in 

the average d’ score as well (d’ = 1.0, SD = 0.15). HITS corresponded to ‘Remember’ or 

https://github.com/scrouzet/classifyEEG
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‘Know’ responses for snapshots previously seen during the learning sessions. CRs 

corresponded to snapshots correctly identified as never seen in the learning sessions: ‘New’ 

response. The percentage of HITs increased over the number of presentations: 36.4% (SD = 

14.7), 48.6% (SD = 17.4), 58.4% (SD = 17.3) and 69.6% (SD = 16.2) for 1, 2, 3 and 5 

presentations respectively and the percentage of CRs was high: 72.7% (SD = 15.7) and was 

even higher than the percentage of correct responses for pictures seen once or twice (one-way 

ANOVA: F(4,55) = 10.2, CI95-Difference (‘1’ vs ‘2’) = [-31.0 to 6.6], CI95-Difference (‘1’ vs 

‘3’) = [-40.8 to -3.2], CI95-Difference (‘1’ vs ‘5’) = [-52.0 to -14.4]), CI95-Difference(‘New’ 

vs ‘1’ = [17.6 – 55.1], CI95-Difference(‘New’ vs ‘2’ = [5.4 – 42.9]) (Figure 7.2A). However, 

we did not find any difference in participants’ reaction times for all of these conditions. The 

median reaction times for HITs over the number of presentations was: 1.39 s (SD = 0.33), 

1.36 s (SD = 0.29), 1.34 s (SD = 0.26) and 1.24 s (SD = 0.19) for snapshots respectively seen 

from 1 to 5 times and for CRs concerning the new pictures: 1.19 s (SD = 0.23) (Figure 7.2B).  

The increase of the percentage of recall over the number of presentations was combined with 

the confidence increase from ‘Medium sure’ = 3 to ‘Very sure’ = 4 as shown by the average 

confidence score from 1 to 5 presentations respectively: 3.0 (SD = 0.5), 3.5 (SD = 0.5), 3.6 

(SD = 0.6) and 4.0 (SD = 0.5) calculated on correct responses only (one-way ANOVA: 

F(3,44) = 6.68, CI95-Difference (‘1’ vs ‘2’) = [-1.0 to 0.1], CI95-Difference (‘1’ vs ‘3’) = [-1.1 

to -0.0], CI95-Difference (‘1’ vs ‘5’) = [-1.5 to -0.4], CI95-Difference (‘2’ vs ‘3’) = [-0.7 to 

0.4], CI95-Difference (‘2’ vs ‘5’) = [-1.0 to 0.1], CI95-Difference (‘3’ vs ‘5’) = [-0.9 to 0.2]). 

This shows that the number of presentations has an effect on metacognitive processes and 

here in particular, on participants’ ability to evaluate correctly their response. 
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Figure 7.2 Participants recall performance for videos seen 1, 2, 3 or 5 times 3 weeks before.   

A. Recall percentage for snapshots never seen, seen once, twice, three or five times (mean and 

standard deviation). B. Reaction times (s) for correct responses over the number of 

presentations during learning (median and standard deviation). C. Repartition of Remember 

and Know responses (%) for HITs according to the number of exposures during learning. D. 

Reaction times (s) for correct Remember and correct Know responses over the four number of 

presentations (median and standard deviation).  

 

 Correct Remember and Know analysis 

For the pictures that were correctly identified as previously seen, 62.8% (SD = 20.2, range: 

32.9 – 96.4) of them corresponded to ‘Know’ responses, which was higher than the number of 

‘Remember’ responses (t(22) = -3.10, CI95-Difference (“Remember” vs “Know”) = [-42.8 to -

8.5]). Interestingly, the ratio of correct ‘Remember’/ correct ‘Know’ increased over the 

number of presentations: 18.8% (SD = 16.8), 31.7% (SD = 19.0), 38.8% (SD = 22.21), 48.6% 

(SD = 25.6) for snapshots respectively seen once, twice, three times and five times (one-way 

ANOVA: F(3,44) = 4.24, CI95-Difference (“ratio for ‘1’ ” vs “ratio for ‘2’ ”) = [-36.0 to 10.1] 

CI95-Difference (“ratio for ‘1’ ” vs “ratio for ‘3’ ”) = [-43.1 to 3.0], CI95-Difference (“ratio for 

‘1’ ” vs “ratio for ‘5’ ”) = [-52.9 to -6.8], CI95-Difference (“ratio for ‘2’ ” vs “ratio for ‘3’ ”) = 
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[-30.2 to 15.9], CI95-Difference (“ratio for ‘2’ ” vs “ratio for ‘5’ ”) = [-40.0 to 6.1], CI95-

Difference (“ratio for ‘3’ ” vs “ratio for ‘5’ ”) = [-33.3 to 13.3]).  

This demonstrates a long term effect of the number of presentations which directly affects 

participants’ subjective experience when they try to recall the videos (Figure 7.2C and Figure 

7.S1).  

Interestingly, reaction times decreased for correct Remember responses. In contrast, no 

difference was found for correct ‘Know’ responses over the number of presentations 

The median reaction times for correct Remember were: 1.46 s (SD = 0.5), 1.27 s (SD = 0.2), 

1.26 s (SD = 0.2) and 1.21 s (SD = 0.2) for snapshots seen respectively once, twice, three or 

five times (figure 7.2D). The median reaction times for correct Know responses for the same 

number of exposure were: 1.43 s (SD = 0.4), 1.46 s (SD = 0.35), 1.47 s (SD = 0.4), 1.44 s (SD 

= 0.4). No main difference of reaction time was found for correct Remember or correct Know 

responses depending on the number of exposures however we found that Remember 

responses were faster than Know responses (two-way ANOVA: Recall: F(1,87) = 5.13, p < 

0.05; Repetition: F(3,87) = 0.63; Recall * Repetition: F(3,87) = 0.88)). ‘Remember’ responses 

were faster than ‘Know’ responses but this does not mean that familiarity was processed after 

recollection. It is due to our experimental design that pushes participants to make 

preferentially fast ‘Remember’ responses. Late ‘Know’ responses simply indicate that they 

were done when recollection failed after some time, about 1.5 s on average.  

 

Overall, our behavioral results indicate that participants can explicitly retrieve the memory of 

videos seen three weeks before based on the presentation of single snapshots. Importantly, the 

number of exposures to the stimuli affects directly recall processes as shown by differences in 

terms of percentage of recall and confidence in the response. What is the underlying neuronal 

mechanism that drives such differences? In the next section we will analyze participants’ EEG 

signal during recall. We will present ERPs and decoding analyses.  

