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Nowadays, industrial processes have increased in a large and complex way, whether they are production 

units (petroleum refineries, nuclear power stations), means of transport (planes, trains), or others ... They 

often result from the interconnection of several subsystems. The study of these processes has received 

renewed interest from the scientific community in recent years, particularly with regard to the development 

of diagnostic and prognostic strategies, for several reasons: all of Firstly, the industrial competitiveness 

induced by the requirements of the economic market encourages the reduction of production costs. 

Secondly, the reliability and availability requirements of the systems have become indispensable for 

increasing the productivity of an industrial process.  Finally, fault tolerance control (FTC) has been 

particularly developed in recent years, producing results applicable to the regulation of systems. In this 

diagnostic and prognostic context, manufacturers must meet binding specifications: satisfaction of quality 

and, safety constraints and compliance with environmental standards (noise, pollution, etc.). To meet these 

specifications, it is essential to ensure that industrial processes operate safely in relation to their human and 

material environment. It is also important to optimize production to reduce costs. However, faults can occur 

on these systems, whether on the instrumentation (sensors and actuators) or in the system itself. This can 

cause a degradation of the system performance (product quality, stability, availability etc.), which could 

defeat the mission of the system in question. This problem has a direct impact on the objectives stated 

above. Indeed, the determination of the operating conditions at each moment is necessary in order to know 

the moment when the system deviates from its normal behavior and to take the necessary measures so that 

there is no interruption of service. This is the purpose of the diagnosis of the system which provides fault 

detection and diagnosis. This concern must be ensured throughout the lifetime of a process. Despite the 

importance of fault diagnosis, but the most important issue, which is the focused work in the last years of 

industrial research, is the subject of prognostics or the prediction of the future status of the system. 

In general, industrial processes are intended to produce objects, to synthesize components, or to perform 

services, which make it possible to obtain in large quantities products that would otherwise be relatively 

difficult or expensive to obtain. They help address important social challenges such as climate change, 

energy shortages, security issues, and health. Uncertainty, unpredictability, the dynamics of phenomena and 

a large number of data to be processed make the above tasks very complex and the decisions in real time 

are very difficult. In addition, failures of industrial processes have become difficult to detect and diagnose. 

To cope with these difficulties, it is essential to provide these processes with greater reliability and 

reliability. The chemical industry is a major player in the economy in many countries. This sector provides 

essential products (medicines, fertilizers, plastic,...). Despite its contribution to the rising standard of living, 

it faces a dangerous and polluting industry image because of the systems and raw materials it uses. Thus, 

the slightest anomaly in a chemical system can spread throughout the installation and thus causes serious 

consequences. Since the Second World War, the rapid growth and expansion of the chemical industry have 

led to serious accidents for the natural and industrial environment. On the night of December 3, 1984, in 

Bhopal (central India) (Stellman and Dufresne, 2000), the explosion of a plant of a subsidiary of the 

American firm Union Carbide producing pesticides, cleared 40 tons of methyl isocyanate in the atmosphere 

of the city. This accident killed 2,500 people and left 200,000 injured. The cause of the accident is a 

chemical reaction of the product with water remaining in a tank after cleaning.  
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Bhopal is probably the worst industrial chemical disaster of all time. On September 21, 2001 (Souriau et 

al., 2002), an explosion largely destroyed the chemical complex AZF (Azote Fertilizers) belonging to the 

Grande Paroisse company (Total group), the leading French fertilizer manufacturer. Thirty people were 

killed and 2,500 injured and 27,000 homes damaged. The explosion occurred in a stockpile of about 300 

tons of ammonium nitrate pellets, digging an oval-shaped crater 70 meters long and 40 meters wide, and 5 

to 6 meters deep. The detonation was heard more than 80 km from Toulouse. An earthquake of magnitude 

3.4 has been recorded. The most likely cause of this disaster was the mixing of incompatible products in the 

hangar, which contained manufacturing waste and where a dump had just been emptied thirty minutes 

before the explosion, where the explosion occurred. in addition, the yearly costs of these accidents are 

beyond billions of dollars [1]. In view of these and other disasters, it is essential to ensure the normal 

operation of industrial installations. Indeed, the detection of a dysfunction at the beginning of its 

appearance, Pre-knowledge and the predicting of the future state of the system can avoid serious 

consequences. In fact, the efficiency of the maintenance of industrial systems is a major economic stake for 

their commercial exploitation. The main difficulties and sources of inefficiency lie in the choice of 

maintenance actions. A maintenance action is to replace equipment in the system that is out of order and is 

no longer capable of performing its function. Maintenance operations are expensive for several reasons. 

In this case, throughout the maintenance phase, the system is not operational. The longer the 

maintenance phase, the more expensive it is due to the unavailability of the system. Therefore the 

maintenance phase should ideally be reduced to the operations of replacing, without trial and error, 

equipment actually down. The decision of a maintenance action is very complex and must be based on 

intelligent monitoring and analysis of the state of the system. A fault diagnosis is then necessary to 

determine as precisely as possible the equipment that needs to be repaired. When the diagnosis is less 

ambiguous, more maintenance operations are effective. The second reason that maintenance can be costly 

for cases of emergency where the safety or performance of the function of the system is involved. In fact, 

when equipment suddenly breaks down and the system can no longer perform its function, maintenance 

actions must be automatically performed to bring the system back into working order. These unforeseen 

actions are naturally more expensive because the needs and services for maintenance have not been 

anticipated and must be quickly available. To minimize the occurrence of this type of situation, preventive 

maintenance may be considered. Equipment failures can be anticipated and corrected before generating too 

much damage that could cause an unexpected stopping of the system. Most often, preventive maintenance 

relies solely on reliability analyzes that do not take into account the demands that actually influence the 

system's equipment throughout its operation. Indeed, abnormal or unforeseen stresses can accelerate 

equipment degradation. Preventive maintenance can be improved by a prognostic of reasoning to estimate 

the impact of these demands on the lifetime of the equipment. By establishing any maintenance action is 

appropriate at a given time, the prognostic also helps to plan future maintenance phases. Although the 

plants are equipped with automatic systems, computer simulation and analysis is still limited to maintain 

process plant integrity and extremely relied on human operators. For instance, humans can’t detect hidden 

faults or predict future problems. Previous Industrial statistics have shown that major catastrophes may be 

infrequent, and minor accidents are very common. 
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Based on all of the above and in order to put the work in its proper course, the main objective in this 

thesis is centered around an effective health monitoring technique must be adapted to determine the state of 

the system at all times. A diagnostic method determines the current state of the system and identifies the 

probable causes (interaction with the environment, faults, etc.) that can lead to this state by reasoning on the 

observations. A prognostic method uses the current mission plan and knowledge of system degradation to 

anticipate abnormal behaviors or faults and thus predict future states. Prognostic is usually associated with 

the term end-of-life (EOL) prediction of an in-service system when the system is no longer operational, or 

its Remaining Useful Life (RUL), that means the remaining time until the end of life. The diagnosis and the 

prognostic thus make it possible to have a report on the current health of the system as well as a prediction 

of the evolution of its state in the future. This information is used to reconfigure the system and update the 

mission and maintenance plans, hence the importance of diagnostic and prognostic in the strategy of the 

maintenance. This thesis focuses on optimizing the maintenance of complex industrial systems. It proposes 

to set up a supervision architecture that integrates diagnostic and prognostic capabilities with the aim of 

helping to make decisions on maintenance actions. The complex systems that are considered in this thesis 

are composed of totally heterogeneous equipment (hardware, software) and require several types of 

techniques to be monitored. This thesis presents an abstract and homogeneous description of a complex 

system from which it is possible to characterize an original coupling of diagnostic and prognostic problems. 

The main application of this thesis work concerns the monitoring (diagnosis and prognostics) of a 

distillation column.  Such a system consists of separating the constituents of a liquid mixture. Distillation 

systems are nowadays used on a large scale, especially in the chemical industry. Due to their growing 

presence in increasingly diverse application areas, the security issues associated with this type of system are 

becoming more prevalent in operational constraints. The slightest failure on the distillation unit can limit 

the performance of the products and have serious consequences if it is not detected quickly. It is 

particularly relevant to be able to monitor these systems in real time so as to ensure the safety of goods and 

people in direct or indirect relation with the application while achieving the operational objectives set. 

Based on the literature, diagnostic methods differ according to different criteria: the dynamic process, 

complexity, online diagnostic implementing, the nature of information, depth, distribution... in this context, 

several classifications are also proposed in the literature. These classifications are influenced by 

terminologies and specific contexts of each community and are not always consistent.  

The researchers that are applied to the monitoring of chemical engineering distillation system are not 

strongly addressed and the numbers of articles related to this topic are very limited. Researchers classified 

diagnostic methods into two large families: methods based on mathematical model and model-free methods 

[2]. Many researchers said that the use of particular techniques model free is more effective than the 

methods with a model, especially for the diagnosis and prognostic of faults in real time on a distillation 

process [3].Concerning the prognostics part, in the previous works (Ciarapica and Giacchetta in 2006) and 

(Jardine et al., 2006), have proved that the prognostic topic represents a work main frame that ensures the 

safety for industrial environment, and is considered as a key process in maintenance strategies. According 

to ISO 13381-1 [ISO, 2004], the prognostic of faults corresponds to the estimation time of operation before 

failure and the risk of the existence or subsequent appearance of one or more modes of failure [4]. This 

duration of operation before failure is commonly called Remaining Useful Life (RUL) (Khelif et al., 2014) 
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[4]. In literature, prognostic methods are classified into two large families: data-driven methods and 

statistical techniques (Vasile-Dragomir, 2008) [5]. Usually, real systems are noisy, complex, nonlinear, and 

nonstationary, that's why, building a mathematical model for prognostic of a real industrial system is so 

difficult [3], Therefore, it is important to use methods that depend on algorithms without a model. 

Previously, hybrid systems have been shown as important and efficient algorithms in forecasting and 

prediction domain, therefore, in our research we rely on a hybrid neuro-fuzzy system called adaptive neuro-

fuzzy inference system (ANFIS) that combine fuzzy logic (FL) and artificial neural network (ANN)  in the 

same algorithm and them are dramatically used as prediction and forecasting approaches [6] [7] [8] [9] 

[10].  The most important factor that affects the prediction accuracy of ANFIS is the type of Membership 

Function (MF) used on the first layer of ANFIS architecture. The execution time is also important for real-

time processing [11].  Referring to a comparative study in 2016, Ardhian et al. [11] suggested that the 

trapezoidal shape is the best MF that can be used for load forecasting. As well in 2011, Mayilvaganan et al. 

[12] proved that the Gaussian shape showed significant results for the prediction of the groundwater level 

of a watershed. Also in 2012, Singh et al. demonstrated that the Gaussian and the bell-shape are the best 

MFs for the estimation of the elastic constant of rocks [13]. In the absence of any study applied to a data 

extracted from the distillation column to find the best forecasting technique, it is, therefore, necessary, to do 

a comparative study between different types of membership functions (MFs) in order to conclude upon the 

best MF that can be used for forecasting the distillation process data. A thoughtful consideration of the way 

to find a new MF with a low number of parameters is the first incentive to propose the Parzen windows 

distribution as a new membership function to be used on the first layer of ANFIS algorithm. As it is known, 

only the standard deviation (h) can modify the Parzen shape form, and in this case, we have only one 

parameter that should be updated for each iteration. In a part of this thesis, we try to find the best type of 

MF, which has the smallest root mean square errors (RMSE) among actual data and forecasting data, when 

considering the execution time.  

This thesis is divided into four chapters, whose content is organized as follows: 

The first chapter presents an overview of the general industrial accidents then we will go towards the 

accidents that occur in the chemical industry especially in chemical reactors, then we will focus on the all 

type of distillation process with depth explanation of the automated continuous distillation process then we 

develop the different types of faults that may occur in distillation process then we will move to the data 

collected from the side of diagnosis and prognostic by clarifying the characteristic of the acquired signals. 

This chapter is ended by a pre-processing of the data used in this study followed by a state of art for data 

reduction include features extraction and features selection and a framework of the maintenance strategy of 

complex systems. 

The second chapter presents the qualitative and quantitative methods most widely used in the literature 

for the diagnosis of chemical processes and the different methods of risk analysis. This state of the art is the 

result of a bibliographic search of about a hundred well-studied articles on the evolution of the monitoring 

of the chemical processes and the different methods developed. A synthesis on methods of monitoring 

chemical reactors without models is developed in this section. Then we move to a state of the art that 

http://www.sciencedirect.com/science/article/pii/S1568494611003899
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presents the realized work of detection and diagnosis of faults that may occur in the distillation column and 

clarify the weaknesses of the previous methods. The results of this biography aim to select the neuro-fuzzy 

as a better technique for the diagnosis of faults that occur in a distillation column. This chapter is finished 

by an application of fuzzy logic and ANN separately on the data extracted from the distillation column. 

Depending on the obtained results we decided to propose an approach more efficient in real-time analysis 

of distillation column system. It proposes a methodology that combines fuzzy c-mean (FCM) clustering and 

neural network for diagnosis, detection, and classification of many faults. Moreover, a modified FCM 

method (MFCM) is presented in place of a feature extraction and selection approach. MFCM is a clustering 

method that allows calculating the degree of variation between normal and abnormal modes. The output of 

the MFCM is considered as inputs for the neural network classifier. This proposed methodology is then 

tested via a real experimental data obtained from a distillation column, after a pre-processing step including 

filtering and smoothing of the signals. A database with normal and faulty observations is analyzed. The 

database is composed of eight different types of faults that may occur during the automated distillation 

process in the chemical industry. The results of the proposed method confirm the ability to classify between 

normal and eight abnormal classes of faults. 

The third chapter is devoted to the positioning of prognostic activity in the context of industrial 

maintenance and to the study of potentially useful tools to support this process and gives an overview of 

prognostic methods. Then we will move to an overview of the classification of prognostics approaches 

applied to the chemical reactors and the distillation column will be presented including their pros and cons. 

Different RUL estimation strategies are also reviewed. The investigation track in this chapter is aim to 

choose the adaptive neuro-fuzzy inference system (ANFIS) approach as the best technique.  ANFIS is able 

to calculate the RUL of the distillation column degradation (guide to choosing a prognostic tool). Then, this 

chapter will position our work in relation to the literature of prognostic. This chapter is ended by the 

developing of a new prognostic strategy, applied to a real experimental data acquired from distillation 

column and from a metric pump. This methodology is a new technique effective in determining the path of 

deterioration of the distillation column system and also predicts the future path (prognostic) of this system 

by determining their RUL. Also, this work presents a direct monitoring approach based on the technique of 

adaptive neuro-fuzzy inference system (ANFIS) combined with fuzzy C-means algorithm (FCM). The 

results of a comparative study between the results of our proposed methodology and other based on ANN 

are discussed at the end of this application. The Results demonstrate the validity of the proposed technique 

to achieve the needed objectives with a high-level accuracy, especially the ability to determine a more 

accurate Remaining Useful Life (RUL) when it applied on the automated distillation process in the 

chemical industry.To improve the performance of ANFIS algorithm, Parzen windows distribution is 

proposed as a new membership function for ANFIS algorithm. The aims of this proposing are to reducing 

the consumption time and make the processing closer to a real-time application or minimizing the root 

means square error (RMSE) between the real and predictive data. The methodology is tested on real 

experimental data obtained from a distillation column aiming to predict the failure that may occur during 

the automated continuous distillation process.  A comparative study was needed to choose the better 

membership function can be used for ANFIS algorithm when ANFIS applied to distillation column data.  

The results obtained in this research demonstrated that Parzen window proved its worth as a new 
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membership function of ANFIS algorithm when it is applied to the distillation column data and it also 

proved to be successful in reducing the execution time of ANFIS. The results have also shown that Parzen 

MF is chosen as the best MF for three over eight types of normal signals and for five over eight degraded 

signals.   

The last chapter, chapter 4 proposes a new methodology that works for fault prognostics and diagnosis 

at the same time as a full scanning system can be applied to distillation column faults. The Adaptive Neuro-

Fuzzy Inference System (ANFIS), as a hybrid system, has been selected for the step related to prediction 

since it combines the advantages of fuzzy logic and ANNs in one simultaneous algorithm. In our research, 

we tested this methodology with real experimental data that was obtained from a real distillation column. 

This resulted in the analysis of a database with different types of faults that could potentially occur during 

the automated distillation process. The results that were observed proved the validity and strength of this 

proposed technique. It was also demonstrated that the technique achieved with a high level of accuracy, the 

objective of prediction and diagnosis especially when applied to the data obtained from automated 

distillation process in the chemical industry.  

Thesis Contributions 

In this section, we briefly summarize the main contributions of this thesis. We classify them according to the 

field to which they naturally belong. In the field of faults diagnosis and prognostics, the main contributions 

are: 

 We propose a new methodology that combines a modified fuzzy c-mean (MFCM) clustering technics 

and artificial neural network in one algorithm for detection, diagnosis, and classification of faults for 

real-time analysis. 

 We develop of a new fault prognostic strategy based on the technique of Adaptive Neuro-Fuzzy 

Inference System (ANFIS) combined with Fuzzy C-means algorithm (FCM). This methodology is a 

new technique used to determining the deterioration path of a system then predicts the future path 

(prognostic) of this system by determining their Remaining Useful Life (RUL) as a direct and real time 

monitoring approach. 

 We propose Parzen windows distribution as a new membership function to improve the performance of 

ANFIS algorithm. This new methodology aims to reduce the consumption time and make the 

processing closer to a real-time application and minimizing the root means square error (RMSE) 

between the real and predictive data for more and more accurate prognosis. 

 We propose a new methodology used for fault prognostics and diagnosis at the same time as a new 

maintenance strategy. The Adaptive Neuro-Fuzzy Inference System (ANFIS), as a hybrid system, has 

been selected for the step related to the data prediction where this step followed by the classification of 

faults based on ANN as a fault diagnosis step. 

We examined the applicability of our proposals for fault detection, diagnosis, and prognostics in real data 

extracted from the distillation column system. 
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Chapter 1 

 

Notions on the industrial distillation processes-data 

collection for faults diagnosis and prognostics 
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1.1 Introduction  

The chemical industry is one of the pillars of the global economy, but in recent years it has faced an 

unflattering image of a dangerous and polluting industry. The history of hazardous chemical accidents 

shows that this industry remains one of the major sources of serious incidents that are relatively more likely 

to happen than previously thought [14].  

Eight sectors of activity are distinguished in the accident sample studied with more than 6 recorded 

cases (Figure 1.1). Chemistry is leading with more than 54% of the accidents recorded (150 cases). This 

result can be explained by the high rate of automation of chemical processes, their diversity, and the high 

number of production sites in France, which is also the most widely represented in the ARIA database 

(12% of accidents of installations classified between 1992 and 2012). Many installations are versatile to 

produce a variety of products, which encourages the occurrence of unforeseen accidental situations in the 

design of the automated system or as a result of erroneous driving decisions. In this sector, a better 

integration of the treatment function would have prevented or reduced the probability of an accident in 21% 

of cases; slightly higher than the average rate of all sectors (16%) [15]. 

 

Figure 1.1: Distribution of Accidents by Sectors 

Some recent examples of such accidents in the world that have caused significant loss of life and major 

damage to property and the environment include The explosion of the four reactors at the Fukushima-

Daiichi nuclear power plant in North- East Japan in 2011, the destruction of the oxidation unit of the plant 

Flixborough FP Less. (1996) [16], the toxic cloud of dioxin dispersed in the commune of Seveso, and the 

4000 victims and 200,000 injured in the Bhopal disaster or the explosion of the AZF plant. Gupta. (2005), 

[17]. Other major accidents can be cited, such as those in Mississauga, Ontario, St-Basile-le-Grand in 
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Quebec, Chernobyl in Ukraine, San-doz in Basel, Feyzin Rafferty in Lyon, and silos of Metz and Blaye, 

etc. 

Therefore, many images will remain engraved in the memory of those who have lived it, and also in the 

memory of all the actors of security who are still trying to learn the lessons and avoid the mistakes of the 

past J.L. Gustin. (2002) [18] T.A. Kletz (2006) [19].  

Many industrial accidents have been caused by reactions whose implementation has not been controlled: 

thermal runaway, uncontrolled secondary reaction ... These consequences are often important as much as an 

unwanted chemical reaction is liable, following the reactants employed, to give material both to an 

explosion and to the emission of toxic or flammable products into the environment [14]. 

The main causes and reasons for the development of uncontrolled reactions in the industry are due to 

lack of design or operation of the plants and manufacturing processes [20]. These accidents have 

demonstrated the extent to which the incidents caused by this type of industry can be significant and 

destructive. Formerly facing these events, we have become obliged to rely on chemical risk by questioning 

industrial practices and identifying new technological issues (diagnosis, dependability, supervision, 

prognostic ...) [21]. 

This development of the security aspects coincides with a change in the social context and the 

emergence of new themes such as ecology and environmental protection, which are now embedded in 

sustainable development [22][23]. From this period, this public awareness leads to a lower tolerance of the 

impact of industries on man and his environment (rejection of effluents, waste, noise pollution, etc.) [24]. 

The phenomena involved in the chemical process must be characterized in such a way as to ensure that 

it is the most suitable, both for the design of the installation and for the choice of the operating mode. In a 

chemical process, the non-linearity and sensitivity of certain parameters influence the course of the 

chemical reaction. A small variation in one of these parameters can dramatically change the course of the 

reaction and may even lead to an accident [14]. 

In the chemical industry, the consequences of accidents are listed in two types of effects:  

  Thermal effects that correspond to the combustion of a flammable product or to an explosion. 

 Mechanical effects that correspond to an overpressure caused by a shock wave (deflagration or 

detonation) from an explosion. The latter may result from an explosive, a violent chemical reaction, a 

sudden decompression of a pressurized gas, or a violent combustion or the ignition of a cloud of 

combustible dust. Specialists estimate the overpressure generated by the explosion in order to predict 

the associated effects on the bodies of living beings [25]. 

One of the important branches of process engineering is the chemical reaction field, which focuses on 

methods for the rational implementation of chemical transformations and particularly on the apparatus in 

which reactions are conducted: chemical reactors. Although the reactor represents only a modest share of 

the investment in an industrial process, its operation largely determines the upstream facilities (preparation 
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of reagent loads, choice of temperature and pressure conditions) and installations (products separating 

devices in particular). An improvement in the efficiency of the reactor by a few units can, therefore, result 

in a significant reduction in investment costs and consumption of materials and energy. In this sense, it can 

be said that the reactor is truly the heart of the process; thus, it requires the attention of the engineers. 

In the case of a chemical reactor, the main factor which can lead to its monitoring is the assistance in the 

management of a process which provides the operator with the necessary tools to make decisions about 

actions to optimize its work (maximum production, safety, and non-degradation of equipment) [26]. This 

driving aid requires monitoring of the process in order to detect all the anomalies of the operation and to 

identify the causes as well as possible. Maintenance, which is aimed at the replacement or repair of worn or 

defective equipment, is carried out mostly off-line. It is important to note that while conduct and 

maintenance are operations that take time in different ways, the monitoring they involve must be in line for 

both purposes. In this light, the advantage of being able to determine in real time the occurrence of a 

malfunction during the implementation of a chemical process is justified in order to be able to effectively 

remedy the problem of faults detection and diagnosis of chemical faults. 

On the other hand, the role of computer simulation and analysis is still restricted in the ability to 

preserve process plant safety and highly dependent on human operators. Humans could not be able to 

discover the hidden faults or predict future failures. Industrial statistics showed that the major disasters may 

be rare, but the minor accidents are very frequent with an annual cost that exceed billions of dollars [1][3]. 

Therefore, it’s necessary for the industrialists to surround the severity status of the fault and to predict the 

ideal moment to intervene and stop the instrument. This is known as a fault diagnosis followed by a 

prognostic process [27].  

1.2 Accidents in the Chemical Industry  

The chemical industry is composed of several major sectors which include the activities of the French 

Nomenclature of Activities (FNA): 

 Mineral chemistry: The main components of the inorganic chemistry are water, air, salt, sulfur, and 

phosphate to produce sulfuric acid and its derivatives. Derivatives of sulfuric acid are products 

obtained by electrolysis, such as chlorine or sodium hydroxide, compressed gases, and more 

sophisticated products such as fertilizers. 

 Organic chemistry: it consists of petrochemical material such as rubber plastics and elastomers. 

The products that consist of this sector are ethylene, propylene, butadiene, benzene, ethanol, and 

acetone ... 

 The specialty chemicals: This sector includes all products that have properties for a specific use 

such as: 
 Paints, varnishes, inks, glues, and adhesives 

 Plant protection products 

 Essential oils 
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 Soaps, cleaning products and perfumes: are all detergents, and personal beauty care. These 

products are used by the industrial sector and households. 

 The Fine Chemicals: this sector conceptualizes complex molecules (called active ingredients) with 

many chemical reactions in cascades. Subsequently, these active ingredients are formulated into 

specific products which are the drugs [28]. 

The chemical activity in France is growing since 2013, which is a good sign because even with the 

economic crisis chemical industries manage to increase their activities. 

Moreover, some sectors have not experienced in the last four years any increase in its activity, such as 

the area of mineral chemistry and specialty chemicals. We also see that the French chemical industries have 

better numbers than the European chemical industries. 

A chemical accident is the accidental release of one or more substances which may be hazardous to 

health and/or the environment in the short or long term. These events may include fires, explosions, leaks 

or accidental releases of hazardous substances that can cause humans diseases, injuries, disabilities or 

deaths. 

1.3 Terminology  

As a step towards a unified terminology, the Technical Committee of International Federation of 

Automatic Control (IFAC) SAFEPROCESS suggested preliminary definitions in the field of fault diagnosis 

[29]. Some of the definitions are modified according to the terminology introduced by Blanke et al. in 2000 

[30]; the following list shows common definitions presented by these two references: 

As browsing through the literature, we realize immediately that the terminology in the field of diagnosis is 

not consistent. Many definitions of the same word are found. For example, the diagnostic term has several 

definitions, different by field of application: 

 

 In medicine, the diagnosis means the approach taken to determine infection. It is based on research 

into the causes and symptoms of the infection. 

 In finance, the diagnosis is a dynamic analysis tool for developing various papers anticipation of 

future funding needs of the association, establishment or service. 

 In automatic, the diagnosis is a decision support system that can locate components or a system 

failing organs and eventually to determine its causes.  

This inconsistency makes comparing different approaches tasks and the precision of the work and 

contribution of the objectives in this area elusive. In order to remove these ambiguities, the 

SAFEPROCESS technical committee of IFAC (International Federation of Automatic Control) has 

discussed this problem and it tried to standardize these definitions. In this context, it seems essential to 

recall the terminology used in this report. These definitions are based on the work of the technical 

committee SAFPROCESS [31][29][32]. 
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Structural analysis: 

It is the analysis of structural properties of the models; properties that are independent of actual 

parametric values. 

 

Fault:  

This is an unacceptable drift of at least one characteristic property or variable or a deviation of the 

behavior of the system from its standard behavior; which is usually always acceptable. It does not cause the 

system to malfunction but lets us consider a probable failure. 

 

Failure: 

It may be a consequence of a fault. This is an alteration or interruption of proven performance features 

of a device. 

 

Break-down: 

It represents the consequences of failure in achieving nominal operation of a process. In other words, it 

is a state of non-operation or malfunction, hardware or software in the sense that a unit is unable to perform 

a required function, leading to failure. A breakdown can be regarded as permanent or intermittent: 

 Permanent failure: it is a malfunction of a component that needs to be changed or repaired. It can 

be the result of gradual changes in the characteristics of a component, such as aging, for example, 

or a sudden change of sensitive material. 

 Intermittent failure: it can allow a return of the process in its dynamic operation. These failures 

often precede permanent failure following a gradual degradation of system performance. 

 

Malfunction: 

A permanent interruption of the system's ability to perform a required function, under specified operating 

conditions. 

Surveillance:  

 Definition 1: Surveillance is a continuous, real-time task that aims to characterize the way the 

physical system works, by recording information, recognizing and indicating behavioral 

abnormalities [33]. 

 Definition2: Surveillance is a passive, informational device that analyzes the state of the system 

and provides indicators. Monitoring includes detecting and classifying failures by observing the 

evolution of the system and then diagnosing it by locating the failing elements and identifying the 

root causes [34]. 

 

Fault Detection:  

It is the determination of the presence of faults and the time of their occurrences. 

 

Fault Isolation:  
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It is the determination of the type, location and time of occurrence of the fault. 

 

Fault Identification:  

It is the determination of the size and the temporal behavior of a fault. 

 

Diagnosis:  

     It is the determination of the type, size, location and time of occurrence of a fault; it follows the fault 

detection and includes the isolation and the identification. 

 

Prognosis or Prognostics: 

Prognostic is the ability to perform a reliable and sufficiently accurate prediction of the remaining useful 

life (RUL) of equipment in service. 

 

Mode of operation: 

It is a term used to describe the different operational situations of a process. There are three modes of 

operation: normal, degraded, and failure: 

 The mode of operation is considered normal when the system performs its functions without 

decreasing performance. 

 The mode of operation is considered degraded if the system partially fulfills its functions or if its 

performance suffers. 

 The mode of operation is considered a failure when the system is no longer able to perform its 

functions or that its performance is greatly reduced.  

Failure effect:  

It is the consequence of a failure mode of the operation, function, or status of a variable. 

 

Qualitative model:  

It is a system model describing the behavior with relationships between variables and parameters of the 

system in terms of causalities such as heuristics or rules. 

 

Quantitative Model:  

It is a system model describing the behavior of relationships between system variables and parameters in 

analytical terms such as differential equations or differences. 

 

Fault Modeling:  

It is the determination of a mathematical model to describe a specific effect of the fault. 

 

Reconfiguration:  

It is changing of the structure and controller settings. The original control is achieved although the 

performance may be degraded. 
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Analytical Redundancy:  

It is determining a variable by measurement or by use of a mathematical model of the process considered. 

 

Residue:  

The bearing information signals, based on the difference between measurements and calculations based 

on the model. 

 

Fault tolerance:  

Fault tolerance is the fact that the system continues able to perform the desired tasks or if necessary to 

achieve new goals in order to avoid catastrophic trajectories, even in the presence of one or more faults. It 

is based on two approaches to configuring and accommodation:  

 Reconfiguration: it is the function of changing the control of the system or the substantive 

provisions of the system so that non-failed components can deliver acceptable service. 

 Accommodation: the reconfiguration of the system without compromising its objectives or its 

structure. It is to correct or cancel the effects of a default or through a recovery procedure or offset 

errors. 

 

Recovery: 

 It is to find a cure for failure (eg: replacing the faulty component). 

 

Maintenance:  

Is to replace or repair faulty equipment or users.in maintenance two types of service are possible: 

 Preventive maintenance: it can be systematic or conditional (she speaks at the prediction of a future 

failure of the physical system). 

 Corrective maintenance shall be carried out after the failure. It is either palliative (temporary 

emergency solution for the failing part to ensure at least some of its features) or curative (it 

corresponds to a replacement of the defective component and a reset state of the system). 

 

Threshold:  

The limit value of the deviation of a residue with zero, so if it is exceeded, a fault is declared as 

detected. 

1.4 Fault Type  

A fault is defined as not allowed deviation between the actual value of a characteristic of the system and 

its nominal value. As shown in Figure 1.2, three types of faults are distinguished: actuator failure, sensor 

failure and process failure (or component fault). 

Each of these faults, as well as their influence on the process, is briefly described in the paragraph below. 
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Figure 1.2: Various Physical System Faults Types  

According to Isermann et al. (2002), the faults can be differentiated according to their form (systematic 

or random), according to the extension of the fault (local or global) or according to their temporal evolution 

[35]. 

1.4.1 Fault Classification According to the Extension 

a- Sensor Fault 

The sensors are instruments that transform a physical grandeur into voltage grandeur. The sensors are 

essentially the output interfaces of a system with the external environment. They help to communicate 

information concerning the status and the internal behavior of the process. Thus, a fault sensor 

characterizes a bad image of the physical quantity being measured. For closed-loop systems, the 

measurements from these sensors are used for generating the control signal. Therefore, the presence of a 

faulty sensor provides an inaccurate and inefficient control signal. The faults most common sensors are: a) 

bias b) drift, c) the loss of efficiency, d) the locking and e) the calibration fault. Figure 1.3 shows the effect 

of these faults on the measurements [36]. 

 

Figure 1.3: The Effect of Different Fault Types on the Sensor Measurements. Dotted Lines Indicate the 

Measured Values of the Sensor; However, the Continuous Line Represents the Actual Values. 

In 2009 Sobhani et al. define the mathematical equations (eq.1.1) for these faults as:   

Actuator Process Sensor 

Actuator failure Process failure Sensor failure 

Control 

 Inputs u 

Measures 

y 
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b- Actuator Fault 

The actuator is part of the operative part of a system which converts the control signals from the 

controller (processor) in a physical grander like the heat (electric heater) the movement (motor), or 

magnetic field (solenoid)...Thus, the actuators faults act at the operative part and destroy the system input 

signal. The consequences of actuators faults can vary from a high consumption of energy until the total loss 

of control. Actuators faults vary from one actuator to another, but not an exhaustive classification of the 

most common faults is given in Figure 1.4 [36]. 

 

Figure 1.4: Graphical Representation of the Most Common Faults Actuator (Ducard, 2009) [36]. Dotted 

Lines Designate the Desired Values of the Actuator; However, the Continuous Line Lines Represent the 

Current Values. (a) Oscillation, (b) Blocking, (c) Saturation and (d) Loss of Efficiency. 

Different types of actuator faults can be represented by the following expressions: 

c- Process Fault 

Components faults are faults that affect the system components itself. These are faults that cannot be 

classified either among the actuators faults or faults of the sensors. This type of fault causes a change in the 

dynamics of the system following a change in these parameters. The mathematical representation of the 

components faults is often difficult to determine and requires extensive experimental tests. In general, they 

result in a change in the state equation. This change can be parametric or structural/functional. These faults 

induce system instability. 
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1.4.2 Fault Classification According to the Temporal Evolution 

The temporal evolution of the faults (Figure 1.5) is unpredictable: they can be of low or high amplitude, 

abrupt or gradual in the form of drifts. The following faults are distinguished in the literature: 

 Sudden fault (or modeled by a bias) (1); 

 Incipient fault (or drift) (2); 

 Intermittent fault (with interruptions). (3) 

 

Figure 1.5: Temporal Evolution of the Different Types of Faults 

a- Sudden Fault:  

This type of default is characterized by a discontinuous temporal behavior. This development, if it does 

not match the expected normal dynamic changes to the variable (setpoint ), is characteristic of a sudden 

failure of the element in question: total shutdown or partial connection [35]. A mathematical representation 

of this fault (eq.1.2) is given by: 

𝑓(𝑡 − 𝑡𝑓𝑖) = {
𝛿 𝑡 > 𝑡𝑓𝑖
0 𝑡 < 𝑡𝑓𝑖

}                             (1.2) 

Where, (𝑡 − 𝑡𝑓𝑖) is the temporal behavior of the fault and 𝛿 is a constant threshold. 

 

b- Incipient Fault: 

It is a characteristic absence of wear of a part or fouling. It is very difficult to be detected because of its 

temporal evolution that may be confused with slow parametric change representing the non-stationary 

process. Its evolution over time can be expressed by this relation (eq.1.3): 

𝑓(𝑡 − 𝑡𝑓𝑖) = {
𝛿(1 − 𝑒

−𝛼(𝑡−𝑡𝑓𝑖)) 𝑡 ≥ 𝑡𝑓𝑖
0 𝑡 < 𝑡𝑓𝑖

}                             (1.3) 

Where 𝛿 and are 𝛼 two positive constants. 

 

c- Intermittent Fault: 

It is a default feature of false contact or intermittent failure of the sensors. This type of fault is a special 

case of abrupt or suddenly default with the special property that it is randomly its normal value. 

The faults can be classified as additives and multiplicative faults, depending on their impact on system 

performance (Figure 1.6). Additives faults are interference signals which are superimposed at a point of 

functional. Les diagram faults sensors and actuators are typically modeled as additive faults, however, the 
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component conditions are modeled by multiplying faults. These bring about changes in the correlation of 

the output signal of the system, as well as a change in the spectral characteristics and the system dynamics. 

 

Figure 1.6: Faults Classification: Multiplicative and Additive. 

In the chemical industry, the processes mainly used are reactors and distillation. 

In this work, we consider the problem of faults diagnosis and prognostic that occur in the distillation 

column. 

1.5 Principle of Distillation 

Distillation is one of the widest processes used in the industrial separation methods. This operation 

allows the separation and the purification of the mixtures of constituents whose boiling temperatures are 

different, taking advantage of the difference in volatility (capacity to evaporate according to the 

temperature) of the constituents and then carrying out a succession of condensations and vaporizations to 

finish by the recovery of one component. This separation procedure has been known for over 2000 years.  

The distillation consists of heating to a boiling point a liquid mixture of constituting the most volatile, 

evaporates the former. By condensation of the vapor phase, a liquid called distillate or extract (also referred 

to as top product) is recovered with a high concentration of the most volatile compound. The un-vaporized 

liquid phase constitutes the residue or the raffinate (also called the bottom or bottom product). 

The distillate is not a pure product; it is enriched with a lower boiling light component, while the bottom 

product is formed by the heavy component having a higher boiling point. In order to obtain a distillate of 

high purity, particularly when the components of the mixture have similar boiling temperatures, 

rectification is often employed.  

Rectification is a technique which uses repeated distillation so as to cause exchanges between the 

upstream and liquid phases flowing back into a column intended for bringing the two phases into contact 

[37]. 

In the industry, distillation is the most widely used unit operation in terms of industrial processes, 

indeed it is very important. Distillation has many applications such as: 

 Distillation makes it possible to separate the air into its constituents, in particular, oxygen, nitrogen, 

and argon for industrial use. 
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 In the field of industrial chemistry, raw liquid chemical synthesis products are distilled to separate 

them from other products. 

 The distillation of fermented products produces beverages with high alcohol content. 

So we see essentially that distillation plays a major role in the industry, and it affects practically all the 

sectors, because as previously stated it is a method of separation and not a reaction. 

1.5.2 Applications of Distillation 

The application of the distillation is divided into several groups: 

 laboratory scale 

 Industrial distillation 

 Distillation of medicinal herbs and perfumery 

 Food processing 

The difference between distillation of the laboratory scale and industrial distillation is that the 

distillation method is not the same, on a laboratory scale it is often carried out batch-wise, while industrial 

distillation occurs continuously. 

With batch distillation, the composition of the vapors of the compounds and of the distillate changes 

during the distillation. In discontinuous distillation, the feed is separated into its fractions which are 

recovered from the most volatile to the least volatile. In continuous distillation, the feed and distillate 

compositions are kept constant and at a constant temperature. 

1.5.3 Industrial Distillation 

Distillation plays a major role in unit operations, in fact, it is the process which is used most in terms of 

separation, rather than liquid-liquid (L-L) extraction or even with another absorption column, is not that its 

use is simple but it is less complex than other unitary operation. In addition, it allows a better separation 

than the L-L extraction process. In fact, it depends on the nature of the product to be separated, as for 

example, to separate the various constituents of petroleum we are not going to use the extraction process L-

L but the fractional distillation which is more action to meet the requirements of separation [38]. 

Large-scale industrial distillation applications include fractional and continuous distillations. The most 

widely used industrial applications (continuous) are in petroleum refineries, petrochemical plants, as I 

mentioned earlier in my illustrations. The distillation is carried out in vertical cylindrical columns, called 

distillation columns, these columns can have diameters ranging from about 65 cm to 16 meters and the 

height ranging from about 6 meters to 90 meters, which seems a little large but on an industrial scale it is 

normal to view that one manipulates large quantity. When the feed of the process has a different 

composition of several components, as we have seen before in the distillation of the crude oil, we will have 

different liquid outlet fraction which allows the withdrawal of the various fractions of products which have 
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points d different ebullitions. The "light" products will rather go and exit from the top of the columns and 

"heavier" products will come out from the bottom of the column [39]. 

1.5.4 Distillation Column 

The distillation can be carried out continuously or discontinuously. It takes place in a phase separation 

apparatus called a distillation column. This apparatus is composed of a vertical cylindrical envelope 

containing the devices (trays or packings) making it possible to increase the contact surface between the 

liquid phase and the gaseous phase, thus improving exchanges between the phases for a given column 

volume. In addition to the column and these trays or packings, two heat exchangers make it possible to 

bring / remove the energy necessary for the separation: a boiler located at the bottom of column and the 

condenser at the head of column which makes it possible to liquefy the vapors in order to recover the 

purified product in liquid form. Some of the condensates are often reinjected into the column to increase the 

purity of the desired product, reflux (Figure 1.7). 

 

Figure 1.7: Design of a Binary Distillation Column 

The liquid mixture to be separated (feed) is introduced into the column. This liquid is then brought to a 

boil by the boiler. The steam escaping from the boiler is condensed in the condenser. The non-vaporized 

liquid is extracted at the bottom of the column and constitutes the residue. The vapor produced is always 

richer in the most volatile constituent, so that the composition of the condensate is at all times superior to 

that of the initial mixture. Part of the condensed vapor is returned to the top of the column and constitutes 

the liquid phase in the upper part of the column, which is reflux. Indeed, the liquid moves in the column by 
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gravity from top to bottom and the steam moves from bottom to top. The remainder of the steam is 

removed and forms the distillate [40]. 

1.6 Description of the Used Distillation System 

1.6.1 Automated Continuous Distillation Column  

The purpose of this distillation is to reproduce in large quantities the separation between two compounds 

by acting on the difference in boiling temperatures. One of the compounds being more volatile, it will 

vaporize to the top of the column where it will be condensed with a total condenser. There will, therefore, 

be an exchange between the rising steam and the descending liquid. This is called steam enrichment. Some 

of the condensates will be separated at the top of the column, it is the distillate. Another part will be 

separated at the bottom of the column; the latter is called the residue [41]. 

However, there is an optimization of this process; it is to make it automated. It can be automated by the 

control of: 

 Control of flow and feed temperature 

 A regulation of the pressure drop within the column 

 Temperature control at the head of the column using a regulated reflux rate thanks to a timer 

 A regulation of the heating capacity of the boiler 

The system is equipped with a structure point of view (Figure 1.8): 

 A Tray or packed column (1) 

 A total condenser at the top of the column (2) 

 A feed preheating (3) 

 A Timer (4) 

 A reservoir of distillate (5)  

 A reservoir of  residue (6) 

 A boiler (7) 
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Figure 1.8: General View of the Distillation Unit 

1- The Timer consists of an electromagnetic valve and thus regulates the rate of reflux. In addition, it 

is regulated by TIC2 (temperature at the top of the column). When the setpoint temperature of 

TIC2 is reached, the timer opens. Otherwise, it remains closed (automatic mode). The distillation 

unit has eleven sensors for continuously measuring the temperature throughout the column. 

2- The Metering Pump is a volumetric pump. The configuration of the pump assembly is suction 

mounted. A non-return valve prevents the preheating tank from emptying. The volumetric pump is 

made up of a membrane allowing, firstly, the suction of the mixture to be distilled and then its 

discharge to the preheating tank. According to the construction data, the feed pump can deliver a 

flow rate of 4.32 L / h. 

3- The Boiler is heat exchangers whose purpose is to allow the liquid to become depleted in volatile 

constituents and steam to enrich it. The amount vaporized is called the re-boiling rate. There are 

several types of boilers, tube boilers, and boilers with immersion resistors. The boilers of the first 

type have the operating principle of heating the mixture to be separated by means of a heat-transfer 

fluid circulating in the calendar of the exchanger (boiler). In general, the fluid most often used is 

water vapor. The principle of operation of the second type of boiler is to send a certain intensity 
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thus enabling to provide an adequate power to bring the mixture to a boil. The characteristics of the 

boiler of the system studied are the following: 

 The boiler has a capacity of 2 liters and has a level sensor allowing the automatic stop of 

the heating if the level is insufficient. 

 The immersion heater has a heating power of 3.3 kW. 

4- The Condenser, the main function of the condenser is to convert the rising steam into liquid on a 

cold surface, or via a heat exchanger kept cold by the circulation of a refrigerant fluid. However, 

the temperature of the liquid must not be lower than the boiling temperature of the mixture to be 

separated; otherwise, the reflux would be too cold and unbalanced the column. 

5- The Preheating is made up of three cartridges of heating resistors with a power of 250 W each. It 

also has a level sensor that prevents starting if the level in the glass body is too low. 

The monitoring system consists of the ETP 200 software (Figure 1.9). It monitors the evolution of 

physical quantities such as differential pressure or temperatures at a given point in the distillation column. 

This software has multiple functions for automated control of the distillation column. 

The first feature is the modification of parameters. This allows the configuration of the control 

parameters of proportional–integral–derivative controller (PID). In addition, this menu allows setting the 

installation in the manual or automatic mode as well as the operating instruction of a process. The display 

of the measurement of each device is observed. 

The second important feature is the group trend. The group trend makes it possible to follow the 

evolution of the measurements of each apparatus linked to the regulation. This evolution can be visualized 

in real time or in history. 

