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INFORMATIQUE

par Chloe Martindale

POUR OBTENIR LE GRADE DE

DOCTEUR
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Introduction

Background

Algebraic curves have been studied in various forms for thousands of years, yet still today there are many
unsolved problems relating to the subject. In the 19th century, Abel and Jacobi transformed this subject
by associating to any algebraic curve its Jacobian, which is an additive group containing the curve itself,
and which is in particular an example of an abelian variety.

Possibly the most studied algebraic curves are elliptic curves, the Jacobians of which are isomorphic
to the elliptic curves themselves, meaning that a group law can be defined directly on the curve. One
consequence of this nice property is that elliptic curves lend themselves in a natural way to modern
cryptographic algorithms, as the rational points on an elliptic curve form a group.

When studying maps between abelian varieties, we will restrict to isogenies, which are surjective
homomorphisms with finite kernel. In particular, they preserve the identity.

In curve-based cryptography, it is important to develop fast algorithms for computing isogenies, for
computing endomorphism rings, and for counting points on curves defined over finite fields Fp, where p is
a large prime number. There are many elliptic curve algorithms that have been developed in recent years
to this end, and due to their geometric nature, one may ask if these algorithms can be applied to more
general algebraic curves (by studying their Jacobians).

Overview

In Chapter 1, we give a (polarisation-preserving) equivalence of categories between abelian varieties
defined over a finite field with a given characteristic polynomial of Frobenius and ideals of an order in a
number field. The main applications of the results of this thesis concern (Jacobians of) curves defined
over finite fields, but in many cases it is much easier to prove theoretical results for ideals than for abelian
varieties. We call the statement of this equivalence of categories the Fixed Frobenius Lifting Theorem
(Theorem 1.3.11). This equivalence is well-known and often-used, but the precise statement does not, to
our knowledge, appear in the literature. We prove it as a consequence of similar, but more general, results
of Deligne and Howe, which use the theory of canonical lifts of Lubin, Serre, and Tate.

In Section 1.6, we also give an introduction to the theory of Hilbert modular forms, which we will
need in Chapter 2.

In Chapter 2, we give a generalisation of the modular polynomial for elliptic curves. A modular
polynomial makes use of the j-invariant of an elliptic curve. For a field k and an elliptic curve E/k of the
form

y2 = x3 +Ax+B,

with A,B ∈ k, the j-invariant is defined by

j(E) = 1728
4A3

4A3 + 27B2
,

and determines the elliptic curve uniquely up to k-isomorphism. For a prime `, we will refer to an isogeny
of degree ` as an `-isogeny . There is an irreducible polynomial

Φ`(X,Y ) ∈ Z[X,Y ]

called the modular polynomial such that given elliptic curves E and E′ over a field k there exists an
`-isogeny E → E′ over k if and only if

Φ`(j(E), j(E′)) = 0.
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We generalise the modular polynomial for elliptic curves to a tuple of modular polynomials for
principally polarised ordinary abelian varieties with real multiplication by the maximal order of a given
number field K0. We can think of elliptic curves defined over C as points in the moduli space SL2(Z)\H,
and the modular polynomials for elliptic curves can be computed using this interpretation. There are
two common generalisations of this moduli space: Siegel moduli space, which parametrises principally
polarised abelian varieties, and Hilbert moduli space, which parametrises principally polarised abelian
varieties with real multiplication by a fixed number field K0. The generalisation of modular polynomials
to abelian varieties using Siegel moduli space was studied by Dupont [Dup06]. However, even for abelian
surfaces, most practical applications of these Siegel modular polynomials are computationally out of reach,
as the smallest example is already 25.6MB. We give a generalisation of modular polynomials using Hilbert
moduli space. Included in this generalisation is a generalisation of the j-invariant to RM isomorphism
invariants for principally polarised abelian varieties with maximal real multiplication by a fixed number
field K0. Theoretically, it is relatively easy to show that such invariants exist, and computationally, we use
the formulae given by Müller for K0 = Q(

√
5) [Mue83] and K0 = Q(

√
2) [Mue85]. The main contribution

of this chapter is an algorithm to compute these Hilbert modular polynomials, and we have implemented
this algorithm in MAGMA for K0 = Q(

√
5). The resulting Hilbert modular polynomials are much more

manageable than the Siegel equivalent, although the algorithm is very slow so computing higher levels
would still require some work.

In Chapter 3, we give a generalisation of Kohel’s structure theorem for isogeny graphs. In his PhD
thesis [Koh96], David Kohel studied the structure of isogeny graphs of elliptic curves. An `-isogeny graph
of elliptic curves is an undirected graph for which each vertex represents a j-invariant of an elliptic curve
over a field k, and an edge between j(E) and j(E′) represents a pair of `-isogenies between E and E′ that
are dual to each other (up to isomorphism).

Kohel gave a structure theorem for ` prime and ordinary E/Fq (with special cases occurring at j(E) = 0
and 1728). Among other things, Kohel’s structure theorem is a key component in efficiently computing
the endomorphism ring of an ordinary elliptic curve over Fq.

We generalise Kohel’s theorem to a structure theorem for isogeny graphs of principally polarised
ordinary abelian varieties over Fq with real multiplication by the maximal order of a fixed real number
field K0. The isogeny graphs we study in this thesis are graphs of isogenies depending on a parameter µ,
which is a totally positive element of K0 that generates a prime ideal in OK0

. In Section 3.1, we state the
main theorem of this chapter, the Volcano Theorem, and the rest of the chapter is dedicated to the proof,
except for Section 3.10, in which we give an example computation of an isogeny graph. This problem has
also been studied by Ionica and Thomé [IT14], who give a structure theorem for Jacobians of curves of
genus two with real multiplication by the maximal order of a fixed real quadratic number field of narrow
class number 1, and in parallel to the work in this thesis, by Brooks, Jetchev, and Wesolowski [BJW17],
who also prove Theorem 3.1.9, using different methods, with the added assumption that the CM-type is
primitive. Brooks, Jetchev, and Wesolowski also studied the structure of isogeny graphs for which the
isogenies depend on a parameter l, a prime ideal in OK0

which is not necessarily generated by a totally
positive element µ ∈ OK0

.
Chapter 4 is a joint article [Bal+17] with Ballentine, Guillevic, Lorenzo-Garćıa, Massierer, Smith, and

Top, in which we generalise the Atkin–Elkies–Schoof algorithm to count points on elliptic curves over finite
fields. The Atkin–Elkies–Schoof algorithm makes use of factorisation patterns of modular polynomials
to give a polynomial time algorithm for counting points on elliptic curves. We give a polynomial time
algorithm to count points on genus 2 curves over a finite field with real mutiplication by the maximal order
a fixed number field K0 using the factorisation patterns of the Hilbert modular polynomials of Chapter 2.

Appendix A gives the technical category-theoretical details necessary for the proof of the equivalence
of categories given in Chapter 1, Theorem 1.3.11.
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Chapter 1

The theory of canonical lifts and
other preliminaries

In much of this thesis we will study principally polarised ordinary abelian varieties over Fq, where q is a
prime or a power of a prime. In this chapter, we specialise results of Deligne and Howe that allow us to
work with ideals and elements of CM-fields instead of with varieties over Fq. The proofs of these results
are based on the lifting theorems of Lubin, Serre and Tate. The main theorem of this chapter, the Fixed
Frobenius Lifting Theorem (Theorem 1.3.11), is an equivalence between two categories, so we now proceed
by defining these categories.

1.1 Principally polarised abelian varieties

We first summarise some preliminaries on abelian varieties. For details on this subject there are many
good textbooks, for example Mumford’s book [Mum08].

Definition 1.1.1. An abelian variety A over a field k is a complete group variety over k.

Remark 1.1.2. If A is an abelian variety defined over C then A(C) is complex analytically isomorphic
to a complex torus.

Definition 1.1.3. An isogeny is a morphism of abelian varieties that is finite as a morphism of varieties
and surjective. The degree of an isogeny is its degree as a morphism of varieties.

Definition 1.1.4. For an abelian variety A over a field k, we define the Picard group of A, written as
Pic(A), to be the group of isomorphism classes of line bundles on A.

Proposition 1.1.5. For an abelian variety A over a field k and a line bundle L on A, the map defined by

φL : A(k) −→ Pic(A)
x 7→ [T ∗xL ⊗ L−1],

where Tx denotes translation by x and [·] denotes the isomorphism class of · in Pic(A), is a homomorphism.

Proof. This follows from the Theorem of the Square, see e.g. [GM07, Corollary 2.10].

Definition 1.1.6. For an abelian variety defined over an algebraically closed field k, we define Pic0(A) to
be the subgroup of Pic(A) consisting of classes of line bundles L such that the morphism φL is identically
0.

Proposition 1.1.7. Given an abelian variety A over an algebraically closed field k, the group Pic0(A)
carries a canonical structure of an abelian variety over k.

Proof. See [Mum08, Chapter III, Corollary 5].

Definition 1.1.8. Given an abelian variety A over an algebraically closed field k, we define the dual
abelian variety A∨ of A to be Pic0(A).

1



Remark 1.1.9. To define the dual abelian variety A∨ of an abelian variety A over an arbitrary field k,
we need some basic theory of schemes. We have omitted that here for simplicity; the interested reader can
refer to [MFK94, Chapter 6].

Proposition 1.1.10. Given an abelian variety A over an algebraically closed field k, if L is an ample
line bundle on A, then we associate to L an isogeny of abelian varieties φL : A→ A∨ which is given on
points by

x 7→ [T ∗xL ⊗ L−1].

Proof. See [GM07, Theorem 6.18].

Definition 1.1.11. For an abelian variety A over an arbitrary field k, we define a polarisation to be an
isogeny (over k)

ξ : A −→ A∨

such that there exists an ample line bundle L of A× k for which ξ = φL, where φL is the canonical isogeny
of Proposition 1.1.10. We define a principal polarisation to be a polarisation that is an isomorphism.

1.2 Lifting ordinary abelian varieties over Fq to ideals

Definition 1.2.1. A CM-field K is a totally imaginary quadratic extension of a totally real number
field K0. We denote by · the generator of the Galois group Gal(K/K0), and we refer to this as complex
conjugation. For a CM-field K of degree 2g over Q, we define a CM-type of K to be a set of g embeddings

{φ : K ↪→ C}

that are pairwise non-complex conjugate.

Definition 1.2.2. For q a prime power, write OrdFq for the category of ordinary abelian varieties over
Fq. For a Weil q-number π, and a CM-field K such that K = Q(π), write χ(π) for the minimal polynomial
of π over Q. For A ∈ OrdFq , write χ(Frobq(A)) for the characteristic polynomial of the q-power Frobenius
endomorphism of A. We define Ordπ to be the full subcategory of OrdFq with objects given by

{A ∈ OrdFq : χ(Frobq(A)) = χ(π)}.

Note that for every A ∈ Ordπ the complex conjugate π of π also defines an endomorphism on A as
the multiplication-by-q map [q] factors through [π]. In particular, every A ∈ Ordπ in this category comes
with a map

ιA : Z[π, π] ↪→ End(A)
π 7→ Frobq(A)
π 7→ Verq(A).

Then for every g ∈ HomOrdπ (A,A′) and every r ∈ Z[π, π], we have that ιA(r) ◦ g = g ◦ ιA′(r). From now
on, we omit ι from the notation.

Definition 1.2.3. Given a prime power q, a Weil q-number π, and a CM-field K such that K = Q(π),
we define Idπ to be the category with objects given by the fractional Z[π, π]-ideals, where for any objects
a and b of Idπ, the morphisms in Idπ from a to b are given by

Hom(a, b) = {α ∈ K : αa ⊆ b}.

Definition 1.2.4. We say that a Weil q-number π is ordinary if at least half of the roots in Qq of the
minimal polynomial of π are q-adic units.

The Fixed Frobenius Lifting Theorem, Theorem 1.3.11, will state that if π is an ordinary Weil q-number
then there is an equivalence of categories

Ordπ −→ Idπ,

and that this functor satisfies some useful properties.
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1.3 The Fixed Frobenius Lifting Theorem

Definition 1.3.1. Write OrdFq for the category of ordinary abelian varieties over Fq. We define POrdFq
to be the category whose objects are pairs (A, ξ) where A ∈ OrdFq and ξ : A → A∨ is a principal
polarisation of A. We define a morphism f : (A, ξ)→ (A′, ξ′) in POrdFq to be an isomorphism of abelian
varieties f : A→ A′ for which the following diagram commutes:

A
f
//

ξ

��

A′

ξ′

��

A∨ (A′)∨.
f∨

oo

Definition 1.3.2. Recall the notation χ from Definition 1.2.2. We define POrdπ to be the full subcategory
of POrdFq with objects given by

{(A, ξ) ∈ POrdFq : χ(Frobq(A)) = χ(π)}.

Definition 1.3.3. Let π be a Weil q-number such that K = Q(π) is a CM-field of degree 2g over Q. Let
(A, ξ), (A′, ξ′) ∈ POrdπ be g-dimensional abelian varieties, and let K0 be the maximal totally real subfield
of K. Recall that End(A) ⊆ End(A)⊗Q = K. For µ ∈ OK0

, if µ ∈ End(A), we define a µ-isogeny

f : (A, ξ) −→ (A′, ξ′)

to be a morphism f : A→ A′ in OrdFq such that the diagram

A
ξ

  

A
µ

oo
f
// A′

ξ′

��

A∨ A′∨
f∨
oo

commutes.

Remark 1.3.4. Note that the morphisms in POrdπ are exactly the 1-isogenies.

We now define, in several steps, the notion of a polarisation on objects in Idπ that will be functorially
compatible with the notion of polarisation on objects in Ordπ. Fix a prime power q and a Weil q-number
π such that K = Q(π) is a CM-field. We first show how to associate a CM-type of K to π, following Howe
[How95, Notation 4.6].

Let k be an algebraic closure of Fq and write Qur
q = W (k), where W (k) denotes the ring of Witt vectors

of k. Now fix one embedding j : Qur
q ↪→ C, and identify Qur

q with its image under j so that Qur
q ⊆ C.

Now, write Qq and Q for the algebraic closures of Qur
q and Q inside C respectively. We then obtain the

following diagram of inclusions (some of which depend on j):

C

Qq
Qur
q

Q
Qq

Q,

so that in particular the q-adic valuation on Qur
q extends uniquely to a q-adic valuation vj on Qq ⊇ Q.

Definition 1.3.5. (c.f. [How95, Notation 4.6])
For a rational prime power q, fix j : Qur

q ↪→ C as above and define vj to be the q-adic valuation on Q ⊆ C
obtained from j. Then given a CM-field K and an algebraic integer π such that K = Q(π) and ππ = q,
we define the (π, j)–CM-type of K to be

Φπ,j := {φ : K ↪→ C : vj(φ(π)) > 0}.

3



Definition 1.3.6. With notation as in Definition 1.3.5, for any x ∈ K, we say that x is Φπ,j–positive-
imaginary (respectively non-positive-imaginary) if, for every φ ∈ Φπ,j , we have that φ(x)/i ∈ R>0

(respectively R≤0).

Definition 1.3.7. For an object a ∈ Idπ, we define the dual of a to be the fractional Z[π, π]-ideal

a∨ = {α ∈ K : tr(αa) ⊆ Z}.

A polarisation of a is a non-zero Φπ,j-positive-imaginary element β ∈ HomIdπ(a, a∨). If in addition
βa = a∨, then we say that β is principal . For a morphism α ∈ HomIdπ (a, b), we define the dual of α to be

α∨ = α ∈ HomIdπ (b∨, a∨).

Remark 1.3.8. Suppose that a, b ∈ Idπ and β is a polarisation of a. Observe that for any totally real
totally positive element µ of K, if µβ ∈ HomIdπ (b, b∨), then µβ is a polarisation of b.

Next, we define PIdπ and the notion of µ-isogeny exactly as we defined POrdπ.

Definition 1.3.9. Fix a prime power q, a Weil q-number π, and a CM-field K such that K = Q(π).
We define the category PIdπ to be the category with objects given by pairs (a, β), where a ∈ Idπ and
β ∈ HomIdπ (a, a∨) is a principal polarisation of a. We define a morphism (a, β)→ (a′, β′) ∈ PIdπ to be
an isomorphism α ∈ HomIdπ (a, a′) in Idπ such that

β = αβ′α.

Definition 1.3.10. For (a, β), (a′, β′) ∈ PIdπ and µ ∈ End(a), a µ-isogeny

α : (a, β)→ (a′, β′)

is a morphism α ∈ HomIdπ (a, a′) such that

βµ = αβ′α.

Theorem 1.3.11 (Fixed Frobenius Lifting Theorem). Fix a prime power q, an ordinary Weil q-number
π, and let K be the CM-field Q(π). Then there exists an equivalence of categories

Tπ : Ordπ −→ Idπ

that preserves the notions of dual and polarisation, and preserves the action of Z[π, π]. (See Remark 1.3.12
for formal definitions.)

Note that as Tπ preserves the notion of polarisation, it is automatic that it preserves the notion of
µ-isogeny.

Remark 1.3.12. Suppose that C and D are categories, each equipped with an involution called dual
and denoted as

∨ : C → C and ∨ : D → D.

We say that a functor F : C → D preserves the notion of dual if it comes with a natural isomorphism
f : F ◦ ∨→̃ ∨ ◦F .

