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RESUME (FR) 

Une nouvelle modalité de radiothérapie, la micro-curiethérapie, est en cours de 

développement. Cette thérapie cible des tumeurs solides inopérables en effectuant des 

injections de liquide contenant des microsphères radioactives en suspension. 

Plusieurs injections sont nécessaires pour suffisamment irradier la zone tumorale et donc, 

afin d’optimiser le positionnement de ces injections, une méthode de planification de traitement 

a été développée et validée au cours de cette thèse. 

Tout au long de ce travail, trois thèmes principaux seront discutés : 

• Comment réaliser une dosimétrie adaptée à cette micro-curiethérapie ? 

• Comment effectuer la planification de traitement pour cette modalité ? 

• Comment optimiser le plan de traitement afin qu’il soit le plus efficace possible ? 

La première question est abordée en discutant comment la distribution de radiation d’une 

seule injection pourrait être calculée, et comment cette distribution pourrait être convoluée à 

une distribution 3D réelle dans le patient. Ainsi, les injections proposées par le plan de 

traitement pourraient être convoluées par la distribution de dose absorbée d’une injection, afin 

de calculer la dose absorbée dans le patient. 

Une fois la distribution de dose absorbée calculée pour le plan de traitement, la prochaine 

étape concerne l’extraction des informations dosimétriques, tel que les histogrammes dose-

volume (HDVs). Ceci permet d’analyser et de comparer rapidement et efficacement les plans 

de traitement.  
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Ensuite, les algorithmes d’optimisation sont développés et comparés. Ces algorithmes 

cherchent des plans de traitement de qualité croissante, en espérant qu’à la fin du processus 

d’optimisation, le plan de traitement proposé soit de qualité adéquate pour être effectué sur un 

patient. 

Afin de pouvoir produire des plans de traitement de qualité croissante, il est important de 

pourvoir les classer en les comparant quantitativement. Ces plans de traitement étant assez 

abstraits – consistant en plusieurs injections distribuées dans un espace 3D et la distribution de 

dose absorbée résultante – il est nécessaire de les condenser en quelques chiffres qui pourraient 

être comparés facilement. De plus, ce processus nécessite d’être rapide car cette analyse de 

plans de traitement doit être réalisée plusieurs fois pendant la planification de traitement, dans 

un temps cliniquement acceptable. Dans ce contexte, des méthodes de comparaison 

quantitatives via des « fonctions coûts » sont discutées. 

Une fois les méthodologies de dosimétrie pour la micro-curiethérapie et de production de 

plans de traitement optimaux développées, certains paramètres d’injection sont testés et 

comparés. Notamment, une étude importante est effectuée sur le radioélément le mieux-adapté 

aux injections. D’autres études sont effectuées sur le volume injecté idéal, l’activité initiale du 

radioélément injecté et, sur la forme géométrique des injections (une forme sphérique ou 

cylindrique). 

Avec la dosimétrie, l’algorithme d’optimisation et les paramètres d’injection en place, le 

développement d’un système de planification de traitement (TPS) complètement opérationnel 

avec une interface graphique est discuté et les résultats présentés. 

Cette nouvelle technologie associée aux développements réalisés au cours de cette thèse 

démontre la faisabilité, validée sur animal, de pouvoir injecter un liquide contenant des 

microsphères radioactives en suspension afin de pouvoir traiter efficacement, tout en préservant 

les tissus sains environnants, dans le cas de tumeurs inopérables aujourd’hui. 
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La structure de ce travail est donc : 

• Chapitre 1 : état de l’art de ce projet. Qu’est-ce que la micro-curiethérapie ? 

Pourquoi cette thérapie a-t-elle été proposée ? Quelles tumeurs pourraient 

potentiellement être ciblées ? Qu’est-ce qui est nécessaire pour que cette thérapie 

soit un succès ? 

• Chapitre 2 : revue de bibliographie, introduisant le concept de planification de 

traitement. Dans ce chapitre, plusieurs concepts, tel que la fonction coût, sont 

présentés ainsi que l’explication de plusieurs algorithmes d’optimisation qui 

seront utilisés tout au long de cette recherche. 

• Chapitre 3 : méthode de calcul de la dosimétrie de plans de traitement proposés. 

Ce chapitre se termine avec un exemple travaillé, du début à la fin, de l’analyse 

dosimétrique d’un plan de traitement. 

• Chapitre 4 : comparaison des algorithmes d’optimisation qui ont été introduits 

dans le Chapitre 2 en utilisant la méthodologie de dosimétrie qui a été présentée 

dans le Chapitre 3. Plusieurs cas de test sont utilisés pour cette comparaison, 

chacun ajoutant un niveau de complexité sur le précèdent. Une fois les algorithmes 

comparés et le mieux adapté sélectionné, une étude est effectuée sur l’impact de 

la taille du voxel sur la dosimétrie ainsi que sur la planification de traitement. 

Finalement, un plan de traitement est optimisé et analysé pour un vrai 

glioblastome. 

• Chapitre 5 : comparaison des paramètres d’injection qui pourraient être modifiées 

afin de délivrer le meilleur traitement possible. Ces paramètres incluent le choix 

du radioélément injecté, le volume de chaque injection et l’activité initiale 

injectée. Il est aussi proposé dans ce chapitre que les injections cylindriques soient 

utilisées à la place d’injections sphériques. Les effets sur le calcul de la 

distribution de dose absorbée et sur la planification de traitement sont alors 

discutés. 

• Chapitre 6 : les méthodologies de tous les chapitres précédents sont rassemblées 

afin de créer un TPS de micro-curiethérapie. La structure de ce TPS est présentée. 

L’utilisation des logiciels tiers est aussi discutée dans ce chapitre. 

• Ce travail se termine par un chapitre sur les conclusions et les perspectives futures.
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INTRODUCTION (FR) 

Le cancer et la radiothérapie 
Le cancer est actuellement la plus grande cause de mort en France. Les outils principaux 

dans la lutte contre le cancer sont la chirurgie, la chimiothérapie et la radiothérapie. Ce travail 

se concentre uniquement sur la radiothérapie, qui pourrait être utilisée, soit en thérapie 

adjuvante, soit toute seule. 

Quand les rayonnements ionisants traversent le corps, de l’énergie est déposée. 

Indépendamment du fait que l’énergie soit déposée dans les cellules tumorales ou saines, ceci 

cause la mort cellulaire. La radiothérapie, par conséquent, exploite les rayonnements ionisants 

en les focalisant sur la tumeur. 

Il existe plusieurs formes de radiothérapie, mais l’objectif commun parmi toutes ces 

modalités reste le même : irradier suffisamment la tumeur tout en réduisant l’irradiation des 

tissus sains environnants. La sur-irradiation des tissus sains peut induire des effets secondaires 

à la fois aigus et chroniques, tandis que la sous-irradiation de la tumeur peut ne pas entrainer sa 

destruction complète voir le développement de tumeurs secondaires. 
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Les modalités de radiothérapie 
Avant de décrire la micro-curiethérapie, une nouvelle forme de radiothérapie, il est 

nécessaire de discuter trois modalités existantes de radiothérapie et leurs divers avantages et 

inconvénients. Ces modalités sont : la radiothérapie externe (EBRT), la curiethérapie et la 

médecine nucléaire, avec un accent particulier sur un type de médecine nucléaire appelé la 

radioembolisation (SIRT). Une fois les avantages et inconvénients de ces modalités considérés, 

les raisons du développement de la micro-curiethérapie sont discutées. 

La radiothérapie externe 
L’EBRT est la modalité la plus répandue de radiothérapie. Celle-ci consiste à utiliser un 

accélérateur d’électrons qui produit des rayonnements ionisants de haute énergie (des rayons X 

ou des électrons). La rotation de l’accélérateur autour du patient permet de créer un point focal 

(ou isocentre) de l’irradiation centré sur la tumeur. 

Cependant, l’inconvénient principal de l’EBRT est que le rayonnement ionisant doit 

traverser tout le patient pour atteindre la tumeur, souvent localisée proche de tissus sains et 

vulnérables. 

Les effets nocifs de la radiation sur des tissus sains sont minimisés :  

• En fractionnant le traitement (par exemple, en délivrant peu d’irradiation tous les 

jours pendant plusieurs semaines), afin que les tissus sains aient le temps de 

récupérer (car ils récupèrent plus vite que les cellules tumorales) ;  

• En tournant l’accélérateur de particules autour du patient, afin que l’irradiation se 

propage tous les tissus voisins au lieu d’être localisée sur un volume ; et  

• En utilisant les collimateurs multilames (MLC) qui adaptent la forme du faisceau, 

en fonction de l’angle du bras de l’accélérateur, afin de mieux le faire 

correspondre à la forme de la tumeur. 

Malgré la minimisation de l’exposition des tissus sains, d’autres modalités telles que la 

curiethérapie et la médecine nucléaire ont été développées avec l’objectif de minimiser encore 

plus l’irradiation des tissus sains (dans certains cas particuliers de tumeurs). 
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La curiethérapie 
La curiethérapie consiste à insérer des matériaux solides radioactifs (par exemple, des 

grains de métal) dans et autour de la tumeur. L’avantage clé de la curiethérapie est que, en 

introduisant la source radioactive beaucoup plus proche de la tumeur, d’autres types de 

radiation pourraient être utilisés. Des sources pourraient être utilisées pour déposer leurs 

énergies sur des distances beaucoup plus courtes, limitant l’irradiation des tissus sains 

environnant tout en augmentant si nécessaire la dose absorbée dans la zone tumorale. 

Au contraire, l’inconvénient de la curiethérapie est que, parce que les sources doivent être 

physiquement placées dans la localisation souhaitée, son utilisation est donc limitée aux 

traitements de tumeurs qui sont facilement accessibles (par exemple, proche de la surface du 

patient), telles que les tumeurs de la peau, de la prostate et du col de l’utérus. 

La médecine nucléaire 
La médecine nucléaire peut être divisée en deux sous-catégories, la radiothérapie interne 

vectorisée (RIV) et la SIRT : 

• La RIV consiste à introduire des produits radiopharmaceutiques (i.e., les 

radioéléments sont attachés aux produits pharmaceutiques) par voie intraveineuse 

au patient. Les produits pharmaceutiques s’attachent préférentiellement aux 

récepteurs sur les cellules tumorales ciblées d’où ils émettent leur radiation, en 

détruisant les cellules avoisinantes. 

• La radioembolisation est utilisée pour les tumeurs du foie inopérables. Ceci 

consiste à injecter des microsphères radioactives dans les artères nourrissant le 

foie afin que les radioéléments s’accumulent dans la tumeur, émettant leur énergie 

au voisinage et la détruisent. 

L’avantage de la SIRT est qu’elle est beaucoup moins invasive que d’autres modalités de 

radiothérapie, par exemple la curiethérapie, en raison du fait que les sources radioactives sont 

introduites par voie intraveineuse plutôt que d’être injectées directement. 

L’inconvénient évident de la SIRT est qu’elle manque de précision. Les microsphères ne 

sont pas introduites directement dans la tumeur, ni attachées aux produits pharmaceutiques qui 

eux s’accrochent préférentiellement aux récepteurs des cellules tumorales, comme pour la RIV. 
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La micro-curiethérapie 
La recherche continue avec des modalités de radiothérapie plus performantes qui 

augmentent l’irradiation de la tumeur tout en diminuant l’irradiation des tissus sains. En vue de 

cet objectif, l’idée de réaliser de traitements par micro-curiethérapie a été proposée. 

La micro-curiethérapie peut être considérée comme un hybride entre la curiethérapie et 

la SIRT. Elle est un hybride entre les deux car les microsphères radioactives (comme pour la 

SIRT) sont injectées directement dans la tumeur (comme pour la curiethérapie). 

En passant de « grains » en curiethérapie aux « microsphères » en micro-curiethérapie, le 

volume de chaque unité de traitement est réduit. Ceci devrait aider à mieux distribuer la dose 

absorbée autour de la tumeur, à la fois en augmentant l’irradiation de la tumeur et en diminuant 

l’irradiation des tissus sains. De plus, en réalisant les injections directement dans la tumeur, il 

est espéré que l’inconvénient du manque de précision de la SIRT puisse être contourné. 

En outre, en utilisant une unité de traitement sous forme liquide (les microsphères sont 

dans une suspension liquide), les cathéters invasifs qui sont utilisés pour implanter les grains 

en curiethérapie pourraient être remplacés par une aiguille moins invasive, pour que les tumeurs 

plus profondes puissent potentiellement être ciblées. 

Vu que la distribution de radiation devrait, en théorie, être mieux répartie autour de la 

tumeur, l’irradiation de cette dernière pourrait donc être augmentée sans endommager les tissus 

sains environnants. La micro-curiethérapie pourrait donc être un outil clé dans le traitement de 

cancers radioresistants inopérables. 

Le traitement 
En micro-curiethérapie, des injections des volumes entre 5 et 20 μL sont utilisées. Chaque 

injection contient les microsphères suspendues de manière quasi-homogène en solution. Il est 

supposé que, une fois injecté dans la tumeur, le liquide forme une sphère uniforme autour de 

l’aiguille, de sorte qu’il y ait une distribution uniforme de microsphères dans la sphère injectée. 

Une fois injectés dans la tumeur, il est nécessaire que les radioéléments restent dans leur 

position et qu’ils émettent l’intégralité de leur énergie. C’est pour cela que les microsphères 

sont utilisées ; elles sont suffisamment grandes pour que leurs demi-vies biologiques soient 

quasi-infinies, ce qui fut démontrée expérimentalement (Bult et al., 2012). 
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La planification de traitement 
De toutes les modalités de radiothérapie déjà discutées précédemment, la planification de 

traitement est utilisée pour tous. La planification est la recherche du meilleur plan de traitement 

possible qui pourrait être délivré à chaque patient. 

Les algorithmes de résolution de problèmes inverses sont souvent exploités afin de 

trouver les plans de traitement optimaux. Ils modifient itérativement les plans de traitement afin 

de minimiser des fonctions de pénalisation déterminées par l’utilisateur. Ces fonctions, appelées 

des « fonctions coûts », pénalisent des caractéristiques non-souhaitées du plan de traitement 

(par exemple, la sous-irradiation de la tumeur ou bien la sur-irradiation d’un organe sain 

avoisinant). Par conséquent, lorsque l’algorithme d’optimisation minimise les fonctions coûts, 

la qualité du plan de traitement augmente. 

À la fin de l’optimisation, le plan de traitement proposé peut être validé et éventuellement 

effectué sur le patient. 

Comme il s’agit d’une nouvelle modalité de radiothérapie, une méthode de planification 

de traitement n’existe pas encore pour la micro-curiethérapie. Une des thématiques clé de ce 

travail est donc le développement et la validation d’un système de planification de traitement 

spécifique à la micro-curiethérapie. 

Le choix de radioéléments 
La curiethérapie va inévitablement exploiter des radioéléments émetteurs β−. En effet, de 

tes radioéléments déposent leur énergie dans les quelques millimètres autour du point 

d’injection. En limitant le dépôt d’énergie dans les quelques millimètres autour des injections, 

l’irradiation des tissus sains environnant devrait être minimisée. 

Cependant, il existe beaucoup de radioéléments émetteurs β−, chacun avec des 

caractéristiques différentes. Ces caractéristiques comprennent le spectre d’énergie des 

particules β− émis, l’abondance, l’énergie des rayons γ (permettant l’imagerie) et la demi-vie 

du radioélément. Une partie de ce travail sera donc dédiée à la comparaison des radioéléments 

possibles afin de chercher celui qui sera le plus adapté à la problématique. 
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Glioblastome 
Il a déjà été mentionné que cette modalité est adaptée aux tumeurs radio-résistantes 

inopérables. Il est donc possible d’envisager une utilisation potentielle de cette dernière pour 

les glioblastomes (aussi appelé le glioblastome multiforme) inopérables. 

Le glioblastome est la tumeur du cerveau la plus commune chez les adultes, constituant 

52% de toutes les tumeurs fonctionnelles du cerveau, 20% de toutes les tumeurs intracrâniennes 

et affectant environ 2-3 adultes sur 100,000 aux Etats-Unis et à l’UE (Bleeker, Molenaar and 

Leenstra, 2012). Les glioblastomes sont aussi classifiés niveau 4 par l’organisation mondiale 

de la santé (la catégorie de tumeur la plus agressive). 

Avec une durée de survie médiane de ~14.6 mois (Weller et al., 2005), le pronostic de 

glioblastomes n’est pas bon. Normalement, ils sont traités via la résection chirurgicale 

maximale avec la chimiothérapie et l’EBRT adjuvante. Les glioblastomes inopérables ont un 

pronostic encore pire, typiquement entre 6 et 12 mois. La meilleure façon de les traiter est moins 

connue, beaucoup d’études n’arrivent pas à augmenter la durée de survie médiane. 

Le problème majeur rencontré pendant le traitement de glioblastomes est leur 

radiorésistance. Avec l’EBRT, il est impossible de suffisamment irradier le glioblastome sans 

sur-irradier les tissus sains environnants. Cela signifie que la cause de mortalité commune pour 

un patient avec un glioblastome est la résurgence de la tumeur ou la formation d’une tumeur 

secondaire. 

Dans la section sur la micro-curiethérapie il a été mentionné qu’avec des unités de 

traitements liquides, cette modalité devrait pouvoir cibler des tumeurs qui sont actuellement 

inaccessibles pour la curiethérapie, tels que les glioblastomes. De plus, la petite unité de 

traitement devrait faire en sorte que l’irradiation soit plus confinée à la tumeur et les tissus sains 

plus épargnés. Ceci signifie que l’irradiation de la tumeur pourrait être augmentée, et donc la 

probabilité de récurrence de la tumeur ou des tumeurs secondaires devrait être minimisée, et les 

patients pourraient espérer une augmentation de la durée de survie médiane. 

Il est à noter que, même si l’exemple du glioblastome est donné pendant ce travail, ce 

traitement est potentiellement applicable aux autres types de tumeurs. 
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Les exigences de traitement 
En radiothérapie, l’irradiation est souvent mesurée en dose absorbée avec l’unité gray 

(Gy), qui est l’énergie déposée par unité de masse (J/kg). La quantité de dose absorbée 

nécessaire pour détruire des tumeurs dépend non seulement du type de tumeur ciblée mais 

également de la modalité de radiothérapie qui est utilisée. 

Par conséquent, les exigences dosimétriques de micro-curiethérapie doivent être établies 

expérimentalement (même si elles peuvent être estimées en considérant, par exemple, la dose 

efficace biologique (Astrahan, 2008)). Sachant que les données expérimentales ne sont pas 

actuellement disponibles, des estimations ont été réalisées dans ce travail. Toutefois, toutes les 

méthodologies proposées sont indépendantes des chiffres exacts de dose absorbée choisis, donc 

ça ne devrait poser aucune difficulté de les changer une fois que les données expérimentales 

deviendront disponible à une date ultérieure. 

Pour une grande partie de ces travaux de recherche, un « planning target volume » (PTV) 

et un organe à risque seront à la fois utilisés. Tous les deux sont imaginés avec des sphères d’un 

rayon de 10 mm, placées de sorte que leurs surfaces soient en contact (leurs centres sont séparés 

par 20 mm). Il y a deux moments dans ce travail où le PTV utilisé est modifié : pendant une 

étude sur la faisabilité de micro-curiethérapie pour les tumeurs plus volumineuses et pendant la 

planification de traitement d’un vrai glioblastome. 

L’irradiation de la tumeur 
D’abord, il faut décider de l’irradiation de la tumeur nécessaire. En radiothérapie, le 

volume tumoral qui est ciblé est appelé le PTV. Le PTV est composé du « gross tumour 

volume » (GTV), qui est le volume de la tumeur qui est visible avec l’imagerie telles que la 

tomodensitométrie (TDM) et l’imagerie par résonance magnétique (IRM). Une marge est 

ensuite ajoutée autours du GTV, prenant en compte la propagation de la tumeur sous-clinique 

que ne se voit pas avec l’imagerie, appelé le « clinical target volume » (CTV). Finalement, le 

PTV est créé en ajoutant une marge autour du CTV, prenant en compte les incertitudes 

géométriques et le mouvement des organes. 

Typiquement, en curiethérapie, la marge entre le CTV et le PTV est zéro. Car le traitement 

est en contact direct avec la tumeur, et donc le mouvement de la tumeur est négligeable. C’est 

aussi supposé être le cas avec la micro-curiethérapie. Par conséquent, tout au long de ce travail, 

le terme PTV – le volume qui est ciblé – est équivalent au CTV. 
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Pendant le traitement de glioblastomes avec l’EBRT, 60 Gy sont typiquement prescrites 

au PTV. Bien que 60 Gy soient prescrites pour l’EBRT, cela ne veut pas forcément dire que 

60 Gy devrait être prescrite pour le traitement de glioblastomes avec la micro-curiethérapie. 

Avec l’EBRT, par exemple, la radiation est typiquement délivrée en 30 séances (5 séances par 

semaine, pendant 6 semaines) de 2 Gy. 

La micro-curiethérapie, par contre, est un traitement qui est effectué en une seule séance. 

Cela est avantageux car le patient doit passer moins de temps à l’hôpital, augmentant la qualité 

de sa vie. Toutefois, c’est aussi un inconvénient, la dose absorbée prescrite doit être augmentée, 

dû au fait qu’elle ne soit pas fractionnée. Cet inconvénient ne sera pas forcément un problème 

car, comme il a été mentionné dans la section de micro-curiethérapie (et sera démontré dans 

cette recherche), l’irradiation par micro-curiethérapie est plus focalisée sur la tumeur et donc il 

sera possible d’augmenter la dose absorbée prescrite au PTV sans augmenter l’irradiation des 

tissus environnant. 

Il a donc été supposé que l’équivalent de 60 Gy avec l’EBRT fractionnée en micro-

curiethérapie de 100 Gy. 

En concordance avec la plupart des environnements cliniques, les plans de traitements 

ont été considérés convenables si au moins 95% du PTV reçoit au moins 95% de la dose 

absorbée prescrite au PTV, 𝐷𝑇𝑃𝑇𝑉 . Cette exigence est démontrée dans l’inégalité suivante : 

 𝑉𝑃𝑇𝑉(≥ 95% ∙ 𝐷𝑇
𝑃𝑇𝑉) ≥ 95%  

Les organes à risques 
Les OARs sont les organes radiosensibles vitaux qui devraient être protégés pendant les 

séances de radiothérapie. Les OARs peuvent être divisés en OARs sériels et parallèles. 

Les OARs sériels s’arrêtent de fonctionner si une partie de l’OAR s’arrête parce qu’elle 

est sur-irradiée. Afin de protéger les OARs sériels, il est donc important de considérer la dose 

absorbée maximale parmi tous les sous-volumes de l’OAR. Dans le cerveau, le chiasma 

optique, par exemple, est considéré comme un OAR sérial et la dose absorbée maximale 

permise pour toute partie de cet OAR est de 54 Gy. 
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Les OARs parallèles, par contre, continuent de fonctionner même si une partie de l’OAR 

a arrêté de fonctionner. Ils continuent de fonctionner jusqu’à la fraction de l’OAR qui ne 

fonctionne plus au-delà d’un seuil. Par exemple, la glande pituitaire, continue de fonctionner 

tant que moins de 10% reçoit plus de 10 Gy. Par conséquent, un plan de traitement convenable 

doit respecter cette inégalité : 

 𝑉𝑂𝐴𝑅(≥ 10 Gy) ≤ 10%  

Conclusion 
Des concepts clés qui seront utilisés tout au long de ce travail ont été introduits. 

D’une part, la motivation pour le développement de la micro-curiethérapie a été explorée 

en discutant des avantages et inconvénients relatifs à d’autres formes existantes de 

radiothérapie. 

L’idée de la planification de traitement sera discutée en détail pendant ce travail et, elle a 

été introduite. Le concept des fonctions coûts et leur utilisation afin d’évaluer les plans de 

traitement rapidement a été discutée. 

Par la suite, l’importance de sélectionner le radioélément le mieux-adapté a été soulignée. 

D’autre part, une utilisation potentielle de la micro-curiethérapie, pour le traitement du 

glioblastome, a été proposée et devra être validée dans ces travaux de thèse. Avec cette 

proposition, les exigences dosimétriques qui seront nécessaires pour des traitements de 

glioblastomes réussis avec la micro-curiethérapie ont été discutées puis validées. 

Le TPS spécifique au plan de traitement est détaillé en fin de thèse. 
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INTRODUCTION 

An innovative form of radiotherapy, microbrachytherapy, is currently under 

development. This therapy targets solid, inoperable tumours by performing injections of a 

liquid containing radioactive microspheres in suspension. 

Many injections are required to sufficiently cover the tumoural volume. A method of 

treatment planning is required to enable optimal positioning of these injections. The 

development and validation of such a methodology has been the focus of this research. 

Throughout this work, three main questions are addressed: 

• How should the dosimetry of microbrachytherapy be performed? 

• How should the treatment planning be conducted for this modality? 

• What are the optimal injection properties to deliver the most efficient treatment? 

The first point is addressed by discussing how the radiation distribution of a single 

injection can be calculated, and how this distribution can be convolved in the correct position 

in the patient, such that many injections can be added, and the total absorbed dose distribution 

can be calculated for a treatment plan with multiple injections. 

Once the absorbed dose distribution has been calculated for a given treatment plan, the 

next topic to be discussed is the extraction of dosimetric information, such as dose-volume 

histograms (DVHs). This enables treatment plans to be quickly and efficiently analysed and 

compared. 
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Following this, optimisation algorithms are developed and compared. These algorithms 

search for treatment plans of increasing quality, in hoping that at the end of the optimisation 

process, the proposed treatment plan is of adequate quality to be able to be performed on a 

patient. 

To be able to produce treatment plans of increasing quality, it is important to be able to 

quantitatively compare and rank plans. This process should condense a fairly abstract treatment 

plan – consisting of many injections, distributed through 3D space, and its resulting absorbed 

dose distribution – into several numbers, which can be easily compared. Moreover, this process 

should be almost instantaneous because the analysis of treatment plans will be performed many 

times over throughout the treatment planning process. Methods of quantitative comparison via 

“cost functions” are therefore discussed within this research. 

Once methods have been developed for microbrachytherapy dosimetry and the 

production of optimal treatment plans, certain injection parameters can be tested and compared. 

Notably, a large study will be carried out into the use of the best-suited radioelement that should 

be injected. Other studies will be conducted into the ideal injection volume, the ideal initial 

activity of the injected radioelement and the form the injections should take (spherical or 

cylindrical). 

With the dosimetry, optimisation algorithm and injection parameters all in place, the 

development of a fully-operational treatment planning system (TPS) with a graphical-user 

interface is then discussed, and the results displayed. 

Microbrachytherapy is a treatment that is still under development. As such, many aspects 

are protected by intellectual property and cannot be discussed in this work. Notably, the injector 

and the method of performing the injections will not be addressed. It is hoped that despite the 

missing information, enough details are given to imagine the pertinence of this treatment, as 

well as the necessity of the method of treatment planning that is proposed in this work. 
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The structure of this work is as follows: 

• Chapter 1 discusses the generalities of this project – What is microbrachytherapy? 

Why has it been proposed as a treatment? What tumours could potentially be 

targeted? What are the dosimetric requirements of this treatment? 

• Chapter 2 introduces the concept of treatment planning. In this chapter, many key 

concepts, such as the cost function, are presented as well as the explanation of 

several optimisation algorithms that will be used throughout this research. 

• Chapter 3 discusses a method of performing the dosimetry of a proposed 

treatment plan. This chapter finishes with a worked example of the dosimetric 

analysis of a treatment plan from start to finish. 

• Chapter 4 conducts a comparison of the optimisation algorithms that were 

introduced in Chapter 2 using the methodology of dosimetry that was introduced 

in Chapter 3. Several test cases are used for the comparison, each test adding a 

level of complexity on the previous. Once the algorithms have been compared and 

the best-suited algorithm has been selected, a study is performed into the effect of 

voxel size on the dosimetry and treatment planning. Finally, a treatment plan is 

optimised and analysed for a real glioblastoma. 

• Chapter 5 compares injection parameters that can be altered in order to deliver the 

best treatment possible. Such parameters include the choice of injected 

radioelements, the volume of each injection and their initial activity. It is also 

proposed in this chapter that cylindrical injections be used instead of spherical 

injections. The effects on the absorbed dose distribution calculations and the 

treatment planning process are therefore discussed. 

• This work then considers the conclusions and future perspectives of this research. 

• Lastly, as Appendix, the methodologies of all the previous chapters are brought 

together to create a microbrachytherapy TPS. The structure of this TPS is 

presented, as is the usage of third-party software. 
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1 GENERALITIES 

1.1 Cancer and radiotherapy 
Cancer is currently the number one cause of death in France. The principal tools in 

combatting cancer are surgery, chemotherapy and radiotherapy. This work focuses solely on 

radiotherapy, which may be used either as an adjuvant therapy or by itself. 

When ionising radiation moves through the body, energy is deposed. Regardless of 

whether the energy is deposed in tumorous or healthy cells, this energy causes cell death. 

Radiotherapy therefore exploits ionising radiation by focusing it on the tumour. 

Many forms of radiotherapy exist, but the common goal amongst the different modalities 

rests the same: sufficiently irradiate the tumour without over-irradiating surrounding healthy 

tissue. Over-irradiation of healthy tissue can lead to both acute and chronic secondary effects, 

whilst under-irradiation of the tumour can result in not completely destroying it or the 

development of secondary tumours, either at the original location or elsewhere. 

1.2 Modalities of radiotherapy 
Before describing the new form of radiotherapy, microbrachytherapy, it is necessary to 

first discuss three existing modalities of radiotherapy and their various advantages and 

disadvantages. These modalities are external beam radiotherapy (EBRT), brachytherapy and 

nuclear medicine, with specific emphasis on a type of nuclear medicine called selective internal 

radiotherapy (SIRT). Once the merits and drawbacks of these modalities have been considered, 

the reason for the development of microbrachytherapy can be discussed. 
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1.2.1 External beam radiotherapy 
EBRT is the most common form of radiotherapy. It consists of an accelerator that emits 

high-energy ionising radiation (x-rays or electrons) whilst turning about the patient, the focal 

point (or isocentre) of the radiation centred on the tumour. 

The fundamental drawback of EBRT, however, is that since the accelerator is located 

outside of the patient, and that the tumour is not always on the surface of the patient, healthy 

tissue must inevitably be irradiated as the beam passes through to the tumour. The beam also 

continues on the other side of the tumour (albeit weaker), and healthy tissue is also irradiated 

at this point. 

The harmful effects of the irradiation of healthy tissue are minimised by:  

• Fractionating the treatment (for example, delivering a small amount of radiation 

every day over several weeks), such that healthy tissue has the chance to recover;  

• Turning the accelerator around the patient, such that the harmful radiation is 

shared out by all the surrounding healthy tissue rather than being localised in one 

area; and  

• Using collimators that shape the beam so that it matches the form of the tumour 

as closely as possible. 

Despite minimising exposure to healthy tissue, other modalities of radiotherapy, such as 

brachytherapy and nuclear medicine, have been developed with the goal of further minimising 

their irradiation. 

1.2.2 Brachytherapy 
Brachytherapy consists of inserting solid radioactive materials (for example, in the form 

of metal grains) in and around the tumour. The key advantage of brachytherapy is that, by 

introducing the radioactive source much closer to the target, different types of radiation can be 

used. Sources can be used that depose their energy over much shorter distances, limiting 

irradiation of surrounding healthy tissue. 

On the contrary, the main disadvantage of brachytherapy is that, because the sources need 

to be physically placed in the desired location, its usage is therefore limited to treatments of 

cancers that are easily accessible from the surface of the patient, such as tumours of the skin, 

prostate, breast and the cervix. 
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1.2.3 Nuclear medicine 
Nuclear medicine can be divided into two subcategories, targeted radiotherapy (TRT) and 

SIRT: 

• TRT, also known as molecular radiotherapy (MRT), consists of introducing 

radiopharmaceuticals (radioelements attached to pharmaceuticals) intravenously 

into the patient. The pharmaceuticals bond readily with cell receptors found 

commonly on the targeted tumorous cells, where they emit their radiation, killing 

the cells. 

• SIRT is used for inoperable liver tumours. It consists of injecting radioactive 

microspheres into arteries that nourish the liver such that the radioelements collect 

in the tumour, emitting their radiation and hopefully destroying it. 

The advantage of SIRT is that it is much less invasive than modalities such as 

brachytherapy, owing to the fact that the radioactive sources are introduced intravenously rather 

than directly. 

The obvious disadvantage of SIRT is that it lacks precision. The microspheres are not 

introduced directly into the tumour, nor are they attached to pharmaceuticals that attach 

preferentially to tumorous cells, as with TRT. 

1.3 Microbrachytherapy 
The search continues for ever-better modalities of radiotherapy that increase the 

irradiation of the tumour whilst simultaneously decreasing the irradiation of healthy tissue. 

With this goal in mind, the idea of microbrachytherapy was proposed. 

Microbrachytherapy can be considered as a hybrid between brachytherapy and SIRT. It 

is a hybrid between these two modalities because radioactive microspheres (as with SIRT) are 

injected directly inside of the tumour (as with brachytherapy). 

By passing from grains in brachytherapy to microspheres in microbrachytherapy, the 

volume of each treatment unit is reduced. This should help to better conform the distribution of 

radiation around the tumour, both increasing the irradiation of the tumour and decreasing the 

irradiation of surrounding healthy tissue compared to brachytherapy. Furthermore, by 

performing the injections directly inside of the tumour, it is hoped that the drawback of the lack 

of precision in SIRT can be countered. 
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Furthermore, by using a treatment unit in liquid form (the microspheres are in liquid 

suspension), the invasive catheters that are required to implant the metallic grains in 

brachytherapy can be replaced by a less invasive needle, such that deeper tumours can 

potentially be targeted. 

Since the distribution of radiation should, in theory, be better conformed about the 

tumour, the irradiation of the tumour can therefore be increased without putting the surrounding 

healthy tissue and organs at greater risk. Microbrachytherapy could therefore be a key tool in 

the treatment of inoperable, radioresistant cancers. 

1.3.1 The treatment 
In microbrachytherapy, injections of volumes ranging between 5 and 20 μL are used. 

Each injection contains the microspheres suspended homogeneously in solution. It is assumed 

that, once injected in the tumour, the liquid forms a uniform sphere about the needle, such that 

there is an even distribution of microspheres about the needle. 

Once they have been injected inside the tumour, it is required that the radioelements rest 

in their positions and emit the entirety of their energy. It is for this reason that microspheres are 

used; they are sufficiently large that their biological half-life is quasi-infinite, as has been 

demonstrated experimentally (Bult et al., 2012). 

