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Partie Il ACTIVITES DE RECHERCHE

.1 PREAMBULE

Mon travail de recherche est essentiellement axé sur la physiologie respiratoire et
cardiaque. A partir de données physiologiques enregistrés sur des volontaires sains
ou des patients, j'ai cherchée a&:
e décrire ces deux fonctions physiologiques et leurs interactions dans certaines
conditions (Figure 1 ,§11.2 et ll.3)
e meftre au point des nouveaux indices d’'évaluation de données en
physiologie respiratoire et cardiaque (Figure 1 Mesure, § 11.4)
formuler des approches théoriques pour la validation de modeles (Figure 1
. §11.5).
Les travaux de recherche en cours s'inscrivent dans la continuité des thématiques

precédentes et seront présentés dans les perspectives (l1.6).
L'ensemble des publications est présenté sur la Figure 1 pour chague thématique

precédente. Celles qui apparaissent en bleu, sont insérées en entier dans le

document.
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Physiologie respiratoire et cardiaque:
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Figure 1: Thématiques et publications afférentes. Les publications indiquées en bleu sont insérées en
entier dans le document

Pour chacun des travaux de recherche, j'ai présenté dans un cadre bleu avec un
code couleur: les conclusions, les références des publications, et quand il y a lieu les

collaborations scientifiques, les encadrements d'étudiants, et les contrats associés.
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1.2 MODE VENTILATOIRE : DIVERSITE ET
“PERSONNALITE”

11.2.1 Introduction

I.2.1.1 Les caractéristiques ventilatoires

Chaqgue cycle ventilatoire (une inspiration et expirafion) est caractérisé par sa
durée Tror et son amplitude, le volume courant Vi, dinsi que les durées inspiratoire Ti
et expiratoire Te (Figure 2). La fréquence ventilatoire Fr exprimée en nombre de

cycles par minute peut aussi étre calculée Fr =60/ Tror.
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Figure 2 : Un cycle ventilatoire et ses caractéristiques : la durée totale Tror, les durées inspiratoire Ti et
expiratoire Te et le volume courant Vr.

La forme moyenne d'une courbe volume peut-étre représentée en prenant
ensemble les données T, Te et Vr moyennes calculées a partir de valeurs obtenues

pour chaque cycle ventilatoire (Figure 3).

VT

IIOO mi

—
I sec

T TE

Figure 3 : Représentation de la forme d'un signal volume

La diversité des modes ventilatoires au repos a été rapportée des le 19¢€me siecle. La

fréquence ventilatoire peut varier de 6 & 31 cycles par minute. Les durées des femps
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inspiratoire et expiratoire présentent aussi une diversité ventilatoire, et des
combinaisons différentes de Ti et Te sont possibles quelle que soit la durée du cycle
ventilatoire (Ti reste cependant toujours inférieur a Te). Les volumes courant au repos
peuvent prendre des valeurs allant de 442 & 1549 ml (Dejours 1961). L'individualité et
la reproductibilité des modes ventilatoires au repos ont été rapportées au milieu du

20eme siecle (Proctor et Hardy,1949 ; Morrow et Vosten, 1953). Le concept de

“personnalité ventilatoire” a été introduit par Dejours et al (1961) : “Un méme débit
ventilatoire total ou alvéolaire peut-étre réalisé par une infinité de combinaisons du
volume courant (Vi) et de la fréquence ventilatoire (Fr). Chaque sujet possede sa
propre combinaison Fr* Vret, de plus, une forme des mouvements respiratoires qui lui
est propre ; en réalite, tout sujet est doué d’une certaine personnalité ventilatoire.”
Le fravail de I'équipe PRETA a apporté une dimension supplémentaire au concept
de “personnalité ventilatoire” en montrant I'existence pour chaque individu d’'un
mode ventilatoire et d'une forme de débit qui lui est propre. En effet, la forme du
débit des cycles ventilatoires (débit enregistré & la bouche par
pneumotachographhie, Figure 4) présentait une diversité entre les différents sujets et

une individualité pour chaque sujet.

JSec
0.3
0.2

DEBIT Instantané
0.1 Py

0.1
0.2
0.3
0.4

Figure 4 : Débit ventilatoire instantané mesuré par pneumotachographie

Ce travail sur la forme des cycles ventilatoires a été possible en développant d'une
part, des outils de quantification basés sur des méthodes d’analyse de signal
(analyse harmonique) et d'autre part, en développant des méthodes statistiques de

comparaison multivariée (test de similarité).
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1.2.1.2 Quantification de la forme des cycles ventilatoires (analyse harmonique)

Afin de pouvoir les comparer, une méthode de quantification de la forme des cycles
basée sur une analyse harmonique de chaque cycle de débit instantané a été mise

au point au laboratoire (Bachy et al, 19864). La période de la fondamentale (T) est

égale a la durée de chaque cycle. Les 32 harmoniques sont calculées et Bachy et al.
(1986) ont montré que plus de 95 % de la puissance du signal est contenue dans la
fondamentale et les trois premieres harmoniques, la fondamentale contenant une

grande part de ces 95%. La forme du cycle reconstitué a partir de la fondamentale

T T
et des frois harmoniques suivantes (qui ont respectivement pour période : 5 5 et

T
Z) est donc tfres proche de la forme du signal initial (Figure 5). Chague harmonique

est caractérisée par un nombre complexe. Ainsi, la forme du cycle est représentée
par quatre nombres complexes, ou huit nombres réels (coordonnées cartésiennes).
Ces quatre (ou huit) nombres peuvent étre représentés (Fresnel) dans le plan par

quatre vecteurs.

signal

original
; i ' V\ _ - signal reconstitué

§
] e

Harmoniques

L
Spectre de puissance

Figure 5 : Représentation de I'analyse harmonique sur un cycle de débit : Les 4 premieres harmoniques,
le spectre de puissance de ce cycle, le débit d'origine et le débit reconstitué & partir des 4 premiéres
harmoniques et la représentation de Fresnel associée.

Cette analyse cycle par cycle permet d'obtenir, une quantification de la forme
b " H H H 4

moyenne” d'un cycle venfilatoire, en calculant la moyenne des coordonnées de
I'analyse harmonique effectuée sur les cycles sélectionnés G partir de

I'enregistrement du signal débit sur une durée déterminée.
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1.2.1.3 Comparaison multivariée de la forme des cycles ventilatoires (test de

similarité)

Un test statistique multivarié (test de similarité) a été mis au point dans I'équipe, afin
de pouvoir comparer la forme des cycles ventilatoires soit en volume en prenant les
trois données (T, Te et Vi) soit en débit en prenant les huit coordonnées de I'analyse
harmonique. Le principe de ce test est la comparaison des différences intfra-
individuelles avec les difféerences inter-individuelles dans deux conditions différentes,
pour une variable ou un ensemble de variables. L'objectif de ce test est de montrer
qgue dans deux situations différentes, chaque individu est “identifiable” parmi un
ensemble d'individus. Un test significatif indique que les différences entre les formes
des cycles ventilatoires d'un méme individu enregistré dans deux conditions
différentes sont moins grandes que les différences entre deux individus pris au hasard
dans le méme échantillon. Ainsi, les formes du volume d'une part, et du débit
d’autre part, ont été comparées entre tous les individus d’'un méme échantillon dans

deux situations. Cette méthode est détaillée par Benchetrit et al (1989) ainsi que

dans ma these. Ces auteurs ont monfré d'une part, un maintien de la forme des
cycles ventilatoires (débit et volume) au repos pour chaque individu a quatre ans

d’intervalle (Benchetrit et al, 1989) et d’autre part, la similarité de la forme de la

ventilation de repos chez les jumeaux (Shea et al, 1989).

11.2.2 La diversité des modes ventilatoires

1.2.2.1 Chez les patients atteints de dystrophie myotonique (maladie de Steinert)

La diversité des modes ventilatoires a été étudiée chez des patients atteints de
dystrophie myotonique (maladie de Steinert). En effet, ces patients souffrent de
multiples déficiences et en ce qui concerne la fonction respiratoire, ces déficiences
se manifestent aussi bien au niveau de la régulation que du mode ventilatoire. Les
données ventilatoires ont été enregistrées par pneumotachographie et
pléthysmographie respiratoire a variation d’'inductance chez 9 patients myotoniques

en position assise et couchée, yeux ouverts (pour éviter I'assoupissement).
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Figure 6 : Valeurs des volumes courant (Vr en litre, 1) et des durées (Tror en seconde, sec) pour une série
de cycles ventilatoires consécutifs en position assise (G gauche) et couchée (a droite) pour un patient.

Le principal résultat est I'apparition progressive d'une ventilation iréguliere en

position couchée chez certains patients atteints de dystrophie myotonique (Figure 6).

La particularité de I'ajustement de la ventilation en relation avec la posture chez
certain patient atteint de dystrophie myotonique est a prendre en compte lors de
I'analyse des anomalies ventilatoires au cours du sommeil fréquemment observées

chez ces patients.

Calabrese et al (2000) Postural breathing pattern changes in patients with myotonic
dystrophy, Respir Physiol.

Post-doctorat, financé par I'institut Garches, dans le Service de Réanimation Médicale (Pr
Raphaél) a I'hépital Raymond Poincaré (Hépitaux Universitaires Paris lle-de-France Ouest)-
1999-2000
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Abstract

We recorded by pneumotachography the breathing in nine patients with myotonic dystrophy (MD), both seated
and supine and with eyes open in both positions. Irregular breathing (coefficient of variation > 2 for VT and
TTOT) was observed in six of the patients, two of whom showed irregularity in both positions whilst the remaining
four had irregular breathing only when supine. In addition, in this latter group, irregularities first appeared in VT and
only after a few minutes in TTOT. Whereas in the group exhibiting irregular breathing in both seated and supine
positions, irregularities were observed throughout the recording. However, no significant difference in any ventilatory
variable was observed as between the two postures. Rib cage (RC) and abdomen (AB) motions were recorded by
uncalibrated respiratory inductance plethysmography. Although for MD patients the mean values of the RC/AB ratio
lay within the normal range the relative decrease in value as between seated (0.78 4 0.52) and supine (0.31 4 0.13)
position was less than in healthy subjects. These observations suggest that MD may cause deficiencies in several
mechanisms. Analyses of the respiratory pattern in each patient may provide information leading to the identification
of the impaired respiratory mechanisms. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Disease, myotonic, dystrophy; Mammals, humans; Pattern of breathing, posture, myotonic dystrophy

1. Introduction

Although a similar resting ventilation has been
observed in patients with myotonic dystrophy
(MD) to that in control subjects, high respiratory
frequency and low tidal volume have been re-
ported in the former (Bégin et al., 1982; Serisier et
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E-mail address: gila.benchetrit@imag.fr (G. Benchetrit).
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al., 1982; Jammes et al., 1985; Bogaard et al.,
1992; Ververs et al., 1996). Myotonia of the res-
piratory muscles (Bégin et al., 1982; Rimmer et
al., 1993), and altered afferent output from dis-
eased muscles (Bégin et al., 1980; Serisier et al.,
1982; Jammes et al., 1985) may offer an explana-
tion for both tachypnea and the lower tidal vol-
ume in patients with MD.

Another feature of the breathing pattern in
patients with MD is the occurrence of irregular
breathing (Gillam et al., 1964; Coccagna et al.,
1975; Serisier et al., 1982). Such irregularities in
breathing pattern have been described (Gillam et
al., 1964) as consisting of periods of irregular
respiration occurring at more or less regular inter-
vals and often separated by periods of apnea in
the case of patients in a semi-recumbent position.
For patients when awake, a significantly greater
variability in tidal volume and respiratory cycle
time was found than in control subjects (Bogaard
et al., 1992; Gibson et al., 1992; Veale et al., 1995;
Ververs et al., 1996). In the view of several au-
thors (Gillam et al., 1964; Bogaard et al., 1992;
Ververs et al., 1996), this irregularity may be
considered to result to a large extent, from influ-
ences during consciousness from the higher cen-
ters which are insufficiently corrected for by the
chemical control mechanism. A ‘behavioural” infl-
uence also seemed to be present in patients with
MD, since irregularity in breathing pattern,
present in the wakeful state and during light sleep
decreased noticeably during slow-wave sleep (Gib-
son et al., 1992; Veale et al., 1995). It was sug-
gested (Bogaard et al, 1992) that the
uncoordinated action of the expiratory and in-
spiratory intercostal muscles may provide a par-
tial explanation of breathing irregularity in
patients with MD. Another contributory factor
would then be a deficiency in respiratory control
related to disordered afferent information from
the diseased muscles, since abnormalities in the
muscle spindles of patients with MD have been
documented (Swash and Fox, 1975) and there is
evidence of impaired afferent activity from these
muscles (Stranock and Newsom Davis, 1978).

The impairment of respiratory muscle function
may also be studied by examining breathing pat-
terns in different postures. Indeed, the movements
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associated with changes in posture, common in
everyday life, call into play forces which alter the
operating length of the respiratory muscles and
induce changes in force distribution in the respira-
tory muscle and in the activity of various inspira-
tory muscles (Vellody et al., 1978).

The aim of the present study was to examine a
possible deficiency in the mechanisms responsible
for adjusting respiratory muscle activation to dif-
ferent body positions. Resting breathing in pa-
tients with MD was recorded by pneumo-
tachography for both the seated and supine posi-
tion, with eyes open in both postures. In addition,
rib cage and abdominal motions in the supine and
seated positions were recorded by inductance
plethysmography, as patients with neuromuscular
diseases have been reported to display in general
abnormal thoracoabdominal patterns of breathing
(Perez et al., 1996).

2. Methods

2.1. Patients

Nine patients (five male) with MD, seen at the
hospital for a routine visit, participated in the
study. According to muscular disability rating
scale described by Bégin et al. (1997), these pa-
tients may be classified as III (moderate proximal
weakness, ambulatory). Informed consent was ob-
tained from all patients. The experimental proto-
col was examined and approved by the
Institutional Ethics Review Board. Five patients
had a passive pacemaker. Patient characteristics
are summarized in Table 1. No patient exhibited
severe respiratory deficiency but mild restrictive
respiratory disorder was observed in three pa-
tients. Pulmonary function data, Pag , Paco, and
respiratory CO, response (Infrared analyser,
Gould) are shown in Table 2. Predicted values for
VC, FEV,, and FEV,/VC were those of the Eu-
ropean Community (Quanjer et al., 1993) and for
Pl,. and PE,,, those of Black and Hyatt (1969).
A CO, rebreathing test was performed according
to the method described by Read (1967).
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2.2. Measurement and protocol

Airflow was measured with a pneumota-
chograph (Fleish head No. 1) and a differential
pressure transducer (163PC01D36, Micro Switch)
mounted on a face mask. An uncalibrated respira-
tory inductive plethysmograph (RIP) was used to
obtain rib cage (RC) and abdomen (AB) motion
signals. The sensitivity and calibration factors
were set at the same values for both channels
(Respitrace, model 150, Studley Data).

Two series of 10-min recordings were per-
formed corresponding to the seated and the
supine position respectively. In each case patients
were instructed to keep their eyes open during the
entire recording period.

2.3. Data analysis

Data acquisition was performed with a recorder
(TA11, Gould Electronic) on a PCMCIA card at
a sampling rate of 200 Hz. A paper trace was also
obtained. The PCMCIA card files were converted
into compatible Macintosh microcomputer text
files for further analysis. The flow signal was
analyzed breath-by-breath in order to obtain tidal
volume (VT) by integration of the flow signal,
breath duration (TTOT), and inspiratory (T1) and
expiratory (TE) durations, for each breath.
Minute ventilation, VT/T1 and T1/TTOT were cal-
culated for each breath. Mean values of these
variables were then calculated for each recording.

Table 1

Patients characteristics

Uncalibrated inductance plethysmography sig-
nals were also processed breath-by-breath using
the cycle delimitation of the flow signal. This
processing consists in calculating the Fourier co-
efficients for each rib cage and abdomen cycle.
For each set of recordings, these coefficients were
averaged over all the breathing cycles and used
for the construction of the mean RC and mean
AB cycle. Mean RC was plotted versus mean AB
for each subject in both positions. In addition, the
RC/AB ratio was calculated for each breath and
mean values were calculated for each set of
recordings.

2.4. Statistical analyses

Values are expressed as mean + standard devi-
ation. Student’s t-test and paired t-test were used
where appropriate to compare the two conditions:
seated or supine. Statistical significance was set at
P =0.05.

3. Results

3.1. Comparison of breathing pattern between
seated and supine positions

The investigation of breathing patterns in
seated and supine positions in patients with my-
otonic dystrophy revealed the occurrence of ex-
piratory pauses in six out of nine patients. In the

Height (cm) Weight (kg) Age (years) Sex Pacemaker

#1 164 73 38 F No
#2 155 64 57 F Yes
#3 182 85 36 M Yes
#4 159 82 37 F Yes
#5 162 82 56 F Yes
#6 164 68 47 M No
#17 173 92 55 M No
#8 177 68 35 M Yes
#9 167 77 65 M No
Mean 167 77 48

SD 9 10 12

P. Calabrese et al. / Respiration Physiology

Table 2

Lung function tests and CO, sensitivity*

CO, test

Paco, (kPa)

Pao, (kPa)

FEV, (%pred) FEV,/VC (%pred) Pl (Yopred) PE,y, (%pred)

VC (%pred)

Supine  Seated  Supine  Seated Supine  Seated  Supine  Seated  Supine

Seated

86 76

42

86

108

109

90
74
77

83 93

87

85
86
107

#1

1.00

4.90

11.40

84
83

72

38

120

118

77

87

#3

5.40

10.50

33

71

#4

0.36

74
61

88

83

0.70

5.61

63

62

107
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SUPINE

T T i\éi\/\/\/
d T T T T

30 sec

—

Fig. 1. An example of airflow, rib cage (RC) and abdomen (AB) motion signals recorded seated and supine (at the beginning (a)

and towards the end (b)) in subject #9.

case of four patients expiratory pauses were only
observed in the supine position and occurred in
the later part of the recording a few minutes after
the patients had lain down. An example of such
recording is shown in Fig. 1. The two remaining
patients exhibited expiratory pauses in both
positions.

Expiratory pauses were associated with high
values of VT. Indeed, Table 3 shows greater vari-
ability in VT, TE and TTOT. Irregular breathing
was present only in the supine position in subjects
# 1, 4, 6 and 9 but in both positions for subjects
#5 and 8. The remaining three patients showed
less irregular breathing, i.e. the coefficients of
variation of VT and TTOT were less than 20% in
both supine and seated position. Series of breath
duration (TTOT) and tidal volume (VT) are shown
in Fig. 2, in both positions, for one representative
patient of each group.

However, the pattern of irregular breathing in
those patients with irregularities in both postures
differed from that of those with irregularities only
in the supine position. Indeed, in this latter group,

irregularities are first visible in VT and only after
a few minutes of being supine in TTOT whereas in
the former group (i.e. of irregular breathing both
seated and supine), irregularities were observed
throughout the recording.

The comparison of the respiratory variables
Trot, T1, TE, VT, V1, VT1/T1 and T,/TTOT within
subjects in the seated and supine position, is illus-
trated in Fig. 3, where mean values and standard
deviations are shown for each subject. Identity
lines were drawn to better illustrate the changes as
between postures. Results show V1, VT and V/T1
to be lower in the supine position except in the
case of subjects # 3 and 9 for V1, subject # 1 for
VT and #9 for VT/T1. As regards breathing time
variables, Ttot, T1 and TE, and the Ti/TToT
ratio values, no consistent trend was found to the
changes.

Results of comparisons (paired t-test) of the
mean values of the respiratory variables for all
nine patients are reported in Table 3. No signifi-
cant difference in any variable as between posi-
tions was observed.

Table 3

Respiratory variables for each subject seated and supine®

V1t (I'min ")

Ti/Tror

V1/Ti (I'sec™")

Tr (sec) TE (sec) VT (1)

TTOT (sec)

P. Calabrese et al. / Respiration

Supine Seated Supine Seated Supine Seated Supine Seated Supine Seated Supine Seated Supine

Seated

0.35 0.37

0.29

6.30
46.1

3.54 4.68 1.22 1.58 2.32 3.09 0.38 0.45 6.51
46.2 13.6 21.5

# 1
Y%

0.40
79

0.38
9.7

0.22
15.7

0.26

5.39
13.6

0.34 5.83

0.39
29.7

225

248
19.1

1.50
14.6

3.78
133

3.98
15.6

043

0.41
10.7

124

10.20 0.40 0.40
16.2

18.1

9.90
15.9

1.46 1.95
17.6

1.60
17.8

20.9

21.1

16.8 135

0.27

6.13

3.20

4.25 1.42

4.62

o

0.33 0.28

0.45

0.45

7.38
24.1

8.89
26.8

0.65

20.2

0.67

Physiology

19.4

o,

0.44
9.9

7.73 5.26 0.29
319

10.7

0.66
13.0

2.87
18.1

24.7

28.0

39.1

443

249

14.8 29.0 16.

0.39
9.5

0.45 0.41
12.4

13.9

9.69
16.9

“w

o

2.66

21.0

o

1.47
19.1

122 (2000) 1-13

17.9

17.0

18.2

14.6

16.9 14.2

0.21
26.6

8.78

9.18

1.26

o

o,

0.35
40.1

0.52
12.3

0.38
59.2

0.24
30.9

8.30
74.1

7.37
20.5

0.71

62.4

0.74
243

4.65
99.6

6.46
69.5

6.05
16.8

18.6

21.6

%

0.728

0.338
0.39
17.9

0.213
7.92
20.0

0.093
0.61
2!

0.488
3.00
24.0

0.526
1.71
17.2

0.668
4.70
19.6

P

0.36
22.1

7.48
317

.5
309

1.60
19.5

4.84

311

Mean

14.4

42.7

#Mean values and coefficients of variation (%) of the respiratory variables for each subject seated and supine. TTOT : breath duration; Tr and TE: inspiratory and

expiratory time; VT: tidal volume; V1

: minute ventilation; P: paired t-test results of comparisons of the mean values of the respiratory variables for all nine patients;

Mean values and mean coefficients of variation calculated for all patients in both positions are represented on the bottom lines.
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ies of breath duration (TToT) and tidal volume (V) for three subjects. The top panel shows a subject in which irregular breathing appeared only in the
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3.2. Comparison of thoracoabdominal motion
between seated and supine positions

Plots of mean RC versus mean AB for all
subjects in both positions are represented in Fig. 4
with the same X and Y-axis scales. Fig. 4 shows
that the RC versus AB plots are flattened ellipses,
which indicate that there were no asynchrony
between the rib cage and abdomen motions neither
seated nor supine. For subject # 6, the RC versus
AB plots crosses in both positions. This suggests
that the RC and AB motion have different rate of
changes.

The mean RC/AB ratio + standard deviation
appears in the left-hand corner of each plot for the
seated position and in the right-hand corner for the
supine position. Significantly lower mean values of
this ratio are found in the supine as compared to
the seated position in all patients. The change in
the RC/AB ratio as between seated and supine
position seems to bear no relation to the breathing
pattern variability. Indeed, as regards subjects # 2
and #9 who exhibit the greatest change in the
RC/AB ratio from seated to supine position, vari-
ability in TTOT is similar in both positions for
subject # 2 whilst exhibiting a marked increase
from seated to supine in subject #9.

4. Discussion

In this study on nine wakeful patients with MD,
breathing pattern analysis revealed irregularities
for four patients in the supine position only
whereas for two other patients irregular breathing
was exhibited in both positions. Despite the irreg-
ular pattern observed in the supine position in
these four patients, comparison of the mean values
of the respiratory variables as between the seated
and supine position revealed no significant differ-
ence.

Comparing breathing pattern in control subjects
and patients with MD in seated and supine posi-

tion, a significant decrease in supine as compared
to seated position was found only in VT/T1 for
patients but also for control subjects (Bégin et al.,
1982). Although not significantly different, both
VT and VT/TI appeared to be lower in supine as
compared to seated posture for most of the pa-
tients (Fig. 3) in the present study.

Irregularities in breathing pattern are clearly
apparent when breath-by-breath values are plotted
for the whole of the recording, as illustrated in Fig.
2. Irregular respiration in patients with MD has
already been reported both in individual case
studies (Coccagna et al., 1975) and in group studies
(Serisier et al., 1982; Bogaard et al., 1992; Gibson
et al., 1992; Veale et al., 1995; Ververs et al., 1996)
where a significantly more marked irregularity
than in control subjects was observed. However, as
in the present study, not all patients with MD
manifest irregular breathing. In the earlier studies
irregular breathing was reported in seven out of 19
myotonic patients with less marked irregularities in
six others (Serisier et al., 1982), and in four out of
seven patients when awake (Gibson et al., 1992;
Veale et al., 1995). In the present study, it is
noteworthy that the pattern of irregular breathing
in those patients with irregularities in both pos-
tures was different from that of those with irregu-
larities in the supine position only. Indeed, in the
two patients with irregular breathing in both posi-
tions, irregularity was ‘continuous’ (Fig. 2),
whereas in the four patients with irregularities only
when supine, periods of irregular breathing ap-
peared after a few minutes in the supine position
and occurred at more or less regular intervals.

It has been postulated that breathing irregularity
results, to a large extent, from influences from the
higher centers that are insufficiently corrected for
by the chemical control mechanism (Ververs et al.,
1996). Indeed, although statistically not significant,
there was a tendency for patients with a normal
ventilatory CO, response to breathe more regularly
than patients with a lowered ventilatory CO, re-
sponse (Bogaard et al., 1992; Ververs et al., 1996).

Fig. 3. Compari

on of respiratory pattern between the two postures in all subjects. Seated versus supine plots of mean + S.D. values

o,». respiratory variables: Breath duration (TTOT), inspiratory time (T1), expiratory time (TE), tidal volume (VT), minute ventilation

Vi, Ti/TroT and VT/TIL.

#1 1o

Rib Cage

090 £0.32
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SUPINE

m. Mean RC/AB £5D in seated and supine position
2
2
‘Abdomen
#6 611 036£0.06 0.27£0.10

0.340.11

0.60£0.15

#3 1

046 £0.16

0.34£0.06

#82))  064x010 0.30£0.13

0321011

0.14£0.07

#5 6

Fig. 4. Mean rib cage (RC) versus mean abdomen (AB) Fourier coefficients, calculated breath-by-

ath, for the nine subjects in

seated and supine positions. Mean values of the RC/AB ratio + S.D. for both positions are reported on each plot.
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This hypothesis is also supported by Gillam et al.
(1964), who showed breathing irregularities in
patients with MD to increase in cases of weaken-
ing of CO, sensitivity by an anesthetic agent
(thiopentone). Although statistically not signifi-
cant, an inverse relationship was found to exist
between the ventilatory CO, sensitivity and the
irregularity of respiratory cycle time and tidal
volume (Bogaard et al., 1992). Such mechanisms
may explain irregularities such as those observed
in patient # 5, who exhibited irregular breathing
in both positions associated with low CO, sensi-
tivity. However, patient #8, with irregular
breathing in both positions had, a normal ventila-
tory CO, sensitivity response. Furthermore, we
did not observe any correspondence between the
value of Paco, and the irregularity of the breath-
ing pattern.

The irregularities associated with the supine
position may involve other mechanisms. Irregular
breathing was found in patients sitting or lying
undisturbed and it was not limited to periods of
drowsiness (Serisier et al., 1982). Although
drowsiness has often been reported in patients
with myotonia (Kilburn et al.,, 1959; Phemister
and Small, 1961; Coccagna et al., 1975), there is
no possible question that our patients did not
remain alert as they were instructed to keep their
eyes open during the whole of the recordings.
Thus, irregular breathing would not appear to be
linked to drowsiness. Furthermore, the variability
in breathing interval in patients with MD is only
significantly higher during wakefulness and light
sleep, than that in patients with nonmyotonic
muscle disease and in normal subjects, all three
groups showing similar variability during slow-
wave sleep (Gibson et al., 1992; Veale et al.,
1995).

Changes in posture involve the exertion of
forces which alter the operating length of the
respiratory muscles. In normal subjects there is
adjustment of respiratory muscle activation such
that any difference in respiratory characteristics
between seated and supine position is remedied by
the second breath following posture change. This
ventilatory compensation during postural change
is not obtained via vagal afferent information but
rather through respiratory muscle receptors (Kin-

near et al., 1989). In this study irregular TTOT
when supine occurs only after a few minutes
whereas VT exhibits higher variability from the
outset. One possible explanation could be that the
mechanism adjusting ventilation when changing
from seated to supine position does not operate as
rapidly as in healthy subjects, leading to ‘fluctua-
tions’ in VT. The accumulation of deficiencies in
this regulating mechanism may then be responsi-
ble of the occurrence of irregular breaths with
expiratory pauses. On this hypothesis, impairment
of the respiratory muscle receptors is assumed to
trigger irregular breathing. Indeed, abnormalities
in the muscle spindles of patients with MD are
well recognised (Swash and Fox, 1975) and evi-
dence of impaired afferent activity has been
demonstrated (Stranock and Newsom Davis,
1978). However, the weakness of the respiratory
muscle can not be ruled out as a factor in irregu-
lar breathing. Weakness of respiratory muscles in
patients with MD may be partly responsible for
limiting ventilatory performance (Bégin et al.,
1982) and for the pathogenesis of hypoventilation
(Kilburn et al., 1959; Bégin et al., 1997). A large
decrease in maximal mouth pressure in patients
with MD as compared to that in normal subjects
has been reported in several studies (Gillam et al.,
1964; Bégin et al, 1982; Serisier et al., 1982;
Bogaard et al., 1992). In addition, these studies
reported a more marked impairment of PE,,
than of Pi,,, consistent with the data in this
study. This reduction is probably the result of
weakness of the abdominal muscles which are the
major expiratory muscles (Serisier et al., 1982).
Myotonia of the respiratory muscles could result
in a decrease in compliance of the chest wall,
which may in turn increase the work of breathing
and threaten muscle fatigue resulting in a change
of tidal volume and respiratory frequency in order
to prevent this fatigue (Rimmer et al., 1993).
Respiratory muscle weakness in patients with MD
may induce abnormal motions of rib cage and
abdomen, similar to those observed in patients
with neuromuscular diseases (Perez et al., 1996),
these abnormalities being aggravated by the
change from seated to supine position. Unlike
Perez et al. (1996) we did not observed (Fig. 4)
asynchrony between RC and AB motions. Indeed,

12 P. Calabre.

the RC versus AB plots in both positions are
elliptic loops similar to those described by Ver-
schakelen and Demedts (1995) in healthy subjects
during quiet breathing.

The partition of VT into its thoracic and ab-
dominal volume displacement did not differ as
between patients with MD and control subjects,
either in the seated or supine position (Bégin
et al.,, 1982). A decrease of 74.4% in the RC/AB
ratio has been reported (Vellody et al., 1978)
from seated to supine position, mean values be-
ing 0.90 seated and 0.23 supine. In another study
(Sharp et al., 1975) an 82.7% decrease in the
RC/AB ratio from seated to supine was found
with however higher values of the RC/AB ratio
in both positions (2.08 in seated and 0.36
in supine). Our results indicated a fall from
0.78 £ 0.52 in the seated position to 0.31 +0.13
in the supine, i.e. a decrease of 60.3% when
changing from seated to supine position. Al-
though the values of the RC/AB ratio were in
the range of those already reported (Sharp et al.,
1975; Vellody et al., 1978), the percentage de-
crease appeared to be lower in patients with MD
than in healthy subjects. However, it should be
noticed (Fig. 4) that there is a great inter-individ-
ual difference in the values of the RC/AB ratio
in the supine and seated position as well as in
the percentage change in value between the posi-
tions (top left of plots). This would suggest that
rather than using a single value of RC/AB,
changes in this ratio monitored at regular time
intervals would provide the basis of more mean-
ingful data concerning respiratory muscle impair-
ment.

In conclusion, this study on the breathing pat-
tern of patients with MD corroborates previous
observations that deficiencies may exist in several
of the respiratory system mechanisms of these
patients. Analyses of resting breathing pattern
recorded by pneumotachography and inductance
plethysmography may provide supplementary in-
formation to that obtained from lung function
tests on the impaired ventilatory mechanism of
each patient. Furthermore, this study suggests
that it may be meaningful to compare seated and
supine breathing pattern prior to sleep studies in
these patients.
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1.2.2.2 Au cours de ['exercice imaginaire

L'augmentation de la ventilation et de la fréquence cardiaque au cours de
I'exercice imaginaire ont été décrites chez des athletes et des sédentaires avec des
résultats divergents quant & la nécessité d’avoir une pratique préalable de

I'exercice (Thornton et al, 2001 ; Wuyam et al, 1995). Pour vérifier cette hypothese,

nous avons enregistré la ventilation et I'électrocardiogramme (ECG) lors de
I'imagination d'une compétition d’aviron. Aprés un enregistrement de repos, les
sujets visionnent une course d’aviron d’environ 5 minutes. lls doivent ensuite fermer
les yeux, le film de la course démarre pour donner le départ de la course, le fim est
arrété et le sujet doit alors s'imaginer exécuter I'exercice. Quatre groupes de sujets
ont participé a I'étude : 1) 12 compétiteurs en aviron, 2) 12 sportifs (autre sport)

appariés en age, 3) 10 sédentaires appariés en age et 4) 12 seniors (50 a 60 ans).
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Figure 7 : Changement exprimé en pourcentage de la valeur de repos pour la fréquence cardiaque et
la ventilation minute (=Vr* fr, avec Vr: volume courant, fr : fréquence ventilatoire) lors du visionnage de
la course et durant I'imagination de celle-ci pour tous les sujets des 4 groupes : compétiteurs en aviron
(1), sportifs (2), sédentaire (3), seniors (4).

Les résultats (Figure 7) ont montré une augmentation significative de la ventilation
chez tous les sujets. La fréquence cardiaque était significativement augmentée chez
34 sujets répartis dans les 4 groupes. Trois compétiteurs en aviron ont augmenté
considérablement leurs données cardio-ventilatoires, a tel point que I'enregistrement

a d0 étre arrété en raison d’une baisse considérable de CO2 dans I'air expiré.

Ces résultats suggerent que la prafiqgue préalable de I'exercice n’est pas un
prérequis pour observer une augmentation des données cardio-ventilaroires au
cours de |'exercice imaginaire.
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Abstract Mentally imaged but unexecuted physical
activity has been reported to induce a cardiorespiratory
change. In order to test whether the previous experience
of the performed exercise was a prerequisite to observe
these changes, ventilation and heart rate were recorded
during mental imagination of a rowing race in four
groups of volunteers: 12 competitive rowers, 10 non-
rower athletes, 12 students (22-30 years old) and 12
senior subjects (50-60 years old). Recordings were per-
formed at rest, during the viewing of a rowing race and
during mental imagination of this race. Analysis of
variance revealed significant condition effect for all
cardiorespiratory variables. All subjects increased their
breathing rate (mean increase: 16 breathsmin™' in
rowers, § breaths'min~' in athletes, 8 breathsmin™" in
students, and 6 breathsmin~' in seniors), 29 decreased
their tidal volume (mean decrease: 100 ml in rowers,
102 ml in athletes, 120 ml in students and 26 ml in se-
niors), with an increase in the resulting ventilation in 38
subjects (mean increase: 14 'min~" in rowers, 3.6 l'min~"
in athletes, 2.8 I'min~" in students, 2.6 I'min~' in se-
niors). Heart rate was increased in 34 subjects (mean
increa: 12 beatsmin~' in rowers, 5 beatsmin~' in
athletes, 6 beatsmin~" i -l

in students and 5 beats'min”' in
seniors). The number of subjects who exhibited changes
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was evenly distributed among the four groups. However,
mean values of the changes were higher in rowers than in
the three other groups, mainly due to three rowers who
exhibited extremely large increases in cardioventilatory
variables. Analysis of variance showed no significant
group effect for heart rate and breathing rate. These
results suggest that rowing experience may not be nec-
essary for changes in heart rate and ventilation to be
elicited by mentally imagining a rowing race.

