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VISUOTOPY & OPTIC FLOW 
PROCESSING IN MONKEY ’S 

VISUAL CORTEX: 
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Visuotopie et traitement du flux optique dans le cortex visuel du singe : 

une investigation par IRMf



2



3

Acknowledgements

Starting acknowledgements is never an easy task, for the rules of language impose that you start 

somewhere, implicitly prioritizing what you are thankful for. I wish that all people being thanked 

here, know that you were pillars in the elaboration of this work, for each of you have brought 

exactly what was needed, at the right time and the right place. Here goes nothing.

Jean-Baptiste, you have been the older brother I have never had. You are a true role model and I 

know that all PhD students in this lab, wished to have you as a supervisor. You taught me 

patience and perseverance, you taught me how to love what I am doing despite the hard times, 

you taught me the true meaning of being a mentor. You trusted me when you sent me to Leuven, 

you trusted me when I came back. I think you knew I would come back. I shouldn’t make this 

longer than it needs to be. You gave me a lot, and I know my job is to transmit that to as many 

students as I can.

Asma et Chaoukat, mes parents, sans vous tous cela n’aurait pas été possible. Non pas parce que 

vous m’avez donné la vie, mais parce que vous m’avez donné l’envie, et le plaisir de la vivre.

Ingrid, je te remercie parce que tu as persisté. Je t’aime parce que tu fais sortir le mieux en moi. Je 

te remercie parce que tu m’as aidé et soutenu comme personne ne sait le faire.

Youn, Benoît & Marcello. You have also been great teachers and friends, the interactions we had 

were of utmost significance, both scientifically and humanly. I wish we could continue working 

together. I love you guys.

Je remercie le Croissant Fertile et tous mes camarades, avec qui je partage ce projet de vie, de 

renaissance !

Je remercie l’équipe de l’animalerie, passée et présente. Camille et Emilie, je vous remercie aussi 

de votre aide, mais surtout de votre ténacité, qui m’a appris à être carré (pas autant que vous 

l’auriez souhaité peut-être, mais ça viendra, promis) dans mes interactions avec les animaux.

Je remercie aussi Nathalie, Jean-Pierre, Yohann, Fred et Hélène. Vous avez été extrêmement 

aimables et surtout indispensables. C’était un plaisir de travailler avec vous, et surtout de prendre 

l’apéro à l’IRM lorsqu’on un animal a bien travaillé !

I thank also all of the people I met at the CerCo, past and present members. This network of 

exceptional people has been the birthplace of original ideas, solid friendships and unforgettable 

memories. 



4



5

Preamble

My path towards academic research started when I conducted my first internship in the field of 

Neuroscience with Dr. Jean-Baptiste Durand during the first year of my Master’s degree. I had met 

J-B’s brother during one of my courses and we had become close acquaintances. During a 

conversation about our career goals, I had mentioned to him my will to work in Neuroscience. 

Promptly he told me that his brother was a researcher in the domain at the CNRS and that I should 

contact him. In addition to getting frisky with a male macaque’s teeth, my first in-depth research 

experience under the supervision of J-B was extremely motivating and enriching. He had all the 

right mentorship skills to convey his passion towards his area of expertise. It was during the time 

the CerCo had first moved to a new location and the MR platform had just entered service. J-B, 

along with some of his colleagues had the daunting task of putting together the awake monkey 

fMRI technique from scratch, with very limited monetary, technical, and human resources. At the 

end of my internship, and after having accumulated all the positive energy from that inspiring team,

I asked J-B to help me find a lab in which I could familiarize myself better with monkey fMRI. 

Happy with my request, he enthusiastically recommended me to the Leuven lab in which he 

performed one of his postdocs, to conduct my master’s thesis under the supervision of Pr. Wim 

Vanduffel and Dr. John Arsenault. 

The object of my master’s thesis was the study of the role of the primate ventral tegmental area in 

reinforcement and motivation. This internship was a true challenge, as it opposed me to my deepest 

fears and weaknesses. Extensive work and sleepless nights, during which I had to learn new 

complex skills, have profoundly changed me. Nevertheless, I am grateful to have endured them. 

During this internship, I have gained a lot knowledge about the neuroscience of reward. I also 

learned to manipulate macaques, I have assisted in many surgeries and learned to operate an MRI

scanner and acquire and analyze fMRI data. I also learned a great deal about chronic implanted 

electrodes and electric microstimulation. Amid that tsunami of information and struggle to adapt 
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to a new society, I realized that I had surmounted a lot of obstacles and broken many barriers 

within my own psyche. I had learned to seek new experiences instead of avoiding them, to boldly

defend my ideas and even to go meet my idols. Antonio Damasio was invited to Leuven to be 

awarded an honorary doctorate, and gave a talk in the university, which I attended. I went to meet 

him, and we had a long hour discussion about everything, from science to politics, and I had finally 

asked him to be a reviewer for my thesis, which he accepted.

Upon the end of my master’s thesis and having co-authored a paper published in Current Biology 

(Annex 1), which is an annex in the present manuscript, I was resolved to come back to Toulouse

and conduct a PhD under the supervision of J-B. I applied to and won a grant from a Lebanese 

organization, which then allowed me to contact J-B and discuss with him that opportunity. I came 

back to the CerCo because I wanted to take part in developing the awake monkey fMRI technique 

to be able to implement elsewhere. But most importantly, I wanted to continue studying the 

primate visual cortex. 

Knowing that the development a technique as heavy and complex as awake monkey fMRI, and 

publish with that technique within the 3 years of my PhD funding, was a risky bet. Which is why I 

developed a secondary axis of research which relates to the subject of my Master’s thesis. 

Fortunately, we were not only able to finish developing the technique and publishing the first awake 

monkey 3T fMRI paper in France, but we also managed to submit a paper describing a new 

visuotopic cluster in the monkey posterior parietal cortex. Furthermore, we submitted a study

about the effects of reward on visual perception, which is included as an annex in this manuscript 

(Annex 2).

Dear reader, I hope you enjoy reading this manuscript, as much as I enjoyed writing it.
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Summary

Functional magnetic resonance imaging (fMRI) allows addressing the functional organization of the human 

brain with minimal invasiveness and in healthy individuals. The implementation of that technique in non-

human primates represents an important achievement in systems neuroscience. On the one hand, monkey 

fMRI contributes to the reduction and refinement of invasive approaches in non-human primates, by 

revealing the regions of interest in which focal electrophysiological and/or anatomical investigations should 

be carried out. On the other hand, the knowledge acquired with such invasive approaches can be more 

safely transposed to humans, once inter-species homologies and differences have been identified through 

the use of similar fMRI protocols in human and non-human primates. 

The first part of this thesis reviews the most common approaches that have been used to study brain 

functions, either in humans or in non-human primates. It is shown that despite progresses in the human 

approaches, invasive studies in monkeys remain necessary for understanding the neuronal mechanisms 

underlying cognitive functions. Then follows a description of the evolution of the monkey fMRI techniques 

and some of its achievements in bridging the gap between non-invasive human studies and invasive animal 

studies, notably for deciphering the neural mechanisms supporting visually-guided grasping. The end of this 

first part is purely methodological. It undertakes the description of the monkey facilities and the MR 

platform in Toulouse, and details the necessary milestones for conducting fMRI research in macaque 

monkeys.  The second part of the thesis presents the 4 studies we have conducted with monkey fMRI. The 

first study is a preparatory experiment for characterizing the monkey hemodynamic response function, 

which is a prerequisite for proper analysis of subsequent monkey fMRI data. The second study addresses 

the visuotopic organization of the primate dorsal visual cortex with a novel technique of wide-field (80°) 

phase-encoded visual stimulation, coupled with a state of the art surface-based analysis of population 

receptive fields. The results obtained in 2 animals uncover a new cluster of visuotopic areas in the posterior 

parietal cortex of the macaque monkey, bringing a fresh view to the functional organization of this piece of 

cortex and opening a promising avenue for inter-species comparisons. The third study unveils the cortical 

network involved in optic flow processing in non-human primates and it compares this network to that 

recently described in humans. To that end, we replicated in macaque monkeys an experiment previously 

conducted in human subjects with optic flow stimuli that are either consistent or inconsistent with 

egomotion. Besides confirming the involvement of areas previously identified through electrophysiological 

recordings, our results reveal new cortical areas involved in the processing of optic flow, drawing the picture 

of a network sharing many similarities, but also striking differences, with that documented in the human 

brain. 

In summary, the ambition of this thesis is two-fold: (1) providing guidelines for setting-up monkey fMRI 

techniques, drawn from our own experience and (2) exposing a set of studies we have conducted with this 

approach, dealing with the visuotopic organization of the dorsal visual cortex and its involvement in the 

processing of visual motion. Besides bringing a fresh view to the functional organization of the dorsal visual 

pathway in non-human primates, these studies illustrate how monkey fMRI bridges the gap between 

electrophysiological studies in non-human primates and functional imaging studies in humans. 

Keywords: Visuotopic organization, motion processing, visual cortex, non-human 

primates
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Résumé en français

L'imagerie par résonance magnétique fonctionnelle (IRMf) permet d'examiner l’organisation fonctionnelle 

du cerveau humain de manière non-invasive et chez les sujets sains. L’implémentation de cette technique 

chez des primates non-humains représente un progrès important dans les neurosciences des systèmes. D’une 

part, l'IRMf singe permet la réduction et le raffinement des protocoles invasifs impliquant des primates non 

humains, en révélant les régions d’intérêts dans lesquelles les approches focales invasives, 

électrophysiologiques ou anatomiques, devraient être menées. D’un autre côté, les connaissances acquises 

avec ces approches invasives peuvent être transposées plus aisément à l’homme, une fois que les homologies 

et différences interspécifiques ont été identifiées au travers de protocoles d’IRMf menées en parallèle chez 

les primates humains et non-humains.

La 1ère partie de cette thèse présente les approches conventionnelles d’étude des fonctions cérébrales. Nous 

montrons que des études invasives chez l’animal demeurent nécessaires pour comprendre les mécanismes 

neuronaux qui sous-tendent nos fonctions cognitives, malgré le progrès des techniques d’investigation chez 

l’homme. Suit une revue sur l'évolution des techniques d’IRMf singe et certaines de ses réalisations majeures 

comme pont dressé entre les études non-invasives menées chez l’homme et les études invasives réalisées 

chez l’animal, notamment en ce qui concerne notre compréhension des mécanismes neuronaux permettant 

la saisie manuelle d’objets sous contrôle visuel. Purement méthodologique, la fin de cette 1ère partie décrit 

l’animalerie et la plate-forme d’IRM à Toulouse et expose les jalons de l’implémentation de l’IRMf chez le

singe macaque vigile. La 2ème partie de la thèse présente les 4 études que nous avons menées en IRMf singe. 

La 1ère étude modélise la réponse hémodynamique chez le singe, un outil indispensable à l’analyses de 

données d’IRMf, acquises dans les études suivantes. La 2ème étude traite de l'organisation visuotopique du 

cortex visuel dorsal des primates, et y décrit un nouvel assemblage d’aires visuotopiques chez 2 animaux, 

grâce à l’usage de nouvelles techniques de stimulation visuelle et d’analyse de champ récepteurs. Ces résultats 

apportent un point de vue neuf sur l'organisation fonctionnelle de la voie visuelle dorsale et ouvrent de 

nombreuses perspectives pour les comparaisons entre espèces. La 3ème étude cartographie le réseau d’aires 

corticales impliqué dans le traitement du flux optique chez les primates non humains et le compare à celui 

décrit récemment chez l’homme. Grâce à la réplication d’une étude réalisée chez l’homme, nous avons 

confirmé chez 3 macaques l'implication de zones précédemment identifiées par des enregistrements 

électrophysiologiques. Nos résultats révèlent de nouvelles zones corticales impliquées dans le traitement du 

flux optique, dessinant l'image d'un réseau cortical partageant de nombreuses similitudes, mais ayant 

également des différences frappantes, avec celui documenté dans le cerveau humain. 

En résumé, l'ambition de cette thèse est double : (1) fournir des recommandations pour la mise en place de 

techniques IRMf chez le singe, tirées de notre propre expérience et (2) exposer les résultats d’un ensemble 

d'études que nous avons menées avec cette approche, traitant de l'organisation visuotopique du cortex visuel 

dorsal et de son implication dans le traitement du mouvement visuel. En plus d'apporter une perspective 

nouvelle sur l'organisation fonctionnelle du cortex visuel chez les primates non humains, ces études illustrent 

la contribution de l’IRMf singe comme pont entre études électrophysiologiques chez les primates non 

humains et études d'imagerie fonctionnelle chez l'homme.

Mots clés : Organisation visutopique, traitement du mouvement visuel, cortex visuel, 

primates non-humains
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Résumé long en français

Le développement de l’IRMf (Imagerie par Résonance Magnétique fonctionnelle) chez des 

primates non-humains (PNH) a instauré la possibilité d’établir le lien tant attendu entre les données 

issues d’études invasives chez le PNH et celles d’imagerie fonctionnelle obtenues chez l’humain. 

Cette technique représente un progrès important car elle permet la réduction et le raffinement des

protocoles invasifs impliquant des primates non humains, en révélant les régions d’intérêts dans 

lesquelles les approches focales invasives, électrophysiologiques ou anatomiques, devraient être 

menées. Par ailleurs, les connaissances acquises avec ces approches invasives peuvent être 

transposées plus aisément à l’homme, une fois que les homologies et différences interspécifiques 

ont été identifiées au travers de protocoles d’IRMf menées en parallèle chez les primates humains 

et non-humains. Conscient des avantages que fourni le modèle PNH, l’objectif primordial de cette 

thèse était le développement de la technique IRMf chez le singe éveillé au CerCo (Centre de 

recherche sur le cerveau et la cognition) à Toulouse, afin d’étudier l’organisation fonctionnelle de 

la voie dorsale chez cette espèce et de la comparer avec celle de l’Homme. 

En guise d’introduction, cette thèse présente les approches conventionnelles d’étude des fonctions 

cérébrales et montre que des études invasives chez l’animal demeurent nécessaires pour 

comprendre les mécanismes neuronaux qui sous-tendent nos fonctions cognitives, malgré le 

progrès des techniques d’investigation chez l’homme. Suit une revue sur l'évolution des techniques 

d’IRMf singe et certaines de ses réalisations majeures comme pont dressé entre les études non-

invasives menées chez l’homme et les études invasives réalisées chez l’animal, notamment en ce 

qui concerne notre compréhension des mécanismes neuronaux permettant la saisie manuelle 

d’objets sous contrôle visuel. Cette revue bibliographique est suivie par un chapitre purement 

méthodologique, qui décrit l’animalerie et la plateforme IRM du pavillon Baudot qui accueille le 

CerCo. Cette partie expose les étapes qui ont permis l’implantation des techniques d’IRMf singe 

sur la plateforme. Elle détaille la mise en place des 2 postes de conditionnement qui, en mimant 
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l’environnement de l’IRM, permettent la familiarisation des animaux aux différentes contraintes de 

ce milieu et leur entrainement aux différentes tâches qu’ils doivent pratiquer pendant les sessions 

d’acquisition d’images fonctionnelles. Sont discutés aussi le développement d’une antenne 8 canaux 

dédiés à l’imagerie chez les macaques et la création d’outils d’analyses des données fonctionnelles 

et oculométriques. 

Dans la continuité de la description de la mise en place de l’IRMf chez le singe éveillé à Toulouse, 

la partie suivante décrit la modélisation de la réponse hémodynamique du cortex visuel du singe 

macaque. L’IRM n’offre qu’une mesure indirecte de l’activité neuronale, qui repose sur la détection 

des perturbations du champ magnétique dans un volume de cerveau défini (voxel) induit par une 

modification du rapport d’hémoglobine oxygénée/hémoglobine désoxygénée et dont la dynamique 

est nommée réponse hémodynamique (HRF). L’analyse des données d’IRMf dépend d’une bonne 

estimation de la HRF, qui est non seulement propre à chaque espèce, mais peut aussi varier entre 

les différentes aires du cerveau.  Dans cette étude préliminaire, nous avons estimé la HRF du cortex 

visuel sur 3 macaques, à partir des activations IRM induites par une impulsion visuelle (l’affichage 

très bref d’un damier scintillant couvrant une grande partie du champ visuel) et d’une fonction 

modèle de type double-gamma. Les paramètres de ce modèle sont discutés en termes de variabilités 

interindividuelles et interspécifiques.

Ce modèle de HRF est ensuite utilisé dans 2 études. Dans la première, qui constitue le cœur de ma 

thèse, je me suis intéressé à l’organisation visuotopique de la voie dorsale chez le singe macaque. 

Le cortex visuel du macaque a été extensivement étudié et de multiples modèles de son organisation 

fonctionnelle ont été proposés. Cependant, l’organisation visuotopique de certaines aires et 

notamment celles de la voie dorsale demeurent débattues. Plusieurs difficultés surgissent lors de 

l’investigation de cette région de cortex. D’abord, les aires visuelles de la voie dorsale présentent 

de grands champs récepteurs couvrant les zones les plus périphériques du champ visuel. De plus, 

beaucoup de ces zones ne présentent pas une organisation rétinotopique conventionnelle du fait 
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qu’elles traitent aussi d’autres modalités sensorielles que la vision. Enfin, l’attention semble jouer 

un rôle important dans l’activation de ces zones. Ainsi, l’activation de cette région requiert des 

stimuli capables de couvrir la quasi-totalité du champ visuel et qui présentent des attributs 

d’importance comportementale, pouvant attirer l’attention des sujets. 

Grâce à l’emploi d’une technique de stimulation large-champ (80° d’excentricité) et l’utilisation d’un 

stimulus visuel représentant un panier de fruits en mouvement comme stimulus, nous avons été 

capable d’activer de façon robuste une grande partie de la voie visuelle dorsale chez 2 macaques. 

Suite à la projection des données volumétriques sur la surface corticale, nous avons utilisé un filtre 

fréquentiel avant d’effectuer une analyse des champs récepteurs de population. L’analyse des 

résultats issus de ces traitements nous a permis de détecter des inversions de gradients d’angle 

polaire et d’excentricité des champs récepteurs de population le long de la surface corticale, qui 

confirment et synthétisent les connaissances acquises au moyen d’approches invasives sur ce 

modèle. Ces inversions de gradients révèlent de plus les frontières d’un nouvel assemblage d’aires 

visuotopiques. Cet assemblage d’aires (« cluster »), nommé PIP (posterior intraparietal) est situé 

dans la partie postérieure du sillon intra pariétal et est constitué de 2 aires récemment décrites (CIP 

1/2) et de 2 nouvelles aires (PIP 1/2). Ainsi, grâce à la combinaison de l’IRMf et de la cartographie 

rétinotopique large-champ, nous avons décrit des structures organisationnelles non caractérisée 

jusque-là, que ça soit par des méthodes invasives ou des méthodes de cartographie rétinotopique 

traditionnelles. 

La seconde étude avait pour but de caractériser le réseau d’aires corticales impliquées dans le 

traitement du flux optique compatible avec le mouvement de soi. Une étude récente publiée par 

Andrew Smith du Royal Holloway à l’université de Londres, décrit l’implication d’un large réseau 

d’aires corticales dans cette fonction, bien plus étendu que ne pouvait suggérer les données 

invasives chez l’animal. Cette étude confirme certaines aires qui correspondent à des aires 

homologues trouvées chez le singe par électrophysiologie mais décrit surtout une aire qui semble 
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être particulièrement sélective au mouvement de soi. Cette aire dénommé CsV (Cingulate sulcus 

Visual) ne possède aucun homologue connu chez le singe. En collaboration avec Andrew Smith, 

nous avons répliqué l’étude menée chez l’homme afin de caractériser le réseau cortical impliqué 

dans le traitement de mouvement et d’évaluer un homologue de l’aire CsV chez le singe. En 

contrastant l’activité corticale résultante d’un stimulus de flux optique compatible avec le 

mouvement et celle du même stimulus répliqué 9 fois (3x3) sur l’écran (incompatible avec le 

mouvement de soi), nous avons révélé un réseau cortical qui soutient les données 

électrophysiologiques et anatomiques précédemment décrites chez le PNH. La comparaison de ces 

données avec les données humaines révèlent que malgré le fait que les réseaux corticaux chez les 2 

espèces partagent des similitudes (MST/hMST, VIP/hVIP,VPS/PIC et pmCsV/CsV),  ils 

demeurent différents. D’une part, certaines aires sont propres au singe et ne sont pas retrouvées 

chez l’humain, tel que les aires 7a, STPm, FEFsem et FEFsac. D’autre part, des activations robustes 

des aires V6, P2V et Pc ne sont pas retrouvées chez le singe. 

Cette thèse poursuivait un double objectif :1) fournir des recommandations pour la mise en place 

de techniques IRMf chez le singe, tirées de notre propre expérience et (2) exposer les résultats d’un 

ensemble d'études que nous avons menées avec cette approche, traitant de l'organisation 

visuotopique du cortex visuel dorsal et de son implication dans le traitement du mouvement visuel. 

En plus d'apporter une perspective nouvelle sur l'organisation fonctionnelle du cortex visuel chez 

les primates non humains, ces études illustrent la contribution de l’IRMf singe comme pont entre 

études électrophysiologiques chez les primates non humains et études d'imagerie fonctionnelle chez 

l'homme.

Mots clés : Organisation visuotopique, traitement du mouvement visuel, cortex visuel, voie 

dorsale, primates non-humains



13

Table of content

A. General Introduction...................................................................................................................................................17

A.1 Human approach to cognitive neuroscience ................................................................................................19

A.1.1 Human lesions...............................................................................................................................................19

A.1.2 Brain imaging.................................................................................................................................................21

A.1.3 Causal approaches ........................................................................................................................................24

A.1.4 Neural recordings in patients......................................................................................................................24

A.2 Non-human primates: a necessary alternative ..............................................................................................25

A.2.1 Anatomical exploration of NHP cortex ...................................................................................................26

A.2.2 Monkey neurophysiology: the backbone of modern neuroscience......................................................26

A.2.3 Monkey lesion and interference .................................................................................................................27

A.2.4 Complications in relating human and monkey studies...........................................................................28

A.3 Conclusion..........................................................................................................................................................30

B. fMRI bridges the gap between single cell and human imaging studies ..............................................................31

B.1 Closing the loop.................................................................................................................................................33

B.2 Monkey fMRI: the journey ..............................................................................................................................35

B.2.1 First attempts.................................................................................................................................................35

B.2.2 The battle for SNR.......................................................................................................................................36

B.2.3 Pedal to the metal: High-field vertical fMRI............................................................................................37

B.2.4 On the home stretch: democratizing monkey fMRI ..............................................................................37

B.3 Feather in the cap: some achievements of monkey fMRI..........................................................................39

B.3.1 Monkey fMRI sheds light on the nature of the BOLD signal ..............................................................39

B.3.2 The grasping network ..................................................................................................................................40

B.3.3 Comparing human and monkey neuroimaging .......................................................................................43

B.4 Conclusion..........................................................................................................................................................45

C. Methodology for Monkey fMRI................................................................................................................................47

C.1 Monkey fMRI facilities in Toulouse...............................................................................................................48

C.2 Creating the setups: an environment for fMRI conditioning ....................................................................50

C.3 Animal preparation ...........................................................................................................................................52

C.3.1 Legal authorizations .....................................................................................................................................52

C.3.2 Surgical procedures ......................................................................................................................................52

C.3.3 Behavioral training........................................................................................................................................53

C.4 Dedicated monkey coils ...................................................................................................................................54



14

C.5 Magnetic resonance imaging............................................................................................................................55

C.5.1 Set-up overview.............................................................................................................................................55

C.5.2 Acquisition sequences..................................................................................................................................56

C.5.3 Anatomical and functional templates........................................................................................................57

C.5.4 Cortical surface reconstruction ..................................................................................................................57

C.6 Functional data processing ..............................................................................................................................59

C.6.1 Functional signal: BOLD vs. IRON .........................................................................................................59

C.6.2 Basic pre-processing steps...........................................................................................................................61

C.6.3 Visual field mapping techniques ................................................................................................................62

C.6.4 Basic statistical analyses ...............................................................................................................................63

D. Estimating the Monkey hemodynamic response function (HRF) .................................................................67

D.1 The hemodynamic response............................................................................................................................69

D.2 Motivation to measure the HRF.....................................................................................................................70

D.3 Estimating the HRF in macaque monkeys....................................................................................................71

D.3.1 Stimuli.............................................................................................................................................................71

D.3.2 Preprocessing ................................................................................................................................................72

D.3.3 Data analysis ..................................................................................................................................................73

D.4 Results .................................................................................................................................................................74

D.5 Discussion...........................................................................................................................................................76

E. Wide-field retinotopy of macaque visual cortex .....................................................................................................79

E.1 Retinotopy is a solution to costly wiring .......................................................................................................81

E.2 Retinotopic mapping using fMRI...................................................................................................................82

E.2.1 The standard paradigm: Travelling wave..................................................................................................82

E.2.2 Population receptive field modelling.........................................................................................................83

E.2.3 Homologies of retinotopic maps in humans and monkeys...................................................................85

E.3 Investigating the visuotopic organization of the posterior parietal cortex (PPC) ..................................87

E.3.1 Introduction...................................................................................................................................................87

E.3.2 Material and Methods ..................................................................................................................................88

E.3.3 Results.............................................................................................................................................................98

E.3.4 Discussion....................................................................................................................................................110

F. Processing of egomotion-consistent optic flow in the rhesus macaque cortex ..............................................113

F.1 Introduction .....................................................................................................................................................115

F.2 Material and methods .....................................................................................................................................118

F.2.1 Animal model ..............................................................................................................................................118

F.2.2 Optic flow stimuli.......................................................................................................................................119



15

F.2.3 MRI recordings ...........................................................................................................................................120

F.2.4 Data processing...........................................................................................................................................122

F.3 Results ...............................................................................................................................................................127

F.3.1 Cortical network involved in processing optic flow .............................................................................127

F.3.2 Quantitative analysis of egomotion selectivity.......................................................................................133

F.4 Discussion.........................................................................................................................................................140

F.4.1 Overview......................................................................................................................................................140

F.4.2 Activations in temporal cortex: MSTd and STPm................................................................................140

F.4.3 Activations in parietal cortex: VIP, 7a and LIPd ..................................................................................142

F.4.4 Activation in parieto-insular cortex: VPS...............................................................................................144

F.4.5 Activations in frontal cortex: FEFsem and FEFsac .............................................................................145

F.4.6 Activation in cingulate cortex: pmCSv....................................................................................................146

F.4.7 Homologies with the human EC-selective areas V6, Pc and 2v?.......................................................146

F.5 Conclusion........................................................................................................................................................147

G. General discussion & Conclusion .....................................................................................................................149

G.1 Summary of results..........................................................................................................................................151

G.2 Considerations pertaining to the awake monkey fMRI technique..........................................................151

G.3 Considerations pertaining to the measurement of the HRF....................................................................154

G.4 Considerations pertaining to the visuotopic mapping of the dorsal visual pathway ...........................154

G.5 Considerations pertaining to the motion sensitivity of the dorsal visual pathway. ..............................156

G.6 Perspectives ......................................................................................................................................................157

H. Bibliography ..........................................................................................................................................................159

I. Annex 1........................................................................................................................................................................185

J. Annex 2........................................................................................................................................................................210



16



17

A.General Introduction



18



19

A.1 Human approach to cognitive neuroscience

With its billions of interconnected neurons, the human brain is the most complex system in the 

known universe and as such, a paramount challenge for scientific research. Our brain supports 

recognition, attention, memory, decision making and many other higher cognitive functions by 

which we can challenge daily basic struggles, navigate, use tools, cooperate and build societies.