Suppose that for all objects A in C (resp. D) we have a subset PA ⊆ Hom(A,A∨) of ‘polarisations’
such that for every isomorphism m : B→ A in C (resp. D), the map

Hom(A,A∨) −→ Hom(B,B∨)
ϕ 7→ m∨ϕm

induces a bijection between PA and PB. Given a functor F = (F, f) : C → D preserving the notion of
duals, we say that F preserves the notion of polarisation if for all objects A ∈ C the map

Hom(A,A∨) −→ Hom(F (A), F (A)∨)
ξ 7→ fA ◦ F (ξ)

induces a bijection between PA and PF (A).
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We show in Appendix A that if functors F : C → D and G : D → C define an adjoint equivalence
of categories and F preserves the notions of dual and polarisation, then G also preserves the notions of
dual and polarisation. By [Lan78, Theorem IV.4.1], every equivalence of categories is one direction of an
adjoint equivalence of categories.

Let R be a commutative ring and suppose that C and D are R-linear categories (i.e. the sets Hom(A,B)
are R-modules and composition of morphisms is R-bilinear). We say that F preserves the action of R if

F : HomC(A,B) −→ HomD(F (A), F (B))

is R-linear.

The remainder of this chapter is dedicated to defining the functor Tπ, and to showing how Theorem 1.3.11
follows from the work of Deligne and Howe in [Del69] and [How95] via the lifting theorems of Serre, Tate
and Lubin.

1.4 The theory of canonical lifts

In order to write down the functor of Theorem 1.3.11, we require the notion of a ‘Serre-Tate lift’ of both
an ordinary abelian variety A over a field k of positive characteristic and of a morphism of ordinary
abelian varieties over k. Categorically lifting ordinary abelian varieties over k = Fp to the ring Wn(k) of
Witt vectors of length n was first studied by Lubin, Serre, and Tate in a seminar, skeleton notes of which
can be found at [LST64]. A simpler proof of their main lifting theorem was later found by Drinfeld and
written down by Katz in [Kat81, Chapter 1]. The machinery required to use this theorem to lift ordinary
abelian varieties over Fq to abelian schemes over Qur

q was written down by Messing in [Mes72]; the version
of the lifting theorems that we state here are as stated by Messing.

1.4.1 Serre-Tate lifts of ordinary abelian varieties

In this section we show how to lift ordinary abelian varieties over a finite field k to abelian schemes over the
Witt vectors W (k) of k; we first recall the definition of an abelian scheme (c.f. [MFK94, Definition 6.1]).

Definition 1.4.1. For a noetherian scheme S, an abelian scheme over S is defined to be a proper smooth
group S–scheme of which all fibres are geometrically connected.

Proposition 1.4.2. It is equivalent to define an abelian scheme to be a proper smooth group scheme
over S of which all fibres are abelian varieties. In particular, when k is a field, we have that A is an
abelian Spec(k)-scheme if and only if A is an abelian variety.

Proof. Suppose that A is an abelian scheme over a noetherian scheme S. Then every fibre of A is a proper
smooth geometrically connected group scheme over a field. A fibre being proper implies in particular that
it is of finite type and separated, and a fibre being smooth and geometrically connected implies that it is
geometrically irreducible (see [Stack-Exchange]). Therefore every fibre of A is a finite type, separated,
geometrically irreducible group scheme over a field, hence a variety. Every fibre is a group object by
definition, so a group variety. The reverse direction is clear.

Fix a perfect field k of characteristic p > 0, and write W (k) for the ring of Witt vectors of k.

Theorem 1.4.3. Let A be an ordinary abelian variety defined over k. Then, up to unique isomorphism,
there is a projective abelian scheme B→W (k) such that B×W (k) k = A and the map End(B)→ End(A)
is bijective.

Proof. See [Mes72, p. V.3.3].

Definition 1.4.4. For an ordinary abelian variety A defined over k, we define the Serre-Tate lift of A to
be the projective abelian W (k)-scheme satisfying the conditions of Theorem 1.4.3.

Theorem 1.4.5. Let A and A′ be ordinary abelian varieties over k and let B and B′ be the Serre-Tate
lifts of A and A′ respectively. Then the map

φ : Hom(B,B′) −→ Hom(A,A′)

is bijective.
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Proof. See [Mes72, p. V.3.4].

Definition 1.4.6. For A, A′, B, B′ and φ as in Theorem 1.4.5 and f ∈ Hom(A,A′), we define the
Serre-Tate lift of f to be φ−1f ∈ Hom(B,B′).

1.4.2 Deligne lifts of ordinary abelian varieties

Deligne used the lifting theorems Theorem 1.4.3 and Theorem 1.4.5 to represent ordinary abelian varieties
over finite fields as linear algebra objects over Z, for which he defined the following category:

Definition 1.4.7. (c.f. [How95, Definition 4.1])
For a prime power q, we define the category Delq to be the category whose objects are pairs (Λ, F ), where
the Λ are finitely generated free Z-modules, and for a given Λ, the F are endomorphisms of Λ such that

1. the endomorphism F ⊗Q of Λ⊗Q is semi-simple, and its eigenvalues in C have magnitude q1/2,

2. at least half of the roots of the characteristic polynomial of F in Qq, counting multiplicities, are
p-adic units, and

3. there is an endomorphism V of Λ such that F ◦ V = q.

The morphisms
(Λ, F ) −→ (Λ′, F ′)

of Delq are homomorphisms ϕ : Λ −→ Λ′ of Z-modules such that ϕ ◦ F = F ′ ◦ ϕ.

Remark 1.4.8. In Theorem 1.4.9 and in the rest of this thesis, for an abelian variety A over a field k,
and a field embedding j : k ↪→ k′, we will write A×j k′ or A× k′ for A×Spec(k) Spec(k′).

Theorem 1.4.9 (Deligne’s lifting theorem). For a prime power q, fix an embedding j : Qur
q ↪→ C. Let

OrdFq be the category of ordinary abelian varieties defined over Fq, and for an object A in OrdFq , let

B/Qur
q be the Serre-Tate lift of A× Fq. Define

D(A) = H1(B×j C,Z).

Let Frobq(A) be the q-power Frobenius endomorphism on A, let Frobq(B) be its Serre-Tate lift, and let

Frobq(B) be the endomorphism induced by Frobq(B)×j C on D(A). Then the functor defined by

OrdFq −→ Delq
A 7→ (D(A),Frobq(B))

is an equivalence of categories.

Proof. See [Del69, Théorème 7].

We will in fact only use a special case of Deligne’s lifting theorem, stated in Corollary 1.4.12.

Definition 1.4.10. For a prime power q, a non-negative integer g, an algebraic integer π, and a CM-field
K of degree 2g over Q such that K = Q(π), where q = ππ, we define the category Modπ to be the
category of Z[π, π]-modules that are free of rank 2g over Z.

Remark 1.4.11. Observe that Modπ is equivalent to Idπ.

Consider Modπ as a subcategory of Delq by viewing a Z[π, π]-module M as a pair (M,F ) where F is
the action of π, and the Verschiebung V is the action of π.

Corollary 1.4.12. For a prime power q, an ordinary Weil q-number π, and a CM-field K such that
K = Q(π), define Ordπ as in Definition 1.2.2 and Modπ as in Definition 1.4.10. The functor of
Theorem 1.4.9 defines a functor

Dπ : Ordπ −→ Modπ

that is an equivalence of categories.

Proof. Note that Modπ is exactly the full subcategory of pairs (Λ, F ) for which the characteristic
polynomial of the Frobenius F is exactly the minimal polynomial of π over Q. The result then follows
from Theorem 1.4.9.

Remark 1.4.13. The equivalence of categories Tπ of Theorem 1.3.11, and the fact that Tπ preserves the
action of Z[π, π] follow immediately from Corollary 1.4.12. For Theorem 1.3.11, it remains only to show
that the equivalence of categories respects the notions of dual and polarisation.
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1.4.3 Howe lifts of polarised ordinary abelian varieties

Howe ([How95]) gave a notion of polarisation on the objects of Delq which is compatible with the notion
of polarisation in OrdFq under the functor given in Theorem 1.4.9. We give in Theorem 1.4.21 the special
case of Howe’s lifting theorem that we need in order to prove the Fixed Frobenius Lifting Theorem. We
first define polarisations of objects in Modπ, following Howe.

Definition 1.4.14. For a prime power q, a Weil q-number π that generates a CM-field Q(π), let Λ ∈Modπ.
We define the dual of Λ to be

Λ∨ = HomZ(Λ,Z)

viewed as a Z[π, π]-module via

Z[π, π]× Λ∨ −→ Λ∨

(r, f) 7→ (λ 7→ f(rλ)).

Then in particular, Λ∨ ∈Modπ.

Definition 1.4.15. Let R be a commutative ring with an involution

R −→ R
r 7→ r,

let M be an R-module, let N be an abelian group, and let f be a Z-bilinear form

f : M ×M −→ N.

We define f to be R–semi-balanced if for every r ∈ R and `,m ∈M , we have that

f(r`,m) = f(`, rm).

If furthermore N is an R-module and for every r ∈ R and `,m ∈M we have that

f(r`,m) = rf(`,m) = f(`, rm),

we say that f is R–sesquilinear .

Definition 1.4.16. (c.f. [How95, p. 2370])
For a prime power q, a Weil q-number π that generates a CM-field Q(π), an element Λ ∈Modπ, and
ζ ∈ HomModπ (Λ,Λ∨) we define the Z-bilinear form associated to ζ to be

b : Λ× Λ −→ Z
(s, t) 7→ ζ(s)(t).

One can check that this is a non-degenerate Z[π, π]–semi-balanced form.

Proposition 1.4.17. For an order O in a number field K with an involution · such that O = O, given a
non-degenerate O–semi-balanced form b : Λ×Λ→ Z, there exists a unique non-degenerate K-sesquilinear
form S : (Λ⊗Q)× (Λ⊗Q)→ K such that b⊗Q = trK/Q ◦ S.

Proof. See [Knu91, Theorem I.7.4.1, p.44].

Definition 1.4.18. For Λ ∈Modπ and ζ ∈ HomModπ (Λ,Λ∨), let b : Λ× Λ→ Z be the Z-bilinear form
associated to ζ. We define the K-sesquilinear form associated to ζ to be the unique non-degenerate
K-sesquilinear form of Proposition 1.4.17.

Remark 1.4.19. For every Λ ∈Modπ, given a non-degenerate Z[π, π]-semi-balanced form b : Λ×Λ→ Z,
there is a unique morphism ζ ∈ Hom(Λ,Λ∨) for which the associated Z-bilinear form is b given by
ζ(s)(t) = b(s, t).

Definition 1.4.20. (c.f. [How95, Definition 4.8])
Fix a Weil q-number π and a CM-field K such that K = Q(π), and fix an embedding j : Qur

q ↪→ C.
Recall the definition of the CM-type Φπ,j of K from Definition 1.3.5, and recall the definition of Φπ,j - -
non - positive - imaginary from Definition 1.3.6. For Λ ∈Modπ, we define a j-polarisation of Λ to be a
morphism

ζ : Λ −→ Λ∨

such that the sesquilinear form S associated to ζ is skew-Hermitian (i.e. for every u, v ∈ Λ⊗Q we have
S(u, v) = −S(v, u)) and such that for every λ ∈ Λ we have that S(λ, λ) is Φπ,j-non-positive-imaginary.
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The following theorem, a special case of Howe’s lifting theorem in [How95, Proposition 4.9], shows
that this definition of polarisation is what we should use if we wish to study ordinary abelian varieties
over finite fields.

Theorem 1.4.21. For an abelian variety A ∈ Ordπ with dual abelian variety A∨ ∈ Ordπ and an isogeny
ξ : A → A∨ in Ordπ, let Λ, Λ∨ ∈ Modπ and α ∈ Hom(Λ,Λ∨) be the images under the functor of
Corollary 1.4.12 of A, A∨ and ξ respectively. Let j : Qur

q ↪→ C be the embedding on which the functor of
Corollary 1.4.12 depends. Then α is a j-polarisation of Λ if and only if ξ is a polarisation of A.

Proof. See [How95, Proposition 4.9].

Remark 1.4.22. The first step of Howe’s proof is a reference to the well-known result that one may lift
polarisations of ordinary abelian varieties over finite fields to polarisations of abelian varieties over C, but
the reference [Del69, Theorem 1] cited by Howe in [How95, Proof of Proposition 4.9] does not give a proof.
In private correspondence, Howe was kind enough to provide the following argument for this step.

Recall that we fixed an embedding j : Qur
q ↪→ C. Let B be the Serre-Tate lift of A ∈ Ordπ, and write

BC for B×j C.
Let K = End(BC)⊗Q and fix an ample divisor L on BC, so that we have a Rosati involution on K.

Then the Neron-Severi group of BC (that is, Pic(BC)/Pic0(BC)), when tensored with Q, can be identified
via M→ φ−1

L ◦ φM with the maximal additive subgroup K0 of K fixed by the Rosati involution. (See
Mumford [Mum08, Application III, page 208].) So to every line bundle M, we can associate a real
(i.e. fixed by Rosati) element of K. And the ample line bundles M are precisely the ones for which
φ−1
L ◦ φM ∈ K0 is totally positive. (See the last paragraph of Section 21 of Mumford [Mum08].)

Now, there is an ample line bundle L on BC whose reduction L is ample (see [Gro61, Corollaire 4.5.14]).
This gives us one polarisation λ of B that descends to a polarisation λ of A. But an isogeny f : BC → B∨C
is a polarisation if and only if there exists an ample line bundle M on BC such that f = φM, which is if
and only if f−1λ is a totally positive real element of End(B)⊗Q (by the previous paragraph), and this
condition holds for f if and only if it holds for the reduction f of f .

1.4.4 Proof of the Fixed Frobenius Lifting Theorem

The Fixed Frobenius Lifting Theorem, Theorem 1.3.11, is a consequence of Howe’s lifting theorem
Theorem 1.4.21. We only need to show that there is a functor defining an equivalence of categories between
Modπ of Z[π, π]-modules and the category Idπ of fractional Z[π, π]-ideals that preserves the notions of
dual and polarisation.

Proof of Theorem 1.3.11. By Theorem 1.4.21, the equivalence of categories Ordπ → Modπ given in
Corollary 1.4.12 preserves the notions of dual and polarisation. By construction this equivalence also
preserves the action of Z[π, π]. We show that the forgetful functor

Oπ : Idπ →Modπ

1. preserves the action of Z[π, π].

2. preserves the notion of duals.

3. preserves the notion of polarisation.

The preservation of the action of Z[π, π] is immediate as Oπ maps the morphism in Idπ defined by π
to the morphism in Modπ defined by π, and similarly for π. Observe also that Oπ is an equivalence of
categories, and as stated in Remark 1.3.12, if Oπ preserves the notions of dual and polarisation then so
does the reverse functor. For (2), given a ∈ Idπ, we claim that

fa : α 7→ (β 7→ trK/Q(αβ)) (1.1)

defines a natural isomorphism from

Oπ(a∨) = Oπ({α ∈ K : tr(αa) ⊆ Z})

to
Oπ(a)∨ = Hom(Oπ(a),Z)).
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As
T : K ×K −→ Q

α, β 7→ tr(αβ)

is a non-degenerate bilinear form, it induces an isomorphism of Q-vector spaces

K −→ Hom(K,Q)
α 7→ T (α,−),

which when restricted to the subset a ⊆ K, gives us exactly the map of (1.1).
For (3), we have to show that the map

HomIdπ (a, a∨) −→ HomModπ (Oπ(a), Oπ(a)∨)

β 7→ fa ◦Oπ(β) = (x 7→ trK/Q(βx−))

induces a bijection Pa ↔ POπ(a) of the set of polarisations of a and the set of polarisations of Oπ(a). The
morphism

ζ : Oπ(a) −→ Oπ(a)∨

x 7→ trK/Q(βx−)

is in POπ(a) if and only if the sesquilinear form associated to ζ, given by

S : (Oπ(a)⊗Q)× (Oπ(a)⊗Q) −→ K

(s, t) 7→ βst,

is skew-Hermitian and, for every λ ∈ Oπ(a), we have that S(λ, λ) is Φπ,j–non-positive-imaginary. But S
is skew-Hermitian if and only if β is totally imaginary, and S(λ, λ) is Φπ,j–non-positive-imaginary for
every λ ∈ Oπ(a) if and only if β is Φπ,j–positive-imaginary. Therefore β ∈ Hom(a, a∨) is in Pa if and only
if fa ◦Oπ(β) ∈ POπ(a), hence (3) holds.

1.5 Maximal real multiplication

In much of this thesis, we will study principally polarised abelian varieties of dimension g defined over C
that have maximal real multiplication, that is, the real part of the endomorphism ring is a maximal order
in a totally real number field of degree g over Q. We now give some preliminaries.

Definition 1.5.1. Fix an ordinary Weil q-number π and a CM-field K = Q(π), and denote by K0 the
maximal totally real subfield of K. Let Cπ denote one of (P)Modπ, (P)Ordπ, or (P)Idπ. For each
choice of Cπ, every object A ∈ Cπ comes together with an embedding Z[π, π] ↪→ End(A), so we identify
K = Z[π, π]⊗Q with a subring of End(A)⊗Q. We define Cπ,K0

to be the full category of Cπ consisting
of those A ∈ Cπ such that OK0 ⊆ End(A).