The third important menu is the trend of a device. Like the previous functionality, it allows to follow the 

evolution of the measurement, the set-point as well as the output. There is a menu which allows having a 

history of the alarms that could be triggered during a manipulation. This software also has a synoptic 

visualization. 
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Figure 1.9: Supervision System ETP 200 

The ETP 200 software allows monitoring of changes in parameters such as differential pressure or 

temperature at a given point of the distillation column. The signals obtained during each acquisition 

represent: 

1. Heating Power (HP) 

2. Timer: Reflux Rate (RR) 

3. Feed Flow Rate (FR) 

4. Preheated Power (PP) 

5. Loss of Charge (LC) 

6. Pre-heated Temperature (PT) 

7. Boiler Temperature (BT) 

8. Column Head Temperature (TIC2) 
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1.6.2 Distillation Column Accidents 

The reactor where the biggest accident factor resides is the discontinuous reactor because all the 

addition is carried out at the beginning. If the reaction is exothermic, the reaction will produce energy 

called heat and the latter will increase the speed of the reaction and thus release a quantity of heat in shorter 

and shorter time and so on and cause a loss of control of the temperature within the reactor. This 

phenomenon is called thermal runaway. Thermal runaway can also occur when decomposing a substance. 

The loss of temperature control may be due to an increase in reaction rate, an adverse reaction that does not 

occur under normal process conditions (This reaction is often the decomposition reaction of the 

compound), an increase in the pressure inside the reactor caused by the evaporation of the reaction 

components or caused by the production of non-condensable gases. The increase in pressure can lead to 

serious accidents because it can cause the wall of the reactor to to cause the projectile to emit a great 

distance. It can cause a fire because the mixture is found in the open air and fine particles, liquid or solid, 

can ignite. If the reactor is in a confined area then this may cause an explosion as the mixture of gases, 

droplets and air can explode and cause a large blast effect which causes the destruction of the confined 

area. This explosion continues with a secondary fire. But there is another "flagship" process in the chemical 

industry which can have serious consequences in the event of accidents, and it must be taken into 

consideration, it is the accidents of the distillation column. 

On 24/04/2013, in LE-BAR-SUR-LOUP, an accident occurred on a distillation assembly at 100 ° C 

under vacuum in a glass column. The latter is building up pressure at 12:15 the laboratory of a plant of 

essential oils classified Seveso. Under the effect of pressure, the boiler and the column explode projecting 

the hot substance on 3 operators. The operators are lightly burned and are sent directly to the hospital where 

they will come out late in the afternoon. 

The cause of the increase in pressure is due to the decomposition of the product or of a by-product 

during the reaction whose process has been used since 1995. The thermal runaway is due to insufficient 

cooling because the installation was bad resized because it had to change scale because of greater demand. 

Thermal runaway may also be due to a high column temperature, high vacuum, or a quality of a product 

that may vary. 

Unfortunately, there are several malfunctions that come from the central unit like: 

 Precise Column Head Pressure Control 

 Hysteresis of the Control Valve 

 Preheating the Power Supply 

 Contamination of the Timer 

 Loss of load too high in the column / too high flow of liquid which causes waterlogging 

 Insufficient reflux rate impairing the quality of the distillate/residue 
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1.6.2.1 Data Collection for Faults Diagnosis and Prognostic  

For faults diagnosis and prognostic a database with normal and faulty observations is acquired from the 

distillation column installed at IUT of Rouen-France. The database is composed of 120 observations, where 

50 of them were used as data collection for faults diagnosis and the rest (70 observations) were used for 

faults prognostic; each observation has 5000 points with the sampling frequency, SF=1sample/10sec. 

1.6.2.1.1 Normal Mode 

The normal mode (Figure 1.10 & Table 1.1) is the common thread during all accidents. To do this, the 

column is left at atmospheric pressure and the chosen boiling temperature of the acetone set at 56.0 ° C. 

Thus in normal mode we obtained the following parameters: 

 Feed flow rate set at 80% of its capacity. 

 Pressure drop at 0.7 mbar 

 Preheat temperature at 40 °C 

 Boiler temperature at 76 °C 

 Column head temperature at 56 ° C 

 

Figure 1.10: Graphical Representation of the Normal Mode 

In the transient regime, the signals move a lot and the system is not stable for that we cannot count on 

this regime and include it in our study. So this scheme is deleted.  

 

Sec  



 

Page 44 of 241 
 

Table 1.1: Statistical Characteristics of the Acquired Signals in Normal Mode 

1.6.2.1.2 Data Collection for Faults Diagnosis   

We shall now turn to the accidents of continuous automated distillation which may occur in the industry. 

To do this, we will provoke them by varying four parameters: 

 The Reflux Rate (RR). 

 The Heating Power (HP). 

 The Preheating Power (PP). 

 The Feed Flow Rate (FR). 

 

1- Reflux Rate (Timer) Accident Mode 

In the accident of reflux rate (Timer) (Figure 1.11), we first established the normal mode at time T1 then 

at time T2 we triggered the timer accident at 0%. We can see that no parameter changes, the column is 

indeed in infinite reflux, which allows it to put itself at equilibrium. There is only one parameter that 

changes, it is the heating power. We can see that this parameter (heating power) decreases; it is to keep the 

loss of charge at 0.7 mbar because there is more condensed vapor which falls in the column which means 

that the loss of charge is likely to increase. It is therefore by decreasing the heating that there is less steam 

rising in the column, thus less loss of charge. 

At time T3 we reset the system to the normal mode and then at time T4 we caused the accident 100% of 

the timer. In this case, we can see that the temperature at the top of the column (TIC2) has increased very 

rapidly to 75 °, which means that it is near to the boiling temperature of ethanol which is 78.6 ° C. This is 

explained by the fact that there is no liquid falling back into the column. Indeed, to compensate for the 

decrease in the pressure drop, the boiler heater must send more steam into the column, so the heating 

increases, as we can see on the Figure 1.11. Now, there remains essentially only the vapor in the column, so 

the temperature TIC2 increases strongly. Because of this, the liquid level in the boiler decreases rapidly and 

the level of the distillate increases. We, therefore, interrupted the manipulation at the time T5 because there 

was a real danger. 

Signal Mean Max. Min. Variance Frequency peak 

Preheated temperature (°C) 40 40.6 39.6 0.006 0.0006 

Timer % 0.5 7 0 1.6 0.001 

loss of Charge (mbar) 0.7 0.7 0.7 0 0.0001 

Heating power 42.7 42.9 42.3 0.009 0.0001 

Feed flow rate  % 80 80 80 0 0.0001 

Boiler temperature (°C) 76 76.1 75.8 0.009 0.0001 

TIC2 (°C) 56 56.1 55.9 0.001 0.0001 

Preheated power 2.743044 9.1 0 6.354596 0.0005 
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 Figure 1.11: Graphical Representation of the Timer in Accident Mode 

2- Heating Power Accident Mode 

 

In the heating power accident (Figure 1.12), we first established the normal mode at T1 then at the time 

T2 we caused the accident with 100% heating. We can notice that the loss of charge increases to 3.6 mbar; 

this is due to the amount of vapor going into the column that cannot be compensated by the condensed 

vapor. Indeed we note that the timer closes as soon as the heating reaches 100%. This allows all condensed 

vapor to return to the column. On the other hand, we can see that the temperature at time T2 rises to 61 °C 

then returns to 56 ° C. This shows that there is a return to equilibrium of the column but with a high-

pressure drop. At time T3 we returned to the normal mode then we simulated the accident of 0% heating at 

the time T4. The temperature TIC2 returns to the outside temperature, the loss of charge decreases to 0.2 

mbar. 
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Figure 1.12: Graphical Representation of the Heating Power in Accident Mode 

3- Preheating Power Accident Mode   

In the accident of the preheating power (Figure 1.13), we first established at T1 the normal mode and 

then we caused the accident of 0% preheating at the time T2. At time T3 we returned again to the normal 

mode and then simulated the 95% preheating accident at the time T4. We had two accidents. The first 

accident, we simulated a failure of the heating resistance of the preheating. The second accident, we 

simulated a loss of control of the preheating and we put a preheating power to 95%. We were not able to 

put a 100% power because the preheating is oversized for the process because it is made to preheat heavy 

components while our components are light. If we put 100%, we could blow up the preheating reserve 

because the pressure would be too high because of the steam. It can be seen that on the first accident, 

stopping the preheating caused a small difference in the temperature in the boiler and the heating power 

because it had to increase to bring energy to the liquid coming from food. The temperature in the boiler has 

decreased because there is a temperature gradient between the vapors rising in the column and the liquid 

coming from the feed and thus this has caused a heat transfer between these two currents. 

In the second accident, a small increase in the loss of charge can be seen therefore a logical decrease in 

the heating power. The loss of charge increases because when preheating has a power of 95%, the 

temperature of the feed mixture is increased to 70 ° C., a temperature above the boiling temperature of 

acetone at atmospheric pressure. Thus, the feed fluid is composed of steam and liquid. At the arrival of this 

fluid at the level of the distillation column, the steam rises while the liquid descends into the column. 

Moreover, the liquid is at a temperature close to the temperature of the vapor, so that there is little vapor 

which condenses so that there is a larger flow of steam rising in the column. Since there is a higher steam 

flow then the loss of charge is higher. Now, the boiler is regulated by the pressure drop, so we have a lower 

heating power than when we are in a normal mode. A slight increase in TIC2 can be seen, i.e. 1 or 2 ° C. 

We do not have a big increase even if we could believe it because the boiler and the timer are regulated so 
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as to keep a constant temperature. The risk that can occur is to have too high a vapor flow rate with respect 

to the flow of liquid and this could lead to congestion, that is to say, that the liquid stream could be blocked 

by a large current of steam. The risk is to have an explosion of the column head by the pressure of the 

vapor. 

 

Figure 1.13: Graphical Representation of the Preheating Power in Accident Mode 

4- Feed Flow Rate Accident Mode   

In the accident of feed flow rate (Figure 1.14), we first established the normal mode at T1and then we 

caused at the time T2 the 100% feed flow rate accident. At time T3 we went back to the normal mode and 

then simulated at the time T4 the 0% feed flow rate. At time T5 we went back to the normal mode and then 

simulated another 0% feed flow rate accident at time T6. 
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Figure 1.14: Graphical Representation of the Feed Flow Rate in Accident Mode 

We can see that when the pump flow is triggered at 100% (Accident with 100% feed flow rate) at time 

T2, that there is no great consequence that occurs, we can see that the various parameters remained intact; 

this accident is comparable to the normal mode. The only consequence of a high feed rate is to fill the 

boiler level, but this would be possible with a pump that is more efficient than the one used. 

When we apply the Accident with 0% feed flow rate on the system we see that when the accident 

occurred at the instant T4 and T6, shortly after we had a greater capacity to use the timer than the normal 

mode, we went from 19% to 39%, small modification we see no other modification that could have been 

due to a feed rate at 0%. The most serious consequence would be that the timer remains open and thus all 

the liquid present in the boiler turns into vapor and condenses at the top of the column and that everything 

is recovered in the distillate. This would cause the boiler to lower its level until the heater is no longer in 

contact with the liquid and this could cause a break in the boiler, but for that, it would take a very long 

time, does not open regularly. 

1.6.2.1.3 Data Collection for Faults Prognostic  

A. Data Collection via ETP200 

In the part of fault prognostic, a database composed of seven 10 observations from each type of the 

increasing or decreasing fault over time (degradation of the system). While an accident occurs in the 

automated distillation process, it causes a cumulative increasing or decreasing over time on the following 

parameters: 

 The Reflux Rate (RR). 
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 The Heating Power (HP). 

 The Preheating Power (PP). 

 The Feed Flow Rate (FR). 

 

1- Progressive Accident on Reflux Rate (Timer) 

In the progressive accident of reflux rate (Timer) (Figure 1.15), we first established the normal mode at 

time T1 then at time T2 we triggered the timer increasing progressive accident from 0% to 100%, the 

experience had stopped on T3 (100% reflux rate). In the case of increasing reflux rate accident ( between 

T2 and T3), we can see that the temperature at the head of the column (TIC2) has increased very rapidly to 

75°C,  and the heating power also increase from 45°C to 50°C. As we mentioned before in the diagnosis 

accident of reflux rate, the liquid level in the boiler decreases rapidly and the level of the distillate also 

increases, and this is very dangerous. 

 

Figure 1.15: Graphical Representation of the Progressive Accident on Reflux Rate 

2- Progressive Accident on Heating Power 

In the progressive (increase and decrease) heating power accident (Figure 1.16), we first established the 

normal mode at T1 then at the time T2 we caused the increasing progressive accident of from normal mode 

(heating power ≃ 45%) to 100% heating power. We can notice that the loss of charge increases to 3.6 

mbar. At the time T3, we caused the decreasing power heating accident (from 100% heating power to 0% 

heating power). We can see that the TIC2, preheating temperature and boiler temperature quickly falls 

when the heating power less than 20% contrariwise the reflux rate stay decrease when the heating power 

less than the normal value (≃ 45%). 
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Figure 1.16: Graphical Representation of the Heating Power in Progressive Accident   

3- Progressive Accident on Preheating Power  

In the progressive accident of the preheating power (Figure 1.17), we first established at T1 the normal 

mode and then at time T2 we caused the decreasing accident (from normal range ≃ 37% to 0%) of 

preheating power, at this stage we can see that the preheating temperature decrease also from their normal 

range ≃ 40 °C to ≃ 20 °C. At the time T3 we moved to the increasing stage of preheating power accident 

(from 0% to normal range ≃ 37%), we can see that the preheating temperature returned to the normal range 

(≃ 40 °C). at the time T4 we back again to the normal mode (preheating power ≃ 37%), then at T5 we 

caused the decreasing preheating power accident (from normal range ≃ 37% to 72%), at this stage we 

can see also the preheating temperature increase (from normal range ≃ 40 °C to 70 °C). 
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Figure 1.17: Graphical Representation of the Progressive Accident on Preheating Power 

4- Progressive accident on feed flow rate  

In the progressive accident of feed flow rate (Figure 1.18), we first established the normal mode at T1and 

then we caused the increasing feed flow rate (from normal range ≃ 80% to 100%) at the time T2, at this 

stage we have noticed that the boiler temperature and the heating power decrease. At time T3 we starting 

the decreasing feed flow rate (from 100% to the normal range ≃ 80%), in this case, we can see that the 

boiler temperature and the heating power come back to their normal range. At the time T4 we returned 

again to the normal mode and at T5 we simulate the decreasing feed flow rate (from normal range ≃ 80% 

to 0%), at this stage, we can see that there is no noticeable change in the whole acquired signals. 
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Figure 1.18: Graphical Representation of the Progressive Accident on Feed Flow Rate 

B- Data Collection Via External System 

The aging of the distillation column components should be considered, especially the aging of the 

metering pump because it controls the input flow rate. When we have a problem with the pump Impeller, 

the flow rate will decrease in this case. The most serious consequence would be when the Timer remains 

open and thus all the liquid in the boiler turns into vapor. This vapor will condensate when it in contact 

with the condenser which installed at the top of the column. The result is a liquid stocked at the distillate 

reservoir. The result of all this it will be a rapid drop in the level of the liquid that is found in the boiler, 

which means the heater is no longer in contact with the liquid and this could cause a break in the boiler.  

In practice, good design will produce low vibratory levels in a rotating machine. However, the aging 

machine, the foundation's work, the parts are deformed and wear out, and slight changes in its dynamic 

properties appear. The shafts are out of alignment, the bearings are worn out, the rotors are unbalanced, the 

belts are relaxed and the clearance increases. All these factors result in an increase in vibratory energy that 

excites the resonances and adds considerable dynamic load to the bearings.  

The vibrations collected during the measurement campaigns carry information which characterizes the 

operating state of certain mechanical components constituting the machine analyzed. It is thanks to the 

analysis of these vibrations that it is possible to detect defective components and possibly to locate them. 

When a certain threshold (corresponding to a fixed limit vibration level) is reached, it is possible to 

estimate the residual life of the component under the given operating conditions from knowledge of the 

damage laws [42]. 

All the machines in operation process produce vibrations, images of the dynamic forces generated by the 

moving parts, thus, a new machine in excellent working condition produces very little vibration. 
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The deterioration of the operation generally leads to an increase in the level of the vibrations, by observing 

the evolution of this level; it is, therefore, possible to obtain very useful information on the condition of the 

machine. These vibrations occupy a privileged place among the parameters to be taken into consideration 

for robust and logical prognosis; the modification of the vibration of a machine is often the first physical 

manifestation of an anomaly, a potential cause of degradation or even breakdowns. These characteristics 

make monitoring by vibration analysis an indispensable tool for modern maintenance, since it makes it 

possible, through appropriate faults diagnosis and prognosis, to avoid unexpected accidents that would 

disrupt the production process [43]. 

The corrosion of the pump impeller is generally caused by fatigue, it progresses at each loading, starting 

from an initial point almost always at the foot of the tooth, it appears mainly on fine steels, hardened by 

heat treatment, which is very sensitive to concentrations the appearance of these cracks is the consequence 

of a stress at the tooth's foot which exceeds the fatigue limit of the material and is generally located on the 

side of the tooth stressed in tension, as well as due to the quality of liquids entering it, such as lime water 

[44]. 

To simulate the pump aging, we scratch multi times the Impeller of the pump and measure each time the 

generated vibration via an accelerometer fixed on the pump chassis and a data acquisition system connected 

to Labview software (Figure1.19.a)  

  Figure 

1.19.a: External Data Acquisition System 

1- Pump  

2- Impeller  

3- Tri-Accelerometer 

1 
2 

3 

4 
5 
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4- NI Data Acquisition  

5- Labview Instrumentation Programming Code  

Figure1.19.b shows a signal representative of the acceleration dimension z, where the x-axis is the 

sample index and y-axis is the amplitude of z acceleration signal. This procedure (introducing more 

scratches) is repeated many times. A database with normal and faulty observations is analyzed. This 

database is composed of 10 observations, each observation is 5 × 104 points with the sampling frequency, 

SF=500 samples/sec. A pre-processing step including filtering, normalization, and smoothing is applied to 

the data before processing.  

 

 

Figure 1.19.b: Graphical Representation of the Accelerometer Signal (Normal & Fault Mode) 

Total data used in this research is 86 data observation. Where 70 % of them are used for training 

and the 30% remaining is used for testing and checking. 

1.7 Determination of the Representation Space  

1.7.1 Data Pre-processing  

In general, the data acquired from the machine are noisy and redundant. Therefore, this data cannot be 

applied directly by a diagnosis or prognostic model. Further, this original data could be hidden inside many 

of the relevant information which can denote to the machine fault or machine degradation. Wherefore a set 

of parameters that plain of a relevant information should be extracted from this original data as indicators 

for this fault or this degradation. Usually, the strength of the diagnosis or prognostic model depends on the 

quality of the extracted and selected features. In addition, it is very important to identify the features that 

reflect the type of a fault and the progression of the failure of the machine [45][46]. 

Scratch 1 Scratch 2 Scratch 3 Normal 
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A pattern is an observation made about the process. It is characterized by a set of 𝒅 parameters (or 

features), and represented by a point in the dimension space d, defined by the different parameters called 

representation space. Since the parameters are often real numbers, a form ′𝒊′ can be defined by a vector 

𝑋𝑖 =  [𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑑] called form vector. If we place the problem in the context of the diagnosis, the 

parameters of the pattern vector reflect the state of the studied system. They come from analyzes performed 

on the signals measured by the sensors installed on the system (vibrations, speed, currents or even voltages 

for example). The typical patterns (or prototypes) are representative points of this space, and the problem of 

recognition consists in associating an observed pattern with a known standard pattern. 

Due to disturbances (measurement noise, sensor accuracy ...), a new observation will rarely be identical 

to one of the prototypes. Thus, in order to express the influence of noise, the classes 

ω1,ω2, . . . , ωc, . . . , ωM correspond to zones in space, grouping the similar patterns (Figure 1.20). 

 

Figure: 1.20: Class Concept in Pattern Recognition. 

The principle of recognition is to know which class, among M known classes, to associate a new form, 

𝑋𝑖 =  [𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑑] observed. In terms of diagnosis, the classes correspond to the known modes of 

operation. They are our initial data set, called learning set and noted 𝑿𝒂. To classify a new observation is to 

identify one of these modes. The development of a diagnostic system based on neural network takes place 

in three phases: a perception phase, an analysis phase and exploitation phase (Figure 1.21). The perception 

phase is the main source of information about the system. It is not only reserved for pattern recognition 

because it is common to other diagnostic approaches. It consists of two stages. A data acquisition step 

which consists in determining the hardware configuration (the type, the number of sensors to be used and 

the sampling rate, etc.) that they are necessary for the collection of signals on the studied system. The 

acquired signals must provide useful information in order to judge the operating state in which the system 

is located. This first step is followed by a signal preprocessing phase (filtering, de-noising, etc.). The 

analysis phase is to study the information provided by the sensors installed on the system. If the 

information is in the form of signals, then it is necessary to extract features (or parameters) digital. These 

parameters, which moreover constitute the pattern vector, must be able to describe the behavior of the 
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system. From this analysis phase, it must also get the precise definition of classes that represent the 

different operating modes. We then have a set of N observations distributed in M classes. This is the 

learning set. The observations of a class then represent the prototypes of this class. 

A classification procedure is then applied to the learning set to establish boundaries between the 

different classes. This procedure will define a rule to assign or not a new observation to one of the known 

classes during the operation phase. 

 

Figure 1.21: Schematic Diagram of the Diagnostic Procedure 

The analysis phase is heavy in terms of calculation and often requires all the knowledge of the system 

studied to find the appropriate parameters for the appropriate treatment methods. 

The operating phase (decision phase) allows associating a new unknown observation X, collected on the 

system to one of the classes defined during the classification phase by applying the associated decision rule. 

The proper use of the decision-making system depends on the relevance of the form vector and the 

performance of the decision rule [47]. 

1.7.2 Data Reduction   

Fault diagnosis and failure prognostic of critical dynamic systems, such as aircraft and industrial 

processes, rely on degradation or fatigue models and measurements typically acquired online in real-time. 

Such sensor data must be pre-processed in order to remove artifacts and improve the signal-to-noise ratio. 
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Furthermore, they must be processed appropriately so that useful information in compact form can be 

extracted and used to detect incipient failures [48]. In the chemical process field, many analytical or 

measuring instruments can easily acquire values of many process variables in a very short period of time. In 

this way, one has to face multidimensionality problems. The multidimensionality complicates the data 

interpretation, increases the complexity of the fault diagnosis and detection in real time.  Therefore, the first 

step in chemical process faults diagnosis and detection is to reduce the data dimensionality [49]. This step 

consists of constructing the pattern vector from the measurements made on the physical system or from the 

information collected during an observation of a phenomenon on the system. As mentioned before these 

measures are not all as informative, they may be noise, may be insignificant, correlated or redundant, 

aberrant or simply unworkable. Therefore, a parameter or feature generation step is required, i.e., producing 

a set of d parameters from the acquired signals using signal processing or data analysis techniques. The 

fundamental objective is to accentuate the important information of the acquired signal. This involves a 

transformation of the vector representing the time domain signal into a domain where the information 

contained in the signal will be better represented. These parameters are chosen to optimize the 

discrimination of the operating modes. The intervention of an expert to monitor the process is often very 

useful to guide this process. 

The resulting observations are thus grouped in a numerical table of dimension (𝑁𝑥𝑑) which corresponds 

to a set of 𝑁 vector forms characterized by values of d quantitative parameters. 𝑁 forms  (𝑋1, . . . , 𝑋𝑁) 

collected on the system are the training set. The performance of the diagnostic system will depend on the 

relevance of the calculated parameters. It is therefore preferable to have parameters varying, significantly, 

according to the different operating modes of the system. 

In fact, the main objectives of reducing the dimension of data are: 

 Facilitate visualization and understanding of the data. 

 Reduce the storage space required. 

 Reducing the training time. 

 Identify relevant factors.     

The reduction of the dimension of the pattern vector consists in looking for a subset of 𝑑’  features(𝑑 ′ <

𝑑), which preserves as best as possible the separation of the classes of the initial learning set. This 

reduction of the representation space can be performed either by feature extraction methods [50].  

Extraction consists of defining new features from the initial features. From the diagnostic point of view, 

the extraction methods do not decrease the number of features to be calculated, which remain at the number 

of d (the new features are linear combinations of the old ones), but on the other hand, the class 

representation space is of smaller size, which has the effect of speeding up the decision phase. 
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1.7.2.1 Data Reduction Based on Feature Extraction 

Reducing the dimensionality of the data (also called feature extraction) is done by the construction of 

new features obtained by combining the initial characteristics. A data transformation risks losing the 

semantics of the initial set of characteristics and therefore the use of this family of methods is applicable 

only in the case where the semantics no longer intervenes in the steps that follow the reduction. So the 

parameter extraction aims to transform the data from the temporal space to another space where the 

parameter 𝑋 is represented by a tell function 𝑌 = 𝑓 (𝑋) (projection space) (Figure 1.22) 

 

Figure 1.22: Principle of Feature Extraction 

The extraction of signal parameters is an essential step before classification. It is necessary to extract the 

relevant, discriminant and most adapted parameters to the signal. The parameters related to a random signal 

are generally statistical or frequency. The statistical parameters are calculated from the probability density. 

The frequency parameters depend on the power spectral density. Other important parameters can be 

extracted from wavelet decomposition [51]. 

Signal processing based on features extraction combines a set of techniques for creating, analyzing and 

transforming input signals to extract fault-indicating parameters  [52] [53]. As shown in Figure 1.23, it is 

possible to classify features extraction techniques into Time Analysis, Frequency Analysis, and Time-

Frequency Analysis. 
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 Figure: 1.23: Feature Extraction Techniques.  

 

1- Temporal analysis 

The temporal analysis makes it possible to extract fault-indicating parameters from raw data of the 

sensor. The parameters described here are called "statistical parameters" because they are based on 

analysis of the temporal characteristics of the recorded signal. For example: 

 

 The mean value (eq.1.4): The average value denoted (μ) of a signal on a data sample 

window is a significant parameter for almost every type of sensor. It is defined by: 

𝜇 =
1

𝑛
∑ 𝑥𝑖
𝑛−1
𝑖=0                                                 (1.4) 

 

 The Envelope (env) Analysis: Fault diagnosis at an early stage, it can be determined 

reliably and quickly the shock repetition frequencies. We can look for the average and the 

variance of the envelope (eq.1.5) [54].  

env(t) = √|X(t)|2 + |X̃(t)|2                        (1.5) 

 

Variance (𝜎2) (eq. 1.6): The variance is a measure used to characterize the dispersion of a 

distribution or sample. It is defined by:  

 

𝜎2 =
1

𝑛−1
√∑ (𝑥𝑖 − 𝜇)

2𝑛−1
𝑖=0                             (1.6) 

Features extraction 

Temporal analysis 

Statistical parameters

Frequency analysis

- Discrete Fourier 
Transform
- Fast Fourier Transform

Time-frequency domain

- Distribution of Wigner
- Wavelet transform
- Fourier transform in 
the short term
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This parameter is often used as a metric base for classifiers such as dynamic Bayesian 

networks and neural networks. 

 

 The RMS value (eq. 1.7): the RMS (Root Mean Square) value of a signal is the square root 

of the second order moment (or variance) of the signal: 

𝑅𝑀𝑆 = √
∑ (𝑥𝑖−�̅�)

2𝑁
𝑖=1

𝑁
                                      (1.7) 

This is one of the most used parameters in time analysis. An increase in the value of the 

RMS will indicate a deterioration of the state of health of the system. 

 

 Kurtosis: The Kurtosis noted Skurt (eq. 1.8) represents the static moment of order 4. It 

measures the degree of crushing of the distribution of the recorded vibratory signal and is 

defined as being the ratio between the four-centered moment centered and the square of the 

variance 

𝑆𝑘𝑢𝑟𝑡 =
1

𝑁
∑ (𝑥𝑖−�̅�)

4𝑁
𝑖=1

(𝜎2)2
                                     (1.8) 

A system in good condition generates a vibratory signal with a Kurtosis close to 3. For a 

degraded system, the amplitude of the signal is modified and Kurtosis becomes greater 

than or equal to 4. 

 

 The crest factor (Fc) (eq. 1.9): the crest factor noted Fc is a characteristic measurement of a 

vibratory signal. This is the ratio between the amplitude of the peak of the signal and the 

RMS value of the signal. It is defined by: 

𝐹𝐶 =
|𝑋|𝑝𝑒𝑎𝑘

𝑋𝑅𝑀𝑆
                                                   (1.9) 

A system in good condition generates a vibration signal of low amplitude, both peak value 

and effective value. The crest factor remains low (between 2 and 6). A localized fault 

generates a vibration of high peak amplitude and low effective amplitude, so a large crest 

factor (> 6). The major defect of this parameter and Kurtosis is that they indicate about the 

same values in the new state and end of life of the system [55]. 

 

 Skewness: The Skewness noted Skew (eq. 1.10) represents the static moment of order 3 

centered on the cube of the standard deviation. It measures the symmetry of the 

distribution, or more precisely the lack of symmetry. A distribution is symmetrical if it has 

the same pace on both sides of the signal. It is defined as follows: 

𝑆𝑘𝑒𝑤 =
1

𝑁
∑ (𝑥𝑖−�̅�)

3𝑁
𝑖=1

(𝜎)3
                                   (1.10) 

If the standard deviation σ is equal to 0, the distribution is symmetrical. If σ is smaller than 

0, the distribution is asymmetric to the left. If σ is greater than 0, the distribution is 

asymmetric on the right. 
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The parameters described above all have the same drawback; they indicate the degradation 

of the system but fail to identify the fault responsible for this degradation [56]. 

 

2- Frequency analysis 

Frequency spectrum analysis of a signal is the most commonly used technique for identifying faults 

in a system. This technique is based on the fact that a localized fault generates a periodic signal 

with a unique characteristic frequency. In contrast to time analysis, frequency analysis identifies 

the fault present in the system by identifying its characteristic frequency. This technique is 

generally applied during the steady state of the system [57]. A classic among the techniques used in 

the frequency domain is Fast Fourier Transform (FFT) Fourier transform spectral analysis. The 

spectrogram technique makes it possible to perform frequency analysis of the signals in the 

dynamic operating mode of the system. This technique consists in performing a repetitive 

calculation of the FFT on a sliding time window, which makes this technique sensitive to the length 

of the window, the type of windowing, the total duration of supervision and the sliding step of the 

window. Although this technique makes it possible to analyze signals in dynamic mode, the speed 

of the dynamic regime, which is in the case of asynchronous machines of the order of 150ms, 

significantly reduces the efficiency of this technique. 

 

3- Time-frequency analysis 

The time-frequency analysis of the signals deals with both the time domain and the frequency 

domain. Non-stationary signals are better represented by a time-frequency distribution, which aims 

to show the distribution of the signal energy over the two-dimensional time-frequency space. The 

most widely used techniques for time-frequency analysis are the Short-Time Fourier Transform 

(STFT), the Wigner-Ville distribution and the wavelet transforms [58]. 

1.7.2.2 Data Reduction Based on Features Selection  

1.7.2.2.1 Introduction  

Automatic classification or clustering technologies are some of the most used methods of data analysis 

and data mining. Despite their undisputed success in exploratory data analysis, clustering techniques have 

to adapt to ever larger volumes of data. Indeed, as storage technologies have evolved, the volume of 

available data has gradually exploded in numbers of individuals but also in a number of descriptors. So we 

are very often faced with the problem of the curse of dimensionality.  

There are generally two types of approaches that can be used continuously: feature extraction (consists 

in constructing new attributes from the set of original variables) then feature selection (allows to keep only 

a relevant subset) variables). In this part, we are interested in the feature selection approach that allows us 

to select the most representative variables of the problem [59].   



 

Page 62 of 241 
 

1.7.2.2.2 Problematic 

Feature selection plays a very important role in classification when a large number of features are 

available, some of which may be insignificant, correlated or irrelevant [60]. It consists of selecting a subset 

of features. The selection also facilitates the learning step and reduces the complexity of the algorithms as 

well as the calculation times [61]. Unsupervised selection of features remains a difficult and time-

consuming problem. When dealing with large databases, which cannot be manually tagged, it is desirable to 

have quick and efficient selection methods. 

The selection of attributes or features is a research topic that has been active for several decades and is 

currently being developed in various applications [62]. It is an important step in the preprocessing of large 

data routed to supervised or unsupervised classification. Indeed the appearance of large databases in the 

field of learning and data mining systems "Data Mining" required a reduction in size, before starting the 

task of data classification. 

Feature selection is a process of looking across the set of available explanatory variables for an optimal 

set of the most important characteristics of a given system [63]. 

1.7.2.2.3 Feature Selection Definition 

 

Feature selection is a method of choosing an optimal subset of relevant variables from an original set of 

variables, based on a certain performance criterion. In fact, the choice of an optimal set of descriptors does 

not necessarily mean the selection of a set composed only of the variables deemed relevant and useful. It 

may contain irrelevant but better-performing features taken with other variables. Thus the feature selection 

procedure tries to select the smallest subset according to two main criteria: 

 The accuracy of the classification does not deteriorate 

 Class distribution is close to the original distribution. 

 

The notion of relevance of a subset of features always depends on the objectives and In general, the 

problem of Features selection can be defined by: 

Let F = {f1; f2…; f 𝑁}   a set of features of size 𝑁 or 𝑁 represents the total number of features studied. 

Let 𝐸𝑣 be a function that evaluates a subset of features. We assume that the largest value of 𝐸𝑣 (eq.1.11) is 

obtained for the best subset of features. The objective of the selection is to find a subset 𝐹′(𝐹′ ⊆ F) of size 

𝑁′(𝑁′ ≤ 𝑁)  such that: 

𝐸𝑣(𝐹′) =
𝑚𝑎𝑥
𝑍 ⊆ F

 𝐸𝑣(𝑍)                                 (1.11) 

Or |𝑍| = 𝑁′  and 𝑁′ is either a number to be warned by the user or is controlled by one of the subset 

generation methods.  

Feature selection consists in choosing relevant features from the measurement space (Figure 1.24) [64] 
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Figure: 1.24: Principle of Feature Selection.  

 

Example 1.1: 

If we have a vector P contain 10 elements 𝑎𝑖 of features P = [a1, a2, a3, a4, a5, a6, a7, a8, a9, a10], So F 

= 10. According to the selection if we obtain a vector P 'of 6 elements thus: 𝑃′ = [𝑎1, 𝑎4, 𝑎5, 𝑎7, 𝑎9, 𝑎10], 

𝐹′ = 6  𝑎𝑛𝑑 𝑍 = 6 

A general procedure proposed in 1997 by Dash et al. [63][64] for a feature selection method is 

illustrated in Figure 1.25.  

 

 
Figure 1.25: General Algorithm for Feature Selection [65] 
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1.8 Maintenance of Complex Systems  

1.8.1 Introduction  

The effectiveness of the maintenance of industrial systems is a major economic issue for commercial 

exploitation. Maintenance should improve the reliability, safety, and quality of industrial system at a lower 

cost. The main difficulties and sources of inefficiency are in the choice of maintenance actions. A 

maintenance action consists in replacing the failed equipment that is no longer capable of performing its 

function. A wrong choice of actions can lead to unsatisfactory maintenance and additional costs due to 

immobilization of the system. Optimizing maintenance involves reducing the downtime of the complex 

system by minimizing the duration of interventions and the number of maintenance actions. It is very 

difficult to determine a maintenance action for a distributed system. A distributed system is a complex 

system that results from an assembly of completely heterogeneous components (software, hardware). It is 

necessary to gradually monitor each component to be able to make a maintenance action decision for the 

overall system. Using new embedded technologies, it is possible to set up a supervisory system to monitor 

system components and detect online problems or failures that may occur in the system. It is then necessary 

to provide an online maintenance diagnosis that analyzes the different sources of observation and that 

identifies the failed equipment to replace. In order to improve the preventive maintenance of the distributed 

system, a prognostic function is integrated into this supervision system making it possible to program future 

maintenance phases. 

1.8.2 Definition  

The formalized concept of maintenance was born in the industry in the late 1970s. A definition of 

maintenance is given by the standard AFNOR NFX 13-306 [66]: 

Definition 1: Maintenance is the set of actions that can maintain or restore a property in a specified state 

or able to provide a specific service. 

According to this definition, maintenance maintains or restores a system to a previously specified state 

so that the system is able to provide the functions for which it was designed. The analysis of different forms 

of maintenance is based on three concepts. 

 The events that cause the maintenance action: reference to a schedule, diagnostic result, sensor 

information, wear measurement, the occurrence of a failure, etc ... 

 The maintenance methods associated with them: systematic preventive maintenance, conditional 

preventive maintenance, corrective maintenance. 

 Maintenance operations: inspection, control, troubleshooting, repair, etc ... 

These maintenance operations are performed on the equipment of the complex system whether hardware 

or software. Maintenance activities, in the sense of troubleshooting equipment, have always existed. They 
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essentially consist of repairing equipment when it is already out of order. Failed equipment is no longer 

able to perform the functions for which it was designed, it is said to be defective. 

Definition 2 (Failure): A failure is a cessation of the ability of an entity to perform one or more required 

functions. 

Two forms of failure can be identified depending on the degree of system degradation: partial failure 

and complete failure. Their definition is given below. 

Definition 3 (Partial failure): A partial failure is a degradation of the ability of a system to perform 

required functions. 

According to Zwingelstein et al. [67], a partial failure results from deviations of one or more system 

characteristics beyond the specified limits, so that the required functions do not completely disappear. 

When a failure causes the system functions to completely disappear, it is a complete failure. 

Definition 4 (Complete Failure): A complete failure is represented by a cessation of the ability of a 

system to perform all the required functions. 

Faulty equipment requires maintenance to be repaired. Troubleshooting activities do not include a 

preventive aspect. It is much more interesting to prevent a failure before it causes a failure of system 

equipment. Maintenance can also help rebuild and improve the system. For this, it must take into account 

many constraints such as quality, safety, environment, cost, etc. 

1.8.3 New Evolutions of the Maintenance Function 

Given the ever-increasing demands, maintenance costs have increased rapidly in recent years. For 

example, it is estimated that maintenance costs in the United States were $ 200 billion in 1979 and that they 

grew in the range of 10% to 15% in the years that followed [68]. An important part of this cost of 

maintenance could, however, be avoided: a bad planning results in wastage in maintenance over time, and 

that possibly on equipment which does not have a big role in the continuity of the production. This 

increased cost alone does not justify the need to challenge traditional approaches to maintenance. Firstly, 

production systems are constantly evolving and new production techniques have emerged; in particular 

because of automation (machines can ensure production without human intervention). 

Secondly, companies are more interested in rapidly adapting the quantity and quality of production 

according to the variation in customer demand, which requires a high level of flexibility for industrial 

equipment. Therefore, even if the maintenance activity is now considered a separate activity, companies are 

more reluctant to outsource to benefit from the strong skills trades service providers [69]. This evolution is 

largely due to the development of science, information and communication technologies. But before the 

development of maintenance architectures to reduce the distance between actors, it is the maintenance 

strategies themselves that evolve. Indeed, maintainers today want to go beyond static maintenance (without 
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anticipating the evolution of the state of equipment) and implement more "dynamic" maintenance 

strategies.  

1.8.4 Navigating towards an Anticipation of the Phenomena of Failure. 

Before the 1960s, the main mission of the maintenance department of a company was to intervene on 

broken equipment in order to repair them as soon as possible. This type of maintenance, called corrective 

maintenance, was then gradually completed by a more anticipatory approach to the phenomena of failure 

that is to say by a maintenance performed before the failure occurred. This second form of maintenance, 

called preventive, was initially implemented during the development of the Boeing 747 in 1960 [68]. These 

two main types of maintenance, corrective and preventive, have some variants explained below. Figure 

1.26 gives an overall articulation [27]. 

There are two main maintenance families: Corrective Maintenance and Preventive Maintenance. The 

corrective maintenance is the one that the system undergoes when the failure is already present and that it 

must be repaired. Preventive maintenance is the anticipation of fault to prevent failures. A classification of 

maintenance strategies can be found in [70][71]. 

 

Figure 1.26: Maintenance Forms [27] 

1.8.4.1 Corrective Maintenance 

AFNOR [72] defines corrective maintenance as maintenance performed after detection of a failure and 

intended to return a machine to a state in which it can perform a required function. 

Corrective maintenance is generally adopted for equipment for which: 

 The consequences of the breakdown are not critical, 

 The repair is easy and does not require a lot of time, 
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 Investment costs are low. 

Two forms of corrective maintenance can be distinguished. When the maintenance intervention is 

temporary, it is called palliative maintenance. If the work is definitive, it is called curative maintenance 

[73][74]. 

1- Curative Maintenance 

This type of maintenance makes it possible to definitively restore the system after the occurrence of a 

failure. This system repair is a durable repair. The repaired equipment must perform the functions for which 

it was designed. A repair is a definitive curative maintenance operation that can be decided either 

immediately following a failure or after a repair (see next paragraph). It, therefore, causes an unavailability 

of the system [71]. 

2- Palliative Maintenance 

Palliative Maintenance is temporary, provisional. It is mainly made up of operations that will, however, 

have to be followed by curative operations (repairs). Troubleshooting is a palliative maintenance operation 

that is intended to return the system to a provisional state of operation so that it can perform some of the 

required functions. Troubleshooting operations are often short-lived and can be numerous. Because they 

happen often, they are also very expensive [71]. 

1.8.4.2 Preventive Maintenance 

This type of maintenance performed according to predetermined criteria aims to prevent failures during 

operation of the system [75]. The preventive aspect is important for reasons of operational safety but also 

for economic and sometimes practical reasons (the equipment is available for maintenance only at certain 

times). The purpose of preventive maintenance is to eliminate the causes of serious accidents by reducing 

the likelihood of system failure or degradation of system equipment. It aims to reduce the costs of 

breakdowns and corrective maintenance by minimizing or avoiding costly repairs and downtime with 

constant and preventive maintenance. There are three special forms of preventive maintenance: systematic 

preventive maintenance, conditional preventive maintenance and predictive preventive maintenance [76]. 

1- Systematic Preventive Maintenance 

Systematic maintenance is developed in relation to a schedule established according to the operating 

time or the number of usage units [77]. Even if time is the most common unit of use, other units can be 

retained such as the number of flights for an airplane, the distance traveled, the number of cycles carried 

out, etc ... It consists of systematically replacing a number of previously defined equipment even if no 

failure has occurred. This is a scheduled maintenance. The frequency of maintenance operations is 

determined from commissioning and is essentially based on reliability data. This form of maintenance 

requires knowledge of the behavior of the equipment, the degradation modes (equipment wear) and the 

average or mean time of good operation between two failures of the system (MTBF) [77][76]. 
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Systematic preventive maintenance ensures the periodic replacement of equipment, some parts of which 

are unusually worn. It also allows the replacement of equipment whose failure may cause serious accidents 

or equipment with a high cost of failure. This systematic method is quite expensive but it ensures a high 

level of security by setting a periodicity of the visit which reduces the risk of having a failure before the 

intervention. 

2- Conditional Preventive Maintenance 

Conditional preventive maintenance, also known as predictive maintenance, is subordinated to a 

predetermined type of event (diagnostic result, sensor data, wears measurement, etc.) indicative of the 

operating state of the system. It depends on experience but also uses real-time data that it analyzes to 

determine or predict a failure [78]. A deep knowledge of the equipment of the system makes it possible to 

be able to predict the failures by observing a certain number of parameters precursors of failure, as for 

example: 

a. Wear, visible in particular by dust, debris, 

b. The oxidation of parts, 

c. Loose electrical, mechanical or hydraulic connections, 

d. Abnormal, unusual vibrations, 

e. Leaks of fluids, compressed air, 

f. Unusual warm-up, 

g. The degraded results: the drift of the specifications of the parts, needs for frequent 

adjustments... 

The measurements and parameters monitored are carefully determined to be representative of the operating 

state of the system. Whatever the technique used, the data collected or measured are always compared to a 

reference. The crossing of a predetermined threshold triggers an event (alarm) which makes it possible to 

decide on a maintenance operation on the system before the degradation causes a failure. This type of 

maintenance can be applied in the case where the MTBF of the system is not known. If the MTBF is 

known, it allows adjusting online time remaining until the next maintenance visit. This time depends 

directly on the monitoring of the precursor parameters of failure [79]. 

3- Predictive Preventive Maintenance 

Predictive maintenance, also known as proactive maintenance, is also performed following an analysis 

of the monitored evolution of the precursor parameters of failure that qualify the operating state of the 

system. Proactive maintenance is a form of predictive maintenance that consists of determining the causes 

of failure and early wear of system equipment. Predictive maintenance makes it possible to anticipate and 

predict at best the moment when the maintenance operation will have to be carried out. 

This form of maintenance reduces the number of unforeseen failures, and thus the unavailability of the 

system. It allows planning of maintenance operations in order to use the equipment to the maximum of their 

possibilities. By monitoring equipment, it is possible to correct driving errors or anomalies that can lead to 
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more serious failures later and improve safety by avoiding critical accidents. On the other hand, this form 

of maintenance requires setting up monitoring and measurement techniques that can be very expensive 

[80]. 