Keywords Breathing pattern - Heart rate - Humans -
Imagining exercise - Viewing exercise

Introduction

Mentally imaged but unexecuted physical activity has
been reported to induce a cardiorespiratory response
proportional to the amount of simulated exertion
(Decety et al. 1991). This response did not appear to be
due to peripheral factors since muscular metabolism

measured by NMR analysis — remained unchanged
(Decety 1993). The hypothesis implicating voluntary
control was ruled out (Decety et al. 1993) since auto-
nomic effectors escape voluntary control and also a
voluntary increase in ventilation proportional to the
amount of simulated exercise seems unlikely. In addi-
tion, the ventilatory increase appeared to be specific to
mentally imaged exercise, as Wuyam et al. (1995) re-
ported that this increase was significantly greater than
the response to a control task that consisted of imagin-
ing letters. More recently, Thornton et al. (2001) ob-
served an increase in ventilation under hypnosis during
imagination of cycling uphill and no change when
imagining freewheeling downhill. However, these car-
diorespiratory changes in response to imagined exercise
were not observed in every subject. Decety et al. (1993)
selected non-sedentary subjects on their ability for
mental imagery. Wuyam et al. (1995) reported in athletes
only cardiorespiratory changes in response to imagina-
tion of previously performed treadmill exercise despite

the fact that there was no significant difference between
the athlete and non-athlete groups in the subjective
assessment of imagery ability. However, Thornton et al.
(2001) reported that a cardiorespiratory response to
imagined cycling uphill in healthy untrained experi-
mentally naive subjects is only observed under hypnosis
which, by isolating subjects from the environment, al-
lows a more focused imagination than is possible when
awake (Coe et al. 1980; Morgan et al. 1973). In contrast
with the findings of Decety et al. (1991) and Wuyam
et al. (1995), the observations of Thornton et al. (2001)
suggest that the cardioventilatory response to imagined
exercise is independent of the nature or extent of the
subjects’ previous experience with regards to exercise
and may be observed in any subject providing that
optimal conditions for imagining, such as a state of
hypnosis, exist.

The aim of this study was to examine the hypothesis
that cardiorespiratory response to mentally imaged
exercise is related to previous experience of this exercise.
The exercise to be imagined was rowing, in which a
particular rhythmical pattern of breathing — necessarily
coupled to stroke rate — is adopted by the rowers. If the
cardioventilatory response to imagined exercise reflects a
learned response to exercise, it is reasonable to expect
greater responses in experienced rowers due to a “mem-
ory” of the cardioventilatory response to actual rowing.
The subjects were (1) competitive rowers, (2) non-rower
athletes, (3) sedentary students (aged 22-30 years) and
(4) sedentary senior subjects (aged 50-60 years). The
seniors formed a separate group as a detrimental effect of
age on the generation of mental images (Briggs et al.
1999; Bruyer and Scailquin 2000; Raz et al. 1999) has
been reported. Only the competitive rowers had had the
experience of the exercise to be mentally imaged and the
other subjects” knowledge of rowing only that
obtained from watching a video of a race.

Methods
Subjects

Forty-six healthy naive subjects participated in the study.
Their characteristics are given in Table I. Subjects fell into
four groups: (1) 12 rowers — with experience of national
level competition over several years — training for an average of
14.3 h per week; (2) 10 physical education students — the athlete
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group — practising mostly team sports for an average of 10.3 h
per week; (3) 12 post-graduate students with no specific physi-
cal training and practising on average less than 4 h of sport per
and, finally, (4) 12 subjects aged 50-60 years, the senior
group, exercising an average of 3.1 h per week. The experimental
protocol was examined and approved by the Institutional
Ethics Review Board. Before giving their written consent, the
subjects were informed of the protocol and the overall nature
of the experiments but they were unaware of the aim of
the study.

Experimental protocol

Prior to installing the subject, the recording sequences were ex-
plained: (1) after a recording at rest with eyes closed. (2) a video of
a rowing race would be shown and then (3) the subject would be
asked to close his (her) eyes and to imagine him (her) self as an
arsman or oarswoman performing a rowing race.

Subjects were comfortably seated and wore a facemask on
which was mounted a flow meter (Fleisch head No.l) connected
to a differential pressure transducer (163PC01D36, Micro
Switch). Prior to initiating recording, leaks from around the
mask were checked for using an infrared CO, analyzer (Eng-
strom Eliza/Eliza MC). End tidal CO, (FETco,) was measured
continuously using the same apparatus and an electrocardio-
graphic trace (EKG) was obtained during the entire recording
period.

The first recording, at rest with eyes closed, lasted 5-10 min
and the second recording, performed while the subjects were
watching the video, lasted 6 min (the condition viewing is missing
for one subject in the Athlete group). The videotape was then
rewound and immediately restarted so that the subjects heard the
preparation for and the start of the race but with their eyes
closed. The subjects were instructed to start their imagined race
at the moment they heard the starting whistle. The video was
stopped immediately after the start of the race to allow the
subjects to imagine the exercise with minimum distraction
throughout the recording. The video was of an Olympic 2000-m
rowing race with four rowers without coxswain. Male subjects
watched a men’s rowing race while female subjects watched a
women’s rowing race. Over the first 30 s of the race, athletes
rowed at their highest rowing frequency (approximately
49 strokes per minute for men, 44 for women) after which this
frequency fell to a minimum in the middle of the race (37 strokes
per minute for men, 33 for women) and then rose towards the
end of the race (42 strokes per minute for men, 40 for women).
The mean rowing frequency for the race was 41 strokes per
minute for men and 38 for women.

The third recording lasted 6 min, i.c., the duration of the rac
However, the experiment was stopped in those cases where imag-
ining exercise induced hyperventilation leading to a fall in FETCO,
value below 3.5%.

At the end of the recordings all the subjects reported an attempt
to imagine a rowing race, even though some subjects said that they
had difficulty because they had never done any rowing.

Table 1 Characteristics of the subjects and weekly physical activity for cach group. The number of women is given in parentheses; values
for age and exercise are expressed as the mean +SD for all the subjects in each group

Group Number of subjects  Age (years) Weight (kg) Height (m) Exercise (hours per week)
Mean  SD  Mean  SD Mean  SD Mean SD
Rowers 12 (4F) 238 41 709 7.5 1.80 008 1425 3.67
Athletes 10 (1IF) 22 52 724 7.9 1.79 006 10.33 3.08
Students 12 (4F) 26.5 42 720 120 175 009 192 219
Seniors 12 8F) 543 30 728 134 166 009 3.09 522
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Data analysis
Breathing pattern was analyzed breath-by-breath and rate, tidal

volume and minute ventilation were calculated for each breath.
Beat-by-beat heart rate w lcul:

s d from the R-R interval of the
electrocardiographic trace. Mean values and SD were calculated
for each recording and for each group in each condition.

Analyses of variance (ANOVA) with repeated measures were
used to analyze cardiorespiratory variables of the four groups of
subjects at the three conditions: resting, viewing and imagining.
When overall differences were observed, Bonferroni-Dunn’s mul-
tiple comparison procedure was used to study pairwise differences
between groups and between conditions. In addition, for each
subject, variables were compared between imagining and resting
conditions and also between viewing and resting, using r-test. Sig-
nificance was set at p<0.05 for all tests.

Results

Changes in heart rate while watching the video
and imagining the race

Analysis of variance (ANOVA) carried out on heart rate
data in the four groups of subjects in three conditions
revealed no group effect (p=0.261) but a significant
condition effect (p<0.001). The Bonferroni-Dunn tests
showed a significant difference between all pair wise
conditions. In Table 2 are reported the mean values and
SD of the heart rate in the three conditions for each
group. Student r-tests were performed on individual
data: 35 subjects increased their heart rate significantly
during watching the video and 34 while imagining. The
number of subjects in each group who increased their
heart rate significantly as compared to rest is evenly
distributed among the four groups.

Changes in ventilatory variables while watching
the video and imagining the race

Changes in breathing pattern induced by viewing or by
imagining are observed as soon as the first breath

Table 2 Mean values (SD) of heart rate for each group at rest,
while watching the video and while imagining the rowing race. The
figures in italic represent the number of subjects in each group who
increased their heart rate significantly as compared to rest using
paired r-tests (p <0.05)

Group (number) Rest Heart rate (min™')
Viewing Imagination

Rowers 67.8 (9.6) 729 (9.9) 79.8 (18.0)
12 10 9

Athletes 700 (15.1) 709 (9.4) 74.8 (12.5)
10 5 7

Students 77.3(133) 790 (10.2)  83.6 (13.2)
12 7 9

Seniors 74.1(140) 758 (115 771 (1L1)
12 10 9

Mean T18(127) 749 (104) 786 (13.8)
46 35t 34

Viewing was analyzed in nine athletes only

following the start of the video or of the race. This is
illustrated in Fig. 1 where tidal volume, breathing rate,
and FETCO; at rest, during viewing and during imag-
ining are represented breath-by-breath for one subject.
During the viewing, the decrease in tidal volume was
associated with an increase in breathing rate resulting in
a mild hyperventilation, as evidenced by a decrease in
FETCO; from 5.5 to 5.2%. At the start of the video
(dotted line), ventilatory variables were at the same level
as at rest and hearing the preparatory instructions for
the race initiated changes in breathing pattern. In this
subject, during imagination, the slight decrease in tidal
volume did not compensate for the large increase in
breathing rate resulting in a decrease in FETCO, down
to 3.5%. Similar changes in breathing rate and tidal
volume are observed in all subjects, the decrease in
FETCO; depending on the amount of hyperventilation.
ANOVA carried out on breathing rate revealed no
group effect (p=0.534) and a significant condition effect
(p<0.001). The Bonferroni-Dunn test showed a sig-
nificant difference between all pairwise conditions. For
the tidal volume there was a significant group effect
(p<0.001) as well as a significant condition effect
(p=0.001). The Bonferroni-Dunn test showed a signifi-
cant difference between the rowers and the students,
between the rowers and the seniors and between the
athletes and the seniors. As to the conditions, there was
a significant increase between resting and viewing as well
as between resting and imagining. ANOVA results on
minute ventilation showed a significant group effect
(p<0.001) and also a condition effect (»p<0.001). Bon-
ferroni-Dunn test revealed significant differences be-
tween the rowers and the students and also between the
rowers and the seniors. As to the conditions, a sig-
nificant difference was observed between resting and
imagining on one hand and between viewing and ima-
gining on the other hand.

In Table 3 are reported mean values and SD of
breathing rate, tidal volume and minute ventilation in
the three conditions for each group. Student’s r-tests
were performed to compare individual data between
resting and viewing and also between resting and
imagining. The figures in italic represent the number of
subjects in each group exhibiting significant changes as
compared to rest for each variable. Altogether, during
viewing as compared to rest, 40 subjects increased their
breathing rate significantly, 29 decreased their tidal
volume resulting in an increase in ventilation in 38
subjects. During imagination, 45 subjects increased sig-
nificantly their breathing rate, 32 subjects decreased
their tidal volume resulting in an increase in ventilation
in 38 subjects.

These results are summarized in Fig. 2 where the
percentage of changes in cardioventilatory variables in-
duced by viewing and by imagining are represented for
all the subjects of the four groups. In nearly all subjects,
breathing rate and minute ventilation were increased
during these two conditions. A particularly large in-
crease was observed in three rowers during imagination
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which resulted in a large increase in minute ventilation.
Tidal volume decreased in most subjects during viewing
as well as during imagining condition, whereas, in most
cases, an increase in heart rate was observed in both
conditions.

Discussion

The main finding of the present study was that imagin-
ing a rowing race induced significant changes in car-
diorespiratory variables in almost all subjects. The
number of subjects who exhibited changes was evenly
distributed among the four groups. Analysis of variance
with repeated measures on the three conditions (resting,
viewing and imagining) and the four groups (rowers,
athletes, students and seniors) revealed a significant

increase in heart rate, breathing rate and minute venti-
lation and a decrease in tidal volume.

None of the subjects was aware of the aim of the
experiment and the protocol was explained to them on
the day of the experiment, just before the recording at
rest. Their ability to perform mental imagery had not
been previously tested, in contrast to the other studies
(Decety et al. 1993; Wuyam et al. 1995), and, thus,
selection was not made on this criterion. Rowing is not
an exercise requiring mental imagery of the movements
as in downbhill skiing or high-diving. Therefore, one can
assume that there were a comparable number of subjects
with high or low ability to perform mental imagery in
each group. Only rowers had practised rowing, they had
had experience of rowing races and performed a mini-
mum of 10 h of training per week. They had never been
coached in mental imagery before.

Table 3 Mean values (SD) of ventilatory variables for cach group at rest, while watching the video and while imagining the rowing race.
The figures in ifalic represent the number of subjects in cach group who increased their heart rate significantly as compared to rest using

paired r-tests (p <0.05)

Group (number) ~ Breathing rate (min~")

Tidal volume (ml)

Minute ventilation (I'min™")

Rest Viewing  Imagination Rest Viewing  Imagination Rest Viewing  Imagination
Rowers 109(32) 163(35) 269 (11.2)  918(226) 739 (163) 814 (388)  9.5(1.8) 11.7(21) 235(184)
2 1 2 8 9 2 11

Athletes 14327 17228) 222(56)  766(129) 656 (91) 664 (190) 108 (2.1) 11.2(15) 144 (4.3)
10 6 9 Sa 7 Sa 7

Students 118 (34) 161(36) 203(72)  684(260) 542(117) 569 (248) 7.3 (14) 83 (L) 111 (45)
2 11 2 9 9 10 10

Seniors 143 (2.1) 173 (Q24) 206 (34)  494(93)  465(92) 468 (147)  69(0.8) T9(L)  9.5(2.3)

2 12 2 7 7 11 10

Mean 127(33) 167(32) 225@80) 713250

46 4

597 (164) 627 (296) 8.5(22) 9.7(2.3) 14.6 (11.5)
32 38

29" 38

“Viewing was analyzed in nine athletes only
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Athletes were selected for their physical training in
sports other than rowing, not requiring mental imagery
of a specific movement, and they also had competition
experience. The two groups of sedentary subjects
formed the control group, they had no experience of
rowing and, although some of them had regular
physical activity, they had not taken part in competi-
tion. None of them was a rowing enthusiast. Thus, the
knowledge of rowing of these three groups of subjects
was only that drawn from watching the video of the
race. In that respect, subjects were asked to perform
the imagination task in the first person — internal
perspective. Indeed, Wang and Morgan (1992) re-
ported that internal imagery resulted in an increase in
ventilation and that the perceptual responses to inter-
nal imagery resemble actual exercise more than exter-
nal imagery.

No cues were given to them during the imagination
period because an “‘entraining” effect of a rhythmic
sound cannot be ruled out (Haas et al. 1986). This differs
from the studies of Decety et al. (1993) who “played
back to them through the earphones the noise of the
ergometer, which had been taped during their own
condition of actual leg exercise” and Wuyam et al.
(1995) who exposed the subjects “to similar treadmill
vibrations and sounds as during actual treadmill exer-
cise”. In our protocol, external stimulations were mini-
mized to help subjects concentrate on imagining the
race. In this, our protocol addresses the concern of
Thornton et al. (2001), who hypnotized their untrained
subjects in order to isolate them from the environment.
Indeed, hypnosis allows a more focused imagination
than is possible when awake (Coe et al. 1980; Morgan

et al. 1973) and has been reported to enhance imagery
intensity and effectiveness in athletes (Ligett 2000).

The increase in ventilation observed in rowers was on
an average lower than that observed by Decety et al.
(1993) in non-sedentary subjects and slightly higher than
the increase obtained by Wuyam et al. (1995) in highly
trained athletes. We found an increase in breathing rate
in the athletes of the same magnitude as in the two
groups of sedentary subjects, all 24 of whom showed a
significant increase in breathing rate, and 18 of the 24
likewise in heart rate. Others have not observed such
responses in sedentary subjects, except Thornton et al.
(2001) and this under hypnosis only.

The time course of the increase in ventilation during
imagination observed in this study was also different
from that reported by Decety et al. (1993) and Thornton
et al. (2001). Indeed, these authors observed a progres-
sive increase in the ventilatory variables, whereas, as
shown in Fig. I, we observed the maximal values of
heart rate and tidal volume within the five breaths fol-
lowing the start of the race and this was maintained
throughout the recording.

Differences in the design of the study may account for
these discrepancies, in particular (1) rowing as the
exercise to be mentally imaged and (2) viewing prior to
imagining the race. Several features of rowing are worth
mentioning. First, the specificity of locomotor pattern:
during rowing, the arms do not move contra laterally
with the legs but are forced through an unnatural mo-
tion in synchrony with the legs. In addition, thoracic and
abdominal muscles are involved both in breathing and in
propulsive force generation, so that the period of the
breath and the stroke are linked (Steinacker et al. 1993).

In addition, the majority of rowers exhibit entrainment
of breathing at a frequency of a multiple of the stroke
frequency (Mahler et al. 1991, 1994). The hypothesis
that entrainment of breathing improves the effectiveness
of rowing has even been examined (Maclennan et al.
1991; Steinacker et al. 1993). Szal and Schoene (1989)
found that rowing causes hyperventilation with higher
breathing rate and lower tidal volume than cycling.
These results were observed in both oarswomen and age-
matched untrained non-rower women. This suggests
that the particular breathing pattern observed during
rowing is not a result of training but is inherent to this
specific activity. Lastly, rowing is a strenuous exercise
with a high level of energy expenditure involving leg,
arm and back muscles (Secher 1993). The rowing
ergometer shows an oxygen uptake for a given workload
higher than on the bicycle ergometer, for both the
oarsmen and the control subjects (Bouckaert et al. 1983;
Hagerman 1984). Thus, the viewing of the rowing race
may evoke a strenuous exercise with a rhythmic com-
ponent. Therefore, the observed increase in heart rate
and ventilation may result from the perception of high
energy-expenditure action with a rhythmic component.
The importance of a rhythmic component has been
suggested by Wuyam et al. (1995).

In the present protocol, viewing was simply used to
suggest the exercise to be mentally imaged. Although
Fig. 1 shows that before the beginning of the imagina-
tion period, ventilation returned to its resting level, and
that viewing in itself induced appreciable changes in
heart rate and ventilation. Furthermore, these changes
were, albeit to a lesser degree, in the same direction as
during imagination, as can be seen in Fig. 1. Baldaro
et al. (1990) reported an increase in cardiac and respi-
ratory rates during the viewing of film sequences,
whatever their content, emotional or otherwise. An in-
crease in breathing rate during observation of strenuous
actions such as weightlifting or walking/running on a
treadmill was observed by Paccalin and Jeannerod
(2000). The magnitude of increase was similar to that
observed in our study. They also found that the respi-
ratory rhythm increased linearly with the speed of the
treadmill. They conclude that this latter finding dem-
onstrates activation, during the observation of strenuous
actions, of central mechanisms related to action per-
formance. Similar conclusions have also been drawn
from animal experiments where, in monkeys, neurons in
the ventral premotor cortex exhibit similar responses at
the sight of a given action as at the execution of the same
action (Gallese et al. 1996). In human subjects, Fadiga
et al. (1995) observed an increase in the motor-evoked
potentials from hand muscles during the observation of
movements. The pattern of these motor-evoked poten-
tials reflected the pattern of muscle activity recorded
when the subject executed the observed action. These
results suggest the existence of an observation/execution
matching system.

The amount of changes in all variables was less
during viewing than imagining. This may be related to
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the observation of Grafton et al. (1996) who used PET
scanning analysis to compare the observation and
imagination of grasping. They found that the site in the
supplementary motor area activated during observation,
whilst almost coinciding with that during imagination,
had a much weaker intensity of activation and extent.
Thus the possibility that subjects “responded™ to the
imagination of the race because of their prior viewing
cannot be excluded.

The results of the current study were not in agreement
with the assumption that only competitive rowers — and
possibly, to a lesser extent, athletes — would increase
their ventilation and cardiac rate during the mental
imagery of a rowing race. The cardioventilatory vari-
ables changed similarly in all subjects except for the case
of three rowers who exhibited much higher increases
than the others. These three rowers were among those
who had several years of experience at competitive level
but other rowers with a lesser increase had similar
competition experience. Nevertheless, their cardiorespi-
ratory changes during imagination suggest that they
mentally performed the race. The amount of increase is
similar to that observed by Decety et al. (1993). These
three rowers may represent the population that we ex-
pected to test for: they had the “memory” of a race and
so were able to “relive” the race. For all other subjects,
the observations should relate to imagination of an ac-
tion perceived immediately before. This may explain the
fact that, despite a great variability of the changes
among the subjects, the amount of changes, at least for
the breathing rate and the heart rate, is similar among
the four groups. Even if the immediate increase in ven-
tilation may be due to the neurogenic mechanism of
anticipation (Krogh and Lindhard 1913), this mecha-
nism cannot be responsible for the fact that ventilation
remains at this level during the whole 5 min of the race.
This suggests that because the imagination related to
exercise, it was associated in the minds of the subjects
with an increase in breathing rate, ventilation and heart
rate. Whether mental imagination of an exercise could
improve exercise performance needs further investiga-
tion.

Acknowledgement We are grateful to Alain Waché, coach of the
Rowing club of Grenoble, for his help in the completion of this
study.

References

Baldaro B, Battacchi MW, Trombini G, Polomba D, Stegagno L
(1990) Effects of an emotional negative stimulus on the cardiac,
electrogastrographic, and respiratory responses. Percept Mot
Skills 71:647-655

Bouckaert J, Pannier JL, Vrijens J (1983) Cardiorespiratory re-
sponse to bicycle and rowing ergometer exercise in oarsmen.
Eur J Appl Physiol 51:51-59

Briggs SD, Raz N, Marks W (1999) Age-related deficits in gener-
ation and manipulation of mental images: I. The role of
sensorimotor speed and working memory. Psychol Aging
14:427-435

32



166

Bruyer R, Scailquin JC (2000). Effects of aging on the generation of
mental images. Exp Aging Res 26:337-351

Coe W, St Jean R, Burger J (1980) Hypnosis and the enhancement
of visual imagery. Int J Clin Exp Hypn 28:225-243

Decety J, Jeannerod M, Germain M, Pastene J (1991) Vegetative
response during imagined movement is proportional to mental
effort. Behav Brain Res 42:1-5

Decety J, Jeannerod M, Durozard D, Baverel G (1993) Central
activation of autonomic effectors during mental simulation of
motor actions in man. J Physiol (Lond) 461:549-563

Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facili-
tation during action observation: a magnetic stimulation study.
J Neurophysiol 73:2608-2611

Gallese V. Fadiga L, Fogassi L, Rizzolatti G (1996) Action rec-
ognition in the premotor cortex. Brain 119:593-609

Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization
of grasp representations in humans by positron emission
tomography. 2. Observation compared with imagination. Exp
Brain Res 112:103-111

Haas F, Distenfeld S, Axen K (1986) Effects of perceived musical
thythm on respiratory pattern. J Appl Physiol 61:1185-1191

Hagerman FC (1984) Applied physiology of rowing. Sports Med

:303-326

Krogh A, Lindhard J (1913) The regulation of respiration and
circulation during the initial stages of muscular work. J Physiol
(Lond) 47:112-136

Ligett DR (2000) Enhancing imagery through hypnosis: a perfor-
mance aid for athletes. Am J Clin Hypn 43:149-157

Maclennan SE, Silvestri GA, Ward J, Mahler DA (1991) Does
entrained breathing improve the economy of rowing. Med Sci
Sports Exerc 26:186-192

Mahler DA, Hunter B, Lentine T, Ward J (1991) Locomotor-
respiratory coupling develops in novice female rowers with
training. Med Sci Sports Exerc 23:1362-1366

Mahler DA, Shuhart CR, Brew E, Stukel TA (1994) Ventilatory
responses and entrainment of breathing during rowing. Med Sci
Sports Exerc 23:610-614

Morgan WP, Raven PB, Drinkwater BL, Horvarth SM (1973)
Perceptual and metabolic responsivity to standard bicycle erg-
ometry following various hypnotic suggestions. Int J Clin Exp
Hypn 21:86-101

Paccalin C, Jeannerod M (2000) Changes in breathing observation
of effortful actions. Brain Res 862:194-200

Raz N, Briggs SD, Marks W, Acker JD (1999) Age-related deficits
in generation and manipulation of mental images : II. The role
of dorsolateral prefontal cortex. Psychol Aging 14:436-444

Secher NH (1993) Physiological and biomechanical aspects of
rowing. Implications for training. Sports Med 15:24-42

Steinacker JM, Both M, Whipp BJ (1993) Pulmonary mechanics
and entrainment of respiration and stroke rate during rowing.
Int J Sports Med 14:S15-S19

Szal SE. Schoene RB (1989) Ventilatory response to rowing and
cycling in elite oarswomen. J Appl Physiol 67:264-269

Thornton JM, Guz A, Murphy K, Griffith AR, Pedersen DL,
Kardos A, Leff A, Adams L, Casadei B, Paterson DJ (2001)
Identification of higher brain centres that may encode the car-
diorespiratory response to exercise in humans. J Physiol (Lond)
533:823-836

Wang Y, Morgan WP (1992) The effect of imagery perspectives on
the psychophysiological responses to imagined exercise. Behav
Brain Res 52:167-174

Wuyam B, Moosavi SH, Decety J, Adams L, Lansing RW, Guz A
(1995) Imagination of dynamic exercise produced ventilatory
responses which more apparent in competitive sportsmen. J
Physiol (Lond) 482:713-724

33



I1.2.3 La “personnalité ventilatoire”

11.2.3.1 Au cours de I'hyperventilation

Dans le cadre d'un fravail en collaboration avec ['Universite de Chisinau
(République de Moldavie) de la direction d'une these en coftutelle, nous avons
étudié les modes ventilatoires et la personnalité ventilatoire chez les sujets sains
(enregistrements réalises a Grenoble) et chez les patients souffrant de trouble
panique (enregistrements réalisés a Chisinau) dont un des symptémes est
I'nyperventilation volontaire. L'objectif du travail effectué chez les sujets sains a été
d'étudier les caractéristiques ventilatoires et rechercher la persistance de la
personnalité ventilatoire au cours de I'hyperventilation volontaire. Nous avons
enregistré la ventilation chez 18 sujets sains dans différentes conditions : au cours
d’'une ventilation spontanée (SPi) puis d'une hyperventilation volontaire a la
fréquence de la ventilation spontanée (HVse) d'une part, et au cours d'une
ventilation spontanée (SP2) puis d’'une hyperventilation volontaire a une fréquence
ventilatoire de 20 cycles /min (HV2) d'autre part. La Figure 8 illustre pour un sujet les
caracteéristiques ventilatoires moyennes (Ti, Te, V1 et fr) dans ces différentes conditions
ainsi que la quantification et la représentation du débit ventilatoire moyen (analyse
harmonique cycle par cycle). La forme des débits semble similaire entre les deux

conditions de repos et entre les deux conditions d’hyperventilation.

250 ml SP1 SP2
1 sec 4
T TE T TE
VT=530ml fR=15.2 min"’ VT=470ml fR=15.3 min’!
HVspP HV20
T TE
i T TE |
VT=1090ml fR=13.8 min’ VT=810ml fR=19.8 min’

Figure 8 : Pour un sujet représentation des caractéristiques ventilatoires moyennes : volume courant (V7),
les durées inspiratoire et expiratoire (T, Te), la représentation de Fresnel des 4 premieres harmoniques
obtenues d'une analyse cycle par cycle ventilatoire (débit) et le débit reconstitué correspondant, au
cours de la ventilation spontanée (SP1 et SP2), d’une hyperventilation volontaire & la fréquence de la
ventilation spontanée (HVse) et a 20/min (HV20). Les valeurs moyennes de Vi, et de la fréquence
ventilatoire (fr) sont données pour chaque condition.
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Le test de similarité appliqué a ces données a montré une similarité des formes des

cycles ventilatoires entre HVsp et HV2o.

Nos résultats montrent [I'existence d'une individualité ventilatoire lors de
I'hyperventilation volontaire chez les volontaires sains, quel que soit le mode de
I'hyperventilation. Ceci suggere que la personnalité ventilatoire est une proprieté

inhérente a la fonction ventilatoire.

Besleaga et al (2016) Individuality of breathing during volitional moderate hyperventilation.
Eur J Appl Physiol

Directeur de thése de Tudor Besleaga (dérogation de I'EDISCE, UJF) en cotutelle avec
I'Université d’ Etat de Médecine “Nicolae Testemitanu” , Département de physiologie
humaine et biophysiques (Chisinau, République de Moldavie): “Effets ventilatoire et
cardiaque de I'hyperventilation volontaire- Efude chez les volontaires sains et les patients
souffrant de froubles paniques”, soutenue le 19 octobre 2011 & Grenoble.
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Abstract
Purpose The aim of this study is to investigate the individ-

(5.06 + 0.54 %) and SP, (5.00 + 0.51 %), and HVp
(4.07 £ 0.51 %) and HV, (3.88 % 042 %). Only Ty/Tyop

uality of airflow shapes during volitional hyper il
Methods  Ventilation was recorded on 18 healthy sub-
jects following two protocols: (1) spontaneous breath-
ing (SP,) followed by a volitional hyperventilation at
each subject’s spontaneous (HVgp) breathing rate, (2)
spontaneous breathing (SP,) followed by hyperventila-
tion at 20/min (HV,g). HVgp and HV,, were performed
at the same level of hypocapnia: end tidal CO, (F;CO,)
was maintained at 1 % below the spontaneous level. At
each breath, the tidal volume (Vy), the breath (Tyqy), the
inspiratory (T;) and expiratory durations, the minute ven-
tilation, V/T;, Ty/Tor and the airflow shape were quan-
tified by harmonic analysis. Under different conditions
of breathing, we test if the airflow profiles of the same
individual are more similar than airflow profiles between
individuals.

Results  Minute ventilation was not signifi-
cantly different between SP; (6.71 + 1.64 _.55\;
and SP, (6.57 + 1.31 I'min~') nor between HVg,
(15.88 £ 4.92 I-min™") and HV,, (15.87 £ 4.16 l-min~").
Similar results were obtained for FgCO, between SP,
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I d in all four conditions. Airflow shapes
were similar when comparing SP;-SP,, HVgp-HV,,, and
SP,-HV; but not similar when comparing SP,-HV .
Conclusions These results suggest the existence of an
individuality of airflow shape during volitional hyperven-
tilation. We conclude that volitional ventilation alike auto-
matic breathing follows inherent properties of the ventila-
tory system.

Registered by Pascale Calabrese on ClinicalTrials.gov, #
NCT01881945.

Keywords Breathing pattern - Individuality - Volitional
hyperventilation - Healthy subjects

Abbreviations

Fg;CO, End tidal CO,

HVgp Voluntary hyperventilation at the sponta-
neous breathing rate

HV,, Voluntary hyperventilation at a breathing
rate of 20/min

SP, Spontaneous breathing of protocol 1

SP, Spontaneous breathing of protocol 2

T, Inspiratory breath duration

Tg Expiratory breath duration

Tror Breath duration (T} + Tg)

Vo Tidal volume

V1 x 60/Tyop  Minute ventilation

Introduction

The individuality of breathing pattern has been assessed
over time in healthy adults from breath-by-breath analysis
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of airflow shape (Benchetrit et al. 1989). This individual-
ity was maintained during hypoxia (Eisele et al. 1992) and
added resistive load (Calabrese et al. 1998). These results
suggested that the individuality of breathing pattern is an
inherent property of the respiratory system. A study testing
the existence of a genetic component in the determination
of the individuality of breathing was carried out on iden-
tical twins and showed significant similarities within twin
pairs (Shea et al. 1989). However, the resting airflow shape
appears to be preserved over a certain increase in ventila-
tion beyond which it is modified for example during exer-
cise (at 50 % of maximal O, consumption) (Eisele et al.
1992). This phenomenon is also observed when ventilation
decreases when adding high levels of resistive load (Cala-
brese et al. 1998).

These findings suggest that the individual breathing pat-
tern represents the shape of the respiratory pattern genera-
tor output for each subject with limited changes in ventila-
tion around spontaneous breathing.

The aim of this study is to investigate the individuality
of airflow profiles during volitional breathing. Volitional
breathing, i.e. decision of taking a breath, voluntarily
inspire and expire exists in human subjects and is not a reg-
ular way of breathing. If the individuality still exists in this
condition, this would suggest that individuality is inherent
to the respiratory system.

In a recent viewpoint Haouzi (2011) came to the con-
clusion that although the structures controlling breathing
during volitional and spontaneous breathing are different,
they both lead to the same outcome: eupneic breathing.
In humans, volitional breathing suppresses the underly-
ing automatic breathing and how this is achieved is still
under debate. Volitional breathing rhythm may be initiated
(at least partially) by cortical inputs relaying into medul-
lary structures (McKay et al. 2003) or may bypass these
structures and be triggered by acting on the phrenic motor
nucleus (Corfield et al. 1998).

‘Whatever the interaction between cortical and medullary
structures, the rhythm generated during volitional breathing
can be considered as arising from a distinct pattern genera-
tor network (McKay et al. 2003). Besides, recent in vivo
and in vitro studies suggest that respiratory rhythm genera-
tion may arise from multiple distinct networks whose out-
puts are similar (Mellen 2010).

Comparing the shape of individual breathing pattern
during volitional and spontaneous breathing may bring
insight on the differences or similarities of patterns gen-
erated by two different networks and consequently on the
determinants of the individuality of breathing pattern.

For this purpose, spontaneous and volitional breathing
was recorded in 18 healthy subjects. The volitional breath-
ing was ascertained by inducing a moderate level of hyper-
ventilation at (1) spontaneous breathing rate, and (2) a

4\ Springer

breathing rate of 20/min. The airflow shape was quantified
breath by breath and comparisons were performed between
spontaneous and volitional hyperventilation.

Materials and methods
Subjects

Eighteen healthy volunteers recruited from the univer-
sity staff, ten men and eight women (mean + SD height:
171.1 £ 8.5 cm; weight: 69.9 £ 12.0 kg) between 21 and
65 years of age (mean 34.0 £ 13.4 years) participated in the
study. After a description of the experimental design and
protocol, each subject signed an informed consent form.
The experimental protocol was examined and approved by
the Institutional Ethics Review Board of the CHU Greno-
ble, and the study was registered on ClinicalTrials.gov (#
NCTO01881945).

Experimental protocol

Volunteers were comfortably laid in semi-supine posi-
tion—comfortable position—in a quiet room and were
asked to relax and to breathe freely. They wore a facemask
equipped with a flowmeter (Fleish head No. 1) and a differ-
ential pressure transducer (163PC01D36, Micro Switch).
Prior to recordings, leaks around the mask were checked
for with an infrared CO, analyzer (Engstrom Eliza/Eliza
MC). End tidal CO, (Fg;CO,) was subsequently measured
continuously using the same apparatus providing breath-
by-breath FiCO, (Fig. 1). Volunteers were asked to keep
their eyes open during the whole recording period.

The infrared CO, analyzer displays the mean value of
the breathing rate and FgCO, measured over a period of
30 s. The mean breathing rate and FCO, at rest were cal-
culated and used for the voluntary hyperventilation periods
of both protocols.

Volunteers followed protocols 1 and 2. During protocol
1, spontaneous breathing (SP;) was recorded during 3 min
followed by 3 min of hyperventilation HVp at the sponta-
neous breathing rate, but with a larger volume. During the
complete voluntary hyperventilation process, the subject
was guided to change the tidal volume to maintain FpCO,
1 % below the spontaneous level and to have a stable and
consistent hypocapnia.

