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Abstract 

The objective of this work is the development of a numerical tool capable of modelling sensitive 

concrete or reinforced concrete infrastructures subjected to severe dynamic loadings due to natural or 

manmade hazards, such as aircraft impacts. This study proposes a 3D discrete element method able 

to predict advance damage states and to obtain realistic macro-cracks and materials fragments 

thanks to its discrete nature. 

We thoroughly evaluated the influence of mesh creation parameters on the discretisation 

characteristics and on the macroscopic concrete behaviour. We implemented a compaction 

constitutive law to describe the behaviour of concrete correctly under high confinement. We improved 

the constitutive model for dynamic loading with the use of a more realistic modelling of the dynamic 

fracture energy. 

The identification procedure of the constitutive model parameters is based on simulation of 

laboratory tests: quasi-static compression and tension, high confinement triaxial compression and 

dynamic spalling. Finally, the reliability of our approach is verified with three different types of hard 

impact tests on structures: 1) perforation and penetration of confined concrete cylindrical targets 

with ogive-nosed steel projectiles; 2) edge-on impact tests of concrete targets with aluminium 

projectiles of a particular geometry; 3) drop-weight impact on a reinforced concrete beam.
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Résumé 

L'objectif de ce travail de recherche est le développement d'un outil numérique capable de simuler le 

comportement d'infrastructures sensibles en béton soumises à des charges dynamiques extrêmes 

d’origine naturelle ou anthropique tel que l‘impact d’un avion sur une centrale nucléaire. Pour ce 

faire, il est proposé une modélisation 3D par éléments discrets, capable de décrire des états de 

dommages avancés en obtenant des macro-fissures et des fragments réalistes grâce à la nature 

discrète du modèle.  

Dans un premier temps, nous avons étudié de manière exhaustive l'influence des paramètres de 

création du maillage sur les caractéristiques de la discrétisation et sur le comportement 

macroscopique du béton. Nous avons mis en œuvre une loi de comportement de compaction, pour 

décrire correctement le comportement du béton sous confinement élevé. Ensuite, nous avons 

amélioré le modèle de comportement dynamique en modélisant de façon plus réaliste l'énergie de 

rupture dynamique.  

La procédure d'identification des paramètres du modèle est réalisée via des simulations numériques 

d’essais de laboratoire: Compression et traction quasi-statiques, essai de compression triaxials à fort 

confinement, écaillage dynamique. Enfin, l'approche est validée par la simulation de trois essais 

différents d'impact sur structures en béton : 1) Perforation et pénétration de cibles cylindriques 

confinées par des projectiles en acier de type ogive; 2) Essais d'impact sur la tranche avec des 

projectiles à géométrie particulière; 3) Impact par masse tombante sur une poutre de béton armé.
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Résumé (Longue) 

Aujourd’hui la conception des infrastructures sensibles en béton requiert la prise en compte 

d’évènements extrêmes tels que les attaques terroristes ou des accidents industriels. Les explosions 

ou les impacts induisent des charges extrêmes (taux de déformation et contraintes moyennes élevés) 

avec une faible probabilité d'occurrence mais avec des conséquences potentiellement dévastatrices. 

Par conséquent, la conception de structures en béton sous impact nécessite d’une part, d’être en 

mesure de bien comprendre les mécanismes d'endommagement du béton sous impact et, d’autre 

part, de développer des méthodes de calcul avancées capables de prédire les endommagements 

dans les ouvrages de protection en béton. 

La plupart des modèles existants de comportement du béton considèrent le matériau soumis à des 

contraintes moyennes faibles à modérées et sous chargement quasi statique. Cependant, la 

modélisation des structures en béton soumises à des impacts nécessite de prendre en compte des 

taux de déformation allant de conditions quasi-statiques à des centaines de s-1. Par conséquent, les 

essais dynamiques et la modélisation du comportement du béton sous chargement rapide 

constituent des défis majeurs. De plus, la modélisation des structures en béton soumis à des impacts 

durs nécessite de prendre en compte le comportement du matériau en compression triaxiale avec 

des contraintes de confinement de l'ordre de centaines de MPa. 

Les méthodes existantes de conception des systèmes de protection en béton soumis à des impacts 

reposent principalement sur des expériences grandeur nature et des formules empiriques qui 

peuvent être non économiques. Généralement, ces méthodes ne tiennent pas compte du 

comportement non linéaire complexe du béton. La demande sociétale croissante de méthodes 

d'analyse prédictives motive le développement d'outils numériques avancés. 

Trois phases peuvent être observées au sein des structures en béton soumises à des impacts durs, 

elles sont reliées à différents modes et phénomènes de dégradation. Toutes les phases peuvent 

apparaître simultanément, tandis que l'impacteur peut être considéré rigide, il ne subit aucun 

endommagement. La première phase est liée à l'écaillage et à la formation d’un cratère sur la face 

avant, dus aux fissures coniques liées à de la compression non confinée. Le cratère a une surface plus 

grande que la section transversale de l’impacteur. Au cours de la deuxième phase, le projectile 

pénètre dans le noyau de la cible en formant un trou cylindrique de diamètre très proche du 

diamètre du projectile. Cette phase est appelée phase tunnel, elle crée une zone de fort confinement 
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par l’inertie du matériau environnant. La troisième phase est liée à la fissuration sur la face arrière en 

béton qui produit une écaille due à l’état de traction sur la face libre. Cette zone est assez large mais 

pas aussi profonde que le cratère de la face avant. Enfin, l’augmentation de la vitesse d’impact du 

projectile entraîne une variation de la profondeur du tunnel et peut conduire à une perforation 

totale de la cible. 

Différentes méthodes numériques ont été utilisées pour tenter d’apporter une réponse à ce type de 

problèmes: méthode des éléments finis (FEM), méthode des éléments finis étendus (XFEM), 

«Smooth particle hydrodynamics» (SPH) et méthode des éléments discrets (DEM). La FEM est fondée 

sur l’hypothèse d’un milieu continu, elle atteint donc ses limites pour la prédiction des 

endommagements sévères (fissuration, fragmentation, perforation,…) dus à des impacts. 

Néanmoins, il est nécessaire de choisir une méthode numérique capable de reproduire ces 

phénomènes d’endommagement. Par ailleurs, la XFEM n'est pas encore en mesure de modéliser de 

nombreuses discontinuités dus à des impacts à grande vitesse. La méthode des éléments discrets 

(DEM) est une alternative puissante à la FEM lorsque des états avancés d’endommagement et de 

rupture doivent être recherchés. En effet, la DEM permet d’obtenir facilement des faciès de macro-

fissures et des fragments de matière réalistes du fait de sa nature discrète. 

La DEM a été développé à l'origine par Cundall et Strack pour les matériaux granulaires. Notre 

approche DEM est une extension pour les matériaux cohésifs tels que le béton. Elle a été largement 

développée au laboratoire 3S-R (université de Grenoble Alpes) en collaboration avec le centre de 

recherche et développement d’Électricité de France (EDF R&D Paris-Saclay). Cette méthode a 

démontré sa capacité à modéliser des phénomènes complexes tels que la pénétration, l'écaillage et 

la cratérisation. Il convient de souligner que, dans notre approche, les éléments discrets ne 

représentent pas les constituants du béton (granulats). Le modèle proposé a pour objectif de 

reproduire un comportement isotrope et homogène à l'échelle macroscopique. Par conséquent, le 

comportement constitutif local (microscopique) des liens entre les éléments discrets repose sur un 

modèle phénoménologique, c'est-à-dire construit à partir d'observations à l'échelle macroscopique. 

L’échelle micro (des éléments discrets) n'a donc aucun sens physique, elle est définie pour des 

raisons de commodité de calcul. 

Le modèle de comportement du béton dans le cadre de la DEM est pris en compte via des 

interactions de type ressort entre les éléments discrets au sein desquels la masse est concentrée Les 

raideurs normale KN et tangentielle KS sont définies à l'échelle microscopique. Des relations micro-

macro inspirées d’une formule d'homogénéisation permettent d'identifier les raideurs locales à 

partir des grandeurs macroscopiques que sont le module de Young E et le coefficient de Poisson . En 
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outre, une troisième interaction semblable à un ressort de roulement, avec KR comme rigidité de 

roulement, contrôle la résistance au roulement du modèle et évite les ruptures fragiles. La loi 

normale force/déplacement du modèle est élastique avec endommagement. Un critère de Mohr-

Coulomb modifié est utilisé pour décrire le comportement non linéaire en cisaillement. Le 

comportement non linéaire en compression est plastique avec écrouissage, il vise à modéliser le 

phénomène de compaction (fermeture de porosité). De plus, la dépendance à la vitesse de 

déformation est prise en compte en tension via la résistance dynamique du lien entre éléments 

discrets. 

Après avoir calibré l’ensemble des paramètres du modèle de comportement d’un béton de référence 

ayant fait l’objet de nombreuses analyses expérimentales au laboratoire 3SR, des tests d’impact dur 

menés sur des cibles réalisées avec le béton de référence ont été simulés « en aveugle » afin de 

valider la fiabilité de l’approche proposée aux éléments discrets. Trois campagnes expérimentales 

différentes ont été utilisées. Tout d'abord, une série d'essais réalisés par le CEA-Gramat, avec des 

éprouvettes de béton cylindrique confinées, soumises à des impacts de projectiles rigides en forme 

d’ogive. Un test de perforation et deux tests de pénétration associés à trois vitesses d'impact 

différentes ont été simulés. Ensuite, deux tests d'impact sur la tranche conduits par Erzar à 

l'Université de Metz avec différentes tailles de projectiles et différentes vitesses d'impact ont été 

simulés pour évaluer la capacité du modèle à représenter les modes d’endommagement fragile. 

Enfin, la simulation d’un essai d’impact sur poutre en béton armé, réalisé à l’Université de Toronto, a 

permis d’analyser la capacité du modèle couplé FEM / DEM de Masurel pour la prise en compte des 

armatures en acier dans des éléments structuraux en béton. 

Les résultats numériques des simulations d’impact sont en bon accord avec les résultats 

expérimentaux. Pour le test de perforation, les résultats sont parfaitement concordants. Cependant, 

une légère différence est observée sur les deux courbes déplacements en fonction du temps des 

tests de pénétration. Les endommagements des cibles en béton sont bien prédits par le modèle aux 

éléments discrets pour toutes les expériences. Les phénomènes observés expérimentalement, tels 

que la cratérisation sur la face avant avec éjection de fragments et la phase tunnel, ont été 

reproduits avec succès lors de toutes les simulations. De plus, une croûte avec fissure inclinée est 

prévue sur la face arrière de l'éprouvette de perforation. Des dommages dus à la formation de 

cratères ont été observés dans les simulations de pénétration, avec une profondeur de pénétration 

plus grande avec l'impact à grande vitesse qu'avec l'impact à faible vitesse. En outre, le mode de 

défaillance de cratérisation a également été reproduit avec succès dans les simulations d’impact de 

bord. Enfin, la simulation de chute de poids a permis de démontrer la capacité du modèle à éléments 

discrets à générer les macro-fissures obliques en bon accord avec l'expérience. 
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Tous ces résultats de simulation valident le modèle d'éléments discrets et démontrent que l'outil 

développé est maintenant capable de simuler des applications industrielles. 
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Introduction 

Concrete is the most commonly used artificial material in the world (more than one cubic meter per 

inhabitant annually). Presently, sensitive infrastructures are necessarily protected by reinforced 

concrete (RC) shielding barriers due to the growing demand for security. Natural accidental 

conditions or manmade hazards such as earthquakes and missile impacts require designing under 

severe loadings. The mechanical response of RC structures under impact conditions is characterised 

by complex phenomenon amplified by concrete heterogeneity and able to produce intense 

fragmentation. Therefore, it is essential to comprehend the mechanisms of concrete behaviour 

under impact loadings and develop adequate designing methods. 

Existing design methods for concrete protection structures under impacts are mainly based on full-

size experiments and empirical formulae that are not economical. The use of experimentation on 

structures being very expensive and empirical formulae are insufficient including the complex non-

linear behaviour of concrete. The existing demand for realistic predictions leads to the development 

of numerical tools. However, the relevance of numerical predictions is significantly dependent on the 

accuracy of the constitutive model employed to describe the behaviour of concrete.  

Most of the constitutive models for concrete focus on the material behaviour under low and 

moderate mean stresses under quasi-static loading conditions. However, the modelling of concrete 

structures submitted to impacts requires accounting strain rates ranging from quasi-static conditions 

to hundreds of s-1. Furthermore modelling structures under hard impacts requires accounting the 

material behaviour under triaxial compression with confinement stresses in the order of hundreds of 

MPa. 

The objective of this project is to develop a numerical model able to predict the response of 

reinforced concrete structures subjected to severe impacts and to describe associated damages. 

Finite element approaches are widely spread for non-linear analysis, though they reach their limits 

when trying to describe precisely macro-cracking which is essential for modelling impact problems. 

On the contrary, discrete element methods are suitable to simulate advance damage states due to 

their capability to handle discontinues functions.  

The current study is a collaboration between the laboratory 3S-R (University of Grenoble Alpes) and 

the research centre of EDF R&D (Paris-Saclay). This PhD thesis is subsequent of previous studies that 

chose to develop the discrete element approach in EUROPLEXUS fast dynamics software. The 
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discrete element was selected due to its ability to model strong discontinuities. Although, this 

approach initialised by Hentz in 2003 in SDEC software, with the introduction of the cohesive 

interactions as an extension of the original method of Cundall and Strack. After, Frangin in 2006 

developed FE/DE coupling for 3D elements. Then, Rousseau in 2009 set up the framework of a 

coupling FE/DE method with shell FE able to simulate industrial-scale structures, in EUROPLEXUS. 

After, Masurel in 2015 developed a steel-concrete bond with a combined finite/discrete element 

approach. Additionally, Omar in 2015 implemented the constitutive model of concrete with strain 

rate dependency under dynamic loadings. The purpose of the present PhD study is to assimilate the 

previous developments and introduce some new features in EUROPLEXUS, for a reliable prediction of 

damage on impacted reinforced concrete structures. The primary target is the implementation of the 

compaction constitutive law, to adequately describe the behaviour of concrete under high 

confinement.  

Moreover, we modified the constitutive model for dynamic loading. The proposed modification 

offers a more realistic modelling of the dynamic fracture energy by controlling the increase of the 

maximum distance limit at the interaction scale. We thoroughly studied the influence of both mesh 

creation and constitutive model parameters on the macroscopic behaviour of concrete. Additionally, 

the main objective of the current PhD study is the simulation of hard impacts, where we modelled 

concrete using discrete elements and projectiles or other steel parts with finite elements. Hence, we 

defined a condition for the size discretisation of finite and discrete elements in contact to properly 

manage the force transfer from the one object to the other.   

This dissertation contains seven parts: introduction, four main chapters, a conclusion with 

perspectives and bibliography. 

The first chapter is the literature review with a brief overview of the main characteristics of concrete 

and its mechanical properties. It introduces the problem of impact loading by explaining its effects 

and damage modes of reinforced concrete structure, referring to experimental campaigns. The last 

section is devoted to design and numerical methods commonly used to analyse severe loadings and 

fracturing problems. 

Chapter two is dedicated to the description of the main concepts of the discrete element method.  

Main principles of the algorithm, calculation of forces, definition of interactions and the constitutive 

law for concrete are presented. It is worth to highlight that the discrete elements of this approach do 

not represent the constituents of concrete, but to reproduce an isotropic and homogeneous 

behaviour at the macroscopic scale. Consequently, the use of macroscopic phenomenological 

constitutive laws relies on the local microscopic behaviour of the discrete elements. 



 

 

 
 

21 

Chapter three is dedicated to the identification procedure of the discrete element method for 

concrete. It presents the influences of the mesh creation parameters on the mesh characteristics and 

the macroscopic behaviour of concrete.  The second part shows the calibration of the constitutive 

model thanks to laboratory experiments. Furthermore, it introduces the need to create a condition 

for the ratio between the size of finite and discrete element sizes in contact. 

The fourth chapter presents the application of the mixed finite/discrete element method, to model 

three series of hard impact tests. Comparison between experimental data and numerical results is 

given to show the capability of our model to predict the effects and damage modes of impacted 

concrete. First, we comment simulations of perforation and penetration test on confined concrete 

specimens impacted by ogive-nosed steel projectiles by CEA-Gramat. These simulations verify the 

ability of our model to produce the effects of hard impacts into concrete. The second set of 

simulations is the edge-on impact tests performed by Erzar on concrete tiles with projectiles of 

particular homothetic geometry to visualise the evolution of damages in a two-dimensional 

configuration. Finally, the simulation of the drop-weight impact on a reinforced concrete beam from 

the University of Toronto is discussed for the validation of the steel-concrete bond to model the 

response of reinforced concrete.  

The dissertation ends with the section of conclusions and perspectives. 
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Chapter 1 

1 Literature Review 

This chapter presents a brief literature review on the behaviour of concrete and its main 

characteristics.  The problem of impulsive loading is introduced by explaining its effects and damage 

modes on reinforced concrete structures, concerning experimental campaigns. Then, simplified 

design and numerical methods commonly used to analyse severe loadings and fracturing problems 

are discussed. 

Most of the constitutive models for concrete focus on the material behaviour under low and 

moderate confining pressures and are limited under static loading conditions. However, the 

modelling of concrete structures submitted to impacts requires accounting strain rate effects on a 

broad range. Figure 1.1 shows the strain rates involved in concrete material when subjected to 

various quasi-static and dynamic loads. Consequently, the dynamic testing and modelling of material 

constitute a significant issue in material science and civil engineering. 

 

Figure 1.1: Strain rates involved in concrete structures submitted to various loads (Bischoff and Perry [9]). 

 

Furthermore modelling structures under hard impacts requires accounting both strain rates ranging 

from quasi-static conditions to values up to hundreds of s-1 and triaxial compression stresses with 

confinement stresses in the order of hundreds of MPa. 
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1.1 Concrete 

Concrete is an artificial sedimentary rock composed mainly of water, aggregates and cement. Often 

additives and reinforcement are included in the mixture to improve its properties. Concrete is the 

most widely used construction, structural material in the world. The United States Geological Survey 

estimated in 2006 that about 7.5 billion cubic meters of concrete are made each year, which is more 

than one cubic meter for every person on Earth [94]. The predominance of this material is due to its 

workability. Once, its ingredients are mixed a fluid mass is created that is easily moulded into any 

form. Another important feature is the durability of this composite material after hardening and the 

cost of its components.  

Therefore its composition can be varied dramatically from one concrete to another: type of 

aggregates and cement, type of reinforcement, but also regarding the quantity of these materials. 

The microstructure of concrete is described as heterogeneous porous material due to the complex 

arrangement of several constituents. However, on a sufficiently large scale (greater than about ten 

times the size of the largest aggregate), concrete can be considered homogeneous and continuous 

(Mazars [92]). Its mechanical properties have been studied several years ago through experiments. It 

can be regarded as a quasi-brittle material with high compressive strength but always lower tensile 

strength. For this reason, it is usually reinforced with steel rebars; thus it can also withstand a good 

amount of tensile stress.  

In addition, severe loadings such as impacts generate complex multi-phase phenomena resulting by 

high strain rates and extreme triaxial stress states. Concrete is a highly sensitive strain-rates material; 

hence strain rate dependency is of great importance for the modelling of concrete under dynamic 

loadings.  Besides, it is essential to analyse the behaviour of concrete under triaxial stress and high 

confining pressures. Although this study focuses on the dynamic response of the concrete, it is 

necessary to identify its behaviour under quasi-static compression and tension, to be able to build 

constitutive models and simulate complex phenomena. 

1.1.1 Quasi-Static Compressive Strength 

The main property of concrete is to absorb compressive loads, which corresponds to the unconfined 

axial compressive strength. The compressive strength of concrete is measured directly through quasi-

static direct compression test. This test performs on cylindrical specimens aged at least 28 days, with 

a specific saturation level. These samples typically have a ratio between height and diameter equals 

two.   
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The specimen is placed between the rigid steel plates of a compression machine, then a loading of 

standard speed is applied. After the failure of the sample, the compressive strength is defined from 

the stress-strain curve. 

Then ultimate strength is determined by the individual strength of the cement past, of the 

aggregates and their interaction. The strength of the cement paste depends on the type of cement 

and the cement water ratio. Important to point out is that the interface zone between the cement 

paste and the aggregates induce cracking since cracks exist in this zone even before the application 

of any load. 

Figure 1.2 gives the stress-strain curve of concrete under direct quasi-static compression is 

givenFigure 1.2.  One can see at point 1 that cracks are already present in the interface zone, before 

the application of loading. At point 2 the load increases up to nearly 30–40 % of the compressive 

strength. These cracks are quite constant; thus the material behaves linearly. After the stress-strain 

curve becomes non-linear and cracks are initialised in the loading direction. These cracks propagate 

into the cement matrix while the curve reaches the point 3. Then, the non-linear response becomes 

more prominent. Finally, concrete failure occurs at point 4 where macroscopic cracks procedure and 

it is followed by a strain softening behaviour. 

 

Figure 1.2: Failure mechanism of concrete under quasi-static compression (Mang et al. [90]) 

1.1.2 Quasi-Static Tensile Test 

The tensile strength of concrete is usually only 10 per cent of its compressive strength. Figure 1.3 

illustrates the stress-strain curve of concrete under direct quasi-static tension. The response is linear 

until almost 75 per cent of the tensile strength (point 2). At this phase, the initial microcracks remain 

stable. Thereafter, new microcracks appear reducing the macroscopic stiffness and the stress-strain 

curve becomes non-linear. These cracks propagate throughout the specimen and a softening branch 

follows after the peak stress is reached (point 3). Some of the cracks create a localised deformed 

zone which forms a macrocrack that eventually splits the sample into two parts (point 4). 



 

 

 
 

26 

 

Figure 1.3: Failure mechanism of concrete under quasi-static tension (Mang et al. [90]) 

 

The measurement of the tensile strength through the direct tensile test is complicated because it 

requires the use of particular shapes of specimens, to avoid inaccurate secondary effects. The quasi-

static characterisation of concrete in tension is usually done by indirect splitting tensile test (Brazilian 

test). A cylindrical concrete specimen is subjected to uniformly distribute compressive forces at two 

opposing sides on its lateral surface Figure 1.4 (a). These compressive forces develop evenly 

distributed tensile stresses at the perpendicular axes of the specimen.  

Another indirect method is the bending test with prismatic specimens. These specimens are 

supported like a simple beam with a specific load on the middle of the top surface Figure 1.4 (b). The 

maximum tensile stress develops only in a thin surface layer on the opposite side of the loading the 

edge. 

 

Figure 1.4: (a) Brazilian test and (b) bending test 

1.1.3  Triaxial tests  

Impact loadings create high stresses leading to different damage modes, strongly dependent on the 

loading path and stress state; inducing compaction with irreversible strain due to the structure 

inertial confining pressure. Two phenomena appear simultaneous during compaction: (1) the 
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cohesive bond of concrete disappears and powder takes its place, (2) the structure of the material is 

damaged with the closure of the porosity (Gabet et al. [52]). Triaxial tests are used to study the 

behaviour of concrete subjected to confining pressure. Many authors (Schmidt et al. [117], Sfer et al. 

[119] and Warren et al. [141]) observed higher concrete resistance and transition from brittle to 

ductile behaviour with confinement. Under very high confinement the response becomes elasto-

plastic with hardening because of the closure of porosity. 