3.2   EEG analysis 

3.2.1 Differential ERP analysis 

Trials corresponding to the four numbers of exposures: ONE, TWO, THREE and FIVE were 

compared with trials of NEW pictures. ERPs analysis was performed on the mean average 

across participants for t = -200-800 ms after picture onset. Significant channels were found 

for a threshold at p < 0.05 (paired t-test, FDR corrected). The ERP topography (Figure 7.3) 



 

181 
 

shows a significant difference for the condition FIVE/NEW for t = 600-700 ms after picture 

onset mostly in the central and parietal electrodes. This topography was representative of the 

contrast Remember/NEW performed independently of the number of times the audiovisual 

clips were seen (Supplementary information, Figure 7.S1A). This component might be a 

marker of the recollection of audiovisual clips. For the contrast ONE/NEW, TWO/NEW, 

THREE/NEW and FIVE/NEW no significant channels were found within the whole epoch. 

  

Figure 7.3 Differential EEG activity between snapshots seen ONE, TWO, THREE or FIVE 

TIMES, three weeks ago and NEW snapshots.  

The ERP topography represents the average across the 12 participants for t = -200-800 ms 

post-stimulus onset. Red dots correspond to significant channels (p < 0.05, FDR corrected).  

 

3.2.2 Multivariate Pattern analysis (MVPA) 

We performed MVPA analyses on our EEG data by comparing the activity for snapshots seen 

ONE, TWO, THREE or FIVE times three weeks ago and NEW snapshots. For each 

participant, the classifier performance was measured for the trial tests at the same time point 

as for the training sets (diagonal matrix) or for any other time points (off-diagonal matrix). 

Performance was averaged across the 12 participants and calculated using the Area Under the 

Curve (AUC) where chance level corresponded to the same classification performed on 

random labels (Figure 7.4).  
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Figure 7.4 Decoding analyses for the comparisons between the four numbers of exposures 

(ONE, TWO, THREE, FIVE) and NEW pictures on average across participants.  

Note that no statistical test was performed 

 

The resulting matrix decoding for the audiovisual clips seen five times compared to new clips 

were squared-shape as found for the data REMEMBER versus NEW in chapter 6 

(Supplementary information Figure 7.S2). It is important to note that for five participants, the 

decoding matrix for the condition FIVE/NEW was more pronounced than the effect found 

over the 12 participants (Supplementary information Figure 7.S2). It would be interesting to 

see whether decoding performance correlate with participants’ performance, as found in the 

previous chapter.  

4. Discussion 

Overall, participants’ performance to recall the audiovisual clips was lower than what we 

could expect from chapter 6. In the previous chapter, participants were able to identify 64.5% 

(SD = 18.1) of the audiovisual clips that were seen twice and three weeks ago. In the current 

experiment only 48.6% (SD = 17.4) of the audiovisual clips seen twice were correctly 

identified. This difference could be explained by several parameters that varied across the 

experiments: the number of audiovisual clips that were shown, the duration of each 

audiovisual clip and the number of items presented by learning session. Indeed, in the current 
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experiment, we presented 480 clips of a 3-s duration in two sessions whereas in the previous 

chapter, 375 clips of a 7-s duration were presented within three learning sessions. In addition, 

we did not control for the spacing effect, the number of video clips between two presentations 

of the same audiovisual clip, an effect that influences long-term retrieval (Cepeda et al., 

2006). While the ERP topography could only differentiate snapshots seen five times from new 

snapshots, MVPA analyses were not better. Surprisingly, the algorithm was not able to 

differentiate snapshots seen two or three times from new snapshots. Given the behavioral and 

the decoding performance, one main question arises: Is the memory trace of all of these 

audiovisual clips lost? Or are participants not able to re-access the memory trace? The cued-

recall task might be not sufficient to elicit participants’ retrieval. Indeed, it is difficult to 

retrieve the memory of audiovisual clips from a still frame. However, given the behavioral 

data from chapters 3 and 4, it would be very surprising to find that participants would not be 

able to recognize these audiovisual clips, even several months after. In the following 

experiment, we tested the same participants five months later, to see whether they could 

recognize the audiovisual clips from new ones. Note that the data have not been fully 

analyzed. For now, we will only provide the first behavioral results of this experiment.   

 

EXPERIMENT 2 

 

5. Material and Methods 

5.1 Participants 

Seven healthy subjects (mean age = 25y, SD = 3.5, 3 female) out of the 12 participants who 

did the experiment 1 accepted to participate in this second experiment that was approved by 

the INSERM Ethical Evaluation Committee (CEEI). 

5.2 Stimuli 

In addition to the 480 audiovisual clips used in experiment 1 and learnt in the two learning 

sessions: OLD clips, 480 new audiovisual clips were used in this experiment. These 

audiovisual clips were also 3-s long and downloaded from the internet. The first frame of each 

of the 960 clips was also selected to be presented during the recall phase. The same snapshots 

were presented for all the participants.   
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5.3 Task 

The experiment consisted in a second testing phase performed after the experiment 1 and was 

done five months later after the first learning session (Figure 7.5).  

Each trial (n = 480), started with a fixation cross that was associated after 600 to 1000 ms 

with the display of the first 800 ms of the audio of an OLD (n = 240) or NEW (n= 240) clip. 

After the offset of the sound, the fixation-cross remained on screen during 200ms. The first 

frame of the clip corresponding to the previous sound was then displayed for 400ms. Note 

that the picture presented on screen always matched the sound presented first, either for OLD 

or NEW clips. Participants were asked to press as fast and as accurately as possible with the 

same hand one of two keys to decide whether the picture comes from an OLD or a NEW clip 

(key were randomized across participants). After participants’ answer, two videos were 

successively presented and corresponded to the first 2-s of an OLD and NEW clip. One of 

these clips was the one from which the sound track and the snapshot that were displayed at the 

beginning of the trial were taken from. After the presentation of the second video, participants 

were asked to press with the same hand one of two keys to report whether it was the first clip 

or the second clip that they had seen in the lab during the two learning session, five months 

ago. The recall phase lasted about 2h30 and was programmed on Psychtoolbox, a Matlab 

toolbox.  

 
 

Figure 7.5 Experimental design.  

For each trial (n = 480) the first 800 ms of the sound track of an audiovisual clip was 

displayed before the presentation of the first frame of the corresponding audiovisual clip for 

400 ms. After picture offset, participants were invited to say as fast and as accurately as 

possible whether the picture corresponded to an OLD audiovisual clip (n =240) or to a NEW 

audiovisual clip (n = 240).  After participants’ response, the first 2-s of two audiovisual clips 

were successively presented on screen. The audiovisual clip from which the sound track and 

the snapshot were displayed at the beginning of the trial was necessarily one of these two 

clips (in red in the figure) and could be either an OLD audiovisual clip (n = 240) or a NEW 
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clip (n=240). After the presentation of the second clip, participants were asked to identify 

which of the two videos was an OLD audiovisual clip. Participants’ EEG activity was 

recorded during the task (n = 7). 

6. Results 

6.1 Behavioral results 

Five months (mean = 5 months and 20 days, SD = 7 days) after the first learning session of 

the experiment 1, participants were first asked to say whether the picture presented on screen 

corresponded to an OLD or NEW picture. Participants were then invited to identify from two 

clips which one was an OLD clip.  