In protocol 2, the 3-min spontaneous breathing (SP,)
was followed by 3 min of hyperventilation at a breathing
rate of 20/min (HV,y) and again, the subject was guided
to change the tidal volume to achieve a 1 % decrease in
FgCO,.

In both protocols, the breathing rate was imposed by an
auditory cue indicating the beginning of inspiration.
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11/sec
Fleish head - I

Infrared analyzer

E_,
e sP1
Position

Fig. 1 Experimental device and data recordings. Healthy subjects
were in semi-supine position. Airflow (measured by a flowmeter-
Fleish head No. 1 mounted on a facemask) and the fraction of CO,
(measured by an infrared CO, analyzer) were recorded during two

A minimum of 10 min separated the two protocols, to let
the subject recover its initial level of ventilation. Prelimi-
nary tests showed a full recovery after 5 min.

Analysis

A breath-by-breath analysis was performed over the whole
period for each recording (SP;, HVp, SP,, and HV,). The
breaths, which included swallowing or a sigh were dis-
carded from the analysis.

The shape of the airflow was quantified for each remain-
ing breath using harmonic analysis applying normalized Fast
Fourier Transform to airflow signal to take account of vari-
ation in breath duration. This method has been previously
described (Bachy et al. 1986) and it was demonstrated that the
first four harmonics contain at least 95 % of the power of the
original signal. Each harmonic is characterized by a phase and
an amplitude, which can be represented by a vector (Fresnel
representation). The shape of the airflow was quantified by the
eight cartesian coordinates of these four vectors. In addition
to the normalization in breath duration (harmonic analysis),
a normalization in the amplitude was performed by dividing
each of the 8 coordinates by the square root of the sum of the
square of all 8 coordinates. The mean value of each coordinate
was then calculated for all breaths at each recording, provid-
ing a mean flow shape. In addition, an airflow profile can be
reconstructed from the mean 8 coordinates.

Figure 2 shows the ventilatory characteristics of one
subject, the vector representation of the airflow shape and
the reconstructed airflow profile under the four conditions
of recording.

In addition, the following data were derived for each
breath: tidal volume (V) by integration of the flow signal,
breath duration (Tpqy), and inspiratory (T)) and expiratory
(Tg) durations. Minute ventilation (Vy x 60/Trqp), Vi/Ty
and Ty/Tyqp were also calculated for each breath.

Mean values of the ventilatory characteristics, FgrCO,
and airflow shape were also calculated from retained
breaths.

protocols: at spontaneous breathing (SP)), volitional hyperventilation
at each subject’s spontaneous breathing rate (HVgp), and at spontane-
ous breathing (SP,), volitional hyperventilation at 20/min (HV.,)

To compare ventilatory variables between and within
the protocol 1 and protocol 2 (SP, versus HVp, SP, versus
HV,, SP, versus SP, and HV, versus HV,), a Wilcoxon
paired test was applied.

For the multivariate (eight variables) airflow profile, we
test if two profiles coming from the same individual are
more related than expected by chance. There may be dif-
ferences within an individual under different conditions
but each individual has a certain airflow profile that can
be recognized among airflow profiles of other individuals.
The null hypothesis of the test is that the sum of differences
within individuals is not different from the sum of differ-
ences between pairs of individuals sampled randomly; the
alternative hypothesis is that the sum of differences within
individuals is significantly less than that between random
pairs of individuals. This test has been described in details
by Benchetrit et al. (1989) and Shea et al. (1989) and has
been used to show the similarity in the airflow profile
within an individual under two different conditions (Shea
et al. 1990; Eisele et al. 1992; Calabrese et al. 1998; Ben-
chetrit 2000; Meric et al. 2014).

This analysis was then applied to test whether the spon-
taneous breathing pattern is maintained during voluntary
hyperventilation (SP, versus HVgp, SP, versus HV,, com-
parisons), and to compare breathing pattern at two different
breathing rate of voluntary hyperventilation (HVgp versus
HV,, comparison) to again verify the similarity of airflow
profiles between SP, and SP,.

Statistical significance was set at p < 0.0

Results

Analysis of the ventilatory data

The mean minute ventilation and Fg;CO, of each record-
ing for all subjects are given in Table 1. Changes in min-

ute ventilation and Fg;CO, are not significantly different
between SP; and SP, and HVp and HV .
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EE

TI TE

VT=530ml fR=15.2 min"!

TI TE

VT=470ml fR=15.3 min"!

HVsp

VT=1090ml fR=13.8 min!

HV20

TI TE
VT=810ml fR=19.8 min"!

Fig. 2 For the subject EE, mean ventilatory characteristics: tidal vol-
ume (Vy), inspiratory (T,) and expiratory (Ty) durations; the vectorial
representation of the first four harmonics of a harmonic analysis of
the airflow shape and the corresponding reconstructed airflow profile
are represented in the four conditions of recording [at spontancous

Concerning the mean values over all subjects compared
to spontaneous breathing (SP,), hyperventilation at spon-
taneous breathing frequency (HVp) results in an increase
in ventilation from 6.71 + 1.64 to 15.88 + 4.92 I-min~"
(+9.17 _.E:_\J inducing a decrease in FgCO, from
5.06 & 0.54 t0 4.07 £ 0.51 % (—1.02 %). Concerning spon-
taneous breathing (SP,), hyperventilation at a breathing rate
of 20/min (HV,) results in a change in ventilation from
6.57 + 1.31 to 15.87 & 4.16 -min~" (+9.30 I-min ") with
a decrease in Fg;CO,, from 5.00 £ 0.51 to 3.88 & 0.42 %
(=112 %).

Table 2 shows respiratory characteristics of all subjects
in both protocols 1 and 2. The results of the Wilcoxon
paired test applied to these variables show that as expected,
Tror Ty and Ty are not significantly different between SP;
and HVp, whereas they are significantly different between
SP, and HV,,. In both protocols, Vy and V/T; are sig-
nificantly different from spontaneous to hyperventilation,
but Ty/Tror is not significantly different between SP; and
HVgp. Similar comparisons can be taken between SP, and
HV,,. Time variables (Tyor, T}, Tg) and V are significantly

&) Springer

breathing (SP), volitional hyperventilation at subject’s
breathing rate (HVgp), at spontancous breathing (SP,) and volitional
hyperventilation at 20/min (HV ,)]. Mean values of tidal volume (Vo)
and breathing rate (fR) are given in each condition

different between HVp and HV,, whereas no significant
differences are observed in Ty/Tyor and V/T; between
HVgpand HV ;.

Similarity of airflow profile within individuals

The reconstructed airflow profiles for all subjects under the
four conditions at stake are represented in Fig. 3.

The similarity test performed between the two spontane-
ous breathing periods (SP, versus SP,) shows that differ-
ences within individuals are significantly less than those
between individuals randomly sampled (p < 0.001). Identi-
cal results are obtained when comparing airflow profile at
HVgp and HV,, (p < 0.001).

‘When comparing SP, and HVp, we find that differences
within individuals are significantly less that those between
individuals (p = 0.005). By contrast, differences within
individuals are not significantly less than those between
individuals, when comparing SP, and HV,, (p = 0.593).
We also applied the similarity test on SP; versus HV,,
(p = 0.085) and SP, versus HVgp (p = 0.057).
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Table 1 Mean - -
Sub Vi % 60Ty 1 FCO, (%

values + standard deviations ublect X 80/Tror (tmin™) €0, (6)

(18 h HVgp sP, SP, HVgp P, HVy

ventilation (V x 60/Tyor)

and end tidal CO, (FgyCOyat LA 1327 575 447 34 324

spontaneous breathing (SP,), CK 20.12 737 6.15 448 437

voluntary hyperventilation at BE 1507 N A% st

cach subject’s spontancous - o - 2 - 373

breathing rate (HVsp). at FL 11.93 531 490 416 331

spontaneous breathing (SP,) FC 2023 7.09 459 381 347

and voluntary hyperventilation 1179 S1s 238 363 157

 20/min (HV.

at 20/min (HYz0) HA 14.98 524 514 301 413
i 878 478 550 480 445
s 671 490 464 411
KM 6.8 460 361 342
7N 7.18 504 397 381
™ 6.51 520 447 401
TG 5.55 556 444 478
B 8.32 530 398 384
DD s 611 516 416
NH 1087 9.74 516 368 375
B 6.81 7.06 467 378 364
AB 7.82 7.90 502 409 410
Mean 671 6.57 506 407 388
D 164 131 054 051 042

o o)

Significant differences (Wilcoxon paired test p < 0.03) for: * SP, versus HVsp, * SP, versus HVy,

Discussion

The main observation of this study is that there exists an
individuality in airflow profile among human subjects
during volitional breathing as well as during spontane-
ous breathing. In addition, when comparing the airflow
profile during volitional hyperventilation at spontane-
ous breathing and at a breathing rate of 20/min, there is
a similarity in the flow profile, despite differences in V
and Tyop.

In our study, volitional ventilation was ensured by
inducing a mild hyperventilation 1) at spontaneous
breathing rate (HVgp) and 2) at an increased respiratory
rate (HV,,) maintaining F;CO, 1 %below the spontane-
ous level in both conditions for all subjects. In this way,
somatic symptoms and discomfort induced by hypocap-
nia were minimized (Hornsveld et al. 1995) and allowed
stable hypocapnia and a i d in Fg;CO,.
The resulting increase in ventilation was of the same
order of magnitude in the two protocols, 9.17 I-min~' in
protocol 1 and 9.30 I-min~" in protocol 2, respectively,
ensuring a moderate volitional hyperventilation. A simi-
lar increase in ventilation was induced by McKay et al.
(2003) to study the neural correlates of voluntary breath-
ing in humans.

To investigate the individuality of breathing pattern dur-
ing moderate hyperventilation, airflow profile is compared
under different conditions. Indeed, comparing the venti-
latory characteristics (Vo Ty, Tg) either one by one or all
together, as done in other studies (Benchetrit et al. 1989;
Shea et al. 1989), was not relevant, as breathing depth and
rate were voluntarily changed. Airflow profile containing
valuable information was suggested by Proctor and Hardy
as early as 1949, and Gray and Grodins (1951) proposed
that “transformation of the tracings to a completely non-
dimensional form should be the first step in analyzing the
significance of their shape”. The harmonic analysis we used
is indeed one such method of quantification of the airflow
shape. In addition, normalization of both the duration and
the amplitude allows focusing solely on the airflow shape.

The multivariable statistical test compares, under two
different conditions, the differences between two record-
ings within individuals with the differences observed
between random pairs of recordings. Thus, it provides a
result on the group rather than on each individual. There-
fore, even if there are changes in an individual, there are
more similarities within individuals than between individ-
uals when comparing SP, and SP, or HVgp and HV,,. A
detailed interpretation of the similarity test is given in Ben-
chetrit (2000).
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Although ventilation increases by the same order of
magnitude in the two protocols, there were differences in
the ventilatory data during the voluntary hyperventilation
period: in HVgp, the imposed respiratory rate is the spon-
taneous one and changes concern mainly the tidal volume,
whereas in HV,, both respiratory rate and tidal volume
are changed in almost all subjects (Table 1). In our study,
we fixed the level of hypocapnia and imposed respiratory
rate and depth to maintain this level; thus only T; and Ty
could vary. T}/Tor remained unchanged in all four condi-
tions, despite a decrease in Trqp during volitional breath-
ing at a rate of 20/min. Unchanged T/Tyor was also
observed by Calabrese et al. (1998) when adding resis-
tive load, which led to an increase in Troy. These authors
suggested that the unchanged Ty/Tyqy at different levels
of added load might represent an optimal value for each
subject. In our study, the fact that T/T o was the same
during volitional breathing as that during spontaneous
breathing (at least in this i d ventilation range) sug-
gests that both automatic and volitional systems lead to
the same optimal value of T;/Troy. According to Haouzi
(2011), even though the structures controlling breathing
during volitional and spontaneous breathing are different,
they both lead to the same outcome: maintaining blood
gas homeostasis.

Figure 3 represents all airflow profiles under the four
conditions of recording. There are differences in airflow
profile between individuals during spontaneous breathing
and during volitional breathing as well.

For each subject, the airflow profile at SP, and SP,
appears similar as well as the airflow profile at HVgp
and HV,,. The results of the similarity test confirm these
observations. The similarity between SP; and SP, is in
agreement with all previous findings on the individuality
of breathing pattern. The similarity between the two condi-
tions of volitional ventilation suggests that there exists an
individuality of breathing airflow shape during volitional
moderate hyperventilation. The question then arises as to
know if this airflow is the same at rest and during hyper-
ventilation. The similarity test provides no clear response
to answer to this question. Indeed, the comparison of spon-
taneous breathing and voluntary hyperventilation airflow
profiles shows that only SP, and HVg, have less differ-
ences within than between individuals (p = 0.005). These
results appear paradoxical. However, two points deserve
consideration. First, statistical tests do not imply transitiv-
ity. Second, in both protocols leading to moderate hyper-
ventilation, the breathing rate and depth are volitionally
imposed to maintain the same level of hypocapnia during
HVgp and HV,,. However, Tygp and Vi were changed in
almost all subjects in HV,,, whereas only changes in V.
were obtained in HVp. Thus, there may be a greater inten-
sity of volitional control during HV,,. These results may

be explained in two ways: either a threshold of ventila-
tion that changes the individual’s resting airflow shape is
attained during hyperventilation at 20 breaths per minute,
but not during hyperventilation at resting frequency, or the
duration of the breath has a significant effect on respira-
tory individuality. As the increase of ventilation is not very
high and similar in the two protocols, we think that the
second hypothesis may be the most realistic.

Our assumption from these results would be that there
exists an individuality of flow profile during volitional
hyperventilation and this flow profile is different from the
spontaneous flow profile.

The airflow profile observed during volitional hyper-
ventilation may result either from hyperventilation itself
or from the volitional character of the ventilation. The
fact that during hyperventilation induced by exercise, the
individuality of airflow shape is different from the rest-
ing one, suggests that hyperventilation per se can induce
another individuality of breathing. Following this assump-
tion, volitionally generated hyperventilation may also lead
to individuality of breathing pattern. Furthermore, Haouzi
and Bell (2009) concluded that non-medullary respiratory
structures involved in volitional breathing can develop the
respiratory control processes “in a manner that “mimics”
functions normally associated with medullary brain stem
structures”. This demonstrates the presence of profound
degeneracy, defined by Edelman and Gally (2001) as “the
ability of elements that are structurally different to per-
form the same function or yield the same output”. If the
airflow shape may be considered as a ventilatory output,
the similarity between airflow shapes generated automati-
cally or volitionally may suggest degeneracy in pattern
generation.

Dejours et al. (1961) claimed that “each subject has his
own combination of respiratory rate and tidal volume and
also his own shape of ventilatory movements” and thus, he
first introduced the concept of “Personnalité Respiratoire™.
Further studies showed the existence of breathing pattern
individuality in various conditions. The possible determi-
nants of this individuality were exhaustively envisaged by
Shea and Guz (1992).

Our results suggest that if volitional and spontaneous
breathing originates from two separate systems, then ven-
tilatory rhythm generating systems are not a determinant
of the airflow shape individuality. Although the individu-
ality of airflow profile may be modified in various con-
ditions, it remains an inherent property of the ventilatory
system.

In conclusion, during moderate volitional hyperventila-
tion, T d Ty/Tror bined with the existence of
airflow shape individuality, although different from spon-
taneous flow shape, suggests that volitional ventilation fol-
lows inherent properties of the ventilatory system.
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1.2.3.2 Au cours de la ventilation assistée

Les modes ventilatoires et la personnalité ventilatoire au cours de la ventilation
assistée ont ensuite éete étudiés. La ventilation assistée n’est ni naturelle ni
physiologique, puisque I'on impose une entrée d’air dans les poumons ce qui
enfraine une augmentation de la pression au cours de l'inspiration, alors qu’en
ventilation spontanée, I'action des muscles inspiratoires entraine une expansion de
la cage thoracique et une diminution de la pression alvéolaire. De nombreux modes
d'assistance ventilatoire existent, la finalité étant de permettre de répondre aux
besoins ventilatoires du patient tout en ajustant son effort ventilatoire. Le mode de
ventilation mécanique Nevurally Adjusted Ventilatory Assist (NAVA) délivre une
pression proportionnelle a I'activité neuronale de la commande centrale respiratoire
du patient (via une mesure de l'activité électrique du diaphragme). L'aide
inspiratoire (Al), fres utilisée, nécessite un paramétrage du ventilateur identique pour
tous les cycles ventilatoires ce qui, dans certains cas, ne présente pas une assistante
optimale pour le patient. Nous avons évalué I'effet de différents niveaux de pression
pour chague mode de ventilation mécanique NAVA et Al, sur le mode ventilatoire,
la personnalité ventilatoire et la normocapnie du sujet. La mesure des mouvements
de la cage thoracique par pléthysmographie optoélectronique a aussi permis de
compléter ce travail en étudiant la répartition des mouvements des compartiments
thoracique et abdominal au cours de la ventilation assistée en comparaison avec la
ventilation spontanée. En collaboration avec le Pr Frédéric Lofaso (investigateur
principal), j'ai rédigé le protocole “Etude comparée du mode ventilatoire au cours
de la ventilation mécanique NAVA" qui a permis I'inclusion et I'enregistrement de 10
volontaires sains & I'hépital Raymond Poincaré (acceptation par le Comité de
Protection des Personnes "lle-de-France XI" en avril 2012). Les enregistrements sur les
volontaires sains ont eté effectués dans différentes conditions: au cours de la
ventilation spontanée, et au cours de trois niveaux de ventilation mécanique pour
chaque mode (Al et NAVA) correspondant a des valeurs des pressions inspiratoires
maximum de 5, 8, et 10 cmH20. L'activité électrique diaphragmatique diminue
significativement avec le niveau d’assistance pour les deux modes d’assistance Al et
NAVA. Vi augmente et la pression partielle transcutanée de CO2 (PtCO2) diminue
avec l'augmentation des niveaux d’'assistance pour Al seulement (aucun
changement n'est cependant observé pour la NAVA). La synchronisation sujet-

ventilateur est meilleure avec la NAVA qu’'avec I'Al. Pour les deux modes NAVA et Al,
4]



les mouvements du compartiment abdominal diminuent tandis que les mouvements
du compartiment thoracique augmentent. La personnalité ventilatoire n'est pas
maintenue au cours de la ventilation mécanique a chaque niveau d’assistance quel

que soit le mode (Al ou NAVA).

Cette étude chez les volontaires sains monifre que :

1- La personnalité ventilatoire n'est pas maintenue au cours de la ventilation
mécanique pour les deux modes d’assistance ventilatoire : Aide Inspiratoire (Al) ou
Neurally Adjusted Ventilatory Assist (NAVA).

2- Le mode NAVA semble “plus physiologique” que I'Al: meilleure synchronisation
avec |'effort inspiratoire et maintien du volume courant et de la pression partielle

franscutanée de COa.

Meric, Calabrese et al (2014) Physiological comparison of breathing patterns with neurally
adjusted ventilatory assist (NAVA) and pressure-support ventilation to improve NAVA settings.
Respir Physiol & Neurobiology.

Délégation CNRS : Service de Physiologie et d'Explorations Fonctionnelles, Hopital Raymond
Poincaré (Garches 92)-2011-2012.
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ARTICLE INFO ABSTRACT

Article history. Neurally adjusted ventilator assist (NAVA) assists spontaneous breathing in proportion to diaphragmatic
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electrical activity (EAdi). Here, we evaluate the effects of various levels of NAVA and PSV on the breathing

. pattern and, thereby, on Paco, homeostasis in 10 healthy volunteers. For each ventilation mode, four
Keywords: levels of support (delivered pressure 0 i.e. baseline, 5, 8, and 10cmH,0) were tested in random order.
Breathing control EAdi, flow, and airway pressure were recorded. Optoelectronic plethysmography was used to study lung

Mechanical ventilation
Neurally adjusted ventilator assist
Optoelectronic plethysmography

volume distribution. During both PSV and NAVA, EAdi decreased with the level of assistance (P<0.01).
Tidal volume (Vr) increased and Ptco, decreased with increased levels of PSV (P=0.044 and P=0.0004;
respectively) while no change was observed with NAVA, Subject-ventilator synchronization was better

with NAVA than with PSV. NAVA and PSV similarly decreased the abdominal contribution to V. No airflow
profile similarities were observed between baseline and mechanical ventilation. Diaphragmatic activity
can decrease during NAVA without any change in Vr and Paco,. This suggests that NAVA adjustment
cannot be based solely on Vr and Peo, criteria.

Registered by Frédéric Lofaso and Nicolas Terzi on ClinicalTrials.gov, #NCT01614873.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Breathing is a complex process (Younes, 1981) designed to
maintain homeostasis, with stable Paco, levels, via a series of
compensatory adjustments. In recent studies, diaphragmatic inac-
tivity during controlled mechanical ventilation was shown to cause
ventilator-induced diaphragmatic dysfunction (VIDD) (Jaber et al.,
2011; Vassilakopoulos and Petrof, 2004). These data have led to
the increased use of assist modes. Among these, pressure-support
ventilation (PSV) is widely used, most notably during the wean-
ing phase (Esteban et al., 2008). Several studies have shown that

* Corresponding author at: CHRU Caen, Service de Réanimation Médicale, F-14000
Caen, France. Tel.: +33 231 064 716; fax: +33 231 064 996.
E-mail address: terzi-n@chu-caen.fr (N. Terzi).
! These authors contributed equally to the work.

_mmmeim:‘mmmF:::;:E@NoEm_mm<§w.<.>__:E__mammzma.
http://dx.doi.org/10.1016/j.resp.2014.01.021

volunteers decrease their inspiratory activity under PSV but do not
maintain normal CO, homeostasis when PSV exceeds the demand
by imposing an excessively high tidal volume (Vr) (Georgopoulos
etal, 1997; Scheid et al.,, 1994). To better match the level of assis-
tance to the patient’s needs, manufacturers have developed new
modes that deliver a level of assistance proportional either to the
patient’s inspiratory muscle effort, in proportional assist ventila-
tion (PAV); or to the diaphragmatic electrical activity (EAdi), in
neurally adjusted ventilator assist (NAVA) (Navalesi and Costa,
2003; Sinderby et al., 1999). Clinical studies in critically ill patients
have confirmed many of the expected short-term physiological
benefits of NAVA, including better patient-ventilator synchroniza-
tion and a decreased risk of overinflation (Terzi et al, 2012).
However, although increasing the level of assistance during PSV is
well known to increase Vr and to induce hypocapnia in healthy sub-
jects (Georgopoulos et al., 1997; Scheid et al., 1994), little is known
about the effects of increasing NAVA support on Vr and Paco, -

12 H. Meric et al. / Respiratory Physiology & Neurobiology 195 (2014) 11-18

The main objective of our study was to evaluate the effects
of various levels of NAVA and PSV on the breathing pattern and,
thereby, on Paco, h In healthy , effective
NAVA or PSV levels necessarily result in overassistance.

2. Methods
2.1. Study population

We studied 10 healthy volunteers. The appropriate ethics com-
mittee (Hopital A. Paré, Paris, France) approved the study, which
was registered on ClinicalTrials.gov (#NCT01614873). All vol-
unteers provided their written informed consent before study
inclusion.

2.2. Study procedures

The volunteers were in the supine position, wore a noseclip,
and breathed via a mouthpiece avoiding leaks. They received non-
invasive ventilation using a ventilator able to deliver both PSV and
NAVA (Servo-i, Maquet Critical Care, Solna, Sweden). The specific
non-invasive (NIV) mode was not used.

As previously described (Sinderby et al., 2007), the electrical
activity of the diaphragm (EAdi) was recorded using a commer-
cialized nasogastric EAdi-catheter (8 French diameter, 125cm
long; Maquet Critical Care, Solna, Sweden), with an electrode
array on its distal segment. Correct EAdi catheter positioning was
checked using the “EAdi catheter positioning” ventilator func-
tion.

2.2.1. Experimental setup

To compare breathing patterns assessed under the different
conditions using the same measurement devices, airway pressure
(Paw) and airflow were measured using a differential pressure
transducer (Validyne, Northridge, CA) and a Fleisch #1 pneu-
motachometer (Lausanne, Switzerland), both connected to the
mouthpiece.

Transcutaneous partial pressure of carbon dioxide (Ptco,) and
oxygen saturation (SPo, ) were monitored noninvasively using an
earclip and a SenTec AG monitor (Therwil, Switzerland).

Pressure, flow, Ptco,, and SPo, signals were digitized at a samp-
ling rate of 100Hz and recorded directly on a personal computer
equipped with the MP 150 data-acquisition system (Biopac Sys-
tems, Santa Barbara, CA, USA).

In addition, flow, Paw, and EAdi monitored by the ventilator
were recorded through an RS232 interface at a sampling rate of
100 Hz, using the dedicated software (Nava Tracker V.2.0, Maquet
Critical Care), and EAdi was analyzed using customized software.

Thoracic and abdominal volume changes were monitored using
optoelectronic plethysmography (OEP) with 52 markers attached
to the patient’s thorax, as described by Cala et al. (1996). A CX1
codamotion system (Charnwood Dynamics Ltd., Rothley, UK) was
used to monitor and record marker movements during the exper-
iments. Accuracy of OEP volume measurement was checked by
comparing vital capacity values estimated by OEP and by spirom-
etry. The difference was always less than 10% of the spirometry
value.

Synchronization of the three computer recordings was obtained
by synchronizing the clock time of the three computers and the
beginning and end of each recording. In addition, similarity of the
flow and pressure contours and of the inspiratory and expiratory
times of each cycle was checked.

2.2.2. Experimental protocol
Data were recorded first during spontaneous breathing (SB)
then with non-invasive ventilation (PSV and NAVA). Inspiratory

pressure support was set to obtain peak inspiratory pressure
values of 5, 8, and 10cmH,0 (PSV5, PSV8, and PSV10, respec-
tively). During pressure support, at each PSV level, after 2 min to
allow breathing stabilization, we used the “NAVA Preview” venti-
lator function to estimate the NAVA level that would achieve the
same inspiratory pressures (NAVAS5, NAVAS8, and NAVA10, respec-
tively). Positive end-expiratory pressure (PEEP) was set at zero and
inspired oxygen fraction (Flo,) at 21%, and these settings were
kept constant throughout the study. Flow and EAdi triggers had
each been adjusted previously by the physicians to be as sensi-
tive as possible without auto-triggering. EAdi and flow triggers
were kept constant throughout the trial for each patient and were
set at 0.8 wV (0.8-08) and 0.5 L/min (0.5-0.5), respectively. During
PSV, the expiratory trigger was set at 25% of the maximal inspi-
ratory flow and the inspiratory ramp at 100 ms. PSV and NAVA
were used in random order. For each ventilation mode, the three
support levels were tested in random order. Each mode was used
for 8 min or more to allow the volunteer at least 6 min to attain
the steady state. Only the last 2min were used for the analy-
sis.

2.3. Data analysis

Mean values of the 2 last minutes of each condition were used
for the analysis. Only EAdi was analyzed manually, by an expert
who was blinded to flow and pressure signals, which were ana-
lyzed automatically for computation of the usual breathing pattern
parameters. Respiratory frequency (f) and expiratory tidal volume
converted to BTPS conditions (Vr) were determined from the flow
signal.

The EAdi signal was used to determine (1) the patient’s neu-
ral inspiratory time, defined as the time from the beginning of
the EAdi signal increase to the EAdi signal peak; (2) inspiratory
diaphragmatic activity, defined as the area from the onset of the
rise to the peak of the EAdi signal (represented by the striped
area in Fig. 1); (3) the ventilator inspiratory trigger delay (iTD),
defined as the time from the beginning of the inspiratory effort
detected by the EAdi signal to the onset of ventilator pressur-
ization; and (4) the insufflation in excess (T(iex)), defined as the
difference between the end of the patient's inspiratory effort, i.e.,
the EAdi signal peak, and the end of ventilator pressurization
(Fig. 1).

OEP allowed us to assess lung volume distribution between
the thorax and abdomen (Cala et al., 1996). We were thus able to
determine whether, compared to PSV, NAVA kept this distribution
closer to that seen during SB. We expected to find this effect of
NAVA because diaphragmatic activity persists throughout insuffla-
tion with NAVA but does not always persist during PSV, which can
maintain pressurization without any further diaphragmatic con-
traction once the insufflation is triggered.

2.4. Breathing pattern comparison

For each recording, airflow shape was quantified by eight vari-
ables having no physiological significance. The first four harmonics
(described by a phase and an amplitude) of a serial Fourier analysis
applied to a breath contain at least 95% of the power of the origi-
nal signal and are sufficient to quantify airflow signal shape (Bachy
etal., 1986). The vectorial representation of the first four harmonics
is termed ASTER and the airflow shape of a breath is quantified by
the eight Cartesian coordinates of these four vectors (8 values). For
statistical comparisons of ASTERs, to take into account only airflow
shape, each ASTER was normalized for amplitude (by dividing each
coordinate by the square root of the sum of the square of all eight
coordinates). The mean ASTER value was also calculated for each
recording.
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Fig. 1. Flow, airway pressure (Paw), and electrical activity of the diaphragm (EAi) signals for one subject during pressure-support ventilation at level 8 (PSV8). The figure
shows the patient's neural inspiratory time (Tni), ventilator inspiratory trigger delay (iTD), and insufflation in excess (T(iex)). Inspiratory diaphragmatic activity, defined as
the area from the onset of the rise to the peak of the EAdi signal, is represented by the striped area.

2.5. Statistical analysis

The data were described as median +interquartile range
(25-75th percentiles). As data distribution was not normal, Fried-
man’s test was used to separately evaluate the effects of PSV and
NAVA on EAdi, fr, Vr, and delta Ptco, expressed as the differences
from baseline, i.e. spontaneous breathing without assistance in
inspiration, which therefore could be considered as the level 0 of
both PSV and NAVA. Thus, we performed Friedman’s test to eval-
uate the differences among four PSV or NAVA levels (delivered
pressure 0, i.e. baseline, 5, 8, and 10 cmH,0). When the Friedman’s
test was significant a two by two comparison was performed using
the Wilcoxon test. Neural inspiratory time, iTD, T(iex) and regional
distribution of Vy expressed as contribution of the abdomen to V¢
were compared between PSV or NAVA using the Wilcoxon test. The
comparison was performed for all values, independently from the
level of assist.

Aspecific analysis (Benchetrit et al., 1989; Calabrese et al., 1998;
Eisele et al, 1992; Shea et al., 1987) was designed to compare
ints i differences to interi; i within-group differ-
ences between two conditions (e.g. spontaneous breathing and a
level of assisted ventilation). The null hypothesis was that the sum
of intraindividual differences was not different from the sum of
differences between pairs of individuals taken randomly; the alter-
native hypothesis was that the sum of intraindividual differences
was significantly less than the sum of differences between pairs

of individuals taken randomly. This test provides information on
intraindividual differences in an individual who can be recognized
among other group members based on certain characteristics. For
example, we tested whether airflow shape differences between SB
and a specific level of an assisted ventilation mode (e.g., PSV5) were
the same in a given individual relative to differences in two condi-
tions (e.g. SB and PSV5) between all individuals in the same group.
‘We repeated this analysis between pairwise combinations of all
conditions: SB vs. PSV8, SB vs. PSV10, SB vs. NAVAS5, SB vs. NAVAS,
SBvs.NAVA10, PSV5 vs. NAVAS, PSV8 vs. NAVAS and, finally, PSV10
vs. NAVA10. P values lower than 0.05 were considered significant.
Statistical tests were run using the StatView 5 package (SAS Insti-
tute, Grenoble, France).

3. Results
3.1. Study population

We enrolled 10 consecutive healthy volunteers with normal
findings from a physical examination and pulmonary function
tests. Table 1 reports the characteristics of 10 volunteers. One
of the volunteers was unable to tolerate the gastroesophageal
catheter. During NAVA, gains were 1.25 (0.95-1.6) cmH,0/pnV; 2
(1.4-2.6)cmH,0/pV,and 2.6 (2-2.9) cmH, O/pV, to match PSV sett-
ings of 5, 8, and 10 cmH,0.

Table 1
Characteristics of the 10 healthy volunteers.
# Age (y) Height (cm) Weight (kg) Sex VC (sitting) (%) MIP (cmH,0) MEP (cmH,0)
1 54 185 92 M 106 142 177
2 23 180 87 M 107 141 108
3 25 183 71 M 91 124 153
4 34 174 67 M 96 95 150
5 24 166 65 F 108 81 13
6 22 156 57 F ND ND ND
7 37 190 100 M 116 152 221
8 2 168 72 F 99 99 91
9 28 173 65 M 11 13 12
10 58 177 58 F 83 47 70

Abbreviations: F, female; M, male; VC, vital capacity, % of predicted value; MEP, maximal expiratory pressure; MIP, maximal inspiratory pressure. ND, not done.

#6 was unable to tolerate the gastroesophageal catheter.
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3.2. Effect of mechanical ventilation on breathing pattern

As shown in Fig. 2A, no significant change in fg occurred with
either mode (P=0.55, and 0.79 respectively with PSV and NAVA;
Friedman test). Vy increased with the support level during PSV/
(P=0.0044; Friedman test) but did not change significantly dur-
ing NAVA (P=0.61; Friedman test) (Fig. 2B). Vy was significantly
higher during PSV 8 and PSV 10 compare to SB (P=0.03 and P=0.01
respectively; Wilcoxon test). Delta Ptco, (difference between end
and baseline) decreased significantly with increasing levels of sup-
port during PSV (P=0.0004; Friedman test) but showed no change
with the level of support during NAVA (P=0.95; Friedman test)
(Fig. 2C). Delta PtcCO, decreased significantly during PSV5, PSV8
and PSV10 compared to SB (P=0.01; P=0.007 and P=0.01 respec-
tively; Wilcoxon test).

Individual airflow shapes during SB were not maintained during
assisted ventilation: P values were >0.05 for comparisons of SB vs.
PSV5, SB vs. PSV8, SB vs. PSV10, SB vs. NAVAS, SB vs. NAVAS, and SB

Table 2
Subject-ventilator interaction.

vs. NAVA10. Moreover, when comparing PSV vs. NAVA at the same
level of support, the airflow shapes were not maintained within
individuals (P values >0.05 for comparisons of PSV5 vs. NAVA5,
PSV8 vs. NAVAS, and PSV10 vs. NAVA10).

3.3. Effect of mechanical ventilation on inspiratory activity

During both PSV and NAVA, electrical inspiratory activity
decreased as the support level increased (P values 0.0032 and 0.01
during PSV and NAVA respectively; Friedman test) (Fig. 3).

3.4. Patient-ventilator synchronization

Inspiratory trigger delay was always longer with PSV than with
NAVA (P<0.01; Wilcoxon test). Insufflation in excess and neural
inspiratory time did not differ across modes (P always >0.24 and
>0.23 respectively; Wilcoxon test (Table 2).