 

 

Figure 1.5: Transition of concrete behaviour from brittle to ductile (Omar [103]) 

 

Triaxial tests are conducted in two steps: initially, isotropic pressure is applied in all directions with a 

fluid and then deviatoric stress is added vertical by a piston with a constant velocity. Deviatoric stress 

is defined as the difference between the axial stress and the radial pressure. Several combinations of 

loadings exist for the triaxial test as shown in Figure 1.6. 

 

Figure 1.6: Different loading paths (Gabet et al. [52]) 
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 The hydrostatic test consists the application of an isotropic pressure around the entire 

specimen that increases linearly with time. 

 The oedometric test restricts of all the radial deformations and the specimen is axially 

compressed 

 The triaxial test is separated in two phases; first hydrostatic pressure is applied around the 

whole specimen until a specific value chosen by the user. Then this pressure is kept constant 

radially while the axial loading is increasing with stable velocity. 

 Proportional test imposes the specimen to axial loading while keeping the lateral pressure 

proportional to the axial stress. 

 

Triaxial tests with very high confinement in the order of Giga Pascal were performed, by Gabet [51] 

thanks to the GIGA press of the laboratory 3S-R (University of Grenoble Alpes) to study the 

mechanical behaviour of concrete subjected to severe loadings such as explosions. Gabet obtained 

results from triaxial test with different confining pressures. Figure 1.7 illustrates his experimental 

data for with confining pressures 50, 100, 200, 500 and 650 MPa, where every curve is noted by an 

acronym TRX which stands for triaxial test and a number which specifies the conducted confining 

pressure. 

 

Figure 1.7: Triaxial tests: stress-strain curve (left), volumetric behaviour (right) (Gabet [51]) 

 

Furthermore, Vu [136] used also the GIGA press of the 3S-R to study the influence of the saturation 

level on the triaxial behaviour of concrete (Figure 1.8). 
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Figure 1.8: Triaxial tests with different saturation level: dry concrete Sr = 11% (left), very saturated Sr = 85 % 

(right) 

 
The presented results of Gabet [51] and Vu [136] performed on an ordinary reference concrete with 

compressive strength (𝑓𝑐 = 34𝑀𝑃𝑎).  These experimental data will consider as a reference concrete 

to identify the material parameters for our discrete element model. 

1.1.4 Dynamic compression 

Bischoff and Perry [9] in 1991 collected information about different experimental devices available in 

the literature to explore a wide range of strain rates of concrete in compression. Direct compression 

tests with the help of hydraulic machines were used for static loading 10-5 s-1 up to strain rates of     

10-1 s-1 [14]. Takeda [132] employed a pneumatic-hydraulic system to reach higher strain rates up to        

1-1 s-1.  However, these techniques experience difficulties to obtain constant strain rates due to the 

short duration of the experiments. Thus, the strain rate comes to be dependent on the stiffness of 

the machine and the stiffness of the specimen. Charpy or V-notch bar test was used to achieve strain 

rates 1 s-1 [55].  

Higher strain rates in the order of 10 s-1 may be induced with a drop weight impact test [142]. Kolsky 

bar or Split Hopkinson Pressure Bar (SHPB) [80] allows reaching strain rates up to 102 s-1. SHPB is a 

modification of the Hopkinson bar setup [65] with the addition of another bar in contact with the 

rear face of the specimen Figure 1.9. It consists of a projectile, an incident bar and a transition bar 

with the specimen being sandwiched between the two bars. An incident compressive pulse is 

generated and propagates along the incident bar until it reaches the sample. Then, a part of the 

initial pulse is reflected back into the incident bar and the remaining is transmitted throughout the 

specimen into the transmission bar. Particle velocities and forces at the front and rear face of the 
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sample are measured though strain-gauges, glued on the bars. Even higher strain rates (>103 s-1) may 

be reached with the use of explosive charges. 

 

 

Figure 1.9: Split Hopkinson Pressure Bar experimental setup (Erzar [40]) 

 

The relative increase in compressive strength (Figure 1.10) starts at unity for static testing and 

reaches a value of about 1.7 for low-grade concrete, and about 1.3 for high-grade concrete when 

loaded more rapidly at σ̇=1 MPa/s. Beyond this stress rate, the increase is much higher, reaching 

values of 4 and higher. 

 

Figure 1.10: Strain rate dependency of the compressive strength (Bischoff and Perry [9]) 

1.1.5 Dynamic tension 

Toutlemonde [134] conducted direct tensile tests with a hydraulic device to study the tensile 

strength of concrete for static loading 10-6 s-1 up to strain rates of 1 s-1. Zielinski [148] used the 
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principle of Split Hopkinson Pressure Bar [80] for strain rates up to 1.5 s-1. Higher strain rates were 

reached with another experimental device by using the spalling technique. Brara and Klepaczko [13] 

performed spalling tests using a Hopkinson bar made of aluminium alloy. 

Hopkinson pressure bar was introduced by Hopkinson [65] in 1914 which measured stress pulse 

propagation in an elastic metal bar. He estimated the duration and amplitude of a pressure pulse 

generated by an impact at the end of a cylindrical steel bar [65]. Spalling is defined as the material 

failure in tension due to partial reflection of pressure wave at the material transition to a material 

with lower acoustic impedance. Commonly, spalling is related to the fracture in a plate of the 

material which occurs near the free surface remote from the impulsive loaded area [143].  

Therefore, the principle of this technique is the generation of a dynamic tensile loading pulse due to 

the reflection of a short compressive pulse on the free surface of the tested concrete sample. This 

technique allows reaching high strain-rates in order of 20 to 200 s−1 and short damage duration 

about 10 microseconds. 

During a spalling  Hopkinson bar test, a projectile impacts on the surface of the Hopkinson bar, with a 

concrete specimen glued at the rear surface of the bar Figure 1.12. After, the impact generates a 

compressive wave inside the bar. The compressive pulse propagates along the bar until it reaches the 

bar specimen interface. Then a part of the incident pulse is transmitted on the specimen and the 

other part is reflected back on the Hopkinson bar.  The transmitted compressive pulse is travelling 

inside the concrete specimen until the free end. At the free end of the sample is reflected back as a 

tensile wave. When the reflected tensile pulse exceeds the transmitted compressive pulse, the 

specimen is leading to a possible damage that may results fragmentation. 

Figure 1.11 shows a strain-rate sensitivity which observed experimentally by different authors. 

Malvar and Crawford [89] collected the numerical data.  

1.1.6 Strain Rate Dependency 

Concrete’s behaviour under dynamic loading is of great importance to this study. Experimentally has 

been observed that both the tensile [89] and compressive [9] strengths of concrete increase with 

strain-rate, especially when the strain-rate is greater than a transition strain-rate, which is around 

100-101 s-1 for uniaxial tension and 102 s-1 for uniaxial compression.  The strain rate dependency in 

both tension and compression for moderate rates and influenced by the moisture content. At high 

strain rates, this dependency becomes very important in tension whereas it remains negligible in 

compression. 
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Figure 1.11: Strain rate dependency of the tensile strength (Malvar and Crawford [89]) 

 

Figure 1.12: Spalling Hopkinson bar experimental setup (Forquin et al. [47]) 

 

 

However, it has been found that the strain-rate enhancement of the compressive strength of 

concrete-like materials [9] is caused mainly by the introduction of radial confinement in split 

Hopkinson pressure bar (SHPB) tests [81],[82],[146],[147] which cannot be interpreted merely as 

material behaviour. Brace and Jones [12] first explained that the compressive strength increase can 

be due to the change of stress state from uniaxial stress to uniaxial strain under increasing radial 

confinement. 
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Furthermore, in a very interesting paper by G. Cusatis [32], the author demonstrates that for strain 

rates higher than 10-1 s-1 the inertia forces cannot be neglected and provide a significant contribution 

to the strength enhancement recorded during experiments. He also shows that taking into account 

inertia forces thanks to a 3D transient dynamics model allows describing most of the strain rate 

effect observed in uniaxial compression, whereas it is necessary to include a strain-rate dependency 

in the micro-level model to describe correctly the observed strain rate effect in uniaxial tension.  

For this reason, the spalling experiments focused on the rate effect in tension. Recently, the spalling 

technique by mean of Hopkinson bar has been used from many researchers to study the behaviour 

of concrete in tension at very high strain rates (up to 120 s−1) [13],[120]. The strain rate dependency 

of the tensile strength is reported as a dynamic increase factor (DIF: the ratio of dynamic strength to 

quasi-static strength) by the European Committee for Concrete (CEB) [20]. The concrete rate 

dependency is bilinear and it can be divided into two regimes. The first regime corresponds to 

moderate rate effects and the second regime which appears beyond ε̇≈100 s−1 with extensive rate 

effects. At the second regime, the rate effects are more evident than the first.   

The physical interpretation of the rate dependency for concrete in tension is attributed in several 

parameters. To begin with, rate dependency occurs at low loading rates because of the 

heterogeneity of the material.  After, in each regime dominates a different parameter. 

 On the one hand, the moisture content of the specimens influences the moderate strain rate 

regime.  It is assumed that the free water present inside the nanopores of the material exhibit a 

phenomenon similar to the Stefan effect [41]. Stefan effect is the phenomenon that occurs when a 

viscous liquid is trapped between two plates that are separated rapidly, causing a force on the plates 

that is proportional to the velocity of separation.  

On the other hand, the micro-inertia effects in the fracture zone are responsible for the extensive 

strain rate regime. According to Zielinski [148], the increase in strength at high loading rates induces 

due to short time to explore the weakest links in the material and the cracks are forced to develop 

along a shorter path of higher resistance, which results in a higher strength. 

Fracture energy is another significant property of concrete; Zhang et al. [146] reported its sensitivity 

to loading rate by conducting three-point bending tests on notched beams over a wide loading range 

from 10-4 to 103 mm/s. They showed that under low strain rates there is a slight effect whereas under 

high rates the increase of fracture energy is even more pronounced than the peak load. Brara and 

Klepaczko  [13] demonstrated also a strong dependency of fracture energy on loading rates beyond 

1000 GPa/s. Weerheijm et al. [142] obtained a slight influence of loading rates under 1000 GPa/s on 
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fracture energy and a rate-dependent softening curve which becomes more brittle with the rate 

increase.  

1.2 Impacts on concrete 

Impacts are defined as extreme severity loadings with a low probability of occurrence, and very short 

duration. Natural hazards: avalanches, rock falls or manmade hazards vehicles in a collision with 

structures, aircraft impacts on nuclear shielding barriers and military missile impacts may induce 

devastating consequences. Therefore, it is necessary to thoroughly comprehend the mechanisms of 

concrete behaviour under impact to develop sufficient design methods.  

The study of impacts on structures started from the mid-17th century. For the purpose of safety 

regulations, national nuclear safety agencies and nuclear energy companies conducted several 

experimental campaigns to increase the knowledge about the local phenomena and damage modes 

of concrete structures subjected to impacts considering real-scale experiments and small-scale 

laboratory tests. Kœchlin and Potapov [78] separated these tests into two limited cases based on the 

velocity of the impactor and the strength of both impactor and structure. 

1.2.1 Reference impact tests 

The French Alternative Energies and Atomic Energy Commission (CEA) and the Electricity of France 

(EDF) performed a series of test (Figure 1.13) presented by Sokolovsky et al. [126], Fiquet et al. [45], 

Gueraud et al. [54]. They studied the perforation of reinforced concrete slabs by rigid missiles. 

Parameters such as the form and the diameter of the missile nose, the weight of the missile, the 

reinforcement and the thickness of the slab were varied to predict the ballistic limit (the velocity limit 

required for the missile to penetrate the target) of reinforced concrete slabs.  

EDF launched a research program on the non-linear behaviour of reinforced concrete slabs subjected 

to soft impact tests that are described by Dulac et al. [37]. They tried to gather some guidelines for 

plastic design by observing the overall response of the slabs.  

The German army research centre (Wehrtechnische Dienststelle für Waffen und Munition) 

conducted at Meppen site, a collection of 21 reinforced concrete slabs impact of soft/deformable 

projectiles. It was reported that the main failure mode of the impacted slabs was a shear failure 

(Figure 1.14). Their aim was the improvement/validation of existing methods for the treatment of 

aircraft impact loads on concrete slabs by observing their ultimate bearing capacity. Several authors 

used these tests to validate numerical methods on the prediction of damage in reinforced concrete 
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slabs under soft impacts.  These studies are detailed in in Jonas et al. [72], [74], Nachtsheim and 

Stangenberg [97], [98], Rüdiger and Riech [113]. 

 

 

Figure 1.13: EDF – CEA perforation test, Front face shot 1 (left), Backface shot 6 (right) (Fiquet et al. [45]) 

 

 

Figure 1.14: Meppen test, damage mode of a reinforced concrete slab subjected to soft impact by a deformable 

projectile (Jonas et al. 178[74]) 

 

Kojima [79] describes a series of 12 missile impact tests on reinforced concrete slabs varying the 

velocity, the hardness (soft-nosed/deformable) and (hard-nosed/non-deformable) of the striker and 

the thickness of the target with the presence or absence of rear face reinforcement and a 

single/double layer of reinforcement. The author investigated the local effects on the impacted slabs 
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concluding that the degree of damage from a hard-nosed missile is more significant than from a soft-

nosed missile. The degree of damage is higher with the increase of the missile velocity and the 

decrease of the slab thickness. Steel lining, the rear face of the reinforced concrete slab effectively 

prevents perforation or scabbing.  

 

 

Figure 1.15: Kojima test missiles with different hardness (Kojima [79]) 

 

Ohno et al. [101] selected five different types of projectiles with different nose (flat, hemispherical, 

conical) and different material (steel, stainless, aluminium and vinyl chloride) with varying 

magnitudes of axial strength. He evaluated the transition between soft and hard impacts on 

reinforced concrete slabs. The velocity of the projectiles kept the same for all the tests, but the target 

thickness was varied. The authors observed that the axial deformation increases as the axial strength 

of projectile decreases. The perforation thickness is constant regardless of the difference of the nose 

shape.  

Sugano et al. [129]-[131] executed different campaigns of tests in collaboration with the Sandia 

National Laboratories. Three scales of experiments were performed: 1) small scale with 48 

deformable and 25 rigid missiles of different sizes; 2) intermediate scale with 1 deformable missile 

and 4 impacts of aircraft engines; 3) a full-scale crash with an F4-Phantom military jet of 19 tons 

weight impacted a rigid RC wall at a velocity of 774 km/h (Figure 1.16). Sugano concluded that: 1) 

small-scale tests give similar results to intermediate scale test and that aircraft engines can be 

considered as deformable; 2) no effect on local damage by the reinforcement ratio; 3) existing 
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empirical formulas for predicting rigid missiles impact local damage are suitable; and 4) nonlinear 

response analysis can sufficiently predict the results of tests. 

 

 

Figure 1.16: Full-scale aircraft impact test (Sugano et al. 182[129]) 

 

1.2.2  Classification of impacts 

The classification of soft and hard impacts was introduced by Eibl [38] and it was adopted by the 

Euro-International Concrete Comity [18]. A simple system of two colliding bodies, 𝑚1 the projectile 

with initial striking speed,  𝑚2 the structure which is motionless before the impact, a contact spring 

with stiffness 𝑘1 , in between the two masses to represent the force of the deforming bodies after 

contact, and another spring with a stiffness  𝑘2  to simulate the resisting capacity of the structure is 

used to describe the impact. This model separates the two types of impacts by accounting only the 

deformability of the two bodies. Nonlinear force-deformation relationships define the two springs.  



 

 

 
 

38 

 

Figure 1.17: Simple model of an impact using a two-mass system (Daudeville and Malécot [33]) 

 

The following differential equations of motion describe the system: 

 𝑚1 𝑥̈1(𝑡) + 𝑘1[𝑥1(𝑡) − 𝑥2(𝑡)] = 0  (𝑎) 
(1.1) 

 𝑚2 𝑥̈2(𝑡) − 𝑘1[𝑥1(𝑡) − 𝑥2(𝑡)] + 𝑘2 𝑥2(𝑡) = 0  (𝑏) 

If the structure displacement is negligible compared to the projectile 𝑥1(𝑡) ≫ 𝑥2(𝑡)  then: 

 F(t) = 𝑘1 𝑥1(𝑡) 
(1.2) 

Thus, the equations of motion (1.1) are uncoupled as showed by the equation (1.3). It is possible to 

find 𝑥1 by solving equation (1.3). Then, the impact force F(t) is computed from the equation (1.2) 

and finally, equation (1.3) gives the response of the structure from: 

  𝑚1 𝑥̈1(𝑡) + 𝑘1 𝑥1(𝑡) = 0  (𝑎) 
(1.3) 

 𝑚2 𝑥̈2(𝑡) + 𝑘2 𝑥2(𝑡) = F(t)  (𝑏) 

A soft impact defines as the case where the target resists with no deformations; hence the kinetic 

energy of the projectile is wholly transferred to its deformation Figure 1.18. 
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Figure 1.18: Soft impact (Daudeville and Malécot [33]) 

 

Conversely, when 𝑥1(𝑡) ≪ 𝑥2(𝑡) the two equations of motion cannot be uncoupled and the impact is 

called hard, whereas the kinetic energy of the rigid projectile is fully or partially absorbed by 

deformation of the target Figure 1.19. 

 

Figure 1.19: Hard impact (Daudeville and Malécot [33]) 

 

However, Kœchlin and Potapov [78] presented a more precise classification of impacts based not 

only on the deformability of the two colliding masses but considering also the velocity of the 

impactor and the material characteristics. They separate the two types of impacts based on the 

bearing capacity of the structure by comparing the strength threshold of the target 𝜎𝑡 with the stress 

applied by the projectile 𝜎. Then, when the projectile is crashed and the target is not damaged is 

determined as a soft impact, whereas the penetration of the projectile in the target gives a hard 

impact. 

Kœchlin, in his PhD dissertation [77] proposed a criterion (1.4) for impact classification based on 

Riera formula [109]. This criterion accounts for the structure and the projectile parameters where: σp 

is the limit strength of the projectile, ρp the density of the projectile, 𝑉0  the velocity of the projectile 

and σ𝑐 the compressive strength of the target considering confinement and strain rate effects.  
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σ𝑝

σ𝑐
+ 
ρ𝑝 V0

2

σ𝑐
= 1 (1.4) 

 

Figure 1.20 plots this criterion by using the two non-dimensional parameters 
σ𝑝

σ𝑐
  on the y-axis and  

ρ𝑝 V0
2

σ𝑐
 on the x-axis.  As can be seen in Figure 1.20, when the projectile is rigid  σ𝑝 ≫ σ𝑐  or/and very 

fast ρ𝑝 V0
2 ≫ σ𝑐 then the equation (1.4) becomes bigger than 1 and hard impact occurs. Otherwise, 

the equation remains lower than 1 and the projectile deforms a lot by inducing a soft impact.  

This classification is applied for aircraft crash analysis, which is usually considered as a soft impact 

(Sugano et al. [129]). Although, aircraft engine crash is treaded using perforation and scabbing 

formulas for hard impacts (Figure 1.21).  

 

Figure 1.20: Impact classification (Kœchlin and Potapov [78]) 
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Figure 1.21: Classification of impacts experiments (Kœchlin and Potapov [78]) 

 

1.2.3 Impact effects on concrete 

Three phases can be observed on concrete structures under hard impacts which are related to 

different damage modes and phenomena. All the phases may appear together (Zienkiewicz et al. 

[149]), while the striker is rigid with no damages. Kennedy [76] introduced the terminology of these 
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phenomena in 1976. He defined seven phenomena during a hard impact as can be seen in Figure 

1.22 and are listed below: 

a. Penetration: Tunnelling into the target by the projectile (the length of the tunnel is called the 

penetration depth).  

b. Cone cracking and plugging: Formation of a cone-like crack under the projectile and the 

possible subsequent punching-shear plug. 

c. Spalling: Ejection of target material from the proximal face of the target  

d. Radial cracking: Global cracks radiating from the impact point and appearing on either the 

proximal or distal face of the concrete slab  

e. Scabbing: Ejection of fragments from the distal face of the target 

f. Perforation: Complete passage of the projectile through the target  

g. Overall structural responses and failures: Global bending, shear and membrane responses as 

well as their induced failures throughout the target. 

 

Figure 1.22: Hard impact effects on concrete target (a) Penetration, (b) Cone cracking, (c) Spalling, (d) Cracks 

on (i) proximal face and (ii) distal face, (e) Perforation and (g) overall target response (Li et al. [83]). 

 

 

The first phase is related to spalling and cratering on the front face formed by conical cracks due to 

unconfined compression as explained by Forquin et al. [47]. The crater appears with a noticeable 
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bigger area than the cross-section of the striking body. During the second phase, the projectile 

penetrates in the core of the target forming a cylindrical hole with diameter very close to the 

projectile diameter. This phase is called tunnelling; it creates a zone of high confine pressure by the 

inertia of the surrounding material. The third phase initialises cracking on the concrete rear face that 

produces scabbing and it is related to tensile loading [83]. This zone is quite wider than the front face 

crater but not as deep. Finally, the increase of the impact velocity of the projectile gives rise to 

tunnelling depth and may lead to full perforation of the target. 

 

On the other hand, the duration of a soft impact is more prolonged, whereas the deformation of the 

projectile generates waves propagating throughout the structure reflecting on the edges and 

superimposing on the existing stresses under the impacted area. The response of an impacted 

concrete structure is a combination of local damage due to a shear mode and global bending. Jonas 

et al. [74] presented a soft impact perforation scenario on a reinforced concrete slab. Figure 1.23 

illustrates the possible damages produced by this scenario. 

 

Figure 1.23: Soft impact effects on a reinforced concrete slab (Jonas et al. [74]) 

 

As illustrated in Figure 1.23 the projectile crashes on the proximal face of the reinforced concrete 

slab by creating a conical cratering with shear cracks. A crack zone propagates with diagonal cracking 
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in various inclinations. Some of them reach the distal face. After, cracking propagates along the 

interface between the rear face concrete and longitudinal reinforcement. Scabbing of the rear face 

leads to a cone plug damage mode. If the projectile is able to prolong its penetration, reinforcements 

fail and the shear plug separates from the slab whereas the projectile perforates. 

To conclude with the main problem for soft impacts is the characterisation of the loading at the 

interface between structure and the impactor. The structure is mainly loaded under bending, existing 

models for reinforced concrete can deal efficiently with this problem. Contrarily, the modelling of 

hard impacts requires accounting for complex dissipative phenomena such as high strain rates, high 

triaxial stresses, penetration and fragmentation. Therefore, it is necessary to develop reliable 

approaches capable to predict the response of reinforced structures under hard impacts.   

1.3 Simplified design methods 

The fundamental principle of structural design is to guarantee safety for the community with an 

economical solution. Thus structures would be capable to preserve their form until ultimate 

resistance capacity. Concrete is widely used in protection systems of sensitive infrastructures such as 

nuclear power plants. Nowadays, the increasing risk of accidental conditions (aircraft impact) or 

military conditions (missile impact) requires assessing the vulnerability and durability of concrete 

structures under impulsive loadings. Existing design methods for protection systems under impacts 

are mainly based on full-size experiments and empirical formulae that are not economical. 