4- Operations 

Monitoring operations (inspections, visits, checks) are necessary to control the evolution of the 

operating state of the system. They are performed continuously or at predetermined intervals calculated on 

the operating time or the number of using units. 

 Inspections consist of periodically recording faults and performing simple adjustments that do not 

require system shutdown. 

 Visits are surveillance operations which, as part of routine preventive maintenance, are carried out 

according to a specified periodicity. They correspond to a list of defined operations that can lead 

to system unavailability. 

 Controls are compliance checks against pre-established data followed by a decision. 

The revision corresponds to all the preventive maintenance operations carried out to avoid any major or 

critical system failure for a specified time or for a number of uses [75]. 

1.8.4.2.1 Implementation of a Conditional Preventive Maintenance (CBM)  

The need for predictive maintenance has become unanimous and is of growing interest in the scientific 

community. A large number of works have recently emerged to propose comprehensive forecasting 

architectures that integrate traditional maintenance activities such as monitoring, diagnostics, prognostics 

and maintenance logistics [81][82][83][84][85].  

In these works, the differences appear only at a relatively small level of detail and focus on the form of 

software architectures to implement (local, distributed, modular). , etc... Overall, the architecture proposed 

in 2009 by Medjaher et al. [86] and distributed by the MIMOSA group [m] is unifying. This is OSA / CBM 

(Open System Architecture for Condition Based Maintenance). This architecture consists of 7 functional 

layers that can be considered as sequential (Figure 1.27). 
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Figure 1.27: CBM Architecture [81] 

- Layer 1 Sensor module: This module provides the system with digital data from sensors or 

transducers. 

- Layer 2 Signal Processing Module: This module receives the data from sensors or transducers or 

other signal processors and performs signal transformations and extractions of features or 

descriptors. 

- Layer 3 Monitoring Module. The monitoring module compares the online data with some expected 

or known values; it must also be able to generate alerts according to previously set thresholds. 

- Layer 4 diagnostic module. This module determines whether the state of the system, subsystem or 

monitored component is degraded or not and suggests the likely failures. 

- Layer 5 prognostics module. This unit predicts the future state of the system, subsystem or 

component monitored. The module is based on the data from the previous modules. 

- Layer 6 Decision module: Its main function is to recommend maintenance actions or other 

alternatives to continue to operate the system until the completion of his mission. 

- Layer 7 Presentation module. This module receives information from all the previous modules. It 

can be built as an HMI (Human Machine Interface). 

In summary, the anticipation of the failures necessary for a predictive maintenance strategy can only be 

achieved if the degradation phenomena are correctly understood (data acquisition, extraction of descriptors, 

detection/monitoring, diagnosis). Also, the prognostic is not an end in itself. On the other hand, it must 

make it possible to implement adequate reaction policies (decision support). 

1.9 Conclusion  

This chapter presents statistical studies on industrial accidents, in particular accidents related to 

chemical industries due to the extent of their moral and material gravity, whether at the level of workers in 

the industry or the society as a whole. 
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The distillation column is one of the most widely used equipment in the chemical industry. In this 

chapter, we have described the distillation column used in the industrial plants and explained the related 

methods of operation. This chapter also illustrates the most frequent accidents that occur in the distillation 

column.  

To open the horizons on the development of effective methods able to ensure effective monitoring and 

prevent failure or possible accidents in the continuous distillation process, it was necessary to explain the 

nature of the data can be extracted from the distillation column system.  

To achieve a high-precision diagnosis and prognostic of this catastrophic accidents occur in the 

distillation column, the pre-processing of these data (filtering, relevant features extraction, and features 

selection) should be thoroughly studied. The following chapter presents the main concepts of faults 

diagnosing, and their associated methods. 
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Chapter 2 

 

Industrial Diagnosis Methods Applied on Chemical 

Processes (nonlinear systems)-Application to Distillation 

Column 
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2.1 Introduction  

The chemical industry is one of the pillars of the global economy, but in recent years it has faced an 

unflattering image of a dangerous and polluting industry. The history of hazardous chemical accidents 

shows that this industry remains one of the major sources of serious incidents that are relatively more likely 

than previously thought. Some recent examples of such accidents around the world that have caused major 

loss of life and major damage to property and the environment include the explosion of the four reactors at 

the Fukushima-Daiichi nuclear power plant in the North East of Japan in 2011, the destruction of the 

oxidation unit of Flixborough FP Less plant. (1996) [16], the toxic cloud of dioxin dispersed in the 

municipality of Seveso, the 4000 victims and 200000 wounded in the disaster of Bhopal or the explosion of 

the AZF plant, ... J.P. Gupta. (2005) [17]  other major accidents can be cited such as Mississauga in 

Ontario, St-Basile-le-Grand in Quebec, Chernobyl in Ukraine, Sandoz in Basel, the Feyzin refinery in 

Lyon, Metz silos and Blaye, etc. so many images that remain engraved in the memory of those who have 

lived but also all security actors who still seek to draw the lessons and avoid the mistakes of the past J.L. 

Gustin. (2002) [18] T.A. Kletz (2006) [87]. 

Many industrial accidents have been caused by reactions whose implementation has not been controlled: 

thermal runaway, uncontrolled secondary reaction ... These consequences are often important insofar as an 

unwanted chemical reaction is likely, following the reagents used, to give substance to both an explosion 

and the emission of toxic or flammable products in the environment. The main causes and reasons 

identified for the development of uncontrolled reactions in the industry are attributable to a fault in the 

design or operation of the facilities and manufacturing processes. These accidents demonstrated how the 

incidents caused by this type of industry could be impressive and destructive. Faced with these events, it 

became necessary to rest the question of chemical risk by challenging industrial practices and identifying 

new technological issues (diagnosis, operating safety, surveillance ...). This development of safety aspects 

coincides with a change in the social context and the emergence of new themes such as ecology and 

environmental protection, which are today part of sustainable development [87]. At this time, this 

awareness of the public leads to less tolerance of the impact of industries on man and his environment 

(effluent discharge, waste, noise pollution, etc.). The phenomena involved in the chemical process must be 

characterized in order to ensure that it is best suited, in terms of the design of the facility that the choice of 

procedure. In a chemical process, non-linearity and the sensitivity of certain parameters influence the 

progress of the chemical reaction. A small variation of these parameters can change enormously during the 

reaction and could even cause an accident [88]. 

In the case of a chemical reactor, the main reasons that lead to its monitoring are, firstly, to maintain its 

optimal driving (online operation), and secondly, its maintenance. The driving support for a process gives 

the operator the tools to share decision-making to make it work the best (maximum production, security, 

non-degradation of equipment) [26]. 

This driver assistance requires monitoring process to detect any malfunctions and identify the best 

possible causes. Maintenance which aims to replace or repair worn or defective equipment is performed 
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most often offline. It is important to note that if the operation and maintenance are operations that are part 

of the time in different ways, they involve monitoring must be online for the two goals In this light 

concerning the operational safety, it is justified to be able to determine in real time the occurrence of a 

malfunction during the implementation of a chemical process in order to be able to effectively remedy the 

problem of detection of chemical failures [89]. In the field of chemical process surveillance, the industrial 

tools used are mainly based on hardware redundancy and thresholding metrics for the surveillance of the 

operating parameters and the conduct of the process. This aspect is known in the industry under the name 

"alarm management". The issues of detection and localization of faults and means of reconfiguration 

(aspect FDI (Fault Detection and Isolation) and FTC (Fault Tolerant Control)) remain open [14]. 

In recent years, alarm filtering and detecting problems and real-time location of faults are addressed in 

the framework of European projects Ould Bouamama B. (2002) [90, p. 1]E. Craye & al. (1998) [90] or by 

the industrial toolbox implementation processes applied in pilot Bouamama & B. Ould al. (2006) [91].  

However, these systems relate to energy processes: the phenomena of material processing are not 

considered. In this context, many approaches have been developed, for fault detection and diagnosis by the 

different auto research communities, chemical engineering (INERIS: National Institute for Industrial 

Environment and Risks in France [87] ) and artificial intelligence (Chemical Hazards and Processes 

Laboratory, INSA Rouen), interested in the field of supervision, in particular, the diagnosis, the main 

purpose is the safety of chemical processes (avoid the risk of thermal runaway, the hazards of chemical 

reactions used and the impact of the main drift effects on chemical reactions considered) [92]. 

2.2 Diagnosis of Dynamic Systems 

The objective of diagnosis is to determine at every moment the mode of operation of the system by its 

outward manifestations. It is based on a priori knowledge of the operating modes and instant knowledge 

embodied by a new case of system status. Its general principle is to compare the data collected during the 

actual operation of the system with the knowledge that one has of its normal or faulty operation. If the 

mode of operation is identified as faulty mode, the diagnostic system can locate the cause. The function of 

the diagnosis is therefore to seek causality linking the symptom, the fault, and its origin. We can also say, 

that the diagnosis is to locate faulty elements and identify the root causes of the problem, this by 

establishing a causal link between the symptoms and the offending items to replace. The following phase is 

the decision. Its role is to identify and initiate actions to bring the best the system in (to) a normal state. 

These actions can be of emergency orders or judgments launches repairs or preventive operations. If we 

want to avoid a loss of production, this decision may be a reconfiguration of the process [93].  

2.3 Characteristics of a Diagnostic System  

Based on Venkatasubramanian in 2003 [94], the set of desired features a diagnostic system should 

possess is: 

 Rapid detection.    
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 Insulation: it is the ability to differentiate faults.  

 Robustness vis-à-vis for some noises and uncertainties.   

 Modeling conditions: for quick and easy deployment of real-time diagnostic classifiers, the 

modeling effort should be as minimal as possible. 

 IT Implementation Facility (low complexity in the algorithms and their implementation) and 

storage capacity. 

 Identification of multiple faults: for large processes, combinatorial enumeration of multiple faults is 

too large and they cannot be explored comprehensively. 

 Identification novelty: one refers to the ability to decide if the process is a normal or abnormal 

condition. In the event of a fault must be identified if it is a known fault or a new default.   

 Estimation of default classification error (diagnostic) for reliability.  

 Adaptability-the diagnostic system should be adaptable to changing conditions 

the process (disturbances, environmental changes).  

 Facility explanation of the fault origin and the spread of it. This is important for making a decision 

online. 

2.4 The Different Diagnosis Steps. 

The diagnosis is divided into several sub-tasks to provide a set of Boolean decisions on the presence of 

faults: detection of an anomaly, localization of the sub-systems that are defective, and characterization of a 

fault or failure (Figure.2.1) [47]. 

 

Figure 2.1: Diagnosis Steps 
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1- Data Acquisition Step. 

The diagnostic procedure requires the availability of information on the functioning of the system 

to be monitored. This information is collected during a data acquisition phase followed by a 

validation. 

This step involves the use of suitable sensors for measuring the variables of the process. 

2- Faults Indicators Development Step 

From measurements and observations conducted by the operators in charge of the installation, it is 

to build indicators to highlight any faults that may occur in the system. In the field of diagnostics, 

fault indicators are commonly referred to as residues or symptoms. 

3- Detection Step  

This step should allow the system to decide whether or not they are in a normal operating state. It is 

not enough to test the non-nullity of residues in determining the occurrence of a default because, in 

practice, the measured values are still marred by noise and the system monitor is always subject to 

disruption. Therefore, this step is usually to call statistical tests or, more simply, is performed using 

a threshold. 

4- Localization Step   

This is from the statistically non-zero residues, locate the fault, that is to say, or to determine the 

faulty elements. The location procedure requires the use of a set (or vector) residues, which must 

have properties to uniquely characterize each fault. To do this, two methods may be used: 

 Construction of structured residues. 

 Construction directional residues. 

5- Decision Making Step 

It is to decide what to do to maintain the desired performance of the system under surveillance. 

This decision should allow generating, possibly under the control of a human operator, corrective 

actions necessary to return to normal operation of the installation. 

In short, regardless of the method used, the diagnostic procedure comprises two main steps, a 

residue generation step, and a tailings evaluation stage. 

 

2.5. Classification of Diagnostic Methods  

Studies conducted over the past fifteen years have led to the development of methodologies for the 

development of procedures tailored to the functional chemical facilities and security constraints (tubular 

reactors, continuous reactors, batch, and semi-batch ... etc.). However, reactors, even if they provide the 

characteristics of flexibility and versatility required, present a number of technological limitations. In 

particular, poor drainage conditions the heat from the chemical reactions are a serious security problem. So 

various factors such as system complexity, high dimension, non-linearity of the processes have often made 

very difficult accident risk detection (very) serious or major: fire and/or explosion, poisoning, chemical 

burns, pollution,...[95].  All these factors clearly demonstrate the need, always present, to develop 

techniques for the prevention of chemical risk and explain the growing interest in research on security 
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issues. This has contributed to the development and improvement of many methods and tools that are now 

recognized and widely used in the industrial world Coker [96].  

 Diagnostic methods differ according to different criteria: the dynamic process (discrete, continuous or 

hybrid), complexity, online diagnostic implementing and / or offline, the nature of information (qualitative 

and / or quantitative) , depth (structural, functional and / or temporal), distribution (centralized, 

decentralized or distributed) ... in this context, several classifications are proposed in the literature [Franck 

and Köppen-Seliger, 1997 [97]; Isermann, 2006 [98]; Dash and Venkatasubramanian, 2000 [99]; 

Venkatasubramanian et al, 2003 [94]]. These classifications are influenced by terminologies and specific 

contexts of each community and are not always consistent. 

The objective is to determine the most appropriate method for the resolution of our problem detection 

and diagnosis, as well as position the class of diagnostic methods that interests us from the different 

methods of literature. We provide a non-exhaustive classification of diagnostic methods into two large 

families (Figure 2.2): 

1- Methods without a mathematical model that does not require increased knowledge of the physical 

system, but the use of superficial knowledge. 

2- The methods based on models that require the thorough knowledge of the physical system. 

 

 

Figure 2.2: General Classification of Diagnostic Methods. 

 2.5.1 Model-based Methods 

The use of models for diagnosis dates back to the early 1970s. Since many studies have been proposed by 

Willsky in 1976 [100], Chow et al. in 1984 [101], Basseville in 1988 [102], Patton et al. in 1989 [103]; 
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Evsukoff et al. in 1997 [104]; Isermann and Ball in 1997 [29] and Fussel and Isermann in 1998 [105]. A 

comprehensive study of the model-based methods can be found in the study of Frank et al. in 1996 [106] or 

in recent books like the book of Patan in 2008 [107]; and the book of Chiang et al in 2000 [32]. These 

methods are alternatives to physical or hardware redundancy. The general structure of most of these 

methods is based on the idea of analytical redundancy [101]. The principle of model-based methods is to 

identify the gap between the real system and its model. These methods rely on explicit behavioral patterns 

of the system being diagnosed.  

2.5.2 Model Free Methods 

For industrial applications, the design of a mathematical model is difficult or impossible to obtain, 

because of the numerous reconfigurations involved in the production process or the complexity of the 

phenomena involved. In this case, it uses methods that do not require detailed knowledge of the process. 

Two classes in this type of approaches are possible [108]: 

 Quantitative methods called also knowledge-based methods 

 Qualitative methods or methods based on data processing. 

 

2.5.2.1 Qualitative Methods 

Qualitative methods consist of operating a symbolic knowledge base and require the existence of a wide 

range of historical data corresponding to the various modes of installation. 

1- Principal Component Analysis: principal component analysis (PCA) is a multivariate statistical 

technique, capable of compressing the data and reducing their size. It can be seen as a technical linear 

orthogonal projection which projects the cases represented in a multidimensional space of dimension n (n is 

the number of observed variables) in a subspace of dimension q<n, maximizing the variance of the 

projections (or minimizing the squared estimation error). This method is successfully used in diagnostic 

studies [109] [110]. 

 

2- Pattern Recognition: the goal of a pattern recognition method is automatic object classification 

following his likeness with respect to a reference object. In a diagnostic problem, a class is formed by the 

set of observations characterizing a situation or process operation: for example, the class C1 may be related 

to the normal functioning of the method, Class C2 for the gradient operation and class C3 for the failed 

operation. The diagnosis is to combine new observations to a class. The diagnostic problem is equivalent to 

the search for boundaries between classes that minimize misclassification. The calculation of the distance 

(Euclidean distance) can be chosen as a decision criterion for assigning a form to a class and determine 

what confidence is affected by the decision. 

 

3- Spectral Analysis: Under certain normal conditions, certain measures have a typical frequency 

spectrum; any deviation of the frequency characteristics of a signal is connected to an anomaly. This 
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method is useful for analyzing signals which show oscillations with long periods (flow rates, pressures 

...).The application of a decision procedure to detect and locate the faulty component in the system. Among 

the decision-making procedures applied to a sample of measurements include the empirical test threshold 

crossing, variance test, the test of the average [102][111]. 

 

4- Artificial Neural Networks (ANN): ANN is a computer system composed of a number of 

interconnected elementary processors (or nodes) that dynamically process the information that arrives from 

external signals. In general, the use of the ANN is done in two phases. First, the synthesis of the network 

includes several steps: the choice of network type, the type of neurons, the number of layers and the 

learning methods. The learning then allows, on the basis of optimizing a criterion, to reproduce the 

behavior of the system to be modeled. It consists in the search for weight parameters and can be done in 

two ways: supervised (the network uses the input and output data of the system to model) and unsupervised 

(only system input data is supplied and learning is done by comparing examples). When the learning 

outcomes achieved by the ANN are satisfactory, it can be used for generalization. This is the second phase 

where new examples that have not been used for learning, are presented to ANN to assess its ability to 

predict the behavior of the modeled system as well. Their low sensitivity to measurement noise, their ability 

to solve nonlinear problems and multivariate, store compactly knowledge, to "learn" online and in real 

time, are properties that make the use of ANN common. Their use can then be done at three levels: 

 As a model system to watch in a normal state and generate an error residue between observations 

and predictions. 

 As residues assessment system for the diagnosis. 

 AS detection system in one step (as a classifier), or in two steps (for the generation of residues and 

diagnosis). 

Several works have been done in the literature to develop methods for diagnosing chemical processes, 

based on the different information available to describe the behavior of systems.  In 1990 E.M. Assaf et al. 

[112] and in 1984 J.A Barton [113] presented the results given by the neural model for the possible thermal 

runaway situations strongly exothermic process. The objective is to establish a reliable alarm algorithm for 

the detection and early prevention of this situation. So, the results show that the neural model is 

representative NARMAX for the dynamic behavior of the nonlinear chemical process. Experiments were 

performed in an exchanger-reactor and experimental data were used to define and validate the model. Then, 

the test of the cumulative sum is applied to indicate any drift of the normal behavior of the process. The 

abnormal behavior of the process due to two faults in its control parameters was examined. Indeed, each 

fault was caused by a sudden change in the flow of cooling. Note that the most common faults are due to 

unsatisfactory heat cooling, poor knowledge of operating conditions, the presence of impurities, failure of 

auxiliary equipment (controller, actuator, sensor,...) And the appearance of adverse events. In 1996, Gustin 

has classified causes thermal runaway [114] where the loss of the cooling capacity is the most important 

cause of the onset of thermal runaway. 

Fault diagnosis with the ANN to radial basis functions with one hidden layer may be applied to develop 

a non-linear representation of the polymerization reactor based on a repeating structure [115]. In the first 

case study of a batch reactor, a temperature sensor fault and a jacket fouling were studied and classified 
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successfully using the model of neural processes and neural radial basis function (RBF) Classifier. The 

ability of ANNs to extract information directly from the data available on the process can be the most 

important reason to apply this approach in the industry. They are useful in problems such as sensor data 

analysis, which is beyond the scope of the conventional techniques algorithmic expert system. Multiple 

fault diagnostic possibilities (occurring two, three at a time) are also studied. The neural network can 

diagnose many double faults compared to triple faults. 

In industrial processes, ANNs were applied for the detection and fault diagnosis. For example, in 1998, 

A. F. Cubillos et al. [116] have described an adaptive hybrid system established on prior knowledge and 

neural networks to model the process control strategies and uncertain parameters in a strongly non-linear 

continuous reactor. In 2004 Power & Y. al. [117] described a supervisory framework in two steps fault 

diagnosis using neural networks. Based on this framework, a failure detection system has been 

implemented to identify the exact location of the faults and to diagnose. ANNs have made rapid 

developments in fault diagnosis of chemical processes and related areas. The process fault detection by 

artificial intelligence techniques was studied in 1990 by V. Venkatasubramanian et al. [118], in 1988 by JC 

Hoskins et al. [119] and in 1994 by K. Watanabe et al. [120]. In 1988 Hugo P. et al. [121] concluded that 

with regard to the safe operating problem in the reaction, the reactors must reach the desired temperature, 

which may end with secondary reactions or possible runaway. 

Neural network-based methods have received a lot of attention because of their fast and robust 

execution, their capacity for structure recognition and association. The fault diagnosis problem can be 

interpreted as a structure recognition task. While, limitations lie in the need for an important database and 

the presence of a real process, which is not always available especially in the case of learning the failure 

modes. 

As stated previously, the ANN can be used to diagnose failures. Their low sensitivity to measurement 

noise, their ability to solve nonlinear and multivariate problems, store compactly knowledge, learn online 

and in real time, are indeed many properties that make them attractive for this use.  

5- Fuzzy Logic (FL): fuzzy logic is a mathematical theory introduced in 1965 by L. Zadeh [122], 

which takes into account uncertainty and allows merging of information. The idea of the fuzzy approach is 

to build a device, called fuzzy inference system able to imitate the decisions of a human operator from 

verbal rules translating his knowledge of a given process. Find a mathematical relationship between a 

failure and its symptoms is often difficult. However, based on their experience, human operators are able to 

determine the faulty component that is causing the symptoms observed. This kind of knowledge can be 

expressed using rules of the form: IF condition THEN conclusion. Where the condition part includes 

symptoms observed and the conclusion part includes the faulty component. Thus the diagnostic problem is 

considered as a classification problem. The vector of the symptoms of the classifier, developed from the 

measured values on the system, can be seen as a form, it is to rank among all the shapes corresponding to 

normal operation or not. 
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2.5.2.2 Quantitative Methods   

Quantitative methods or knowledge base are implemented when the majority of measures are 

unavailable and when building the model is difficult. They can be used to identify the causes of failures of 

an industrial process. It is functional and structural analyzes are based on the experience and knowledge of 

the operator. 

1- Tree of Failure: the fault tree first appeared in 1988 by Villemeur [123], is one of the major tools 

for analyzing technological risks. 

The objective of this approach is to identify the various possible combinations of events that cause the 

creation of a single adverse event. The graphic representation is composed of a tree structure allowing 

treatment of both qualitative and quantitative. The fault tree is made of several layers where the root 

corresponds to the adverse event. The levels are ordered successively such that each event is generated 

from the lower level events through logical operators (AND, OR). The decomposition stops at the levels of 

elementary events, characterized by the fact that they are independent and not be broken down into simpler 

components. 

2- Expert System (The case-based reasoning): The case-based reasoning is modeling expertise and 

reasoning skills of qualified specialists in the emerging field. This reasoning is qualified to solve a problem 

by relying on past experiences. Knowledge is stored as appropriate. A case is a contextual piece of 

knowledge, representing an experience that can be used to achieve the goals of the reasoning engine. Thus, 

a case can be seen as a proven situation in the past, associated with the result of some relevant action. The 

reasoning from cases is reasoning by analogy. The attributes of a situation are used as an index in the case 

of the library to get the best, according to some similarity criteria, and thus to determine the solution. 

Expert systems based on the use: 

 A knowledge base that contains the expertise of the specialist described as rules whose structure is 

as follows: IF <condition> THEN <conclusion>. 

 A fact base that contains the basic information needed to establish a diagnosis. 

 An inference engine that mimics the expert's reasoning process. 

 

The difficulty here is to clearly define the cases in other words, to identify those useful and necessary 

for the description of a situation. Their determination for dynamic systems is far from obvious [124].  

 

2.5.3 Comparative Analysis of Diagnostic Methods on Chemical Processes 

The comparison between the methods of diagnosis is a very difficult task. Indeed, the decision of 

selecting a fault detection method depends on several factors: a priori knowledge available on the system, 

the presence or absence of a mathematical process model to diagnose, type of faults to be detected, the 

presence or absence unknown inputs (noise, uncertainty), nonlinearity, system is closed or open loop ... 
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For example, for the electrical and mechanical systems, it is easy to design a mathematical model. The 

choice of model-based diagnostic methods will be preferred. By cons, for chemical industrial processes, 

modeling is difficult to achieve because even if a mathematical model is obtained, it is complex. In this 

case, the reference model without flaw detection methods can be applied. In 2006 Isermann et al. [98]  

proposed a comparative study of diagnostic methods by analytical redundancy. It should be noted that 

many methods are born from the coupling of several diagnostic strategies which aims to combine the 

advantages of each strategy. Some combined approaches are presented in [Isermann, 2006] [98]. 

Table 2.1 provides a synthetic comparative analysis of approaches for detection and diagnosis that we 

have just explained. 
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With/without a model Method Advantage Disadvantage 

Model-Based 

Influence graph 

 Knowledge of behavior (models) 

unnecessarily default location 

 Explanatory capacity 

 Maximum operating structure 

 Unique graphic language 

applicable to many systems 

 Based solely on the course of 

causal paths 

 

 Generating a large number of assumptions which may 

lead to misdiagnosis 

 Construction of the structure can cause loss of 

information 

 

The parametric 

estimation 

 Well adapted to multiplicative 

faults (affecting parameters) 

 Provide information on the extent 

of deviations 

 Application Process low number 

of variables where specific 

templates can be defined. 

 Localization task difficult diagnosis 

 Relations between mathematics and physical parameters 

not always reversible in a unitary manner 

 Working hard for complex installations due to a large 

number of variables involved 

 Need for a permanently excited physical system: Problem 

in the case of hazardous processes or operating in a 

stationary mode 

The parity space 

 Knowledge of the system 

decoupled from the knowledge of 

diagnosis 

 Very general method 

 Lower cost of development 

 Structure interesting for complex 

processes 

 Facilitates analysis: insulation 

failure 

 Unsuitable for non-linearity and non-additive failures 

 Consideration of additive uncertainties 

 

The state estimation 

 Simple calculation 

 stronger method for measuring 

noise 

 Applicable to linear and non-

linear systems 

 very common Methods 

 Ability to decouple the responses 

 No detection warranty if the fault type has not been 

modeled 

 Diagnostic error due to disturbance 

 Need to have a precise and complete model 

 Adaptability to difficult processes of change and lack of 

general method due to the local nature of the model 

(applied to the system studied) 
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of unknown inputs 

 
 Poorly adapted to the complex process 

 

Model Free 

Expert systems 

 Low calculation time 

 No complicated reasoning (no 

intermediate calculation), direct 

generation rules by a human 

expert who results 

comprehensible to the operator. 

 

 Depends on the expertise done on the system 

 Uncertain data: difficulties in the analysis of a set of 

uncorrelated data incomplete and ambiguous 

 Deep Lack of knowledge: no explanations on the 

conclusions adopted. 

 Inconsistency rules: add or delete rule impact on other 

rules difficult to detect 

 Difficulties in acquiring expertise 

 Lack of generic because the rules depend on the system 

architecture 

 The problem of the evolution of the system: adding / 

component change involves new expertise 

 Robustness: fixed rules and not robust to unrecognized 

situations 

Tree of failures 

 Very effective for analyzing and 

solving diagnostic problems 

failures in industrial processes. 

 Identification of common failure 

modes that could affect the 

system 

 Very powerful approach for 

analyzing single failures of 

elements leading to global failure 

 No treatment necessary 

 Multiple faults handling disability. 

 Axes by ray constructed dependent on its creator: error 

sensitivity 

 No formal method to verify the accuracy of the 

developed tree. 

 Request a long experience 

 Any Change or development of the system requires 

rewriting of the table 

 Poorly adapted to dynamic systems, highly time-

dependent, because of the high number of variables and 

process 

PCA 

 Handling noise and correlation to 

extract information efficiently 

 A powerful tool capable of 

reducing the size of data so that 

the information is retained 

 Facilitates data analysis 

 No property signature making it difficult insulation faults 

 Invariant representation in time 

 Periodic Update 

Fuzzy logic 
 Approximation of the behavior of 

a complex system 

 Do not provide a better understanding of the relationship 

between variables 
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 Output variable directly related to 

the input variables 

 Description of the known 

physical structure of a system 

 Sets with no clear semantic meaning 

Pattern recognition 

 Capable of processing data that is 

both uncertain and imprecise 

 Simple to apply 

 Low computing time for the 

classification of a new 

observation and independent of 

the size of the training set 

 Any comments must belong to a defined class 

 The characteristics of some modes remain unknown 

 No general rules for the choice of the space of 

representation which is the diagnostic success factor 

 Number of classes supposed known at the outset 

supposedly exhaustive knowledge 

Neural network 

 Ability to solve nonlinear  and 

multivariate problems  

 Ability to learn online and in real 

time 

 Low sensitivity to measurement 

noise, 

 Setting parameters of the delicate network 

 Time Significant calculation during the learning phase 

 

Table 2.1 Comparative Analysis of Synthetic Fault Detection and Diagnosis Approaches
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Plant operation today is becoming more complex as plants are often operated at extreme 

pressures and temperatures to achieve optimal performance. These extreme conditions may cause 

equipment failures and deviation in a process that may lead to catastrophic accidents. Although 

these plants are equipped with automated control, still the role played by the computer is limited 

and highly depended on human operators to maintain process plant integrity.  

In some modern high technology process plant, there may be hundreds or thousands of process 

variables that need to be observed. As a human with limited capability, they are out of hand when 

handling these problems. Industrial statistics show that although major catastrophe may be 

infrequent, minor accidents are very common. These minor accidents cost the society billions of 

dollars every year [94]. Thus, to prevent this from happening, a quick detection and diagnosis of 

process fault are needed. An automated process fault detection and diagnosis (PFD&D) can 

provide a good solution to better safety in chemical process plant [125].  

It is clear that a large number of developments concerned approaches based on quantitative 

models of the process using the technique of calculating the residuals [125] [1] [126].  

However various factors such as the complexity of the system [127], the higher dimension, the 

non-linearity of the process have often made it very difficult to develop an accurate mathematical 

model [128]. This difficulty limits the application of this approach to real industrial processes. In 

particular, a too simple model does not generate residues only representative failures, but they 

often include model error, or normal drift parameters [128] [129]. The difficult to develop a 

mathematical model to diagnose and detect a fault in the chemical process has made use of the 

quantitative and qualitative methods without a model as the better solution in FDI domain such as 

the expert system, the tree of failures, the fuzzy logic, the pattern recognition and the neural 

network [108]. We noticed that if we want to dive over in the heart of the problem, we find that 

many of the methods without model suffer from many disadvantages in comparison with their 

advantage. The method depend on the human expertise, suffer from the difficulties in the analysis 

of a set of uncorrelated data incomplete and ambiguous in addition to the deep lack of knowledge 

no explanations on the conclusions adopted, the difficulties in acquiring expertise, the  lack of 

generic due the rules that depend on the system architecture, the problem of evolution of the 

system (adding / component change involves new expertise) and finally the non-robustness fixed 

rules and not robust to unrecognized situations that all disadvantage reduce dependence on expert 

system on the fault diagnosis and detection  (Table 2.1)  

For the tree of failures, many of the weaknesses prevent the use of this method such as 

The absent of formal method to verify the accuracy of the developed tree, the need to request a 

long experience, also this method suffer from a poorly adapted to dynamic systems, highly time-

dependent, because of the high number of variables and process. (Table 2.1) On the other side if 

we look to the fuzzy logic we find that this method has some advantages when we use it on 

industrial faults diagnosis and detection or this method has a strong approximation of the 

behavior of a complex system, and their output variable directly related to their input variables 

and it’s has the ability to description of the known physical structure of a system (Table 2.1) 

Although the advantages of fuzzy logic, but it remain few in comparison with the advantages of 

the neural network [130] [131], the benefits of ANN allow it to be applied in a variety of areas. 
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These areas are automotive, aerospace, business, banking, voice recognition and robotics. In the 

mid-1980s, researchers in the field of process safety proposed a potential approach to detect and 

diagnose faults using the ANN. The first researchers to apply ANN in PFD & D, is done in 1989 

by Venkatasubramanian and Chan [132].  After that, many works have studied the benefits of the 

implementation of the neural network in this area, such as the work of Li et al in 1990 [133], 

Becraft and Lee in 1993 [134] and Leung and Ramagnoli in 2000 [135]. ANN has also been used 

to perform several functions that could also be performed by integrating other fault-detection 

techniques such as the knowledge-based expert system [9].  

Some of the benefits of using the ANN on chemical engineering are as follows [136] [126]: 

 Ability to solve nonlinear and multivariate problems  

 The potential for online use – ANNs may take a long time to train, but once trained, they 

can calculate results from a given input very quickly. Since a trained ANN may take less 

than a second to calculate results, it has the potential to be used online in a control 

system. 

 Adaptive behavior – ANNs have the ability to adapt or learn, in response to their 

environment. They learn through training, where when given the input-output patterns, 

they adjust themselves to minimize the error. 

 Pattern recognition properties – ANNs perform multivariable pattern recognition very 

well and this is where ANNs will probably find the most useful especially in process 

control and fault diagnosis. 

 Filtering capacity: low sensitivity to noise and incomplete information – ANNs can deal 

with the imperfect world, generalize and draw substance conclusions more effectively 

than the less flexible empirical models. 

 Automated abstraction – ANNs can ascertain the essentials of relationships and can do so 

automatically. They do not need the domain expert that knowledge-based required. 

Instead, through training with direct (and sometimes imprecise) numerical data, ANNs 

can automatically determine cause-effect relations. 

 Ability to learn online and in real time   

Their low sensitivity to measurement noise, their ability to solve nonlinear problems and 

multivariate, store compactly knowledge, to "learn" online and in real time, are properties that 

make use of attractive ANN. However, the major disadvantage is how to determine a 

methodology to master the inherent problems, which are mainly the selection of the structure, 

network size and learning algorithms for a specific problem [47]. 

In recent years, many studies have conducted process fault detection and diagnosis using a 

variety of methods such as knowledge-based expert system (KBES), artificial neural network 

(ANN) and mathematical modeling. Using KBES in PFD&D has the advantage of having an 

overview of problem-solving in a chemical plant. The tedious nature of knowledge acquisition 

represents its own limitations, the system's inability to dynamically learn or improve its 

performance and the unpredictability of the system outside its area of expertise. Fault detection 

and diagnosis based on knowledge has also been introduced by the combination of heuristic 
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knowledge (rules of operator knowledge) and knowledge of the procedure (mathematical models, 

Kalman filtering algorithms, and procedures of signal processing) [125]. However, the technique 

could be very complex when it comes to a non-linear process [126].  

 

As results of these limitations, for PFD&D of a non-linear and complex system such as the 

chemical industrial process, ANN can provide a better solution especially when it combines with 

fuzzy logic because of its utility in the representation of the data input-output, data classification, 

and pattern recognition [137]. According to [3], there is no single method that can handle the 

entire system failure. Thus, the combination of ANN and fuzzy logic is very convenient because 

it combines both advantages and makes the whole system more robust. ANN can work 

simultaneously on qualitative and quantitative data and in the case of the difficulties to build a 

mathematical model of the system; ANN demonstrates that is very useful in this case while fuzzy 

logic has the ability to mimic the ability to detect, generalize, process, operate and learning of the 

human operator [138] [131].  

 

2.6. Artificial Neural Network and Industrial Diagnostics. 

Artificial neural networks (ANNs) are parallel and distributed systems of information 

processing inspired by the functioning of the human brain. Following we will describe the 

operating principle of ANNs, their different architectures, the available learning algorithm 

families, and a summary of the main advantages of neural networks as an information processing 

system. ANNs are a new approach to information processing. They offer compact and fast 

solutions for a wide range of problems, especially those with real-time constraints such as most 

current space applications. This is truer with the use of emulations and hardware 

implementations. They can provide an interesting solution for monitoring problems of industrial 

equipment. Important properties of neural networks include their fault tolerance which measures 

their ability to perform the task they are asked for in the presence of erroneous information and to 

maintain their computability even if part of the network is damaged [139]. 

2.6.1.2 Artificial Neural Network 

Definition: Kohonen proposes the following definition: "The ANNs are massively connected 

networks in parallel to simple elements (usually Adaptive) and their hierarchical organization. 

They are supposed to interact with the objects of the Real world in the same way as the biological 

nervous systems.” According to this definition, we can say that an ANN performs one or more 

algebraic functions of its entries. By the composition of the functions performed by each of the 

neurons, we can model an ANN using a graph-oriented by the interconnection of simple elements 

(neurons) and the exchange of information via connections. The calculation will be done in a 

distributed, parallel and cooperative way.  Figure 2.3 illustrates an ANN with four inputs is an 

output. 
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Figure 2.3: Example of an Artificial Neural Network 

The essential characteristics of a neural network are its architecture (topology): type of 

interconnection, choice of the transfer function and its mode of learning, ie how to estimate or 

learn the weights and especially the tool representation of knowledge. It is a distributed 

representation, where each neuron participates, which leads us to observe that the connections 

between the neurons that make up the network describe the "topology" of the model [140]. 

2.6.2 Neural Architectures 

2.6.2.1 Non-looped Neural Networks "Feedforward" 

A non-looped neuron network is presented by a set of neurons connected to each other such as 

the information flowing from the inputs to the outputs without going back. The calculation of Y 

(output) is done by propagating calculations from left to right, possibly with linear direct 

connections: 𝑌 = 𝑎 × 𝑥 + 𝑓𝑤(𝑥) 

This type of network includes two groups of architectures: single-layer networks and multi-

layer networks. They differ by the existence or not of intermediate neurons called neurons hidden 

between the input units and the output units called source nodes or input nodes and output nodes 

respectively [141]. 

2.6.2.1.1 Non-looped Mono-layer Networks 

This type of network has an input layer receiving the stimuli to be processed via the source 

nodes. This layer is projected into an output layer composed of neurons (computing nodes) 

transmitting the results of the treatment to the external environment. 
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2.6.2.1.2 Non-looped Multi-layer Networks 

This type of proactive network is characterized by the presence of one or more hidden layers, 

whose corresponding compute nodes are called hidden nodes or hidden units. Hidden layers 

intervene between the input of the network and its output. Their role is to pretreat the input 

signals, received by the input layer from the external medium, and transmits the corresponding 

results to the output layer or will determine the final response of the network before it is 

transmitted to the outside environment. This pretreatment role verified by adding one or more 

hidden layers, the network is able to extract more statistical properties than those extracted from a 

similar network with fewer hidden layers. This is useful for performing more complex functions 

than simple linear separations. In this type of network, the inputs of the neurons of a particular 

layer come only from the outputs of the previous adjacent layer. The most frequently used 

networks in this category are Multi-layers Perceptron (MLPs) [142]. 

2.6.2.2 Looped Neural Networks (Recurrent) 

A discrete-time looped neural network produces one or more equations with non-linear 

differences, by the composition of the functions performed by each of the neurons and delays 

associated with each of the connections [143]. These networks are characterized by the presence 

of at least one feedback loop at the level of the neurons or between the layers, and aking into 

account the temporal aspect of the phenomenon. But it is harder to implement meter models.  

2.6.4 Most Used Neural Networks 

Today, the number of possible neural network types is quite high. We present a summary 

diagram (Figure 2.4) of what is the most used ANNs in the diagnosis field. 

 

Figure 2.4: Some Usual ANNs 

2.6.4.1 Simple Perceptron 

The perceptron is the first model of neural network invented in 1957 by Frank Rosenblatt 

[144]. The goal of the perceptron is to associate input forms with answers. The perceptron 
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consists of two layers: the retina and the output layer that gives the response corresponding to the 

stimulation present at the input. The cells of the first layer answer yes/no. The answer "yes" 

corresponds to a value "1" and the answer "no" corresponds to a value "0" at the exit of the 

neuron. The input cells are connected to the output cells through synapses of varying intensity. 

The learning of the perceptron is done by modifying the intensity of these synapses. The output 

cells evaluate the intensity of the stimulation from the cells of the retina by summing the 

intensities of the active cells. 

The perceptron must find all the values to be given to the synapses so that the input 

configurations are translated into desired responses. For this, we use the Windrow-Hoff learning 

rule. To learn, the perceptron (Figure 2.5) must know that he has made a mistake and must know 

the answer he should have given. As a result, we speak of supervised learning. 

The learning rule is local in the sense that each output cell learns without needing to know the 

response of the other cells. The cell only changes the intensity of its synapses (learns) when it is 

wrong. Minsky has shown that a simple form (the xor) cannot be learned by a perceptron neuron. 

A neuron can only separate two regions separated by a hyperplane. With several neurons, it's 

better now, but it's clear that a single layer of perceptron cannot learn complex shapes [145]. 

 

Figure 2.5: General Scheme of Simple Perceptron. 

2.6.4.2 Multi-layer Perceptron 

The Multi-layer Perceptron (MLP) is an organized network of artificial neurons organized in 

layers and where information moves in one direction, from the input layer to the output layer. 

Figure 2.6 gives an example of a network containing an input layer, two hidden layers, and an 

output layer. The input layer always represents a virtual layer associated with the inputs of the 

system. It contains no neurons. The following layers are layers of neurons. In the illustrated 

example, there are 3 inputs, 4 neurons on the first hidden layer, three neurons on the second and 

four neurons on the output layer. The outputs of the neurons of the last layer always correspond to 

the outputs of the system. In the general case, a Multi-Layer Perceptron may have any number of 

layers and number of neurons (or input) by one layer also. 
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Figure 2.6: Example of Multi-layer Perceptron Network. 

The creation of a multi-layer perceptron to solve a given problem therefore passes through the 

inference in the best possible application as defined by a set of learning data consisting of pairs of 

input vectors and desired outputs. This inference can be made, among others, by the said retro 

propagation algorithm [145]. 

2.6.4.3 Retro Propagation Network 

One of Perceptron's disadvantages is that it minimizes an all-or-nothing error because of its 

activation function. It does not take into account the notion of distance. Because of this, it is very 

weak. The Widrow-Hoff learning rule (Delta rule) [146] no longer works in all or nothing but 

minimizes a quadratic error function, which is more robust. Unfortunately, this rule can only be 

applied to single-layer networks of adaptive weights. It is therefore by extending the Widrow-

Hoff rule that several teams of researchers have developed a learning algorithm called the 

backpropagation gradient error, which was then generalized by the Rummelhart team in 1986 

[147]. This algorithm provides a way to modify the weights of the connections of all layers of a 

Multi-layer Perceptron (MLP)  [34] (Figure 2.7). 

 

Figure 2.7: Non-looped Neural Network 
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This algorithm is made in order to answer the question: how to pass on, on each of the 

connections, the error signal which can only be measured on the output layer after going through 

several non-linear steps? 

For this algorithm as well as one is able to propagate a signal from the input cells to the output 

layer, one can by following the reverse way, retro propagate the calculated error output to the 

inner layers. The algorithm of retro propagation of the gradient of the error made it possible to 

exceed the limits of the simple Perceptron. It is able to solve a large number of classification and 

pattern recognition issues and has resulted in many applications. This Algorithm nevertheless 

suffers from numerous faults, including [143]: 

 The calculation time: the learning time is very long; 

 A high sensitivity to the initial conditions, i.e. the way in which the weights of the 

connections are initialized; 

 Many problems are caused by the geometry of the error function: local minima. This 

problem is partly solved with the stochastic gradient, but it still remains; 

 The problem of dimensioning the network: The retro propagation learns a base of 

learning on a network whose structure is fixed a priori. The structure is defined by the 

number of hidden layers, the number of neurons per layer, and the topology of the 

connections. A poor choice of structure can significantly degrade network performance. 

2.6.4.4 Radial Basis Function Neural Network (RBF) 

Networks with radial basis functions (RBF) or more simply radial-based networks have been 

proposed by J. Moody and C. Darken. There is an organization with an input layer, a hidden 

layer, and an output layer. Each hidden neuron only reacts to a small part of the input space (its 

area of influence). For a network having n inputs and m hidden units, activation of hidden 

neurons is given by a Gaussian function of the type (eq. 2.1) (the input and activation functions 

are combined): 
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Where i denotes the index of the neuron, k traverses the set of entries noted , and  and 

are parameters called respectively centers and variances of Gaussians. Figure 2.8 shows the 

shape of this activation function for a neuron that has only one input. 
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Figure 2.8: Activation Function of a Hidden Neuron with a Single Input 

Each of these neurons is thus activated significantly only for input values relatively close to 

the Gaussian centers. Connections from input neurons are unweighted. The activation of an index 

output neuron i is given by (eq.2.2): 
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Where j runs through all the clues hidden neurons, neurons of this type thus realize a weighted 

sum of the activation values of the hidden neurons. The term  called normalization factor 

is not mandatory. We talk about standard network when used. Learning is done in these networks 

by changing the weights of the connections between the hidden neurons, the output neurons, the 

centers and the variances of the Gaussians. As before, a gradient descent is performed with the 

aim of minimizing the quadratic error, the expression of which is given by equation (eq.2.3). 