MODE PSV 5 PSV8 pPsv 10 NAVA 5 NAVA 8 NAVA 10
iTD 160+47.5 190+40 160+40 70+10 80+20 80+20
(142-190) (175-215) (140-180) (70-80) (70-90) (70-90)
Tiex) 20580 1904110 23070 200120 180:+80 210+70
(175-255) (130-240) (190-260) (140-180) (150-230) (160-230)
Tineural 14804615 1490 560 1390890 1320690 1090 360 11204410
(1263-1878) (1230-1790) (1090-1980) (1020-1710) (950-1310) (1010-1420)
TifTtot 042005 040009 043008 046004 041007 0434004
(0.38-0.44) (0.33-0.42) (0.38-0.46) (0.42-0.46) (0.39-0.46) (0.41-0.46)

The data are described as median + interquartile range (25-75th percentiles).
Abbreviation:
breath duration measured on flow signal
Wilcoxon test:

" PSV5 vs. NAVAS: P=0.0117.
PSV8 vs. NAVAS: P=0.018.
PSV10 vs. NAVAI0: P=0.0077.

iTD, inspiratory trigger delay; T(iex), insufflation time in excess; Ti neural, time of inspiration measured on EMG signal; Ti/Ttot, time of inspiration to total

Values without asterisk indicate that there is no statistical difference between the values observed in PSV and NAVA.
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3.5. Lung volume distribution

Vr as assessed by optoelectronic plethysmography during

Except for subject-ventilator interaction parameters and
ventilation distribution between the abdominal and thoracic com-
partments, NAVA and PSV were not compared directly (Friedman’s

SB correlated closely with Vy measured by
(r2=0.954). The Bland-Altman plot showed that the mean dif-
ference was 14mL (95%Cl, —62mL to —~76mL) and the limits of
agreement were 92 mL(95%Cl, 76 mL)and —64 mL(95% Cl, 62 mL).
Thorax Vy increased with the support level during NAVA and PSV
(P=0.019 and 0.021 respectively; Friedman test). Abdominal Vy
decreased as the support level increased during PSV and NAVA
(P=0.021 and 0.019 respectively; Friedman test). Regional venti-
lation distribution was not significantly different between PSV and
NAVA.

4. Discussion

In our study, healthy volunteers receiving different levels of
NAVA maintained their baseline minute ventilation and carbon
dioxide homeostasis by decreasing their inspiratory activity. In con-
trast, PSV induced hyperventilation with hypocapnia. In addition,
synchronization of the assist with the beginning of the inspiratory
effort was better with NAVA than with PSV.

The main objective of the respiratory control system is to main-
tain Paco, at a near-constant level via an array of compensatory
adjustments (Cherniack and Altose, 1981).

Devices have been developed to allow investigation of the
effects of unloading (Poon and Ward, 1986; Younes et al., 1987).
By unloading the respiratory system, one can determine whether
the normal or abnormal native resistance and elastance of the
respiratory system constrain the level of ventilation or modify its
pattern. Gallagher and Younes (1989) and Poon et al. (1987) were
the first to use assisted mechanical ventilation to achieve partial
resistive unloading of the respiratory system. They demonstrated
that the inspiratory resistive load was an important determinant of
the pattern of respiratory motor output. Thus, inspiratory resistive
unloading caused significant shortening and shape changes of the
pressure generated by the inspiratory muscles.

Also for evaluating the effects of resistive and elastic unload-
ing, Younes et al. were the first to develop a ventilator prototype
in which the assistance used the principles of equations of motion
to ensure proportionality to the load imposed on the inspiratory
muscles (Younes, 1992). Subsequently, an intensive care ventilator
(PAV+, Covidien, Dublin, Ireland) was developed to automatically
adjust proportional flow and volume assist to the values associ-
ated with constant fractions of the i values of
respiratory system resistance and elastance (Kondili et al,, 2006).In
astudy of normal volunteers during assist-volume control, PSV, and
PAV, with the assist level set at the highest comfortable value, Paco,
remained close to its set point during PAV, preventing the occur-
rence of respiratory alkalosis (Mitrouska et al,, 1999). However,
during PAV this ventilator provides support only once it detects
an inspiratory flow initiated by the patient. A substantial time lag
can occur between such detection and inspiratory muscle effort
initiation in patients with dynamic hyperinflation. Finally, as with
PSV (Nava et al., 1995), loss of patient-ventilator synchrony can
be observed with PAV. Moreover, leaks or changes in mechani-
cal properties can induce runaway phenomenon (Ranieri et al.,
1997).

The latest improvement in methods of inspiratory muscle
unloading is the development of NAVA, in which the inspiratory
assist is proportional to EAdi (Terzi et al., 2012). NAVA artificially
increases the conversion of phrenic nerve impulses to inspira-
tory driving pressure and, therefore, to Vr, and the feedback loops
(including the chemical feedback loop) that control the phrenic
nerves may be the only remaining determinants of Vr and Vg.

test PSV and NAVA i ly), because the airway
pressure profile over time differed between these two modes. PSV
delivers a pressure level that is constant and determined by the
prescriber, instead of being proportional to feedback loop activity.
Therefore, pressure support can rapidly exceed the patient’s needs,
resulting in excessively high Vy values (Azarian et al., 1993). In this
situation, f adjustment may fail to prevent hypocapnia (Scheid
et al, 1994). In contrast, as previously described (Sinderby et al.,
2007), NAVA decreased the inspiratory activity, which, according
to the closed loop process, in turn modified the shape of pressure
assistance without significantly changing V7 or fz. In keeping with
these mechanisms, normocapnia was maintained during NAVA in
our study. These results suggest that Vr and fr, and therefore Paco,,
remain under the subject’s control with NAVA. Thus, the breathing
pattern obtained with NAVA s the result of acomplex multifactorial
physiological process involving the subject’s chemical and neural
components, which were not specifically and separately evaluated
in our study.

In our study, whereas the expiratory trigger was comparable
with NAVA and PSV, the NAVA inspiratory trigger outperformed the
PSV inspiratory trigger, in keeping with previous clinical studies
(Terzi et al., 2010) demonstrating better patient-ventilator syn-
chronization with NAVA than with PSV. With NAVA, EAdi triggers
the assist when the subject initiates an inspiratory effort, even dur-
ing expiration with intrinsic PEEP (Piquilloud et al., 2011), and a
decrease in EAdi terminates the assist.

By using an optoelectronic system, we showed that both NAVA
and PSV similarly decreased motion of the abdominal compart-
ment. This finding, together with the decrease in diaphragmatic
muscle activity with increasing levels of support, suggests that the
downward course of the diaphragm may decrease with increas-
ing support levels in healthy individuals. In contrast, motion of
the upper and lower thoracic compartments increased signifi-
cantly with increasing support levels during both NAVA and PSV,
in agreement with an earlier study (Aliverti et al., 2000). This find-
ing may be ascribable to the lung inflation induced by mechanical
ventilation. The differences in chest-wall motion between sponta-
neous breathing and assisted mechanical ventilation may explain
the breathing pattern differences observed between these two
conditions. Indeed, using a previously validated method to ana-
lyze the breathing pattern, we found no significant similarities
between rest and PSV or NAVA for any of the variables. Therefore,
breathing pattern individuality was not maintained during PSV or
NAVA.

Our study has several limitations. First, we cannot exclude
an influence of cortical inputs on the recorded breathing pat-
terns. However, none of the subjects reported any discomfort
during any of the conditions, suggesting that the breathing pat-
terns were normally influenced by the cortical inputs, which
are usually active during wakefulness. Second, the difference in
effects of PSV vs. NAVA on Ptco, is among our most striking find-
ings. Arterial Pco, measurement would have been scientifically
preferable but ethically unacceptable in our healthy volunteers.
Previous studies have demonstrated that Ptco, is very close to
Paco, and that Ptco, changes are representative of Paco, changes
(Eberhard, 2007; Gancel et al.,2011; Storre etal.,2007,2011). Third,
we did not investigate global inspiratory activity in the volun-
teers. However, the diaphragm is the main inspiratory muscle and
diaphragmatic activity can therefore be considered representative
of inspiratory activity (Mognoni et al., 1969). Finally, the absence of
esophageal and gastric pressure traces might appear as an obstacle
to independent determination of the neural inspiratory time. Nev-
ertheless, previous work establishes that neural inspiratory time is
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better estimated using diaphragmatic electromyography than
using esophageal and gastric pressure (Parthasarathy, Jubran et al.,
2000).

4.1. Clinical implications

In clinical practice, determining the optimal NAVA level remains
challenging, and several methods have been suggested. Contrary to
PSV, NAVA generates Vr levels that can remain constant indepen-
dently from the support level once the patient's ventilation needs
are satisfied (Brander et al,, 2009). One study evaluated breathing
pattern analysis during a titration procedure as a means of deter-
mining the best NAVA support level (Brander et al., 2009). Titration
consisted in increasing the NAVA level from about 3cmH,0 in 1-
cm H,0/AU steps every 3 min (AU refers to Arbitrary Unit and is the
Edi signal intensity in wV). The response in terms of Vr and airway
pressure (Paw) was biphasic. During the first phase, Vr and Paw
increased, while the esophageal pressure-time product (i.e., inspi
ratory muscle effort) and EAdi decreased. Further increases in the
NAVA level (second phase) did not significantly change Vr but con-
tinued to decrease the esophageal pressure-time product and EAdi.
Thus, the first phase may indicate an insufficient NAVA level to sup-
plement the patient’s weak breathing effort, while the beginning of
the second phase may correspond to the lowest support level that
satisfies the patient’s needs. Thus, the optimal (or adequate) NAVA
level may be equal to or greater than this inflection point. However,
our finding that CO, homeostasis is preserved during overassis-
tance with NAVA indicates that NAVA settings cannot rely solely
ona Vy or Paco, target. Other targets seem needed. One study used
60% of the highest EAdi value recorded during spontaneous breath-
ingas the target (Roze et al.,, 2011). This value was determined daily
during a spontaneous breathing trial with a pressure-support level
of 7cmH;0 and no PEEP. This method proved feasible and well
tolerated until extubation but was time consuming. An alternative
might consist in adapting the support level to the patient’s respira-
tory discomfort once the Vr plateau is attained with NAVA (Schmidt
et al,, 2011). However further studies are needed to confirm this
possibility.

In conclusion, NAVA seems a more physiological method of
inspiratory muscle unloading than PSV, for two reasons: syn-
chronization with the patient's inspiratory effort is better, and
non-volitional overinflation does not occur. In contrast to PSV,
NAVA preserves carbon dioxide homeostasis. Thus overassistance,
i.e., low EAdi, during NAVA was not associated with changes in
Paco,. This observation may explain why identifying the optimal
NAVA level remains a challenge.
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I.3 VARIABILITE DE LA FREQUENCE CARDIAQUE

11.3.1 Introduction

I.3.1.1 La variabilité de la fréquence cardiaque

La variabilité de la fréquence cardiaque (VFC) est la variabilité de la fréquence
cycle par cycle cardiaque, obtenue a partir des infervalles R-R. Cette variabilité est
le reflet de l'influence du systéme nerveux autonome (SNA) sur la fréquence
cardiague. Ainsi, la VFC reflete I'équiliore entre les influences sympathique (cardio-
accélératrice) et parasympathique (cardio-inhibitrice) sur le rythme du noeud sinusal.
L'analyse du spectre de la fréquence cardiaque a contribué d mieux comprendre
la régulation par le systeme nerveux autonome, et la signification de ses différentes
composantes gréce a I'administration de bloqueurs sympathique et

parasympathique (Akselrod et al ,1981 et 1985).

Depuis, la VFC a été largement utilisée comme un indicateur du niveau du SNA dans
certains états physiologiques: stress, fatigue (travail, sport) ou pathologiques comme

I'nypertension artérielle, le diabete, le syndrome d’'apnée du sommeil, etc. Elle est

également utilisée comme indicateur du niveau d’analgésie (Pomfrett et al, 1993)

ou de la douleur.

1.3.1.2 L’arythmie sinusale d’origine respiratoire

L'arythmie Sinusale d’origine Respiratoire (ASR) représente les variations du rythme
cardiaque au cours du cycle respiratoire. L'ASR est la variabilité du rythme
cardiague en synchronisation avec le rythme respiratoire, et contribue en partie a la

VCF (Cf analyse spectrale 1.3.1.3). L'interaction entre rythme cardiaque et

respiration a été constatée en 1847 (Ludwig). Ce n'est cependant qu'au début du

20eme siecle que le phénomene est analysé plus précisement (Anrep et al, 1936 ;

Heymans, 1929): pendant l'inspiration, la fréquence cardiaque augmente et,

pendant I'expiration, la frequence cardiaque diminue. Ce phénomene est illustré sur
la Figure 9 qui représente I'enregistrement chez un volontaire sain d'un
électrocardiogramme (ECG), d'un débit ventilatoire mesuré & la bouche et de la

fréquence cardiaque calculée a partir de I'ECG.
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ECG: électrocardiogramme

ECG (mV)

L

o
[=]

:00 00:10 00:20

Débit ventilatoire instantané (mesuré a la
bouche : pneumotachographie).

Les pointillés verticaux représentent le
découpage de chaque cycle
ventilatoire, composé d'une inspiration et
expiration.

. DEBIT (I/min)

00:10 00:20

Chaque trait horizontal représente Ila
fréquence cardiaque, l'inverse de la durée
qui sépare deux ondes R sur 'ECG (FC).

On observe une augmentation de la FC
. au cours de l'inspiration et une diminution
o 2 4 6 8 10 12 14 16  sec au cours de I'expiration.

Fréquence cardiaque instantanée

Figure 9 : lllustration du phénoméne d'arythmie sinusale d'origine respiratoire

L'arythmie cardiaque d'origine respiratoire est souvent considérée comme un
indicateur de I'activité vagale cardiaque. La signification physiologique de I'ASR n'a
pas été completement élucidée. On fait I'hypothése que I'ARS opfimise I'échange
des gaz dans la circulation pulmonaire, améliore la relation entfre la perfusion

pulmonaire et la ventilation dans le cadre du cycle respiratoire.

11.3.1.3 L’'analyse du spectre de la fréquence cardiaque

L'étude de VFC peut se faire par une analyse dans le domaine temporel ou dans le

domaine fréquentiel. Le domaine fréquentiel est largement utilisé et consiste en

I'analyse du spectre de puissance de la fréquence cardiague ou de la période

cardiaque (Figure 10). Les puissances spectrales sont mesurées dans des bandes de

fréquences suivantes et ont été plus ou moins identifices comme ayant une

signification physiologique :

* puissance totale (total frequency power : Ptot) de 0 a 0,4Hz : reflet global de la
VFC

» Ultra basses fréequences (ultralow frequency power : ULF) de O et 0,0033 Hz et trés
basses fréquences (very low frequency power : VLF) de 0,0033 et 0,04 Hz: non
encore complétement identifiées,  thermorégulation,  catécholamines,

angiotensine |l
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* basses fréquences (Low Frequency power: LF) de 0,04 et 0,15 Hz : refletent
I'influence sympathique (accélération du rythme cardiaque), et & un moindre
degré parasympathique (ralentissement du rythme cardiaque), modulée par les
barorécepteurs

* hautes frequences (High Frequency power : HF) de 0,15 et 0,4 Hz : correspondent
a la modulation du tonus vagal normalement en lien avec la respiration (part de
I'arythmie cardiaque d’origine respiratoire quand la fréquence ventilatoire est

comprise dans cet intervalle de fréquence)

sec2x104

Fréquence

/ Respiratoire

2.5+

0.5+ [

0 0.2 0.4 0.6 0.8 1

Figure 10: Spectre de la période cardiaque avec représentation des bandes de fréquences: basses
fréquences (LF) de 0,04 et 0,15 Hz et hautes fréquences (HF) de 0,15 et 0,4 Hz

11.3.2 L'arythmie sinusale d’origine respiratoire

11.3.2.1 Au cours de I'addition de résistance respiratoire

L'addition des résistances a la bouche entraine une augmentation de la pression
négative infra-thoracique et une stimulation des barorécepteurs intra-thoraciques.
Nous avons étudié les changements de VFC et ASR induits par I'addition de
résistances respiratoires a la bouche (stimulus du systeme cardio-ventilatoire) chez
sept volontaires sains pour quatre niveaux de résistance additionnelle. Les résultats
montrent une augmentation des caractéristiques de VFC et ASR avec la diminution

de la fréquence respiratoire induite par I'addition des résistances.
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Afin de préciser l'origine des variations obtenues, diminution de fréquence
respiratoire ou addition de résistance, nous avons comparé les caractéristiques de
VFC et ASR & deux valeurs de frequences ventilatoires, chacune obtenue soit en
additionnant une résistance, soit en imposant la fréquence. Les caractéristiques de

VFC et ASR sont identiques a une fréquence ventilatoire donnée.

Ces résultats soulignent I'importance du mode ventilatoire dans les variations de la
variabilité de la fréquence cardiaque (VFC) et I'arythmie sinusale d’origine
respiratoire (ASR). L'utilisation des variations de VFC et ASR comme index du systeme
nerveux autonome serait plus pertinente si les variations de la fréquence respiratoire

étaient prises en considération.

Calabrese et al. (2000) Cardiorespiratory interactions during resistive load breathing. Am J
Physiol-Regulatory Integrative and Comparative Physiology
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R2208-R2213, 2000.—The addition to the respiratory sys-
tem of a resistive load results in breathing pattern changes
and in negative intrathoracic pressure increases. The aim of
this study was to use resistive load breathing as a stimulus to
the cardiorespiratory interaction and to examine the extent
of the changes in heart rate variability (HRV) and respira-
tory sinus arrhythmia (RSA) in relation to the breathing
pattern changes. HRV and RSA were studied in seven
healthy subjects where four resistive loads were applied in a
random order during the breath and 8-min recording made in
each condition. The HRV spectral power components were
computed from the R-R interval sequences, and the RSA
amplitude and phase were computed from the sinusoid fitting
the instantaneous heart rate within each breath. Adding
resistive loads resulted in 1) increasing respiratory period, 2)
unchanging heart rate, and 3) increasing HRV and changing
RSA characteristics. HRV and RSA characteristics are lin-
early correlated to the respiratory period. These modifica-
tions appear to be linked to load-induced changes in the
respiratory period in each individual, because HRV and RSA
characteristics are similar at a respiratory period obtained
either by loading or by imposed frequency breathing. The
present results are discussed with regard to the importance
of the breathing cycle duration in these cardiorespiratory
interactions, suggesting that these interactions may depend
on the time necessary for activation and dissipation of neu-
rotransmitters involved in RSA.

heart rate variability; respiratory sinus arrhythmia; human

subject; individuality of ventilatory pattern

EVIDENCE OF THE INFLUENCE of baroreceptor stimulation
on respiratory sinus arrhythmia (RSA) was docu-
mented in 1936 by Anrep et al. (2), who measured
inspiratory and expiratory R-R intervals in anesthe-
tized dogs during pressure increase produced by infu-
sions of epinephrine. They observed that I) at low
arterial pressures there were no differences in inspira-

tory and expiratory R-R interval and no sinus arrhyth-
mia, 2) at higher pressures the inspiratory R-R interval
remained constant, whereas the expiratory R-R inter-
val increased and sinus arrhythmia developed, and 3)
at the highest pressures similar results as in the first
point were again observed. These results were taken to
suggest a modulatory role of the arterial baroreflex in
the generation of sinus arrhythmia. Some forty years
later, Eckberg and Orshan (9) further characterized
the modulatory role of arterial baroreflex in the RSA
phenomenon in humans using briefly applied neck
suction during both the inspiratory and expiratory
phases of respiration to explore the relationship be-
tween breathing phase and the responsiveness of vagal
cardiac motoneurons to baroreceptor stimulation. Re-
sults showed that moderate (30 mmHg) neck suction
applied during expiration induced greater R-R interval
prolongation than when applied during inspiration,
indicating that cardiac vagal motoneurons become re-
fractory to baroreceptor input during inspiration. In-
tense (60 mmHg) neck suction, however, provoked sim-
ilar R-R interval lengthening during expiration and
inspiration. Thus inspiration reduces the sinus node
responses to moderate, but not intense, baroreflex
stimulation. In agreement with observations using ca-
rotid sinus nerve stimulation in animals (7, 14, 15),
these results suggest that inspiration interferes with
the ability of baroreceptors to stimulate vagal moto-
neurons but that this influence is limited inasmuch as
intense baroreceptor stimuli can overcome the inspira-
tory inhibition of vagal firing.

Breathing under resistive loading increases negative
intrathoracic pressure, the pressure gradient across
the aortic wall and aortic dimension (16), as well as the
aortic baroreceptor firing (1). The addition of a resistive
load can thus be considered as increasing within-res-
piratory cycle arterial baroreceptor stimulation (4, 18).
It is well known, however, that under resistive loading,
the breathing pattern is changed resulting in an in-
crease in respiratory period and tidal volume (Vy), the
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magnitude of these depending on the load (6, 19). The
influence of the respiratory pattern on heart rate vari-
ability (HRV) and RSA has been clearly demonstrated:
the magnitude of the increase in RSA has been shown
to depend on the respiratory period and Vi (13), and a
marked influence of the breathing parameters on both
the low-frequency and respiratory frequency compo-
nents of the R-R power spectra has been reported (5).
On the other hand, load-compensating mechanisms
exhibit a great interindividual variability (3, 6) as do
other factors producing changes in RSA (11). To take
account of these potentially interreacting parameters,
fixed-pace resistive breathing was used (4) where no
within- or between-individual variations in breathing
pattern were allowed in response to the addition of
loads, and it was concluded that the absolute magni-
tude of RSA was increased by breathing against resis-
tances, whereas the extent of transfer through the
arterial baroreflex was reduced. It is therefore possible
that factors other than the arterial baroreflex made an
important contribution to the modification of the RSA
response under resistive breathing.

The hypothesis in this study was that the changes in
HRYV induced by the resistive loading may be explained
by the negative intrathoracic pressure and the result-
ing changes in baroreceptor activity and/or by the
changes in the breathing pattern. This may be tested
by adding resistive loads to induce changes in HRV and
in breathing pattern. If the changes in HRV appear to
parallel the changes in the breathing pattern, the role
of the breathing pattern may be evaluated by compar-
ing HRV at a given breathing rate, obtained either by
resistive loading or by frequency-imposed breathing.

This was achieved by analyzing changes in the
breathing pattern and in HRV in healthy human sub-
jects by using both spectral and breath-by-breath R-R
interval analyses to quantify the RSA changes at four
different resistive loads accessed throughout the entire
breathing cycle.

METHODS

Subjects. Seven healthy volunteers recruited from among
the laboratory staff and graduate students (means *= SD
height: 168.4 = 11.0 cm; weight: 63.9 = 13.0 kg) between 19
and 55 yr of age (mean 31.7 = 15.0 yr) participated in the
study. Informed consent was obtained from all subjects. The
experimental protocol was examined and approved by the
Institutional Ethics Review Board.

Experimental protocol. Subjects were comfortably seated
and wore a face mask on which was mounted a flowmeter
(Fleish head no. 1) and a differential pressure transducer
(163PC01D36, Micro Switch). Mouth pressure was measured
with another differential pressure transducer (142PCO01D,
Micro Switch). The mask was checked for leaks before initi-
ating recording, using an infrared CO, analyzer (Engstrom
Eliza/Eliza MC). End-tidal CO, (FETq0,) was measured con-
tinuously using the same apparatus, and an electrocardio-
graphic trace (ECG) was obtained for the whole recording
period.

A series of 8-min recordings were obtained, with no resis-
tive load (R,) or in the presence of one of four levels of
resistive load (R,,...,R,) applied throughout the entire

breathing cycle in random order. Resistive loading was cre-
ated by connecting a tube containing increasing thickness of
scouring pads to the end of the face mask and flowmeter
setup. The apparatus dead space including the flowmeter and
resist: pplying unit r d under 40 ml. For each
recording, the value of the resistance was calculated using a
mouth pressure-flow plot on a breath-by-breath basis
throughout the entire recording. Mean resistance values
computed for the seven subjects were R, = 0.76 = 0.02
(apparatus resistance), R, = 3.25 = 0.16, R, = 5.24 * 0.30,
R, = 8.25 + 0.37, and R, = 12,51 + 0.63 cmH,0-1 !-s. Data
acquisition was started within a few minutes of addition of
resistance.

HRYV data analysis. The wnnEmuBoc of Z:w data was per-
formed on a Maci h micr d with an
analog-to-digital interface card. Sampling rate was 256 Hz.
To calculate the respiratory period (Tror) and Vg, and to
study HRV and RSA, a breath-by-breath analysis was per-
formed of all recordings (involving an average of 50 breaths/
recording). The ECG signal was processed, and the R-R
interval series were extracted and displayed on the computer
screen to verify that the signal exhibited no noticeable trend
and to show possible errors. Means *+ SD of the R-R intervals
were calculated for each recording. R-R intervals were inter-
polated linearly at 0.25-s intervals to obtain equidistant time
samples, and power spectral analysis was performed using a
recording length of at least 1,024 sample data points. A fast
Fourier Transform procedure was applied to obtain the low-
(LF: 0.04-0.15 Hz) and high-frequency (HF: 0.15-0.40 Hz)
spectral power components. For each recording, a restricted
respiratory frequency power component identified as the
respiratory centered frequency (RCF) component was also
calculated, using the frequency range corresponding to +10%
of the respiratory rate averaged over the entire recording
an.

A more specific analysis of RSA was performed using a
breath-by-breath HRV analysis (17). To quantify the extent
of within-respiratory cycle RSA, a sinusoid is calculated,
fitting to the changes in instantaneous heart rate within the
respiratory cycle (Fig. 1). Its amplitude, which may be con-
sidered as the maximum heart rate within each breath, is
used as a measure of the magnitude of RSA. The instant of
occurrence of this maximum is expressed either as a fraction
of breath duration (phase) or in seconds (delay). Average
amplitude, phase, and delay values over several breaths are
then calculated for each recording.

Statistical analyses. Values are expressed as means = SD.
Mean comparison of R-R interval, respiratory period, and
R-R interval spectral frequency components in response to
resistive load breathing was achieved using a one-way
ANOVA. The coefficient of variation of R-R interval and
respiratory period were compared using Kruskal-Wallis test.

RESULTS

Effect of respiratory resistive loading on HRV and
RSA. Applying resistive loads throughout the entire
breath results in lengthening of respiratory period and
increases in Vip with, however, no noticeable changes in
FETco, Table 1 shows mean values and mean coeffi-
cients of variation of both T'ror and R-R interval cal-
culated over the seven subjects. The mean respiratory
period can be seen to increase with increasing load
while variability remains unchanged. In contrast, the
mean R-R interval remains unchanged with increasing
load, whereas the variability observed at the highest
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ECG (mV)

Flow (ifmin)

Mouth Pressure (cmA20)

€02(%)

Breath-by-brea
1

Bl

Tnstantaneous heart rate

Fig. 1. Example of recording with a resistive load of 5.48
emH,01 "+ and the sinusoid fitted to breath-by-breath changes in
instantaneous heart rate. ECG, electrocardiogram.

resistive load is double that for unloaded breathing. A
significant main treatment effect observed was that
increasing resistive loads resulted in significant in-
creases in all spectral power components (Table 1).

y=0014x + 0.012]
r=0.510

*#1
A #2
O #3
o#4
A#S
o #6
= #7

variation coefficent of R-R interval

TTOT

Fig. 2. Coefficient of variation of R-R interval versus respiratory
period (Tyoq) for all 7 subjects for no resistive load and the four levels
of resistive loads.

However, the increase in LF compared with that in HF
at R5 and R, may be explained by the low correspond-
ing breathing frequencies that are in the LF rather
than the HF domain. At low breathing rates (=0.15
Hz), the changes in the RCF spectral component are a
better reflection of changes in respiratory-related R-R
variability than those in the HF component.

Figure 2 represents HRV expressed as the coefficient
of variation of R-R interval plotted versus T'ror for all
loads in all subjects. The coefficient of linear correla-
tion calculated over these data is significantly different
from zero (r = 0.510, P < 0.01).

RSA amplitude, phase, and delay versus Ty for all
subjects and for the five conditions are represented in
Fig. 3. Each point is a mean value for each recording of
amplitude, phase, and delay calculated from the sinu-
soid fitted to the changes in the instantaneous heart
rate within each breath. Both amplitude (r = 0.479,
P < 0.01) and phase (r = —0.705, P < 0.001) are
linearly correlated to Tpop, and therefore the delay-
Tror regression is quadratic (- = 0.666, P < 0.001). It
may be noted that according to this parabolic fit, the
maximum value of the delay is reached for a T'rop of
7.52s.

Table 1. HRV during resistive loading: respiratory period, R-R interval,

and spectral analysis of R-R interval series

R-R Interval, s 4
Mean variation Total Power, Spectral 2 s
Mean Mean coefficient 10 % LF HF RCF
R, 4.26 0.10 0.844 0.06 1.70=2.04 0382036  0.87+145  0.52-0.86
R, 5.00 012 0.848 0.08 2.362.18 079068  107+165  0.69=1.08
R, 5.29 011 0.847 0.08 272318 055039  159+241  1.06=150
R, 6.09 011 0.845 010 416355 189196  166+272 148158
R, 6.88 012 0.846 013 5.62+3.03 315232 1854214  258=136
Pvalues  <0.001 0.594 0.653 0.044 <0.001 <0.001 0.052 <0.001

Ry, control; Ry, Ry, Ry, and R,, increasing resistive loads; Tror, respiratory period; Total power, total power of the R-R interval series

pectrum; LF, 1

(0.04-0.15 Hz); HF, high-frequency component (0.15-0.40 Hz); RCF, respiratory centered frequency

spectral power components; HRV, heart rate variability. P values are the results of an ANOVA performed on each variable except for mean
variation coefficients, which were compared by using a Kruskal-Wallis nonparametric test because they are not normally distributed.
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Fig. 3. Amplitude (fop), phase (middle), and delay (bottom) versus
Ty plotted for all 7 subjects. Amplitude, phase, and delay are
calculated breath-by-breath from the sinusoid fitted to the instanta-
neous heart rate. Each point is a mean value calculated over all
breaths at each load. Amplitude is expressed as a fraction of mean
heart rate, phase as a fraction of Tror, and delay in seconds.

Comparison of HRV and RSA for a given breathing
rate with and without resistive loading. To examine
whether changes in HRV and RSA during loaded
breathing can be attributed to the accompanying fall in
breathing frequency, further recordings were per-
formed on another group of participants. The first of
two sets of 8-min airflow and ECG recordings was
obtained with a breathing resistance, whereas the sec-
ond was obtained with the subject breathing at an
imposed rate namely fixed at a frequency equivalent to
that observed during the loaded breathing condition.
Two levels of resistance were applied: R, = 4.56 and
R, = 12.23 cmH,0-1 !-s. The corresponding imposed
respiratory rates were provided by an auditory cue
during the nonloaded breathing conditions. The FeTq,
was checked and instruction was given to increase or
decrease the Vi such that the FErgo, value remained
constant. Means + SD of T'rop, R-R interval, and Vi

® R2-F2
O R4-F4

g b
AT

TTOT (Added load)
>

5 8 7 8
TTOT (Imposed frequency)
1100

s
s

e
900 T 4
/|
7
\H]A
L\
7004+

300 } ! +
300 500 700 800 1100
VT (Imposed frequency)

VT (Added load)

ml

0.8

R-R interval (Added load)

0.6

sec!

0.5
0.5 06 0.7 0.8 0.9 1.0 11 1.2
R-R interval (lmposed [requency)

Fig. 4. Mean = SD of R-R interval (bottom), tidal volume (Vi
middle), and Tyop (top) at resistive load (R2 and R,) on y-axis and
corresponding imposed frequency (F, and F) on x-axis. Identity lines
are drawn for each graph. Comparison between loaded and imposed
breathing frequency conditions were achieved by using paired t-test
for R-R interval (P = 0.733 for R,-F, and P = 0.777 for R,-Fy), Tror
(P = 0.895 for R,-F, and P = 0.468 for R-F,), and Voy (P = 0.217 for
Ry-Fyand P = 0.111 for R,-F,).
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obtained for resistive loading R, and R, and the equiv-
alent imposed breathing frequencies F, and F, are
shown in Fig. 4 for each subject. Results of paired ¢-test
comparisons indicated no significant differences as be-
tween loaded and imposed breathing frequency condi-
tions. Table 2 shows results of the spectral and breath-
by-breath HRV analysis performed on these data.
Comparisons revealed no significant differences either
in any of the HRV spectral components (paired ¢-test)
or in the amplitude or phase (paired Wilcoxon-test).

DISCUSSION

Results of the present study show that adding resis-
tive loads throughout the entire breathing cycle re-
sulted in an increase in HRV and RSA with the mean
R-R interval remaining unchanged.

The increase in HRV and RSA appears to be linearly
correlated to the increase in respiratory period in re-
sponse to resistive loading. An important additional
observation here is that there were no significant dif-
ferences between HRV and RSA for a given subject
breathing at an equivalent frequency obtained by re-
sistive loading or imposed breathing frequency.

The observed increase in RSA could probably be
accounted for by either increases in intrathoracic pres-
sure and the ensuing stimulation of baroreceptors or
changes in the respiratory pattern following resistive
loading. Changes in intrathoracic pressure can pro-
duce both oscillations in arterial blood pressure, which
are sensed by carotid sinus and aortic baroreceptors,
and fluctuations in cardiac filling sensed by cardiac
baroreceptors. Indeed, by using graded levels of phen-
ylephrine and nitroprusside infusions in human sub-
jects to respectively increase and decrease arterial
pressure (10), RSA was found to be slight at low levels
of baroreceptor stimulation but to increase asymptoti-
cally with higher levels.

According to Seals et al. (18), adding a resistive load
to the inspiratory part of the respiratory cycle would
“(i) greatly exaggerate the negative intrathoracic pres-
sure changes at any given lung volume during volun-
tary inspiration, producing a significant decrease in
systemic arterial pressure and (ii) markedly increase
central respiratory motor output.” These authors ob-
served that the major effect of applying increased in-

spiratory resistance (of 20 emH,0-17"+s) was to cause
the arterial blood pressure to fall significantly during
early inspiration. In our experiments, resistive loads
were added throughout the entire breath, leading to
changes in mouth pressure, which reached its nadir at
about —6 ecmH,0 for the highest added resistance R,
(12.51 cmH,0-1*+s), compared with under —1 cmH,0
for R, (0.76 cmH,0-1 *+s). It may be argued that, in
the present study, the resistive load applied was insuf-
ficient to alter baroreceptor input to cardiac motoneu-
rons, because a similar RSA amplitude (as well as HF
and RCF power components) was observed for both
loaded and nonloaded breathing at an equivalent
breathing frequency. An alternative explanation
might, in agreement with other findings (4), be that the
marked within-respiratory cycle arterial blood pres-
sure oscillations are not the predominant factor in-
volved in the changes in RSA. There is strong evidence
(8) that respiration modulates autonomic outflow by
interfering with the ability of baroreceptor inputs to
influence the activity of autonomic motoneurons. It has
been reported that the effect of lung inflation itself can
suppress or mask baroreceptor influences in the intact
human (10, 18). Changes in sympathetic and/or vagal
outflow during quiet breathing may thus be due to
respiration itself rather than to arterial pressure
changes accompanying respiration.

Changes in respiratory pattern are well known to
influence RSA. Whereas the average R-R interval re-
mains unchanged over a wide range of breathing fre-
quencies, an increase in RSA is observed with increas-
ing respiratory period and/or Vy (5, 13) even where
these latter increases are passive (11). In agreement
with these previous observations, our results show that
HRV and RSA increase with the longer respiratory
period induced by resistive loading, whereas the mean
R-R interval duration remains unchanged (Table 1).

The greater RSA amplitude reached for higher val-
ues of Tpor may be explained by the fact that a suffi-
cient lapse of time exists for expiratory cholinergic
influences to be dissipated, resulting in a lower resid-
ual vagal tone and thus a greater heart rate response,
hence leading to an unchanged mean R-R interval
associated with an increased HRV and RSA. On the
other hand, with shorter Ty, the effects of cholinergic

Table 2. Spectral and breath-by-breath analysis of HRV and RSA at given breathing rates

with and without resistive loading

Spectral Components, 102 s?