1.3.1 Soft impacts 

Riera [109] studied the reaction force 𝑃(𝑡) of a collapsing aircraft on a rigid surface. He considered 

the impacted structure to be stiff with negligible deformations in comparison with those of the 

collapsing aircraft. Equation (1.5) gives the contact force at the interface between the two colliding 

(1.5) 

 P(t) = P𝑏(𝑥(𝑡)) + 𝜇(𝑥(𝑡)) 𝑉
2(𝑡) (1.5) 

In which 𝑥(𝑡) length of the aircraft, P𝑏(𝑥) is the necessary buckling force to crush or deform the 

fuselage of the aircraft, 𝜇(𝑥) is the mass of the aircraft per unit length and 𝑉(𝑡) is the velocity of 

uncrashed aircraft. The elastoplastic buckling force P𝑏(𝑥) can be considered as independent of 𝑥(𝑡). 
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1.3.2 Hard impacts 

Petry formula (1.6) [116] was originally developed in 1910 to account the penetration depth x 

(inches) of a rigid missile into a massive target; with 𝐾𝑝 the concrete penetrability coefficient, 𝐴𝑝 

(lb/ft2) is the missile section pressure and 𝑉0 (ft/s) the impact velocity of the projectile. In Petry I 

formula for massive plain concrete 𝐾𝑝 =  0.00799  and for normal reinforced concrete 𝐾𝑝 =

 0.00426 [76]. 

 x = 12𝐾𝑝𝐴𝑝𝑙𝑜𝑔10 (1 +
𝑉0
2

215
) (1.6) 

Different authors modified this formula; Amirikian [2] reformed the coefficient 𝐾𝑝 to account for the 

effect of the compressive strength of concrete target 𝑓𝑐 Figure 1.24. He also proposed the 

perforation thickness 𝑒  (1.7)and scabbing thickness ℎ𝑠 (1.8). 

 𝑒 = 2𝑥 (1.7) 

 ℎ𝑠 = 2.2 𝑥 (1.8) 

 

Figure 1.24: Variation of concrete penetrability Kp with unconfined compressive strength of concrete fc (Li et al. 

[83]) 

 

Later, Walter and Wolde-Tinsae [139] presented the coefficient K𝑝 with the equation (1.9). 

 K𝑝 = 6.34  ×  10
−3𝑒𝑝𝑥(−0.2973 ×  10−7𝑓𝑐) (1.9) 
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The Ballistic Research Laboratory (BRL) formula (1.10) [10] was created in 1941  as an improvement 

of Petry formula to compute the penetration depth of a rigid projectile in concrete targets, with d 

(inches) the diameter of the projectile and M (lb) the mass of the projectile. 

 
x

𝑑
=  
427

√𝑓𝑐
 (
𝑀

𝑑3
)𝑑0.2 (

𝑉0
1000

)
1.33

 (1.10) 

Chelapati et al. [22] in 1972 gave the perforation 𝑒 and scabbing ℎ𝑠 limits based on BLS formula as: 

 𝑒 = 1.3 𝑥 (1.11) 

 ℎ𝑠 = 2 𝑥 (1.12) 

The Army Corps of Engineers formula (1.13) was developed in 1946 [1] based on statistical fitting of 

experimental results from the Ordnance Department of the US Army and the BLS to predict the 

penetration depth. 

 
x

𝑑
=  
282.6

√𝑓𝑐
 (
𝑀

𝑑3
)𝑑0.2 (

𝑉0
1000

)
1.5

+ 0.5 (1.13) 

Perforation 𝑒 and scabbing ℎ𝑠 limits are based on ballistic tests with 37, 75, 76.2 and 155 mm steel 

projectiles.  

 
𝑒

𝑑
= 1 .32 + 1.24 

𝑥

𝑑
  𝑓𝑜𝑟  3 <

𝑒

𝑑
< 18 (1.14) 

 
ℎ𝑠
𝑑
= 2.12 + 1.36 

𝑥

𝑑
  𝑓𝑜𝑟 3 <

𝑒

𝑑
< 18 (1.15) 

   

The CEA-EDF perforation limit formula was proposed in 1978 [6], is based on a series of drop-weight 

and air gun experiments on symmetrical bending reinforcement concrete slabs conducted by CEA 

and EDF, with Vp (m/s) the ballistic limit, d (m): diameter of the projectile, M (kg) the mass of the 

projectile; e (m) the thickness of the concrete wall, ρ (kg/m3) the density of concrete and fc (Pa) the 

unconfined compressive strength of concrete. 

 
𝑒

𝑑
= 0.82 

𝑀0.5𝑉𝑝
0.75

𝜌0.125 𝑓𝑐
0.375𝑑1.5

 (1.16) 
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CEA-EDF formula can also express as ballistic limit or perforation velocity (1.17) 

 𝑉𝑝 = 1.3𝜌
1/6𝑓𝑐

1/2 (
𝑑 𝑒2

𝑀
)  (1.17) 

Then, Fullard [50] improved the formula to take into account the reinforcement quantity with r the 

percentage of reinforcement described by the percentage each way in each face. 

 𝑉𝑝 = 1.3𝜌
1/6𝑓𝑐

1/2 (
𝑑 𝑒2

𝑀
) (𝑟 + 0.3)2/3 (1.18) 

Berriaud et al. [7] extended the formula considering the concrete strength, the reinforcement ratio 

and the projectile nose (1.19), with 𝑀𝑎0= 200 kg/m3 reference steel reinforcement density, fc0 = 36 

MPa reference compressive strength of concrete, γ a function of the number of steel layers (γ = 0.7 

for 2 steel layers and γ = 0.1 for 4 steel layers) and N a function of the nose geometry (Ν = 1 for a flat 

nose, N = 1.18 for a hemispherical nose). 

 𝑉𝑝 = 1.9 𝑓𝑐  𝜌
1/3 (

𝑑 𝑒2

𝑀
)

4/3

𝑁2 [0.35 (
𝑀𝑎

𝑀𝑎0
)
𝛾

+ 0.65] (
𝑓𝑐
𝑓𝑐0
)
−1/2

 (1.19) 

 

Kennedy [76] in 1976, proposed a formula for the penetration of hard projectiles as a function of 

effective projectile calibre density which is the ratio of the projectile weight and the effective 

concrete slab weight.  

Forrestal et al. [48] in 1994 suggested an analytical model to measure the penetration of ogive-nose 

projectiles into concrete slabs depending on the unconfined compressive strength of concrete fc. 

Jones and Rule [75] in 2000 developed a model for normal impact penetration accounting the effects 

of pressure-dependent friction to calibrate the optimal nose geometry. They reported that lower 

velocities need a sharper nose to reach maximum depth and for higher impact velocities the 

sharpening of nose produces excessive friction. The optimal nose geometry for modest friction and 

frictionless cases are very similar. 

A non-dimensional formula based on the dynamic cavity-expansion model for the prediction of 

penetration from non-deformable projectile was introduced by Chen and Li [23] in 2002. They used 

different geometrical characteristics into several mediums (metal, concrete, soil) subjected to normal 

impacts. 
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 Guirgis et al. [57] in 2009 proposed a semi-analytical dimensionless formula based on the volumetric 

crushing energy density to determine the penetration depth for a rigid projectile into a concrete slab. 

Zaidi et al. [145] in 2010 developed an empirical prediction formula for the penetration of ogive nose 

hard projectiles into concrete targets based on critical impact energies with different CRH ratios of 

projectiles, by using curve fitting dimensional analysis. 

1.4 Numerical methods 

The analysis of impacts with empirical formulae based on experimental data is not economical and 

often is insufficient including the complex non-linear behaviour of concrete. The existing demand for 

accurate analytical methods motivates the development of numerical tools. Nowadays, thanks to the 

rapid expansion of computational mechanics; numerical methods based on material constitutive 

models allow the prediction of the effects of impacted concretes to become more economical and 

reliable. 

1.4.1  Finite element method (FEM) 

The finite element method (FEM) is a numerical method to solve partial differential equations based 

on the variational formulations of the problem and the choice of a specific space for the functions 

that approximate the unknowns.  The method subdivides the space between a collection of smaller 

and simple parts (Finite element) and simple trial functions approximate the solution of each 

element. 

Simple trial functions give t 

he numerical solution to the problem; usually, polynomials, to approximate the complex partial 

differential equations (PDE) at the element level. Then, these equations are assembled into the 

global system equation whose solution solves the entire problem. This method is originated from the 

development of mesh discretisation methods due to the necessity to solve complex elasticity and 

structural analysis problems in aeronautical and civil engineering in early 1940 by Courant [24] and 

Hrennikoff [67]. Zienkiewicz and Cheung [149] published the first book on FEM in 1967.  

A Boeing 747-400 impact on a nuclear building was analysed by Arros & Doumbalski [4] in 2007 using 

LS-DYNA software by representing the loading with the Riera method and the FEM Figure 1.25. 
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Figure 1.25: FEM model of the nuclear building and the 747-400 airline (Arros & Doumbalski [4]) 

 

They obtained similar results with the two methods for the force-time history Figure 1.26 with a 

relative error of area under the two curves within 2%. 

 

Figure 1.26: The target Riera force history and the reaction history at a rigid target from LS-DYNA run. 

 

 

FEM is a continuous method; thus it reaches its limits to simulate damages due to hard impacts, but 

it might be suitable for soft impacts such as aircraft. Nevertheless, it is necessary to select a 

numerical method capable of reproducing the damage patterns of macro-cracks. For this reason, 
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erosion techniques are necessary to be used in order to describe complex phenomena on reinforced 

structures under impacts.  

Erosion techniques consist of a damage criterion of eliminating the elements once they reach a 

threshold of plastic deformation.  The use of an appropriate erosion criterion, which is calibrated on 

experimental data similar to the concerned problem, could give good results of an impact simulation.   

Polanco-Loria et al. [105] in 2008 simulated perforation of rigid projectiles on concrete targets for the 

numerical prediction of ballistic limits using elements with erosion criterion. The numerical 

prediction of the residual velocity was well matched with the experimental data and all the damage 

modes (spalling, scabbing and tunnelling) were well described from the simulation Figure 1.27.   

 

Figure 1.27: Damage modes during perforation throughout the simulation (Polanco-Loria et al. [105]) 

 

However, finite elements with erosion techniques it is not convenient because they are mesh 

dependent and once elements are eroded there is no conservation of mass and energy. 
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1.4.2 Extended finite element method (XFEM) 

The extended finite element method (XFEM) is based on the classical FEM approach that allows finite 

element discontinuities; by enriching the solution space to a differential equation with discontinues 

functions (Moës et al., 1999 [95]).  

Xu et al., 2010 [144] simulate a low-speed impact on windshield cracking of a pedestrian-vehicle 

accident by using XFEM to characterise the cracks propagation. Their simulation seems to be 

qualitatively correlated with the real accident Figure 1.28.  However, XFEM requires developments to 

such as crack initiation, opening and closing of many cracks and fragmentation in order to be applied 

in higher velocity impacts. 

 

 
 

Figure 1.28: Cracks on windshield in real-world pedestrian-vehicle accident (left), simulation (right) 

 

 

1.4.3  Smoothed-Particle Hydrodynamics (SPH) method 

Smoothed-Particle Hydrodynamics (SPH) was developed by Gingold and Monagh [54] and Lucy [85] 

in 1977. It is a meshfree Lagrangian method suitable in problems with complex boundaries, like large 

displacements. The nodes of the elements in the SPH approach are not linked to the structure; thus it 

has the advantage of solving continuum mechanics equations adjusting easily to the appearance of 
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discontinuities without mesh adaptions. However, it requires dense assemblies of elements to obtain 

accurate results with high computational cost.   

Huang et al. [69] applied an SPH method to simulate the penetration of an ogive-nosed projectile 

into a cylindrical concrete target with 315m/s impact velocity, where they obtained adequate results 

with a thorough description of crack propagation Figure 1.29. 

 

 

 

Figure 1.29: The typical calculated damage in concrete impacted by a projectile (Huang et al. [69]) 

 

1.4.4 Discrete Element Method 

The discrete element method (DEM) is a powerful alternative to FEM when advanced damage states 

and failure of concrete have to be studied. Indeed, DEM allows easily obtaining realistic macro-crack 

patterns and material fragments due to its discontinuous nature. 

Continuous methods require significant improvements to overcome their difficulties on describing 

macro-cracking propagation up to failure which requires mesh adaption with damageable criteria 

which are time consuming. For this reason, new methods have been created where the medium is 

assembled by discrete particles of simple geometries (spheres, polyhedral). Discrete Element Method 

(DEM) was originated from the Distinct Element Method which it was initially developed to model 

rock movements in large scale with 2D rigid assemblies by Cundall [26],[28] and with 3D  post – 

developments by Cundall [27][26] and Hart et al.[61]. Cundall and Strack  [29] established a simplified 

version for granular materials, such as sands with the use of rigid elements, this method is detailed in 

their previous publications [30],[127].  

Discrete elements interact by contact and friction laws and their equation of motion follows the 

fundamental principle of dynamic which derives from Newton's second law. Cohesive interaction 
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introduced by Hentz et al. [63], to model cohesive materials such as concrete. The microscopic 

interactions at the element scale influence the overall macroscopic behaviour of the assembly. 

Therefore, it is necessary to control the properties of the medium in the micro scale, in order to 

obtain the correct macroscopic behaviour. 

Magnier and Donzé [87]  in 1998 simulated an impact of a rigid spherical nose shape missile on plain 

concrete beams with a DEM. Figure 1.30 shows the damage of the concrete beam after the 

simulation with spalling on the front face and scabbing on the rear face. One can see the strong 

potential of the discrete element method to represent multi-cracking.  

 

Figure 1.30: Simulation of rigid spherical nose missile on plain concrete (Magnier and Donzé [87]) 

1.4.5  Lattice Discrete Particles Method (LDPM) 

Cusatis et al. [33] recently developed the Lattice Discrete Particles [32]Method (LDPM). He created a 

mesoscale model for concrete that simulates the mesostructured of concrete using a system of 

interacting aggregate particles connected by a lattice system. Concrete properties and their size 

distribution describe the position of each concrete aggregate. A set of polyhedral cells; each including 

one aggregate particle consist the lattice geometry which represents the cement matrix. Normal and 

shear stress characterise the interactions between the particles. According to Cusatis, mesoscale 

models reduce the size of numerical problems and they can capture the fundamental aspects of 

materials heterogeneity. 

Cusatis et al. [31] performed simulations of perforation into a reinforced concrete slab; where LDPM 

was used to model concrete, elastic-plastic beam elements for the reinforcement and hexahedral 

finite elements for the projectile. Figure 1.31 illustrates the perforation test model, the numerical 

prediction of the cratering after perforation and the comparison between the computational results 
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with the experimental data. As can be seen, the numerical prediction of the ballistic limits is in good 

accordance with the experiments. 

 
 

 

Figure 1.31: perforation test model (up left), obtained a cracking pattern after perforation (upright), exit velocity 

plot (down) (Cusatis et al. [31]) 

 

Nevertheless, it should be noted that for cohesive material LDPM and our DEM are the same 

approaches. The advantage of our DEM is that the use of simple spherical elements allows handling 

the contact conditions easily.  

 

1.4.6  Finite-Discrete Element Method  

The Finite-Discrete Element Method suggested by Munjiza [96] in 1995 as a synthesis of finite 

element and discrete element methods aiming to simulate large-scale industrial problems efficiently. 
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Initially, this method describes the problem with a continuum media by finite elements. Then 

progressive fracturing is allowed based on a fracturing criterion. Once the finite elements reach the 

threshold limit; discrete elements are forming able to describe the discontinuity of the fracturing 

propagation. 

Smoljanovic et al. [125] used the FEM/DEM coupling method for the seismic analysis of dry stone 

masonry structures. Figure 1.32 presents the FEM/DEM model of the masonry structure and its 

collapse after the seismic numerical analysis. 

 

Figure 1.32: FEM/DEM model of the structure (left), Collapse simulation of the structure due to the seismic 

effect using FEM/DEM (right) (Smoljanovic et al. [125]) 

 

1.5 Conclusion  

Nowadays, the design of sensitive concrete infrastructures requires accounting extreme hazards such 

as terrorist attacks or industrial accidents. Explosions or impacts induce extreme loadings (high strain 

rates and high mean stresses) with a low probability of occurrence but with possibly devastating 

consequences. Therefore, the design of concrete structures under impact requires both thoroughly 

comprehending the damage mechanisms of concrete under impact and the development of 

advanced calculation methods able to predict damage into reinforced concrete barriers. 

The modelling of concrete structures submitted to impacts requires accounting strain rates ranging 

from quasi-static conditions to hundreds of s-1. Furthermore modelling structures under hard impacts 

requires accounting the material behaviour under triaxial compression with confinement stresses in 

the order of hundreds of MPa. 
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Existing design methods for concrete protection systems under impacts are mainly based on full-size 

experiments and empirical formulae that are possibly not economical. Generally, these methods do 

not account the complex non-linear behaviour of concrete. The growing society demand for 

predictive analytical methods motivates the development of advanced numerical tools. 
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Chapter 2 

2 The Discrete Element Method 

This unit describes the main concepts of our discrete element method.  Main principles of the 

algorithm, calculation of forces, definition of interactions and the constitutive law of concrete are 

presented. It is worth to highlight that the discrete elements of this approach do not represent the 

constituents of concrete, but the aim the model is to reproduce an isotropic and homogeneous 

behaviour at the macroscopic scale. Macroscopic phenomenological constitutive laws depend on the 

local microscopic behaviour of the discrete elements. Furthermore, in this section, the modification 

of the constitutive model for dynamic loading is proposed. The new law aims to offer a more realistic 

modelling of the dynamic fracture energy.  

Discrete Element Method (DEM) was originally developed by Cundall [25],[27] to model large-scale 

rock movements of 2D rigid assemblies. Later, Cundall [26] and Hart et al. [61] extended the method 

with 3D post – developments. Cundall and Strack [29] established a simplified version for granular 

materials, such as sands with the use of rigid elements. This method is detailed in their previous 

publications [30],[127]. Afterwards, Hentz et al. [63] implemented the classical method by taking into 

account the cohesive interaction over the contact interaction, to model cohesive materials such as 

concrete. In addition, (DEM) is convenient for dynamic problems with complicated phenomena, like 

fragmentation and multi-cracking due to impacts on reinforced concrete structures due to its ability 

to model discontinuities.  This approach does not depend on any damage mechanics since the 

medium is naturally discontinuous. 

A disordered assembly of rigid non-overlapping spherical elements of different sizes and masses 

composes our discrete element mesh. These spheres do not represent the concrete constituents, 

such as the granular or cement matrix. For this reason, it is essential to validate that the model can 

produce the isotropic and homogeneous behaviour of concrete at the macroscopic scale. 

Consequently, the use of macroscopic phenomenological constitutive laws relies on the local 

microscopic behaviour of the discrete elements.  
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In order to produce a well predictive model, several parameters need to be calibrated by means of 

linear and nonlinear constitutive laws between two spheres. The local stiffnesses among discrete 

elements are modelled by spring-like interactions based on displacements [63]. These interactions 

are controlled by normal and tangential forces applied at an “equivalent contact point” between two 

discrete elements. Furthermore, a bilinear, elasto-plastic Moment Transfer Law (MTL) was 

introduced by Plasssiard [104] and it was implemented in this model by Omar et al. [102] to create a 

rolling resistance between two discrete elements in order to prevent brittle failure. A simple 

identification of the loading rate dependency is introduced to compute the dynamic strength of the 

interaction using a Dynamic Increase Factor (DIF) inspired by the CEB formula [20]. 

The present discrete element model was developed in EUROPLEXUS [40] and it is based in 3D 

computations. An explicit time marching scheme of central-difference method is used for the 

discretisation in time. The equation of motion of every particle is given from the fundamental 

principle of dynamics. To ensure the stability of the integration scheme the critical time step needs to 

be computed.  

2.1 Mesh generation method 

The packing method that is currently used is an optimisation of a geometric algorithm proposed by 

Jerier et al. [71]. The algorithm is based on tetrahedral finite element mesh and it is originated from 

the technique developed by Cui and O’Sullivan [25] to generate porous sphere packing. It is using a 

special disordering procedure to fill the geometry with polydisperse non-overlapping spheres. This 

algorithm is implemented in SherePadder++ free software [122], which is introduced in the open-

source SALOME platform [115]. 

This algorithm generates a mesh with discrete elements of different sizes and masses with sufficient 

constituents, such as the granular or cement matrix. The aim is to produce an isotropic and 

homogeneous concrete behaviour at the macroscopic scale.  

Initially, a DE packing requires the generation of the geometry which is defined by its characteristics 

and boundary conditions. Delaunay approach [34] is used to mesh the selected shape with 

tetrahedral. After, every tetrahedron is filled with polydisperse spheres using an inversion function 

[5] which is a geometrical procedure. The size distribution of the spheres is calculated from the size 

of the tetrahedral mesh which can be adjusted by the finite element generator, Netgen [119] and the 
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parameters given by the user (ratio of maximum over minimum radii 𝑘1 =
R𝑚𝑎𝑥

𝑅𝑚𝑖𝑛
 and FE tetrahedron 

edge length over the mean diameter of the DE assembly  𝑘2 =
FE𝑒𝑑𝑔𝑒

DE𝑚𝑒𝑎𝑛
 ).    

The polydisperse sphere packing method initiates once the tetrahedral node coordinates are 

available. The next two steps are the direct placement of spheres at the middle of each edge and 

after on every vertex. They are called type 1 and type 2 spheres. The radius for type 1 spheres 

depends on the FE edge length and the ratio k2 (R𝑇1 = 
FE𝑒𝑑𝑔𝑒

2 ∙ k2
). Then, type 3 spheres are created in 

an intermediate position on every face of the tetrahedron being in contact with three non-aligned 

spheres (type 1 and type 2) on the same face. At the next step, a sphere (type 4) is put in the centre 

of the tetrahedron. Four new spheres of type 5 are placed close to the vertices and in contact with a 

sphere of type 2 and three neighbouring spheres. Delaunay triangulation [34],[30] is applied in the 

centre of fixed spheres to detect the empty volumes and create a tetrahedron network which is filled 

with spheres of type 6. The next step is the densification phase; it is optional and it creates a more 

compact mesh by filling the last empty spaces respecting Rmin. The steps for the mesh generation 

procedure are illustrated in Figure 2.1. 

 

Figure 2.1: Procedure for the mesh generation (Jerrie et al. 178[71]) 
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2.2  Principles of the algorithm 

The present numerical model of discrete element method was developed in EUROPLEXUS [40]. 

EUROPLEXUS is a computer code being jointly developed since 1999 by CEA (CEN Saclay, DMT) and 

EC (JRC Ispra, IPSC) under a collaboration contract. The DEM algorithm is based in 3D computations 

and it is composed by spherical point-like rigid particles of individual mass and radius. Each discrete 

element has one node (sphere’s centre) with six degrees of freedom corresponding to three 

translations and three rotations.  

An explicit scheme of central-difference method is used for the discretisation in time which is well 

adapted to rapid dynamic phenomena such as impacts. Explicit time integration methods calculate 

the approximate solution of a system at a later time tn+1 using the results at the current state tn as 

initial conditions. Central difference method defines the approximate velocity (𝑢̇) and acceleration 

(𝑢̈) at a time interval (Δt) of known values of displacements (𝑢).  Velocities are calculated in halfway 

time-step 𝑢̇ (𝑡 +
𝛥𝑡

2
) as the rate of displacement change between the step back 𝑢(𝑡) and the step 

ahead 𝑢⃗ (𝑡 + 𝛥𝑡). Likewise, accelerations 𝑢̈(𝑡) are determined, after defining the velocities in halfway 

time step back  𝑢̇ (𝑡 −
𝛥𝑡

2
) and ahead 𝑢̇ (𝑡 +

𝛥𝑡

2
). 