1.4 Treatment planning 
Of all the modalities of radiotherapy already discussed in this introduction, treatment 

planning is used for all of them. Treatment planning is the search for the best possible treatment 

that can be delivered to each patient. 

Inverse problem-solving algorithms are often exploited to find optimal treatment plans. 

They iteratively alter treatment plans so as to minimise user-determined penalising functions. 

These penalising functions, known as cost functions, penalise unwanted characteristics of the 

treatment plan (for example, under-irradiation of the tumour or over-irradiation of a 

neighbouring organ). Therefore, as the optimisation algorithm minimises the cost functions, the 

quality of the treatment plan increases. 

At the end of the optimisation, the proposed treatment planning can be validated and 

eventually performed on the patient. 
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As it is a new modality of radiotherapy, a method of treatment planning does not currently 

exist for microbrachytherapy. One of the key thematics of this work is therefore to propose and 

develop such a methodology. 

1.5 The choice of radioelement 
Microbrachytherapy will inevitably exploit β−-emitting radioelements. This is because 

such radioelements deliver their energy in the few millimetres surrounding the source. By 

confining the energy deposition to within a few millimetres from the injected sources, 

irradiation of neighbouring healthy tissue should be minimised. 

There exist many β−-emitting radioelements, however, each with different characteristics. 

Such characteristics include the energy spectrum of the emitted β−-particles, the abundance and 

energy of γ-rays (which enables imaging) and the radioelement’s half-life. Part of this work 

will therefore be dedicated to the comparison of possible radioelements in the search for the 

one that is best suited to this application. 

1.6 Glioblastomas 
It was mentioned at the end of Section 1.3 that microbrachytherapy is tailored for 

inoperable, radioresistant tumours. A potential usage of this modality is inoperable 

glioblastomas (also known as glioblastoma multiforme). 

Glioblastomas are the most common malignant primary brain tumour in adults, 

constituting 52% of all functional tissue brain tumours, 20% of all intracranial tumours and 

affecting around 2-3 adults per 100,000 in the USA and EU (Bleeker, Molenaar and Leenstra, 

2012). Glioblastomas also fall into the WHO Grade IV category (the most aggressive category 

of tumours of the central nervous system). 

With a median survival time of around 14.6 months (Weller et al., 2005), the prognosis 

of glioblastomas is poor. They are usually treated via maximal surgical resection with adjuvant 

chemotherapy and EBRT. Inoperable glioblastomas have an even worse prognosis, typically 

ranging between 6 and 12 months. Their optimal treatment path, however, is less well-defined, 

with many studies struggling to significantly improve median survival times. 
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A major problem encountered when treating glioblastomas is their radio-resistance. With 

EBRT, it is impossible to sufficiently irradiate the glioblastoma without over-irradiating the 

surrounding healthy tissue. This means that the common cause of death for a patient suffering 

from a glioblastoma is tumour reoccurrence or the formation of secondary tumours. 

Section 1.3 stated that microbrachytherapy, given its liquid treatment unit, should be able 

to target tumours that are currently inaccessible for brachytherapy, such as glioblastomas. 

Furthermore, the small treatment unit volume means that the distribution of radiation should be 

confined to the tumour, and the surrounding healthy tissue should be better spared. This means 

that, compared to other modalities of radiotherapy, the irradiation of the tumour can be 

increased, and hopefully the probability of tumour reoccurrence and secondary tumours should 

be decreased, serving to improve median survival times of glioblastoma patients. 

It should be noted that, although the example of the glioblastoma is given throughout this 

work, this treatment is potentially applicable for other types of tumours. 

1.7 Treatment requirements 
In radiotherapy, irradiation is often measured as absorbed dose using the unit gray (Gy), 

which is the energy deposed per unit mass (J/kg). The amount of absorbed dose required to 

destroy tumours not only depends on the type of tumour being targeted, but also the modality 

of radiotherapy that is being employed. 

Therefore, the dosimetric requirements of microbrachytherapy need to be determined 

experimentally (although they can be estimated by considering, for example, the biological 

effective dose (Astrahan, 2008)). Since experimental data is not currently available, estimates 

have been used in this research. All methodologies proposed throughout this work, however, 

are independent of the exact absorbed dose requirements and limits. As such, changing them 

should not pose any problems when such data becomes available at a later date. 

For the majority of this work, both an imaginary planning target volume (PTV) and an 

imaginary organ at risk (OAR) will be used. They are both assumed to be spheres with radii of 

10 mm, placed such that their surfaces touch (their centres are therefore separated by 20 mm). 

In two instances the PTV is changed: during a study into the feasibility of microbrachytherapy 

for larger tumours and during the treatment planning of a real glioblastoma. 
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1.7.1 Irradiation of the tumour 
First, it is necessary to decide the required irradiation of the tumour. In radiotherapy, the 

tumoural volume that is targeted is known as the PTV. The PTV is composed of the gross 

tumour volume (GTV), which is the volume of the tumour that can be imaged with modalities 

such as computed tomography (CT) and magnetic resonance imaging (MRI). A margin is then 

added around the GTV, accounting for subclinical tumour spread that cannot be imaged, called 

the clinical target volume (CTV). Lastly, the PTV is created by adding a margin around the 

CTV to account for geometrical uncertainties and organ movement. 

Typically, in brachytherapy, the margin between the CTV and the PTV is zero. This is 

because the treatment is in direct contact of the tumour, and so tumour movement is negligible. 

This too, is assumed to be the case with microbrachytherapy. Hence, throughout this research, 

the term PTV – the volume that is targeted – is equivalent to the CTV. 

During the treatment of glioblastomas with EBRT, 60 Gy is typically prescribed to the 

PTV. Although this is the case for EBRT, 60 Gy should not necessarily be prescribed for the 

treatment of glioblastomas with microbrachytherapy.  

EBRT, for example, is often fractionated, typically delivering the radiation in 30 sessions 

of 2 Gy (5 sessions per week, over 6 weeks). Microbrachytherapy, however, is a treatment that 

is delivered in a single session. This is advantageous in that the patient passes less time in 

hospital, increasing their quality of life. However, it is also disadvantageous in that the 

prescribed absorbed dose must therefore be increased since it is not fractionated. 

This disadvantage may not necessarily pose a problem since, as was mentioned in 

Section 1.3 (and will hopefully be demonstrated throughout this research), the irradiation with 

microbrachytherapy is more focused on the tumour, such that it is possible to increase the 

prescribed absorbed dose to the PTV without increasing the irradiation of surrounding tissue. 

Throughout this work, it was assumed that 100 Gy for microbrachytherapy was 

equivalent to 60 Gy with fractionated EBRT. 

In accordance with the majority of clinical environments, treatment plans were required 

to deliver at least 95% of the PTV’s prescribed absorbed dose of 100 Gy, 𝐷𝑇𝑃𝑇𝑉 , to at least 95% 

of the PTV. This requirement can be expressed as the following inequality: 

 𝑉𝑃𝑇𝑉(≥ 95% ∙ 𝐷𝑇
𝑃𝑇𝑉) ≥ 95% 1.1 
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1.7.2 Organs at risk 
OARs are vital radiosensitive organs that need to be protected during radiotherapy. OARs 

can be subdivided into those that are serial and those that are parallel. 

Serial OARs will fail if any single part of the OAR fails. This failure occurs when the 

maximum irradiation of any sub-volume surpasses a given limit. Hence, when protecting a 

serial OAR, it is important to consider its maximum absorbed dose. In the brain, the optic 

chiasm, for example, is considered a serial OAR and the maximum absorbed dose permitted for 

any part of it during EBRT is 54 Gy. 

Parallel OARs, on the other hand, will continue to function even if part of the organ has 

failed. They will continue working until the fraction of the OAR that has failed passes a given 

threshold. For example, the pituitary gland is considered a parallel OAR, and will continue to 

function as long the volume receiving greater than or equal to 10 Gy is less than 10%. 

Occasionally, an OAR will be used in this work. The OAR will be treated as a parallel 

OAR which, as with the pituitary gland, will continue to function as long as less than 10% of it 

receives greater than or equal to 10 Gy. Hence, an acceptable treatment plan respects the 

following inequality: 

 𝑉𝑂𝐴𝑅(≥ 10 Gy) ≤ 10% 1.2 

1.8 Conclusion 
Throughout this chapter, key concepts have been introduced that will be used throughout 

this work. Firstly, the motivation for the development of microbrachytherapy was explored by 

discussing the relative advantages and disadvantages of other existing forms of radiotherapy. 

The idea of treatment planning, a concept that will be discussed in great detail throughout 

this work, was introduced. The idea of cost functions and how they can be used to quickly 

evaluate treatment plans was also introduced. Following this, the importance of selecting the 

best-suited radioelement was stressed. 

A potential usage of microbrachytherapy, the glioblastoma, was then introduced as well 

as the potential dosimetric requirements that would have to be put in place for its successful 

treatment with this modality. 

With all of the ideas that have been briefly introduced in this chapter in mind, it is now 

possible to discuss the first topic of this research – treatment planning.
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2 TREATMENT PLANNING 

2.1 Introduction 
Treatment planning is the search for the plan that delivers the best treatment to a given 

patient. Modern treatment planning is highly automated, relying on optimisation algorithms to 

produce plans that satisfy treatment requirements. 

Treatment planning is an indispensable tool in modern radiotherapy, regardless of the 

modality. For a new modality, such as microbrachytherapy, it is therefore imperative to develop 

a methodology of treatment planning. Since such a methodology does not yet exist for 

microbrachytherapy, it is explored throughout this research. 

The optimisation algorithms exploited throughout this work are known as inverse 

problem-solving algorithms because they start at the end – with the desired result – and work 

backwards to calculate the required input that would yield the result that best matches that 

which was desired. 

Such algorithms are typically iterative and a schematic of an inverse problem-solving 

algorithm is shown below, in Figure 2.1. 
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Figure 2.1: Iterative process used to create optimal treatment plans. The cost function is used to evaluate the quality 

of the solutions, and if the stopping criteria are not met, the optimisation algorithm alters the solution. The forward 

problem then determines the outcome of the newly proposed solutions. 

As can be seen in Figure 2.1, inverse problem-solving algorithms function by initially 

creating treatment plans. Dosimetry is then performed in what is known as the forward problem. 

Following this, cost functions are used to evaluate the quality of the treatment plans and if the 

stopping criteria are not met, the optimisation algorithm is used to modify the treatment plans. 

This loop continues until the stopping criteria are met, at which point the optimisation process 

is finished and the optimised plan or optimised plans are presented to the user. 

The main components of Figure 2.1 are discussed throughout this chapter: 

• Section 2.2 introduces the forward problem (but this will be explored in more 

depth in Chapter 3), 

• Section 2.3 discusses the cost function, 

• Section 2.4 introduces optimisation algorithms, 

• Section 2.5 describes specific optimisation algorithms that will be used 

throughout this research, 

• Section 2.6 discusses the stopping criteria that could be used, and 

• Section 2.7 concludes this chapter. 

2.2 The forward problem 
The forward problem, with regards to inverse problem-solving algorithms, is the part of 

the optimisation process that follows causality (thus the name). As was mentioned in the 

introduction to this chapter, inverse problem-solving optimisation algorithms start with the 

desired outcome, and work backwards to determine the required input. Nevertheless, it is 

required that part of the process work in the normal direction to determine if the newly proposed 

solution matches the desired output. 
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In the specific case of treatment planning, the optimisation algorithm is used to alter the 

treatment plan’s injections, and then the forward problem is used to calculate the plan’s 

resulting irradiation distribution (known as dosimetry). 

The method that has been developed to calculate the dosimetry of a given 

microbrachytherapy treatment plan requires in-depth discussion and analysis of the process. 

For this reason, the forward problem will not be discussed further in this chapter, but will be 

explored thoroughly in Chapter 3. 

2.3 The cost function 
Cost functions are used to quantify the quality of a treatment plan. As input they take a 

treatment plan’s dosimetry (that was calculated by the forward problem), and as output they 

generate a single number. This is useful because, by condensing somewhat abstract treatment 

plans into single numbers, the task of comparing treatment plans and eventually ranking them 

becomes considerably easier. Once the quality of treatment plans can be quantified and the 

plans can be ranked, the algorithms use this information to propose new treatment plans, 

hopefully of increased quality. 

Cost functions are used to compare the properties of the proposed treatment plan with the 

properties of the ideal treatment plan. When the difference between the two is decreased, the 

cost function decreases accordingly. Optimisation algorithms therefore search for treatment 

plans that minimise cost functions. 

Each cost function concentrates on a specific aspect of the treatment plan. One, for 

example, might be focused on the irradiation of the PTV. Another might be concentrated on the 

irradiation of healthy tissue. Another might be concentrated on, for example, how long the 

treatment would take. 

All cost functions are designed so that they are minimised as the quality of the treatment 

plan increases. This small subtlety means that the cost function that controls qualities that 

should be maximised throughout the optimisation process should be inversed. For example, 

during the optimisation process, the goal is to maximise the irradiation of the tumour. To create 

a cost function for this, the same objective can be reversed so that the goal is now to minimise 

the under-irradiated part of the tumour. The two are identical, except that the latter is a 

minimisation and the former a maximisation. This subtlety will be exploited later in this 

chapter. 
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2.3.1 Types of cost functions 
Many types of cost function exist within the domain of radiotherapy. Cost functions can 

be divided into those that assess a treatment plan based on physical factors and those that assess 

radiobiological factors. A simple example of physical factors is the maximum absorbed dose in 

a region. Conversely, the equivalent uniform dose (EUD) is an example of a radiobiological 

factor. 

Physical factors have the advantage of being intrinsically quantitative; it is easy, for 

example, to determine the maximum absorbed dose in a structure. Radiobiological factors, on 

the other hand, are difficult to quantify and are subject to much larger uncertainties. Once 

quantified, however, radiobiological factors describe the effects of the radiation at a cellular 

level, which is a much better indication of the efficacy of a treatment plan. 

Non-exhaustive lists of physical and radiobiological cost functions are shown below in 

Tables 2.1 and 2.2, respectively. 
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Name Description Functional form PTV/OAR 

Minimum Minimum absorbed dose in any voxel, 𝑑𝑖 , in a VOI. 𝑚𝑖𝑛(𝑑𝑖
𝑉𝑂𝐼) PTV or OAR 

Maximum Maximum absorbed dose in any voxel, 𝑑𝑖 , in a VOI. 𝑚𝑎𝑥(𝑑𝑖
𝑉𝑂𝐼) PTV or OAR 

Mean Mean absorbed dose in a VOI. 
1

𝑛𝑉𝑂𝐼
∑ 𝑑𝑖
𝑖 𝜖 𝑉𝑂𝐼

 PTV or OAR 

Dose-volume Absorbed dose for a volume, X %, on a cumulative DVH. Written as 𝐷𝑋%𝑉𝑂𝐼. 𝐷𝑉𝑂𝐼(𝑋 %) PTV or OAR 

Volume-dose Volume (%) of a VOI receiving ≥ X Gy. Written as 𝑉𝑋 𝐺𝑦
𝑉𝑂𝐼 . 𝑉𝑉𝑂𝐼(≥ X 𝐺𝑦) PTV or OAR 

Under-irradiated volume-dose Volume (%) of the PTV receiving < 𝐷𝑇𝑃𝑇𝑉. Effectively 100% minus volume-dose. 𝑉𝑃𝑇𝑉(< 𝐷𝑇
𝑃𝑇𝑉) PTV- 

Quadratic dose difference Sum of the square of the difference between each voxel, 𝑑𝑖 , and 𝐷𝑇 in the PTV. ∑ (𝐷𝑇
𝑃𝑇𝑉 − 𝑑𝑖)

2

𝑖 𝜖 𝑃𝑇𝑉

 PTV 

Homogeneity index (HI) The difference between 𝐷2%𝑃𝑇𝑉 and 𝐷98%𝑃𝑇𝑉 compared to 𝐷𝑇𝑃𝑇𝑉. 
𝐷2%
𝑃𝑇𝑉 − 𝐷98%

𝑃𝑇𝑉

𝐷𝑇
𝑃𝑇𝑉  PTV 

Conformity index (CI) 
Fraction of PTV receiving ≥ 𝐷𝑇𝑃𝑇𝑉 (𝑉𝑇𝑃𝑇𝑉 𝑉𝑃𝑇𝑉⁄ ) multiplied by ratio of PTV receiving 

≥ 𝐷𝑇𝑃𝑇𝑉 compared to total volume (PTV or otherwise) receiving ≥ 𝐷𝑇𝑃𝑇𝑉 (𝑉𝑇𝑃𝑇𝑉 𝑉𝑇𝑎𝑙𝑙⁄ ). 

𝑉𝑇
𝑃𝑇𝑉

𝑉𝑃𝑇𝑉
∙
𝑉𝑇
𝑃𝑇𝑉

𝑉𝑇
𝑎𝑙𝑙  

PTV and healthy 

tissue 

Conformal index (COIN) 
All-in-one function that combines the CI and also penalises over-irradiated OARs 

(where 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑖  is the fractional volume of the 𝑖th OAR receiving ≥ 𝐷𝑡ℎ𝑟𝑒𝑠ℎ𝑂𝐴𝑅 ). 
1 − 𝐶𝐼 ∙ ∏ (1 − 𝑉𝑡ℎ𝑟𝑒𝑠ℎ

𝑖 )

𝑁𝑂𝐴𝑅𝑠

𝑖=1

 
PTV, healthy tissue 

and OARs 

Number of injections Number of injections required. 𝑛𝑖𝑛𝑗  

Time Estimated time for given treatment plan. 𝑡  

Table 2.1: Non-exhaustive list of physical cost functions used in radiotherapy. VOI is a volume of interest. Voxels are 3D pixels. 
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Name Description Functional form PTV/OAR 

Equivalent uniform dose (EUD) 
Uniform dose to an organ that causes the same effect as the non-uniform dose 

delivered in reality. 
(
1

𝑁𝑉𝑂𝐼
∑ (𝑑𝑖)

𝑖 𝜖 𝑉𝑂𝐼

𝑎

)

1 𝑎⁄

 PTV or OAR 

Normal tissue complication 

probability (NTCP) 
The probability of a complication in normal tissue. (1 + (

𝑇𝐷50
𝐸𝑈𝐷

)
4∙𝛾50

)

−1

 OAR 

Tumour control probability 

(TCP) 
The probability of tumour control. (1 + (

𝑇𝐶𝐷50
𝐸𝑈𝐷

)
4∙𝛾50

)

−1

 PTV 

Table 2.2: Non-exhaustive list of radiobiological cost functions used in radiotherapy. See Section 2.3.3 for a discussion of 𝑎, 𝛾50, 𝑇𝐷50 and 𝑇𝐶𝐷50.
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2.3.2 Physical cost functions 
2.3.2.1 Homogeneity index 

Figure 2.2 shows a fictional DVH that could typically be encountered for a PTV in EBRT. 

It demonstrates some of the physical cost functions discussed in Table 2.1. The target absorbed 

dose for the PTV in this example is 55 Gy. Shown in the figure are 𝐷98%𝑃𝑇𝑉 , 𝐷2%𝑃𝑇𝑉  and 𝑉55 𝐺𝑦
𝑃𝑇𝑉 , 

which are 50 Gy, 60 Gy and 88% of the volume, respectively. 

These values can be used to calculate the HI, which is the difference between 𝐷98%𝑃𝑇𝑉  and 

𝐷2%
𝑃𝑇𝑉  divided by 𝐷𝑇𝑃𝑇𝑉 . This is a useful metric because when the difference between 𝐷98%𝑃𝑇𝑉  and 

𝐷2%
𝑃𝑇𝑉  is reduced, then the irradiation of the PTV is homogeneous (represented by a steep 

gradient in the DVH). Using the 𝐷98%𝑃𝑇𝑉  and 𝐷2%𝑃𝑇𝑉  that can be seen in Figure 2.2, the DVH in this 

example has an HI of 0.18. 

 
Figure 2.2: Fictional EBRT DVH of a PTV. Also depicted are 𝐷98%𝑃𝑇𝑉 (50 Gy), 𝐷2%𝑃𝑇𝑉 (60 Gy) and 𝑉55 𝐺𝑦

𝑃𝑇𝑉  (88%). 

An example of a microbrachytherapy DVH is given after the explanation of 

microbrachytherapy dosimetry (Chapter 3), in Figure 3.9. It can be seen for this example that 

maximum absorbed dose in the PTV is extremely high. As such, 𝐷2%𝑃𝑇𝑉  is enormous and so 

therefore is the HI. Hence, it can be seen that HI is a useless metric for microbrachytherapy, 

which delivers extremely elevated maximum absorbed doses. 
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2.3.2.2 Quadratic dose difference 

The quadratic dose difference cost function is typically used for the PTV in EBRT. In 

EBRT this is particularly useful because it both penalises over- and under-irradiated voxels in 

the PTV, promoting a homogeneous coverage of absorbed dose. 

As with the HI, this cost function is also inapt for microbrachytherapy. This is because 

voxels close to the centre of injections are so heavily irradiated that the penalties that they occur 

are enormous. 

For example, for a target absorbed dose of 100 Gy, a single voxel receiving 10,000 Gy 

contributes (10,000-100)2 = 9.8×107 to the cost function, compared to a cost function of 104 for 

a voxel receiving 0 Gy. Using this cost function, the cost is therefore minimised when no 

injections are used, which is clearly illogical. 

2.3.2.3 Under-irradiated volume-dose 
HI and the quadratic dose difference cost functions were deemed unsuitable for the PTV 

with microbrachytherapy because portions of the PTV receive absorbed doses that greatly 

exceed the target absorbed dose. This is inherent to treatments such microbrachytherapy, where 

the source is introduced inside the patient. 

The ideal microbrachytherapy cost function for the PTV should therefore not penalise 

over-irradiated voxels. For this reason, of all the physical cost functions, the under-irradiated 

volume-dose cost function was deemed the most appropriate for the PTV.  

As was mentioned in the last paragraph of Section 2.3, although the goal of 

microbrachytherapy is to maximise the volume that is adequately irradiated (as per 

Equation 1.1), cost functions should always be minimised. It is for this reason that a cost 

function that minimises the under-irradiated fraction of the PTV was chosen. 

2.3.3 Radiobiological cost functions 
As previously mentioned, radiobiological cost functions are subject to larger 

uncertainties. These come from the parameters (𝑎, 𝛾50, 𝑇𝐷50 and 𝑇𝐶𝐷50 are cited in Table 2.2) 

that need to be experimentally determined. 
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The EUD, for example, is the theoretical homogeneous radiation distribution that causes 

the same amount of clonogen death as the inhomogeneous radiation distribution that is 

delivered in reality (McGary, Grant 3rd. W. and Woo, 2000). The EUD can therefore be used 

as a cost function, because a complex distribution can be reduced to a single value of absorbed 

dose that describes the radiobiological effect of the irradiation. Although the EUD was initially 

designed for just the PTV, it was later adapted for normal tissue (Gay and Niemierko, 2007). 

The problem is that 𝑎 is an empirically-determined parameter, dependent on both the modality 

of radiotherapy and the tissue in question, and as such there is no data available for this new 

modality. 

For mature forms of radiotherapy, such as EBRT, there exists enough patient data to be 

able to ascertain these parameters. For a new form of radiotherapy, such as microbrachytherapy, 

however, the use of radiobiological cost functions is currently infeasible. 

2.3.4 Chosen cost functions 
Having ruled out radiobiological cost functions, the cost functions used throughout this 

work consist exclusively of physical cost functions selected from Table 2.1. 

2.3.4.1 The PTV required cost function 
It was mentioned that the under-irradiated volume-dose cost function should be used for 

the PTV. As shown in Equation 1.1, at least 95% of the PTV needs to receive 95% of 𝐷𝑇𝑃𝑇𝑉 , 

100 Gy. The required cost function for the PTV therefore simply returns the volume of the PTV 

receiving less than 95% of 𝐷𝑇𝑃𝑇𝑉: 

 𝐶𝑜𝑠𝑡𝑃𝑇𝑉 = 𝑉
𝑃𝑇𝑉(< 95% ∙ 𝐷𝑇

𝑃𝑇𝑉) 2.1 

In accordance with Section 1.7.1, only treatment plans with 𝐶𝑜𝑠𝑡𝑃𝑇𝑉 ≤ 5% are 

acceptable, since this corresponds to plans delivering over 95% of 𝐷𝑇𝑃𝑇𝑉  to at least 95% of the 

PTV. 

2.3.4.2 The number of injections cost function 

The second cost function, 𝐶𝑜𝑠𝑡𝑖𝑛𝑗 , penalises the number of injections, 𝑛𝑖𝑛𝑗. This is used 

because it is clearly advantageous to be able to find a treatment plan that both sufficiently 

irradiates the PTV, but also does so with a minimal number of injections. The functional form 

of 𝐶𝑜𝑠𝑡𝑖𝑛𝑗  is simply: 

 𝐶𝑜𝑠𝑡𝑖𝑛𝑗 = 𝑛𝑖𝑛𝑗 2.2 
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2.3.4.3 The OAR cost function 

As was mentioned in Section 1.7.2, an OAR will occasionally be used in this research. 

When this is the case, a corresponding cost function, 𝐶𝑜𝑠𝑡𝑂𝐴𝑅, is therefore also added. 

No more than 10% of the OAR can receive over 10 Gy. A dose-volume cost function was 

therefore chosen, with the following functional form: 

 𝐶𝑜𝑠𝑡𝑂𝐴𝑅 = 𝑉
𝑂𝐴𝑅(≥ 10 𝐺𝑦) 2.3 

2.3.4.4 The conformity index 
Very briefly, in Section 4.6.2, the conformity index (CI) will be used. The CI is an 

interesting metric because, as can be seen in Table 2.1, it quantifies a treatment plan both with 

regards to the irradiation of the PTV and the sparing of the healthy tissue. The CI is therefore 

minimised when the volume of tissue receiving greater than or equal to 𝐷𝑇𝑃𝑇𝑉  perfectly 

coincides with the form of the PTV. The CI will be used with the simple following functional 

form: 

 𝐶𝑜𝑠𝑡𝐶𝐼 = 𝐶𝐼 2.4 

2.4 Optimisation algorithms 
With the cost functions in place, it is now possible to discuss optimisation algorithms, 

which will use the cost functions to quantify and rank treatment plans and then modify them 

accordingly, proposing plans of increasing quality. 

Optimisation algorithms can be categorised as stochastic and deterministic. Stochastic 

algorithms exploit randomness to find optimal treatment plans. Deterministic algorithms, 

conversely, will always converge to the same point if the input conditions are unchanged. 

Deterministic algorithms, therefore, are highly dependent on their initialisation. Examples of 

deterministic and stochastic algorithms are Nelder-Mead Simplex (NMS) and the Bees 

algorithm (BA), respectively. 

Optimisation algorithms can also be categorised as interactive, single-objective (SO) and 

multi-objective (MO) algorithms. These tree types of algorithms will be described in the 

following sections. 

It should be noted that the terms “solution” and “treatment” plan will be used 

interchangeably throughout this chapter. This is because optimisation algorithms search for 

optimal solutions and in this work, those solutions happen to be treatment plans. 
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Lastly, it should also be noted that throughout this work, algorithms rank treatment plans 

first by the number of treatment requirements that are not respected (i.e., 𝐶𝑜𝑠𝑡𝑃𝑇𝑉 ≤ 5% or 

𝐶𝑜𝑠𝑡𝑂𝐴𝑅 ≤ 10%) and then by increasing cost function. In this way, the top ranked treatment has 

the smallest cost function of all plans that violate the fewest requirements. 

2.4.1 Interactive algorithms 
Interactive algorithms will not be used in this research but they are explained briefly here 

for completeness. 

Interactive algorithms require the user to rank a proposed ensemble of solutions at the 

end of each iteration. This means that no cost functions are required because the user replaces 

them during the ranking of proposed treatment plans. This is useful for characteristics that 

should be optimised but are difficultly expressed as functional forms that can be penalised. 

It can be seen that interactive algorithms are extremely time-consuming for the user 

because they require constant surveillance. It is for this reason that they are not considered in 

this work. 

2.4.2 Single-objective algorithms 
The majority of optimisation algorithms encountered in literature are SO algorithms. As 

the name might suggest, SO algorithms contain a single cost function. The cost function is often 

a weighted sum of multiple costlet functions (cost functions are referred to as costlets when 

they are combined together). The form of an SO cost function is shown in Equation 2.5: 

 𝐶𝑜𝑠𝑡 = ∑𝑤𝑖 ∙ 𝐶𝑜𝑠𝑡𝑙𝑒𝑡𝑖
𝑖

 2.5 

where 𝐶𝑜𝑠𝑡𝑙𝑒𝑡𝑖 is the 𝑖th costlet (for example, any costlet shown in Tables 2.1 or 2.2) and 𝑤𝑖  is 

its relative weighting. The sum of all of the weightings should be equal to unity (∑𝑤𝑖 =  1). 

With SO algorithms, each treatment plan has a single associated cost. The treatment plan 

with the lowest cost function is therefore deemed the best. 
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The costlets need to be normalised if they are to be combined into a single sum. For 

example, 𝐶𝑜𝑠𝑡𝑃𝑇𝑉  and 𝐶𝑜𝑠𝑡𝑂𝐴𝑅 are constrained between 0% and 100%. However, because a 

treatment plan could use any number of injections, 𝐶𝑜𝑠𝑡𝑖𝑛𝑗  could take any value. Hence, when 

𝐶𝑜𝑠𝑡𝑖𝑛𝑗  is combined with 𝐶𝑜𝑠𝑡𝑃𝑇𝑉 and 𝐶𝑜𝑠𝑡𝑂𝐴𝑅, it is expressed as a percentage of the maximum 

number of injections allowed for that optimisation (a user-defined parameter). This normalises 

𝐶𝑜𝑠𝑡𝑖𝑛𝑗 , allowing it to be used with other costlets. For example, a treatment plan with 15 

injections when 20 is the maximum gives a 𝐶𝑜𝑠𝑡𝑖𝑛𝑗  of 75%. 

SO algorithms are limited in that the user must decide relative weightings prior to starting 

the optimisation process. If, at the end, the user wishes to alter these weightings, they must 

restart the optimisation process anew. 

Examples of SO algorithms are NMS and BA, which are described in Sections 2.5.2 and 

2.5.3, respectively. 

2.4.3 Multi-objective algorithms 
MO algorithms are advantageous compared to their SO counterparts in that the costlet 

functions are not joined together. At the end of the optimisation, the user is presented with a set 

of non-dominated treatment plans that form the Pareto front. 

A treatment plan is considered dominated if there exists at least one other treatment plan 

whose costlet functions are all better. This is depicted with a 2D example in Figure 2.3. 

Treatment plan D, for example, does not dominate treatment plan C because 𝐶1 < 𝐷1. Similarly, 

treatment plan C does not dominate treatment plan D because 𝐷2 < 𝐶2. Neither treatment plan 

C nor treatment plan D can be deemed better than the other, and so they are referred to as non-

dominated, and they form the Pareto front. Treatment plan H, on the other hand, is not part of 

the Pareto front because it is dominated by treatment plan D (𝐷1 < 𝐻1 and 𝐷2 < 𝐻2). 
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Figure 2.3: Pareto front (composed of Pareto-optimal solutions) and other, non-Pareto solutions. Solutions are 

considered Pareto-optimal as long as no solution has been found that is better than it with respect to all cost 

functions. H, for example, is not Pareto-optimal because D is better both in regards to 𝐶𝑜𝑠𝑡1 and 𝐶𝑜𝑠𝑡2. 

At the end of an MO optimisation, the user is then proposed with all the non-dominated 

(or Pareto-optimal) solutions, and can select the treatment plan that they prefer. Hence, the 

crucial difference between SO and MO algorithms is this: with SO algorithms, the importance 

between the costlet functions must be decided prior to the optimisation, whereas with MO 

algorithms, this decision takes place at the end. With MO algorithms, the user can change costlet 

weightings as many times as desired without re-running the optimisation process, whereas SO 

algorithms need to be restarted each time the weightings change. 

This is highlighted in Figure 2.4, where the 7 Pareto-optimal treatment plans of Figure 2.3 

are expressed as a weighted sum of their costs for a range of relative weightings. 

   
Figure 2.4: Total costs of the 7 Pareto-optimal treatment plans shown in Figure 2.3, displayed for different relative 

weightings: (a) 𝑤1=0.1, 𝑤2=0.9; (b) 𝑤1=0.5, 𝑤2=0.5; and (c) 𝑤1=0.9, 𝑤2=0.1. It can be seen that for an SO 

algorithm, the “best” solution (lowest total cost) is heavily dependent on the chosen costlet weightings. 
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It can be seen that the “best” treatment plan (lowest total cost) in Figure 2.4a is not the 

same as in Figure 2.4b or Figure 2.4c. Although an MO algorithm would have proposed all 7 

treatment plans, an SO algorithm would have only proposed one. For example, an SO algorithm 

with weightings of w1=0.1 and w2=0.9 would have only treatment plan A and information 

relating to the other 6 treatment plans would have been lost. It can therefore be seen that MO 

algorithms are more powerful, since more information is returned to the user. 

Although MO algorithms are more powerful, they are also more complex. This is because 

instead of minimising a 1D problem (one total cost function) they minimise an ND problem 

(where N is equal to the number of costlet functions). This means that the computing time of 

an MO optimisation is often greater than that of an SO optimisation. 

The MO algorithm used in this work, as described in Section 2.5.4, is the non-dominated 

sorting genetic algorithm-II (NSGA-II). 

2.5 Explanation of various algorithms 
Now that various concepts such as the cost function and stochastic, deterministic, SO and 

MO algorithms have been introduced, it is possible to discuss in detail the optimisation 

algorithms that will be compared in the following chapter. 

The algorithms that will be presented (and later compared) were chosen to represent the 

widest range of algorithms possible, consisting of a mix of stochastic and deterministic 

algorithms and also SO and MO algorithms. All presented algorithms do not require derivatives 

of the cost function to be calculated, nor do they require the cost function to be continuous, two 

qualities that are advantageous. 

Discussed in Sections 2.5.1 through 2.5.4 are the conjugate gradient (and similar 

algorithms), NMS, BA and NSGA-II. 
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2.5.1 Conjugate gradient and similar algorithms 
2.5.1.1 The linear problem 

The treatment planning process can be considered as a linear problem: 

 𝐴𝐼 = 𝐷 2.6 

where 𝐼 is a binary array, containing an element for each voxel in the PTV. The array element 

is 1 when there is an injection present in the corresponding voxel and 0 when there is not. 𝐷 

describes the absorbed dose distribution that results from the 𝐼 injections. 𝐷 is also an array, 

containing an element for each voxel of that patient that could potentially be irradiated. Lastly, 

𝐴 is a matrix that describes the absorbed dose in a given voxel for an injection in another given 

voxel. 