Total Power,

10792 LF HF RCF Phase
R, 2.94+1.37 0.95+0.68 1.06+0.57 0.710.37 0.440.02
F, 3.30+2.71 0.78+0.66 1.30+0.99 0.88+0.53 0.46+0.05
P 0.431 0.407 0.391 0.261 0.345
R, 4.57+1.59 1.82+1.53 1.73+0.62 1.76 =1.27 0.40+0.05
F, 4.67+3.08 0.96+0.73 237+1.72 1.99+1.78 0.42+0.09
P 0.814 0.156 0.455 0.526 0.225

R, and R, are the added loads and F, and F, are the corresponding imposed respiratory rates. Mean values were calculated over 6 subjects
for Ry-F, and 5 subjects for R,-F,. Amplitude and Phase are expressed, respectively, as a fraction of mean heart rate for each breath and a
fraction of respiratory cycle duration. Comparisons between loaded and imposed breathing frequency conditions were achieved by using
paired ¢-test for R-R interval, respiratory period, tidal volume, and R-R interval spectral frequency components and by paired Wilcoxon test

for and phase. No

was found between the 2 conditions for any variable.
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influences released during expiration may persist, lim-
iting the extent of the residual vagal release and en-
suing increase in heart rate, leading again to an un-
changed mean R-R interval but associated now with a
lower HRV and RSA.

In conclusion, this study on the effect of resistive
load breathing on cardiorespiratory interactions shows
that these interactions and particularly the changes in
RSA are strongly dependent on the changes in the
breathing pattern resulting from ventilatory load-com-
pensatory mechanisms.

Perspectives

Fluctuations of R-R intervals or heart rates are used
widely as indexes of the level of autonomic traffic to the
heart. If these fluctuations are to be taken as valid
noninvasive indexes of autonomic neural traffic, they
then should reflect such traffic faithfully and should
not be influenced importantly by respiratory-auto-
nomic interactions unrelated to net neural outflow.

Given the major influence of breathing pattern on
HRYV, one possible strategy may be to quantify the
effect of breathing pattern changes and possibly to
“subtract” this effect.

In our study, there was a linear relationship between
HRV and Tror and also between RSA characteristics
and Tpor. On the other hand, there were no significant
differences in HRV and RSA characteristics between
control and loaded conditions at the same breathing
frequency. These results are also in favor of the impor-
tant influence of the breathing pattern in HRV. They
also suggest that an individual or a generic HRV-Tyop
or RSA characteristic-Tpor may be established, which
can be used as an estimation of the Ty effect.
Changes in Tpop may be obtained either by imposed
breathing frequency, which depends on voluntary con-
trol of breathing, or by resistive loading, which in-
volves ventilatory compensating mechanisms.

We 'k ledge the technical assi of
Brouta.
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11.3.2.2 Au cours de différentes fréquences ventilatoires imposées

I a été observé des differences inter-individuelles non seulement sur les
caracteéristiques de ASR mais aussi sur I'amplitude de leurs variations. Afin de préciser
le rble de la frequence ventilatoire spontanée (individualité ventilatoire) dans ces
variations de ASR, nous avons étudiées chez 12 volontaires sains les caractéristiques
de ASR lors de ventilation d fréquence imposée. Les valeurs de fréquences imposées
étaient de part et d’autre de celle de la fréquence spontanée (FRs) de chaque
individu (FRs -6, FRs -3, FRs +3, FRs +6 cycles/min). Les résultats montrent que plus la
fréquence ventilatoire spontanée est basse, moins I'amplifude de ASR augmente

avec la diminution de la fréquence ventilatoire imposée.

Les variations des caractéristiues de I'arythmie sinusale d’origine respiratoire
induites par les changements de fréquence ventilatoire peuvent partiellement étre

expliguées par la fréquence ventilatoire spontanée de chaque individu.

Ben Lamine et al. (2004) Individual differences in respiratory sinus arrhythmia. Am J Physiol-
Heart and Circulatory Physiology

Nous avons aussi recherché si la diminution de la fréquence cardiaque de repos
consécutive a I'entrainement était due a une diminution du fonus vagal. Chez 20
athletes et 12 sujets témoins appariés en age, I'ECG, la respiration et la pression
artérielle ont été enregistrés a la fréquence ventilatoire spontanée ainsi qu’aux
fréquences ventilatoire spontanées = 4 cycles par minute. Les caractéristiques de
VFC et ASR ont été analysées. Les résultats montrent que seule la fréquence

cardiaque de repos est significativement plus basse chez les athletes.

Ces résultats suggerent que le tonus vagal objectivé par I'arythmie sinusale d’origine

respiratoire n’est pas modifié par I'entrainement.

Scott et al (2004) Enhanced cardiac vagal efferent activity does not explain training-induced
bradycardia. Auton Neurosc : Basic and Clinical
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Ben Lamine, Samia, Pascale Calabrese, Hélene Perrault, Tuan
Pham Dinh, André Eberhard, and Gila Benchetrit. Individual
differences in respiratory sinus arrhythmia. Am J Physiol Heart Circ
Physiol 286: H2305-H2313, 2004. First published January 29, 2004;
10.1152/ajpheart 00655.2003.—To investigate the interindividual dif-
ferences in respiratory sinus arrhythmia (RSA), recordings of venti-
lation and electrocardiogram were obtained from 12 healthy subjects
for five imposed breathing periods (Tror) surrounding each individ-
ual’s spontaneous breathing period. In addition to the spectral analysis
of the R-R interval signal at each breathing period, RSA characteris-
tics were ified by using a breath-by-breath analysis where a
sinusoid was fitted to the changes in instantaneous heart rate in each
breath. The amplitude and phase (or delay = phase X Tror) of this
sinusoid were taken as the RSA characteristics for each breath. It was
found that for each subject the RSA amplitude-Tror relationship was
linear, whereas the delay-Tror relationship was parabolic. However,
the parameters of these relationships differed between individuals.
Linear correlation between the slopes of RSA amplitude versus Tror
regression lines and /) mean breathing period and 2) mean R-R
interval during spontaneous breathing were calculated. Only the
correlation coefficient with breathing period was significantly differ-
ent from zero, indicating that the longer the spontaneous cau:::m
period the lesser the increase in RSA i with i

In addition to this * sional” aspect to p
thetic cardiac control, the between-individual differences in
RSA increase the difficulty of RSA interpretation. In the latest
committee report on heart rate (HR) variability (HRV),
method, and interpretation (3), this between-individual aspect
is mentioned several times leading to the conclusion that
“caution needs to be exercised in interpreting RSA, especially
for between-subject comparisons.” For example, the relation-
ship between RSA amplitude and pharmacologically defined
vagal tone when investigated for a number of subjects appears
to be less close than that found within a m_<n= ﬁ:c._mﬂ (15, Nov
The increase in RSA litude with i
period also varies among individuals (4, 17).

Given the importance of the respiratory modulation of
human autonomic rhythms and the prepotency of breathing
in generating respiratory frequency rhythms (1), the inci-
dence of the spontaneous breathing rate is worth clarifying
because there exists an individuality of the breathing pattern
(2, 27) that has been reported in several physiological
conditions (12, 26). We investigated the role of spontaneous
breathing period in RSA changes induced by breathing

breathing period. Similarly, only the correlation coefficient between
the curvature of the RSA delay-Tror parabola and mean breathing
period was significantly different from zero; the longer the spontane-
ous breathing period the larger the curvature of RSA delay. These
results suggest that the changes in RSA characteristics induced by
changing the breathing period may be explained partly by the spon-
taneous breathing period of each individual. Furthermore, a transfer
function analysis performed on these data suggested interindividual
in the ation of the heart rate.

human; heart rate variability; autonomic control of heart rate; indi-
viduality of breathing pattern

RESPIRATORY SINUS ARRHYTHMIA (RSA) is often considered to be
a valid index of vagal control justified by the highly linear
relationship between /) vagal efferent activity and the magni-
tude of RSA in spontaneously breathing anesthetized dogs (18)
and 2) the R-R interval and RSA amplitude during progressive
cholinergic blockade for a given subject (19, 24). These rela-
tionships are related to the cardiac vagal outflow and to the
cardiac vagal tone, respectively. RSA is also affected by other
aspects of autonomic cardiac control such as the parasympa-
thetic baroreflex (6, 11), and it has recently been shown that the
cardiac sympathetic outflow may also modulate RSA (28).

period changes. To quantify RSA, we used a breath-by-
breath analysis where a sinusoid is fitted to the instanta-
neous HR for each breath (23). The amplitude and the phase
(or delay) of this sinusoid constitute the characteristics of
RSA for that breath, and mean values are calculated for each
breathing period. We thus quantified RSA in healthy sub-
jects at various breathing rates.

Our hypothesis was that the rate of increase in RSA ampli-
tude with respiratory period might be similar in all vcc._va.
provided a c range of hing rates is
‘We defined this comparable range by starting from the indi-
vidual spontaneous respiratory frequency of each subject and
by choosing breathing rates surrounding this spontaneous
breathing rate. Our results show that, even under these condi-
tions, a difference in the rate of increase in RSA amplitude
with the breathing period existed between individuals. Simi-
larly, difference between individuals was found in the param-
eters of the parabola fitted to the delay-breathing period rela-
tionship. However, these differences (the rate of increase in
RSA on one hand and the curvature of RSA on the other hand)
were correlated with the spontaneous breathing period and not
with the mean R-R interval.

These results suggest that in all individuals there are changes
in RSA characteristics with total respiratory period (T'rot), but
there are differences between individuals in the features of
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these changes. These differences appear to be related to the
spontaneous breathing period of the subjects.

In addition, this protocol gives the possibility of performing
a transfer function analysis of the RSA control system (25).
Indeed, the plot of the normalized RSA [amplitude of RSA/
tidal volume (V)] versus Tror provides the “gain” of the
system at each Tror for each individual.

METHODS
Subjects

Twelve healthy volunteers between 18 and 28 yr of age, seven of
whom were men, participated in the study (means * SD: height,
1735 + 7.8 cm; weight, 64.7 + 10.4 kg; age, mean 229 + 3.1 yr).
Informed consent was obtained from all subjects. The experimental
protocol was examined and approved by the Institutional Ethics
Review Board.

Experimental Protocol

Subjects were comfortably seated and wore a face mask on which
a flowmeter (Fleish head no. 1) and a differential pressure transducer
(163PC0O1D36, Micro Switch) were mounted. Leaks from around the
mask were checked for before the recording was initiated using an
infrared CO, analyzer (Engstrom Eliza/Eliza MC). End-tidal CO,
fraction (FeTco,) was measured continuously using the same appara-
tus, and an electrocardiographic trace (ECG) was obtained covering
the whole of the recording period. For each subject, six series of 5- to
10-min recordings were performed, with the first corresponding to
spontaneous breathing and the following five with randomly sorted
sequences: at an imposed frequency fixed at the mean spontanecous
respiratory frequency and at the mean spontaneous respiratory fre-
quency +3 and +6 and —3 and —6 breaths/min. For subjects é:r a
low spontaneous respiratory frequency, the —3 and —6

quency component identified as the respiratory centered frequency
(RCF) component was also calculated using the frequency range
corresponding to =10% of the respiratory rate averaged over the
entire recording (23). The power corresponding to the different
frequency ranges was expressed as a percentage of the total spectral
power minus that corresponding to the very LF (0-0.04 Hz).

A more specific analysis of RSA was performed using a breath-
by-breath HRV analysis (23). To quantify the extent of within-
respiratory cycle HRV, a sinusoid was fitted to the changes in
instantaneous HR within the respiratory cycle. For each breath, the
maximum value of the sinusoid was expressed as a percentage of the
mean cardiac frequency calculated over that breath. This maximum
value is used as a measure of RSA amplitude. The time elapsing
between the beginning of the breath and the occurrence of this
maximum value is expressed cither in terms of the fraction of breath
duration (phase) at which it occurs or in seconds (delay = phase X
Tror). Average amplitude, phase, and delay values over several
breaths were then calculated for each recording. In addition, for each
breath, a normalized RSA amplitude (RSA amplitude divided by the
corresponding V) was calculated.

Statistical Analyses

Values are expressed as means = SD. Mean values of the various
variables between spontaneous and imposed breathing at the same rate
were compared using a paired t-test, whereas SDs were compared
using a Wilcoxon paired test.

To compare HRs between different recordings for a given subject,
mean R-R intervals at different imposed breathing frequencies were
compared using ANOVA.

Linear correlation coefficients and regression lines were calculated
for each subject from amplitude against breathing period plots using
all the values available for this ﬁ:_u._mo. (250300 breaths). To test the
hypothesis of a parallel regression line for all subjects, a lincar

recordings were replaced by —2 and —4 breaths/min. The highest
breathing rate observed among our subjects was 17 breaths/min, so
recordings for that subject were performed for 11, 14, 17, 21, and 23
_unmm__ﬁ\.:_z whereas Em lowest _uamu:::a rate observed was 7

with performed at 3, 5,7, 9, and
11 breaths/min.

To impose the breathing rate, an auditory cue was used, which
signaled only for the inspiration to begin. Hence, the inspiratory
I-to-expiratory time ratio, as well as the Vr, was chosen by the
subject. However, if FeTco, departed more than +0.4% from the
control level, subjects were requested to change their Vi accordingly.
In fact, in most cases, during imposed frequency breathing, subjects
are inclined to hyperventilate and thus before the recording was
started, they were asked to decrease the V.

Data Acquisition

The acquisition of the data was carried out on a Macintosh
microcomputer equipped with an analog-digital interface card. The
sampling rate was 256 Hz. To calculate Tror and Ve, and to study
HRV and RSA, a breath-by-breath analysis of all recordings was
performed. The ECG signal was processed, and the R-R interval series
were extracted and displayed on the computer screen to verify that the
signal exhibited no noticeable trend and to show up possible errors.
Means and SD of the R-R intervals were calculated for each record-
ing. R-R intervals were interpolated linearly at 0.25-s intervals to
obtain equidistant time samples, and spectral analysis was performed
using a recording length of at least 1,024 sample data points.

Data Analysis

A Fourier transform procedure was applied to obtain the low-
frequency (LF; 0.04—0.15 Hz) and high-frequency (HF; 0.15-0.40
Hz) components. For each recording, a restricted respiratory fre-

line was also using all the values of all subjects.
The differences in slope between this common line slope and the
individual slopes were calculated, and the sum of the weighted
differences was compared using a x>-test with 11 degrees of frecdom
as it applies to 12 subjects.

Parabolic fit was calculated for each subject on delay-vs.-breathing
period plots. Also, one parabolic shape was adjusted using all avail-
able values of all subjects. As in the case of the regression lines, to test
the hypothesis of the existence of a common parabola, the sum of the
weighted differences between the curvature parameter of the common
parabolic shape and those of the individual parabolas were calculated
again using a x>-test.

For all tests, significance was set at P < 0.05.

RESULTS

The values of Tror and R-R interval during spontaneous
breathing are given in Table 1.

RSA for Spontaneous and Imposed Breathing at the
Same Frequency

Figure 1 shows an example of two recordings on one subject
when breathing spontaneously (leff) and when breathing at an
imposed frequency equal to the spontaneous breathing rate
(right). Figure 1 also shows the instantaneous HR, delimited
breath by breath, and the corresponding spectral analysis for
the whole recording.

Comparison of the Tror, Vr, R-R interval, and RSA anal-
yses for spontaneous and imposed breathing at the same rate
for all 12 subjects is illustrated in Figs. 2 and 3. The P values
of the tests corresponding to the different variables for mean
values and SD are given in the legend to the figures. In Fig. 24
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Table 1. Parameters of amplitude = f(Tror) and delay = f(Tror) relationships Fig. 2. Comparison of total repiratory period (Tror: A B C
A), tidal volume (Vr; B), and RR interval (C) for TTOT s VT \ R-R interval
Parabola Fitting Delay = fiTror) spontancous and imposed breathing at the same & T g 7]
- frequency. The plot represents mean values and SDs v p Y
Spontaneous Breathing Line Fitting Coordinates of the maximum for imposed frequency against spontaneous breath- .
Subject - Amplitude = fiTror) _ H Hf. 4
No. Tror. s RR interval, s slope. Curvature Tror, s Delay, s ing for all 12 subjects. The mean values and SDs B 2 10 10
were compared between the two con @2 %y
1 33 0.799 0.041 —0.119 52 18 gard to Tror, mean values (P = 0.947) and SDs g JF—
2 74 0.818 0013 —0.027 8.7 25 (P = 0.054) were not significantly different. For V- £ MI_ 0.6l 08|
3 53 0617 0022 —0.036 9.1 32 the mean value was significantly higher during im- wy
4 82 0.766 0016 =0.041 84 33 posed breathing (P = 0.037), whereas SDs were not el ﬂ.! X o
5 75 0.780 0.017 —0.038 9.6 36 significantly ferent (P = 0.057). For the R-R " 1 ¥
6 56 0.823 0.010 —0.041 85 29 interval, neither the mean values (P = 0.576) nor 06 Ty 14
7 4.1 0.886 0015 ~0037 9.7 30 the SDs (P = 0.268) differed significantly between ¢ & 12 08 10 12
8 38 0.733 0017 —0.048 85 32 the two conditions. Spontaneous
9 4.4 0.834 0.021 —0.083 6.0 22
10 83 0.829 0.007 —0.017 132 37
11 65 0.923 0.009 ~0.034 116 35 is plotted the mean imposed breathing period against the 0.91 to 0.99. Individual regression lines were also calculated
12 42 0918 0.029 —0.050 85 29

The curvature (2a) of a parabola (ax® + bx + ¢) is often used to characterize this parabola because it
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independent of the ori

Fig. 1. Recording of spontaneous and im-
posed frequency breathing at the same rate.
Above the ECG, 1/R-R interval ratio [instan-
taneous heart rate (HR)] is represented with
arowheads indicating cach R wave. Also
shown are the instantaneous HRs for the
whole recording and the resulting Fourier
analysis spectrum with the delimitation of
the *very-low-frequency (VLF), low-fre-
quency (LF), and high-frequency (HF)
bands. The large shaded arrow is the mean
breathing frequency for the recording, and
two small shaded arrows indicate +10%,
delimiting the ~respiratory ~centered  fre-
quency (RCF) band.
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spontaneous period for all subjects. Although there was no
significant difference between the two conditions as to the
mean value, the imposed breathing appears to be more regular,
as shown by a smaller SD. The Vr (Fig. 2B) was slightly, but
significantly, higher during imposed breathing with, however,
no difference in SD with regard to the two conditions. Nor was
any significant difference found in the 77 and Ti-to-Tror ratio
with P = 0.082 and P = 0.133, respectively. Comparison of
the R-R interval (Fig. 2C) with regard to the two conditions
showed no difference either in mean value or SD.

The power of the spectral components of the R-R interval
signal was also compared for the two conditions: there was no
significant difference in either the LF (P = 0.422) or HF
component (Fig. 3A4), whereas the RCF component was signif-
icantly higher for the imposed frequency condition due to more
regular breathing in this condition.

RSA amplitude and delay were also compared between the
two conditions (Fig. 3, B and C), and there was no significant
difference with regard to either mean values or SDs.

RSA Changes for Imposed Breathing Frequencies

Spectral analysis. Figure 4 shows the RCF and HF compo-
nents of all the imposed breathing frequency recordings for the
12 subjects. As expected, the HF component falls for respira-
tory periods longer than 6.78 s (0.15 Hz), whereas the RCF
component exhibits a plateau at ~80% of the total power and
this plateau is reached for values of Tror of between 6 and 7 s.

RSA amplitude. RSA litude i d with i
Tror. For each subject, the coefficient of linear correlation
between RSA amplitude and Tror was calculated on all
breaths recorded for that subject. All 12 correlation coefficients
differed significantly from zero, and their values ranged from

Fig. 3. Comparison of HR variability (4) (power A
spectrum components) and respiratory sinus ar-

RCF (9 HF (9

for each subject. These regression lines are shown in Fig. 5,
and individual values of the slopes are given in Table 1. The
hypothesis of a common slope applying for all subjects was
then tested using a x*-test. The value of the test was x> = 698,
and thus the hypothesis was rejected (P < 0.001).

To investigate the relationship between these individual
regression lines and the subject characteristics, individual
slopes were plotted versus mean R-R interval (Fig. 6, right)
and also mean Tror (Fig. 6, leff) calculated from the recording
at spontaneous breathing. It can be seen that, whereas no
correlation was observed with R-R interval (r = 0.135, not
significant), the linear correlation with spontaneous Tror was
significantly different from zero (r = 0.648, P < 0.03). The
slope of the latter regression line is negative, indicating that the
higher the spontaneous T'ror the lower the rate of increase of
RSA amplitude with respiratory period.

RSA delay. The delay increased with Tror up to a certain
value and then decreased. For each subject, a parabolic fit was
found. The coefficients of multiple correlation were signifi-
cantly different from zero for all subjects, and their value
varied from 0.93 to 0.99 among subjects. These parabolas are
shown in Fig. 7. However, the parabola appeared to differ
between individuals as can be seen in Table 1, where the
curvature and the coordinates of the maximum of individual
parabola are shown. The curvature (2a) of a parabola (ax> +
bx + ¢) is often used to characterize this parabola because it is
independent of the origin. A x>-test to explore the hypothesis
of a parabola common to all subject lead to a rejection of the
hypothesis for all the parabola curvature (x> = 93.5, P < 0.01).

As above, we investigated the relationship between these
parabolas and the individual characteristics. We plotted the
curvature versus mean R-R interval (Fig. 8, right) and mean

B C

Amplitude Delay

rhythmia (RSA) characteristics [amplitude (B) and
delay (C)] for spontancous and imposed breathing at
the same frequency. The mean values and SDs
(apart those for HF and RCF) for imposed frequency
against spontancous breathing condition are plotted
for all 12 subjects. The power in the HF band was
not significantly different between the two condi-
tions (P = 0.463), whereas that in the RCF band
was significantly higher (P = 0.028) for imposed
breathing. There was no significant difference in

Imposed

%

s

o o B

either amplitude (mean value, P = 0.196; and SD, o
P = 0.625) or delay (mean value, P = 0.062; and
SD, P = 0.348) between the two conditions.

004 012 020 5 30 a5
Spontaneous
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Fig. 4. The power at RCF (A) and HF (B) for all the recordings and for all
subjects. The power is expressed as a percentage of the total power minus that
at VLF (VLF < 004 Hz)

Tror (Fig. 8, left) calculated from spontaneous breathing. Only
the correlation coefficient (r = 0.660, P < 0.03) between
curvature and spontaneous Tror was significantly different
from zero, indicating that greater curvature is associated with
longer spontaneous Tror.

RSA transfer function analysis. The normalized RSA ampli-
tude (RSA amplitude-to-V- ratio) was plotted versus Tror for
each subject. Correlation coefficients were calculated for each
subject. All coefficients were significantly different from zero,
and individual linear regression lines were calculated (Fig. 9).

DISCUSSION

The main findings of this study were that /) there exist
differences between individuals in that RSA characteristics
change with Tror and 2) these differences may be, at least
partly, explained by the differences in the spontaneous breath-
ing period between subjects. Furthermore, interindividual dif-
ferences in the HR modulation system are suggested by the
results of a transfer function analysis performed on these data.

Spontaneous Versus Imposed Breathing

Before studying RSA corresponding to different imposed
breathing periods, we felt that the RSA for spontaneous and
imposed breathing at the same rate should be compared to
ascertain that the respiratory period was the main explicative
factor and thus to justify the study being carried out with
imposed breathing rates.

In humans, volitional breathing arises from a corticomotor
excitation of the diaphragm, which may act directly on the
phrenic motor nucleus via the corticospinal tract “bypassing”

brain stem respiratory centers; alternatively, or in addition, this
may be achieved indirectly via the respiratory centers and
bulbospinal paths. There is no clear evidence for these alter-
natives, although several studies suggest that the corticomotor
excitation of the diaphragm does not transit via the medullary
respiratory centers (7). The observation of no difference in
RSA between spontaneous and imposed breathing at the same
rate does not provide indication in favor of either alternative. It
merely suggests that for each individual breathing rate per se
has an influence on the characteristics of RSA. HRV and RSA,
spontaneous or imposed, at the same breathing rate have been
studied by several authors (10, 16, 17, 21, 22). In these studies,
no difference was found in either mean HR or HF amplitude
between spontaneous and paced, or metronomic, breathing.
Our results in agreement with these observations lead to the
conclusion that the voluntary control of breathing does not
enhance vagal tone or alter the vagal modulation of HR.

Experimental Protocol

We chose to impose breathing frequencies starting off from
the spontaneous breathing rate of each subject. This was done
because of the great variability in resting breathing rate among
subjects (8) and also because this breathing rate appears to be
an individual characteristic (2). Thus the recordings were not
performed over the same range of breathing frequency for all
12 subjects, and also the width of the frequency range used
varied with the individual subject. This can be seen clearly in
Fig. 5, where the extremities of a regression line show the
extreme values of respiratory period obtained for the subject
concerned. These differences may be considered as a bias in
the experimentation, but on the other hand it should be pointed
out that a frequency of 12 breaths/min represents an increase in
breathing rate for some subjects and a decrease for others, and
this may influence the regulatory mechanisms brought into
play. In this study, for each subject, starting from a breathing
rate corresponding to the spontaneous rate two higher and two
lower rates were imposed, thus surrounding the spontaneous
rate.

Amplitude (%)

0 2 4 6 8 14

10 12 8 20
TTOT (s)
g. 5. Amplitude-Tror regression lines for all subjects. The regression lines
were obtained over all the breaths recorded for each subject. The extremities
of each regression line correspond to the lowest and highest values recorded
for that subject.
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R-R Interval: Mean Value and Spectrum for Different
Breathing Period

Changing the respiratory period did not change the HR. This
observation is in accordance with several authors (1, 4, 17),
and, as suggested by Brown et al. (4), different within-subject
breathing frequencies and depths distribute vagal firing within
the respiratory cycle but do not alter the level of vagal outflow.
Kollai and Mizsei (20) found that the mean heart period
changed in response to slow breathing and that the nature of the
change (increase, decrease, or no change) varied with the
individual. Differences in the experimental protocol and in the
range of periods explored in each subject may explain this
divergence.

The percentages of the power spectrum occurring in the HF
and RCF bands of the instantaneous cardiac rate signal are
shown in Fig. 4. It can be seen that, as expected, the power in
the HF band is greater than power in the RCF band up to the
period (6.7 s) corresponding to 0.15 Hz and that beyond this
there is a noticeable difference between the two plots: the
values of HF fall, whereas a plateau is reached for RCF, which
appears to be at ~80% of the total power spectrum. It should

Delay (s)

be noted that if the HF band is not suitable as a means of
describing the power corresponding to breathing at low breath-
ing rates, the RCF band has the disadvantage of varying in
width with breathing rate.

Nevertheless, as the total surface of the power spectrum
represents the variance of the analyzed signal, the percentage
of the power in a given band (here, RCF) may be considered to
be the variance associated with this frequency range. Thus the
fact that the power in the RCF band reaches a plateau suggests
that the extent of the HRV dependent on breathing rate does
not exceed 80% of the total variability.

RSA Amplitude

All subjects exhibited an increase in RSA amplitude with
increasing respiratory period at least in the explored range of
periods. This observation is in accordance with the findings of
Hirsch and Bishop (17), who estimated RSA amplitude as the
difference between the lowest and highest instantaneous HRs
in each breath, and also those of other authors who used
spectral analysis (10).

Our initial hypothesis, which was that parallel regression
lines could be found, representing the RSA amplitude-versus-
breathing period relationship for all subjects, was rejected by
the statistical test, which indicated interindividual differences
in this relationship. Similar results have been reported by
Hirsch and Bishop (17), who plotted RSA amplitude versus
breathing rate for each subject on a log-log scale. They found
a constant RSA for low breathing rates, below 3-7 breaths/min,
and then a decreasing relationship, the slope of which was
expressed in decibels per decade and which defined the system
roll-off. The origin of the decreasing relationship (LF inter-
cept) varied among subjects, as did the roll-off, i.., the slope
of the log RSA-log breathing frequency plot.

In the same way as for the roll-off, the slope of RSA
amplitude-breathing period relationship exhibited interindi-
vidual differences and this slope was not related to an individ-
ual’s HR but correlated to their spontaneous breathing period.
This slope, which represents the rate of change of RSA am-
plitude with 7ror, may be considered to be a measure of the

TTOT (5)
Fig. 7. Delay-Tror relationships for all subjects. The parabolic fit was calcu-
lated for all the breaths recorded for each subject. For each parabola, the
extremities correspond to the lowest and highest values recorded for that
subject.

responsiveness of the HR modulation mechanism to changes in
respiratory period. The significant negative correlation with the
spontaneous Tror suggests that subjects with a low spontane-
ous breathing period (high rate) will be more responsive; i.e.,
their RSA amplitude will increase more with increasing period
than for subjects with long breathing periods.
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This responsiveness is somewhat different from the one
defined by Kollai and Miszei (20). They defined an individual
RSA responsiveness expressed as the ratio AHP/ARSA, where
AHP is the change in heart period with increasing respiratory
period. Because three types of AHP were found [individuals
with i ing (A), d ing (Z). and uncl 1 (A/Z)
AHP], the slope of the AHP-ARSA plot was respectively
positive, negative, or close to zero. This ratio was found to be
correlated to parasympathetic control (PC), defined as the
changes in heart period after complete parasympathetic block-
ade by the administration of atropine. Although there was a
continuum of distribution of subjects along the AHP/ARSA-
against-PC regression line, the A type was mainly distributed
on the left-hand side of the graph (i.e., high responsiveness
associated with low PC) and the Z type was mainly distributed
at the right-hand end of the regression line. Kollai and Miszei
concluded that the interindividual differences in RSA have
their origin mainly in the differences in PC, although they
found that introducing respiratory characteristics (T'ror and
V1) improved the degree of RSA-PC correlation.

RSA Delay

The delay is the time elapsing in each breath between the
onset of inspiration and the reaching of the maximal value of

the sinusoid fitted to the instantaneous HR. We chose the delay
(delay = phase X Tror) rather than the phase because of its
time dimension, which might make the interpretation of the
results easier. This variable differs somewhat from the phase
angle between the P-P interval and respiration reported by
Eckberg (9), who measured the phase angle between the onset
of inspiration and the heart period shortening. Although both
Eckberg’s study and the present one are concerned with the
time lapse between inspiratory onset and HR acceleration, for
Eckberg the phase was defined by the start of the acceleration,
whereas in this study the delay was defined by the moment of
the maximum acceleration. Nevertheless, in both studies, a
change occurred at periods in the range of 8-10 s. Indeed,
Eckberg reported that at breathing intervals of 8 and 10 s, P-P
shortening began before the onset of inspiration, so that the
polarity of the phase changed from positive to negative as the
breathing period increased. In our study, the delay-Tror rela-
tionship is parabolic and for 8 of 12 subject the maximum
occurred in the 8- to 10-s range (Table 1).

Our hypothesis was that of the existence of a common
parabolic shape representing the RSA delay-Tror relationship
for all subjects. This was based on the assumption that the time
taken to develop the inspiratory parasympathetic inhibition on
the heart and reach the maximum HR acceleration would be
similar among subjects. Given our protocol, we expected a
parabolic fit only for those subjects with long Tror. Our results
rejected this hypothesis, and, as can be seen in Fig. 7, even for
those subjects such as subjects I and 2 with short spontaneous
Tror. a parabolic relationship exists between the delay and
Tror. and the delay is reached earlier than at a Tror value of
8 s. The curvature as well as the other parameters of the
parabolas were found to be related to the spontaneous Tror,
indicating the influence of the latter on changes in RSA
brought about by changing the breathing period.

One possible interpretation of these results would be that the
pattern of the modulatory mechanism is affected, or even
determined, by the spontaneous breathing period so that for
subjects with a long spontaneous T'ror the modulation will be
initiated either later in the breathing period or much more
gradually than for those subjects with a shorter spontaneous
t g period.
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Fig. 9. Normalized amplitude-Tror regression lines for all subjects. The

regression lines were obtained over all the breaths recorded for each subject.
The extremities of each regression line correspond to the lowest and highest
values recorded for that subject.

RSA Transfer Function Analysis

In this study, it can be assumed that in each series of
recordings on one subject, the only variable that is changed
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is the breathing rate. Thus the breathing rate changes may be
considered as an input to the HR modulation system, the
output of which is RSA. As any change in the breathing rate
is associated with changes in V to compare the gain of the
HR modulation system within and between subjects, the
amplitude of RSA of each breath has to be normalized, i.e.,
divided by its V.

Figure 9 shows that the change in the gain of the system
varies among individuals; in some subjects (subjects 7, 9, and
10) there were little changes, in contrast to some others
(subjects 1, 3, and 12). Furthermore, over a fixed respiratory
period range, there are between-individual differences in the
gain of the system. This indicates that these differences are not
due to the different amount of the input but rather to the
characteristics of the system.

Thus if one subject’s line is “higher” than another subject’s
line, then the former subject has greater gain. If one subject’s
line intersects with another subject’s line, then the former
subject has greater gain over a particular range of respiratory
period and lesser gain over the remaining respiratory range.

Transfer function analyses have been used in physiological
(25) and pathological (13) conditions where the gain of the
system was quantified and considered as being a measure of the
autonomic tone.

Individuality of RSA?

These results, in addition to several other observations (4,
15, 20) on interindividual differences in RSA changes, suggest
that there may exist an individuality of RSA. However, the
existence of individuality implies not only differences between
individuals but also reproducibility for a given subject. Little
data are available on the reproducibility of RSA at a given
period. Grossman et al. (14) and Grossman and Kollai (15)
showed that behavioral tasks known to influence cardiac vagal
tone produce closely corresponding within-subject changes in
mean R-R interval and RSA when the respiratory parameters
are controlled. The comparison of spontaneous and metro-
nomic breathing as in this study and several other studies
suggests that there was no difference in RSA amplitude be-
tween these two conditions even in head-up tilt and low body
negative pressure situations, as reported by Patwardhan et al.
(22). For respiratory periods other than spontaneous, the RSA
amplitude corresponding to an increased respiratory period
induced by the addition of resistive load was similar to the
RSA amplitude for the same imposed respiratory period (5).

In conclusion, in addition to the differences in RSA between
individuals, there exist interindividual differences in the RSA
control system response to changes in Tror dependent on /)
the spontaneous breathing period and 2) on the strength of
autonomic tone.

Therefore, these results suggest that, in addition to the
influence of respiratory characteristics on the gating of sym-
pathetic and vagal motoneurons responsiveness, the individual
breathing rate may play a role in the build up of the PC of HR.
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.4 MESURE PHYSIOLOGIQUE

La signification et la pertinence de la mesure physiologique constituent une part
importante de mes travaux de recherche.

Le recueil de données expérimentales sur des volontaires sains ou des patients, leurs
analyses et leurs interprétations ont constitué les bases de mes travaux de recherche
quel gu'en soit I'axe : exploration, mesure ou approche théorique.

Le recueil de données nécessite une autorisation de lieu de recherche biomédicale
délivré par I’Agence Régionale de Santé d'une part, et un avis favorable d'un
Comité de Protection des Personnes pour chaque protocole d’'étude, d’'autre part.
Dans ce cadre, j'ai pris en charge depuis 2005, au sein de I'équipe PRETA, la
responsabilité de la réalisation d'un plateau technique pour pratiquer des
enregistrements sur volontaires sains & partir de mesures non invasives. J'ai
entierement rédigé le dossier de demande d’'autorisation de lieu de recherche
biomédicale pour la salle d’enregistrement de noftre laboratoire. Cette autorisation a
été obtenue pour la premiere fois en 2008. J'ai aussi redigé et soumis un protocole
sur volontaires sains intitulé « Validation d’outils d’étude de la respiration et de ses
interactions avec la circulation et la déglutition », qui a été accepté pour trois ans
par le Comité de Profection des Personnes "Sud Est V" (CHU de Grenoble) en mai
2008, pour lequel, j'ai demandé un renouvellement accepté jusqu’en juin 2013.
L'autorisation de lieu de recherche ainsi qu'un protocole ont ensuite été reconduits
par I'équipe et je suis actuellement coresponsable (depuis 2013) de ce plateau
technique et veille & la mise en application du protocole en étroite collaboration
avec le meédecin investigateur. J'ai aussi partficipé au projet qui consiste a
promouvoir cette plate-forme au sein de I'Université, et ainsi permetire le partage de

notre matériel et de notre savoir-faire avec des chercheurs d’autres équipes.