 

 

𝑢⃗̇ (𝑡 +
𝛥𝑡

2
) =

(𝑢⃗ (𝑡 + 𝛥𝑡) − 𝑢⃗ (𝑡))

𝛥𝑡
 

(2.1) 

𝑢⃗̈ (𝑡) =  

(𝑢⃗̇ (𝑡 +
𝛥𝑡
2 ) − 𝑢⃗̇

 (𝑡 −
𝛥𝑡
2 ))

𝛥𝑡
 

 

 

A discrete element i at the moment t is characterised by its central coordinates, radius (𝑅𝑖), 

mass (𝑚𝑖), translational 𝑢̈𝑖⃗⃗  ⃗(𝑡) and rotational 𝜔̈𝑖⃗⃗⃗⃗ (𝑡) accelerations and it is connected with its nearest 

neighbours. The relative displacement between a particle i and its neighbour j is defined as 𝛿𝑖𝑗, 

where interaction laws govern forces and moments between the two particles.  The equation of 

motion for every particle is given from the fundamental principle of dynamics, which derives from 

Newton's second law. According to this, the acceleration 𝑢̈𝑖⃗⃗  ⃗(𝑡) of a body is equal to the sum of the 

forces 𝐹 𝑖
𝑡𝑜𝑡(𝑡) on that body divided by its mass 𝑚𝑖. Similarly, the rotational equation gives the 
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rotational acceleration 𝜔̈𝑖⃗⃗⃗⃗ (𝑡) of a body by replacing forces 𝐹 𝑖
𝑡𝑜𝑡(𝑡) with moments 𝑀⃗⃗ 𝑖

𝑡𝑜𝑡(𝑡) and mass 

𝑚𝑖 with the moment of inertial 𝐼𝑖. 

 

 

 

𝑢̈𝑖⃗⃗  ⃗(𝑡) =  
∑ 𝐹 𝑗→𝑖(𝛿𝑖𝑗)
𝑛
𝑗=1

𝑚𝑖
= 
𝐹 𝑖
𝑡𝑜𝑡(𝑡)

𝑚𝑖
 

(2.2) 

𝜔̈𝑖⃗⃗⃗⃗ (𝑡) =  
∑ 𝑀⃗⃗ 𝑗→𝑖(𝛿𝑖𝑗)
𝑛
𝑗=1

𝐼𝑖
= 
𝑀⃗⃗ 𝑖
𝑡𝑜𝑡(𝑡)

𝐼𝑖
 

 

 

As a result, the new position of the element can be expressed as: 

 

 𝑢⃗ (𝑡 + 𝛥𝑡) = 𝑢⃗ (𝑡) + 𝑢⃗̇ (𝑡 +
𝛥𝑡

2
)𝛥𝑡 

(2.3) 

 

 

2.2.1  Calculation loop  

The principle steps of the current discrete element method after the creation of the mesh are 

described as follows and they are detailed later:  

1. The algorithm looks for interactions and the neighbours' list is updated for every time step. 

2. The local interaction forces of each element opposed by its neighbours are calculated as the 

resultant of the normal and the tangential component. 

3.  The total force applied to each element is calculated as the sum of the local interaction 

forces applied to the element.  

4. Application of the external forces. 

5. Calculation of the acceleration of each element for the next time step by using the 

fundamental principle of dynamics and knowing the external forces and the mass of the 

element. 

6. Velocities and displacements of the element are computed using the explicit time 

discretisation scheme of the central difference method. 
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2.2.2  Calculation of the discrete element mass 

The density of concrete (𝜌) is an input parameter for the discrete element method. The mass of each 

particle is equal to the product of the density and its spherical volume. Nevertheless, the sum of the 

masses of all the discrete elements is smaller than the real mass of the specimen because of the 

porosity of the assembly. Consequently, to avoid miscalculations due to wrong inertial forces, the 

mass of each sphere should be corrected accounting for the compactness (𝑐) of the mesh obtaining 

the actual mass of each discrete element: 

 𝑚 =
4

3

𝜌

𝑐
𝜋𝑟3 (2.4) 

2.2.3 Determination of the integration critical time step 

Explicit integration schemes may lead to instabilities for big-time steps; thus it is important to choose 

a time step small enough to guarantee the stability of the scheme. In this discrete element method, 

the interaction is modelled as mass-spring systems with six degrees of freedom and the equation of 

motion for each element is based on the fundamental principle of dynamics. Then, every particle has 

a natural frequency 𝜔 =  √
𝐾

𝑚
, where K is the stiffness and m is the mass. The stability condition of 

the integration scheme of the central-difference method is given by Courant et al. [21] and it is 

written as: 

 𝛥𝑡 ≤
2

𝜔
 (2.5) 

 

To respect this condition, one should calculate the natural frequencies of the system and choose the 

highest. This solution would have been very time consuming due to a large number of discrete 

elements where each one is subjected to several interactions. An alternative solution it is to calculate 

for each discrete element an equivalent stiffness 𝐾𝑒𝑞, from all its interactions. For each interaction, 

by projecting on the three principal axes of the global coordinate system, are determined six 

equivalent stiffnesses: 3 translations and three rotations for each element. Then, the critical time 

step is calculated in each direction for every element. Finally, the lowest value is chosen to be the 

time step. A safety factor p is introduced to take into account the nonlinearities of this calculation    

(0 <p <1): 
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 𝛥𝑡 =
𝑝

𝜔
= 𝑝√

𝑚

𝐾𝑒𝑞
  (2.6) 

2.3 Definition of interactions 

Rigid, spherical particles were selected for this discrete element method because it is easier and less 

time consuming to manage contacts between such elements. As has been already described the 

mesh is generated with a polydisperse spatial arrangement. Moreover, they are randomly distributed 

into the geometry in order to obtain a homogeneous mesh. Every element has a different amount of 

neighbouring elements due to its position and size. 

Since, the size of the discrete elements do not represent concrete constituents, such as cement paste 

or aggregates, it is necessary to create a geometry that allows producing concrete behaviour in the 

macroscopic scale. For this reason, two types of interactions (contact and cohesive) are composing 

this model. The cohesive interaction is a simple modification (by Hentz et al. [63]) of the original 

discrete element approach to model the cohesive nature of certain geomaterials such as concrete.    

2.3.1  Interaction range coefficient  

An interaction range coefficient is defined to increase the number of interactions, even if the discrete 

elements are not in contact. A cohesive interaction is defined between two spheres a and b of radii 

Ra and Rb respectively inside an interaction range, which is determined by an interaction coefficient λ 

Figure 2.2. The cohesive interaction treated by equation (2.7), where Da,b is the distance between the 

centroids of the elements a and b with λ≥1. 

 λ (R𝑎 + R𝑏)  ≥  D𝑎,𝑏 
(2.7) 

 

A cohesive link also receives tensile forces and allows taking into account the effects of the cement 

matrix in concrete; contrariwise a contact link is acting only in compression. The cohesive 

interactions are initialised at the beginning of the simulation and they exist as long as are not broken 

whereas the new contact interactions are created. A contact interaction is possible only when the 

distance between two particles is less than or equal to the sum of their radii, thus λ=1.  
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Figure 2.2: Contact Interaction and Cohesive Interaction 

The number of links per element with its neighbours varies with the value of λ Figure 2.3. The desired 

number of interactions can be set by adjusting the interaction range coefficient. Then, the average 

number of interactions per discrete element is calculated as the number of links over the number of 

discrete elements equation (2.8). An arbitrary average of twelve links per discrete element was 

selected by Rousseau [102], a smaller value could lead in privileged directions of interactions and a 

higher value would encumber the computation time. The average of twelve interactions per particle 

is also in good accordance for the creation of isotropic specimens. 

 

 

Figure 2.3: Influence of interaction range coefficient on neighbours and the number of interactions (Masurel, 

[91]) 

 average number of interactions per DE =  
number of links

number of DE
 

(2.8) 
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2.3.2  Search of neighbours method 

After the creation of the specimen and the selection of the interaction range coefficient λ, it is 

essential to identify the links between the neighbouring discrete elements. Moreover, the search of 

neighbours is necessary to perform correctly throughout all the simulation since the specimen 

deforms under loading and the particles change positions. Jerrie's geometric algorithm produces a 

dense disorder assembly of discrete elements; thus the search for neighbour method should be 

sufficient to optimise the computational cost. Spatial sorting algorithms capable of reducing the 

number of pairwise checks are listed in the PhD thesis of O’Connor [99]. The mesh is structured in 

such a way that only particles in a bounded region will be controlled for interactions. 

Therefore, the current study uses the grid subdivision method, which discretises the geometry in 

uniform cubic linear cells superimposed on the discrete elements. Then, the particles are associated 

with the cells that overlap. The algorithm searches for interaction between the discrete elements 

that a cell contains and the cells in contact and it creates a list of links. The size of the cells is essential 

because the computational time could be sufficient for not too large cells, although small cells may 

risk missing possible interactions of discrete elements located outside the cells. For this reason, the 

cell size should be directly dependent on the discrete element maximum radius.  

 

Figure 2.4: Example of the grid method subdivision on a discrete element mesh (Masurel, [91]) 
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 Figure 2.4 illustrates an example in two dimensions of the grid subdivision method on a polydisperse 

spherical discorded assembly of  𝑅𝑚𝑎𝑥/𝑅𝑚𝑖𝑛 = 3 and dense compactness. The black lines show the 

cells’ grid superimposed on the discrete element mesh. The selected cell under interaction search is 

coloured in orange and its neighbour cells are in yellow. The method checks for links only between 

the particles with their centres in the orange cell and the particles with their centres in the yellow 

area. Once a cell is controlled it does not consider in the link's search for a neighbouring cell since 

those interactions have been already listed.  The side size of each cell is selected to be 2𝜆𝑅𝑚𝑎𝑥  to 

ensure the efficiency of this method. 

 

2.3.3  Calculation of interactions 

The physical interpretation of a link between two discrete elements is the interaction to each other 

transmitting normal, tangential and rotational efforts, which are computed from their relative 

movements. These efforts are translated as the resistance of each object to change its position 

towards the other one and they are imposed at an imaginary contact plane (P) (Figure 2.6) located in 

an equidistant from the surface of the two particles. The principle for the discrete element method 

of this study is simplicity; thence spring-like constitutive laws are employed to model these 

interactions Figure 2.5.  

 

 

 

Figure 2.5: Spring-like interaction model 

 

Considering two discrete elements 𝐼 and 𝐽 in a cohesive interaction, of radii 𝑅𝐼 and 𝑅𝐽 and centres 𝐺𝐼 

and 𝐺𝐽, their link is presented geometrically by the line 𝐺𝐼𝐺𝐽⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   passing through their centres (Figure 
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2.6). The direction of this line is noted with a unit vector 𝑛⃗ , which is normal to the plane 𝑃. The 

plane 𝑃 intersects the link at the point 𝐶, which is located in the middle from the surfaces of the two 

spheres.  

 

Figure 2.6: Diagram of the intersection point of a cohesive link between two discrete elements I and J 

 

The distance from the centre of the sphere 𝐼 and the point 𝐶 is given from the equation (2.9). 

 G𝐼𝐶⃗⃗⃗⃗⃗⃗  ⃗ = (𝑅𝐼 +
1

2
(‖𝐺𝐼𝐺𝐽⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ − (𝑅𝐼 + 𝑅𝐽))) 𝑛⃗ 

𝑡 (2.9) 

The normal component at the plane (𝑃) of the force at the time step 𝑡 + 1 is calculated as the 

product of the normal spring stiffness and the relative displacement of the link, where 𝐷𝐼𝐽
0  is the 

initial distance of the two centres and 𝐷𝐼𝐽
𝑡+1  is their distance at the current moment (2.10). 

 F⃗ 𝑁
𝑡+1 = 𝐾𝑁(𝐷𝐼𝐽

𝑡+1 −𝐷𝐼𝐽
0 )𝑛⃗ 𝑡+1 (2.10) 

The tangential component of the force on the plane (𝑃) at the time step 𝑡 + 1 is computed in an 

incremental way using the relative tangential velocity (2.12) of the link at the point 𝐶. 

 V⃗⃗ 𝑁(𝐶 ∈ 𝐽/𝐼) = (V⃗⃗ (𝐶 ∈ 𝐽/𝐼) ∙ 𝑛⃗ 
𝑡+1)𝑛⃗ 𝑡+1 (2.11) 

 V⃗⃗ 𝑆(𝐶 ∈ 𝐽/𝐼) = V⃗⃗ (𝐶 ∈ 𝐽/𝐼) − V⃗⃗ 𝑁(𝐶 ∈ 𝐽/𝐼) 
(2.12) 

Then, the incremental tangential relative displacement is given by multiplying this velocity 

 V⃗⃗ 𝑆(𝐶 ∈ 𝐽/𝐼) with the current time step interval.  
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 ∆U⃗⃗ 𝑆 = V⃗⃗ 𝑆(𝐶 ∈ 𝐽/𝐼) ∆t 
(2.13) 

After, the incremental tangential force (2.14) is taken from the spring as the product of tangential 

stiffness and the incremental tangential relative displacement. 

 ∆F⃗ 𝑆 = −K𝑆 ∆U⃗⃗ 𝑆 (2.14) 

The movements of the discrete elements in the arrangement are not homogeneous; thus the 

orientation of the link might change. For this reason, it is necessary to perform two rotations (Hart et 

al. [61]) on the cumulative tangential. The first rotation is accounting the change of direction (2.15). 

 F⃗ 𝑆
𝑟𝑜𝑡1,𝑡 = F⃗ 𝑆

𝑡 − F⃗ 𝑆
𝑡^(𝑛⃗ 𝑡^𝑛⃗ 𝑡+1) (2.15) 

The second rotation (2.17) is related to the average velocity according to the new normal unit vector 

(2.16).  

 𝛺⃗ 𝑝 = (
1

2
(𝛺⃗ (𝐼/0) + 𝛺⃗ (𝐽/0)) ∙ 𝑛⃗ 𝑡+1) 𝑛⃗ 𝑡+1 (2.16) 

 F⃗ 𝑆
𝑟𝑜𝑡2,𝑡 = F⃗ 𝑆

𝑟𝑜𝑡1,𝑡 − F⃗ 𝑆
𝑟𝑜𝑡1,𝑡 × 𝛺⃗ 𝑝 ∆t  

(2.17) 

Finally, the tangential force at the time step 𝑡 + 1 is given by adding the incremental tangential force 

on the transposed cumulative tangential component (2.18). 

 F⃗ 𝑆
𝑡+1 = F⃗ 𝑆

𝑟𝑜𝑡2,𝑡 + ∆F⃗ 𝑆 (2.18) 

The three equations (2.19)  give the vectors of the internal force of the link at the point 𝐶 and the 

moments can be applied directly to the centre of each discrete element since the elements are rigid.  

 

F⃗ 𝑡𝑜𝑡
𝑡+1 = F⃗ 𝑁

𝑡+1 + F⃗ 𝑆
𝑡+1 

(2.19) M⃗⃗⃗ 𝐼(F⃗ 𝑡𝑜𝑡
𝑡+1) = −IC⃗⃗  ⃗ × +F⃗ 𝑡𝑜𝑡

𝑡+1 

M⃗⃗⃗ 𝐽(F⃗ 𝑡𝑜𝑡
𝑡+1) = −JC⃗⃗  ⃗ × +F⃗ 𝑡𝑜𝑡

𝑡+1 
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2.4 Moment transfer law 

Initially, the discrete element method was designed to model granular material. The overall strength 

of the assembly depends on the particles surface and shape. Frictional contacts offer shear resistance 

to cohesionless granular assemblies. However, Chareyre [20] showed that the shear capacity of the 

medium was underestimated when rolling between the particles was allowed without restriction.  

In this study, spherical discrete elements are selected and they are treated as point-like rigid 

particles; hence it is simple to detect contact between them. For this reason, a unique interaction is 

created between each pair of discrete elements. Consequently, the rotational velocity of the 

elements is only dependent on the tangential force at the intersection point of the interaction. In 

reality, the constituents of the concrete (ex. cement paste, granular) interact between them not 

necessarily only at one point. Therefore, the actual shear resistance of the material is higher due to 

the complexity of its constituents shape and surface.  

Since the principle of this discrete element method is the simplicity the shape of the particles is kept 

spherical and an alternative solution was selected to increase the shear capacity of the assembly, the 

Moment Transfer Law (MTL). It is modelled as a moment-rotational spring-like interaction by adding 

certain rolling resistance between two particles. Iwashita and Oda developed the original idea [70] to 

model two dimensional circular elements and to simulate the shear band zone of biaxial tests. The 

three-dimensional version was introduced by Plasssiard [104] and it was implemented in this study 

by Omar [102].  

 

2.4.1 Description of the moment transfer law 

The rolling phenomenon is due to the relative rotation between two discrete elements. Contact 

evolution of two spherical elements A and B with radius rA and rB respectively is considered between 

two moments with time step dt in the global reference configuration G (Figure 2.7). 
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Figure 2.7: Contact evolution between two DE for two time steps t and t+dt (Plassiard [104]) 

  

Then, several vectors are created such as the material positions, the incremental displacement 𝑑𝑈𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗, 

and the incremental rolling 𝑑𝜃𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , in order to describe the resistant moment. The analytical description 

is given by Omar [103]. 

 
𝜃𝑟⃗⃗  ⃗  =  ∑𝑑𝜃𝑟⃗⃗ ⃗⃗ ⃗⃗   (2.20) 

Afterwards, a constitutive law associated with the moment transfer law is defined to reproduce the 

elastic and plastic behaviour of concrete. Figure 2.8 shows the elasto-plastic model for the rolling 

resistant. The elastic part is linear and is described by the rolling stiffness 𝐾𝑟. The plastic limit Mplas 

defines the plastic plateau. In the plastic domain, an elastic recovery happens under unloading along 

a linear part with the same initial rolling stiffness  𝐾𝑟. 

 

Figure 2.8: Elasto-plastic model for rolling resistant (Omar [103]) 

 

A cohesive interaction of two elements A and B with distance 𝐷𝑎𝑏 between their centroids is 

considered equivalent to a beam with circular section of a radius r = min(rA , rB). The contact point is 
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defined at the middle of the net distance between the two spheres (Figure 2.9) and their radius 

changes as: 

 

r′
A = rA + 

1

2
 (Dab − (rA + rB))

r′
B = rB + 

1

2
 (Dab − (rA + rB))

 (2.21) 

 

Figure 2.9: Beam model for cohesive link rolling resistant 

The beam model in plastic behaviour is used, in order to account the influence of the distance 𝐷𝑎𝑏 

and the radius of the discrete elements on the rolling stiffness  𝐾𝑟. 

The fundamental of the strength of materials is used to provide the bending moment around the z-

axis: 

 

Mf = E IZZ y
′′ = E IZZ  

dy′

dx
=  E IZZ  

yA
′ − yB

′

xA − xB
 

 

(2.22) 

Where, 𝐼zz is the quadratic inertia corresponding to the z-axis, and E is Young's modulus.   

 IZZ =
𝜋 𝑅4

4
 (2.23) 

As have been described by Omar [103], xA – xB can be replaced merely by Dab and y’A – y’B by the 

relative rolling between the two spheres as dθ = θA – θB. Thus, the bending moment can be 

expressed as: 

 Mf = E IZZ  
𝑑𝜃

𝐷𝑎𝑏
 (2.24) 
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Therefore, the rolling stiffness 𝐾𝑟 is proportional to the term  𝐸𝐼𝑧𝑧/𝐷𝑎𝑏. A factor βr is introduced to 

control the rolling resistance. Equation (2.25) expresses the rolling stiffness: 

 
Kr = βr

E Izz
Dab

 (2.25) 

As well the plastic limit of the rolling moment is proportional to the factor  
𝜎𝐼𝑧𝑧

𝑣
 where σ can be 

replaced by the local tensile strength 𝑇 and 𝑣 by the radius r of the section. Therefore a factor η is 

added to control the plastic limit and it is defined as: 

 Mplas =  η
TIzz
Dab

 (2.26) 

The moment transfer law is then governed by the pair of parameters (𝛽𝑟, 𝜂). Those two parameters 

influence the macroscopic behaviour of the model. Thus, we decided that these two parameters 

need to be identified before any other parameter calibration, to simplify the process. 

2.5 Constitutive behaviour of discrete element concrete model 

The discrete element model of concrete is given by means of spring-like interactions, defined by 

normal KN and tangential KS stiffnesses [61] at the microscale. These interactions are inspired by the 

phenomenological behaviour observed at the macroscale. Furthermore, a third rolling spring-like 

interaction, KR as rolling stiffness, introduced by Iwashita and Oda [70]. In order to offer rolling 

resistance to the model, Omar [102] has implemented the rolling spring-like interaction (Moment 

Transfer Law). The normal force of the discrete element model is described with an elasto-plastic-

damage constitutive behaviour law Figure 2.10. The elastic behaviour of concrete is described by 

macro-micro relations proposed by Donzé et al. [36], while a modified Mohr-Coulomb criterion with 

a rupture criterion is used to describe the damage in tension and it was proposed by Sawamoto et al. 

[117]. A Mohr-Coulomb sliding criterion limits the tangential force of the model. Compressive non-

linear regime behaviour is governed by the compaction phenomenon, which leads to a plastic-

hardening behaviour [124],[135]. Furthermore, strain rate dependency will be introduced in tension 

allowing the identification of the dynamic strength of the link.  
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2.5.1 Linear elastic behaviour  

Undamaged concrete is considered to be isotropic, homogeneous and linear elastic at the 

macroscale. The elastic behaviour of concrete is characterised by micro-macro phenomenological 

spring-like relations defined by Donzé et al. [36]. Those relations were created to deduce the local 

microscopic parameters 𝐾𝑁 (normal stiffness) and 𝐾𝑆 (tangential stiffness) from the global 

macroscopic elasticity coefficients, Young’s modulus 𝐸, and Poisson's ratio 𝜈. The model of concrete 

in elasticity is originated from Voigt’s hypothesis [39] and the best fit hypothesis of Liao [84] used for 

regular assemblies. However, those approximations were modified by Donzé [36] to account the 

polydispersity of disordered assemblies. 𝑉 denotes the total volume of the representative unit with 

particles of radius 𝑟 and  N is the total number of inter-particle contacts.  

Voigt’s hypothesis: 

 

E =  
4Nr2

3V
 K𝑁

2 + 3
K𝑆
K𝑁

4 +
K𝑆
K𝑁
 
  

𝜈 =  
1 −  

K𝑆
K𝑁

4 +
K𝑆
K𝑁

    ν ∈ [0,
1

4
] 

(2.27) 

Liao’s model: 

 

E =  
20Nr2

3V
 K𝑁

K𝑆
K𝑁

2 + 3
K𝑆
K𝑁
 
  

𝜈 =  
1 −  

K𝑆
K𝑁

2 + 3
K𝑆
K𝑁

    ν ∈ [0,
1

4
] 

(2.28) 

 

Equations (2.29) shows the micro-macro relations between two elements 𝑎 and 𝑏. D𝑖𝑛𝑖𝑡
𝑎,𝑏  represents 

the initial distance between two elements, with radius 𝑅𝑎 and 𝑅𝑏 and 𝑆𝑖𝑛𝑡 is the interaction surface 

of the link. Young’s modulus 𝐸 and Poisson's ratio 𝜈 are considered the input values of the model 

whereas 𝛼, 𝛽 and 𝛾 parameters need to be identified by means of linear quasi-static compression 

and traction tests.  
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E =  
D𝑖𝑛𝑖𝑡
𝑎,𝑏

S𝑖𝑛𝑡
 K𝑁

β +  γ
K𝑆
K𝑁

α + 
K𝑆
K𝑁
 
         S𝑖𝑛𝑡 = 𝜋 min (𝑅𝑎 , 𝑅𝑏)

2 

ν =  
1 −  

K𝑆
K𝑁

α + 
K𝑆
K𝑁

           ν ∈ [0,
1

α
]                                         

 (2.29) 

 

Later, a study by Huang [68] proved the dependence of the elastic macroscopic parameters (Young’s 

Modulus 𝐸 and Poisson’s ratio 𝑣) on the ratio of shear stiffness over normal stiffness 
K𝑆

K𝑁
. The 

expression of Young’s Modulus given by Donzé’s model [36] could be presented dimensionless (2.30) 

and vanish its dependence on normal stiffness 𝐾𝑁. That could be pursued by adjusting a value E0 

which derives from the ratio 
K𝑆

K𝑁
= 1. 