Definition 1.5.2. Let K0 be a totally real number field of degree g over Q with ring of integers OK0 ,
and define OrdC,g to be the category of abelian varieties over C of dimension g. We define the objects
of the category OrdC,K0

to be pairs (A, ι), where A ∈ OrdC,g and ι : OK0
↪→ End(A) is an embedding.

A morphism in OrdC,K0
between two objects (A, ι) and (A′, ι′) is given by a morphism f : A → A′ in

OrdC,g such that the diagram

End(A)⊗Q
g 7→f◦g◦f−1

// End(A′)⊗Q

K0

ι

OO

ι′

55

commutes. We define the objects of the category POrdC,K0
to be triples (A, ξ, ι), where (A, ι) ∈ OrdC,K0

and ξ : A→ A∨ is a principal polarisation of A, and the image of ι is stable under the Rosati involution.
A morphism in POrdC,K0 between two objects (A, ξ, ι) and (A′, ξ′, ι′) ∈ POrdC,K0 is an isomorphism

f : (A, ι) −→ (A′, ι′)
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in OrdC,K0
that makes the diagram

A

ξ
��

f
// A′

ξ′

��

A∨ A′∨
f∨
oo

commute.

Definition 1.5.3. Let K0 be a totally real number field with ring of integers OK0
. For

(A, ξ, ι), (A′, ξ′, ι′) ∈ POrdC,K0

and µ ∈ OK0 , we define a µ-isogeny f : (A, ξ, ι) → (A′, ξ′, ι′) to be a morphism f : (A, ι) → (A′, ι′) in
OrdC,K0 such that the diagram

A
ξ

  

A
ι(µ)
oo

f
// A′

ξ′

��

A∨ A′∨
f∨
oo

commutes.

Definition 1.5.4. Let q be a prime power, let π be an ordinary Weil q-number, and let K = Q(π) be a
CM-field with maximal totally real subfield K0. Let g = [K0 : Q], and define

OrdC,π

to be the full subcategory of OrdC,g with objects (A, e : Z[π, π] ↪→ End(A)), where e has CM-type Φπ,j .
We define

OrdC,π,K0

to be the full subcategory of OrdC,π such for every object (A, e), the embedding e : Z[π, π] ↪→ End(A)
extends to an embedding f : OK0

[π, π] ↪→ End(A). (Note that in fact OK0
[π, π] = OK0

[π + π] as
π + π ∈ OK0 .)

Observe that for (A, e) ∈ OrdC,π,K0 , we have that (A, f |OK0
) ∈ OrdC,K0 .

Theorem 1.5.5. Let q be a prime power, let π be an ordinary Weil q-number, and let K = Q(π) be a
CM-field with maximal totally real subfield K0. Let g = [K0 : Q]. There is an equivalence of categories

Fπ : Idπ,K0
−→ OrdC,π,K0

a 7→ Cg/Φπ,j(a)

that preserves the action of OK0
[π, π] and the notions of dual and polarisation.

Proof. This is Theorems 4.1 and 4.2 (1) of Lang [Lan83].

1.6 Hilbert modular forms

Definition 1.6.1. Let K0 be a totally real number field of degree g over Q with ring of integers OK0
.

Let N be an invertible OK0
-ideal. Then the matrix group SL(OK0

⊕N ) is defined as{(
a b
c d

)
∈ SL2(K0) : a, d ∈ OK0

, b ∈ N , c ∈ N−1

}
.

Let H be the complex upper half plane. We want to view objects in POrdC,K0 as elements of Hg,
where g is the degree of K0 over Q. We will be interested in the action of matrix groups with entries in
K0 on elements of Hg, hence it is much more convenient to work with K0 ⊗ C instead of Cg. To this end,
we fix once for all a C-algebra isomorphism

Cg −→ K0 ⊗ C (1.2)
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and we define K0 ⊗ H to be the image of Hg under this isomorphism. Observe that K0 ⊗ H does not
depend on the choice of isomorphism. Let the group of 2×2 matrices with entries in K0 that have totally
positive determinant be denoted by GL2(K0)+. The group GL2(K0)+ acts on K0 ⊗H as(

a b
c d

)
· τ 7→ (aτ + b)(cτ + d)−1.

Lemma 1.6.2. Let K0 be a totally real number field of degree g over Q with ring of integers OK0 , and
write O∨K0

for the trace dual of OK0 . Then there is a bijection

SL(OK0 ⊕O∨K0
)\(K0 ⊗H) // {(A, ξ, ι) ∈ POrdC,K0}/∼=

where the image of τ ∈ SL(OK0 ⊕ O∨K0
)\(K0 ⊗ H) is A = (K0 ⊗ C)/(τOK0 + O∨K0

) with the natural
embedding ι and the polarisation induced by the Riemann form E : (K0 ⊗ C)× (K0 ⊗ C) −→ R given by

E(τu1 + u2, τv1 + v2) = tr(K0⊗R)/R(u1v2 − u2v1)

for u1, u2, v1, v2 ∈ K0 ⊗ R.

Proof. See [Gee88, Chapter IX, Section 1].

Definition 1.6.3. Let κ be an integer, and let τ be in K0⊗H. Then the weight function wκ is defined by

wκ : GL2(K0)+ × (K0 ⊗H) −→ C
(M, τ) 7→

(
NK0/Q(det(M))−1/2N(K0⊗C)/C(cτ + d)

)κ
,

where we choose the positive square root.

Definition 1.6.4. Let GL2(K0)+ and K0⊗H be as in Definition 1.6.3. Let M be any matrix in GL2(K0)+,
and let f : K0 ⊗H→ C be a holomorphic map. Then we define f |[M ]κ by

f |[M ]κ : K0 ⊗H → C
τ 7→ wκ(M, τ)−1f(Mτ).

It is straightforward to check that for M,N ∈ GL2(K0)+, we have

(f |[M ]κ)|[N ]κ = f |[MN ]κ .

Definition 1.6.5. Let GL2(K0)+ and K0⊗H be as above, and assume that g > 1. Let Γ be a congruence
subgroup of GL2(K0)+. We say that f : K0 ⊗H→ C is a Hilbert modular form of weight κ for Γ if and
only if it is holomorphic and for all M ∈ Γ and τ ∈ K0 ⊗H, we have

f |[M ]κ(τ) = f(τ).

From this point on, if f is a Hilbert modular form of weight κ, then for M ∈ GL2(K0)+ we will write
f |M for f |[M ]κ .

Remark 1.6.6. For g = 1, we also have to impose holomorphicity at the cusps.

Definition 1.6.7. With notation as in Definition 1.6.5, if ϕ = f/g is the quotient of Hilbert modular
forms for Γ of equal weight, then we say that ϕ is a Hilbert modular function for Γ.

Definition 1.6.8. Suppose that g = 2. Then for f ∈MK0,k, if for every (τ1, τ2) ∈ K0 ⊗H = H2 we have

f(τ1, τ2) = f(τ2, τ1),

we say that f is symmetric.

Definition 1.6.9. Let O∨K0
be the trace dual of OK0

. We define MK0,κ to be the C-vector space of
Hilbert modular forms for SL(OK0

⊕O∨K0
) of weight κ, and we define

MK0 =
⊕
κ

MK0,κ
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to be the graded C-algebra of all Hilbert modular forms for SL(OK0
⊕O∨K0

). For f ∈MK0
, let coeffs(f)

be the set of coefficients of the q-expansion of f around the cusp at infinity. For a ring R, we define

MK0,κ(R) = {f ∈MK0,κ : coeffs(f) ⊆ R},

and
MK0

(R) = {f ∈MK0
: coeffs(f) ⊆ R}.

Theorem 1.6.10. (Baily-Borel Theorem)
Let MK0

be the graded ring of Hilbert modular forms for SL(OK0
⊕ O∨K0

). Then the normal complex
analytic space of Proj(MK0) is a compactification of

V = SL(OK0
⊕O∨K0

)\(K0 ⊗H).

Proof. See [Gee88, p. II.7.1].

Definition 1.6.11. We define the Hilbert modular variety V to be the normal complex analytic space of
Proj(MK0

). We will also refer to this as the Baily-Borel compactification of V .

Proposition 1.6.12. (Rapoport)
MK0,κ(Z) is a finitely generated Z-module.

Proof. See [Rap78, Proposition 6.6].

Lemma 1.6.13. (Rapoport)
MK0(Z)⊗Z C =MK0 .

Proof. See the proof of [Rap78, Lemma 6.12].

Proposition 1.6.14. Let K0 be a quadratic number field of discriminant 5, 8, 13 or 17. Then MK0
(Q)

is a finitely generated Q-algebra, and the q-expansions of a choice of generators are known.

Proof. For discriminant 5 see [Mue85] or [May07], for discriminant 8 see [Mue83], and for discriminants
13 and 17 see [May07].

Remark 1.6.15. In everything that follows, we will assume thatMK0(Q) is a finitely generated Q-algebra.

1.7 A normalisation lemma for principally polarised ideals

Let q be a prime power, let π be an ordinary Weil q-number, and let K = Q(π) be a CM-field with maximal
totally real subfield K0. As we have seen in Theorem 1.3.11, we can study principally polarised ordinary
abelian varieties over finite fields by studying principally polarised ideals. Recall from Definition 1.5.1
that we defined PIdπ,K0 to be the category of principally polarised OK0 [π, π]-ideals. This corresponds
to studying principally polarised ordinary abelian varieties over Fq with Frobenius π and with real
multiplication by OK0

, which are a main topic of interest throughout this thesis. In this section we prove
a very useful property of objects (a, β) ∈ PIdπ,K0

that we will use throughout this thesis:

Lemma 1.7.1. Suppose that (a, β) ∈ PIdπ,K0
is a principally polarised fractional OK0

[π, π]-ideal. Then
there exists τ ∈ K −K0 such that

(a, β) ∼=PIdπ,K0
(τOK0

+O∨K0
, (τ − τ)−1).

Proof. By assumption we have that OK0
⊂ End(a) ⊆ OK , where K = Q(π) is a totally imaginary

quadratic extension of K0. In particular, as OK0 is a Dedekind domain, by Cohen [Coh93, Theorem
1.2.19] there exist x, y′ ∈ K and a fractional OK0 -ideal b such that

a = xOK0
+ y′b.

Now, from the polarisation β of a, we have a non-degenerate alternating Z-bilinear form defined by

E : a× a −→ Z
(u, v) 7→ trK/Q(βuv),
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which factors via the non-degenerate alternating OK0
-bilinear form

S : a× a −→ O∨K0

(u, v) 7→ trK/K0
(βuv)

by definition of the trace dual O∨K0
. The matrix of S⊗Q with respect to the K0-basis 〈x, y′〉 is then given

by (
0 c
−c 0

)
,

where c = trK/K0
(βxy′). Choose Z-bases (ω1, . . . , ωg) and (b1, . . . , bg) for OK0

and b respectively. We
compute the matrix of E with respect to the Z-basis

〈xω1, . . . , xωg, y
′b1, . . . , y

′bg〉,

to be (
0 M
−M 0

)
,

where
M = (trK0/Q(cωibj))i,j=1,...,g.

In turn, we get that M is the matrix of the Z-bilinear form

F : OK0 × b −→ Z
(u, v) 7→ trK0/Q(cuv)

with respect to the Z-bases (ω1, . . . , ωg) and (b1, . . . , bg). In particular, as E (and hence F ) is non-
degenerate and the matrix of E has determinant ±1, we get that

cb = O∨K0
.

Hence, we have that
a = xOK0

+ y′c−1O∨K0
.

Then, setting y = y′c−1, multiplication by y−1 defines an isomorphism in PIdπ,K0
from (a, β) to

(xy−1OK0 +O∨K0
, yyβ).

Now repeat the same argument with a′ = τOK0 + O∨K0
, where τ = xy−1 and β′ = yyβ. Then choose

b = O∨K0
so that

cO∨K0
= cb = O∨K0

,

hence
O×K0

3 c = trK/K0
(β′τ) = β′τ + β′τ = β′(τ − τ).

So we can replace τ by c−1τ , giving
β′ = (τ − τ)−1.

Remark 1.7.2. Note that, as (τ − τ)−1 is a polarisation, it is by definition Φπ,j-positive-imaginary. That
is, for every φ ∈ Φπ,j we have that φ(τ) ∈ H, hence with respect to Φπ,j we have that τ ∈ K0 ⊗H.
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Chapter 2

Hilbert modular polynomials

2.1 Introduction and statement of the results

The modular polynomial for elliptic curves of prime level p is an irreducible polynomial Φp(X,Y ) ∈ Z[X,Y ]
which, for every pair of p-isogenous elliptic curves E and E′, satisfies

Φp(j(E), j(E′)) = 0,

where j(E) is the j-invariant of the elliptic curve E. Examples of these modular polynomials can be found
for example on Sutherland’s website [Sut18]. One of the reasons that modular polynomials interest us is
that given the j-invariant of an elliptic curve E over a field k, we can find the j-invariants of all those
elliptic curves that are p-isogenous to it by computing the roots of Φp(j(E), Y ) ∈ k[Y ]. In this chapter,
we describe an analogue of the modular polynomial for principally polarised abelian varieties of dimension
g with real multiplication, which we call a set of Hilbert modular polynomials. This is a Hilbert modular
function analogue of Dupont’s work with Siegel modular functions in [Dup06]. The advantage of working
in the Hilbert setting is that the coefficients and degrees of the polynomials are much more manageable
than in the Siegel setting, making it possible to compute modular polynomials for higher prime levels than
previously. Furthermore, Algorithm 2.4.8, which is implemented in MAGMA, computes these polynomials.
This chapter gives a proof that the output of the algorithm is correct.

The modular polynomial for elliptic curves of level p parametrises p-isogenies of elliptic curves (for p
prime) and is defined using the j-invariant. To generalise the modular polynomial to a Hilbert modular
setting, we first fix a totally real number field K0 of degree g over Q, and we write OK0

for its maximal order.
We then need to replace j by an ‘isomorphism invariant’ for objects (A, ξ, ι) ∈ POrdC,K0

, the category of
principally polarised complex abelian g-folds (A, ξ) with an appropriate embedding ι : OK0 ↪→ End(A)
(see Definition 1.5.2 for the formal definition). Let V be the Hilbert modular variety for SL(OK0 ⊕O∨K0

),
as in Definition 1.6.11, where O∨K0

is the trace dual of OK0
. Recall from Definition 1.6.9 that MK0

(Z)
denotes the ring of Hilbert modular forms with coefficients in Z, and we write Q(MK0

(Z)) for the field of
quotients of modular forms in MK0

(Z) of equal weight. We will see in Section 2.2 that for some d ∈ Z,
there exist d Hilbert modular functions

J1, . . . , Jd ∈ Q(MK0
(Z)),

such that the function field of V is C(J1, . . . , Jd), and for such J1, . . . , Jd, there exists a Zariski-open affine
subvariety U of V such that the rational map

(J1, . . . , Jd) : U // AdC

is an injective morphism.

Definition 2.1.1. A d-tuple of Hilbert modular functions (J1, . . . , Jd) ∈ Q(MK0(Z))×d such that

C(V ) = C(J1, . . . , Jd)

is a choice of RM isomorphism invariants for K0.

14



Remark 2.1.2. Fixing U as above, if (A, ξ, ι) ∈ POrdC,K0
corresponds as in Lemma 1.6.2 to a point in

U , then the d-tuple
(J1, . . . , Jd)(A, ξ, ι)

determines (A, ξ, ι) up to isomorphism. That is, on U , RM isomorphism invariants are isomorphism
invariants in the intuitive sense.

Definition 2.1.3. For a totally positive prime element µ of OK0 , and for τ, τ ′ ∈ K0 ⊗ H, we say that
there exists a µ-isogeny

τ → τ ′

if there exists a µ-isogeny
(A, ξ, ι) −→ (A′, ξ′, ι′, )

where the isomorphism classes of (A, ξ, ι) and (A′, ξ′, ι′) ∈ POrdC,K0 correspond as in Lemma 1.6.2 to
the equivalence classes of τ and τ ′ in V respectively. (Recall from Theorem 1.5.5 and Lemma 1.7.1 that τ
and τ ′ satisfy

H1(A(C),Z) = τOK0
+O∨K0

and H1(A′(C),Z) = τ ′OK0
+O∨K0

.)

Our higher dimensional analogue of the modular polynomial for elliptic curves will parametrise µ-
isogenies of objects in POrdC,K0 , and will be defined using the isomorphism invariants of Definition 2.1.1.
The first main theorem of this chapter, given below, gives this higher dimensional analogue of the modular
polynomial.

Theorem 2.1.4. For a totally real number field K0 of degree g over Q, and a totally positive prime
element µ of OK0

, let V be the Hilbert modular variety for K0 (as defined in Definition 1.6.11), and
fix a choice of RM isomorphism invariant (J1, . . . , Jd) for K0 (as defined in Definition 2.1.1). Then
Algorithm 2.4.8 below outputs a polynomial

Gµ(X1, . . . , Xd, Y ) ∈ Z[X1, . . . , Xd, Y ]

that has degree NormK0/Q(µ) + 1 in Y and such that ∆Gµ(J1, . . . , Jd, Y ) is not constant zero on V , and
outputs polynomials

Hµ,i(X1, . . . , Xd, Y, Zi) ∈ Z[X1, . . . , Xd, Y, Zi]

that are linear in Zi, where i = 2, . . . d. Furthermore, for any choice of Zariski-open subvariety U of V
such that the map

(J1, . . . , Jd) : U → AdC
is injective, for all but finitely many

[τ ], [τ ′] ∈ (U ∩ V )− {x ∈ (U ∩ V ) : ∆Gµ(J1(x), . . . , Jd(x), Y ) = 0},

there exists a µ-isogeny
τ → τ ′

if and only if
G(J1(τ), . . . , Jd(τ), J1(τ ′)) = 0,

and for i = 2, . . . , d,
Hµ,i(J1(τ), . . . , Jd(τ), J1(τ ′), Ji(τ

′)) = 0.