Although the anatomy and physiology of many other organs can be reasonably apprehended 

through studies in rodents, taking advantage of their high similarities with human organs, studying 

the human brain is another level of dilemma. Many of the higher cognitive functions it operates 

are specific to humans or shared only with its closest relatives, i.e. the non-human primates. 

Understanding those functions requires in-depth knowledge of the underlying neural mechanisms, 

knowledge that spans across the functional organization of the brain to the dynamics of single 

neurons. Accessing this knowledge constitutes an ethical quandary, since it requires invasive 

procedures that are difficult to conduct in humans. However, much progress has been made 

through approaches involving notably human brain lesions studies and more recently, non-invasive 

functional imaging studies. Those approaches are briefly described in the following sections.

A.1.1 Human lesions

In 1861, Paul Broca boldly suggested that the third convolution of the inferior frontal gyrus is 

involved in speech production. Support for this claim came from the brain of a patient (Figure 1)

who had been able to produce only one syllable (tan), in the form of stereotyped recurrent 

utterances: tan-tan-tantan… Although Broca was not the first to relate language to the left 

hemisphere, his finding launched a new age of discovery. Specifically, Broca’s approach to 

localizing human brain function by studying the correlation between the location of a brain lesion 
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and a behavioral affliction founded a long tradition of neuropsychological research, which has 

greatly advanced our understanding of brain function.

Figure 1. (source: Dronkers 

NF, et al., Paul Broca’s historic cases: high 

resolution MR imaging of the brains of 

Leborgne and Lelong. Brain 2007;130:1432-

1441)

Although in historical terms, lesions caused by accidents, war injuries, strokes or even neurosurgical 

excisions were the pillar of neurophysiology for a long time (Cowan et al., 2000), there are several 

fundamental problems with the lesion method that have caused neuroscientists to become critical 

about the technique. 

Firstly, in the case a lesion could be detected and localized, highly sophisticated psychological and 

physiological assessments are needed to be able to pinpoint the nature of the impairment caused 

by the lesion. Furthermore, many brain functions might be carried out in a distributed manner, 

with large portions of the brain working in a flexible fashion rather than each region having a fixed 

function. Consequently, it is very difficult to exclusively link a lesion to a cognitive function. Indeed, 

accidental lesions or lesions caused by trauma, almost always span across many cytoarchitectonic 

areas. Additionally, almost constantly concomitant white matter insults disengage the connection 

between different areas, which implies that it cannot be excluded that the diagnosed impairment is 

not due to an interruption of functional connectivity instead of a focalized lesion per se. Moreover, 

since a certain amount of time would have passed between the lesion and the beginning of its 

investigation, functional reorganization of the cortex would have most probably occurred, thus 

misleading our interpretation about the function of the area in the normal brain. 
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The human ‘lesion method’ was seminal for our understanding of functions as diverse as language,

memory, hemispheric specialization, emotion, vision and motor control, but to relate behavioral 

functions to anatomy using the lesion approach, it is necessary to identify the location and extent 

of a brain injury. At the time when Broca conducted his work (in the 1860s), researchers had to 

wait for a patient to die before they could examine the brain, a new method was thus needed.

A.1.2 Brain imaging 

Fortunately, William H. Olendorf got unsatisfied with the traumatic, tedious, invasive studies on 

his patients at the University of Minnesota Hospital. Indeed, these studies provided only limited 

and indirect information about the brain. So, he strived for something better.  William Henry 

Oldendorf (1925–1992) was an American neurologist, physician, researcher, medical pioneer and 

founding member of the American Society for Neuroimaging (ASN). From his basement, he 

modeled a new instrument incorporating principles and hardware used in modern computed 

tomography (CT) scanners. The description of the model was published in 1961. Standard X-Ray 

manufacturers were not thrilled with Olendorf’s idea and dismissed it as impractical. A letter from 

one company ended: “Even if it could be made to work as you suggest, we cannot imagine a 

significant market for such an expensive apparatus which would do nothing but make a 

radiographic cross-section of a head”. Despite his failure to interest manufacturers with his 

invention, Oldendorf’s description was patented in 1963 and this has been of invaluable importance 

to researchers in the field of neuroimaging. 

Soon after the invention of CAT (Computer Automated Tomography), the development of 

radioligands started the functional imaging revolution. Thanks to the work of Marcus Raichle and 

coworkers, functional imaging took a large step forward with the development of oxygen-15 

labelled water (H2O15) imaging (Herscovitch et al., 1983). H2O15 emits positrons and creates images 

based on regional blood flow within the brain. Since active neurons recruit a robust blood supply, 
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H2O15 positron emission tomography (PET) allowed investigators to make regional maps of brain 

activity during various cognitive tasks. Concurrently, magnetic resonance imaging (MRI or MR 

scanning) was developed. Scientists soon learned that the large blood flow changes measured by 

H2O15PET were also imaged by MRI. Functional magnetic resonance imaging (fMRI) was 

born(Ogawa et al., 1990). Since the 1990s, fMRI has come to dominate the brain mapping field 

due to its low invasiveness, lack of radiation exposure, and relatively wide availability.

Studying brain functions in healthy subjects using very precise cognitive tasks performed inside the 

scanner provides access to peak activity that is restricted to cytoarchitectonic areas and that lie in 

grey and not white matter, without the worry of possible cortical reorganization such as can be 

found in patients. Whether PET or fMRI is used, the functions of an area can be inferred by 

contrasting tasks that differ in only one aspect. Nevertheless, showing that an area is active during 

a task does not necessarily means that it is mandatory for performing the task accurately, nor does 

it indicate its precise functional role. For example, many studies have reported activity in the 

anterior cingulate cortex when subjects are engaged in judgement tasks about the thoughts of 

others (theory of mind) (Gallagher 2003). However, a patient with a large bilateral lesion of this 

area had no problem in succeeding on similar tasks (Bird et al., 2004), questioning the central role 

of this area in such tasks. Recent developments in fMRI may also allow measuring the covariance 

in activity between various areas (Rogers et al., 2007), introducing the possibility to study functional 

interactivity between distant portions of the cortical surface. Yet these methods still rely on 

measures of correlation, a limitation which can only be resolved through interference with the 

activity of one of the areas. There are several other limitations to brain imaging techniques such as 

PET or fMRI: neither provides a direct measure of neural activity. The signal measured in fMRI is 

blood oxygen level dependent (BOLD), which is an indirect measure of blood flow. Granting that 

PET measures direct fluctuations of blood flow, both techniques indirectly measure the activity of 

a whole population of cells, with no information on specific cellular dynamics. Admitting that these 
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techniques are suitable for functional studies, the same cannot be said for the study of how 

functions are implemented at the neuronal level. The cellular machinery has a temporal resolution 

on the order of milliseconds, while PET has a temporal resolution of around 60 seconds and fMRI 

has a rough temporal resolution of 1-3 seconds. Consequently, we cannot fathom the order of 

events in the brain. The temporal caveats of fMRI and PET can be resolved with techniques such 

as the electroencephalogram (EEG) or the magnetoencephalogram (MEG). EEG measures 

voltage fluctuations resulting from ionic current within the neurons of the brain at a distance. The 

first human EEG was recorded in 1924 by German physiologist and psychiatrist Hans Berger

(1873–1941) (Swartz, 2017). It is a non-invasive method that detects local variations of the electric 

field with electrodes placed along the scalp. EEG has a temporal resolution on the order of the 

millisecond and even the microsecond, which makes it ideal to study signal propagation. EEG is 

less subject to motion artifacts and it is a portable technique that can even be used on infants and 

claustrophobic subjects. One serious drawback is its poor spatial resolution. Indeed, because of the 

bad conductibility of the scalp, the measured electrical field fluctuations tend to disperse, making 

it difficult to localize their sources. The other technique with a high temporal resolution, is MEG. 

MEG signals were first measured by University of Illinois physicist David Cohen in 1968 (Cohen, 

1968), It measures changes in magnetic fields on the surface of the scalp. The additional advantage 

over EEG is that it possesses a better spatial resolution, because magnetic field fluctuations are not 

distorted by the scalp. MEG is an expensive technique though, it is not portable and requires 

pairing with MRI for proper areal localization.

Until today, no single novel technique could fuse the advantages of fMRI and EEG/MEG. 

Although combined studies of fMRI and EEG have achieved noteworthy results(Mullinger and 

Bowtell, 2011; Huster et al., 2012), despite the inherent methodological problems that arise from 

the combination of these techniques, a tool with the ability to acquire both high temporal and 

spatial resolution data would be the holy grail of brain imaging. 
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A.1.3 Causal approaches

The aforementioned imaging techniques, no matter their resolution remain correlational 

approaches, they inform about the relationship between indirect measures of brain activity and 

behavioral performances in sensory, motor or cognitive tasks. However, knowing whether the 

recorded activity in a particular brain location is necessary for executing the task at hand or simply 

an epiphenomenon requires tampering with its activity. Application of electrical currents to 

modify/investigate brain functions is a technique that dates back to the 19th century (Selimbeyoglu, 

2010). Methods such as trans-cranial magnetic stimulation (TMS) (Sparing and Mottaghy, 2008), 

that deliver localized magnetic perturbations inducing increased or debilitated activity depending 

on the adopted mode, can inform us on the causal role of a cortical area. This technique is 

nevertheless restricted to the first 3 cm of cortical depth, as it cannot reach deep brain structures 

such as the thalamus or the basal ganglia. Additionally, it is only as precise as the experimenter’s 

localization and positioning abilities, although precision can be increased using online neuro-

navigation. In addition, the effects of TMS are quite brief. 

Other causal approaches include transcranial direct current stimulation (TDCS). This technique is 

inexpensive, easy to administer, non-invasive and virtually painless. TDCS has been shown to 

modulate human brain functions by inducing focal, prolonged, but reversible shifts of cortical 

excitability. Studies combining TDCS with other brain imaging and neurophysiological mapping 

promise to provide invaluable insights on the causation between modification of behavior and its 

underlying neurophysiologic underpinnings (Sparing and Mottaghy, 2008).

A.1.4 Neural recordings in patients

Measuring directly the neural activity of single cells or cell populations during cognitive tasks 

represents an essential step for gaining a better knowledge of the neural codes underlying those 

cognitive functions. Electrophysiological recordings in humans, while feasible, are restricted to 
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patients suffering from epilepsy and that are about to undergo ablation surgery of the epileptic foci 

(Nobre and Mccarthy, 1995), or patients being outfitted with brain-machine interfaces for the 

control of prosthetic limbs or for interaction with computers (Andersen et al., 2004). Despite the 

limitations, this technique is a promising one, as it already brought decisive findings, such as the 

“Jennifer Anniston” neurons in the hippocampus (Quiroga et al., 2005).

A.2 Non-human primates: a necessary alternative

Non-human primate (NHP) research has helped resolve a great deal of the limitations inherent to 

the study of human brain functions. The brain of the macaque monkey closely resembles that of 

humans in both structural and functional terms (Orban et al., 2004; Sereno and Tootell, 2005), 

furthermore they share with us similar cognitive and perceptive abilities, and they can be taught to 

perform complex tasks. Thus, the macaque model is fundamental to our understanding of our 

mental world.  

Monkey research has provided the basis for ground-breaking discoveries despite being the focus 

of very vocal and sometimes violent opposition from well-funded groups waging war against 

animal-based biomedical research. Opposing groups often argue that the palette of techniques 

available in humans, combined to modeling approaches, is sufficient for studying brain functions 

(Bailey and Taylor, 2016). Yet this argument fails to distinguish between methods that record or 

disrupt large cell populations in cortical regions dictated by clinical considerations, and methods 

that disrupt small populations or even single cells in chosen regions of interest. As mentioned 

previously, the spatial resolution of techniques such as fMRI, EEG and MEG is adequate for 

linking anatomy to behavior, but much finer spatial and temporal resolution is needed to 

understand the underlying neuronal computations. Invasive studies are necessary, notably because 

the only way to understand the function of brain areas and to understand the language of the brain, 
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is to directly and selectively interfere with the activity of these regions and record each set of 

neuronal types. 

A.2.1 Anatomical exploration of NHP cortex

Anatomically speaking, the brain of the rhesus macaque has been explored in detail. The cortical 

circuitry of the monkey cortex has been thoroughly studied using tractography (Felleman and Van 

Essen, 1991; Young, 1992, 1993). By injecting tracers in localized areas and following their 

migrations along axons, one can establish the connectivity pattern between cortical areas. A 

database that collates information from 391 papers, including data on 7007 sites and around 37000 

connection details, is available online (www.cocomac.org). This database also includes information 

on the specific interconnectivity of cortical layers. Feedforward and feedback connections do not 

project to the same cortical layers. Thus, knowing how cortical layers connect to each other is 

crucial for understanding the flow of information in the brain. Diffusion tractography imaging 

(Soares et al., 2013), a variant of fMRI can provide information about the patterns of wiring, yet 

the level of detail that we have in macaque monkeys is far from being reached in the human brain. 

Although there has been criticism about probable differences between macaque and human 

connectomics (Miranda-Dominguez et al., 2014), no major differences have been observed so far. 

A.2.2 Monkey neurophysiology: the backbone of modern neuroscience

The pioneering work on monkeys of Hubel and Wiesel (1968) propelled electrophysiological 

recordings in monkeys to the stature of a pillar in systems neuroscience. By using metal, glass or 

silicon electrodes to record electrical signals associated with ion fluxes across neuronal membranes, 

electrophysiology allows listenning directly to the language of neurons at an extremely high signal-

to-noise ratio. This is the main strength of the method, because electrical activity is recorded 

directly, without the need for a 'translator', that is, a probe that transforms electrical activity into a 

different signal. However, this is also the main weakness of electrophysiology, because access to 
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the electrical activity of neurons necessitates physical contact with the tissue under investigation.

The advantages this technique presents over its equivalent in humans are unquestionable. Firstly, 

recordings are done on normal brains in monkeys, whereas recordings in humans are normally 

done on patients. Second, the time limit to record single cells in monkeys is enough to test each 

under a variety of conditions (Rainer et al., 1999), which is not the case for patients given the 

requirements of surgery. Furthermore, electrode arrays can be used to acquire data from multiple 

cells concomitantly, and from several cortical areas (Takeda and Funahashi, 2004). Furthermore, 

computers models of signal integration can then be constructed through the combination of 

information from the different sources (Carmena et al., 2003). 

The advancement of neurophysiology in NHPs has been and will always be the necessary precursor 

to human neurophysiological recording and stimulation. It is not imaginable to conduct such 

procedures in humans without validating them in NHPs beforehand. The development of direct 

brain computer interfaces in NHP will undoubtedly introduce new major technologies not only for 

the palliation of motor deficits in patients, but also for the enhancement of normal subjects 

(Nicolas-alonso and Gomez-gil, 2012). 

A.2.3 Monkey lesion and interference

Electrophysiological recordings can also be combined with causal techniques. Lesion studies in 

NHPs are more precise than their human counterparts, considering that the lesions are 

experimentally controlled and can be restricted to the grey matter of a single cytoarchitectonic area. 

Furthermore, one does not depend on meta-studies encompassing dozens of patients, since the 

same lesion can be replicated across multiple animals. To avoid induced cortical reorganization, 

one can replace physical insults with temporary pharmacological perturbations (Tanji and Shima, 

1994; Shima and Tanji, 2011) or use cooling for focal and transient cortical inactivation (Lomber, 

1999). Perturbation experiments include also electrical stimulation of both cortical matter and deep 
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nuclei. A recently developed tool, optogenetic stimulation (OS) (Gerits et al., 2012) allows 

controlling of cell-type-specific neuronal activity on a millisecond timescale, which has been shown 

to induce changes in behavior. Furthermore, the combination of OS and electrophysiological 

recording established a selective koniocellular LGN influence on V1 supra-granular layers (Klein 

et al., 2016). Interference techniques can be used in combination with cell recordings to elucidate 

the link between 2 cortical areas (Mushiake et al., 1991; Chafee and Goldman-Rakic, 2000; Wallis 

and Miller, 2003). 

In the wake of my master’s thesis, I have been involved in a study that exemplifies many of the 

advantages offered by the NHP model for understanding the link between behavior and its 

neuronal underpinnings (Arsenault et al., 2014). This work had a twofold purpose: 1) investigating

the role the ventral tegmental area (VTA) on reinforcement learning, and 2) characterizing the 

network of areas activated by VTA electrical stimulation.  This required us to implant 2 monkeys 

with chronic electrodes. To make sure we properly targeted this deep structure, we used anatomical 

scans to monitor the position of the electrode during surgery, which itself required precisely 

controlled anesthesia and state of the art imaging for trajectory correction. Electrical stimulation 

of VTA was subsequently used to demonstrate its causal involvement in establishing instrumental 

associations. Furthermore, combining such stimulation with fMRI allowed us to reveal the areas 

functionally connected to VTA. Of course, such a study has little chance of being conducted in 

humans. Although some patients are fitted with electrodes for deep brain stimulation, the big 

majority are not compatible with fMRI. Furthermore, it would be ethically unfathomable to use 

such technique to manipulate instrumental preferences for stimuli.

A.2.4 Complications in relating human and monkey studies

Since modern macaque monkeys and humans have been separated for 30 million years (Kay 1997), 

one would expect to find significant differences between the brains of monkeys and humans. 
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Anatomical differences are not the only thing differentiating these 2 species (Kaas, 2006). There 

are marked behavioral differences, and these must depend partly on differences in the brain and its 

selective adaptation to distinct environments. Humans can speak and use grammar, reflect on their 

own mental states as well as those of others and can mold the environment through explicit 

understanding of causes in the physical and mental world.

A hypothetical monkey of the same body weight as human would have a brain that is 4.8 times 

smaller. Furthermore, the proportions of the human brain are not those that would be predicted 

by a plot of the changes in proportions in other primates as brain size increases. For example, the

human neocortex is 35% larger than predicted for a primate with a similarly sized brain 

(Passingham, 2009). An increase in brain size could mean an increase in the number of specialized 

regions. In addition, the amount of cortical tissue devoted to a body part relates to the 

sophistication of the analysis or control, rather than the size of that part: the amount of information 

received by the eye of a monkey and that of a human does not greatly differ, yet the inferior 

temporal cortex, devoted to the identification of visual objects in both species (Denys, 2004), is 12 

times larger in the human brain (Kaas, 2006). The absence of one-to-one correspondence indicates 

that homologies but also differences are likely to exist in the functional organization of the cortex, 

which prevents direct transposition of NHP research to humans. Then, one might argue that there 

is a problem interpreting functional imaging data in humans with data obtained from cells in NHPs. 

Undoubtedly, how can one know that the area activated in human brains is the homolog area from 

which recording has been undertaken in the monkey brain? Indeed, establishing a relationship 

between human and monkey studies is far from straightforward. Signals measured with non-

invasive techniques in humans are not direct estimations of neural activity. In contrast, invasive 

electrophysiology in macaques measures the direct electrical activity of single cells or a small 

population of neighboring cells. Differences in the nature of measured signals renders it difficult 
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to disentangle dissimilarities caused by parallel brain evolution from those caused by a difference 

of recorded signals. 

A.3 Conclusion

The brain is a highly complex system of which the workings occur on multiple spatial and temporal 

scales. Thus, understanding such a machinery requires the combination of multiple techniques, 

some of which can be implemented in humans (non-invasive) and others not (invasive). For such, 

the NHP model imposes itself as a necessity for what can only be resolved through invasive 

techniques. The major challenge then is to integrate the knowledge gathered from the invasive 

approaches in NHPs with the data acquired from non-invasive approaches in humans.
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B. fMRI bridges the gap 
between single cell and human 

imaging studies
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B.1 Closing the loop
FMRI is an important technique that helps identify the neuronal structures underlying cognitive 

functions in healthy human volunteers and patients. But direct comparison between monkey 

electrophysiology and human fMRI is difficult because those approaches differ in species and 

technique. Indeed, properly establishing a link between human imaging and single cell studies must 

begin with the comparison between single cells with fMRI in monkeys and addressing the effect 

of the technique, and then fMRI in humans and monkeys, to investigate species differences.

Monkey fMRI is an important advancement in systems neuroscience. On one hand, it supplies a 

bird’s eye view of the cortical distribution of cognitive functions, which constitutes a precious guide 

for electrophysiological recordings and reversible perturbations. Consequently, monkey fMRI 

serves both the reduction and refinement of invasive protocols involving non-human primates.

Combining fMRI with invasive techniques can also help us better understand and interpret 

(BOLD) signal. fMRI has been in use since the early 1990s, and while the BOLD signal is obviously 

a marker of brain function, it is still not clear what exactly it represents. For example, it is not 

known whether all neural processes elicit a BOLD response (e.g. synaptic input vs. spiking activity, 

stimulus-driven and neuromodulatory activity, feedforward and feedback processes, inhibitory and 

excitatory potentials) or whether these processes are all equally represented in the BOLD signal 

(Goense and Logothetis, 2008).

On the other hand, knowledge acquired with monkey fMRI can be directly related to that acquired 

in humans with the same approach, allowing the identification of homologies and differences in 

brain functions, a necessary step for integrating the wealth of results from invasive research in 

animals with the ever-expanding human imaging data sets. NHP research helps with the 

interpretation of findings obtained with neuroimaging techniques in humans, and, vice versa, 

findings in humans aid in the interpretation of the results obtained in NHPs. 
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Figure 2. Monkey fMRI draws a bridge between single-cell studies and human functional imaging studies
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B.2 Monkey fMRI: the journey

B.2.1 First attempts
Functional imaging in monkeys did not await the advent of fMRI. While some have attempted 

using PET imaging in monkeys (Takechi et al., 1997), this technique never really gained wide use 

because of multiple methodological problems and inherent technical limitations. Indeed, PET 

requires the use of radioligands that expose the subject and experimenters to radioactivity, which 

limits the repeatability of experiments, thus restraining the robustness of data, especially when this 

data is issued from complex cognitive tasks. Furthermore, PET has very low temporal and spatial 

resolutions. A transition towards fMRI was thus inevitable and many obstacles were to overcome 

for the proper transfer of this technology from humans to monkeys.

The first studies (Dubowitz et al., 1998; Stefanacci et al., 1998) to report stimulus-induced neuronal 

activity-related signals in the visual cortex of an awake monkey using fMRI, employed a low-field 

(1.5 T) clinical horizontal MR scanner. They trained rhesus macaques in a mock MR environment 

to remain immobile in a prone position, with body restrained and head fixed to the primate chair

via a custom-designed, nonmetallic head-post surgically attached to their skull. With the purpose 

of activating the visual cortex, the experimenters subjected the monkey to visual stimuli rich in 

movement, color and texture. In one of the studies (Dubowitz et al., 1998), the images that figured 

in the study show activation of a small region at the pole of the occipital lobe mixed with some 

ghosting artifacts. This activation was problematic, as it was located bilaterally about 8 degrees 

peripheral to the cortical representation of the monkey’s fovea. No response was evident in the 

animal’s cortical representation of the macula. In the other study (Stefanacci et al., 1998), stimulus-

induced activation was impossible to localize because signal variation was dominated by motion 

artifacts. These first attempts at monkey fMRI provided rich insight on necessary improvements 

to make such procedure worthwhile, all while raising important issues. 
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B.2.2 The battle for SNR
FMRI eliminated the risks related to exposure to radioactivity, while providing better spatial and 

temporal resolutions compared to PET. Yet, many obstacles are still to overcome for the proper 

use of monkeys in an MR environment, especially if the purpose is to test humans and monkeys in 

similar conditions with relatable cognitive tasks. Generally speaking, scanning strategies and 

methodologies cannot be simply transferred from human fMRI to awake monkey fMRI. There are 

several significant technical challenges involved in carrying out fMRI experiments in monkeys, 

arising from the need to use alert animals. 

Monkeys have relatively small brains and smaller functional structures compared to humans. The 

average area of the cerebral cortex in macaque monkeys is 100 cm2 (Felleman and Van Essen, 

1991), compared to 2500 cm2 in humans. Functional structures are also smaller, for example the 

ocular dominance columns in macaque monkeys (Ts’o et al., 1990) are half the size of those in 

humans (Cheng et al., 2001; Yacoub et al., 2007). The higher spatial resolution that is necessary for 

the smaller monkey brain causes a loss of signal-to-noise ratio (SNR). For human fMRI, resolution 

is typically about 3 × 3 × 3 mm3, which leads to a voxel size of almost 30 μl before any spatial 

smoothing is applied. For awake monkeys, a typical spatial resolution is on the order of 

1.5 × 1.5 × 2 mm3 (4.5 μl voxels), while for anesthetized monkeys the resolution is even higher.

Depending on acquisition and pre-processing parameters, the SNR of monkey fMRI can easily be 

5–30 times lower than that of human fMRI. This is a large SNR loss that needs to be taken into 

account when the experiment is designed, for instance by offsetting the SNR loss with smaller RF-

coils (Logothetis et al., 2002; Janssens et al., 2012), using iron-based contrast agents to enhance the 

functional signal (Vanduffel et al., 2001; Leite et al., 2002; Fize et al., 2003), or using high-field 

scanners.

Another significant problem is animal motion. While human subjects can be selected based on 

their ability not to move, the task is harder for animals that are naturally uncooperative. Any
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movement of the animal that causes the brain to change position inside the magnetic field during 

scanning produces inconsistencies in phase and amplitude, which can generate blurring and 

ghosting motion artifacts larger even than the activation signals (Pfeuffer et al., 2007).

B.2.3 Pedal to the metal: High-field vertical fMRI
Another adopted course for monkey fMRI was through the use of custom built high-field (4.7 T) 

vertical bores. The pioneers of this technique (Logothetis et al., 1999) showed that BOLD imaging 

at very high spatiotemporal resolution is possible in both the anesthetized and the alert monkey. 

In the initial study, fifteen animals in total were scanned, distributed between behaving and 

anesthetized configurations. In the latter configuration, the level of anesthesia, the precise control 

of respiration and the correct positioning of the visual stimulus, virtually eliminated motion artifacts 

whether they were voluntary or simply related to physiological function. In contrast, experiments 

on anesthetized monkeys were hampered by the upright position of the animal, as it became

substantially more difficult to maintain normovolemia and constant blood pressure. On the other 

hand, the behaving animal configuration, benefitted greatly from the upright position. Being more 

natural, this position permitted easier training of the animals and reduced unwanted body

movements. In both configurations, stimulus-specific activation was observed in the LGN, striate 

and early extrastriate cortices, and in the temporal and mediotemporal structures that are involved 

in the processing of facial identity and expression. In the anesthetized monkey, activation was 

highly dependent on the depth of anesthesia. 

This high complexity and cost of setting up this technique and maintaining it proved to be to 

prohibitive to allow its widespread adoption.

B.2.4 On the home stretch: democratizing monkey fMRI
The beginning of the 21st century witnessed a steep increase of interest in awake monkey fMRI. 