 

E0 = 
D𝑖𝑛𝑖𝑡
𝑎,𝑏

S𝑖𝑛𝑡
 K𝑁

β +  γ

α +  1 
    (𝑎)

E

𝐸0
= 

β
γ
 + 

K𝑆
K𝑁

β
γ
 +  1 

 
α +  1 

α + 
K𝑆
K𝑁
 
   (𝑏)

 (2.30) 

Equation (2.31) expresses the elastic properties of the normal and tangential stiffness of the link. 

 

K𝑁 = E
S𝑖𝑛𝑡

D𝑖𝑛𝑖𝑡
𝑎,𝑏

 
1 + α

β(1 + ν) + γ(1 − αν)
  (𝑎) 

K𝑆 = K𝑁  
1 − αν

1 + ν
     (𝑏) 

(2.31) 

 

2.5.2 Non-linear elastic with damage behaviour 

The non-linear elastic with damage behaviour of concrete in tension is defined by a local criterion of 

rupture (2.32) between two elements 𝑎 and 𝑏 which was introduced by Sawamoto et al. [117]. This 

model can be found in several studies [11][64][91][103][112], it is presented in Figure 2.10 (left side) 

and as can be seen, it is brittle with a local tensile cut off stress T and a softening factor 𝜉 and 

without plastic deformations of the link.  
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 f2(FN, FS) = −SintT − FN
Tensile damage function

 (2.32) 

 

The damage criterion (2.32) is activated if the normal displacement between two elements 𝑎 and 𝑏 is 

greater than the displacement (𝐷𝑑𝑎𝑚𝑎𝑔𝑒) associated with the local tensile strength (𝐹𝑡𝑚𝑎𝑥).  

 𝐹𝑡𝑚𝑎𝑥 = −S𝑖𝑛𝑡 T (2.33) 

 D𝑑𝑎𝑚𝑎𝑔𝑒 =
𝐹𝑡𝑚𝑎𝑥
𝐾𝑁

 (2.34) 

 

Beyond this displacement, the link passes into its softening regime where the normal stiffness is 

defined as
−𝐾𝑁

𝜉
 and it is limited to a maximum distance 𝐷𝑚𝑎𝑥.   

  𝐷𝑚𝑎𝑥 =
𝐹𝑡𝑚𝑎𝑥
𝐾𝑁

 (1 + 𝜉) (2.35) 

 

When the distance of the two elements 𝐷𝑎𝑏 is bigger than the limit 𝐷𝑚𝑎𝑥, the cohesive link is broken 

and it cannot receive efforts anymore. Thus the two forces components become equal to zero FN =0 

and  FS = 0.  

Moreover, as can be seen in Figure 2.10 both the unloading-reloading stiffness (𝐾𝑁,2) and the 

maximum tensile strength (𝐹𝑡𝑚𝑎𝑥) of the softening branch are varying and they related with the 

distance 𝐷𝑎𝑏 between the two spheres 𝑎 and 𝑏, which becomes the new 𝐷𝑑𝑎𝑚𝑎𝑔𝑒. 

 𝐷𝑑𝑎𝑚𝑎𝑔𝑒
𝑡+1 = 𝐷𝑎𝑏   (2.36) 

 𝐹𝑡𝑚𝑎𝑥
𝑡+1 = 𝐹𝑡𝑚𝑎𝑥

𝑡 −
𝐾𝑁
𝜉
 (𝐷𝑎𝑏 − 𝐷𝑑𝑎𝑚𝑎𝑔𝑒

𝑡 ) (2.37) 

 𝐾𝑁,2 =
𝐹𝑡𝑚𝑎𝑥
𝑡+1

𝐷𝑑𝑎𝑚𝑎𝑔𝑒
𝑡+1  (2.38) 
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Figure 2.10: Non-linear tensile constitutive model, (Normal force – Displacement) 

 

2.5.3 Compaction law 

Figure 2.11(right side) illustrated the compressive non-linear constitutive behaviour of the link. We 

updated the constitutive model in compression to account for high confining pressures. As can be 

seen, the model is trilinear with an elasto-plastic-hardening behaviour and it can be described with 

the parameters: elastic compressive stress limit 𝐶𝑐𝑒𝑙, plastic compressive stress limit 𝐶𝑐𝑝𝑙, and 

stiffness ratios 𝜉1 and 𝜉2. This model was initially used by Shiu [124] and then by Tran [135]. The new 

model is based on the macroscopic behaviour of concrete under triaxial test and it describes as the 

compaction phenomenon which occurs under high confining pressures. 

Once the elastic compressive limit (𝐹𝑐𝑒𝑙) is exceeded, the pore closure leads to a plastic regime with 

irreversible distance until the plastic compressive limit (𝐹𝑐𝑝𝑙), where consolidation takes place. After, 

the collapse of porosity leads to a hardening branch. The stiffness of each branch is defined as the 

ratio of the initial stiffness of the link 𝐾𝑁 over the parameters 𝜉1 and 𝜉2 respectively. 

 𝐹𝑐𝑒𝑙 = S𝑖𝑛𝑡𝐶𝑐𝑒𝑙  
(2.39) 

 𝐹𝑐𝑝𝑙 = S𝑖𝑛𝑡𝐶𝑐𝑝𝑙 (2.40) 

The elastic compression is limited at distance (D𝑒𝑙) (2.41) between the two spheres which is 
proportional to the initial normal stiffness (𝐾𝑁) of the link.  
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 D𝑒𝑙 =
𝐹𝑐𝑒𝑙
𝐾𝑁

 (2.41) 

The maximum plastic distance limit (D𝑝𝑙) (2.42) corresponds to the plastic branch and it is related to 

the difference between the plastic strength 𝐹𝑐𝑝𝑙 and the elastic strength 𝐹𝑐𝑒𝑙 of the link over the 

stiffness 
𝐾𝑁

𝜉1
.  

 D𝑝𝑙 = D𝑒𝑙 +
𝐹𝑐𝑝𝑙 − 𝐹𝑐𝑒𝑙
𝐾𝑁

𝜉1⁄
 (2.42) 

 

After the interaction distance exceeds the elastic limit (D𝑒𝑙), plastic-hardening behaviour takes place; 
where irreversible deformation appears (D𝑒𝑞). 

For a displacement 𝐷𝑎𝑏 greater than D𝑒𝑙  and smaller than  D𝑝𝑙 the interaction is located in the 

section BC, where: 

 F𝑁
𝑡+1 = 𝐹𝑐𝑒𝑙

𝑡 +
𝐾𝑁
𝜉1
(𝐷𝑎𝑏 − 𝐷𝑒𝑙

𝑡 ) (2.43) 

  𝐹𝑐𝑒𝑙
𝑡+1 = F𝑁

𝑡+1 (2.44) 

 𝐷𝑒𝑙
𝑡+1 =

F𝑁
𝑡+1

𝐾𝑁
 (2.45) 

 𝐷𝑒𝑞 = 𝐷𝑎𝑏 − 𝐷𝑒𝑙
𝑡+1 (2.46) 

When the displacement 𝐷𝑎𝑏 is greater than D𝑝𝑙 the interaction is considered in the section CD, 

where: 

 F𝑁
𝑡+1 = 𝐹𝑐𝑝𝑙

𝑡 +
𝐾𝑁
𝜉2
(𝐷𝑎𝑏 − 𝐷𝑝𝑙

𝑡 ) (2.47) 

 𝐹𝑐𝑒𝑙
𝑡+1 = 𝐹𝑐𝑝𝑙 (2.48) 

 𝐷𝑒𝑞 = 𝐷𝑎𝑏 −
F𝑁
𝑡+1

𝐾𝑁
𝜉1⁄

 (2.49) 
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Figure 2.11: Non-linear tensile and compressive constitutive model, (Normal force – Displacement) 

2.5.4 Mohr-coulomb modified criterion 

Initially, a modified Mohr-Coulomb criterion with sliding function f1 and a tensile damage function f2 

is used for cohesive links (2.50). When the tangential force (𝐹𝑆) transcends the sliding function the 

tangential force is fallen onto the sliding criterion. The modified Mohr-Coulomb criterion of cohesive 

interactions consists from friction angle Φi, a cohesion stress C0, a local tensile cut off stress T and a 

softening factor 𝜉. The softening factor 𝜉 adjusts the tensile stiffness after damage in tension Figure 

2.12. Once, the distance of the link is greater become greater than the maximum limit distance 

(𝐷𝑚𝑎𝑥) the rupture criterion in tension is exceeded and the cohesive interaction is broken. 

 

f1(FN, FS) = |FS| − tan(Φi) FN − SintCo
(𝑎. Shear sliding function)

 
 f2(FN, FS) = −SintT − FN

(𝑏. Tensile damage function)

 (2.50) 

 

Once two spheres come in contact, a new contact interaction is created, which follows a standard 

Mohr-Coulomb criterion with a contact angle Φc (2.51). The contact interaction cannot receive any 

tensile forces and is acting only in compression. 

 f1(FN, FS) = |FS| − tan(ΦC) FN (2.51) 
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The criterion of contact interactions is expressed as: 

f1 ≤ 0, the contact link is opposed to interpenetration 

f1 = 0, the shear force follows the sliding function 

The microscopic parameters, contact Φc and frictional Φi angles, cohesion 𝐶0, local tensile strength 𝑇, 

and softening factor 𝜉, of the model described above need to be identified in order to result in 

macroscopic parameters, such as compressive 𝜎𝐶  and tensile 𝜎𝑇 strengths and fracture energy 𝐺𝑓. 

The macroscopic parameters are obtained from the quasi-static test in tension and compression. The 

compaction law parameters elastic compressive stress limit 𝐶𝑐𝑒𝑙, plastic compressive stress limit  𝐶𝑐𝑝𝑙 

and stiffness ratios 𝜉1 and 𝜉2 are identified through inverse modelling of oedometric compression 

and hydrostatic compression tests. 

 

Figure 2.12: Modified Mohr-Coulomb criterion, Tangential force – Normal force.  

 

2.5.5 Strain rate dependency  

Experimentally has been observed that both the tensile [12] and compressive [9] strengths of 

concrete increase with strain-rate, especially when the strain-rate is greater than a transition strain-

rate, which is around 100-101 s-1 for uniaxial tension and 102 s-1 for uniaxial compression. However, 

the increase of compressive strength is a structural effect. The inertia generates radial constrains 

acting like confining pressure, which increases the concrete compressive strength [12].  

Hence the strain rate dependency is implemented in the phenomenological DEM model only in 

tension. This pragmatic choice allows a simple identification of the dynamic increase factor (DIF) 

through an inverse analysis based on the dynamic numerical simulation of spalling Hopkinson bar 

tests. 
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Omar [103] implemented first the strain rate dependency, in our DEM inspired by the CEB formula 

[20] to calculate the macroscopic dynamic tensile strength as a function of strain rate, equation 

(2.52). DIF is defined as the ratio of the dynamic tensile strength over the static tensile 

strength 𝑇𝑑𝑦𝑛/𝑇𝑠𝑡.  The initial model of Omar increases the maximum distance limit 𝐷𝑚𝑎𝑥 using the 

same DIF ratio. Figure 2.13 shows the Initial constitutive model under dynamic loading. 

 

Figure 2.13: Initial constitutive model for dynamic loading 

 

 

The use of DIF on the maximum distance limit 𝐷𝑚𝑎𝑥 results in an increase of fracture energy under 

dynamic loading (Gf𝐷) equal to 𝐷𝐼𝐹2, which is not realistic. The present study introduces a ratio, of 

the dynamic over the static maximum distance limits 𝐷𝑚𝑎𝑥, which follows the equation (2.55) to 

correctly preserve the fracture energy (Gf𝐷) under dynamic conditions equation (2.56). Thus the 

ratio of static over the dynamic fracture energy is proportional to the product of DIF and the 

maximum distance limit ratio. Hence the softening branch becomes more brittle with the increase of 

DIF. The stiffness of the softening branch is controlling by the equation (2.53). Figure 2.14 illustrates 

the modified constitutive model under dynamic loading. The local parameters: static strain rate (𝜀𝑠𝑡)̇ , 

moderate strain rate (𝜀𝑚)̇ , 1 and 2 are calibrated with the help of a spalling Hopkinson bar test [3]. 

Figure 2.14 displays the tensile constitutive model under static and dynamic loadings. 

 DIF =  
Tdyn

Tst
 =  

{
 
 

 
 

      1                                                  if ε̇  ≤  ε̇𝑠𝑡          

     (
ε̇

εsṫ
)
δ1

                                          if ε̇𝑠𝑡 < ε ̇ ≤ ε̇𝑚 

    θ (
ε̇

εsṫ
)
δ2

, θ = (
ε𝑚̇
εsṫ
)
(δ1−δ2)

        if  ε̇  >  ε̇𝑚            

 (2.52) 
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 KN𝐷𝐼𝐹,𝑖 =  KN𝐷𝐼𝐹,1 + (KN𝐷𝐼𝐹,𝑚𝑎𝑥 − KN𝐷𝐼𝐹,1) (
DIF −  1

DIF𝑀𝐴𝑋 − 1
) (2.53) 

 

 
1

𝜉𝐷𝐼𝐹,𝑖
=  

1

𝜉
+ (

1

𝜉𝑀𝐴𝑋
−
1

𝜉
) (

DIF −  1

DIF𝑀𝐴𝑋 − 1
) (2.54) 

 
𝐷𝑚𝑎𝑥
𝐷𝐼𝐹,𝑖

𝐷𝑚𝑎𝑥
=
𝐷𝐼𝐹 (1 + 𝜉𝐷𝐼𝐹,𝑖)

1 +  𝜉
 (2.55) 

 
Gf𝐷
Gf𝑆

=  
𝐷𝐼𝐹2 (1 + 𝜉𝐷𝐼𝐹)

1 + 𝜉
 (2.56) 

 

Figure 2.14: Modified constitutive model for dynamic loading 

 

Furthermore, Erzar and Forquin [42] in 2014 the showed that the shear response of concrete 

is also strain rate dependent. The dependency in shear is significantly lower in shear that in 

tension. However, it is necessary to account the loading influence on the constitutive law of 

tangential interactions. For this reason, we limited the value of the dynamic increase factor 

(DIF) in shear to 2 with the dynamic cohesion to be 𝐶0𝐷𝑌𝑁 ≤ 2. The Mohr-Coulomb criterion 
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under dynamic loading is presented in Figure 2.15 with red colour. Thus, the limit of dynamic 

tensile stress 𝑇𝑀𝐴𝑋 is described as the ratio of 𝐶0𝐷𝑌𝑁 over the tangent of 𝜑𝑖  and the 𝐷𝐼𝐹𝑚𝑎𝑥 

is given from the equation (2.57). 

 

Figure 2.15: Mohr-Coulomb criterion for dynamic loading 

 

𝐷𝐼𝐹𝑚𝑎𝑥 =
2.0 𝐶0

tan(𝜑𝑖) 𝑇
 (2.57) 

2.6 Steel-Concrete bond model 

 There is the need for a constitutive law to represent the steel reinforcement and its interaction with 

concrete to model reinforced concrete structures. Rousseau [112] used aligned discrete elements to 

model steel rebars and beam-like interactions between them and the concrete discrete element. 

Although, complex grids of reinforcement in real structures induce incontinence with complicates 

mesh. 

For this reason, Masurel [91] developed a new model with finite beam-like elements for the steel 

rebar. In addition, he implemented a special concrete-steel bond model for the interactions between 

the concrete spherical DE and the steel FE. This model describes the interaction between a given 

rebar and a group of neighbouring discrete elements by using two non-linear springs, one normal 

and one tangential to the direction of the rebar. The behaviour of the normal spring is elasto-plastic 

in compression and brittle in tension, whereas the tangential one relies on the response of the 

concrete-steel link observed in pull-out tests. This model decouples the normal and tangential forces 

of the steel-concrete interface. Potapov et al. [107] calibrated this mixed DEM/FEM approach by 

simulating the steel-concrete link with pull-out tests.  
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2.6.1.1 Constitutive model of the normal steel-concrete bond interaction 

The constitutive law of the steel-concrete interaction for the normal spring was initially proposed by 

Rousseau [112]; is presented to be brittle in tension and elasto-plastic in compression (Figure 2.16). 

The linear elastic regime is described by the normal stiffness 𝐾𝑁 which connects the interaction with 

the normal force 𝐹𝑁 to its normal displacement 𝑢𝑁. This interaction is modelled as a beam-like 

element with circular cross-section (𝑆𝑖𝑛𝑡) and initial distance (ℎ0) between the two elements; hence 

the normal stiffness (𝐾𝑁  ) is given from the Equation (2.58): 

 𝐾𝑁 =
𝐸 𝑆𝑖𝑛𝑡
ℎ0 

 (2.58) 

 

 

Figure 2.16: Steel-concrete interaction law in normal direction (Masurel [91]).  

 

As has been explained by Rousseau [112]; Young's modulus (𝐸) of the steel-concrete interaction is 

taken equal to concrete’s because the response of the interface zone is associated with the 

behaviour of the concrete. The interaction cross section is related with the concrete discrete element 

radius 𝑅𝑗, thus 𝑆𝑖𝑛𝑡 = 𝜋𝑅𝑗
2. The initial distance (ℎ0) is the distance between the centre of the 

concrete discrete element j to the reinforcement finite element 𝑖. 
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Steel-concrete tensile constitutive behaviour is similar to concretes behaviour in tension; where after 

the peak stress (𝑇𝑁) the interaction is damaged following a softening regime with stiffness 
−𝐾𝑁

𝜁
. 

Then, it breaks after exceeding the threshold of the maximum allowed distance between the 

concrete discrete element (𝑗) and the steel finite element (𝑖). After, the interaction becomes a 

contact link in order to prevent interpenetration of the two elements. In compression, the 

interaction is subjected to perfect plasticity after the stress limit (𝐶𝑁). 

 

2.6.1.2 Constitutive model of the tangential steel-concrete bond interaction 

The constitutive model of the steel-concrete interaction for the tangential spring is inspired by Torre-

Casanova [133] and it is based on the global adhesion stress-sliding response of the bond. Following 

this idea, Masurel [91] introduced a multipoint law that reproduces the stress-slip curve observed in 

the pull-out test which differs for high-strength rebar and smooth rebar. One can select the number 

of points for the discretisation the adhesion law in function of sliding 𝜏 = 𝑓(𝑢𝑠) in order to give the 

best description for the different rebar types. An example of such a discretisation of the 

experimental curves of Hamouine et al. [59] (Figure 2.17 left) is shown in Figure 2.17 right, on which 

9 points are chosen to represent the curve of the high strength rebar and 6 points for the smooth 

rebar. 

 

Figure 2.17: Experimental stress-slip curve (left) (Hamouine et al. [59]), multipoint law (Masurel [91]) 

2.6.2  Significant sliding 

Severe loading can impose intense damage on the steel-concrete interface and slip between 

reinforcement and concrete becomes very important. The steel-concrete interaction is the projection 

of the concrete discrete element centre on the steel finite element beam, from which distances are 

drawn to determine the interaction forces. Once, the tangential displacement is very large the 
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projection may leave the steel finite element beam to which it was connected at the initial step and 

move on the neighbouring beam element. 

It is crucial to maintaining the equilibrium of the steel-concrete interaction in order to avoid 

instabilities. Its two components (normal and tangential) are decoupled; thus the balance of each 

component is treated separately. 

For the normal component of the bond, when the projection of the discrete element slides on the 

neighbouring beam element, a normal interaction is created with it. The interaction force of the 

normal component is given by the equation (2.59) at every time step and it is relating the distance 

between the centre of the discrete element and its orthogonal projection at the beam element 

(point 𝑃𝑁). 

 𝐹𝑁 = −𝐾𝑁(ℎ
𝑛 − ℎ0) (2.59) 

The normal force computed on the point 𝑃𝑁 is then redistributed on the nodes of the given 

reinforcement beam element. For this reason, even though the interaction slides on the 

neighbouring beam element; the normal component forces are always in equilibrium for both 

translation and rotation (Figure 2.18). 

 

Figure 2.18: Normal behaviour event of significant sliding (Potapov et al. [107]) 

 

The tangential component applies resistance to the sliding of the concrete discrete element and it 

has a different projection on the rebar beam element (point 𝑃𝑆), which it cannot move from its initial 

position. The tangential force of the steel-concrete interaction is given form the equation (2.60). 

 𝐹𝑆 = −𝐾𝑆𝑢𝑆 (2.60) 

Similarly to the normal component, the tangential force is distributed on the nodes of the beam 

element with the projection of the point 𝑃𝑁. However, the tangential forces are balanced only in 
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translation but not in rotation, which can lead to instabilities. Two vertical reaction forces 𝑅𝑚 and 𝑅𝑛 

are applied to the same nodes and are computed by using Newton's second law Figure 2.19.  

 

Figure 2.19: Tangential behaviour event of significant sliding (Potapov et al. [107]) 

2.6.3 Steel-concrete interaction zone 

The proposed model for the steel-concrete interface is established by the orthogonal projection of 

the neighbouring concrete discrete element on a given rebar finite element. Therefore, it is 

necessary to determine an interaction zone around the reinforcement; where the steel-concrete 

links will be created. The initial distance of this interaction range 𝐷𝑖𝑛𝑡 is dependent on the rebar 

radius 𝑅𝑠 multiplied by a coefficient 𝜆𝑠, as has been decided by Masurel [91] (2.61). 

 𝐷𝑖𝑛𝑡 = 𝜆𝑠𝑅𝑠 
(2.61) 

 

Figure 2.20 shows an example for the determination of the steel-concrete interaction zone, which is 

limited in a zone of 𝐷𝑖𝑛𝑡 above and below the centre of the beam finite element. Then, a steel-

concrete interaction is created when the distance of discrete element centre orthogonal projection 

on the beam finite element 𝐷𝑠,𝑐  is less or equal than the interaction range (2.62). 

 𝐷𝑠,𝑐 ≥ 𝐷𝑖𝑛𝑡 (2.62) 
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Figure 2.20: Example of steel-concrete interaction zone (Potapov et al. [107]) 

 

The steel-concrete interaction coefficient (𝜆𝑠) is identified on pull-out test simulations, as proposed 

by Torre-Casanova [133], with an iterative procedure by varying the coefficient and trying to obtain 

the closest possible response with the input tangential component adhesion law. 

Masurel performed a series of simulations on pull-out test in order to establish a relation between 

the coefficient (𝜆𝑠), the radius of the rebar (𝑅𝑠) and minimum discrete element radius (𝑅𝑐𝑚𝑖𝑛). The 

results allowed him to conclude the formula (2.63). The detailed procedure can be found in his PhD 

thesis [91]. 