Definition 2.1.5. For a totally positive prime element µ ∈ K0, we define a Hilbert modular polynomials
of level µ to be a set of polynomials{

Gµ(X1, . . . , Xd, Y ) ∈ Z[X1, . . . , Xd, Y ],
Hµ,i(X1, . . . , Xd, Y, Zi) ∈ Z[X1, . . . , Xd, Y, Zi]

}
i=2,...,d

such that Gµ(X1, . . . , Xd, Y ) and Hµ,i(X1, . . . , Xd, Y, Zi) satisfy the conclusions of Theorem 2.1.4.

Remark 2.1.6. Even though Theorem 2.1.4 is over C, in practise we can use it also over finite fields (see
Section 2.5).
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2.2 Defining RM isomorphism invariants

As before, let K0 be a totally real number field of degree g over Q, and let V be the Hilbert modular variety
for SL(OK0

⊕O∨K0
), as defined in Definition 1.6.11. The aim of this section is to prove Proposition 2.2.1.

For completeness, we recall here the definition of RM isomorphism invariants from the previous section.

Definition 2.1.1. A d-tuple of Hilbert modular functions

(J1, . . . , Jd) ∈ Q(MK0(Z))×d

such that
C(V ) = C(J1, . . . , Jd)

is a choice of RM isomorphism invariants for K0.

Proposition 2.2.1. Write Q(MK0(Z)) for the Q-algebra of quotients of Hilbert modular forms inMK0(Z)
of equal weight. There exists d ∈ Z and a choice

J1, . . . , Jd ∈ Q(MK0
(Z))

of RM isomorphism invariant for K0. Furthermore, for such J1, . . . , Jd, there exists a Zariski-open affine
subvariety U of V such that the map

(J1, . . . , Jd) : U −→ AdC

is a well-defined injective morphism.

Proof. Write C(MK0
) for the field of quotients of elements of MK0

of equal weight. By definition of V
(see Definition 1.6.11), we have that C(V ) = C(MK0

), and by Lemma 1.6.13, we know that

Q(MK0
(Z))⊗Q C = C(MK0

).

So let J1, . . . , Jd be generators of the Q-algebra Q(MK0(Z)), so that

C(J1, . . . , Jd) = C(V ),

and write W for the image of (J1, . . . , Jd) in AdC. Then by [Har77, Corollary I.4.5], there are non-empty
Zariski-open subsets U ⊆ V and U ′ ⊆W such that U is isomorphic to U ′.

Example 2.2.2. If g = 1, so that K0 = Q, then we have that

SL2(OK0
⊕O∨K0

)\K0 ⊗H = SL2(Z)\H.

The j-invariant for elliptic curves defines an isomorphism

j : SL2(Z)\H −→ A1
C.

Hence setting
V = SL2(Z)\H, V = P1

C, U = V, and J1 = j

gives us C(V ) = C(J1) and an injective morphism J1 : U → A1
C.

2.3 Algorithm to compute a set of Hilbert modular polynomials

As before, in what follows, K0 is a totally real number field of degree g over Q with ring of integers OK0 .
From this point on, we fix RM isomorphism invariants (J1, . . . , Jd) ∈ Q(MK0

(Z))×d, and a non-empty
Zariski-open subvariety U of the Hilbert modular variety V such that

(J1, . . . , Jd) : U −→ AdC

defines an injective morphism.
For i = 1, . . . , d, we choose fi and gi to be elements of MK0(Z) of weight ki such that

Ji = fi/gi. (2.1)
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Definition 2.3.1. Let SL(OK0
⊕ O∨K0

) be as in Definition 1.6.1 and let µ be a totally positive prime
element of OK0

. Define

Γ0(µ) :=

{(
a b
c d

)
∈ SL(OK0 ⊕O∨K0

) : b ∈ µO∨K0

}
.

For any x ∈ K0 define

x :=

(
x 0
0 1

)
.

Given a Hilbert modular form f ∈MK0
(Z), for every N ∈ SL(OK0

⊕O∨K0
), the function f |µ−1N depends

only on the class of N in Γ0(µ)\SL(OK0 ⊕O∨K0
).

Definition 2.3.2. Denote by C a choice of coset representatives for the quotient of groups

Γ0(µ)\SL(OK0 ⊕O∨K0
).

We then further define
Φµ(Y ) :=

∏
M∈C

(
g1|µ−1MY − f1|µ−1M

)
and for each i = 2, . . . , d,

Ψµ,i(Y, Zi) :=
∑
M∈C

{(
gi|µ−1MZi − fi|µ−1M

) ∏
M′∈C
M′ 6=M

(
g1|µ−1M ′Y − f1|µ−1M ′

)}
.

Note that the definitions of Φµ(Y ) and Ψµ,i(Y,Zi) do not depend on the choice of coset representatives
for Γ0(µ)\SL(OK0

⊕O∨K0
).

Remark 2.3.3. We have that

Φµ(Y ) ∈MK0(Z)[Y ] and Ψµ,i(Y,Zi) ∈MK0(Z)[Y, Zi].

Proof. Recall that for M ∈ C and N ∈ SL(OK0
⊕O∨K0

), for every f ∈MK0
, we have that

(f |µ−1M )|N (τ) = f |µ−1MN (τ).

In particular, acting by |N on the coefficients of Φµ(Y ) (and Ψµ,i(Y, Zi)) just permutes the factors (or
terms) of the defining product (or sum), leaving Φµ(Y ) (and Ψµ,i(Y,Zi)) unchanged, hence the coefficients
are modular forms for SL(OK0 ⊕O∨K0

).

As Φµ is a univariate polynomial with coefficients that are modular forms for SL(OK0
⊕O∨K0

) of equal
weight, the discriminant ∆Φµ is also a modular form for SL(OK0

⊕O∨K0
). In particular, whether or not

(∆Φµ)(τ) = 0 depends only on the class of τ in V .

Proposition 2.3.4. Fix notation as in Definition 2.3.2 and recall from Definition 2.1.3 the definition of a
µ-isogeny τ → τ ′ for τ, τ ′ ∈ K0 ⊗H. For any τ, τ ′ ∈ K0 ⊗H such that the classes [τ ] and [τ ′] of τ and τ ′

in V are in
(U ∩ V )− {x ∈ (U ∩ V ) : (∆Φµ)(x) = 0},

there exists a µ-isogeny τ → τ ′ if and only if for every i = 2, . . . , d, evaluating Φµ(Y ) and Ψµ,i(Y,Zi) at
(Y,Z2, . . . , Zd) = (J1([τ ′]), . . . , Jd([τ

′])), and then evaluating the resulting modular forms at τ , gives

(Φµ(J1([τ ′]))) (τ) = 0 and (Ψµ,i(J1([τ ′]), Ji([τ
′]))) (τ) = 0.

Lemma 2.3.5. If µ is a totally positive prime element of OK0 then the set Γ0(µ)\SL(OK0 ⊕O∨K0
) has

NormK0/Q(µ) + 1 elements.
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Proof. Define
k := max{n ∈ Z : (O∨K0

)−1 ⊆ µnOK0
}.

There is a bijection of sets

Γ0(µ)\SL(OK0
⊕O∨K0

) ←→ (µkΓ0(µ)µ−k)\(µkSL(OK0
⊕O∨K0

)µ−k)
M 7→ µkMµ−k.

We claim that {(
1 a
0 1

)
: a ∈ OK0

/µOK0

}
∪
{(

0 1
−1 0

)}
is in bijection with (µkΓ0(µ)µ−k)\(µkSL(OK0

⊕O∨K0
)µ−k). Let(

a b
c d

)
∈ µkSL(OK0 ⊕O∨K0

)µ−k.

Then a, d ∈ OK0
, b ∈ µkO∨K0

⊆ (OK0
)(µ) and c ∈ µ−k(O∨K0

)−1 ⊆ (OK0
)(µ), so that in particular, reduction

by µ defines a group homomorphism

r : µkSL(OK0
⊕O∨K0

)µ−k → SL2(OK0
/µOK0

).

Now OK0/µOK0 is a field as µOK0 is prime, and SL2(OK0/µOK0) acts on P1(OK0/µOK0) as(
a b
c d

)
· (x : y) 7→ (ax+ by : cx+ dy).

The stabilizer of (0 : 1) is {(
a 0
c d

)
∈ SL2(OK0

/µOK0
)

}
,

the pull-back of which under r is µkΓ0(µ)µ−k, so the bijection follows from the orbit-stabilizer theorem.

We will prove Proposition 2.3.4 by using the above lemma and a representation of µ-isogenies up to
isomorphism.

Definition 2.3.6. We say µ-isogenies f : (A, ξA, ιA)→ (B, ξB, ιB) and g : (A, ξA, ιA)→ (B′, ξB′ , ιB′) are
isomorphic if there exists a 1-isogeny ϕ : (B, ξB, ιB)→ (B′, ξB′ , ιB′) such that the diagram

(A, ξA, ιA)
f
//

g

''

(B, ξB, ιB)

ϕ

��

(B′, ξB′ , ιB′)

commutes.

Definition 2.3.7. For every

(
a b
c d

)
= M ∈ GL2(K0)+ and for every τ ∈ K0 ⊗H, we define ϕM,τ to

be the element of HomOrdC,K0
(τ,Mτ)⊗Q that is multiplication by (cτ + d)−1 on K0 ⊗ C.

Note that
ϕB,Aτ ◦ ϕA,τ = ϕBA,τ (2.2)

and
ϕ−1
M,τ = ϕM−1,Mτ . (2.3)

Lemma 2.3.8. We have that ϕM,τ is an isomorphism in POrdC,K0 if and only if M ∈ SL(OK0 ⊕O∨K0
).

Proof. Write M =

(
a b
c d

)
and for any τ ′ ∈ K0 ⊗H let Eτ ′ be the Riemann form

Eτ ′(u1τ + u2, v1τ
′ + v2) = trK0/Q(u1v2 − u2v1).
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We get commutative diagram of unpolarised abelian varieties, where the dashed arrows are automorphisms
of K0 ⊗ C that may or may not induce actual maps of abelian varieties:

(K0 ⊗ C)/(τOK0
+O∨K0

)
f :=id(K0⊗C)

++

ϕM,τ :=(cτ+d)−1

// (K0 ⊗ C)/(MτOK0
+O∨K0

)

cτ+d

��

(K0 ⊗ C)/((aτ + b)OK0
+ (cτ + d)O∨K0

).

Now f , and hence φ defines an isomorphism on lattices if and only if M ∈ GL(OK0
+O∨K0

). Suppose now
that M ∈ GL(OK0

+O∨K0
). It remains to show that det(M) = 1 if and only if φ is an isomorphism in

POrdC,K0
, that is, if

Eτ (α, β) = EMτ (φ(α), φ(β)).

Write Eτ = trK0/Q ◦ Sτ and EMτ = trK0/Q ◦ SMτ . The matrices of Sτ and φ∗SMτ with respect to the
(K0 ⊗ R)-basis {τ, 1} of K0 ⊗ C are (

0 1
−1 0

)
and

M

(
0 1
−1 0

)
M t

respectively, so Sτ = φ∗SMτ if and only if det(M) = 1 and the result follows.

Lemma 2.3.9. Fix a totally positive prime element µ ∈ K0. Then for any τ ∈ K0 ⊗H, there is a map

i : Γ0(µ)\SL(OK0
⊕O∨K0

) −→
{
µ-isogenies from τ

}
/∼=

M 7→ ϕµ−1,Mτ ◦ ϕM,τ ,

and i defines a bijection of sets.

Proof. Observe that idK0⊗C defines a µ-isogeny

ϕµ−1,τ :
(
(K0 ⊗ C)/(τOK0

+O∨K0
), ξ, ι

)
−→

(
(K0 ⊗ C)/(µ−1τOK0

+O∨K0
), µξ, ι

)
,

where ξ = (τ − τ)−1, which in other words is a µ-isogeny τ → µ−1τ . Replacing τ by Mτ for

M ∈ Γ0(µ)\SL(OK0
⊕O∨K0

)

it is easy to see that i is well-defined on SL(OK0
⊕O∨K0

).
We claim further that i is a well-defined injection of sets. Let M,N ∈ SL(OK0

⊕O∨K0
) and suppose that

ϕµ−1,Mτ ◦ ϕM,τ and ϕµ−1,Nτ ◦ ϕN,τ are isomorphic as µ-isogenies. That is, there exists an isomorphism

ψ : µ−1Mτ → µ−1Nτ such that

ψ ◦ ϕµ−1,Mτ ◦ ϕM,τ = ϕµ−1,Nτ ◦ ϕN,τ , (2.4)

hence by (2.2) and (2.3)
ψ = ϕµ−1NM−1µ,µ−1Mτ . (2.5)

By Lemma 2.3.8, as ψ is an isomorphism, we have that µ−1NM−1µ ∈ SL(OK0⊕O∨K0
). Define X = NM−1

and T = µ−1NM−1µ. As T and X ∈ SL(OK0
⊕O∨K0

), we get further that X ∈ Γ0(µ). Conversely, suppose

that NM−1 ∈ Γ0(µ). Then µ−1NM−1µ ∈ SL(OK0 ⊕ O∨K0
), so ψ defined by (2.5) is an isomorphism.

Hence i is a well-defined injection of sets.
To show that i is in fact a bijection we proceed by counting. By Lemma 2.3.5 the set C has

NormK0/Q(µ) + 1 elements, so we just need to show that there are at most NormK0/Q(µ) + 1 non-
isomorphic µ-isogenies from any given τ ∈ K0 ⊗ H. If f : (A, ξA, ιA) → (B, ξB, ιB) is a µ-isogeny,
then

ker(f) ⊆ ker(µ) ∼= (OK0/µOK0)×2.
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Also, as for every α ∈ OK0
the following diagram commutes:

ker(f)

��

// A

ιA(α)

��

f
// B

ιB(α)

��

ker(f) // A
f
// B,

the kernel of f is an OK0
-module, and hence an OK0

/µOK0
sub-vector space of (OK0

/µOK0
)×2. Then,

as deg(f) = NormK0/Q(µ), there are at most NormK0/Q(µ) + 1 distinct kernels of µ-isogenies from any
given τ (or equivalently any given (A, ξ, ι) ∈ POrdC,K0

). Therefore it remains to show that there do not
exist non-isomorphic µ-isogenies f : (A, ξA, ιA)→ (B, ξB, ιB) and f ′ : (A, ξA, ιA)→ (B′, ξB′ , ιB′) with the
same kernel. By the universal property of quotient maps there exists an isomorphism α (of unpolarised
abelian varieties) such that the following diagram commutes:

A
f
//

f ′

  

B

α
��

B′.

We claim that α is a 1-isogeny. Consider the following diagram:

A

ξA ##

A
ιA(µ)
oo

f
// B(

1) ξB
��

α // B′(
2) ξB′

��

A∨ B∨
f∨

oo B′∨.
α∨

oo

Diagram (1) commutes as f is a µ-isogeny and the diagram formed by the outside arrows commutes as f ′

is a µ-isogeny, hence diagram (2) commutes. Similarly, consider the following diagram:

End(A)⊗Q
β 7→f◦β◦f−1

// End(B)⊗Q
β 7→α◦β◦α−1

// End(B′)⊗Q

K0

ιA

(
1)

ii

ιB

OO (
2) ιB′
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Diagram (1) commutes as f is a µ-isogeny and the diagram formed by the outside arrows commutes as f ′

is a µ-isogeny and

f ′ ◦ β(f ′)−1 = (α ◦ f) ◦ β ◦ (α ◦ f)−1 = α ◦ (f ◦ β ◦ f−1) ◦ α−1.

Hence (2) commutes, so α is a 1-isogeny and f and f ′ are isomorphic as µ-isogenies.

Proof of Proposition 2.3.4. Suppose first that there exists a µ-isogeny τ → τ ′. Then by Lemma 2.3.9, there
exists N ∈ C = Γ0(µ)\SL(OK0

⊕O∨K0
) such that this µ-isogeny is isomorphic to a µ-isogeny τ → µ−1Nτ ,

so we can identify τ ′ with µ−1Nτ . Plugging this into the definitions of Φµ(Y ) and Ψµ,i(Y,Zi), we get

Φµ(J1(µ−1Nτ)) = 0

and
Ψµ,i(J1(µ−1Nτ), Ji(µ

−1Nτ)) = 0.

Suppose now that (Y0, Z2,0, . . . , Zd,0) is a common root of Φµ(Y ) and Ψµ,i(Y, Zi). One can see directly
from the definition of Φµ and Ψµ,i that under the discriminant condition, the set of common roots of
(2.3.2) is exactly the set

{(J1(µ−1Mτ), . . . , Jd(µ
−1Mτ)) : M ∈ C}.