Thus, striving to render this technique more accessible, without the need to build expensive custom 

scanners, one lab greatly contributed to the simplification and refinement of this technique. 
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Amongst the flagship studies that set the tone for subsequent monkey fMRI, was one published in 

2001 by Vanduffel and colleagues. They demonstrated that robust visually driven activations could 

be detected using the more available horizontal, low field, clinical scanners. To accomplish this 

feat, they used iron oxide contrast agents to significantly enhance the functional brain imaging in 

awake behaving macaques, compared to the BOLD signal. They showed that the use of such 

contrast agents yielded approximately a 10-fold increase in the percent signal change relative to 

comparable BOLD measurements at 1.5T, thus becoming an excellent alternative to BOLD 

imaging with high field scanners. This enhancement allowed them to link between the motion 

sensitive areas found in fMRI with and those that have been described in single cell studies. The 

advancements provided by this team over the years made their approach to monkey fMRI a 

reference for those who wanted to try their hand at scanning monkey brains. Significant

advancements in monkey fMRI techniques were introduced in the following years, with the 

development of implanted focal single loop coils (Logothetis et al., 2002), combined EEG/fMRI 

at 4.7T (Schmid et al., 2006) external phased array coils (Ekstrom et al., 2008), spin-echo imaging 

(Ku et al., 2011), and implanted phased array coils (Janssens et al., 2012). 
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B.3 Feather in the cap: some achievements of monkey fMRI

B.3.1 Monkey fMRI sheds light on the nature of the BOLD signal
Since the introduction of fMRI in humans as a method for measuring behavior-related neural 

activity in the human brain, the relation between the BOLD signal and underlying neural activity 

has been an open and actively researched question. BOLD measures a combination of cerebral 

blood flow and oxygen metabolism. Theoretical predictions (Attwell and Laughlin, 2001; Attwell 

and Iadecola, 2002) suggest glucose utilization primarily reflects in the work involved in synaptic 

signalling and that metabolic measures of brain activity correlate most strongly with measures that 

reflect synaptic processing rather than spike rate alone.

Local field potential (LFP) are thought to represent post-synaptic and pre-synatpic activity at 

multiple neurons, and thus is most accurately described as “peri” synaptic activity. A landmark 

study (Logothetis et al., 2001) that attempted to empirically determine whether spike rate or LFPs 

correlated with the BOLD signal, constructed a recording device that allowed simultaneous 

acquisition of fMRI, LFPs, and the spiking activity of neurons in monkey visual cortex. 

Anesthetized monkeys viewed contrast gratings while BOLD and electrophysiological activity was 

recorded in primary visual cortex. The authors reported a strong correlation between BOLD and 

LFPs and robust but slightly weaker correlation between BOLD and multi-unit activity (MUA). 

The fact that the LFP accounted for significantly greater amounts of variance across recording sites 

suggested that the LFP correlated better with the BOLD signal than spike rate (Logothetis and 

Wandell, 2004). The subsequent investigation of individual recording site indicated that 

dissociations between spiking and the LFP always resulted in a strong correlation between the 

BOLD signal and the LFP and not spike rate. These data suggested that correlations between spike 

rate and LFPs contributed to the correlation between BOLD and spiking activity. Later studies 

also suggested that significant (but weaker) correlations between BOLD and LFPs could be 

obtained in the visual cortex of awake behaving monkeys as well (Goense and Logothetis, 2008). 
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B.3.2 The grasping network
The brain is remarkably adept at orienting the wrist and shaping the span of the fingers to match 

an object. The prehensile hand is a major characteristic that distinguishes primates from other 

mammal species. All primates can grasp an object and hold it in part or entirely using a single hand. 

Comparative kinematic studies on grasping behavior in humans and macaques have been carried 

out to investigate the similarities and differences existing across the two species (Fogassi et al., 

1991; Roy et al., 2000, 2006; Christel and Billard, 2001; Sacrey et al., 2009; Jindrich et al., 2011; 

Pouydebat et al., 2014). These studies mostly indicate similarities in hand shaping across species. 

For example, the fact that the hand aperture seems to be scaled relatively to the size of the object. 

Although some differences emerge, the similarities still place the macaque monkey as an excellent 

model for the study of the neuroscience of grasping. 

B.3.2.1 From single cells to whole brains
A particular brain region in the non-human primate parietal cortex is strongly associated with this 

ability. This region, termed AIP, is found in the anterior-lateral intraparietal sulcus (area 7b). The 

functional properties of area AIP have been extensively investigated at the single unit level (Taira 

et al., 1990; Jeannerod et al., 1995; Sakata et al., 1995; Murata et al., 2000; Gardner et al., 2007)

while macaque monkeys performed visually guided grasps of differently shaped 3D objects. The 

visual and motor responses of AIP neurons were tested in three experimental conditions: grasping 

in light, grasping in dark, and object observation. The results showed that while some AIP neurons 

respond during grasping execution in light and dark, others respond only during grasping in light 

and finally, some neurons discharge when the monkey fixates an object even when no grasping of 

the object is required. There is congruence between the visual and motor responses of AIP 

neurons: a neuron is active when the monkey observes one object selectively and discharges for 

grasping of the same object. Indeed, grasping related movements require processing of the visual 

properties of the object and those that control hand movement. It is thus primordial to perform a 



41

rigorous transformation of an object’s properties such as size, orientation and shape into a fitting 

motor scheme, shaping the hand for proper grasping.

The observation that single neurons in AIP display a combination of visual and motor properties 

suggests that these neurons code the visual features of the observed objects and that together with 

F5 (premotor cortex) neurons they transform them into the appropriate hand configuration for 

grasping (for review Rozzi and Coudé, 2015). The visuomotor properties of area AIP also include 

the processing of the 3D shape of objects. The early studies in area AIP had reported object-

selective responses in this area (Murata et al., 2000) but it was unclear whether these neurons 

encoded differences in 3D structure, 2D contour, orientation or any other feature that differed 

between the objects used in those experiments. A recent study (Srivastava et al., 2009) recorded 

single-cell activity in the AIP of awake fixating rhesus monkeys using disparity-defined curved 

surfaces. They report robust selectivity for disparity-defined slanted and curved surfaces in a high 

proportion of AIP neurons, thus confirming its involvement in the processing of the 3D shape of 

objects. 

Reversible pharmacological lesions of area AIP, have been reported to affect hand preshaping (i.e., 

grasping) (Gallese et al., 1994), leaving the reach component unaffected (Murata et al., 2000). The 

deficit was evident only, or mainly, when a precision grip was required. The fact that this 

impairment is more pronounced in the preshaping phase of grasping rather than during object 

manipulation emphasizes the crucial role of AIP in visuomotor transformation. The implication of 

AIP as part of the network responsible for 3D-shape perception was further stressed in a recent 

experiment of focal perturbation (Verhoef et al., 2016). Through a task of categorization of

disparity-defined 3D shapes during concomitant microstimulation of 3D-shape selective AIP 

neurons, Verhoef and colleagues (2015) found that microstimulation effects on preferences and 

latency depended on the 3D-shape preference of the stimulated site. Additionally, they show that 
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electrical stimulation of the same cells, during either the 3D-shape-categorization task or a saccade 

task, has different effects on behavior. 

Until the advent of fMRI in awake behaving monkeys, electrophysiologists had to rely on 

assumptions drawn from previous reports to define their functional regions of interest, and they 

used stereotaxic coordinates or anatomical landmarks reported in those reports to reach these 

regions. With monkey fMRI, it is now possible to precisely localize the regions of interest through 

an exhaustive functional screening of the whole visual cortex on the individuals that will be used 

for single cell recordings.

The study by Srivastava and colleagues (2009) had relied on a previous study by same group for its 

electrophysiological recordings. Indeed, Durand and colleagues (2007) performed fMRI on 

behaving macaques to study the regions processing the depth structure of either 3D objects or 3D 

arrangements of visual elements. This study was the first of its kind to have allowed the localization 

of regions involved in processing shape information in 3D, while all previous studies had only

investigated 2D shape processing (Denys, 2004; Sawamura, 2005) and stereoscopic depth 

processing (Tsao et al., 2003). Their results suggest the implication of an extensive network of 

parietal areas (AIP, CIP, LIP) in the processing of objects’ 3D shape, as well as their involvement 

in extracting their depth structure and their position in depth. This study further underscored the 

importance of stereopsis for extracting the 3D shape and position of objects in parietal areas 

involved in goal-directed actions. 

Another study (Nelissen and Vanduffel, 2011), sought to link human imaging and monkey single 

cell and lesion studies. They investigated the brain areas involved in reaching and grasping 

movements by training macaques to perform grasping movements in the scanner using an MR 

compatible pneumatic rotating grasping device. They recorded activations from AIP and ventral 

premotor area F5, in addition to area PFG in the rostral inferior parietal lobule, somatosensory 

areas (SI, SII, area 5), and the hand field of F1. In addition to confirming the roles of AIP and F5 
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in grasping control, this study brought forward some controversial data. Indeed, Battaglini et al. 

(2002) showed that lesions of V6A influence both reaching and grasping (abnormal wrist 

orientation and flexion) in monkeys, while Nelissen and Vanduffel failed to see clear grasping-

related activity inV6A. They argued that the lack of V6A activation was related to the fact that the 

monkeys performed the grasping task in the dark. This issue was recently resolved in single unit 

activity studies (Breveglieri et al 2016, 2017) which compared neuronal activity in V6A during 

conditions where a behaving monkey had to reach and grasp an object either in the light or in the 

dark. They found that the grasping activity of area V6A could be modulated by visual information. 

Furthermore, the authors compared the grasp-related activities of V6A and AIP, stating that both 

areas were involved in the on-line control of prehensile hand movements, with V6A being less 

sensitive than AIP to fine visual details of the objects to be grasped, but more involved in 

coordinating reaching and grasping (Fattori et al., 2017). 

Decoding techniques have recently been employed to further investigate the areas involved in 

reaching and grasping in both humans and macaques. The earliest of those studies (Di Bono et al., 

2015) used multivoxel analysis on fMRI data previously acquired from human subjects who were 

required to perform either reaching-only movements or two reach-to- grasp types (precision or 

whole hand grasp) upon spherical objects of different sizes. MVPA has also been used in a recent 

awake macaque fMRI study (Nelissen et al., 2017), where monkeys performed different reach-an-

grasp tasks in the dark. Last but not least, decoding of neural activity has been used on macaque 

electrophysiological data acquired from area V6A.

B.3.3 Comparing human and monkey neuroimaging
Initial attempts to localize a human homologue of area AIP within the intraparietal sulcus involved 

PET imaging of cerebral blood flow during tasks that required grasping objects compared to 

pointing at objects. Although the resolution was insufficient to identify a distinct patch of activity 

within the IPS, grasping generally induced a relative increase of blood flow in a broad region that 
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encompassed the post-central sulcus (Grafton et al., 1996). Later on, in humans, fMRI studies have 

demonstrated the existence of localized cortical reach-to-grasp areas similar to those described in

monkeys (Filimon, 2010a). Overall, grasping fMRI studies converge in considering the anterior 

part of the human intraparietal sulcus (hAIP), a likely homolog of monkey AIP (Filimon, 2010b; 

Vingerhoets, 2014). Furthermore, results from human neuroimaging studies appear to fit nicely 

with the neuropsychological findings in optic ataxia. The key role of hAIP in the dynamic control 

of grasping movements has also been confirmed in a series of TMS studies (Vingerhoets, 2014). 

TMS applied to the left aIPS disrupts online grasping execution (Rice et al., 2006).

On the other hand, studies on the extraction of 3D shape properties have also revealed the 

functional homologies between humans and macaques. In 2009, following the same protocol from 

their previous research, Durand and colleagues (Durand et al., 2009) conducted an fMRI study on 

humans in which they report the homology between anterior IPS regions in humans and macaque 

monkeys. They show that two areas, which they called DIPSM (dorsal IPS medial) and DIPSA

(dorsal IPS anterior) correspond to macaque anterior LIP and posterior AIP respectively. DIPSM 

and DIPSA are sensitive to depth structure defined from disparity, both in connected random lines

and in textured surfaces (Georgieva et al., 2009a) as are anterior LIP and posterior AIP (Durand et 

al., 2007). Both human regions are sensitive to 2D shape (Denys, 2004; Durand et al., 2009; 

Georgieva et al., 2009b) as are the corresponding monkey regions (Denys, 2004; Durand et al., 

2007) and this result does not depend on familiarity with the objects (Denys, 2004). Both human 

regions have a central representation (Orban et al., 2006), which they possibly share (Swisher et al., 

2007) as do LIP and AIP (Ben Hamed et al., 2001; Orban et al., 2003). DIPSM but not DIPSA is 

sensitive to saccades, as is the case for anterior LIP and not AIP (Durand et al., 2007). 

Studies on the role of AIP in the visuomotor control of grasping have also revealed functional 

differences between humans and monkeys. DIPSM shows sensitivity to 3D shape from motion, 

but not LIP (Vanduffel et al., 2002). Similarly, DIPSA in humans shows sensitivity to motion while 
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AIP does not. Such differences between the two species have been recently theorized to be linked 

to tool use in humans (Orban, 2016). The left anterior supramarginal (aSMG) responds specifically 

to observation of tool actions, but not hand actions with similar goals, unlike the putative human 

homolog of AIP. Stimuli used to activate aSMG does not yield any specific activation in the inferior 

parietal lobule (IPL) of the macaque, even after extensive training using tools. 

B.4 Conclusion
The use of monkey fMRI to study the cortical areas that process 3D-shape properties (Durand et 

al., 2007), and then to study the cortical network involved in grasping (Nelissen and Vanduffel, 

2011) has undoubtedly resolved a missing link between previous single cell studies in monkeys and 

human imaging data, revealing that monkeys and humans have homologous networks for the 

processing of grasping hand movements and for its visual control. Furthermore, they have 

established a launching pad for subsequent electrophysiological, focal perturbation and fMRI 

research (Srivastava et al. 2009; Verhoef et al. 2015; Premeureur et al. 2015; Van dromme et al. 

2016, Nelissen et al. 2017), and comparative monkey-human neuroimaging studies (Durand et al. 

2009; Flave et al. 2016). 
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C. Methodology for Monkey 

fMRI
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C.1 Monkey fMRI facilities in Toulouse

The centre for research on brain and cognition (CEntre de Recherche Cerveau et COgnition –

CERCO) is a research facility that aims to investigate the neural basis of sensory perception, 

cognition and consciousness through a multilevel (neurons, neuronal populations, networks and 

behaviour) and multidisciplinary approach that uses a wide range of converging techniques 

including anatomy, physiology, integrative neurophysiology, cognitive neurosciences, 

computational neurosciences and theoretical approaches with a strong interface between biology 

and engineering. Such investigation relies on a parallel approach in monkeys, humans and patients, 

bridging fundamental and clinical research. 

Within the research facility (Figure 3) there is a state of the art monkey research department that 

includes the animalium, which houses both rhesus macaques and marmosets, 4 electrophysiology 

setups and 2 fMRI conditioning and psychophysics setups. The animalium contains a quarantine 

area for initial reception of new animals, a thoroughly equipped surgical room, and a cleaning 

facility. Housed in large social enclosures of at least 2 individuals, the macaques have access to 

enriched environments that allow foraging behaviour and exercise. The facility is governed by a 

strict protocol of staff flow for maximum isolation from external pathogens. The animals undergo 

regular health check-ups, including blood tests, weightings and dental care. A team of experts in 

animal behaviour regularly maintains the facility and provides counselling in animal handling and 

well-being. 

The main attraction of the CerCO is its 3T Philips wide bore MR scanner. Dedicated for 

neuroscience research, it is fitted with a variety of apparatus, such as eye-trackers, response boxes, 

physiological monitoring systems, in addition to an LCD back projector, binocular stimulation 

goggles and an MR compatible LCD monitor.  The platform is available for both human and NHP 

research, and its location at the interface of human and monkey research facilities, makes it a hinge 
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for comparative human and monkey studies. The platform is available for the entire staff of the 

research facility, where a team provides expertise in MRI protocol implementation, such as 

optimization in MRI sequences and data handling and pre-processing.

Figure 3. Architectural layout of the base floor of the CerCo research institute. It is divided into separate human 
and animal experimentation areas with the MRI platform serving as an interface.
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C.2 Creating the setups: an environment for fMRI conditioning

Despite our nice facilities, the MRI environment remains relatively hostile: dark, noisy and 

confined. The MR mechanics subject the scanned individual to vibrations and sometime 

involuntary muscle contractions. Furthermore, changing magnetic field gradients can also cause 

nausea and disorientation. The uncooperative nature of macaque monkeys makes habituating them 

to such an environment a necessity prior to any experimentation. In addition to familiarizing the 

animals with the MR environment, it is essential to provide them with the essential training to 

perform complex tasks, like that administered to humans, to allow interspecies comparisons, one 

of the main purposes of this technique. A mock setup of the MRI milieu, that simulates the 

conditions in which the animal will be scanned is a useful tool to ensure minimal movement and 

stress during scanning sessions. Since most laboratories use clinical horizontal bore scanners that 

are often shared with multiple research facilities, mock MRI setups allow extended periods of 

training to be conducted without the risk of hogging scanning time, that would still have to be paid 

even though no data is acquired. 

During my PhD, I have assembled 2 mock MR setups for both training and psychophysical data 

acquisition. The setups were in a preparation room on the ground floor of the CerCo lab, at the 

interface between the animal facility and the scanner (Figure 3). The strategic position of this room 

allowed easy transfer of the animals between the two areas, and provided constancy for the animals, 

which was critical for their familiarity with the environment. The 2 setups were virtually identical, 

with minor differences.  The setups (Figure 4) consisted in isolation boxes where the monkeys were 

trained and a control desk located on the outside wall of the box. Both setups were fitted with flat 

24” LED monitors (BenQ XL2411Z, 144Hz refresh rate), standard stereo sound systems, with the 

option of surround sound stimulation. In addition to audio-visual stimulation, the animal’s gaze 

could be tracked with video-based eye-trackers (IScan®, Eyelink®). A reward system (CRIST 

instruments®) was modified so that the liquid conducting nozzle could be fitted to the different 
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primate chairs and their sipping tubes. The mock MRI bore was constructed from rigid 

polycarbonate and polystyrene. The mock bore was a precise replica of the middle portion of the 

actual scanner bore.  Wireless infrared cameras were also installed to monitor the monkey’s general 

behavior. We could control audio-visual stimulation, monitor the monkey’s gaze and its general 

behavior from the control desks. The control desks consisted of 2 computers, a monitoring tablet 

receiving direct video feed from the IR camera and an audio amplifier. The first computer 

controlled the eye-tracking camera, while the second, the master computer controlled and 

synchronized all the above. To synchronize the ocular signal with reward, the eye-tracking 

computer and the reward delivery system were connected to the master computer through analog 

inputs, 2 for the eye-tracking system (X and Y coordinates), and 1 for the reward system, via an 

acquisition card (National Instruments®).  Our team negotiated a partnership with Okazolab.inc, 

to provide us with a state of the art software (EventIDE®) for generating stimuli, designing 

experiments, acquiring biophysical and behavioral data and synchronizing stimulus onset and offset 

with input and output signals. 

Figure 4. Monkey fMRI draws a 

bridge between single-cell 
studies and human functional 

imaging studies.
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C.3 Animal preparation

C.3.1 Legal authorizations

Animal housing, handling, and all experimental protocols (surgery, behavioral training, and MRI 

(magnetic resonance imaging) recordings) followed the guidelines of the European Union 

legislation (2010/63/UE) and of the French Ministry of Agriculture (décret 2013–118). All projects 

were approved by a local ethics committee (CNREEA code: C2EA – 14) and received 

authorization from the French Ministry of Research (MP/03/34/10/09). 

C.3.2 Surgical procedures

During this PhD, I have been involved in the surgical preparation and behavioral training of 6 

animals. Initially, each monkey was habituated to receiving food and fluid rewards in a monkey 

chair, first in the animal facilities and then in the training setups and scanner room. Once 

familiarized with those different environments, animals were surgically implanted with a plastic 

head-post. Glycopyrrolate (Robinul, Baxter; 0.004 mg/kg) was administered intramuscularly 20 

minutes before anesthesia induction, to reduce salivary, tracheobronchial, and pharyngeal 

secretions and to block cardiac vagal inhibitory reflexes. Anesthesia was induced with intra-

muscular injections of Tiletamine/Zolazepam (Zoletil 100, Vibrac; 10 mg/kg) and Medetomidine 

(Domitor Pfizer; 0.04 mg/kg). An intra-venous catheter was installed for saline perfusion during 

the surgery. Animals were then intubated for inhalational anesthesia (Isoflurane: 1.5%, N2O: 50%, 

O2: 50%) and their head was placed within a stereotaxic holder. Under sterile conditions, a sagittal 

incision was performed on top of the head and tissues were set apart to expose the skull. The 

plastic head-post was positioned on top of the skull and 8 to 10 ceramic screws (Thomas 

recording®) were implanted around the head post. The head-post and the screws were then sealed 

together and to the skull with a bone cement containing an antibiotic (Palacos®, medium viscosity 

with Gentamicicin®, Heraeus®). The animal’s constants were monitored during the whole surgery. 
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An analgesic (Tolfedine®) and an antibiotic (Terramycine®) were administered after the surgery 

and on a daily basis during a week post-surgery. The macaques recovered for two months before 

resuming the behavioral training.  

C.3.3 Behavioral training

After the post-surgery resting period, the animals were first familiarized with having their head 

restrained by the head-holder, while lying in a sphynx position within the monkey chair (Vanduffel 

et al., 2001). This is a critical phase of training. Animals must learn to remain still and ignore any 

startling noise. Furthermore, animals will tend to force their way out of the chair or in, either by 

pushing or pulling on the attached head-post. Depending on the animals, some may have enough 

strength to rip their implants. A lack of focus on this training phase, not only subjects the animals 

to the dangers of exposing their skulls resulting in trauma, but can also leave them with the bad 

habit of moving to contest unsatisfactory reward delivery, which is catastrophic for fMRI data 

acquisition.

Behavioral conditioning to a passive fixation task started once the animals could remain quiet and 

still for prolonged periods in the head restrained position. Then, they were water scheduled and 

involved in daily training sessions. We insured that the animals always received sufficient daily 

amounts of water regarding their needs (evaluated during periods without restrictions), either fully 

during the training sessions or through complements after the sessions. The weight of the animals 

under restriction was checked daily, and restriction was halted if it decreased by >5% from the 

weight before restriction. During the training sessions, the animals were installed in the dark 

training setup, facing a screen on which a fixation target was displayed (green square, viewing 

distance: 50 cm; target size: 0.3° x 0.3°). Eye position was monitored online with an infrared video-

based eye tracker. The animals had to maintain their gaze within ±1° from the center of the fixation 

target to receive fluid reward. Fixation periods (about 3 minutes) alternated with periods of rest, 
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mimicking the temporal structure of the fMRI sessions. The frequency of reward distribution was 

progressively augmented if the fixation was not interrupted, to encourage prolonged fixation 

periods. Once the fixation task had been learnt, the different stimuli were introduced in the 

background and the animals had to learn to keep their eyes on the fixation target. Training was 

considered as completed once the animals could spend most of the time of the fixation periods 

(>90%) on the fixation target. The last elements introduced during the training period were the 

mock scanner bore and sounds produced by the scanner to mimic the physical and sound 

environment encountered during the MRI recordings. 

C.4 Dedicated monkey coils

To conduct the pilot scanning sessions on Monkey M00, we used 2 multi-purpose, vendor provided 

transmit/receive Flex coils, that were held in place on the monkey’s head post using adhesive tape. 

This solution was not durable, and with limited replicability, furthermore it was very susceptible to 

animal motion. Nevertheless, it provided us with rich elementary results concerning image quality, 

and allowed us to test a myriad of imaging sequences, as well as acquire invaluable experience on 

monkey behavior within the scanner. Image distortions due to body and jaw motion (from reward 

consumption) can be mitigated through the application of parallel imaging techniques with phased 

array coil systems. A major advancement in the monkey fMRI technique in Toulouse was the 

development of a custom 8-channel phased array coil system (RapidBiomed®) specially designed 

to fit the skull of macaques for maximum proximity and reproducibility, while preserving their field 

of view. One coil circled the head post while the 7 others were distributed along the circumference 

of the monkey’s head. The coils and electronics were secured in a durable MR compatible polymer 

casing, with an opening on the top to allow a tight fit with the head post. As shown in Figure 5, 

the coil system can be fitted with anaglyphs for 3D viewing.
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Figure 5. M02 in primate chair with mounted red and green anaglyphs.

C.5 Magnetic resonance imaging

C.5.1 Set-up overview

After the animal has completed the training phase in the mock MRI setup, it is introduced to the 

actual scanning environment. The habituation starts with a couple of trips to the scanner room, 

while the monkey is in the primate chair, free from any head restraint. The animal remains for 

about an hour in the scanner room, while being rewarded with fruits for calm behaviour. The next 

habituation sessions involve the animal being trained to fixate within the scanner, with no running 

acquisition sequences. Once the animal has confidently fixated for >90% of the time within the 

scanner, the same procedure is applied while sequences are running. Inside the bore of the scanner, 

as in the mock MR setup, the animal sits in a sphinx position within the primate chair, head 

restrained by the head-post, with the 8 channels, phase array coil located on top of the head (Figure 

6). The animal is involved in a passive fixation task, i.e., maintaining the gaze on a green fixation 

target back-projected on a stimulation screen by a video-projector. Eye position is monitored by 
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an infrared video-based eye-tracker (ASL®). Correct fixation triggers the delivery of fluid rewards 

during the runs.

Figure 6. Schematic representation of the monkey fMRI set-up.

C.5.2 Acquisition sequences

Functional volumes were acquired with echo-planar parallel imaging sequences (GE-EPI; TR = 

2000ms, TE = 30ms, flip angle = 90°, SENSE factor = 1.6; voxel size = 1.25 × 1.25 × 1.5mm, 32 

axial slices). For visualization of fMRI results, statistical maps are often displayed on a high-

resolution “anatomical” volume image or a surface reconstruction based on the segmentation of 

grey and white matter. MRI can be used to segment the different tissues types in the brain. Since 

the microscopic environment around the hydrogen nuclei differs for different tissue types, this 

results in different MR signals for each tissue type, which can be exploited to visualize the location 

of these tissue types. Commonly, a high- resolution T1-weighted image with a uniform signal 

intensity acquired with a sequence optimized for grey-white matter contrast is used as anatomical 

image. The sequences used to acquire the anatomical volumes were T1-weighted magnetization 

prepared rapid gradient echo (MPRAGE; repetition time [TR] = 10.3ms; echo time [TE] = 4.6ms, 

flip angle = 8°; voxel size = 0.5 × 0.5 × 0.5mm; 192 slices).  
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C.5.3 Anatomical and functional templates

After the surgical implantation of the head post for each of our monkeys, we built anatomical, and 

functional brain templates from acquisitions made in a single session while the animals were slightly 

anaesthetized (Zoletil 100:10mg/kg and Domitor: 0.04mg/kg). During the session, the animals 

were in the exact position they would be during functional scanning sessions, with head fixed to 

the primate chair. Cushions were installed beneath the monkey’s chest to provide support in the 

absence of muscular tonus. The animals’ constants were monitored during the whole session (about 

1 h) with an MR compatible oximeter. During that session, we acquired 4 anatomical volumes and 

300 functional volumes using the sequence parameters mention in the previous section. To build 

the templates we first realigned the images to the first acquired volume to account for any 

movements between the acquisitions. Next, we reoriented the realigned images to the 112-RM 

space to allow for proper co-registration with this template. We then segmented the mean image 

obtained from the previous step, to generate files containing only grey matter, white matter or 

cerebro-spinal fluid. This segmentation step is essential for proper surface reconstruction. The 

image is then resampled to 1x1x1mm voxels and cropped. The segmented, resampled and cropped 

image is then verified using MRIcron. This step has the purpose of manually modifying any errors 

the automatic segmentation might have made. Finally, we normalize the manually modified image, 

resample to 0.5x0.5x0.5 mm voxels and create the T1 image mask. The same procedure was applied 

to create an EPI template. 