Equation 2.6 can therefore be expanded to: 
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 2.7 

where 𝑖𝑗 states whether or not the injection is present in the 𝑗th voxel of the PTV, 𝑑𝑖 is the 

absorbed dose in the 𝑖th voxel of the dose grid and 𝑎𝑖𝑗 is the absorbed dose in the 𝑖th voxel due 

to an injection in the 𝑗th voxel. 

2.5.1.2 Solving the linear problem 

The linear problem should be solved inversely. The ideal absorbed dose distribution, 

𝐷𝑖𝑑𝑒𝑎𝑙 , is already known: 

 𝑑𝑖
𝑖𝑑𝑒𝑎𝑙 = {

𝐷𝑇 for 𝑖 ∈ PTV
0 otherwise

 2.8 

and so, the goal is to find the array, 𝐼, that delivers a 𝐷 that best matches 𝐷𝑖𝑑𝑒𝑎𝑙 . This is done 

by rearranging Equation 2.6 such that 𝐼 is the subject: 

 𝐼 = 𝐴−1𝐷𝑖𝑑𝑒𝑎𝑙 2.9 

where 𝐴−1 is the inverse of 𝐴. 

A plethora of algorithms exist that are capable of solving for 𝐼, such as the conjugate 

gradient (Hestenes and Stiefel, 1952), preconditioned conjugate gradient, bi-conjugate gradient, 

conjugate gradient squared and minimal residual method. 
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However, the elements of 𝐼 that are found by these methods are continuous. The solution 

of this problem, on the contrary, should be binary. For example, each element of 𝐼 should be 

either 0 or 1 – either there is an injection or there is not. It is not possible to have 0.673 of an 

injection. For this reason, all of the algorithms mentioned in the previous paragraph cannot be 

used for this particular problem. 

2.5.2 Nelder-Mead Simplex 
NMS (Nelder and Mead, 1965) is a deterministic SO algorithm. The algorithm works by 

optimising an 𝑁-simplex. An 𝑁-simplex is an extension of a triangle or a tetrahedron to a shape 

with (𝑁 + 1) vertices. In the case of NMS, 𝑁 is equal to the number of degrees of liberty of the 

problem. 

Since each injection is free to move in 3 dimensions, 𝑁 = 3𝑛𝑖𝑛𝑗. That is to say, if one 

wishes to optimise a treatment plan that uses 10 injections, the simplex would be composed of 

31 treatment plans. 

Each vertex of the simplex is a solution (remember that a solution is a treatment plan), 

and the position of the worst vertex is iteratively changed relative to the mean position of all of 

the other solutions. 

The solutions are altered with a variety of functions: reflection, expansion, contraction 

and reduction. The schematic of NMS is shown in Figure 2.5. 
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Figure 2.5: Schematic of NMS. “Is 𝑅 < 𝑏𝑒𝑠𝑡?” is an abbreviation of “Is 𝑐𝑜𝑠𝑡(𝑅) < 𝑐𝑜𝑠𝑡(𝑏𝑒𝑠𝑡)?”. It can be seen 

that the algorithm tries to expand the simplex using reflections and expansions, but if these do not produce good 

quality results, the simplex shrinks with contractions and reductions. 
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The equations governing the reflection, expansion, contraction of the worst, contraction 

of the reflection and reduction of all solutions are shown below: 

 𝑅 = (1 + 𝛼)�̅� − 𝛼𝑥𝑤 2.10 

 𝐸 = (1 + 𝛽)𝑅 − 𝛽�̅� 2.11 

 𝐶𝑤 = (1 −
𝛾

2
)𝑥𝑤 +

𝛾

2
�̅� 2.12 

 𝐶𝑅 = (1 −
𝛾

2
)𝑅 +

𝛾

2
�̅� 2.13 

 𝑅𝑒𝑑𝑖 = (1 −
𝛿

2
) 𝑥𝑖  +

𝛿

2
𝑔𝑏 for all solutions 2.14 

where 𝑥𝑤 is the worst solution, �̅� is the mean of the remaining solutions and 𝑔𝑏 is the global 

best (the best solution found throughout the optimisation process so far). The parameters of 

reflection, expansion, contraction and reduction are 𝛼, 𝛽, 𝛾, and 𝛿, respectively. 

An illustration of the possible movements is shown with a 1D example in Figure 2.6. 

Since there is only one degree of liberty in this problem, the 𝑁-simplex consists of just two 

vertices. The only movement not shown in Figure 2.6 is reduction, where all points move 

towards global best. In this example, 𝛼, 𝛽 and 𝛾 are all equal to 1 (such that a reflection of 2 

about 4 gives 6, an expansion of 6 from 4 gives 8, a contraction of 2 towards 4 gives 3 and a 

contraction of 6 towards 4 gives 5). 

 
Figure 2.6: NMS movements (excluding the reduction of all solutions) for a 1D example. 
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Figure 2.7 shows a 2D example the movements encountered in NMS. The original 

simplex (consisting of 3 vertices) is shown in the top left. The mean, 𝑥𝑚, is calculated using all 

but the worst solution (𝑥 and 𝑥𝑏, but not 𝑥𝑤). Reduction is shown in the last illustration, where 

all solutions (𝑥 and 𝑥𝑤) move towards the best. 

 
Figure 2.7: NMS movements for a 2D example. 𝑥𝑤, 𝑥𝑏, 𝑥𝑚, 𝑥𝑟, 𝑥𝑒, 𝑥𝑐𝑤 and 𝑥𝑐𝑟, are the worst, best, mean (from 

all but the worst), reflection, expansion, contraction of worst and contraction of reflection solutions, respectively. 

All other solutions that are neither the best nor the worst are denoted with 𝑥. 

From the two previous examples, it can be seen that the algorithm preferentially tries to 

increase the size of the simplex (via reflection and expansion). This means that the search-space 

(the area in which all solutions exist, i.e., all possible treatment plans) that is explored is as 

large as possible. 

If the reflection and expansion of the worst solution do not produce a better solution, the 

algorithm shrinks the simplex (via contraction and reduction). This enables the algorithm to 

converge towards a minimum. Once the size of the simplex is sufficiently small, the algorithm 

stops. At this point, the solution is a minimum, but the minimum is not guaranteed to be a global 

minimum. 

2.5.2.1 Initialisation 
As mentioned in Section 2.3.4.3, deterministic algorithms will always return the same 

solution if the conditions of initialisation of the problem remain unchanged. Hence, the 

initialisation of a deterministic algorithm is extremely important. 
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One can imagine the simplex used in NMS as a triangle flip-flapping its way down a 

contour map (where height changes as a function of 𝑥 and 𝑦), as shown in Figure 2.8. If the 

initial triangle is too small, it would get stuck in the first dip encountered (i.e., the solution 

converges prematurely into a local minimum). It is therefore imperative that the initial simplex 

covers the largest area possible to increase the chances of convergence towards a better solution. 

Even for the largest simplex possible, convergence to the global minimum is still not guaranteed 

(the solutions might straddle the minimum, not knowing that global minimum is between them). 

Initialisation was done by randomly generating treatment plans. That is to say, the 

optimisation of a treatment plan that uses 10 injections was initialised by creating 31 treatment 

plans, each treatment plan containing the 10 injections randomly distributed within the PTV. 

This is not a very efficient method, since randomly generating treatment plans does not ensure 

a large coverage of the search-space (Simplex B in Figure 2.8). 

 
Figure 2.8: Contour map with two simplexes. Simplex A risks converging to the local minimum just next to it, 

whereas Simplex B is much more likely (but still not guaranteed) to converge to the global minimum. 

2.5.2.2 Drawbacks of NMS 
There are three main drawbacks of NMS: its dependence on its initialisation, the form the 

function should have for NMS to work efficiently, and the fact that NMS can only optimise a 

fixed number of injections at any given time. The first point has already been discussed and the 

other two are discussed below. 
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NMS, unlike the other algorithms, is guaranteed to find the minimum of a convex cost 

function. Convex functions contain one minimum and no local minima. The cost function 

throughout this problem, however, is extremely unlikely to be convex. This is because there 

will be many treatment plans of similar quality, each one a local minimum. Spherical PTVs, for 

example, will have rotational symmetry, so many treatment plans will yield identical, optimal 

results. 

The third drawback of NMS is that, unlike the other algorithms presented in this work, 

the number of injections is fixed for a given optimisation. This is because the 𝑁-simplex can 

be imagined as an 𝑁-dimension ball rolling down an 𝑁-dimensional slope. It is therefore not 

possible to dynamically change 𝑁 throughout the optimisation. If for example, the number of 

injections was limited between 1 and 20 and the employed cost function was: 

 𝐶𝑜𝑠𝑡 = 0.8 ∙ 𝐶𝑜𝑠𝑡𝑙𝑒𝑡𝑃𝑇𝑉 + 0.2 ∙ 𝐶𝑜𝑠𝑡𝑙𝑒𝑡𝑖𝑛𝑗  2.15 

then one would have to repeat the optimisation process 20 times, once for each of the number 

of injections, to be able to find the optimal treatment plan. This renders NMS considerably 

slower. 

2.5.3 Bees algorithm 
BA (Pham et al., 2006) is a stochastic SO algorithm. The algorithm is inspired by the 

food foraging behaviour of bees. 

At any time, a bee colony has a given number of bees. It must therefore decide how to 

distribute those bees so as to maximise the quantity of foraged food. Scout bees search 

previously unsearched areas for new food sources. They then report back to the beehive and 

indicate to the forager bees (via the waggle dance) the quality of the food source that they have 

just discovered. The more intense the dance, the better the food source.  

The forager bees will then search the flower patch immediately surrounding the scout’s 

discovery. More forager bees are sent for more promising food sources. The bees continue to 

exploit the flower patch until the food runs out, at which point the forager bees will be 

reallocated to newly discovered flower patches. 
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The analogy was formed for a computer searching for optimal solutions to a problem. 

The computer has a finite processing speed, so the computer’s resources need to be divided into 

discovering new areas of the search-space (exploratory behaviour) and searching the immediate 

vicinity of promising solutions (exploitive behaviour). The scout bees exhibit exploratory 

behaviour, whereas searching promising flower patches with forager bees demonstrates 

exploitive behaviour. 

The schematics of BA are given in Figure 2.9 and Figure 2.10, followed by detailed 

explanations in the following sections. 

 
Figure 2.9: Schematic for BA. The scout bees are randomly distributed and ranked. The top-ranked scout bees 

become the centre of “elite” and “best” flower patches, around which local searches are performed. The box, titled 

“Search each of the flower patches”, is expanded upon in Figure 2.10. 

 
Figure 2.10: Schematic of a flower patch search. The forager bees are randomly located about a flower patch centre 

and then ranked. If any of the foragers are better than the flower patch centre, they replace it as the centre and then 

the process is repeated. If none of the foragers are better than the flower patch centre, the size of the flower patch 

is decreased and then the foragers are redistributed. Once the flower patch size shrinks beneath a certain limit, it 

is assumed that the local minimum has been found. This local minimum is compared to the best minimum that has 

been found so far by the algorithm (the global best). If it is better than the global best, it replaces it. The algorithm 

then moves on to searching the next flower patch. 
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2.5.3.1 Initialisation 

Initially, 𝑛𝑠 scout bees are distributed randomly throughout the search-space (𝑛𝑠 

treatment plans are created, each with a random number of randomly placed injections). The 

cost functions of these scout bees are evaluated, and the plans are ranked from best to worst. 

2.5.3.2 Elite and best flower patches 

Once the scout bees are ranked, the top-ranked 𝑛𝑒 scout bees are designated “elite” scout 

bees, and the subsequently top-ranked 𝑛𝑏 scout bees are designated “best” scout bees. The 

number of elite and best scout bees is chosen such that 𝑛𝑒 + 𝑛𝑏 ≤ 𝑛𝑠. 

Figure 2.11 shows an example of the random allocation of 20 scout bees within a 2D 

search space, and the subsequent designation of 3 elite and 2 best scout bees. 

 
Figure 2.11: Random allocation of 20 scout bees in a 2D example. The top ranked scout bees become the centre 

of elite and best flower patches. 

Flower patches are then created. The elite and best scouts become the centres of elite and 

best flower patches, respectively. 

Each elite flower patch is assigned 𝑛𝑟𝑒 forager bees and each best flower patch is 

assigned 𝑛𝑟𝑏 forager bees. The total population of the beehive is therefore: 

 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑠 + 𝑛𝑒 ∙ 𝑛𝑟𝑒 + 𝑛𝑏 ∙ 𝑛𝑟𝑏 2.16 
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2.5.3.3 Flower patch search 

The forager bees are randomly distributed within a user-defined distance, 𝜇, from the 

flower patch centre, as shown in Figure 2.12. In the given example, 𝑛𝑟𝑒 and 𝑛𝑟𝑏 are 20 and 10, 

respectively. 

 
Figure 2.12: Random distribution of forager bees about flower patches. Elite and best flower patches have 20 and 

10 forager bees, respectively (𝑛𝑟𝑒 and 𝑛𝑟𝑏). 

The fitness of each of the forager bees in a flower patch is evaluated. The forager bees 

are ranked, and if the cost function of the best forager bee is better than the flower patch centre 

(i.e., the cost function of the forager bee is lower than the flower patch), this forager bee 

becomes the centre of the flower patch. If not, the flower patch shrinks by a user-defined factor, 

𝛿𝜇. 

The forager bees are then redistributed around the flower patch centre (which may or may 

not have changed) and this process continues iteratively until the size of the flower patch passes 

below a threshold. One can imagine a circle of decreasing radius, centring in on a local 

minimum. It is assumed that once the flower patch is small enough, then the local minimum 

has been found. 

Once the local minimum has been found, this minimum is compared with the global best 

(the best treatment plan found by the algorithm in that optimisation run), and if it is better, then 

the minimum is saved as the global best. The global best treatment plan is the plan that will be 

proposed to the user at the end of the optimisation process. 
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The flower patch is then abandoned, and the process is repeated for the other flower 

patches. Once all flower patches have been explored (and the local minima have been found), 

the scout bees are redistributed. 

2.5.3.4 Drawback of BA 
A potential shortfall of BA is the number of user-defined parameters that are required 

before it can be used. On top of the parameters required for other algorithms (cost function 

weightings, etc.), users are also required to decide 𝑛𝑠, 𝑛𝑒, 𝑛𝑏, 𝑛𝑟𝑒, 𝑛𝑟𝑏, 𝜇 and 𝛿𝜇. 

A relatively large 𝑛𝑠 compared to 𝑛𝑒, 𝑛𝑏, 𝑛𝑟𝑒 and 𝑛𝑟𝑏 results in more exploratory 

behaviour because more searches are performed in unknown areas. Similarly, a relatively large 

𝑛𝑒 and 𝑛𝑏 results in exploratory behaviour because more computer resources are given to areas 

of the search-space even though they may not seem initially interesting. Conversely, a relatively 

large 𝑛𝑟𝑒 and 𝑛𝑟𝑏 results in an increase of exploitive behaviour because more resources are 

spent on searching areas known to contain promising solutions. Lastly, a large 𝜇 and small 𝛿𝜇 

result in an increase of exploitive behaviour because more resources are spent on finding the 

flower patch’s local minimum. 

This drawback, however, can also be presented as an advantage; the liberty in selecting 

all the parameters means that it is possible to fine-tune BA as much as necessary. 

2.5.4 Non-dominated sorting genetic algorithm-II 
NSGA-II (Srinivas and Deb, 1994) is an evolutionary algorithm. It is an analogy, inspired 

by the idea of survival of the fittest, where the best animals survive, passing on their superior 

genes to future generations, whilst the genes of weaker individuals are phased out. Over many 

generations, the quality of the population therefore increases.  

The schematic of NSGA-II is shown below, in Figure 2.13, and then explained in greater 

detail afterwards. 
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Figure 2.13: Schematic of NSGA-II. New populations are created by mixing solutions from the previous 

population. The new and previous populations are added together, sorted and the best half are kept, whilst the 

worst half are discarded. 

Between animals, new offspring are created by mixing the genes of two parents (referred 

to in this work as crossovers). Mutations can also occur, encouraging diversity in the 

population. NSGA-II employs crossovers and mutations to iteratively produce generations of 

increasing quality. 

In nature, the probability that certain characteristics survive to be passed onto future 

generations is a complicated mix of many factors (strength, speed, intelligence, etc.). In 

NSGA-II, this is mimicked by ranking the members of the population by taking into account 

multiple costlet functions simultaneously, through a process known as non-dominated fitness 

ranking. 

Once all the treatment plans are ranked from best to worst, a new population is created 

using the previous generation’s “genes”. The new population and the old population are joined 

together, ranked and the worst half is discarded. This process, known as truncation replacement, 

ensures that the quality of the new generation is at least as good as the previous generation. 

The concepts of the generation of the new population, the non-dominated fitness ranking 

and truncation replacement are developed further in the following sections. 

2.5.4.1 Generation of the new population 
The generation of the new population is done by selecting two “parents”, mixing their 

“genes” to create two “children” and then potentially performing mutations on these children. 

Since this creates two children, the process is repeated 𝑁/2 to create a population of 𝑁 

treatment plans. The schematic for the production of a new population is shown in Figure 2.14. 
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Figure 2.14: Iterative process used by NSGA-II to create a new population (based on the previous population) via 

binary tournaments, crossovers and mutations. Binary tournament selection consists of randomly selecting two 

solutions from the previous population and selecting the best of the two to be a parent. This produces one parent, 

so the binary tournament selection is repeated a second time to get the second parent. 

Tournament selection is used to choose parent solutions. The first parent is chosen by 

randomly choosing two solutions from the previous generation and keeping the better ranked 

solution as the parent. This is then repeated to obtain the second parent. 

Crossovers are used to create two children from the two parents. The parents’ genes (their 

injection coordinates) are split in half, and the first child inherits the first half of the first parent’s 

genes and the second half of the second parent’s genes. The second child is created with the 

second half of the first parent’s genes and the first half of the second parent’s genes. Hence, if 

the first parent uses 10 injections and the second parent uses 6 injections, the two children will 

have 8 injections. If the 𝑖th injection of Parent 1 and Parent 2 is denoted as 𝑥𝑖 and 𝑦𝑖, 

respectively, then their injections and the injections of their resulting children are expressed as: 

 𝑃𝑎𝑟𝑒𝑛𝑡1 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10) 2.17 

 𝑃𝑎𝑟𝑒𝑛𝑡2 = (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6) 2.18 

 𝐶ℎ𝑖𝑙𝑑1 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑦4, 𝑦5, 𝑦6) 2.19 

 𝐶ℎ𝑖𝑙𝑑2 = (𝑦1, 𝑦2, 𝑦3, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10) 2.20 
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Once two children have been created, random mutations are potentially applied, subject 

to a user-determined mutation probability. In the case of treatment planning, a mutation will 

either add a randomly generated injection, delete a randomly chosen injection or randomly alter 

any of the previously existing injections. This process increases diversity in the population, 

aiding the algorithm better explore the search-space. 

The children, whether they have been mutated or not, are then added to the new 

population and the process is repeated until the new population is complete. 

2.5.4.2 Non-dominated fitness ranking 
As explained in Section 2.4.3, a treatment plan is considered non-dominated as long as 

no other treatment plan is at least as good it with regards to all costlet functions. A population 

can therefore be sorted into Pareto fronts. 

The first Pareto front consists of all the non-dominated solutions. These solutions are then 

removed from the comparison, and the second Pareto front is formed from all of the newly non-

dominated solutions. The second Pareto front will contain solutions that were only dominated 

by solutions in the first Pareto front. This process is repeated until all of the solutions have been 

assigned to a Pareto front. 

For a population with 𝑁 treatment plans, there can be 1 Pareto front containing 𝑁 plans; 

𝑁 Pareto fronts, each containing 1 plan; or anywhere in between. The example that was shown 

in Figure 2.3 is shown again in Figure 2.15, with all solutions sorted into their respective Pareto 

fronts. 
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Figure 2.15: Solutions divided into their consecutive Pareto fronts. The second Pareto front is constructed by 

removing all solutions that form the first Pareto front and finding all the non-dominated solutions. These are then 

removed and the process is repeated for the third Pareto front and so on. 

Within a Pareto front, no single solution can be said to be better than any other; they are 

a set of compromises. In the case of treatment planning, the compromise might between the 

coverage of the PTV and the number of injections – increasing the number of injections (which 

could be 𝐶𝑜𝑠𝑡1) would decrease the under-irradiated portion of the PTV (decreasing 𝐶𝑜𝑠𝑡2) 

and vice versa. 

It is necessary, however, to not only sort the treatment plans into Pareto fronts, but also 

to rank each of the treatment plans within each Pareto front. In the process of non-dominated 

fitness ranking, this is done with crowd distances. 

Crowding distances are used to favour more unique solutions. By doing so, solutions in 

sparsely populated areas of the Pareto front are better classed than those in crowded areas, and 

the future generation will be more evenly spread out. 
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In the example shown in Figure 2.15, for example, solutions A and G are given the largest 

crowding distances. They lie on the extremities of the Pareto front, so favouring them will 

encourage the Pareto front to spread out as far as possible. The crowding distances of the 

remaining 𝑗 solutions are calculated using Equation 2.21: 

 𝐶𝑟𝑜𝑤𝑑(𝑗) =∑
𝐶𝑜𝑠𝑡𝑖

𝑗+1
− 𝐶𝑜𝑠𝑡𝑖

𝑗−1

𝐶𝑜𝑠𝑡𝑖
𝑚𝑎𝑥 − 𝐶𝑜𝑠𝑡𝑖

𝑚𝑖𝑛

𝑛

𝑖

 2.21 

where 𝑛 is the number of costlets (2 for the 2D example shown in Figure 2.15), 𝐶𝑜𝑠𝑡𝑗+1𝑖 and 

𝐶𝑜𝑠𝑡𝑖
𝑗−1 are the costs for 𝑖th costlets of the neighbouring (𝑗 + 1)th and (𝑗 − 1)th solutions, 

respectively, and 𝐶𝑜𝑠𝑡𝑖𝑚𝑎𝑥 and 𝐶𝑜𝑠𝑡𝑖𝑚𝑖𝑛 are the maximum and minimum costs of the 𝑖th costlet, 

respectively. The crowding distance of treatment plan C, for example, is shown in 

Equation 2.22: 

 𝐶𝑟𝑜𝑤𝑑(C) =
𝐷1 − 𝐵1
𝐺1 − 𝐴1

+
𝐵2−𝐷2
𝐴2 − 𝐺2

 2.22 

Once all of the solutions have been sorted into Pareto fronts and the crowding distances 

have been calculated within each Pareto front, the whole of the population is ranked such that 

the best solutions have the smallest Pareto front and, for matching Pareto fronts, the largest 

crowding distances. 

Performing the ranking in this manner means that the algorithm can optimise multiple 

costlet functions without having to combine them using weightings, as is the case for SO 

algorithms. Once the population has been sorted, the binary selection process can be used to 

select parents based on their ranking. 

2.5.4.3 Truncation replacement 

Good optimising algorithms should exhibit a quality known as elitism. Elitism is the idea 

that a good solution should never be lost. It is possible, for example, that all of the children in 

a new population are worse than the best solution of a previous population. To avoid losing the 

best solutions of the previous population, NSGA-II uses a method called truncation 

replacement, which combines the old and new populations together. The solutions are then 

ranked, and only the best 𝑁 treatment plans are kept. 

In this fashion, the size of the population remains constant, but the best solutions always 

survive. This ensures that the quality of the new population is always at least as good as, if not 

better than, the previous population. 
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2.5.4.4 NSGA-II as an SO algorithm 

Although NSGA-II is an MO algorithm, it can also be used as an SO algorithm. By simply 

applying a single cost function instead of multiple cost functions, the Pareto front becomes 1D. 

This means that the treatment plan with the lowest cost will dominate all the others, and so will 

be the only plan in the first Pareto front. Subsequently, the plan with the second lowest cost 

will dominate all remaining plans, and so will be in the second Pareto front. 

In this sense, for a population of 𝑁 treatment plans there will be 𝑁 Pareto fronts, each 

containing just 1 solution. When using NSGA-II is an SO algorithm, calculating the crowding 

distance becomes unnecessary since the crowding distance was used to rank solutions within 

the same Pareto front. The solutions are simply ranked by their Pareto front (which is linked 

directly to their single cost) and the parent selection is then performed as per normal. 

2.5.4.5 Drawback of NSGA-II 
Since NSGA-II mimics evolution, no explicit searching is performed in the immediate 

vicinity of promising solutions (unlike NMS and BA).  

NMS performs a local search by reducing all solutions towards the best. Similarly, BA 

performs local searches by using forager bees to search around flower patches, moving towards 

the local minima. 

NSGA-II does not perform a local-area search and for this reason, although it performs 

global searches very efficiently, it is known to converge slowly when in the neighbourhood of 

promising solutions. 

2.6 Stopping criteria 
Now that the forward problem, cost function and optimisation algorithms have been 

introduced, the only box in Figure 2.1 that remains to be discussed is the stopping criteria. Each 

time an iteration is completed, the algorithm checks to see if any of the criteria have been met, 

signalling the end of the optimisation process. Various examples of stopping criteria are given 

in the following subsections. 
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2.6.1 Convergence 
NMS will always converge to a point. When no better solutions have been found, all the 

treatment plans move towards the best solution (via a reduction) and the size of the 𝑁-simplex 

decreases. Eventually, all of the vertices of the simplex converge to the same point. Since all 

vertices now match, NMS cannot do any more movements, and so the optimisation process 

stops. This was therefore used as a stopping criterion for NMS. 

Convergence could not, however, be used as a stopping criterion for BA or NSGA-II 

because their stochastic nature means that they do not converge. For example, BA can 

continually produce new scout bees and NSGA-II can continually produce new children 

(although this does not mean that they will continually find better solutions). Hence, other 

stopping criteria must be found for these methods. 

2.6.2 Number of iterations 
After considering convergence, designating a maximum number of iterations might seem 

to be a logical choice of stopping criterion. However, each algorithm (even each configuration 

of a given algorithm) alters a different number of treatment plans per iteration. NSGA-II with 

a population of 1,000, for example, will alter 10 times more treatment plans than NSGA-II with 

a population of 100 per iteration. 

Therefore, to use the number of iterations as a stopping criterion does not seem a very apt 

choice, especially when a comparison is to be performed between the various algorithms later 

in this work. 

2.6.3 Treatment plan updates 
Instead of imposing a maximum number of iterations, a maximum number of treatment 

plan updates was used. That is to say, each time a treatment plan was altered, a counter was 

incremented. When the counter reached the user-designated maximum, the algorithm stopped. 

This method was therefore used for all three algorithms throughout this research. 
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2.7 Conclusion 
In this chapter, many key-concepts were presented. In order to find optimal treatment 

plans, inverse-problem solving algorithms incorporate: 

• The forward problem (the calculation of the absorbed dose distribution from a 

given configuration of injections), 

• The cost function (a method of quantifying treatment plans), and 

• The optimisation algorithm (a method of altering the treatment plans so as to 

minimise the cost function). 

Both physical and radiobiological cost functions were presented, the latter being ruled 

out as the relevant data is not yet available for microbrachytherapy. Physical cost functions that 

are typically used in EBRT were also ruled due to the inherently inhomogeneous radiation 

distribution encountered in microbrachytherapy. 

Finally, costlet functions were created for the PTV, the number of injections, the OAR 

and the CI. 𝐶𝑜𝑠𝑡𝑃𝑇𝑉  penalised the fraction of the PTV receiving less than 95% of 𝐷𝑇 and 

𝐶𝑜𝑠𝑡𝑂𝐴𝑅 penalised the fraction of the OAR receiving over 10 Gy. 𝐶𝑜𝑠𝑡𝐼𝑛𝑗  and 𝐶𝑜𝑠𝑡𝐶𝐼 are 

simply equal to the number of injections and the conformity index, respectively. When the cost 

functions have been minimised, the treatment plan is optimised. 

SO and MO algorithms were also introduced. SO algorithms combine multiple costlet 

functions into a single cost function with relative weightings between each costlet. MO 

algorithms, on the other hand, optimise the costlets individually, and the results are presented 

in the form of a Pareto front. 

SO algorithms are advantageous in that the dimensionality of the search-space is reduced 

from ND to 1D (where N is the number of costlets). This makes the optimisation process much 

faster. However, if the user then wishes to alter the costlet weightings, they must restart the 

optimisation process anew. At this point, the speed advantage of SO algorithms would be lost. 

MO algorithms are slower but more powerful, proposing all optimal solutions, and allowing 

the user to make the most informed decision possible. 
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Three algorithms were detailed: NMS, BA and NSGA-II. A summary of these three 

algorithms is shown in Table 2.3. These three were chosen as they present a wide range of 

optimisation algorithms, allowing for an interesting comparison in Chapter 4, when the 

algorithm that is the best-suited for microbrachytherapy treatment planning will be selected. 

Before that comparison can be performed, however, the forward problem – microbrachytherapy 

dosimetry – must be discussed in greater detail. This is therefore the subject of the following 

chapter. 
Algorithm Stochastic/deterministic SO/MO 

NMS Deterministic SO 

BA Stochastic SO 

NSGA-II Stochastic MO 

Table 2.3: Summary of three algorithms that have been presented in this chapter and will be compared in Chapter 4.
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3 MICROBRACHYTHERAPY 
DOSIMETRY 

3.1 Introduction 
Microbrachytherapy is a new form of radiotherapy. As such, there is no currently 

established method of dosimetry (for calculating and assessing the irradiation of a patient) for 

this modality.  

In this chapter, the dosimetric methodology that has been developed, and will be used 

throughout the rest of this research, is detailed. 

A treatment plan contains information pertaining to the proposed treatment. For 

microbrachytherapy, treatment plans will state how many injections will be used and the 

coordinates of those injections. 

From a given treatment plan, it is necessary to then calculate the resulting absorbed dose 

distribution to be able to evaluate the dosimetry of the PTV, OARs and other healthy tissue in 

order to evaluate the efficacy of the treatment plan. 
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The workflow for calculating the dosimetry of a microbrachytherapy treatment plan is 

shown in Figure 3.1 and detailed below: 

• Calculate the absorbed dose distribution for a single injection (known as a kernel), 

• Calculate the plan’s absorbed dose distribution (also referred to as the dose grid) 

by convolving the kernel in each of the desired positions corresponding to the 

treatment plan’s coordinates, and 

• Superpose binary masks on the dose grid to calculate the distribution in each 

structure (PTV or OAR). 

  

  
Figure 3.1: Illustration of the absorbed dose distribution for (a) an injection, (b) the injection placed on the dose 

grid, (c) multiple injections convolved on the dose grid as dictated by a treatment plan and (d) structures superposed 

to calculate structure-specific absorbed dose distributions. 
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The entirety of the dosimetric workflow that is presented in this research was 

programmed from scratch in C++. The code is discussed in greater detail in the Appendix. 

The structure of this chapter is as follows: 

• Section 3.2 discusses the generation of the kernel, 

• Section 3.3 discusses convolving the kernel to calculate the patient’s dose grid, 

• Section 3.4 presents a methodology for structure-specific dosimetry, 

• Section 3.5 explores certain assumptions and considerations that are taken into 

account during the dosimetry, 

• Section 3.6 presents a worked example of the complete dosimetric workflow that 

will be used throughout this research, and 

• Section 3.7 concludes this chapter. 

3.2 Kernel generation 
A simplified version of the MIRD formulation of the absorbed dose, �̅�, which is a 

function of the S-value, 𝑆, and the cumulated activity, �̃�, is given below: 

 �̅� = 𝑆 ∙ �̃� 3.1 

Throughout this work, the S-value is used to refer to the mean absorbed dose deposed in 

a voxel for a single radioactive decay in the injected volume. The cumulated activity, is the 

integral of the injection’s activity with respect to time: 

 �̃� = ∫𝐴(𝑡)𝑑𝑡

𝑇

0

 3.2 

As mentioned in Section 1.3, by incorporating the radioelements into microspheres, the 

biological half-life is quasi-infinite. Because the radioelement does not move, the integral can 

be completed to infinity (provided the radioelement’s half-life is much less than the patient’s 

life time, which is the case for all radioelements tested in this work). In this case, the cumulated 

activity is a function of the injection’s initial activity, 𝐴0, and the radioelements half-life, 𝑇1/2: 

 �̃� = ∫ 𝐴(𝑡)𝑑𝑡

∞

0

=
𝑇1/2
ln(2)

∙ 𝐴0 3.3 
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3.2.1 S-values 
The calculation of �̃� is therefore a straightforward task, and all that remains to be able to 

calculate the absorbed dose distribution for an injection is the voxelised distribution of S-values. 

Once the S-value for each voxel in the kernel has been calculated, it is trivial to select an 𝐴0 

and instantaneously obtain the voxelised absorbed dose distribution for an injection. 

S-values were calculated using Monte Carlo code. Monte Carlo codes exploit the law of 

large numbers: to take the example of radioactive decay, the principal is that, although it is 

impossible to predict the resulting energy deposition of an individual radioactive decay (since 

radioactive decay is a random process), it is possible to predict the distribution for a large 

number of radioactive decays. 

3.2.2 GATE 
The Monte Carlo code used to calculate the kernels was GATE 7.2 (Jan et al., 2004; 

Sarrut et al., 2014). GATE is an open-source, community-based collaboration for numerical 

simulations of medical imaging and radiotherapy, that is based on the simulation toolkit, Geant4 

(Agostinelli et al., 2003). 

The results from GATE were expressed as Gy for the number of particles simulated. To 

convert these into S-values (which, to reiterate, are the average energy per radioactive decay), 

it is necessary to divide the voxel values by the number of simulated particles and multiply by 

the number of particles generated by a single decay of the simulated radioelement. The 

radioelement 166Ho, for example, emits 8.19 particles per decay (of which 1.00 are β−, 3.74 are 

γ and 3.45 are e-). 

3.2.3 Modelling the injection 
Many options are available when modelling a radioactive source. The source could, for 

example, be considered a point source, and the absorbed dose could be calculated in a voxelised 

grid surrounding this point source. Such a kernel is referred to as a dose-point kernel (DPK) 

(Ahnesjö, Andreo and Brahme, 1987). Alternatively, the radioactive source could occupy a 

whole voxel, in which case the resulting distribution would be referred to as a voxel-dose kernel 

(VDK) (Dieudonné et al., 2011). 
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The assumption was made in Section 1.3 that the injections would form spheres, 

containing a homogeneous distribution of radioelements. Hence, the radioactive source was 

modelled as an isotropic, spherical source in a voxelised grid. The centre of the sphere was 

placed in the centre of the central voxel of the grid. 