Therefore, there exists N ∈ C such that

(Y0, Z2,0, . . . , Zd,0) = (J1(µ−1Nτ), . . . , Jd(µ
−1Nτ)),

and by Lemma 2.3.9 there exists a µ-isogeny

τ → µ−1Nτ.
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2.4 Computing the RM isomorphism invariants for a given genus
2 curve

In Definition 2.1.1, we defined RM isomorphism invariants for elements of POrdC,K0 . Restrict now to the
dimension 2 case. It is however not immediately clear how to compute these given the equation of a genus
2 curve. We have a computational advantage in genus 2, which is that there already exist Igusa-Clebsch
invariants to determine a curve up to isomorphism.

Definition 2.4.1. For a curve C of genus 2 over a field k with char(k) 6= 2, there exists a hyperelliptic
model y2 = f(x) of C, where f is a separable polynomial of degree 6. Fix such a model, denote by c the
leading coefficient of f , fix an ordering x1, . . . , x6 of the roots of f in its splitting field, and denote by (ij)
the difference xi − xj . For char(k) 6= 2, 3, 5, we define the Igusa-Clebsch invariants of C to be

I2 = c2
∑

(12)2(34)2(56)2,

I4 = c4
∑

(12)2(23)2(31)2(45)2(56)2(64)2,

I6 = c6
∑

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2,

I10 = c10
∏

(12)2,

where each sum and product runs over the distinct expressions obtained by applying a permutation to the
index set {1, . . . , 6}.

These invariants are integral whenever f is integral. The Igusa-Clebsch invariants are ‘invariants for
the Siegel moduli space’. Before making this more precise, we recall some facts about the Siegel moduli
space.

Definition 2.4.2. We define

Sym2(C) =

{(
τ1 τ2
τ2 τ3

)
∈ Mat2×2(C)

}
,

and for τ ∈ Sym2(C), we write Im(τ) > 0 for ‘Im(τ) is positive definite’.

Definition 2.4.3. The Siegel upper half space is defined to be

H2 =

{
τ =

(
τ1 τ2
τ2 τ4

)
∈ Sym2(C) : Im(τ) > 0

}
,

and the symplectic group

Sp2(Z) =

{
γ ∈ GL4(Z) : γ

(
0 I2
−I2 0

)
γtr =

(
0 I2
−I2 0

)}
acts on H2 via (

A B
C D

)
· τ = (Aτ +B)(Cτ +D)−1.

The field of rational functions of the coarse moduli space for hyperelliptic curves of genus 2 can be
generated by three Siegel modular functions, as shown by Igusa in [Igu60]. Following the notation in the
Echidna database [Echidna], we choose as generators three Siegel modular functions

i1, i2, i3 : Sp2(Z)\H2 −→ C

such that, if C is a curve of genus 2, and [τ ] ∈ Sp2(Z)\H2 is the point in the moduli space corresponding
to C, then

i1(τ) = (I4I6/I10)(C), (2.6)

i2(τ) = (I3
2I4/I10)(C), (2.7)

i3(τ) = (I2
2I6/I10)(C). (2.8)
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Now, for a totally real quadratic number field K0, the forgetful functor

POrdC,K0 −→ POrdC,2
(A, ξ, ι) 7→ (A, ξ)

induces a map
φ : SL(OK0

⊕O∨K0
)\K0 ⊗H→ Sp2(Z)\H2,

which is generically 2-1. We will refer to this as the modular map. The image of this map is called the
Humbert surface for K0, and is denoted as HK0

. That is, the modular map φ induces a degree 2 map

φ :MK0
−→ HK0

.

In particular, as there exist 2 algebraically independent Siegel modular functions f1 and f2 in

C(HK0
) ⊆ C(i1, i2, i3),

we get 2 algebraically independent Hilbert modular functions

J1 = φ∗f1 and J2 = φ∗f2 (2.9)

in C(MK0
). Also, by construction, we get that J1 and J2 are symmetric, that is, that if σ is the generator

of Gal(K0/Q), then for all τ ∈ K0 ⊗H, we have that

J1(σ(τ)) = J1(τ) and J2(σ(τ)) = J2(τ).

By Proposition 1.6.12 and Lemma 1.6.13, we have that C(V ) is a finite separable field extension of
C(J1, J2) and hence is generated by one element; choose such an element and denote it by J3. Write
m(X) ∈ C(J1, J2)[X] for the minimal polynomial of J3; then m(X) is the pullback along φ of a polynomial
in C(i1, i2, i3)[X].

The subtlety of how to choose the root of m(X) in practice is addressed in Algorithm 2.5.4, Step 2.

Example 2.4.4. Gundlach [Gun63] and Müller [Mue85] computed formulae for a choice of isomorphism
invariants J1, J2, and J3 for K0 = Q(

√
5), and gave the functions from which J1, J2, and J2

3 (here m(X)
is quadratic and without a linear term) are pulled back along φ:

J1 =φ∗
(

2−63−3i21i
2
2 + 2−332i1i

2
2 − 2−43−3i1i

3
3 + 2−532i2i

2
3

i21i
2
2 + 2235i1i22

)
, (2.10)

J2 =φ∗
(

29i31i
2
2 + 21135i21i

2
2

i21i
2
2 + 22i1i33 − 2 · 35i2i23

)
, (2.11)

J2
3 =55 − 2−153J1J2 + 2−4J2 + 2−13252J2

2J
3
1 − 2−3J2

1J
2
2 − 2 · 33J3

2J
5
1 (2.12)

+ 2−4J3
2J

4
1

Remark 2.4.5. For each choice of K0, we have to recalculate RM isomorphism invariants J1, J2, and
J3. In [LNY16, Theorem 2.2], Lauter, Naehrig, and Yang give a method to calculate a choice of Siegel
modular functions f1 and f2 as in (2.9), but the minimal polynomial of J3 over Q(J1, J2) is not known in
general.

Recall from Lemma 1.6.13 that C(V ) = Q(MK0(Z))⊗ C, so that in particular a choice of Q-algebra
generators J1, . . . , Jd for Q(MK0

(Z) is also a choice of C-algebra generators for C(V ). In the cases for
which a complete set of generators is known, namely K0 of discriminant 5, 8, 13, and 17, we can choose RM
isomorphism invariants J1, J2, J3 ∈ Q(MK0

(Z))×3 for which J1 and J2 are symmetric Hilbert modular
functions (as above) and J2

3 ∈ Q(J1, J2). For simplicity, we restrict to this case in all that follows.

2.4.1 The algorithm

Given the coefficients of the q-expansions of the numerators and denominators of J1, . . . , Jd up to a high
enough precision (see the implementation at www.martindale.info for details on the precision), using
Lemma 2.5.2 and the formulae for Φµ(Y ) and Ψµ,i(Y, Zi) given in Definition 2.3.2 we can write out explicit
formulae for the q-expansions of the coefficients (with respect to Y and Zi) up to some precision of Φµ(Y )
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and Ψµ,i(Y,Zi). Fix Q-algebra generators of MK0
(Q) to be γ1, . . . , γs ∈ MK0

(Z) of weights κ1, . . . , κs
respectively (recall from Remark 1.6.15 that we assumed s to be finite), and assume that we also know
sufficiently many coefficients of the q-expansions of γ1, . . . , γs. Then for each coefficient f ∈MK0

(Z) of
Φµ(Y ) or Ψµ,i(Y,Zi) it is just linear algebra to determine integers h1, . . . , hs and rational numbers bh,
where h = (h1, . . . , hs), such that

f =
∑

{h∈(Z≥0)s:
∑s
j=1 hjκj=k}

bh

s+1∏
j

γ
hj
j , (2.13)

where k is the weight of f . To deduce the Hilbert modular polynomials Gµ and Hµ,i from Φµ and Ψµ,i,
we first have to scale Φµ and Ψµ,i so that the coefficients are in Q(MK0(Z)). To do this, we construct a
ring homomorphism

MK0
(Z) −→ Q(MK0

(Z)).

To this end, we define
d = gcd({κ :MK0,κ 6= ∅})

and choose w1 and w2 such that MK0,w1(Z),MK0,w2(Z) 6= ∅ and d = w1 − w2. Then choose

ϕ ∈MK0,w2(Z) and ψ ∈MK0,w1(Z), (2.14)

and define
ϕi = ϕκi/d and ψi = ψκi/d.

This defines a map
MK0,κi(Z) −→ Q(MK0

(Z))
γi 7→ ϕi

ψi
γi

which extends Z-linearly to a map

ρ :MK0
(Z) −→ Q(MK0

(Z)), (2.15)

which is in fact a ring homomorphism. In Algorithm 2.4.8, we will assume that the representations of
ρ(γ1), . . . , ρ(γs) as rational functions in J1, . . . , Jd are known.

Example 2.4.6. Müller [Mue85] defined four elements (γ1, γ2, γ3, γ4) = (g2, s5, g6, s15) of MQ(
√

5)(Z)

of weights 2, 5, 6, and 15 respectively that generate MQ(
√

5)(Q) as a Q-algebra and defined modular
functions

(J1, J2, J3) =

(
g5

2

s2
5

,
s6

g3
2

,
s3

5

s15

)
, (2.16)

such that Q(MK0
(Z)) = Q(J1, J2, J3). In this case, we get that d = 1, we choose w1 = 5 and w2 = 4, and

we choose ϕ = g2
2 and ψ = s5. Then

γ1 = g2 7→
g5

2

s2
5

= J1

γ2 = s5 7→
g10

2

s4
5

=

(
g5

2

s2
5

)2

= J2
1

γ3 = s6 7→
g12

2 s6

s6
5

=

(
g5

2

s2
5

)3
s6

g3
2

= J3
1J2

γ4 = s15 7→
g30

2 s15

s15
5

=

(
g5

2

s2
5

)6
s15

s3
5

= J6
1J
−1
3 .

The choice given in Equation (2.16) is the choice in the implementation of Algorithm 2.4.8 that can be
found at www.martindale.info.

The following algorithm computes a set of Hilbert modular polynomials in the sense of Definition 2.1.5.
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Lemma 2.4.7. Let ki be the weight of ψi (the denominator of Ji). Let Φµ(Y ) and Ψµ,i(Y,Zi) be as in
Definition 2.3.2. There exist modular forms y0, . . . , y|C| ∈MK0

of weight |C|k1, and for i = 2, . . . , d, there
exist modular forms zi,0, z

′
i,0, . . . , zi,|C|−1, z

′
i,|C|−1 ∈MK0

of weight (|C| − 1)k1 + ki such that

Φµ(Y ) =

|C|∑
n=0

ynY
n

and

Ψµ,i(Y,Zi) =

|C|−1∑
n=0

(zi,nZi − z′i,n)Y n.

Proof. This follows from the explicit formulae in Definition 2.3.2.

Algorithm 2.4.8.
INPUT: A totally real number field K0 of degree g over Q, the q-expansions of generators γ1, . . . , γs of
the Q-algebra MK0(Q) (up to a certain precision), the images of γ1, . . . , γs under ρ as rational functions
of J1, . . . , Jd, and a totally positive element µ ∈ OK0 that generates a prime ideal.
OUTPUT: Polynomials

Gµ(X1, . . . , Xd, Y ) ∈ Z[X1, . . . , Xd, Y ]

Hµ,i(X1, . . . , Xd, Y, Zi) ∈ Z[X1, . . . , Xd, Y, Zi],

for i = 2, . . . , d, satisfying the conclusions of Theorem 2.1.4.

1. Compute the q-expansions of the coefficients of Φµ and Ψµ,i up to precision P . For more details in
genus 2, see Remark 2.5.3. For details on how to compute the required precision, see the MAGMA
code, which can be found at www.martindale.info.

2. As in (2.13), write each coefficient of Φµ and Ψµ,i as elements of Z[γ1, . . . , γs] using linear algebra
on the q-expansions (here it is necessary to have chosen the precision of the q-expansions to be
sufficiently large).

3. For each i, the input contains an expression

ρ̃(γi) ∈ Q(X1, . . . , Xd)

such that
ρ̃(γi)(J1, . . . , Jd) = ρ(γi).

Define
Gµ(X1, . . . , Xd, Y ) ∈ Z[X1, . . . , Xd, Y ]

to be the numerator of ρ̃(Φµ(Y )) and

Hµ,i(X1, . . . , Xd, Y, Zi) ∈ Z[X1, . . . , Xd, Y, Zi]

to be the numerator of ρ̃(Ψµ,i(Y,Zi)).

We have implemented a more optimised version of this in MAGMA for K0 = Q(
√

5) and K0 = Q(
√

2),
see Section 2.5. That the output of Algorithm 2.4.8 is correct was in the statement of Theorem 2.1.4,
which we now prove:

Proof of Theorem 2.1.4. Define D1 ∈MK0
(Z)[Y ] to be the denominator of ρ(Φµ(Y )) and

Di ∈MK0(Z)[Y, Zi]

to be the denominator of ρ(Ψµ,i(Y,Zi)). Let

S = {[τ ] ∈ U ∩ V : D1(J1(τ)) = 0} ∪ {[τ ] :∈ U ∩ V : Di(J1(τ), Ji(τ)) = 0}.

Then S is a finite set, as D1 and Di have finitely many roots, and for any value r ∈ C and any 1 ≤ i ≤ d,
there are finitely many [τ ] such that Ji(τ) = r as Ji extends to a holomorphic function on the compact
set V .
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It is immediate from Proposition 2.3.4 that the roots of (Φµ(Y ))(τ) are given by the first isomorphism
invariant J1(τ ′) of all the τ ′ ∈ K0 ⊗H that are µ-isogeneous to τ , up to isomorphism. If all the J1(τ ′) are
distinct then it also follows from Proposition 2.3.4 that the unique root of (Ψµ,i(J1(τ ′), Zi))(τ) is Ji(τ

′).
If they are not distinct then (∆Φµ)(τ) = 0, so as [τ ] 6∈ S, we have that ∆Gµ(J1(τ), . . . , Jd(τ), Y ) = 0.
Hence, for every

[τ ], [τ ′] ∈ (U ∩ V )− S ∪ {x ∈ (U ∩ V ) : ∆Gµ(J1(x), . . . , Jd(x), Y ) = 0},

there exists a µ-isogeny τ → τ ′ if and only if (Φµ(J1(τ ′))(τ) = 0 and for i = 2, . . . , d, we have that
(Ψµ,i(J1(τ ′), Ji(τ

′))(τ) = 0. But for every

[τ ], [τ ′] ∈ (U ∩ V )− S ∪ {x ∈ (U ∩ V ) : ∆Gµ(J1(x), . . . , Jd(x), Y ) = 0},

we have that (Φµ(J1(τ ′))(τ) = 0 if and only if

Gµ(J1(τ), . . . , Jd(τ), J1(τ ′) = 0

and, for i = 2, . . . , d, we have that (Ψµ,i(J1(τ ′), Ji(τ
′))(τ) = 0 if and only if

Hµ,i(J1(τ), . . . , Jd(τ), J1(τ ′), Ji(τ
′)) = 0,

so the theorem follows.

2.5 Complexity and simplifications for genus 2

We only implemented an algorithm to compute the set of Hilbert modular polynomials in genus 2, and
only for small quadratic fields K0, due to the fact that we do not know explicit q-expansions for the
RM invariants J1, . . . , Jd in any other larger genus. Hence, we restrict now to the genus 2 case, and for
simplicity, we set d = 3.

Lemma 2.5.2 gives one simplification of the formulae for genus 2: in this case K0 is quadratic, so
that OK0

and O∨K0
are isomorphic as OK0

-modules. This means that we may define the Hilbert modular
variety as a compactification of SL2(OK0

)\(K0 ⊗H) instead of SL(OK0
⊕O∨K0

)\(K0 ⊗H). When we do
this, in Lemma 2.3.9, we must replace the matrix group Γ0(µ) with the matrix group Γ0(µ)′, which we
now define.

Definition 2.5.1. For a totally real number field K0 of degree 2 over Q, with ring of integers OK0
, and

a totally positive element µ ∈ K0, we define

Γ0(µ)′ =

{(
a µb
c d

)
∈ SL2(OK0

) : a, b, c, d ∈ OK0

}
.

Lemma 2.5.2. For a totally real number field K0 of degree 2 over Q with ring of integers OK0
, and a

totally positive element µ ∈ OK0
that generates a prime ideal, the set

C =

{(
1 ω
0 1

)
: ω ∈ OK0

/µOK0

}⋃{(
0 1
−1 0

)}
is a choice of coset representatives for the quotient of groups Γ0(µ)′\SL2(OK0

).

Proof. The matrix group SL2(OK0
) acts on P1(OK0

/µOK0
) by(

a b
c d

)
· (x : y) = (ax+ by : cx+ dy).

Then in particular, the stabilizer of (0 : 1) is given by Γ0(µ)′, and hence by the orbit-stabilizer theorem,
there exists a natural bijection from C to Γ0(µ)′\SL2(OK0

).

Remark 2.5.3. Using the representation of Γ0(µ)′\SL2(OK0
) given in Lemma 2.5.2, we can write out

explicit q-expansions of the coefficients of Φµ and Ψµ,i via the following. Let f be a modular form for
SL2(OK0

) of weight k with q-expansion

f(τ) =
∑

t∈(O∨K0
)+

α(t)e2πitr(tτ),

and let ` = NormK0/Q(µ).
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1. For ω ∈ OK0
/µOK0

and M =

(
1 ω
0 1

)
, we have that

f |µ−1Mτ = `−k/2
∑

t∈(O∨K0
)+

ζ
tr(`µ−1tω)
` α(t)e2πitr(µ−1tτ),

where (O∨K0
)+ denotes the totally positive elements of O∨K0

.