 𝜆𝑠 = 3.2√
𝑅𝑐𝑚𝑖𝑛
𝑅𝑠

 (2.63) 

 

2.7 Conclusion  

In this chapter, we analyse the theoretical framework of our numerical discrete element approach. 

We describe the mesh generation method, the principle of the algorithm and all the constitutive laws 

for concrete. The mesh assembles with a disordered arrangement of rigid non-overlapping spherical 

elements of different sizes and masses. These particles do not represent the concrete constituents; 

thus the model needs to produce the macroscopic behaviour of concrete. Therefore, macroscopic 

phenomenological constitutive laws define the local microscopic behaviour of the discrete elements.  
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A sensitivity study is necessary to study the influence of the mesh parameters on the mesh 

characteristics and on the macroscopic behaviour of the model. In addition, the effect of each 

constitutive law parameter should be thoroughly understood; hence a procedure for the calibration 

of those parameters can be established. Finally, the model parameters need to be identified on 

simple laboratory experiments such as quasi-static compressive and tensile test, hydrostatic and 

oedometric test and spalling Hopkinson bar tests. 

 

  



 

 

 
 

89 

Chapter 3 

3 Identification procedure of the 
parameters for the discrete 

element mesh and the concrete 
constitutive model  

The current discrete element approach derives from the phenomenological behaviour of concrete 

observed at the macroscale. This model consists of local constitutive laws describing interactions 

between two particles. However, as has been mentioned the discrete elements do not represent the 

constituents of the concrete (aggregates, cement paste, voids etc.) and our model does not take into 

account the effect of free water, but the model aims to reproduce the macroscopic experimental 

behaviour of concrete. For this reason, several parameters need to be identified through quasi-static 

and dynamic tests. 

Moreover, before calibrating the constitutive model, it is necessary to establish a set of parameters 

for the mesh creation. This set of parameters is of critical importance because the macroscopic 

behaviour of the constitutive model depends on the particles assembly. The two basic parameters 

that affect the packing are the ratio of the radii 𝑘1 =
R𝑚𝑎𝑥

𝑅𝑚𝑖𝑛
 and the compactness 𝑐, which can be 

controlled through the geometric algorithm of the packing method (Jerier et al. [71]). Once, the mesh 

assembly is created the interaction range coefficient 𝜆 is defined in order to satisfy the arbitrary 

choice by Rousseau [112], of twelve links in average per discrete element. In addition, moment 

transfer law constitutive law introduced to offer shear capacity in the model. The study of Omar 

[102] showed the influence of the MTL parameters rolling stiffness coefficient 𝛽𝑟 and plastic limit 

coefficient 𝜂 on the macroscopic behaviour. In particular, the rolling stiffness coefficient 𝛽𝑟 has a 

small influence on Young’s modulus and the plastic limit coefficient 𝜂 affects the non-linear 
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behaviour. The interdependency of parameters complicates the identification procedure; thus we 

chose to fix the MTL parameters at the beginning to simplify the calibration process of the other 

parameters.  

Afterwards, the identification procedure of the linear elastic parameters α, β and γ as is based on the 

results obtained by Huang [68] which demonstrated the reliance of Young’s Modulus 𝐸 and Poisson’s 

ratio 𝜈 on the ratio of shear over normal stiffness 
𝐾𝑆

𝐾𝑁
, for a given particles distribution. Those three 

parameters are computed on the linear branch of quasi-static compression and tension tests. The 

macroscopic non-linear branch of the quasi-static compression and tension tests is reproduced by 

adjusting the microscopic parameters contact Φc and frictional Φi angles, cohesion 𝐶0, local tensile 

strength 𝑇, and softening factor 𝜉. Next is the calculation of compaction law parameters elastic 

compressive stress limit 𝐶𝑒𝑙, plastic compressive stress limit  𝐶𝑝𝑙 and stiffness ratios 𝜉1 and 𝜉2 using 

high confinement pressure tests (oedometric and hydrostatic). Finally, concrete's dynamic behaviour 

is described by the dynamic increase factor where DIF parameters are defined on dynamic spalling 

Hopkinson bar tests.  

3.1 Identification of the parameters for the mesh generation  

3.1.1 Influence of boundary conditions 

Hentz [64], Rousseau [112], Masurel [91] and Omar [103] used a different configuration for the 

quasi-static simulation mesh. The loading was applied directly to the discrete elements by blocking 

the lateral displacements of a layer of particles at the external sides in the normal direction of the 

long side. Figure 3.1 shows the quasi-static mesh used in previews studies after loading; the blue 

particles on the edges represent the loading zones.  

During this study has been found that the calculation results to a different damage mode than the 

experimental. The main reason, this behaviour induced was the roughness between the contact 

surface of the DE loading zones and the DE of the specimen. For this reason, the linear-elastic quasi-

static behaviour parameters and the cohesion stress 𝐶0 were not estimated correctly, because this 

roughness gives additional friction to the model and the deformed specimen tends to a barrel shape 

due to Poisson’s effect. 

It should be noted that damage is defined at each time step as a ratio of remaining cohesive links of 

the considered DE over the initial number of its cohesive links. The damage scale (Figure 3.1) ranges 

between blue (no damage) and red (all the links are broken). 
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Figure 3.1: Quasi-static discrete element meshes after loading with blocked lateral loading zones 

 

Two solutions have been tried to address this problem and eliminate the undesired friction between 

specimen and plates.  

The first trial was to unblock the lateral displacements of the loading DE zones. This solution did not 

work, because as can be seen in Figure 3.2, the loading zones are crushed. The crushing of these 

areas has been observed even before the specimen reach to a failure. The loading plates are weaker 

than the specimen since the entire specimen is modelled with the same material properties 

(concrete) and the areas that are imposing the loading are thinner than the specimen. Therefore, the 

drawback of this trial is the loss of the rigidity of the loading sections.     

The second trial was to model the loading zones with rigid elements. Contacts were created between 

the rigid element and the DE by defining a layer of nodes from the specimen as slave nodes following 

the kinematic conditions of the loading zones. Those contacts are kept frictionless for calculating the 

linear-elastic quasi-static parameters since experimentally there are no movements between the 

specimen and the loading plates during the linear regime. Once these parameters are calibrated, a 

friction coefficient of 0.5 (found in literature from the study of Burak and Tuncan [15]) is added at the 

steel-concrete interface to compute the non-linear plastic quasi-static parameter. 
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Figure 3.2:  Quasi-static discrete element mesh after loading with unblocked lateral loading zones 

 

Figure 3.3 shows the experimental damage mode under uniaxial quasi-static compression (left side) 

and the mesh after the simulation loaded by rigid elements (right side). It is evident that this solution 

is better than all the previous since it can well reproduce the cone damage pattern.   

 
 

Figure 3.3: Quasi-static experiment damage mode (left) discrete element mesh after loading with rigid elements 

for the loading zone (right) 

 

In this PhD study we will simulate hard impacts with projectiles of complex geometry and in 

EUROPLEXUS the shapes of rigid elements are limited to the basic (parallelepiped, cone, and 

cylinder). Thus, we will use finite elements to model the impactors or other steel parts. Thus, one of 

the most important parameters is the ratio between finite element sizes and discrete element sizes 
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in contact. The size of the two types of objects affects the overall behaviour of the specimen. In 

order, to confirm the proper force transfer from the one type (finite element) of to the other one 

(discrete element), we performed quasi-static compression simulation by replacing the rigid loading 

zones to finite elements plates Figure 3.4. The FE plates were discretised with different element 

types (hexahedral, tetrahedral) and different sizes Figure 3.5. The DE diameters and the size of the FE 

are listed in Table 3.1 and Table 3.2. Furthermore, the comparison between the finite element size 

and the maximum, minimum and mean discrete element diameter is given in the three last columns 

in Table 3.2. 

 

Figure 3.4: Quasi-static compression test mesh with finite element loading plates  

 

Figure 3.5: FE loading plate discretization 8 hexa (left), 30 hexa (middle), 10 hexa with 5 tetr (right) 

Mesh Dmax (mm) Dmin (mm) Dmean (mm) 

DE concrete 7.196 2.399 3.741 

Table 3.1: DE diameters 
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FE-TYPE #FE/side Size (mm) Dmax Dmean Dmin 

HEXA 8 10 bigger bigger Bigger 

HEXA 10 8 bigger bigger Bigger 

HEXA 12 6.67 smaller bigger Bigger 

HEXA 18 4.45 smaller bigger Bigger 

HEXA 20 4 smaller bigger Bigger 

HEXA 22 3.64 smaller smaller Bigger 

HEXA 30 2.67 smaller smaller Bigger 

HEXA 40 2 smaller smaller Smaller 

TETR 5 16 bigger bigger Bigger 

TETR 10 8 bigger bigger Bigger 

Table 3.2: FE size and type 

 

Figure 3.6 and Figure 3.7 present the results of the simulations of the different finite element plates. 

It is obvious that when the FE size is smaller than the smallest DE diameter the contact between the 

two (FE and DE) is not sufficient and the simulation of the compressive test is not reliable. On the 

contrary, for all the FE discretisation with bigger size than the spheres diameters the results 

converge. Moreover, the result of a FE size bigger than the mean DE and smaller than the maximum 

DE can be considered efficient; although the curves 18 and 20 in Figure 3.6  have a small inclination 

form the curves 8 and 10. Curve 12 seems to adapt well with the curves 8 and 10, even though the FE 

size is smaller than the maximum DE but with a very small difference in dimensions. Thus, one can 

conclude that the condition of FE size bigger than the mean DE diameter should be respected, for a 

proper contact between FE and DE. 
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Figure 3.6: HEXA finite element size influence 

 

Figure 3.7: FE size and type influence 
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3.1.2 Mesh generation parameters 

In this unity, we will prove that the parameters of our discrete element constitutive model are not 

mesh dependent only if all the meshes are created using the same procedure of mesh discretisation. 

For this reason, the mesh creation parameters need to be identified before the calibration of the 

model. We will study the influence of the mesh generation parameters not only on the macroscopic 

behaviour but also on the mesh characteristics. We are seeking of an isotropic and homogeneous 

mesh with the least possible amount of particles thus the computational cost remains rational. 

Several assumptions need to be made for the creation of the discrete element mesh to ensure 

macroscopic homogeneity and isotropy. The mesh generation parameters are defined on the quasi-

static compression test. Initially, the geometry of the specimen needs to be selected; a parallelepiped 

with dimensions is 0.07x0.07x0.14 m3. In contrast, the experimental specimens are cylindrical 

however the first assumption is to use a parallelepiped mesh with the same slenderness of samples, 

for the sake of simplicity of postscript strains computations. 

First, the packing method uses a tetrahedral mesh to generate an assembly of discrete elements; 

thus the volume of the specimen is discretised with tetrahedral finite elements. Then, the ratio 

𝑘1 =
R𝑚𝑎𝑥

𝑅𝑚𝑖𝑛
  and FE tetrahedron edge length over the mean DE diameter 𝑘2 =

FE𝑒𝑑𝑔𝑒

DE𝑚𝑒𝑎𝑛
 are selected. As 

has been shown by Potapov et al. [107] a mesh with four tetrahedral per short side, 𝑘1=3 and 𝑘2 = 4 

produces a satisfying homogeneous and isotropic discrete element assembly. However, for the 

present study different meshes are created by varying all the parameters of the geometric mesh 

algorithm (number of FE per short side, 𝑘1, 𝑘2and iterations of densification phase). Table 3.3 

presents six Table 3.3s in order to detect the influence of the mesh creation parameters on the 

assembly characteristics and the macroscopic behaviour of the sample. 

A FE mesh with four tetrahedral per short side, 𝑘1 = 3 and  𝑘2 = 4 is employed for the four first 

meshes, since the set of these parameters offer the desired homogeneity and isotropy according to 

Potapov et al. [107]. Those four meshes differ in the number of iterations for the densification phase 

of the packing. The fifth mesh is selected to be similar to the second by increasing the ratio 𝑘1 from 

three to five. Finally, the sixth mesh is entirely different from the rest, it represents a loose mesh like 

the one used by Rousseau [112] and all the parameters are selected based on her mesh. It should be 

mentioned that Rousseau generated her mesh with SDEC software that creates DE assemblies only 

for simple geometries. The last mesh was a good example to observe that a very loose mesh is not 

adequate to represent the local constitutive behaviour of the interactions.     
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3.1.2.1 Influence of mesh generation parameters on the mesh characteristics 

𝑘1: By increasing the ratio of the maximum over the minimum radius the compactness, the maximum 

radius of the DE mesh, the number of discrete elements and the coefficient of interaction range are 

increasing, while the minimum radius is decreasing. 

𝑘2:  By increasing the number of discrete elements per finite element the number of discrete 

elements and the compactness is decreasing, whereas the size of the particles and the coefficient of 

interaction range are increasing. However, we noticed that when this ratio is equal to 4 is giving the 

densest mesh. 

Number of iterations: By increasing the number of iterations, the number of discrete elements and 

the compactness of the DE mesh are increasing. Also, after the 3rd iteration (or 5th for big values of 𝑘1 

like 12) the compactness of the mesh does not change. 

 

Mesh 
FE 

number 
per side 

k1 k2 Iterations 
DE 

Total 
number 

𝐑𝒎𝒂𝒙 
(cm) 

𝐑𝒎𝒊𝒏 
(cm) 

Compactness λ 

1 4 3 4 0 7096 0.36 0.12 0.503 1.4802 

2 4 3 4 2 11018 0.36 0.12 0.588 1.3984 

3 4 3 4 5 11540 0.36 0.12 0.595 1.3896 

4 4 3 4 10 11547 0.36 0.12 0.594 1.3894 

5 4 5 4 2 19025 0.4 0.08 0.615 1.4227 

6 3 4.133 4.39 0 2145 0.53 0.13 0.459 1.5191 

Table 3.3: Mesh generation parameters and assembly’s characteristics 
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Figure 3.8: Mesh 1 histogram of radius distribution 

 

 

Figure 3.9: Mesh 1 orientation of interaction in the three planes 

 

Figure 3.8 gives the histogram of the mesh 1 size distributionFigure 3.8,; this packing shows some 

irregularity in the middle with almost a plateau with around 200 elements for radius between 0.15 

cm and 0.25 cm. The highest and lowest peaks of the figure appear at the maximum radius (470 

elements) and the minimum radius (35 elements). Figure 3.9 shows the orientation of interactions in 

the three planesFigure 3.9; this mesh seems to be isotropic with approximately 800 – 900 links in 

every direction. 
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Figure 3.10: Mesh 2 histogram of radius distribution 

 

 

Figure 3.11: Mesh 2 orientation of interaction in the three planes 
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Figure 3.12: Mesh 3 histogram of radius distribution 

 

 

Figure 3.13: Mesh 3 orientation of interaction in the three planes 
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Figure 3.14: Mesh 4 histogram of radius distribution 

 

 

Figure 3.15: Mesh 4 orientation of interaction in the three planes 

 

The histograms of sphere distribution of the mesh 2, mesh 3 and mesh 4 are illustrated in Figure 

3.10, Figure 3.12 and Figure 3.14. As can be seen, those three meshes are quite similar with a regular 

degradation of the histogram distribution. Also, Table 3.3 demonstrates similar compactness for the 

three of them (0.59-0.6) and their coefficients 𝜆 are almost the same; although the total number of 

elements of the second mesh is lower than the total number of elements of the third and the fourth 

meshes, with a difference of 500 spheres. Mesh 3 and mesh 4 have almost the same amount of 
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particles. Figure 3.11, Figure 3.13 and Figure 3.15 display the interaction orientations, the three 

packing are isotropic. Mesh 2 appears approximately 1600 links in all the directions, while the links 

for mesh 3 and mesh 4 are increasing to nearly 1700. In contrast, mesh 1 has very few discrete 

elements 4000 less than the three other meshes and its number of links pre direction is almost half 

than these three other meshes. Thus mesh one seems to be weaker than mesh 2, mesh 3 and mesh 

4. For this reason, zero iteration of densification should be avoided. 

 

Figure 3.16: Mesh 5 histogram of radius distribution 

 

Figure 3.17: Mesh 5 orientation of interaction in the three planes 
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Mesh 5 has a regular sphere distribution but with a significant concentration of particles close to the 

higher radius and very few for the lower radius (Figure 3.16). It is the densest mesh and its 

interaction range coefficient is bigger than the meshes 2,3 and 4 because it contains quite smaller 

discrete elements. For this reason, mesh 5 seems to be the strongest one. Figure 3.17 plots its links 

orientation have a rise of thousand links (around 2500 – 3000).  

 

Figure 3.18: Mesh 6 histogram of radius distribution 

 

Figure 3.19: Mesh 6 orientation of interaction in the three planes 
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The sixth mesh has the most irregular distribution and it is not homogeneous (Figure 3.18). The total 

number of discrete elements decreases dramatically to 2145 and the interaction range becomes 

bigger with 𝜆 = 1.52; thus the link behaviour is not local anymore. Figure 3.19 gives the orientation 

of interactions from where it can be concluded that the mesh is not isotropic with higher links in 

privileged directions. 

3.1.2.2 Influence of mesh generation parameters on the macroscopic behaviour of 

concrete 

Figure 3.20 and Figure 3.21 compare the response of the six meshes under quasi-static compression 

and tension.  As it was expected mesh 1 and mesh 6 are the weakest with lower Young's modulus 

and peak stress, while mesh 5 is the strongest and the other three meshes give quite similar stress-

strain curves.  

 

Figure 3.20: Simulations of quasi-static compression test 
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Figure 3.21: Simulations of quasi-static tensile test 

 

It is obvious that the packing parameters 𝑘1 and 𝑘2 affect the linear and non-linear macroscopic 

behaviour of concrete. The iteration number for the densification phase does not influence the 

macroscopic behaviour of concrete if it is higher than 2. 

In addition, the compactness of the mesh affects its ductility in traction. For less than 0.5 compact 

meshes the tensile macroscopic behaviour appears to be very ductile. A possible explanation is that a 

loose mesh (like mesh six) contains very few particles with bigger distance between them. Thus to 

satisfy the average number of links per element to be at least 12, the radius of interaction needs to 

increase quite a lot. For this reason, this adjustment offers more ductility to the model since the 

constitutive law is not local anymore.  

After the sensitivity study for the parameters of the geometric algorithm for the generation of 

polydisperse spatial packing, it was decided to use the set of parameters  𝑘1 = 3, 𝑘2 = 4 and four 

tetrahedral finite elements per short side for the creation of all the meshes. The iteration number for 

the densification phase was selected to be two since more iteration gives almost the same packing 

with a few more discrete elements. Additionally, with this choice, the computation time of the 

simulations is reduced and the meshes generation algorithm creates the mesh faster. 
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Moreover, Potapov et al. [107] evaluated the isotropy of DEM meshes by employing a parallelepiped 

sample with increasingly refined tetrahedral consisting between 1 and 9 tetrahedral per short side. 

For all the meshes were created DE packings with the parameters  𝑘1 = 3, 𝑘2 = 4. As can be seen on 

Figure 3.22, the increase of tetrahedral decreases the size of the discrete elements. The orientation 

of interactions shows that isotropy is established as the mesh becomes more refined. Also, for 

meshes with 4 tetrahedral and more the distribution of interactions uniform and those meshes 

considered to exhibit isotropic behaviour. 

Then, Potapov et al. [107] determined the parameters for the linear response of the sample with the 

4 tetrahedral. The same parameters were imposed to all the meshes for quasi-static compression 

simulation. After, they measured the Young’s modulus and Poisson’s ratio of all the meshes (Figure 

3.23). From their results, we can conclude that the macroscopic linear behaviour (𝐸, 𝜈) for finer 

meshes is almost equivalent with a maximum error of 8%. Thus, our DEM model allows reusing the 

sale set of parameters for different discretisation, as long as  they are produced with the same mesh 

generator parameters. 
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Figure 3.22: DE meshed and of orientation of interaction in the three planes (Potapov et al. [107]) 

 

Figure 3.23: Reproducibility of (a) Young’s Modulus and (b) Poisson’s ratio values for various DE meshes 

(Potapov et al. [107]) 
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3.2 Identification of the parameters for the concrete 
constitutive model  

3.2.1 Mesh for quasi-static uniaxial tests 

For the current study, the mesh for the quasi-static test simulations is selected to be parallelepiped 

with dimensions 0.07x0.07x0.14m3. Then, a four tetrahedral finite element per short side is used to 

create the skeleton for the packing of geometrical algorithm Figure 3.24. Padder parameters  𝑘1 = 3, 

𝑘2 = 4, and two iterations of densification are applied to obtain the discrete element mesh for the 

quasi-static simulations Figure 3.25. The mesh packing characteristics can be found in Table 3.3 

(mesh 2), the histogram of size distribution is given in Figure 3.10 and the links’ orientation in Figure 

3.11. During the simulation, the two small faces of the specimen are in contact with two rigid plates, 

which apply the kinematic conditions. EUROPLEXUS is a fast dynamics software; thus it is necessary 

to verify the equilibrium state of the specimen. For this reason, we computed the forces on the two 

plates and we compared them with the kinematic energy and the potential energy; thus we chose a 

constant velocity of 5 mm/s to apply the kinematic condition. A friction coefficient of 0.5 is imposed 

at the interface zone between the loading plates and the concrete sample.   

 

Figure 3.24: Four tetrahedral finite element discretisation of the quasi-static test mesh 

 

Figure 3.25: Mesh for quasi-static tests 
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3.2.1.1 Moment transfer law parameters 

The parameters of moment transfer law (MTL) are the second choice that should be made at the 

beginning for a specific type of concrete to simplify the process. 

The quasi-static compressive test is used, for the calibration of the MTL rolling stiffness coefficient 𝛽𝑟 

and plastic limit coefficient 𝜂. Those two parameters are identified with the help of a set of linear and 

not linear behaviour parameters but not the final one since those parameters need to calibrate after 

𝛽𝑟 and 𝜂 are obtained. The quasi-static compressive test was conducted by Vu [136] in the 3S-R 

laboratory (University Grenoble Alpes). The experiment was performed on ordinary fully saturated 

concrete R30A7. Table 3.4 presents its composition and mechanical propertiesTable 3.4. The tensile 

mechanical properties were assumed due to lack of experimental data. 

The two parameters were varied between the values 1,3 and 5 in order to evaluate their effect on 

the linear branch, the smoothness of the peak stress and the post-peak curve ductility. The results 

are grouped in five cases by keeping constant one of the two parameters and changing the other 

one. Figure 3.26, Figure 3.27 and Figure 3.28 illustrate the simulations for constant 𝜂 equal to 1, 3 

and 5 respectively, while Figure 3.29 and Figure 3.30 present the results for constant 𝛽𝑟 equal to 1 

and 5. 

Concrete mix proportions 

Water 169 kg/m3 

Sand dmax 1.8 mm 838 kg/m3 

Aggregate d 0.5 – 8 mm 1007 kg/m3 

Cement CEM 52.5 N PM ES CP2 (Vicat) 263 kg/m3 

Characteristics 

Maximum size aggregate 8 mm 

Concrete measured porosity 12% 

Density 2390 kg/m3 

Mechanical properties 

Young’s Modulus E 25 GPa 
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Poisson’s ratio ν 0.16 

Compressive strength σC 34 MPa 

Tensile strength σT 3.6 MPa  

ultimate strain εu 0.025% 

Table 3.4: Composition and mechanical properties of R30A7 ordinary fully saturated concrete 

 

Figure 3.26: MTL effect of βr for ηr=1 

When the coefficient of the plastic limit 𝜂 is equal to 1, the post-peak behaviour is always brittle and 

the width of the peak stress is very narrow. Also, the rolling stiffness coefficient 𝛽𝑟 seems to have an 

insignificant influence on the results (Figure 3.26). 
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Figure 3.27: MTL effect of βr for ηr=3 

For 𝜂 equal to 3, the post-peak behaviour is more ductile and the width of the peak stress becomes 

wide. In addition, the peak stress is increasing for higher values of 𝛽𝑟 (Figure 3.27) 

 

Figure 3.28: MTL effect of βr for ηr=5 
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When 𝜂 takes the value 5, the response becomes very ductile and the peak stress is increasing with a 

broad curvature. However, with the increase of 𝛽𝑟 the peak stress is higher and smoother (Figure 

3.28). 