It should be noted that the proposed setup is not the same as either a DPK or a VDK. As 

will be described in greater detail in Section 3.5.1, it was assumed that the irradiated volume 

(the kernel surrounding the radioactive source) was homogeneous soft tissue with a density of 

1.04 g/cm3. 

3.2.4 GATE parameters 
Precision of kernels generated with GATE depend on five major factors: 

• The number of simulated particles, 

• The volume simulated, 

• The voxel size, 

• The chosen GATE physics list and energy cuts, and 

• The spectra of the simulated radioelement. 

The first three are closely related. For a given simulated volume and voxel size, increasing 

the number of simulated particles results in more precise kernels but longer simulation times. 

For a given number of particles and voxel size, increasing the simulated volume increases 

statistical uncertainties (because the solid angle of voxels far from the source is small, leading 

to relatively few particle interactions). Lastly, for a given number of particles and simulated 

volume, decreasing voxel size increases statistical uncertainties (since fewer particle 

interactions take place in each voxel). Hence, if one wishes to decrease voxel size, for example, 

one should increase the number of simulated particles accordingly. 

Two voxel sizes were used in this work, 0.13 mm3 and 0.53 mm3, which were simulated 

with 1010 and 109 particles, respectively. For the vast majority of this work, kernels with voxels 

of 0.53 mm3 are used. The only exception is in Section 4.7, when a study is conducted into the 

effect of voxel size on the dosimetry. 

The spherical source was placed in the centre of the central voxel of the kernel. It was 

empirically determined that a total kernel size of 24.5 mm was sufficiently large to contain 

voxels containing non-negligible absorbed doses, where absorbed doses beneath 0.01 Gy were 

considered negligible. 
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Hence, the 0.53 mm3 kernels consisted of 49 voxels in each direction, corresponding to 

24 voxels, then the injection centred on the 25th voxel, and then 24 more voxels. In total 

0.53 mm3 kernels therefore consisted of 117,649 voxels. 

The kernels can be relatively small because the radioelements that are used throughout 

this work are β−-emitters, which have a small interaction path and therefore irradiating a small 

volume. This will be discussed in greater detail in Chapter 5, in which a study of radioelements 

is conducted. 

The physics list that was used was “emstandard_opt3”, which is considered the standard 

for radiation therapy applications with GATE. The physics lists controls probabilities of physics 

process, such as Compton scattering, photoelectric absorption, ionisation and Bremsstrahlung. 

The following parameters were set to 1/10th of the voxel size (corresponding to 0.05 mm 

for kernels with voxel sizes of 0.53 mm3): 

• SetCutInRegion for gammas and electrons: when the range of the particle drops 

beneath this threshold, no more secondary particles will be created for charged 

particle processes, such as ionisation and Bremsstrahlung. 

• SetMaxStepSizeInRegion for electrons: the maximum step size of a particle in a 

given region. 

• setStepFunction for electrons: the step limit must be greater than this. 

These parameters are described in greater detail in (Agostinelli et al., 2003). 

Lastly, emission spectra for the radioelements were taken from MIRD (Eckerman and 

Endo, 1989). All possible emitted particles were simulated: mono-energetic photons, (X-rays 

and γ-rays), β−-minus, Auger electrons and internal conversion. 

3.2.5 Simulation times 
Shown below, in Table 3.1, is a summary of all kernels used throughout this research as 

well as the section in which they are used. As can be seen, simulation times vary enormously 

(between 8.6 hours and 39 days). A cluster of computers, consisting of 80 cores, was exploited 

to minimise simulation times as much as possible. 



Chapter 3: Microbrachytherapy Dosimetry 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 64 

Radioelement Injection 

volume (μL) 

Voxel size 

(mm3) 

# particles 

simulated 

Simulation 

time (d) 

Used in 

Section 
90Y 5 0.53 109 10.13 Throughout 

166Ho 5 0.53 109 0.98 5.2 
131I 5 0.53 109 0.50 5.2 

177Lu 5 0.53 109 0.36 5.2 
166Ho 5 0.13 1010 39.03 4.7 

90Y 10 0.53 109 10.09 5.3.2 
90Y 20 0.53 109 10.06 5.3.2 

Table 3.1: Simulation times for kernels used throughout this work. Simulation times are shown for a single core 

of a 2.5 GHz MacBook Pro. The 0.13 mm3 kernel of 166Ho was simulated with 1010 particles because the decreased 

kernel size requires an increased number of primary particles, as described in Section 3.2.4. 

3.3 Patient absorbed dose distributions 
As was illustrated in Figure 3.1, calculating the resulting absorbed dose distribution for a 

treatment plan is as simple as convolving the injection kernel as many times as necessary in the 

positions dictated by the plan. This assumes that the irradiated volume is comprised exclusively 

of a homogeneous medium. This assumption is one of the considerations that is discussed in 

Section 3.5. 

Injections were only allowed to be placed in the centre of voxels (since the kernels were 

calculated with the injections placed in this fashion). This means that treatment plans were 

optimised to the same precision as the kernel. That is to say, a kernel discretised with voxels of 

0.53 mm3 will result in a treatment plan with a precision of 0.53 mm3. 

In this work, treatment plans could only propose to place injections in the PTV. If all the 

injections are confined to the PTV, then the smallest cube required to ensure that all of the 

energy emitted by a treatment plan would be contained within the dose grid is the cube 

surrounding the PTV plus a margin of 12.5 mm (the distance from the centre of an injection to 

the edge of the kernel, as discussed in Section 3.2.4). This is illustrated in Figure 3.2. 
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Figure 3.2: Illustration of the dose grid. Four injections and their associated kernels are shown at the edges of the 

PTV. It can be seen that the blue box is therefore the smallest possible size of the dose grid that is sure to contain 

the entirety of the radiation of all proposed treatment plans. 

Lastly, it should be noted that since the kernel is convolved on the dose grid, the voxel 

size of the dose grid must match the voxel size of the kernel. If one wished to perform the 

optimisation with a dose grid with voxel sizes that do not match any pre-calculated kernels, it 

would of course be possible to resample the kernel prior to the start of the optimisation process. 

A resampled kernel would be subject to partial volume effects and so it would be preferable to 

produce kernels with voxel sizes that match the sizes that will be used in the treatment planning 

process. The effects of the kernel size on the dosimetry are the topic of discussion in Section 4.7. 

3.4 Structure-specific dosimetry 
Once the dose grid had been calculated, structure-specific dosimetry was performed by 

superposing structure masks over the dose grid. Masks are binary arrays that can be overlaid on 

the dose grid, revealing the absorbed dose distribution in a given structure. The masks were 

created using the C++ class, “vtkStencilImage”. The use of the visualisation toolkit (VTK) 

(Schroeder, Martin and Lorensen, 1996) is further explored in the Appendix. 

The results of structure-specific dosimetry are often displayed in the form of cumulative 

DVHs. Such DVHs show the fractional volume of the structure receiving greater than or equal 

to a given absorbed dose. 

Once structure-specific dosimetry has been performed, it is possible to evaluate 

dosimetric requirements. This will be further expanded upon during the worked example in 

Section 3.6. 



Chapter 3: Microbrachytherapy Dosimetry 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 66 

3.5 Considerations 
Below, in Sections 3.5.1 through 3.5.3, three aspects that should be taken into 

consideration are discussed. These aspects are the assumption of homogeneity, the attenuation 

of the microsphere’s casing and calculation times. 

3.5.1 Assumption of homogeneity 
For the calculation of treatment plans’ absorbed dose distributions, a crucial assumption 

was made: the entirety of the irradiated volume was a homogeneous medium. Specifically, it 

was assumed that the medium was soft tissue with a density of 1.04 g/cm3. 

For the treatment of glioblastomas, this assumption was considered reasonable since 

density in the brain, generally speaking, is extremely homogeneous compared to abdominal 

tumours, where inhomogeneities due to air and bone are present. In the brain, as long as the 

tumour is more than a few centimetres from the skull, considering the dose grid to be composed 

entirely of soft tissue is a valid assumption. 

This assumption would not be applicable if inhomogeneities such as air and/or bone were 

present, as is the case for the treatment of abdominal tumours. To be able to perform treatment 

planning in inhomogeneous media, it would be necessary to calculate and employ 

inhomogeneous kernels. 

The calculation of inhomogeneous kernels would not be possible with Monte Carlo 

simulations as it would be far too time-consuming (Table 3.1 showed simulation times to the 

order of magnitude of days, whereas treatment planning needs to be completed in hours, at 

most). 

The calculation of inhomogeneous kernels could therefore be done by using the 

homogeneous kernels that have already been calculated and distorting them as a function of the 

density of the voxels that are irradiated. The voxel densities would be used to calculate the 

radiologic distance (Siddon, 1985) – the equivalent distance travelled through water with 

regards to density (1.00 g/cm3) – as shown in Figure 3.3. The radiological distance would then 

be used to modify the kernel as suggested in (Ahnesjö, Andreo and Brahme, 1987). 
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Figure 3.3: Illustration of the radiologic distance. The radiological distance is the equivalent distance traversed 

through water with regards to density. The line corresponding to air is not to scale; the density of air is so low that 

the radiological distance through air is very large compared to water and bone. 

To be able to perform this method, it would be necessary to calculate the radiologic 

distance between a source voxel (i.e., the centre of an injection) and all irradiated voxels. Either 

an analytic function or a lookup table can then be consulted to convert the radiological distance 

to an absorbed dose. This would then have to be repeated for each injection. It can be seen that 

this method is extremely time-consuming. 

To reiterate, this method of generating kernels for use in inhomogeneous media was not 

used because the particular problem happened to be in a homogeneous medium. If one wished 

to expand upon this treatment to perform dosimetric calculations in inhomogeneous media 

(such as for the treatment of abdominal tumours), these are considerations that would have to 

be taken into account. 

3.5.2 Radioelement distribution and microsphere casing 
The two points that are discussed in this subsection are related to unknown parameters of 

the microsphere. Firstly, the distribution of the radioelements throughout the injection is 

unknown. Secondly, the composition and structure of the microspheres are also unknown. 

3.5.2.1 Distribution of radioelements 
The first uncertainty is related to the distribution of radioelements throughout the 

injection. As was mentioned in Section 1.3.1, it was assumed that after the injection, the 

radioelements would be distributed homogeneously. In reality, this would not be the case 

because radioelements would be grouped tightly together in microspheres. 
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Section 5.3.2 conducts a study into the effect of the injected volume and finds that there 

is no noticeable difference between injections of 5 and 20 μL with the same number of 

radioelements. 

Therefore, if spreading the radioelements over a volume that is four times bigger makes 

no noticeable difference, it is safe to assume that the inhomogeneous distribution of 

radioelements due to them being grouped together in microspheres is also negligible. 

3.5.2.2 Microsphere casing 
The second unknown parameter is the composition and structure of the microsphere, with 

particular focus on the microsphere casing. The radioelements are inside of the microsphere 

and therefore to be able to irradiate the surrounding tissue, the radiation must first escape the 

microsphere casing. 

Microsphere casings can be composed of a wide range of materials. TheraSpheres and 

SIR-spheres are two examples of microspheres that are used in radiotherapy. These 

microspheres contain 90Y and are used for SIRT of the liver (as described in Section 1.2.3). The 

casing of TheraSpheres is insoluble glass (Salem et al., 2002) and SIR-spheres are composed 

of resin (Lim et al., 2005). Microspheres of 166Ho have also been developed from low-

molecular-weight polymer microspheres (Zielhuis et al., 2006). 

Microsphere casing was not taken into account for two reasons. Firstly, specific 

composition of the microspheres is typically private property of the manufacturer. Secondly, 

even if the composition were known, this research aims to stay as general as possible and not 

create models for specific microsphere setups. 

3.5.3 Calculation times 
Each time a treatment plan’s injections are altered, it is necessary to update the patient 

dose grid and then recuperate structure-specific dosimetric information (such as the DVH). This 

process must be extremely fast (to the order of milliseconds), as algorithms can change many 

treatment plans each iteration. 

Attempts were made to speed up this process by minimising the number of voxels and by 

exploiting the graphics processing unit (GPU), as discussed in the two following sections. 
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With the following considerations, structure-specific dosimetry was performed in 4 ms 

for a treatment plan with 20 injections and the spherical PTV OARs, both with a radius of 

10 mm. The process consisted of the convolution of the 20 injections on the dose grid, the 

superposition of the structures’ binary masks and the extraction of their DVHs. 

3.5.3.1 The number of voxels 
The size of voxels has already been discussed in Section 3.2.4 and will be further explored 

in Chapter 5. Considering both the size of the kernel and the size of the voxels to be fixed, a 

potential method of reducing the number of voxels involved in the convolution of the kernel is 

by disregarding voxels containing negligible absorbed doses. 

The injection’s absorbed dose distribution is spherical, yet the kernel is cubic. The cube 

must be big enough so that along the smallest distance from the centre of the kernel to the edge 

(shown as A in Figure 3.4), all non-negligible absorbed dose is accounted for. This means that 

along the hypotenuses (shown as B), the absorbed dose must be considerably lower and there 

must therefore be volumes (shown as C) that contain negligible absorbed doses. 

 
Figure 3.4: 2D illustration of a cubic kernel containing a spherical distribution. A is the minimum distance for all 

non-negligible absorbed doses to be recorded. B is the maximum distance from the injection centre to the edge of 

the kernel (√2A in 2D and √3A in 3D). Hence, all the voxels between A and B from the injection centre, shown 

by the area C (which is a volume in 3D), must contain negligible absorbed doses. 
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To use the 5 μL injection of 90Y with an 𝐴0 of 5 MBq as an example, the mean absorbed 

dose at the centre of the six faces of the cube (a distance of A) was 0.00340 Gy. At the eight 

vertices (a distance of B), however, the mean absorbed dose was 0.000840 Gy. 

To circumvent the problem of using a cubic kernel to quantify a spherical absorbed dose 

distribution, a user-defined threshold was used to establish non-negligible voxels. The indices 

of all voxels receiving greater than this threshold (for example, 0.1 Gy) are stored in an array 

and only these voxels are convolved on the dose grid. 

This means that the number of voxels was decreased by at least the ratio between a sphere 

and a cube, 𝜋/6, almost a factor of 2. This factor rises as the threshold is increased and more 

voxels are considered to contain negligible absorbed doses. The percentage of voxels that are 

included in the dosimetric calculation as a function of the user-defined threshold is given below, 

in Table 3.2. 
Threshold (Gy) Percentage of voxels included (%) 

0 100 

0.01 36.2 

0.1 27.2 

1 18.5 

Table 3.2: The reduction of the number of voxels included in the convolution of the kernel as a function of the 

user-defined threshold that determines if voxels contain non-negligible absorbed doses. 

3.5.3.2 GPU 
Modern computing increasingly exploits the Graphical Processing Unit (GPU). In 

computing, GPUs were initially used exclusively for graphical rendering, such as rendering 

pixels on the screen. Rendering each pixel is a relatively fast process, but screens are composed 

of many pixels. Hence, the core of a central processing unit (CPU) is more powerful than the 

core of a GPU (~2.5 GHz compared to ~1 GHz), but GPUs contain many more cores than CPUs 

(~1,000 compared to ~4). GPUs are therefore being used increasingly in modern computing for 

problems that can be easily fractionated, taking advantage of the hyper-threaded GPU. 

Similarly, calculating the absorbed dose in each voxel in a patient is a repetitive task and 

one that is easily parallelised. It was therefore hoped that the GPU could be used to accelerate 

this calculation. CUDA was used throughout for this purpose. CUDA is an application 

programming interface that was developed by Nvidia, enabling general purpose GPU 

programming (Nickolls et al., 2008). 



3.6: A worked example 
___________________________________________________________________________ 

 71 

This method was unfortunately deemed infeasible because data must always be copied 

from the CPU to the GPU so that the calculation can be performed, and then copied back from 

the GPU to the CPU. For example, if an algorithm alters 100 treatment plans per iteration, the 

dose grid of each plan would have to be copied over individually to the GPU, the calculation 

would be performed and then the results would be copied back to the CPU. This copying to and 

fro is required because the memory of the GPU is considerably smaller than that of the CPU 

and storing hundreds of dose grids on the GPU is not possible. This copying process was time-

consuming, negating the increased calculation speeds. 

3.6 A worked example 
Shown below, is a worked example from start to finish of a dosimetric calculation. The 

PTV and OAR where the 10 mm-radius spheres that were described in Section 1.7. The 

treatment plan uses 10 injections of 90Y. Each injection has a volume of 5 μL and an 𝐴0 of 

5 MBq. 

Firstly, the kernel was generated with GATE. As was discussed, the results of GATE 

must be divided by the number of particles that were simulated (109 for this kernel) and then 

multiplied by the number of particles that are emitted on average per decay (1.00 for 90Y). 

Once the kernel had been generated, all of the voxels were multiplied by the cumulated 

activity, using the 𝐴0 of 5 MBq and 𝑇1 2⁄  of 2.7 days (2.33×105 s). This meant that the kernel 

was now expressed in the form of absorbed dose. Figure 3.5 shows a 1D projection of the 

kernel, with the absorbed dose shown on the left axis and the corresponding S-value shown on 

the right axis. 



Chapter 3: Microbrachytherapy Dosimetry 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 72 

 
Figure 3.5: 1D projection of the absorbed dose (and S-value) distribution for a 5 μL injection of 90Y with an 𝐴0 of 

5 MBq. The limits of the 5 μL injection are also shown. 

Figure 3.6 shows some slices through the kernel. Absorbed doses greater than or equal to 

100 Gy are shown as white. A threshold was used for absorbed doses greater than this because, 

as can be seen in Figure 3.5, absorbed doses close to the centre of the injection are extremely 

elevated. 

 
Figure 3.6: Slices through the absorbed dose distribution of the kernel of a 5 μL injection of 90Y with an 𝐴0 of 

5 MBq. Slice distance from the centre of the injection is given beneath the distributions and are expressed in mm. 

All absorbed doses greater than or equal to 100 Gy are shown as white. 

An example of the calculation of a dose grid is shown in the two following figures. 

Figure 3.7 shows 10 injections randomly distributed within the PTV, which in turn is placed 

next to the OAR. The limits of the dose grid are shown with the white cube. By convolving the 

kernel shown in Figure 3.6 at each of the 10 injection positions, the dose grid was calculated. 

Slices of this dose grid are shown in Figure 3.8. 
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Figure 3.7: 10 injections randomly placed within the PTV which is located next to an OAR. The limits of the dose 

grid can be seen as the edges of the white cube (a margin of 12.5 mm about the PTV). 

 
Figure 3.8: Slices through the dose grid. The edges of the PTV and OAR are shown in green and cyan, respectively. 

Absorbed doses greater than or equal to 100 Gy are shown in white. 

DVHs of the PTV and OAR were calculated for the absorbed dose distribution shown in 

Figure 3.8 and these DVHs are shown below. 
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Figure 3.9: DVH of the PTV and OAR. The maximum absorbed dose delivered to the PTV was 11,934 Gy, 

meaning that the interesting range of the DVH from 0 to ~200 Gy, cannot be easily analysed. For this reason, 

DVHs shown throughout this work will be displayed up until a maximum of 200 Gy. 

The DVH shown in Figure 3.9 extends up to the maximum absorbed dose found in the 

PTV. Most of the interesting information lies within the first few hundred Gy of this DVH. For 

this reason, all DVHs presented from now onwards in this work will be shown up to a maximum 

of 200 Gy, as can be seen in Figure 3.10. 
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Figure 3.10: DVH of the PTV and OAR, limited to a maximum of 200 Gy. It can be seen that the OAR requirement 

is respected because the OAR line passes underneath the black circle. Conversely, the PTV requirement is not 

respected because the PTV line does not pass over the black diamond. 

Also shown in Figure 3.10 are the two treatment plan requirements. It can be seen that 

the PTV does not satisfy the inequality given in Equation 1.1 because the PTV DVH passes 

underneath the diamond at (95 Gy, 95%). It can be seen from the DVH that the volume 

receiving 95 Gy was actually only 63%. 

The OAR, on the other hand, does satisfy the inequality given in Equation 1.2 because it 

passes under the point (10 Gy, 10%). From the graph, it can be seen that just 4% of the OAR 

receives greater than or equal to 10 Gy. 

It can be seen that, compared to a typical EBRT DVH (such as the illustration shown in 

Figure 2.2), absorbed doses reach extremely high values with microbrachytherapy. Conversely, 

ERBT DVHs drop off rapidly after the target absorbed dose. As long as they are confined to 

the PTV, the extremely high absorbed doses that are observed in microbrachytherapy should 

not pose a problem. 

3.7 Conclusion 
For the dosimetric calculation of microbrachytherapy, two main methodologies have been 

proposed in this chapter: the first for generating the absorbed dose distribution for a single 

injection (known as a kernel) and the second for using this kernel to calculate the absorbed dose 

distribution of the patient (known as the dose grid) and performing structure-specific dosimetry. 
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The generation of kernels was done with GATE, by considering the injections to be 

spheres containing a homogeneous distribution of radioelements. Kernels were generated for 

various radioelements, injection volumes and voxel sizes. The number of particles simulated 

was between 109 and 1010. Kernels are stored in S-values, meaning that they can easily be 

converted to absorbed doses by multiplying by the cumulated activity, which is simply a 

function of 𝐴0 and the radioelement’s half-life. 

The creation of the dose grid was performed by creating a voxelised cuboid. Dose grids 

were created with the same size voxels as the kernel that would be convolved. The dose grid 

was the size of the PTV plus a margin of 12.5 mm in all directions. Since the injections are 

confined to the PTV, this dose grid must account for all irradiated tissue, regardless of whether 

the tissue be the PTV, the OAR or other healthy surrounding tissue. 

The dose grid for a given treatment plan could then be calculated by simply convolving 

the injection kernel as many times as necessary in the position of each injection. This assumes 

that the irradiated volume consists entirely of a homogeneous medium (in this case, it is 

assumed to be soft tissue), an assumption that is deemed valid for microbrachytherapy in the 

brain, such as for the treatment of glioblastomas. 

Structure-specific dosimetry was then performed simply by superposing binary masks 

corresponding to each structure on the dose grid. Once the dosimetry had been performed, it 

was possible to present the information in the form of DVHs. This allowed for comparison with 

the treatment requirements, such as those stated in Equations 1.1 and 1.2. 

Attempts were made to speed up the calculation of the dose grid as much as possible. 

Excluding voxels containing negligible absorbed doses proved to be efficient, reducing the 

number of voxels by at least half, whereas GPU acceleration was found to improve calculation 

times. 
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4 COMPARISON OF 
OPTIMISATION ALGORITHMS 

4.1 Introduction 
This chapter consists of a comparison between the three algorithms that were presented 

in Chapter 2: NMS, BA and NSGSA-II. Such a comparison is not straight-forward since the 

algorithms are fundamentally different. NMS, for example, can only optimise a given number 

of injections at any one time. Furthermore, NSGA-II is an MO algorithm, so many results are 

presented together in the form of the Pareto front, as opposed to NMS and BA, which each 

produce a single treatment plan. 

All algorithms that are compared throughout this chapter were written from scratch based 

on their descriptions in literature (as presented in Section 2.5). They were written in object-

oriented C++, allowing for their incorporation into the microbrachytherapy TPS (which was 

also internally developed) that will be presented in the Appendix. 

When necessary, the results of individual algorithms are presented. It is hoped that this 

will aid the reader to understand how each algorithm functions and manages to decrease the 

cost function, thereby finding treatment plans of increasing quality. Once the algorithms have 

been presented individually, they are then compared. Each comparison is performed by 

performing the same optimisation many times for each of the three algorithms and analysing 

the distribution of the final cost function. 
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Throughout this chapter, whenever plots of the cost function are shown, dashed lines are 

used to represent unacceptable treatment plans (treatment plans that violate either 

𝐶𝑜𝑠𝑡𝑃𝑇𝑉  ≤ 5%, 𝐶𝑜𝑠𝑡𝑂𝐴𝑅 ≤ 10%, or both). Conversely, acceptable treatment plans are depicted 

using solid lines. 

It should also be noted that when the cost is plotted as a function of the number of 

treatment plan updates, the graphs do not start at 0 updates. This is because treatment plan 

updates are made during the setup phase of each algorithm. 

Throughout this chapter, the algorithm parameters remain unchanged. These empirically 

determined parameters are shown below, in Table 4.1. 
Algorithm Parameters 

NMS α=1, β=1, γ=1, δ=1 

BA 𝑛𝑠=50, 𝑛𝑒=3, 𝑛𝑟𝑒=10, 𝑛𝑏=2, 𝑛𝑟𝑏=5, 𝑠𝑖𝑧𝑒𝑝𝑎𝑡𝑐ℎ=10 

NSGA-II 𝑁=200, probability of mutation=1 

Table 4.1: Parameters used by the algorithms during the optimisation of the algorithms throughout this chapter. 

Parameter explanations are given in Sections 2.5.2 through 2.5.4. 
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The structure of this chapter is as follows: 

• Section 4.2 describes injection parameters that will be used throughout this 

chapter. 

• Sections 4.3 through 4.5 compare the algorithms in increasingly complex test 

cases: 

- Test Case 1 (Sections 4.3): optimise the irradiation of the PTV for a fixed 

number of injections without the presence of the OAR. 

- Test Case 2: (Section 4.4): optimise the irradiation of the PTV for a variable 

number of injections without the presence of the OAR. 

- Test Case 3 (Section 4.5): optimise the irradiation of the PTV and the OAR 

for a variable number of injections. 

• Section 4.6 discusses the findings of the three test cases and identifies the best-

suited algorithm for this project. 

• Section 4.7 performs an analysis into the effect of voxel size on the accuracy of 

microbrachytherapy treatment planning. 

• Section 4.8 demonstrates the optimisation of a treatment plan for a real pre-

clinical case of a glioblastoma. 

• Section 4.9 then concludes this chapter. 

4.2 Injection parameters 
During the development of a new therapy, many variables are under consideration at the 

same time. As was stated in the introduction to this thesis, this research consists of a comparison 

of optimisation algorithms and then comparisons of the ideal radioelement, initial activity and 

injected volume. 

There is a circular dependency between the method of treatment planning and the 

injections: 

• To be able to develop a method of treatment planning, injections are required. 

• To be able to decide the best injection parameters, a method of treatment planning 

is required. 
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In this research, this circular dependency was broken by initially assigning arbitrary 

injection parameters, thereby permitting the comparison of optimisation algorithms in this 

chapter. Once the ideal optimisation algorithm has been developed, the following chapter will 

then be able to use this algorithm to compare injection parameters and find the ideal setup. 

The injections used throughout this chapter were 5 μL injections of 90Y, each with an 𝐴0 

of 5 MBq. 

4.3 Test Case 1: Fixed number of injections and no OAR 
The PTV used throughout this section is as described in Section 1.7. Since the number of 

injections is fixed and no OAR is present, both 𝐶𝑜𝑠𝑡𝑖𝑛𝑗  and 𝐶𝑜𝑠𝑡𝑂𝐴𝑅 are not used. Therefore, 

the only cost function used in this section is 𝐶𝑜𝑠𝑡𝑃𝑇𝑉 . Acceptable treatment plans are required 

as per usual to deliver 𝐶𝑜𝑠𝑡𝑃𝑇𝑉 ≤ 5%. 

Throughout this test, the number of injections was fixed at 20 (with the exception of 

Section 4.3.1.1, which uses just 2 injections to highlight the inner-workings of NMS). 

4.3.1 NMS 
4.3.1.1 With 2 injections 

Shown below, in Figure 4.1, is the convergence of NMS for just 2 injections. As described 

in Section 2.5.2, the simplex is created with 3𝑛𝑖𝑛𝑗 + 1 treatment plans. Therefore, just 2 

injections were chosen so as to minimise the number of plots on the graph as much as possible. 

The evolution of the cost function for these 8 treatment plans (7 in the simplex plus the 

best found so far) can be seen. As explained in Section 2.5.2, normally just the worst treatment 

plan is altered. The exception for this is the reduction movement, where all treatment plans 

move towards the best solution. 
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Figure 4.1: Cost of NMS as a function of the number of updates. During each generation, the worst solution is 

altered. A reduction (in which all solutions move towards the best) can be seen at 38 updates. Reductions do not 

guarantee lowering the cost function of all solutions, and this is why some of the lines can be seen to increase at 

this point. 

It can be seen that at 8 updates, treatment plan 7 was altered. This greatly improves the 

cost, becoming the best plan found so far, and so the blue ‘best’ line descends accordingly. 

Treatment plan 6 then becomes worst ranked, and at 14 updates it is altered, bettering the best 

treatment plan that was just found. The worst treatment plans are continually improved until 

the first reduction, which can be seen at 38 updates (this must be a reduction because all 

treatment plans are altered at the same time). 

Unlike the other movements, reductions do not guarantee to reduce the cost function, as 

can be seen with treatment plans 3 and 6 at 38 updates. This is because all plans move towards 

the best solution, and it is possible that between the plan’s starting position and the position of 

the best solution, the cost function increases. However, as the size of the simplex decreases, all 

solutions eventually converge. 

The optimisation converged in 26 iterations, which required 138 updates. The final cost 

was 81.1% (meaning that 81.1% of the PTV was under-irradiated). Since none of the plans 

found by this run of the algorithm were acceptable (under 5%), all lines are dashed. The 

optimisation process took a total of 2 s to complete. 
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4.3.1.2 With 20 injections 

Clearly, since 81.1% of the PTV was under-irradiated at the end of the optimisation, 

significantly more than 2 injections are required to sufficiently irradiate the PTV. However, 

when the number of injections (and therefore the number of vertices of the simplex) increases, 

it becomes impractical to display the evolution of each treatment plan as a function of iteration 

number. Therefore, Figure 4.2 shows the evolution of the cost function, displaying only the best 

and worst costs for an optimisation of 20 injections. 

 
Figure 4.2: Evolution of the cost for NMS for the best and worst treatment plans for an optimisation of 20 

injections. It can be seen that, because NMS mostly improves the worst solution, the best solution changes little 

over the course of the optimisation. 

It can be seen in Figure 4.2 that, because NMS spends most of its iterations improving 

the worst solution, the best solution changes little over the course of the optimisation. The best 

solution starts at 5.86% and finishes at 2.94%. Despite this small improvement, the solution 

nonetheless passes from an unacceptable plan to one that is acceptable (and thus the dashed line 

becomes a solid line). 

The optimisation finished in 89 iterations, corresponding to 787 updates. The time taken 

was 24 s. The increased number of updates before convergence (and therefore increased 

optimisation time) compared to Figure 4.1 is due both to the increased number of vertices of 

the simplex (an increased number of treatment plans to alter) and the increased number of 

degrees of liberty by increasing the number of injections from 2 to 20. 
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4.3.2 BA 
Shown below, in Figure 4.3, is an example of the flower patch search for BA. The 

optimisation was performed with 20 injections. As shown in Table 4.1, BA was configured 

such that there were 50 scout bees, 3 elite flower patches and 2 best flower patches. Each elite 

flower patch was assigned 10 forager bees and each best flower patch was assigned 5 forager 

bees, corresponding to a total population of 90 bees. 

First, the 50 scout bees were randomly distributed throughout the search-space (50 

treatment plans were created, each with 20 randomly placed injections). These scout bees were 

ranked and the best 5 scout bees became flower patch centres. 

 
Figure 4.3: Evolution of the cost as a function of the number of treatment plan updates for “elite” and “best” flower 

patches with BA. The start of each line is the cost at the initial centre of the flower patch (i.e., the cost of the scout 

that was used to create the patch). As better solutions are found by forager bees in the surrounding search-space, 

they become the flower patch centre and the cost decreases accordingly. At the end of each line, the flower patch 

has passed beneath a user-defined minimum size and it is assumed that the local minimum has been found. The 

best line corresponds to the best solution found in all flower patches up until that point. 

EFP1 (the first elite flower patch) was initialised at the position of the best scout, EFP2 

at the position of the 2nd-best scout bee and so on, such that BFP2 was initialised at the position 

of the 5th-best scout bee. It is for this reason that the starting point of each line from EFP1 to 

BFP2 increases. 
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It can be seen that although the first elite flower patch was initially the most promising, 

the best treatment plan was actually found in the vicinity of the 3rd elite flower patch (because 

the EFP3 line finishes with the lowest cost). This highlights the importance that algorithms 

demonstrate both exploratory behaviour (searching areas even if they do not initially seem to 

be the most promising) and exploitive behaviour (searching in the vicinity of promising scout 

bees to find local minima). 

The optimisation shown in Figure 4.3 was performed for just 1 iteration (so as not to 

clutter the figure with too many lines), but the process can be repeated for as many iterations 

as desired. A new iteration would start with redistributing the scout bees and so, each iteration 

is completely independent of the other iterations. The optimiser need only remember the best 

treatment plan found amongst all the flower patches of all the iterations so as to be able to 

propose this plan to the user at the end of the optimisation process. 

The optimisation shown in Figure 4.3 finished after 1,162 updates, taking a total of 21 s. 

The best treatment plan had a cost of 0.00561% (meaning that just 0.00561% of the PTV was 

under-irradiated). 

4.3.3 NSGA-II 
To be able to demonstrate the production of new treatment plans via crossovers, 

Figure 4.4 shows the first five generations for a small population of just 10 treatment plans. The 

optimisation was performed with 20 injections. The mutation probability was 1, meaning that 

at as each treatment plan was created with a crossover, it would surely be mutated and one of 

the injection positions would be randomly changed. Normally, mutations can lead to an increase 

or decrease in the number of injections; this was not the case here, however, because the number 

of injections was fixed at 20. 
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Figure 4.4: Evolution of the cost as a function of generation (i.e., iteration) for a population of 10 treatment plans 

in NSGA-II. Solutions that were created by crossovers are joined to their parents via solid blue lines, whereas 

solutions surviving from previous generations are shown via red dashed lines. 

In Figure 4.4, each solution created from a crossover is connected via blue lines to its two 

parents. It can be seen that better ranked solutions contribute more to future generations the 

lower ranked solutions. The best ranked solution in the 0th generation, for example, contributes 

to four crossovers (depicted by the four blue lines that connect it to solutions in the 1st 

generation), whereas the worst contributes to just one. 