2. For M =

(
0 −1
1 0

)
, we have that

f |µ−1Mτ = `k/2
∑

t∈(O∨K0
)+

α(t)e2πitr(µtτ),

where (O∨K0
)+ denotes the totally positive elements of O∨K0

.

Algorithm 2.4.8 is extremely slow and uses a lot of memory, and so we give here some practical
improvements on the computation time and memory usage. First of all, we do not compute the third
modular polynomial Hµ,3(X1, X2, X3, Y, Z3); Algorithm 2.5.4 shows that, given (A, ξ, ι) ∈ POrdC,K0

, we
can compute every abelian surface µ-isogenous to it without using Hµ,3.

Algorithm 2.5.4.
INPUT: The first 2 Hilbert modular polynomials Gµ(X1, X2, X3, Y ) and Hµ,2(X1, X2, X3, Y, Z2), as
defined in Definition 2.1.5, the RM isomorphism invariants (j1, j2, j3) ∈ C3 of some (A, ξ, ι) ∈ POrdC,K0

,
as defined in Definition 2.1.1, and the minimal polynomial m(X) ∈ Q(J1, J2)[X] of J3, as in Section 2.4.
OUTPUT: The RM isomorphism invariants of each (A′, ξ′, ι′) ∈ POrdC,K0

that is µ-isogenous to (A, ξ, ι),
or failure.

1. Set L to be the list of the NormK0/Q(µ) + 1 roots of Gµ(j1, j2, j3, Y ). If the roots are not distinct,
output failure.

2. For every j′1 ∈ L:

(a) set j′2 to be the unique element of C for which Hµ,2(j1, j2, j3, j
′
1, j
′
2) = 0,

(b) set L0 to be the list of the roots of m(X) evaluated at (J1, J2) = (j′1, j
′
2).

(c) for every l ∈ L0, check if Gµ(j′1, j
′
2, l, j1) = 0. If true for exactly one l, set j′3 = l. Else, output

failure.

(d) add (j′1, j
′
2, j
′
3) to list L′.

3. Return L′.

The second major improvement is to do computations in finite fields in place of in Q and Q(ζNormK0/Q(µ))
and then use the Chinese Remainder Theorem.

One advantage of working over a finite field in place of Q is that while the algorithm is running over
Q, the coefficients of the q-expansions blow up, using up memory space and slowing down computations,
so that Algorithm 2.5.5 is significantly faster than Algorithm 2.4.8.

Algorithm 2.5.5.
INPUT:

1. A totally real number field K0 of degree 2 over Q.

2. The q-expansions of generators γ1, . . . , γs ∈MK0
(Z) of the Q-algebra MK0

(Q).

3. The images of γ1, . . . , γs under ρ as rational functions of J1, J2, J3, where ρ is as defined in (2.15).

4. A totally positive element µ ∈ K0 that generates a prime ideal.

5. An upper bound B on the absolute values and a common denominator D of the rational coefficients
of the coefficients of Φµ(Y ) and Ψµ,2(Y,Z2) when represented as formal polynomials γ1, . . . , γs.
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6. A prime p0 such that for every prime p ≥ p0, the q-expansion coefficients in Step 1 of Algorithm 2.4.8
have denominator coprime to p, and when replacing Q and Q(ζ`) by Fp and Fp(ζ`), the system of
linear equations in Step 2 of Algorithm 2.4.8 still has a unique solution.

OUTPUT: The first 2 polynomials

Gµ(X1, X2, X3, Y ) ∈ Z[X1, X2, X3, Y ], and

Hµ,2(X1, X2, X3, Y, Z2) ∈ Z[X1, X2, X3, Y, Z2]

of Definition 2.1.5.

1. Create a list L of primes in the following way:

(a) Set i = 0.

(b) Set b = pi.

(c) Set pi+1 = min{n ∈ Z>b : n prime, n ≡ 1 mod NormK0/Q(µ)}. (This condition is to speed up

the computations as the NormK0/Q(µ)th roots of unity are then in Fp.)
(d) Reduce the coefficients of the q-expansions of γ1, . . . , γs mod pi+1 to get

γ1, . . . , γs ∈MK0
(Z)/pi+1MK0

(Z).

If γ1, . . . , γs generateMK0
(Z)/pi+1MK0

(Z) as a Fpi+1
-algebra, go to step (e). Else, set b = pi+1

and go to step (c).

(e) If
∏i+1
j=1 pj < 2BD then set i = i+ 1 and go to (b). Else return

L = {p1, . . . , pi+1}.

2. Write the coefficients mod p of Φµ(Y ) and Ψµ,2(Y ) as formal polynomials in γ1, . . . , γs for every
p ∈ L by following Step 1 and 2 of Algorithm 2.4.8, with Q (and Q(ζNormK0/Q

)) replaced by Fp.
(This can be done in parallel.)

3. Use the Chinese Remainder Theorem to compute the coefficients of DΦµ(Y ) and DΨµ,2(Y ) as
formal polynomials in γ1, . . . , γs with integer coefficients.

4. Compute Gµ and Hµ,2 following Step 3 of Algorithm 2.4.8.

Remark 2.5.6. Heuristically, we expect that for large primes p and most (A, ξ) and (A′, ξ′) ∈ POrdFp,K0
,

there exists a µ-isogeny (A, ξ)→ (A′, ξ′) if and only if

Gµ(J1(A), J2(A), J3(A), J1(A′)) ≡ Hµ,1(J1(A), J2(A), J3(A), J1(A′), J2(A′)) ≡ 0 mod p

and J3(A′) is the same as the output of Step 2 of Algorithm 2.5.4 (with C replaced by Fp) with

(j1, j2, j3, j
′
1, j
′
2) = (J1(A), J2(A), J3(A), J1(A′), J2(A′)).

The disadvantage of Algorithm 2.5.5 is that we have to guess the input values B, D, and p0. However,
the speed up is quite significant: for NormK0/Q(µ) = 11, Algorithm 2.4.8 took 1 week and Algorithm 2.5.5
took 90 minutes (on the same machine). Also, we can heuristically check the output by looking at
the behaviour of the polynomials, for example by attempting to run Algorithm 2.5.4. Even with these
improvements, there is still a long way to go before this algorithm is practical for larger values of
NormK0/Q(µ); Table 2.1 gives the timings for the computations that we have done so far.

Disc(K0) 8 5 5 5 5 5
NormK0/Q(µ) 2 4 5 9 11 19

Time 2 secs 63 secs 90 secs ∼ 4 mins ∼ 90 mins ∼ 3 days

Table 2.1: Timings for computation of Hilbert modular polynomials Gµ and Hµ,2
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Chapter 3

The structure of µ-isogeny graphs

The main theorem of this chapter, the Volcano Theorem, Theorem 3.1.9, gives the complete structure
of the graph of µ-isogenies of principally polarised dimension g abelian varieties defined over a finite
field with real multiplication by a given maximal order. We defined µ-isogenies in Definition 1.3.2; the
definition is recalled below. This is a generalisation of David Kohel’s structure theorem for g = 1 in
[Koh96], and Ionica and Thomé’s work on genus 2 curves with maximal real multiplication by a given
maximal order with narrow class number 1 in [IT14]. In parallel to the work in this thesis, Brooks, Jetchev,
and Wesolowski recently obtained some overlapping results, proven using different methods, in [BJW17].

3.1 The Volcano Theorem

Let q be a prime power, let π be a Weil q-number, and let K be a CM-field of degree 2g over Q such
that K = Q(π). Recall from Definition 1.3.2 that POrdπ,K0

denotes the category of principally polarised
ordinary abelian varieties (A, ξ) over Fq such that the characteristic polynomial of the q-power Frobenius
equals the minimal polynomial of π, together with an embedding OK0 ↪→ End(A) that extends the
embedding

Z[π + π] −→ End(A)
π + π 7→ Frob(A) + Ver(A),

where Frob and Ver denote the q-power Frobenius and Verschiebung morphisms respectively. Note that
the only restrictions we are making for a principally polarised abelian variety to be in POrdπ,K0 are
that there exists an embedding OK0

↪→ End(A) and that A is ordinary and geometrically simple. Indeed,
given ordinary A/Fq simple over Fq, let χ be the characteristic polynomial of Frobenius and define
K = Q(π) = Q[x]/(χ(x)). If A is simple and ordinary, then End(AFq )⊗Q = K. Recall also that the only
morphisms in POrdπ,K0

are isomorphisms.
Fix a totally positive element µ ∈ OK0 such that µOK0 is a prime ideal. Recall from Definition 1.3.3

that for (A, ξ), (A′, ξ′) ∈ POrdπ,K0 with the map ι : OK0 ↪→ End(A) induced by π 7→ Frobq, we define a
µ-isogeny

f : (A, ξ) −→ (A′, ξ′)

to be a morphism A→ A′ of abelian varieties such that the diagram

A

ξ ��

A
ι(µ)
oo

f
// A′

ξ′

��

A∨ (A′)∨
f∨
oo

commutes. Recall that we denote ι(µ) also by µ.
For principally polarised abelian varieties (A, ξ) and (A′, ξ′) and a morphism f : A → A′ we write

f† = ξ−1f∨ξ′ : A′ → A. Note that f is a µ-isogeny if and only if f†f = ι(µ). Note that if (A, ξ) = (A′, ξ′),
then (·)† is the Rosati involution. We will also call f† the dual of f .

Definition 3.1.1. Assume that the only roots of unity in OK are ±1. The µ-isogeny graph for the Weil
q-number π is the weighted undirected graph for which:
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1. The vertices are the isomorphism classes of objects in POrdπ,K0
,

2. There is an edge between vertices x and x′ if and only if there exists a µ-isogeny from x to x′.

3. If a µ-isogeny f : (A, ξ)→ (A, ξ) satisfies f† = ±f , then the edge corresponding to this isogeny has
weight 1

2 . All other edges have weight 1.

Remark 3.1.2. In fact, given that the only roots of unity in OK are ±1, if there exists a µ-isogeny f
between (A, ξ) and (A′, ξ′), the edge between x = [(A, ξ)] and x′ = [(A′, ξ′)] represents the µ-isogenies

{f,−f, f†,−f†}.

That is, the weight of an edge between x and x′ in a µ-isogeny graph denotes the total number of
isomorphic µ-isogenies between (A, ξ) and (A′, ξ′) divided by 4.

Definition 3.1.3. We define the graphs I, R1, R2, and for n ∈ Z≥1, the graph Cn in the following way:

• The graph I is a single vertex with no edges.

• The graph R1 is a single vertex with one edge of weight 1
2 .

1
2

• The graph R2 is a pair of vertices joined by a single edge of weight 1.

• For n ∈ Z≥1, the graph Cn is a cycle of length n where every edge has weight 1.

C1 C2 C3

Definition 3.1.4. For v ∈ Z≥1, d, n ∈ Z≥0, and Γ ∈ {I,R1, R2, Cn}, a (Γ, v, d)-volcano is a weighted
undirected connected graph whose vertices are partitioned into levels V0, . . . , Vd such that the following
hold:

1. The subgraph on level V0 is Γ.

2. For all i > 0, each vertex in Vi has exactly one neighbour in level Vi−1.

3. There exists no edge between vertices in Vi for i > 0.

4. For all non-negative integers i < d, each vertex in Vi has degree v, where the degree is the weighted
sum of the edges counted with intersection multiplicity.

Example 3.1.5. Here is a (C5, 3, 1)-volcano and an (R1, 3, 2)-volcano.

1
2
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Definition 3.1.6. Let G be a (Γ, v, d)-volcano, and let E be an edge in G between w and w′, where
w ∈ Vi and w′ ∈ Vj . If i > j we say that E ascends from w to w′ and descends from w′ to w. If i = j we
say that E is horizontal .

Definition 3.1.7. Let O be an order in OK which contains OK0
. The Shimura class group of O is defined

to be

SCl(O) =
{(c, λ) : c an invertible fractional O-ideal, λ ∈ K+

0 , cc = λO}
{(vO, vv)) : v ∈ K×},

where K+
0 denotes the subgroup of totally positive elements of K×0 .

Definition 3.1.8. Let µ be a totally positive element of K0 that generates a prime ideal µOK0
, and let

O be an order in K containing OK0
[π, π] that is locally maximal at µ. If µO factors in O as µO = mm,

define n(µ,O) to be the order of the class of (m, µ) in SCl(O). For such O and µ, we define the graph
ΓO,µ by

ΓO,µ =

 I if µOK0
is inert in K/K0,

Cn(O,µ) if µOK0
is split in K/K0,

Rn(O,µ) if µOK0
is ramified in K/K0.

The purpose of this section will be to prove the Volcano Theorem, below, which is our analogue to the
results for elliptic curves first given by David Kohel in [Koh96].

Theorem 3.1.9 (Volcano Theorem). Let K be a CM-field of degree 2g, generated over Q by an ordinary
Weil q-number π, and with maximal totally real subfield K0. Suppose further that the only roots of unity
in OK are {±1}. Let µ be a totally positive element of OK0

such that µOK0
is a prime ideal. Define

v = NormK0/Q(µ) + 1

and
d = max{k ∈ Z : OK0

[π, π] ⊆ OK0 + µkOK}.

For every connected component C of the µ-isogeny graph for the Weil q-number π, there exists an order O
in K containing OK0 [π, π] that is locally maximal at µ such that C is a (ΓO,µ, v, d)-volcano.

Our first goal will be to understand how µ-isogenous abelian varieties can differ. As isogenies preserve
the endomorphism algebra, looking at the endomorphism rings of µ-isogenous abelian varieties is a natural
place to begin - in fact the endomorphism ring of any abelian variety in our µ-isogeny graph is an order
in OK that contains OK0

[π, π], by assumption. Furthermore, we will see in Proposition 3.3.1 that every
vertex v in Vi satisfies End(v) = OK0

+µiO. The following proposition, which we will prove in Section 3.2,
gives a classification of the orders appearing as endomorphism rings of principally polarised ordinary
abelian varieties with real multiplication by OK0 :

Proposition 3.2.1. There is a bijection of sets{
Orders O in OK

s.t. OK0 ⊆ O

}
↔ {Ideals of OK0}

O 7→ (O : OK) ∩ OK0

OK0
+ fOK ←[ f.

Before giving the proof of the Volcano theorem we give some useful definitions regarding conductors
and µ-isogenies.

Definition 3.1.10. Let O be an order in K containing OK0
. We define the conductor of O to be

(O : OK), and we define the real conductor of O to be

fO = (O : OK) ∩ OK0
= {x ∈ OK0

: xOK ⊆ O}.

For a prime element µ ∈ OK0 , we define the real conductor of O locally at µ to be µkOK0 , where

k = ordµOK0
(fO) := max

n∈Z
{fO ⊆ µnOK0

}.

We define the non-µ-part of the real conductor to be µ−kfO, which is an OK0
-ideal coprime to µOK0

.
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Definition 3.1.11. Suppose that we have a µ-isogeny φ between objects of POrdC,K0
given by

φ : (A, ξ) −→ (A′, ξ′).

Write O = End(A) and O′ = End(A′). If

(a) µfO = fO′ , then we say that φ is ascending ,

(b) µfO′ = fO, then we say that φ is descending , and

(c) fO = fO′ , then we say that φ is horizontal .

Proposition 3.3.1. All µ-isogenies from (A, ξ, ι) ∈ POrdC,K0
such that End(A)⊗Q = K are ascending,

descending, or horizontal.

We will prove Proposition 3.3.1 in Section 3.3.

Remark 3.1.12. Recall from Theorem 1.5.5 that there is a faithful functor

Idπ,K0 −→ OrdC,K0

that preserves the notions of dual, polarisation, and µ-isogeny. Recall also from Theorem 1.3.11 that there
is an equivalence of categories

Ordπ −→ Idπ

that preserves the notions of dual, polarisation, and the action of π and π, hence this induces an equivalence
of categories

Ordπ,K0
−→ Idπ,K0

.

In particular, Proposition 3.3.1 implies that all µ-isogenies between elements of POrdπ,K0 or PIdπ,K0

are ascending, descending or horizontal.

In particular, in a µ-isogeny graph G, the non-µ-part of the real conductor is the same for all vertices
of any given connected component C of G.

Definition 3.1.13. Given a connected component C of a µ-isogeny graph, we choose a vertex (A, ξ) ∈ C,
and we define the real conductor of C to be the non-µ-part of the real conductor of End(A). We denote
this by fC .

Below is the proof of Theorem 3.1.9, the Volcano Theorem. The strategy of the proof is as follows: let
C be a connected component of the µ-isogeny graph for Weil q-number π, let fC be the conductor of C,
and let OC be the order of real conductor fC as in Proposition 3.2.1. We first prove that the full subgraph
C(fC) of C that contains the vertices with endomorphism ring OC is of the form ΓOC ,µ. We then show
that from every vertex v with End(v) = OK0 + µiOC for i < d there are exactly NormK0/Q(µ) + 1 edges,
and that every edge from a vertex in C − C(fC) is either ascending or descending. Finally, we show that
there is a unique ascending edge.