C.5.4 Cortical surface reconstruction

One purpose of fMRI is to decipher visual-cortical organization, yet many hurdles need to be 

overcome to acquire a detailed view of visual area distribution. Such a purpose requires a high-

fidelity model of the cortical surface which will allow us to visualize the anatomical distribution of 

functional data with adequate precision. Indeed, incremental difficulty arises when we are 
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confronted to the mosaic of small areas that lie beyond the primary visual area and the first 

extrastriate area (V1-V2). Furthermore, the gyrencephalic nature of the cortex in higher order 

primates such as humans and macaques, implies that most of the sensory cortices, and most notably 

the visual cortex, lie buried deep within complex and irregular sulci, which makes it a hindrance to 

the visualization of spatial relationships among the neighbouring visual areas. Another problem 

arises when trying to compare the visual cortical organization from several individuals. The pattern 

of folding significantly varies from one individual to the next (geographic variability), which adds 

to the variability in the size and shape of visual areas and their location relative to geographic 

landmarks (functional variability). Taken together, geographic and functional variability exacerbate 

the visualization problems arising from the irregularity of cortical convolutions and make it harder 

to assess the consistency of subtle areal boundaries. 

Cortical surface reconstruction resolves many of the above-mentioned issues. Indeed, this 

technique allows the creation of a variety of cortical reconstructions ranging from fiducial surfaces 

to flat maps, which means that any projected data onto that surface can be viewed in multiple 

configurations. Cortical surface reconstruction also allow surface based coordinates which are 

inherently advantageous over conventional stereotaxic coordinates because they respect the 

topology of the cortical sheet (Drury et al., 1996; Sereno et al., 1996). Functional and geographical 

variability among individuals can be assessed through surface warping. Indeed, surface-based 

warping allows individual hemispheres to be deformed to an atlas map while preserving 

neighborhood relationships on the cortical sheet (Dale et al., 1999). Such warping also opens the 

way for interspecies comparisons, as it provides a practical strategy for addressing these 

impediments and for evaluating the degree to which there is a common organizational plan in terms 

of the identities of visual areas and their topological relationships with one another across the 

cortical sheet.
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To reconstruct the cortical surfaces of our monkeys, we employed the SureFit (Surface 

Reconstruction by Filtering and Intensity Transformations) algorithm provided in the CARET 

software. SureFit is a method for rapidly generating accurate surface reconstructions of the cerebral 

cortex from structural MRI data (Drury et al., 2000). A distinctive feature of SureFit is that it 

generates segmentation and surfaces running along the cortical mid thickness. This gives a 

representation of cortical surface area that is roughly proportional to the associated volume of 

cortical gray matter. An example of cortical reconstruction is given in Figure 7. The cortical surface

reconstructions were generated from the T1 templates (see previous section).

Figure 7. Cortical surface reconstruction. The SureFit reconstruction follows the segmentation of the T1 weighted 
anatomical image. The reconstruction produces a fiducial surface which should be inflated before it can be cut and 
flattened.

C.6 Functional data processing

C.6.1 Functional signal: BOLD vs. IRON

When a certain region in the brain is activated, small temporal signal changes related to changes in 

the concentration of the paramagnetic deoxyhaemoglobin (dHb) can be measured. BOLD contrast. 

This BOLD response is relatively small (up to a few percents) and corrupted by many sources of 

noise from the subject (motion, breathing, heart rate, etc.) or external to him (temperature, 

vibrations, fluctuations in magnetic field homogeneity, etc.). In some cases, the low signal-to-noise 

(SNR) of the BOLD signal can represent a strong limitation for conducting robust functional 

explorations. An alternative technique was developed in rodents (Kennan et al., 1998; Mandeville 
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et al., 1998; van Bruggen et al., 1998) and later applied in monkeys (Vanduffel et al., 2001; Leite et 

al., 2002) to increase the SNR. The technique is referred to as Increased Relaxation for Optimized 

Neuroimaging (IRON) fMRI or cerebral blood volume (CBV) fMRI and makes use of an 

exogenous contrast called agent Monocrystalline Iron Oxide Nanopartical (MION), usually coated 

with dextran, a polysaccharide which has the purpose of reducing the cytotoxicity of the MION 

particles (Yu et al., 2012). This contrast agent is administered to the bloodstream where it remains 

present for several hours. Due to the strongly paramagnetic properties of MION the temporal 

signal in an activated brain region strongly decreases proportionally to the increase in CBV. 

Therefore, the IRON signal is negative compared to the BOLD signal and the SNR of IRON is 

approximately 3 times larger than the SNR of BOLD at a magnetic field strength of 3T (Mandeville, 

2012). In addition, in BOLD contrast the peak response arises from the large blood vessels at the 

pial surface, whereas the IRON contrast peaks around the middle cortical layers, making it more 

suited for high-resolution fMRI studies (Zhao et al., 2006; Jin and Kim, 2008). IRON fMRI has 

also been applied in high-resolution human fMRI, although its use remains highly controversial

(Kim et al., 2014). The use MION in monkeys raises a few dilemmas: (1) the development of an 

immune response to dextran and the gradual accumulation of iron in excess of body requirements

which could damage the monkey’s health and reduce its life expectancy, (2) the stress and 

invasiveness related to intra-venous injections of MION prior to each scanning session and (3) the 

limitation it may introduce for direct comparison with human BOLD responses.  Before the 

development of the custom built 8 channel phased array coil, we observed unsatisfactory SNR 

during the use of the Flex coils, which prompted us to employ MION. The signal provided by the 

custom-built coil alleviated the need for it, and satisfactory SNR was reached using the 

conventional BOLD signal.
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C.6.2 Basic pre-processing steps

Arguably the biggest challenge in awake monkey fMRI, is animal motion. Animal motion always 

degrades image quality to a greater or lesser extent. Although the head of the monkey is fixed to 

the primate chair, animal motion remains a nuisance. In addition to sudden body movement, 

motion artefacts can arise from consumption of reward (jaw motion). Problems due to animal 

motion affect fMRI at all field strengths but are worse at high field.

In human fMRI, motion artefacts arising from slow drift can be corrected using rigid body 

registration, where a 3D rigid body model with six degrees of freedom (three translational 

movements Tranx, Trany, and Tranz and three on rotational movements RotPitch, RotYaw, and RotRoll) are 

estimated. All images within a run are then realigned to the image in the middle of the times eries 

of each run. This strategy can correct some displacements, but it remains inadequate in monkeys 

since motion artefacts are caused by sudden body movement. Non-rigid distortions are even more 

complicated to correct. Their correction introduces more degrees of freedom and the low 

resolution and contrast of functional images may not support accurate image registration with many 

terms. 

Another solution to removing signal fluctuations caused by motion can be done by extracting noise 

regressors using PCA from non-brain voxels (muscles, eyes) and employing these regressors in 

further analyses, as demonstrated in a later study (Section E). Motion regressors that are derived 

during the motion correction step of the pre-processing pipeline, can also be introduced in the 

general linear model (see below). The same can be applied to physiological data such as cardiac 

rhythm and respiration, unless these have been accounted for through temporal filtering. 

Behavioural data such as eye-tracking data and reward consumption should also be included as 

regressors, whenever available. Nonetheless, the exceptional training of the animals remains a 
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prerequisite for proper acquisition of fMRI, as all the motion correction strategies will fail if too 

much motion occurs.

C.6.3 Visual field mapping techniques

In human visual field mapping, we estimate the position in visual space eliciting maximal responses 

at each cortical voxel by calculating the phase-difference between a periodic visual stimulus 

presentation and fMRI signals recorded from occipital cortex (Engel et al., 1994, 1997; Sereno et 

al., 1995b; DeYoe et al., 1996). This in turn allows the localization and delineation of different 

retinotopic visual field maps according to their polar angle and eccentricity representations 

(Wandell et al., 2007; Bridge, 2011). This technique is easily transposable to monkeys, and has been 

used extensively (for review Vanduffel et al., 2014). 

While these methods are effective in localizing and delineating different retinotopic areas, probing 

the underlying characteristics of the RFs of individual neurons, such as the tuning curve, size, or 

shape, is another dilemma. Since the signal captured by fMRI methods combines the activity of 

hundreds of thousands of neurons in a single voxel, so in visually responsive cortex the signal from 

specific locations will reflect a complex aggregate of the properties of individual receptive fields 

(RFs). The aggregate properties of a large number of neighbouring neurons is referred to as the 

population RF (pRF). In the study developed in Section E, we adopted the pRF estimation method 

introduced by (Dumoulin and Wandell, 2008). We use the analyzepRF toolbox (Kay et al., 2013b)

which can be found on http://kendrickkay.net/analyzePRF/. The purpose of the toolbox is to 

estimate a model of the pRF by generating voxel time series predictions that best fit with the 

observed data. 

Briefly, the toolbox uses a model-based approach to measure pRFs. The area of visual space that 

elicits responses in a single voxel is modelled as a Gaussian function (Larsson and Heeger, 2006)

as in the equation below:
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where (x0, y0) is the centre and σ is the Gaussian spread (standard deviation). These parameters are 

stimulus-referred; the units of x0, y0 and σ are all in degrees of visual angle. Next, an effective 

stimulus, s(x, y, t) is defined. The stimulus which could be a contrast pattern, either a checkerboard 

or a dartboard, or a more complex image or video, is revealed as the stimulus aperture (rotating 

wedges, expanding/contracting rings, or drifting bars) moves across the pattern. The formula thus 

describing the effective stimulus is simply a binary indicator function that marks the position of 

the stimulus aperture at each time. We then calculate the predicted response for a given pRF model

and given stimulus. The first step towards predicting the fMRI time series is to calculate the overlap 

between the effective stimulus and the model pRF at a given voxel.

Equation 2 �(�) = ∑ �(�, �)�(�, �, �)�,�

An important subsequent step is to convolve the overlap r(t) with a model of the subject’s HRF.

Equation 3 �(�) = �(�) ∗ �(�)

The goodness-of-fit (RSS) is calculated between the prediction, p(t), and the data, y(t). An error 

term that accounts for the unknown units of the fMRI signal is calculating by introducing an 

unknown scale factor, β.

Equation 4 ��� = ∑ (�(�) − �(�)�)��

A very large repertory of theoretical time series is produced for a very large combination of pRF 

positions and spread. By comparing multiple combinations of receptive field properties (e.g., 

location, spread) with the observed data, a best-fitting pRF model is obtained for each cortical 

location. 

C.6.4 Basic statistical analyses 

As in humans, the purpose of a monkey fMRI experiment is to identify voxels whose time series 

differ significantly between the experimental and control conditions. 
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The general linear model (GLM) allows the examination of the temporal synchrony between each 

voxel’s time series and the predicted response of the experiment (Bandettini et al., 1993) – derived 

by convolving the experimental design matrix with a hemodynamic response function (HRF) (see 

Section D). A correlation coefficient R is derived to quantify the temporal synchrony. To allow for 

the variability of temporal delays in HRFs across different brain voxels, cross correlation – which 

estimates the correlation coefficient as a function of the temporal lag of one signal relative to the 

other, may be applied (Friston et al., 1995). Briefly, y is a vector of values showing BOLD signal 

strength at a single voxel in successive scans (a voxel time-series). It is modelled as a linear mixture 

of several regressors and white Gaussian distributed additive noise term ε as below: 

Equation 5 � = �� + ���� + ���� +⋯�
�
 + �

where xi denotes each regressor, and the parameter weight βi is the scaling term indicating the 

contribution of a regressor to the dependent variable y. When y refers to many dependent variables, 

such as different time points across a scan in an fMRI study, Equation 5 represents the GLM. 

Statistical testing of the GLM estimates how well each voxel’s time series is fit by the linear 

combination of regressors. To assess the significance of regressors’ contribution to y, t-statistics or 

F-statistics are applied (Friston et al., 1995; Worsley and Friston, 1995). 

Through versatile modifications of regressors, this approach allows more flexible shapes of the 

predicted response. It is worthy to mention that noise is an integral part of a voxel’s time-course. 

Such noise, which is assumed to be unrelated to the experimental conditions, may improve 

estimates of the related components of the BOLD signal if handled properly. Thus, any denoising 

procedure requires a careful selection of the noise regressors. Inaccurate regressors that fail to 

capture a significant portion of the noise, may worsen the GLM estimates. to use as noise regressors 

(Kay et al., 2013a), which are then introduced in the GLM. 
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In contrast with humans, the small sample size in monkey fMRI experiments prohibits the use of 

group statistics, as we rarely surpass the scanning of 3 different animals in an experiment. One 

strategy for gaining statistical power can be averaging the volumetric data across hemispheres, 

which doubles the sample size. Volumetric data from all hemispheres are deformed to adhere to a 

common space (e.g F99), before being averaged and analysed. Another fundamental strategy to 

strengthen statistical power is the use of individual hemodynamic response functions (HRF). The 

need for individual HRFs will be detailed in the following section. To further strengthen 

conclusions about the data, one may consider splitting the data into two halves (e.g odd runs vs 

even runs). In a GLM analysis, the odd runs in the data can be used to find the local maxima, while 

the even runs can be used to perform a region of interest analysis (ROI). This strategy has been 

used in the study described in Section F. Dividing the data can also be useful in pRF analysis. Also, 

the distribution of the RF parameters (polar angle, eccentricity, size) can be correlated between the 

2 halves of the data. This strategy has been used in the study described in Section E.
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D.Estimating the Monkey 

hemodynamic response 

function (HRF)
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D.1 The hemodynamic response

The body must respond to physical activities, external temperature, and other internal or external 

factors through the homeostatic adjustment of its blood flow to deliver oxygen and nutrients such 

as glucose to stressed tissues to allow them to function. The hemodynamic response (HR) allows 

the rapid delivery of blood to active neuronal tissues. During information processing, there is an 

increase of neuronal activity in different parts of the brain. This increase in neuronal activity elicits 

an increase in oxygen and glucose consumption supplied by the vascular system. The MRI signal 

measured in functional imaging is usually a signal that measures changes in the microvasculature 

oxygenation. More precisely, it deals with venous oxygenation (oxygenation in arteries is always 90-

100%). The relationship between venous oxygenation and the MR signal strength corresponds to 

the BOLD signal. 

The hyper-perfusion of the local tissue (Mcintyre et al., 2003) is the basis of the BOLD signal. 

During activation, the oxygen level increases from 60-80 % at rest, to up to 90% in the venous 

system and the Hb/dHb ratio increases. This increase in oxygenation might be required for waste 

removal and heat regulation (Yablonskiy et al., 2000), or to supply distal active cells (Devor et al., 

2011); increased blood flow might also be needed to provide higher levels of glucose (Fox and 

Raichle, 1986; Fox et al., 1988; Paulson et al., 2010). The BOLD signal increases about 2 seconds 

after the neural activity; it then reaches a peak at about 4 seconds in monkeys and about 6 seconds 

in humans. If the neural activity continues, a plateau can occur. Once the neural activity goes back 

to its baseline level, the signal also returns to baseline 8 to 11 seconds later. Finally, a transient 

change referred to as the undershot can be observed. Maximal variance is observed between 

subjects and minimal variance between scans of the same subject (Aguirre et al., 1998). However, 

within subject variance increases when comparing several areas – i.e. the shape of the hemodynamic 

response is influenced by the local vasculature which differs from one area to the other. 
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Since the BOLD signal is a metabolic signal, it only provides an indirect measure of the underlying 

neural activity. In order to solve this dilemma of neurovascular coupling, Logothetis and colleagues 

(Logothetis, 2002) have demonstrated, through an experiment of concomitant electrophysiological 

recording and fMRI in macaque monkeys, that a strong correlation exists between the amplitude 

of the BOLD signal and local field potentials which are the electric potentials recorded in the 

extracellular space in brain tissue, using micro-electrodes. They also report correlation between 

spike rates and BOLD, although not as robust. Similarly, the amplitude of fast event related 

potentials (ERP), which are measured by means of electroencephalography (EEG), seems to vary 

linearly with BOLD (Sabatinelli et al., 2007). Slow ERPs, which are believed to arise from 

postsynaptic potentials, correlate with BOLD in parietal cortex (Schicke et al., 2006). This implies 

that BOLD seems to reflect more the input to a neuronal population as well as its intrinsic 

processing, than direct spiking activity per se.

D.2 Motivation to measure the HRF

The study of brain activity using fMRI is built on the ability of estimating the sensitivity of a large 

population of neighboring neurons belonging to the same voxel, to a certain stimulus and/or task. 

Standard analysis of fMRI data relies on a GLM approach to look for correlations between the 

fluctuations of the BOLD signal and the experimental design. Crucially, this approach relies on a 

number of assumptions about the data that must be met to reach valid inferences. The aim of a 

statistical analysis is to determine which voxels have a time-course that correlates most with a 

known pattern of stimulation. In the GLM approach, the time-course associated with each voxel 

is modeled as a weighted sum of one or more known regressors (e.g., the onset and offset of an 

experimental condition) plus an error term. The aim of the analysis is to estimate if, and to what 

extent, each regressor contributes to the variability observed in the voxel's time-course. 
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To transform a neural response to on-off stimulation into a predicted vascular signal, the regressors 

are typically convolved with an HRF (Boynton et al., 1996). The HRF thus characterizes the input–

output behavior of the system (Stephan, 2004), imposing an expectation on how the BOLD signal 

in a voxel should vary in response to a stimulus. Incorrect modeling of the HRF might cause 

significant discrepancy between the predicted and the observed BOLD signal, increasing the 

variance of the GLM coefficients, degrading both statistical power and model validity (Aguirre et 

al., 1998; Loh et al., 2008; Waldorp, 2009). Furthermore, one should note that the HRF is known 

to be highly variable across species, individuals, and, within individuals, across scanning sessions, 

experimental designs and brain regions (Aguirre et al., 1998; Handwerker et al., 2004). Classical 

fMRI data processing softwares, such as SPM, use a human canonical HRF model for the GLM 

analysis. Certainly, it is not adequate to use such a model for macaque monkeys whose brain size, 

vasculature, diet and liquid intake greatly differ (Leite et al., 2002). It is thus useful to estimate the 

HRF for each monkey involved in an fMRI experiment to ensure model validity and better 

statistical power.

D.3 Estimating the HRF in macaque monkeys

D.3.1Stimuli
To estimate the BOLD HRF of our animals, we followed the procedure described in (Dumoulin 

and Wandell, 2008). Stimuli were full-field counter phasing (10Hz) checkerboards (40°, 16 sectors) 

that were displayed at full contrast, for 4s followed by a 30s blank (Figure 8b). During each scan, 

this cycle of 34 seconds was repeated 6 times for a total duration of 204s. A fixation point was 

always displayed in the center of the screen. Surgical preparation and training procedures are 

detailed in Section C. 



72

Figure 8. (a) Schematic representation of the monkey fMRI set-up. (b) Illustration of the stimuli and 

experimental design.

D.3.2Preprocessing

Within each run, volumes were rigidly realigned with each other on a slice-by-slice basis using a 

subpixel cross-correlation algorithm (Guizar-Sicairos et al., 2008). This was followed by slice-time 

correction. A mean image of the functional volumes was then computed for each run and used for 

normalization on the functional template of the same individual. Those run-dependent 

normalization parameters were combined to the run-independent parameters linking the functional 

template to the anatomical one in a single deformation step, during which the functional volumes 

were resampled at 1 × 1 × 1mm and slightly smoothed with a spatial Gaussian kernel (FWHM = 

1.5 × 1.5 × 1.5mm).
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D.3.3Data analysis

For each animal, the HRF was estimated from 12 runs for which the percentage of correct fixation 

was above 85%, to minimize the influence of eye movements in blood-oxygen-level dependent 

(BOLD) signal fluctuations. If the HRF is usually estimated from voxels in area V1 (Dumoulin and 

Wandell, 2008), its properties might slightly change from one cortical area to the other 

(Handwerker et al., 2004). For this reason, we took a more general approach and estimated the 

HRF from all the brain voxels that significantly responded to the visual stimulation. These voxels 

were selected from a Fourier analysis of the average time-courses across the runs. For each voxel, 

we computed a signal-to-noise (SNR) ratio where the signal corresponded to the Fourier coefficient 

amplitude at the stimulation frequency F (i.e. F = 1/34) and the noise was given by the average 

moduli at the two neighboring frequencies (i.e. F – δf and F + δf, where δf = 1/2 is the resolution 

of our frequency analysis). Only the voxels with SNRs greater than 3 were kept for further analysis. 

We computed the average time-course of these voxels during one cycle and used this average time-

course for estimating the HRF. The HRF was derived as the response to a 2s stimulus (our fMRI 

sampling rate). Note however that our stimulus duration was 4s rather than 2s because linearity 

deteriorates at short durations (Boynton et al., 1996; Logothetis and Wandell, 2004) and because 

this duration was used in a previous monkey fMRI study that characterized the BOLD HRF in 

macaque (Leite et al., 2002).
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D.4 Results

Functional imaging was conducted at 3T on awake behaving animals, performing a simple fixation 

task. The stimulus consisted of full-field counter phasing (10Hz) checkerboards that were displayed 

for 4s followed by a 30s blank. Figure 9 shows the time-courses in voxels with significant SNRs, 

in responses to a 4s pulse (highlighted in pale blue). In order to fit these time courses, we adopted 

he dominant analysis strategy which assumes that BOLD responses to events add linearly (Boynton 

et al. 1996) and use a set of smooth functions to model the underlying HRF. We parameterized the 

HRF as difference of two gamma functions (equation 6) (Lindquist et al., 2009) since this form 

describes the late undershoot of the response more precisely than a single gamma function 

(Boynton et al., 1996). In equation 6, A = amplitude, �1 = delay of response relative to onset, �2 = 

delay of undershoot, �1= dispersion of response, �2 = dispersion of undershoot, c = ratio of 

response to undershoot. The resulting fits are shown in pale red and green, respectively. The 

average time course fitting explained 98% of variance for all 3 animals. The parameter values for 

each monkey are shown in Table 1.

Equation 6 �(�) = �(
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Monkey �1 �2 �1 �2 c

M01 4.2728 26.9917 1.6767 3.8906 0.7878

M02 3.8958 27.7752 1.0556 3.5909 1.1467

M03 3.8571 26.0207 1.7344 2.9018 0.8672

Table 1. Parameter values of fitted double gamma function.
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Figure 9. Characterization of the hemodynamic response function (HRF). A) For each monkey, the grey time-

courses give the responses to a 4s pulse (highlighted in pale blue) in voxels with significant SNRs. The average of these 

time-courses is shown in dark red. The fit to this average response using a difference of gamma functions and the 

corresponding HRF (i.e. the corresponding response to a 2s stimulus) are shown in pale red and green. The percentage 

of variance explained is provided in the upper-right of each panel.
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D.5 Discussion

In a typical fMRI experiment, a series of stimuli are presented to an observer and evoked brain 

activity, in the form of BOLD signals, are measured from voxels with a certain dimension. The 

task is then to infer the tuning of the voxels to features in the presented stimuli based on the evoked 

BOLD signals. To make this inference quantitatively, it is necessary to have a model of how BOLD 

signals are evoked in the presence of stimuli. Thus, having an accurate model of the HRF of the 

voxel is one of the basic assumptions that we must make to use the GLM. A common practice is 

to use a canonical HRF model established from previous empirical studies of fMRI time series. 

However, voxels throughout the brain and across subjects exhibit a variety of shapes, so 

the canonical model is often imprecise. To palliate to this problem, we estimated the HRF in each 

of our monkeys. While we followed the procedures of Dumoulin and Wandell (2008), our HRF 

estimation relied on all voxels that significantly responded to the visual flash, encompassing voxels 

for higher tier visual areas. We chose this strategy to account for variability across cortical areas 

that are sensitive to visual stimuli. Furthermore, to limit linearity deterioration caused by short 

visual pulses, we derived our HRF from a 4s visual pulse, which corresponds de twice the sampling 

resolution (2s) used in the following studies. 

Although the HRF has been thoroughly characterized temporally, human and animal studies have 

demonstrated that there many factors that can influence the shape of the HRF. Hirano et al. 2011 

note that the discrepancy between the BOLD signal and the CBF (cerebral blood flow) becomes 

significant when stimuli extend in time, a discrepancy which could be related to the different 

contributions of venous and arterial hemodynamic contributions to the neuroimaging signals at 

different time points. Another confound, is the distinct neuronal and vascular architecture that 

characterizes the different areas and layers of the cortex, which are undeniably a source of variability 

in the hemodynamic response. Improving our estimation of the HRF must combine a better 

temporal sampling, and finer spatial sampling of the vascular dynamics, preferably on the scale of 
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the whole brain. One could explain the scarcity of research in neurovascular coupling because of 

the lack of techniques that can combine both high temporal and spatial sampling, a combination 

needed to understand the vascular dynamics of each cortical region, and the interplay between 

neighboring regions.
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E.Wide-field retinotopy of 

macaque visual cortex
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E.1 Retinotopy is a solution to costly wiring

Metabolically speaking, it is costly for neurons to make long connections. Longer connections make 

for higher energy expenditure and increased transmission time, which is not suitable for a system 

whose prerogative is quick and efficient information processing. A solution to such problem is the 

spatial grouping of neurons that are highly connected. Ordered topography, is a characteristic 

shared by all sensory systems of most vertebrates.  An illustrate example of such topographic 

ordering is retinotopy. 

A visual cortical area is called retinotopic if nearby cortical neurons receive inputs from nearby 

retinal neurons. Our visual apprehension of the external world relies on the spatial correlations 

between objects, thus, in its early stages, the visual system combines information coming from the 

adjacent points in the visual field in order to build a global percept from local information. The 

purpose of a retinotopic map is then to group together, in an orderly fashion, neurons with adjacent 

receptive fields to reduce the length of intracortical connections that are required for processing 

local features of the visual space. The obvious evolutionary advantage is the reduction of the overall 

volume and weight of the brain and an increase in the speed of processing. Such connections are 

most likely to be made between groups of neurons with similar functional properties, and in 

proportion to the degree of similarity.

The processing of the neural signal happens on multiple scales. Whether it is sub-micron range of 

the molecular computations happening in synapses, the sensory computations between synapses 

separated by a few hundred microns, or cortical structures integrating information over a distance 

of centimetres, signal processing on multiple scales require a great amount of organization. The 

visual system is organized as a hierarchic succession of multiple topographic maps, beginning from 

the ganglion cells in the retina that project to the lateral geniculate nucleus (LGN) of the thalamus 

and from there to the primary visual cortex (V1); adjacent locations on the retina are represented 
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by adjacent neurons in the LGN and V1. This topographic organization is preserved along most if 

not all visually responsive cortical areas, with varying degrees of precision depending on the 

quantity and density of visually responsive cells within a given area. In addition to their hierarchic 

organization, some visual maps are organized as clusters (Wandell and Winawer, 2011). Such visual 

maps share a common representation of the fovea, and each of them represents a consequent 

portion of the visual field. Maps within a cluster are distinguished based on reversions of the polar 

angle. It is believed that such cluster organization has the purpose of sharing computational 

resources while minimizing long range axonal connections.  It has also been theorized that 

functional specializations for perception are organized around the activities within these clusters 

rather than single visual field maps (Bartels and Zeki, 2000).