Comparing the resultant curves for 𝛽𝑟 equal to 1 the peak stress and the ductility are increasing with 

the increase of 𝜂 (Figure 3.29). 

Figure 3.30 presents a similar response to Figure 3.29, where one can see that when βr is increasing 

from one to five, the peak stress curvature is smoother.  

For the previous simulations a preliminary set of quasi-static behaviour parameters was employed 

(𝛼 =  3.9, 𝛽 =  3.75, 𝛾 =  5, 𝐶0 = 3.5 𝑀𝑃𝑎, 𝑇 = 3 𝑀𝑃𝑎, 𝜉 = 3, 𝜑𝑖 = 30°  and 𝜑𝑐 = 30°). The 

parameters for the Moment Transfer Law were computed to be 𝛽𝑟 = 5 and 𝜂 = 5. However, the 

identification of the rest parameters for the quasi-static constitutive behaviour requires to be 

improved. 

 

 

 

Figure 3.29: MTL effect of ηr for βr=1 
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Figure 3.30: MTL effect of ηr for βr=5 

 

3.2.1.2 Linear-elastic behaviour parameters 

The relations for the elastic behaviour of concrete were created to describe the local microscopic 

parameters 𝐾𝑁 and 𝐾𝑆 from the global macroscopic elasticity parameters, Young’s modulus 𝐸, and 

Poisson’s ratio 𝜈. The global macroscopic parameters are the input values of the model whereas α, β 

and γ parameters need to be identified by mean of quasi-static compression and tension test on the 

linear branch. The equations (2.16)for concrete’s elastic behaviour are originated from Voigt's 

hypothesis and the best-fit approximation of Liao model for regular assemblies and Donzé [36] 

modified them to account for disordered polydisperse assemblies. According to Huang [68] the ratio 

of Young’s modulus 𝐸 over 𝐸0 is dependent on the ratio of the shear stiffness over the normal 

stiffness 
𝐾𝑆

𝐾𝑁
 equation (2.30). 𝐸0 derives from equation (2.16)when the ratio of stiffnesses is equal to 

one 
𝐾𝑆

𝐾𝑁
= 1.  

Firstly, the macroscopic parameters (𝐸, 𝜈) are selected from the experimental data of ordinary fully 

saturated concrete (R30A7). The mechanical properties (Table 3.4) of this type of concrete have been 

analytically identified in previous studies [51], [136]. Hence the input values of Young's modulus and 

Poisson's ratio are 𝐸 = 25 𝐺𝑃𝑎, 𝜈 = 0.16. Afterwards, we employ an iterative method, where the 
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ratio of the tangential stiffness over the normal stiffness 𝑐𝑜𝑒𝑓 =  
𝐾𝑆

𝐾𝑁
 is varying between 0 and 1 with 

interval 0.1. To succeed that we modify the constitutive equation (2.31) such as: 

K𝑆 = K𝑁 coef     (𝑏)      0 ≤ 𝑐𝑜𝑒𝑓 ≤ 1 

Thus, we launch eleven simulations for every value of the parameter 𝛼, while we keep 𝛽 = 1 and 

𝛾 = 1. Once the values for the Poisson ratio 𝜈 obtained from the simulations satisfy the calculated 

values from the constitutive equation (2.29) the parameter 𝛼 is identified. Figure 3.31 illustrates the 

comparison between the values of the equation (2.29) and from the simulations with 𝛼 =  3.9. 

The next step is to determine the value of the ratio 𝛽/𝛾 by using the same iterative method. This 

time we keep 𝛼 =  3.9 and we launch the eleven simulation, one for every interval of coef and for 

every value of the ratio 𝛽/𝛾. This ratio is identified once the results from the simulations fit the 

dimensionless expression of Young’s modulus 𝐸/𝐸0 (2.30). Figure 3.32 shows the comparison 

between equation (2.30) and the simulations with the ratio 𝛽/𝛾 =  0.75.  

The last step is to decouple the parameters 𝛽 and 𝛾 and calibrate them to result in the Poisson’s ratio 

and Young’s Modulus equal to the input values. For this step, the initial equation (2.31) of the model 

is used without any modifications. To detect the values of the two last parameters we use as input 

data 𝛼 =  3.9, 𝛽 = 0.75𝛾 and we vary 𝛾 in every simulation. The three values were found to 

be 𝛼 = 3.9, 𝛽 = 3.75 and 𝛾 = 5 to satisfy the macroscopic parameters 𝐸 = 25 𝐺𝑃𝑎, 𝜈 = 0.16. 

 

Figure 3.31: Calibration of coefficient α 
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Figure 3.32: Calibration of the ratio β/γ 

 

3.2.1.3 Non-linear elastic with damage behaviour parameters 

The non-linear elastic with damage behaviour of concrete is characterised by a modified Mohr-

Coulomb criterion Figure 2.12 with sliding function f1 and a tensile rupture f2 for cohesive links 

equation (2.44). The model of cohesive interactions consists from a friction angle 𝜑𝑖, a cohesion 

stress 𝐶0, a local tensile cut off stress 𝑇 and a softening factor 𝜉. Contact links follow a simple Mohr-

Coulomb criterion with a contact angle 𝜑𝑐  equation (2.45). 

A sensitivity study employed to study the influence of the non-linear behaviour parameters Figure 

2.10 on the quasi-static macroscopic behaviour of concrete. Figure 3.33 and Figure 3.34 show the 

effect of the tensile cut off stress 𝑇 which increases the peak stress and the broadness of the 

curvature after yield strength in both tension and compression. Also, it increases the ultimate strain 

of the tensile curve and offers more ductility to the compressive curve. Figure 3.35 and Figure 3.36 

present the effect of the softening factor 𝜉, with a slight increase in peak stress in both tension and 

compression. This parameter has almost no effect on the ductility of the compressive curve. 

However, it grows the width of the tensile curve dramatically after the yielding stress until the peak 

stress and consequently, it increases so the ultimate tensile strain. As can be seen, different 

combinations of the parameters 𝑇 and 𝜉 result either the same ultimate strain Figure 3.37 or the 

same peak stress Figure 3.38. For this reason, those two parameters need to be chosen carefully in 

order to obtain the desirable macroscopic behaviour of concrete.  
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Cohesion stress  𝐶0 (Figure 3.39), friction 𝜑𝑖  and contact 𝜑𝑐 angles (Figure 3.41) do not influence the 

tensile behaviour of concrete. Therefore, Cohesion stress  𝐶0 affects the peak stress (Figure 3.40) and 

the two angles influence the values and the width of the peak stress and the response of the 

softening regime of the compressive curve (Figure 3.42). Thus, these three parameters need to be 

identified in order to reproduce the macroscopic compressive curve well. 

After studying the influence of each parameter of the non-linear behaviour on quasi-static 

compression and tension we defined the procedure for the identification of the constitutive model 

parameters. The first step is to obtain the macroscopic tensile stress 𝜎𝑇 = 3.6 𝑀𝑃𝑎 and ultimate 

strain 𝜀𝑢 = 0.025% by identifying the microscopic tensile parameters 𝑇 and 𝜉 (Figure 3.43). The 

second step is the calibration cohesion stress 𝐶0, in order to satisfy the macroscopic compressive 

stress 𝜎𝐶 = 34 𝑀𝑃𝑎. The last step is the adjustment of the friction 𝜑𝑖  and contact 𝜑𝑐 angles to well 

reproduce the peak curvature and the post-peak regime of the compressive stress-strain response 

(Figure 3.44). 

 

 

Figure 3.33: Effect of tensile cut of stress T on the tensile stress-strain curve 

 

0

1

2

3

4

5

6

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04

St
re

ss
 [

M
p

a]
 

Strain [%] 

T=2.0 MPa

T=2.3 MPa

T=2.8 MPa

T=2.5 MPa

T=3.0 MPa



 

 

 
 

117 

 

Figure 3.34: Effect of tensile cut of stress T on the compressive stress-strain curve 

 

Figure 3.35: Effect of softening factor ξ on the tensile stress-strain curve 
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Figure 3.36: Effect of softening factor ξ on the compressive stress-strain curve 

 

Figure 3.37: Effect of tensile cut of stress T and softening factor ξ on the tensile stress-strain curve 
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Figure 3.38: Effect of tensile cut of stress T and softening factor ξ on the tensile stress-strain curve 

 

Figure 3.39: Effect cohesion stress  𝐶0 on the tensile stress-strain curve 
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Figure 3.40: Effect cohesion stress  𝐶0 on the compressive stress-strain curve 

 

 

Figure 3.41: Effect of friction 𝜑𝑖  and contact 𝜑𝑐 angles on the tensile stress-strain curve 
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Figure 3.42: Effect of friction 𝜑𝑖  and contact 𝜑𝑐 angles on the compressive stress-strain curve 

 

We identified the non-linear elastic with damage behaviour parameters as 𝐶0 = 4.5 𝑀𝑃𝑎, 

𝑇 = 2.5 𝑀𝑃𝑎, 𝜉 = 3, 𝜑𝑖 = 20° and 𝜑𝑐 = 20° by modelling quasi-static tests with macroscopic 

𝜎𝐶 = 34 𝑀𝑃𝑎, 𝜎𝑇 =  3.6 𝑀𝑃𝑎 and  𝜀𝑢 = 0.025%. 

 

Figure 3.43: Quasi-static tension simulation 
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Figure 3.44: Quasi-static compression test and simulation 

3.2.2  Mesh for high-confinement tests 

We created the mesh for the high-confinement test by following the same steps with the mesh for 

the quasi-static uniaxial test. A cubical shape with dimensions 0.1x0.1x0.1 m3 is discretised with four 

tetrahedral finite elements per side and the concrete discrete element packing is generated with 

Padder. Mesh parameters are kept the same 𝑘1 = 3, 𝑘2 = 4, and two iterations of densification, 

because of the dependency of the microscopic parameters on the packing. The polydisperse 

assemble consist of 4427 DE with a maximum radius of 0.55 cm, a minimum radius of 0.18 cm and 

with 0.592 compactness (Table 3.5). Its interaction range coefficient is calculated to be 1.402, in 

order to ensure an average of twelve links per DE. As can be seen from the size distribution Figure 

3.46 and the orientation of all the links Figure 3.47, the mesh is homogeneous and isotropic. The 

specimen is placed in frictionless contact with six rigid elements one on every side which are applying 

the loading conditions Figure 3.45. 

 

FE number 
per side 

k1 k2 Iterations 
DE Total 
number 

𝐑𝒎𝒂𝒙 
(cm) 

𝐑𝒎𝒊𝒏 
(cm) 

Compactness λ 

4 3 4 2 4427 0.55 0.18 0.592 1.402 

Table 3.5: DE diameters 
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Figure 3.45: Compaction mesh 

 

 

Figure 3.46: High-confinement mesh histogram of radius distribution  
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Figure 3.47: High-confinement mesh orientation of interaction in the three planes 

 

3.2.2.1 Compaction Law parameters 

The compressive non-linear plastic behaviour under high confining pressures is following the 

compaction phenomenon. A trilinear elasto-plastic-hardening model gives the microscopic 

constitutive behaviour (compaction law). The compaction law parameters are defined employing 

hydrostatic and oedometric tests obtained thanks to a triaxial device that allows performing triaxial 

compression tests on concrete with high confining pressure up to 650 MPa [52][53][88][137].  

We launched several hydrostatic simulations in order to understand the influence of each parameter 

of compaction law on the macroscopic behaviour of our concrete model under high confining 

pressures. Figure 3.48 gives the effect of 𝐶𝑐𝑒𝑙; this parameter controls the elastic branch of the 

hydrostatic simulation by increasing its stiffness.  Figure 3.49 compares the hydrostatic response 

after varying the parameter 𝐶𝑐𝑝𝑙. It is clear that this parameter defines the starting point of the 

hardening branch. Finally, the coefficient 𝜉1 (Figure 3.50) influences the slope of the plastic regime 

while the coefficient 𝜉2 (Figure 3.51) affects the stiffness of the hardening regime. The compaction 

law parameters are defined on a hydrostatic test and an oedometric test is used to verify their 

validity. 
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Figure 3.48: Effect of 𝐶𝑐𝑒𝑙  on the hydrostatic simulation 

 

Figure 3.49 Effect of 𝐶𝑐𝑝𝑙 on the hydrostatic simulation 
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Figure 3.50: Effect of 𝜉1 on the hydrostatic simulation 

 

 

Figure 3.51: Effect of 𝜉2 on the hydrostatic simulation 
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plotted with the experimental results in Figure 3.53 and Figure 3.52. The experiments were 

conducted by Gabet [51] in the 3S-R laboratory (University Grenoble Alpes). 

 

Figure 3.52: Hydrostatic test and simulation 

 

Figure 3.53: Oedometric test and simulation 
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3.2.3  Mesh for dynamic spalling test 

Likewise, the mesh for the dynamic spalling test is created using the same procedure of the previous 

meshes. The specimen is cylindrical with diameter 46 mm and length 142 mm. It consists 18376 DE of 

0.21 cm maximum radius, 0.07 cm minimum radius, compactness of 0.582 and an interaction range 

coefficient of 1.3965 (Table 3.5). Figure 3.54 shows the histogram of the size distribution and Figure 

3.55 illustrates the discrete element mesh for the dynamic spalling Hopkinson bar test. The pulse is 

applied on directly on the front face of the sample and the rear face velocity is recorded to identify 

the dynamic increase factor law parameters. 

 

FE number 
per side 

k1 k2 Iterations 
DE Total 
number 

𝐑𝒎𝒂𝒙 
(cm) 

𝐑𝒎𝒊𝒏 
(cm) 

Compactness λ 

4 3 4 2 18376 0.21 0.07 0.582 1.3965 

Table 3.6: DE diameters 

 

 

Figure 3.54: Spalling test mesh histogram of radius distribution  
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Figure 3.55: Compaction mesh 

3.2.3.1 Strain rate dependency parameters 

The strain rate dependency is inspired by the CEB formula [20] for the calculation of the macroscopic 

dynamic tensile strength as a function of strain rate, by defining a ratio DIF (Dynamic Increase Factor) 

of the dynamic tensile strength over the static tensile strength 𝑇𝑑𝑦𝑛/𝑇𝑠𝑡. The local parameters: static 

strain rate (𝜀𝑠𝑡)̇ , moderate  (𝜀𝑚)̇  strain rates 1 and 2 were computed with the simulations of 

spalling tests [3]. The experiments launched during my master thesis in the laboratory 3S-R by the 

supervision of professor Pascal Forquin. The experimental rear face velocity of the spalling tests is 

reproduced with the parameters 𝜀𝑠𝑡̇ = 10
−6 s−1, εṁ = 1 s−1, 1 = 0.0355 and 2 = 0.333.  

 

Figure 3.56: Spalling test and numerical simulation (impact velocity 4.28 m/s) 
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Figure 3.57: Spalling test and numerical simulation (impact velocity 5.85 m/s) 

3.3 Conclusion  

This chapter is separated into two units, the identification of the parameters for the mesh generation 

and the concrete constitutive model. The first unit gives the influence of the mesh generation 

parameters on both the mesh characteristics and the macroscopic behaviour of the concrete model. 

We demonstrated that the mesh parameters affect the density of the packing and the number of 

discrete elements. Also, they influence the behaviour of the constitutive model. Thus, we identified a 

set of mesh parameters to eliminate the dependency of our model to the assembly of the particles. 

We selected a packing that offers a homogeneous and isotropic mesh with the least possible amount 

of particles thus the computational cost remains rational. Furthermore, we defined a ratio between 

the FE size and the mean DE diameter, for proper contact between the two objects. 

The second unit shows the influence of our constitutive model parameters on the macroscopic 

behaviour of concrete. These parameters were identified on fully saturated ordinary concrete. After 

comprehending the effect of each parameter, we established a procedure for their identification.  

We calibrated the linear and non-linear elastic model under low pressures was with the help of 

quasi-static compressive and tensile test. Hydrostatic and oedometric test were used for compaction 

law parameters under high confining pressures. We calculated the parameters of the dynamic 

constitutive law on spalling Hopkinson bar test. 
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After defining all the parameters; our model is ready to simulate hard impacts on concrete and 

reinforced concrete target which is the primary objective of the current PhD study. Additionally, with 

the simulation of hard impact tests, we will validate the capability of the proposed discrete/finite 

element numerical approach to reproduce complex phenomena such as multi-cracking.
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Chapter 4 

4 Numerical simulations of 
impact experiments 

The reliability of the proposed discrete element numerical model is validated with the simulation of 

hard impacts. The numerical results are compared with the experimental data to show the capability 

of our model to predict the damage modes of impacted concrete. First, we simulate the perforation 

and penetration test of CEA-Gramat [8],[106] to verify the ability of our model to produce the effects 

of hard impacts into concrete. They performed rigid impacts on confined concrete specimens. Then, 

the numerical calculation of Erzar’s [40] edge-on impact on concrete tiles presents the evolution of 

damages in a two-dimensional configuration. Finally, the simulation of the drop-weight impact on a 

reinforced concrete beam from the University of Toronto [114] validates the capability of the steel-

concrete bond [91] to model the response of reinforced concrete.  

4.1 CEA impact experiments 

A series of impact tests performed by CEA-Gramat [8], [106] with a gas launcher “DEIMOS” Figure 

4.1.  Rigid ogive-nosed steel projectiles with a nose radius to diameter ratio of 5.77, a 52.06 mm 

shank diameter, a 299.43 mm length and a 2.442 kg mass (Table 4.1) were used to hit the centre of 

unreinforced cylindrical concrete specimens. Acceleration recorder system embedded into the steel 

projectile (Figure 4.2) to measure axial deceleration during the experiment and to obtain both 

displacement and velocity by integration. The correct integration of the acceleration was validated by 

the comparison of the integrated and measured projectile velocities using a laser technique. 



 

 

 
 

134 

 

Figure 4.1: Gas launcher “DEIMOS” 

Mass Diameter Length Nose radius/Diameter Length/Diameter 

2.442 kg 52.06 mm 299.43 mm 5.77 mm 5.77 mm 

Table 4.1: Projectile properties 

 

Figure 4.2: Ogive-nosed steel projectile with its accelerometer  

Targets were made of fully saturated unreinforced R30A7 ordinary concrete confined with a thin 

steel jacket. R30A7 concrete composition and mechanical properties are given in Table 3.4 which 

were widely investigated in previous studies [52], [53], [88], [137], [138]. The target diameter is 800 

mm, while the thickness is 300 mm for the perforation test and 800 mm for the penetration test. The 

confined steel jacket has a 15 mm thickness and it is fixed to the concrete target. Furthermore, high-

speed video cameras were used to observe the interaction between the projectile and the target. 

Figure 4.3 illustrates the recording of perforation test phases. One can observe the impact effects 

found in the literature [76]. Initially, spalling appears with the ejection of fragments from the 

proximal face of the target (0.6 -2.5 ms). At the same time, the penetration phase of the projectile 
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initiates with tunnelling into the target. In the end, the striker perforates the concrete specimen with 

scabbing on the distal face (4.4 -8 ms). 

 

 

Figure 4.3: Perforation test phases 

 

Three tests have been conducted with different striking velocities, one perforation test at 333m/s 

and two penetration tests at low velocity (LV, 227 m/s) and high velocity (HV, 347.4 m/s) Table 4.2. 

After the test, a topographic laser system was used to measure the crater dimension and the 

penetration depth.  

 

Test Perforation Penetration (LV) Penetration (HV) 

Velocity 333 m/s 227 m/s 347.4 m/s 

Thickness 300 mm 800 mm 800 mm 

Table 4.2: CEA-Gramat impact test striking velocities 

 

Figure 4.4, Figure 4.5, and Figure 4.6 show the damage on the concrete specimens after impact. The 

sample under perforation Figure 4.4 appears cratering on both faces with wider damage zone on the 

rear face than the front face. The perforation test samples are damaged with a cone cracking mode. 
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As expected the damage on the concrete target under HV penetration Figure 4.6 is higher than on 

the specimen under LV penetration Figure 4.5. 

 

  

Figure 4.4: Target’s front face (left) and rear face (right) after perforation test 

 

  

Figure 4.5: Target’s front face (left) and rear face (right) after penetration LV test 
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Figure 4.6: Target’s front face (left) and rear face (right) after penetration HV test 

 

4.1.1 Modelling of CEA impact experiments  

The cylindrical concrete specimen model is with discrete elements, while tetrahedral finite elements 

are used for the steel confining jacket Figure 4.7 and the steel projectile Figure 4.8. The discretisation 

of this problem was very challenging because the projectile diameter (52.06 mm) is very small 

compared to the target diameter (300 mm). FE size cannot be bigger than 1 cm; otherwise, the 

discretisation is not providing the correct shape of the projectile.  It is significant to keep the FE size 

bigger than the mean DE diameter ensuring proper creation of contacts between the two objects.  

Table 4.3 gives the DE characteristics of the perforation and penetration of concrete specimens, 

which respect the condition for correct contact between FE and DE, Figure 4.9 and Figure 4.11 gives 

their histogram distributions Figure 4.9Figure 4.11. Figure 4.10 illustrates the perforation test model 

while Figure 4.12 shows the penetration test model with a DE mesh for the concrete specimen 

confined with a FE steel jacket. The projectile is placed 7 cm above the middle of the concrete 

specimen. The steel elements are modelled with a linear elastic behaviour of 𝐸 =  210 𝐺𝑃𝑎 and 

𝜈 =  0.3. 
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Figure 4.7: Discrete element model of concrete target with finite element model of confining steel jacket  

 

 

Figure 4.8: Steel projectile FEM model with tetrahedral 

 

Mesh 
DE Total 
number 

𝐃𝒎𝒂𝒙 (cm) 𝐃𝒎𝒊𝒏 (cm) 𝐃𝒎𝒆𝒂𝒏 (cm) Compactness λ 

Perforation 141765 1.8 0.6 0.942 0.6086 1.3986 

Penetration 336467 1.8768 0.6256 0.982 0.6154 1.402 

 

Table 4.3: Perforation and penetration assembly characteristics 
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Figure 4.9: Perforation test mesh histogram of radius distribution  

 

 

Figure 4.10: Perforation test model with DE concrete specimen (800mm diameter, 300mm height) confined with 

FE steel jacket and FE steel projectile (52.06 mm diameter, 299.43 mm length) 
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Figure 4.11: Penetration test mesh histogram of radius distribution 

 

Figure 4.12: Penetration test model with DE concrete specimen (800mm diameter, 800mm height) confined with 

FE steel jacket and FE steel projectile (52.06 mm diameter, 299.43 mm length) 
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4.1.2 Numerical results  

Figure 4.13 shows the evolution of damage during the simulation of the perforation test for six 

instants (left side) and pictures from the experiment Figure 4.3 (right side). The simulation represents 

all the damage modes of concrete under perforation from rigid projectiles sufficiently. We can see 

the initial cratering at 0.3 ms, the initiation of spalling at 0.6 ms following by the tunnelling due to 

penetration of the projectile. Then, scabbing appears at the rear face at 2.5 ms and finally, the 

projectile perforates the target.   
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Figure 4.13: Perforation damage state of concrete at t = 0, 0.3 ms, 0.6 ms, 2.5 ms, 4.4 ms and 8 ms (from top to 

bottom) 

Figure 4.14 and Figure 4.15 plot the axial displacement and velocity of the perforation impact test, 

where black curves give the experimental results and blue the simulation. Experimental data 

perfectly match with numerical results.  