Participants were on average 60.02% (SD = 5.2, range: 52.3 – 68.3%) correct in identifying a 

picture as either OLD or NEW whereas they were 73.7% (SD = 8.1, range: 62.7 – 87.7%) 

correct in identifying the OLD clip from a NEW one. For the OLD pictures, participants were 

47.4% (SD = 13.4), 53.6% (SD = 22.5), 44.6 % (SD = 21.1) and 45.9% (SD = 25.5) correct 

for audiovisual clips seen respectively once, twice, three times and five times. Participants 

were 72.3% (SD = 12.6) correct in identifying NEW pictures. Concerning the audiovisual 

clips, participants were 70.6% (SD = 7.6), 78.8% (SD = 8.7), 69.2% (SD = 11.8), 76.3% (SD 

= 13.0) correct in identifying the OLD clips from NEW ones for the audiovisual clips seen 

respectively once, twice, three times and five times.  A two-way ANOVA analysis showed 

that participants’ performance was not different over the number of exposures but that 

participants were better to recognize the audiovisual clips presented as such than when only 

cued by their first frame (two-way ANALYSIS: Stimuli: F(1,48) = 33.64, Exposures: F(3, 48) 

= 0.84, Stimuli*Exposures: F(3,48) = 0.13)).  
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Figure 7.6 Retrieval performance over the number of exposures for audiovisual clips seen 

five months ago.  

Retrieval was based on the presentation of the first frame of the audiovisual clip (in blue) or 

on the 2-s presentation of the clip (in red). The condition NEW was only measurable for 

retrieval based on the picture. Retrieval is expressed in % ± SD. 

7. Discussion 

The preliminary results of the experiment 2 showed that the memory trace of the audiovisual 

clips presented five months earlier was still accessible to the participants. However we found 

that the presentation of a single still frame was not enough to elicit the retrieval of the 

audiovisual clips, even for the ones presented five times. A stronger cue was needed to bring 

the memory back to mind. Here we show that the presentation of the first 2 s of the 3-s 

audiovisual clips in a forced-choice task was enough for participants to be able to recognize 

an OLD clip from a NEW one. Although participants’ performance for the OLD pictures was 

at chance level, the participants were good at categorizing the NEW pictures. Indeed 

participants were 72.3% (SD = 12.6) correct for the NEW pictures, a result that is similar to 

the percentage of correct responses to NEW pictures found in experiment 1: 72.7% (SD = 

15.7) and in chapter 6: 79.7% (SD = 13.3). The ease to detect novel items might have helped 

participants to choose the correct audiovisual clip in a forced-choice task. It is therefore 

difficult to quantify to what extent the presentation of the audiovisual clips itself provided 

more information than the still frames. Further investigations should compare participants’ 

performance in two forced-choices, one with still frames and one with audiovisual clips.  

The reason we did not directly compare participants’ performance in two forced-choice tasks 

is that we wanted to increasingly provide information about the audiovisual clips to elicit 

retrieval. This second experiment was designed to highlight the gradual accumulation of 

evidence until participants’ decision. Accordingly, we displayed at the beginning of the trial 

the first 800 ms of the audiovisual clip. Although this cue seems too weak to elicit the 

retrieval of the whole audiovisual clip it might already trigger a search in memory. This 

search can be continued with the presentation of the still frame corresponding to the sound. 

As shown by participants’ performance, the succession of these two cues was too weak to 

elicit the recall of the clips. However information about the clip might have been accumulated 

and could be potentially detectable on the EEG signal. If it is the case, we would be able to 

predict from this signal if participants can identify the correct clip in the forced-choice.  
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8. Supplementary information 

 

 

Figure 7.S1 Differential EEG activity between REMEMBER or KNOW snapshots and 

NEW snapshots.  

The ERP topography represents the average across the 12 participants for t = -200-800 ms 

post-stimulus onset. Red dots correspond to significant channels (p < 0.05, FDR corrected).  

 

 
Figure 7.S2 Decoding analyses for the comparisons between the four numbers of exposures 

(ONE, TWO, THREE, FIVE) and NEW pictures on average across the five participants 

with the best decoding performance.  

Note that no statistical test was performed 
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GENERAL DISCUSSION 

 

1. Wrap-up 

1.1 Overall framework 

Since the 60’s there was increasing evidence that consolidated memories can be disrupted 

illustrating that even long-term memory traces were not fixed in time (Misanin et al., 1968; 

Schneider and Sherman, 1968). The ever-changing nature of long-term memory traces has 

been more intensively investigated since 2000 in light of reactivation manipulations. 

Throughout these studies, the main focus was made on memories in their active form but little 

is known on the inactive state of the memories. Therefore, many questions remain to be 

answered. For example, can memories survive without any subsequent reactivation? Or more 

precisely, what is the longest retention interval during which a memory can be maintained 

prior to reactivation? And what is the minimal number of exposures that would allow memory 

maintenance?  

In that context, the aim of my thesis was to focus on these memories that were not activated 

for a long time. This original work was developed under the supervision of Simon Thorpe as 

part of a scientific project entitled: Memory Mechanisms in Man and Machine (see the 

webpage: http://m4.ups-tlse.fr/?page_id=57) and financed by a European Research Council 

grant.   

I developed my thesis around two main axes: a theoretical approach that constituted the first 

and second chapter of this manuscript and an experimental framework based on behavioral 

(chapters 3 and 4) and neuroimaging data (chapters 5, 6, 7).   

1.2 Substantial progress 

The theoretical framework that we developed allowed us to put the notion of inactive 

memories into a dynamic model of inferences that is common to perceptual and memory 

processes.  

According to the two behavioral experiments that we carried out we can claim that: 

“Three repetitions are enough to create a memory trace explicitly accessible at least a 

decade later and without reactivating the information in the intervening period”  

http://m4.ups-tlse.fr/?page_id=57
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Let us dissect and consider the important parts of this sentence:  

“three repetitions”: Under this threshold it seems that memories might be more easily 

forgotten. 

“explicitly accessible”: this long-lasting memory trace can be the basis of voluntary actions 

when individuals are directly involved in the retrieval of their memory.  

“at least a decade later”: And potentially for a lifetime…   

“without reactivating the information”: The availability of a memory trace does not seem 

to rely on reactivations -even scattered in time- after the last exposure.  

Importantly, the reactivation of these dormant memories might be identified on the EEG 

signal by using decoding approaches based on single-trial analysis.  

Unlike many EEG studies, we did not investigate long-term retrieval by considering 

participants’ subjective state (retrieved/forgotten…) but according to the retention interval 

between learning and retrieval, a variable that we could manipulate in the paradigm and 

therefore directly study (VanRullen, 2011).  

2. Theoretical considerations 

Several questions might arise from the claim above. Indeed to get the message clearer in the 

previous chapters, we did not spend much time considering some theoretical aspects that were 

involved. Now it is time to look more closely at some critical points.  