Truncation replacement (joining the current and previous generations together and 

keeping the best half, as discussed in Section 2.5.4.3) means that some parent solutions survive 

from previous generations. These solutions are shown with the red dashed line. Truncation 

replacement guarantees that the quality of each generation is at least as good as the previous, 

and this can be seen in the figure. If all the newly created children were of better quality than 

all the parents, then no parents would survive from the previous generation (there would be no 

red dashed lines). However, if all of the children were of worse quality than the parents, only 

the parents would survive (there would be only red dashed lines and no blue lines). In reality, 

it is normally somewhere in between, thus the mixture of red and blue lines. 

The process was then repeated with a full-sized population of 200 treatment plans and the 

optimisation was performed over 50 generations. The results of the best solution as a function 

of the number of updates is shown in Figure 4.5. The optimisation finished in 1,560 updates, 

which took 23 s. The final cost function was 0.143%. 
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Figure 4.5: Cost as a function of treatment plan updates for NSGA-II. 

4.3.4 Comparison 
To compare the algorithms, each was fixed at 20 injections. The algorithms were 

launched 300 times each. Algorithms stopped either when they surpassed 1,000 updates or, in 

the case of NMS, converged. 

A histogram of their final cost distributions is shown in Figure 4.6 and additional 

information is given in Table 4.2. 
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Figure 4.6: Frequency histogram for the final cost of the three algorithms, each launched 300 times with 20 

injections. 

 NMS BA NSGA-II 

Minimum cost 1.29 0.00 0.104 

Maximum cost 7.85 0.553 1.30 

Mean cost 4.32 0.109 0.573 

Standard deviation 1.20 0.0967 0.214 

Acceptable plans (%) 72.3 100 100 

Mean time (s) 11.4 18.5 12.1 

Table 4.2: Minimum, maximum, mean and standard deviation of the final cost, percentage of acceptable plans and 

the mean optimisation time for the three algorithms. Each algorithm was launched 300 times with 20 injections. 

4.3.5 Discussion 
For this first test case, the results of the individual algorithms were initially presented. 

Figure 4.1, Figure 4.3 and Figure 4.4, in particular, show insight into the inner-workings of the 

three algorithms and how they manage to reduce the cost function. 
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Figure 4.1 shows how the worst solution is constantly improved and how all solutions 

eventually converge to a single point. Figure 4.3 shows the search of forager bees as they centre 

in on a local minimum. Lastly, Figure 4.4 shows how crossovers are used to create new 

treatment plans and how keeping the best results from previous generations guarantees that the 

quality of each generation never decreases. 

Subsequently, a comparison was performed between the three algorithms. It can be seen, 

both in Figure 4.6 and in Table 4.2, that BA produces treatment plans that consistently have the 

lowest cost function. Both BA and NSGA-II produced acceptable treatment plans 100% of the 

time. 

NSGA-II’s principal drawback (as mentioned in Section 2.5.4.5) is that it does not 

explicitly search in the immediate surrounding area of promising areas. It is perhaps for this 

reason that BA produced better results. 

NMS not only found treatment plans with the biggest costs, but it also has the largest 

spread in the quality of treatment plans found, indicating a lack of robustness, probably due to 

non-optimal initialisations and its deterministic nature. 

4.4 Test Case 2: Variable number of injections and no OAR 
Increasing the complexity over the first test case, this comparison is conducted by 

allowing the number of injections to vary between 1 and 20. The cost function, 𝐶𝑜𝑠𝑡𝑖𝑛𝑗 , is 

therefore introduced to minimise the number of injections. For the SO algorithms, the two 

costlet functions, 𝐶𝑜𝑠𝑡𝑃𝑇𝑉  and 𝐶𝑜𝑠𝑡𝑖𝑛𝑗 , were given relative weightings of 0.8 and 0.2, 

respectively. These weightings were empirically determined to give satisfactory results. 

As with the previous test, the results of the individual algorithms are given in 

Sections 4.4.1 through 4.4.3, followed by the comparison between the three algorithms in 

Section 4.4.4. 

As was mentioned in Section 2.3.4.3, feasible plans (i.e., those that violate none of the 

treatment requirements) are always ranked ahead of infeasible plans. Hence, it is possible that 

treatment plans with higher costs will be preferred over those with lower costs. Examples of 

this will be seen in Figure 4.7 and Figure 4.8. 
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Whilst for the first test case, treatment plans with costs of under 5% were deemed 

acceptable, this is no longer true for the second test case. This is because the cost function is 

now a weighted sum of two cost functions, so although acceptable plans are still required to 

have 𝐶𝑜𝑠𝑡𝑃𝑇𝑉  ≤ 5%, they are not required to have a specific value for 𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙. 

4.4.1 NMS 
As mentioned in 2.5.2.2, NMS is only capable of optimising a fixed number of injections. 

For this reason, the optimisation is performed individually for each number of injections 

between 1 and 20. NMS was therefore launched 20 times and the evolution of the cost for each 

number of injections is shown in Figure 4.7. 

 
Figure 4.7: The evolution of the total cost for each number of injections that were optimised individually. It can 

be seen that only by using 20 injections could a treatment plan be found that sufficiently irradiates the PTV (as 

this is the only solid line amongst all the dashed lines). 

The only number of injections that resulted in an acceptable treatment plan (as depicted 

by the only solid line amongst all the other dashed lines) was 20, even though it can be seen 

that using 19 injections resulted in a lower cost function. 

The total number of treatment plan updates for the optimisation was 8,600, taking a total 

of 113 s. 
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4.4.2 BA 
Shown below, in Figure 4.8, is the evolution of the cost as a function of updates for a 

variable number of injections with BA. 

 
Figure 4.8: Evolution of BA for an optimisation with a variable number of injections. It can be seen that at 626 

updates, EFP2 find a solution with a lower total cost than the best solution. However, the best solution is 

acceptable, whereas the one proposed by EFP2 is not, and so this solution does not become the best. It is only at 

668 updates that the solution proposed by EFP2 is both acceptable and lower than the best, and at this point it 

replaces the best solution. 

It can be seen that at 626 updates, the cost of the 2nd elite flower patch falls beneath the 

best line. The best line, however, does not reduce with it because at this point the 2nd flower 

patch proposes an unacceptable treatment plan and the current best plan is acceptable. It is only 

at 668 updates that the plan found by EFP2 becomes acceptable and so the best line drops down 

accordingly. 

As was the case with Figure 4.3, the best ranked scout did not produce the best treatment 

plan, which was actually found in the vicinity of the 5th ranked scout bee, again highlighting 

the importance of searching areas of the search-spaces, even if they are not the most promising 

initially. 

4.4.3 NSGA-II 
Shown below, in Figure 4.9, are the results for an MO optimisation of NSGA-II. The 

optimisation was performed with a population of 200 treatment plans over 500 generations. 
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Figure 4.9: Evolution of the Pareto front as a function of the number of generations. 𝐶𝑜𝑠𝑡𝑖𝑛𝑗 is shown along the 

bottom, whereas the number of injections are shown along the top. The best SO plan (lowest total cost whilst 

respecting the treatment criteria) for each generation is marked with a black cross. 

The 500 generations completed in a total of 463 s, requiring a total of 50,200 treatment 

plan updates. The final cost was 16.4, at which point 𝐶𝑜𝑠𝑡𝑃𝑇𝑉 was 1.74 and 𝐶𝑜𝑠𝑡𝑖𝑛𝑗  was 75 (15 

injections). 

When regarding the best total costs (the black crosses) in Figure 4.9, an important 

distinction should be made between: 

• Performing an MO optimisation and from that calculating the best SO plan, and 

• Performing an SO optimisation by combining the individual costlets prior to the 

optimisation process (as described in Section 2.5.4.4). 

Figure 4.9 is an example of running an MO optimisation and calculating the best SO 

treatment plan in the Pareto front. Figure 4.10, however, shows that if the user is concerned by 

the total cost (i.e., wants the best result from an SO optimisation), then the costlet functions 

should be combined prior to the optimisation process. 
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Figure 4.10: Evolution of the total cost as a function of the number of treatment plan updates. Clearly, when the 

user is concerned by the total cost (i.e., the SO cost), it is better to use NSGA-II as an SO algorithm. If NSGA-II 

is used in MO mode, it concentrates its resources on exploring the entirety Pareto front, which is not advantageous 

when the user is only concerned by one specific point of the Pareto front. 

As one might expect, when the user is concerned in the total cost, performing an SO 

optimisation produces better results than extracting the best SO result from an MO optimisation. 

This is because an MO optimisation tries to optimise an ND surface (where N is the number of 

costlets) with the greatest spread possible between each of the solutions across this surface. An 

SO optimisation, on the other hand, concentrates on optimising a 1D surface (a single point) 

and so all of its resources are focused on reducing the total cost. 

Hence, whenever a Pareto front is shown in this research, NSGA-II will be used in MO 

mode. However, whenever NSGA-II is used as an SO algorithm (for example, the comparison 

in Section 4.4.4), it will be used in SO mode. 

4.4.3.1 Population diversity 
As discussed in Section 2.5.4, mutations and the crowding distances are used by NSGA-II 

to promote diversity in the population of treatment plans. 

Mutations are used to randomly alter the treatment plans. Each time a mutation occurs, a 

new random injection could be added or one of the existing injections could be deleted or 

altered. 
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The crowding distance, on the other hand, is used to favour unique solutions, encouraging 

the Pareto front to spread out as wide as possible. Moreover, using the crowding distances, 

solutions at the edges of the Pareto front are always ranked first, further encouraging the 

spreading out of solutions. 

Shown below, in Figure 4.11, is the increase of diversity in the population thanks to 

mutations and the crowding distance. Some of the first 20 generations are shown for a 

population of 200 treatment plans. All plans were all initialised identically, each with 10 

identical injections. The initial 𝐶𝑜𝑠𝑡𝑃𝑇𝑉  for these plans was 38.6%. 

 
Figure 4.11: Example of increasing diversity in NSGA-II due to mutations and the crowding distance. All solutions 

were initialised identically with 10 injections, all with matching coordinates. It can be seen that, thanks to 

mutations and the crowding distance, the solutions rapidly spread out. After just 20 generations, solutions have 

been proposed that cover the full range of allowed numbers of injections (1 to 20). 

It can be seen that, despite starting identically, the Pareto front rapidly spreads out, so as 

to cover the widest range possible. By doing so, the largest amount of search-space is explored 

with the aim of offering a wide range of Pareto-optimal solutions to the user at the end of the 

optimisation process. 
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4.4.4 Comparison 
Given the increased complexity of the problem – the search-space has been increased by 

allowing the algorithms to alter the number of injections – the maximum number of treatment 

plan updates that was used as a stopping criterion was increased from 1,000 to 2,000. This could 

not be imposed for NMS (because it was run many times in parallel for each of the different 

number of injections), so it was allowed to run until convergence. 

 
Figure 4.12: Frequency histogram for the final cost of the three algorithms, each launched 300 times with between 

1 and 20 injections. 

 NMS BA NSGA-II 

Minimum cost 19.2 16.6 16.3 

Maximum cost 23.8 19.6 20.9 

Mean cost 21.8 18.4 17.9 

Standard deviation 0.794 0.572 0.839 

Acceptable plans (%) 46.0 99.0 99.7 

Mean time (s) 107 37.6 23.2 

Table 4.3: Minimum, maximum, mean and standard deviation of the final cost, percentage of acceptable plans and 

the mean optimisation time for the three algorithms, each launched 300 times with between 1 and 20 injections. 
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4.4.5 Discussion 
The conclusion that can be drawn from the comparison is not the same as that for the first 

test case. From both Figure 4.12 and Table 4.3, it can be seen that, generally, NSGA-II finds 

treatment plans with lower costs than BA. BA is, however, more consistent, with a lower 

standard deviation. 

One can conclude from this that, although NSGA-II does not explicitly search in the 

vicinity of promising solutions, enough generations will pass that at least one of the offspring 

will be of a high quality. This is not guaranteed, however, and this probably explains the 

increased standard deviation compared to BA. 

With regards to MO versus SO, it can be seen in Figure 4.9, that the treatment plan with 

the lowest total cost is not necessarily the plan that sufficiently irradiates the tumour whilst 

using the minimal number of injections. The treatment plan with the lowest cost at the end of 

the 500th generation used 15 injections and delivered a total cost of 16.4 (corresponding to a 

𝐶𝑜𝑠𝑡𝑃𝑇𝑉  of 1.74 and a 𝐶𝑜𝑠𝑡𝑖𝑛𝑗 of 75). However, there is an acceptable plan that uses just 12 

injections. This plan, despite having a higher total cost, is arguably better, since it sufficiently 

irradiates the PTV and uses less injections. This highlights the difficulty of choosing cost 

function weightings that can be trusted to produce a treatment plan the best reflects the user’s 

idea of the best treatment plan. Therefore, the ideal algorithm may not be the algorithm that is 

the most efficient in lowering the cost function. It can be seen that MO algorithms, such as 

NSGA-II, offer more choice to the user, something which is clearly advantageous. 

The simplicity of NMS is a clear disadvantage. The fact that each number of injections 

must be optimised individually means that, whilst NMS was the fastest to converge for a fixed 

number of injections, it is by far the slowest for variable numbers of injections. Furthermore, 

since NMS is a deterministic algorithm, the mean final cost is considerably higher than the 

other two algorithms. 

4.5 Test Case 3: Variable number of injections and OAR 
The setup for this comparison is the same as the previous test case, except that this time 

the OAR (as described in Section 1.7.2) is included. As a reminder, it is required that no more 

than 10% of the OAR receive over 10 Gy (𝐶𝑜𝑠𝑡𝑂𝐴𝑅 should be less than or equal to 10%). 
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With the inclusion of the OAR, 𝐶𝑜𝑠𝑡𝑂𝐴𝑅 is added correspondingly to the total cost 

function. The weightings, 𝑤𝑃𝑇𝑉 , 𝑤𝑖𝑛𝑗  and 𝑤𝑂𝐴𝑅, were 0.8, 0.1 and 0.1, respectively. These 

weightings were determined experimentally. 

The methodology of NMS and BA remain unchanged, so their results are not shown prior 

to the comparison. Instead, the individual results of NSGA-II are shown, followed directly by 

the comparison. 

4.5.1 NSGA-II 
To demonstrate NSGA-II in MO mode with three costlet functions, a population of 600 

treatment plans were optimised over 100 generations. The resulting 3D Pareto front is shown 

below, in Figure 4.13. Of the 600 plans in the population, 178 made up the final Pareto front 

after 100 generations. All of these treatment plans are considered acceptable since 

𝐶𝑜𝑠𝑡𝑃𝑇𝑉  ≤ 5% and 𝐶𝑜𝑠𝑡𝑂𝐴𝑅 ≤ 10% for all plans. 

 
Figure 4.13: 3D Pareto front for NSGA-II. The data points are coloured as a function of the number of injections 

used by that plan. A 𝐶𝑜𝑠𝑡𝑖𝑛𝑗 of 70% corresponds to 14 injections, whereas a 𝐶𝑜𝑠𝑡𝑖𝑛𝑗 of 100% corresponds to 20 

injections, as described in Section 2.4.2. The plan with the lowest total cost is highlighted as “best”. 
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The lowest total cost function amongst all the Pareto-optimal solutions is highlighted. 

The total cost for this plan is 9.46, corresponding to 𝐶𝑜𝑠𝑡𝑃𝑇𝑉, 𝐶𝑜𝑠𝑡𝑖𝑛𝑗  and 𝐶𝑜𝑠𝑡𝑂𝐴𝑅 of 0.688%, 

85% (17 injections) and 4.10%, respectively. 

The total optimisation time was 593 s, and a total of 30,600 treatment plan updates were 

performed. 

4.5.2 Comparison 
As with the previous sections, the comparison was performed by launching each of the 

algorithms 300 times. A maximum of 2,000 treatment plan updates was permitted for BA and 

NSGA-II, and NMS continued until convergence. The frequency distribution histogram of the 

final cost functions is shown in Figure 4.14 and additional information is given in Table 4.4. 

 
Figure 4.14: Frequency histogram for the final cost of the three algorithms, each launched 300 times with between 

1 and 20 injections. 
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 NMS BA NSGA-II 

Minimum cost 11.5 9.69 9.34 

Maximum cost 15.1 11.2 11.3 

Mean cost 13.3 10.5 10.1 

Standard deviation 0.779 0.305 0.320 

Acceptable plans (%) 68.0 100 100 

Mean time (s) 160 74.8 32.8 

Table 4.4: Minimum, maximum, mean and standard deviation of the final cost, percentage of acceptable plans and 

the mean optimisation time for the three algorithms, each launched 300 times with between 1 and 20 injections. 

4.5.3 Discussion 
The Pareto front shown in Figure 4.13 shows that there are many acceptable treatment 

plans, each with different qualities. If a user was proposed all of these plans, they might choose 

to decrease the irradiation of the PTV therefore permitting them to decrease the irradiation of 

the OAR. From here, by increasing the number of injections, it would then be possible to keep 

the decreased irradiation of the OAR whilst increasing the irradiation of the PTV. This is the 

liberty that is provided by the Pareto front. 

From the frequency histogram, the same conclusion can be drawn as from the second test 

case. NSGA-II produces treatment plans of a slightly higher quality than BA, and NMS is far 

behind, proposing satisfactory treatment plans just 68% of the time. 

It can be seen in Table 4.4, that NMS is the slowest algorithm. This is unsurprising since 

the optimisation process is repeated many times for each of the number of injections. Curiously, 

however, NSGA-II is over twice as fast as BA. This is because the algorithms check at the end 

of each iteration to see if they have satisfied the stopping criteria. For BA, even though the 

maximum number of treatment plan updates was 2,000, the end of the iteration could occur 

much later, in one case occurring at 3,278 updates. 
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4.6 Discussion 
The results of each algorithm were discussed at the end of each test case. Therefore, this 

section discusses general points that can be drawn overall from the three tests. This section 

discusses: the choice of relative costlet weightings, extending the number of cost functions 

above three, the maximum number of treatment plan updates as a stopping criterion, improving 

NMS and optimisation times. Lastly, in this discussion the best algorithm is decided upon, 

permitting the treatment planning of a real tumour in Section 4.8. 

4.6.1 Costlet weightings 
In the second test case, the relative weightings of 0.8 and 0.2 were proposed for 𝐶𝑜𝑠𝑡𝑃𝑇𝑉 

and 𝐶𝑜𝑠𝑡𝐼𝑛𝑗, respectively. These values were established empirically. 𝐶𝑜𝑠𝑡𝐼𝑛𝑗  is normalised 

such that it is 100% when the maximum number of injections are used, something which occurs 

regularly. Conversely, although 𝐶𝑜𝑠𝑡𝑃𝑇𝑉  can vary between 0% and 100%, treatment plans with 

𝐶𝑜𝑠𝑡𝑃𝑇𝑉  ≥ 20% considerably under-irradiate the PTV and are not worth considering. Since 

𝐶𝑜𝑠𝑡𝑃𝑇𝑉 was generally less than 𝐶𝑜𝑠𝑡𝑂𝐴𝑅, 𝑤𝑃𝑇𝑉  therefore had to be greater than 𝑤𝐼𝑛𝑗  so that 

they contributed equally to the total cost. 

This highlights the complexity of joining costlet functions into a single SO cost function 

and the difficulty in normalising them. The maximum number of injections was set at 20 

because trial tests showed that this was a suitable maximum. However, if the maximum had 

have been set to 40, treatment plans would have been proposed with 𝐶𝑜𝑠𝑡𝐼𝑛𝑗≈50%. If this had 

have been the case, it would have been necessary to increase 𝑤𝐼𝑛𝑗. 

In short, there is no easy way to determine costlet importance for SO optimisations. The 

relative importance should be decided through trial-and-error. The user should pick relative 

weightings and perform the optimisation. If upon analysing the results, the user finds that the 

optimiser overly favoured a certain costlet, it would then be necessary to alter the weightings 

and restart the optimisation. This, needless to say, is a long process, but one that should be 

accelerated once the user has already performed similar treatment plans. 



Chapter 4: Comparison of Optimisation Algorithms 
___________________________________________________________________________ 

 100 

4.6.2 The Pareto front in 4D (or more) 
In theory, MO algorithms can be used for an infinite number of cost functions. However, 

as the number of dimensions surpasses three, the visualisation of the Pareto front becomes 

challenging. Shown below, in Figure 4.15, is the optimisation of the same setup as the third test 

case (optimisation of the PTV, the OAR and the number of injections) with a fourth cost 

function. 

The fourth cost function is the conformity index (CI), as described in Section 2.3.4.4, 

which is minimised when the PTV is sufficiently irradiated and the surrounding healthy tissue 

is not over-irradiated. 

The optimisation for which the results are shown below was performed with a population 

of 600 over 100 generations. The optimisation finished in 652 s, making a total of 30,600 

treatment plan modifications. 

 
Figure 4.15: 2D projections of the 4D Pareto front. From the projections, it is possible to ascertain correlations 

(such as increasing 𝐶𝑜𝑠𝑡𝐼𝑛𝑗 decreases 𝐶𝑜𝑠𝑡𝑃𝑇𝑉), but other relationships are harder to analyse (such as 𝐶𝑜𝑠𝑡𝑂𝐴𝑅 and 

𝐶𝑜𝑠𝑡𝐶𝐼). For this reason, it would be better to display all Pareto-optimal results in the form of a table. 

It is easy to draw certain conclusions from the previous figure. For example, it can be 

seen that there is a negative correlation between 𝐶𝑜𝑠𝑡𝐼𝑛𝑗  and 𝐶𝑜𝑠𝑡𝑃𝑇𝑉. This is to be expected 

since the portion of the PTV that is under-irradiated is likely to decrease as the number of 

injections increases. 
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Some aspects, however, are more difficult to analyse using the data presented in 2D 

projections of a 4D surface. For example, it is difficult to understand the relationship between 

𝐶𝑜𝑠𝑡𝑂𝐴𝑅 and 𝐶𝑜𝑠𝑡𝐶𝐼 . For this reason, it would probably be more suitable to use a table to present 

the Pareto front for four or more dimensions. This would allow the user to more precisely 

observe the trade-offs between each objective. 

Lastly, it should be noted that as the number of costlet functions increases, the number of 

dimensions that need to be populated by the Pareto front increases accordingly. For example, 

when passing from the 2D Pareto front in Figure 4.9 to the 3D Pareto front in Figure 4.13, the 

number of solutions in the Pareto front increased from 19 to 178. It can therefore be seen that 

as the number of costlets is increased, the population should be increased accordingly so as to 

be able to populate the search-space. This will, of course, slow down the optimisation process. 

4.6.3 Maximum number of updates as a stopping criterion 
Throughout this chapter, many figures have been presented that show the evolution of the 

cost as a function of either iteration number or the number of treatment plan updates. In all of 

these examples, it can be seen that the increase in quality of the best treatment plan is often 

initially rapid. As the optimisation continues, however, it gets increasingly difficult to find 

treatment plans of better quality. For BA and NSGA-II – two algorithms that do not converge, 

unlike NMS – they eventually reach a point of diminishing return. 

The moment that this point of diminishing return occurs depends on many factors, such 

as the number of cost functions, the number of injections and the size of the tumour. Hence, the 

user should set the maximum-number-of-updates stopping criterion accordingly. This should 

get easier as the user’s experience increases. 

4.6.4 Improving NMS 
Two methods are proposed below, which could potentially be used to improve the results 

produced by NMS. The first is to use a meta-optimiser, and the second is to use restarts. 

4.6.4.1 Meta-optimiser 
An algorithm, such as the golden-section search algorithm (Kiefer, 1953), could be used 

to improve optimisation times when the number of injections is variable. Such a meta-optimiser 

would mean that, instead of testing all numbers of injections (every number between 1 and 20 

in these examples), the algorithm would intelligently select numbers of injections should be 

tested. 
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For example, it can be seen that in the second and third test cases, the optimal number of 

injections was typically between 15 and 20. There is little incentive, therefore, to test the 

number of injections between 1 and 12, say. The meta-optimiser would reduce the trialled 

number of injections by essentially plotting cost as a function of the number of injections and 

search for the minimum of this curve. 

4.6.4.2 Restarts 

Restarts can be used to improve the quality of results produced by NMS. Since NMS is 

heavily dependent on the initialisation of the simplex at the start of the optimisation process, 

recreating the simplex and re-running the algorithm multiple times, proposing the best treatment 

plan from all of these runs at the end, would minimise the impact of a poor initialisation. 

NMS, however, was already shown to be the slowest algorithm. If 10 restarts were used 

each time, optimisation times would be increased by a factor of 10. Even with using a meta-

optimiser to reduce optimisation times, it is likely that NMS would be considerably slower than 

the other algorithms. 

4.6.5 Optimisation times 
Despite the fact that a difference could be seen between the quality of treatment plans 

produced by the three algorithms, a positive conclusion can be drawn from all three: 

Optimisation times for all algorithms were extremely rapid. For the most complicated test case 

in this chapter, NMS – the slowest algorithm – took on average just 160 s to perform the 

treatment planning. 

Clearly, the optimisation was performed on a small tumour and so optimisation times 

would increase as the volume increases and the number of injections increases accordingly (as 

will be seen in Section 5.4). However, the initial results are extremely satisfactory in terms of 

clinical timescales for treatment planning (the upper limit is about an hour) and so these 

algorithms should continue to perform rapidly, even for larger setups. 

Optimisation times, however, could be further improved by parallelising the algorithms. 

4.6.5.1 Parallelised algorithms 
Certain algorithms lend themselves more readily to parallelisation. This means that 

computers can profit from the maximum capacity of multi-core computers via multi-threaded 

code. 
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BA, for example, is easily parallelised because the search of each flower patch can be 

effectuated independently of the other flower patches. Similarly, NSGA-II creates the new 

population by repeatedly creating two children from two parents; parent-child production can 

also be undertaken independently. Hence, BA and NSGA-II can easily be split into multi-

threaded code. NMS, conversely, operates in a linear fashion, meaning that it is not suitable for 

splitting into multi-threaded code. 

Of the three, NSGA-II was therefore programmed so as to be able to make use of multi-

threaded CPUs, decreasing its simulation time. In order to be able to perform a fair comparison, 

all NSGA-II optimisations performed throughout this chapter were performed on a single core. 

4.6.6 The chosen algorithm 
From the three test cases, it was shown that for microbrachytherapy treatment planning, 

NMS is a poor choice. NMS is efficient for convex cost functions (only one global minimum 

and no local minima) and where a good initialisation can be assured. Neither of these two are 

true for this specific problem, where the cost function contains many local minima (there are 

many treatment plans in different areas of the search-space with of similar quality) and vertices 

of the simplex are initialised by random treatment plans (randomly initialising treatment plans 

does not guarantee the wide spread of the vertices that is required, as discussed in 

Section 2.5.2.1). 

BA and NSGA-II have been shown to give similar, acceptable results. NSGA-II, 

however, not only performs well as an SO algorithm, but it also has the advantage of being an 

MO algorithm. This means that for problems where the relative weightings are unknown, one 

can perform treatment planning in MO mode and pick the best treatment plan from the non-

dominated solutions that populate the Pareto front. For this reason, it was decided that, between 

the three algorithms that were tested, NSGA-II was the algorithm that was best suited for the 

problem of microbrachytherapy treatment planning. 

Therefore, NSGA-II will be used for all future treatment plan optimisations in this 

research. 

Since SO algorithms will no longer be used, 𝐶𝑜𝑠𝑡𝐼𝑛𝑗 can now be expressed as the number 

of injections instead of the normalised value that has been used until now by dividing by the 

maximum number of injections. 
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4.7 Voxel sizes 
Now that a method of treatment planning has been developed, and an algorithm has been 

selected for all future treatment planning optimisations, an important study can be conducted 

into the impact of voxel size on the accuracy of calculated dosimetry. 

The absorbed dose profiles of β−-emitting radioelements are very steep; the 1D kernel for 

a 5 μL injection of 90Y with an 𝐴0 of 5 MBq in Figure 3.5 shows that the absorbed dose drops 

from greater than 104 Gy to less than 1 Gy in less than 1 cm. 

For this reason, the voxels that are used throughout the treatment planning process should 

be small enough that the dosimetry is performed with reasonable accuracy. It is therefore useful 

to study whether changing the voxel size has an effect on the Pareto front. 

Throughout this section, injections of 166Ho are used instead of 90Y because, as was shown 

in Table 3.1, simulation times for 90Y are considerably longer than for other radioelements, and 

so the production of kernels with small voxel sizes (such as 0.13 mm3) would have taken 

unreasonably long. For this reason, the test was performed with 166Ho, but the conclusions 

should be the same regardless of the radioelements, as all β−-emitting radioelements have 

similarly steep gradients (as will be shown in Section 5.2.1). 

In this section, a comparison is performed between 0.13, 0.53 and 1.03 mm3. Shown below, 

in Figure 4.16, is the central slice through the absorbed dose distributions of 5 μL injections of 
166Ho with 𝐴0’s of 5 MBq and for these three voxel sizes. 

The 0.13 mm3 kernel was calculated using 1010 particles (compared to 109 for the original 

0.53 mm3 kernel. The 1.03 mm3 kernel was calculated by resampling the 0.53 mm3 kernel. 

 
Figure 4.16: Central slice of absorbed dose distributions for 5 μL injections of 166Ho with 𝐴0’s of 5 MBq and voxel 

sizes of (from left to right) 0.13, 0.53 and 1.03 mm3. 



4.7: Voxel sizes 
___________________________________________________________________________ 

 105 

The study into the effect of voxel sizes on the treatment planning will be conducted in 

two parts. First, the effect on the Pareto front will be studied. Secondly, the effect on individual 

treatment plans will be studied by selecting a single treatment plan and performing the 

dosimetry with different voxel sizes to see if the DVHs change. 

Throughout this study, the PTV and the OAR were present, though only 𝐶𝑜𝑠𝑡𝑃𝑇𝑉  and 

𝐶𝑜𝑠𝑡𝑖𝑛𝑗  were used (so as to be able to present the Pareto front in 2D). 

4.7.1 Optimisation 
The optimisation was performed over 1,000 generations with a population of 80. The 

number of injections was constrained between 1 and 35. The maximum number of injections 

was increased from 20 to 35 because 166Ho produces lower energy β− particles than 90Y that has 

been used previously (and as will be discussed in the following chapter). 

The Pareto fronts for these optimisations are shown in Figure 4.17 and optimisation times 

for each of the voxel sizes is shown after Figure 4.17, in Table 4.5. 

 
Figure 4.17: Pareto front the optimisation of the PTV (10 mm radius) with injections of 166Ho for kernels with 

voxel sizes of 0.13, 0.53 and 1.03 mm3. 
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Voxel size (mm3) Optimisation time (s) 

0.1 33,837 

0.5 245 

1.0 68 

Table 4.5: Optimisation times as a function of voxel spacing. The optimisations were performed over 1,000 

generations. 

4.7.2 DVHs 
It can be seen in Figure 4.17 that voxel size – at least, for sizes under 1.03 mm3 – has little 

impact on the Pareto front. This, however, does not confirm whether voxel size significantly 

affects a plan’s dosimetry, since the optimiser finding plans with matching cost functions does 

not necessarily mean that the dosimetry of plans with matching coordinates but different voxel 

sizes would be the same. 

This is demonstrated in Figure 4.18, where the same injection coordinates are applied 

with the three kernels of different sized voxel. The plan was chosen from the 0.13 mm3 Pareto 

front, as this is assumed to be the most accurate of the three voxel sizes. The chosen plan used 

18 injections, which was the acceptable treatment plan that used the fewest injections. 

 
Figure 4.18: DVHs for the same plan (the first that passes under 5% on the y-axis for the voxel size of 0.13 mm3 

in the previous figure) with different voxel sizes. 
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The DVHs shown in Figure 4.18 are very similar. For this reason, the residual between 

the DVHs, using 0.13 mm3 as the reference (i.e., the DVH of 0.53 mm minus the DVH of 

0.13 mm3 and the DVH of 1.03 mm3 minus the DVH of 0.13 mm3), are shown in Figure 4.19. 

 
Figure 4.19: Differences in 0.53 and 1.03 mm3 voxel size DVHs compared to the DVH of the 0.13 mm3 voxel size. 

From Figure 4.19, it can be seen that in this treatment plan, increasing the voxel size 

underestimates the irradiation of the PTV, whilst overestimating of the irradiation of the OAR. 

It can also be seen however, that differences between 0.53 mm3 and 0.13 mm3 are smaller than 

those between 1.03 mm3 and 0.13 mm3. 

The difference in the PTV at 95 Gy is -3.93% and -0.853% for 1.03 mm3 and 0.53 mm3, 

respectively. 

4.7.3 Discussion 
The figures shown in this section demonstrate that for voxel sizes between 0.13 and 

1.03 mm3, there is little difference in the optimal Pareto front found by the optimiser. However, 

a decrease of accuracy starts to become noticeable for voxels of 1.03 mm3. 
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The difference of -3.93% at 95 Gy for 1.03 mm3 compared to 0.13 mm3 could mean that 

where the dosimetry calculated with voxel sizes of 0.13 mm3 might consider 98% of the PTV 

to be sufficiently irradiated (and therefore consider the treatment plan to be acceptable), the 

dosimetry calculated with voxel sizes of 1.03 mm3 might consider 94% to be sufficiently 

irradiated (and so the plan would be deemed unacceptable). For this reason, it was decided that 

voxel sizes of 1.03 mm3 did not provide enough accuracy. Conversely, with differences of less 

than 1.5%, it was decided that 0.53 mm3 was sufficiently accurate. 

Calculation times, as one might expect, increase significantly upon decreasing voxel size. 

This is because decreasing each side of the voxel increases the number of voxels cubically (for 

example, decreasing voxel sizes from 0.53 mm3 to 0.13 mm3 increases the number of voxels by 

a factor 125). 

It should also be noted that the number of generations required before convergence also 

increases as voxel size decreases. This is because injections are always placed at the centre of 

a voxel, so increasing the number of voxels increases number of potential injection positions, 

giving the optimiser greater liberty when searching for the optimal plan. 

Lastly, it can be seen that the computer memory required to perform treatment planning 

with voxel sizes of 0.13 mm3 is extremely large. A cubic dose grid with sides of 45 mm (a 

spherical PTV with a radius of 10 mm has a diameter of 20 mm, plus the margin of 12.5 mm 

on all sides to ensure that all irradiation is accounted for) and voxel size of 0.13 mm3 consists 

of 91.1 million voxels. For a population of 80 treatment plans, there is a total of 7.29 billion 

voxels. If each voxel is stored in double-precision floating-point format (8B), then the total 

memory required is over 54.3 GB compared to 0.435 GB for voxel sizes of 0.53 mm3. As larger 

tumours are treated, this problem would be further exemplified. 