                                 )3.2(
2

1 2

 
i

ii saq      

This model, however, suffers from a disadvantage compared to multi-layer networks since 

unlike them, its approximation domain (i.e. domain in which it realizes a satisfactory 

approximation) is strictly limited. It confines itself to the areas of influence of hidden neurons, 

without which the network is unable to extrapolate. When the size of the input domain is very 

important, the number of necessary neurons can become considerable and the use of multi-layer 

networks may be more appropriate [148]. 

2.7. Fuzzy Logic and Industrial Diagnostics. 

2.7.1 History of Fuzzy Logic: 

Initially, the theory of fuzzy logic was affirmed as an operational technique. Used alongside 

other advanced control techniques, it makes a discrete but appreciated input into industrial control 
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automation. The theoretical foundations of fuzzy logic were established in the early 1965s by 

Professor Lotfi Zadeh of the Berkeley University of California [122], this technique combines the 

notions of "fuzzy subset" and "theory of possibilities". In 1970, it was the first application of 

fuzzy logic in expert systems of decision support in medicine, and in 1975 Mamdani  

[149]performed a fuzzy regulation of a steam boiler. The Japanese [150], in 1985, was the first to 

use fuzzy logic in Fuzzy Logic Inside consumer products. The fuzzy set theory has also given rise 

to an original treatment of uncertainty, based on the idea of order, which formalizes the treatment 

of ignorance, and allows the formalization of advanced information systems. Fuzzy sets also have 

an impact on automatic classification techniques and have contributed to some renewal of 

existing approaches to decision support [139]. 

2.7.2 The Requirements of Fuzzy Logic 

Fuzzy logic is called linguistic logic because its values of truth are words of the current 

language; it is not an imprecise logic but a logic that adapts itself to the human being. Fuzzy logic 

is a tool for integrating human knowledge into practical algorithms. It has the advantage of 

combining digital and symbolic data processing. 

Fuzzy logic methods can be used to design intelligent diagnostic systems [151] based on 

knowledge expressed in natural language. It is an approach modeled on human reasoning rather 

than rigid calculations. Indeed, the reasoning mode in fuzzy logic is more intuitive than classical 

logic. It allows designers to better understand natural phenomena, inaccurate and difficult to 

model by relying on the definition of rules and membership functions in sets called "fuzzy sets" 

[122] [152]. A field of application of the fuzzy logic which becomes frequent is that of the 

regulation and control of industrial regulations. This method makes it possible to obtain a control 

law which is often effective, without having to resort to significant theoretical developments. It 

presents the interest of taking into account the experiences acquired by the users and operators of 

the process to be controlled. The basic elements of fuzzy logic are [153] [152]: 

 Linguistic variables 

 Membership functions 

 Deductions to inferences: Decision-making from a rule base If ... Then 

2.7.3 Fuzzy Sets 

2.7.3.1 Introduction 

Fuzzy sets theory is a mathematical theory, it was introduced by Lotfi Zadeh in 1965, which 

showed that this theory is a special case of the theory of classical subsets where the membership 

functions considered take binary values ( {0,1}) [150]. The notion of fuzzy set aims to allow the 

idea of a partial membership of an element to a set or a class that is to say to allow an element to 

belong more or less strongly to this class [154]. This concept allows the use of data categories 

with poorly defined boundaries, intermediate situations between everything and nothing, the 

gradual transition from one property to another, etc. Let U be the set of values of the variable x, 
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called the universe of discourse; a subset A of U and a function  𝜇𝐴(𝑥) between 0 and 1. This 

function μA (x) quantifies the degree to which each element x of U belongs to A. 

U: the universe of discourse. 

A: subset of U. 

 If  𝜇𝐴(𝑥) = 1              𝑥 completely belongs to the subset 𝐴𝑖 

 If 𝜇𝐴(𝑥) = 0               𝑥 does not belong to subset 𝐴 

 If  0  𝜇𝐴(𝑥)  1        𝑥 partially belongs to subset 𝐴 

The subset 𝐴 is therefore a fuzzy set and μA (x) is called the membership function. Figure 2.9 

provides a better understanding of the notion of a fuzzy set compared to a classical set. 

 

Figure 2.9: Comparison between Classical and Fuzzy Set. 

Equation 2.4 defines a fuzzy set completely described by its membership function 𝝁𝑨(𝒙). 

                        𝐴 =  {(𝑥, 𝜇𝐴(𝑥)) / 𝑥 ∈  𝑈}                                                       (2.4) 

In the case of a discrete set  𝑈 =  {𝑥𝑖 , 𝑖 =  1,2, . . . , 𝑛} , a fuzzy set 𝑨 (eq.2.5) can be defined by a 

list of ordered pairs: degree of membership / element of the set: 

                      𝐴 =  { 𝜇𝐴(𝑥1)/ 𝑥1, 𝜇𝐴(𝑥2)/ 𝑥2, . . . , 𝜇𝐴(𝑥𝑛)/ 𝑥𝑛 }            (2.5) 

We often use vector formalization, more convenient for programming (eq.2.6): 

𝑥 =  [𝑥1, 𝑥2, . . . , 𝑥𝑛]
𝑇 , 𝜇 =  [𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2), . . . , 𝜇𝐴(𝑥𝑛)]

𝑇          (2.6) 



 

Page 97 of 241 
 

2.7.4 Membership Function 

The membership function measures the degree to which an element x belongs to a fuzzy set A. 

They are either uniformly distributed or random [153] [155]. Membership functions can have 

several forms (Figure 2.10): 

 Triangular. 

 Bell-shaped. 

 Monotone (increasing or decreasing). 

 Trapezoidal. 

 … 

 

Figure 2.10: Different Form of Membership Function. 

The shape of the membership function is to choose according to the processed application. 

However, for a fuzzy set, what matters is less the precise value of the degrees of membership of 

the elements that support the scheduling of these membership degrees between them. 

The most used membership functions are in trapezoid or triangle form, and allow to respect this 

constraint while keeping a very simple analytical form. In some applications, where we must 

derive the membership function, we will instead choose S-functions or Gaussian-type functions, 

continuously differentiable on their support. 

2.7.6 Fuzzy Inference System [156] 

The concept of the fuzzy rule defines a fuzzy expert system as an extension of a conventional 

expert system, manipulating the fuzzy proposition. Thus a fuzzy inference system (FIS) is formed 

of three blocks as shown in Figure 2.11. The first fuzzification block transforms numeric values 

into degrees of membership in the various fuzzy sets of the partition. The second block is the 

inference engine, made up of the set of rules. Finally, the block of defuzzification allows, if 

necessary, to infer a net value, from the result of the aggregation of the rules.  
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Figure 2.11: Fuzzy Inference System 

Fuzzy systems based on "if ... then" rules have antecedents and consequents that are 

symbolically specified. In the context of system modeling and control, the exploitation of such 

knowledge generally requires the establishment of numerical/symbolic (N / S) and 

symbolic/numerical (S / N) interfaces. These are essential gateways for establishing a link 

between the set of rules (rule base) that interface the fuzzy system and the process, on which only 

measurements and numerical actions are possible. Conventionally, the internal operation of fuzzy 

systems is based on a structure, as shown in Figure 2.11, which includes: 

 A rule base containing a number of rules if ... Then of the control strategy of the expert; 

and a database that includes all the definitions used in the fuzzy control (universe of 

discourse, fuzzy partitions, choice of operators ...). 

 A decision unit (Inference) that transforms interference operations into rules from a 

knowledge base (provided by the expert) and the fuzzy subset corresponding to 

fuzzification of the measurement vector. In general, several fuzzy variable values, 

suitably defined by membership functions, are linked together by rules, in order to draw 

conclusions. We then speak of fuzzy deductions. In this context, we can distinguish two 

kinds of inference rules: 

1- Inference with several rules 

2- Inference with a single rule. 

In the case of an inference with multiple rules, they are expressed in the general form: 

 

If condition 1, then operation 1, OR 

If condition 2, then operation 2, OR 

If condition 3, then operation 3, OR 

 

⋮ 

If condition m, then operation m, 

 

Conditions may depend on one or more variables. 

In the second case, the variables are linked together by fuzzy operators AND and OR. 

Each variable is assigned membership functions, taking into account the fuzzy sets 

formed by these variables. 
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 A fuzzification interface that transforms crisp entries into verification degrees of 

linguistic values. 

 Finally, a defuzzification interface, with an optional post-processing information which 

converts the fuzzy inference results in a crisp output. 

2.7.6.1 Fuzzification (Fuzzy Quantization) 

The fuzzification is the step of passing the digital domain into the symbolic domain (blurred). 

This step is necessary as long as we want to manipulate, using the fuzzy set theory, measurable 

physical quantities (precise or imprecise). Depending on the application, fuzzification can be 

done in different ways. This can be done by transforming numerical data into linguistic values to 

give a subjective view of the state of the observed system. It is necessary to transform the non-

fuzzy variables from the outside world to fuzzy sets. To do this, use an operator called 

fuzzification which associates a measure of a particular membership function. Fuzzy logic 

systems deal with fuzzy input variables and provide results on output variables that are 

themselves fuzzy [157].  

How to fuzzify? 

For fuzzifier must be given: 

 The universe of discourse, i.e.: Range of possible variations of the input considered. 

 A fuzzy classroom partition of this universe. 

 The membership functions of each of these classes. 

2.7.6.4 Defuzzification 

The inverse operation of moving from a linguistic variable representation to a physically 

applicable numerical variable is called defuzzification. There are several methods to obtain an 

accurate value from a fuzzy set as input. It cites as examples the average of the maximum and the 

center of gravity. Defuzzification, also called the combination of rules, is necessary when several 

rules of inference are validated because one finds oneself in this case with several fuzzy sets of 

exit, one must, therefore, apply a technique to find an exit value [158]. 

1. Center of Gravity (CoG) Method [158] [159]: 

In fuzzy control, CoG defuzzification (Figure 2.12) is the most used. The output value is 

given in the continuous case (eq.2.7): 

 

𝑥0 =
∫ 𝑥𝜇(𝑥)𝑑𝑥
𝑥2

𝑥1

∫ 𝜇(𝑥)𝑑𝑥
𝑥2

𝑥1

                                               (2.7) 

 

In the discrete case this output value is defined as the following equation (eq.2.8): 
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                            𝑥0 =
∑ 𝜇𝑖𝑥𝑖
𝑛
𝑖=1

∑ 𝜇𝑖
𝑛
𝑖=1

                                                           (2.8) 

With: 

 𝑛: Level of discretization 

𝑥𝑖: ith exit. 

𝜇𝑖: Membership value of the ith output. 

 

Figure 2.12: Defuzzification Using Center of Gravity Method 

2. Method Mean of Maximum (MoM) [158][159]: 

This is the average of the most likely output values. MoM defuzzification (Figure 2.13) is 

rather used when it comes to discriminate an output value (eg recognition). In the discrete 

case the output value is given by (eq.2.9): 

𝑥0 = ∑
𝑟𝑖

𝑙

𝐿
𝑖=1       (2.9) 

𝒍: Number of quantified values 𝒓𝒊 where the membership is max. 

 

Figure 2.13: Defuzzification Using Mean of Maximums Method 
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2.8 Faults Diagnosis-Application to a Distillation Column  

2.8.1 Introduction  

These days, with advances in plant operation, more complexity is operated at extreme 

conditions to realize best performance. Extreme conditions such as pressure and temperature 

could cause failures in instrumentation and some deviations that may cause harmful accidents, as 

sincee explosion of the four reactors at the Daiichi nuclear plant Fukushima- Japan in 2011 [108], 

the toxic cloud dispersed dioxin in the town of Seveso, 4,000 injured and 200,000 victims of the 

disaster in Bhopal or the explosion of the AZF factory, Gupta in 2005, etc. Although the plants 

are equipped with automatic systems, computer simulation and analysis is still limited to maintain 

process plant integrity and extremely relied on human operators. For instance, humans can’t 

detect hidden faults or predict future problems. Previous Industrial statistics have shown that 

major catastrophes may be infrequent, and minor accidents are very common. The yearly costs of 

these accidents are beyond billions of dollars [160]. Therefore, it’s necessary to build methods for 

the detection and diagnosis of faults. This could provide solutions for the chemical process plant 

safety [160].  Diagnostic methods differ according to different criteria: the dynamic process, 

complexity, online diagnostic implementing, the nature of information, depth, distribution... in 

this context, several classifications are also proposed in the literature. These classifications are 

influenced by terminologies and specific contexts of each community and are not always 

consistent.  

Refer to state of arts many researchers said that the use of particular techniques without a 

model, such as the expert system, the tree of failures, the fuzzy logic, the pattern recognition and 

the neural network, is more effective than the methods with a model, especially for the diagnosis 

and prognostics of faults in real time on a distillation process [126] [16]. In chemical engineering 

applications, the fuzzy logic and the ANN technique has a lot of advantages over the other 

techniques [108]. The distillation plays a major role in the operations unit; in fact, it is the method 

that is most used in terms of separation, rather than the liquid-liquid (L-L) extraction or even other 

absorption columns. Its use is less complex than the other unit operations. In addition, it allows for 

a better separation of the L-L extraction process. In fact, it depends on the nature of the product to 

be separated. For example, to separate the various components of fuel oil, we may not use the L-L 

extraction process but the fractional distillation procedure which meets the requirements of 

separation. 

The purpose of this type of distillation is to separate between two chemical compounds by 

varying the difference in boiling temperatures. One of the compounds being more volatile, it will 

vaporize until column head where it will be condensed with a total condenser. It will, therefore, 

make an exchange between the ascending vapor and descending liquid. This is called the 

enrichment of steam. Part of the condensate will be separated at the top of the column, this is 

called the distillate. Another part will, in turn, be separated into bottoms, it is called the residue.  
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Signals acquisition is done by a supervision system that consists of software ETP 200. It allows 

monitoring of changes in parameters such as differential pressure or temperature at a given point 

of the distillation column. The signals obtained during each acquisition represent: 

1. S1: Pre-Heated Temperature,  

2. S2: The Timer: Reflux Rate,  

3. S3: Preheated Power, 

4. S4:  Loss of Charge, 

5. S5: Heating Power,  

6. S6: Feed Flow Rate,  

7. S7: Boiler Temperature,  

8. S8: TIC2: Column Head Temperature. 

 

While accidents automated continuous distillation that occurs in industry cause variations of the 

parameters especially: 

1- The Reflux Rate.  

2- The Heating Power.  

3- The Preheating Power  

4- The Feed Rate. 

 

This is clearly illustrated in Figure 2.14. For more details see chapter 1. 

 

Figure 2.14: Graphical representation of the signals (normal & fault Mode) 

So far in the previous sections of this chapter, we have presented the main framework for 

process fault diagnosis. In this section, we provide a real application for a diagnosis purpose. The 

proposed methodology is designed to classify 8 kinds of faults (E1…E8). For more details see in 

chapter 1 

- E1: Accident Reflux Ratio 0% (Timer);  

- E2: Accident  Reflux Ratio 100% (Timer);  

- E3: Accident  Heating Power 100%;  

- E4: Accident  Heating Power 0%;  
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- E5: Accident  Preheated Power 0%;  

- E6: Accident  Preheated  Power 95%;  

- E7: Accident  Feed Rate 100%;  

- E8: Accident Feed Rate 0%.  

 

Normal mode signals (Table 1.1) are characterized by the following parameters: Feed flow rate 

set at 80% of its capacity, Pressure drop at 0.7 mbar, Temperature of the preheated to 40 ° C, 

Temperature of the boiler at 76 ° C, Column head temperature at 56 ° C. 

2.8.2 Distillation Column Faults Diagnosis Based on Fuzzy Logic  

Refer to the state of arts fuzzy techniques have received a lot of attention because of their fast 

and robust implementation, their ability to integrate prior knowledge, their performance in 

reproducing non-linear mappings and their generalization capabilities. Thus, fuzzy logic 

techniques are now being studied in the FDI research community as a powerful modeling and 

decision tool, with neural networks and other more traditional techniques such as nonlinear and 

robust observers, parity methods. To work around this problem of precision modeling, more 

models based on qualitative approaches can be used. Alternatively, fuzzy logic rules can be 

developed to help or replace the use of a model for diagnosis. The key advantage of fuzzy logic is 

that it allows the behavior of the system to be described by "if-then" relationships. The main trend 

in the development of fuzzy FDI systems has been to generate residuals using either parameter 

estimation or observers and to allocate decision making to a fuzzy logic inference engine.  

The role of the fuzzy logic system, in this case, is to classify between normal mode and any 

accident mode generated on the output of the distillation column system. 

2.8.2.1 Input Status Words 

 Low 

 Normal 

 High  

 

2.8.2.2 Output Action Words  

 Normal 

 E1 

 E2 

 E3 

 E4 

 E5 

 E6 

 E7 

 E8 
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2.8.2.3 Defining of the Inference Rules 

We call inference rules, the set of different rules that connect the fuzzy input variables of a 

system to the fuzzy output variables of this system. In our application these rules are in the form: 

1. If (S1 is Normal) and (S2 is Normal) and (S3 is Normal) and (S4 is Normal) and (S5 is 

Normal) and (S6 is Normal) and (S7 is Normal) and (S8 is Normal) then (system is 

Normal) (1)  

2. If (S1 is Normal) and (S2 is Normal) and (S3 is L) and (S4 is Normal) and (S5 is L) and 

(S6 is Normal) and (S7 is Normal) and (S8 is Normal) then (system is E1) (1)  

3. If (S1 is Normal) and (S2 is Normal) and (S3 is H) and (S4 is Normal) and (S5 is H) and 

(S6 is Normal) and (S7 is Normal) and (S8 is H) then (system is E2) (1)  

4. If (S1 is Normal) and (S2 is Normal) and (S3 is L) and (S4 is H) and (S5 is H) and (S6 is 

Normal) and (S7 is Normal) and (S8 is H) then (system is E3) (1)  

5. If (S1 is Normal) and (S2 is Normal) and (S3 is H) and (S4 is L) and (S5 is L) and (S6 is 

Normal) and (S7 is H) and (S8 is L) then (system is E4) (1)  

6. If (S1 is L) and (S2 is L) and (S3 is Normal) and (S4 is Normal) and (S5 is Normal) and 

(S6 is Normal) and (S7 is Normal) and (S8 is Normal) then (system is E5) (1)  

7. If (S1 is H) and (S2 is H) and (S3 is Normal) and (S4 is H) and (S5 is Normal) and (S6 is 

Normal) and (S7 is Normal) and (S8 is H) then (system is E6) (1)  

8. 8. If (S1 is Normal) and (S2 is Normal) and (S3 is Normal) and (S4 is Normal) and (S5 is 

Normal) and (S6 is H) and (S7 is Normal) and (S8 is H) then (system is E7) (1)  

9. If (S1 is Normal) and (S2 is Normal) and (S3 is H) and (S4 is Normal) and (S5 is Normal) 

and (S6 is L) and (S7 is Normal) and (S8 is Normal) then (system is E8) (1)  

In terms of artificial intelligence, these rules actually summarize the experience of 

the expert and they are generally not definable in a unique way since each individual creates his 

own rules. 

2.8.2.4 Fuzzification of Inputs and Outputs:  

Define the membership functions for inputs and output variables. On the fuzzification step, 

after many tests, we choose the triangle function as the best membership function can be used for 

the faults diagnosis on distillation column data. When the system becomes infected with an 

accident, this means that a change will occur on all the signals acquired from it or on a part of 

them as explained in chapter 1. This change in signal means that it has deviated from its normal 

course to another path that may be lower or higher than normal. Therefore we divide the range of 

the signal into three parts: normal, lower than normal and higher than normal. 

The following figures (Figure 2.15, Figure 2.16, Figure 2.17, Figure 2.18, Figure 2.19 Figure 

2.20, Figure 2.21 and Figure 2.22) illustrates the degree of membership applied to each input 

signal 𝑺𝒊 
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Figure 2.15: Fuzzification of Pre-heated Temperature (S1) 

 

Figure 2.16: Fuzzification of the Timer: Reflux Rate (S2) 
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Figure 2.17: Fuzzification of Pre-heating Power (S3) 

 

Figure 2.18: Fuzzification of the Loss of Charge (S4) 

 

Figure 2.19: Fuzzification of the Heating Power (S5) 
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Figure 2.20: Fuzzification of the Feed Flow Rate (S6) 

 

Figure 2.21: Fuzzification of the Boiler Temperature (S7) 

 

Figure 2.22: Fuzzification of the Column Head Temperature-TIC2 (S8) 

The following figure (Figure 2.23) illustrates the degree of membership applied to each 

accident output 𝑬𝒊 
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Figure 2.23: Fuzzification of the System Output 

On the output of the system, we have 9 outputs where 1 is normal and the 8 others are the 

accidents modes (E1 to E8) (Figure 2.30), the table below (Table 2.2) represents the range of each 

output mode. 

Mode Range 

Normal [0 10] 

E1 [11 20] 

E2 [21 30] 

E3 [31 40] 

E4 [41 50] 

E5 [51 60] 

E6 [61 70] 

E7 [71 80] 

E8 [81 90] 

Table 2.2: The Range of Each Output Mode 

The Figure 2.24 represents the whole system  
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Figure 2.24: Fuzzy Logic Applied to Distillation Column Data  

Figure 2.25 represents the rules viewers of the inputs and outputs 

 

Figure 2.25: Rule Viewer of the Whole System  

The Rule Viewer is a displaying of all parts of the fuzzy inference process from inputs to 

outputs. In the Figure 2.25, each row of graphs represents one rule and each column 𝐶𝑖, 𝑖 =

1,… , 8 represents to either an input variable 𝑆𝑖, 𝑖 = 1,… ,8. The last column represents an output 

variable that means the decision result of the fuzzy logic algorithm. 

2.8.2.5 Defuzzification  

At the end of inference, the output fuzzy set is determined but it is not used directly to provide 

accurate information to the operator or control an actuator. 



 

Page 110 of 241 
 

It is necessary to pass from the "fuzzy world" to the "real world", it is the defuzzification. 

There are several methods of defuzzification: the center of gravity of the surface, the bisector of 

the surface, the average of the maxima, the smaller of the maxima in absolute value, the greater of 

the maxima in absolute value. The most often encountered is the method of calculating the 

"center of gravity" of the fuzzy set (eq.2.10). 

 

                                                   𝑥0 =
∑ 𝜇𝑖𝑥𝑖
𝑛
𝑖=1

∑ 𝜇𝑖
𝑛
𝑖=1

                                                   (2.10) 

With: 

 𝑛: Level of discretization 

𝑥𝑖: ith exit. 

𝜇𝑖: Membership value of the ith output. 

2.8.2.6 Results  

The method of fuzzy logic is applied on 50 data observations from each mode, the total 

number of observations aris50. Figure 2.26 illustrates the results of the classification between the 

modes or faults types that may occur in distillation column system, the blue curve represents the 

real output and the green one is the desired output and the red points represent the observations 

that have been incorrectly classified. As you see in Figure 2.26 the vast majority of these 

observations are correctly classified that means fuzzy logic allows diagnosing the mode where the 

fault is originated and classify the type of faults occurred during the distillation process. 

 

Figure 2.26: Outputs of Fuzzy Logic when it applied to the Distillation Column Data 

The figure 2.27 represents the absolute difference (eq.2.11) between the real output and the 

desired output on each mode. 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖 = |𝑅𝑖 −𝐷𝑖|                                               (2.11) 

N E2 E1 E3 E4 E5 E6 E7 E8 

A 
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Where 𝑅𝑖 is the real output of the mode 𝑖 and 𝐷𝑖 is the desired output of the same mode 𝑖. 

The results shown in the Figure 2.27 allow that this difference is very small except in the case in 

which an observation is incorrectly classified. For example, the observation A in figure 2.26 

should be classified as E6 but it’s classified as E8. 

 

Figure 2.27: Difference between Real and Desired Outputs  

The figure 2.28 represents the percentage of the observation that correctly classified in terms 

of the others that incorrectly or wrongly classified, as you see we can say that 94% of the data are 

correctly classified. 

 

Figure 2.28: Percentage of the Observation that Correctly Classified in Terms of the Observations 

that Incorrectly Classified 

N E2 E1 E3 E4 E5 E6 E7 E8 
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In general, one can notice clearly the difference between normal and faulty modes, also the 

difference between the different cases of faults.  6% of error percentage is considered good but 

not very excellent. We have seen that the designer of a fuzzy system has to make a lot of choices. 

These choices are mainly based on the expert's advice or on the statistical analysis of past data, in 

particular, to define the membership functions and the decision matrix. 

Thus, all the power of fuzzy logic is to make possible the establishment of inference systems 

whose decisions are seamless, flexible and non-linear, closer to human behavior than is 

conventional logic. In addition, the rules of the decision matrix are expressed in natural language. 

This has many advantages, such as including the knowledge of a non-computer expert at the heart 

of a decision-making system or modeling more finely some aspects of natural language. 

2.8.3 Distillation Column Faults Diagnosis Based on Artificial 

Neural Network 

Normally, in the domain of faults diagnosis, artificial neural networks can be directly applied 

to the original signals acquired from the system, but their effectiveness is very limited and their 

results are unsatisfactory. In addition, in general, the original signals are large and this leads to 

the inaccurate diagnosis. Therefore, the extraction of signal parameters or features is an essential 

step before classification. This is because it is harmful and necessary to extract the relevant, 

discriminant and most adapted parameters to the signal.  

In general, the illustration of a diagnosis system based on ANN is as follows (Figure 2.29) 

 

Figure 2.29: General Diagnosis System Based on ANN 

2.8.3.1 Features Extraction Applied to the Distillation Column Data  

The following table (Table 2.3) presents the results of features extraction when it’s applied to a 

normal real data acquired from distillation column system. 

 

 

 

 

 

Original signals  Diagnosis  
Features 

Extraction  
ANN for Faults 

Classification  
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Table 2.3: Statistical Analysis of Distillation Column Data in Normal Mode 

2.8.2.2 Discussion   

The statistical analysis of normal real signals acquired from distillation column signal table 2.3 

, proves the need to skip the classical feature extraction step (time and frequency domain features), 

because it was noticed that most time parameters are equal and the signals are deterministic with 

poor frequencies (Figure 2.30 and Table 2.3) and thus couldn’t provide significant results [3]. 

 

Figure 2.30: Graphical Representation of the Signals (Normal Mode) 

the skipping of the features extraction step put the application of ANN in the distillation 

column data in an embarrassing position, therefore it is necessary to search another solution can 

minimize the percentage of incorrect fault classification obtained when we apply the fuzzy logic 

on the real signals (Figure 2.30) and Solve the problem of impossibility of application of features 

extraction on the original signals (Table 2.3). 

Signal Mean Max. Min. Variance Frequency peak 

Preheated temperature 

(°C) 
40 40.6 39.6 0.006 0.0006 

Timer % 0.5 7 0 1.6 0.001 

Charge loss (mbar) 0.7 0.7 0.7 0 0.0001 

Pre-heating power 2.8 7 0 6.7 0.0003 

Heating power 42.7 42.9 42.3 0.009 0.0001 

Flow  % 80 80 80 0 0.0001 

Boiler temperature  (°C) 76 76.1 75.8 0.009 0.0001 

TIC2 (°C) 56 56.1 55.9 0.001 0.0001 
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2.8.4 Modified Fuzzy c-Means Combined with Neural Network 

Based Fault Diagnosis as New Approach for a Distillation Column  

The previous unsatisfactory results obtained when we apply the fuzzy logic or ANN 

individually on the data it encourages us to proposes an approach more efficient in real-time 

analysis of distillation column system. It proposes a methodology that combines fuzzy mean 

clustering and neural network for diagnosis, detection, and classification of many faults. 

Moreover, a modified FCM method (MFCM) is presented in place of a feature extraction and 

selection approach. MFCM is a clustering method that allows calculating the degree of variation 

between normal and abnormal modes. The output of the MFCM is considered as inputs for the 

neural network classifier. This methodology is tested to a real experimental data obtained from a 

distillation column, after a pre-processing step including filtering and smoothing of the signals. A 

database with normal and faulty observations is analyzed. The database is composed of eight 

different types of faults (E1 to E8) that may occur during the automated distillation process in the 

chemical industry. 

2.8.4.1 Fuzzy c-Means Clustering (FCM) 

Fuzzy c-means (FCM) is a method of clustering that allows one piece of data to belong to two 

or more clusters. This method is proposed by Bezdek et al. in 1981 [161] it is frequently used in 

pattern recognition. The algorithm (Algorithm 2.3) works by assigning membership to each data 

point corresponding to each cluster center on the basis of the distance between the cluster center 

and the data point. More the data is near to the cluster center more is its membership towards the 

particular cluster center. Clearly, the summation of membership of each data point should 

be equal to one.  After each iteration, membership and cluster centers are updated and minimized.  

We consider a space X (eq.2.12) with (n) points and has (p) dimension: 

𝑋 ∶   

[
 
 
 
 
 𝑥1
1 … 𝑥1

𝑗
… 𝑥1

𝑝

… … … … …

𝑥𝑖
1 … 𝑥𝑖

𝑗
… 𝑥𝑖

𝑝

… … … … …

𝑥𝑛
1 … 𝑥𝑛

𝑗
… 𝑥𝑛

𝑝
]
 
 
 
 
 

                                     (2.12) 

It is assumed that the N points can be regrouped into c clusters c <n. The clusters are described 

by the following set of centers𝑉𝑖 (eq.2.13): 

𝑉𝑖 = [𝑣𝑖
1, 𝑣𝑖

2, … , 𝑣𝑖
𝑗
, … 𝑣𝑖

𝑝
], 1 ≤ 𝑖 ≤ 𝑐                        (2.13) 

Consider the following proximity matrix 𝑈𝑖𝑘   (eq.2.14) that represents the membership degree 

of the point 𝑋𝑘 in the center 𝑉𝑖  
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𝑈 =  

[
 
 
 
 
𝑢11
 … 𝑢1𝑘

 … 𝑢1𝑛
 

… … … … …
𝑢𝑖𝑗
 … 𝑢𝑖𝑘

 … 𝑢1𝑛
 

… … … … …
𝑢𝑐1
 … 𝑢𝑐𝑘

 … 𝑢𝑐𝑛
 ]
 
 
 
 

 , 𝑘 = 1,… , 𝑛 & 𝑖 = 1,… , 𝑐             (2.14) 

 

FCM Algorithm  

The FCM algorithm is then described by the following steps: 

1- Iteration membership (eq.2.15) 

𝜇𝑘𝑙 =
1

∑ (
𝑑𝑘𝑙

𝑑𝑘𝑖
⁄ )

2
𝑚−1⁄

𝑛

𝑖=1

                                              (2.15) 

2- Cluster center selection (eq.2.16) 

 

𝑉𝑙 =
∑ (𝜇𝑘𝑙)

𝑚𝑛
𝑘=1  𝑥𝑘

∑ (𝜇𝑘𝑙)
𝑚𝑛

𝑘=1

, 𝑘 = 1,2, … , 𝑐                                    (2.16) 

𝒏 𝑖𝑠 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 

𝑽𝒍𝑖𝑠 𝑡ℎ𝑒 𝒍
𝒕𝒉 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟 

𝒎 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑓𝑢𝑧𝑧𝑖𝑛𝑒𝑠𝑠 𝒎 ∈ [𝟏,∞] 

𝒄 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑏 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟𝑠 

𝝁𝒌𝒍𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 of 𝒌
𝒕𝒉& 𝒍𝒕𝒉 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟  

𝒅𝒌𝒍𝑖𝑠 𝑡ℎ𝑒 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 

                              𝒌𝒕𝒉 & 𝒍𝒕𝒉 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟 

 

3- Minimization of the following equation (eq.2.17): 

𝑱(𝑼,𝑽) = ∑ ∑ (𝝁𝒌𝒍)
𝒎𝒄

𝒍=𝟏 ‖𝒙𝒌 − 𝒗𝒍‖
𝟐𝒏

𝒌=𝟏 ,                                   (2.17) 

‖𝒙𝒌 − 𝒗𝒍‖ 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑠 𝑡ℎ𝑒 Euclidean distance  

                       between  𝒌𝒕𝒉 & 𝒍𝒕𝒉 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒rs. 

-------------------------------------------------------------------------------------------------------------------    

Algorithm 2.3: FCM Algorithm 

2.8.4.2 Feed Forward ANN 

Feedforward neural networks (FFNN) are the most popular and most widely used models in 

many practical applications. This network spreads the network input to the following layers and 

never goes backward. This type of network is used in this study. In addition to the neural network 

type, it is necessary to choose an error function and an activation function for the neurons. These 

choices are often guided by the type of data processed. In this study, at the level of the hidden 

layer, the activation function used is a logistic function defined by (eq.2.18):  
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bi
(j)(𝑥) = 1 1 + exp (−𝑥)⁄                                      (2.18) 

The linear transfer function is used at the level of the output layer. For the error function, a 

simple choice is used (eq.2.19):  

 

                              𝐸 =
1

2
‖𝑦 − 𝑡‖2

2 =
1

2
∑ (𝑦𝑗 − 𝑡𝑗)

2𝑛
𝑗=1                         (2.19) 

This equation (eq.2.19) is half the square of the Euclidean distance between the network output 

(y) and the target (t). It is now necessary to minimize the average error data by the function E on 

all data input (eq.2.20): 

                             𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑁
∑ 𝐸𝑖
𝑁
𝑖=1                                           (2.20) 

Where N is the number of training data given to the neural network and Ei represents the ith 

learning error [3]. 

2.8.4.3 Proposed Methodology 

For fault detection, we decided to work with artificial neural networks. The statistical analysis of 

real signals proves the need to skip the classical feature extraction step (time and frequency 

domain features) because it was noticed that most time parameters are equal and the signals are 

deterministic with poor frequencies (Figure 2.30 and Table 2.3) and thus couldn’t provide 

significant results. Therefore, we find the solution to this problem is to use the output of modified 

FCM as input layer for neural network classifier. 

Figure 2.31 presents the block diagram of our proposed methodology. The first step consists of 

database development. This step was detailed in the previous section. In the second step, a 

modified FCM clustering algorithm (MFCM) is proposed after a pre-processing step including 

filtering and smoothing of the signals. MFCM tries to put each of the data points to one of the 

clusters. What makes MFCM different is that it calculates the degree of variation between normal 

and abnormal modes followed by the calculation of the Euclidean distance between two cluster 

centers.  

MFCM divides the data into S segments and for each segment, it gives a vector of Euclidean 

distances  (Figure 2.32 and Figure 2.33). 

 

 

 



 

Page 117 of 241 
 

 

 

 

 

Figure 2.31: Block Diagram of Our Proposed Methodology 

 

Figure 2.32: Result of Clustering in the Same Mode (No-Fault) 

 
Figure 2.33: Distance between Two Clusters in Different Modes (Fault Mode) 

The vector  contains 8 elements =[d1, d2, d3, d4, d5, d6, d7, d8]. In the end, each element 

represents a vector of the degree of variation in distance of a signal. This could provide 

information if we stay in the same mode (normal-normal) or pass to another mode (normal-fault). 

MFCM is detailed in the next subsection. In our case, we have two clusters groups so we have 

two centers c1 and c2 (eq.2.21)  

             𝐶1 ∶ (𝑥1, 𝑦1)  And  𝐶2 ∶ (𝑥2, 𝑦21)                      (2.21) 

The distance between the two centers is calculated as (eq.2.22):  

       𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2                            (2.22) 

Distillation column Data 

(high dimension) 
MFCM ANN classification 

Class1 

Class n 
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After extracting the vectors of Euclidean distances, we then used neural networks classifier 

because of their usefulness for the problem of fault diagnosis. The neural network classifier is 

based on the extracted Euclidean distance vectors, which are considered as the feature set. The 

aim of using MFCM is to decrease the calculation time and increase the performance of the ANN 

classifier. The architecture of the ANN model uses the feed forward neural network as a training 

scheme. Finally, we make a real application on faulty conditions simulated using the column 

system discussed previously. The system consists of eight different fault conditions. The 

Modified FCM algorithm (MFCM) is summarized in Algorithm 2.4. First of all, the algorithm 

starts with initial positions of the cluster centers. It then calculates and optimizes the data points. 

More the data is near to the cluster center more its membership towards the particular cluster 

center. Thus, a matrix U is formed. This matrix represents the final clustered groups. 

2.8.4.5 Proposed MFCM Algorithm  

MFCM Algorithm   

1) E is the vector of Euclidean distances  

2) Start 𝐸 = [∅] 
3) X is the data (eq.2.23) 

  𝑋 ∶   

[
 
 
 
 
 𝑥1
1 … 𝑥1

𝑗
… 𝑥1

𝑝

… … … … …

𝑥𝑖
1 … 𝑥𝑖

𝑗
… 𝑥𝑖

𝑝

… … … … …

𝑥𝑛
1 … 𝑥𝑛

𝑗
… 𝑥𝑛

𝑝
]
 
 
 
 
 

                                        (2.23) 

4) Apply moving window after the dividing of the data X to S segments S=[S1, S2,…, Sn]  

5) For each segment 𝑆𝑖 calculate the position of the two centers (eq.2.24)  

                                𝑉𝑖 =
∑ (𝑢𝑖𝑘)

𝑚𝑛
𝑘=1  𝑥𝑘

∑ (𝑢𝑖𝑘)
𝑚𝑛

𝑘=1

, 𝑖 = [1,2]                               (2.24) 

6) calculate the matrix : 𝑈(𝑙+1)  depending to formula (2.14) 

7) if ‖ 𝑈(𝑙+1) − 𝑈(𝑙)‖ < 휀  for each 𝑆𝑖 
stop  

else  

l=l+1 and return to 4) 

8) calculate the Euclidean distance (eq.2.25) between the  calculated centers in 𝑆𝑖 ,                                    
                                   𝐸 = [𝑑1  𝑑2 … 𝑑𝑛]                                                        (2.25) 

9) 𝑆𝑖 = 𝑆𝑖+1,    𝑖 < 𝑛 

10)  End 

 

Algorithm 2.4: MFCM Algorithm 

2.8.4.6 Classification with Multi-layer Feed Forward ANN 

In this research, we use the multi-layer feed forward neural network as the first classifier. Our 

ANN (Figure 2.34) is formed of 3 layers.  
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Figure 2.34: Neural Network Proposed Architecture 

The first one is the inputs layer that contains 8 inputs representing the degree of variation of 1-

the Timer: reflux rate, 2- the Heating power, 3- the Feed flow rate, 4- the preheated Power,5- the 

Pressure drop, 6- the preheated temperature, 7- the temperature boiler, and 8- the TIC2 Column 

head temperature.  The second is a hidden layer having 10 neurons with logistic learning 

function. And the third one is the output layer containing 9 linear neurons (normal or Error1 or 

Error2 … Error8). The network is able to find the solution after 61 epochs (Figure 2.35 and 

Figure 2.36) with learning rate mu=0.001 and the method generates a warning message indicating 

the state of the system (normal or any Error) 

 

 
Figure 2.35: ANN Training Performance 



 

Page 120 of 241 
 

 

Figure 2.36: ANN Training State 

2.8.4.7 Results and Discussion 

So far in the previous section, we have presented the main framework for process fault 

diagnosis. In this section, we provide a real application for a diagnostic purpose. The proposed 

methodology is designed to detect simultaneously 8 kinds of faults (E1…E8). 

- E1: Accident Reflux Ratio 0% (Timer);  

- E2: Accident  Reflux Ratio 100% (Timer);  

- E3: Accident  Heating Power 100%;  

- E4: Accident  Heating Power 0%;  

- E5: Accident  Preheated Power 0%;  

- E6: Accident  Preheated  Power 95%;  

- E7: Accident  Feed Rate 100%;  

- E8: Accident Feed Rate 0%.  

 

Previously, all researches applied to diagnose and detect the faults on distillation column 

signals are completely dependent on the modeling techniques to calculate the residual between 

the real signal and the model. The black box ANN is the most used and is the best technique in 

this domain[130].Most of the studies on the detection of the changes in distillation column were 

carried out by Chetouani et al. [162][160][130] with the most recent study in 2014 where they 

applied the Bayes decision theory combined with neural adaptive black-box identification for 

modeling such system [162]. Their works provided an efficient fault detection method when 

tested on a real distillation process. However, such work models and process each signal 

independently which needs long time simulation. Further were, the work did not take into account 

how a fault detected in a signal affects the other signals and the whole system. In some cases, a 

false alarm may occur because of unexpected faults that may affect the other signals. Then, in this 

case, the model will fail to detect the true fault. For example, when the Timer is blocked (0%), 
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this causes the overhead temperature (TIC2) to decrease. The method succeeds in this case to 

detect the fault. On the other hand, if the boiler has a failed operation status (0% power heating), 

TIC2 also decreases in this case. This will create a false alarm, not a real fault detected in the 

system. However, our proposed method is a full scan system i.e., it takes all eight signals at the 

same time. It will solve the problem of false alarm by analyzing the fault and its influence on all 

signals. The algorithm makes the analysis in one iteration step and thus needs less time to 

perform the diagnosis operation.  

The results allow diagnosing the mode where the fault is originated and classify the type of 

faults occurred during the distillation process. The results of the MFCM are presented in figure 

2.37. In general, one can notice clearly the difference between normal and faulty modes, also the 

difference between the different cases of faults. In normal mode (normal case), there are no a 

variations with the absence of peaks. However, for example, in E2 case (accident reflux ratio 

timer 100%), we notice that the degree of variation for parameters number 3 (timer), 4 (charge 

loss) and 5 (heating power) increases significantly. Therefore, the degree of variation of the eight 

parameters (shown in Figure 2.37) could be considered as an indicator of fault, thus could 

differentiate between normal and abnormal cases and between the eight different types of faults 
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Figure 2.37: Degree of Variation in Processed Signals for Normal nd Eight Error Modes. 1-

Preheated Temp 2-Preheated Power 3-Timer 4-Charge Loss 5-Heating Power 6-Feed Rate 7- 

Boiler Temp 8- TIC2. 
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Figure 2.38: Error Boxplot- (Error between Real and Desired Output) 

The method is applied to 50 data observations from each mode, the total numbers of 

observations are 450. 70% are used for training and 30% for testing. Figure 2.39 illustrates the 

boxplot which shows the difference between the medians of the degree of variation in distance. 

One can notice clearly the difference between the different modes. Figure 2.38 shows that the 

error between the real and desired output is negligible (in order of 10-6). This proves that the 

proposed methodology is successful in detecting faults introduced within the distillation process 

plant model. The target or output vector is a 9-element vector with a value near to ‘1’ in the 

position of the fault it represents and a value near to ‘0’ everywhere else (Figure 2.34). In other 

words, the output value is set to ‘0’ to indicate no fault and ‘1’ to indicate the presence of a fault. 

 

 
1-Preheated Temperature, 2-Preheated Power, 3-Timer, 4- Loss of Charge, 5-Heating Power, 6-Feed 

Rate, 7-Boiler Temperature, 8-TIC2 

Figure 2.39: Boxplot Showing the Difference between the Median of the Degree of Variation  
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On the testing step (15 observations from each mode) only 2 observations are incorrectly 

classified (Figure 2.40) so the percentage of error is 2/135 so it’s equal to 1.4815%. 

As you see the percentage of error percentage of the observation that correctly classified was 

reduced from 6% (Figure 2.28) in the case of faults diagnosis based on fuzzy logic to 1.48% in 

the case of faults diagnosis based on Modified fuzzy c-means combined with Neural Network, so 

our proposed method reduces the error rate for 81.5 %. This reducing of error it was due because 

we have benefited from the combination of the advantages of fuzzy logic with the advantages of 

ANN in the same algorithm. In addition in our proposed methodology, we have eliminated the 

role of the user or expertise in determining the number and the type of the membership function 

used and the intersection level between the inputs in the fuzzification step. Therefore we reduce 

the source of errors.  

 

Figure 2.40 Percentage of the Observation That Correctly Classified In Terms of the Observations 

That Incorrectly Classified 

The results showed also proved that the proposed methodology for MFCM, neural network 

classification, succeed to diagnose and detect in real time the simultaneous faults in real 

experimental data obtained from the distillation column during the automated continuous 

distillation process.  

The results also confirmed the ability to classify between normal and eight abnormal classes 

of faults with very low classification error.  

2.9 Conclusion  

This chapter provided a brief overview of the various diagnostic techniques conventionally 

used as methods of detection and fault isolation of chemical processes. 

A very large number of developments concerned approaches based on quantitative models in 

the process using the residue calculation technique. However, various factors such as the 

complexity of the system, the nonlinearity of the processes have often made it very difficult to 

develop a precise mathematical model to ensure a reliable and robust diagnostic chemical reactor. 

observations correct
Classified

observations incorrect
Classified

1.48% 
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In particular, a too simple model not generates residues only representative failures, but they 

often incorporate modeling errors or drifts of normal parameters. With presence of multi-physical 

character and a strong coupling of several energy in chemical processes it has been shown that the 

neural network (by its causal properties, structural and functional) can be an alternative for 

generating resistant and sensitive indicators several types of faults (sensor, actuators, and 

measurement process) with knowing that we cannot ignore the merits of the fuzzy logic method 

that is used heavily in this domain, especially when it coupling with the neural network method 

under the title neuro-fuzzy faults diagnosis and detection system for chemical process.  