2.1 Identification, familiarity, novelty 

2.1.1 Identification in a forced-choice task 

In chapter 1 we presented two criteria often used to encompass the large variety of retrieval 

processes: the “familiarity” and the “knowing” criterion. The “knowing” criterion was defined 

as an identification criterion where a specific hypothesis was selected from the set of all 

possible hypotheses proposed. The familiarity criterion is less conservative and simply 

separates all the hypotheses of a given task in 2 classes: novel and familiar. The boundary is 

made from the posterior probability that the class “novel” would be more likely and as such, 

the “familiarity” criterion could be also called “novelty” criterion. In a forced-choice task the 

classes: “novel” and “familiar” are reduced to two hypotheses corresponding to the two items 

proposed. This means that the distinction familiar/novel merely relies on a “knowing” 



 

191 
 

criterion which is an identification criterion. Correct responses in a forced-choice task might 

therefore not necessarily rely on familiarity/novelty processes. Indeed, we observed that most 

of the participants who could correctly identify simple drawings in a forced-choice task 

(chapter 4) could not report any feeling of either familiarity or novelty. We suggest that the 

Yes/No task in which differentiation is made based on a “familiarity” criterion would be a 

better design to bring into light familiarity and novelty judgments.  

2.1.2 Familiarity versus novelty 

In a design that constrains participants to use a “familiarity” criterion to respond (such as in a 

Yes/No task), responses can be based on either a familiarity or a novelty judgment or even 

both. As for any class or hypothesis, we suggest that familiarity and novelty judgment are the 

result of evidence accumulation. In such perspective, familiarity and novelty are not 

necessarily symmetrical responses as suggested by recent experimental findings (Barbeau et 

al., 2017). The data in chapters 6 and 7 are particularly demonstrative: participants are good to 

identify new pictures in a cued-recall task, but it is more difficult for them to rely on a 

familiarity judgement.  

2.2 Consciousness and memory 

2.2.1 Difference between implicit/explicit memory and conscious/unconscious 

retrieval 

In this manuscript we particularly focused on explicit memories, the ability to voluntarily 

retrieve some memory content. It is different from implicit memory where retrieval is not 

voluntary and can be inferred from behavioral performance. It is important to make the 

difference between implicit/explicit and conscious/unconscious processes. Particularly, in 

chapters 3 and 4 we found that participants involved in an explicit retrieval task could be 

conscious of their memory or not. While no consensus holds for the definition of 

consciousness, it is generally assumed that it implies a second order judgement (Rosenthal, 

1986): for example: “I know that I recalled the correct name of the TV program”. In that 

sense consciousness binds knowledge and metaknowledge together (Koriat, 2007). As 

specified in chapter 1, the report of confidence level is a good way to assess metamemories 

and metaknowledge in general.  
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2.2.2 Unconscious reactivations 

In this thesis we showed that participants could retrieve explicit memories for stimuli that 

were not presented again since the time of exposure. However it might be possible that these 

memories could have been reactivated by internal or external cues.  It is hard to fully exclude 

such possibility for TV programs that are part of a rich network of associations. However this 

seems less likely for simple drawings such as the ones we used in chapter 4. In addition, a 

third of these pictures were abstract stimuli that were not easy to verbalize and did not 

resemble any particular object from our environment. Interestingly, participants’ performance 

was similar between these stimuli and more concrete drawings. This confirms that explicit 

reactivations of the memory trace might be not necessary to maintain a memory trace, as 

already found in long-term memory for abstract Gaussian noise (Agus et al., 2010; 

Viswanathan et al., 2016). However, and even using meaningless stimuli, it is still possible 

that long-term maintenance would rely on unconscious reactivations of the memory trace. 

Unconscious reactivations could emerge from the spontaneous firing of neurons that code for 

a specific memory but this signal might be too weak to create a subjective feeling of retrieval. 

To what extent this physiological property would be linked to very long-term maintenance 

remains to be tested.   

2.3 Concepts and neuronal selectivity 

2.3.1 Selectivity to concepts 

In this manuscript we hypothesized that active memories might rely on highly excitable 

neurons that can be easily reactivated whereas inactive memories would be maintained via 

silent neurons. According to our view, this implies neurons to be highly selective to a 

particular stimulus and therefore might concern neocortical neurons. But what does it mean to 

be selective when considering content-rich stimuli such as a TV programs like ‘Friends’? 

Presumably, a neuron selective to ‘Friends’ won’t keep firing all along the TV series… Some 

neurons would fire specifically for a given character, some others when the beginning of the 

sound of the TV theme is played, so on and so forth. Neurons would therefore encode specific 

concepts. But is not ‘Friends’ a concept in itself? So, in theory, if a neuron is specific to a TV 

program it might fire all along the audiovisual content. There is evidence that a neuron in the 

human entorhinal cortex selective to ‘The Simpsons’ fired throughout the 5-seconds of the TV 

series clip. Even more remarkably, the same neuron also fired in the absence of external cues, 

when the same individual was recalling having seen this clip previously and until he could 
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think of another clip (Gelbard-Sagiv et al., 2008). Of course, 5-seconds are nothing compared 

to the whole duration of a movie and it might be interesting to see whether some neurons 

could fire for longer periods. This sustained activity might correspond to the maintenance of 

the concept in working memory, the first step before long-term storage.  

2.3.2 Selectivity through temporal contiguity 

Sustained delay activity was found in IT neurons in monkeys (Miyashita, 1988; Sakai and 

Miyashita, 1991). Interestingly, data showed that if an image was presented in a sequence 

with other pictures, the neuron selective to the first image would enlarge its selectivity to the 

following six pictures presented (Miyashita, 1988). This effect would be the largest for the 

closest picture and would decrease over the number of pictures. Sustained delay activity could 

then allow the association between successive stimuli inside the same neuron. This widening 

of neuronal selectivity to neighboring items does not only concern pictures following the first 

image but also occur for preceding items. Indeed, recent data in the human MTL showed that 

a neuron selective to a picture can start firing previous to its presentation if it is embedded in a 

given fixed sequence (Reddy et al., 2015). Overall, the association of stimuli through 

temporal contiguity would be a simple mechanism by which different views of the same 

stimulus or different items belonging to the same stimulus would be associated together to 

create a specific concept and would not require complicated computations (Miyashita, 1993).  

2.3.3 Flexible selectivity for creating associations  

The “anticipatory” effect described just before in Reddy et al. appeared after only 11 trials, 

showing the large flexibility of the MTL structures for creating new associations in individual 

neurons. This flexibility can happen even faster in the absence of a temporal delay between 

two stimuli. This was recently shown that in the human MTL where neurons that were at first 

only selective to a specific stimulus (such as a patient’s relative) could become selective to 

another stimulus (such as the Eiffel Tower) within a few trials if the two were presented 

simultaneously (Ison et al., 2015). It would be interesting to test how this selectivity would 

evolve over a large number of trials. According to our view, repetition might sharpen the 

neuronal population selective to a specific a memory. But as mentioned in chapter 2, other 

theories suggest a decrease of neuronal activity over the repetitions. During my thesis, I had 

the opportunity to design and carry out an experiment that tried to answer this question. I 

presented new associations of stimuli to epileptic patients in Toulouse for whom it was 

necessary to implant electrodes to localize the epileptic region. In this experiment, the patients 
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had to learn three associations made of a name (a sound) and a picture. During many test trials 

patients were tested on their ability to recognize from two pictures the one corresponding to 

the name heard. With this design, we were able to record about 400 trials over several days of 

recording. This large number of trials might give us a better insight concerning the effect of 

repetition on neuronal selectivity. The data still needs to be analyzed.  