4.7.4 Conclusion 
In conclusion, it was decided that 0.53 mm3 was the correct compromise of voxel size; it 

is neither too large as to lead to imprecise dosimetry, nor too small as to unnecessarily slow 

down the optimisation process. 

4.8 Optimisation of a real tumour 
Now that the algorithm has been selected and the study of the best voxel size has been 

carried out, the optimisation of a real tumour can be performed. This optimisation was 

performed on a glioblastoma implanted in the skull of a mini-pig. 
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The validation of the optimisation process in the preclinical trials was particularly 

challenging. Mini-pigs are considerably smaller than humans and so their tumours are smaller 

too. This means that the percentage growth rate of tumours in the mini-pigs is much greater 

compared to humans. 

Consequently, the CT imagery of the tumours needed to be performed just before the 

treatment; images taken just a few days prior to the treatment quickly became redundant 

because the tumour changed so rapidly. The CT scan was therefore performed ~30 minutes 

prior to the start of the treatment. 

Treatment planning would have to take place in the time between the completion of the 

CT scan and the start of the treatment. This meant that the whole process – from the 

segmentation of the tumour, to the optimisation of the Pareto front, to the selection and 

validation of a treatment plan – needed to happen in under 30 minutes. 

All visualisations that are shown in this section were programmed in C++ using VTK, an 

open-source library which is further explored in the Appendix. 

4.8.1 Tumour segmentation 
Below, in Figure 4.20, the CT of the skull of a mini-pig can be seen. A glioblastoma was 

induced in the mini-pig, and the segmentation of this tumour is shown in pink. This 

segmentation was performed using 3D Slicer. 

The tumour in question is small compared to a typical glioblastoma, the GTV was just 

2.28 cm3. It is, however, a real glioblastoma, and serves as a good starting point for this 

research. 

The limits of the dose grid are also shown in Figure 4.20, and it can be seen that much of 

the dose grid extends beyond the skull of the mini-pig. As will be seen in the absorbed dose 

distribution of the optimised treatment plan, however, the irradiation with microbrachytherapy 

is so localised that the dose grid is larger than necessary. Furthermore, humans are considerably 

bigger than mini-pigs, and so a margin of 12.5 mm around the PTV will likely remain entirely 

inside of the brain for humans even if this is not the case for the mini-pig shown below. 
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Figure 4.20: 3D visualisation of the skull of a mini-pig as seen from three angles. The glioblastoma has been 

segmented and is shown in pink. The limits of the dose grid are also shown. 

4.8.2 Treatment planning 
Once the PTV had been segmented, treatment planning was performed. As with the 

second test case of this chapter, the number of injections was allowed to vary between 1 and 

20. 5 μL injections of 90Y with 𝐴0’s of 5 MBq were used. NSGA-II was used in MO mode, so 

as to provide results giving the most information possible. 

The optimisation was performed over a total of 100 generations with a population of 600. 

The process finished in 398 s, after a total of 30,600 treatment plan updates. The Pareto front 

for this optimisation is shown below, in Figure 4.21. 
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Figure 4.21: Pareto front for the treatment planning of a real tumour. The treatment plan that was deemed the best 

according the user (because it uses the fewest injections amongst all the acceptable plans) is shown with the vertical 

cross, whereas the best SO plan is shown with the diagonal cross. 

4.8.3 Results from the chosen treatment plan 
From the presented Pareto front, one treatment plan must be chosen. The treatment plan 

that was selected was the plan that used the fewest injections whilst sufficiently irradiating the 

PTV (the first acceptable plan). This plan is highlighted with the vertical cross. The diagonal 

cross highlights the plan that has the lowest SO cost. This, again, highlights the extra choice 

that is given to the user by using an MO algorithm. 

The selected treatment plan used 9 injections and left just 2.17% of the PTV under-

irradiated. The results of this treatment plan are shown in Figure 4.22, Figure 4.23 and 

Figure 4.24. 

Figure 4.22 shows the distribution of the 9 injections throughout the PTV. Figure 4.23 

shows slices of the plan’s absorbed dose distribution, with slices shown every 1 mm (every 2 

slices). Finally, Figure 4.24 shows the DVH of the PTV for the selected treatment plan. 
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Figure 4.22: 3D distribution of injections throughout the PTV as seen from three angles. 

 
Figure 4.23: Slices through the absorbed dose distribution. The contours of the skull are shown in white and the 

contours of the PTV are shown in red. Slices are shown every 2 slices (1 mm). 
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Figure 4.24: DVH for the PTV of the selected plan. The PTV’s absorbed dose requirement is also shown with the 

black diamond. It can be seen that the plan corresponding to this DVH is acceptable because it passes over the 

black diamond. 

4.8.4 Discussion 
The slices of the absorbed dose distribution, shown in Figure 4.23, confirm the 

assumption that was made when it was seen that the dose grid protruded from the mini-pig’s 

skull: the absorbed dose distribution from microbrachytherapy injections is extremely 

concentrated about the source, so much so that no visible amount of radiation escapes its skull. 

It can, however, be seen that bone is irradiated. This means that the assumption of 

homogeneity that was discussed in the chapter on dosimetry, in Section 3.5.1, is not valid and 

therefore the displayed dosimetry within the skull is not accurate. In reality, bone is denser than 

soft tissue, and so the radiation would not have travelled as far as is displayed. In this example, 

the tumour is very close to the edge of the skull (just 1 mm on slices 56 through 66). For a 

human, the brain is considerably bigger and so it is less likely that the tumour would be so close 

to the skull. Therefore, the dosimetric inaccuracy that occurred by irradiating the skull was not 

considered a serious problem. 

Lastly, it can be seen in Figure 4.23 that there is a non-negligible irradiation of healthy 

tissue surrounding the PTV. This is to be expected as no cost function was applied to optimise 

the irradiation of healthy tissue. This could have been done, for example, with the inclusion of 

a cost function on the CI. 

It can be seen in the DVH, shown in Figure 4.24, that the selected treatment plan does 

sufficiently irradiate the PTV as it passes over the top of the point (95 Gy, 95%). 
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4.9 Conclusion 
In Sections 2.5.2 through 2.5.4, the following algorithms were presented: NMS, BA and 

NSGA-II. This chapter then performed a comparison between these algorithms. 

For the comparison, the PTV and OARs described in Section 1.7 were used. The 

algorithms were used to optimise the irradiation of the PTV, the irradiation of the OAR and the 

number of injections. 

The injections used throughout this comparison were 5 μL injections of 90Y with an 𝐴0’s 

of 5 MBq. Chapter 5 consists of a comparison of radionuclides and 𝐴0’s, however any 

combination will suffice for this chapter, since a good algorithm should be able to find optimal 

treatment plans, regardless of tumour size, radionuclide or 𝐴0. 

It was shown that BA and NSGA-II produced satisfactory plans. BA seemed to be more 

efficient for a fixed number of injections, whereas NSGA-II was more efficient when the 

number of injections is allowed to vary. A possible explanation for this is that BA puts a lot of 

resources into exploring relatively few areas of the search-space; as can be seen in Figure 4.3 

and Figure 4.8, it took around 200 treatment plan updates to explore each flower patch. 

However, NSGA-II explores the search-space in a more diverse manner, which is advantageous 

when the number of injections is variable and so the search-space is increased. 

Treatment plans produced by NMS were of considerably lower quality. As discussed in 

Section 4.6.4, the quality of the results produced by NMS could be improved by using restarts 

(at the expense of optimisation times) and optimisation times could be improved by using a 

meta-optimiser so as not to test every number of injections. 

Given NSGA-II’s tendency to produce the best quality treatment plans, coupled with the 

fact that it is an MO algorithm and so can be used even when relative costlet weightings are 

unknown, NSGA-II was chosen as the best algorithm. It was decided that from thereon, 

NSGA-II would be used for all treatment plan optimisations. 

Once NSGA-II had been selected as the best algorithm, a study was undertaken into the 

effect of voxel size on dosimetry accuracy. It was found that 0.53 mm3 was the best compromise 

of voxel size; 0.13 mm3 was too slow and required too much memory, whereas 1.03 mm3 was 

not accurate enough. 
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Following this, the optimisation of a real glioblastoma implanted in the brain of a mini-

pig was performed, permitting the validation of the TPS. At the end of an optimisation of 100 

generations with a population of 600, a satisfactory treatment plan was found that sufficiently 

irradiated the PTV with just 9 injections. The results of the optimisation, including the 3D 

distribution of injections, the 2D slices of the absorbed dose distribution and the DVH were 

shown. 

Now that a treatment planning method has been established, it is possible to develop 

certain aspects of the injection, such as the best radioelement, injection volume and initial 

activity. This will be the subject of Chapter 5. 
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5 COMPARISON OF INJECTIONS 

5.1 Introduction 
The microspheres used in microbrachytherapy are injected inside the tumour. The goal is 

therefore that the radioelements depose their energy such that the entirety of the PTV is 

sufficiently irradiated but the irradiation of the surrounding healthy tissue, particularly the 

OARs, is minimised. Many parameters can affect the efficacy of the injections, and now that 

methods of dosimetry and treatment planning have been developed and put in place, these 

parameters can be evaluated. 

The structure of this chapter is as follows: 

• Section 5.2 discusses the choice of the radioelement; 

• Section 5.3 discusses the initial activity and the volume of each injection; 

• Section 5.4 uses the optimal radioelement, initial activity and injection volume to 

study the possibility of using microbrachytherapy to treat larger tumours; and 

• Section 5.5 discusses modifying the form of the injections, passing from spherical 

to cylindrical injections. 

• Section 5.6 concludes the findings of this chapter. 

Throughout this chapter, whenever an injection parameter is analysed, the other 

parameters are held constant. For example, when the effect of the volume of each injection is 

being studied, both the radioelement and 𝐴0 are held constant. With the exception of 

Section 5.4, the PTV used throughout this chapter is a 10 mm-radius sphere. 
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5.2 The choice of radioelement 
The choice of radioelement is clearly of utmost importance for microbrachytherapy. A 

radioelement that deposes its energy too locally will not sufficiently irradiate the tumour (and 

so, too many injections will be required), whereas a radioelement that deposes its energy over 

a large volume will potentially over-irradiate the surrounding tissue. 

The chosen radioelement would inevitably be a β−-emitter; -emitters deposing their 

energy too far from the source and -emitters deposing it too close. A non-exhaustive list of 

β−-emitting radionuclides is shown in Table 5.1. 
Radionuclide Half-life 𝐸𝛽

𝑚𝑒𝑎𝑛 Range(𝐸𝛽𝑚𝑒𝑎𝑛) 𝐸𝛾
𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙(%) 

90Y 2.7 935 4.02 – 
194Ir 0.8 808 3.34 328 (13) 

188Re 0.7 795 3.28 155 (15) 
32P 14.3 695 2.75 – 

166Ho 1.1 666 2.60 80 (6) 
89Sr 50.5 583 2.18 – 

165Dy 0.1 438 1.47 95 (4) 
109Pd 0.6 360 1.10 88 (4) 
111Ag 7.5 350 1.06 342 (7) 
186Re 3.7 329 0.97 137 10) 
159Gd 0.8 311 0.89 363 (8) 
198Au 2.7 311 0.89 412 (95) 
77As 1.6 228 0.55 239 (1.6) 

153Sm 1.9 225 0.54 103 (28) 
105Rh 1.5 190 0.41 319 (19) 

131I 8.0 181 0.38 364 (81) 
47Sc 3.3 162 0.32 159 (68) 

199Au 3.1 143 0.26 158 (37) 
67Cu 2.6 141 0.25 185 (49) 
177Lu 6.7 140 0.25 208 (11) 
169Er 9.3 111 0.17 – 

Table 5.1: Non-exhaustive list of β−-emitting radionuclides. 𝐸𝛽𝑚𝑒𝑎𝑛 from (Baum, 2014). Range calculated in water, 

with interpolation from (ICRU, 1984). Half-lives, energies and ranges are expressed in days, keV and mm, 

respectively. 
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A comparison of some of these radioelements will be conducted. Of all of the 

radioelements presented in Table 5.1, four were chosen to be compared – 177Lu, 131I, 166Ho and 
90Y. The radioelements were chosen so as to represent a wide range of β−-emitting 

radioelements. The properties that were taken into account during the selection process were: 

high 𝐸𝛽𝑚𝑒𝑎𝑛, short half-life, γ-emissions of sufficiently high energy to enable imaging and the 

radioelement’s abundance in the domain of medical physics. 

The probability spectra of β−-emissions of the four selected radioelements are shown 

below, in Figure 5.1. 

 
Figure 5.1: Probability spectra of β−-emissions for 177Lu, 131I, 166Ho and 90Y. Data from MIRD (Eckerman and 

Endo, 1989). 

5.2.1 Kernel generation 
The kernels for the four radioelements were calculated with GATE using the method 

described in Section 3.2.4. Barring the energy spectra, the input parameters for GATE were 

identical for each radioelement. 

The injections were modelled as 5 μL spheres. One-dimensional projections of the 

kernels with 𝐴0’s of 5 MBq are shown in Figure 5.2. 
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Figure 5.2: Absorbed dose as a function of distance for single 5 μL injections with 𝐴0’s of 5 MBq for the 

radioelements 177Lu, 131I, 166Ho and 90Y. The physical limit of the injection (a sphere of 5 μL has a radius of 

1.06 mm) is also shown. 

5.2.2 Pareto optimisation 
A comparison of the radioelements was then conducted by optimising 𝐶𝑜𝑠𝑡𝑃𝑇𝑉  and 

𝐶𝑜𝑠𝑡𝐼𝑛𝑗 . 5 μL injections were used, each with an 𝐴0 of 20 MBq. 

The maximum number of generations was set to 1,000 and the number of injections was 

constrained between 1 and 100. The maximum was set at 100 because greater than this was 

deemed unfeasible in a clinical environment. 
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Figure 5.3: Pareto front for optimisation of the PTV with 5 μL injections of 177Lu, 131I, 166Ho and 90Y each with an 

𝐴0 of 20 MBq. 

5.2.3 DVH comparison 
In Figure 5.4, a DVH is shown for each of the four radioelements. The plans shown for 

131I, 166Ho and 90Y are the plans that used the fewest injections whilst sufficiently irradiating 

the PTV, corresponding to 28, 19 and 8 injections, respectively. 177Lu did not satisfy the PTV 

requirement, so the DVH shown in Figure 5.4 uses the maximum number of injections, 100. 
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Figure 5.4: DVHs for the plans that use the fewest injections whilst sufficiently irradiating the PTV 

(𝐶𝑜𝑠𝑡𝑃𝑇𝑉 ≤ 5%). Since it was not possible to achieve this with the maximum number of injections with 177Lu, the 

DVH for 100 injections is shown. For this reason, 131I, 166Ho and 90Y pass over the diamond at (95 Gy, 95%), 

whereas 177Lu passes underneath. 

5.2.4 Discussion 
Figure 5.2 shows that despite delivering high absorbed doses close to the injection centre, 

the irradiation of 177Lu and 131I are concentrated around the source. For an 𝐴0 of 5 MBq, the 

distances at which the absorbed dose drops beneath 100 Gy (𝐷𝑇) for 90Y, 166Ho, 131I and 177Lu 

are 4.51, 3.03, 2.01 and 1.70 mm, respectively. 

It can be seen in Figure 5.3 that 177Lu was the only radioelement out of the four that was 

incapable of sufficiently irradiating the PTV without surpassing the pre-defined maximum 

number of injections, 100. This is due to its low-energy β−-emissions. Of the remaining 

radioelements, 90Y sufficiently irradiated the tumour with 8 injections, whereas 166Ho and 131I 

required 19 and 28 injections, respectively. 

It can be seen that, although three of the four radioelements are capable of sufficiently 

irradiating the PTV, using the radioelement with the highest energy β−-emissions permits a 

reduction of the number of injections. 
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5.2.5 Conclusion 
In conclusion, 90Y, owing to its high energy emissions, could be considered the ideal 

radioelement. This would mean that the fewest injections would be required, and that 

surrounding healthy tissue would be little exposed. 

The tested PTV was relatively small (a sphere with a radius of 10 mm), and so 90Y is the 

only radioelement of the four tested that could be realistically scaled up to larger PTVs. 

Furthermore, since 90Y already exists in microsphere format for SIRT (see Section 1.2.3), 

it should be easily adapted to microbrachytherapy. 

5.3 Initial activity and injected volume 

5.3.1 Initial activity 
Shown below, in Figure 5.5, are the 1D absorbed dose profiles of 5 μL injections of 90Y 

with 𝐴0’s ranging between 5 and 100 MBq. The absorbed dose profiles of the radioelements 

shown in Figure 5.2 are shown with a logarithmic y-axis, hiding the steepness of the gradient. 

For this reason, a linear y-axis is used in Figure 5.5. 

 
Figure 5.5: 1D absorbed dose distribution for a 5 μL injection of 90Y with various values of 𝐴0. The physical limit 

of the injection (a sphere of 5 μL has a radius of 1.06 mm) is also shown. 



5.3: Initial activity and injected volume 
___________________________________________________________________________ 

 123 

The same kernel was used for these 5 curves, since the S-values (and therefore the kernel) 

depend only on the radioelement and the volume of the injection. In Figure 5.5 it can be seen 

that as 𝐴0 is increased, the total absorbed dose increases by the same factor. Hence, it can be 

seen that increasing 𝐴0 increases the total irradiation of the patient. 

It can also be seen, however, that because the gradient is so steep, the extra volume that 

is irradiated only increases slightly. This is better shown in Figure 5.6, which displays the same 

curves as in Figure 5.5, but with the maximum of the y-axis at 500 Gy. 

 
Figure 5.6: 1D absorbed dose distribution for 5 μL injections of 90Y with various values of 𝐴0. The y-axis of this 

figure is limited to a maximum of 500 Gy. The physical limit of the injection (a sphere of 5 μL has a radius of 

1.06 mm) is also shown. 

In Figure 5.6, it can be seen that by increasing 𝐴0 twentyfold, from 5 to 100 MBq, the 

radial distance from an injection that would be sufficiently irradiated in the PTV only increases 

from 4.51 to 7.54 mm, a marginal increase of 3 mm. 

Despite the fact that increasing 𝐴0 causes only a marginal increase in sufficiently-

irradiated volume of the PTV, this would nonetheless help decrease the number of injections 

required. Furthermore, if the irradiation is contained to the PTV, the increased total irradiation 

should not affect healthy tissue. 



Chapter 5: Comparison of Injections 
___________________________________________________________________________ 

 124 

Shown below, in Figure 5.7, are the Pareto fronts for the optimisation of the PTV with 

5 μL injections of 90Y with 𝐴0’s between 5 and 100 MBq. The number of injections was limited 

between 1 and 20. The optimisations were performed over 100 generations with a population 

of 100 treatment plans. 

 
Figure 5.7: Pareto front as a function of 𝐴0. Clearly increasing 𝐴0 reduces the number of injections that are required 

to sufficiently irradiate the PTV, shifting the Pareto front towards the bottom-left of the graph. 

As one would expect, increasing 𝐴0 decreases the number of injections accordingly; 

despite the small increase indicated in Figure 5.6, it is still enough to have an impact. By 

doubling the 𝐴0 from 5 MBq to 10 MBq, the number of injections required to adequately 

irradiate the PTV drops from 15 down to 11. At 100 MBq, just 5 injections are required. 

5.3.2 Injection volume 
Following the analysis into the effects of the chosen radioelement and 𝐴0, a further study 

was conducted into the effect of the injected volume on the dosimetry. Shown below, in 

Figure 5.8, are the 1D absorbed dose profiles for 5 MBq injections of 90Y with injection 

volumes ranging between 5 and 20 μL. 
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Figure 5.8: 1D absorbed dose profiles for single 90Y injections of various volumes and 𝐴0 of 5 MBq. The injection 

radii (1.06, 1.34 and 1.68 mm) are shown for each of the volumes. 

One would expect that increasing the injected volume whilst guarding the activity 

constant would decrease the maximum absorbed dose (because the concentration of 

radioelements is decreased), and this can be seen in Figure 5.8. 

Since the activity is constant, the integral of the three curves must be identical. This must 

mean that the irradiated volume must increase, and so an optimisation with injections of 20 μL 

should require less injections that with injections of 5 μL. 

Hence, Figure 5.9 shows the Pareto front for an optimisation of the PTV with between 1 

and 20 injections. The injections consisted of 90Y with 𝐴0’s of 5 MBq. 
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Figure 5.9: Pareto front for the optimisation of the PTV with between 1 and 20 injections of 5 MBq 90Y. The 

volume of these injections varied between 5 and 20 μL. It can be seen that varying the injection volume has a 

negligible effect on the Pareto front. 

5.3.3 Discussion 
In Figure 5.6, it was shown that increasing 𝐴0 only slightly increases the volume of the 

PTV that is sufficiently irradiated. Nonetheless, it was also shown, in Figure 5.7, that increasing 

𝐴0 does have a noticeable effect on the number of injections required. 

It would therefore be advantageous to use injections with the highest 𝐴0 possible. It is 

not, however, possible to increase the initial activity of the injections indefinitely, and so in 

reality 𝐴0 should be as great as possible, subject to the realistic constraints of the activation 

method. 

Following the analysis into the effect of altering 𝐴0, the impact of changing the injected 

volume was studied. 

In theory, it should be beneficial to spread the radioelements over a large volume, 

decreasing the maximum absorbed dose in the centre of the injection and increasing the total 

irradiated volume (as shown in Figure 5.8). However, it was shown that doing this did not have 

a noticeable impact on the Pareto front shown in Figure 5.9. 
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Furthermore, the injected liquid will displace the tissue that occupied that volume prior 

to the injection. Hence, the greater the volume of the injection, the more tissue that is displaced. 

This displaced tissue will exert a restorative force on the injected liquid, potentially distorting 

its spherical distribution. If this occurs, the accuracy of the absorbed dose distribution that was 

calculated by the TPS will be reduced. 

Conversely, although increasing the injected volume does not have a direct impact on the 

improvement of the Pareto front, it could be used indirectly to improve it. Since it is not possible 

to increase the concentration of an injection’s 𝐴0 indefinitely, increasing the volume could help 

increase 𝐴0. If the maximum attainable concentration of 𝐴0, for example, was 1 MBq/μL, 

increasing the injected volume would increase 𝐴0, decreasing the number of required injections. 

It would therefore be pertinent to perform physical tests to evaluate the maximum volume 

that can be injected without distorting the spherical form of the injections (this could be done 

simply by injecting into chicken breast, for example, and analysing the injection forms with CT 

or MRI imagery). 

Once this has been evaluated, the maximum injected volume and 𝐴0 should be used so as 

to minimise the number of injections. 

5.4 Larger tumours 
Now that the ideal injection parameters have been discussed for microbrachytherapy, the 

feasibility of microbrachytherapy for larger PTVs can be explored. Specifically, treatment 

planning was performed, for spherical PTVs with radii of 10 mm (the original radius), as well 

as 20 and 30 mm. 

The optimisations were performed with 20 μL injections of 90Y with 𝐴0’s of 20 MBq. 

The number of injections were limited between 1 and 200, the size of the NSGA II population 

was 400 and the optimisations were performed for 200 generations. The resulting Pareto fronts 

are shown below, in Figure 5.10. Supplementary information is also given in Table 5.2. 
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Figure 5.10: The Pareto front for the optimisation of spherical PTVs with radii ranging between 10 and 30 mm. 

NSGA-II was used with 20 μL injections of 90Y with 𝐴0’s of 20 MBq. It can be seen that treatment plans can be 

found for PTVs smaller than 20 mm. However, 30 mm is too voluminous to be treated, even with the maximum 

number of injections, 200. 

Radius (mm) Volume (cm3) Optimisation time (s) 

10 4.19 104 

20 33.51 2,392 

30 113.10 7,575 

Table 5.2: Optimisation times as a function of the size of the PTV. 

From Figure 5.10, it can be seen that the acceptable treatment plan that uses the fewest 

injections for the 10 mm sphere required 7 injections. For the 20 mm sphere, 50 injections were 

required. Lastly, for the 30 mm sphere, it was not possible to sufficiently irradiate the PTV, 

even with the maximum number of injections, 200. 

Optimisation times increased linearly with the volume of the PTV. Although, compared 

to the PTV with a radius of 10 mm, it took considerably longer to optimise the PTV with a 

radius of 30 mm, an optimisation time of 2 hours is nonetheless acceptable. 



5.5: Cylindrical injections 
___________________________________________________________________________ 

 129 

It was discussed in (Dempsey, Condon and Hadley, 2005), that for a cohort of 70 patients, 

the mean volume of the glioblastoma is just greater than 34 cm3, however the largest among 

the patients was 131 cm3. The mean and maximum correspond roughly to the spheres with radii 

of 20 and 30 mm. It can therefore be seen that microbrachytherapy could be a viable treatment 

for average-sized glioblastomas, but the number of injections required for the largest tumours 

would probably make it a poor choice for those. 

5.4.1 Conclusion 
It was found that 𝐴0 should be as large as possible, and that increasing the injected volume 

did not significantly affect the dosimetry. However, the injected volume should be as large as 

possible (without causing distortion of the injected sphere) so as to increase 𝐴0. 

Lastly, treatment planning was performed for larger PTVs. It was found that 

microbrachytherapy could be a viable choice for average-sized glioblastomas but probably an 

inefficient choice for the largest glioblastomas. 

5.5 Cylindrical injections 
Until now, injections have been modelled as spheres. In this section, the model is 

developed such that cylindrical injections are used. Instead of performing the injection in a 

fixed position, the needle is withdrawn and a constant flow is administered from the syringe, 

such that the injected volume is spread over a line and the injection forms a cylinder. 

By passing from spherical to cylindrical injections, the radioelements are more spread 

out, such that for a given number of injections, a larger volume can be treated. Furthermore, by 

spreading out the radioelement, the maximal absorbed doses close to injections should be 

decreased. 

Another advantage that can be exploited by using cylindrical injections is that the volume 

of each injection can potentially be increased. This is because the length of the cylinder can be 

as long as desired without increasing the resistive pressure of the displaced tissue. 

The injector pressure is controlled such that cross-sectional surface of the cylindrical 

injection is fixed at 0.68 mm2, which meant for a minimum volume of 5 μL, a minimum 

injection length of 7.31 mm (rounded up to the nearest whole millimetre, 8 mm) was required. 
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5.5.1 The injector and the injections 
It was assumed that injections would be performed from an “injector” needle protruding 

from a central “guide” needle. The injector extends from the guide, performing a cylindrical 

injection as it is retracted towards the guide. The trajectory of many blue injector needles from 

the green guide needle can be seen in Figure 5.11. 

With the injector withdrawn inside of the guide, the guide can rotate and the injector can 

then extend to irradiate a new volume. In this fashion, a volume with the shape of the cone can 

be irradiated. Lastly, the depth of the guide can be altered, such that the total irradiated form 

vaguely resembles a Christmas tree. 

Assuming that the depth of the guide needle can be controlled to the nearest 1 mm, that 

the injector needle rotates in increments of 20º and that the angle between the guide and the 

injector is 30º, all of the possible needle trajectories for the 10 mm-radius spherical PTV are 

shown in Figure 5.11. 

 
Figure 5.11: 3D visualisation of all possible injector trajectories (blue) within a spherical PTV of radius 10 mm. 

The guide needle is shown in green. 

Amongst all the proposed needle trajectories, the TPS would then need to decide which 

trajectories should be used and what the start and end depth of the injection should be along 

each trajectory. In this sense, the injection coordinates can be expressed in cylindrical 

coordinates: the depth of the guide, the rotation of the guide and, lastly, the extension of the 

start and the end of the injection. 
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5.5.2 Absorbed dose distribution of cylindrical injections 
The dosimetry methodology had to be modified to take into account several changes 

brought on by passing over to cylindrical injections. Listed below are two potential problems 

that need to be addressed before being able to use cylindrical injections: 

• The injections now have variable lengths, how should the injection kernels 

therefore be produced? Does a kernel need to be simulated (a time-consuming 

process) for each injection length? 

• With spherical injections, injections were placed in the centre of voxels, meaning 

that the distribution never needed to be altered. Cylindrical injections will not 

necessarily run parallel to the voxels (the injections may start and end in arbitrary 

positions). How should the kernel be resampled to account for this? 

The first question is addressed in Section 5.5.2.1 and the second in Section 5.5.2.2. 

5.5.2.1 Generation of injection cylindrical kernels 

The method of generating cylindrical kernels was much the same as those for spherical 

kernels, as described in Section 3.2. However, instead of modelling the radioactive source as a 

sphere, a cylinder with a cross-section of 0.68 mm2 and a length of 20 mm was used. 

20 mm was chosen as the length of the cylinder as this was the maximum extension of 

the injector. It can be seen in the 1D S-value profile (recall the simple conversion from S-value 

to absorbed dose in Equation 3.1) shown in Figure 5.12, that a plateau is reached just 1.5 mm 

after the start of the injection. 
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Figure 5.12: S-values through the central axis of a cylindrical injection, with cross-sectional area of 0.68 mm2 and 

length of 20 mm (as shown by the black solid lines). It can be seen that the kernel plateaus ~1.5 mm after the start 

and before the end of the injection, as shown by the dashed lines. Therefore, shorter injections can be modelled by 

removing parts of the kernel that lie in the plateaued area. 

Therefore, the central section, between 1.5 and 18.5 mm can be considered as an infinitely 

long cylinder, and can be removed to create injections of reduced length. For example, to create 

an injection of 8 mm, the section from 4 to 16 mm would be removed such that the section from 

-5 to 4 mm joins directly to the section from 16 to 25 mm. 

By producing the kernel in this fashion, it was possible to perform the GATE simulation 

just once (as this is the time-consuming step) and obtain kernels for any required injection 

length. 

5.5.2.2 Rotating and resampling the kernels 
Once the kernel has been cut down to the correct size, it must then be translated and 

rotated, such that the injection is aligned with the desired trajectory of the injector needle (one 

of the blue lines in Figure 5.11). After the kernel has been translated and rotated, it is necessary 

to resample it, such that the voxels are aligned with the voxels of the dose grid and the injection 

can be convolved. 

The resampling requires interpolation, which introduces the partial volume effect. This 

effect is highlighted in the illustrations shown in Figure 5.13. 



5.5: Cylindrical injections 
___________________________________________________________________________ 

 133 

   
Figure 5.13: Illustrations of the absorbed dose profile of (a) a spherical injection; (b) a cylindrical injection, centred 

on voxel centres; and (c) the absorbed dose distribution required for a diagonally placed cylindrical injection. 

Resampling is a relatively slow process, so it was not possible to resample the kernel 

when required during the optimisation process. Instead, after the position of all possible 

injections had been calculated (shown with the blue lines in Figure 5.11), their resampled 

distributions were also calculated. This resampling was performed with the VTK class, 

“vtkImageReslice”, with the interpolation mode set to linear. 

In this fashion, all the resampling was performed prior to the optimisation loop and then 

the optimisation algorithm could rapidly convolve the newly calculated distributions, much in 

the same way as it did with the spherical injections. The only difference for the algorithm is 

that before there was one kernel for all injections and now each injection has its own kernel 

(the resampled version of the original). 

The workflow for the calculation of absorbed dose kernels prior to the optimisation loop 

was therefore: calculate the position of all possible injections, and then for each injection: cut 

down to the correct length, translate and rotate to the correct position, and then resample. 

An example of a rotated and resampled kernel is given below in Figure 5.14. The kernel 

is shown both up to its maximum absorbed dose and capped at 100 Gy. 
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Figure 5.14: Absorbed dose distribution for a rotated and resampled cylindrical injection, both shown to its 

maximum absorbed dose and capped to 100 Gy. 

5.5.3 Comparison with spherical injections 
Below, in Figure 5.15, is the Pareto front for optimisations of the original PTV (radius of 

10 mm) with injections of 166Ho. The spherical injections had a volume of 5 μL, whereas the 

cylindrical injections had the form described above. 

The number of injections were restricted between 1 and 100, the population was 200 and 

the number of generations was 100. The specific 𝐴0 was 1 MBq/μL. For spherical injections of 

5 μL, this equates to 5 MBq. 𝐴0 of the cylindrical injections depended on the length of each 

injection. 
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Figure 5.15: Pareto fronts for optimisations of the PTV with injections of 166Ho in the form of spheres and 

cylinders. It can be seen that for few injections (for example, 𝐶𝑜𝑠𝑡𝐼𝑛𝑗  = 10), using cylindrical injections is better 

at reducing the under-irradiated portion of the PTV (smaller 𝐶𝑜𝑠𝑡𝑃𝑇𝑉). However, for high values of 𝐶𝑜𝑠𝑡𝐼𝑛𝑗 , 

𝐶𝑜𝑠𝑡𝑃𝑇𝑉  reaches an asymptote for cylindrical injections. This is because there are portions of the PTV that are out 

of reach of the cylindrical injections (for example, the upper-extremities of Figure 5.11). 

5.5.4 Discussion 
From Figure 5.15 it can be seen that, for fewer than 34 injections, cylindrical injections 

manage to better irradiate the tumour. For example, with a maximum of 10 injections, 

cylindrical injections would leave 20.8% of the PTV under-irradiated, whereas spherical 

injections would leave 66.5% under-irradiated. 

However, the cylindrical curve becomes asymptotic as the number of injection passes 

~50. After this point, adding more injections does not significantly decrease the volume of the 

PTV that is under-irradiated. This is undoubtedly because, as can be seen in Figure 5.11, 

imposing a minimum injection length of 8 mm (which was imposed because the surface area 

was constant and the minimum injectable volume was set at 5 μL), there are no injections that 

traverse the upper-extremities of the tumour, and nor are there injections in the bottom-centre. 
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For this reason, cylindrical injections are limited. Such a problem could, however, be 

circumvented. Possible solutions include: 

• Decreasing the minimum injectable volume, 

• Approach the tumour from multiple angles (multiple green lines in Figure 5.11), 

• Increasing the cross-sectional area of the injection, and 

• Sacrificing healthy tissue. 

By allowing injections through healthy tissue, both at the top and the bottom of the PTV, 

injections could be proposed that cover the whole of the tumour. This would, of course, be at 

the expense of traversed healthy tissue, but this may be considered a worthwhile sacrifice. 

Cylindrical injections are promising because, unlike the spherical injections proposed in 

this research, a realistic delivery method has also been discussed. If one could resolve the 

problem of not being able to access all of the tumour, they would also require less injections. 

This is, however, is a physical problem that goes outside the scope of this research. 

5.6 Conclusion 
It was found that 90Y, with the highest energy of all β−-emitting radionuclides, is the best 

suited radionuclide for microbrachytherapy. 