The diagnosis is a main component of the monitoring module. It consists in determining at 

each instant the mode of operation wherein the system is located. It is based on a priori 

knowledge of the operating modes and instant knowledge materially with a new observation 

system status. There are several approaches to make the diagnosis; choice of approach is related 

to the mode of representation of knowledge.  

This chapter is mainly intended to present some reminders on basic concepts in diagnosis and 

the observability of nonlinear systems. The first part proposes a state of art of the different types 

of faults and their influence on the process to diagnose. On the second side, the different 

diagnostic methods are presented, they will be grouped into two main categories: methods using 

mathematical models and the other without a model. This chapter is ended by an application of 

distillation column to fuzzy logic and ANN separately the results of fuzzy logic when it is applied 

to the data shown that we can notice clearly the difference between normal and faulty modes, also 

the difference between the different cases of faults.  6% of error percentage is considered good 

but not very excellent. We have seen that the designer of a fuzzy system has to make a lot of 

choices. These choices are mainly based on the expert's advice or on the statistical analysis of 

past data, in particular, to define the membership functions and the decision matrix. 

The nature of the data acquired from the distillation column shown that it is impossible to 

apply ANN individually to this data. This impossibility and the percentage of error that equal to 

6% that is quite large in the case of the application of fuzzy logic on the data were the reasons we 

were forced to propose a new methodology that combines the benefits of fuzzy logic and ANN in 

the same algorithm to perform the results and minimize the percentage of error. The results 

proved that the proposed methodology for MFCM, neural network classification, succeed to 

diagnose and detect in real time the faults in real experimental data obtained from the distillation 

column during the automated continuous distillation process and the proposed methodology also 

succeed in the minimization of the percentage of error from 6% to 1.4815%.  

The results also confirmed the ability to classify between normal and eight abnormal classes 

of faults.  As perspective, we plan to propose a prognostics system for the early detection of faults 

in distillation column process to prevent damage or catastrophic accidents. Due to the importance 

of identifying the industrial system future status and estimate its remaining useful life (RUL), the 

following chapter will open the horizons around the faults prognostic and its importance in 

developing the maintenance strategy. 
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Chapter 3 

 

Industrial Prognostics Methods Applied on 

Chemical Processes (nonlinear systems)-

Application to Distillation Column 
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3.1 Introduction to Industrial Prognostics  

One of the most important issues facing the industry today is the operational safety of 

industrial systems and the search for increased availability at lower costs. Also, the maintenance 

activity is taking a growing share in companies and tends to evolve for needs of responsiveness 

and cost in particular. A particular evolution concerns the way to apprehend the phenomena of 

failure: little by little the industrialists tend, not only to anticipate them in order to resort to 

preventive actions but in addition to do it in the most just possible way for a purpose reducing 

costs and risks. This evolution has given a growing part to the prognostic process which is today 

considered as one of the main levers of action in the search for a global performance. For 

manufacturers, it is therefore imperative to understand the state of gravity of a fault and to predict 

the optimal time to stop a machine and intervene. Rather than understand a posteriori a 

phenomenon that has just manifested (failure ...), it is appropriate to "anticipate" the occurrence in 

order to resort to protective actions accordingly. This is what can be understood under the label 

"fault prognostics". As a result, the traditional concepts of preventive and corrective maintenance 

are gradually being complemented by more responsive and proactive consideration of failures 

[163]. Thus, the topic of Prognostics and Health Management (PHM) becomes a frame of work 

of foreground and the potential advantages of the implementation of the prognostics in industrial 

environments, related to the safety of the work, the economic aspects and the human resources 

pushed the scientists to s' to interest [164] [165]. Today the "Prognostics and Health Management 

(PHM)" is considered a key process in maintenance strategies. 

3.2 Emergence of the Prognostics in the Maintenance Activity 

Conditional maintenance is defined according to the standard [166], as a preventive 

maintenance based on a monitoring of the operation of the property and/or significant parameters 

of this operation integrating the resulting actions. This maintenance strategy is based on real-time 

data analysis of industrial equipment (ex. vibration, temperature, etc.). It aims to detect anomalies 

in the operation of industrial machines: the discovery of changes in their characteristics 

foreshadows in the short term a future failure. Conditional maintenance makes it possible to 

better take into account the conditions of use of equipment than traditional systematic 

maintenance. This being the case, it does not make it possible to dimension with certainty the 

maintenance policies: the date of occurrence of the failure remains uncertain. Predictive 

maintenance aims to overcome this lack of knowledge. It is defined as follows [166]: 

Predictive maintenance is a conditionally performed maintenance based on the extrapolated 

forecasts of the analysis and evaluation of significant parameters of the degradation of the 

property. The idea is to project the current state of the property in the future, to estimate the 

operating time before the failure, and thus to better size the maintenance policies. Predictive 

maintenance is thus more dynamic. It takes into account the current conditions of the equipment 

and tries to predict the evolution in the time of the state of the property.  
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Predictive maintenance can detect anomalies on machines before they become too serious. 

The strength of predictive maintenance is therefore to anticipate breakdowns. This avoids any 

expensive shutdown of the production line. 

If predictive maintenance emerges, it is now possible to pick up weak signals on the machines. 

It then remains to trace the data and analyze them. This analyzes help increase customer 

satisfaction and save money. 

According to a McKinsey study, predictive maintenance will save businesses $ 630 billion by 

2025. These savings will be made possible by several factors. First, a reduction in maintenance 

costs of 10 to 40% then, reducing the number of breakdowns by half. Finally, decreasing the 

amount invested in the new machinery of 3 to 5% by increasing the duration of lives of existing 

machines. 

It is, therefore, a bright future promised by the famous consulting firm to the world of 

industry. But if predictive maintenance brings a break from what is done today, it is first 

necessary to study the most widespread maintenance strategies today. 

Maintenance interventions being planned with greater precision and accuracy, the forecasting 

maintenance must allow making substantial savings and has been the object of a growing 

attention in recent years. The expected benefits are indeed numerous like: 

 Reduction of the number of breakdowns, 

 Reliability of productions, 

 Improved staff safety and company image, 

 Reduced downtime of equipment (expensive), 

 Increased business performance. 

 … 

The following section outlines the strategy and highlights the importance of the prognostics in 

this approach. 

3.2.1 Predictive Maintenance and Prognostics 

3.2.1.1 Diagnostic vs Prognostic 

The maintenance activity traditionally uses various business processes aimed first, to 

"perceive" certain phenomena (detection), then to "understand" (diagnosis), and finally, to "act" 

accordingly (choice of 'actions of control). Also, rather than understand a posteriori phenomenon 

that has just manifested (failure), it may be opportune to "anticipate" the appearance in order to 

resort to protective actions accordingly: this is what can be heard under the label "prognostics of 

failures". The relative positioning of these processes of "detection", "diagnosis" and "prognostic" 

is schematized on (Figure 3.1.a). From a phenomenological point of view, their complementarity 

can be explained as follows [167] (Figure 3.1.b): 
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• The detection aims to identify the mode of operation of the system and its state, 

• When a failure has occurred, the diagnostic can isolate and identify the component that 

has stopped working (backward propagation: from effects to the causes), 

• The prognostic is aimed to predict the future states of the system (forward propagation: 

from causes to effects). 

Thus, the main industrial maintenance activities listed here complement each other perfectly 

(this point is slightly developed later). However, they naturally rely on an understanding of failure 

phenomena. This can be tricky when the dynamics of the equipment are marked or when their 

conditions of use are variable: the modeling of the phenomena can sometimes be difficult to 

ensure by an expert and it is advisable to instrument the systems to collect field data allowing in 

the long term to deploy the different maintenance processes. Also, it appears that the prognostic 

process, although essential for deploying a predictive maintenance strategy (from causes to 

effects), should not be considered in isolation, but should be seen as part of a more global 

complex process.  

 

 

Figure.3.1: Complementarity of Detection, Diagnosis and Prognostics Activities 

3.2.1.2 Concept of Prognostics 

It has been a long time since man seeks to anticipate phenomena in order to see his projects 

succeed without risk of failure. The term "prognostics" comes from the Greek "progignoskein" 

meaning "know in advance". It was then mainly used in medicine where it refers to a prediction 

made following a diagnosis: the medical prognosis is on the one hand on the evaluation of the 

degree of severity of pathology, and on the other hand, on the estimate of the subsequent course 

of the disease. Recently, this term has been transposed to the industrial world. The patient is 

replaced by a machine or an industrial facility and the objective is to predict the future state of 

operation of the equipment concerned. Although the "prognostics" is the subject of an 

international standard (ISO 2004), there are some differences in the interpretation of this concept. 

The term is also absent from the list of keywords of companies IFAC (International Federation of 
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Automatic Control) and IEEE (Institute of Electrical & Electronics Engineering), referring 

organizations in the scientific community. 

In this context, a first problem that comes to us is to determine the general framework of the 

concept of prognostics, while starting with the definition of the concept. The process is difficult 

because the terms "prediction", "forecast" and "prognostics", distinct in French literature have 

the same equivalent in the English translation: "forecasting". 

The forecast is defined as the estimate of future conditions of the phenomena for a given 

period from past and present observations. Its overall objective is to provide the best estimates of 

what can happen at a given point at a specified future date [168]. The prediction is estimating 

future conditions without reference to a specific time [169]. 

Depending on requirements and maintenance constraints, prognostics was associated with the 

following terms: 

  In 2003 Luo et al. [170] and In 2002 Yan et al. [171] assimilate the prognostics by RUL 

(Remaining Useful Life) or the remaining time of functioning, the remaining time before 

observing a failure, the remaining useful life, the life remaining or residual life. The term 

RUL will be extended thereafter and will be implicitly associated with the "prognostics". 

The definition of the most widely used prognostic process in this acceptance is the 

following: "a process that aims to predict the number of hours remaining before failure 

relative to the current time and operating history" [165]. In this context, the definition of 

failure is crucial to the interpretation of RUL. 

 Another analogy between prognostics and existing terms, this time in a probabilistic 

manner, attempts to predict the chance that a machine works without fault or failure until 

a certain date. In the general context of maintenance, this "probabilistic value 

prognostics" is more an interesting indication that the fault or failure can have 

catastrophic consequences (ex. nuclear power plants). However, a small number of 

papers stand this association [172] [173]. 

The different interpretations assigned to the prognostics in the literature: 

 "After detecting the degradation of a component or subsystem, the role of the prognostics 

is to predict the future evolution of production system performance, taking into account 

maintenance work planned and possibly operational conditions or changing 

environmental ".  

 "The aim of the prognostics (predictive diagnostics) is to identify the causes and locate 

the bodies led to a particular degradation" [174]. In this definition, the prognostic is 

considered a predictive diagnosis, which is exerted on the degradation and not the fault 

like the classic diagnosis. Moreover, it is not adapted to the context of predictive 

maintenance because it does not include the proactive dimension of the approach. 
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 "Prognostic is the ability to predict the future condition of a machine based on the current 

diagnostic state of the machinery and its available operating and failure history data" 

[175]. 

 "Prognostic is the ability to perform a reliable and sufficiently accurate prediction of the 

remaining useful life of equipment in service. The primary function of the prognostic is to 

project the current health state of equipment into the future taking into account estimates 

of future usage profiles" [81]. 

 "Diagnosis and prognostics are processes of assessment of a system's health. Diagnosis is 

an assessment of the current (and past) health of a system based on observed symptoms, 

and prognostics is an assessment of the future health"[176]. 

 "In the industrial and manufacturing areas, prognostics is interpreted to answer the 

question: what is the remaining useful lifetime of a machine or a component once an 

impending failure condition is detected and identified" [176]. 

The prognostic is normally intuitive and based on experience. The prognostic is generally 

effective for faults and failure modes with known, age-related, or progressive deterioration 

characteristics, the simplest being linear. A failure must be defined in terms of monitored 

parameters or descriptors. Surveillance data alone is insufficient to establish a prognostic. 

The general conceptual basis of a prognostic process is (ISO, 2004): 

 Define the limit point (usually zeroing), 

 Establish the current gravity, 

 Determine or estimate the behavior of the parameters and the expected speed of 

deterioration, 

 Determine the estimated duration of operation before failure. 

It is important to understand that the diagnosis is, by nature, retrospective and focused on data 

existing at a given moment. However, the prognostic is focused on the future and, therefore, must 

take into account the following aspects (ISO 2004): 

 Existing failure modes and deterioration rates, 

 The criteria for triggering future failure modes, 

 The role of existing failure modes in triggering future failure modes, 

 The influence between existing failure modes and future modes and their deterioration 

rates, 

 The sensitivity to detection and modification of existing and future failure modes due to 

current monitoring techniques, 

 Design and changes of monitoring strategies to fit all of the above, 

 The impact of maintenance actions and / or operating conditions, 

 The conditions or hypotheses in which the prediction remains valid. 

Many definitions of the term prognostics have been proposed [176] [174] [175]  and there 

exists no totally consensual. A striking feature, however, can be identified: the prognostic is often 
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likened to a prediction process (a future situation must be understood). As a result, two large 

acceptances prognostics can be considered unifying: the prognostics refer as appropriate a process 

to determine the remaining life of a system, that is to say, its RUL (Remaining Useful Life) [165] 

(Figure 3.2.a), or the probability that the system will work for a certain time [172] (Figure 3.2.b). 

 

Figure: 3.2 (a) Prognostics as RUL estimation, (b) State probabilities 

In conclusion, there are many definitions and interpretations of the prognostics in the 

literature. In all cases, the authors add comments and remarks to the definition given by ISO. On 

the other hand, all the definitions described above associate the prognostics with a prediction 

process. This obviously assumes that the current situation can be grasped (practically, the 

prognostic is the synthesis of a detection method and measured data of the system). In addition, 

these approaches are based on the notion of failure (or default), which implies that the 

prognostic is associated with a degree of acceptability (a system must perform a required 

function). We thus consider that the prognostic should be based on the evaluation criteria, the 

limits of which depend on the system itself and the execution objectives. 

3.3. Contribution to the Formalization of the Prognostics and to the 

Development of an Application Framework 

3.3.1 Formalization of the Prognostic Process 

All proposed definitions equate the prognostic with a "forecasting process": a future situation 

must be identified. In addition, these interpretations of the prognostic are based on the notion of 

failure (or default), which implies that the "predicted" situation is associated with a degree of 

acceptability (a system must perform a required function) (ISO, 2004). We thus consider that the 

prognostic should be based on the evaluation criteria, the limits of which depend on the system 

itself and the execution objectives. From this point of view, in this section, the prognostic is 

associated with the notions of forecasting and evaluation. This obviously implies that the current 

situation can be seized (virtually, that is the synthesis of a detection method and measured data of 

the system). Moreover, it is not so much the concept of failure in the sense of total loss of the 

ability to accomplish a mission that is relevant, but the performance loss. 

Accordingly, the definition that we consider is that proposed by Dragomir [177] "Prognostic 

could be split into 2 sub-activities: a first one to predict the evolution of a situation at a 
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given time (forecasting process), and a second one to assess this predicted situation with 

regards to a referential". 

 

Figure 3.3: The Concept of Prognostic (Dragomir et al., 2007) 

Consider Figure 3.3 to illustrate this propositional defining: the situation "predicted" t +Δt is 

considered due to the degradation limit considered the objective viewpoint of performance. 

Otherwise, if this threshold does not exist, it would be impossible to conclude on the predicted 

position and therefore impossible to assess the severity of this situation. The maintenance process 

could then be affected. 

Thus, the prognostic could be divided into two sub-activities (Figure 3.4): 

 First to predict the evolution of a situation at some point, 

 A second to assess the situation in relation to decision-making framework. 

The prediction step should determine the future state of the closest way possible system of 

reality. At the evaluation level, the expected values must be estimated quantitatively and 

qualitatively: references, RUL, confidence, and precision. 

 

Figure 3.4:  Prognostic- Process for Prediction and Assessment (Dragomir Et al., 2007) 
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In this new sense of prognostic, the complementary aspects of the detection, diagnosis and 

prognostic can be explained as follows: 

 Detection is to identify the mode of operation of the system following the monitoring 

process, i.e., by identifying its current state, 

 Assuming that a fault has occurred, the diagnostic can identify the component that has 

stopped working (from effects to causes: backpropagation), 

 The prognostic deals with the prediction of the future states of the system (from causes to 

effects: propagation) in two stages: first the situation is foreseen in time and secondly the 

situation is evaluated by the use of evaluation criteria. 

The prognostic is essential as corresponding to a process of anticipation of system failure. 

Integrated into maintenance strategies it should allow to optimize strategies. The implementation, 

the cost of the applicability and effectiveness are variable with a dynamic very difficult to 

"evaluate", especially for industrial land facing the daily stress. In this context, the choice of tool 

to implement the outcome of the activity is a critical step in terms of overall performance 

objectives. The next sections will discuss this process. 

3.3.2. Prognostic Indicators 

We already presented the prognostic can be divided into two processes: the prediction and 

evaluation [177]. The main prediction goal is to provide useful information to act accordingly, 

that is to say, to select maintenance actions. The first set of interesting metric is related to the 

measures and risks involved in the monitored system. This kind of action is called prognostic 

measures [178]. 

In the same vein, considering that the prediction is, in essence, an uncertain process, it is useful to 

be able to judge its "quality" in order to imagine the most appropriate actions. 

Thus, various indicators can be used, which will be called this time, performance measures for the 

prognostic process [178]. 

3.4.2.1. The Prognostic Measures  

The result of the prediction is the future estimated value of the process (ŷ). Analyzing this 

value, the uncertainties inherent in the prediction process must be taken into consideration (very 

little information on the phenomenon studied, difficulties in formalization). These are very 

important sources of errors (e) that make the difference between the actual measured future value 

of the system (y) and that predicted earlier (e = y-ŷ). 

In particular, the error can be considered: 

 Compared to the moment of detection of a T fault. 

 Compared to the moment of appearance of the failure (100% degradation). 
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The relevant evaluation of the chosen prognostic method depends strongly on the metric used 

for the measurement of the prediction errors. The choice of error measures for the comparison of 

prediction methods has been much discussed starting with the 1980s. (De Gooijer et al., 2006) 

[179] identifies different indicators of prediction error measures. 

Generally, the error is measured from two following methods: 

 MAPE (Mean Absolute Percentage Error) method 

 RMSE (Root Mean Square Error) method. 

As mentioned above, the main predictive metric sought is the remaining time before failure 

(Time To Failure: TTF or remaining useful life RUL). In addition, a confidence measure can be 

constructed to indicate the degree of certainty of the predicted failure time. By extension, and 

considering that users may be interested in evaluating the system against performance limits, the 

RUL and trust can be generalized: in Figure 3.5, TTxx is the time remaining to exceed the 

performance limit Perf/xx, and Conf / xxT is the confidence with which the indication TTxx / T> 

T can be taken. 

 

 Figure: 3.5 prognostic measures: RUL and confidence 

3.4.2.2. Performance Measures for the Prognostic Process [180] 

 Accuracy 

Accuracy measures the proximity of the expected value to the actual value [28]. It has an 

exponential shape and its value is even greater than the FTT of the prediction error is small. The 

calculation of this metric represents a critical point in the prognostic process. The question that 

arises first is whether the prediction is "pretty good". The answer depends heavily on the rigidity 

of the evaluation criteria imposed. It should be noted that the calculation of this quantity is based 

on the existence of historical data on several components that have failed as a result of 

solicitations sustained throughout a known period of time, which is not always possible (unique 

material). 

Assuming this, for experiment i, the real-time t0 and the expected time of failure tp the 

accuracy is defined as the equation 3.1: 



 

Page 136 of 241 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑡𝑝) =
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 𝐷𝑖 = |𝑡𝑝(𝑖) − 𝑡0(𝑖)|is the distance between the actual and expected moments of failure, 

 D0  is a normalization factor, a constant whose value is based on the importance of real 

value in the application, 

 N is the number of experiments. 

 

 precision 

Precision is a measure of prediction dispersion that evaluates how predicted values are 

grouped around the interval in which the failure occurs [181]. Accuracy strongly depends on the 

level of confidence and the distribution of predictions. The precision formula at a specific future 

time tpf with respect to the current moment taf is as follows (eq.3.2): 
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𝜎0
2 and 𝑅0 are normalization factors, Ri is the prediction confidence interval for the experiment i 

[181].  

Similarly, an exponential function is used here to define the relationship between the standard 

deviation of the prediction, the confidence interval, and accuracy. The precision has a value 

between 1 and 0 (1 indicating highest precision and 0 the lowest). 

The complementarity of the accuracy and precision is illustrated in Figure 3.6. 
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Figure 3.6: Accuracy and Precision 

 Timeliness 

The performance measures for the prognostic should take into account two outcomes: the 

expected time to failure - RUL (the expected value based on historical data) and the confidence 

interval. The "timeliness" is the relative position of the PDF of the prognostic model with respect 

to the occurrence of the failure event. This measure evolves as the data become available and 

makes it possible to judge the appropriate time to take preventive actions (see Figure 3.7). 

 

Figure 3.7: Timeliness from (Goebel et al., 2005) 

In 2005 Goebel et al. defined the limits at the earliest and at the latest beyond which the 

predicted value will be considered unacceptable from a performance point of view. These two 

limits are the consequence of the fact that the prediction error is not systematically centered with 

respect to zero (where the error is defined as the difference between the actual remaining life and 

the estimated remaining life) [182]. For example, if the prediction is too early, the resulting alarm 

requesting too early intervention to check the potential occurrence of a failure to monitor the 

various process variables and to perform corrective action. In the other case, if the failure is 

expected too late, this error reduces the time available to assess the situation and react 

accordingly. The situation is completely degraded when the failure occurs before a prediction is 

made. Therefore, it is in most situations preferable to have a positive bias of errors (early 

forecast), rather than negative (late forecasts). Of course, acceptability limits must be set on how 

a forecast can be considered as too early, too late or acceptable. Any prediction outside of limits 

will be considered inappropriate. Other prognostic performance measures were proposed and 
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detailed in 2006 by Vachtsevanos et al. [183] such as the similarity or sensitivity. In 2005 

Létourneauet al. [184] used a reward function to penalize the positive or negative prediction 

errors. 

3.4.2.3 Prognostics Modeling Methods for RUL Estimation 

The construction of an effective model that able to predict the evolution of the degrading 

features and able to calculate the RUL of the system represents the primary objective of a 

prognostics algorithm. In point of fact, the RUL estimation is a very difficult task. Therefore, the 

construction of an accurate prognostic model especially that is based on data-driven approach has 

been the focus of researchers in recent years. Depending on these researches we can classify data-

driven RUL estimation into two categories: 

1- Univariate degradation based modeling method 

2- Multivariate degradation based modeling method. 

 

1- Univariate Degradation-based Modeling Method 

Usually, when the prognostic modeling depends on a prediction of continuous degrading curve 

accompanied with previously determination of the criteria of failure this is known as univariate 

degradation calculation, in this case, RUL is estimated at the intersection point between this 

degradation curve and a failure threshold (FT) that previously determined (Figure 3.8). In this 

case, a time series observations calculated during regression is used training inputs of data-driven 

approach [185][81]. The calculation of the FT is considered the main difficulty in this method, 

that's because it can be restricting the efficacy of univariate degradation based approach. In 

general, all studies based on univariate degradation based approach resort to the estimation of FT 

[186][187] which are often uncertain and can lead to inaccurate prognostics. 

Figure 3.8: Univariate Degradation Based Modeling Method 

2- Multivariate Degradation- Based Modeling Method 

To avoid the limitation of the prognostic based on the univariate degradation based approach, 

a health assessment model and a prediction model are used in same time to estimate the RUL 

[177] this is known multivariate degradation based modeling [188]. The main objective of the 

multivariate degradation based modeling is to create integration between a prediction model and a 

classification model for accurate calculation of FT. Therefore, to determine the system 

degradation level the RUL is calculated basically on the estimation of discrete states calculated 
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simultaneously and continuous predictions of a set of features v and the FT, in this case, 

calculated dynamically rather than in univariate degradation approach [189] (see Figure 3.9).  

The Multivariate degradation is the newest method in the domain of data-driven prognostic 

and it’s proved their worth on the detection of system degradation and RUL calculation. 

However, the number of degradation states is considered as the main limitation of this approach 

that's because it can be different from a system to another. At the end, many applications affirm 

that the multivariate degradation has achieved very good and effective results compared to those 

achieved by the univariate degradation based approach. 

Consequently, in this work, an enhanced multivariate degradation based modeling is used as a 

step from the RUL calculation methodology. 

 

Figure 3.9: Multivariate Degradation Based Modeling Method 

3.5. Prognostic Approaches 

The field concerning the prognostic of approaches is very broad; the purpose of this section is 

not to make an exhaustive synthesis of the existing, but to show the wealth of opportunities. 

Many tools and methods of failure prognostic have been proposed during the last decade. 

Prognostic methods generally differ by the type of application considered, while the tools used 

depend mainly on the nature of the data[190] [191]and knowledge available to build a real system 

behavior model including the phenomenon of degradation. Also, these methods and tools can be 

grouped into a limited number of approaches. 

3.5.1. Classification of Prognostic Approaches 

3.5.1.1. Emerging Classifications in the Literature 

The first classification of prognostic approaches has been proposed by (Lebold et al., 2001). In 

their paper, the authors suggest a pyramidal three-level classification of prognostic approaches 

[81] (Figure 3.10).  
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Figure 3.10: Taxonomy of Prognostic Approaches [192] 

Similarly to the acceptance of the "scientific community", prognostic methods can be associated 

with one or more of the following three approaches:  

 Prognostics based on the physical model - use the causal relations derived from the laws 

of physics for the mathematical representation of the mechanism of degradation,  

 Prognostic data-driven - is based on the following assumptions: (1) the statistical 

characteristics of the data are relatively unchanged unless a malfunction occurs and (2) it 

implies being able to learn (by the examples) and to capture the subtle relationships 

between data, 

 Prognostic based on experience - is based on the formalization of the physical 

mechanisms of deterioration of components with stochastic models initiated by a priori 

knowledge and expert judgment. 

The complementary approaches (Table 3.1) that emerge from the scientific literature are those 

of Byington et al. in 2004 [193] and Muller et al. in 2008 [194]. To establish a point of view 

referring to these works, in the following, we retain the characteristics distinguishing them from 

"classical" approaches. 
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Approach Techniques 

 Prediction based on the model 

 Parity Space 

 Observers 

 Parametric Estimation 

 Prognostic data-driven: 

 Prognostic for trend analysis 

 Machine learning Prognostic 

 Prediction based on state estimators 

 Techniques Of AI ( "Black Box") 

 Statistical Techniques 

 Prediction based on experience 

 ALM (Accelerated Life Model) 

 PHM (Proportional Hazard Model) 

 Monte Carlo 

Table 3.1: Emerging Approaches and Prognostic Techniques in the Literature 

 

In 2004, Byington et al. lists the three categories and prognostic methodologies previously 

mentioned and adds a more in-depth classification of the methods according to the type of model 

they use in the data-driven prognostic [193]  

 Prognostic for trend analysis (Evolutionary / Feature-based predictions) based on the 

exploitation of statistical models. 

 Machine learning Prognostic (Machine learning / artificial intelligence (AI) - based 

prognostic) using black box techniques derived from artificial intelligence. 

 Prognostic based on state estimators (State Estimator Prognostic). These methods are 

used when a diagnosis by pattern recognition is implemented beforehand. The 

mechanism is to predict the evolution of the trajectory of the form via a Kalman filter. 

(Muller, 2005) offers a prognostic methodology based on: 

 coupling probabilistic / event approaches incorporating probabilistic information and 

events, 

 modeling of degradation, the impact of the degradation on the performance and impact of 

the maintenance action on the performance, 

 evaluation of the expected performance of a system based on a predefined maintenance 

strategy [195]. 

In 2006, Jardin et al. [165] proposed a new taxonomy of prognostic methods, distinguishing 

two main categories of methods. The first group includes methods for estimating the future state 

of the component, subsystem, or system (estimation of the RUL or the TTF), and the second 

category concerns methods for determining the RUL while integrating the context of system 

operation (maintenance actions and operating conditions). 
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We note that the academic vision of the prognostic is restricted to its application on critical 

components and the approaches they are focused on the analysis of an "elementary component". 

The modeling of complex systems is almost non-existent. 

3.5.1.2. Discussion 

Without pretending that our existing synthesis is complete, we can summarize the strengths 

and weaknesses identified as follows. For prognostic trend analysis (Evolutionary / Feature-based 

prognostic) of (Byington et al., 2004) [193], subcategory prognostic data-driven and based on the 

use of statistical models, it appears that the disadvantaged are related: 

 Lack of responsiveness to the occurrence of the fault, 

 The possible errors in the forecasts in case of noise or an insufficient number of 

measures. 

Thus, to be efficient, the methods belonging to this category of prognostic must imperatively 

correct the parameters of the models in case of modification of the operating conditions of the 

component.  

In the same context of the data-driven prognostic, we have identified in the 

the proposal the prognostic by machine learning (Machine learning / AI-based prognostic). They 

use black box type models derived from artificial intelligence. Their effectiveness is conditioned 

by the existence of the data sample of degradation scenarios. The absence of a scenario in the 

history makes the model ineffective in case of occurrence of this scenario. The problem is to 

overcome the inability to consider a new mechanism. In this case, the prognostic is random [193]. 

Similar remarks can be made about the prognostic based on a State Estimator Prognostic. These 

methods are based on state estimators and are used when pattern recognition is implemented 

beforehand. The mechanism consists of predicting the evolution of the trajectory of the operation 

of a system by means of a Kalman filter. Without the existence of the diagnosis upstream they are 

impractical. From an application point of view, the information required to deploy the prognostic 

approaches is of various kinds: engineering models, data, failure history, system demands, 

operating conditions, etc. In 2001 Lebold et al. [81] a generalization of what could be the set of 

inputs and outputs of a model of prognostics. 

     Approach 

 

Information 

Model-based Data-driven Experience-based 

System model Necessary Useful Not necessary 

Failure History Useful Not necessary Necessary 

Past conditions Necessary Not necessary Useful 

Current conditions Necessary Necessary Useful 

Failure Recognition Methods Necessary Necessary Not necessary 

Maintenance history Useful Not necessary Useful 

General Sensors and model Sensors, no model No sensor, no model 

Table 3.2: The Information Required Deploying Prognostic Approaches 
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Our analysis of prognostic approaches identified in the literature also unveiled some terms in 

the proposal of (Muller, 2008). His vision has brought novelties through the modeling of 

degradation, the impact of degradation on performance and the impact of maintenance action on 

performance. He also integrated probabilistic and event information into the prognostic process 

and evaluated the expected performance of a system in the future based on a predefined 

maintenance strategy. However, multiple difficulties related to multiple degradation modes, the 

quantization of a priori conditional probability tables and the modeling of maintenance efficiency 

persist. 

3.5.2. Prognostic Based on the Physical Model 

The implementation of this approach is generally based on an available mathematical 

representation of the degradation mechanism. The causal relationships derived from the laws of 

physics are used to model the interactions between the entities of the system. Thus, the residues 

are used as mathematical instruments. Large residues denote the presence of malfunctions, and 

small residues the presence of normal disturbances such as noise or modeling errors. The use of 

model-based prognostic methods involves specific knowledge related to the failure as well as a 

strong control of the mode of operation of the analyzed system. 

3.5.2.1. The principle of Operation, Advantages, and Disadvantages 

The premise principle based on physical models is to determine the current level of 

degradation of the system (through monitoring and diagnostic processes) and to evaluate the RUL 

using the evolution curve of the system degradation depending on the solicitation of the system. 

 

The main advantages of this approach are: 

 Flexibility: If there is any changing of the properties of the system or in their degradation 

form, the model can be adjusted to reflect this change. 

 The knowledge of the structure of the model makes it possible to find a link between the 

variation of indicators and a modification of a parameter, which is not available in the 

case of "data-driven" approaches [196]. 

The main disadvantages of prognostic based on physical models are: 

 Model development is extremely expensive. It requires a high level of qualification and 

experience of the developers, 

 It is difficult to build a global model for complex systems:  complexity to modeling all 

the interactions between the different mechanisms, computational difficulties associated 

with solving a system of differential equations 

 It may be impossible to generalize an approach based on an oriented physical. 

 It is necessary to know the mechanisms of degradation and influencing factors on them. 
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3.5.2.2. Techniques and Tools 

The techniques belong to this prognostic approach are based on the following tools: 

parity space, observers (Kalman filters) and parametric estimation. 

 

 The parity space 
It is an analytical redundancy relationship represented by an equation in which all the 

variables are known. The generation of such relationships can generate residues. A residue is a 

timing signal based on inputs and outputs of the process, independent (if possible) of the 

operating point of the presence of faults. In the absence of this, the residue is statistically zero. 

When a fault occurs, it amplitude changes significantly [197]. 

 

 Observers 
The generation of residuals using a state estimate consists of reconstructing the state or, more 

generally, outputting the process using observers and using the estimation error as a residual. This 

method has grown significantly since it leads to the design of flexible residual generators [197]. 

 

 Parametric Estimation 
The parametric estimation approach considers that the influence of faults is reflected in the 

parameters and not only in the variables of the physical system, as in the case of observers. The 

principle of this method consists to the continuously estimating to the parameters of the process 

using the input/output measurements and then evaluating the distance between them and the 

reference values of the normal state of the process. Parametric estimation has the advantage of 

providing information on the importance of deviations. However, one of the major disadvantages 

of the method is represented by the need to have a constantly excited physical system. This, 

therefore, poses practical problems in the case of hazardous, expensive or stationary mode. In 

addition, the relationships between mathematical and physical parameters are not unitarily 

invertible, which complicates the task of residue-based diagnostics [170]. 

3.5.2.3. Applications 

Before going further into the problem of prognostic, we will draw the brief state of the art 

applications that used the prognostic based on models. In 2004, Rafiq et al. [198] investigated the 

deterioration of bridges due to a process of chlorine induction. A Bayesian approach has been 

implemented to update the stochastic model. In 2003, Luo et al. [170] introduced the concept of 

an integrated prognostic process based on data generated following simulations on a model of the 

system, in nominal mode and in degraded mode. Thus, he has developed a generic prognostic 

methodology based on the model that respects the operating principle described in Figure 3.11. 
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Figure 3.11: Prognostic Based on the Model (Luo et al., 2003) 

3.5.3. Data-Driven Prognostics 

The prognostic guided by the data is based on the following observation: measurements 

(input/output) are often the strongest and safest source of information to understand degradation 

phenomena ... Its strength lies in the ability to learn (through examples) and to capture the subtle 

relationships between data, even if these relationships are unknown or difficult to describe [199]. 

3.5.3.1. The principle of Operation, Advantages, and Disadvantages 

The data-driven prognostic exploits the indicators of degradation or maintenance interventions 

delivered by the monitoring and decision support processes respectively (ex. calorimetric 

calibration data, spectrometric data, power, vibration and signal, temperature pressure, oil debris, 

acoustic voltages of currents). The upstream diagnosis determines the success of the prognostic 

by its ability to provide a reliable and accurate estimate of the current state of health of the system 

and an update of the parameters of the deterioration processes. This type of prognostic is based on 

the assumption that the statistical characteristics of the data are relatively unchanged unless a 

malfunction occurs in the system. The ability to adapt to any type of application with sufficient 

data in quantity and quality is a strong point for this prognostic approach. At the same time, the 

implementation of a "data-driven" approach is relatively straightforward as it does not require 

formal knowledge of the mechanisms of degradation. The ability to transform noisy data into 

information relevant for diagnostic/prognostic decisions is another advantage that can be 

highlighted.   

The main disadvantage of these approaches is that their effectiveness is greatly dependent on 

the quantity and quality of operating system data [199]. 
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3.5.3.2. Techniques and Tools 

In the literature are distinguished from the techniques of artificial intelligence (AI) and 

statistical techniques. 

  black box Techniques 

When the only information available on the system is the measurable variables and physical 

redundancy cannot be used, the usual technique is to learn the behavior of the system using the 

data history: these are the learning data. It is assumed that the same cause will always have the 

same effects. These are systems of the "black box" type that has the main advantage of using 

"blind" data, without any physical consideration. Their strength lies in the ability to learn and to 

capture the subtle relationships between data, even if these relationships are unknown or difficult 

to describe [200]. 

1- Techniques of Artificial Intelligence (AI) 

Neural networks (NNs) and wavelet networks (multilayer perceptron, probabilistic neural 

networks, wavelet networks with self-organization, etc.) are the main classes of tools of this type. 

The main disadvantage of neural networks is the acquisition and coverage of training data. 

2- Statistical Techniques 

The multivariate statistical techniques are powerful tools that can compress data and reduce 

their dimensionality so that essential information is maintained. They can also manipulate noise 

and correlation to extract information efficiently. The main function of this type of technique is, 

using a mathematical procedure, to transform a number of correlated variables into a smaller set 

of uncorrelated variables. 

 Principal Component Analyses (PCA) 

The Principal Component Analyses (PCA)  is a multi-variable statistical technique. The PCA 

is essentially based on an orthogonal decomposition of the covariance matrix of process variables 

along the directions that explain the maximum variation of the data. The first axis contains the 

largest variation. The second axis will contain the second largest orthogonal variation at the first. 

The main purpose of the PCA is to find a set of factors (components) of smaller size than the 

original set of data that can describe correctly the main trends. PCA is a procedure that only 

considers process variables. Sometimes an additional set of data is available, ex. product quality 

variables. It is desirable to include all available data for process monitoring and to use process 

variables in this way to predict and detect changes in product quality variables. For this, the 

Partial Least Squares (PLS) method can be used. This method models the relationship between 

two blocks of data while compressing them simultaneously. It is used to extract the latent 

variables that explain the variation in process data. An important limitation of PCA-based 

monitoring is that the representation obtained is invariant over time, while most real processes 
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evolve over time. Therefore, the representation obtained from the PCA also needs to be updated 

periodically. Another disadvantage is that it does not have signature properties for diagnostics, 

which makes fault isolation difficult [201]. 

 Trends Analysis and Qualitative Representation. 

A general signal processing aims analysis and qualitative representation of the process trends 

(series of episodes with representation). In this formalism, each episode is represented by its 

initial slope, the final slope (at every critical point) and a line segment connecting the two critical 

points, or a qualitative description of signals (TDL - Trend Description Language) using 

primitives, episodes, trends, and profiles. These trends can be used for the identification of 

abnormal situations in the process. Thus, a proper analysis of the trends of the process can help in 

the early detection of failure [202]. 

3.5.4. Prognostics Based on Experience 

The prognostic based on experience is based on the formalization of the physical mechanisms 

of deterioration of components with stochastic models (reliability of law, Markov processes or 

non-Markov) initiated by knowledge a priori and expert judgment. 

3.5.4.1. The principle of Operation, Advantages, and Disadvantages 

The main advantage of this method is that it does not require advanced knowledge of the 

physical mechanism (s) of degradation. Also, it is relatively simple to implement and 

inexpensive. 

The main disadvantages are the following: 

 The lack of responsiveness to the change in the behavior of a system or 

the environment, 

 The applications focus on critical components, treated individually and therefore the 

development of "system" oriented approaches is rare, 

 There is often a discrepancy between the models (two-state mono-component system) 

developed and the industrial reality (multi-component multi-state system). The origin of 

this shift often comes from the inability of the methods to perform the calculations 

generated by a complex system [203].  

I.5.4.2. Techniques and Tools 

The use of an evolutionary reliability model of Accelerated Life Model (ALM) type, 

Proportional Hazard Model (PHM), or the implementation of a Bayesian approach that updates 

the parameters of the degradation law with all new information available can represent a solution. 

The Monte Carlo simulation is another preferred alternative but it is itself confronted with another 

problem: the explosion of simulation times. 
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In conclusion, each of these approaches has its own advantages and disadvantages, and 

therefore they are often used with the association for specific applications [204]. 

3.6. Towards Predictive Systems 

3.6.1. Typology of Prediction Systems 

The prediction is the process of estimating unknown situations in the future. The fields of 

application are therefore broad: floods occurring over a given period, planning of demand in 

manufacturing companies, weather forecast, prediction in the financial world, etc. 

The prediction plays an essential role in making a decision; it concerns the security or the 

company's capital. Traditionally, the prediction is the estimation of a value in the future by 

analyzing data from the past, or more informally, by expertise. Two families of methods [205] 

exist to perform the prediction task. 

 Qualitative: This type of technique uses experience and judgment to establish future 

behaviors. 

 Quantitative: This type of technique uses historical data to build relationships and trends 

that can be projected in the future. 

To select the correct method, it is mandatory to consider the context in which the prediction 

tool is applied. The following sections deal with the criteria for choosing a predictive system, 

namely the industrial constraints and the performance of a predictive model. 

3.6.2. Criteria for Choosing a Predictive System 

The key points for choosing a tool to highlight the advantages and disadvantages of the 

different monitoring methods encountered are those shown in Figure 3.12. 

Each of the potential techniques for prognostic application has its own advantages and 

disadvantages. As a result, they are often used in combination in many applications. However, it 

should be noted, that many approaches only focus on the analysis "of an elementary component", 

and the modeling of complex systems on a global level is almost non-existent [206]. 
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Figure 3.12: The Criteria for Choosing a Prognostic Tool 

1. Industrial Constraints 

The evolution of technology and its incorporation into industrial equipment has made them 

more complex. The goal is to make equipment efficient and reliable. These devices have become 

more and more complex, and they evolve in a dynamic and non-linear environmental context. 

Moreover, the operators have difficulty understanding their operation and controlling them. 

Indeed this complex and evolving context complicates the task of prediction. However, in the 

industrial world, the data acquisition system is generally operational and makes it possible to 

measure different parameters with precision, as well as to collect and distribute a large volume of 

information in real time. In the end, the industrial world has the following specificities: 

 Complex equipment, 

 Dynamic environment / non-linear, 

 No knowledge of the behavior, 

 Many data. 

 

2. Desirable features 

An important point in choosing a prediction tool is the possibility of integrating it into our 

prognostic approach, which consists first of all in detecting an anomaly monitored by a physical 

parameter or a degradation index and then in predicting its future evolution. 

 Real-time application: the predictive system must be used and evolve with the real 

equipment, 

 Flexibility: the prediction tool must be able to adapt to several applications and not be 

limited to particular environmental conditions. In addition, this prediction system must 
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react according to the different behaviors of the system (non-linear, dynamic, non-

stationary, etc.). 

 Interpretability: the prediction tool must maintain a minimum level of transparency so 

that an expert can intervene to modify the parameters, 

 Open: An open system is a scalable system to which parameters can be added during 

execution. 

3.6.3. Restrictive Industrial Characteristics of Prognostic Tools 

From the industrial point of view, two types of conditions can be considered: 

 Some of them are strictly "necessary" because a prognostic technique must adapt to real 

systems, 

 Others may be considered desirable as they have "translated" the identified 

characteristics. 

In this context, a prognostic tool must be able to capture the dynamic behavior of the system 

by providing, if possible, some related indicators. Also, it is particularly interesting to implement 

a technique that evolves in real time with the system, reducing quantitatively improving its 

sensitivity and accuracy. These are very hard objectives to achieve because the real processes are 

complex which prevents their characterization with simple models. Moreover, real systems 

cannot be considered as static systems. Thus, the tools of prognostic should evolve to be 

appropriate. At another level, the features that can be expected are: adaptability/flexibility 

(transferring technology from an application to another), modularity/integrability (globally 

integrated local prediction), and accessibility (promote knowledge of the system). 

In practice, the need for robustness defined here as the ability of the system to detect faults 

independently of modeling errors, sensitivity (the ability of the system to detect faults of a certain 

magnitude), detectability (system suitability prognostic to be able to detect the presence of a 

failure on the process), isolability (the ability of the prognostic tool to go directly back to the 

origin of the fault) and reliability for the processes with a dynamic evolution (in real time) is 

imperative [206]. 

3.7. Selection Guide for a Family and a Prognostic Tool  

The literature review revealed the existence of a classification of prognostic approaches in the 

sense of the "scientific community" as follows: model-based prognostic, data-driven prognostic, 

prognostic based on the experience. A brief description of the three approaches has been given. 

In addition, the advantages and disadvantages of each of the tool classes have been identified. In 

the scientific literature, two other different "prognostic" approaches, from the conceptual point of 

view of "generally" accepted, have been identified. This is the proposal of (Byington et al., 2004) 

[193] and that of (Muller et al., 2007) [163]. 
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One of our most important goals is to adopt the different existing classifications in order to 

propose a framework allowing the identification of a type of tool adapted to the specifications of 

the industrial context (Figure 3.13) [206]. 