2.3.4 Associations in the neocortex 

The MTL holds a key role in the binding of items and concepts. Another critical region that 

deserves attention and especially when considering long-term memory is the prefrontal cortex 

(Euston et al., 2012).  The dorsolateral PFC for example is particularly involved in building 

relationships between items such as pairs of words (Blumenfeld and Parks, 2011). As for the 

MTL, neurons in the PFC show highly sustained activity that allows the maintenance of 

related items in working memory (for early evidence for e.g: (Funahashi et al., 1989; Fuster 

and Alexander, 1971). Interestingly, neurons in the PFC are strongly selective to particular 

concepts such as faces (Scalaidhe et al., 1999) or can link an object within its location (Rainer 

et al., 1998).  

Most of the neurons recorded in the PFC show categorical selectivity driven by a given task 

and is more referred to a relative rather than an absolute selectivity (Duncan, 2001). For 

example, a neuron that is found selective to a dog but not to a cat in a given set of stimuli, 

would then become selective to a car but not to another type of car in another set of stimuli 

(Cromer et al., 2010). To be effective, the concepts encoded in one neuron should have 

distinct physical representations -such as dog and car- to avoid any competition between the 

items. Instead, these associations would reflect the learning of abstract rules that goes beyond 

physical properties (Wallis et al., 2001). 

2.4 Forgetting 

“Mental states of every kind, -- sensations, feelings, ideas, -- which were at one time present 

in consciousness and then have disappeared from it, have not with their disappearance 

absolutely ceased to exist. Although the inwardly-turned look may no longer be able to find 

them, nevertheless they have not been utterly destroyed and annulled, but in a certain manner 

they continue to exist, stored up, so to speak, in the memory. We cannot, of course, directly 

observe their present existence, but it is revealed by the effects which come to our knowledge 

with a certainty like that with which we infer the existence of the stars below the horizon.” 

(Ebbinghaus, 1885). 
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2.4.1 The importance of forgetting 

Whatever it is, a loss of access or loss of information forgetting seems to play an important 

role for normal brain functioning. Indeed we usually complain about forgetting in our daily 

life but it helps us not endure the burden of being taken back every time to our past. The 

ability to remember everything from our past was nicely illustrated through a fictional 

character, Funes in the book: Funes the Memorious written by Jorge Luis Borges in the mid 

50’s. It turned out that such story could in fact be true. The first case reported, was A.J., a 

woman in her late 30s would could remember every day of her life since her teens (Parker et 

al., 2006). In the letter she wrote to explain her case, she herself reported: “Most have called it 

a gift but I call it a burden. I run my entire life through my head every day and it drives me 

crazy!!!…” Following this case, other individuals were found with such extraordinary ability 

called Highly Superior Autobiographical Memory (LePort et al., 2012). This ability seems to 

be involuntary and is not deliberately triggered as for memory champions who use voluntarily 

different strategies to increase the retrieval of semantic memories (Parker et al., 2006). In 

particular, an excessive development of MTL structures would explain higher 

autobiographical abilities (LePort et al., 2012).  

As we see, forgetting might prevent the constant revival of old memories. It could be trace-

dependent meaning that the content available in memory would change over time but also 

cue-dependent where the pieces of information present in our environment would not be 

specific enough to re-access the memory. Rather than keeping them separate, the combination 

of these two hypotheses might explain retrieval performance in a given task (Tulving and 

Madigan, 1970). 

2.4.2 The changing of a memory trace 

Since the beginning of the 20th century two main factors have been proposed to account for 

forgetting: interference and decay (for a review see (Wixted, 2004)). Interference would occur 

during the memorization of competing stimuli. If some new information is learnt and, if it is 

similar enough to previous memories, the old information might be forgotten (retroactive 

interference). Conversely, the presence of old memories might impair the retrieval of similar 

and new memories (proactive interference). Unlike interference, decay would not assume any 

competition between similar items, but would explain forgetting as the consequence of the 

passage of time. Recently it has been proposed that both interference and decay might account 

for forgetting but that they would involve different brain structures (Hardt et al., 2013; Sadeh 
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et al., 2014). Decay would explain forgetting in the hippocampus, whereas interference would 

be found mainly in neocortical structures.  

 Decay in the hippocampus  

Via efficient pattern separation, the hippocampus is able to create distinct neuronal 

representations for many events of our life (Rolls, 2016). Memories stored in the 

hippocampus are therefore preserved from potential interference phenomena: their neuronal 

representations are too different to lead to some competition. It has been shown that pattern 

separation mainly occurs in the dentate gyrus of the hippocampus, a region that supports 

neurogenesis throughout the all individuals’ life. The side effect of neurogenesis is that it 

might induce the decay of old memories that are not used (Frankland et al., 2013). Episodic 

memories that strongly rely on hippocampal functions might be potentially erased from the 

hippocampus or re-written. This would explain why it would be difficult for episodic 

memories to survive over time in the absence of reactivations (Sadeh et al., 2014) and why 

none of our participants could retrieve episodic memories after about 10 years.   

 Interference in the (neo)cortex 

Episodic memories tend not to resist very well over time but semantic memories and 

familiarity seem more robust. In the same way as pattern separation is a key mechanism in the 

hippocampus, pattern categorization might be performed by (neo)cortical structures (Rolls, 

2016): the prefrontal cortex as well as cortical regions from the MTL for semantic memories 

(Binder et al., 2009) and only cortical regions of the MTL for familiarity (Sadeh et al., 2014). 

The general idea would be to cluster similar neuronal representations and make a generic and 

sparse representation of them. While sparse coding would constitute an efficient way for 

storing information in (very) long-term memory, the neuronal coding might be more prone to 

interference, due to some invariance in the neuronal representation (Sadeh et al., 2014). 

However our data show that 12 years later participants were still able to differentiate similar 

pictures demonstrating the high specificity (low invariance) of the patterns stored. 

2.4.3 The role of the cues 

In this thesis we showed that memories that were thought to be lost can be retrieved years 

later. In this case, forgetting was due to a failure to access the information rather than to a loss 

of information. The importance of cues is then crucial to bring memories back to mind (Habib 

and Nyberg, 2008; Tulving, 1974). But if the cues were efficient enough to retrieve semantic 
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or perceptual memories and to generate some familiarity, they failed to revive every 

contextual detail that was present at the moment of the encoding. This observation is in 

agreement with the literature showing that it becomes more difficult to retrieve episodic 

memories as time elapses.  