𝐴0 for these injections should be the highest possible, so as to minimise the number of 

injections required to sufficiently irradiate the tumoural zone. 𝐴0’s between 5 and 100 MBq 

were tested. 

It was shown that increasing the injected volume did not have a noticeable impact on the 

Pareto front. However, increasing the injected volume could be used as a method of increasing 

𝐴0, thus decreasing the required number of injections. Injections should therefore be as 

voluminous as possible whilst not causing excess pressure by the displaced tissue that the 

spherical shape is perturbed. 

It was shown that, for 20 μL injections of 90Y, with 𝐴0’s of 20 MBq, it was possible to 

sufficiently irradiate realistically-sized glioblastomas. However, the largest glioblastomas seem 

to be too voluminous to be treated with mcicrobrachytherapy. 
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Passing from spherical to cylindrical injections seems advantageous because the 

radioelements are spread over a larger volume and so the total number of required injections 

should diminish. However, it was seen that, for the discussed method of injection delivery, parts 

of the tumour would be left under-irradiated. If these physical problems can be resolved, 

cylindrical injections could be a promising method of treating larger tumours. 
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CONCLUSIONS AND FUTURE 
PERSPECTIVES 

Conclusions 
The main objective of this research was to develop a TPS that could be used to produce 

optimal treatment plans for microbrachytherapy. With that objective in mind, various steps 

were required. This research started with the development of dosimetry for this new treatment. 

Algorithms were then developed to find optimal microbrachytherapy treatment plans. These 

algorithms were compared, and the best-suited algorithm was selected. Injection parameter 

modifications were proposed with the aim of improving the efficacy of this modality. Finally, 

the TPS was created, permitting users to easily create microbrachytherapy treatment plans. 

These points are described in greater detail below. 

Since a method of performing dosimetry did not previously exist for microbrachytherapy, 

this was the first aspect that was developed in this research. The dosimetry was performed by 

generating kernels with GATE, convolving these kernels into the desired injection positions 

and then superposing structures (the PTV and OARs) to extract DVHs. 

With the dosimetric methodology in place, algorithms were developed in order to produce 

optimal treatment plans. These algorithms were designed to find treatment plans that 

sufficiently irradiated the PTV (at least 95% of the PTV should receive at least 95% of the 

target absorbed dose, 100 Gy) with the fewest injections possible. Constraints could also be 

added to protect OARs and to maximise the CI. 
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Once the algorithms had been developed, they could be compared. It was found that, 

given the advantages proposed by using an MO algorithm, NSGA-II was the best-suited for this 

application.  

Modifications were then proposed to the injections parameters. Notably, comparisons 

were conducted into different radioelements, initial activities, injected volumes and the 

injection forms (spherical versus cylindrical). It was found that the best-suited radioelement 

was 90Y; the initial activity should be as great as possible; varying the injected volume (between 

5 and 20 μL) has little effect on the dosimetry; and cylindrical injections are advantageous in 

that the pressure of the displaced tissue is reduced, but there is a risk of not being able to 

irradiate the upper extremities of the tumour. 

With these optimised parameters, a study was conducted into the viability of 

microbrachytherapy for larger tumours. It was found that microbrachytherapy could be an 

interesting treatment for small-to-average sized glioblastomas, but too many injections would 

be required for it to be feasible for the largest glioblastomas. 

Lastly, a TPS, named DosiToul, was developed that incorporated all the aspects that had 

been developed thus far in the research. As detailed in the Appendix, DosiToul was developed 

in C++ and permitted the user to easily generate treatment plans with the aid of a simple GUI. 

Microbrachytherapy is in the preclinical testing phase and, as such, it was possible to test 

the TPS in a realistic environment on mini-pigs with implanted glioblastomas. This included 

the need to work to clinical time constraints, meaning that structure segmentation (from CT 

images) and treatment planning needed to be performed in the ~10 minutes between imaging 

the mini-pig and preparing the mini-pig for the treatment. In this setting, the reliability of the 

application and the rapidity of the algorithm were both tested, and it can be concluded that the 

TPS performed extremely satisfactorily, producing treatment plans within this time limit. 



Conclusions and Future Perspectives 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 140 

Future perspectives 
With regards to the future perspectives of this research, the following questions are 

addressed below: 

• What further experiments could be performed to compliment this research? 

• Could microbrachytherapy be used for other tumours?  

• What further developments could be made to DosiToul? 

• Could the target audience of DosiToul be increased?  

• How can the maintenance and documentation of DosiToul be ensured? 

Physical experimentation 
It should be noted that although the treatment planning methodology was tested in a 

preclinical setting on mini-pigs, there are certain aspects of this work that rest theoretic.  

For example, once a radioelement has been selected (such as 90Y), it is then necessary to 

find or develop it in microsphere form. This would be simple for 90Y (since it is already in use 

for treatments with radioembolisation), but could prove to be more complicated for other 

radioelements. Once the radioelement is in the form of the microsphere, the maximum 

attainable activity should be determined. Subsequently, once the maximum activity is known, 

a study should be conducted into the maximum volume that can be injected whilst keeping 

control of the injected form (such as spherical). Increasing the volume is clearly helpful as it 

increases the activity of the injection, but controlling the form of the injection is imperative to 

assure accurate dosimetry. 

Furthermore, with continued trials (both preclinical and clinical), the efficacy of 

microbrachytherapy will be better understood. This will enable the better establishment of the 

target absorbed dose that is required to destroy the tumour. Performing such trials would also 

increase our understanding of the radiobiological effects of microbrachytherapy, enabling the 

use of radiobiological cost functions. 

Microbrachytherapy for abdominal tumours 
Extending the methodology presented in this work such that microbrachytherapy could 

be proposed for abdominal tumours would certainly be an interesting future project. 

Glioblastomas are challenging for microbrachytherapy because they are so large. However, the 

dosimetric calculation is simplified by the fact that brains are extremely homogenous with 

regards to density. 
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If one wished to expand this new modality so that it could be used on a wider range of 

tumours, it would be necessary to take into account density inhomogeneities. This could be 

done with the methods of kernel distortion that were discussed in Section 3.5.1, however the 

calculation would have to be performed quickly. There was a wide range in optimisation times 

of NSGA-II throughout this research, ranging from 30 s to just over 2 hours (for the 

optimisation of the 30 mm-radius spherical PTV). 

Realistically, optimisation times should not surpass ~10 hours at an absolute maximum. 

Therefore, the method of distorting the homogeneous kernels for inhomogeneous media should 

be rapid; perhaps with the aid of GPU acceleration this would be possible. At any rate, if a 

method of fast kernel distortion was put in place, the dosimetry could be performed for new 

areas of the body, and microbrachytherapy could potentially be used on a wider range of 

tumours. 

Further development of DosiToul 
Aside from expanding DosiToul to account for inhomogeneities, an exciting future 

project could be the verification of treatment plans with Monte Carlo simulations. A button 

could be integrated into the GUI enabled the user to perform a GATE simulation of a given 

microbrachytherapy treatment plan. This would certainly take a long time, but if for example 

cluster computing was available, the user could return the next day to compare the dosimetry 

of proposed treatment plan, as performed by both DosiToul and GATE. Presumably, the 

dosimetry performed by DosiToul is most accurate for spherical injections in homogeneous 

media and least accurate for cylindrical injections in inhomogeneous media (due to both the 

partial volume effect and the required distortion of the homogeneous kernel). 

Increasing the target audience of DosiToul 
Clearly, the target user of DosiToul is teams wishing to perform treatments of 

microbrachytherapy. To widen the demographic of people that could potentially use DosiToul, 

one of two things could take place: either DosiToul could be adapted for other forms of 

radiotherapy, or it could be made available to researchers to allow for open-source 

collaboration. 

The former of the two could undoubtedly prove to be interesting for other developing 

treatments that, like microbrachytherapy, do not currently have an associated method of 

treatment planning. Naturally, more mature modalities of radiotherapy would already have their 

own form of treatment planning, and so DosiToul would be of limited interest to them. 
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Unfortunately, making the code available for other researches to promote collaboration 

would not be possible due to intellectual property issues. However, if this were not an issue, it 

is possible to imagine further development of DosiToul to propose different dosimetric 

methods, cost functions and improved optimisation algorithms, as well as other radiotherapy 

modalities. 

DosiToul maintenance and documentation 
DosiToul is currently in a state that means that it can be used by an end-user. Naturally, 

if modifications were made to the current delivery method of microbrachytherapy, 

modifications to the software also would be required. Given the private nature of the project, 

this would most likely be the work of a small group (such as post-doctoral project). Throughout 

the development of DosiToul, however, Doxygen files were created, enabling easy continuation 

by different future personnel. 

Closing remarks 
In conclusion, this research has successfully proposed a methodology of dosimetry and 

treatment planning for microbrachytherapy. Injection parameters have been studied and 

optimised. An application with a graphical-user interface was developed and the whole TPS 

was used in a preclinical environment under real-life time constraints. The TPS was shown to 

be capable of producing satisfactory treatment plans, which were then performed on numerous 

glioblastomas implanted in mini-pigs. 

The invention of microbrachytherapy combined with developments shown in this work 

demonstrate the feasibility to efficiently treat inoperable tumours whilst protecting surrounding 

healthy tissue. It is hoped that with the aid of microbrachytherapy, tumours that currently have 

a poor prognosis might have better support in the near future. 
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CONCLUSIONS ET 
PERSPECTIVES FUTURES (FR) 

Introduction 
Ces travaux de thèse ont débuté avec l’objectif final de créer un TPS qui pourrait être 

utilisé pour produire les plans de traitement optimaux pour le domaine particulier de la micro-

curiethérapie. L’objectif était donc de créer une application avec une interface graphique qui 

pourrait être facilement manipulée par l’utilisateur du produit final et qui ne demande aucune 

connaissance approfondie des processus dosimétriques ou algorithmiques de leur part. Le 

produit final devrait être simple, permettant à l’utilisateur d’effecteur le traitement avec des 

coordonnées d’injections proposées, tout en les aidant avec des visualisations claires. 

La micro-curiethérapie est dans la phase de test préclinique et, en tant que tel, il a été 

possible de tester le TPS dans un environnement réaliste sur des glioblastomes emplantés dans 

des cerveaux de mini-cochons. Dans ces conditions, la fiabilité, ainsi que la rapidité de 

l’algorithme ont été testées puis validées. 
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La structure de ce résumé est tel que : 

• Premièrement, les aspects de la planification de traitement sont conclus. 

• Deuxièmement, les paramètres d’injection qui pourraient être optimisés sont 

conclus. 

• Troisièmement, la création du TPS est conclue. 

• Quatrièmement, les perspectives futures de ce travail sont discutées. 

• Dernièrement, l’intégralité des travaux de recherche est conclue. 

La planification de traitement 
Dans le cadre du développement du processus de la planification de traitement, les points 

suivants sont discutés : 

• La dosimétrie de la micro-curiethérapie, 

• Les fonctions coûts, 

• Les algorithmes d’optimisation, et  

• La génération d’un plan de traitement pour un vrai glioblastome. 

La dosimétrie de la micro-curiethérapie 
La dosimétrie de la micro-curiethérapie a été effectuée en générant un kernel caractérisant 

la distribution de dose absorbée pour une seule injection. Ce kernel a été créé avec GATE. Avec 

l’hypothèse que les injections irradiaient un volume homogène, il a été possible de faire des 

convolutions de ce kernel dans les positions déterminées dans le plan de traitement. Une fois 

les kernels en position, la dosimétrie a été effectuée en extrayant la distribution de dose absorbée 

du patient et les HDVs résultants. 

Les simulations GATE ont été effectuées pour plusieurs radioéléments, tailles de voxel 

et volumes d’injection. Au total, 7 kernels ont été utilisés durant ces travaux de recherche, 

nécessitant plus de 71 heures de simulation sur un seul cœur d’un processeur de 2,5 GHz d’un 

MacBook Pro. 

La convolution des kernels sur la distribution de la dose absorbée du patient (la « dose 

grid ») nécessitait, pour des raisons de facilité, que la taille des voxels du kernel et ceux de la 

dose grid soit la même. Ceci veut dire que la dosimétrie, pour la majorité des études réalisées 

dans ce travail, a été effectuée avec une précision de 0,53 mm3. 
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Une fois la dose grid calculée pour un plan de traitement donné, la dosimétrie spécifique 

à chaque structure (le PTV et les OARs) a été effectuée en superposant des masques binaires 

de chaque structure sur la dose grid. Les structures pouvaient être importées au format 

« DICOM RT Structure » ou « STL ». Elles pouvaient également être créées en forme de 

sphères ou de coquilles ou générées à partir d’une image CT en utilisant les valeurs de densité. 

Après avoir superposé les masques binaires sur la dose grid, les HDVs ont été extraits pour 

chaque structure permettant l’analyse d’un plan de traitement 

Le processus d’optimisation nécessitant un grand nombre d’analyse et une multitude de 

comparaison de plans de traitement, la rapidité du calcul dosimétrique est indispensable. Des 

efforts ont été faits pour accélérer ce calcul en excluant de la convolution des voxels contenant 

des doses absorbées négligeable. Il a été montré que la simulation de la distribution de dose 

absorbée d’une injection (sphérique) dans un kernel cubique, contient beaucoup de voxels dont 

les doses absorbées sont négligeables. C’est pourquoi il a été décidé de les exclure afin 

d’accélérer les temps de calcul d’un facteur √3. 

Avec l’accélération du calcul dosimétrique, l’intégralité de ce processus pouvait être 

réalisée dans un temps relativement court. Par exemple, pour un plan de traitement de 20 

injections de 5 μL avec 90Y, une activité initiale de 5 MBq et contenant deux structures (un 

PTV et un OAR), la dosimétrie pour chaque structure est réalisée en 4 ms (la convolution de 

ces 20 injections sur la dose grid, la superposition des masques binaires de structures et 

l’extraction de leurs HDVs). 

Les fonctions coûts 
Avec la méthodologie de la micro-curiethérapie en place, les fonctions coûts ont été 

utilisées afin de quantifier les plans de traitement instantanément. Ceci veut dire qu’ils 

pouvaient être classifiés tout simplement en comparant quelques chiffres. 

Il a été constaté que les fonctions coûts qui sont typiquement utilisées en radiothérapie 

externe ne sont pas adaptées au contexte de la micro-curiethérapie. Cela est dû à la mise en 

place des sources radioactives dans le patient. En effet, certaines parties de la tumeur se trouvent 

fortement irradiées. Ceci est souvent pénalisant en radiothérapie externe, où l’objectif est 

d’avoir une couverture la plus homogène possible dans la tumeur. 
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Afin d’éviter cela, quatre fonctions coûts ont été proposées, qui pénalisent soit la partie 

du PTV qui est sous-irradiée, soit la partie de l’OAR qui est sur-irradiée, soit le nombre 

d’injections, soit l’indice de conformité (une mesure à la fois de l’irradiation du PTV adéquate 

et de la sur-irradiation de tissus sain environnants). 

Concernant le PTV, une fonction coût volume-dose a été utilisée pour pénaliser le 

pourcentage du volume recevant moins de 95% de la dose absorbée ciblée, soit 100 Gy ici. Il a 

été décidé qu’un plan de traitement convenable devrait laisser moins de 5% du PTV sous-

irradiée. Ceci veut dire que, tant que la fonction coût (de sous-irradiation) du PTV était en 

dessous de 5%, le plan de traitement était convenable par rapport à l’irradiation du PTV.  

Concernant l’OAR, une fonction coût volume-dose a été utilisée. Cette fonction coût 

pénalise le pourcentage de l’OAR recevant plus de 10 Gy. Il a été décidé qu’un plan de 

traitement sera considéré comme convenable si moins de 10% de l’OAR recevait plus de 10 Gy. 

Les algorithmes d’optimisation 
Par conséquent, des algorithmes pouvaient être développés afin de minimiser ces quatre 

fonctions coûts. Les fonctions coûts pouvaient être combinées ensemble dans une somme 

pondérée, pour être optimisées avec un algorithme simple-objectif (SO), ou optimisées 

simultanément, en utilisant un algorithme multi-objectifs (MO). 

Trois algorithmes ont été développés et testés dans le cadre de ce travail : le « Nelder-

Mead Simplex » (NMS) (SO et déterministe), le « Bees Algorithm » (BA) (SO et stochastique) 

et le « Non-Dominated Sorting Genetic Algorithm » (NSGA-II) (MO et stochastique). Trois 

cas de test ont été proposés pour l’optimisation du PTV sphérique avec un rayon de 10 mm. Le 

premier cas de test utilisait un nombre d’injections fixe, le second un nombre d’injections 

variable et le troisième un nombre d’injections variable qui incluait un OAR qui devait être 

protégé. L’OAR était également une sphère avec un rayon de 10 mm, placé de sorte que leurs 

surfaces soient en contact (le centre de l’OAR et celui du PTV sont séparés de 20 mm). 
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Il a été trouvé, que pour cette problématique, le NMS était le moins efficace parmi les 

trois algorithmes. Sa nature déterministe rend facilement influençable par une mauvaise 

initialisation. Comme l’initialisation était aléatoire, la qualité de cette initialisation ne pouvait 

donc pas être assurée. De plus, le NMS pouvait seulement optimiser un nombre d’injections 

fixe. Par conséquent, si l’utilisateur voulait faire une optimisation avec un nombre d’injections 

variable, il fallait lancer l’algorithme pour chaque nombre d’injection fixe (soit 20 fois pour 

une optimisation qui comprend 1 à 20 injections). Ceci veut dire que le NMS était plus lent que 

les autres algorithmes. Il serait possible de combiner le NMS avec un méta-optimiseur afin de 

réduire le nombre d’injections testé (diminuant ainsi les temps d’optimisation), mais il serait 

malgré tout plus lent que les deux autres algorithmes. Ceci, combiné avec la mauvaise 

cohérence de ses résultats a fait que le NMS n’a pas été retenu en tant qu’algorithme le mieux-

adapté pour la planification de micro-curiethérapie. 

Parmi les deux algorithmes restants, il a été montré qu’à la fois le BA et le NSGA-II 

produisaient des résultats satisfaisants. Par contre, le NSGA-II, étant un algorithme MO, 

montrait plus d’informations à l’utilisateur. Ces informations étaient visualisées en forme dite 

de « frontière de Pareto », qui est le compromis entre chaque fonction coût (permettant à 

l’utilisateur de choisir le meilleur plan parmi un grand nombre fixe de possibilités d’injections). 

En permettant une gestion de tous ces compromis, l’utilisateur est donc libre de décider quel 

plan de traitement est considéré comme optimal pour chaque patient. Avec des algorithmes SO, 

inversement, cette décision est prise par l’algorithme en fonction des pondérations relatives 

choisies entre les fonctions coûts. 

Dans le troisième cas test (le plus compliqué parmi les trois), les algorithmes ont été 

lancés 300 fois chacun. Dans 100% des cas, le NSGA-II a trouvé des plans de traitement 

convenables (à la fois par rapport aux exigences du PTV et de l’OAR), avec un temps de calcul 

moyen de 32,8 s. C’est pourquoi le NSGA-II a été choisi comme étant l’algorithme optimal à 

utiliser par la suite pour ces travaux de recherche afin de réaliser les planifications de traitement. 

Après avoir sélectionné le NSGA-II, une étude a été effectuée sur la taille idéale du voxel 

dans le cadre de la planification de traitement en micro-curiethérapie. Des voxels de 0,13, 0,53, 

et 1,03 mm3 ont été testés et il a été trouvé que des voxels de 0,53 mm3 donnaient le meilleur 

compromis entre la vitesse et la précision de la dosimétrie. 
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Les paramètres d’injection 
Une fois la méthode de planification de traitement développée, les aspects du traitement 

lui-même ont pu être analysés. Dans cette section, les points suivants ont été discutés : 

• Le radioélément injecté, 

• Son activité initiale (𝐴0), 

• Le volume de chaque injection, et 

• La forme des injections : sphériques ou cylindriques. 

Le radioélément injecté 
Par rapport au radioélément injecté, une comparaison a été fait entre quatre radioéléments 

émetteurs β−. Ces radioéléments ont été choisis afin de représenter une large gamme de 

radioéléments. Les critères définis sont les suivants : une combinaison d’une 𝐸𝛽𝑚𝑒𝑎𝑛 élevée, une 

demi-vie courte, des émissions γ d’énergies suffisamment élevées permettant l’imagerie et 

l’abondance du radioélément dans le domaine de la physique médicale. Les quatre 

radioéléments suivants ont été choisis : 90Y, 166Ho, 131I et 177Lu. 

Il a été montré que l’émission des particules β− de haute énergie était le facteur principal 

du choix du radioélément. Par exemple une comparaison a été effectuée avec le PTV (toujours 

une sphère avec un rayon de 10 mm) et des injections de 5 μL avec 𝐴0 = 5 MBq. Le 177Lu 

émettant des particules β− de plus basses énergies parmi les quatre radioéléments comparés, 

n’était pas capable d’irradier suffisamment le PTV avec moins de 100 injections, qui était le 

nombre maximal permis. Afin de pallier ce problème, il a été choisi un radioélément avec une 

émission d’énergies plus élevées, le 90Y, dans le but de réduire ainsi le nombre d’injections à 8 

pour ce même problème. 

L’activité initiale 
Par la suite, une étude a été effectuée pour évaluer l’influence de 𝐴0 sur la dosimétrie. Il 

a été constaté que, l’augmentation de 𝐴0 entraîne une augmentation du volume autour d’une 

injection qui est suffisamment irradiée car la dose absorbée est directement proportionnelle à 

𝐴0. Cependant, il a également été démontré que le gradient de dose absorbée était tellement 

abrupt que, augmenter 𝐴0 par un facteur 20 (de 5 à 100 MBq) avait peu d’influence sur la 

distance radiale (de 4,51 à 7,54 mm). Malgré cette petite augmentation, il a été montré que 

l’augmentation de 𝐴0 réduisait le nombre d’injections requis pour suffisamment irradier le 

PTV. Ainsi il a été recommandé que 𝐴0 soit la plus élevée possible. 
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Le volume injecté  
Subséquemment, une étude a été effectuée sur l’effet d’augmenter le volume par 

injection. Les volumes testés étaient de 5, 10 et 20 μL, avec une 𝐴0 de 5 MBq. Il a été relevé 

que, même si en théorie un volume plus important devait être suffisamment irradié par 

l’augmentation de ce volume d’injection (car les radioéléments sont étalés sur un volume plus 

important), l’amélioration de la frontière de Pareto était négligeable. Par conséquent, la seule 

raison qui justifie une augmentation du volume injecté est d’augmenter 𝐴0 de l’injection (en 

supposant une concentration de 𝐴0 par μL fixe).  

C’est pourquoi, un volume conséquent doit être injecté (afin d’augmenter 𝐴0) sans 

distorsion de la sphère injectée. Ce volume maximal devrait être déterminé expérimentalement. 

La planification de traitement pour les tumeurs plus volumineuses 
Parmi les trois sous-sections précédentes, il a été démontré que la configuration optimale 

doit utiliser les injections de 90Y. Ces injections doivent utiliser 𝐴0 la plus élevée possible et les 

injections doivent être les plus volumineuses possible. 

Avec ces paramètres optimaux en place, la planification de traitement a été effectuée pour 

une série de tumeurs comprenant plusieurs volumes, allant de 10 à 30 mm de rayon. Un nombre 

maximal de 200 injections d’90Y de 20 μL et de 20 MBq a été utilisé pour ce test. 

Il a été constaté que 7 et 50 injections sont nécessaire pour une couverture adéquate des 

PTVs de rayons 10 et 20 mm, respectivement. Cependant, il a été trouvé que même avec 200 

injections (le maximum permis), il n’était pas possible de suffisamment irradier une tumeur qui 

possède un rayon de 30 mm. 

Il a été noté qu’une sphère de 20 mm est la taille moyenne des glioblastomes, tandis que 

30 mm représente les glioblastomes les plus volumineux. Pour cette raison, la micro-

curiethérapie pourrait être envisagée pour les glioblastomes de tailles moyennes, mais 

probablement pas pour les glioblastomes les plus volumineux. Cela dépend, bien sûr, de 

l’efficacité de l’injecteur : en effet, s’il pouvait effectuer des injections rapidement, le nombre 

d’injections ne serait plus une limite. 
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Les injections cylindriques 
L’étape suivante a consisté à optimiser la technique d’injection. Au lieu d’insérer 

l’aiguille en plaçant l’injection dans un seul endroit, l’injection était effectuée pendant le retrait 

de l’aiguille. Dans cette configuration, le volume injecté ressemblait plus à un cylindre qu’à 

une sphère. 

Les injections cylindriques ont été proposées car cela veut dire que le volume injecté était 

répandu sur une surface plus large, diminuant ainsi les forces de résistance au sein des tissus 

déplacés. De plus, non seulement les forces de résistance diminuaient, mais en épargnant les 

injections, des volumes plus importants pourraient être irradiés par injection. 

Il a été montré que, pour peu d’injections, les injections cylindriques étaient capables 

d’irradier un volume plus important. Cependant, cette technique d’injection rendait les 

extrémités supérieures du PTV inaccessible. Ainsi, lorsque le nombre d’injections augmentait, 

une « asymptote » était atteinte, sans augmenter significativement la partie du PTV que l’on 

souhaitait irradier. 

Pour circonscrire ce problème, des injections plus courtes pourraient être utilisées, soit en 

augmentant la surface du cylindre, soit en diminuant le volume injecté minimale de 5 μL. Les 

injections pourraient donc être partiellement effectuées dans les tissus sains (en les sacrifiant), 

ou bien la tumeur pourrait être abordée par plusieurs angles avec l’aiguille principale. 

La création du TPS 
Finalement, avec des méthodes de dosimétrie et de la planification de traitement en place, 

et avec les paramètres d’injection optimisés, une application avec une interface graphique a été 

développée. L’application, codée dans son intégralité à partir de rien, est écrite en langage C++ 

orienté objet. 

Le code utilisé pour créer l’application, appelée « DosiToul », est constitué de 133 

fichiers source et il contient plus de 11,000 lignes de code. Le code exploite trois bibliothèques 

« open source » : Qt, VTK et GDCM. Qt a été utilisée afin de créer l’interface et gérer 

l’interaction avec l’utilisateur. VTK a été utilisée du rééchantillonnage des matrices 3D à la 

visualisation des données. Enfin, GDCM a été utilisée pour lire les fichiers « DICOM RT 

Structure ». 
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DosiToul utilise une base de données pour stocker les patients, les études et les séries des 

images DICOM. Chaque série peut contenir un ensemble de structures (par exemple le PTV ou 

les OARs) et un ensemble d’optimisations. L’utilisateur peut créer des nouvelles optimisations, 

les paramétrer avec un assistant de quatre pages, effectuer des optimisations et puis afficher les 

résultats. 

Les résultats sont affichés de façon à ce que l’utilisateur puisse choisir son plan de 

traitement adapté parmi les solutions optimales au sens de Pareto, puis afficher la distribution 

de dose absorbée, les injections dans l’espace 3D (par rapport au PTV et aux OARs), les HDVs 

et une liste d’injections pour le plan de traitement. La base de données peut être enregistrée sur 

le disque dur, permettant à l’utilisateur de continuer son travail a posteriori. 

Perspectives futures 
Par rapport aux perspectives futures de ce travail, deux points sont discutés : 

• Le traitement des tumeurs abdominale et 

• L’expérimentation physique. 

Le traitement des tumeurs abdominales 
L’adaptation de la méthodologie présentée dans ce travail vers la prise en charge des 

tumeurs abdominales pourrait être un projet futur intéressant. Les glioblastomes sont difficiles 

pour la micro-curiethérapie car ils sont souvent volumineux. Par contre, le calcul de la 

dosimétrie est simplifié du fait que le cerveau est extrêmement homogène par rapport à la 

densité. 

Pour développer cette nouvelle modalité afin de l’utiliser avec d’autres type de tumeurs, 

il est nécessaire de prendre en compte les inhomogénéités de densité. Cela pourrait être réalisé 

avec la méthodologie proposée dans ce travail de recherche, cependant il faudrait que ce 

processus soit rapide. Dans un contexte clinique, les temps d’optimisation ne devraient pas 

dépasser ~10 heures (cas extrême). 

La méthode de distorsion du kernel homogène pour les milieux inhomogènes devrait donc 

être rapide (par exemple, en exploitant la technologie GPU). Dans tous les cas, si une méthode 

de distorsion de kernel rapide était mise en place, la dosimétrie pourrait être effectuée pour 

d’autres régions anatomiques, et la micro-curiethérapie pourrait être utilisée potentiellement sur 

d’autres tumeurs. 
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L’expérimentation physique 
Enfin, il doit être noté que même si la méthodologie de planification de traitement a été 

testée dans un environnement préclinique sur des mini-cochons, il y a des aspects de ce travail 

restent théoriques. 

Par exemple, une fois un radioélément sélectionné (tel que 90Y), il est ensuite nécessaire 

de le développer en forme de microsphère. Cela devrait être simple pour 90Y car il est déjà 

utilisé pour des traitements de radioembolisation, mais cela n’est pas le cas pour tous les 

radioéléments. 

Une fois le radioélément en forme de microsphère, l’activité maximale atteignable devrait 

être donnée par le constructeur. Subséquemment, une étude devrait être effectuée sur le volume 

maximal qui pourrait être injecté sans la distorsion du liquide injecté. 

En outre, avec plus d’essais (à la fois précliniques et cliniques), l’efficacité de la micro-

curiethérapie sera mieux comprise. Cela permettra une optimisation de la détermination de la 

valeur de la dose absorbée ciblée nécessaire pour détruire la tumeur. Poursuivre de tels essais 

permettrait d’approfondir la connaissance des effets radio-biologiques de la micro-

curiethérapie, permettant l’utilisation des fonctions coûts radio-biologiques. 

Conclusion 
Pour conclure, ces travaux de recherche ont permis de mettre en œuvre une méthodologie 

dosimétrique et une planification de traitement optimale pour la micro-curiethérapie. Des 

paramètres d’injection ont été étudiés et optimisés et une application avec une interface 

graphique utilisateur a été développée. L’intégralité de ce TPS a été utilisée et validée dans un 

environnement préclinique avec des contraintes de temps réelles, tout en étant capable de 

produire des plans de traitement convenables qui a permis le traitement de plusieurs 

glioblastomes, implantés dans des cerveaux de mini-cochons. 

Cette nouvelle technologie associée aux développements réalisés au cours de ces travaux 

démontre la faisabilité de l’irradiation efficace des tumeurs inopérables, tout en préservant les 

tissus sains environnants, avec la micro-curiethérapie. De telles tumeurs, ont encore de mauvais 

pronostics aujourd’hui, et elles pourront surement être mieux prises en charge dans un proche 

avenir. 
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6 APPENDIX: CREATION OF THE 
TPS 

6.1 Introduction 
Throughout this research, the relevant building blocks have been put in place to be able 

to create a microbrachytherapy TPS. The TPS that was designed for this project was named 

“DosiToul”, and will be referred to as such throughout this appendix. 

DosiToul was written in C++, consisting of 133 source files and over 11,000 lines of 

code. Three open-source libraries were used for the development of this program: Qt, VTK and 

Grassroots DICOM (GDCM) (Malaterre, 2008). 

This appendix discusses the structure of DosiToul, the tools that were used to create it 

and how a user could use it to produce microbrachytherapy treatment plans. 
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The structure of this appendix is as follows: 

• Section 6.2 discusses the structure of the principal objects that make up the TPS; 

• Section 6.3 demonstrates how an end-product user might use DosiToul to create 

microbrachytherapy treatment plans, including screenshots demonstrating the 

usage of the application; 

• Section 6.4 describes the programming tools that was used to create DosiToul as 

well as the 3rd party libraries that were used; 

• Section 6.5 discusses the object-oriented classes that were created for DosiToul 

(this section is rather technical); and 

• Section 6.5 concludes this appendix. 

6.2 DosiToul structure 
DosiToul operates with a top-down structure. The top-level object is the database. The 

database can contain multiple patients. Each patient can contain multiple studies and each study 

can contain multiple series. Each series contains a set of DICOM images. This structure is 

typical of most medical imaging applications. 

However, as well as attributing DICOM images to each series, DosiToul can also attribute 

multiple structures and perform multiple optimisations. Structures are all 3D surfaces, such as 

the PTV, OARs, test objects (spheres, etc.) and the skull. For each series, optimisations can be 

created, edited and then saved in the database. 

Each optimisation contains a kernel, a dose grid, a list of all possible injections 

(cylindrical injections are used in DosiToul, so the injections are calculated prior to the start of 

the optimisation process, as described in Section 5.5.2.2), a list of user-defined cost functions. 

If the optimisation process is finished, the optimisation also contains a set of Pareto-optimal 

treatment plans. The dose grid, the list of possible injections and the treatment plans are all 

created at the start of the optimisation process using user-defined parameters. 

The treatment plans at the end of the treatment planning process will contain all the 

information required to be able to perform the given treatment – the injection coordinates, the 

resulting dosimetry for each structure, and several visualisations of the treatment. 

An illustration of the object hierarchy of DosiToul is shown in Figure 6.1.
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Figure 6.1: Illustration of the object hierarchy of DosiToul. 
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In Figure 6.1, it can be seen that certain objects are shared with each other as pointers. 

Pointers are used to minimise memory usage (by not copying objects), and so that changes to 

certain objects can be passed instantaneously throughout the program. For example, a pointer 

is used to pass the kernel throughout DosiToul. This is because the kernel does not change and 

so performing deep copies would be a waste of memory. An example of using pointers for 

immediate updates throughout the program are DVHs, which are shared with the cost functions. 

When the treatment plan is updated, the dose grid is updated accordingly and then so are the 

DVHs. The costlets need to have up-to-date versions to be able to instantaneously quantitate 

the quality of the updated treatment plan. 

In other instances, deep copies of objects are required. For example, upon creating an 

optimisation, the user enters the parameters necessary to setup the dose grid (for example, the 

desired voxel size) and the dose grid is then created. Each treatment plan, however, needs to 

have its own dose grid to be able to produce dosimetry specific to that plan. For this reason, 

each treatment plan contains a deep copy of the dose grid. 

6.3 Using DosiToul 

6.3.1 Database 
The database is the first page that confronts the user upon opening DosiToul. A screenshot 

of this database is shown below, in Figure 6.2. 
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Figure 6.2: Database window. At the top, a list of patients is shown. When a patient is selected, all studies for that 

patient are shown in the second list. When a study is selected, all series within that study are shown in the bottom 

box. Using the buttons along the bottom, patients, studies and series can be added; structures can be added to 

series; and optimisations can be performed. 

The screenshot of the database reflects the hierarchy shown in Figure 6.1. The first table 

shows a list of all the patients in the database. Information is shown about the patients, such as 

their ID, date of birth and sex. 