 

Figure 3.13: Other Classification of Prognostic Techniques [191] 

3.7.1. Data-driven Tools 

In the section "Data-Driven Approaches", we identify in the literature two distinct categories 

of support tools: techniques based on artificial intelligence and statistical techniques. We consider 

that a distinction is needed at the level of techniques based on artificial intelligence. Thus, only 

artificial neural networks (ANNs) or "black box" tools are considered to be data-based tools. The 

others, the fuzzy rules-based systems, the decision trees, the graphical models, require additional 

meanings and information related to the context of the prognostic for execution and thus 

surpasses the notion of data. ANNs are tools adaptable to nonlinearities of multi-variable systems, 

with low sensitivity to measurement noises and changes in effective modes (systems with 

multiple configurations). The simple assessment function gives them online and real-time 

learning capability. Even though the inputs (historical data) are decoupled from the system 

structure, the prerequisites for modeling are minimal because the ANNs can capture the hidden 

input/output relationships. The difficulty of detecting multiple faults due to the inability to 

generalize and think in unknown space through learning, unable to explain how the decision was 

made and the lack of guarantee on the convergence of the learning data are the main 

disadvantages of these tools. In this category of data-oriented methods, we also consider 

statistical techniques. In the modeling process, the data is used only as quantitative 

measurements. These techniques are based on the assumption of rapid changes in the 

characteristics or parameters of the models compared to dynamics considered as slow (quasi-

stationary processes). They are used for detecting gradual changes with low detection thresholds. 

The information provided by the increasing number of sensors installed on the processes makes it 
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very difficult to analyze the results. On the other hand, since the calculation time for the filtering 

is too long, the representation used is redundant and only the additive faults are detected. 

3.7.2. Information-Oriented Tools 

Similarly, according to literature, the methods based on information in this proposal are based 

on two categories of techniques: quantitative and qualitative. We consider the category of 

methods based on qualitative information as potential candidates reasoning tools from cases and 

pattern recognition.  

Their strengths are: 

 Knowledge acquisition efforts are reduced, 

 They are relatively easy to maintain, 

 They allow the use of existing data in databases, 

 They can adapt to environmental changes. 

On the other hand : 

 The precise definition of the classes between which will take place the decision, 

 There is no systematic method for choosing the parameters, 

 The number of attributes sets the dimension of the representation space and, therefore, 

 The amount of calculations to be carried out is a strong constraint for real-time 

processing, 

 The existing information on the various modes of operation of a system is always 

incomplete, 

 The difficulty lies precisely in this case structure and the information it must contain. 

Indeed, the extraction of knowledge and their representations are essential in this type of 

application. 

Quantitative techniques (parity space, parametric estimation, observers) are in fact statistical 

techniques, usually used in methods based on "classical" models (use thresholds to detect the 

presence of faults) technical lies in their ability to take into account in the design of the system 

architecture, multiple faults and to provide information on the importance of deviations. 

However, these techniques require having a permanently excited physical system, which limits 

the industrial applicability. The processes are usually described in the stationary mode and are 

very expensive, which is impossible for dangerous systems. Usually, their offline operation 

prevents real-time processing. Disturbance modeling that can lead to errors in the model because 

the adaptability of these approaches to process changes does not exist. 

3.7.3. Knowledge-Oriented Tools 

Knowledge provides users with additional information related to the remaining life until the 

failure of the process being studied. These methods include fuzzy rules-based systems (FS), 

decision trees (DT) and expert systems (ES). Modularity is a general feature of these methods and 
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partially explains that they are often used in combination with other techniques. One particular 

technique that can be cited here is that of the neuro-fuzzy systems. Approaches based on 

knowledge have the ability to model the systems identified with minimal distortion of reality. 

This is because surveillance data is context-related. The language used is very close to the normal 

language and a physical understanding of the system is easier. Fuzzy systems require knowledge 

expressed by rules. These are recommended causal methods if we do not have quantitative 

information but dependence rules describing the propagation of faults. A fuzzy system can be 

automatically adjusted and mathematical models are not required. The previous information on 

the rules can be used because the interpretation and implementation are simple. FS is also the 

only framework in which inaccuracies and uncertainties can be addressed and which also allows 

the treatment of certain incompleteness. 

On the other hand: 

 The rules must be available, 

 They do not have the ability to learn, 

 Adaptation to environmental changes is difficult, 

 No formal method for adjusting the initially created knowledge base is available. 

Expert systems are transparent methods that reasoning under uncertainty (fuzzy) that by cons, 

explicit decisions. The ease of development of this type of tool is a consequence of the fact that 

they do not require many details related to the system. Knowledge-based on which they are 

highly specialized, require an abundance of experience and are difficult to actualize 

For decision trees (DT) can learn the cases not encountered during use. On the other hand, the 

problem is complicated when temporal constraints are added, which are not frequently explained. 

They, therefore, require a very good expertise of the system and these malfunctions. 

3.8. Investigation Track to Choice of a Prognostic Tool  

Table 3.3 reveals the strengths of current approaches and areas for improvement, in 

accordance with the criteria necessary and/or desirable for the industry. 

The objective, let us remember once again, is not here to "judge" prognostic techniques, to the 

decree which ones are "good" and which ones are "bad", but to identify the strong points, 

weaknesses and if possible, the tracks could improve the contribution of these different tools. 
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Table 3.3: Prognostic Support Tools (Vasile et al., 2008) 

 

In our case, the decision problem is presented as a matrix where each column corresponds to 

one of the prognostic techniques available to the decision maker and each line to a possible state / 

environmental criterion (Table 3.3). At the intersection of the rows and columns, each box 

expresses the adequacy of the technique to the state of the environment j 

We see that in this abstract vision of the decision: 

 Possible alternatives  sets (actions and decisions) are finished and known, 

 The different alternatives are mutually incompatible, 

 The set of possible states of the environment is finite and known, 

 The consequences of each alternative for each state of the environment are known. 

Once these conditions are satisfied, deciding would then be to evaluate the different 

alternatives, i.e. to value the consequences of each of them in terms of usefulness for the 

decision-maker and to select the best one that is, the one that best satisfies the satisfaction 

criterion used. However, to decide is to choose between several mutually incompatible options. 

In concrete terms, the decision constitutes a complete process of information search, 

evaluation, and selection in order to act on a specific system in order to achieve one or more 

objectives. 
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This process includes: 

 A phase of identification of the different possible actions on the system (good correlation 

(+++), correlation with limits (++ -), weak correlation (+ -), without influence / 

undesirable (---), not the case / unusable), 

 A phase of evaluation of their respective consequences, 

 A selection phase of one (or more in case of a program of actions) of them depending on 

preference criteria, 

 A phase of implementation of the decision. 

The valuation effects of establishing a ranking between them depending on the preferences 

and objectives of the decision maker. This ranking is, in our case, expressed qualitatively, in 

terms of "linguistic variables" (for example good correlation, correlation with limits, no influence 

/ undesirable, etc.). It can also be a quantitative evaluation by means of an appropriate 

quantitative metric or in monetary terms. 

3.9. Neuro-Fuzzy Systems for Time Series Prediction 

Since the 1980s, adaptive networks have been used for time series prediction [7]. The goal of 

introducing such systems is to streamline the decision-making process of decision-makers to 

achieve better results. Historically, neural networks (ANNs) have been used to predict time series. 

Then, the idea came to combine them with the principle of fuzzy logic. In the next section, we 

present a history of using ANNs in prediction by showing the advantages of combining them with 

fuzzy logic-based systems. 

3.9.1. Neural Networks and Prediction 

Neural networks are a special case of adaptive networks. They have had great success because 

of their characteristics: they can "model" and "reproduce" nonlinear phenomena without prior 

knowledge and are able to grasp the hidden relations between inputs and outputs. From an 

operational point of view, they are fast systems. 

The idea of using ANNs for prediction dates back to 1964: Hu used the Widrow Adaptive 

Network (WAN) to make climate predictions. The lack of learning algorithms limited the 

continuation of this type of study. Since the 1980s, research in the field has been revived. We will 

retrace the evolution below (Figure 3.14) [207]. 

In 1987, Lapedes and Farber [208] performed the first work showing the possibility of 

identifying and predicting deterministic chaotic time series using multilayer perceptron. This 

article has launched several applications on real data. H.White in 1988 [209] studied the case of 

the return of stock forecast for IBM. This effort was followed by Sharda and Patil (1990) [210], 

which led to prediction competitions between neural networks and traditional techniques: out of 

75 series tested, the neural networks were more efficient for 39 series. 
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Figure 3.14: Towards Hybrid Systems 

We propose below a summary on the use of ANNs for the prediction. 

 Phase 1: Non-looped networks, one of the first ANN applications for prediction dates 

back to 1987. Lapedes and Farber in 1988 [211] built an ANN to approximate a chaotic 

signal [212]. As a result, the non-looped ANNs associated with the backpropagation 

algorithm (introduced at this time) performed better than the classical self-regression 

models for the prediction of nonlinear time series [192]. 

 Phase 2: Improved learning and parameterization of ANNs, many factors affect the 

performance of ANNs (number of inputs and outputs, number of layers, activation 

functions, choice of test base, learning algorithms) and defining an appropriate ANN to a 

given problem is not an easy task. Also, since the 90's, many developments are carried 

out to improve the accuracy of the predictions made by the ANNs while decreasing the 

complexity of the models and the calculation time. This work aims at proposing a "guide" 

for the optimization of architectures of ANNs and learning algorithms [213]. 

 Phase 3: Recurrent networks, in order to explicitly take time into account, recurrent 

network architectures have been developed and compared to other nonlinear time series 

prediction techniques. The results show that these ANNs perform better than 

conventional methods and even more so than unscrambled networks.  

 Phase 4: Towards hybrid systems, it appears that ANNs have been used successfully to 

support the prediction activity. However, some authors remain skeptical: first, the 

optimization of an ANNs is more an art than a science, then the ANNs are black boxes 

and it is not possible to explain and analyze the relations between inputs and outputs. 

Thus, work emphasizes the interest of hybrid systems to overcome this weakness of 

ANNs (preserving their learning capacity or even reducing the complexity of models). 

For this purpose, research is moving towards the combination of ANNs with other AI 

principles including fuzzy logic [192]. 



 

Page 157 of 241 
 

3.9.2. Towards a Hybrid Neuro-fuzzy Prognostic System 

The concept of fuzzy modeling has its origins in the fuzzy set theory proposed in 1965 by 

Zadeh [122] as a way of dealing with uncertainty, based on the idea of defining sets that can 

contain elements in a gradual manner. This theory introduces a way of formalizing human 

reasoning methods by using rule bases and linguistic variables for the representation of 

knowledge [214]. Most applications developed in the 80s-90s were based on a "knowledge-

based" approach based on the expertise of an operator for a given problem and of limited 

complexity. When one wanted to move on to more complex problems, it was difficult to write 

(even for an expert) large rule bases and the knowledge-based approach was no longer 

appropriate. In order to cope with this problem, one can take advantage of a type of knowledge 

[215] which constitutes the many input-output data on the process. Thus, the solution consists in 

using the properties of the ANNs in order to learn from the data (inputs/outputs) the fuzzy 

structure and to adapt the parameters accordingly. 

The joint use of neural networks and fuzzy logic allows getting the benefits of the two 

methods: the learning capabilities of the first and the readability and flexibility of the second. To 

summarize the contribution of neuro-fuzzy, Table 3.4 groups together the advantages and 

disadvantages of neural networks and fuzzy logic. 

Neural Networks Fuzzy logic 

Advantages 

Data-driven No mathematical model 

 Interpretability 

Learning algorithm  

Disadvantages 

Black box model Fitting adjustment 

 Need to own the rules 

Table 3.4: Advantages and Disadvantages of ANNs and FL 

The fuzzy rules encoded in a neuro-fuzzy system represent inaccurate samples and can be seen 

as imprecise prototypes of the training data. A neuro-fuzzy (NF) system should not be seen as an 

expert system (fuzzy), and it has nothing to do with fuzzy logic in the strict sense of the term. It 

can also be noted that neuro-fuzzy systems can be used as universal approximators  [8].  

A definition of neuro-fuzzy systems is given by Nauck et al. in 1997 [216] and updated by 

Palluat et al. in 2006 [217] according to which: 

The neuro-fuzzy systems are fuzzy systems formed by a learning algorithm inspired by the 

neural network theory. The learning technique operates according to local information and 

produces only local changes in the original fuzzy system. 

So, the interest is to build a predictive system relies on the integration of neural networks and 

fuzzy inference systems (FIS) because of their complementarity. The FIS exploit linguistic rules 
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if-then; in order to translate knowledge about the dynamics of a system. Given a situation 

characterized at the date "t" (input), they thus make it possible to predict the evolution at "t + r" 

(output). However, a FIS is not able to learn: the rules must be formulated which is sometimes 

difficult ... So, one solution is to use the properties of the ANNs to "learn" the structure and fuzzy 

and adjust the parameters accordingly. In general, neuro-fuzzy networks replace the different 

hidden layers of neural networks by fuzzy rules (i.e. linguistic rules). They then use learning 

algorithms to define and optimize these parameters. 

In addition, the rules of an NF system are transparent, allowing validation and manipulation 

by an expert [218]. As results, NF systems are very promising in cases where the available data 

are limited [9]. Finally, NF systems are suitable tools to support the prediction activity of the 

prognostic process. By being at the intersection of neural networks and fuzzy logic, neuro-fuzzy 

networks benefit from both methods. Neural networks are already a powerful tool. A neuro-fuzzy 

network also makes it possible to automatically determine the system parameters. 

The Neuro-Fuzzy networks were chosen because with a dual interest: industrial and scientific 

(Table 3.5).  

Industrial advantages Scientific advantages 

 Complexities of real systems  Scientific opening 

 Real system = dynamic systems  Easily adaptable 

 Real-time  Capabilities of interpretable 

 Model from data  … 

Table 3.5: Industrial and Scientific Benefits of Neuro-Fuzzy Networks 

 

3.9.3 ANFIS (Adaptive-network-based Fuzzy Inference System) 

ANFIS represents a fuzzy inference system implemented as part of adaptive networks. It uses 

the hybrid learning procedure. This architecture (Figure 3.15) refines the fuzzy rules obtained by 

human experts to describe the input-output behavior of a complex system. This model gives very 

good results in trajectory tracking, nonlinear approximation, dynamic control and signal 

processing. Therefore ANFIS is the most used neuro-fuzzy architecture.  

Our study will focus on ANFIS (Adaptive Neuro-Fuzzy Inference System). The following is 

dedicated to the presentation of this neuro-fuzzy architecture. An explanation by the example of 

the operation of this architecture will be made to better understand the mechanisms mentioned 

above. In addition, a comparative study between artificial neural network (ANN) and ANFIS 

method [4] confirmed that the mean percentage error generated by ANFIS algorithm is much less 

than generated by ANNs [11] and also ANFIS have better performance, and a faster learning 

process  than ANNs and other conventional approaches [178]. Recently researches have shown 
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also that the use of the largest number of inputs in ANFIS method increases the accuracy of the 

forecasting data [11]. 

3.9.3.1 ANFIS a Hybrid Tool for Prognostic 

Real systems are complex and generally non-stationary behavior and nonlinear making a 

modeling step difficult. Yet implementing a predictive tool must accommodate this. Also, various 

artificial intelligence techniques were tested on prediction problems and have shown better 

performance than those of "conventional" methods [212] [192] [219]. It is clear from this work 

that the neuro-fuzzy networks are particularly suitable. In this set, our work deals more 

specifically with the ANFIS (Adaptive Neuro-Fuzzy Inference System) proposed by Jang in 1993 

[220]. 

The ANFIS is an adaptive array class. It can be seen as a feed-forward neural network for 

which each layer is a component of a neuro-fuzzy system and, as such, it is an "approximator" 

universal. It is thus used in various applications of predictions. ANFIS system performs a linear 

approximation of the output variable by decomposing the input space into different fuzzy spaces. 

Consider Figure 3.15 to describe the architecture of a system ANFIS and briefly explain the 

inference mechanism of such a system. Jang et al. in 1995 and Yam et al. in 2001 [192] proposed 

a more detailed view. Adaptive neuro-fuzzy inference system is a type of hybrid system that 

combines the evident knowledge of Takagi–Sugeno (TS) fuzzy inference system and the 

supervised learning potential of the multilayer feedforward neural network in one approach called 

ANFIS. It is a very robust technique that aims to achieve the nonlinear and complex relationship 

between input and output data [220], it is much simpler,  suppose that we have two inputs x and 

y, and one output f. for “If-Then” of Takagi–Sugeno (TS)  model, two rules are used as follows 

(eq.3.3) and (eq.3.4):  

 𝒓𝒖𝒍𝒆𝟏: 𝒊𝒇 𝒙 𝒊𝒔 𝑨𝟏 𝒂𝒏𝒅 𝒚 𝒊𝒔 𝑩𝟏  𝑻𝒉𝒆𝒏 𝒇𝟏 = 𝒑𝟏𝒙 + 𝒒𝟏𝒚 + 𝒓𝟏        (3.3)  

 𝒓𝒖𝒍𝒆𝟐: 𝒊𝒇 𝒙 𝒊𝒔 𝑨𝟐 𝒂𝒏𝒅 𝒚 𝒊𝒔 𝑩𝟐  𝑻𝒉𝒆𝒏 𝒇𝟐 = 𝒑𝟐𝒙 + 𝒒𝟐𝒚 + 𝒓𝟐         (3.4) 

 

Where A1, A2, and B1, B2 are the membership functions of the two input x and y respectively 

and the p1, q1, r1 and p2, q2, r2 are linear parameters of the output of Takagi–Sugeno fuzzy 

inference model. 
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Figure 3.15: ANFIS Architecture 

 

Figure 3.15 shows the most known architecture of ANFIS. Usually, it has two inputs and one 

output. As standard, ANFIS architecture has five layers. Where the first and fourth layers (square 

nodes) formed from an adaptive node, and fixed nodes (circle nodes) constitute the essential 

ingredient of the other layers. Explanation of each layer is described in the following paragraphs: 

 

Layer 1: Each node of this layer is an adaptive network, A1-A2, and B1-B2 are 

four fuzzy parameters described by the type of membership function like Gaussian-shaped, 

triangle-shaped etc. [11] The output of each node in this layer represents the degree of 

membership value 𝑜1𝑖   for the fuzzy set 𝐴𝑖  and 𝐵𝑖, respectively (eq.3.5) 

𝒐𝟏𝒊 = 𝝁𝑨𝒊(𝒙), 𝒊 = 𝟏, 𝟐 

                       𝒐𝟏𝒊 = 𝝁𝑩𝒊−𝟐(𝒚), 𝒊 = 𝟑, 𝟒          (3.5) 

Layer 2: Every node in this layer is fixed or non-adaptive, and represents the firing strength 

for each rule “𝑤𝑖" . The T-norm, AND operator is applied to obtain the output as shown in 

(eq.3.6) 

𝒐𝟐𝒊 = 𝒘𝒊 = 𝝁𝑨𝒊(𝒙). 𝝁𝑩𝒊(𝒚), 𝒊 = 𝟏, 𝟐              (3.6) 

Layer 3: The main role of this layer is the normalization of the firing strength. The nodes in 

this layer are fixed, circle and labeled by N symbol. Each node calculates the ratio between the 

i-th rules firing strength and the sum of all firing strengths (eq.3.7): 

𝒐𝟑𝒊 = �̅�𝒊 =
𝒘𝒊

∑ 𝒘𝒊 𝒊

 , 𝒊 = 𝟏, 𝟐                               (3.7) 

Layer 4: The nodes in this layer are adaptive with a node function (eq.3.8): 

𝒐𝟒𝒊 = �̅�𝒊𝒇𝒊 = �̅�𝒊(𝒑𝒊𝒙 + 𝒒𝒊𝒚 + 𝒓𝒊), 𝒊 = 𝟏, 𝟐   (3.8) 

Where, �̅�𝒊 is the normalized firing strength calculated on layer 3,(𝐩𝐢, 𝐪𝐢, 𝐫𝐢) are the 
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consequent parameters of this layer and x, y are the inputs vectors.  

 

Layer 5: This layer formed from a circle, fixed, and (the) single node labeled as ∑. It 

represents the sum of all overall output of the layer 4 (eq.3.9).  

𝒐𝟓𝒊 = ∑ �̅�𝒊𝒇𝒊 =
∑ 𝒘𝒊 𝒊𝒇𝒊

∑ 𝒘𝒊 𝒊
𝒊  , 𝒊 = 𝟏, 𝟐                         (3.9) 

The gradient descent algorithm [221] combined with the least squares method to from hybrid 

learning algorithm proposed by Jang (1993) [220], used to learn the ANFIS algorithm or to 

update the nonlinear premises parameters in layer 1 and the linear consequent parameters in 

layer 4. Forward path and backward path are the two ways of the hybrid learning algorithm. 

Firstly, on the forward path, the premises parameters in layer 1 are fixed and a recursive least 

square estimator (RLSE) method was applied to update the consequent parameters in the layer 

4. The linearity of the consequent parameters is the reason to use the RSLE method which aims 

to accelerate the convergence rate in hybrid learning process. While the algorithm is in the 

backward way the consequent parameters are fixed and the gradient descent algorithm runs to 

update the premises parameter in the layer 1, and an error generated that represents the 

difference between the desired output and the actual output, is propagated back to the first layer 

[220]. 

3.13 Frame of ANFIS in the Prognostics Domain 

As long as ANFIS is a combination of data-driven method and knowledge-oriented method, 

therefore, when focusing on the process of Prognostics based on ANFIS or any others data-driven 

method data, we can highlight a stream that passes from multidimensional data to the RUL of the 

system. Based on this, it is essential for Prognostics to rely on the following steps: 

1- Data acquisition,  

2- Data processing:  feature extraction and selection 

3- Prognostics modeling: RUL estimation. 

3.13.1 Data Acquisition 

In the implementation of PHM program, Data acquisition or data collection is represents an 

important step for industrial system diagnostic and prognostic. In general, the data acquired for 

PHM can be classified into two groups [165]:  

1. Event Data  

2. Condition Monitoring Data  

1- Event data: it represents the machine archived files that include all preventive and corrective 

maintenance done on this machine; this type of data provides a clear image of the machine 

health status from the moment of installation to the moment of the last measure. 
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2-  Condition monitoring (CM) data: it represents the data acquired or collected during an 

experiment applied on the machine for identifying their physical parameters of health 

conditions, where the collection of these parameters aims to detect the changes on this 

machine that can lead to a failure of the machine. These parameters can be temperature, 

vibration, acoustic, pressure, etc. the collection of this data is done via a set of sensors that 

are built into the device or added as an external monitoring system, this set can include many 

types of sensors like an accelerometer for vibration recording or a barometer for pressure 

registration etc. For more details please see the section of data Collection for faults 

prognostic in chapter 1. 

3.13.2 Data Pre-processing 

As mentioned in chapter 1, a section of data pre-processing, the data acquired from the 

Physical system are noisy and redundant. Therefore, this data cannot be applied directly by a 

prognostic model. Further, this original data could be hidden inside many of the relevant 

information which can denote to the system degradation. Wherefore a set of parameters that plain 

of a relevant information should be extracted from this original data as indicators for this 

degradation. Usually, the strength of the prognostic model depends on the quality of the extracted 

and selected features. In addition, it is very important to identify the features that reflect the 

progression of the failure in the system and can be used to construct the prognostics model. 

3.14 New Prognostic Approach for Preventive and Predictive 

Maintenance- Application to a Distillation Column 

3.14.1 Introduction 

Nowadays, the research activities concerning the increase in the availability of the industrial 

systems at less cost and in best performance represent one of the most important things in the 

industrial safety domain [1]. Temperature, pressure and other extreme conditions may cause 

malfunctions in devices and a little deviation could cause unexpected accidents, i.e. the explosion 

of the four reactors at the Daiichi nuclear plant Fukushima-Japan in 2011 [16]. The role of 

computer simulation and analysis is still restricted in the ability to preserve process plant safety 

and highly dependent on human operators. Humans could not be able to discover the hidden 

faults or predict future failures. Industrial statistics showed that the major disasters may be rare, 

but the minor accidents are very frequent with an annual cost that exceed billions of dollars [1], 

[3]. Therefore, it’s necessary for the industrialists to surround the severity status of the fault and 

to predict the ideal moment to intervene and stop the instrument. This is known as the prognostic 

process [27].  

In the previous works [164] [165], authors have proved that the prognostic topic represents a 

work main frame that ensures the safety for industrial environment, and is considered as a key 

process in maintenance strategies. In 2007, Dragomir et al. suggested that a prognostic process 
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has two main activities: It can be used to predict the evolution of a situation at a given time as 

well as to assess this predicted situation with regards to a referential [86].  

In the present study, we propose an approach that can be used in real time analysis of 

distillation column system. The adaptive neuro-fuzzy inference system (ANFIS) is chosen as the 

hybrid system since it combines the advantages of fuzzy logic and ANNs in the same algorithm.  

This methodology is then tested on a real experimental data obtained from a distillation column, 

after a pre-processing step including filtering and smoothing of the signals. A database with 

normal and faulty (degraded) observations is analyzed. The database is composed of eight 

different types of faults that may occur during the automated distillation process in the chemical 

industry. Depending on the state of art we note that the recurrent ANN is the first competitor for 

the ANFIS in terms of accuracy of prediction, Therefore, our work must include a comparison 

study between the recurrent ANN and the ANFIS to choose the best of them in terms of the 

highest ability to predict the data acquired from the distillation column system. 

3.14.2 Data Acquisition and Measurements 

The distillation process is the most method used in terms of separation because it’s simple in 

terms of the other unit operations; therefore it plays an important role in the operations unit, 

especially for the liquid-liquid extraction and the fractional distillation that largely used to separate 

the fuel oil components. 

The methodology in this part of research is applied on a real experimental data obtained from 

a distillation column installed at IUT of Rouen-France.  A database with normal and 7 types of 

degradations is analyzed. The database is composed of 50 observations of each type when 

increasing or decreasing faults over time (degradation of the system) that may occur during the 

automated distillation process in the chemical industry.  

The signals obtained from every observation are:  

1- S1: Timer: Reflux Rate, 

2- S2: Heating Power,  

3- S3: Feed Flow Rate,  

4- S4: Preheated Power, 

5- S5: Loss of Charge,  

6- S6: Pre-Heated Temperature,  

7- S7: Boiler Temperature,  

8- S8: TIC2: Column Head Temperature.  

While an accident occurs in the automated distillation process, it causes a cumulative 

increasing or decreasing over time on the following parameters:  

1- The Reflux Rate.  

2- The Heating Power.  

3- The Preheating Power 
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4- The Feed Rate.  

This is clearly illustrated in Figure 3.17 and this variation represents the data failure of the 

system. For more details see chapter 1. 

For example, if the system was harmed by a cumulative degradation of reflux rate (green 

signal in Figure 3.16), in this case, we can see that the temperature at the top of the column TIC2 

(brick signal in Figure 3.16) has increased very rapidly from 55 °C to 75 °C. which means this 

temperature (75°C) is very near to the boiling temperature of ethanol, which is 78.6 °C. This is 

explained by the fact that there is no liquid falling back into the column. Indeed, to compensate 

for the decreasing in the pressure drop, the boiler heater must send more steam into the column, 

so the heating increases. In the column, the vapor remains only, so the TIC2 temperature 

increases strongly. Because of this, the liquid level in the boiler decreases rapidly and the level of 

the distillate increases. Therefore should interrupt the system because there was a real danger. 

In summary, this type of accident can have serious consequences. In fact, if the liquid is 

completely empty in the boiler, the heater can be seriously damaged and the boiler may explode. 

 

Figure 3.16: Graphical Representation of the Signals (Normal & Degraded Modes) 

A database with normal and faulty observations is analyzed. The database is composed of 42 

observations; each observation has 1507 points with the sampling frequency, SF=1sample/10sec. 

On the other hand, the aging of the distillation column components should be considered, 

especially the aging of the metering pump, because it controls the input flow rate. When we have 

a problem with the pump Impeller, the flow rate will decrease in this case. The most serious 

consequence would be when the Timer remains open and thus all the liquid in the boiler turns 

into vapor. This vapor will condensate when it in contact with the condenser which installed at 

the top of the column. The result is a liquid stocked at the distillate reservoir.  

The result of all this it will be a rapid drop in the level of the liquid that is found in the boiler, 

which means the heater is no longer in contact with the liquid and this could cause a break in the 

boiler. To simulate the pump aging, we scratch multi times the Impeller of the pump and measure 

Normal Mode  Degraded Mode  
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each time the generated vibration via an accelerometer fixed on the pump chassis and a data 

acquisition system connected to Labview software. Figure 3.17 shows a signal representative of 

the acceleration dimension z, where the x-axis is the sample index and y-axis is the amplitude of z 

acceleration signal. This procedure (introducing more scratches) is repeated many times. A 

database with normal and faulty observations is analyzed. This database is composed of 10 

observations, each observation is 5 × 104 points with the sampling frequency, SF=500 

samples/sec. A pre-processing step including filtering, normalization, and smoothing is applied to 

the data before processing.  

 

Figure 3.17: Graphical Representation of Accelerometer Signal (Normal & Fault Mode) 

So far in the previous sections of this chapter, we have presented the main framework for 

process fault prognostic. In this section, we will extend a real application for a prognostic 

purpose. The designed methodology is proposed to predict seven types of degradation that can be 

maybe occurred in the distillation column (D1…D7) and metric pump impeller degradation D8.  

- D1: Increasing Degradation Reflux Ratio From 0 To 100% (Timer);  

- D2: Increasing Degradation Heating Power 0 To100%;  

- D3: Decreasing Degradation Heating Power 100 To 0%; 

- D4: Increasing Degradation Preheated Power 0 To 85 %; 

- D5: Decreasing Degradation Preheated Power 100 To 0%;  

- D6: Increasing Degradation Feed Rate 0 To 100%. 

- D7: Decreasing Degradation  Feed Rate 100 To 0%;  

- D8: Pump Impeller Degradation.  

Total data used in this research is 66 data observation. Where 70 % of them are used for 

training and the 30% remaining is used for testing and checking. 

For more information see the section (Data Collection for faults prognostic) in chapter1 

3.14.3 Time Series Calculation 

The failure occurrence it may be at any time without indication, so it must be a reliable 

method able to save the system, and gives the quick and accurate prediction (short, mid and long-

term), to prevent any unexpected event. To get good results and to protect the system, ANFIS 

should be properly and strongly trained, [178], therefore a delayed matrix should be created and 
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used as input of ANFIS as shown in Figure 3.18.    

As a description of Figure 3.18, the x-axis is the sample index and y-axis is the signal 

amplitude. The red dashed lines represent the time series generated as the input of ANFIS, and 

the green circles are the predicted points. 

 

Figure 3.18: Graphical Representation of Time Series Creation 

Let’s consider a space X with (p):  

𝑋 ∶   [𝑥1, … 𝑥𝑟 , … 𝑥𝑃]    

Prognostic is a process based on the collecting data of the past x(t-k) and present states x(t) of 

the system, to predict the future ones x(t+k).  

X is considered as the signal to be predicted; from this X we should create a time series matrix 

(shifted matrix) to train the prediction algorithm as inputs of ANFIS algorithm.  

Let’s consider a delay vector as follow (eq. 3.10): Delay= [1, 2, 3, … , n]     n<P 

Where n: is the numbers of inputs vectors and it determines the type of the prediction mode 

(short, mid or long-term) when n grows that means we're heading to long-term prediction. 

 

𝐼𝑛𝑝𝑢𝑡𝑠 ∶   [

𝑥(𝑡) 𝑥(𝑡 + 1) … 𝑥(𝑡 + (𝑃 − (𝑛 + 1)))

𝑥(𝑡 − 1) 𝑥(𝑡) … 𝑥(𝑡 + (𝑃 − (𝑛 + 2)))
… … … …

𝑥(𝑡 − (𝑛 − 1) 𝑥(𝑡 − 𝑛) … 𝑥(𝑡 − (𝑃 − (𝑛 + 1)))

]               (3.10) 

 

 

𝑇𝑎𝑟𝑔𝑒𝑡 ∶   [𝑥(𝑡 + 1),           𝑥(𝑡 + 2), … 𝑥(𝑡 + (𝑝 − 𝑛)]      

3.14.4 Fuzzy C-Means Clustering (FCM) for Health Assessment 

In this study, FCM is used as unsupervised classification phase for lifetime assessment. The 

main role of the unsupervised classification is to dividing the degradation curve into many 

classes. Then, these classes are used to estimate discrete states and to determine the time to failure 

Predicted 

points 
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(TTF) or the remaining useful life (RUL) of this system. When the temporal prediction achieved 

by the predictor, the classifier (FCM) estimate the future status of the system.  

To handle unlabeled data and due to the using of real information, FCM approach represents 

the best technique able to resolve this problem, [221], [222]. Fuzzy C-means (FCM) is a method 

of clustering that allows one piece of data to belong to two or more clusters. Whereas, FCM is 

frequently used in pattern recognition, [223]. This algorithm works by assigning membership to 

each data point corresponding to each cluster center on the basis of the distance between the 

cluster center and the data point. More the data is near to the cluster center more the membership 

towards to the particular cluster center. Clearly, the summation of membership of each data point 

should be equal to one. After each iteration, the membership and the cluster centers are updated 

and minimized [3]. For more information see the section 2.8.4.1 (Fuzzy c-Means clustering 

(FCM)) in chapter 2 

3.14.5 Proposed Methodology 

Previously, ANFIS was used to calculate the RUL of the system depends on a prediction step 

followed by the location identification of the predicted value.  In our study the database can be 

divided into two types: 

1- Data acquired from distillation column via ATP200, this type of data is deterministic and 

has a low sampling frequency (1 sample/10sec) (see normal mode in Figure 3.16 and 

Table1.1). It’s clear to find the difference between normal and degradation mode (Figure 

3.16).  

2- 2- Data acquired from the pump via accelerometer, this type of data is rich in information 

(500 samples /sec). In this type of data, it’s very difficult and complex to differentiate 

between normal mode and degradation mode (Figure 3.17). Usually, features extraction 

technics are applied to the originally acquired signal to find the better parameter (mean, 

variance, kurtosis,…) who can represent the system degradation [224].  In our case any 

parameter could not achieve the desired goal, for this reason, it is necessary to think about 

another way able to discover this small variation in the signal over time and put a strategy 

for the system path or to find the better curve that can represent the system degradation. 

Then use this degradation curve to calculate the RUL of the studied system certainly after 

passing several steps will be detailed later. 

As a description of Figure 3.19, the x-axis is the sample index and the y-axis is the amplitude 

of degradation. 
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Figure 3.19: Graphical Representation of System Degradation Mode: Case of Aging of the Pump 

Impeller  

The proposed methodology can be summarized by the following four steps: 

Step1: Training of ANFIS, Max of Kurtosis Calculation 

- Train ANFIS using normal data (this produce ANFIS ‘A1’). 

- Apply ANFIS on whole signal, this produce error  𝜺𝟏. 

- Estimate the max of kurtosis vector (mk1) from this error 𝜺𝟏. 

Step2: Degradation Curve Calculation  

- Apply ANFIS (A1) on real degraded data, this produce error 𝜺𝟐. 

- Estimate the kurtosis vector (k2) 

- Calculating the degradation curve via (𝒎𝒌𝟏 − 𝒌𝟐). 

Step3: Modeling and Clustering 

- Modeling the degradation curve by: 𝒇(𝒙) = 𝒑𝒙𝟐 + 𝒒𝒙 + 𝒓. 

- Clustering this model via FCM algorithm, produce 3 classes. 

Step4: For Real-Time Application, For New Data: 

- Apply ANFIS (A1) on large window of unknown data. 

- Calculating the error vector 𝝐′. 

- Estimate the kurtosis vector  𝒌′ from  𝝐′ then  calculate  (𝒎𝒌𝟏 −  𝒌′) 

- Prediction of new kurtosis values from  𝒎𝒌𝟏 −  𝒌′.  

- Project predicted kurtosis values to the clustered classes, calculate the RUL.  

These steps can be represented by a simple block diagram shown in Figure 3.20, Figure 3.22, 

Figure 3.23 and Figure 3.25. In the first step (Figure 3.20), a normal signal is divided into N 

segments (S) where each segment has n samples (n=500). [(𝑆𝑗), 𝑗 = 1,… ,𝑁,
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𝑁: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠]), then a time series matrix is generated from each segment as an input 

to ANFIS algorithm, where 70% of this matrix is used to train ANFIS, and the remaining amount 

(30%) is used as testing step for ANFIS validation as shown in Figure 3.21a. Accordingly a 

vector (n elements) of residual error (휀𝑗) is generated between the target and the actual output of 

ANFIS. Then the kurtosis value (𝑘𝑗) (eq.3.11) of this error is calculated. When we are on the 

segment N, the kurtosis (𝑘𝑁) is calculated, in the end, we have got a kurtosis vector (𝐾1) consists 

of N elements. Then calculate the maximum (𝑚𝐾1) (eq.3.12) from this kurtosis vector (𝐾1) . 

(𝑚𝐾1) is calculated to be used as a normal reference. This step was produced an ANFIS(𝐴1), 

where the premise and the consequence parameters of this ANFIS updated based on normal data.  

   𝑘𝑗 = 𝑛
∑ (𝑋𝑖−�̅�𝑎𝑣𝑟)

4𝑛
𝑖=1

(∑ (𝑋𝑖−�̅�𝑎𝑣𝑟)
2𝑛

𝑖=1 )2
 ,   𝑗 = 1,… ,𝑁                     (3.11) 

𝑚𝐾1 = 𝑚𝑎𝑥[𝑘𝑗, 𝑘𝑗+1, … . , 𝑘𝑁]                          (3.12) 

Where: 

               𝑛 : Number of samples for each segment. 

             N: Number of segments 

To calculate the kurtosis, you first need to calculate each observation’s deviation from the 

mean (the difference between each value and arithmetic average of all values). The deviation 

from the mean for ith observation equals: (𝑋𝑖 − �̅�𝑎𝑣𝑟). After many tests, the kurtosis parameter is 

chosen because it gives a convincing and very clear difference between failure modes more than 

the other parameters (time and frequency parameters) such as the mean, variance, skewness, 

median frequency,… etc.   In the case of normal data, the error is always small (samples index 

from 0 to 650 as shown in Figure 3.21.a and Figure 3.21.b). If the error increases between the 

ANFIS output (red line in Figure 3.21.a) and the real checked signal (black line in Figure 3.22.a), 

this is an indication that the signal starting deviation from the normal condition (samples index 

from 651 to 920 in Figure 3.21.a and Figure 3.21.b).  

 
Figure 3.20: Training of ANFIS  
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Figure 3.21.a: Graphical Representation of ANFIS Training, Testing and Checking 

Figure 3.21.b: Graphical Representation of the Error between Target and ANFIS Output  

In the Figure 2.21. a the x-axis is the sample index and y-axis is the signal amplitude. For the 

Figure 3.21.b, the x-axis is the sample index and the y-axis is the error amplitude. 

In step 2 (Figure 3.22), after training of ANFIS (𝐴1) with the same parameters (premise and 

consequence) calculated before in step 1, a segmentation procedure is applied on a real historical 

degraded signal (M segments each segment has a length of m samples with no overlap, m=500). 

For each segment, we applied ANFIS (𝐴1) and a residual error (휀𝑗) is produced as resua lt of this 

process, then the kurtosis value (𝑘𝑗) (eq.3.11) is calculated from this error. When we are on the 

segment M, the kurtosis (𝑘𝑀) is calculated, at the end, we have got a kurtosis vector (𝐾2) which 

consists of M elements.  

𝐾2 = [𝑘𝑗, 𝑘𝑗+1, … . , 𝑘𝑀]           (3.13) 

 At the end of this part the absolute vector of the difference (diff) (eq.3.14) between the max of 

statistical kurtosis vector (𝑚𝐾1) (eq.3.12) and statistical kurtosis vector 𝐾2, (eq.3.13) is calculated. 

Each point of the vector (diff) is the difference between the max of the kurtosis vector calculated 

from the normal data and the kurtosis vector calculated from the degraded data. The value of each 

point gives an indication how far their related data from the normal reference (𝑚𝐾1). The result 

was a reliable curve represents the degradation profile of the system as shown on Figure 3.22. 

𝑑𝑖𝑓𝑓 = |𝑚𝑘1 − 𝑘2|                                          (3.14) 

(a) (b) 
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Figure 3.22: Designing of Degradation Curve 

In step 3 (Figure 3.23), after obtaining the degradation profile that represents the functional 

mode of the system, a fitting curve f(x), (eq.3.15) will be estimated or modeling this degradation 

profile. 

     𝑓(𝑥) = 𝑝𝑥2 + 𝑞𝑥 + 𝑟                                      (3.15) 

For higher accuracy, five fitting curves are calculated from five real acquired data. The best 

fitting curve is the mean of these five fitting curves, Figure 3.24). Many functioning modes 

should be taking into consideration. In this study, three stages are proposed: initiation class, 

progression class and critical class. Therefore, FCM algorithm is used to partitioning this model 

of degradation into n classes determined by the user (n=3 in our study). FCM returns the 

coordinates for each cluster center (𝑐𝑖 , 𝑖 = 1,2,3) and the membership function (matrix U) that 

contains the membership grade of each data point in each cluster. 

𝐶 = [𝑐1, 𝑐2, … . , 𝑐𝑛], 𝑛 = 3                                   (3.16) 

 

Figure 3.23: Fitting and Clustering of Degradation Model 

(a) 
(a) 
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Figure 3.24: Graphical Representation of Fitting Curves to 5 Real Observations Degraded Curves   

To obtain an accurate degradation curve, many observations are executed (5 observations), In 

Figure 3.24 the dashed blue lines are the real five degradation curves, the violets lines are the 

fitting curves of the degradation curves, the sky blue line is the average of the all fitting curves, 

the green star’s lines are the residual between the real degradation curve and their fitting curve 

(real degradation curve-fit curve), and the red line is the zero line. 

In step 4 (Figure 3.25), for the real application, when it is in the online mode, an unknown 

new large signal is acquired then segmented (L segments). ANFIS (𝐴1) is applied again on each 

segment and a new kurtosis value calculated. At the end of the segmentation process, we obtain a 

vector contains L kurtosis values which called (𝐾′). Then, the absolute of the difference (|𝑚𝐾1 −

𝐾′|) is calculated as an indication of the data degradation state. 

 

Figure 3.25: Testing, Prediction, and Clustering of New Set of Data 

Using this vector of kurtosis, a new ANFIS is applied to predict the new kurtosis values; this 

gives an indication about the future distribution of this vector. 

(a) (b) 
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When the predicted vector calculated using ANFIS, FCM with the same coordinates of centers 

(C) calculated before (eq.3.16) and the same membership function (U) is used to project the 

temporally predicted values of the vector P to one of the three classes (initiation, progression or 

critical). This based on fuzzy partitioning of multidimensional data, that means the membership 

degree is calculated (𝜆𝑖 , 𝑖 = 1, . . , 𝑛) (eq.2.14) of each predicted point in each class. Then (λ) is 

used to calculate the gravity center (GC), (eq.3.17). Finally, the RUL calculated using this 

formula (𝑹𝑼𝑳 = 𝒕𝒉 − 𝑮𝑪, 𝒕𝒉 = 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 𝒐𝒇 𝟏𝟎𝟎% 𝒔𝒚𝒔𝒕𝒆𝒎 𝒅𝒆𝒈𝒓𝒂𝒅𝒂𝒕𝒊𝒐𝒏). For an 

accurate prediction results, if the RMSE between the predicted point and the profile of 

degradation is very large, the prediction process should be refused and repeated again.  Finally, 

the user will get a clear vision, able to expresses for him/her how the system is far from the 

critical or failure threshold [222] . 

𝐺𝐶 = 100 ∗
∑ 𝜆𝑖𝑐𝑖
𝑛
𝑖=1

∑ 𝑐𝑖
𝑛
𝑖=1

, 𝑖 = 1, . . , 𝑛                 (3.17) 

3.14.6 Results and Discussions 

In this section, we will extend a real application for a prognostic purpose. The designed 

methodology is proposed to predict seven types of degradation that can be may occur in the 

distillation column (D1…D7) and metric pump impeller degradation D8.  

Previously, all prognoses researches applied to distillation column system have objectives 

other than what we aspire to it in this research. Sahraie et al, in 2014 [225], use ANFIS as a 

prediction algorithm to estimate the composition of the distillate product. Sivakumar et al, in 

2010 [226], use ANFIS as an estimator to control the composition of the distillate, control of the 

composite of bottom products, control of liquid retention in reflux cylinder and control of liquid 

retention at the base of the distillation column. 

 This study is the first one designed to predict the degradation of the distillation process and 

distillation column system. Suddenly faults on reactors may be disastrous, deadly and very 

expensive, especially when we have no knowledge about the future operations of the system, for 

this reason this work provided an efficient fault prognostic method when tested on a real 

distillation process.  