In the chapter 1 of this thesis we argued that the retrieval of episodic memories might be on a 

continuum with the retrieval of semantic information where secondary pieces of evidence 

would be gathered to re-create the original and unique episode at the time of encoding. 

However, cues that are generally provided in experimental designs are directed to the main 

perceptual or semantic information and give no information about the “secondary” details that 

would make a memory different from another one. For example, we directly showed 

audiovisual excerpts of TV programs (a cue) to elicit the retrieval of their titles (semantic 

information). But we did not/could not provide any contextual cues for a specific event that 

happened one day during the watching of an episode which would have helped the 

recollection of this particular episode. If such contextual details, unique to a particular 

episode, would have emerged, they would have been elicited internally by the individuals. In 

that sense it would be the same as a free recall when considering semantic information.  

More importantly, while perceptual and semantic memories are tested with targets that present 

some differences to avoid potential interferences, the context in which they are presented, -

usually a “boring” room in the lab- does not change much. This is particularly the case for our 

study about long-term memory for drawings. How much did contextual information differ 

from the drawing presented on the first page of the binder to the 48th one? So, how could 

participants revive the particular moment when they saw a specific drawing? From all of the 

reports given by the participants, seven of them were spontaneously described as “flashback” 

with six of them for pictures correctly identified. It seems then that participants would still 

have the ability to mentally travel back to the time of the experience. But in the conditions of 

our study, we did not have a better option than to consider these responses as the result of 

familiarity processes. However in refined designs, it is not unlikely that episodic memory 

could have emerged from such strong feeling.  

According to these two arguments: 1/the absence of contextual cue during retrieval and 2/ the 

absence of varied contextual details during memory encoding, it is yet not clear whether 

episodic memories would be as easy to forget as we suspect. 
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Therefore how could we test (very) long term episodic memory? As a mise en abyme (a story 

in a story) we could make participants watch audiovisual content and test them years later. As 

already done for a retention interval up to 9 months (Furman et al., 2007), the idea would be 

to present snapshots of a narrative that was presented years ago and ask them details about 

what happened after (or before) the still frame (cued- recall). If too, difficult they might have 

the option of watching two short clips and would be asked to determine which of the two was 

already presented to them (recognition) (Tang et al., 2016). Along these lines, Meyi Dulème, 

extended her M2 internship in the lab and ran a pilot experiment where she asked the 

participants who watched 480 audiovisual clips, 3s-long, to come back to the lab five months 

later. A part of these results was presented at the end of chapter 7. Interestingly, participants 

were still 70% correct at identifying an old clip from a new one when they were replayed.  

Even more realistic, the use of still snapshots or short audiovisual clips from real-life 

experience might be valuable in the retrieval of episodic memories. SenseCams (Hodges et 

al., 2006) were developed to that purpose. They are small wearable cameras that can take 

pictures of individual’s daily life, passively, what is commonly referred as lifelogging. In 

research, the use of this tool was motivated at first for clinical reasons in patients with 

autobiographical memory disabilities. In light of the positive results obtained (e.g (Berry et 

al., 2009; Loveday and Conway, 2011) it deserves more importance in cognition in general 

(Doherty et al., 2012). 

2.5 False memories and confabulations 

Along with forgetting, another main point is to assess and control for the truth of the 

memories retrieved. Far from being perfect video tapes that record and replay every event the 

way they originally happened, our memories are the result of reconstruction processes. As for 

perception, memories are prone to illusions, the two being tightly linked (Roediger, 1996). No 

doubt, our memories are fallible, malleable and even false or fabricated (Loftus, 2005). There 

are apparently no exceptions to this rule, no matter what age or whether we show Highly 

Superior Autobiographical memory or not (Patihis et al., 2013). False memories about 

semantic information can be formed within only four seconds after encoding (Atkins and 

Reuter-Lorenz, 2008) and might be due to associative inferences where novel information can 

be directly linked to previous knowledge without the two being experienced together 

(Carpenter and Schacter, 2016; Zeithamova et al., 2012). Regarding autobiographical 

memories, false memories might be created to ensure consistency with our self and would 

involve a tradeoff between concordance with past event (likelihood) and coherence with our 
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self (prior about the self) (Conway and Loveday, 2015). According to the authors, most of 

autobiographical memories would be a combination of low-concordance (again, according to 

the way it was studied but it might be higher) and high coherence. In addition to low-

concordance, when coherence is disrupted it might result in confabulations. 

Recollective confabulation is defined as the retrieval of specifics from an experience that 

never happened which is associated with a strong feeling of remembering (Moulin et al., 

2005). This is close to déjà vu reported in the healthy population, the impression of having 

already experienced a situation associated with the awareness that the actual experience 

should be considered as new (O’Connor and Moulin, 2010). Recollective confabulation is a 

constant phenomenon that impairs the daily life of the patients suffering from this dementia 

who see no interest in new personal events thought to be already experienced (O’Connor et 

al., 2010). A striking feature of such dementia is that every detail from an actual experience is 

reported as being familiar by the patients (Moulin, 2013), a judgement that should never 

happen considering that every single experience is a mixture of already known or familiar 

items and new ones (Tulving and Donaldson, 1972). According to the evidence accumulation 

model we developed in the Introduction of the thesis, the amount of evidence accumulated in 

parallel for the relevant features of an actual scene might fall in beyond the familiarity and 

knowing criterion but it will not be the case for other features. In the case of déjà vu there 

might be no room left for novelty detection and the amount of evidence of all features of the 

scene might reach the two criteria. According to this view, whereas in patients suffering from 

Alzheimer’s disease the familiarity criterion might be too conservative and might result in a 

bias toward novelty, the opposite might account for recollective confabulation. In the latter 

case, a permanent bias toward familiarity might arise from the presence of a very lenient 

familiarity criterion or its complete absence. This view is in line with recent interpretations 

from pathological cases that consider that recollective confabulations might be due to false 

familiarity judgment (Moulin, 2013) and that the entorhinal cortex might account for such 

impairment (O’Connor et al., 2010). 

 

But as pointed out by Loftus, “although experimental work on the creation of false memories 

may raise doubt about the validity of long-buried memories, […] it in no way disproves 

them”(Loftus, 1997). This gives more credit to the reports obtained from the participants who 

were tested on the memory of old TV programs. But indeed, even for the two participants 
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who could spontaneously retrieved the title of a TV program, the contextual details that were 

reported were not perfectly exact.  