E.2 Retinotopic mapping using fMRI

E.2.1 The standard paradigm: Travelling wave
The most common method for mapping out the retinotopic organization with fMRI makes use of 

phase-encoded stimuli and Fourier analysis or the GLM (Engel et al., 1994, 1997; Sereno et al., 

1995b). Phase-encoded stimuli possess a certain periodic frequency f, that elicits a periodic 

fluctuation in the MR signal in the responsive cortical areas. This method maps out the preferred 

polar angle coordinates (eccentricity and polar angle) at each voxel. The preferred eccentricity is 

probed in an experiment where the subjects keep central fixation while presented with centered 

rings that are slowly and periodically expanding or contracting. The polar angle is mapped out in a 

similar manner using clockwise or counter-clockwise rotating wedges. The preferred eccentricity 

and polar angle can be determined by correlating the periodic response signal to a sinusoidal 

regressor at the stimulation frequency f (Bandettini et al., 1993) or by examining the Fourier 

transform of the response signal (Sereno et al., 1995b). The phase of the sinusoid (or equivalently 

the phase angle at the frequency f in Fourier space) indicates the preferred eccentricity or polar 

angle. The amplitude of the sinusoid (or, equivalently, the magnitude at the frequency f in Fourier 
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space) is related to the statistical significance of the signal. The measurement of these two, 

orthogonal dimensions is vital for the correct definition of visuotopic maps, as these two 

measurements allow for the unique mapping of the responses of the neurons within a single voxel 

in cortex to a unique location in visual space. If only a single dimension is measured, the cortical 

response can only be localized to a broad swath of visual space, which does not allow for accurate 

delineation of map boundaries.

These travelling wave stimuli are typically comprised of a set of high contrast flickering 

checkerboard stimuli that are designed to maximally drive primary visual cortex neurons and elicit 

maximum modulation of the fMRI signal. Other stimuli (faces, objects) have been used in studies 

aimed at measuring the retinotopic organization of higher order visual cortex, although the 

checkerboard stimulus has proven to drive even these regions in many studies, with discussable 

efficiency. The traveling wave name comes from the fact that these stimuli create a travelling wave 

of cortical activity from one end of the map to the other along isopolar or isoeccentric lines. Thus, 

the phase of the signal varies smoothly across the cortical surface, which defines the most preferred 

eccentricity or polar angle of a voxel, giving the “phase-encoded” characteristic to the travelling 

wave method. The visuotopic map is then read by assigning each polar angle and eccentricity value 

a colour on the cortical surface. 

E.2.2 Population receptive field modelling
Although the travelling wave method has demonstrated its reliability in mapping many areas of the 

visual cortex, it has shown limits in dealing with maps that have large RFs. To address this issue, 

researchers developed a method that relies on the measurement of the population RF of each voxel

(Dumoulin and Wandell, 2008). To accomplish this, the pRF model first creates a very large 

database of possible pRF sizes and centres that cover the field of view of the stimulus. Then, the 

model convolves each of the pRF possibilities with an HRF. Finally, the model uses a least-squares 

fitting method to iteratively test each of the pRF possibilities for each voxel independently against 
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the actual data collected. Whichever pRF best fits the data is then assigned as the pRF for that 

voxel. Only voxels that contain activity above a chosen threshold of variance explained as 

determined by the model are included for further analysis. Further details on the pRF method can 

be found in Section C. 

The pRF method has the additional benefit of measuring neuronal population properties other 

than preferred polar angle and eccentricity, such as receptive field size and laterality. These 

measurements have the possibility of demonstrating internal receptive field structure differences

between, for example, a hemifield map in primary visual cortex (V1) and a hemifield map in lateral 

cortex (Larsson and Heeger, 2006). The underlying properties of the neuronal populations within 

these two maps are actually quite different than what has been found using the travelling wave 

method, with finely tuned neurons in V1 and more broadly tuned neurons in lateral cortex. The 

models of the underlying neuronal properties from the pRF method can measure these receptive 

field differences, as well as the amount of input from ipsi- and contralateral visual fields (Amano 

et al., 2009). 

The success of pRF modelling will most likely be the cause of demise for the travelling wave 

method. PRF modelling has primarily used a two-dimensional Gaussian profile for the pRF 

estimates, but researchers are working on the use of center-surround Gaussian pRFs, multiple 

location pRFs, and non-classical pRF shapes, which may allow for better pRF estimation as time 

continues (Zuiderbaan et al., 2012; Zeidman, 2016; Wandell and Winawer, 2017). 
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Figure 10. Population receptive field modelling. The population receptive field is represented as 2D Gaussian with 
Cartesian coordinates and spread value. Thousands of time course model predictions are generated for each voxel with 
different pRF parameters. The models are then fitted to the actual data and those with the highest correlation values 
are kept for further analysis. The figure is adapted from Brewer et al. 2012.

E.2.3 Homologies of retinotopic maps in humans and monkeys
Phase-encoded retinotopic mapping along the polar angle and eccentricity dimensions using 

functional magnetic resonance imaging (fMRI) has been widely used to reveal topographic 

organization within the human (Sereno et al., 1995; Engel et al., 1997; Schneider, 2004; Brewer et 

al., 2005; Larsson and Heeger, 2006; Swisher et al., 2007; Konen and Kastner, 2008; Arcaro et al., 

2009; Kolster et al., 2010) and also the macaque monkey visual system, for review (Vanduffel et al., 

2014). The homologies between retinotopic areas in humans and monkeys are straightforward for 

areas V1 through V3 whereas the topography of V4 significantly differs between the two species. 

Monkey V4 is a split-field representation that extends on portions of the dorsal and ventral occipital 

surfaces, while human V4 is confined to the ventral occipital surface, limited by an upper vertical 

meridian border posteriorly and a lower vertical meridian anteriorly. Beyond V4, homologies of 

areas MT and PITv/d, show similarities in their topographies, response properties, and population 

receptive fields. Higher order visual areas, such as the ones found in parietal and frontal cortices 
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remain a matter of debate. Little consensus has been reached as to the exact boundaries of such 

areas in any species, which hinders the possibility of finding homologies.

The findings from retinotopic mapping in both humans and monkeys have had a significant impact 

on the study of the visual system. In addition to revealing visual field maps and their organization 

as clusters, retinotopic mapping has demonstrated that any visual area that is organized 

retinotopically is subject to the constraints common to all visual maps in the brain. Because 

laboratories have been mostly using standard phase encoded retinotopy that rarely extends beyond 

20° of eccentricity, although they have been shown to be visually responsive, many areas of the 

brain have been considered “non-retinotopic”, or containing only an eccentricity bias. The fact that 

has been interpreted as only the early portion of the visual system is retinotopic and that at some 

point a fundamental change in the way the visual system is constructed changes, is a major 

theoretical claim. This would require a potentially complex transformation from a retinotopic 

framework to some other non-spatial organization. The better probability though, is that higher 

order visual areas are retinotopic, maintaining organized dispersed receptive field centers despite 

an increase in their size. Thus, the problem is of methodological order, since it makes no 

evolutionary sense to develop an entirely different way to deal with visual information when the 

simple solution of using large receptive fields and population codes within visual maps does not 

require a change in organization or connectivity. Thus, measuring the topography of higher tier 

visual areas requires a refinement of retinotopic measurement methodology, such that employed 

stimuli have a better chance of driving areas with larger receptive fields and pronounced sensitivity 

to behaviorally relevant objects.

The following section evaluates previous studies that have attempted to study the topography of 

higher order visual areas such as the PPC and presents a study making use of the novel 

methodology for the measurement of the topography of visual areas in this part of the cortex.
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E.3 Investigating the visuotopic organization of the posterior parietal 

cortex (PPC)

E.3.1 Introduction
In primates, the posterior parietal cortex (PPC) constitutes the end stage of the dorsal visual 

pathway and as such, it is notably involved in visuospatial and visuomotor functions (Buneo and 

Andersen, 2006). Most of what we know about how those functions are implemented in the PPC 

emanates from invasive (anatomical and electrophysiological) studies performed in macaque 

monkeys. They have notably demonstrated the existence of a myriad of structurally and/or 

functionally distinct areas (Pandya and Seltzer, 1982; Colby et al., 1988; Andersen et al., 1990; Lewis 

and Van Essen, 2000), although their precise number and boundaries remain debated (Van Essen, 

2004). Such invasive studies have led to the view that monkey PPC is only marginally visuotopic, 

with coarse topographic representations of visual space restricted to the lateral intra-parietal (LIP) 

area (Blatt et al., 1990; Ben Hamed et al., 2001), a portion of the dorsal prelunate (DP) area (Heider 

et al., 2005) and possibly in the parieto-occiptal area V6A (Galletti et al., 1999). Because those areas 

appear more as isolated patches than as a structured ensemble, visuotopy has not been considered 

so far as a useful criterion for parsing monkey PPC. 

In striking contrast, several visuotopic areas have been progressively unveiled in human PPC 

(Sereno, 2001; Schluppeck et al., 2005; Silver et al., 2005; Swisher et al., 2007; Konen and Kastner, 

2008), thanks to the development of functional magnetic resonance imaging (fMRI) techniques for 

non-invasive retinotopic mapping (Sereno et al., 1995a; Engel et al., 1997). These studies have 

drawn the view of a dense arrangement of abutting visuotopic maps in human PPC (Wandell et al., 

2007; Silver and Kastner, 2009) . The apparent discrepancy with results obtained from invasive 

studies in monkey PPC might partly reflect inter-species differences in PPC functional 

organisation, notably linked to the emergence of specific human skills such as the use of tools 
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(Kaas and Stepniewska, 2016; Orban, 2016; Kastner et al., 2017). However, it might also betray the 

advantage of fMRI-based approaches for uncovering the visuotopic organisation of higher-order 

visual areas, where neurons generally exhibit large and coarsely organised receptive fields (RF) 

(Patel et al., 2010).

This second hypothesis has received support in a recent study by Arcaro and colleagues (Arcaro et 

al., 2011). By implementing those non-invasive mapping procedures in macaque monkeys, the 

authors confirmed the visuotopic organization of LIP and DP but, additionally, they revealed 2 

new visuotopic maps, CIP1 and CIP2, in the caudal portion of the intra-parietal sulcus. 

Building on this seminal success, and inspired by recent developments in human mapping studies 

(Pitzalis et al., 2013b), we introduce adaptations to the mapping procedure of Arcaro and colleagues 

(2011), and notably wide-field visual stimulation with moving and behaviorally-salient objects, in 

order to boost the recruitment of PPC neurons. Besides confirming the existence of CIP1 and 

CIP2, our results show that they form a visuotopic cluster with 2 additional previously unknown 

areas of the posterior intraparietal sulcus, PIP1 and PIP2. This PIP cluster is bordered by other 

visuotopic areas: V3A/DP laterally, V6/V6A medially and LIP anteriorly. This finding suggests 

that in macaques, as in humans, the PPC manifests a dense arrangement of visuotopic maps.

E.3.2 Material and Methods

E.3.2.1 Animal model. 

Two adult female rhesus macaques, M01 and M02 (age: 8 and 9 years old, weight = 5.2 and 5.5 kg), 

were involved in the present study. Animal housing, handling, and all the experimental protocols 

(surgery, behavioural training and MRI recordings) followed the guidelines of the European Union 

legislation (2010/63/UE) and of the French Ministry of Agriculture (décret 2013-118). The project 

was approved by a local ethics committee (CNREEA code: C2EA – 14) and received authorization 

from the French Ministry of Research (MP/03/34/10/09). The animals were housed together in 

a large, enriched enclosure and could thus develop social and foraging behaviors. Health 
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inspections were carried out quarterly on these animals. After habituation to the monkey chair and 

experimental set-ups, animals were surgically implanted with a plastic head-post, sealed to the skull 

with ceramic screws (Thomas recording) and bone cement (Palacos+Gentamycine, medium 

viscosity, Heraeus). After a post-surgery period of about 8 weeks, the animals resumed the 

behavioral training through daily sessions in a passive fixation task. Details of the surgery procedure 

and behavioral training are provided in Section C.

E.3.2.2 MRI recordings.

Whole-brain images were acquired on a 3 Tesla MR scanner (Phillips Achieva) using a custom 8-

channel phased array coil (RapidBiomed) specially designed to fit the skull of macaques while 

preserving their field of view. High-resolution T1-weighted anatomical images were acquired with 

an MP-RAGE sequence (repetition time [TR] = 10.3 ms; echo time [TE] = 4.6 ms, flip angle = 8°; 

voxel size = 0.5 x 0.5 x 0.5 mm; 192 slices). Functional images were acquired with a GE-EPI 

sequence with interleaved slice acquisition (TR = 2000 ms, TE = 30 ms, flip angle = 90°, SENSE 

factor = 1.6; voxel size = 1.25 × 1.25 × 1.5 mm, 32 axial slices).

E.3.2.3 Experimental set-up and behavioral task. 

During the scanning sessions, the animals were head-fixed, seated in a sphinx position within their 

primate chair, into the bore of the magnet (Figure 11A). They were facing a translucent screen at a 

viewing distance of 25 cm. This short viewing distance allowed the presentation of wide-field 

stimuli (~80° of visual angle), rear-projected on the screen by a video projector (Hitachi, 

CP_X809). The position of one eye was monitored with an infrared video-based eye-tracker at 60 

Hz (ASL). During the acquisition of functional sequences (typically 8 to 12 runs per daily session), 

the animals were involved in a passive fixation task. They had to maintain their gaze within ±1.5° 

of a small green square (0.4° x 0.4°) displayed at the center of the screen in order to receive fluid 

reward. The frequency of reward distribution was progressively increased as long as the fixation 

was not interrupted, in order to encourage prolonged fixation periods. Only runs in which animals 
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maintain their gaze on the fixation target for at least 85% of the total run duration were retained 

for further analyses. 

E.3.2.4 Visual stimuli. 

The visual stimuli were displayed on the translucent screen, behind the fixation target and centered 

on that latter. They consisted in home-made videos (resolution = 700 x 700 pixels, refresh rate = 

16 Hz) covering a large portion of the visual field (~80° of visual angle) and depicting a fruits 

basket that seemed to approach or recede in depth (through zooming) while also moving back and 

forth along both the horizontal and vertical dimensions (Figure 11B). By using stimuli with (1) a 

large coverage of the peripheral field of view, (2) coherent motion and (3) objects (fruits) the 

animals might wish to grasp, we intended to maximize the chances to evoke BOLD activations in 

dorsal visual cortex. The EventIDE software (OkazoLab) was used for real-time control of the 

behavioral task and stimuli presentation.

E.3.2.5 Experimental paradigms. 

Both animals participated in 2 experimental paradigms involving wide-field visual stimulation and 

performed during distinct scanning sessions: (1) retinotopic mapping and (2) motion localizer. 

These paradigms are now described in more detail.

E.3.2.5.1 Wide-field retinotopic mapping. 

Wedges rotating clockwise or counter-clockwise and rings expanding or contracting were used for 

retinotopic mapping. However, instead of being filled with luminance-defined checkerboards, as 

those generally used to map early visual cortex, the wedges and rings served as apertures applied 

on top of our video (Figure 11C). Conditions with wedges serve to measure the preferred polar 

angle of the population receptive fields (PRFs), while conditions with rings are used to estimate 

their preferred eccentricity. During the acquisition of a functional sequence, one of the 4 stimulus 

conditions was shown for a total duration of 230 s (the conditions were interleaved across runs), 

with the central fixation target always visible. In all cases, the stimuli started with the last 10 s of a 
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cycle (in order to reach the steady state of visual responses), and further accomplished 5 full cycles 

of 44 s. The wedges had a radius of ~40° and an angular extent of 49°, so that every point of the 

visual field covered by the stimulus was stimulated during 6 s per cycle. The rings had a mean 

eccentricity varying linearly between 0° and ~40°, with a constant width of 11° between their inner 

and outer borders (leading again to 6 s of stimulation per cycle for each point covered by the 

stimuli). For monkey M01 (M02), we have kept for further analyses 24/25 (24/26) runs for 

clockwise/counter-clockwise wedges and 23/24 (24/26) runs for expanding/contracting rings, 

collected over 7 (16) distinct sessions. 

E.3.2.5.2 Motion localizer. 

The motion localizer consisted in 4 visual conditions: central (<3° of retinal eccentricity) and 

peripheral (>3°) portions of the fruits basket video shown with intact motion or with static images 

sampled randomly from the video and refreshed at 1 Hz to minimize visual adaptation (Figure 11C, 

right-hand panel). All 4 conditions (Central–Motion, Central-Static, Peripheral-Motion and 

Peripheral-Static) lasted for 6 s and were surrounded by 10 s periods of blank screen (Baseline 

condition). The 4 visual conditions were repeated 3 times during a run, in a presentation order that 

varied between runs. In total, each run lasted 202 s, during which the central fixation target was 

always visible. Motion sensitivity in the central and peripheral fields of view was assessed by 

contrasting the visual conditions (Central-Motion > Central-Static) and (Peripheral-Motion > 

Peripheral-Static), across voxels with significant visual activations ([Central-Motion + Central-

Static + Peripheral-Motion + Peripheral-Static] > 4 x Blank Baseline). In total, 18 (25) runs of 

motion localizer collected over 3 (5) sessions were kept for further analyses in monkey M01 (M02).
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Figure 11. Experimental set-up and protocol. (A) Schematic drawing of a head-restrained macaque in an MRI 
compatible primate chair, fixating a central green dot located on a screen at a viewing distance of 25 cm. (B) Illustration 
of the shaking fruits basket video used for wide-field visual stimulation (covering 80° of the visual field). (C) Wide-
field retinotopy is done with a wedge aperture rotating either clockwise or counterclockwise on top of the video for 
polar angle mapping (left panel) and with an expanding or contracting ring aperture for eccentricity mapping (middle 
panel). Motion localizer (right panel) was performed with central (<3°) or peripheral (>3°) circular aperture on top of 
either the video (motion condition) or static images extracted from the video (static condition). Monkeys were trained 
to maintain fixation on the central green dot during visual stimulation.

E.3.2.6 Data processing 

E.3.2.6.1 Retinotopic mapping: volume-based preprocessing of the functional data. 

During a preliminary session, functional (GE-EPI, n=300) and anatomical (T1, n=4) volumes were 

collected for each animal under slight anesthesia (see Section C). Functional volumes were averaged 

into an individual functional template and anatomical volumes were averaged into an individual 

anatomical template. Affine and non-rigid normalization parameters bringing the functional 

template onto the anatomical template were estimated from the grey matter maps of both 

templates, using the normalization tools of the SPM12 software. During the following sessions, 

only functional volumes were acquired for being preprocessed run by run. They were first slice-

time corrected to compensate for the delay caused by the sequential (interleaved) acquisition of the 

slices. A mean image was then generated for each run for co-registration with the individual 

functional template. Co-registration parameters were then combined with the normalization 

parameters transforming the individual functional template to the individual anatomical template. 

Those combined parameters were then applied to all the functional images of the run in a single 
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interpolation step, which was also used to resample the functional volumes to 1 x 1 x 1 mm voxels. 

No smoothing was applied to the volumetric data. Rigid realignment between the functional 

volumes was also omitted since the animal’s head was immobilized by the head-post. Non-rigid 

deformations could arise, principally caused by sudden postural changes of the animal within its 

chair. To regress out the signal fluctuations caused by such events, time courses of voxels outside 

the brain (muscles, eyes, etc.) were extracted and the 10% showing the highest temporal variance 

were submitted to principal component analysis (PCA) after z-score normalization. The 18 first 

PCA components were used to regress out all signal fluctuations correlating with those noise 

regressors within the brain voxels. The number of PCA components was determined empirically, 

as the one leading to the highest number of cortical surface nodes for which the PRF could be 

mapped across the 2 animals (see below). 

E.3.2.6.2 Retinotopic mapping: surface-based processing of the functional data. 

Models of the cortical surfaces were generated for each individual with the Caret software (Van 

Essen et al., 2001a) based on the grey/white matters segmentation of the high-resolution 

anatomical images (T1). Functional data were then projected from volume space to surface space 

as follows. For all surface nodes, 7 sampling points were computed along the normal vectors (from 

-0.75 mm to + 0.75 mm), to account for cortical thickness (1.5 to 2.5 mm in macaques). For each 

node and each run, time courses for the 7 sampling points were extracted by trilinear interpolation 

from the functional volumes. They were first converted to percent signal change and then averaged 

in a single mean time course attributed to the surface’s node. Finally, all the time courses belonging 

to a same node and same type of run were averaged (Figure 12).
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Figure 12. Illustration of retinotopic data processing. (A) After pre-processing, functional volumes were 
projected onto the reconstructed cortical surfaces and averaged to produce mean BOLD time courses, after 
conversion to percent signal change unit. (B) For the 4 types of run shown in the upper panels (clockwise and 
counterclockwise wedges, expanding and contracting rings), the mean BOLD time courses (black curve in the middle 
panel) were Fourier filtered to retain only the signal components corresponding to the fundamental frequency of the 
periodic stimuli and all its harmonics (black curve in the lower panel). The PRF analysis resulted in selecting the 
model time course (red curve in the lower panel) exhibiting the highest correlation with this filtered signal. If the 
correlation coefficient was superior to 0.5 (r=0.86 in the present example), the PRF parameters attached to the 
theoretical time course (polar angle, eccentricity and size) were retained. In the present example, those parameters 
define the PRF shown in red in the upper panels. 
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E.3.2.6.3 Retinotopic mapping: population receptive fields (PRFs) analysis. 

The BOLD time courses evoked by periodic ring and wedge stimuli are generally processed with a 

phase-encoding method that is performed in the frequency domain after a Fourier transform 

(Sereno et al., 1995a; Engel et al., 1997). However, more and more research groups working on 

retinotopic properties of visual cortex in human now privilege approaches based on the PRFs 

analysis (PRFs) (Dumoulin and Wandell, 2008; Kay et al., 2013c) because they provide better 

estimations of retinotopic properties than conventional approaches (Dumoulin and Wandell, 2008; 

Kay et al., 2013c; Alvarez et al., 2015). The greater robustness of this approach, combined with the 

fact that it provides additional information about the size of the PRFs, led us to favor this newer 

type of analysis. Because our stimuli were frequency encoded, we used the fact that responses to 

this type of stimuli always have a spectral content constrained to the fundamental frequency (f0 = 

1/44 Hz) and its harmonics (nf0 where n is an integer) to filter the data at those frequencies before 

the PRF analysis. This filtering was performed in the frequency domain. The PRF analysis was then 

conducted with the publicly available analyzePRF toolbox for Matlab, which is based on (Kay et 

al., 2013c). Following Dumoulin and Wandell (2008), the PRFs were modelled as simple isotropic 

Gaussian. Basically, the hemodynamic response functions that have been estimated for both M01 

and M02 (See Section D) were convolved with regressors produced by a very large combination of 

PRFs positions (5352 positions covering the central 90° of the visual field) and PRFs sizes (30 sizes 

ranging from 0.5° to 60°) to produce a huge repertory of theoretical time courses (n= 160560). For 

each node, the PRF parameters attached to the theoretical time course showing the highest Pearson 

correlation coefficient (r) with the actual time course was retained. Threshold was set at r>0.5, 

which corresponds to a t value = 5.35 and an uncorrected one-tailed p value < 10-6 (assuming that 

for each of the 4 types of run, the filtering collapses the 5 cycles, ending up with a correlation 

involving 88 samples: 1 cycle = 22 TR x 4 types of run). The signal filtering and modeling 

procedures are illustrated in Figure 12 and the final r-score maps are shown in Figure 13.

Additionally, we assessed the robustness of the model parameters by performing the same analyses 
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on the odd and even runs separately and by comparing the obtained results. As shown in Figure 

14, excellent reproducibility was observed, confirming the robustness of our approach. The 

percentages of PRFs in contralateral space or very close to it (polar angle < 5° or eccentricity <2°) 

were 97.8% (96.4%) and 99.0% (97.4%) for the left and right hemispheres of M01 (M02). Only 

those PRFs were retained to build our polar angle and eccentricity maps.

Figure 13. Maps of PRFs goodness of fits. The top row shows the distribution of correlation coefficients (r) across 
nodes for each of the 4 reconstructed cortical surfaces. Only nodes for which r>0.5 (corresponding to an uncorrected 
p value < 10-6) were retained for further analysis. The distribution of those nodes is shown on dorsal, lateral and medial 
views of the 4 reconstructed cortical surfaces, color coded as a function of their r value.
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Figure 14. Test-retest analysis of the PRF model parameters. The PRF analysis was performed separately on the 
odd and even runs and the model parameters obtained with these two independent data set were compared. 
Comparison of the correlation coefficient (r), polar angles, eccentricities and receptive field sizes show a great level 
of reproducibility in all 4 cortical hemispheres, as indicated by correlation values and slopes of the regression line 
slopes which are all close to unity. For the polar angle values, circular correlation (rc) was used and the grey zones 
indicate contro-lateral space (i.e., left visual hemi-field for the right cortical hemispheres and right hemi-field for left 
hemispheres). The percentages of nodes in contralateral space or very close to it (delta polar angle < 5° or 
eccentricity <2°) were 97.8% and 99.0% for the left and right hemispheres of M01 (LH M01 and RH M01), and 
96,4% and 97.4% for the left and right hemispheres of M02 (LH M02 and RH M02).
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E.3.2.7 Motion localizer. 

Functional images were preprocessed run by run in a way similar to that described for retinotopic 

mapping. Additionally, functional images were slightly smoothed spatially with a Gaussian kernel 

(full width at half maximum of 2 mm). Statistical analyses were performed within the framework 

of the GLM as implemented in SPM12, with the 4 visual conditions and baseline conditions as 

principal regressors and 18 noise regressors derived from a PCA analysis similar to that described 

for retinotopic mapping. 

E.3.3 Results
We have investigated the visuotopic organization of primate PPC with fMRI in 2 behaving 

macaque monkeys. Visuotopic mapping is classically performed with checkerboard patterns seen 

through wedge or ring apertures of moderate size (10-20° of retinal eccentricity). Since the PPC is 

known to process moving and salient objects, with emphasis on the periphery of the visual field, 

we have replaced those classical stimuli with a wide-field “shaking fruit basket” video, seen through 

much wider ring or wedge apertures (up to 40° of retinal eccentricity; see Figure 1). Population 

receptive fields (PRFs) analysis (Dumoulin and Wandell, 2008; Kay et al., 2013c) was applied to 

data filtered in the frequency domain (see Material and Methods) in order to increase signal-to-

noise ratio (see Material and Methods). Those analyses were performed on spatially unsmoothed 

data after projection on cortical surface reconstructions.

E.3.3.1 Early dorsal visual areas. 

Figure 15 presents the polar angle (left panels) and eccentricity (right panels) maps of the PRFs on 

inflated reconstructions of the dorsal visual cortex in monkey M01. Maps obtained in M02 area are 

provided in Figure 16 and the description below applies to both animals. Maps of PRFs sizes for 

both animals are provided in Figure 17. A representation of the lower vertical meridian (LVM) of 

the visual field defines the frontier between the dorsal aspects of the primary and secondary visual 
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areas (V1d/V2d; green color code and solid black line in left panels of Figures 2 and 3), while the 

V2d/V3d frontier is identified by a representation of the horizontal meridian (HM, blue color code 

and solid white line). Laterally, V3d and V4 are separated by a LVM. Anterior to V4 in the superior 

temporal sulcus, the MT cluster recently described by Kolster and colleagues (2009, 2014) is clearly 

observable. It encompasses 4 visuotopic areas (MT, V4t, MSTv and FST) with a foveal confluence 

(red color code in right panels of Figure 15 and Figure 16) but with nonetheless distinct 

representations of both lower (green to blue) and upper (blue to red) quadrants of the contralateral 

visual hemi-field. 