Proof of Theorem 3.1.9. For a connected component C of a µ-isogeny graph G, let GC be the union of
the connected components of G with real conductor fC . (Note that C ⊆ GC ⊆ G.) We first partition GC
by endomorphism ring and look at the action of the Shimura class group on these subsets. To this end,
write µdOK0 for the real conductor of OK0 [π, π] locally at µ (this is equivalent to the formula given for d
in the statement of the Volcano Theorem). By Proposition 3.3.1, we can partition the set of vertices of
GC as

d⊔
i=0

V (µifC),

where for any ideal I in OK0
, we define

V (I) = {(A, ξ) ∈ POrdπ,K0
: (End(A) : OK) ∩ OK0

= I}/∼=. (3.1)

To look at the action of the Shimura class group on these subsets, recall that by Theorem 1.3.11 there
is a dual, polarisation, and action-of-OK0 [π, π] preserving equivalence of categories Idπ,K0 ↔ Ordπ,K0 ,
where (P)Idπ,K0

was defined to be the category of (principally polarised) fractional OK0
[π, π]-ideals. In

particular V (I) can also be viewed as

{(a, β) ∈ PIdπ,K0
: (End(a) : OK) ∩ OK0

= I}/∼=. (3.2)

The following proposition gives us the action of the Shimura class group on V (µifC):
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Proposition 3.5.1. For an order O in OK containing OK0
[π, π] of real conductor fO, if the set

V (fO) = {(a, β) ∈ PIdπ,K0 : (End(a) : OK) ∩ OK0 = fO}/∼=

is non-empty, then the Shimura class group SCl(O) of O acts freely and transitively on V (fO) via

SCl(O)× V (fO) −→ V (fO)
([(c, λ)], [(a, β)]) 7→ [(c−1a, λβ)].

We will prove this in Section 3.5. We will now compute the structure of the full subgraph G(fC) of GC
with vertices V (fC). If V (fC) is non-empty, Proposition 3.5.1 tells us how many vertices are in V (fC), but
to deduce the structure of G(fC) we have to also study the (necessarily horizontal) µ-isogenies between the
vertices V (fC) of G(fC). Two µ-isogenies f1 : (A, ξ) −→ (A′1, ξ

′
1) and f2 : (A, ξ) −→ (A′2, ξ

′
2) are defined

to be isomorphic if there exists a 1-isogeny φ′ : (A′1, ξ
′
1) −→ (A′2, ξ

′
2) such that the diagram

(A, ξ)
f1 //

f2

$$

(A′1, ξ
′
1)

φ′

��

(A′2, ξ
′
2)

commutes. We deduce the structure of G(fC) from the following proposition:

Proposition 3.6.1. Given (A, ξ) ∈ POrdπ,K0 , let O = End(A), let fO = (O : OK) ∩ OK0 be the real
conductor of O, and let µ ∈ OK0

be a totally positive prime element µ ∈ OK0
. Suppose that there exists

(A, ξ) ∈ POrdπ,K0
with End(A) = O. Then there is a bijection of sets{

horizontal µ-isogenies
from (A, ξ)

}
/∼=
←→ {m an O-ideal : mm = µO}

such that:

1. The codomain of the µ-isogeny from [(A, ξ)] corresponding to [(m, µ)] is given by [(m, µ)] · [(A, ξ)],
where · is the action of Proposition 3.5.1.

2. The dual f† of the µ-isogeny f : [(A, ξ)]→ [(m, µ)] · [(A, ξ)] corresponding to m is isomorphic to the
µ-isogeny from [(m, µ)] · [(A, ξ)] corresponding to m.

For the proof, see Section 3.6. This immediately gives us the following:

Corollary 3.1.14. For (A, ξ) ∈ POrdπ,K0 with End(A) = O, if fO 6⊆ µOK0 , then up to isomorphism,
there are exactly m horizontal µ-isogenies from (A, ξ), where

m =

 0 if µOK0
is inert in K/K0.

1 if µOK0
is ramified in K/K0.

2 if µOK0 splits in K/K0.

If fO ⊆ µOK0
, then there are no horizontal µ-isogenies from (A, ξ).

Now if V (fC) is non-empty, Proposition 3.5.1 and Proposition 3.6.1 tell us that

(a) if µOK0
is inert in K/K0 then there are no edges in G(fC),

(b) if µOK0 is ramified in K/K0 and the element [(m, µ)] ∈ SCl(OC) is trivial, then G(fC) is the disjoint
union of loops of weight 1

2 ,

(c) if µOK0
is ramified in K/K0 and the element [(m, µ)] ∈ SCl(OC) is non-trivial, then G(fC) is the

disjoint union of pairs of vertices joined by a single edge, and

(d) if µOK0 splits in K/K0 as mm, then G(fC) is the disjoint union of cycles of length n, where n is the
order of [(m, µ)] in SCl(OC).
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That is, every non-empty connected component of G(fC) has exactly the form ΓOC ,µ. Hence, if d = 0,
then we are done, so assume now that d > 0. (Recall that d is the exponent of the real conductor µdOK0

of OK0
[π, π] locally at µ.) We first need to show that every non-empty connected component C ′ of GC

contains vertices in V (fC), which is an immediate corollary of the following proposition:

Proposition 3.7.1. For i ∈ Z>0, from every vertex in V (µifC) there is an ascending µ-isogeny.

For the proof, see Section 3.7. Defining

v = NormK0/Q(µ) + 1

and

v′ =

 v if ΓOC ,µ = I,
v − 1 if ΓOC ,µ = Rn,
v − 2 if ΓOC ,µ = Cn,

(3.3)

where n is the order of [(m, µ)] in SCl(OC), it now remains to consider the non-maximal vertices. To this
end we have the following proposition:

Proposition 3.8.1. For 0 ≤ i < d, every vertex in V (µifC) has degree

NormK0/Q(µ) + 1.

We will prove this in Section 3.8. Proposition 3.8.1 together with Corollary 3.1.14 proves that

(i) there are exactly v′ descending edges from each vertex in V (fC).

(ii) for 0 < i < d, there are v edges from every vertex in V (µifC) and they are all either ascending or
descending.

It remains only to show that if i > 0 then there is a unique ascending edge from each vertex in V (µifC),
which will be proven in Section 3.9, as part of the following proposition:

Proposition 3.9.1. Let all notation be as above. If d > 0, we have

#V (µfC) = v′#V (fC)

and for 1 ≤ i < d,
#V (µi+1fC) = (v − 1)#V (µifC).

Also, for every 0 < i ≤ d, there is a unique ascending edge from every vertex in V (µifC).

This finishes the proof of the Volcano Theorem.

The rest of this chapter is dedicated to proving the ‘black-box’ propositions from the above proof of the
Volcano Theorem. For these propositions we will use the Fixed Frobenius Lifting Theorem (Theorem 1.3.11)
to work instead in the category PIdπ,K0

of principally polarised fractional OK0
[π, π]-ideals that was

defined in Definition 1.5.1. Recall that the Fixed Frobenius Lifting Theorem gave us an equivalence of
categories

Ordπ,K0
↔ Idπ,K0

that preserves the notions of duals, of polarisation and the action of π.

Remark 3.1.15. Recall that in Chapter 1 we also defined the category OrdC,K0 of complex abelian
varieties with maximal real multiplication, and that in Theorem 1.5.5 we gave a faithful functor

Ordπ,K0
−→ OrdC,K0

that preserves the notions of dual, polarisation, and the action of OK0
. In particular, for each CM-field K

the Volcano theorem can also be applied to complex abelian varieties in the set

{(A, ι) : A ∈ OrdC, ι : K→̃End(A)⊗Q, ι(OK0
[π, π]) ⊆ End(A)} .
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3.2 Parametrising orders by their real conductors

Let K be a CM-field with maximal totally real subfield K0, and write OK and OK0
for the rings of integers

of K and K0 respectively. In this section we prove that orders O in K containing OK0
are determined

completely by their real conductors (O : OK) ∩ OK0
(c.f. Definition 3.1.10).

Proposition 3.2.1. There is a bijection of sets{
Orders O in OK

s.t. OK0
⊆ O

}
↔ {Ideals of OK0

}

O 7→ (O : OK) ∩ OK0

OK0
+ fOK ←[ f.

Proof. Define f(O) = (O : OK) ∩OK0
and Of = OK0

+ fOK . It suffices to show that for every order O in
OK containing OK0

, we have
O = Of(O) (3.4)

and that for every OK0
-ideal f, we have

f = f(Of). (3.5)

We start by proving (3.4). As

((O : OK) ∩ OK0
)OK ⊆ (O : OK)OK ⊆ O,

it is clear that
(Of(O) =)OK0

+ ((O : OK) ∩ OK0
)OK ⊆ O.

To prove equality, first note that K/K0 is a 1-dimensional K0-vector space. Choosing a basis gives a
K0-linear isomorphism

q : K/K0−̃→K0.

Then
O/Of(O)

∼= (O/OK0)/(Of(O)/OK0
) ∼= q(O)/q(Of(O)),

hence to prove (3.4), it suffices to prove that

q(O) = q(Of(O)). (3.6)

To this end, we claim that

(a) for all orders O of K containing OK0
, we have that q(O) = f(O)q(OK).

(b) for all ideals f of OK0 , we have that q(Of) = fq(OK).

Observe that if both (a) and (b) hold, then

q(O) = f(O)q(OK) = q(Of(O)),

so that (3.6) holds and hence so does (3.4). We first prove (a): note that q(O) and q(OK) are non-zero
finitely generated OK0

-submodules of K0, and OK0
is a Dedekind domain, hence q(O) and q(OK) are

non-zero invertible fractional ideals of OK0
, so that (a) holds if and only if

(q(O) : q(OK)) = f(O).

Now α ∈ K satisfies α ∈ (q(O) : q(OK)) if and only if α ∈ K0 and for all x ∈ OK we have that

q(αx) ∈ q(O). (3.7)

We claim that (3.7) holds if and only if for all x ∈ OK we have that

αx ∈ O +OK0
= O.

The ‘if’ statement is clear, so assume that for all x ∈ OK we have that q(αx) ∈ q(O). Then for each
αx ∈ O + K0 there exists y ∈ O and z ∈ K0 such that αx = y + z. Also α ∈ (q(O) : q(OK)) and
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q(O) ⊆ q(OK), so α ∈ (q(OK) : q(OK)) = OK0
, hence z = αx− y is an algebraic integer, so is in OK0

.
This proves the ‘only if’. Therefore

(q(O) : q(OK)) = OK0
∩ (O : OK) = f(O).

So (a) holds. We now prove (b):

q(Of) = {q(a+ b) : a ∈ OK0 , b ∈ fOK}
= {q(a) + q(b) : a ∈ OK0 , b ∈ fOK}
= {q(b) : b ∈ fOK}
= q(fOK)

= fq(OK).

So (b), and hence (3.4), holds. It remains to prove (3.5), which is now almost automatic:

f(Of)q(OK)
(a)
= q(Of)

(b)
= fq(OK)

and q(OK) is an invertible fractional OK0-ideal, hence

f(Of) = f.

This proposition has an easy corollary:

Corollary 3.2.2. Every order O in K containing OK0
is stable under complex conjugation.

Proof. By Proposition 3.2.1, we have that

O = OK0
+ ((O : OK) ∩ OK0

)OK
= OK0

+ ((O : OK) ∩ OK0
)OK

= OK0
+ ((O : OK) ∩ OK0

)OK
= O.

Remark 3.2.3. In fact, it is necessary that the endomorphism ring of a principally polarised abelian
variety is stable under complex conjugation, as the Rosati involution is just complex conjugation.

3.3 All µ-isogenies are ascending, descending or horizontal

Recall that for an order O in OK containing OK0 , the real conductor was defined in Definition 3.1.10 to be

fO = (O : OK) ∩ OK0 ,

and for a totally positive prime element µ of OK0
. Suppose that we have a µ-isogeny φ between objects of

POrdC,K0 given by
φ : (A, ξ, ι) −→ (A′, ξ′, ι′),

and that End(A) ⊗ Q is a CM-field. Recall from Definition 3.1.11 that, writing O = End(A) and
O′ = End(A′), if

(a) µfO′ = fO, then we say that φ is ascending,

(b) µfO = fO′ , then we say that φ is descending, and

(c) fO = fO′ , then we say that φ is horizontal.

In this section we prove the following:
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Proposition 3.3.1. All µ-isogenies from (A, ξ, ι) ∈ POrdC,K0
such that End(A)⊗Q = K are ascending,

descending, or horizontal.

Remark 3.3.2. Observe that by Theorem 1.5.5, it follows from Proposition 3.3.1 that all µ-isogenies
between objects of PIdπ,K0

are ascending, descending, or horizontal.

We first prove a useful lemma:

Lemma 3.3.3. The dual of a µ-isogeny between objects of POrdC,K0
with complex multiplication or

objects of POrdπ,K0
is also a µ-isogeny.

Proof. We prove this for objects of POrdC,K0 ; it then follows for objects of POrdπ,K0 by Theorem 1.5.5
and Theorem 1.3.11. Let (A, ξ, ι) and (A′, ξ′, ι′) ∈ POrdC,K0 and suppose that

f : (A, ξ, ι) −→ (A′, ξ′, ι′)

is a µ-isogeny. For ι : OK0
↪→ End(A), define

ι∨ : OK0
−→ End(A∨)

α 7→ ι(α)∨.

As the multiplication-by-µ map commutes with isogenies that preserve the real multiplication, both

(A′)∨

(ξ′)−1

##

(A′)∨
µ
oo

f∨
// A∨

ξ−1

��

A′ A,
f

oo

and

End((A′)∨)⊗Q
g 7→f∨g(f∨)−1

// End(A∨)⊗Q

K0

ι′∨

OO

ι∨
44

commute, so
f∨ : ((A′)∨, (ξ′)−1, ι′∨) −→ (A∨, ξ−1, ι∨)

is a µ-isogeny.

Proof of Proposition 3.3.1. By assumption, the endomorphism ring O of A is an order in K. Let f :
(A, ξ, ι)→ (A′, ξ′, ι′) be a µ-isogeny. We identify O′ = End(A′) with a subring of K via

f∗ : O′ −→ End(A)⊗Q = K
α 7→ f−1αf,

where f−1 is the inverse of f ∈ Hom(A,A′) ⊗ Q. It suffices to show that if (A, ξ, ι) and (A′, ξ′, ι′) in
POrdC,K0 are µ-isogenous, with End(A) = O and End(A′) = O′, then

fO = µfO′ , fO′ = µfO, or fO = fO′ ,

where fO and fO′ are the real conductors of O and O′ respectively. So let

f : (A, ξ, ι) −→ (A′, ξ′, ι′)

be a µ-isogeny; then the diagram

A A
µ

oo
f
// A′

ξ′

��

A∨
ξ−1

__

(A′)∨
f∨
oo

(3.8)
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commutes. In particular, we have a surjective morphism

f† := (ξ−1 ◦ f∨ ◦ ξ′) : A′ −→ A

such that
f† ◦ f = ξ−1 ◦ f∨ ◦ ξ′ ◦ f = [µ]A.

Then for every α ∈ O′, take ϕ ∈ End(A′) such that ι′(ϕ) = α, so that f† ◦ ϕ ◦ f ∈ End(A). Then
µα = ι(f† ◦ ϕ ◦ f) ∈ O, hence

µO′ ⊆ O.

By Lemma 3.3.3, the dual of a µ-isogeny is also a µ-isogeny, so O ⊆ µ−1O′. In particular, this implies that

µfO′ ⊆ fO ⊆ µ−1fO′ .

3.4 Principally polarised ideals are invertible

We will use repeatedly for the rest of the chapter the following proposition:

Proposition 3.4.1. If (a, β) ∈ PIdπ,K0
, then a is an invertible End(a)-ideal.

Before proving Proposition 3.4.1 we first prove a useful formula for End(a). Recall from Lemma 1.7.1
that for (a, β) ∈ PIdπ,K0 there exists τ ∈ K such that

(a, β) ∼= (τOK0
+O∨K0

, (τ − τ)−1),

where O∨K0
is the trace dual of OK0

.

Lemma 3.4.2. Let a be a fractional OK0 [π, π]-ideal such that a = τOK0 + O∨K0
, where τ ∈ K, and

choose A,B,C ∈ K0 not all zero such that

Aτ2 +Bτ + C = 0. (3.9)

Define the fractional OK0
-ideal d by

d = AO∨K0
+BOK0 + C(O∨K0

)−1. (3.10)

Then
End(a) = Aτd−1 +OK0

.

Proof. For every x ∈ End(a), as End(a) ⊆ K, we know that there exist a, b ∈ K0 such that

x = aτ + b.

Then for every a, b ∈ K0, we have that aτ + b ∈ End(a) if and only if

(aτ + b)(τOK0
+O∨K0

) ⊆ τOK0
+O∨K0

.