1.4.1 Comparaison de la ventilation mesurée par
pneumotachographie et pléthysmographie respiratoire a
variation d’inductance

La pléthysmographie respiratoire a variation d'inductance (PRI) est une méthode de

mesure non-invasive mesurant des variations de sections de surface du thorax
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(PRIo) et de I'abdomen (PRIasp) (Martinot-Lagarde et al, 1988) qui repose sur les lois

de la magnétostatique. En effet, Les variations de courant induit par un champ
magnétique généré a l'intérieur des spires d'une bobine entourant les
compartiments du thorax et de I'abdomen, permettent de déduire les variations de
surfaces de sections de ces compartiments (courant induit dépendant de I'aire
incluse dans la bobine). Les spires sont constituées de fils conducteurs isolés, cousus

en zig-zag sur un gilet en tissus extensible (Figure 11).

Gilet de Pléthysmographie Signaux PRI du thorax (PRly,)
Respiratoire par Inductance (PRI) et de I'abdomen (PRI gp)

N

PRlyo
JANVANVANY
PRlrgp
WaN%

Figure 11 : Capteur et signaux de pléthysmographie respiratoire & variation d'inductance (PRI)

Le volume (Vrr), estimation du volume courant, est obtenu par la combinaison
linéaire pondérée des signaux du thorax (PRhHo) et de I'abdomen (PRIasp) mesures
par PRI : Veri = T PRhto + o PRIaso. La détermination des coefficients de pondération T
et « constitue la calibration du systeme de mesure PRI. De nombreuses méthodes de
calibration existent, pour notre étude nous avons utilisé les valeurs T =2 et « = 1

(Banzett et al, 1995). Le debit ventilatoire obtenu par PRI (Deri) peut aussi étre calculé

en dérivant puis en filirant (filtre passe-bas) ce volume Ver.

Afin de vérifier la validité des données ventilatoires obtenues par PRI, la respiration a
été enregistrée simultanément par PRI et pneumotachographie chez dix volontaires
sains au repos et au cours d'addition de deux niveaux de résistances a la bouche,
en position assise, couchée sur le dos et sur le coté. Les volumes courants obtenus
par les deux méthodes (Ver) et par intégration du signal débit mesuré par
pneumotachographie (Venr) sont fres proches pour des volumes inférieurs a un lifre.
Au dessus de cette valeur, la mesure par PRI semble sous estimer les volumes (Figure
12).
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Figure 12 : Représentation de volumes courants obtenus par intégration du signal débit mesuré par
pneumotachographie (Venr) en fonction des volumes courants obtenu par le signal PRI (Ver) pour les 10
sujets dans toutes les 9 conditions : en position assise, couchée sur le dos et le cété au repos et avec
I'addition de deux niveaux de résistances additionnelles.

Ce qui peut s'expliquer par le fait que pour des volumes courants élevés, les
variations de sections de surfaces du thorax et de I'abdomen ne sont pas les seules
composantes des variations de volume.

Nous avons calculé la qualité de I'ajustement entre les signaux de débit ventilatoire
obtenus par pneumotachographie (Denr) et par dérivation du volume PRI (Drri). Elle
est la plus élevée en ventilation spontanée, reste supérieure a 90% pour la plus faible
des résistances additionnelles (r 5 cmH20.5.1") et est nettement plus faible pour la
deuxieme résistance (~ 14 cmH20.5.1).

Ce qui peut suggérer que lors de I'addition de résistance, les variations des
compartiments du thorax et de I'abdomen peuvent éfre de formes différentes

entfrainant des écarts entre les formes débits Denr et Deri.

En conclusion, les données respiratoires acquises par pléthysmographie respiratoire &
variation d’inductance (PRI), peuvent étre utilisées pour I'évaluation de la
ventilation, la limitation étant le niveau du volume courant (inférieur a un litre).
Quant & la forme des signaux de débit ventilatoire obtenu par PRI et par
pneumotachographie, la qualité de I'ajustement est satisfaisante dans les conditions

de repos et diminue avec le niveau croissant des résistances additionnelles.

Eberhard A et al (2001). Comparison between the respiratory inductance plethysmography
signal derivative and the airflow signal. Adv Exp Med and Biol
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Afin d'étendre les conditions de validité de la mesure PRI pour I'évaluation de la
ventilation (notamment pour des VT>1 litre), nous avons modifié le traitement des
signaux PRI. En effet, précédemment le signal de débit Dent a été obtenu apres
dérivation de Veri puis filirage avec le méme filtre passe bas quel que soit le sujet ou
la condition. Dans ce travail, nous avons étudié I'utilisation d'un filtre adapté &
chaque individu (filtre individuel) dans une condition donnée et la possibilité de
I'appliquer pour le méme individu dans une autre condition. La respiration a donc
été enregistré par pneumotachographie et PRI chez douze volontaires sains au cours
de la ventilation de repos et de deux protocoles d'hyperventilation volontaire : 1) a
la fréquence ventilatoire de repos et 2) & une fréquence ventilatoire de 20
cycles/min.

Un filtre adapté individuel a donc été calculé en se basant sur les signaux mesures
par PRI et pneumotachographie (fonction de transfert) en respiration de repos. Ce
filtre a ensuite été appliqué sur les signaux obtenus en hyperventilation volontaire
puis lors de la phase de récupération. Un filtre individuel a aussi été calculé a partir
des signaux enregistrés au cours des autres conditions (hyperventilation volontaire et
récupération). Dans plus 0% des cas, la qualité de I'ajustement entre Denr et Deri €n
appliquant un filire individuel calculé avec les enregistrements au repos était
supérieure a 90%. Elle n'est pas meilleure lorsque I'on applique un filtre individuel
calculé avec les enregistrements de la condition (hyperventilation volontaire et

récupération).

L'application d’un filtre individuel permet d'étendre le domaine de validité des
mesures de la ventilation par pléthysmographie respiratoire a variation d'inductance
(PRI). Le filtre individuel calculé a partir des signaux PRI et de pneumotachographie
de repos peut-étre appliguée a différentes conditions de ventilation

(hyperventilations volontaires et récupérations) pour un sujet donné.

Calabrese et al (2007) Respiratory Inductance Plethysmography is suitable for voluntary
hyperventilation test” Annual inter conf of IEEE Eng in Med and Biol Society
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Respiratory Inductance Plethysmography is suitable for voluntary
hyperventilation test.

Pascale Calabrese, Tudor Besleaga, André Eberhard, Victor Vovce and Pierre Baconnier.

Abstract—. The aim of this work was to evaluate the
goodness of fit of a signal issued of the respiratory inductance
plethysmography (RIP) derivative to the airflow signal during
rest, voluntary hyperventilation, and recovery. RIP derivative
signal was filtered with an adjusted filter based on each subject
airflow signal (pneumotachography). For each subject and for
each condition (rest, voluntary hyperventilation, and recovery)
comparisons were performed between the airflow signal and
the RIP derivative signal filtered with an adjusted filter
obtained either on rest signal or on the studied part of the
signals (voluntary hyperventilation or recovery). Results show
that the goodness of fit was : (1) higher than 90% at almost all
comparisons (122 on 132), (2) not improved by applying an
adjusted filter obtained on the studied part of the signals. These
results suggest that RIP could be used for studying breathing
during voluntary hyperventilation and recovery using adjusted
filters obtained from comparison to airflow signal at rest.

1. INTRODUCTION

w ESPIRATORY inductance plethysmography (RIP) is a
noninvasive method for measurement of breathing
providing rib cage and abdomen cross sectional area
changes. The linear combination between rib cage and
abdomen cross sectional area changes allows to estimate
breathing volume changes. There are very few comparison
between airflow and RIP derivative signal in physiological
conditions. Eberhard et al. [1] have compared airflow and
RIP derivative signal in three different postures (seated,
lateral and dorsal supine) and also in control and in two
resistive loaded conditions. The fit of RIP derivative to the
airflow signal remained well in control condition and at a
resistance of ~5 cm H20/I/s but lesser at a resistance of ~14
cm H20/I/s. The RIP derivative signal was smoothed by
using the same low-pass filter for all subjects and all
conditions.

Voluntary hyperventilation test have been proposed to test
predisposition to the hyperventilation syndrome [2] which is
used to describe patient with the somatic symptoms of both
hypocapnia and anxiety [3]. RIP allows recording of
breathing without using mask (needed for
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pneumotachography) and thus subjects may not be aware
that their breathing is recorded. The aim of the present work
was to evaluate the consistency between airflow
(pneumotachography) and RIP derivative during voluntary
hyperventilation. Airflow and RIP signals were both
recorded in healthy subjects during rest, voluntary
hyperventilation, and recovery. The RIP derivative signal
was processed by a filter calculated with airflow
(pneumotachography) taken as the reference signal, for each
subject in each of all circumstances. Comparison of the
goodness of fit of the filtered RIP derivative to the airflow
signal in different conditions was performed in order to
determine if the adjusted filter obtained on rest recording
could be applied to the other conditions and thus allows to
go without the mask during voluntary hyperventilation and
recovery.

1. MATERIALS AND METHODS

A. Materials and experimental protocol

We studied twelve healthy volunteers between 24 and 65
years of age, five of whom were men. All study participants
provided informed consent. The study was approved by the
relevant ethics committee (CHU Grenoble). Breathing was
recorded simultaneously with a flowmeter (Fleish head no.1)
and a differential transducer (163PC01D36, Micro Switch)
placed on a face mask and with a RIP (Visuresp, RBI).
Leaks from around the mask were checked for before the
recording was initiated using an infrared CO2 analyser
(Engstrom  Eliza/Eliza MC). End-tidal CO2 fraction
(FETCO2) was measured continuously using the same
apparatus. Subjects were in semi-supine position. Two series
of recordings were performed successively: (1) at rest (three
minutes, Restl), during voluntary hyperventilation at each
subject’s spontaneous breathing rate (three minutes, HV1),
during recovery (ten minutes, Recl), and (2) successively at
rest  (three  minutes, Rest2), during  voluntary
hyper ilation at 20 h in (three minutes, HV2),
during recovery (ten minutes, Rec2). Subjects were
encouraged to increase tidal volume in order to descend
FETCO2 to 3.5 %. To impose the breathing rate, an auditory
cue was used, which signaled only for the inspiration to
begin.

B. Methods

All signals were digitized at a rate of 100Hz. For each
recording, we obtained a minimum of 25 breaths at rest up to
150 for the recovery period. The 15 most regular (duration)
consecutive breaths of the airflow signal were chosen and
formed the reference part. A least squares method was used

1-4244-0788-5/07/$20.00 ©2007 IEEE 1055

over this part of signal to obtain a RIP volume signal (VRIP)
by combination of rib cage (RCRIP) and abdominal
(ABDRIP) signals compared to the integrated flow signal
(VPNT):

VRIP= Tt RCRIP, + o0 ABDRIP, 1)

where =2 o was imposed [4]. The derivative of VRIP (FRIP)
was then calculated by using centered divided differences:

FRIP, = (VRIPy; - VRIP;) / 2At 2)

A transfer function was calculated over the reference part
between RIP derivative and airflow signal to take out an
adjusted filter. Then the adjusted filter calculated on the
reference part of signals was applied on the entire recording.
The goodness of fit of the filtered RIP derivative to the
airflow signals (concordance p) was calculated on the entire
recording :

N 2 N — 2

p=1- MAmEE - mmz?v / MAmwz._; - mmzqv 3)
k=1 i=1

where FPNT, and FRIP, are respectively the airflow and the

filtered RIP derivative signals at each instant and FPNT is
the mean value of FPNTy over the whole recording. For one
subject the concordance was calculated between the standard
airflow signal and RIP derivative signal filtered with an
adjusted filter based either on reference signals (Restl) or on
HV1, Recl, Rest2, HV2 and Rec2 signals. For each subject
11 concordances were then obtained applying an adjusted
filter calculated on different conditions: concordance of
“Rest] filter” applied to Restl signal (Restl/Restl), to HV1
(HV1/Restl) and all other conditions (total 6 concordances)
and concordances of adjusted filters calculated on their own
conditions  (HVI/HVI, = Recl/Recl, ..., total 5
concordances).

II. RESULTS

Fig.1 shows airflow signal (pneumotachography) and RIP
derivative signal for HV1 obtained with adjusted filter

Iculated (a) on Restl d =97.03%), and (b) on
HV1 (concordance = 97.88%) for subject #5.

Fig.2 and Fig.3. show concordances expressed in
percentage for each subjects and each conditions. The
goodness of fit was: (1) higher than 90% at almost all
comparisons (122 on 132), (2) not improved by applying a
filter adjusted on the studied condition except for subject #4
for which concordance increase from 29.19% to 85.18%
when filters are calculated on Restl, and on HV1 (Fig.3. b)

Fig. 1. Subject # 5 - Airflow signal measured by pneumotachograph
(black thin line) and RIP sum derivative signal for HV1 (grey line) obtained
applying an adjusted filter calculated (a) on Restl, and (b) on HV1.
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Fig. 2. Concordance- goodness of fit of the RIP derivative to the standard
airflow signals expressed in percentage for cach subject and each conditior
() at rest (Rest1), (b) during voluntary hyperventilation at each subject’s
spontancous breathing rate (HV1), and (c) during recovery (Recl). For
Restl an adjusted filter calculated respectively on Restl (grey square,
IRestl) was applied; for HVI adjusted filters calculated respectively on
Restl (grey square, /Restl) and on HV I (black square, /HV1) were applied;
for Recl adjusted filters caleulated respectively on Restl (grey square,
/Restl) and on Recl (black square, / Recl) were applied.
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Fig. 3. Concordance- goodness of fit of the RIP sum derivative to the
standard airflow signals expressed in percentage for each subject and each
condition: (a) at rest (Rest2), (b) during voluntary hyperventilation at 20
breaths/min (HV2), and (c) during recovery (Rec2). For Rest2 adjusted
filters calculated respectively on Restl (grey square, /Restl) and on Rest2
(black square, /Rest2) were applied: for HV2 adjusted filters calculated
respectively on Restl (grey square, /Restl) and on HV2 (black square,
JHV2) were applied, for Rec2 adjusted filters calculated respectively on
Restl (grey square, /Restl) and on Rec2 (black square, / Rec2) were
applied
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Fig. 4. Subject # 4 - Airflow signal measured by pneumotachography (black
thin line) and RIP sum derivative signal for HV2 (grey line) obtained
applying an adjusted filter calculated (a) on Restl, and (b) on HV2, rib cage
and abdomen cross sectional area changes.

IV. DiIscussION

The superimposed airflow and RIP derivative signals
(Fig.1) and concordance values presented (Fig. 2 and 3)
show that the fit of RIP derivative to the airflow signal is
well and not improved by applying a filter adjusted on the
studies condition, except for subject #4 (Fig.3.b). Fig.4
shows airflow signal (pneumotachography) and RIP sum
derivative signal for HV2 obtained applying an adjusted
filter calculated (a) on Restl (¢ d: =29.19%), and
(b) on HVI (concordance = 85.18%) for subject #4. The
unusual (plateaued) shape of abdominal signal may explain
the differences obtained by the two methods for this subject.

These results indicate that RIP could be used for studying
breathing during voluntary hyperventilation and recovery
without a mask, provided that airflow signal was recorded at
rest during a short period (about 15 breaths). A limiting
condition seems to be that rib cage and abdomen signals
show no disturbance. This work suggests that respiratory
signals recorded at rest contain a pertinent information
usable for respiratory signals recorded in other conditions
(voluntary hyperventilation and recovery).
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I1.4.2 Méthode d’évaluation de la fonction respiratoire

1.4.2.1 Différence de forme thorax-abdomen et évaluation des variations des

résistances des voies aériennes

Au cours de la respiration de repos, les mouvements du thorax et de I'abdomen ne
sont pas tout & fait synchrones et il a été observé que les “décalages” entre les
variations de mouvements de ces deux compartiments sont faibles chez les sujets
sains et plus importants chez des patients atteints d’obstruction bronchique (Sharp et
al, 1977 ; Ringel et al, 1983). Agostoni et Mognoni (1966) et Konno et Mead (1967) ont

été les premiers a effectuer des mesures sur chaque compartiment. Depuis, de
nombreuses méthodes ont été explorées pour mesurer les mouvements du thorax et

de I'abdomen. Dans un bilan, Seddon (2015) a conclut que la pléthysmographie

respiratoire a variation d'inductance (PRI) est la méthode la plus utilisée chez les
adultes et particulierement chez les enfants, pour I'évaluation de I'asynchronisme
thoraco-abdominal (Allen et al, 1990, 1991 ; Sivan et al, 1990 ; Davis et al, 1993;
Hammer et al, 1995 et 2009 ; Selbie et al, 1997 ; Reber et al, 2001 ; Mayer et al, 2003 ;
Upton et al 2012 ; Chien et al, 2013 ).

Au cours de ma these, j'ai pu montrer une corrélation significative entre la différence

(quantifié par une distance) entre les mouvements du thorax et I'abdomen mesurés
par PRI et les valeurs de résistances ajoutées au niveau de la bouche chez des
volontaires sains. L'évaluation de I'asynchronisme thoraco-abdominal pourrait ainsi
constituer une méthode non-invasive d’évaluation de la sévérité de I'obstruction.

Ce travail a été poursuivi et approfondi dans le cadre d'une these (Université de
Monastir) que j'ai codirigée en collaboration avec le laboratoire de biophysique de
la faculté de Médecine de Sousse (Tunisie). Chez 44 patients suivis pour une
obstruction bronchique modérée au CHU de Sousse (service d'exploration
fonctionnelle respiratoire), deux explorations fonctionnelles respiratoires avec mesure
des résistances respiratoires obtenues par pléthysmographie corporelle, ont été
réalisées avant et aprées la prise d'un bronchodilatateur. Les signaux du thorax et
I'abdomen ont été enregistrés dans ces deux conditions par PRI. Des volontaires
sains appariés en age, taille et poids avec le groupe obstructif ont suivi un test
d’exploration fonctionnelle avec mesure des résistances respiratoires obtenues par
pléthysmographie corporelle et les signaux thoracique et abdominal ont été
enregistrés au repos par PRI.
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Les valeurs de résistance respiratoire et de distance entre les signaux du thorax et de
I'abdomen sont significativement moins élevées chez le groupe de sujets sains que
chez le groupe de patients obstructifs aussi bien avant qu’'apres la prise de
bronchodilatateur. Chez les patients, la résistance et la distance diminuent

significativement apres bronchodilatation (Figure 13).

D R,
04 097 (kPa.ll.sec)
0,8 . .
l £§ L *§ Volontaires sains (@)
03 é " 07 Patients obstructifs: PRE (ll) POST (J)
08 l{l % Différences significatives (test de Student) :
* entre volontaires sains et patients obstructifs
02 é 05 § entre patients obstructifs avant et apreés la
prise d’un bronchodilatateur
0,4
.
0,1 0,3

Figure 13: Moyenne * erreur standard : de la distance (D) entre les signaux du thorax et I'abdomen
calculée & partir de tous les cycles respiratoires sélectionnés (minimum 30) et de la résistance des voies
aériennes (Rawen kPa.ll.sec)

De plus, la distance et la résistance sont significativement et positivement corrélées

chez les patients aussi bien avant qu’apres la prise du bronchodilatateur.

Ces résultats suggerent que la distance calculée a partir des signaux de
pléthysmographie respiratoire a variation d'inductance peut étre utilisée pour une

évaluation des variations de la bronchoconstriction.

Laouani et al (2016) Thorax and Abdomen Mofion Analysis in Patients with Obsfructive
Diseases J Pulm Respir Med
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Abstract

Objective: We luated changes in

plethysmography (RIP) signal analysis.
Methods: Thoracic and abdol

al motions were recorded (5 min) by uncalibrated RIP in 44 adult subjects 2_5
a diagnosis of moderate bronchial obstruction (Obstructive group) and 50 healthy adult controls (Healthy group). |

by a new approach based on respiratory inductive

the Obstructive group, two series of were

POST) a protocol. Airway

mean distance (D) was calculated for each recording.

Both D m_.a m after

(R,,) and lung function data (forced vital capacity (FVC), forced
expiratory volume in one second (FEV,) and FEV, =u<9 were
breath analysis was performed to calculate a_mrm:nmm between normalized thorax and abdomen RIP signals m:a a

Results: D and R, were :_m:m_‘ in the Obstructive group _:m: in the Healthy group in both PRE and POST

before (O PRE) and after (Ol

with a body A breath-by

positively and si in the O

group in both PRE and POST conditions.

Conclusion: D, as calculated from signals recorded by RIP, appears to be a useful non-invasive parameter for
continuous monitoring of changes in bronchoconstriction.

in the O group. D and R, were also

Keywords: Respiratory inductive  plett hy;  Airway
resistance; Bronchoconstriction; Thorax motions; Abdomen motions

Introduction

The most common method to detect the presence and severity of
airflow limitation associated with obstructive lung disease is spirometry,
considered as the gold standard pulmonary function testing. However,
spirometry has some limitations: it is effort dependent and requires
patient cooperation, it involves taking deep breaths, which can alter
underlying airway resistance [1].

Although airway resistance (R_ ) is seldom used to identify airway
obstruction in clinical practice [2], its measurement becomes the only
possibility of detecting airway obstruction in patients who cannot
cooperate or perform reliable spirometry. Several methods, such as
body plethysmography, oesophageal balloon, airflow perturbation
techniques (including interrupter and oscillatory techniques), may be
used to measure airway resistance [3]. Among these methods, body
plethysmography is most widespread, and is believed to yield significant
additional information compared to spirometry [4].

y Inductive Pletk hy (RIP) is another Em;—o&
that has the advantage over other techniques of being non-i
RIP allows recording of thorax and abdomen breathing movements
using two sensors inserted in elastic bands surrounding thoracic and
abdominal compartments. Analysis of these signals may be used to
identify airway obstruction. The patient can thus be assessed during
quiet breathing without a mouthpiece, and without the need of
performing forced inspiratory and expiratory maximum motions. For
infants with an acute upper airway obstruction, Sivan etal. [5] observed
a high mmmon_m:o: between the degree of stridor and the thoraco-
bdomi } (TAA) q d by phase angle analysis of
the Lissajous figure from the o=€5 of an uncalibrated RIP. Allen et
al. [6] reported a correlation between thoraco-abdominal phase angle
and lung resistance measured with an oesophageal balloon in children.
In the case of adults, Sackner et al. [7] did not observe any difference
between healthy subjects and COPD patients when comparing TAA
evaluated with phase angle. However, phase angle evaluation relies on

the assumption that thorax and abdomen signals are sinusoidal, which
is not always the case. Prisk et al. [8] compared different time domain
methods of evaluating phase angle using simulated data when adding
resistive loads during inspiration on anesthetized rhesus monkeys and
concluded that cross-correlation and maximum linear correlation
(methods that not depend on waveform shapes) are the most accurate
and robust in measuring phase angles. In a recent mini-symposium,
Seddon [9] stated that RIP “remains the most widely-used technique for
semi-quantitative monitoring of chest wall movement and asynchrony”.

In a preceding study [10], it was suggested that the addition of
resistive loads entailed changes in the motion of abdominal and
thoracic compartments. These changes were evaluated by calculating
distances between thoracic and abdominal normalized RIP signals. It
was found that these distances were correlated to the level of added
resistive load in healthy subjects.

The present study was aimed to investigate a new approach for the
evaluation of bronchoconstriction changes based on a breath-by-breath
analysis of signals obtained by inductance plethysmography. For each
breath, the distance between the thoracic and abdominal normalized
RIP signals was calculated and averaged (D) over at least 30 breaths
recorded on 1) healthy subjects and 2) patients with airway obstruction
disease before and after bronchodilator administration. Comparison of
D was carried out between healthy subjects and patients. In addition,
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for patients with airway obstruction disease, D was compared to
R, measured by body plethysmography both before and after
bronchodilator administration.

Materials and Methods
Subjects

This cross-sectional analytic study was conducted in the
Department of Physiology and Explorations in Farhat Hached Hospital
of Sousse (Tunisia) in accordance with the Declaration of Helsinki. The
local Ethics Committee of the Hospital approved the study protocol.
All participants provided written consent and received a copy of their
assessment results, which were also sent to their physicians.

‘The study was carried out on 44 (20 women) adult subjects with a
diagnosis of moderate bronchial obstruction, as defined by comparison
to reference values established by a local study [11]. This “Obstructive
group” was compared to a “Healthy group” of 50 (29 women) healthy
adult controls. Male and female subject data were not reported
separately, as no additional information was gained by a separate
study. Anthropometric data for the two groups are gathered in Table
1. Students t-tests were carried out to compare the mean values of
age, height, weight and body mass index (BMI) in the two groups. No
significant difference was observed for any data.

All subjects were more than 18 years of age. The group with
known airway obstruction contained subjects with a ratio of forced
expiratory volume at the first second/forced vital capacity below
the lower normal limit according to the American Thoracic Society
guidelines [2]. The subjects with obstructive defects were clinically
stable and did not show any signs of worsening symptoms or a need for
increased medication or emergency care. The obstructive subjects had
not required hospitalization within the previous 4 weeks. The medical
treatments were recorded. The exclusion criteria were the following:
age less than 18 years, cigarette smoking, alcohol abuse, renal failure,
heart and coronary disease and current desensitization (therapeutic
for reduction or elimination of an allergic reaction). Subjects having
received f-agonists, oral or inhaled glucocorticoids, anti-histamines,
anticholinergics, calcium, magnesium and beta-blockers during
the previous 72 hours were also excluded. The healthy controls were
volunteers non-smokers, over 20 years of age without a history of
atopy and free from asthma, allergies, pulmonary tuberculosis or
recent respiratory tract infection. The controls had normal pulmonary
function tests and were free from any respiratory problems.

Imperfect performance of respiratory maneuvers was applied as an
exclusion criterion in both study groups.

Body plethysmography

Pulmonary function measurements were performed with a body
285 plethysmograph (ZAN 500 Body II Mesgrerate GmbH, Germany)
by carefully following international recommendations. The quiet
breathing method was used in the present study to record total airway
resistances. The following data were measured or calculated: airway
resistance (R, in kPal':sec), forced vital capacity (EVC, 1), forced
expiratory volume in one second (FEV,, ) and the FEV /FVC ratio.

Respiratory inductive plethysmography (RIP)

Thorax (THO) and abdomen (AB) breathing movements were
recorded by RIP (Visuresp®, RBI, France). The THO and AB signals
were digitized at a sampling rate of 40 Hz. Breaths were delimited
using the algorithm developed by Bachy et al. [12] on a flow signal and
applied to the RIP signal as the derivative of the filtered signal obtained

from linear combination of both THO and ABD signals. Breaths
involving swallowing, sigh, THO or AB signal drift were discarded
from the analysis. A breath-by-breath analysis was then performed
to calculate distances between THO and AB signals. Each THO and
AB “cycle” included the same number () of samples (same digitized
sampling rate and duration). For each breath, the THO and AB signal
amplitude was normalized to obtain a zero average and a standard
deviation equal to one. The distance (D) between normalized
thorax (nTHO) and abdominal (nAB) signals was calculated over all
m samples according to the equation: », o -5 . Figure 1 shows
sensors of RIP incorporated in a wearable jacket (Visuresp®) at the
thoracic and abdominal compartment level (A), thus recorded THO
and ABD signals and delimitated breaths on the RIP signal (B) and
calculation of D, _, (C).

For each recording, the mean distance (D) was calculated over all
selected (minimum 30) breaths.

breati

Experimental protocol

All subjects (Healthy and Obstructive) underwent body
plethysmography measurement followed by a five minute RIP recording
at spontaneous breathing. Each patient then inhaled at 30 sec intervals
four successive doses of 100 mg of short-acting B,-agonist (Salbutamol)
after a gentle and incomplete expiration and held the breath for
5-10 sec. Each patient again underwent body plethysmography
measurement after 15 minutes, followed by a five minute RIP recording
at spontaneous breathing. This described bronchodilation procedure is
a standard protocol used in pulmonary function testing [2]. Thus, two
conditions are to be taken into consideration in the Obstructive group:
PRE (before bronchodilation) and POST (after bronchodilation).

Data analysis

All data have been expressed as the mean + SEM (Standard Error
of the Mean). Student’s t-test was used to compare the mean data
between Healthy and Obstructive groups. Student’s paired t-test was
used to compare data within the Obstructive group before and after
bronchodilation.

In the Obstructive group, Pearson correlation coefficient was used
to evaluate the linear relationship between D and R, as well as between
D and spirometric data and between R and spirometric data in PRE
and POST conditions. A binomial test was used to check the number of
cases where bronchodilation entailed a decrease in Dand R,

Significance was set at the 0.05 level.
Results

Figure 2 shows mean + SEM values of D, R and spirometric data
(FEV,, FVC, FEV/FVC) for both Healthy and Obstructive groups in
PRE and POST conditions. It can be seen that D and R, values are
lower in the Healthy group than in the Obstructive group in both PRE
and POST conditions, whereas FEV , FVC, and FEV /FVC are higher in
the Healthy group than in the Obstructive group in both PRE and POST
conditions. Comparing (Student’s t-test) Healthy and Obstructive PRE
on one hand, and Healthy and Obstructive POST on the other hand
showed significant variations in all data (p<0.05), except EVC, which
exhibited no significant difference between Healthy and Obstructive
POST.

As expected in the Obstructive group, bronchodilation entailed a
decrease in D and R, while spirometric data increased. Comparison
(Student’s paired t-test) between Obstructive PRE and Obstructive
POST showed significant difference in all data (p<0.05).
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Figure 2: Mean + Standard Error of the Mean (SEM) values of distances (D)
between the thorax and abdominal signals calculated over all selected (mini-
mum 30) breaths, airway resistance (R,,, in kPa.l-1.sec) and spirometric data:
forced vital capacity (FVC, i), forced expiratory volume in one second (FEV,,
in 1) and the FEV,/FVC ratio (in %) for Healthy and Obstructive group before
(PRE) and after (POST) bronchodilation. *Significant differences (Student's
t-test) between Healthy and Obstructive group (PRE and POST), §Significant
differences (Student's t-test) between Obstructive PRE and POST.

Using a Binomial test, it was found that it was a significant number
of subjects showing a decrease in D (28 subjects over 44, p=0.024) and
R__ (32 subjects over 44, p=0.001) values after bronchodilation. It must

Healthy n=50 | Obstructive n=44 »
Age (years) 44318 47.0+24 034
Height (m) 1.66 £ 0.01 1.64.£0.02 053
Weight (kg) 76217 775130 0.69
BMI (kg.m?) 278106 289:12 039

BMI: Body Mass Index; p: p-value corresponding to comparison between the two

groups (Student’s t-test).

Table 1: Anthropometric characteristics (mean + SEM) of the Healthy (control) and
Obstructive (patients with a diagnosis of moderate bronchial obstruction) group.

R,, FEV, FvC FEV,/FVC
D 0.48" -0.37" -0.27 -0.34"
» 055" 038" 057

“ significant correlation (Pearson) between the two considered data (p<0.05).
FEV,: Forced expiratory volume in one second, FVC: forced vital capacity.

Table 2: Correlation coefficient values between thoraco-abdominal distance (D)
and airway resistance (R,,), between D and spirometric data and between R, and
spirometric data, in Obstructive group before bronchodilation (Obstructive PRE).

be underlined at this point that these subjects did not
exhibit a simultaneous decrease in both D and R values.

We did however calculate correlation coefficients between D and
R, as well as between D and spirometric data and between R and
spirometric data, in PRE (Table 2) and POST (Table 3) conditions
within the Obstructive group. A positive correlation exists between D
and R _ both in PRE and POST conditions, but the correlations between
D and spirometric data were negative and significant for all variables,
except for FVC in Obstructive PRE condition. R  was significantly and
negatively correlated with all spirometric data in both conditions.

Discussion

The main result of this study is that the distance D calculated
between thorax and abdomen normalized signals, as recorded by
respiratory inductive plethysmography may provide information
on bronchoconstriction. Indeed, 1) D was significantly higher in
the Obstructive group in both PRE and POST conditions than in
the Healthy group and 2) in the Obstructive group, D and R, were

R FEV, FvC FEV,[FVC

D 0.39° -0.44° 0.38" -0.35°

-0.49° -0.37 043

“Significant correlation (Pearson) between the two considered data (p<0.0:

FEV,: Forced expiratory volume in one second, FVC: forced vital capacity.

Table 3: Correlation coefficient values between thoraco-abdominal distance (D)
and airway resistance (R,,), between D and spirometric data and between R, and
spirometric data, in Obstructive group after bronchodilation (Obstructive POST)

correlated in both conditions.

Healthy and Obstructive groups showed no significant difference
in anthropometric data (age, height, weight and BMI). The spirometric
data, R, and D were significantly different between Healthy and
Obstructive groups in PRE condition, and there still was a significant
difference between Healthy and Obstructive groups in POST condition,
except for FVC.
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Although spirometry is considered as the gold standard to detect
airflow limitation in obstructive diseases, recent articles revisited
the contribution of other data, such as airway resistance measured
by various methods [1] and thorax and abdomen motions measured
by respiratory inductive plethysmography [9]. Interest for separate
thoracic and abdominal motions during breathing was introduced
in the 1960s. Indeed, Agostoni and Mognoni initiated the measure
of chest wall deformation [13], and Konno and Mead evaluated the
separate volume of the two compartments [14]. Since then, a large
variety of methods have been employed for measuring thorax and
abdomen motions, as reviewed by Seddon [9]. Since the 1990s, RIP
has been the most common method in both adults and children,
particularly for evaluating thoraco-abdominal asynchrony [5,6,15-23].
Thoracic and abdominal motions have been analysed to quantitatively
evaluate thoraco-abdominal asynchrony (TAA) defined by Prisk et al.
[8] as “the non-coincident motion of rib cage and abdomen during
breathing*. Several methods have been used to quantify TAA with
or without calibrating RIP. On one hand, the values calculated using
uncalibrated RIP can be either phase angle (Lissajous figures: X-Y plots
of thorax versus abdomen) [5,16-18,23], or percent time paradoxical to
tidal volume (during inspiration, expiration or total breath) [24] and
phase relation during total breath (percentage of total breath duration
where thorax and abdomen are asynchronously moving) [20,22].
On the other hand, the values calculated with calibrated RIP can be
either asynchrony index [25], laboured breathing index (maximal
compartmental amplitude-sum of maximal excursion of thorax and
abdomen- as proportion of tidal volume) [7] or rib cage contribution
to tidal volume (maximum excursion of thorax as a percentage of tidal
volume) [26].

In our study, distances between the thoracic and abdominal
normalized signals serve to evaluate differences in these two
compartments motion. This was calculated breath-by-breath on five
minutes recordings. Thus, the mean value (D) may be considered
as calculated over a “steady-state” and we assumed that it provides a
satisfactory evaluation of motion differences between thoracic and
abdominal compartments induced by bronchoconstriction. However,
concerning R data they result from a single measurement. This may
account for the observed discrepancies between D and R, such as the
fact that following a bronchodilation, more people showed a decrease
in R, rather than a decrease in D. Indeed, similar to R_, D was higher
in the Obstructive group as compared to the Healthy group, both before
and after bronchodilation. The fact that in the Obstructive group (both

ditions), D and R, were ly correlated and that they also
correlated with spirometric data indicates that D as well as R, may
assess bronchoconstriction.