Previous studies relied on the future extraction techniques (time and frequency parameters) to 

find the better parameter that can represent the system degradation, but usually it very clear and 

very easy to find out. In this work, when we apply the features extraction technique to the 

degraded signals, acquired from the metering pump via accelerometer shown in Figure 3.17, the 

obtained results were not satisfied, and they could not achieve the desired goal. Therefore it was 

necessary to think carefully about a new method able to solve this problem. The biggest challenge 

in this study is the using of ANFIS firstly as an unusual known way, where it has the same 

functionality of features extraction technique and secondly it used as usual known that is the 

approximation of nonlinear functions.  
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Figure 3.26.a: Graphical Representation of Results-Using ANFIS as A Predictor of Distillation 

Column Data (Reflux Rate Signal) 
Figure 3.26.b: Graphical Representation of Absolute Value Of Error Calculated In Each Iteration 

Figure 3.26.c: Graphical Representation of Error Absolute Value Distribution  

 

The black curve in Figure 3.26.a is the real signal and the red one is the output of ANFIS, the 

x-axis is the sample index and the y-axis is the amplitude of reflux rate signal.  

Degradation type Average 

RMSE 

Average 

Error St.D 

Average 

ME 

S1 0.17 0.23 1.5x10-8 

S2 0.016 0.01 2.7x10-8 

S3 0.21 0.35 3.3275x10-8 

S4 0.01 0.03 2.4x10-8 

S5 0.07 0.055 0.74x10-8 

S6 0.117 0.65 1.2x10-8 

S7 0.041 0.4 0.9x10-8 

S8 0.093 0.19 1.78x10-8 

 

Table 3.6: Performance of ANFIS when it applied on distillation column signals  

(a) 

(b) 

(c) 
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Figure 3.27.a. Graphical Representation of the Results - Using ANN as a Predictor of Distillation 

Column Data (Reflux Rate Signal) 
Figure 3.27.b. Graphical Representation of Absolute Value of Error (Calculated Each Iteration) 

Figure 3.27.c. Graphical Representation of Error Absolute Value Distribution 
 

The results are shown on Figures 26.a.b.c, and the Table 3.6 confirms that ANFIS has the ability 

with a great confidence to predict the distillation column data (MSE≅0.004, RMSE≅0.07, Error 

mean≅-4.5x10-8, Error standard deviation≅0.07). Referring to the Tables 3.6 and 3.7 it is clear 

that ANFIS has better performance and higher predictability results when it compared with ANN 

(Figure 3.27 a.b.c) for most of the tested signals. 

Table 3.7: Performance of ANN When it applied on Whole Signals Extracted from Distillation 
Column 

Degradation type Average 

RMSE 

Average 

Error St.D 

Average 

ME 

S1 0.3060 0.5290 0.0026 
S2 0.0288 0.0230 0.0049 

S3 0.3780 0.8050 0.0016 

S4 0.0180 0.0690 0.0038 

S5 0.1260 0.1265 0.0035 

S6 0.2106 1.4950 0.0020 

S7 0.0738 0.9200 0.0033 

S8 0.1674 0.4370 0.0037 

(b) 

(c) 

(a) 
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That indicates that ANFIS can be used with higher confidence to prognostic the degradations 

that may occur in the distillation column system and we can rely on it to calculate the RUL of the 

system. 

 

Figure 3.28.a. Vibration Signal extracted from Degraded Impeller Pump 

Figure 3.28.b. Calculation of System Degradation Curve Using ANFIS 
 

Figure 3.28.a shows the vibration signal acquired from the metric pump in two cases, pump 

without any malfunction (normal data) and pump with impeller degraded over time (degraded 

data). Figure 3.28.b explains the results when ANFIS used as a technique can capture the 

degradation curve of the pump. The y-axis in Figure 3.28.b represents the kurtosis amplitude.  

It can be shown that the result of the step2 of our proposed methodology Figures 3.28.a.b 

represent a good indicator or feature that can illustrate the degradation occurs on vibration signal 

acquired from the pump has an impeller degraded over time, all this after the successfully of this 

strategy on discovering and detecting the smallest variation in the signal (Figures 3.28.a).  

 

 

(b) 
(a) 

(a) 
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Figure 3.29.a. Graphical Representation of Results-Using ANFIS as a Predictor of the 

Degradation Curve D3  

Figure 3.29.b. Graphical Representation of Absolute Value of Error Calculated Each Iteration 

Figure 3.29.c. Graphical Representation of Error Distribution   
 

In Figure 3.29.a, the black line is the real degradation curve calculated from degraded heating 

power signal  (D2) that represents one from eight degradations types (D1…D8). Referring to the 

Figure 29.b, D2 has RMSE≅0.01, Error standard deviation≅0.01 and maximum error amplitude 

(MEA), (MEA≅0.05). The smallest in RMSE, in the standard deviation of residual error and in 

MEA affirm that ANFIS has the ability with great confidence to predict the D2. 

For all other degradation modes, you can find all the results in Table 3.8 (column 3, column 4 

and column 5).   

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 
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Degradation 

type 
Best MF 

Average 

RMSE 

Average 

Error 

St.D 

Average 

MEA 

Average 

MRES 

Average 

SRES 

RUL 

percentage 

D1 
Trapezoidal-

Shaped 
0.17 0.23 0.63 

-9.0688e-

15 
1.5 86.2 

D2 Pi-Shaped 0.016 0.01 0.07 
-1.5360e-

15 
2.7 45.2 

D3 
Trapezoidal-

Shaped 
0.21 0.35 0.91 

-1.1084e-

14 
3.3275 28.8 

D4 Pi-Shaped 0.01 0.03 0.06 3.1974e-14 2.4 2.45 

D5 
Trapezoidal-

Shaped 
0.07 0.055 0.11 

-3.3718e-

15 
0.74 83.6 

D6 Pi-Shaped 0.117 0.65 0.85 1.0936e-14 1.2 47.2 

D7 
Trapezoidal-

Shaped 
0.041 0.4 0.32 1.0499e-14 0.9 73.8 

D8 
Trapezoidal-

Shaped 
0.093 0.19 0.42 1.0097e-14 1.78 71.5 

Table 3.8: Statistical Characteristics of Eight Degradation Modes 

In Table 3.8, the column 2 represents the best membership function for each degradation type 

used in layer1 of ANFIS architecture, the columns 3, 4 and 5 represent the average RMSE, 

average of standard deviation of the residual error and the average of MEA respectively for 10 

observations from each 

degradation mode (D1 to D8). 

 

 

Figure 3.30: Fitting of Degradation Curve (D4) 

Figure 3.30 represents the result of the fitting of degradation curve (D5), the blue line is the 

real degradation curve (RDC), the purple line is the calculated fitting curve (CFC), the green line 

is the residual (RES) between the RDC and CFC, (RES=RDC-CFC) and the red line is the zero 

line.  
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In Table 3.8, column 6 represents the average mean of 10 RES (MRES) calculated from 10 

observations from every degradation mode. Column 7 represents the average standard deviation 

of 10 RES calculated from 10 observations from every degradation mode (SRES). As mentioned 

before the best-chosen fitting curve is the average of all fittings curves calculated from 10 

observations.  

 

Figure 3.31: RUL Calculation (D8) 

Figure 3.31 shows the results of the last step of the proposed methodology. When we apply it 

to the vibration signal acquired from the pump that has an impeller degraded over time. The blue 

circles dashed line represents the real degradation curve, the brick, yellow and purple lines are the 

plotting of the membership functions used in the fuzzy algorithm. The dashed red line is the 

failure limit chosen by the user, the red line is the fit curve of the degradation curve, the stars 

purple, blue, red and green lines are the new degraded data, chosen for the testing of this 

methodology. The black triangles line is the predicted values calculated for each new tested data, 

the result shown that FCM algorithm can successfully cluster the fitting curve (calculated before) 

on three groups, for example, if we take the last predicted point (p4) we see referring to UP 

matrix (eq.3.18), that the probability to classify p4 (𝑃𝑝𝑖/𝑐𝑗 ;  𝑗 = 1,2,3)  on class1, class2 or class 

3 are 0.47, 0.48 and 0.042 respectively, that indicate that p4 classified on the class2 (Pp4/c2> 

Pp4/c1> Pp4/c3) , the 𝐶𝐺4 =28.4465 and RUL= 71.5% that means the remaining Useful life of 

the pump impeller is equal 71.5%.  

The machine should be stopped if the probability of the predicted value classified on the 3’rd 

class (critical class) or the value overtakes the failure threshold.  

Last predicted point p4 
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              𝑈𝑝 = [

𝑝1 𝑝2 𝑝3 𝑝4
𝑐𝑙𝑎𝑠𝑠1 0.8361 0.7390 0.6149 0.4721
𝑐𝑙𝑎𝑠𝑠2 0.1438  0.2323 0.3481 0.4854
𝑐𝑙𝑎𝑠𝑠3 0.0202 0.0287 0.0370 0.0425

]       (3.18) 

The last column in Table 3.8 represents the RUL percentage on each degradation mode  

One may say, why do not simply calculate the RUL via the coordinates of the predicted 

point, (𝑅𝑢𝑙 = 100 − 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡), −≫   𝑅𝑈𝐿 = 100 − 22.22 = 77.78), without 

recourse to clustering technique which is much simpler and easier. 

However using this method we are considering that the predicted point belongs equally to the 

all classes (3 classes), in this case, there is no effect of the class weight on the RUL calculated. 

Also, we will not have any information about the degradation stage.  But using our approach, we 

take into consideration the weight of each class in the predicted point, therefore the RUL will be 

dependent on the combinations of this weight and the class with the highest weight will influence 

the RUL results, and the results showed illustrate this issue very well. 

On the other hand, all previous work looks to the RUL estimation as a probabilistic problem 

[221] [4] [227]. All these combined reasons were the main incentive to use this method. 

Conclusion  

An accurate prognostic of the remaining useful life of a system is critical to reducing the 

maintenance cost, ameliorate system reliability and improve the safety level that represents the 

first important term in the world. The subject becomes even more important when it comes to 

equipment that has a high risk and is very costly materially and humanly such as the reactors. 

This section presented a methodology that aims to realize more accurate RUL prediction of 

equipment deterioration over time. In this work, the proposed ANFIS model has two different 

functions, the primary one is the creation of a model can be presenting the system deterioration 

which the features extraction techniques were unable to perform it also a strategy for early 

detection of faults. Secondly, the ANFIS model, take the previous inspection points of 

degradation values that they have a correlation with the age of this system as inputs, and the life 

percentage as the output. 

The results shown in this research demonstrated that the proposed methodology, succeed to 

create a new technique that is very effective in determining the path of deterioration of the 

distillation column device and also predicts the future path of this device by determining their 

RUL. Faults prognostic is applied in real experimental data obtained from the distillation column 

during the automated continuous distillation process.   

The results also confirmed the ability to classify between initiation, progression, and critical 

classes of the system lifetime percentage and an early detection of failure occur in distillation 

column process to prevent damage or catastrophic accidents. 
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3.15 Parzen Window Distributions as New Membership Function 

for ANFIS Algorithm- Application to a Distillation Column Faults 

Prediction. 

 3.15.1 Introduction  

The deviation of the distillation column data from its normal path is a sign that the device 

is heading towards a malfunction or a problem; this is a dangerous indicator of system failure 

and damage in the distillation process. In such a case, losses will not only be material but 

there may also be casualties due to the significantly high pressure and the flammable 

materials in the device, possibly causing an unexpected explosion in the distillation column. 

Consequently, the data of this device must be carefully tracked in order to understand the 

future direction of data. This is known as the predictive or forecasting process [16]. The 

ability to construct a reliable and effective prediction system puts the device under cautious 

monitoring and supports industrial security, which is the most important issue for 

industrialists around the world [162]. When choosing the best forecasting techniques, one 

should take into account several factors such as real-time, desirable degrees of accuracy, time 

analysis, historical data relevance and availability, cost, complexity, operating conditions, 

heat transfer coefficient, reaction rate, reaction enthalpy, activation energy, and their 

unpredictable variations, information volume and nature, etc. [228][229][3]. 

 

The most important factor that affects the prediction accuracy of ANFIS is the type of 

Membership Function (MF) used on the first layer of ANFIS architecture (Figure 3.15). The 

execution time is also important for real-time processing [11]. In each instance, ANFIS uses 

the gradient descent algorithm to update the premises parameters of the MF. For example, if 

we have only two inputs, x and y, and each input has two MFs, supposing we use the 

Gaussian function as MF, which has two parameters (the mean (µ) and the variance (𝜎)), this 

means in total we have eight parameters that must be updated at every iteration. Therefore, if 

the number of the inputs is high, then the number of the parameters and execution time is also 

substantial. In the case that the Gaussian shape is applied as the MF, we have eight 

parameters while in the case of using the Pi-shape as the MF, the number of parameters will 

be 20. Therefore, a solution is needed to reduce the vast amount of parameters in order to 

minimize the calculation cost and keep real time processing. On the other hand, previous 

research has clarified that there is no a priori ideal shape that can be used as a standard for all 

applications. In addition, the quality, the nature of the data and its application determine the 

best MF that should be selected (Rui et al., 1995) [230][5]. 

 

In a comparative study in 2016, Ardhian et al. [11] suggested that the trapezoidal shape is 

the best MF that can be used for load forecasting. In 2011, Mayilvaganan et al. [12] also 

proved that the Gaussian shape showed significant results for the prediction of the 

groundwater level of a watershed. Additionally, in 2012, Singh et al. demonstrated that the 

Gaussian and the bell-shape are the best MFs for the estimation of the elastic constant of 

http://www.sciencedirect.com/science/article/pii/S1568494611003899
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rocks [13]. 

 

In the absence of any study applied to data extracted from the distillation column in search 

of the best forecasting technique, it is clearly necessary to do a comparative study between 

different types of membership functions in order to determine the optimal MF for forecasting 

the distillation process data.  

A meaningful consideration for the best method in determining a new MF with a low number 

of parameters is the first incentive in proposing the Parzen windows distribution as a new 

membership function to be used on the first layer of ANFIS algorithm. As it is well known, only 

the standard deviation (h) can modify the Parzen shape form, and in this case, we have only one 

parameter that should be updated per iteration. 

 

In this study of this section, we aim to determine the most advantageous type of MF which 

has the smallest root mean square errors (RMSE) among actual and forecasting data, when 

considering the execution time.  

3.15.2 Proposing Parzen Windows as a New Membership Function 

for ANFIS Algorithm  

3.15.2.1 Membership Function (MF)  

As aforementioned, the premise parameters of the ANFIS algorithm are completely related to 

the membership functions (MFs) chosen at the beginning of the learning process [11].  

If we consider X as an ensemble of x elements, then a fuzzy set A (eq.3.19) in X is defined as: 

𝐴 = {𝑥, μA(𝑥) | 𝑥 ∈ X}                                    (3.19) 

µA(x) is known as the degree of membership of x in A (𝜇 𝜖 [0 , 1]). This degree of membership is 

modified according to the form of the shape used. There are different types of membership 

functions such as the Gaussian shape (gaussmf), generalized bell shape (gbellmf), triangle shape 

(trimf), and trapezoid shape (Trapmf), etc. 

Below is a brief explanation of each MF type used in this study: 

 

1- Triangular-Shaped Membership Function (Trimf) 

Triangular membership function (Trimf) (eq.3.20) is formed of three straight lines 

constituting a triangle. This MF is very simple and linear, it includes three parameters, a, b and c, 

which represent the 3 points of the triangle.  

 

http://www.sciencedirect.com/science/article/pii/S1568494611003899
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𝑓(𝑥; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 

0, 𝑥 ≪ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
𝑎 ≪ 𝑥 ≪ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
𝑏 ≪ 𝑥 ≪ 𝑐

0, 𝑥 ≫ 𝑐 }
 
 

 
 

                 (3.20) 

 

 

2- Trapezoidal-Shaped Membership Function (Trapmf) 

The trapezoidal membership function (Trapmf) (eq.3.21) is formed of a truncated triangle 

curve with a flat top. It includes four parameters, a, b, c, and d, that form the shape of a 

trapezoid.  

 

𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) =

{
  
 

  
 

0, 𝑥 ≪ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
𝑎 ≪ 𝑥 ≪ 𝑏

1 𝑏 ≪ 𝑥 ≪ 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
𝑐 ≪ 𝑥 < 𝑑

0, 𝑥 ≫ 𝑑 }
  
 

  
 

            (3.21) 

        

The triangular and trapezoidal MFs, both formed of straight lines, have the advantage of 

simplicity. 

 

3- Gaussian Membership Function (Gaussmf): 

The Gaussian membership function (Gaussmf): (eq.3.22) has two parameters, the mean (a) 

and the variance (c). This MF can achieve smoothness, contrary to the triangle and trapezoid 

functions. 

 

𝑓(𝑥; 𝑎, 𝑐) = 𝑒
−(𝑥−𝑐)2

2𝑎2
           

                               (3.22) 

 

4- Generalized Bell-Shaped Membership Function (Gbellmf) 

 

𝑓(𝑥; 𝑎, 𝑐) =
1

1 + 𝑒−𝑎(𝑥−𝑐)
                               (3.23) 

 

     The Generalized Bell-Shaped Membership Function (Gbellmf) (eq.3.23) depends on three 

parameters, a, b, and c, where b is generally positive. The parameter c is located at the center of 

the curve. 
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The smooth Gaussian and bell membership MFs are unable to achieve asymmetric 

membership functions, which is an important characteristic in certain applications. 

 

5- Difference Between Two Sigmoidal Membership Functions (Dsigmf) 

 

The Dsigmf (eq.3.24) is the difference between two sigmoidal membership functions and it 

has four parameters, a1, c1, a2, and c2. A1 and c1 are the variances and the mean of the first 

sigmoidal MF whereas a2 and c2 are the mean and the variance of the second sigmoidal MF 

 

        𝑓(𝑥, 𝑎1, 𝑐1, 𝑎2, 𝑐2) = (
1

1 + 𝑒−𝑎1(𝑥−𝑐1)
−

1

1 + 𝑒−𝑎2(𝑥−𝑐2)
)              (2.24) 

 

6- Phi-Shaped Membership Function (Pimf) 

The Phi-shaped MF (Pimf) (eq.3.25), which is formed of four parameters, is zero on both 

extremes with a rise in the middle. 

 

 

           𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) =

{
 
 
 
 
 

 
 
 
 
 

0, 𝑥 ≪ 𝑎

2 (
𝑥 − 𝑎

𝑏 − 𝑎
)
2

𝑎 ≪ 𝑥 ≪
𝑎 + 𝑏

2

1 − 2(
𝑥 − 𝑏

𝑏 − 𝑎
)
2 𝑎 + 𝑏

2
≪ 𝑥 ≪ 𝑏

1 𝑏 ≪ 𝑥 ≪ 𝑐

1 − 2(
𝑥 − 𝑐

𝑑 − 𝑐
)
2

𝑐 ≪ 𝑥 <
𝑐 + 𝑑

2

2 (
𝑥 − 𝑑

𝑑 − 𝑐
)
2 𝑐 + 𝑑

2
≪ 𝑥 ≪ 𝑑

0, 𝑥 ≫ 𝑑 }
 
 
 
 
 

 
 
 
 
 

              (3.25) 

 

7- Parzen Windows as a Membership Function 

The Parzen window distribution approach was created by Emanuel Parzen in 1962. It defines 

an unknown probability density p(x) based on a set of observations. This approach provides an 

accurate mathematical analysis and is used in different domains and applications, such as pattern 

recognition and classification [231], and image processing [232], etc. Parzen window density 

estimation is a data-interpolation method [231]. Let us consider that X is a random sample, and 

P(X) (eq.3.26) is the PDF of this sample estimated by Parzen window.  

    

The general expression of non-parametric density estimation is: 

 

                          𝑝(𝑥) ≅
𝑘

𝑉𝑁
 𝑤ℎ𝑒𝑟𝑒 {

𝑁 𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑥
𝑉 𝑡𝑎𝑡𝑎𝑙 ≠ 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
𝐾 ≠ 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑉

       (3.26) 
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When we fix V and determine K from the data, this leads to kernel density estimation 

(KDE). If we assume that the region R that encloses the K examples is a hypercube with sides 

of length h centered at x, then its volume is given by V=h.D, where D is the number of 

dimensions. 

It is necessary to introduce (eq.3.27): 

                       

                              ∅(
𝑥𝑖−𝑥

ℎ
) = {

1 |
𝑥𝑖𝑘−𝑥𝑘

ℎ
|  ≤ 1 2⁄ ,   𝑘 = 1,2            (3.27)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

     This equation indicates the location of (xi) whether it is inside the square (centered at x, with 

a width h) or not. 

The total number of k samples falling within the region R, out of n, is given by (eq.3.28):  

𝑘 =∑∅(
𝑥𝑖 − 𝑥

ℎ

𝑛

𝑖=1

)                                                   (3.28) 

The Parzen probability density estimation formula (for 2-D) is given by (eq.3.29): 

 

𝑝(𝑥) =
𝑘
𝑛⁄

𝑉
=
1

𝑛
∑

1

ℎ2
∅(
𝑥𝑖 − 𝑥

ℎ

𝑛

𝑖=1

)                       (3.29) 

The equation ∅(
𝑥𝑖−𝑥

ℎ
) is known as a window function. We can generalize the idea and allow 

the use of other window functions in order to yield other Parzen window density estimation 

methods. For example, if the Gaussian function is used, then for (1-D) we have (eq.3.30 and 

eq.3.31)   

𝑝(𝑥) =
1

𝑛
∑

1

√2𝜋𝜎
𝑒𝑥𝑝(−

(𝑥𝑖 − 𝑥)2

2𝜎2

𝑛

𝑖=1

)                (3.30) 

                                  𝑝(𝑥) =
1

𝑛
∑

1

(ℎ√2𝜋)
𝑑 𝑒𝑥𝑝 (−

1

2
(
𝑥−𝑥𝑖

ℎ
)
2
) 𝑛

𝑖=1         (3.31) 

 

• In both equations, h is the standard deviation of the Gaussian PDF along each dimension.  

• For a large sample size, the Parzen window estimate comes quite close to the Gaussian 

PDF.  

The final Parzen equation used as MF for ANFIS is (eq.3.32):  

𝑓(𝑥; ℎ) = 𝑒𝑥𝑝 (−
1

2
(
𝑥 − 𝑥𝑖
ℎ

)
2

)                           (3.32) 

Parzen window has many advantages. Firstly, it can be used for bimodal, unimodal and 

normal mixtures. It also does not need an assumption about the early time distribution. In 

addition, it has the ability to converge towards an arbitrarily complicated target density with 

sufficient samples. In theory, it converges when the number of samples reaches infinity and it 

can be applied to the data that is taken from any distribution [233]. 
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Usually, In Parzen distribution, the size of the chosen windows totally depends on the standard 

deviation (h), therefore, the only disadvantage of Parzen window is the difficulty to find the best 

value of h which is usually determined by trial without any general concept or rule. In our work, 

the ANFIS method eliminates this challenge because it uses the gradient descent algorithm to 

find the appropriate size of (h) window. Here we guarantee that ANFIS converges faster to the 

desired goal in the least amount of time, although it is not certain that results will always be 

better. The selection of the best MF completely depends on the application and the nature of the 

processed data.  

3.15.3 Proposed Methodology  

In this study, ANFIS was used as a predictor for the signals acquired from the distillation 

column system to estimate the future state of this system. This is shown in the following 

flowchart (Figure 3.32): 
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Figure 3.32: Flow Chart of Our Proposed Methodology 

1- ANFIS Model 

 

       In this study and after many attempts to find the best ANFIS model, ANFIS has six-time 

series (Ts) vectors as inputs and one predicted vector as an output. Each input has two MFs 

formed of 24 rules of ANFIS shown inputs. These are the previous and the present distillation 

data; the output is the predicted distillation data.  
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The ANFIS model in this study consists of seven steps:  

 Step 1: Pre-processing data such as filtering and smoothing  

 Step 2: Load training, testing and checking data (150 observations, each observation 

consists of 170 samples).  

 Step 3: Training ANFIS with 80 observations. 

 Step 4: Testing ANFIS with 35 observations (validation step). 

 Step 5: Checking ANFIS with 35 observations.  

 Step 6: RMSE and execution time calculation 

 Step 7: Residual calculation 

 

Figure 3.33 represents the ANFIS architecture that was used in this study. Layer 0 is the six-

time series vectors inputs that were calculated from the original signals acquired from the 

distillation column; from each acquired signal we calculate 6 times series vectors. Layer 1 is the 

membership functions that were applied (inputs MFs), layer 2 is the prod layer that produces 

outputs that have 64 rules, layer 3 is the normalization layer, and layer 4 calculated the 64 output 

functions (f1,…,f64) as the following: 

 

Rule 1: if TS1 is A1 and TS2 is A3 and TS3 is A5 and TS4 is A7 and TS5 is A9 and Ts6 is 

A11 then f1=TS1.A1+TS2.A3+TS3.A5+TS4.A7+TS5.A9+TS6.A11 

Rule 2:  if TS1 is A2 and TS2 is A3 and TS3 is A5 and TS4 is A7 and TS5 is A9 and Ts6 is 

A11 then f2=TS1.A2+TS2.A3+TS3.A5+TS4.A7+TS5.A9+TS6.A11 

Rule 3: if TS1 is A1 and TS2 is A4 and TS3 is A5 and TS4 is A7 and TS5 is A9 and Ts6 is 

A11 then f3=TS1.A1+TS2.A3+TS3.A5+TS4.A7+TS5.A9+TS6.A11 

⋮ 

 Rule 64: if TS1 is A2 and TS2 is A4 and TS3 is A6 and TS4 is A8 and TS5 is A10 and Ts6 

is A12 then f64=TS1.A2+TS2.A4+TS3.A6+TS4.A8+TS5.A10+TS6.A12 

 

Layer 5 is the ANFIS output that produces the summation of the fi calculated in layer 4 where 

i=1 to 64. 
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Figure 3.33: ANFIS Architecture that was used in this Study  

2- Predictions residual 

The difference between the target (T), that represents the real signal and the output of ANFIS 

(O), is called the residual (R), 𝑅 = |𝑇 − 𝑂|.As long as the residual remains small, then this means 

that the prediction values are within the normal range. When the residual increases, this is an 

indication that the signal is starting to deviate from the normal state and it is heading towards an 

accident state. This is a relevant indicator of where the system is heading in the future. 
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3.15.4 Results and Discussion 

In this section, we will demonstrate the real application for the purpose of prognostic. The 

methodology is proposed in order to predict eight normal signals (S1…S8) and eight degraded 

signals over time (E1…E8)  (Table 3.9) as extracted from a distillation column, where each 

degraded signal Ei represents the deviation of this signal from the normal mode due to the failure 

of any components in the system or due bad control. For example, the signal E3 (decreasing 

degradation heating power from 100 to 0%) means that the boiler is failing from the other side; 

E2 means that there are no controls on the boiler (thermostat failure). It is important to note here 

that there is no relationship between Si and Ei in terms of i index. 

- S1: Reflux rate (Timer);  - E1: increasing degradation reflux ratio from 0 to 100% 

(Timer);  

- S2: Heating power; - E2: increasing degradation heating power from 0 to100%;  

- S3: Feed flow rate; - E3: decreasing degradation heating power from 100 to 0%; 

- S4: Preheated Power; - E4: increasing degradation preheated power from 0 to 85 %; 

- S5: Loss of charge; - E5: decreasing degradation preheated power from 100 to 0%;  

- S6: Pre-heated temperature; - E6: increasing degradation feed rate from 0 to 100%. 

- S7: Boiler temperature;  - E7: decreasing degradation  feed rate from 100 to 0%;  

- S8:TIC2: Column head 

temperature; 

- E8: pump impeller degradation.  

Table 3.9: Normal and Degraded Signals 

Previously, research on forecasting was applied to the distillation column system, but it was 

conducted for objectives other than those set out in this research. For instance, in 2014, Sahraie et 

al [234] used ANFIS to estimate the composition of the distillate product. In 2010, Sivakumar et 

al [226] used ANFIS to control the composition of the inlets distillation products. However, the 

risk that sudden faults in the reactors could be disastrous, deadly and very expensive remains. 

Therefore, it is necessary to have previous knowledge about the future state of the system and be 

sure that the system is still working within the normal range.  As aforementioned, what 

distinguishes one method from another is its ability to achieve quality results within a very short 

time. Time is especially important when the application must be in real time, as is the case in this 

study, where ANFIS processes data for one of the most dangerous systems: the chemical reactor. 

Despite the high risk of catastrophic problems in the system, it is not equipped with any 

prediction algorithm that can provide insight into potentially serious faults that may be fatal. 

Hence, this demonstrates the importance of strengthening the system by implementing this 

algorithm on a computer that processes the data acquired from the distillation column. Depending 

on the Matlab real-time application software, the algorithm receives the data in real time then 

activates an actuator (alarm, warning lamp, etc.) or triggers a control mechanism on the system 

(increases the feed flow rate, turns off the heater, etc.) whenever any of the input signals deviate 

from their normal mode to a faulty mode, depending on the predicted data.    

The proposition to use Parzen window distribution as a membership function for the ANFIS 

method was based on a well thought out plan; the goal is to significantly reduce the numbers of 
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ANFIS parameters closer to real-time application. As demonstrated earlier, if the Gaussian shape 

as MF is applied, in every instance, ANFIS should update 8 parameters. Knowing that the 

Gaussian shape is controlled by 2 parameters only (means and variance), how will the case be 

when we use the trapezoidal-shape that is controlled by 4 parameters or when we use the Pi-

shaped which has 5 parameters. When we use Parzen windows as MF, we have only 1 parameter 

(h) that has the right to control the shape. Therefore, when we use Parzen window, if we have the 

same number of inputs and rules, the number of parameters will be reduced by half, in 

comparison to using the Gaussian shape. As long as the number of parameters is reduced, the 

consumption time will be automatically reduced as well. 

 

Figure 3.34.a: Graphical Representation of ANFIS Results Applied to Distillation Column Data 

(Reflux Rate Signal) with Different MFs of ANFIS 

Figure 3.34.b: Graphical Representation of Residual Errors for Different MFs 

Figure 3.34.c: Graphical Representation of Mean Errors for Different MFs 
 

The black curve in Figure 3.34.a is the real signal and the other colored curves are the outputs 

of ANFIS, with different types of shapes used as MFs of ANFIS. The x-axis is the sample index 

and the y-axis is the reflux rate signal amplitude (S4). 

Figure 3.34.b is a graphical representation of the residual errors between the real signal and 

the output of ANFIS for different types of MFs. The x-axis represents the sample index and the y-

axis represents the error amplitude. 

The results shown in Figure 3.34.a and Figure 3.34.b demonstrate that ANFIS has the ability 

to predict the data of the distillation column with a higher degree of accuracy. Comparing the 

results between the different types of MFs, Figure 3.34.c shows that Parzen window has the 

smallest RMSE (0.005) when ANFIS is applied to the reflux rate signal. As mentioned before, 

(a) 

(b) 
(c) 
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our study is applied to 8 kinds of normal signals (S1...S8) various times (90 observations), and to 

8 degraded signals (60 observations). For the normal signals, all the results are presented in Table 

3.10. 

 

Figure 3.35: Graphical Representation of Consumption Time in Seconds for Different MFs 

(ANFIS Applied to Normal Reflux Rate Signal) 

Figure 3.35 is a bar representation of the consumption time of ANFIS for different types of 

MFs. The results have shown that Parzen window has the shortest time (14 sec) among the other 

MFs when ANFIS is applied to the normal reflux rate signal. All results of normal signals are 

listed in Table 3.10. 
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MF 
 

 
signal 

Gaussian Bell-shape Trapezoidal 

Average 
RMSE 

Average 
Error 
St.D 

Average 
Execution 

time 

Average 
RMSE 

Average 
Error 
St.D 

Execution 
time 

Average 
RMSE 

Averag
e Error 

St.D 

Average 
Execution 

time 

S1 0.0162     0.0395     15.117 0.0220     0.0474     20.510 0.0222     0.0464     27.832   

S2 0.0137     0.0849 12.9889 0.0101 0.0283 20.0159 0.0122 0.0395 30.4860 

S3 0.0235     0.1015 13.8395 0.0227     0.0536 19.9751 0.0233     0.0697 27.6670 

S4 0.0120     0.0523 14.6847 0.0133     0.0632 19.9014 0.0127     0.0872 26.9641 

S5 0.0099     0.0308 15.0306 0.0095     0.0714 19.1836 0.0092     0.0741 25.6672 

S6 0.0121     0.0415 13.4683 0.0130     0.0457 23.8216 0.0134     0.0430 29.1184 

S7 0.0091     0.0928 15.9022 0.0098    0.0455 17.7548 0.0089     0.0225 27.0609 

S8 0.0117     0.0310 15.0399 0.0138     0.0394 20.8412 0.0136     0.0631 29.9868 

MF 
 

 
signal 

Parzen Pi-shaped Triangle-shape 
Average 

RMSE 
Average 

Error St.D 
Average 

Execution 
time 

Average 
RMSE 

Average 
Error St.D 

Execution 
time 

Average 
RMSE 

Average 
Error 
St.D 

Average 
Execution 

time 

S1 0.0222     0.0264     12.321 0.0249     0.0678     37.487 0.0232 0.0441 23.651 

S2 0.0148 0.0435 10.8700 0.0125 0.0649 37.8790 0.0138 0.0884 21.0721 

S3 0.0136     0.0749 13.3244 0.0130     0.0436 40.0144 0.0198 0.0305 25.8612 

S4 0.0082     0.0553 12.0383 0.0096     0.0768 38.6691 0.0141 0.0684 27.6624 

S5 0.0090     0.0256 8.8189 0.0143     0.0485 41.0849 0.0123 0.0814 24.1958 

S6 0.0111     0.0594 12.6473 0.0248     0.0633 37.9413 0.0081 0.0120 23.5139 

S7 0.0148     0.0466 13.9371 0.0113     0.0656 38.3064 0.0106 0.0569 25.5321 

S8 0.0115     0.0548 14.4828 0.0131     0.1180 38.2318 0.0095 0.0623 20.2782 

MF 
 
 

Signal     

Dsigmf 
Average 

RMSE 
Average 

Error St.D 
Average 

Execution 
time 

S1 0.0249     0.0551     33.225   

S2 0.0104 0.0439 37.3589 

S3 0.0154     0.0518    31.9551 

S4 0.0120     0.0509    30.6536 

S5 0.0146     0.0519    35.6401 

S6 0.0098     0.0423    34.5521 

S7 0.0122     0.0728    32.6258 

S8 0.0141     0.0529    35.0376 

Table 3.10: Statistical Characteristics of MFs of Acquired Signals in Normal Mode 

 

Table 3.10 presents the variation of RMSE, the standard deviation and the execution time 

when ANFIS is applied to 90 observations of acquired normal signals with different types of 

MFs. The Parzen window proved its worth when chosen as the best MF (smallest RMSE) for 

three out of eight kinds of signals in normal mode (S1, S4, and S5). The results in Table 3.10 also 

affirm that Parzen window requires the shortest execution time for all signals in normal mode 

when compared to all other MFs. 
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Figure 3.36.a: Graphical Representation of ANFIS Results Applied To Distillation Column Data 

(Heating Power Degraded Signal) with Different MFs of ANFIS 

Figure 3.36.b: Graphical Representation of Residual Errors for Different MFs 

Figure 3.36.c: Graphical Representation of Mean Errors for Different MFs 
 

In this phase, ANFIS with different types of MFs is applied to degraded signals acquired from 

the distillation column. The black curve in Figure 3.36.a is the real signal and the other colored 

curves are the outputs of ANFIS, with different types of shapes used as MFs. The x-axis 

represents the sample index and the y-axis represents the degraded heating power signal 

amplitude (E4). Figure 3.36.b is a graphical representation of the residual errors between the real 

signal and the output of ANFIS for different types of MFs. The x-axis represents the sample 

index and the y-axis represents the error amplitude. 

The results are shown in Figures 3.36.a and Figure 3.36.b demonstrate that ANFIS has a 

higher ability to predict the data of the power heating degraded signal that is acquired from the 

distillation column with higher accuracy. A comparison of the results between different types of 

MFs, shown in Figure 3.36.c, affirms that Parzen window has the smallest RMSE (0.4) when 

ANFIS is applied to the degraded heating power signal. All the results of degraded signals are 

presented in Table 3.11. 

(a) 

(b) (c) 
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Figure 3.37: Graphical Representation of Consumption Time in Seconds for Different MFs 

(ANFIS Applied to Degraded Heating Power Signal) 

 

Figure 3.37 is a bar representation of the time consumption of ANFIS for different types of 

MFs. The results show that Parzen window has the smallest time (19.2 sec) among the other MFs 

when ANFIS is applied to the degraded heating power signal. All the results of degraded signals 

can be seen in Table 3.11. 
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MF 
 

 
signal 

Gaussian Bell-shape Trapezoidal 

Average 
RMSE 

Average 
Error 
St.D 

Average 
Execution 

time 

Average 
RMSE 

Average 
Error 
St.D 

Execution 
time 

Average 
RMSE 

Averag
e Error 

St.D 

Average 
Execution 

time 

E1 2.0044 1.3851 13.4914 1.3806 1.2045 23.1888 1.0256 0.7589 26.5714 

E2 2.4660 2.0338 15.0845 1.7744 2.3341 26.1951 1.3414 0.9934 26.6337 

E3 2.0097 0.7695 13.6155 1.5764 1.2566 23.2522 0.6652 0.6586 24.8378 

E4 1.6867 1.4606 16.3652 1.9909 1.4516 22.4751 0.7020 0.8897 28.2194 

E5 0.9554 0.7837 15.1001 0.5308 2.8527 25.4225 0.6256 0.7703 26.8085 

E6 1.6429 1.1095 12.6073 1.1804 2.4551 18.9890 1.1180 0.7933 29.0016 

E7 0.6998 0.7594 16.6406 2.2485 1.8054 23.2660 0.9980 0.8170 28.3545 

E8 2.3637 1.2657 14.2806 1.7637 0.6839 25.7442 1.0067 0.9092 28.7257 

MF 
 

 
signal 

Parzen Pi-shaped Triangle-shape 
Average 

RMSE 
Average 

Error St.D 
Average 

Execution 
time 

Average 
RMSE 

Average 
Error St.D 

Execution 
time 

Average 
RMSE 

Average 
Error 
St.D 

Average 
Execution 

time 

E1 0.9286 0.4324 6.9647 0.9854 0.6519 33.0954 2.3717 0.5549 20.1457 

E2 1.3058 0.5442 7.1437 0.7920 0.3647 35.9886 2.9292 0.4124 21.9674 

E3 0.4053 0.5009 5.4380 0.9157 0.5068 30.3677 2.8574 0.5450 20.3074 

E4 1.0014 0.6713 8.7098 1.0860 1.2451 39.4668 1.5101 0.9993 24.2025 

E5 0.2725 0.7782 6.3140 1.0864 1.0315 32.4521 3.1522 0.8685 16.6878 

E6 0.6483 0.8076 4.6545 1.1910 0.8590 37.7203 2.5736 0.8928 16.6014 

E7 1.1095 0.8235 6.9108 0.9868 0.9794 32.7332 3.4891 0.8112 19.7368 

E8 0.8372 0.5099 6.6788 1.0680 0.7482 32.2240 1.6825 0.8232 20.1531 

MF 
 
 

Signal     

Dsigmf 
Average 

RMSE 
Average 

Error St.D 
Average 

Execution 
time 

E1 0.9842 0.5410 24.2345 

E2 0.6252 0.6639 18.5393 

E3 1.2711 0.8525 24.8805 

E4 0.3609 0.2426 25.2238 

E5 0.5968 0.6030 23.2395 

E6 2.2000 0.9078 23.0783 

E7 2.2963 1.0607 23.5643 

E8 1.0503 0.5497 24.3967 

Table 3.11: Statistical Characteristics of MFs of Acquired Signals in Abnormal Mode 

 

Table 3.11 presents the variation of RMSE, the standard deviation and the execution time 

when ANFIS is applied to 60 observations (each observation represents 8 signals) of degraded 

acquired signals with different types of MFs. In this table as well, it is observable that Parzen 

window has proven to be the best MF (smallest RMSE) for 5 kinds of signals out 8 degraded 

signals (E1, E3, E4, E5, and E6). Again, Parzen window requires the shortest execution time for 

all signals in degraded mode when compared with all other MFs. 
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Parzen MF was not the best MF nor did it have the smallest RMSE for all signals in normal 

and degraded mode, and this affirms, as seen in Table 3.10 and Table 3.11, that results are really 

congruent with those of the previous research (Rui et al., 1995) asserting that only the 

comparative study is able to determine the best MF for each acquired signal.  

3.15.5 Conclusion  

The complementarity of the traditional preventive and curative maintenance by a more 

reactive and proactive orientation maintenance in operational condition of the industrial systems 

at lower cost offering a better performance and competitiveness to the companies. 

The prognostic methods presented above do not constitute a complete state of the art of the 

existing methods. Only, the described techniques are the most known and the most used. The 

prognostic, when considered as a key process in maintenance strategies, such as CBM, proves to 

be a very promising activity. Prognostic activity is supported by model-based approaches, data-

driven approaches, and experiential approaches to the diversity of methods and tools available. 

The knowing that no prognostic approach is universal and that the choice of an appropriate 

technique depends on conventional constraints limiting the applicability of tools: availability of 

data and/or knowledge and/or experiences, dynamics and complexity of real systems, constraints 

implementation (accuracy, calculation time, etc.), measurement possibilities (sensors, system, 

etc.). 

Forecasting the state of a system has an important role at various levels, including the 

minimization of the cost of maintenance, the reduction or prevention of sudden accidents, the 

increase of safety and performance, all of which are considered as the primary objectives of 

industrialists and civil society actors alike. The relevance of forecasting and its accuracy increases 

when discussing a system whose failure leads to human and material disasters, such as the case of 

reactors. Although there are many forecasting techniques, this study aims to use ANFIS as a 

prediction method applied to real data that is acquired from a distillation column. The type of MF 

chosen on layer 1 of ANFIS can improve the performance of this method in terms of reducing the 

execution time and minimizing the RMSE. Therefore, in this research we proposed Parzen 

window as a new membership function of ANFIS algorithm, then we moved onto a comparative 

study that aims to choose the best MF used by ANFIS when it is applied to the normal and 

degraded data of the distillation column.  

The results obtained in this study demonstrated that Parzen window proveed its valuable capacity 

as a new membership function of ANFIS algorithm when it is applied to the distillation column 

data and it also proved to be successful in reducing the execution time of ANFIS. 

The results have also shown that Parzen MF is chosen as the best MF for three out of eight types 

of normal signals and for five out of eight degraded signals.   
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Finally, to prevent the limitation of ANFIS, reaching a compromise must be found between 

simplicity and generalization. From our point of view, the prediction is still an art and many of 

the techniques that we have learned out of experience can prove to be very helpful to others   
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Chapter 4 

 

Soft Computing Fault Prediction and Diagnosis 

Algorithm- Application to a Distillation Column  
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4.1 Introduction 

The reliability and dependability of an industrial system, at a lower cost, are the main 

objectives of industrial enterprises to remain competitive in an ever-growing market. This interest 

is fueled by the fact that an unplanned shutdown can have very serious economic consequences in 

key sectors. 

As mentioned before the high costs of maintenance highlight the increasing importance of 

monitoring the state of the systems in the industry through maintenance. The objectives 

mentioned above can be achieved through the implementation of an adequate maintenance 

strategy. As a result, there is an urgent need to continually develop and improve intelligent 

maintenance strategies to identify service requirements, optimize maintenance actions, and 

prevent unplanned downtime [235] 

 

An effective health monitoring technique must be adapted to determine the state of the system 

at all times. A diagnostic method determines the current state of the system and identifies the 

probable causes (interaction with the environment, faults, etc.) that can lead to this state by 

reasoning on the observations. A prognostic method uses the current mission plan and knowledge 

of system degradation to anticipate abnormal behaviors or faults and thus predict future states. 

 

The prognostic is generally associated with the end-of-life (EOL) prediction of a system in 

service, when the system is no longer operational, or its residual life (RUL). The diagnosis and 

the prognostic thus make it possible to have a report on the current health of the system as well as 

a prediction of the evolution of its state in the future. This information is used to reconfigure the 

system and update the mission and maintenance plans, hence the importance of diagnostic quality 

and prognosis [236]. 

 

This chapter will present a new proposed approach which can be applied to obtain real-time 

monitoring system which relies on the fault prediction module to reach the diagnosis module in 

contrast to the previous strategies; this means this method predict the future state of the system 

then diagnosis what is the probable fault source. 

 

The Adaptive Neuro-Fuzzy Inference System (ANFIS), as a hybrid system, has been selected 

for the step related to prediction since it combines the advantages of fuzzy logic and ANNs in one 

simultaneous algorithm. In this research, we tested this methodology with real experimental data 

that was obtained from a real distillation column. This experimental data was acquired, however, 

after pre-processing was conducted in order to filter and smooth the signals. This resulted in the 

analysis of a database with different types of faults that could potentially occur during the 

automated distillation process.  
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4.2 problem formulation 

If we go back to the maintenance strategy detailed in chapter 1 you can see that all the 

previous researchers rely on the diagnosis module to build or to reach a fault predictive module, 

where the diagnosis module ensures the failure data that represent the inputs for this predictive 

module as you see in Figure 4.1. One of the main disadvantages of this method is that it depends 

on previous failures; this means that we are supposed to incur the consequences of these faults, 

which are sometimes disastrous. 