E.3.3.2 Parieto-occipital complex V3A/DP.

Anterior to V3d, V3A and the Dorsal Prelunate (DP) area appear to form a cluster with a lateral 

foveal confluence and 2 mirror representations of the contralateral hemi-field. This organization 

entails a postero-anterior gradient of polar angle from lower to upper quadrant (green to blue to 

red) in V3A, and from upper to lower quadrant (red to blue to green) in DP, although the DP 

gradient is mostly observable in both hemispheres of M01. The exact lateral demarcation of the 

V3A/DP complex is difficult to operate in both monkeys, partly because DP lacks a clear 

eccentricity gradient. Altogether, these observations fit remarkably well with those of Arcaro and 

colleagues (2011). 

E.3.3.3 Parieto-occipital complex V6/V6A. 

Medial to V3d, the anatomical and electrophysiological investigations of Galletti and colleagues 

(Gamberini et al., 2015 for review) have evidenced 2 areas, V6 and V6A, occupying medial locations 

along the floor and anterior wall of the parieto-occipital sulcus. Some characteristics of the 

V6/V6A complex are clearly observable in our data. For instance, on the anterior wall of the 

parieto-occipital sulcus, there are in all 4 hemispheres an inversion of eccentricity gradient together 

with a representation of the vertical meridian (principally its lower component), which have been 

described as marking the frontier between V6 and V6A. In addition, the dorso-anterior aspect of 
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V6A has been shown to house a representation of the central-to-intermediate visual field, which is 

also consistently found in our data. Finally, the V6/V6A complex has been implied in the 

processing of visual motion, and our motion localizer clearly indicates the strong motion sensitivity 

of this cortical sector (Figure 17B). Medially, the demarcation between V3d and V6 cannot be safely 

delineated.  According to the electrophysiological description of this boundary (Galletti et al. 1999), 

no reversal in polar angle or eccentricity gradients is to be expected, compromising the ability to 

robustly identify this boundary based on polar angle or eccentricity maps. Unfortunately, neither 

the maps of PRFs sizes nor our motion localizer could provide clear-cut evidences regarding the 

exact location of this boundary. Thus, this point will deserve further investigation. In the present 

study, we therefore indicate the location of this complex but with no attempt to clearly define its 

borders. Only the V6A component could be more safely delineated in all 4 hemispheres. Its MNI 

coordinates and surface coverage are provided in Table 2.

Figure 15. Polar angle and eccentricity maps in monkey M01. Thresholded PRF results (r>0.5; see Material and 
Methods) are shown on inflated surface reconstructions of the dorsal visual cortex in the left and right hemispheres 
(LH and RH) of M01. Polar angle maps are on the left. The color code reflects the proximity of the PRFs with the 
upper-vertical (red), horizontal (blue) and lower-vertical (green) meridians of the visual field. Dotted black lines, solid 
white lines and solid black lines, further signal those meridians respectively, for delineating the various visual areas. 
Eccentricity maps are on the right. The color code indicates the foveal (red), intermediate (blue) and eccentric (green) 
location of the PRFs with respect to the visual field center. Together with the configuration of meridians, reversal in
eccentricity gradients have been used to delineate the MT cluster, anterior to area V4 and the newly defined PIP 
cluster (yellow dotted ellipses). 
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Figure 16. Polar angle and eccentricity maps in monkey M02. Same conventions as Figure 15.

Figure 17. Maps of PRFs size and motion sensitivity. PRFs size (A) and T-score maps of motion sensitivity (B) 
on the surface reconstructions of the dorsal visual cortex for M01 (left) and M02 (right). (LH and RH stand for left 
and right hemispheres, respectively).
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E.3.3.4 Parietal area LIP.  

In all 4 hemispheres, a visuotopic organization was observed along most of the lateral bank of the 

intra-parietal sulcus, which is known to house the lateral intra-parietal (LIP) area. Consistently, this 

organization reveals an antero-posterior and slightly latero-medial gradient of eccentricity, with the 

antero-lateral and postero-medial sectors holding respectively representations of the central and 

peripheral visual field. Polar angle maps indicate that the lower and upper visual field quadrants are 

located antero-medially and postero-laterally, respectively. Overall, this visuotopic portion of LIP 

(LIPvt) fits quite well with those described in previous monkey fMRI studies (Patel et al., 2010; 

Arcaro et al., 2011). Its MNI coordinates and surface coverage are provided in Table 2.

E.3.3.5 Parietal cluster PIP: CIP1 & CIP2.

A major finding of Arcaro and colleagues (2011) concerned the existence of 2 new visuotopic 

areas in the caudal intra-parietal, CIP1 and CIP2, lying between V3A/DP posteriorly and LIPvt 

anteriorly. By studying the evolution of polar angle gradients between V3A and LIPvt, a succession 

of gradient reversals was robustly identified, marking the borders shared by those visuotopic areas. 

We confirmed this finding by using a similar approach, as illustrated in Figure 18. Small segments 

that run parallel to the polar angle gradient and perpendicular to the eccentricity gradients were 

drawn between V3A and LIPvt in all 4 hemispheres (yellow segments in maps’ insets of Figure 18). 

The profiles shown in Figure 18 represent the progression along the segment paths, with each 

point providing the average polar angle values along a segment. To assess the reproducibility of the 

results, these polar angle profiles were assessed separately on odd (full line) and even (dashed lines) 

runs. Besides showing high consistency between the 4 hemispheres and between odd and even 

runs, those profiles are also strikingly similar to those shown in Figure 4 of Arcaro et al. (2011). 

Both V3A/CIP1 and CIP2/LIPvt share a representation of the UVM (Upper Vertical Meridian), 

while CIP1/CIP2 share a representation of the HM and thus mostly represent the upper quadrant 

of the contra-lateral hemi-field. Altogether, those polar angle analyses are highly consistent with 

those of Arcaro and colleagues and they bring firm confirmation for the existence of visuotopic 
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areas CIP1/2. However, these authors postulated that CIP1/2 share a foveal representation lying 

on the lateral bank of the IPS, while our results rather indicate a medial position, close to the fundus 

of the sulcus. This point is very important, since it suggests a more extended cluster, in which this 

foveal representation is shared not only by CIP1/2 laterally, but also by 2 additional and newly 

defined posterior intra-parietal areas, PIP1/2, extending medially. Evidences for this cluster 

organization are provided in the following section.

Figure 18. Polar angle profiles from V3A to LIPvt in M01 (upper line) and M02 (lower line). Line segments were 
drawn on top of the 4 cortical surfaces, forming paths going from V3A posteriorly to LIPvt anteriorly (yellow segments 
in the polar angle maps’ inset). Polar angle profiles (in yellow) along those paths were highly consistent across animals, 
hemispheres, and between odd (full lines) and even (dotted lines) runs, with gradient inversions marking the frontiers 
between V3A/CIP1, CIP1/CIP2 and CIP2/LIPvt. The maps’ inset also show the circular sectors (in cyan) used for 
the profiles in Figure 19. 
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E.3.3.6 Parietal cluster PIP: PIP1 & PIP2.  

For each of the 4 hemispheres, we drew a circular area encompassing CIP1/2 laterally and centered 

on their medially-located central visual field representation, as illustrated in Figure 18. Circular polar 

angle profiles were then constructed by subdividing the circular area into 12 equal sectors and by 

averaging the polar angle values of all nodes encompassed within a sector, yielding 12 mean polar 

angle values. Figure 19A presents those profiles for odd (full lines) and even (dotted lines) runs in 

each of the 4 hemispheres. They clearly established that besides the gradient inversions defining 

the mirror upper quadrant representations of CIP1 and 2 laterally, other inversions reveal 2 mirror 

representations of the full contra-lateral hemi-field medially. We have named those newly identified 

visuotopic maps posterior intra-parietal areas 1 and 2 (PIP1/2). Both CIP1/PIP1 and CIP2/PIP2 

share a UVM representation, while PIP1/PIP2 share a LVM representation. To further assert the 

cluster organization of these areas, surface nodes belonging to the lateral and medial aspects of the 

circular area drawn on each hemisphere were segregated before being subdivided in 3 groups 

depending on their small, intermediate or large distance with respect to the area’s center 

(corresponding to the cluster’s foveal confluence). Mean PRF eccentricity was computed for each 

of these 6 groups of nodes (Lateral/Medial * Small/Intermediate/Large distance). Figure 19B 

shows clear gradients of increasing eccentricity as distance of the surfaces’ nodes from the foveal 

confluence increases, both laterally and medially. The wider range of retinal eccentricities covered 

by our mapping stimuli (40° against 15° in that previous study) may account for this elucidation of 

the eccentricity gradient.
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Figure 19. Polar angle and eccentricity profiles within the PIP cluster in M01 (upper line) and M02 (lower 

line). (A) Polar angle profiles along the wedge sectors shown in Figure 4, both odd (full lines) and even (dotted lines) 
runs (LH and RH stand for left and right hemispheres). Gradient inversions mark the frontiers between CIP2/CIP1, 
CIP1/PIP1, PIP1/PIP2 and PIP2/CIP2 when progressing from anterior-to-lateral-to-posterior-to-medial sectors. (B) 
Eccentricity gradients from the center toward the medial and lateral borders of the PIP cluster. In both directions, we 
observe an increase in mean eccentricity when surface nodes are divided in 3 groups of close, intermediate or far 
cortical distance from the foveal confluence.

E.3.3.7 Parietal cluster PIP: overall anatomo-functional definition. 

Figure 20 presents enlarged views of this newly identified visuotopic cluster on top of the maps of 

polar angle (Figure 20A), eccentricity (Figure 20B), motion localizer (Figure 20C) and sulci/gyri 

definition (Figure 20D), with the star indicating foveal confluence. In most hemispheres, the 

external borders of the PIP cluster are defined both by representations of visual field meridians 

(i.e. it shares UVM representations with both V3A and LIPvt, and LVM representation with 

V3d/V6/V6A) and by eccentricity gradient inversions (i.e. peripheral field representations mark 

the borders with V3A laterally, LIPvt anteriorly, V3d/V6/V6A posteriorly and medially). 

Additionally, the postro-medial border between the PIP cluster and the V6/V6A complex is 

marked functionally by a strong motion sensitivity of V6/V6A, contrasting with the lack of motion 

sensitivity in PIP1/2. In Figure 21A, those visuotopic areas are finally shown on coronal sections 

of M01 and M02 brains. In the posterior-most sections (upper row), PIP1 and PIP2 occupy the 

fundus and medial bank of the parieto-occipital sulcus, capped by V6A in the dorso-medial 
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convexity. In more anterior sections (middle and bottom rows), they always occupy the fundus and 

medial bank of the intra-parietal sulcus, while CIP1 and CIP2 occupy the lateral bank of the IPS. 

As shown in Figure 21B, this visuotopic cluster occupies a position at the junction of the parieto-

occipital and intra-parietal sulci, which is that attributed to the PIP area initially defined by Colby 

(Colby et al., 1988) on the basis of its myelo-architecture (Colby et al., 1988), and shown here in 

yellow as defined on the F99-M132 template (Van Essen et al., 2001b; Markov et al., 2014). In all 

4 hemispheres, the lateral-most portion of the template-defined V6A is included in the cluster, 

while its medial aspect is in fine correspondence with our visuotopically-defined V6A. The 

stereotaxic coordinates and cortical surface coverage of these different visuotopic areas are 

provided in Table 2. The size of the PRFs is the third parameter provided by our analyses (in 

addition to the PRFs polar angle and eccentricity). In the PIP cluster, all areas have very large PRFs 

(median ~ 10-12°), with no significant difference between them. These sizes are about 10 times 

larger than those measured in V1 (median ~ 1.3°) and more surprisingly, also much larger than

those measured in LIP (median ~ 6°) and in V6/V6A (median ~ 7°). Maps of PRF sizes are 

provided in Figure 17.
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Figure 20. Functional delineation of the PIP cluster. In all 4 hemispheres, the PIP cluster defines by its external 
borders (yellow dotted ellipses), internal frontiers (meridian representations) and foveal confluence (yellow stars) is 
shown on top of the polar angle map (A), eccentricity map (B), motion sensitivity map (C) and sulci/gyri map (D).  
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Figure 21. Anatomical location of the PIP cluster. (A) Coronal brain slices for M01 (left panels) and M02 (right 
panels) showing the anatomical location of the PIP cluster and neighbors visuotopic areas. (B) Representation of the 
same areas for all 4 hemispheres of M01 and M02 on top of some of the areas of the F99-M132 atlas. Our PIP 
cluster includes most of the atlas defined PIP region, along with the most lateral portion V6A and, to a lesser extent, 
the most posterior part of MIP.
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Table 2. MNI coordinates (x, y, z in mm) and cortical surface coverage (mm2) for the PPC visuotopic areas in the 
left (LH) and right (RH) hemispheres of M01 and M02.

LH RH

X Y Z mm2 X Y Z mm2

PIP1

M01 -7 -5 25 42 7 -5 25 42

M02 -9 -9 24 63 8 -8 25 47

PIP2

M01 -5 -3 28 62 6 -3 28 76

M02 -6 -9 27 78 6 -8 28 59

CIP1

M01 -7 -6 30 11 8 -5 29 9

M02 -8 -9 29 14 8 -8 29 8

CIP2

M01 -8 -3 30 18 7 -3 29 12

M02 -7 -7 29 9 7 -6 30 13

LIP

M01 -14 1 38 62 14 3 31 71

M02 -11 -3 32 54 12 -2 33 67

V6A

M01 -3 -9 31 56 4 -9 31 43

M02 -4 -11 33 46 4 -11 33 36
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E.3.4 Discussion
By using wide-field retinotopy with fMRI in two behaving macaques, we provide evidence for a 

new visuotopic cluster in a location previously defined histologically and anatomically as the 

posterior intra-parietal (PIP) area (Colby et al., 1988; Markov et al., 2014). This PIP cluster includes 

4 visuotopic areas sharing a foveal confluence, an organization echoing that of the recently 

documented MT cluster (Kolster et al., 2009, 2014) and registering into the general category of 

“cloverleaf” clusters (Brewer and Barton, 2012). 

The 2 smallest and lateral-most areas of this cluster, CIP1 and CIP2, have recently been described 

with classical retinotopy (Arcaro et al., 2011). In accordance with this previous study, we found 

that they house mainly upper visual field representations and that they are bordered by other

visuotopic areas: V3A/DP posteriorly and LIP anteriorly. The 2 largest and medial-most areas, 

PIP1 and PIP2, are newly discovered areas with complete representations of the contralateral hemi-

field. They are bordered posteriorly and medially by V3d/V6/V6A, whose visuotopic organizations 

are consistent with the descriptions drawn from single cell recordings (Gamberini et al., 2015). By 

introducing wide-field mapping, the present study complements the previous mapping study of 

Arcaro and colleagues (2011) and it offers a more exhaustive view of the visuotopic maps paving 

the PPC, notably by documenting a new visuotopic cluster and its relationship with surrounding 

visuotopic areas. One can point that in humans too, wide-field mapping has been shown to be 

necessary for detecting the potential human homologues of V6 (Pitzalis et al., 2006) and V6A 

(Pitzalis et al., 2013b) . 

We have little elements to provide regarding the functional role(s) of CIP1/2 and PIP1/2, except 

that they do not seem to be particularly involved in processing visual motion, by contrast with the 

neighboring V6/V6A complex. Future investigations will have to clarify this issue but we can 

nevertheless speculate that CIP1 and/or CIP2 are likely to process 3D slants defined by binocular 
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disparity or other depth cues (Tsutsui et al., 2005; Durand et al., 2007; Rosenberg et al., 2013). 

Interestingly, neurons recorded in a location matching that of CIP1/2 have been shown to possess 

very large receptive fields (10-30°) (Tsutsui et al., 2005), in good agreement with the PRF sizes 

found in the present study. However, those single cell recordings failed to note any visuotopic 

organization, illustrating the higher sensitivity of fMRI for revealing large scale organization of the 

receptive fields in high-order areas (Patel et al., 2010). Recent findings suggest that PIP1 and/or 

PIP2 might also be involved in visuospatial functions (Premereur et al., 2015; Van Dromme et al., 

2016).

Together, our results demonstrate that in macaques, as in humans, the PPC is largely visuotopic. 

Further engaging in a direct comparison between the large-scale organization of visuotopic maps 

between human and monkey PPC would remain very speculative, because the only human studies 

that have employed wide-field retinotopy have focused on the potential human homologues of V6 

(Pitzalis et al., 2006) and V6A (Pitzalis et al., 2013b). We have detected robust motion sensitivity 

in the piece of parieto-occipital cortex in which V6/V6A have been previously reported. 

Furthermore, retinotopic mapping provides some elements that help the delineation of these areas. 

Notably, our data reveals that V6/V6A possess representations of far eccentricities (>20°), that 

they share borders with V3d and the PIP cluster, and that they are separated by an eccentricity 

gradient inversion. Non-generalizable, yet non negligible evidence allows us to speculate on a 

possible demarcation between V6 and V3d: in most hemispheres, the horizontal meridian that 

constitutes the limit between V2d and V3d is cut by a representation of the UVM. This occurring 

severance also seems to overlap with the limit of V6’s motion sensitivity. Although no safe 

conclusions can be drawn from this observation, it encourages further investigation. It is interesting 

to indicate that for most of the visuotopic maps already documented in human PPC, the 

delineations rely almost exclusively on polar angle gradient inversions, since foveal representations 

and eccentricity gradients are notoriously ambiguous (Brewer and Barton, 2012). Our study 
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provides a good illustration that beyond the potential to divulge novel visuotopic maps, wide-field 

retinotopy also disambiguates the location of foveal representations and the direction of 

eccentricity gradients.

To conclude, our results deliver the most exhaustive view to date of the visuotopic organization of 

monkey PPC. They show a dense organization of abutting visual field maps, of which some are 

arranged in clusters. Generalizing wide-field mapping in both species will undoubtedly contribute 

to the thorough understanding of these large-scale visuotopic ensembles, which represents an 

essential step in the quest for establishing the functional homologies between the PPC of human 

and non-human primates (Orban et al., 2004, 2006; Sereno and Tootell, 2005).
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F. Processing of egomotion-
consistent optic flow in the 

rhesus macaque cortex
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F.1 Introduction

In macaques, numerous regions of the cerebral cortex contain at least some neurons that are 

selectively responsive to the direction of motion of a moving visual stimulus. These regions have 

diverse locations including large parts of the occipital cortex, posterior portions of the temporal 

cortex, the inferior parietal cortex and even parts of the frontal cortex. Although the most obvious 

use of sensitivity to image motion is to specify the motion of external objects, it is also valuable for 

monitoring the animal’s own movements. Two cortical regions in particular, the dorsal middle 

superior temporal area (MSTd) and the ventral intraparietal area (VIP), are associated with the 

specialized function of encoding visual cues to self-motion. Both contain many neurons that are 

selectively sensitive to specific components of the optic flow that occurs during self-motion, 

including direction of heading during locomotion (Tanaka et al., 1989; Duffy and Wurtz, 1991, 

1995; Bremmer et al., 2002a). Electrical stimulation of these regions can influence heading 

judgments (Britten and Wezel, 2002; Zhang and Britten, 2011) suggesting that they contribute 

directly to perceptual awareness of self-motion, although this has recently been questioned in the 

case of VIP (Chen et al., 2016). Many MSTd and VIP neurons also receive vestibular input (Duffy 

et al., 1976; Gu et al., 2006; Chen et al., 2011a) and there is evidence that visual and vestibular cues 

are efficiently integrated by such neurons, with weightings based on cue reliability (Fetsch et al., 

2012). Neurons that appear to encode optic flow have also been identified in Area 7a of the inferior 

parietal lobule (Motter and Mountcastle, 1981; Steinmetz et al., 1987) and recently in the frontal 

eye fields (Gu et al., 2015), where again many neurons also respond to vestibular stimuli.

Despite much research, it is not known exactly how visual responses to specific types of optic flow 

are constructed. The problem has proved challenging and although several sophisticated and 

biologically plausible models have been proposed (e.g. Perrone and Stone 1994; Grossberg et al. 

1999; Yu et al. 2010; Mineault et al. 2012), the computations involved are still debated. However, 

signals encoding motion, which are initially encoded locally, must be spatially integrated in some 
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way. Self-motion generates full-field visual stimulation: when the animal moves, the entire retinal 

image moves. Receptive fields in MSTd and VIP are large enough (typically 10-50 degs, e.g. 

Komatsu and Wurtz 1988; Schaafsma and Duysens 1996; Mendoza-Halliday et al. 2014) to 

integrate local motion signals over a wide area, and in some cases a significant proportion of the 

visual field, but they are not large enough to integrate signals over the entire visual field. The 

question therefore arises: do the responses of flow-selective neurons having different receptive 

field locations combine to specify the overall optic flow, and if so how? Visual responses are usually 

studied with a simulated optic flow stimulus positioned such that all key features of the flow are 

contained within the receptive field. For example, in the case of expansion (forward motion), the 

center of expansion is typically placed within the receptive field being examined. The implicit 

assumption is that single neurons are concerned with optic flow only within their receptive fields 

and can therefore be expected to respond the same way to a given stimulus irrespective of whether 

the remainder of the visual field is consistent with the same optic flow. However, this has not been 

tested empirically and consequently we do not know whether neurons in MST and VIP respond 

(a) whenever what falls in their purview could be part of full-field optic flow, or (b) only, or at least 

more strongly, when signals from other parts of the visual field indicate that it actually is part of 

full-field flow. Whether MSTd and VIP encode optic flow per se, or localized flow components 

that can be used to derive overall optic flow, is a key unanswered question.

Surprisingly, perhaps, the above question has been better addressed in humans than in macaques. 

In the human brain, putative homologs of macaque MST (Dukelow et al., 2001; Huk et al., 2002; 

Kolster et al., 2010) and VIP (Bremmer et al., 2001) have been identified. These have been shown 

to be involved in encoding optic flow (Smith et al., 2006; Cardin et al., 2012a). Wall and Smith 

(2008) addressed the question of whether human MST and VIP are active whenever optic flow 

components are present in the image, or only when full-field flow is present. They presented an 

array of nine (3x3) optic flow patches. The patches were identical and each contained spiralling 
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flow that would be expected to provide a good stimulus for a macaque MST neuron if presented 

in its receptive field. However, the array as a whole was not consistent with self-motion and should 

not activate neurons that respond selectively to image motion caused by self-motion. Wall and 

Smith (2008) found that human MST (hMST) responded almost as strongly to the array as to a 

single large patch of the same total size, suggesting that it is not strongly sensitive to whether or 

not image motion reflects self-motion. In putative human VIP (pVIP), the response was about half 

that to a single patch, implying stronger selectivity for self-motion. A more extensive study using 

the same paradigm (Cardin and Smith, 2010) confirmed these findings and additionally identified 

two more visually responsive regions that respond at least twice as well to one patch as to an array. 

One was human V6 (hV6), a region identified in humans only quite recently (Pitzalis et al., 2006)

and thought to be the homologue of macaque V6 (Galletti et al., 2001). The other was labelled 

PIVC (parieto-insular vestibular cortex) but was probably PIC (posterior insular cortex), a visual-

vestibular region immediately posterior to human PIVC (Frank et al., 2014) that may be 

homologous to macaque VPS (Chen et al., 2011b). In macaques, both V6 (Fan et al., 2015) and 

VPS (Chen et al., 2011b) contain neurons that are tuned for visually simulated direction of heading. 

In both the above human fMRI studies (Wall and Smith, 2008; Cardin and Smith, 2010), the 

strongest specificity to visual self-motion occurred in a region not previously studied in any detail, 

the cingulate sulcus visual area (CSv). Here, a strong response could be elicited by a single optic 

flow patch but the response was almost completely abolished when an array of optic flow patches 

was used as substitute. Recent studies (Antal et al., 2008; Fischer et al., 2012) confirm the role of 

CSv in self-motion processing and an additional piece of evidence implicating CSv in self-motion 

processing is that it receives vestibular as well as visual input (Smith et al., 2012). Thus, population 

responses in human visual cortex show a hierarchy of sensitivity to whether the overall visual image 

is likely to reflect self-motion, from hMST (weakest sensitivity), through hV6 and hVIP (substantial 

sensitivity), to PIC and CSv (strongest sensitivity).
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There have been no single-unit studies in macaques that used either the multi-patch approach or, 

to our knowledge, any other approach to distinguish responses to true, full-field optic flow from 

responses to the mere presence of optic flow segments in the receptive field. Before undertaking 

such studies, it would be valuable to establish with fMRI which macaque visual areas, if any, show 

such differentiation on a macroscopic scale. This would guide physiological experimentation and 

also provide a much stronger link with the relevant human fMRI literature. There are numerous 

important species differences that could make human fMRI studies an unreliable guide to macaque 

physiology. Not least, area CSv has not been identified in macaques. We have therefore employed 

the multi-patch paradigm during fMRI in alert fixating macaques with the aim of establishing 

candidate visual regions for true self-motion specialization, in the sense discussed above.

F.2 Material and methods

F.2.1 Animal model
Three female rhesus macaques: M01, M02, and M03 (age: 5–7 years; weight: 4.5–6.5 kg) were 

involved in this study. Animal housing, handling, and all experimental protocols (surgery, 

behavioral training, and MRI (magnetic resonance imaging) recordings) followed the guidelines of 

the European Union legislation (2010/63/UE) and of the French Ministry of Agriculture (décret 

2013–118). The project was approved by a local ethics committee (CNREEA code: C2EA – 14) 

and received authorization from the French Ministry of Research (MP/03/34/10/09). The 3 

animals were housed together in a large, enriched enclosure and could thus develop social and 

foraging behaviors. They returned to their individual cages to be fed twice a day, with standard 

primate biscuits supplemented with various types of fruits and vegetables. Health inspections were 

carried out quarterly on these animals. Details about the animals’ surgical preparation and 

behavioral training are provided in Section C.
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F.2.2 Optic flow stimuli
The stimuli were identical to those used in previous human studies (Wall and Smith, 2008; Cardin 

and Smith, 2010). They consisted of 800 moving dots arranged in an egomotion-consistent (EC) 

or egomotion-inconsistent (EI) pattern (Figure 22b). The EC condition consisted of a 40° × 40° 

square field of dots moving in a coherent optic flow pattern containing expansion/contraction and 

rotation components that varied over time, consistent with self-motion on a varying spiral 

trajectory (Morrone et al., 2000), displayed at 60 fps. For a given dot with radius r, angle θ and local 

speed v, its trajectory was defined by:

Equation 7
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Radial and angular velocities are defined by dr/dt and dθ/dt, respectively. The direction of optic 

flow was defined by ϕ, which varied over time from −π to π generating stimuli with radial, circular, 

and spiral motion. The EI stimulus consisted of a 3 × 3 array of 9 identical panels, each containing 

a smaller version of the EC stimulus. Although the individual panels contain optic flow, the overall 

pattern is not consistent with egomotion because flow induced by observer motion can have only 

one center of motion. In true optic flow stimuli, the size and speed of motion of the features in 

the image increase with eccentricity. Because the introduction of these scaling factors would result 

in different distributions of dot size and speed in our 2 stimuli, and potentially spurious results, we 

kept the dot size, dot speed, and number of dots in the whole array identical across conditions in 

order to equate low-level visual characteristics. As a result, our stimulus does not accurately 

simulate “true” optic flow in terms of the scaling of size and speed with eccentricity typical of 

motion through a cloud of dots. The use of time-varying flow ensured that all locations were 

stimulated by all dot directions during the stimulus cycle. It also provides larger responses than 
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continuous expansion because multiple flow-sensitive neurons are stimulated. Finally, it ensures 

that adaptation at any one local direction is minimal.