These results suggest that beside classical methods [1,2] used to
evaluate bronch riction, inductive hy provides
relevant information on bronchoconstriction with several notable

d ges. Indeed, RIP is a i ive method to record thoracic
and abdominal motion without mouthpiece. Furthermore, the analysis
is performed over signals acquired during quiet breathing. Thus, since
no subject cooperation or specific handling is required, measurements
can be easily repeated. In addition, RIP may be calibrated to provide
volume and flow data [27-29]. In the device (Visuresp®) used in
this study, sensors have been incorporated in a wearable jacket and
maintained in a fixed position (Figure 1A) allowing data comparison on
continuous recordings. Prior calibration in various postures [30] may
then be applied in longitudinal measurements of respiratory function
by RIP [22]. RIP monitoring can thus be envisaged to assess changes in
b h on induced by th i i | variations
or various conditions such as sleep.

Conclusion

The breath-by-breath distance between thorax and abdomen
normalized signals recorded by respiratory inductive plethysmography
and averaged over a 5 minute period may represent a new method of
RIP use for bronct iction changes evaluati
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1.4.2.2 Les oscillations cardiogéniques et estimation de la mécanique de la paroi

thoracique

Les battements cardiaques produisent des déformations mécaniques les poumons
qui engendrent des petites fluctuations sur la pression et le débit des voies aériennes.
Il est possible d’observer ces fluctuations, nommées oscillations cardiogéniques, sur
le signal respiratoire notamment au cours d’apnée. Les oscillations cardiogéniques
sont aussi observables sur les signaux du thorax et de I'abdomen mesurés par PRI.
Nous avons tenté d'utiliser I'amplitude de ces oscillations enregistrées sur les signaux
PRI et sur la pression mesurée a la bouche pour identifier une donnée en lien avec
les propriétés mécaniques de la paroi thoracique. Des enregistrements ont été
effectué chez des sujets sains en position couchée sous ventilation mécanique &
différents niveaux de pression de fin d’expiration et dans deux conditions : bras le
long du corps et bras levés. Nous avons mesuré les variations de volume PRI (AVco)
simultanément avec les variations de pression (APco) au cours d'une oscillation
cardiogénique. Le rapport Cco= AVco/ APco est la compliance cardiogénique et
peut-étre considéré comme un indicateur de la compliance thoracique. Ce rapport
est indépendant du niveau de pression de fin d’expiration. En revanche, ce rapport

diminue lorsque les bras sont levés.

L'analyse des oscillations cardiogéniques pourrait fournir une méthode non invasive
d’'évaluation des variations de la compliance thoracique chez des sujets sous

ventilation mécanique.

Bijaoui et al (2004) Can Cardiogenic oscillations provide an estimate of chest wall
mechanicse Adv Exp Med and Biol

11.4.3 Méthode d’évaluation de la fonction cardiaque

11.4.3.1 Analyse de I'arythmie sinusale d’origine respiratoire

De nombreuses méthodes d’analyse, dans le domaine fréquentiel et temporel, ont
été développées pour estimer I'arythmie sinusale d’origine respiratoire (ASR). J'ai
participé a I'élaboration d’'une méethode statistique originale de I'analyse de I'ASR
basée sur une étude cycle par cycle ventilatoire. La méthode proposée permet

d’'avoir :

71




1) une représentation de I’ASR soit cycle par cycle ventilatoire, soit sur un ensemble
de cycles ventilatoires,

2) un test statistique pour détecter la présence de I’ASR sur une courte durée (par
exemple cing cycles ventilatoires),

3) 'amplitude et la phase de I'ASR dans chaque cycle ventilatoire en ajustant une

sinusoide sur la fréquence cardiaque cycle par cycle dans un cycle ventilatoire.

Cette méthode présente I'avantage de permetfire une détection spécifique de

I'’ASR et sa quantification.

New statistical method for detection and quantification of respiratory sinus arrhythmia Dinh et
al. (1999) IEEE-Inst Electrical Electronics Engineers

Nous avons utilisé cette méthode dans plusieurs travaux développés dans le

paragraphe 11.3.2 ayant fait I'objet de trois publications :

Calabrese et al. (2000) Cardiorespiratory interactions during resistive load breathing. Am J
Physiol-Regulatory Integrative and Comparative Physiology

Ben Lamine et al. (2004) Individual differences in respiratory sinus arrhythmia. Am J Physiol-
Heart and Circulatory Physiology

Scott et al (2004) Enhanced cardiac vagal efferent activity does not explain training-induced
bradycardia. Auton Neurosc : Basic and Clinical
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New Statistical Method for Detection and Quantification
of Respiratory Sinus Arrhythmia

Tuan Pham Dinh, Hélene Perrault, Pascale Calabrese,
André Eberhard, and Gila Benchetrit*

Abstract— A statistical method with the advantages of 1) enabling
graphical representation of within-respiratory cycle heart rate variations,
2) detecting the presence of respiratory sinus arrhythmia (RSA) in a
moving window, and 3) providing breath-by-breath RSA amplitude and
phase obtained from the fitting of a sinusoid to the instantaneous relative
heart rate is presented.

Index Terms — Heart rate variability, respiration, respiratory sinus
arrhythmia (RSA), spectral analysis, statistical method.

1. INTRODUCTION

Centrally modulated cardiac vagal and sympathetic efferent ac-
tivities i with iration are a major of heart
rate variability, referred to as “respiratory sinus arrhythmia” (RSA).
Several methods exist to qualitatively and quantitatively assess RSA
[1]. [2] since it is a recognized marker of cardiac autonomic function
integrity. Standard power spectral density analysis of the tachogram
has been extensively used to provide an index of sympatho-vagal
balance expressed as the ratio of low frequency (LF) and high
frequency (HF) power components [3]. Although extension of the
HF bandwith to include the observed breathing frequency will ensure
its positioning within the considered HF band, this will not isolate
the respiratory-related component.

Mathematical methods have also addressed this issue by propos-
ing a respiratory-based approach for the assessment of heart rate
variability including breath-by-breath analysis of RSA [1], [4]-[6].
Investigation of RSA in clinical settings however may warrant rapid
assessment or time course of RSA changes, such as resulting from
drug administration, changes in breathing patterns or interventional
procedures. This may be achieved for example, using the Wigner
distribution or wavelet analysis [2]. However, few methods provide
realtime information of heart rate or respiratory sinus arrhythmia
variability [5].

We propose a new statistical method to provide quasi-realtime
information on RSA based on a breath-by-breath fractional cardiac
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cycle count. The proposed procedure provides 1) a graphical repre-
sentation of RSA, cither breath-by-breath or globally for a population
of breaths (box plots), 2) a test for detecting the presence of RSA
on a short time window (i.e.: five breaths), and 3) an index of the
intensity and phase of RSA associated with each breath.

We applied this technique to data obtained from 16 healthy
volunteers (mean age 23 % 5 yrs) and compared results with those
obtained using standard spectral analysis of heart rate variability.
Imposed breathing being commonly used in spectral analysis of heart
rate variability to ensure localization of the respiratory frequency
within the standard HF bandwith and to minimize spectral power
dispersion, we examined RSA both during spontancous and imposed
breathing conditions. Because the extent of RSA is dependent upon
respiratory frequency [2], we selected to impose a breathing rate equal
to the spontaneous breathing frequency.

II. DATA ACQUISITION AND ANALYSIS

Two 5-min recordings of airflow (Fleisch Head no. 1 mounted
on a face mask) and ECG were obtained in each subject. The first
recording was obtained after a 2-min acclimatization period with
subjects breathing quietly at their spontaneous breathing rate. The
second recording was obtained while subjects were asked to follow
a breathing rate given by an auditory cue, at the breathing rate
corresponding to each subject’s spontaneous rhythm.

Acquisition of data was performed on a Macintosh microcomputer
equipped with an analog-digital interface card. Sampling rate was
256 Hz. Heart rate, mean R-R interval and the standard deviation
of the R-R intervals were computed from the beat-to-beat intervals.
Heart rate values or R-R intervals were linearly interpolated at 0.25-s
intervals to obtain equidistant time samples. Power spectral analysis
was performed using a record length of at least 1024 sample points. A
fast Fourier transform procedure was applied to obtain spectral power
components: LF (0.04-0.15 Hz), HF (0.15-0.40 Hz) and a restricted
respiratory frequency power component identified as the respiratory
centered frequency (RCF) was also calculated using the frequency
range corresponding to +10% of the respiratory rate averaged over
the entire recording. Definition of an RCF band using limits of £0.02
Hz [7] or assessment of spectral power at the respiratory frequency
[8] have previously been used to isolate the influence of RSA. We
selected to delimit the respiratory band in keeping with the generally
accepted margin of biological variability.

III. NEW STATISTICAL METHOD
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A. Fractional Cycle Counts and Instantaneous Heart Rate

The basis of our method is the fractional count of cycles. Let
f1.... denote the sequence of heartbeat instants. We consider
each interval [fo. t1]. [t a cardiac cycle. For an analysis
window delimited by [Zp. T3], we count the number of cycles within
the window: the cycle [ti1,t;] is counted as one if Ty < tio1 <
t: < T, as (i — To)/(ti — ticy) if ticy < Ty < t; < Tn,
as (Tv — 4 1)/(ti—ti 1) if Th < ti 1 < Tt < f; and as
(T = To)/(t:i — tia) if tioy < Ty < Ty < t; [see Fig. 1]. In
this figure the total cardiac count in the window is 8.4364, but if
heartbeats were counted, one would get eight. The advantage of a
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Fig. 1. Fractional cardiac cycle counts. Ty. T* and T3 indicate the be-
ginning, middle, and end of the breath: fo. ... to indicate the timing of
heartbeats, 8 are the timing in fraction of breath duration. (a) mean
heart rate over the window, (b) mean heart rate over half windows, and (c)
instantaneous heart rate.

cardiac cycle count over a heartbeat count becomes apparent if we
consider the two half-windows [To,T"] and [T, T1]. The number
of beats for each is four, whereas the cycle counts yield 4.2977 and
4.1387, respectively.

Having defined the cycle count within a window, we define the
mean heart rate as the ratio of this count to the total window
length. The mean heart rate in the half windows [7o.7"] and
[T".T1] are similarly defined. In Fig. 1 these rates are traced as a
dashed horizontal line [Fig. 1(a)] and a step-like line [Fig. 1(b)]. By
shrinking the analysis window to a point, we obtain the instantaneous
heart rate. It is represented by the solid, step-like line in Fig. 1(c).
This representation shows clearly that the heart beats fastest around
the middle and slowest around the end of the window.

There is a simple interpretation of the instantaneous heart rate line
[Fig. 1(c)]: the area under this line and above the zero ordinate x-axis
delimited by two consecutive heartbeats equal one. The area under
this line and delimited by any window boundaries similarly is equal
to the cycle count within this window. We could in fact use this
equality to define the cycle count.

B. Relative Heart Rate and RSA

In studying RSA, one must take into account the possibility of a
gradual drift in heart rate through the course of the experiment. The
use of the relative heart rate defined as the ratio of the actual heart
rate to the mean rate over a given window, implicitly standardizes
the data, suppressing low-frequency variations and thus can be an
alternative to detrending procedures. In order to study RSA we chose
one breath-span as a window. Relative heart rate data from each
breath can also be pooled for between-recording comparisons. To this
end it is preferable to normalize breath duration to one, by expressing
time within each breath as a fraction of total breath duration.

A simple way to get a picture of within-respiratory cycle variability
s to subdivide the breath into subwindows of equal length and look
at the relative mean heart rate in each subwindow. The number of
subdivision should provide a tradeoff between better resolution and
less statistical variability. If a large number of breaths are available,
one could consider a fine subdivison and average the relative heart
rates associated with each subwindows. A useful statistical tool for

Breath duration subdivision
Fig. 2. Box plot of mean relative heart rate for each twelfth breath drawn
ple of real data from Fig. 3. The median, first, and third quartiles as
well as the minimum, maximum, and outlying values (+4) calculated over the
totality of respiratory cycles are represented at each breath subdivision. The
resulting plot shows the evolution of relative heart rate during the respiratory
cycle.

displaying a population graphically is the box plot [9]. This plots
the median, the first and third quartiles, the minimum and maximum
and some of the outlier points, if any, of the population. An example
of box plots is shown in Fig. 2. On the other hand, if one is only
interested in detecting the presence of RSA, one may subdivide the
window into two halves and compare the relative mean heart rate in
each half. In Section III-C, a test for arrhythmia based on this idea
will be detailed.

C. Testing for Arrhythmia: The Wilcoxon Signed Rank Test

The idea of the test is to look for a systematic pattern in relative
heart rate variations within a breath. To be specific, let r(7), 7
[0.1], be the relative instantaneous heart rate in a normalized breath
(thus 7 denotes the time as a fraction of the breath duration). This
is a piecewise constant function with jumps at heartbeat times. We
consider a contrast, defined as a function {c(7). = € [0,1]} with
zero integral. Then we define the statistic T = [ r(r)e(r) dr. By
construction 7" = 0 if r(7) is constant. If the pattern of heart rate
variation is random from one breath to the next, then one would
expect T to be negative or positive with equal probability. If T were
positive more often than negative, then this would be an indication of
some similarity on the average between the pattern of cardiac rhythm
and that of the contrast.

To test for RSA we could use the Student test for the hypothesis
that the expected value of T is zero against the alternative that it
is positive. However, this test requires the data to have a normal
distribution or that the sample size be fairly large so that one can
invoke the Central Limit Theorem. Since, neither assumption can
\ecessarily be met, a ic test is No particular
assumption is required except that the statistics 7" corresponding
to different breaths are independent. It is quite plausible that the
heartbeat periods in one breath are independent from those in another.
Even if there may be some dependence because some cardiac cycles
stretch over two consecutive breaths, one can expect that it is
fairly slight. In this nonparametric setup we test the null hypothesis
P(T < 0) = P(T > 0) against the alternative that P(T > 0) >
P(T < 0), the symbol P denoting the probability. One popular test
is the Wilcoxon signed rank. Let Ti,... T,, be obtained from m
breaths and R; be the rank of |T;| among the |T1]..... |Z,
Wilcoxon signed rank test rejects the null hypothesis if the rank sum
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Fig. 3. Processing of a sample of data taken over 30 s. Graphical represen-
tation of (a) mean heart rate per breath, (b) mean heart rate per half-breath, (c)
relative mean heart rate per half-breath (d) relative instantancous heart rate.
(e) respiratory frequency, and (f) volume expressed in arbitrary units.

<o Bi over the set of indexes i for which 7 is negative
does not exceed some critical threshold, determined to meet a desired
statistical significance level. This level can be computed through a
combinatorial argument, at least for small values of m. More details
on this test can be found for example in Lehmann and D’ Abrera [10],
which also provides tables of significance levels. Note that since the
threshold is necessarily an integer, not all these levels can be selected.
Since we are interested in quasi-realtime detection of arrhythmia, we
consider small values of m and we choose m = 5 since this leads to
a significance level close to the customary 5% for the threshold one.
The exact level is 6.25%, which can be computed straightforwardly.
1) Test Based on Half-Respiratory Cycle Mean Heart Rate Com-
parisons (Test A): This test uses the simple contrast which equals
one in the first half of the window and —1 in the other half. The test
statistic T' is simply the difference between the relative mean heart
rate in the first and the second half of the breath. Thus, the test would
detect RSA if it results in that the heart beats faster in the first than
in the second half of the breath. Fig. 3 shows processing of a sample
of data taken over a 30-s recording. An application of test A on a
30-s sample of the data presented in Fig. 3 is shown in Fig. 4(a).
2) Test Using the Heart Rate and Respiratory Volume Signals (Test
B): The appeal of test A is its simplicity and that the only extra
information it needs is the breath duration. But it is based on the
implicit assumption that RSA causes an increase in the mean heart
rate in the first half and a decrease in the second half of the
breath. However, in our experience, it appears in some instances
that the inspiration duration/total breath duration is such that the
maximum heart rate occurs around the middle of the breath so
that the mean heart rate in the two halves are roughly the same.
Test B avoids this difficulty by exploiting the extra information
provided by the respiratory volume. It is based on the contrast
e(r) = V(r) = c_ V(7)dr where V() is the volume signal at
normalized time expressed as a fraction of total breath duration. In
our experiments, since we consider the volume only at heartbeat
time #;, we take the volume between these beats as the one at
the preceding beat. Thus our V(r) lags somewhat behind the real
volume signal but since the heart rate also lags behind the latter, this
can even be an advantage. The “average” [ V() dr then becomes
Vito)(tr =to)+- -+ V(te)(tis1 — ) and b_ r(7)V(7)dr can be
computed as [aV (fo) + V(t1) + -+ + V(tg—1) + bV ()] /n where

=
3

sec

g.4. Two test-statistics of RSA plotted against time. (a) Differences
in mean heart rates in two half-breaths, (b) the corresponding Wilcoxon
signed-test statistic (the sum of ranks of negative differences over five
consecutive breaths), (c) Fisher-= transformed correlation between heart rate
and volume signal computed for cach breath, and (d) the corresponding
Wilcoxon signed test statistic (based on five consccutive breaths). In (b) and
(d) the lower and upper dotted lines indicate the significance probabilities of
the test statistic, 3.125% and 6.25%, respectively.

to =0, tr41 = 1 and t1,..., tix denote the heartbeat times within
the breath, @ and b are the fractions of the first and last cardiac cycle
within it and n = k — 1+ a +b is the fractional cardiac cycle count.

Under the null hypothesis of no RSA, the resulting statistics
T with ive breaths are still hence
the Wilcoxon test remains valid. Note that these statistics can be
regarded as the correlations between the instantaneous heart rate and
the volume signal, up to a constant factor, computed at different
breaths. They may be used to assess the dependence between the
two signals. For accurate assessment one should apply the Fisher’s =
transformation [11] to the correlation coefficient to obtain a statistic
with a distribution closer to the Gaussian’s and a standard deviation
depending little on the true correlation. This also minimizes the effect
of the small sample size used (a few heartbeats only per breath).
Fig. 4(b) shows the application of this test to the data presented in
Fig. 3.

D. Amplitude and Phase of RSA Based on Sinusoid
Fitting to the Relative Heart Rate

To obtain a quantitative description of the heart rate variations
within each breath, we attempted to fit a sinusoid (shifted by a
constant amount) to the relative instantaneous heart rate within the
respiratory cycle. A shifted sinusoid is represented by a cos(277) +
bsin(277) + ¢, where a, b and ¢ are coefficients and the variable ™

ction of mean heart rate

Fra
-
s

:

L L L I )
0 02 7 04 0.6 ‘0.8 1
W o Ty T3 T4 5 Tg T7 g T

Fraction of breath duration

Fig. 5. Sinusoidal-fitting to the relative heart rate. (a) Relative mean heart
rate over the window, (b) relative instantaneous heart rate, and (c) the sinusoid
fitted to the deviation of the relative instantancous heart rate from the mean
heart rate.

denotes the normalized time within the breath. The above coefficients
will be adjusted such as to provide the best possible fit of the sinusoid
to the observed relative instantaneous heart rate curve {r(7),7 €
[0.1]}. But since the latter is a piecewise constant curve with jumps
at the heartbeat times, we first replace the sinusoid by an equivalent
piecewise constant curve {s(t),7 € [0.1]} with the same jump times
such that the areas under this curve delimited by the zero ordinate
w-axis and two consecutive heartbeats are equal to those under the
sinusoid [see Fig. 5]. Then the parameters a, b and ¢ are estimated by
minimizing f) [r(r)— s(r)]? dr. Details on this minimization (which
does not require integration) are omitted (but can be obtained from
the author by request) to save space. The parameter ¢ is found to be
always equal to one which is to be expected, since r(7) is a relative
rate.

It is of interest to rewrite the fitted curve as 1+ A cos[27(7 — 6)]
where A = /a? 4 1%, which can then be used as an index of the
intensity of RSA, and ¢ = arctan(b/a)/(2x), which indicates the
point at which the maximum heart rate value is reached within each
breath. They can be averaged over different populations of breaths
and standard statistical tests can be performed to test for differences
between these populations.

To assess the goodness of our fit, we compare the relative in-
stantaneous heart rate r(7), not with the fitted curve but with the
equivalent piecewise constant curve, (1), described as above. We
can then set down a decomposition of the sum of squares [sum
of squares total (SST), sum of squares regular effets (SSE), and
sum of squares of errors (SSE)] similar to those in analysis of
variance: SST = [[r(r) — 1]*dr, SSR = [ [3(r) — 1] dr, and
SSE = [, [r(r) — 5(7)]* dr. The first sum of squares equals the sum
of the latter. All can be computed as sums and not integrals

The sinusoidal curve possesses three degrees of freedom, corre-
sponding to the three coefficients a, b, and c. Hence, the “effective”
degree of freedom for SSE may be taken as the (fractional) cardiac
cycles count in the breath minus three. The square root of the ratio
of SSE to this number can thus be taken as an estimation of the
standard deviation of the error. This can be useful in assessing the
true magnitude of RSA. However, we would refrain from performing
an F test based on the above SSR and SSE since the Gaussian model
conditions of the analysis of variance are not fulfilled and the “sample
size” is often too small. The time evolution of amplitude and phase
of RSA computed from the data of Fig.3 is shown in Fig. 6. An
estimate to the error based on the SSE is also presented.
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Fig. 6. RSA breath-by-breath quantification through sinusoidal fitting (as
explained in Fig. 5). (a) Amplitude of the sinusoid fitted to the deviation
of the relative instantaneous heart rate from the mean heart rate expressed in
fraction of the mean heart rate, (b) an estimate of standard deviation of the
fitting error. in fraction of the mean heart rate, and (c) phase of the same fitted
sinusoid. in fraction of breath duration.

IV. RESULTS AND DISCUSSION

A. Testing for Respiratory Sinus Arrhythmia

Results indicate that a RSA is significantly detected in approxi-
mately 40% of recording duration using test A. Tn test B based on both
time events and volume signal, not only the breathing event but also
the associated lung volume level is taken into account at each cardiac
event. Results indicate RSA to be detected in approximately 83%
of recording duration by test B thus indicating a higher sensitivity
compared to test A. This is in agreement with the accepted view that
lung volume is an important determinant of RSA [12] but does not
express a causal relationship between lung volume and cardiac cycle
duration.

In practice, when only breathing rate is available, test A based on
time events only can be used. A similar test has been proposed by
Pomlfrett e al. [5] using a circular statistical analysis applied to ECG
and ventilation followed by Rayleigh’s test for randomness.

B. Quantifying Respiratory Sinus Arrhythmia

Variations in the magnitude of RSA have been shown to reflect
modulations in parasympathetic tone to the sinus node [2] and have
been widely used as an indicator of impaired autonomic regulation of
the heart rate [13]. The newly proposed method enables quantification
only of the respiratory-related heart rate variability or RSA since
it is based on a respiratory cycle window. Examination of cardiac
cycle length variability over a respiratory cycle window entails
determination of “fractional cycle” count over each given window.
The analysis of R-R interval length requires indexing of the R-R
intervals from their sequence number disregarding the information
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pertinent to timing of occurrence in the series. Several studies have
used controlled breathing in order to obtain reproducible patterns
of RSA [2], [3]. An alternative is to normalize breath duration as
achieved for example by Pomfrett ef al. [5] using R-waves plotted
relative to their time of occurrence on a normalized unit ventilatory

aveform or by data-sweep triggered on inspi as reported by
Eckberg [2]. In the present study breath duration was normalized and
the time of occurrence of cardiac events within each breath were
measured as a fraction of total breath duration. Thus, the respiratory
cycle becomes the prime event within which cardiac events are
expressed in terms of fractions of breath duration.

In the box plot representation, a fine subdivision of the breath is
made [12 subdivisions in Fig. 4] and relative heart rates pooled for
a large number of breaths are represented in these subwindows. This
representation shows an overall picture of RSA for a given recording
providing information on heart rate variations in each window, timing
of the highest heart rate within the breath and the amplitude of the
heart rate change.

In our analysis, relative heart rate during a breath was found to
be well fitted by a sil idal curve, as can be seen in
Fig. 6(b) from the estimate of the fitting error which was generally
found to be less than 10%. The sinusoid amplitude per breath was
thus used as an index of RSA intensity for this breath and the
phase as the time of occurrence of the highest cardiac rate in that
breath. RSA amplitude (expressed as fraction of mean heart rate)
ranged between 0.0086 and 0.196 and mean RSA amplitude was not
found to be significantly different between spontaneous or imposed
breathing conditions (0.086 £ 0.053 versus 0.094 £ 0.048). Mean
indexes of RSA phase (expressed as fraction of respiratory cycle
duration) were similar under both conditions, values being 0.437
=+ 0.076 for the spontaneous and 0.437 %+ 0.093 for the imposed
breathing condition. These observations indicate these indexes to be
insensitive to the scatter in breathing frequency as they are issued
from a breath-by-breath based analysis.

Results indicate a positive linear correlation between the RSA
amplitude and breath duration, in both spontaneous (r = 0.55) and
imposed breathing conditions (r = 0.72) which is in keeping with
the generally admitted relationship between breathing frequency and
the amount of RSA [2].

C. Spontaneous Versus Imposed Breathing

Mean heart rate as well as the standard deviation of the mean
heart rate were unchanged by the imposed breathing. In the present
spectral analysis, a RCF band was introduced to better define the
respiratory related heart rate variability. The spectral power of the
RCF component was found to be greater under the imposed than
the spontaneous breathing condition (0.0033 versus 0.0019 s*) which
is in agreement with the lower dispersion during paced breathing.
This however was not observed for the mean HF power component.
(0.0026 versus 0.0019 s*, respectively). From a ical
standpoint the present results indicate that the selection of a bandwith
centered around +10% of the respiratory frequency truly allows to
capture the heart rate variability associated with respiration and is
thus a better marker of RSA than the HF band.

RSA characteristics assessed by the statistical method were not
affected by the imposed breathing condition as reflected by the similar
proportion of RSA detection (Test B: 83.71% =+ 28% versus 79.72%
=+ 37.5%), RSA amplitudes (0.086% =+ 0.053% versus 0.094% +
0.048%), and phases (0.43% = 0.08% versus 0.43% = 0.09%). These
observations may be taken to suggest that RSA is influenced more
by the breathing frequency per se than the voluntary modulation of
respiratory drive.

V. CONCLUSION

In this paper, we have presented a comprehensive statistical method
for the assessment of heart rate variability of a respiratory origin.
Results from the present study indicate this method to be a valuable
tool allowing for quasi-realtime monitoring of RSA which does
not require the pattern of breathing to be controlled. Despite the
low number of degrees of freedom, sine curve is found to fit well
to the heart rate variation within a breath. From a physiological
standpoint this method presents the advantage of allowing for a
selective detection and quantification of the respiratory component
of heart rate variability.
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1.4.3.2 Evaluation des variations du volume cardiaque a partir de mesure par

pléthysmographie respiratoire a variation d’inductance

Les signaux PRI de variations de section thoracique et abdominal au cours de la
respiration, exhibent souvent de petits “accidents” (Figure 14) qui sont dus aux

variations du volume provoqués par les battements cardiaques.
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Figure 14 : Volume mesuré par PRI (Ver) et électrocardiographe (ECG). Sur le signal volume les fleches
indiquent les “accidents” dus aux variations du volume provoqués par les battements cardiaques en
correspondance avec I'ECG.

Nous avons cherché a extraire cette information cardiaque en utilisant des
méthodes temps-échelle de traitement du signal. Nous avons comparé les variations
de volume dues aux battements cardiaques exiraites du signal PRI avec les
variations de volume d’'éjection systoligue mesurées par un cardiographe
d'impédance sur 15 volontaires sains. Les enregistrements ont été effectués en
position assise et couchée, au repos et au cours d’'une manceuvre respiratoire
(maintenir une pression en soufflant dans un manometre ¢ eau) qui a pour effet de
diminuer le volume d’'éjection systolique. Bien que la méthode PRI sous estime
légerement les variations de volume cardiaque, les résultats montrent que la
méthode PRI détecte les variations de volume cardiaque engendrées par la
manceuvre, et qu'il existe une corrélation significative et positive entre les volumes
cardiagues évalués par la méthode PRI et mesurés par le cardiographe

d'impédance.
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Ces résultats suggerent que la pléthysmographie respiratoire G variation
d'inductance peut étre utilisée pour détecter des variations de volume cardiaque

chez les volontaires sains.
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Functional  Exploration:  Stroke  Volume  Estimation From  Respiratory  Inductive
Plethysmography. Inter J EHealth and Med Com

Fontecave-Jallon et al (2013). Detecting variations of blood volume shift due to heart beat
from respiratory inductive plethysmography measurements in man. Physiol Measu

Montage du dossier de demande de financement d’aide & I'innovation par Grenoble Alpes
Valorisation Innovation Technologies (GRAVIT) en pré maturation et en maturation “Dispositif
d'Exploration Cardiorespiratoire chez le Rongeur (DECRQO)" -2011-2012 (acceptation en 2012)
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1.5 APPROCHE THEORIQUE

Des modeles ont été utilises dans I'objectif d’interpréter les données expérimentales
mais qussi de formuler des hypotheses sur le fonctionnement 1/ de la mécanique

ventilatoire et 2/ du générateur du rythme respiratoire.

I1.5.1 Modéle simple de mécanique ventilatoire

Afin d'étudier les interactions entre les forces produites par les mouvements de la
paroi thoracique lors de la ventilation, nous avons proposé un modele basé sur le

systeme de levier de Hillman and Finucane (1987) et introduit des propriétés

dynamiques du systeme respiratoire. Les éléments passifs (thorax et abdomen) sont
considérés comme étant des compartiments élastiques reliés a I'air libre par un tube
résistif représentant les voies aériennes. La force développée par les muscles
respiratoires (Fmus) agit sur les deux compartiments thoracique (RC) et abdominal
(A). Ces deux compartiments sont représentés par deux ressorts caractérisés par
leurs élasticités respectives EA et ERC. La résistance du systeme respiratoire est
représenté par un amortisseur caractérisé par sa résistance visqueuse R .Chacun des
trois éléments est fixé a une barre rigide non horizontale sur laquelle la force Fmus

agit sur les eléments EA, ERC et R (Figure 15).

Figure 15 : Représentation du modeéle simple de mécanique ventilatoire. RC : compartiment thoracique
(ressort) d'élasticité Erc; A : compartiment abdominal (ressort) d'élasticité Ea; R : résistance du systéme
respiratoire (amortisseur) de résistance visqueuse R. Fmus: force développée par les muscles
respiratoires sur une barre sur laquelle les trois éléments sont fixés.
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Les parametres du modele ont été identifiés en utilisant les données enregistrées sur
11 volontaires sains dans cing condifions : au repos et au cours de I'addition de
quatre différents niveaux de résistance. Une analyse cycle par cycle monire que,
pour un nombre important de cycles, le débit simulé par notre modéle s'ajuste avec
celui mesuré par pneumotachographie avec un coefficient de détermination 20,70

et ce, quel que soit le sujet ou la condition.

La comparaison des signaux debits ventilatoires, obtenus expérimentalement et par
simulation, montre une bonne concordance. Ce modele peut étre utile pour
interpréter les variations des caractéristiques des compartiments thoracique et

abdominal au cours de la ventilation.

Calabrese et al (2010) A simple dynamic model of respiratory pump. Acta Biotheor.

Organisation du XXIXeme séminaire de la Société Francophone de Biologie Théorique et
coéditrice invitée pour la publication des actes de ce séminaire :

Calabrese P, Fontecave-Jallon J (Guest editors) (2010) Proceedings of the XXIXth Conference
of the French-speaking Society for Theoretical Biology (St-Flour, France, 14-17 June, 2009)
Acta Biotheor.
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Abstract To study the interaction of forces that produce chest wall motion, we
propose a model based on the lever system of Hillman and Finucane (J Appl Physiol
63(3):951-961, 1987) and introduce some dynamic properties of the respiratory
system. The passive elements (rib cage and abdomen) are considered as elastic
compartments linked to the open air via a resistive tube, an image of airways. The
respiratory muscles (active) force is applied to both compartments. Parameters of the
model are identified in using experimental data of airflow signal measured by
pneumotachography and rib cage and abdomen signals measured by respiratory
inductive plethysmography on eleven healthy volunteers in five conditions: at rest
and with four level of added loads. A breath by breath analysis showed, whatever the
individual and the condition are, that there are several breaths on which the airflow
simulated by our model is well fitted to the airflow measured by pneumotachography
as estimated by a determination coefficient R*> > 0.70. This very simple model may
well represent the behaviour of the chest wall and thus may be useful to interpret the
relative motion of rib cage and abdomen during quiet breathing.

Keywords Respiratory pump model - Respiratory inductive plethysmography -
Pneumotachography rib cage - Abdomen
1 Introduction

The interaction of forces that produce chest wall motion is complex and
not completely understood. This interaction has been studied for several years
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(Agostoni and Mognoni 1966; Gilbert et al. 1981; Goldman and Mead 1973; Konno
and Mead 1967; Sharp et al. 1975; Wade 1954).

Mathematical models are used to understand these interactions and the mechanics
of respiratory system better. Hillman and Finucane (1987) have produced a simple
model of the respiratory pump that “appears to be appropriate for most breathing
maneuvers and allows predictions to be made of the effect on chest wall of changes in
applied forces”. An advantage of this model compared with previous models
(Macklem et al. 1979; Primiano 1982) and analyses (Loring and Mead 1982;
Macklem et al. 1983; Mead et al. 1985) is that it provides a simple conceptual aid to
understand how the motion of the chest wall observed at the body surface varies with
changes in the active (muscle) and passive forces acting on it. The model is a lever
system, represented by an imaginary bar on which forces act at four fixed sites.
Although this model did not take into account the dynamic component of the system,
it appears valid for different respiratory maneuvers and has the advantage of being
simple and easy to use compared with other more complicated models of chest wall.
One of these models (Macklem et al. 1983; Ward et al. 1992) divided the rib cage
into two compartments, one that apposed to the lung and one that apposed to the
diaphragm. Ricci et al. (2002) proposed a two-compartment model of the inspiratory
pump, which used a realistic modelisation, distinguishing an active, an elastic and a
viscous component. Their model parameters identification derived from actual
measurement obtained by magnetic resonance imaging in normal humans.

We developed a simple dynamical model of respiratory pump based on the lever
system of Hillman and Finucane (1987). We used experimental data provided by
(1) respiratory inductive plethysmography (RIP), a noninvasive method of
measurement of the rib cage and abdomen cross sectional area changes, which
allows to estimate by a linear combination breathing volume changes (Konno and
Mead 1967) and (2) pneumotachography, to calculate model parameters at rest and
at four levels of added resistive load.

The fit between the airflow simulated by our model and the airflow measured by
pneumotachography was estimated by the determination coefficient.

2 Methods
2.1 Description of the Model

Our model is based on the lever system proposed by Hillman and Finucane (1987)
and introduces some dynamic properties of the respiratory system. Roughly, the
respiratory system can be divided into the rib cage and abdominal elements,
considered as passive, and the active respiratory muscles. The passive elements are
considered to be elastic compartments linked to the open air via a resistive tube, an
image of airways. The respiratory muscles force is applied to both compartments.

This simplified representation of the respiratory system is modeled in the
following way (Fig. 1). The passive elastic rib cage and abdominal compartments
are represented by two springs characterized by their elasticity (respectively Erc
and E,). The resistances of respiratory system are represented by a dashpot
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Fig. 1 Mechanistic V,
representation of the respiratory
pump

Ea

Fmus v
A A V

(characterized by its viscous resistance R). All three elements are attached to a rigid
roof. The respiratory muscles force (Fmus) is applied to this system through a stiff
bar without inertia sliding on the bottom ends of the springs and the piston.