2.6 The role of affects 

Subjective affect is a generic term that we will use in this section. It includes emotions 

defined as a short-lasting affective state in reaction to internal or external stimuli (Scherer, 

2009) and mood which is longer lasting (few minutes) and might be more an intrinsic feature 

(Bower and Forgas, 2000).  In this thesis we were particularly interested in testing long-term 

retrieval for stimuli that were fairly neutral and that would not particularly arouse strong 

feelings. Indeed, such memories would have been more prone to be spontaneously reactivated 

after the period of exposure, something that we wanted to avoid as much as possible. This 

effect can be explained by considering subjective affects as very good cues to re-access past 

information (Buchanan, 2007). It might account for mood-dependent and mood-congruent 

memories where the retrieval of memories might be influenced by the affective state of 

individuals. In conditions where subjective affect was not supposed to play a predominant 

role, we found that three repetitions might be a sort of cutoff value from which we could 

expect very long-term retrieval. However we might expect that for events associated with 

strong affects, one exposure might be enough to be retained for a lifetime. This is the case of 

flashbulbs memories, memories that are associated with strong vividness and details about 

striking events such as the assassination of John Fitzgerald Kennedy or the 9/11 day. But 

again, because of the shock they provoked, many reactivations would have made it easier 

long-term maintenance of these memories (Neisser, 1997). In other cases, the emotional 

charge is so high that individuals are not able to cope with their real-life experience and suffer 

from post-traumatic stress disorder.  

3. Future directions 

3.1 Limits 

3.1.1 Replication and extension 

The claim that we make: “Three repetitions are enough to create a memory trace explicitly 

accessible at least a decade later and without reactivating the information in the 

interleaving period” comes from behavioral data resulting from two experiments that were 

conducted using two different paradigms. Further studies should confirm the results obtained.  
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We suggest that the experiment concerning the memory of old French TV programs might be 

continued and extended to individuals from all over France. Results would be easily collected 

via a web platform. The same type of experiment could also be performed in other countries 

using their own audiovisual archives. 

Furthermore, the combination of behavioral performance together with neuroimaging 

information might provide valuable information. The memory of the pictures presented in the 

DMS-48 could be assessed while measuring the EEG activity of participants that have been 

not re-tested yet. Again, other stimuli could be used in other labs as long as the material was 

not rehearsed for several years.  

3.2 Linking behavior and decoding analyses 

We showed that the difference of brain processing between stimuli seen 3 weeks ago and new 

stimuli could be decoded based on the EEG analysis of single trials. We hope that this is 

going to be a first step and that further studies would be done on longer retention intervals 

between the encoding and the testing phase. In chapters 6 and 7, behavioral and EEG data 

were analyzed separately. However, more information might be gathered if the two would be 

combined together. To manipulate data that is not expressed in the same measure unit it has 

been recently proposed to use representational dissimilarity matrices (RDMs) (Kriegeskorte et 

al., 2008). Each row and column of the matrix corresponds to a specific experimental 

condition and each value inside the matrix corresponds to the dissimilarity (1-correlation) 

between two conditions in a given measure unit. This enables the creation of RDMs for every 

type of information gathered in an experimental set up -from behavioral or EEG data- that can 

be correlated together to get the overall difference between two conditions (Kriegeskorte and 

Kievit, 2013). 

3.3 From Bayesian to integrated information 

In chapter 2 we showed that the Bayesian theory could be considered in a hierarchical 

architecture where the a posteriori distribution generated by neurons in a specific layer would 

correspond to the a priori information in the next layer. In this section, we will discuss the 

potential emergence of a conceptual structure from this physical architecture. Every time, the 

new shaping of this conceptual space would lead to a unique phenomenological experience. 
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3.3.1 Information based on conditional entropy 

As explained by Shannon (Shannon, 1948), information corresponds to the reduction of 

uncertainty. Uncertainty is a direct measure of the variability of a probability distribution (Hi). 

The more there are possibilities, the more there is variability and the larger is the entropy of 

the distribution S(Hi). 

In Bayesian terms, the maximum uncertainty corresponds to the set of all the different 

possible hypotheses (H = ΣHi) and refers to a repertoire of prior probabilities. This “ a priori 

repertoire” corresponds to the maximum entropy and can be considered as the overall amount 

of available information (S(H)). By taking into account an actual event (E) this “a priori 

repertoire” reduces to a more certain subset of probabilities (H|E) that are referred to as “a 

posteriori repertoire”. Because the variability of the “a posteriori” distribution is smaller, its 

entropy is reduced: S(H|E) and corresponds to the amount of accessible information. The 

quantity of information generated is the “difference” between the maximum entropy S(H) and 

the conditional entropy (also called equivocation) S(H|E) and can be measured in bits (if the 

logarithm used is a basis of 2).  

3.3.2 Integrated information 

If the conditional entropy (S(H|E) is merely the product of the entropy of each hypothesis in 

the “a posteriori” repertoire, this means that the information generated was not integrated 

beyond its parts (Tononi, 2008). Therefore, integrated information corresponds to the relative 

entropy between the conditional entropy of the whole repertoire S(H|E) and the sum of the 

entropy for each hypothesis. Information that emerges from such integration is therefore 

indivisible. It is an entity that would fall apart if one wants to separate it into smaller pieces. 

The set of elements from which integrated information emerges is called a complex and can 

simply correspond to a set of neurons (Balduzzi and Tononi, 2009). This complex would 

correspond to a given concept and can be viewed as a point in a multidimensional-space 

where each axis corresponds to a hypothesis among all the possible a priori hypotheses. This 

point/concept defines a particular shape or quale in that space. As such the increase of 

integrated information in a given system would create a more refined shape which might be 

the basis of every subjective experience (Oizumi et al., 2014).   
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3.3.3 Our memories into quales 

Our ability to re-experience past events or to predict future situations would be then directly 

tied to the formation of specific quales in our brain. The sharpness and distinctiveness of each 

quale would be an indicator of the accuracy of our mental images, in the past or in the future. 

In this mental traveling, the reinstatement of specific episodes of our life would be similar to 

the creation process of perfect diamonds in a jeweler’s hands. Such expertise would not be 

reached every time and diamonds might give place to simpler gems in familiar occasions or to 

shapeless rocks in more uncertain conditions.  

4. Conclusion  

4.1 A personal view to my thesis 

Shapes do not appear or re-appear instantaneously but instead, reflect a cascade of brain 

processes that gradually refine the representation over time (chapter 1). Such representations 

are fleeting and might quickly fly away to leave some room to constantly new original 

experiences except if we use the right trick to bring them back (chapter 2). As for mountain 

peaks, the shape of our memories are intended to evolve. The repetition of similar patterns of 

neuronal activation will lead to increasingly more sharpened summits clearly outlined against 

the sky and easily visible from miles away (chapter 7). In parallel with strong and local 

activities, more subtle and broader activations will also reshape the overall landscape to 

firmly hold the entire structure on strong foundations. However, the termination of a specific 

neuronal activity will show the beginning of erosion, the highest peaks being affected first, 

before the gradual decline of the whole formation (chapter 6). Sharp and high mountains are 

now rounded hills and broad valleys that still hold some pieces of information but need 

adapted tools to dig them up (chapters 3 and 4). 

4.2 Can one see the shape of our memories? 

In fairness, my main motivation for doing my PhD was to better understand the way 

subjective experience emerges from neuronal activity. Simon gave me the opportunity and the 

financial support to tackle this issue on the side of memory. A great deal when one knows that 

memory encompasses all the variety of our subjective experiences! With Chris we showed 

that the quality of our subjective experiences is the result of a building of evidence over time. 