F.2.3 MRI recordings
Images were acquired on a 3 Tesla clinical MR scanner (Phillips Achieva) using a custom 8 channel 

phased array coil (RapidBiomed) specially designed to fit the skull of macaques while preserving 

their field of view. 

F.2.3.1 Recordings for individual templates. 

For each individual, anatomical and functional brain templates were built from acquisitions made 

in a single session on slightly anaesthetised animals (Zoletil 100: 10 mg/kg and Domitor: 0.04 

mg/kg). The animals’ constants were monitored during the whole session (about 1 hour) with an 

MR compatible oximeter. During that session, we acquired 4 T1-weighted anatomical volumes 

(MPRAGE; repetition time [TR] = 10.3 ms; echo time [TE] = 4.6 ms, flip angle = 8°; voxel size = 

0.5 x 0.5 x 0.5 mm; 192 slices), and 300 functional volumes (GE-EPI; TR = 2000 ms, TE = 30 ms, 

flip angle = 90°, SENSE factor = 1.6; voxel size = 1.25 × 1.25 × 1.5 mm, 32 axial slices).

F.2.3.2 Recordings for functional sessions. 

The functional scanning sessions were performed on awake behaving animals on a daily basis and 

lasted for about one hour (8 to 12 runs). EC and EI stimuli were presented using a block-design. 

Each run consisted of 224s (112 TRs) divided into 7 identical cycles of 32s (16 TRs). In half of the 

runs, a cycle started with a baseline of 10s (5 TRs) where only the fixation point was present. It was 

followed by 6s (3 TRs) of the EC condition, then by another 10s of blank and finally by 6s of the 

EI condition (Figure 22). In the other half of the runs, the EC and EI conditions were reversed 

within a cycle (i.e. a cycle had 10s of blank, 6s of the EI condition, 10s of blank and finally 6 of the 

EC condition). Video display and reward for correct fixation were controlled using the V-Cortex 

software.
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Figure 22. A. Schematic representation of the monkey fMRI set-up. B. Illustration of the stimuli and 
experimental design. The egomotion consistent (EC) stimulus consisted of a square field of dots moving in a 
coherent optic flow pattern containing expansion/contraction and rotation components that varied over time, 
consistent with self-motion on a varying spiral trajectory. The egomotion inconsistent (EI) stimulus consisted of a 3 
× 3 array of 9 identical panels, each containing a smaller version of the EC stimulus. Recordings were performed using 
a block design, with the alternation of EC and EI flow stimuli, separated by blank periods. Each run contained 7 
repetitions of such blocks (112 TR in total). EC conditions were shown first in half of the runs and EI conditions 
appeared first in the other half of the runs.
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F.2.4 Data processing

F.2.4.1 Preprocessing of the functional data.

In total, 36 runs per animal were kept for further analyses (18 runs with the EC condition first 

during the blocks and 18 runs with the EI condition first). All those runs were selected based on 

the quality of fixation (percentage of correct fixation > 85%) to minimize the influence of eye 

movements in BOLD signal fluctuations for an additional control on the influence of eye position 

on our results. To control that our results are not corrupted by differences in eye position during 

the presentations of the egomotion-consistent (EC) and egomotion-inconsistent (EI) optic flow 

stimuli, we analyzed the percentage of correct fixation (i.e. when the eye position was less than 1° 

away from the fixation point) during the EC and EI conditions. For each of the 3 monkeys, the 

distributions of these percentages across runs are provided in Figure 23A. Using paired t-tests, we 

did not find any significant differences between the distributions corresponding to the EC and EI 

conditions. To go further, we characterized the stability of eye position during correct fixation for 

these two conditions. This was done by computing the ratio between the standard deviation of 

correct eye position during the EC (in blue) or EI (in green) conditions versus during the baseline. 

The distributions of these fixation ratios across runs are provided in Figure 23B. Here again, paired 

t-tests did not reveal any significant differences between the ratios corresponding to the 2 

conditions. We conclude that the results of our study (i.e. the contrast between the responses to 

the EC vs EI conditions) are not affected by eye position or fixation stability. Within each run, 

volumes were rigidly realigned with each other on a slice-by-slice basis using a subpixel cross-

correlation algorithm (Guizar-Sicairos et al., 2008). This was followed by slice-time correction. A 

mean image of the functional volumes was then computed for each run and used for normalization 

on the functional template of the same individual. Those run-dependent normalization parameters 

were combined to the run-independent parameters linking the functional template to the 

anatomical one in a single deformation step, during which the functional volumes were resampled 
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at 1 x 1 x 1 mm and slightly smoothed with a spatial Gaussian kernel (FWHM = 1.5 x 1.5 x 1.5 

mm).

Figure 23. Ocular fixation and stability of the 3 monkeys during the 2 experimental conditions. A) Percentage 
of correct fixation (i.e. less than 1° away from the fixation point) during the EC (in blue) EI conditions. The boxplots 
give the distribution of these values across runs. Each box provides the 25 and 75 percentiles of the distribution (lower 
and upper border of the box), its median and the associated 95% intervals. Numbers and arrows in red provide the 
median values of the percentage of correct fixation during baseline. B) Ratio between the standard deviation of correct 
eye position during the EC (in blue) or EI (in green) conditions versus during the baseline.

F.2.4.2 General linear model 

Voxel-wise statistics were computed by fitting a GLM to the BOLD signal. The model contained 

3 main regressors, representing the 3 experimental conditions: EC, EI and blank periods (Figure 

22b). Those regressors were convolved with the HRF estimated from each of the 3 monkeys (see 

Section D). In addition, 4 motion regressors were included in the model. For each run, the slice-

by-slice rigid realignment yielded 32 vectors of lateral displacements and 32 vectors of antero-

posterior (Y) displacements: one for each slice of the functional volume. The principal component 

analysis was used to derive 2 lateral and 2 antero-posterior motion regressors, which were entered 
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in the model as nuisance regressors (Vanduffel and Farivar, 2014). Both the preprocessing steps 

and GLM analyses were implemented in Matlab, with the SPM12 software and custom scripts.

F.2.4.3 Statistics and results presentation

As a first step for identifying potential regions of interest (i.e. regions with consistent BOLD 

response differences between the EC and EI conditions), the volumetric statistical parametric maps 

obtained for the EC>EI and EI>EC contrasts in the individual GLM analyses were thresholded 

at p<10-3 uncorrected (t value > 3.1) and spatially normalized for projection onto the cortical 

surface of the F99 template. Cortical regions showing significant differences in the same direction 

between the EC and EI conditions in at least 2 individuals were all considered as potential regions 

of interest. In a second step, 2 new GLM analyses were performed on each individual after splitting 

the runs into 2 equal parts (18 runs per GLM, 9 of them with the EC condition first). One GLM 

was used to look for the presence of individual statistical local maxima in the potential regions of 

interest or in their immediate vicinity. This search was performed at a relaxed statistical threshold 

of p<10-2 uncorrected. The GLM performed with the other half of the runs was then used to 

extract the percent BOLD signal changes (PSC) in cubes of 3 x 3 x 3 voxels centered on the local 

maxima found with the first GLM. This method avoids the “double dipping” that arises when the 

same data are used both for identifying ROIs and for measuring activity within them. Small cubes 

were favored over patches determined by anatomical and/or statistical considerations, because 

anatomical borders between areas are difficult to determine precisely and, as we will see below, our 

contrasts (EC>EI but also EC+EI>baseline) lead to extended activations that cannot be accurately 

divided into clusters corresponding to different functional regions. 

Our approach is more conservative and avoids subjectivity when dealing with borders between 

areas. As we will see in the results sections (MNI coordinates provided in Table 3), our local 

maxima are separated enough that we were able to associate a single local maximum with each 

region and with no overlap between the cubes corresponding to the different regions. Importantly, 
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we assessed that the precise size of those cubes (1, 3 or 5 voxels size) did not have significant 

impact on the extracted results. For these cubes, we estimated percent BOLD signal changes (PSC) 

for the EC and EI conditions relative to the Blank condition as follows:

Equation 9 ����� = ��� (
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	����
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)

Equation 10 ����� = ��� (
	��
	����

	�������
)

where βEC βEI, βblank and βconstant represent the regressor coefficients provided by the GLM analyses. 

For each region of interest, PSCEC and PSCEI were computed for each run independently, and thus 

expressed as mean ± standard error across the runs included in the second GLM (18 runs per 

monkey). Only regions where PSCs were significantly stronger for the EC than for the EI condition 

(t-tests with p-value < 0.05 and a confidence interval for the difference distribution that does not 

include 0) were considered for further analysis. Given our number of animals (n=3), there is no 

statistical test of generalizability. We therefore present the data on each individual and focus on 

regions that were consistently found in all the macaques (in at least one hemisphere). In these 

regions, specificity of the BOLD responses to EC versus EI conditions was quantified by 

computing a sensitivity ratio of the mean PSCEC and PSCEI with the following formula:

Equation 11 ����������� ���� (%) = ���(
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F.2.4.4 Emergence of specificity for consistent versus inconsistent optic flow 

To complement our analyses, we seek to better understand how specificity for EC over EI stimuli 

emerges by comparing our results with sensitivity ratios derived from earlier visual areas. 

Anatomical regions of interest (ROIs) are available in the Caret software for V1, V2, V3, V3A, MT, 

FST and V4t, based on the definitions provided by Lewis and Van Essen (2000). These ROIs are 

shown in Figure 31. For each ROI, we used the first half of the data (see details in the text) to 

determine all its voxels that were significantly activated by visual stimulation (using the EC + EI > 

Baseline contrast shown in Figure 24). We then computed the average sensitivity ratio across these 

voxels on the second half of the data. The results in areas MT, FST, V4T and MST are shown in

Figure 27. If preferences for the EC condition exist in MT, V4T and FST (average sensitivity ratios 

of 13%, 8% and 6% respectively), they remain small and are significantly weaker than those 

observed in area MSTd (30%, a value that is actually very close to the ratio of 29% obtained with 

our main analysis). These results confirm that the activations found in the temporal sulcus for the 

EC > EI contrast more likely correspond to area MSTd and not to neighboring regions. Figure 

31C shows the responses obtained in areas V1, V2, V3 and V3A. While V1 seems to marginally 

prefer the EI condition, this preference is gradually reversed when progressing through V2, V3 and 

V3A. Even in V3A the ratio is only 8%, so there is little evidence for an EC preference in any of 

these areas (and none in V1/V2). Also included in Figure 31C is area V6, which is available in Caret 

based on the definition of Galletti et al. (1999). In this ROI, we found a ratio of 20%. This result 

suggests that selectivity for the EC condition might exist in V6. However, this selectivity remains 

not reliable across runs because 1) it did not permit to extract local maxima on the first half of the 

data for M03 and 2) activations around the local maxima found for M01 and M02 were not 

significantly stronger for the EC condition in the second half of the data.
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F.3 Results

F.3.1 Cortical network involved in processing optic flow
In the present study, monkey fMRI techniques are used to characterize the cortical network 

involved in processing optic flow signals generated by self-motion in non-human primate. To that 

end, 3 macaque monkeys were exposed to optic flow stimuli (moving random dots pattern) either 

consistent or inconsistent with egomotion (EC and EI conditions respectively; see Material and 

Methods). The experimental design is similar to that developed by Smith and colleagues in their 

human fMRI studies (Wall and Smith, 2008; Cardin and Smith, 2010), allowing a direct comparison 

of the cortical networks processing optic flow in the two primate species (Orban, 2002; Orban et 

al., 2004).

We first assessed the changes in blood-oxygen-level dependent (BOLD) signal evoked by the visual 

conditions (EC and EI) relative to baseline (blank screen with fixation point only). These flow 

stimuli were found to elicit strong statistical increases in BOLD signal across most of the visual 

cortex in all 3 monkeys (Figure 24A), with a very high degree of overlap between individuals (Figure 

24B). This first analysis indicates that studying the more specific contrast between the egomotion-

consistent and inconsistent conditions is not hampered by a lack of statistical power in any of the 

individuals. Figure 24A shows the statistical parametric maps (t-values) based on all the available 

data (36 runs/animal) for the EC versus EI contrast in monkeys M01, M02 and M03, projected on 

dorsal, lateral and medial views of the individuals left and right cortical hemispheres (see Methods). 

Hot colors (orange to yellow) indicate significantly stronger BOLD responses for EC than for EI 

condition (p<10-3 uncorrected), while cold colors (dark to pale blue) signal the opposite. Despite 

differences in the extent of the activation patterns observed in the 3 animals (e.g. monkey M02 is 

generally more responsive than monkeys M01 and M03), preference for the consistent flow 

(EC>EI) defines a cortical network encompassing the occipital, parietal, temporal and frontal lobes 

in all the monkeys. Many nodes of this network are found consistently across the 3 individuals, as
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revealed in Figure 24B by overlapping the activations observed in at least 2 of the 3 individuals 

after normalization on the F99 template (Van Essen, 2002). Regions color-coded in orange and 

yellow are those in which EC evokes significantly stronger activations than EI in 2/3 and 3/3 of 

the monkeys respectively. Regions with stronger activations for the EI condition are color-coded 

in dark and pale blue, depending on whether they are found in 2 or 3 animals.

Figure 24. A. Statistical parametric maps for the contrast Vision (EC+EI) versus Baseline (blank) in monkeys 

M01, M02 and M03. Results are projected on dorsal, lateral and medial views of the left and right hemispheres of the 
individual cortices. The color code reflects the contrast t-values and indicates statistically significant differences in 
BOLD responses (p<10-3 uncorrected). Hot (orange to yellow) and cold (dark to pale blue) colors indicate stronger
responses to Vision and to Baseline respectively. B. Map of overlap between significant activations in the Vision 

versus Baseline contrast across the 3 monkeys. Only activation sites found in at least 2 individuals are shown. 
Results are projected on the flattened representations of the left and right hemispheres of the F99 template. Orange 
and yellow indicate cortical sites significantly more activated by Vision than by Baseline in 2/3 and 3/3 of the subjects, 
respectively. Dark and pale blue show regions more activated during Baseline than during Vision in 2/3 and 3/3 of 
the subjects, respectively.
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Table 3. Cortical areas activated in at least 3 animals. Coordinates in MNI space (mm) are those of the statistical 

local maxima in the left (L) and right (R) hemispheres. Local maxima were determined from the first half of the data 

and significant selectivity for the EC condition were evaluated from the second half (see details in the Methods).
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Figure 25. A. Statistical parametric maps for the EC versus EI contrast in monkeys M01, M02 and M03. Results 
are projected on dorsal, lateral and medial views of the left and right hemispheres of the individual cortices. The color
code reflects the contrast t-values and indicates statistically significant differences between BOLD responses evoked 
by the EC and EI conditions (p<10-3 uncorrected). Hot (orange to yellow) and cold (dark to pale blue) colors indicate 
stronger responses to EC and to EI respectively. B. Map of overlap between significant activations in the EC 

versus EI contrast across the 3 monkeys. Only activation sites found in at least 2 individuals are shown. Results are 
projected on the flattened representations of the left and right hemispheres of the F99 template. Orange and yellow 
indicate cortical sites significantly more activated by EC than by EI in 2/3 and 3/3 of the subjects, respectively. Dark 
and pale blue show regions more activated by EI than by EC in 2/3 and 3/3 of the subjects, respectively. Seven cortical 
were significantly activated in our three macaques: MSTd, 7a, STPm, VIP, VPS, FEFsem and FEFsac. Black stars 
indicate a region of the cingulate sulcus (pmCSv) that was found in the three animals in the left hemisphere and in one 
animal on the right hemisphere. White stars indicate a region of the parieto-occipital sulcus (POS) were significant 
activations were found in two animals. Borders of the primary visual area (V1) are shown as white dotted lines (Lewis 
and Van Essen, 2000). (as: arcuate sulcus; cs: cingulate sulcus; ips: intraparietal sulcus; ls: lateral sulcus; sts: superior 
temporal sulcus).
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We chose a relaxed threshold to avoid the risk of false negatives while using only half of the full 

dataset. However, the robustness of those activation sites was tested by running paired t-tests on 

the BOLD signal change profiles obtained at the same sites in the EC and EI conditions in the 

other half of the runs. In the following, we describe the activation sites that were identified with 

the above method in at least one hemisphere in each of the 3 individuals. Two cortical activation

sites were found to prefer egomotion-consistent flow (EC) in both hemispheres of all our 

macaques. The most significant one according to the EC versus EI contrast (i.e. global statistical 

maximum in all 6 hemispheres) was located in the dorso-caudal portion of the superior temporal 

sulcus (STS), a location corresponding to the dorsal Medial Superior Temporal (MSTd) area. The 

second site, located within the intra-parietal sulcus, matches the location of the Ventral Intra-

Parietal area (VIP). Both MSTd and VIP areas have been repeatedly shown to play a central role in 

optic flow processing. Note that for VIP, the activation found in M03 did not overlap those found 

in M01 and M02, although the local maxima were very close between the 3 animals (see Figure 

25B).

Four other sites were observed in 5 out of 6 hemispheres. One of them was found in the caudal 

portion of the lateral sulcus (ls), in a location matching that of the Visual Posterior Sylvian area 

(VPS; Chen et al. 2011b). Another site was located dorsally in the arcuate sulcus (as), in a portion 

of the Frontal Eye Field involved in smooth pursuit eye movements (FEFsem) and also recently 

shown to house neurons responsive to optic flow stimuli (Gu et al., 2015). The third site, in the 

postero-ventral portion of the inferior parietal lobule, slightly above MSTd, seems to correspond 

to posterior area 7a, a region that is known to contain neurons that respond to optic flow (e.g. 

Siegel & Reid, 1997). Finally, the fourth site lay in the fundus of the STS, anterior to MSTd. This 

could be part of the superior temporal polysensory area (STP), which also contains motion-

sensitive cells with large receptive fields (e.g. Bruce et al. 1981), although STP occupies primarily 
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the upper bank of the sulcus. We tentatively refer to it as STPm after Nelissen et al. (2006) who 

report motion-sensitive activity at a similar location with fMRI. 

Two further sites were found in all three individuals, but less reliably across hemispheres (in 4 out 

of 6 hemispheres). One of them was located in the arcuate sulcus, slightly more anterior and lateral 

than FEFsem, in a location described as a portion of the Frontal Eye Field involved in saccadic 

eye movements (FEFsac; Gu et al. 2015). Finally, consistent activations were observed within the 

postero-ventral lip of the cingulate sulcus (black asterisks in Figure 25A and Figure 25B), in a region 

which had not been documented previously as being involved in optic flow processing in monkeys. 

However, the location of this region echoes that of the recently discovered Cingulate Sulcus visual 

(CSv) area in human, which has been shown to be highly selective for the egomotion-compatible 

optic flow stimuli used in the present study (Wall and Smith, 2008; Cardin and Smith, 2010). For 

that reason, we will refer to this cingulate activation site as putative macaque homologue of CSv 

(pmCSv; see Figure 25B). Overlapping activations and corresponding local maxima were also 

identified in 2 out of 3 animals along the dorsal lip of the intra-parietal sulcus (LIPd) and within 

the parieto-occiptal sulcus (pos; white asterisks in Figure 25B). However, only the LIPd maxima 

were associated with significant differences between the BOLD signals evoked by the EC and EI 

conditions in both animals. MNI coordinates of the statistical local maxima for the different areas 

described above are provided in Table 3. Note that we also found consistent responses for the 

EI>EC contrast, but they remained largely restricted to the early visual cortex (see blue patches in 

24B). These activations are not caused by local motion characteristics since they are well matched 

between the two conditions. They might be due to the detection of kinetic boundaries (Reppas et 

al., 1997).
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Figure 26. Activity profiles in area LIPd. Percent BOLD signal for the EC and EI conditions with respect to baseline. 
Other details as in Figure 25.

F.3.2 Quantitative analysis of egomotion selectivity
In the following, we characterize in more detail the BOLD response profiles in the cortical regions 

enumerated above. For each region, the statistical local maximum was localized based on the GLMs 

performed in half of the runs for each monkey. The response profiles were estimated with the 

GLMs performed on the other half of the runs (see Materials and Methods). These response 

profiles correspond to the average responses within cubes of 27 (3 × 3 × 3) voxels centered on the 

local max- ima localized on the first GLMs. Figure 28 and Figure 29 show the percentage of BOLD 

signal changes evoked by the EC and EI conditions with respect to the Blank condition within the

8 areas that were activated in all 3 individuals (areas MSTd, VIP, VPS, FEFsem, 7a, STPm, FEFsac, 

and pmCSv). Voxel-wise statistical parametric maps obtained for the EC > EI contrast in each 

individual, superimposed on horizontal sections of the individual anatomical templates, are shown 

in Figure 28A (areas MSTd, VPS, VIP, pmCSV, and FEFsem), 29A (area 7a), and 29C (areas STPm 

and FEFsac). Their corresponding BOLD profiles are presented in Figure 28B, Figure 29B and D. 

The asterisks above the profiles indicate statistically significant differences (paired t-test, P < 10−2) 

between the BOLD responses evoked by the EC (white bars) and EI (gray bars) conditions. The 

percentages of BOLD signal change in area LIPd are shown in Figure 27 for the 2 animals (M02 
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and M03) that had significantly stronger responses for the EC than for the EI condition in this 

area. In order to characterize the strengths of the BOLD responses elicited by the EC stimulus 

relative to those evoked by the EI stimulus, we computed a sensitivity ratio (in percentage) between 

the percentages of signal change obtained for these 2 conditions relative to baseline (see the 

“Materials and Methods” section). These ratios are shown in Figure 30A for all the 8 areas reported 

above and their respective locations are illustrated on the cortical surface of the F99 template in 

Figure 30B (the positions of these ROIs on the individual cortical surfaces are provided in Figure 

31A). In Figure 31A, the areas are ranked from the highest to the lowest specificity for the EC

condition. This analysis reveals that 2 regions, pmCSv and VPS, emerge as being clearly the most 

specific for flow stimuli compatible with egomotion, with a near absence of BOLD responses 

evoked by the egomotion-incompatible stimuli (see also Figure 29B). In both regions, the mean 

ratio (across the 3 animals) was above 70% (77% in pmCSv and 70% in VPS), revealing a nearly 4 

times larger response for the egomotion-compatible stimuli. Ratios were much lower but still 

impressive in areas VIP (43%), FEFsac (43%), and FEFsem (39%), and lower still in MSTd (29%), 

7a (21%), and STPm (15%). In LIPd (not shown because it was found in only 2 of the 3 individuals), 

we observed an intermediate ratio of 47%. Note that these sensitivity ratios are robust to changes 

in the size of the cubes used to define the ROIs (see Figure 31B). Finally, we estimated differential 

sensitivity to egomotion-compatible flow within a number of pre-defined visual ROIs taken from 

the Caret atlas. This enabled us to cross-check our results for regions such as MSTd and also to 

check that in visual regions such as V1–V3 and MT, where specificity is not expected, it is not seen.

The results, shown in Figure 31, confirmed that selectivity for EC stimuli is seen in MSTd but not 

in MT, FST (Fundus of the Superior Temporal sulcus), or V4t and was not seen in V1–V3 or V3A. 

V6 showed weak selectivity (see Discussion).
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Figure 27. Activity profiles in areas MSTd, VPS, VIP, pmCSv and FEFsem. A. Statistical results of the EC>EI 
contrast shown on axial sections for monkeys M01, M02 and M03 (neurological convention). Areas are indicated by 
arrows on the 3 monkeys. B. Percent BOLD signal change (PSC) in these 5 areas for the EC and EI conditions with 
respect to baseline (blank condition) in both hemispheres of the 3 macaques. The first half of the data was used to 
define ROIs around the local maxima of these areas and the second half was used to compute PSC (see details in the 
text). The error bars provide the standard errors across runs (n = 36). Stars indicate areas whose PSCs during the EC 
condition were significantly stronger than during the EI condition (t-tests, p < 0.05). P-values of the t-tests are provided 
for areas that did not pass significance.
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Figure 28. Activity profiles in areas 7a, FEFsac and STPm. A. Statistical results of the EC>EI contrast shown on 
axial sections for the 3 monkeys. Areas 7a (in all monkeys) and LIPd (in M02 and M03) are indicated by arrows. B. 
Percent BOLD signal change in area 7a for the EC and EI conditions with respect to baseline. C. Statistical results of 
the EC>EI contrast shown on axial sections for the 3 monkeys. Areas STPm and FEFsac are indicated by arrows. D. 
Percent BOLD signal change in areas FEFsac and STPm for the EC and EI conditions with respect to baseline.
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Figure 29. A. Average sensitivity ratio (%) between the responses to the EC and EI conditions. The ratio 
(defined in the text) may be thought of as the reduction in response that occurs when an EC stimulus is replaced with 
EI. As for the percent BOLD signal change, ratios were computed on the second half of the data (see details in the 
text). Only areas with significant responses in the three animals are shown. Areas were sorted according to their mean 
sensitivity ratio. Markers provide the individual data corresponding to M01 (circles), M02 (diamonds) and M03 
(squares). B. Schematic localization of the 8 areas on the F99 template
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Figure 30. A. Projection of the ROIs on the individual surfaces of each macaque. B. Average sensitivity ratio 
(%) between the responses to the EC and EI conditions for different area sizes. Areas were defined from cubes 
of 1x1x1 voxel (1mm3 with voxels resampled at 1x1x1, nvx = 1) in the upper-left panel, 3x3x3 voxels (27 mm3, nvx = 
3) in the upper-right panel and 5x5x5 voxels (125 mm3, nvx = 5) in the lower-left panel. See figure 5 for the details of 
the legend.



139

Figure 31. Average sensitivity ratio (%) between the responses to the EC and EI conditions across anatomical 
ROIs. A. Representation of the anatomical ROIs used in the present analysis. These ROIs are available in the Caret 
software for the F99 template, and are based on the works of Lewis and VanEssen (2000; for V1, V2, V3, V3A, MT, 
V4t, FST and MSTd) and Galletti and colleagues (1999; for V6). B. Mean sensitivity profiles across the voxels belonging 
to MT, FST, V4t and MSTd. The color code is the same as that of Figure 5. C. Idem for V1, V2, V3, V3A and V6.
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F.4 Discussion

F.4.1 Overview
The aim of present study was to identify, in non-human primates, the cortical areas involved in 

processing visual motion produced by self-displacements, i.e. egomotion-consistent optic flow. To 

that end, we recorded whole-brain BOLD responses from 3 behaving macaques while they were 

exposed to optic flow stimuli either consistent or inconsistent with egomotion (Figure 22). The 

visual stimuli and experimental design were similar to those used in previous human fMRI studies 

(Wall and Smith, 2008; Cardin and Smith, 2010), allowing a direct comparison of the cortical 

networks between human and non-human primates. Our results reveal that in macaque, as in 

human, many cortical areas are more strongly activated by egomotion-consistent optic flow stimuli. 