Cross sectional area changes of abdomen (respectively rib cage) are represented
by changes of the vertical position of the bottom end of the abdominal (respectively
rib cage) spring A (respectively RC) as showed on Fig. 1. The vertical displacement
of any point of the bar is a linear combination of A and RC. The dashpot is attached
to the bar at the point where this linear combination corresponds to the one used for
the estimation of breathing volume changes from rib cage and abdomen cross
sectional area changes provided by respiratory inductive plethysmography (RIP)
measurement. Then, the vertical displacement of the bottom end of the dashpot
represents volume changes (V).

In reaction to the respiratory muscles force (Fmus), three forces are opposed: two
elastic tension forces of the springs (Frc and F) and the viscous resistance force (Fg)
of the dashpot. Some simplification allows to minimize the number of parameters.
The simplifications that have been taken into account are: the displacements are
parallel and vertical, and the horizontal distance between abdominal and rib cage
elements is normalized (=1). There are two geometric parameters (1) o the horizontal
distance between the dashpot and the “rib cage” spring with 0 < o < 1 and (2) f the
horizontal distance between the dashpot and the application point of Fmus, with
o — 1 < B <o, and three mechanical parameters, namely rib cage (Erc) and
abdominal (E,) elasticity and respiratory resistance (R).

2.2 Equations of the Model
By construction of the geometric properties of the model, vertical displacement of
the bottom end of the dashpot is a linear combination of vertical displacements of

the bottom end of abdominal (respectively rib cage) spring A (respectively RC)
(Eq. 1).
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V=0aA+ (1 — 2)RC )

The viscous resistance force (Fr) is in the opposite direction to the direction of
displacement of the lower end of the dashpot, and is the product of the simulated
flow (dv/dr) and the viscous resistance of the dashpot (R) (Eq. 2).
dv
Fr = —R— 2

k=K @
The elastic tension forces of the springs (Frc and F,) are in the opposite direction
of the deformation of the spring, and also the product of the elastances (Exc and E»)
characterizing the springs and the displacement of the springs (Egs. 3, 4).

Frc = —ErcRC 3)
Fp=—ExA (4)

In rotational dynamics, if a rigid body is submitted to several forces, the resulting
moment of all forces exerted on the rigid body is equal to the product of its angular
acceleration and its moment of inertia. In our model, we have stated that the bar has
no inertia. It follows that the resulting moment of all forces on the bar is null, and
this is true whatever the rotation point considered.

Then, the resulting moment of all forces applied on the bar relative to the
application point of Fmus is null (Eq. 5).

mw%.f?.lwl 1)(EAA) + (2 + B)(ErcRC) = 0 (s)

The derivative of V is consequently a linear combination of A and RC (Eq. 6) and, if
the model is valid, in the true respiratory system the flow should be a linear com-
bination of abdomen and rib cage cross sectional areas.

&V _ (=@ +M)Er, (et PErcy
dr BR h PR
which may be written
W kpa R
FTi KaA + KrcRC (6)
with
_ (= (=+B)Ea
K=" ™
Kre = \% (8)

2.3 Validation with Experimental Data
Experimental data from recordings on eleven healthy volunteers (8 female, 3 male)

were used to calculate the coefficients K and Krc of Eq. 6. The healthy volunteers
were between 19 and 55 years old (mean & SD: 28.5 £ 12.6). The weight varied
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between 46 and 87 kg (mean £ SD: 61.6 & 10.6) and the height was between 154
and 185 cm (mean £ SD: 168 £ 10).

Airflow was recorded with a pneumotachograph (Fleisch head no.1) placed on a
face mask and a differential transducer (163PC01D36, Micro Switch). Mouth
pressure was measured with a differential pressure transducer (142PC0O1D, Micro
Switch). Leaks from around the mask were checked for before the recording was
initiated using an infrared CO2 analyser (Engstrom Eliza/Eliza MC). Rib cage and
abdominal signals were recorded by inductive plethysmography (Visuresp, RBI®).

Subjects were comfortably seated in a quiet room and were asked to relax and to
breathe freely. The recording was performed with eyes open and lasted about 5 min
for each of the five conditions: at rest and with four level of added loads. Data
acquisition was started approximately 1 min after the addition of the resistance.
Resistive loads were added throughout the entire breath and for each recording, the
value of the resistance was calculated from the mouth pressure versus flow plot
throughout the total recording. The mean value (£SD) for all resistances on the 11
subjects were at rest Ry = 0.75 (£0.03) for the apparatus resistance, R; = 3.26
(£0.25), R, =527 (£0.34), R; =823 (£043) and Ry = 1226 (£0.63)
cm H,0 17" 5. The recordings were performed in a random order unknown to the
subject and on two subjects (#4 and #10) only four recordings were performed
(Calabrese et al. 2000).

Ka and Kgc of Eq. 6 were estimated breath-by-breath with a multiple linear
regression using the airflow signal measured by pneumotachography, rib cage (RC)
and abdominal (A) signals. Then the flow estimated by the model (dv*/dr) (Eq. 6)
and the determination coefficients R> were calculated breath-by-breath for the
evaluation of the level of fit between experimental flow measured by pneumotach-
ography and flow estimated by the model.

We have arbitrarily fixed at 0.70 the threshold above which we consider that a
breath complies with the model (R* > 0.70). Figure 2 is an example of measured

#9
Breath #6

Breath #38
R?=0,72

Breath #8
R?=0,42

N

Fig. 2 Airflow measured by pneumotachography (dark bar) and airflow calculated with the model (grey
bar) for subject 9 at rest (Ry) for 3 breaths yielding different values of determination coefficient R?
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#4
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Fig. 3 Rib cage and abdomen signals recorded with RIP, and rib cage versus abdomen plots in arbitrary
units. Two breaths are represented for subject 4 with the corresponding determination coefficient R* and
phase difference ¢

and reconstituted flows signals from five breaths with different R* of subject 9.
Mean values of K, and Kgc are calculated only on breaths with R* > 0.70.
Abdominal and rib cage signals from RIP on one hand and airflow from
pneumotachography on the other hand are used to estimate K, and Kgc values.
However, if rib cage and abdomen signals are closely in phase, such parallel changes
introduce indecision in the in the multiple linear regression calculation (badly
conditioned matrix) and may decrease the determination coefficients R Phase
differences were therefore calculated from rib cage versus abdomen plots (Lissajous
curves) in order to estimate the amount of these parallel changes (Agostoni and
Mognoni 1966). The phase difference is expressed as angle (°). Indeed, in Fig. 3
where are presented rib cage versus abdomen plots for two breaths from one
recording along with the value of R%, one can see that a higher value of the phase
difference (¢) is associated with a high value of R For breath #33, the phase
difference is 2° and the fit as evaluated by R is very poor (R> = 0.003), whereas for
breath #49 a high phase difference (29°) is associated with a good fit (R* = 0.97).

3 Results

The results of the fit between the recorded flow signal and the model flow signal are
gathered in Table 1 for all subjects and for all five conditions. For each recording
two groups have been considered according to the value of the determination
coefficients R For each resistance, the number of breaths in the group with
R? > 0.70 followed by the number of breaths in the group with R> < 0.70 are given
in the upper line. The mean value of phase difference (°) for each group is given in
the lower line.
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Table 1 Number of breaths with R* > 0.70 (first number) and with R?> < 0.70 (second number)

Subjects

#1 #2 #3 #4 #5 #6 #1 #8 #9 #10 #11
Ry
n 31 44 13 63 1 67 47 15 27 28 28 27 5 76 16 49 60 3 0 41 1 75
@ 21 16 11 5 11 6 15 8 11 9 16 12 25 7 20 14 29 18 5 8 2
Ry
n 23 40 7 67 2 68 49 23 34 17 13 25 1 72 10 41 58 5 * 43 7
@ 17 10 12 8 22 6 15 9 19 13 18 15 42 ]2 18 13 34 25 14 9
Ry
n 5 49 10 56 1 52 55 12 39 13 20 11 2 68 5 41 60 3 3 36 57 3
@ 17 9 12 6 16 8 14 10 21 9 18 10 34 10 19 8 33 23 25 12 13 7
R
n 4 36 11 51 4 60 53 14 41 7 33 26 0 64 5 34 53 4 9 28 33 4
@ 19 10 12 6 20 8 20 12 19 10 22 16 8 19 8 38 29 33 21 13 8
Ry
n 4 36 12 50 4 57 * 56 5 13 16 5 68 8 25 33 13 18 14 34 3
@ 23 7 18 8 19 7 25 18 23 13 17 10 31 9 33 20 31 22 20 7

Above are the corresponding mean values (in italics) of the phase difference (°) for all subjects and all
resistances (Ro, Ry, Ra, R3, Ry)
¢ Missing recording

The number of breath with R* > 0.70 is higher than R? <0.70 in subjects #4, #5
and #9.

The number of breath with R? > 0.70 increases with the load in subjects #5, #10
and #11 (up to R? only).

On the whole, R* > 0.70 for 1,193 breaths while R* < 0.70 for 1,778 breaths.

One can see that for each condition and all subjects, the mean value of the phase
difference is higher for the group of breath with R* > 0.70 than for the group of
breath with R* < 0.70. Phase difference versus R* plots for each subject and all
resistances show a significant positive correlation in all subjects.

Figure 4 is the plot of the mean values of K, and Krc calculated for each
condition on those breaths with R > 0.70. At a given condition K and Krc have
opposite signs. Kx and Kgc increase or decrease (according to their sign) with
increasing added load approaching zero at the highest added load.

In our model, Kx/Kgc ratio is mathematically independant of R (from Eqgs. 7
to 8):

(1— (z+p)Ea

(o0 + B)Erc
We have calculated this ratio for each subject in all conditions, it appears that this

ratio is roughly constant for subjects #2, 5, 10 and 11 (SD/mean < 17%). For
subject # 1, 4, 6, 7 and 9, the variability is higher (24% < SD/mean < 40%). For

—Ka/Krc = 9)
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Fig. 4 Representation of K and Kgc (mean value on those breaths with R? > 0.70) for each added load
condition and each subject

two subjects #3 and 8, the variability of Ka/Kgrc ratio is very high (80 and 48%
respectively).

4 Discussion

This study shows that 1,193 breaths on a total of 2,971 breaths (40%), recorded in
eleven subjects in five conditions (rest and four level of resistive loading), validate
the model. Then, our simple model represents satisfactorily (i.e. with a determi-
nation coefficient R > 0.70) the behavior of the chest wall motion in a significant
number of breaths.

Starting from the lever system of Hillman and Finucane (1987), we developed a
simple dynamical model of the respiratory pump. This allowed to compare model
simulation of airflow (obtained with abdominal and rib cage signals) with airflow
measured by pneumotachography.

Many model of the respiratory system have been developed (Loring and Mead
1982; Macklem et al. 1979, 1983; Mead et al. 1985; Primiano 1982; Ricci et al.
2002). Our model is realistic because it takes into account the two compartments
considered passive, rib cage and abdomen, and the active respiratory muscles,
elastic and viscous forces in reaction to the respiratory muscle. The simplifications
performed to minimize the number of parameters (i.e. parallel and vertical
displacements, normalized horizontal distance between abdominal and rib cage
elements) are minor. The geometric properties of the model (Eq. 1) are coherent
with the Konno and Mead hypothesis which asserts that tidal volume is a linear
combination of rib cage and abdomen cross sectional areas. The hypothesis of a
system without inertia is a common assumption in respiratory mechanics.
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The limits on the model are directly related to the hypothesis it includes: the
geometric and mechanical properties of respiratory system are constant, at least over
the breathing cycle. That mechanical properties remain stable over a respiratory
cycle is a common assumption. That « and f§ remain constant during a respiratory
cycle seems to be verified in a number of cycles where the model fits the data, but
may be wrong for the others. The stability of o for a given subject is implicitly
admitted as it is the condition of application of RIP technique. This leads to question
about the stability of ff: our results indicate that this parameter is stable for a number
of cycles (those with R? > 0.70). The value of § depends upon the relative
contributions of diaphragm, rib cage muscles and abdominal muscles to the act of
breathing because their net action determines the relative motion of rib cage and
abdomen. Because this net action can vary from breath to breath and from one
condition to another, f may change from one breath to the other. Our results
indicate, however, that § remains stable for some subjects (#2, 5, 10 and 11)
presenting a low Ka/Kgc ratio variability.

Experimental data were obtained at rest and with the addition of four level loads
throughout the entire breath. Adding ventilatory external loads has been used to
simulate respiratory system disorders (Milic-Emili and Zin 1986). Although,
resistive loading is not entirely analogous to internal respiratory loading induced by
airway diseases it has often been used as a tool to characterize the compensatory
mechanisms of the ventilatory system (Altose et al. 1979; Axen et al. 1983), the
subject’s tolerance to added loads (Freedman and Campbell 1970) and to study the
sensations induced by these loads (Kelsen et al. 1981; Chonan et al. 1990). For
Milic-Emili and Zin (1986) there are several reasons for studying loads:
(1) elucidate basic physiology, (2) improve understanding and treatment of
disturbances in patients with respiratory diseases and (3) assist in the design and use
of breathing equipment for medical or other purposes. Another reason would be:
explore respiratory muscles activity by non invasive techniques in conscious
subjects (Gozal et al. 1995, 1996). Our study is clearly in line with the latter reason.

The threshold of the determination coefficient R (estimation of the level of fit
between experimental flow measured by pneumotachography and flow estimated by
the model) has been arbitrarily fixed at 0.70. This value is rather high but it can be
seen in Fig. 2 that the fit appears satisfactory at this level of threshold.

The number of breath with R*> > 0.70 for each recording is gathered in Table 1.
This number varies amongst subjects and conditions. No trend was observed with
increasing resistances. The accuracy of K, and Kgc calculation may explain this
variability in the number of breath with R®> > 0.70. Indeed, the accuracy of
coefficient estimation is related to the difference between abdominal and rib cage
signals. This difference can be estimated from the Lissajous curves and expressed as
the phase difference. Figure 3 and Table 1 show that high phase differences were
often associated with high R%.

The variability in the number of breath with R* > 0.70 on one individual may
have various origins. It can be explained in terms of fluctuations of the application
point of the respiratory muscles force (Fmus) on the model’s bar (Fig. 1). Indeed,
when the position of the muscle force application point is at the bottom end of the
dashpot, this results in parallel changes in RC and A signals, in other words a very
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low phase difference, inducing indecision in the multiple linear regression
calculation (badly conditioned matrix). On the other hand, elastances are greatly
influenced by thoracic muscle tone which may vary in the course of the breath
(Josenhans et al. 1975). This may impair the adequacy of the model which relies on
the hypothesis that elastances are constant.

Figure 4 show that estimated Ko and Krc have always opposite signs as it is
imposed on theoretical values by Eq. 6. Furthermore, the coefficients increase or
decrease (according to their sign) when the added load increases (except for subject
#7 for both coefficients and for subject #9 for K,). This is in agreement with our
model hypotheses: Eqs. 7 and 8 indicate R is inversely proportional to K and Kgc,
on the hypothesis of E, and Erc constant.

RIP is often used to obtain either a measure of tidal volume or the rib cage and
abdomen signals indicating the contribution of the two compartments to ventilation.
This remains valid during different respiratory conditions, as hyperventilation
(Calabrese et al. 2007) and especially during loaded breathing (Carry et al. 1997;
Eberhard et al. 2001).

RIP measurements and our model are complementary to understand chest wall
motion. RIP is largely used to estimate thoracoabdominal asynchrony that is
considered to be noninvasive indicators of airway obstruction (Hammer et al. 1992;
Sackner et al. 1984; Cantineau et al. 1992). The hypothesis that thoracoabdominal
asynchrony is related with airway obstruction, is in accordance with our model: if
the resistance of respiratory system (R) increases, the viscous resistance force (Fr)
of the dashpot applied on the bar is stronger involving rib cage and abdomen
asynchrony (elastances E5 and Egc supposed constant).

In conclusion, our model proved to be able to represent the behavior of the chest
wall and thus may be useful to interpret the relative motion of rib cage and abdomen
during quiet breathing. The model is simple in its conception and easy to use since
three signals airflow (pneumotachography) and abdominal and rib cage signals
(respiratory inductive plethysmography) are needed to calculate the model’s
parameters. The model could be a useful and complementary tool to experimental
data to understand respiratory mechanics.
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I1.5.2 Modéles non linéaires du générateur de rythme respiratoire

1.5.2.1 Modele déterministe chaotique

En se basant sur I'hypothése qu’en contrélant la présence du chaos en modifiant un
parametre du systeme qui apporte des indications sur la nature chaotique du
systeme, nous avons essayé de modifier, de maniere expérimentale et en faisant des
simulations, la dimension chaotique du systeme ventilatoire en modifiant les charges
résistives chez des volontaires sains. Nous avons construit un modele mathématique
qui simule les interactions enfre deux systemes. Le premier, actif, est un générateur
du rythme respiratoire représenté par un systeme déterministe chaotique. Le
deuxieme, passif, est le systeme respiratoire mécanique, représenté par un seul
compartiment alvéolaire homogene d’élastance (E) relié aux voies aériennes rigides
de résistance (R). Les données expérimentales utilisées ont été celles acquises lors
d’addition de résistances au repos chez des volontaires sains. On observe avec les

simulations la méme tendance qu’avec les résultats expérimentaux.

Ces résultats supportent I'hypothese de la nature chaotique du générateur de

rythme respiratoire.

Thibault et al (2004) Effects of resistive loading on breathing variability - Non linear analysis
and modelling approaches. Adv Exp Med and Biol

1L5.2.2 Oscillateur de Van Der Pol

Pour simuler les effets de la déglutition sur le rythme ventilatoire, nous avons utilisé un
modéele du générateur de rythme respiratoire basé sur I'oscillateur de Van Der Pol

modifié (Pham Dinh ef al, 1983). Chez 4 sujets sains, les signaux respiratoires ont été

enregistrés de facon non invasive pendant des périodes comportant des déglutitions.
Les déglutitions observées peuvent étre regroupées en trois catégories : celles qui
débutent et finissent pendant une phase inspiratoire (rares), celles qui débutent et
finissent pendant une phase expiratoire et enfin celles qui débutent en inspiration et
finissent en expiration.

Le phénomene de la déglutition a été modélisé a partir des données physiologiques.

Une déglutition se traduit, sur le plan mécanique, par une occlusion des voies
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aériennes supérieures au niveau du larynx. Donc, pendant toute la déglutition, le
volume pulmonaire reste constant, égal au niveau atteint en début de déglutition.
Le fonctionnement du générateur de rythme respiratoire, de son cété, semble
inferrompu, arrété momentanément pour reprendre, apres la déglutition, dans un
état semblable G celui observé au début de la déglutition. De plus, I'amplitude du
cycle suivant une déglutition, semble étre plus élevée que celle des cycles
précédents.
Au niveau du modele de I'oscillateur respiratoire central, les hypotheses suivantes
ont été faites :
e qau début de la déglutition, le point (x,y) représentant I'état de I'oscillateur
dans le plan de phase est arrété a I'endroit ou il se trouve,
e ce point ne reste pas a cette position pendant toute la déglutition : il s’écarte
de la position inifiale (x,y) sur une trajectoire qui :

» qassure que le comportement de I'oscillateur apres redémarrage (le
point représentatif est la nouvelle condition initiale & la fin de la
déglutition) sera « similaire » a ce qu'il aurait été sans déglutition,
simplement décalé dans le temps. Le point doit donc rester sur un
isochron. L'isochron d'un point du cycle limite est I'ensemble des points
du plan dont la trajectoire asymptotique est confondue avec celle du

point du cycle limite (Pham Dinh et al, 1983).

* augmente I'amplitude du cycle suivant, le point s'éloigne donc, sur
I'isochron, vers I'extérieur du cycle limite.

De plus, afin de définir le mouvement du point représentatif de I'état de I'oscillateur
respiratoire pendant la déglutition, nous faisons I'nypothese que la valeur absolue de
la vitesse du point reste constante pendant la déglutition : le point se déplace donc
sur I'isochron a une vitesse égale (en module) a celle sur le cycle limite au moment
du début de la déglutition.
Les trois types de déglutition ont été simulés avec notre modele, le résultat d'une

simulation pour une déglutition en expiration est présenté sur la Figure 16.
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Figure 16 : Représentation des processus de simulation pour un type de déglutition en expiration (E). La
figure de gauche représente la simulation de la déglutition au niveau du générateur de rythme
respiratoire : le plus petit point (rouge, D) est le début de la déglutition, qui va se déplacer sur I'isochron
du point d'arét (courbe en pointillée bleue) ; le plus gros point (violet, FD) représente la fin de la
déglutition, a partir de ce point il y a un retour vers le cycle limite. La figure de droite représente les
signaux de volume courant obtenus en sortie : pour le cycle avant la déglution, pendant la déglutition
(représentée par le point rouge, D) et les deux cycles suivants.

Les résultats des simulations de déglutition avec le modéle concordent avec ceux

obtenus lors de déglutitions expérimentales, quelle que soit la phase du cycle

respiratoire ou survient cette déglutition.

Le modele proposé a été validé qualitativement. Durant I'arrét respiratoire induit par
une déglutition, le générateur de rythme respiratoire se comporte comme un
accumulateur de I'énergie qu'il ne peut dissiper pendant la durée de cet arrét et

qu'’il restitue progressivement des la reprise de son activité.

Ce fravail a fait I'objet du coencadrement de deux masters 2 Ingénieries pour la Santé et le
Médicament (Al Chama Feras et Mezioud Naima) et de deux communications :

Al Chama et al. (2005) Effets de la déglutition sur le rythme respiratoire. Société Francophone
de Biologie Théorique, Saint Flour

Baconnier et al (2006) How to simulate the effect of swallowing on the respiratory rhythm
generatore Eur Respir J (European Respiratory Society Annual Congress Munich).

11.5.3 Modéle d’interaction coeur -respiration

Le modeéle mathématique proposé integre un modele neuro-musculaire ventilatoire
et un modele cardiovasculaire. Le modeéle neuro-musculaire ventilatoire est un

modéele permettant de simuler la commande et I'activité des muscles respiratoires
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ainsi que la mécanique du systeme thoraco-pulmonaire. Le modele cardio-
vasculaire minimaliste de Smith est constifué des deux ventricules et de
compartiments supplémentaires pour les circulations systémique et pulmonaire. Ces
deux modeles sont mis en interaction par I'intermédiaire de la pression pleurale
(calculée par le modele neuro-musculaire ventilatoire) et du volume de sang intra-
thoracique (évalué par le modele cardio-vasculaire). Les équations du modele
complet ont été programmées sous Berkeley-Madonna afin de simuler son
comportement. Les simulations par le modeéle sont en accord avec les données

expérimentales ainsi que les données de la littérature.

Les résultats de ce travail suggerent que le modeéle proposé peut étre utile dans

I'interprétation des interactions cardio-pulmonaires.

Fontecave Jallon et al (2000) A model of mechanical interactions between heart and lungs.
Philos Transact A Math Phys Eng Sci

I1.5.4 Complexité

J'ai été responsable scientifique du projet “Interactions cardio-respiratoires:
complexités nécessaires ou vestigiales 2 Modeles et expériences” financé pendant 2
ans par le Programme Interdisciplinaire Complexité du Vivant & Action STIC-Santé
(2004-2006).

L'objectif de I'étude était d’aborder la Complexité du vivant par la recherche des
meécanismes des interactions cardio-respiratoires.

Un ralentissement cardiaque au cours d'une déglutition, quelle que soit la phase
respiratoire, peut suggérer la persistance d'un mécanisme de ralentissement
cardiaque en relation uniguement avec l'arrét respiratoire comme chez les
mammiferes plongeurs. Sinon, il convient d’envisager une action spécifique de la
déglutition sur les centres respiratoires. Pour apporter des éléments de réponse, nous
avons comparé les variations de fréquence cardiagque chez I'homme sain au cours
de différentes situations d'apnée : la déglutition, I'apnée volontaire dans I'air,
I'apnée pendant I'immersion du visage dans I'eau (pour simuler la plongée). La
Figure 17 est un exemple de signaux enregistrés au cours d’'une déglutition. Le signal

de fréquence cardiague est calculé a partir du signal électrocardiographique.
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Figure 17 : Signaux enregistrés au cours d'une déglutition. Signaux thoracique (THORAX) et abdominal
(ABDOMEN) mesurés par pléthysmographie respiratoire & variation d'inductance (PRI), ECG
électrocardiogramme (bleu foncé), fréquence cardiaque (bleu claire), DEBIT_REC : Débit reconstitué a
partir des signaux thoracique et abdominal.

La moyenne, I'écart type et le coefficient de variation sont calculés sur la durée
totale de I'événement (pendant) et sur une durée identique avant I'événement

(avant) ef sontf représentés sur la Figure 18.
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Figure 18: Représentation de la valeur moyenne de la fréquence cardiaque, de I'écart type et du
coefficient de variation avant et pendant chaque événement pour les 4 sujets.

DEGLUTITION: ingestion d'un grand verre d'eau (environ 200 ml) ; APNEE : apnée volontaire dans I'air
PLONGEE : apnée “dans I'eau”: le sujet plonge le visage dans de I'eau a température ambiante

APNEE SOUFFLEE : apnée aprés une grande inspiration suivi d'un dégonflement progressif dans I'air
PLONGEE SOUFFLEE : apnée aprés une grande inspiration suivi d'un dégonflement progressif dans I'eau
a température ambiante.

Les durées des apnées sont imposées par la durée de la déglutition. Les durées sous I'axe des abscisses
indiquent la durée sur laquelle les moyennes de la fréquence cardiaque sont calculées.
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On observe chez tous les sujets une augmentation de la fréquence cardiaque
pendant la déglutition, alors qu’elle diminue ou varie tres peu pour tous les autres

événements et chez tous les sujets (sauf apnée soufflée chez le sujet 4).

Le résultat attendu était un ralentissement du rythme cardiaque au cours de la
déglutition suggérant la persistance d'un mécanisme de ralentissement cardiaque
en relation uniquement avec l'arrét respiratoire comme chez les mammiferes
plongeurs. Nos résultats montrent une augmentation de la fréquence cardiaque au
cours de la déglutition ce qui suppose une action spécifique de la déglutition sur les

centres respiratoires.

Ce travail a fait I'objet d'un rapport scientifique dans le cadre du projet “Interactions cardio-
respiratoires: complexités nécessaires ou vestigiales 2 Modéeles et expériences” du
Programme Interdisciplinaire Complexité du Vivant & Action STIC-Santé-2004-2005.

Les résultats du ftravail réalisé dans le cadre du projet " Interactions cardio-
respiratoires : complexités nécessaires ou vestigiales ¢ Modeles et expériences.”
présentés dans 1.5.2.2, pour la partie modele et dans 1.5.4, pour la partie
expérimentale, constitueront une base de travail du projet ANR e-Swallhome sur la

déglutition, présenté dans les perspectives.
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1.6 TRAVAUX EN COURS ET PERSPECTIVES

I1.6.1 Déglutition et respiration

Dans le paragraphe ci-dessus nous avons observé I'accélération de la fréquence
cardiague pendant la déglutition ce qui est contraire aux variations cardiaques
obtenues au cours d’apnées. Ces résultats ont montré qu'il existait une coordination
spécifique entre la déglutition et la respiration. Nous avons cherché a mieux
comprendre les mécanismes a la base de cette coordination, d’autant plus qu’il
existe des applications dans le cadre de dysfonctionnement de la déglutition
consécutif a un Accident Vasculaire Cérébral (AVC). Ce travail a débuté dans le
cadre du projet “Deglutition et Respiration : Modélisation et e-Santé & domicile” (e-
SwallHome) financé par I'ANR Technologies pour la Santé et I' Autonomie (2014-2017).
Ce projet multicentrique associe plusieurs laboratoires dont trois du site Grenoblois :
TIMC-IMAG UMR 5525 CNRS-IPG-UJF, GIPSA-lab, UMR 5216 CNRS-IPG-UJF et AGIM,
CNRS/UJF, FRE 3405 ainsi que Laboratoire Parole et Langage, CNRS UMR 7309
(Universite Aix-Marseille), et plusieurs CHU francais : de Montpellier, d’ Aix Marseille, de
Caen et deux sociétés Intfrasense®, Montpellier et Bioclinome®, Grenoble.

Dans le cadre de ce projet ANR e-SwallHome, mon travail a consisté dans un
premier temps a mettre au point un protocole permettant I'enregistrement
d’événements de déglutition et de parole sur 15 volontaires sains. J'ai rédigée un
document (délivrable D3.1a) qui décrit ce protocole en justifiant les choix de
capteurs et le déroulement des séquences d'enregistrements par rapport d nos
objectifs.

En complément des signaux ventiltoires mesurés par PRI, un électroglottographe est

utilis€ pour mettre en évidence la déglutition (Perlman and Grayhack, 1991 ;

Logemann, 1994 ; Pédouroux et al, 2001) et un microphone permet I'enregistrement

du signal acoustique pour la phonation. Les capteurs de PRI, d’électroglottographie

et le microphone sont présentés sur un sujet sur les photos de la Figure 19.
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Figure 19 : Pléthysmographe respiratoire & variation d'inductance (ventilation), électroglottographe
(variations d'impédance au niveau de la glotte) et microphone (signal acoustique) placés sur un sujet.

Les enregistrements sur volontaires sains ont été réalisés, et nous analysons
actuellement le signal ventilatoire PRI pour la caractérisation des différentes phases
de déglutition et de phonation. Un exemple d’'enregistrement des différents signaux

au cours d’évenements de deglutition et de parole est présenté sur la Figure 20.
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Figure 20 : Enregistrement sur un sujet sain des signaux électroglottographique (EGG), acoustique
(micro) et de ventilation (thorax, abdomen et volume obtenus par pléthysmographie respiratoire a
variation d'inductance) au cours d’évenements de déglutition et de parole.
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Une partie de ce travail a fait I'objet de I'encadrement d’un master 1 Ingénieries
pour la Santé et le Médicament en 2014 (pour la mise au point du protocole) et d'un
projet ingénieur TIS5 en 2015 (pour I'enregistrement des volontaires sains et le

développement d'un outil de fraitement des données).

Une derniere phase du projet a pour objectif la mise au point d'un index
d’évaluation de la deéglutition. Ceci sera réalis€é dans l'unité de “Neurologie
vasculaire - Soins intensifs AVC” au CHU Grenoble Alpes & partir des déglutitions
enregistrées chez les patients ayant eu un AVC a deux reprises : & 15 jours et & 6 mois
de I'AVC. Ce travail a débuté en novembre 2016 avec l'inclusion d'un premier
patient et sera poursuivis en 2017.

Par ailleurs, la méthode de simulation de la déglutition présentée §l11.5.2.2 sera
appliquée a ces enregistrements afin de comparer les résultats des sujets sains et
pathologiques et de rechercher si le comportement du générateur de rythme

respiratoire modélisé est modifié apres un AVC.

11.6.2 Interactions phonation-ventilation

Cette thématique initiée par Nathalie Henrich-Bernardoni (GIPSA-lab) m’a intéressée
parce que le contréle de la ventilation joue un réle déterminant dans la production
des sons (parole et chant).

En effet, une coordination des mouvements ventilatoires, phonatoires et
articulatoires est nécessaire pour la production de la voix humaine. De nombreuses
techniques vocales dans la parole et dans le chant s'appuient sur cette
coordination pour augmenter I'intensité vocale produite ou pour changer la qualité
de la voix. La production de voix humaine est modélisée par la théorie source-filtre,
qui a fait ses preuves dans le fraitement de la parole normale mais qui montre ses
limites quand on s'intéresse a la qualité vocale, aux aspects de forcage vocal, de
dysphonie et au développement de troubles de la voix d’origine fonctionnelle. Dans
cette approche théorique, les aspects phonatoires sont découplés des aspects
articulatoires en premiere approximation. Les aspects respiratoires ne sont pris en
compte que de facon ftrés indirecte, le conduit vocal étant considéré

acoustiguement fermé a la glotte pendant la phonation.
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S’inscrivant dans une démarche pluridisciplinaire de physiologie, physique et
phonétique, ce projet ambitionne de revisiter ce cadre théorique, en y incluant les
effets liés aux interactions entre les frois niveaux respiratoire, phonatoire, et
arficulatoire. L'objectif de cette collaboration est d'aborder les mouvements
ventilatoires, phonatoires et articulatoires au cours de différentes techniques de
chant ou I'aspect ventilatoire est essentiel a la réalisation de la technique, comme
pour le Human Beatbox ou le chant diphonique. La description, I'exploration
conduisant ad une meilleure compréhension de cette coordination pourrait
permettre de proposer des solutions de rééducation de la voix.

Dans ce cadre, nous avons eu l'opportunité d’enregistrer les mouvements
respiratoires, phonatoires et articulatoires chez six chanteurs originaires de Mongolie
au cours de différentes techniques de chant diphonique. Nous avons aussi enregistré
un chanteur de Human Beatbox.

La premiere observation est que les interactions ventilation-chant sont visibles et
parfois reproductibles sur le signal ventilatoire. Notre hypothése est que, a I'instar de
I'interaction ventilation —chant, I'interaction ventilation-parole pourrait étre visible et
reproductible sur un signal ventilatoire. Ceci pourrait étre utilisé pour I'apprentissage

de la parole et la réhabilitation de la phonation.

11.6.3 Le syndrome d’hyperventilation

En continuité de la these de Tudor Besleaga soutenue en 2011, une collaboration
sera mise en place prochainement. Nous sommes actuellement en recherche d’un
financement de theése qui se ferait en cotutelle entre nos deux universités

En effet, nous souhaitons poursuivre notre collaboration avec Tudor Besleaga qui a
été titularisé en 2014 au département de Physiologie Humaine et Biophysique de
I'Université de Médecine et Pharmacie "Nicolae Testemitanu" a Chisinau (Moldavie).
Ce département a une collaboration fres étfroite avec I'Institut de Neurologie et
Neurochirurgie de Moldavie. Notre objectif serait d'explorer les dysfonctionnements
de la fonction ventilatoire et de l'interaction cardio-respiratoire dans certaines

pathologies neurologiques.
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11.L6.4 Asynchronisme thorax - abdomen : application

Une démarche de collaboration est initiee avec la Tunisie en continuité de la these
d’Aicha Laouani dont j'ai codirigé la thése. Elle occupe actuellement un poste au
laboratoire de biophysique de la faculté de Médecine de Sousse (Tunisie).

L'objectif de la collaboration serait I'étude de I'asynchronisme thorax —abdomen
chez les enfants souffrant de pathologie obstructive chronique. Des enregistrements
répétés ou en continue pourraient étre réalisés afin d’'évaluer les variations de
I'obstruction au cours de la journée en fonction 1) de divers événements (prise de
nourriture, sommeil, déplacements etc) et 2) de la thérapeutique.

Nous sommes actuellement en cours de recherche de financement.

I.6.5 Diagnostic médical a partir d'une analyse des gaz

respiratoires

Je suis impliquée dans le projet intitulé “ Fast and sensitive breath analysis for medical
diagnostics” financé par I'ANR du programme grands défis sociétaux, vie santé et
bien étre PRCE: Projets de recherche collaborative-entreprises (2016-2018). I
implique le Laboratoire de Physique Interdisciplinaire (LIPhy) de Grenoble, le centre
d’investigation clinique-innovation technologique (CIC-IT) de Grenoble et notre
équipe (PRETA, laboratoire TIMC-IMAG, porteur R Briot médecin urgentiste de
I'équipe) ainsi que la societé AP2E (SAS) a Aix en Provence. Ce projet translationnel
comprend trois phases : 1) validation et certification de I'appareil de mesure rapide
et précise de gaz, développé par le LIPhy (porteur du projet) pour la mesure de CO
sur les poumons avant transplantation, 2) validation du CO comme indicateur de la
qualité du greffon (poumon humain) et 3) identification et validation d’autres
traceurs pouvant faire état de la qualité du greffon.

Ma participation dans ce projet de recherche se place au niveau de I'aide au

développement d'un outil d'analyse et de traitement des données recueillies.
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