 

Figure 4.14: Perforation test, simulation and experiment, projectiles axial displacement 

 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4 5

D
is

p
la

ce
m

e
n

t 
[m

] 

Time [ms] 

Experiment Simulation



 

 

 
 

144 

 

Figure 4.15: Perforation test, simulation and experiment, projectiles axial velocity (right) 

 

Figure 4.16 presents the crack pattern observed after the perforation test (right side) and the 

damage state obtained from the numerical simulation (left side). The colours on the two figures are 

not related, the colour of the left side figure define damage for the DEs that are not blue while the 

colours of the right side figure show the ejected fragments of the concrete. 

 

 

 

Figure 4.16: Perforation crack pattern, simulation (left) and experiment (right) 

Figure 4.17 shows the crack propagation throughout the simulation of the LV penetration test for 

four moments. The target for the penetration test is thicker than the perforation test; thus the 

projectile does not perforate the specimen. The simulation produces all the impact effects into 

concrete with spalling and cratering on the front face by conical cracks at 0.6 ms and the penetration 

of the projectile creates a cylindrical hole with diameter very close to the projectile’s diameter at 1.2-

1.4 ms.  
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Figure 4.17: Penetration LV damage state of concrete at t = 0, 0.6 ms, 1.2 ms and 1.4 ms (from top to bottom) 

 

Figure 4.18 compare axial displacement of the projectile during the LV peroration between the 

experimental (black curve) and simulation (blue curve), while similarly Figure 4.19 gives its axial 

velocity.  
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Figure 4.18: LV Penetration test, simulation and experiment, projectile axial displacement 

 

 

Figure 4.19: LV Penetration test, simulation and experiment, projectile axial velocity 

 

Figure 4.20 (right side) shows LV penetration test damage inFigure 4.20 and the damage after the 

simulation (left side).   
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Figure 4.20: LV Penetration crack pattern, simulation (left) experiment (right) 

 

Figure 4.21 shows the cracks during the simulation of the HV penetration test for four instants. 

Likewise, the LV impact test the same impact effects appear at the HV simulations (spalling with 

cratering and tunnelling through penetration). However, the penetration depth of the HV 

penetration test is bigger than the LV penetration, as expected.  
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Figure 4.21: Penetration HV damage state of concrete at t = 0, 0.4 ms, 0.8 ms and 1.4 ms (from top to bottom) 

Figure 4.22 and Figure 4.23 illustrate the axial displacement and velocity of the projectile of the HV 

penetration test.  

  

 

Figure 4.22: HV Penetration test, simulation and experiment, projectile axial displacement 
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Figure 4.23: HV Penetration test, simulation and experiment, projectile axial velocity 

 

Figure 4.24 shows the crack pattern after the HV penetration simulation (right side) and the 

experiment (left side). 

 

 

Figure 4.24: HV Penetration crack pattern, simulation (left) experiment (right) 

The numerical results are in good accordance with the experimental ones. For the perforation test 

results thoroughly match with the simulation. However, a slight difference is observed on the curves 

of the penetration tests.  
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The damage for all experiments seems to be quite similarly produced by the DE model. The 

perforated specimen appears more significant diagonal cracks at the bottom than the top, like the 

experiment. It is evident that the phenomena observed experimentally, such as spalling on the front 

face with injection of fragments and tunnelling have successfully been generated through all the 

simulations. In addition, scabbing with diagonal cracking is presented on the rear face of the 

perforation specimen. Furthermore, a cratering damage mode observed in the penetration tests, 

which was also reproduced in numerical results. Finally, the simulations calibrated successfully bigger 

penetration depth for the HV impact than the LV impact.  

4.2 Edge-on-impact test 

The edge-on impact test (EOI) developed by the Ernst Mach Institute – Germany [66], [128] and 

Centre Technique d’Arcueil – France [46], [110], to study fragmentation of concrete at high strain-

rates. The principle of this experiment is to visualise the evolution of damages by producing loading 

equivalent to that of a ballistic impact in a two-dimensional configuration. 

This study is analysing the simulation of two edge-on impact test to verify the damage reliability of 

the current discrete element method. Erzar [40] performed the two edge-on impact experiments 

Figure 4.25 at the University of Metz. EOI test consists of a thin concrete tile (200 x 120 x 15 mm3) 

impacted by aluminium projectiles of 19.9 mm diameter Figure 4.25 and three rigid plates. Two of 

the plates constrain the vertical displacements of the top and bottom specimen faces, whereas a 

flexible vertical plate with fixed ends limits the horizontal displacement of the rear face of the tile. 

Concrete specimens are fully saturated unreinforced ordinary concrete R30A7 (Table 3.4). The 

projectiles have particular homothetic geometry and are made of aluminium Figure 4.26. 

The first experiment EOI-Small is conducted by a small projectile (62.15 mm length) with 75.5 m/s 

impact velocity. The second experiment EOI-Big performed with a big (122.15 mm length) with 56 

m/s impact velocity. Table 4.4 shows the characteristic of the projectiles for the EOI test. 

Projectile Mass Diameter Length Velocity 

Small 0.1304 kg 19.9 mm 62.15 mm 75.5  m/s 

Large 0.27390 kg 19.9 mm 122.15 mm 56 m/s 

Table 4.4: EOI tests projectile properties 
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Figure 4.25: Edge-on impact setup 

 

 

Figure 4.26: Ogive-nosed with homothetic geometry projectiles 

 

 

4.2.1 Edge-on-impact modelling 

The concrete tile model is with discrete elements and for the projectiles are used tetrahedral finite 

elements while the three rigid plates are made with hexahedral finite elements. The discretisation of 

the projectiles cannot be bigger than 0.39 cm, in order to describe their shapes correctly. Figure 4.27 

shows the two sides of the finite element model for the small projectile and similarly Figure 4.29 for 

the big projectile. The aluminium projectiles are modelled with a linear elastic behaviour of 

𝐸 =  70 𝐺𝑃𝑎 and 𝜈 =  0.3. 

The creation of the discrete element mesh for the concrete specimen follows the same steps as for 

the previous mesh (quasi-static mesh, high-confinement mesh etc.). Table 4.5 provides the DE 

characteristics of the edge-on impact concrete specimen, which respect the condition for correct 

contact between FE and DE, and Figure 4.31 shows the histogram distribution Figure 4.31. 
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Figure 4.28 and Figure 4.30 present the edge-on impacts test models for small and big projectiles 

with FE, with a DE mesh for the concrete specimen surrounded by three FE rigid plates. 

 

 

 

Figure 4.27: Finite element model of small projectile 

 

 

Figure 4.28: Edge-on impact test small projectile DEM/FEM model  
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Figure 4.29: Finite element model of big projectile 

 

 

Figure 4.30: Edge-on impact test big projectile DEM/FEM model 
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DE Total 
number 

𝐃𝒎𝒂𝒙 (cm) 𝐃𝒎𝒊𝒏 (cm) 𝐃𝒎𝒆𝒂𝒏 (cm) Compactness λ 

118209 0.28 0.933 0.136 0.6098 1.37 

Table 4.5: Edge-on impact assembly characteristics 

 

 

Figure 4.31: Edge-on impact mesh histogram of radius distribution 

 

4.2.2 Numerical results 

Figure 4.32 shows the final damage stage of the edge-on-impact experiment with the small 

projectile. Figure 4.33 presents the results from the numerical simulation which is in good agreement 

with the experiment, especially for the cratering damage mode. The calculated penetration depth of 

the projectile corresponds to the experimental one as can be seen in Figure 4.34.  

Figure 4.35 presents the final cracks of the edge-on-impact test with the big projectile. Figure 4.36 

corresponds to the numerical simulation which matches with the experimental damage mode. On 

Figure 4.37 can be seen that the penetration depth of the projectile from the simulation is in good 

agreement with the experimental measure. 
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Figure 4.32: EOI-Small final damage state (experiment) 

 

   

Figure 4.33: EOI-Small final damage state (simulation) 
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Figure 4.34: EOI-Small projectile’s penetration depth 

 

 

Figure 4.35: EOI-Big final damage state (experiment) 
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Figure 4.36: EOI-Big final damage state (simulation) 

 

Figure 4.37: EOI-Big projectile’s penetration depth 
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4.3 Drop-weight impact on a reinforced concrete beam 

The SS0b test from an experimental program conducted in 2007 by the University of Toronto [114] is 

simulated to verify the capability of the new approach proposed by Masurel [91] to model reinforced 

concrete. These experiments aimed to produce experimental data for hard impacts by testing large 

reinforced beam specimens under free falling drop-weights Figure 4.38. 

 

 

Figure 4.38: Specimen dimensions 

 

The SS0b beam was doubly-reinforced with four longitudinal bars No. 30 having 30 mm diameter and 

700 mm2 cross section. The bars were placed symmetrically along the height in order to have the 

same resistance properties of the beam in positive and negative bending and they spanned the 

entire length of the beam. In the considered SS0b test no transverse reinforcement was used that 

maximised damage. The beam was simply supported as shown in Figure 4.38. However, to prevent 

uplift of the beam from the supports during the impact an arrangement with four No. 30 support 

bars was used holding the beam down. At the bottom end, these vertical bars were fitted to 

spherical bearings to enable free rotation, whereas at the top they were fixed to a structural steel 

section with a hinge allowing the beam to rotate freely at the supports. 

The concrete used for the beam was an ordinary concrete with 10 mm aggregate size. During the 

casting of the beams several standard cylinder samples (150 mm in diameter and 300 mm in height) 

were created to determine the compressive strength of the concrete. The age of the beam 

specimens and the cylinders samples was more than one year at the time of impact testing. The 

compressive peak stress measured on the cylinders was 50.1 MPa and the strain at peak stress was 

0.0023. The standard prisms (152 x 153 x 508 mm) were tested to determine the tensile coupon 

strength of the concrete. The direct tensile strength for 1 year dried specimen was estimated at 3.2 

MPa (Table 4.6). Standard tensile tests were carried out to determine the properties of the steel 

reinforcement (Table 4.7). 
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Concrete mix proportions 

Characteristics 

Maximum size aggregate 10 mm 

Density 2437 kg/m3 

Mechanical properties 

Young’s Modulus E 35 GPa 

Poisson’s ratio ν 0.2 

Compressive strength σC 50.1  MPa 

Tensile strength σT 3.2 MPa  

Table 4.6: Composition and mechanical properties ordinary concrete for drop-weight test 

 

Density Yield strain (x 10-3) Yield stress 
Ultimate 

strength 

Modulus of 

elasticity 

5.3 kg/m 2.38 464 MPa 630 MPa 195 GPa 

 Table 4.7: Steel mechanical properties 

 

A heavy drop-weight of 600 kg was used for the testing. It was manufactured by filling a 300 mm 

square HSS (hollow structural steel) section with concrete and adding thick steel plates welded to the 

HSS section. The weight was hung on the crane by a nylon rope that was cut resulting in the fall of 

the weight on the specimen. Two I-shaped steel columns were used to guide the weight and ensure 

hitting the right point on the beam. A 30 mm clearance between the weight and the flanges of the 

columns excluded any friction during the fall. A 300 mm2 steel plate of 50 mm thickness was placed 

on the beam at the impact point, to obtain a well-distributed impact force. The weight was dropped 

from a clear height of 3.26 m above the specimen resulting in an impact velocity of 8 m/s.  

The drop-weight punched through and caused massive concrete spalling both at the top and the 

bottom of the beam (Figure 4.39).  
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Figure 4.39: Final damage state of the front and back faces for SS0b test  

 

The longitudinal reinforcing bars were exposed and severely bent. There were also signs of bond 

failure of the reinforcement bars at the supports. One notable result was the formation of a shear 

plug with major diagonal cracks starting at the top from the impact point and propagating 

downwards with an angle of approximately 45-degrees. Because SS0b test had no stirrups, the 

middle segment punched through with almost no visible bending deformations. In addition, several 

diagonal cracks parallel to the major shear-plug cracks also developed as well as some bending cracks 

at the mid-span and at the supports. Another diagonal crack developed alongside the shear plug 

starting from the supports and becoming horizontal close to the top before reaching the impact 

zone. As indicated in the test report, the flexural behaviour of the beam was minimal. 

 

4.3.1 Modelling  

A detailed numerical model is built to model the experimental setup (Figure 4.40). Standard FEM is 

used to model the longitudinal steel reinforcement, the upper and lower support plates, the anti-

uplift bars, the impactor and a square steel plate inserted under the drop weight. The discrete 

element modelling is used for concrete Table 4.8. Unilateral contact conditions are prescribed 

everywhere between the discrete and finite elements of the model. Steel-concrete bond laws 

described by Masurel [91] are applied to describe the interaction between the concrete and the steel 

reinforcement. Gravity is taken into account for the whole discrete/finite element model. 
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Figure 4.40: View of the DE/FE model 

 

DE Total 
number 

𝐃𝒎𝒂𝒙 (cm) 𝐃𝒎𝒊𝒏 (cm) 𝐃𝒎𝒆𝒂𝒏 (cm) Compactness λ 

0.0 2.82 0.94 1.357 0.6024 1.3969 

Table 4.8: Drop-weigh assembly characteristics 

 

 

Figure 4.41: Drop-weigh mesh histogram of radius distribution 
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4.3.2 Calibration of parameters 

Since the concrete for this experiment was different, we started from the calibration of the 

constitutive parameters, with a series of EUROPLEXUS calculations by changing the local parameters. 

Calibration in tension and compression is made on prism-type discrete element specimens.  

Before simulating the SS0b test, we apply the set of parameters obtained by calibration to simulate 

the standard compression test on a cylinder and compare the numerical results with the measures 

realised in [114] on concrete cylinders. In this test, the cylinder is compressed very slowly by two 

rigid steel plates until its full ruin. We simulate this test by modelling frictional contact between the 

steel plates and the discrete element model of the cylinder. Figure 4.42 shows the damage state of 

the cylinder for different strain levels. As can be seen the concrete near the cylinder ends is not 

damaged because of friction constraint. A cone damage mode of the discrete element model is 

conforming to experimental observation. 

 

 

Figure 4.42: Damage state of the cylinder: a) initial state, b) for ε=0.2 %, c) for ε=0.6 % 

 Figure 4.43 shows the stress-strain curve obtained in this simulationFigure 4.43. Both the trend of 

the curve and the peak value are correctly reproduced. 
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Figure 4.43: Stress-strain curve in the cylinder compression test simulation 

4.3.3 Numerical results for SS0b test 

Then, the drop-weight test was simulated and Figure 4.44 shows the evolution of damage of the RC 

beam for five consecutive time stations.  
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Figure 4.44: Damage state of concrete at t = 0, 10 ms, 20 ms, 50 ms, and 200 ms (from top to bottom) 

 

For the considered case the real material discontinuities can be seen when plotting the vertical 

displacement field (Figure 4.45). The basic colour changes reveal the presence of at least three 

oblique macro-cracks delimiting different material fragments. These are in good agreement with the 

macro-cracks observed in the experiment (Figure 4.39).  

It is difficult to produce a fully static solution corresponding to the final state of the experiment, 

because this analysis used the explicit-type time integration algorithm. As can be seen in Figure 4.46, 

the beam has resisted to the first impact and not completely failed, but several oscillation periods are 

needed to completely dissipate the impact energy and obtain the final crack opening due to the 

drop-weight gravity action. 

 

Figure 4.45: Vertical displacement UZ at 17 ms 
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Figure 4.46: Vertical displacements versus time in the simulation 

Analysis of the results obtained in the simulation of SS0b impact test shows that the main physical 

phenomena observed in the experiment are represented correctly by the mixed discrete/finite 

element model.   
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Conclusions and perspectives 

Conclusions 

This project is a collaboration between the laboratory 3S-R (University of Grenoble Alpes) and the 

research centre of EDF R&D (Paris-Saclay). It is following a series of previous studies on the discrete 

element methods, which were initialised in 2003 with the developments of Hentz in SDEC software. 

He extended the original discrete element method of Cundall and Strack by introducing the concept 

of cohesive interactions allowing to model cohesive materials such as concrete. Later, Frangin in 

2006 developed FE/DE coupling for 3D elements. After, in 2009 Rousseau established in EUROPLEXUS 

the framework of a coupling FE/DE method with shell FE able to model the macro-cracking of a 

reinforced concrete structure under impacts. Masurel in 2015 developed a new finite element model 

for the reinforcement coupled with discrete elements. At the same time, in 2015 Omar improved the 

constitutive model for concrete to better control the brittle behaviour with the Moment Transfer 

Law and to treat the strain rate effects under dynamic loading. 

The present study is aiming at the development of an original engineering tool, for the design of 

infrastructures protection systems under impacts. The purpose is to assimilate the previous 

developments and further implementation in EUROPLEXUS, for a reliable prediction of damage on 

reinforced concrete structures, subjected to severe loadings due to natural or manmade hazards 

such as an aircraft or missile impacts. Furthermore, the aim of our study is the implementation of 

constitutive compaction law, to properly account for the behaviour of concrete under high confining 

pressures. Thereby, we study the influence of both mesh creation and constitutive law parameters, 

in order to verify the proper modelling of concrete. 

Firstly, a sensitivity study of the parameters for the mesh generation algorithm was employed, in 

order to investigate their influence on the macroscopic behaviour of concrete. We observed that it is 

not necessary to use more than two or three iterations for the densification phase of the mesh 

creation since the mesh properties do not vary a lot for a bigger number of iterations. The 

compactness of the mesh affects its ductility in traction. Less than 0.5 compact meshes are not 

acceptable because they result in ductile behaviour under tension. Loose meshes contain very few 

particles with bigger distances between them; thus the radius of interaction needs to be increased 

quite a lot. For this reason, this adjustment offers more ductility to the model since the constitutive 

law is not local anymore.  
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Secondly, we noticed that the model for the quasi-static mesh used in the previous studies was not 

reliable. They used a configuration by applying the loading directly to the discrete elements by 

blocking two layers of discrete elements laterally on the front and rear face of the specimen. This 

model leads in miscalculation of the local parameters since the roughness between the discrete 

elements of the specimen and discrete elements of loading zones induces additional friction in the 

system. Furthermore, the damage mode was not correct with the specimen deforming into a barrel 

shape due to Poisson's effect. Therefore, we model the loading zones with rigid elements to 

eliminate the undesired friction between loading zones and specimen. The new model of the quasi-

static mesh has the ability to well represent the cone failure mode of the quasi-static compression 

test. 

In EUROPLEXUS the shapes of rigid elements are limited to the basic (parallelepiped, cone, and 

cylinder). In this project, we simulated impact with complex geometry (ogive-nosed) projectiles; thus 

the impactors are modelled with finite elements. One of the most important parameters is the ratio 

between finite element sizes and discrete element sizes, that are in contact to ensure correct force 

transmission from one to the other. We study the influence of discretisation with the help of quasi-

static simulation in compression by replacing the rigid elements loading zones with finite element 

plates. We concluded that the condition for proper contact between discrete-finite elements 

demands bigger finite element size than the mean discrete element diameter. 

Afterwards, the local parameters of the constitutive model were calibrated by simulating the 

macroscopic behaviour of concrete on laboratory tests. It is important to note that the microscopic 

local parameters are mesh independent only if the mesh generation parameters are kept constant. 

The parameters are identified on fully saturated ordinary concrete. For the quasi-static behaviour the 

compressive test performed by Vu was used. In addition, for the high confined triaxial the on 

oedometric and the hydrostatic tests conducted by Gabet were simulated. The parameters of 

moment transfer law (MTL) are the second choice that should be made at the beginning for a certain 

type of concrete because it affects the overall macroscopic behaviour of concrete. All the 

experiments were performed in the laboratory 3S-R. The Moment Transfer Law parameters were 

defended on the quasi-static compressive simulation. We detected that the MTL parameters affect 

the smoothness of the peak stress and the ductility of the post-peak curve. 

Moreover, this study proposed a modification of the initial dynamic increase factor constitutive law 

implemented in EUROPLEXUS initially by Omar. The modification gives a more realistic modelling of 

the fracture energy under dynamic loading by controlling the increase of the maximum distance limit 



 

 

 
 

171 

of the local interaction. The dynamic behaviour of concrete is calibrated on the spalling test launched 

during my master thesis in the laboratory 3S-R by the supervision of professor Pascal Forquin. 

After calibrating the set of parameters for the constitutive model concrete hard impacts were 

simulated to validate the reliability of the proposed discrete element approach. Three different 

experimental campaigns were used. First a series of impact tests performed by CEA-Gramat, with 

confined cylindrical concrete specimens impacted by rigid ogive-nosed projectiles. We simulated one 

perforation test and two penetration test with three different impact velocities. Then, two edge-on 

impact test conducted by Erzar at the University of Metz with different projectile size and impact 

velocities were used to verify the ability of the model to represent the damage modes. Finally, the 

simulation of the drop-weight impact on a reinforced concrete beam test from the University of 

Toronto was simulated to study the capability of the new model of Masurel with finite elements for 

the reinforcement coupled with discrete elements for the concrete.  

The numerical results are in good accordance with the experimental ones. For the perforation test 

results thoroughly match with the simulation. However, a slight difference is observed on the curves 

of the penetration tests. The damage for all experiments seems to be quite similarly produced by the 

discrete element model. The phenomenon observed experimentally, such as spalling on the front 

with an injection of fragment and tunnelling were generated successfully through all the simulations. 

In addition, scabbing with diagonal cracking is presented on the rear face of the perforation 

specimen. A cratering damage mode produced at the penetration simulations, with bigger 

penetration depth for the high-velocity impact than the low-velocity impact. The cratering failure 

mode was also successfully produced for the edge-on impact simulations. Furthermore, the drop-

weight simulation was able to generate the oblique macro-cracks in good agreement with the 

experiment. 

Perspectives 

The current discrete element approach installed in EUROPLEXUS is already a powerful computational 

tool.  It is capable of realising realistic simulation on reinforced concrete specimens under hard 

impacts. However, this method has the potential to extend into a fully operational tool, able to 

predict damages on reinforced concrete structures in a wide range of impacts. We can also 

indicate several tracks for future research. 

Our model is now a complete and reliable numerical tool, capable of simulating impacts on concrete 

structures of good accordance with the multi-cracking observed experimentally.  It is essential to 
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validate the new steel-concrete bond model on fragmentation tests with fracture of transverse and 

longitudinal steel, to develop an accomplished engineering tool. The adhesion laws of the steel-

concrete tangential interaction need to be adjusted for different diameters of reinforcement and 

calibrated on pull-out tests. 

Nevertheless, it will be fascinating to launch a simulation to study the response of an industrial-size 

concrete structure subjected to an aircraft or missile impact. The use of the FE/DE coupling approach 

developed by Rousseau is required for the simulation of a real-scale structure, in order to keep the 

computational cost reasonable. Frangin and Rousseau identified the coupling method only 

accounting for the elastic behaviour of DE and FE. For this reason, the FE/DE coupling model should 

be thoroughly studied and identified not only with the elastic behaviour; thus the size of the DE area 

can be reduced.  
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