 

 
 

Figure 4.1: From Fault Diagnosis to Fault Prognostic 

 

This lays out the undisputable justification for industrialists’ need to examine levels of severity 

of faults within their systems and predict the optimal moment for intervention, and even stoppage 

of the instrument. This is better known as the prediction and diagnosis process [27]. 

Conditional preventive maintenance requires a predictive approach. It provides the maintenance 

personnel an indication of the future state of the system and, ideally, gives sufficient time for staff, 

equipment, and spare parts are organized, minimizing downtime and maintenance costs [237][238] 

Figure 4.2 shows the steps of a process for dealing with a possible fault at a system level. This 

system is considered to be in working order at the beginning, then, after a while, an incipient fault 

develops in the system. 
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Figure 4.2: From fault prognostic to fault diagnostic 

Over time, the severity of the fault increases until the system is completely degraded. If the 

system is allowed to continue functioning, there is a possibility to see other faults.  

The diagnostic process typically occurs when a fault occurs and/or in the interval between 

system failure and failure of secondary systems. 

However, if an incipient fault can be detected at an early stage, then maintenance operations 

may be delayed until the state of the system changes to a more degraded state. This interval, 

between the detection of an incipient fault and its appearance, defines the (temporal) domain of the 

prognosis. Providing a sufficient interval, commonly referred to as the remaining lifetime, between 

the detection of the incipient fault and the system failure, allows the system to be operated better 

and the maintenance operations to be reduced further. 

To take advantage of the benefits of prognosis, maintenance personnel must: 

 Have techniques to detect and identify an emerging defect; 

 Have a reliable estimate of the time remaining before the intervention, i.e. the time 

remaining before the appearance of a fault. 

4.3 Data acquisition  

4.3.1 Signal acquisition 

The signal acquisition allows the monitoring of changes in parameters such as differential 

pressure or temperature at a given point of the distillation column. The signals obtained during 

each acquisition represent (Table 4.1): 
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D1: Feed flow rate, D5: Heating power, 

D2: Loss of charge, D6: Pre-heated temperature,  

D3:Timer: reflux rate D7: TIC2: Column head temperature. 

D4: Preheated Power D8: Boiler temperature 

Table 4.1: The Acquired Signals 

 

Normal mode signals (Table 4.2) are characterized by the following parameters: feed flow rate 

set at 80% of its capacity, pressure drop at 0.7 mbar, preheated temperature of 40°C, boiler 

temperature at 76°C, column head temperature at 56°C. 

Signal Min Mean Max Variance Frequency 

peak 

Preheated Temp (°C) 39.6 40 40.6 0.006 0.0006 

Timer % 0 0.5 7 1.6 0.001 

Charge loss (mbar) 0.7 0.7 0.7 0 0.0001 

Heating power 42.3 42.7 42.9 0.009 0.0001 

Flow  % 80 80 80 0 0.0001 

Temp heater (°C) 75.8 76 76.1 0.009 0.0001 

Head temp TIC2 (°C) 55.9 56 56.1 0.001 0.0001 

Table 4.2: Statistical Characteristics of Acquired Signals in Normal Mode 

 

 

Figure 4.3: Graphical Representation of Signals (Normal & Faults Mode) 

While accidents automated the continuous distillation that occurs in the industry, the cause was 

variations of the parameters. The most common variation that was observed, as illustrated in 

Figure 4.3, where: 1- the reflux rate, 2- the heating power, 3- the preheating power and 4- the feed 

rate. 
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A database with normal and faulty observations is analyzed. The database is composed of 50 

observations; each observation has 2507 points with the sampling frequency, SF=1sample/11sec. 

4.3.2 Data Pre-processing  

In general, the data acquired from the machine are noisy and redundant. Therefore, this data 

cannot be applied directly by a diagnosis or prognostic model. Further, this original data could be 

hidden inside many of the relevant information which can denote to the machine fault or machine 

degradation. Wherefore a set of parameters that plain of a relevant information should be 

extracted from this original data as indicators for this fault or this degradation. Usually, the 

strength of the diagnosis or prognostic model depends on the quality of the extracted and selected 

features. In addition, it is very important to identify the features that reflect the type of a fault and 

the progression of the failure of the machine [45][46].  

A pattern is an observation made about the process. It is characterized by a set of 𝒅 parameters 

(or features), and represented by a point in the dimension space d, defined by the different 

parameters called representation space. Since the parameters are often real numbers, a form ′𝒊′ 

can be defined by a vector 𝑋𝑖 =  [𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑑] called form vector. 

If we place the problem in the context of the diagnosis, the parameters of the pattern vector 

reflect the state of the studied system. They come from analyzes performed on the signals 

measured by the sensors installed on the system (vibrations, speed, currents or even voltages for 

example). 

The typical patterns (or prototypes) are representative points of this space, and the problem of 

recognition consists in associating an observed pattern with a known standard pattern. 

Due to disturbances (measurement noise, sensor accuracy ...), a new observation will rarely be 

identical to one of the prototypes. Thus, in order to express the influence of noise, the classes 

ω1,ω2, . . . , ωc, . . . , ωM correspond to zones in space, grouping the similar patterns.  

The principle of recognition is to know which class, among M known classes, to associate a new 

form, 𝑋𝑖 =  [𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑑] observed. 

In terms of diagnosis, the classes correspond to the known modes of operation. 

They are our initial data set, called learning set and noted 𝑿𝒂. To classify a new observation is to 

identify one of these modes. 

The development of a diagnostic system based on the neural network takes place in three 

phases: a perception phase, an analysis phase, and exploitation phase. 

The perception phase is the main source of information about the system. It is not only 

reserved for pattern recognition because it is common to other diagnostic approaches. It consists 

of two stages. A data acquisition step which consists in determining the hardware configuration 

(the type, the number of sensors to be used and the sampling rate, etc.) that they are necessary for 

the collection of signals on the studied system. The acquired signals must provide useful 
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information in order to judge the operating state in which the system is located. This first step is 

followed by a signal preprocessing phase (filtering, de-noising, etc.). 

The analysis phase is to study the information provided by the sensors installed on the system. 

If the information is in the form of signals, then it is necessary to extract features (or parameters). 

These parameters, which moreover constitute the pattern vector, must be able to describe the 

behavior of the system. 

In the exploitation phase, the diagnostic system based on ANN can be commissioned. It makes 

it possible to classify each new observation collected on the system in one of the known classes, 

by applying the decision rule developed in the analysis phase. The determination of this class 

makes it possible to know the current mode of operation of the system. 

4.3.3 Signal processing 

Signal processing combines a set of techniques for creating, analyzing and transforming input 

signals to extract fault-indicating parameters [239]. Signal processing techniques classified into 

Time Analysis, Frequency Analysis, and Time-Frequency Analysis. 

1- Temporal Features 

The temporal analysis takes into account: 

 The time required to acquire the information, 

 The delay of diagnosis and treatment of information, 

 The decision period, 

 The reaction time of the system to the resulting action 

a- Direct Measures: 

• 𝑀𝑖𝑛 (𝑋): It represents the minimum of X.  

• 𝑀𝑎𝑥 (𝑋): It represents the maximum of X. 

b- Statistical measures: 

They represent these values: 

 Mean value(𝜇) (eq.4.1): is the statistician's jargon for the average value of the 

signal 𝑋. 

𝜇 =
1

𝑛
∑ 𝑥𝑖
𝑛−1
𝑖=0                   (4.1) 

 

 Quadratic mean value (X̅) (eq.4.2): The quadratic mean of a set of numbers is the 

square root of the arithmetic mean of the squares of these numbers. 

 

�̅� = √
1

𝑛
∑ 𝑥𝑖

2𝑛−1
𝑖=0              (4.2) 

 

 Variance: In probability theory and in statistics, the variance (eq.4.3) is the 

expectation of the quadratic deviation of a random variable from its mean. 
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𝜎2 =
1

𝑛−1
√∑ (𝑥𝑖 − 𝜇)

2𝑛−1
𝑖=0            (4.3) 

 

 Standard Deviation: 𝑆𝐷 = 𝜎 = √𝜎2 

 

c- Power Measurements 

 Power  of the signal  (eq.4.4):  

 

𝑃 = lim
𝑛→∞

1

2𝑛+1
∑ |𝑥(𝑖)|2𝑛
𝑖=−𝑛        (4.4) 

 

 Root Mean Square (eq. 4.5):  

 

          RMS = √P                                        (4.5) 

 

d- The Crest Factor:  The crest factor (eq. 4.6) is a characteristic measure of a signal. This 

is the ratio between the amplitude of the peak of the signal and the RMS value of the 

signal. This factor is independent of the operating conditions. It decreases when faults 

develop. It is commonly correlated with the Peak-to-Average Power Ratio (PAPR) which 

indicates a ratio between peak power and average power [240]: 

 

𝐶 =
|𝑋|𝑝𝑒𝑎𝑘

𝑋𝑅𝑀𝑆
                                    (4.6) 

 

e- The Envelope Analysis: Fault diagnosis at an early stage, it can be determined reliably 

and quickly the shock repetition frequencies. We can look for the average and the 

variance of the envelope (eq.4.7) [54]. 

 

env(t) = √|X(t)|2 + |X̃(t)|2      (4.7) 

 

Where, X̃(t) =
1

πt
 × X(t) 

 

1- Frequency Features  

Frequency features extraction is based on the Fourier transform. Frequency analysis 

makes it possible to locate faults and to make a reliable diagnosis. Likewise, it does not 

require any additional measurements. We define the spectral moment of a signal by the 

following formula (eq.4.8) 

 

  )8.4()()(2
0

* dffSMPFfMr x

r
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Where  )( fSx it is the spectral density of the signal. 

Frequency features include: 

a- Signal Energy: It represents the distribution of the energy M0 (moment of order 0) of the 

signal on the frequency axis.  

 

b- Mean Power Frequency (MPF):  MPF =
M1

M0
 

 

c- Skewness (CD): The Skewness coefficient (eq.4.9) measures the degree of asymmetry of 

the distribution. It is defined as the third order moment centered on the standard deviation 

cube. If CD is equal to 0, the distribution is symmetrical. If CD is smaller than 0, the 

distribution is asymmetric to the left. If CD is greater than 0, the distribution is 

asymmetric on the right [241].   

 

     

   

 

 

Skewness <0                               Skewness =0                        Skewness >0  

d- Median Frequency (MF): It is the frequency that divides the surface into two equal parts. 

In other words, the surface before this frequency is equal to that which is after it (eq.4.10) 

[242]. 

 

∫ 𝒔𝒙
𝑴𝑭

𝟎
(𝒇)𝒅𝒇 = ∫ 𝑺𝒙(𝒇)𝒅𝒇 

𝑭 𝒎𝒂𝒙

𝑴𝑭
    (4.10) 

 

e- Kurtosis Value (CA): The Kurtosis coefficient (eq.4.11) measures the degree of crushing 

of the distribution. It is classically defined as the ratio between the four-centered moment 

centered and the square of the variance. When it is positive, it indicates that the 

distribution is "pointed". When it is negative, it indicates that the distribution is relatively 

"overwritten" [241]. 

It has this formula:  

 

 
)11.4(
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2
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f- Frequency Peak: This is the frequency that corresponds to the maximum of energy [243]. 

 

g- Relative Energy per Frequency Band / Deciles: We have seen that the median divides the 

distribution of the spectral density into two parts. The division of this distribution into 

four, ten, one hundred, or any number of parts can be generalized. The values thus 

obtained are called quartiles, deciles, percentiles (or percentiles), or quantiles. The energy 

of each interval is given by the following formula (eq.4.12) [244]: 

 

𝑊𝑛 =
∫ 𝑠𝑥(𝑓)𝑑𝑓
𝑓𝑛
𝑓𝑛−1

𝑀0
                   (4.12) 

                                          𝑓𝑛 =
𝑛

𝑁
𝑓max           1<𝑛<𝑁 

 
With N is the number of intervals. These parameters represent the spectral variance. The 

frequency axis is distributed in ten equal intervals. 

 

h- Percentile: For this parameter, the corresponding frequencies are removed at equal 

energy bands. It has this formula [244] (eq.4.13).  

 

 




fp

fp

F

xx dffSkdffS
1

max

0

)()(      (4.13)    

0  k  1 

We distinguish: 

 Decile: k = 0.1 so each part represents 10% of the total area of the power spectral 

density 

 Median: k = 0.5 as it has already been said divides the total area into 2 equal parts 

 Quartile: k = 0.25 divides the total area into 4 equal parts. 

 
i- H / L (High / Low) ratio: It is a relationship between two bands of energy extracted 

after studies a priori of the shapes of the spectral density in the situations of interest. 

In general, one band increases when the other decreases or vice versa. This gives a 

good difference and therefore a good discriminating parameter .H and L (eq.4.14) are 

chosen beforehand and this report will then be of the form:  

 

 

 

H  [H1, H 2] L  [L1, L2] 
 

  
 

            Kurtosis > 0              Kurtosis = 0  Kurtosis <0 
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j- Spectral Entropy: Entropy measures the amount of average information contained in 

a signal; it is significant of the spectral variance (eq.4.15) [245]: 

  )15.4()](ln[)(

max

0



f

xx dffSfSH  

k- Cepstre:  The cepstrum (eq.4.16) of a signal x (t) is a transformation of this signal 

from the time domain to another domain analogous to the time domain. This is the 

inverse Fourier transform applied to the logarithm of the Fourier transform of the 

signal [246]. 

 

𝐶𝑥(𝜏) = 𝐹𝑇
−1{ln (𝑋(𝑓))}        (4.16) 

 

The cepstrum makes it possible to highlight the periodic components of a spectrum 

and makes it possible to locate and determine the origin of the faults inducing 

periodic shocks. 

 

2- Time-Frequency Features: The Fourier transform is used in the case of periodic signals 

or stationary random signals. For its signals, the same frequencies exist on the entire time 

domain. But in the case of non-stationary and irregular signals the Fourier analysis cannot 

give good results as at each time we will have a frequency. That's why you have to go to 

Time-Frequency or Time-Scale analysis. 

 

a- Wavelet: Wavelets generalize Fourier analysis based on time-scale analysis. 

 
 

The continuous wavelet transform (eq.4.17) of a signal x (t) is: 

 

𝑇𝑥
𝜓(𝑎, 𝑏) = ∫ 𝑥(𝑡)𝜓𝑎𝑏(𝑡)𝑑𝑡

+∞

−∞
                    (4.17) 
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This expression can also be interpreted as a projection of the signal on a family of 

analytic functions  𝜓𝑎𝑏  (eq.4.18) constructed from an analyzing "mother" function 

𝜓 according to the following equation, which is localized in time and frequency: 

 

𝜓𝑎𝑏(𝑡) =
1

√𝑎
𝜓(

𝑡−𝑏

𝑎
)                                           (4.18) 

 

This equation corresponds to translating a reference wavelet after having dilated it (a> 

1) or compressed (a<1) (it is the parameter of scale, b parameter of translation). 

It is possible to reconstruct the signal x (t) from its decomposition into wavelet 

coefficients, which makes it possible to say that the wavelet transform is invertible 

and reconstructed (eq.4.19): 

 

𝑥(𝑡) = 𝐴.∬ 𝑇𝑥
𝜓
(𝑎, 𝑏)

 

  

 

𝜓 (𝑡−𝑏
𝑎
) 𝑑𝑎𝑑𝑏           (4.19) 

 
This parameters presented above can be extracted manually “classical calculation” or 

depending on other methods known and has a high credibility. Among the different 

methods for extracting parameters, we distinguish the Principal Component Analysis 

(PCA) or the Karhunen - Loève transform [247][248]. 

4.4 Materials and Methods 

4.4.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

In order to understand the selection of the methods and techniques applied in our 

methodology, it is essential to understand the role of each technique used. The grounds for 

application of the Adaptive Neuro-Fuzzy Inference System is that it is a hybrid system that 

combines the evident knowledge of the Takagi–Sugeno fuzzy inference system with the 

supervised learning potential of the multilayer feed-forward neural network in one approach. 

ANFIS is known to be a vigorous robust technique that aims to realize the nonlinear and complex 

relationship between input and output data [220] and it is much simpler. 

4.4.2 ANFIS Accuracy 

Recent studies and experience of system operators indicate that the cost function in the 

prediction problem is clearly non-linear and that large errors can have disastrous consequences. 

For this reason, measures based on Root Mean Square Error (RMSE) (eq.4.20) are sometimes 

suggested because they penalize large errors so can be considered better suited (De Gooijer et al., 

2006) [5]. 

       RMSE = √
1

𝑁
∑(𝑦𝑖 − Ŷ𝑖)

2

𝑁

𝑖=1

                            (4.20) 
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Where (yi − Ŷi)
2 is the difference between the measured actual value of the system (y) and the 

previously estimated Ŷ, whenever the RMSE has a small value, this means that the predicted value 

will be more accurate and more acceptable. 

 

4.4.3 ANN Classifier  

Neural networks, used for fault diagnosis, can be classified according to (i) the network 

architecture, and (ii) the learning method [249]. There have been a number of papers that address 

the problem of fault diagnosis by neural networks. In chemical engineering, Watanabe et al. in 

1989 [250], Ungar et al. in 1990 [250] and Hoskins et al. in 91[251] were among the first 

researchers to demonstrate the usefulness of neural networks for diagnosis. Their strength lies in 

the ability to learn and capture the relationships between neural network input and output even if 

these relationships are unknown or difficult to describe. However, their main disadvantage lies in 

the acquisition and availability of learning data. 

The strength in this study is represented by the using of ANFIS combined with ANN in the same 

algorithm.  Feedforward neural networks (FFNN) [252] are the most popular and most widely 

used models among the many practical applications. This network propagates the input of the 

network to the following layers without ever going back. This type of network was selected for our 

research and it’s used for the rest of this study. After selecting the neural network type, it is also 

inevitable to choose an activation function and an error function for their neurons. These options 

are often guided by the type of data being processed. In this research, a logistic function defined 

(eq.4.21) is used as an activation function at the level of the hidden layer of the ANN.  

bi
(j)(𝑥) = 1 1 + exp (−𝑥)⁄                               (4.21) 

For the output layer, the linear transfer function is used. And a simple choice is used for the 

error function (eq.4.22) 

𝐸 =
1

2
‖𝑦 − 𝑡‖2

2 =
1

2
∑(𝑦𝑗 − 𝑡𝑗)

2                 (4.22)  

𝑛

𝑗=1

 

This equation is half the square of the Euclidean distance between the network output (y) and 

the target (t). Then the minimizing of the average error data is a necessary step taken on all data 

input by the function E (eq.4.23): 

𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑁
∑𝐸𝑖                           (4.23)

𝑁

𝑖=1

 

Where N is the number of training data used as input of ANN, and 𝑬𝒊 represents the 𝒊𝒕𝒉 learning 

error. 

4.4.4 Time Series Creation 

A failure can potentially occur at any given time and can occur without offering prior 

indication of an inbound failure. For this reason, it is necessary to establish a reliable method that 

has the capacity to save the system in a, in addition,rovide time-sensitive and accurate predictions 
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in the short, medium and long-term so that unexpected events can be prevented. It is important to 

note that the proper and effective training of ANFIS should be completed in order to acquire 

quality results that will lead to durable protection of the system [178]. This can be done by 

creating a delayed matrix and applying it as the input of ANFIS; this process is shown in Figure 

4.4. 

  

Figure 4.4: Graphical Representation of Time Series Creation 

Figure 4.4 demonstrates that the x-axis is the sample index and y-axis is the signal amplitude. 

The red dashed lines represent the time series generated as the input of ANFIS, and the green 

circles are the predicted points 

Let’s consider a space X with (p) points (eq.4.24): 

𝑋 ∶   [𝑥1, … 𝑥𝑟, … 𝑥𝑃]                                (4.24)  

Prediction is a process based on collecting data of the past x(t-k) and present states x(t) of the 

system, to predict future ones x(t+k). X is considered as the signal to be predicted; from this X we 

should create a time series matrix (shifted matrix) to train the prediction algorithm as inputs of the 

ANFIS algorithm (eq.4.25).  

 

𝐼𝑛𝑝𝑢𝑡𝑠 ∶   [

𝑥(𝑡) 𝑥(𝑡 + 1) … 𝑥(𝑡 + (𝑃 − (𝑛 + 1)))

𝑥(𝑡 − 1) 𝑥(𝑡) … 𝑥(𝑡 + (𝑃 − (𝑛 + 2)))
… … … …

𝑥(𝑡 − (𝑛 − 1) 𝑥(𝑡 − 𝑛) … 𝑥(𝑡 − (𝑃 − (𝑛 + 1)))

]     (4.25) 

 
𝑇𝑎𝑟𝑔𝑒𝑡 ∶   [𝑥(𝑡 + 1),           𝑥(𝑡 + 2), … 𝑥(𝑡 + (𝑝 − 𝑛)] 

 

Let’s consider a delay vector as follows: Delay= [1, 2, 3, … , n] n<P Where n is the number of 

Predicted 

points 
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input vectors and it determines the type of the prediction mode (short, mid or long-term); when n 

grows that means we are heading towards a long-term prediction. 

4.5 Proposed Methodology  

For the purposes of this study, Artificial Neural Networks was the selected method. The 

classification method presented here are usually associated with pattern recognition. As shown in 

Figure 4.5, a complete pattern recognition system is associated with several modules. By 

disregarding the acquisition module and the preprocessing module, a classification-based 

diagnostic system is associated with three modules: constructing the parameter vector, 

retrieving/selecting parameters, and classifying. 

 

Figure 4.5: classification system steps 

The statistical analysis of real signals proves that the acquired signals are deterministic and they 

are signals with very poor frequencies and the most time parameters are equal (normal mode in 

Figure 4.3 and Table 4.2) therefore, in the classification system it is necessary to skip the classical 

feature extraction step as shown in Figure 4.6 (time and frequency domain features) and thus 

couldn’t provide significant results. 
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Figure 4.6: Cancelation of feature extraction step  

Therefore, we found that the solution to this problem is to apply the features extraction step on 

the error calculated at the output of the ANFIS algorithm and subsequently these calculated 

features can be used as the input layer for the neural network classifier. In addition, the 

classification of faults depends on the training of the classifier with all types of faults possible and 

this is a problem in itself because the fault may have an infinite form so it is very difficult to 

compute and understand this countless number of faults, the solution of this problem it to diagnose 

the origin of fault depending only on normal data.     

Our proposed methodology can be summarized by the following three steps: 

Step1: Training ANFIS 

For each normal acquired signal 

- Training ANFIS (A1, A2, …, An) using 70% of normal data (D1, D2, …, Dn ), where n=8 

in our case. 

- Validating ANFISs (A1, A2, …, An) with 30% from the same normal data (D1, D2, …, 

Dn ). 

- Apply ANFISs (Ai ) where ( i =1,2,…,8) on the whole normal signals, this produces 

normal RMSE error𝒔  (𝜺𝒊,   𝒊 = 𝟏, 𝟐,… , 𝟖). 

- Calculate the predicted data (𝑷𝒊) 

- Error signals calculated from normal mode 

Step2: Training ANN  

- Extract the features vector (𝑵𝑭𝒊 ) from each normal error 𝜺𝒊 

- Training each ANNi (i=1,…8) using 70% of  (𝑵𝑭𝒊) 
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- Validation of each ANNi by 30% of extracted features(𝑵𝑭𝒊). 

- Thresholding (if the output of any ANN<0.5 put the output=0, else output=1) 

Step3: For a real-time application, 

- Testing ANFIS (𝑨𝒊) on a window of unknown data (𝑫′
𝒊
) . 

- Predict the future estimated data signal (𝑷′𝒊) 

- Calculating the error vector 𝝐′𝒊   from the difference between the target and the actual 

output 

- Extract the vectors of features  (UF) from ( 𝝐′
𝒊  
) 

- Testing the ANNi using extracted vector of features 

- Diagnose the state of the system     

 

These 3 steps can be represented by a simple block diagram shown in Figure 4.7. 

In the first step, with normal data observations (40 observations), each observation has 8 

signals (D1, D2, …, Dn ) (see Table 4.1), a time series matrix is generated from each signal Di as 

an input for the ANFIS (Ai) algorithm (i=1,…,8), where 70% of this time series matrix is used to 

train ANFIS, and the remaining amount (30%) is used for ANFIS validation. Accordingly for 

each ANFIS (Ai) a vector of predicted data (𝑷𝒊) is calculated on the output of this ANFIS (Ai) 

and a vector of residual error (𝜺𝒊) is generated between the target and the actual output. At the 

end of this step a database of 8 RMSE vectors is created from the normal data.  

In step 2, the generated error in steps 1 represents random signals that contrast the original 

signals that are deterministic. 

 

Figure 4.7: Block Diagram of Proposed Methodology 
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Therefore, we used each generated errors signals (𝜺𝒊)   as an input of each Feed Forward 

Artificial Neural Networks (𝑭𝑭𝑨𝑵𝑵𝒊) after a features extraction step. A database of vectors of 

features (𝑵𝑭𝒊) is created. where70% of this database is used to train each (𝑭𝑭𝑨𝑵𝑵𝒊) and 30% of 

them used to validate each (𝑭𝑭𝑨𝑵𝑵𝒊). Each feature vector (𝑵𝑭𝒊)  contain 34 features.  

The extracted features from each signal are: 

1. Time domain features: minimum, maximum, mean, variance, quadratic mean value, standard 

deviation, RMS, crest factor, envelope; 

2. Frequency domain: the power of signal, mean frequency (MPF), skewness, kurtosis, median 

frequency, frequency peak, relative energy in frequency bands, percentiles, H/L (high/low) 

ratio, spectral entropy; 

3. Time-frequency domain: wavelets [248]. 

 
In step 3, after training each ANFIS (𝐴𝑖), with the same parameters (premise and consequence) 

calculated before in step 1, and after the training of (𝑭𝑭𝑨𝑵𝑵𝒊) is step 2 a new windows of 

unknown acquired data (D’1, D’2, …, D’n ) is applied for testing each ANFIS (Ai). A residual error 

(𝝐′𝒊 ) is produced as a result of this process, and a prediction data (𝑷′𝒊) is calculated. Then an 

ensemble of vectors of features is calculated from the residual error( 𝝐′𝒊 ), this ensemble is used 

to test each (𝑭𝑭𝑨𝑵𝑵𝒊) created before.  As long as each ANFIS (Ai) is trained by a normal data in 

step 1, the predicted values (𝑷′𝒊) should also be in the normal range, but this case is true only 

when the tested data is also normal. When the data starts to deviate from the normal range, the 

difference between the target of ANFIS (Ai) and the output will increase; this demonstrates that 

the system has begun to deviate from its normal course. At this point, ANFIS has the ability to 

predict that the system seems to be deviating from its normal path and is heading towards a 

problem. This assists ANN to diagnose the future state of the system.  

 

In this study, we use 8 multi-layer feed forward neural networks as the first classifiers. Each 

ANN (Figure 4.8) is formed of 3 layers. The first is the inputs layer that contains 2 inputs 

representing the extracted features vector from the error calculated at the output of ANFIS and 

the desired output that it is zero (target=0) in our study. the respectively input of the 8 ANFIS is 

the acquired signals D1-the Timer: reflux rate, D2- the Heating power, D3- the Feed flow rate, 

D4- the preheated Power, D5- the Pressure drop, D6- the preheated temperature, D7- the 

temperature boiler, and D8- the TIC2 Column head temperature. The second is a hidden layer 

having 10 neurons with a logistic learning function. The third is the output layer containing 1 

linear neuron. 
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Figure 4.8: Neural Network Proposed Architecture 

Approximately every network is able to find the solution after 75 epochs with a learning rate 

mu=0.0009. 

4.6 Results and Discussions 

In the previous section, we have presented the main framework for the process of fault 

prediction and diagnosis. In this section, we provide the results of the real application of the 

process for diagnostic purposes. The proposed methodology is designed to detect 8 kinds of faults 

(E1…E8): 

- E1: Increasing Degradation Reflux Ratio From 0 To 100% (Timer);  

- E2: Decreasing Degradation Reflux Ratio From 10 To 0% (Timer); 

- E3: Increasing Degradation Heating Power 0 To100%;  

- E4: Decreasing Degradation Heating Power 100 To 0%; 

- E5: Increasing Degradation Preheated Power 0 To 85 %; 

- E6: Decreasing Degradation Preheated Power 100 To 0%;  

- E7: Increasing Degradation Feed Rate 0 To 100%. 

- E8: Decreasing Degradation Feed Rate 100 To 0%;  

 

In previous studies, all applied research on the prediction; diagnosis and detection of faults in 

distillation columns have relied on the use of modeling techniques in the calculation of residual 

between the real signal and the model. The black box ANN is the best and most commonly used 

technique in this domain[130]. Most studies on the detection of changes in distillation columns 

were carried out by Chetouani et al. [162][160]with the most recent study completed in 2014. 

This 2014 study, researchers applied the Bayes decision theory and combined it with the neural 

adaptive black-box identification for modeling such systems [162].  

The research conducted in this study provided an efficient fault prediction and diagnosis 

method when tested on real distillation processes. However, the weakness in such work models 
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and processes is that they each signal independently of each other which require long periods of 

time for simulation. Furthermore, their research did not take into consideration how a fault 

detected in one signal affects other signals and the whole system. In some cases, a false alarm 

may occur because of unexpected faults that may affect the other signals. Then, in this case, the 

model will fail to detect the true fault. For example, when the Timer is blocked (0%), this causes 

the overhead temperature (TIC2) to decrease. The method succeeds in this case to detect the fault. 

On the other hand, if the boiler has a failed operation status (0% power heating), TIC2 also 

decreases. This will create a false alarm rather than real fault detection in the system. Unlike this 

study, our proposed method provides an overall scan of the complete system and it analyzes all 

eight signals simultaneously.  

This approach will solve the problem of false alarms by analyzing the fault and its influence 

on all other signals. The algorithm makes the analysis in one iteration step and thus needs less 

time to perform the diagnosis operation. On the other hand, this methodology is designed to 

detect, in real time, the small variation in the system then diagnoses the type of fault that may 

potentially occur.  

 

Figure 4.9.a: Graphical Representation of Results Using ANFIS as Predictor of Distillation 

Column Data (Reflux Rate Signal) 

Figure 4.9.b: Graphical Representation of Absolute Value of the Error Calculated Each Iteration 

Figure 4.9.c: Graphical Representation of Error Absolute Value Distributions 

 

The black curve in Figure 4.9.a is the real signal and the red one is the output of ANFIS. The 

x-axis is the sample index and the y-axis is the amplitude of the reflux rate signal. The results are 

shown in Figure 4.9. a, Figure 4.9.b, Figure 4.9.c, confirm that ANFIS has the extensive ability to 

a high level of accuracy to predict the small variation occurrence in distillation column data. As 

can be observed when the signal (black curve in Figure 4.9.a) started to deviate from its natural 

course (t=380), it was evident that the difference (error) between the signal and the ANFIS output 

clearly increases (Figure 4.9.b).  This is an indication that ANFIS has a significant ability to 

(b) 

(a) 

(c) 
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detect a small undetected variation in the signals. The results also allow diagnosing the mode 

where the fault originates and they classify the type of faults that occur during the distillation 

process. The results of the errors calculated on the output of ANFIS are presented in Figure 4.10: 

In general, it is clearly demonstrated that these errors are random signals that have various 

variations contrary to the inputs signals shown in Figure 4.3, and this is an advantage in applying 

the features extraction techniques on this calculated signals (errors signals).  

However, for example, in the E1 case (accident reflux ratio timer 100%), we notice that the 

parameter numbers 4 (timer), 5 (charge loss) and 7 (heating power), increase significantly. 

Therefore, these variations could be considered as fault indicators and could differentiate between 

normal and abnormal cases and between the eight different types of faults. Figure 4.12 shows that 

the error between the real and desired output is negligible (in order of 10-6). This proves that the 

proposed methodology is successful in detecting faults introduced within the distillation process 

plant model.  

 

Figure 4.10: Graphical Representation of Absolute Value of Errors Calculated on ANFIS Outputs 

(Accident E1) 

In the ANN testing step, as previously mentioned, the FFANN is learned through normal and 

fault data. For example, if the checked data is considered from the normal mode, therefore the 

outputs of FFANN after a thresholding step (if the output of FFANN<0.5 put the output=0, else 

output=1) is a vector of 8 zeros, it means that no one from the predicted signal (𝐏′1,…,𝐏′8) will 

leave the normal mode. In the case of a degraded mode such as an increasing degraded reflux rate 

mode (E1) (Figure 4.11), the output of each FFANN variate according to the data as can be seen 

in Table 4.3. 
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Figure 4.11: Graphical Representation of Increasing Degraded Reflux Rate Accident (E1) 

 

 

 

 

 

Table 4.3 Artificial Neural Network Output Results on Reflux Rate Accident E1 

 

In Table 4.3 at the time T1= 3113, all the signals are at normal values, so the FFANN1…8 

classifies the data in the normal mode and gives a vector of 8 zeros on the output (Table 4.3, row 

2). On T2=5005, the timer signal (𝐃′1) leaves the normal range and starts to increase, so the 

output of FFANN1 is updated to 1 on (𝐃′1) and all others remain zeros (Table 4.3,  raw 3). After 

some time, at T3=5700, the increase of the timer signal affects the heating power signal (𝐃′2), 

therefore the FFANN2 updates its output again (Table 4.3, raw 4). After more time has passed 

(T4=6149), this accident has an effect on the TIC2 (𝐃′7) signal, and again the output of the 

FFANN7 is updated appear as the raw 5 in Table 4.3. In conclusion, the FFANN updates its 

output concurrently with the variation of any of input signals. 

 

 

 

 

 

 D1 D2 D3 D4 D5 D6 D7 D8 

T1=3113 0 0 0 0 0 0 0 0 

T2=5005 0 0 1 0 0 0 0 0 

T3=5700 0 0 1 0 1 0 0 0 

T4=6149 0 0 1 0 1 0 1 0 
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𝐃′𝟏 𝐃′𝟐 𝐃′𝟑 𝐃′𝟒 𝐃′𝟓 𝐃′𝟔 𝐃′𝟕 𝐃′𝟖  

0 0 0 0 0 0 0 0 Normal 

0 0 1 0 1 0 1 0 Accident E1 

0 0 1 0 1 0 0 1 Accident E2 

0 1 1 1 1 0 0 0 Accident E3 

0 0 1 1 1 0 1 1 Accident E4 

1 1 0 0 0 0 0 0 Accident E5 

1 1 1 0 0 0 0 0 Accident E6 

1 0 1 0 0 1 0 0 Accident E7 

0 0 1 0 0 1 0 0 Accident E8 

Table 4.4: The Result of Artificial Neural Network Output for All Accidents 

 

Table 4.4 represents the output of the artificial network for each accident type, as you see in 

this table every accident has their own profile. The target or output vector is an 8 element vector 

with a ‘1’ in the position of the fault it represents and ‘0’ everywhere else (Figure 4.8). In other 

words, the output value is set to ‘0’ to indicate no fault and ‘1’ to indicate the presence of a fault. 

 

Figure 4.12: Error Boxplot- Error between Real and Desired Output 

The results shown affirm the high-level capability of the proposed algorithm, to predict and 

diagnose all type of faults that may occur in the distillation process; in addition, the diagnosis of 

faults was only based on normal data without the need to train the algorithm any abnormal data. 

In this case, we have eliminated the problem of infinite forms of faults that are difficult to 

understand. 

4.7 Conclusion  

It is widely known in the industry that the accurate prediction and diagnosis of faults is 

fundamental in reducing maintenance costs. It is also a contributing factor to improving system 
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reliability as well as the level of safety that can affect all stakeholders of a system. This is one of 

the most relevant considerations of the industry at a global level. 

 The topic of fault prediction and diagnosis becomes even more pertinent when the discussion 

is linked to the strength and viability of equipment that has potential risks which can lead to 

various levels of material costs at the minimal level and even human costs at a catastrophic level. 

This was clearly reflected in the catastrophe of the reactors in Japan.  

This chapter has presented and demonstrated the accuracy and strength of a methodology that 

aims at efficient and strategic fault diagnosis and prediction in equipment that increasingly 

deteriorates over time and is affected by several external factors. In this study, the proposed 

ANFIS that was used to detect distillation column deterioration, a step that features extraction 

techniques we unable to do, is also a strategic method that can be used for early, timely and 

detailed detection of faults. Furthermore, the FFANN model uses the data of previous inspection 

points of degradation values in order to complete a wider diagnosis of the state of the entire 

system.  

This chapter has demonstrated results that prove the success and efficiency of the proposed 

methodology for ANFIS, neural network classification. Through its application on actual 

experimental data, the methodology was able to predict and diagnose, in real time, faults in the 

distillation column during the automated continuous distillation process. The results also 

confirmed that it is possible to classify between normal and eight abnormal classes of faults. 

Building on the results of our experiment that was presented in this work the possibility of 

prospective study emerges.  
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General conclusion 
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This study is in the field of health systems management, basically aims to develop 

maintenance support tools. The work presented in this thesis deals with the integration of the 

diagnosis and the prognosis of failures in the dependability of industrial chemical reactors in 

process engineering. The diagnosis makes it possible to determine online the system components 

of that are at fault and need to be repaired. The prognosis makes it possible to anticipate the errors 

by providing information on the future state of the system and it's needed maintenance actions 

that should be applied later on. Even though these techniques seem to be correlated, they are 

usually studied separately. this is because the time scales manipulated by the two processes are 

very different. Therefore, in addition to the study of faults diagnosis and faults prognostics 

separately, this thesis is ended by a major challenge represented by their integration as a new 

maintenance strategy. 

The objective of this work is to study is the development of a new diagnostic approach and a 

new prognostic approach for a high-level monitoring of a distillation column. All this followed 

by an integration of a new approach that combines the diagnostic and prognostic methods in a 

common algorithm for the goal of improving the maintenance strategy. 

Chapter I provides an overview of general industrial accidents and accidents occurring in the 

chemical industry, especially in chemical reactors. This chapter focuses on the entire distillation 

process with an in-depth explanation of the continuous automatic distillation process. A detailed 

explanation of the data that reflects the errors that may occur in the distillation process is given to 

reach data collection for faults diagnosis and prognosis with clarification of the characteristics of 

the acquired signals. This chapter is ended by a pre-processing of the data used in this study 

followed by a state of art for data reduction including features extraction, features selection, and a 

framework of the maintenance strategy of complex systems. 

The second chapter presents the qualitative and quantitative methods most widely used in the 

literature for the diagnosis of chemical processes and the different methods of risk analysis. This 

state of the art is the result of a bibliographic search of about a hundred well-studied articles on 

the evolution of the monitoring of the chemical processes and the different methods developed. A 

synthesis on methods of monitoring chemical reactors models free is developed in this section. 

Then we move to a state of the art that demonstrates the outcome work of detection and diagnosis 

of faults that may occur in the distillation column and clarify the weaknesses of the previous 

methods. The results of this biography prove that the selection of the neuro-fuzzy is a better 

technique for the diagnosis of faults that occur in a distillation column. This chapter is ended by 

an application of fuzzy logic and ANN separately on the data extracted from the distillation 

column. Depending on the results we obtained, we decided to propose a more efficient approach 

in real-time analysis of distillation column system. It proposes a methodology that combines 

fuzzy mean clustering and neural network for diagnosis, detection, and classification of many 

faults. Moreover, a modified FCM method (MFCM) is presented in place of a feature extraction 

and selection approach. MFCM is a clustering method that allows calculating the degree of 

variation between normal and abnormal modes. The output of the MFCM is considered as an 

input for the neural network classifier. This proposed methodology is then tested via real 
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experimental data obtained from a distillation column, after a pre-processing step including 

filtering and smoothing of the signals. A database with normal and faulty observations is 

analyzed. The database is composed of eight different types of faults that may occur during the 

automated distillation process in the chemical industry. The results of the proposed method 

confirm the ability to differentiate between normal and eight abnormal classes of faults. 

The design of PHM has become an important element in the realization of an effective 

predictive maintenance strategy. Effective maintenance is understood to ensure the reliability of 

systems while reducing the costs incurred by interventions and shutdowns due to sudden failures. 

The third chapter is devoted to the positioning of prognostic activity in the context of industrial 

maintenance and to the study of potentially useful tools to support this process and gives an 

overview of prognostic methods. An overview of the classification of prognostics approaches 

applied to the chemical reactors and the distillation column are also discussed in this chapter 

including their pros and cons and many RUL estimated strategies are also reviewed. The 

investigation track in this chapter is aimed to choose the adaptive neuro-fuzzy inference system 

(ANFIS) approach as the best technique.  ANFIS is able to calculate the RUL of the distillation 

column degradation (guide to choosing a prognostic tool). This chapter is ended by the 

development of a new prognostic strategy applied to a real experimental data acquired from 

distillation column and from a metric pump. This methodology is a new technique which is 

effective in determining the path of deterioration of the distillation column system and also 

predicts the future path (prognostic) of this system by determining their RUL. Also, this work 

presents a direct monitoring approach based on the technique of adaptive neuro-fuzzy inference 

system (ANFIS) combined with fuzzy C-means algorithm (FCM). The results of a comparative 

study between the results of our proposed methodology and other based on ANN are discussed at 

the end of this application. The Results demonstrate the validity of the proposed technique to 

achieve the needed objectives with a high-level of accuracy, especially in determining a more 

accurate Remaining Useful Life (RUL) when it is applied on the automated distillation process in 

the chemical industry. 

To improve the performance of ANFIS algorithm, Parzen windows distribution is proposed as 

a new membership function for ANFIS algorithm. The aim of this proposal is to reduce the 

consumption of time and make the processing closer to a real-time application or minimizing the 

root means square error (RMSE) between the real and the predictive data. The methodology is 

tested on real experimental data obtained from a distillation column aiming to predict the failure 

that may occur during the automated continuous distillation process.  A comparative study was 

needed to choose the better membership function that can be used for ANFIS algorithm when 

ANFIS applied to distillation column data.  The results obtained in this research demonstrated 

that Parzen window proved its worth as a new membership function of ANFIS algorithm when it 

is applied to the distillation column data and it also proved to be successful in reducing the 

execution time of ANFIS. The results have also shown that Parzen MF is chosen as the best MF 

for three over eight types of normal signals and for five over eight degraded signals.   



 

Page 226 of 241 
 

The fourth and last chapter proposes a new integrated methodology that works for fault 

prognostics and diagnosis in the same time as a full scanning system for distillation column 

faults. The Adaptive Neuro-Fuzzy Inference System (ANFIS), as a hybrid system, has been 

selected for the step related to prediction since it combines the advantages of fuzzy logic and 

ANNs in one simultaneous algorithm. In our research, we tested this methodology with real 

experimental data that was obtained from a real distillation column. This resulted in the analysis of 

a database with different types of faults that could potentially occur during the automated 

distillation process. The results that were observed proved the validity and strength of this 

proposed technique. It was also demonstrated that the technique achieved a high level of 

accuracy, the objective of prediction and diagnosis especially when applied to the data obtained 

from automated distillation process in the chemical industry.  

Throughout Chapters 2, 3 and 4, after the illustration of theoretical concepts, new 

methodologies for diagnosis and prognosis have been applied to a distillation system. The results 

of the diagnostic function illustrate how the diagnosis is robust to uncertain, missing, and false 

observations. The results of the prognostic function illustrate how the prognosis tips the current 

diagnosis, behavior model, and system degradation model to return a distribution belief over the 

remaining useful life (RUL). 

It is difficult to develop an applicable diagnostic or prognostic algorithm with the same 

efficiency on all types of systems. Performance varies from one application to another. A 

compromise must be made between performance and applicability.  

Throughout this manuscript, hypotheses about the problem or its resolution are posed. It 

would be interesting to question them for future developments. 

This work, although defined in a health management context, is limited to monitoring the 

health of the systems. One of the prospects of this work is, therefore, the exploitation of the 

results of diagnostic and prognostic methods having forms of belief distributions. This 

exploitation can be directed towards several objectives: 

 The use of diagnostic results and prognosis to improve health surveillance with 

respect to health management objectives of the system. 

 The integration of an active diagnostic function (which makes it possible to perform 

actions in order to refine the diagnostic result) which could also be influenced by the 

prognostic results. 

 Re-planning and reconfiguring the system autonomously, in order to ensure the 

mission of the system, to minimize its wear and/or its unavailability. 

The prospects of this thesis work are therefore in five directions: 

 The consideration in the model of an observable hybrid dynamic. 

 The proposal of a prognostic method coupling the analytical resolution and the 

simulation of the degradation model for a more precise prognostic result. 



 

Page 227 of 241 
 

 The extension of the methodology to heterogeneous systems and the integration of 

mechanisms of neuro-fuzzy networks such as parallelism and synchronization. 

 The extension of the methodology to repairable systems. 

 Exploitation of the results of diagnostic and prognostic functions taking forms of 

belief distributions. 
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