Those regions are broadly distributed, encompassing the temporal, parietal, frontal and cingulate 

cortices (Figure 26). They are now discussed in more detail.

F.4.2 Activations in temporal cortex: MSTd and STPm
In all 6 recorded hemispheres, the most statistically significant activations for the contrast between 

egomotion consistent and inconsistent stimuli was found in a dorso-caudal portion of the superior 

temporal sulcus, which corresponds in macaque to area MSTd (Figure 26). In order to check that 

these activations were well localized in MSTd and did not overlap with adjacent areas like MT, FST 

or V4t, we performed an additional analysis from anatomical atlases provided in the Caret software 

(see Figure 32). This analysis confirmed that our activations are specific to MSTd. Numerous 

electrophysiological studies have shown that MSTd houses neurons selective to optic flow stimuli 

presented in their receptive fields (e.g. Tanaka et al. 1989; Duffy and Wurtz 1991), as well as to 

inertial vestibular stimulation (e.g. Duffy 1998; Takahashi et al. 2007). Moreover, both 

microstimulation and reversible inactivation indicate a causal role for MSTd in heading perception 

(Britten and Wezel, 2002; Gu et al., 2012). Together, these characteristics point to a central role for 

MSTd in processing visual motion produced by self-displacements. Our data also revealed that the 
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sensitivity ratio between responses to consistent and inconsistent flow stimuli is not very high 

(29%; see Figure 30), suggesting that flow stimuli that are not consistent with self-displacements 

can nevertheless evoke strong responses in MSTd neurons. Interestingly, our results are in broad 

agreement with those obtained in human area MST (hMST) using the same experimental protocol 

(Wall and Smith, 2008). These authors reported about 15% reduction in response to incompatible 

flow in hMST, compared to about 30% found here in macaque MSTd. This difference is consistent 

and could reflect a species difference, suggesting greater specialization in macaque than human 

MST. However, it should be remembered that hMST in humans, which is defined simply in terms 

of the presence of strong ipsilateral drive (absent in hMT), probably does not correspond exactly 

to MSTd and may include other motion-sensitive regions with large receptive fields. It is therefore 

unsafe to make a direct comparison of results. Our results leave open the possibility that hMST, or 

some part of it, is homologous with MSTd for optic flow processing.

Another temporal activation site was observed in all the animals (5/6 hemispheres), situated more 

anteriorly along the fundus and the dorsal lip of the superior temporal sulcus. This site may 

correspond to a sub-region of the superior temporal polysensory (STP) area, in which neurons 

selective to optic flow stimuli have been reported (Bruce et al., 1981; Anderson and Siegel, 1999), 

although neurophysiological studies describe STP as located in the upper bank and fundus of STS

whereas our cases show activity mainly in the lower bank (Figure 26B), albeit with overlap across 

animals mainly in the fundus (Figure 26B). In a recent monkey fMRI study, Nelissen and colleagues 

(2006) confirmed the existence of an optic-flow sensitive region in STP, that they named STPm 

and whose location is close to that found in the present study (Figure 26), although again STPm is 

mainly in the upper bank of the sulcus. Interestingly, Nelissen and colleagues noted that responses 

to optic flow stimuli in STPm are similar to those of MSTd, except that the amplitude is lower. 

This difference is also found in the present study, together with a slightly lower sensitivity ratio 

(15%) of STPm. In human, a region within the superior temporal sulcus (STS) and anterior to the 
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hMT+ complex has been recently proposed as a putative homologue of macaque STP (Beauchamp 

et al., 2004b; Smith et al., 2012). This region was named STSms (superior temporal sulcus multi-

sensory) because of its multi-sensory responses (Beauchamp et al., 2004a, 2004b, 2008). Among 

other modalities, STSms is activated by visual (Beauchamp et al., 2004b) and vestibular (Smith et 

al., 2012) signals. Therefore, it might be involved in the processing of egomotion-consistent optic 

flow. However, STSms was not significantly activated by our contrast in two human studies based 

on the same experimental protocol (Wall and Smith, 2008; Cardin and Smith, 2010). How can this 

be explained? One possibility might be simply that differential activity was missed in human STSms 

because of sensitivity limitations (e.g. the human studies used considerably fewer stimulus 

repetitions). Another is that STSms is not in fact homologous with STPm, or is broadly 

homologous but differs in its degree of specialization. Further investigations will be needed to 

clarify this point.

F.4.3 Activations in parietal cortex: VIP, 7a and LIPd
In our 3 animals (6/6 hemispheres), we found statistically significant activation for the egomotion-

consistent versus egomotion-inconsistent contrast in the fundus of the intraparietal sulcus, which 

houses area VIP in macaque (Figure 28). Together with MSTd, VIP is generally considered as 

playing a central role in processing heading information provided by both visual and vestibular 

signals (Bremmer et al., 2002a, 2002b). VIP and MSTd neurons seem to share many characteristics 

in the way they code both visual and inertial movements (Schaafsma and Duysens, 1996; Chen et 

al., 2011a). However, the mean sensitivity ratio we measured in VIP (43%) was greater than that 

found in MSTd (Figure 30). In human, the same contrast significantly activates a region within the 

anterior part of the intra-parietal sulcus (see e.g. Wall and Smith, 2008) whose coordinates are very 

close to those of the polysensory motion sensitive area originally described by Bremmer and 

colleagues (Bremmer et al., 2001) and proposed as a putative homologue of macaque VIP (hVIP). 

Wall & Smith (2008) reported a 46% response reduction for EI stimuli, very similar to our result 
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for macaque VIP. Our data are therefore consistent with the hypothesis of a correspondence 

between these two areas, although caution is needed because the intraparietal sulcus is organized 

differently in humans and macaques, with several more areas in humans.

Besides VIP, a consistent site of parietal activation, observed in all our monkeys (5/6 hemispheres), 

was located within area 7a, which occupies an elongated posterior portion of the inferior parietal 

lobule (Figure 29). Area 7a is involved in spatial vision, through the integration of visual and 

oculomotor signals (Mishkin et al., 1982; Anderson and Siegel, 1999). Both electrophysiological 

and optical imaging studies have shown that 7a neurons respond selectively to optic flow stimuli 

(Siegel and Read, 1997; Phinney and Siegel, 2000; Merchant et al., 2001; Raffi and Siegel, 2007). 

More recently, cytoarchitectonic differences along the inferior parietal lobule have led to its 

subdivision into 4 sectors: PF, PFG, PG and Opt (Pandya and Seltzer, 1982; Gregoriou et al., 

2006). The posterior location of our activation site, together with the fact that it extends ventrally 

into the dorsal bank of the superior temporal sulcus, strongly suggest that it corresponds to the 

caudal-most region Opt (Gregoriou et al., 2006). Interestingly, tracer injections in Opt (Rozzi et 

al., 2006) revealed strong connections with the temporal areas that we found to be involved in 

processing egomotion-compatible optic flow: MSTd and STP, and much weaker connections with 

the neighbouring temporal areas MT and FST. The same study revealed that Opt is also connected 

to LIP in the intra-parietal sulcus and to area 23, in the cingulate sulcus, two sites that also 

responded more strongly to consistent than inconsistent optic flow stimuli in a majority of recorded 

hemispheres, as will be discussed below. 

The dorsal part of the lateral intraparietal (LIPd) area was the third site of parietal activation 

evidenced in the present study (see Figure 28). Results were less systematic than those of area 

7a/Opt, with 4 out of 6 hemispheres, but closely resembled those found in VIP (with an average 

sensitivity ratio of 47%). To our knowledge, there is no previous study linking LIPd to the specific 

processing of egomotion-compatible optic flow. However, the present results, together with the 
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fact that LIPd is connected to 7a/Opt, argue that the possible role of LIPd in optic flow processing 

deserves further investigation.   

Several studies have reported the existence of a possible homologue of macaque area LIP in the 

human superior parietal cortex (Sereno et al., 2001; Shikata et al., 2008). To our knowledge, the 

human homologue of area 7a has not been firmly established. In any case, the only robust and 

reliable activations that were found near intra-parietal sulcus in human using the same protocol 

corresponded to area hVIP (see above). Our results therefore suggest that processing of optic flow 

in 7a (and LIPd, if confirmed) may be specific to macaque.

F.4.4 Activation in parieto-insular cortex: VPS
In our 3 individuals (5/6 hemispheres) stronger BOLD responses for the egomotion-consistent 

optic flow stimuli were observed in the caudal portion of the sylvian fissure (Figure 28). The 

location of this activation site corresponds to the visual posterior sylvian (VPS) area, which is 

posterior to the parieto-insular vestibular cortex (PIVC) from which it receives vestibular inputs. 

VPS is also connected to MSTd (Guldin et al., 1992), which may feed VPS with visual optic flow 

information. In agreement with this view, VPS neurons have been shown to integrate heading-

related information from both visual optic-flow and vestibular signals (Chen et al., 2011b). 

Importantly, our results revealed that after pmCSv, VPS is actually the cortical region exhibiting 

the greatest sensitivity ratio for egomotion-consistent stimuli (70%, see Figure 30), much higher 

than those found in the temporal and parietal activation sites described so far. In human, the same 

contrast (Cardin and Smith, 2010) also revealed a parieto-insular region, PIC (that was originally 

mistakenly labelled as PIVC), sharing most of the properties described here for VPS and notably 

its responsiveness to vestibular inputs (Smith et al., 2012). The sensitivity ratio in PIC is very high 

(~80%; Cardin and Smith, 2010) and close to the one we found in macaque VPS. Altogether, these 

results further support the idea that these two regions are homologous. 
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F.4.5 Activations in frontal cortex: FEFsem and FEFsac
In 3 animals (5/6 hemispheres), strong activations were found in the dorsal part of the arcuate 

sulcus (Figure 3). This location matches that of FEFsem, a sub-region of the frontal eye field 

involved in the control of smooth pursuit eye movements (Lynch, 1987; MacAvoy et al., 1991). 

The average sensitivity ratio we found in FEFsem (39%) was about the same as those of MSTd, 

VIP and 7a/Opt, which all share strong recurrent connections with FEFsem (Boussaoud et al., 

1990; Maioli et al., 1998; Stanton et al., 2005). Recently, FEFsem neurons have been shown to 

respond selectively to visual and vestibular signals induced by self-displacements (Gu et al., 2015). 

Thus, the present results provide further evidence that FEFsem processes heading information. 

In 4/6 hemispheres, (3 individuals), a second site of activation was observed within the arcuate 

sulcus. Located slightly more anterior and lateral than FEFsem, within the fundus and anterior 

branch of the arcuate sulcus (Figure 29), it nicely fits the anatomical location reported for another 

sub-region of the frontal eye field, FEFsac, which is involved in saccadic eye movements (MacAvoy 

et al., 1991; Gu et al., 2015). Our analyses of eye movements reveal differences neither in the quality 

of fixation nor in the number of saccades evoked by egomotion consistent and inconsistent stimuli, 

in any of the 3 individuals (see Figure 24). Thus, the present results argue for a secondary role of 

FEFsac in the processing of visual motion induced by self-displacements. 

In human, studies that used the same experimental protocol (Wall and Smith, 2008; Cardin and 

Smith, 2010) did not report any significant activation in or around the frontal eye field region. A 

re-examination of these data revealed that a few subjects (<20%) actually had significant responses 

in FEF. This low proportion makes it difficult to determine whether these activations were false 

positive. Either way, this comparison across species supports the idea that the implication of the 

FEFsem and FEFsac regions in optic flow processing is at least more pronounced in macaque.
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F.4.6 Activation in cingulate cortex: pmCSv
In human, a growing number of fMRI studies have described a region within the cingulate sulcus,

CSv, which is significantly activated by complex motion patterns (Wall and Smith, 2008; Fischer et 

al., 2012; Pitzalis et al., 2013a; Schindler and Bartels, 2016). Using the stimuli of the present study, 

Cardin and Smith (2010) reported that this region had the greatest specificity for egomotion-

consistent optic flow, in virtually all the tested subjects. In all our animals (4/6 hemispheres), we 

measured strong responses in the posterior cingulate sulcus (Figure 28). Atlas-based comparison 

in Caret software indicates that this activation site belongs to area 23c (Vogt et al., 2005), which is 

thought to be involved in spatial vision notably through its connection to area 7a/Opt (Vogt et al., 

1992; Rozzi et al., 2006). A striking feature of the activity profiles for the 4 significant hemispheres 

is the near absence of response to egomotion-inconsistent stimuli which leads to a very high 

sensitivity ratio (77%, see figure 5), as has been found in human CSv (Wall and Smith, 2008). 

Although other studies will be needed to confirm the possible homology between pmCSV and 

CSv, the identification of pmCSv provides new opportunities to understand activations in human 

CSv by reference to electrophysiological explorations in macaque. 

F.4.7 Homologies with the human EC-selective areas V6, Pc and 2v?
In human, the contrast used in this study leads to consistent activations in the parieto-occipital 

cortex (Cardin and Smith, 2010), in a site that both retinotopic mapping and response properties 

point to as the human homologue of macaque area V6 (Pitzalis et al., 2006, 2010; Cardin et al., 

2012b). In the present study, our voxel-wise analysis did not reveal any evidence that V6 prefers 

egomotion-consistent optic flow. However, a suggestive trend was observed in the atlas-based 

approach which shows a sensitivity ratio for V6 of about 20% that is consistent across the 3 

animals. This leaves open the possibility that V6 does possess EC selectivity but that this was not 

reliable enough to be detected at the voxel level. It is also possible that there is no such selectivity 

and the trend arises from erroneous inclusion of parts of neighboring visual regions, although the 

immediate neighbors V2, V3 and V3A do not themselves show strong specificity. Whatever the 
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explanation, our results indicate that selectivity to the EC condition in macaque V6 is not as robust 

as in human V6. One possible interpretation of this discrepancy might be that human and monkey 

V6 differ regarding their involvement in heading processing, the involvement being greater in 

humans. More generally, this observation reinforces the view that the cortical processing of visual 

motion might differ in several aspects between these 2 primate species (Vanduffel et al., 2002; 

Orban et al., 2003).

Finally, it should be noted that two other human cortical regions have been reported to show 

selective responses to EC stimuli (Cardin & Smith, 2010) that do not appear to do so in macaque. 

The first is a possible homologue of macaque area 2v in anterior parietal cortex, which has been 

shown to receive vestibular afferents and may therefore process self-motion. The second is an 

anterior region of the precuneus, termed Pc by these authors. Since little is known about either 

region, it is difficult to interpret these differences. At least in Pc, and possibly also in putative 

human 2v, the difference between EC and EI reflects differences in visual suppression rather than 

visual responses.

F.5 Conclusion

Overall, our results are in excellent agreement with the electrophysiological and anatomical data 

collected over recent decades in macaque monkey. They demonstrate that a simple contrast 

between optic flow stimuli that are consistent or inconsistent with self-displacements can reveal 

the vast majority of cortical areas known to be involved in processing heading information through 

optic flow, including those also thought to integrate vestibular inputs. An advantage of the monkey 

fMRI approach is that it allows a direct comparison with results obtained in several human studies 

based on the same contrast (Wall and Smith, 2008; Cardin and Smith 2010). Together, the data 

collected in the two species suggest that although the networks processing optic flow in human 

and macaque share some properties (i.e. possible homologies between areas MST/hMST, 
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VIP/hVIP, VPS/PIC and pmCSv/CSv), they nonetheless remain different. On the one hand, 

some of the significantly activated areas in macaque (7a, STPm, FEFsem and also FEFsac) were 

not found in human. On the other hand, some areas robustly found in humans (V6, P2v, Pc) did 

not show significant activations in the present study. 
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G.General discussion & 

Conclusion
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G.1 Summary of results

The goal of this thesis was to investigate the visuotopic organization the dorsal visual pathway and 

its sensitivity to optic flow in macaque monkeys using fMRI. To reach this objective we secured 

many milestones to develop the monkey fMRI technique in Toulouse and implement routine 

procedures of surgery, conditioning and data acquisition and processing. The technique was then 

used to conduct 3 studies. The first study used a visual impulse and a Fourrier analysis to isolate 

visually responsive voxels from which we modeled HRF responses for each monkey individually. 

In the second study, we used wide-field retinotopy with behaviorally salient 2D stimuli coupled 

with surface based analysis of population receptive fields, to uncover a novel cluster within the 

posterior parietal cortex. This new PIP cluster includes 2 previously described regions CIP1/2 

((Arcaro et al., 2011) and 2 new regions PIP1/2. The third study characterized the functional 

network involved in processing egomotion compatible optic flow. The revealed network 

comprised of an extended set of cortical areas: MSTd, VIP, VPS, pmCSv, STPm, 7a and LIP, 

echoing that described in humans with the same protocol.

G.2 Considerations pertaining to the awake monkey fMRI technique

My involvement in the implementation of the monkey fMRI technique in our lab revealed 

important insight on the obstacles that one most probably will encounter when embarking on such 

an endeavor. It is thus elementary that I provide some recommendations. A crucial element for 

monkey conditioning is to insure a constant, secure and comfortable work environment for both 

the researcher and the monkey. Any stressful factors, such as unrecognized noise and smells can 

hinder monkey conditioning. Furthermore, novel objects, stimuli and procedures must be 

introduced progressively, otherwise it will distract the monkey quite a bit. Another key factor in

monkey conditioning for fMRI, which is common to any research with behaving animals, is 

knowledge of the animal’s motivating drive. The precise control of water intake and the animal’s 
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weight are default solutions to manipulating a monkey’s motivation to perform a task. Some 

monkeys do not require water scheduling, as finding the proper reward, such as sweet juice, which 

would be exclusively delivered during task performance, is enough to make them cooperate fully. 

Monkeys should also be exposed lengthily to the MR environment, to gain confidence and perform 

required tasks without being on edge.

Another important variable, which some seek to reduce as much as possible is the time of post-

surgical recovery. Enough post-surgical time is not only required for proper healing of surgery 

wounds, but also for consolidating the skull implant. The necessary time for implant consolidation 

also allows the monkey to become habituated to its new body part, thus integrating it to its schema, 

which reduces collisions with its surrounding environment. Furthermore, the animal is likely to 

fidget with the cement and the wound. Such behavior shouldn’t be a problem as long as it doesn’t 

hinder proper healing. Otherwise, one could consider fitting the monkey with a thermoplastic 

helmet which restricts the animal’s access to the implant. By ensuring enough time for healing, 

maximum contact between cement and skull, proper screw length and maintenance, a skull implant 

can last well beyond 5 years.

The skull implant is a practical and efficient solution for immobilizing a monkey’s head. 

Nevertheless, it remains an invasive method that exposes the animal to dangers of infection of 

bone corrosion. Ideally, it would be desirable to shift from a skull implant to a non-invasive head 

holding apparatus. Many labs around the world have tried implementing such a device. Howell and 

colleagues developed a plastic helmet filled with expandable foam that fits snugly to the monkey’s 

head. This method allowed PET scanning of alert monkey (Howell et al., 2001). The drawback of 

this method is that the foaming did not allow visual stimulation. Another study used a custom-

fitted plastic helmet (Srihasam et al., 2010), a chin strap and mild suction supplied by a vacuum 

blower to immobilize the monkey’s head during scanning. Although the authors state that the 

immobilization was comparable to a conventional skull implant, the suction device remains a heavy
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apparatus and a stressful factor for the monkey. A recent paper published by Slater and colleagues, 

describes a non-invasive head immobilization system that makes use of individual custom face 

masks (Slater et al., 2016). The face mask can be used in combination with a rear mask to make a 

full helmet. Their facemask was integrated into an automated voluntary training system, that 

allowed the monkey to familiarize with the apparatus at its own pace. Results of comparison with 

existing methods indicate that comparable immobilization capabilities with tradition skull implants. 

The apparatus seems to be highly advantageous if no invasive neuronal recordings are required. 

This system could well be an alternative to surgical implants for fMRI scanning. Our team is also 

developing similar equipment designed to restrain head movement within the horizontal primate 

chair. 

A significant dilemma we faced was the use of contrast agents. While the norm of the field is to 

conduct IRON imaging in monkeys, we could demonstrate that acquiring a reliable BOLD signal

with high SNR is possible with a multichannel phase array, monkey head coil. Not being obliged 

to use dangerous chemicals constituted a relief. Indeed, in addition to the prohibitive price and its 

restricted availability, the daily injections of MION and chelation agent are stressful for animals 

and can become an inconvenience, especially when certain subjects have small veins. Furthermore, 

excess iron deposits in the brain become a health hazard for the animal. Healthy animals are 

cooperative animals, and being able to maintain a healthy animal for as many experiments as 

possible is a major benefit because a lot of time and resources are invested to have reliable data 

from an animal. Animals that gain experience, are animals that are easier to train to perform new 

tasks, they are less likely to move in the scanner, and provide data that is less contaminated by 

noise. Animals that are kept for a long time are also good candidates for longitudinal studies, as 

one can imagine studying the evolution of cortical visual maps and functional networks as the 

animal gets older. 
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G.3 Considerations pertaining to the measurement of the HRF

The HRF study provided important insight on the BOLD HRF of monkeys and its necessity for 

proper analysis of fMRI data. Results show that monkey HRF is quite different from that of 

humans, and that it also varies across individuals of the same species. An accurate estimation of 

the HRF model can make all the difference in detecting functional areas and visuotopic maps. One 

must note though, that we are estimating a monkey HRF model from the average activity of voxels 

that where significantly activated by the visual impulse. Nevertheless, vasculature is quite different 

across areas of the visual cortex, which implies that each voxel possesses its own hemodynamic 

signature. Applying a meticulous method would mean defining a model of the HRF for each voxel 

in the brain, or at least for each cortical area, and for different visual impulse latencies, and 

presentation eccentricities. This will have to be done in the future if one wants to exploit optimally 

the monkey fMRI approach.

G.4 Considerations pertaining to the visuotopic mapping of the dorsal 

visual pathway

The results of this study bring a fresh view to the organization of the posterior parietal cortex. The 

newly uncovered maps in the PPC provide additional proof that visually activated areas that are 

higher in the chain of visual processing must conserve the visuotopic organization of the lower 

areas, although coarser, and that revealing the maps requires a reassessment of the nature and size 

of the stimulus, as well as the analysis method. These results partly agree with the current 

understanding of the organization of the monkey PPC. On one hand, they confirm the locations 

and visuotopic organization of the V6/V6A complex, and its location relatively to V3d (Gamberini 

et al., 2015). On the other hand, there is a clear discrepancy with the definition of the ventral part 

of V6A as branching into V3A (Gamberini et al., 2011; Pitzalis et al., 2013b), since it interposes 

between these two regions the newly discovered PIP cluster. The new PIP cluster is in good 
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matching with the area defined by ((Colby et al., 1988). Settling for one alternative requires the 

definition of the functional differences between the neighboring areas. As expected our motion 

localizer revealed motion sensitivity for V6/V6A but not for the PIP cluster. CIP and PIP have 

been demonstrated to be involved in the processing of 3D structure and position (Durand et al., 

2007). The same study shows that a small area of PIP also shows sensitivity to structural depth 

from motion. A recent study (Van Dromme et al., 2016), investigated the interaction between area 

CIP and the inferior temporal cortex (ITC), by combining focal perturbations of CIP (reversible 

inactivation and electrical microstimulation). They reveal that the inactivation of CIP caused a 

perceptual deficit in a depth-structure categorization task. Moreover, they provide evidence of 

decreased fMRI activations in the PPC caused by the inactivation of CIP. Surprisingly, concomitant 

reduction of activation was also observed in ITC. This study corroborates the initial findings of 

Durand et al. (2007) et demonstrates the complementarity of fMRI and focal perturbations.

The use of wide-field retinotopy can be modified to include more complex shapes, motion and 

stereoscopic depth components to drive other visually responsive areas. Possibilities include but 

are not limited to the use of slanted wedges and rings, to appear that the wedges are rotating either 

close to or away from the subject, and rings expanding towards or away from them. Previous 

studies used faces to create the probabilistic maps of face processing areas (Janssens et al., 2014)

and videos to map higher order areas such as V6 (Pitzalis et al., 2006). 

Further research should investigate in detail the functional properties of the areas of this cluster. 
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G.5 Considerations pertaining to the motion sensitivity of the dorsal 

visual pathway.

Mapping the visuotopic organization of the dorsal visual stream does not provide information 

about the functional properties of this subsystem, we thus sought to investigate the functional 

network processing optic flow that is coherent with self-motion in macaques. We employed a 

similar paradigm previously used in humans to investigate the same network. The comparison of 

human and monkey networks revealed homologies but also striking differences, with the notable 

lack of activation in macaque V6. Nevertheless, V6 was found to be motion sensitive (Fattori et 

al., 2009) using our motion localizer, and it could be mapped using wide-field retinotopy except for 

its border with V3d. Another notable difference between macaques and humans in motion 

processing along the dorsal pathway is area V3A, which is much more motion sensitive in the latter 

than in the former (Orban et al., 2003). 

To speculate on the origin of such differences, one must bear in mind that macaques and humans 

move around differently. A normally walking human being will rarely witness rapid translational 

optic flow, as most of a human’s displacements are done on foot, or in vehicles with front facing 

apertures, which means that the point of focus of the optic flow on the retina virtually constant, 

unless sudden changes of direction occur. On the other hand, macaques rarely spend time on the 

ground and mostly travel between levels of different heights. Which implies that in addition to 

witnessing an expanding component of optic flow, the translational (up/down, side-to-side) and 

rotational components are very present. Thus, compared to humans the point of focus of the optic 

flow on the retina changes a lot during the macaque’s movement. This difference in the frequency 

of alternation between one focal point and the other may explain some of the discrepancies in the 

functional network processing optic-flow that is coherent with self-motion. To simulate more 

natural stimuli of self-motion consistent optic flow, one could devise an apparatus, mounted on 
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human or monkey subjects, with stereoscopic cameras that would record videos while the subject 

is naturally moving around. Stereoscopic optic flow can then be derived from the videos and 

presented to subjects while recording fMRI signals.

G.6 Perspectives

In the future, my main objective would be to use the monkey fMRI technique in conjunction with 

invasive methods, as I have done during my Master’s thesis. Mainly, I would like to continue the 

investigation on the effect of reward on perception. One prospective experiment would be to 

specifically target dopaminergic neurons in the VTA of the macaque monkey using optogenetics, 

where fMRI would be used to precisely target this area. Some questions I am eager to answer are, 

how does the optogenetic stimulation of VTA (VTA-OS) affects visual perception? Can VTA-OS 

affect perceptual learning? If so, how? How is the dopamine projection network involved in visual 

decision-making and reinforcement learning? Can this knowledge help us build better neural 

networks?

If dopaminergic stimulation had an impact on visual perception, this could be measured 

behaviorally through multiple tests of psychophysics, ranging from simple discrimination tasks, to 

the ability to control dominant percepts during monocular and binocular rivalry. The confirmation 

of such effects would encourage the use of concomitant VTA-OS and retinotopic mapping to tell 

us more about how dopaminergic projections may affect the cortical encoding of visual space. 

Furthermore, one could combine VTA-OS with electrophysiological recordings to inspect the 

effect of dopaminergic projections on information processing at the level of a single neuron or a 

small population of neurons. The possibilities are endless, and the limit of our knowledge of the 

brain can be pushed by combining all available techniques. Creativity is also essential.
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