I then refined this framework for the specific case of dormant memories, the main focus of my 

thesis. With all the collaborators involved in the project we ended up discovering that 

memories might be more robust to decay than previously thought. For example, who could 
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have imagined that the memory of simpler pictures could still drive explicit behaviors 10 

years later? But of course, the passage of time and potential interferences might have altered 

the accuracy of our memories. We proposed to use decoding analyses on the EEG signal to 

show these subtle changes. However decoding does not provide enough information 

concerning the quality of the information generated and for now the shapes of our memories 

has not been revealed.  

After all this work a main question remains unanswered to me: from neurons that create the 

biological structure to our memories, what is the physical support to our mental images? If 

they are “shapes” then: “can we see the shapes of our memories?” 
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OPENING. Beyond matter, from Alan Turing to 
Cymatics 

 

“Witnessing the processes that bring […] forms into being, offers us penetrating insight into 
how an elaborate web of vibrations interacts to create the world we perceive” (Volk, 2010). 

 

After spending a lot of effort and money in running thousands of thousands of experiments 

with the best technology ever, we don’t know yet how our subjective experiences emerge in 

the brain. Of course we know that neurons, our brain cells, play a big role and somehow 

constitute the biological substrate of that information but for now, brain’s code hasn’t been 

cracked.  

1. Standing waves 

In 1952, Alan Turing wrote a paper called The Chemical Basis of Morphogenesis (Turing, 

2007), in which he describes the role of morphogens in the creation of self-regulated patterns 

such as the embryo’s form (see also Kondo et Miura, Science, Review, 2010). This theory is 

known as reaction-diffusion or Turing model and relates to morphogens that are small 

molecules like peptides. By interacting within each other through chemical reactions and 

diffusing into a system such as a tissue, morphogens allow the creation of different steady 

states. Among them, stationary patterns can emerge which are characterized by stationary 

waves with finite wavelength. As their names suggest, stationary or standing waves do not 

propagate and are the result of the interference between two waves that travel in opposite 

directions. These types of waves, also known as Turing patterns, are able to generate a large 

variety of spatial patterns that are independent of any preexisting positional information 

(prepattern) like the disposition of zebra stripes or feathers in chick (Jung et al., 1998). More 

interestingly this does not only apply to morphogens but for any system satisfying the two 

conditions: short-range positive feedback with a long-range negative feedback as shown by 

Meinhardt and Gierer (Meinhardt and Gierer, 2000) and including neuronal interactions 

(Swindale, 1980). In the latter case, they are the results of synchronous neuronal activity 

(Benucci et al., 2007). 

The interaction between neurons is able to generate standing wave patterns, the same way as 

for morphogens. And when expressed in a given environment, it induces the creation of 
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different spatial patterns that are independent of the neuronal assembly configuration also 

called pre-pattern. Neuronal information/brain’s code would lie on that new pattern that needs 

a physical support to be perceived.  

2. Cymatics 

The term cymatics comes from the Greek root kyma: wave and was first introduced by Hans 

Jenny (1904-1972) whose work was in straight continuation with the German physicist 

Chladni. In his book Entdeckungen uber die Theorie des Klanges (“Discoveries in the Theory 

of Sound”) published in 1787, Chladni showed that by drawing a bow over a steel plate 

sprinkled with sand, the vibration induced in the plate varies from a region to another which 

makes the sand migrates from the areas of strong to low intensities. This resulted in the 

formation of distinctive patterns; the so-called Chladni’s figures (Figure O.1) 

 

Figure O.1 Exemplar of Chladni’s figures (from (Chladni, 1787)) 

Cymatics offers the great possibility to turn sounds and more generally any kind of vibrations 

into specific forms, a rare glimpse into the hidden dynamics of nature (Volk, 2010). 

Information, “in” – “formation”, literally means giving form and a shape constitutes its 

material expression. 
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3. Harmonics in the brain 

Constantly, the brain receives vibrations from what constitute our external world. By exciting 

neuronal populations, these vibrations coming from the outside world would create brain 

oscillations. Brain oscillations then would convey information that can be frozen into a new 

space-time dimension if played into a Chladni’s plate. These vibrations would be transformed 

into patterns to recreate the world in a certain way. Shapes created on the plate are just the 

expression of the interplay between a wave and any other support like a plate. As a result, the 

plate freezes the wave at different time points that depend on its own properties. Importantly, 

the generated shapes directly depend on the type of medium used: water, plate...  and on its 

physical properties such as thickness or diameter. This means that the information we 

receive and by extent, the reality that we perceive, do not exist per se, but instead is the 

expression of the interplay between two entities. Chaldni’s figures coupled with 

neuroimaging techniques might help catching information generated by the brain and might 

be a key to apprehend consciousness. A first step has already been done successfully in this 

direction (Atasoy et al., 2016). 
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Bringing Very Long-Term Memories back to Life 

 

ABSTRACT 

Is it possible to explicitly retrieve sensory information that we have not accessed for decades 

through recall or familiarity for example? And if so, can we retrieve the information explicitly 

for example by being able to recall the information or simply having a feeling of familiarity? 

This question is addressed in this thesis. First, we developed a theoretical model suggesting 

that it is possible to explicitly retrieve remote and inactive memories. Second, we showed 

evidence for explicit retrieval of sensory information by testing participants in specific 

experimental conditions. The maintenance of these memory traces would be visible on 

Electroencephalography signals. Explicit memory might be more robust to decay than 

previously thought. 
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RESUMÉ : 

Est-il possible de récupérer de manière explicite des informations sensorielles auxquelles 

nous n’avons pas eu accès depuis des dizaines d’années, sous forme de rappel ou de sentiment 

de familiarité par exemple? C’est cette question qui a fait l’objet de ce travail de thèse. Dans 

un premier temps, nous développons un modèle théorique montrant que la récupération 

explicite de mémoires anciennes laissées dans un état dormant serait possible. Dans un second 

temps, nous montrons qu’effectivement, en testant des participants dans des conditions 

expérimentales spécifiques, ces derniers sont capables de récupérer explicitement des 

informations sensorielles qu’ils pensaient avoir oubliées. Le maintien de ces traces mnésiques 

serait visible lors d’enregistrements en électroencéphalographie (EEG). Notre mémoire 

explicite serait donc plus robuste au passage du temps que l’on ne le pensait jusqu’alors. 

 
Mots-clés : Mémoire à long-terme ; Information sensorielle ; Mémoire explicite ; Mémoire 

inactive ; Rappel ; Familiarité ; Electroencéphalographie 

 
DISCIPLINE : Neuroscience 

 
 

LABORATOIRE :  
Centre de Recherche Cerveau et Cognition (CerCo) – UMR 5549 
Pavillon Baudot-CHU Purpan- BP 25202 
31052 Toulouse Cedex 
 



 

 
    

 
 

 