Once a patient has been selected, such as the fourth patient in the above example, all of 

the studies for that patient are shown. The studies list contains all relevant information about 

each study, and when one is selected, all of the series for the corresponding study are shown. 

Patients, studies and series can be added to and removed from the database by using 

“Import” and “Delete”. 

When the user clicks “Import”, a dialog box is displayed. The user selects the relevant 

folder and the database is updated. This is done by scanning the folder for all DICOM images, 

and using the class, “vtkDICOMDirectory”, to sort all images into the correct patient, study and 

series. 
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Once the user has added the desired directory to the database, the number of 

corresponding DICOM images should be shown under the series information. The example 

shown in Figure 6.2 contains 160 DICOM images. 

To the right of the number of images, the number of structures and optimisations are 

shown. When a new series is added to the database, these are both zero. Before being able to 

create optimisations, the user must first add at least one structure. This is done by clicking “Edit 

Structures”. 

6.3.2 Structure editor 
When the user clicks on “Edit Structures”, the Structure Editor window opens, as shown 

in Figure 6.3. 

 
Figure 6.3: Edit structures window. On the left, a 3D visualisation of all structures is shown. On the right, the 

corresponding table is displayed. Structures can be added, deleted and altered using the buttons along the bottom. 

On the left of this window is a 3D visualisation of all the structures that have been added 

or created. On the right a table is displayed, giving information about each of the structures. 
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At the bottom of the page, controls enabling the user to manipulate the structures are 

shown. The first three buttons enable the user to add or create new structures. The user has five 

ways to add structures, as described in the following the sections. The last three buttons enable 

the user to delete, change the name and change the colour of the selected structure. 

6.3.2.1 DICOM RT Structure files 
Using the GDCM class, “vtkGDCMPolyDataReader”, the user can import DICOM RT 

Structure files. This is the standard format for exporting structure segmentations in medical 

imaging. Since the user is capable of importing DICOM RT Structure files, they are free to 

perform image segmentation with the vast majority of image treatment stations that are 

commonly used in clinical environments, and then import these segmentations into DosiToul. 

6.3.2.2 STL files 
Standard triangle language (STL) is the standard format of computer-aided design (CAD) 

programs. It is also one of the exportation formats of segmented structures with 3D Slicer, an 

open-source image treatment program. 3D Slicer was used internally to perform segmentations 

and so this format was indispensable. 

6.3.2.3 Spheres 
Spheres have been used extensively throughout this research. The user may create 

spherical structures as desired by designating their radii and centre coordinates. 

6.3.2.4 Shells 
Shells can be created by selecting a pre-existing structure (such as the PTV) and setting 

the minimum and maximum thickness to create the shell about that structure. 

Shells are useful for calculating the dosimetry around structures, especially around the 

PTV. Cost functions can be applied to these shells, forcing the optimiser to find treatment plans 

with little irradiation of tissue outside of the PTV. 

6.3.2.5 DICOM Hounsfield units 
Lastly, structures can be created from the densities of the voxels in the DICOM CT scan, 

expressed in Hounsfield units (HU). Bone, for example, typically has HU between 700 and 

1,300. Once the user has chosen the limits, the algorithm, “vtkDiscreteMarchingCubes”, is used 

to build the structure. 

In the preclinical mini-pig tests, the skull was generated using this method, allowing the 

user to observe the hole cut through the mini-pig’s skull that would be used as the point of entry 

for the needle. 
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6.3.3 Optimisation browser 
Once the user has added all of the desired structures to the series in the database window, 

they may now start to produce treatment plans by clicking “Edit Optimisations”. Clicking this 

button opens the Optimisation Browser window, as shown in Figure 6.4. 

 
Figure 6.4: Optimisation browser. Optimisations can be created and deleted using “New” and “Delete”. They can 

be parameterised using “Edit”. The optimisation can be executed using “Start” and then the results can be viewed 

with “View Results”. 

The browser lists all optimisations that have taken place or are being set up (the fifth 

column states whether they are finished or not). With “New”, the user can create a new 

optimisation, give it a name, and then with “Edit”, they can parameterise the optimisation. 

Once all the necessary information has been entered about the optimisation, “Start” 

becomes available. The user starts the optimisation process, and a new window opens, 

visualising the progress of the treatment planning. 

When the optimisation is finished, the progress window can be closed and, in the 

optimisation browser, “View Results” becomes active. The user clicks this option, enabling 

them to choose from the Pareto-optimal solutions and view the corresponding dosimetry for 

that plan. 

6.3.4 Setting up a new optimisation 
Upon creating a new optimisation and clicking on “Edit”, a wizard opens with four pages. 

The user enters the necessary information page-by-page, and the treatment planning process is 

ready to start. 

If at any point, the user wishes to save their progress and finish setting up the optimisation 

at a later point, the wizard can be closed with “Save and Close”. 
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6.3.4.1 Algorithm parameters 

The first page of the wizard requires parameters related to the algorithm, as shown in the 

screenshot in Figure 6.5. 

 
Figure 6.5: Algorithm settings. The top box requires information that is common to all algorithms (for example, 

the time limit), whereas the bottom half requires information that is specific to a given algorithm (for example, the 

population size for NSGA-II). 

At the top, parameters that are common to all algorithms are shown. Setting values to -1 

indicates that the value is unlimited. The required parameters are: 

• The maximum number of iterations, 

• The time limit, 

• The structure that will be treated as the PTV for the optimisation (this is a drop-

down list containing all structures that were present in the Structure Editor), 

• The margin of the dose grid that should be added around the PTV, 

• The DVH bin size, 

• The maximum recorded absorbed dose, and 

• The desired voxel spacing. 
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The bottom half of the page shows the parameters that are specific to a given algorithm. 

In the example shown in Figure 6.5, the parameters are shown for NSGA-II. The displayed 

parameters are: 

• The population size, 

• The mutation rate, 

• The maximum and minimum number of injections, 

• A parameter that reduces the maximum number of injections, and 

• The desired number of threads that should be used (for multi-core CPUs). 

Once acceptable values have been selected on this page (for example, leaving both the 

maximum number of iterations and the optimisation time limit as -1 is not permitted as this 

would mean that optimisations would continue indefinitely), “Continue” becomes available and 

the user can continue to the second page. 

6.3.4.2 Kernel parameters 
The second wizard page contains all the parameters required to create the injection kernel. 

Shown below, in Figure 6.6, are the parameters required to create a kernel for cylindrical 

injections. 

 
Figure 6.6: Kernel settings. Information, such as the path of the GATE simulation and the radioelement’s half-life, 

is required here. 
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The user is required to give the path to the GATE simulation that contains the voxelised 

S-values (as described in Section 3.2 and 5.5.2.1), the radioelement’s half-life, the 

concentration of microspheres, the fractional mass of the radioelement within the microsphere 

(as discussed in Section 3.5.2, the microspheres often contain glass, polymers or resin casings), 

and the radius and length of the modelled cylinder (which as discussed in Section 5.5.2 were 

0.47 and 20 mm, respectively). 

Once all parameters have been correctly entered, “Continue” becomes active. For 

example, if the GATE file does not exist, “Continue” stays greyed out. When the user clicks on 

“Continue”, they advance to the third wizard page, the Costlet page. 

6.3.4.3 Costlet parameters 
Upon entering all the required parameters for the kernel, the user must enter all the desired 

costlets. The page displays a table that is initially blank. As costlets are created, they are added 

to the table. Costlets are added and removed using “Add” and “Delete” at the bottom of the 

page, as shown in Figure 6.7. 

 
Figure 6.7: Costlet settings. A list of all costlets is shown and new costlets can be added with “Add”. Conversely, 

they can be removed with “Delete”. 
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When the user clicks “Add”, a small dialog box is displayed, the user chooses the desired 

costlet type and the relevant parameters for that choice of costlet. The example shown in 

Figure 6.8 is a dose-volume costlet that penalises the percentage of the tumour receiving less 

than 95 Gy. 

 
Figure 6.8: Setting up individual costlets. Here, the parameters for a dose-volume costlet are shown. The user 

chooses the structure to be penalised, the inequality direction (“<”, “≤”, “>” or “≥”) and the reference absorbed 

dose. Upon clicking “OK”, the costlet is added to the list. 

Once the user has added the desired costlets (at least 1 is required), the page should look 

similar to Figure 6.7, and the user can advance to the final page. 

6.3.4.4 Injection parameters 
The final wizard page requires the user to enter all the information pertaining to the 

injections. Figure 6.9 shows an example of the required information for cylindrical injections. 

 
Figure 6.9: Injection parameters. On the left, all possible injections are shown relative to all the structures (in this 

case the skull and the PTV). On the right, all parameters required for the injections are entered. Once all parameters 

have been entered, all possible injections are computed using “Calculate”. 
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As can be seen, a lot of information is required on this page. The first seven parameters 

are described in Section 5.5.1. The negligible absorbed dose box is used to minimise the number 

of voxels in the kernel, as described in Section 3.5.3.1. The focal point, the X tilt and the Z tilt 

are used to describe the trajectory of the guide needle, shown in green. 

The direction of the 0º rotation is used to give the surgeon a point of orientation. For 

example, 0º could be set towards the top of the operating table. Following this, the user can 

decide whether the injections will be clockwise or anti-clockwise. 

Lastly, the user dictates the distance between the focal point (normally in the centre of 

the PTV) and the point that the program considers to be the zero-distance. This could, for 

example, be set at the top of the skull. The surgeon would place the guide so that it was at the 

level of the top of the skull, and then all depths of injections would be relative to this. Hence, a 

depth of 7 mm corresponds to 7 mm under the top of the skull. 

Once all parameters have been entered, the user clicks “Calculate”. The program will then 

calculate all possible injections corresponding to those parameters and show them as the blue 

lines that can be seen in Figure 6.9. 

If for example, on the first wizard page, the user decided that the maximum number of 

injections should be limited at 100, but only 20 possible injections were calculated on the last 

wizard page, an error will be displayed. This lets the user know that they should either alter the 

injection parameters (change the angle of approach, perform shorter injections, etc.) or decrease 

the maximum number of injections. 

When the number of possible injections is greater than the maximum number of 

injections, the setting up of the optimisation is complete. The user may now click “Done”. The 

wizard closes and the user returns to the Optimisation Browser. 

6.3.5 Performing the optimisation 
The Optimisation Browser enables the user to see a list of all optimisations. If an 

optimisation has been fully set-up but not carried out, then the “Ready to Start?” and 

“Finished?” columns of Figure 6.4 will display the text, “Yes” and “No”, respectively. The user 

may select this optimisation and only then will “Start” become active. The user clicks “Start”, 

and the optimisation process begins. 

A new window opens, showing the progress of the optimisation. An example of the 

progress of NSGA-II is shown below, in Figure 6.10. 
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Figure 6.10: Optimisation progress. Here, a real-time visualisation of the Pareto front is shown. The user may 

cancel the optimisation with “Stop” or click “Done” once the optimisation is complete. 

The Pareto front is shown in green and all non-Pareto-optimal solutions are shown in 

pink. Once the treatment planning is complete, “Done” becomes active, the user clicks this and 

the window closes. 

6.3.6 Viewing optimisation results 
Once the treatment planning is complete, the text in the “Finished?” column of the 

Optimisation Browser becomes “Yes”. At this point, “Start” is greyed out and “View Results” 

becomes active. The user clicks this button and the page shown in Figure 6.11 is displayed. 
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Figure 6.11: Optimisation results page. At the top-left, the final Pareto front is shown, at the bottom-left the Pareto-

optimal solutions are shown in the table. Once a solution has been selected, the right-hand side updates 

automatically, showing slices of the absorbed dose distribution (top-left), the 3D visualisation of the injections 

(top-right), the DVH (middle) and the coordinates of the injections (bottom). The selected treatment plan can be 

saved using “Save plan to disk”. 

At the top-left of the results page, the Pareto front can be seen. Below this is a table 

containing all the Pareto-optimal solutions. The user may choose one of these plans and the 

right side of the window changes accordingly. In the above example, there are only four Pareto-

optimal solutions (four green points in the graph), and so the table only contains four entries. 

The right side of the window contains 2D slices of the distribution of absorbed dose (top-

left), a 3D visualisation of the injections relative to the skull and the PTV (top-right), the DVH 

for all structures (middle) and the coordinates for the injections (bottom). 

Since the user has selected the treatment plan that uses four injections, the coordinates of 

these four injections are shown in the table. The optimisation was set up for cylindrical 

injections, and so the coordinates are given in cylindrical coordinate: the depth of the guide 

needle (relative to the zero distance that was given in Figure 6.9), the rotation of the injector, 

the start and end depths of the injection and the volume that will be injected over this distance. 
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Once the user has selected the treatment plan that they wish to execute, “Save plan to 

disk” can be used to export the given treatment plan to disk such that the treatment can be 

printed out and the visualisations viewed in programs such as 3D Slicer and Paraview. 

When the user is finished with DosiToul and they close the application, the entirety of 

the database – the patients, studies, series, structures, optimisations and treatment plans – are 

all saved to disk so that upon loading the program the next time, they can continue from where 

they finished. 

6.4 C++ 
As has been previously mentioned, DosiToul was created using object-oriented C++. In 

Section 6.5, descriptions of the classes used in DosiToul are given. To be able to understand 

these descriptions, it is necessary to first discuss some the keywords that are used in object-

oriented programming: 

• Class: grouping together all characteristics that are common to a type of object. 

o For example, all triangles have height, width, etc. 

• Object: an instantiation of a class. 

o For example, a triangle named “A” might have a height of 6 cm and a 

width of 2 cm. 

• Data member: values that belong to a class. 

o For example, the triangle class will contain members for the width and 

height of the triangle. 

• Member function: a function that belongs to a class. 

o For example, a triangle class might have a member function to compute 

the area of the triangle and return the value to the user. 

• Inheritance: the idea that classes can be grouped together. 

o For example, classes for equilateral and isosceles triangles might be 

created, both inheriting from a bass class, describing triangles in general. 

• Abstract classes: classes that contain some information about a type of object, but 

not enough to create an object. 

o For example, a general class might be created for shapes. This class would 

contain the variable, area, but the area cannot be calculated until the type 

of shape is known. A derived class, such as a triangle, must therefore be 

created. 
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• Polymorphism: the ability of an object to take multiple forms. 

o For example, using polymorphism, a vector of shapes containing both 

triangles and squares can be stored together. 

• Pointers: share the address of an object without having to copy it. 

• Shared pointers: the same idea as a pointer, except it keeps a count of the number 

of times it is referenced. When this counter becomes zero, the object calls its 

destructor, simplifying memory management. 

• Multi-threading: splitting the code so that it runs asynchronously on multiple 

CPUs (executed using std::thread). 

As well as C++ features, three open-source C++ libraries were also used: Qt, VTK and 

GDCM. The use of these three libraries is described in the following sections. 

6.4.1 Qt 
Qt was used to create the user interface. Within the main window (“QWindow”), widgets 

(“QWidgets”), tables (“QTable”), buttons (“QPushButton”), sliders (“QSlider”), file dialog 

boxes (“QFileDialog”) and a host of other classes were all used to allow the user to navigate 

throughout the TPS and carry out optimisations of treatments. 

Signals and slots are a method, used by Qt, to send information throughout the code. 

When a button is pushed, for example, it will send out a signal. For each signal that is sent out, 

there can be any number of objects that are listening for that signal (via slots). For example, 

when the user clicks “Save plan to disk” a dialog box must open to allow the user to select the 

desired save location. The slot of the dialog box is therefore connected to the signal of the save 

button such that when the save button is clicked, it sends out a signal and the relevant slot is 

triggered and a resulting piece of code is executed. 

6.4.2 VTK 
VTK was used extensively throughout this project. 3D arrays, such as the kernel and the 

patient dose grid were stored using the class “vtkImageData”. Structures were stored as 

“vtkPolyData” (a series of points describing the surface of the structure). Patient-specific 

dosimetry was performed by creating binary masks of the structures with “vtkStencilImage” 

and superposing them on the dose grid with “vtkImageAccumulate”. Patient DICOM files were 

read with “vtkDICOMReader”. Resampling of 3D arrays was done with “vtkImageReslice”. 
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VTK was also used for the visualisation of data in DosiToul. The visualisations that were 

created include: 

• 3D visualisations (such as the structures in the Structure Editor), 

• 2D slices of 3D arrays (such as the patient dose grid in the Results Viewer), and 

• 2D, 3D and ND graphs (such as the real-time Pareto front whilst the algorithm is 

running). 

Rendering and interaction of these visualisations were performed using “vtkActor”, 

“vtkCamera”, “vtkRenderer”, “vtkRenderWindow” and “vtkRenderWindowInteractor”. 

Graphs were created with “vtkChartXY” and “vtkChartXYZ”. 

These VTK visualisations were linked together with the Qt window by embedding 

“QVTKWidgets” (an inheritance of “QWidget”) in the main “QWindow”. An example of this 

is shown in Figure 6.12, which is an annotated version of the Structures Editor. 

 
Figure 6.12: Example of a VTK widget embedded in a Qt window via a “QVTKWidget”. 

6.4.3 GDCM 
Only one class was used from GDCM, but this class was vitally important. The class, 

“vtkGDCMPolyDataReader”, was used to read DICOM RT Structure files, which were then 

converted to vtkPolyData to be used as structures. 

6.5 DosiToul classes 
The most important classes that were used in DosiToul are described below, including 

their data members and some of the most important member functions. 
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6.5.1 DT2_Database, DT2_Patient and DT2_Study 
The database (“DT2_Database”) can be created either from scratch or by giving the path 

to a previously created database on the hard disk from which it can be loaded. New entries can 

be added to the database by providing the path to DICOM images on the hard drive. The 

DICOM images are sorted into patients (“DT2_Patient”), studies (“DT2_Study”) and series 

(“DT2_Series”), and all new entries are added to the database. 

6.5.2 DT2_Series 
The series contains the DICOM images (“DT2_DICOM”), a list of structures 

(“DT2_Structure”) and a list of optimisations (“DT2_Optimisation”). 

6.5.3 DT2_DICOM 
The DICOM (“DT2_DICOM”) class contains a list of filenames corresponding to each 

of the DICOM images in that series. When the “update” method is called, the DICOM images 

are read and stored as “vtkImageData” (a 3D array). The patient array (“vtkMatrix4x4”) can be 

extracted to be able to superpose structures on the DICOM for 3D visualisation. 

A member function was also implemented to retrieve information stored in the DICOM’s 

header (via its tag) or to print the entirety of the header. 

6.5.4 DT2_Optimisation 
The optimisation class (“DT2_Optimisation”) is an abstract base class from which 

derived classes inherit, such as “DT2_Optimisation_NSGA2”. 

Some of the members of “DT2_Optimisation” include: 

• The maximum number of treatment plan updates allowed, 

• The number of treatment plan updates already performed, 

• The maximum time limit, 

• The current time spent on the optimisation, 

• A list of costlets (“DT2_Costlet”), 

• The dose grid (“DT2_DoseGrid”), 

• The kernel (“DT2_Kernel”), and 

• A list of all possible injections (“DT2_Injection”). 
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6.5.4.1 DT2_Optimisation_NSGA2 

Since “DT2_Optimisation_NSGA2” is a derived class, it contains all of the information 

in “DT2_Optimisation”, plus: 

• The maximum and minimum number of injections, 

• The mutation rate, 

• The population size, and 

• The population (a list of “DT2_TreatmentPlan_MO”). 

6.5.5 DT2_Array3D 
An abstract base class, “DT2_Array3D” was used to store voxelised 3D arrays in the form 

of “vtkImageData”. 

The class contained member functions permitting the user to: 

• Access array elements (either from their 1D or 3D index), 

• Get the maximum or minimum values in the array, 

• Get the voxel spacing, 

• Get the arrays origin, 

• Get the dimensions (the number of voxels in each dimension), 

• Get the bounds (the limits of the array in 3D space), 

• Get the extent, dimensions, voxel spacing, bounds, and 

• Get the amount of memory that the array occupies (the number of voxels 

multiplied by the memory of the data type, such as 8B for a double). 

6.5.5.1 DT2_Kernel 
The kernel (“DT2_Kernel”) contains the absorbed dose distribution for an injection. The 

user sets the relevant information, such as the path to the GATE simulation that is saved on the 

computer, and the kernel is created. 

6.5.5.2 DT2_DoseGrid 
The dose grid (“DT2_DoseGrid”) is a derived class of “DT2_Array3D”. As well as 

containing the voxelised 3D array, it also contains: 

• A pointer to the kernel, 

• A pointer to the PTV’s structure, 

• A margin to be added to the PTV, and 

• The desired voxel spacing. 
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The dose grid is initialised by setting the PTV’s structure and the margin that the user 

wishes to add around the PTV, and the voxelised grid is created with the desired voxel spacing. 

A member function was implemented to allow the user to insert injections on the dose 

grid by convolving the kernel in the desired location. 

6.5.6 DT2_TreatmentPlan 
Each treatment plan (“DT2_TreatmentPlan”) contains: 

• Its own dose grid (“DT2_DoseGrid”), 

• Its own list of costlets (“DT2_Costlet”), 

• A list of DVHs (“DT2_DVH”), and 

• A list of injections (“DT2_Injections”). 

The first two are created by performing deep copies of the versions that were created 

during the setup phase, and belong to “DT2_Optimisation”. It is important to remember that 

deep copies were required so that each treatment plan could be independent and have its own 

corresponding dosimetric information. 

6.5.6.1 DT2_TreatmentPlan_MO 
The MO treatment plan (“DT2_TreatmentPlan_MO”) is a class that is derived from 

“DT2_TreatmentPlan”. Therefore, it contains all the members that are in “DT2_Treatment 

plan”, plus MO information: 

• The plan’s Pareto front, 

• The plan’s crowding distance, 

• The number of plans that this plan dominates, and 

• The number of plans that dominate it. 

6.5.7 DT2_Structure 
The structure class (“DT2_Structure”) is an abstract base class from which all other 

structure classes are derived. The base class contains: 

• The points that constitute the structure’s surface (“vtkPolyData”); 

• The actor that can be rendered (“vtkActor”); and 

• The structure’s name, colour and volume. 
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The derived classes (“DT2_Structure_DICOM”, “DT2_Structure_RTStruct”, 

“DT2_Structure_Shell”, “DT2_Structure_Sphere” and “DT2_Structure_STL”) differ only in 

their method of creating or reading the structures. 

Each of the derived classes will contain information that is specific to their type. For 

example, the sphere class will contain the coordinates to the sphere’s centre as well as its radius. 

The DICOM RT Structure file will contain all the information that is stored in the DICOM’s 

header. 

6.5.8 DT2_DVH 
The structures’ DVHs (“DT2_DVH”) contain: 

• A pointer to the treatment plan’s dose grid, 

• A pointer to a structure, 

• A binary mask that was created by superposing the structure on the dose grid, and 

• A histogram (“vtkImageAccumulate”). 

A method exists in “vtkImageAccumulate” that is used to set the bin size of the DVH. 

6.5.9 DT2_Costlet 
Costlets were created using the abstract base class, “DT2_Costlet”. Derived from this 

were the specific costlets, such as “DT2_Costlet_NumInjections”, “DT2_DoseVolume” and 

“DT2_ConformityIndex”. Each of the individual costlets contained different information (for 

example the costlet for the number of injections contains a pointer to the treatment plan’s 

injections and the dose-volume costlet contained a structure’s DVH). 

This set of classes is an example of polymorphism that was briefly explained in 

Section 6.4; by creating a list of pointers to costlets, the list could contain a mixture of different 

types of costlets. 

6.5.10 DT2_Line, DT2_Matrix3x3, DT2_Point and DT2_Vec3D 
Various geometrical classes were created, such as lines (“DT2_Line”), 3x3 matrices 

(“DT2_Matrix3x3”), points (“DT2_Point”) and 3D vectors (“DT2_Vec3D”). These classes 

were used extensively when calculating all possible injections. The guide needle, for example, 

was represented using “DT2_Line”, the rotation matrix between the DICOM reference frame 

and the injection reference frame was stored using “DT2_Matrix3x3”. 
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6.5.11 DT2_Injection 
The cylindrical injections were more complicated than the spherical injections. Spherical 

injections needed just the coordinates to the centre of the injection. 

Cylindrical injections were more complicated due to the double needle (the “guide” and 

“injector”) approach that was described in Section 5.5.1. Therefore, separate classes were 

created for the trajectory of the guide needle (“DT2_TrajectoryGuide”), the trajectory of the 

injector needle (“DT2_TrajectoryInjector”) and the resulting cylindrical injection 

(“DT2_InjectionCylindrical”). 

6.5.11.1 DT2_TrajectoryGuide 

The user gave the focal point of the guide needle’s trajectory, as well as the X- and Z-tilt 

relative to the DICOM vertical. 

From here, the frame of reference was changed such that the guide travelled exclusively 

in the y-direction. This was done using Rodrigues’ rotation formula and the result was stored 

as a “DT2_Matrix3x3”. 

Subsequently, the points at which the guide needle entered and left the PTV were the 

calculated by intersecting the guide line with the PTV using the class, “vtkOBBTree”. 

The position of each injector trajectory was calculated by iterating over each depth of the 

guide needle (for example, 0 mm, 1 mm, 2 mm, and so on), and then iterating over the rotation 

of the injector needle (for example, 0º, 20º, 40º, and so on). For each injector needle trajectory, 

a corresponding “DT2_TrajectoryInjector” is created. 

6.5.11.2 DT2_TrajectoryInjector 
The trajectory injector starts at the position that the injector needle comes out from the 

guide needle and stops when the injector needle leaves the PTV. The point that the injector 

needle leaves the PTV was also calculated by intersecting the two using “vtkOBBTree”. 

Once the start and end points of the injector have been calculated, all possible injections 

along this line are calculated (for example, an injection between 1 and 8 mm, then 1 and 9 mm, 

then 1 and 10 mm, then 2 and 9 mm, and so on). For each possible injection, a “DT2_Injection” 

is created. 
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6.5.11.3 DT2_Injection 

The injection class (“DT2_Injection”) contains the start and end depths of the injection. 

By supplying “DT2_Injection” with a pointer to the cylindrical injection kernel, the kernel can 

be translated, rotated and resampled into the correct position so that the injection can be quickly 

placed on the dose grid. 

6.5.12 DT2_Visualisation 
A base abstract class, “DT2_Visualisation”, was used for all visualisations. From this, 

four derived visualisations were created: 

• “DT2_Visualisation_Block3D”, 

• “DT2_Visualisation_DVH”, 

• “DT2_Visualisation_ParetoFront”, and 

• “DT2_Visualisation_Structs3D”, 

6.5.12.1 DT2_Visualisation_Block3D 
All 3D arrays were visualised using “DT2_Visualisation_Block3D”, which displayed 2D 

slices of the array. The “vtkImageData” was supplied, as well as the maximum value (if the 

user wished to clip the data to, say, 100 Gy), the desired look up table (for example, greyscale 

or fire) and pointers to structures that the user wishes to superpose on the array (as can be seen 

in the top-centre of the results page shown in Figure 6.11). 

The user could then navigate through the slices by using the mouse wheel, zoom by 

dragging with the right mouse button, change the level and contrast by dragging with the left 

mouse button, move the scene by dragging with the left mouse button whilst holding down the 

“Shift” key, or rotate by dragging with the left mouse button whilst holding down the “Cmd” 

key (on Mac). 

The orientation of the visualisation (sagittal, axial or coronal) could be changed using the 

class, “vtkImageResliceMapper”. 

6.5.12.2 DT2_Visualisation_DVH 

The DVHs were visualised using “vtkChartXY” by supplying pointers to the DVHs and, 

if desired, a maximum absorbed dose (200 Gy was often used throughout this work). 
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6.5.12.3 DT2_Visualisation_ParetoFront 

The class, “DT2_Visualisation_ParetoFront”, is actually an abstract base class with three 

derived classes: 

• DT2_Visualisation_ParetoFront_2D, 

• DT2_Visualisation_ParetoFront_3D, and 

• DT2_Visualisation_ParetoFront_ND. 

The 2D version was created using “vtkChartXY”, the 3D version was created using 

“vtkChartXYZ” and the ND version was created by displaying many 2D projections 

(“vtkChartXY”) of the ND Pareto front, as shown in Figure 4.15. 

To create a Pareto front visualisation, the user need only supply a pointer to the list of 

treatment plans. The plans will be displayed as a function of their Pareto front and plotted in 

the relevant position according to their costlet functions. 

6.5.12.4 DT2_Visualisation_Structs3D 
The last visualisation, “DT2_Visualisation_Structs3D”, is used to display 3D structures. 

For this class, three types of 3D object can be visualised all together: 

• The structures (the PTV and OARs); 

• The injections, injectors trajectory, guide trajectory; and 

• The bounding box of the dose grid. 

An example of all three in the same visualisation can be seen in the top-right of the results 

page, shown in Figure 6.11. 

6.6 Conclusion 
Using the information that has been accrued over the entirety of this research, a TPS has 

been created that could be used by an end-product user. The TPS contains a database and can 

be used to create and store multiple structures for a given DICOM series. 

Optimisations can then be created, edited, executed and reviewed. The creation of the 

optimisations was designed to be as simple as possible, and can be completed with just four 

wizard pages. 
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Once the optimisation has been completed, the results can be reviewed. From here, a 

treatment plan can be selected, and after validation, delivered to the patient. To aid the selection, 

much information is given on this page, including visualisations of the Pareto front and a table 

of all Pareto-optimal solutions. Once a plan has been selected, the treatment plan is displayed 

via 2D slices of the dose grid, 3D visualisation of the injections relative to the structures, DVHs 

of all structures and the coordinates of all injections. 

The entirety of the database can be saved to disk so that it can be reused in the future. 

Objects that are saved include the patients, studies, series, DICOM images, structures, 

optimisations and treatment plans. 

DosiToul is a large project, spanning 133 source files and over 11,000 lines of code. The 

code was implemented in object-oriented C++, making use of the open-source libraries, Qt, 

VTK and GDCM. 
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An innovative form of radiotherapy, microbrachytherapy, is under development. This 

therapy targets solid, inoperable tumours by performing injections of liquid containing 

radioactive microspheres in suspension. 

Many injections are required to sufficiently cover the tumoural volume, and so to be able 

to deliver the position of these injections, a method of treatment planning has been developed 

and validated throughout this research. 

Throughout this work, three main questions are addressed: 

• How to perform the dosimetry for microbrachytherapy? 

• How to perform treatment planning for this modality? 

• What are the optimal injection properties to deliver the most efficient treatment? 

Microbrachytherapy dosimetry was performed by calculating the absorbed dose 

distribution for an injection. This distribution was then convolved at each injection position 

within the tumour to calculate the patient’s absorbed dose distribution. Dosimetry of the tumour 

and the organs at risk was performed by extracting and analysing dose-volume histograms 

(DVHs). 

Once a method of dosimetry was put in place, optimisation algorithms were developed to 

generate patient-specific treatment plans. For this, three algorithms were tested and compared: 

Nelder-Mead Simplex, the Bees algorithm and the non-dominated sorting genetic algorithm-II. 

It was found that, thanks to its MO optimisation, the non-dominated sorting algorithm-II was 

the most flexible, and was used preferentially. 

Lastly, a comparison of injection parameters was performed. It was found that between 
90Y, 166Ho, 131I and 177Lu, optimal injections consisted of microspheres of 90Y. Injection 

volumes of 5, 10 and 20 μL and initial activities of 5, 10 and 20 MBq were tested. It was found 

that 20 μL injections with 20 MBq were optimal because they minimise the number of 

injections required. 

This new technology combined with developments shown in this work demonstrate the 

feasibility – that was validated on animals – the ability to inject liquid containing radioactive 

microspheres in suspension to efficiently treat inoperable tumours whilst protecting 

surrounding healthy tissue. Such tumours, despite still having a poor prognosis, will surely have 

better support in the near future. 
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MOTS-CLES : PLANIFICATION DE TRAITEMENT, MICRO-CURIETHERAPIE DOSIMETRIE 

Une nouvelle modalité de radiothérapie, la micro-curiethérapie, est en cours de 

développement. Cette thérapie cible des tumeurs solides inopérables en effectuant des 

injections de liquide contenant des microsphères radioactives en suspension. 

Plusieurs injections sont nécessaires pour suffisamment irradier la zone tumorale et donc, 

afin d’optimiser le positionnement de ces injections, une méthode de planification de traitement 

nécessaire a été développée et validée au cours de cette thèse. 

Tout au long de ce travail, trois thèmes principaux seront discutés : 

• Comment réaliser la dosimétrie particulière de cette micro-curiethérapie ? 

• Comment effectuer la planification de traitement pour cette modalité ? 

• Comment optimiser le plan de traitement afin qu’il soit le plus efficace possible ? 

La dosimétrie en micro-curiethérapie a été réalisée en calculant la distribution de dose 

absorbée pour une injection. Cette distribution a été convoluée à la position des autres injections 

dans la tumeur pour calculer la distribution de dose absorbée dans le patient. Pour effectuer la 

dosimétrie spécifique dans la tumeur et les organes à risque, les histogrammes dose-volume 

(HDV) ont été extraits et analysés. 

Une fois la méthode de dosimétrie établie, nous avons développé une méthodologie de 

planification de traitement pour développer et optimiser le plan pour chaque patient. Pour cela, 

nous avons testé et comparé trois algorithmes : la méthode de Nelder-Mead, l’algorithme des 

abeilles et l’algorithme « Non-Dominated Sorting Genetic Algorithm-II » (NSGA-II). Nous 

avons montré que, grâce à l’optimisation multiobjectif, le NSGA-II donne plus de liberté à 

l’utilisateur ; c’est pourquoi il a été utilisé par la suite. 

Enfin, nous avons effectué une comparaison entre les paramètres d’injection. Nous avons 

mis en évidence qu’entre les radio-isotopes 90Y, 166Ho, 131I and 177Lu, les injections de 90Y sont 

optimales. Nous avons testé des injections de 5, 10 et 20 μL et des activités initiales de 5, 10 et 

20 MBq. Nous avons trouvé que des injections de 20 μL avec 20 MBq sont optimales car celles-

ci permettent de minimiser le nombre d’injections requis. 

Cette nouvelle technologie associée aux développements réalisés dans ses travaux 

démontre la faisabilité, qui a pu être validée sur animal, de pouvoir injecter un liquide contenant 

des microsphères radioactives en suspension afin de pouvoir traiter efficacement, tout en 

préservant les tissus sains environnants, des tumeurs inopérables encore de mauvais pronostic 

aujourd’hui, mais surement mieux prises en charge dans un proche avenir. 