That is, if and only if for every α ∈ OK0 and every β ∈ O∨K0
, we have that

τOK0
+O∨K0

3 (aτ + b)τα = τ2αa+ ταb = −A−1(Bτ + C)αa+ ταb (3.11)

and
τOK0 +O∨K0

3 (aτ + b)β = βτa+ βb. (3.12)

Now, we have (3.11) for every α ∈ OK0
if and only if(
b− B

A
a

)
OK0 ⊆ OK0 (3.13)

and

a
C

A
OK0

⊆ O∨K0
. (3.14)
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Similarly, we have (3.12) for every β ∈ O∨K0
if and only if

aO∨K0
⊆ OK0 (3.15)

and
b ∈ OK0 . (3.16)

Note that (3.16) is equivalent to bO∨K0
⊆ O∨K0

because O∨K0
is an invertible OK0-ideal (as OK0 is a

Dedekind domain). Now aτ + b ∈ End(a) if and only if (3.13)-(3.16) hold. Furthermore, (3.13) and (3.16)
hold if and only if b ∈ OK0

and
B

A
aOK0

⊆ OK0
, (3.17)

and (3.14) holds if and only if

a
C

A
(O∨K0

)−1 ⊆ OK0 . (3.18)

We now have that aτ + b ∈ End(a) if and only if (3.15), (3.16), (3.17), and (3.18) hold. But (3.15), (3.17),
and (3.18) hold if and only if

a ∈
(
OK0

: O∨K0
+
B

A
OK0

+
C

A
(O∨K0

)−1

)
= Ad−1.

Hence
End(a) = Aτd−1 +OK0 .

Proof of Proposition 3.4.1. By Lemma 1.7.1, there exists α ∈ K× such that

αa = τOK0
+O∨K0

. (3.19)

Without loss of generality, set α = 1. Let A, B, C, and d be as in Lemma 3.4.2. We claim that

a
(
Ad−1a(O∨K0

)−1
)

= End(a).

Note that as OK0 is a Dedekind domain, all fractional OK0 -ideals are invertible. In particular, both d and
O∨K0

are invertible OK0
-ideals. Note also that

trK/K0
(τ) = −B/A and NK/K0

(τ) = −C/A. (3.20)

Now

a(Aad−1(O∨K0
)−1)

= (τOK0
+O∨K0

)(τOK0
+O∨K0

)Ad−1(O∨K0
)−1 by (3.19)

= (ττ(O∨K0
)−1 + τOK0 + τOK0 +O∨K0

)Ad−1

= (C(O∨K0
)−1 +BOK0

+AτOK0
+AO∨K0

)d−1 by (3.20)

= Aτd−1 +OK0

= End(a). by Lemma 3.4.2

Hence a is an invertible End(a)-ideal, with

a−1 = Aad−1(O∨K0
)−1.

One nice corollary of Proposition 3.4.1 is the following formula:

Corollary 3.4.3. Let (a, β) ∈ PIdπ,K0
with End(a) = O. Then

βaa = O∨. (3.21)
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Proof. Note first that by Definition 1.3.7, we have

a∨ = {x ∈ K : trK/Q(xa) ⊆ Z}
= {x ∈ K : trK/Q(xa) ⊆ Z}.

Also
trK/Q((a−1O∨)a) = trK/Q(O∨) ⊆ Z,

hence
a−1O∨ ⊆ a∨ = βa,

hence as a is an invertible O-ideal, we have that

O∨ ⊆ βaa.

For the other inclusion, observe that by Definition 1.3.7

O∨ = {x ∈ K : trK/Q(xO) ⊆ Z},

and that
trK/Q(aa∨O) = trK/Q(aa∨) ⊆ Z,

so that in particular aa∨ ⊆ O∨. Hence
βaa = aa∨ ⊆ O∨.

3.5 The action of the Shimura class group

Let π be an ordinary Weil q-number that generates a CM-field K = Q(π) with maximal totally real
subfield K0. Let µ be a totally positive prime element of OK0

and let G be the µ-isogeny graph for π. Let
C be a connected component of G and let fC be the real conductor of C, as defined in Definition 3.1.13.
Recall from Equation (3.1) that we defined

V (µifC) = {(A, ξ) ∈ POrdπ,K0 : (End(A) : OK) ∩ OK0 = µifC}/∼=,

and that under the equivalence of categories of Theorem 1.3.11, we may also define

V (µifC) = {(a, β) ∈ PIdπ,K0
: (End(a) : OK) ∩ OK0

= µifC}/∼=.

Proposition 3.5.1. For an order O in OK containing OK0
[π, π] of real conductor fO, if the set

V (fO) = {(a, β) ∈ PIdπ,K0 : (End(a) : OK) ∩ OK0 = fO}/∼=

is non-empty, then the Shimura class group SCl(O) of O acts freely and transitively on V (fO) via

SCl(O)× V (fO) −→ V (fO)
([(c, λ)], [(a, β)]) 7→ [(c−1a, λβ)].

Proof. Define
Frac(O) = {(c, λ) : c a fractional O-ideal, λ ∈ K+

0 , cc = λO}

and
Prin(O) = {(vO, vv) : v ∈ K×}

so that SCl(O) = Frac(O)/Prin(O). Now if (c, λ) ∈ Frac(O) and [(a, β)] ∈ SCl(O) then c−1a is an
invertible O-ideal and is in Idπ. Also

(c−1a)∨ = (c−1a)−1O∨ by Corollary 3.4.3

= ca∨ by Corollary 3.4.3

= λβc−1a as cc = λO and βa = a∨,
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and λ is totally positive, hence λβ is a principal polarisation of c−1a by Remark 1.3.8. Therefore Frac(O)
acts on V (fO) via

(c, λ) ∗ [(a, λ)] = [(c−1a, λβ)].

We now show that this in fact defines a free action

SCl(O)× V (fO) −→ V (fO).

Take (c, λ) ∈ Frac(O). Then for [(a, β)] ∈ V (fO), we have that

[(a, β)] = [(c−1a, λβ)]

if and only if there exists an isomorphism

(a, β) −→ (c−1a, λβ)

in PIdπ,K0 . Recall from Definition 1.3.9 and Definition 1.5.1 that an isomorphism in PIdπ,K0 is α ∈ K
such that

αa = c−1a and αλβα = β.

This is equivalent to λ = (αα)−1 and c = α−1O. In particular, we have that [(a, β)] = [(c−1a, λβ)] if and
only if

[(c, λ)] = [(α−1O, (αα)−1)] = [(O, 1)].

Hence the action is free and well-defined, so it remains to show that it is transitive. That is, it remains to
show that if [(a, β)] and [(a′, β′)] ∈ V (fO), then

(a(a′)−1, β−1β′) ∈ Frac(O). (3.22)

First, note that as β and β′ are polarisations, for every φ ∈ Φπ,j , we have that

φ(β)/i, φ(β′)/i ∈ R>0.

(Recall the definition of Φπ,j from Definition 1.3.5.) In particular, for every φ ∈ Φπ,j , we have that

φ(β′β−1) = φ(β′)φ(β)−1 ∈ R>0,

so β′β−1 is totally positive. Finally, we have by Corollary 3.4.3 that aaβ = O∨ and a′a′β′ = O∨, so

a(a′)−1a(a′)−1 = β′β−1O,

hence Equation (3.22) holds and the action is transitive.

3.6 Counting horizontal µ-isogenies

The goal of this section is to prove Proposition 3.6.1, which was used in the proof of the Volcano Theorem,
Theorem 3.1.9.

Proposition 3.6.1. Given (A, ξ) ∈ POrdπ,K0
, let O = End(A), let fO = (O : OK) ∩ OK0

be the real
conductor of O, and let µ ∈ OK0

be a totally positive prime element µ ∈ OK0
. Suppose that there exists

(A, ξ) ∈ POrdπ,K0 with End(A) = O. Then there is a bijection of sets{
horizontal µ-isogenies

from (A, ξ)

}
/∼=
←→ {m an O-ideal : mm = µO}

such that:

1. The codomain of the µ-isogeny from [(A, ξ)] corresponding to [(m, µ)] is given by [(m, µ)] · [(A, ξ)],
where · is the action of Proposition 3.5.1.

2. The dual f† of the µ-isogeny f : [(A, ξ)]→ [(m, µ)] · [(A, ξ)] corresponding to m is isomorphic to the
µ-isogeny from [(m, µ)] · [(A, ξ)] corresponding to m.
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We first prove two lemmas.

Lemma 3.6.2. Suppose that (a, β) and (a′, β′) ∈ PIdπ,K0
and that End(a) = End(a′) = O. If α ∈ (a′ : a)

is a µ-isogeny
(a, β) −→ (a′, β′)

then
αa(a′)−1αa(a′)−1 = µO.

Proof. By Corollary 3.4.3 we know that

βaa = β′a′a′ = O∨.

Now given α ∈ (a′ : a), by definition it is a µ-isogeny if and only if

µβ = ααβ′,

which implies that
ααβaa = µβa′a′.

Also, by Proposition 3.4.1, we know that a′ and a′ are invertible as O-ideals, hence

αa(a′)−1αa(a′)−1 = µO.

Lemma 3.6.3. Let O be an order in OK containing OK0
of real conductor fO and suppose that µOK0

|fO.
Then there is a unique prime ideal m of O lying above µOK0

, given by

m = µOK0
+ fOOK .

Proof. Recall that O = OK0 + fOOK so m is clearly an ideal of O. Furthermore, we have that

O/m ∼= OK0/µOK0

which is a field (as µOK0
is prime and OK0

is a Dedekind domain), so m is maximal. Suppose now that
m̃ is a prime ideal of O lying above µOK0

, so that

µOK0
+ µfOOK = µO ⊆ m̃. (3.23)

We can factor µfOOK into O-ideals as

µfOOK = m(fOOK),

which is contained in m̃ by (3.23). Hence as m̃ is a prime O-ideal, either

m ⊆ m̃ (3.24)

or
fOOK ⊆ m̃, (3.25)

and by (3.23), we have also that µOK0
⊆ m̃, so that (3.25) implies that

µOK0
+ fOOK ⊆ m̃. (3.26)

Therefore, as m = µOK0 + fOOK is a maximal ideal, we have by (3.24) or (3.26) that m̃ = m, so m is
unique.

Proof of Proposition 3.6.1. We prove this in the equivalent category Idπ,K0
instead of in Ordπ,K0

; that
is, we count µ-isogenies from (a, β) ∈ PIdπ,K0

such that End(a) = O. Suppose that there exists
(a′, β′) ∈ PIdπ,K0 with End(a′) = O and a µ-isogeny

α : (a, β) −→ (a′, β′).
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Then by Lemma 3.6.2, we have that

αa(a′)−1αa(a′)−1 = µO. (3.27)

Also αa(a′)−1 is an O-ideal as αa ⊂ a′, so (3.27) implies that there is an O-ideal m such that µO = mm.
If µOK0

|fO, we have by Lemma 3.6.3 that such an m does not exist and hence there are no horizontal
µ-isogenies in this case.

Suppose now that fO = fC . Then µO is relatively prime to fOO = (O : OK), and hence decomposes
uniquely into prime ideals. As µ is a prime element of OK0 , the ideal µOK0 is either inert, ramified, or
split in K/K0. If µOK0

is inert, then there exists no O-ideal m such that µO = mm, so as before, there
are no horizontal µ-isogenies from (a, β) in this case.

It remains to consider the case in which µOK0
is split or ramified in K/K0, so suppose that µO

decomposes as µO = mm. Then µ ∈ (ma : a) and m corresponds to the µ-isogeny

µ : (a, β) −→ (ma, µ−1β),

and µ ∈ (ma : a) and m corresponds to the µ-isogeny

µ : (a, β) −→ (ma, µ−1β).

We claim that up to isomorphism these are the only horizontal µ-isogenies from (a, β). Suppose that there
is an object (a′, β′) ∈ PIdπ,K0 with End(a′) = O for which some α ∈ (a′ : a) defines a µ-isogeny

(a, β) −→ (a′, β′).

Then β′ = (αα)−1µβ, and by Lemma 3.6.2, we have that

αa(a′)−1αa(a′)−1 = µO,

so by unique factorisation, we have that

αa(a′)−1 = m or αa(a′)−1 = m,

that is,
a′ = µ−1αma or a′ = µ−1αma.

It is then easy to see that if a′ = µ−1αma then µ−1α ∈ (a′ : ma) defines a 1-isogeny (i.e. isomorphism)

(ma, µ−1β) −→ (a′, (αα)−1µβ)

corresponding to µ−1αO, in which case the µ-isogeny defined by µ ∈ (ma : a) corresponding to m and the
µ-isogeny defined by α ∈ (a′ : a) corresponding to µ−1αO make the diagram

(a, β)
µ
//

1

��

(ma, µ−1β)

µ−1α

��

(a, β)
α // (a′, β′)

commute and hence are isomorphic by definition. Similarly, if a′ = µ−1αma then µ ∈ (ma : a) and
α ∈ (a′ : a) are isomorphic as µ-isogenies.

We now show that m = m if and only if the µ-isogenies defined by µ ∈ (ma : a) and µ ∈ (ma : a)
corresponding to m and m respectively are isomorphic. The ‘only if’ is clear, so we proceed by proving
the ‘if’. Suppose that there exists a 1-isogeny defined by α ∈ (ma : ma) such that the diagram

(a, β)
µ
//

µ

%%

(ma, µ−1β)

α

��

(ma, µ−1β)

commutes. Then α = 1 so ma = αma = ma. Therefore as a is an invertible O-ideal, we get that m = m.
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It remains to show (2), that the dual f† of the µ-isogeny

f = µ : (a, β)→ (ma, µ−1β)

corresponding to m is the µ-isogeny from
[(ma, µ−1β)]

corresponding to m. By the definition of a µ-isogeny, we have that f†f = µ, hence

f† = 1 : (ma, µ−1β)→ (a, β).

This is the composition of the µ-isogeny

g = µ : (ma, µ−1β)→ (mma, µ−2β)

corresponding to m and the 1-isogeny

µ−1 : (µa, µ−2β)→ (a, β).

Hence f† is isomorphic to g so (2) holds.

3.7 A construction of ascending µ-isogenies

The goal of this section is to prove Proposition 3.7.1, which was used in the proof of the Volcano Theorem,
Theorem 3.1.9. Recall that C is a connected component of the µ-isogeny graph for the Weil q-number π,
that fC is the real conductor fC (as defined in Definition 3.1.13), and that

V (µifC) = {(A, ξ) ∈ POrdπ,K0 : (End(A) : OK) ∩ OK0 = µifC}/∼=.

Proposition 3.7.1. For i ∈ Z>0, from every vertex in V (µifC) there is an ascending µ-isogeny.

Proof. We prove this in the category PIdπ,K0
. That is, we prove that for that (a, β) ∈ PIdπ,K0

with
End(a) = O, if µOK0

divides fO, the real conductor of O, then there is an ascending µ-isogeny from (a, β).
So suppose that µOK0 |fO and write O′ = OK0 + µ−1fOOK for the order in OK of real conductor µ−1fO.
We claim that

End(aO′) = O′, (3.28)

and that
(aO′, µβ) ∈ PIdπ,K0 . (3.29)

Note that (3.29) implies that 1 ∈ (aO′, a) defines a µ-isogeny

(a, β) −→ (aO′, µβ),

and (3.28) implies that it is ascending. For (3.28), observe that aO′ is an invertible O′-ideal with
inverse a−1O′, and hence End(aO′) = O′. For (3.29), if we can can show that (aO′)∨ = µβaO′ then by
Remark 1.3.8 we have that µβ is a principal polarisation of a′O′ as µ is totally positive. We have that

(aO′)∨ = {x ∈ K : trK/Q(xaO′) ⊆ Z}
= {x ∈ K : xa ⊆ (O′)∨}
= ((O′)∨ : a)
= a−1(O′)∨ as a is invertible
= βa(O : O∨)(O′)∨ by Corollary 3.4.3.

In the last step we used also that O∨ is an invertible O-ideal; note that O∨ = βaa is the product of
invertible O-ideals and so is itself also an invertible O-ideal. Hence it suffices to show that

(O : O∨)(O′)∨ = µO′. (3.30)

Now as µO′ ⊆ O, we have that

µO′O∨ ⊆ µO′(µO′)∨ = µO′µ−1(O′)∨ = (O′)∨,

then multiplying by (O : O∨) gives µO′ ⊆ (O : O∨)(O′)∨. Also, as (O′)∨ ⊆ O∨, this gives us that

µO′ ⊆ (O : O∨)(O′)∨ ⊆ O.

By Lemma 3.6.3 we know that µO′ is the unique prime ideal of O lying above µOK0 , hence maximal, so
either µO′ = (O : O∨)(O′)∨ or (O : O∨)(O′)∨ = O. But O is not an O′-submodule of K, hence (3.30),
and in turn (3.29), hold.
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3.8 Counting the degree of vertices in the µ-isogeny graph

Recall from (3.2) that for an ideal I of OK0
we defined

V (I) = {(A, ξ) ∈ POrdπ,K0 : (End(A) : OK) ∩ OK0 = I}/ ∼=

to be the set of vertices in the µ-isogeny graph for the Weil q-number π for which the endomorphism
rings of the corresponding abelian varieties have real conductor I. In this section we prove the following
proposition:

Proposition 3.8.1. For 0 ≤ i < d, every vertex in V (µifC) has degree

NormK0/Q(µ) + 1.

Proof. Recall that in Theorem 1.5.5 we defined an equivalence of categories

Fπ : Idπ,K0
−→ OrdC,π,K0

that preserves the action of OK0
[π, π] and the notions of dual and polarisation. Let (a, β) ∈ PIdπ,K0

and
suppose that [(a, β)] ∈ V (µifC), where 0 ≤ i < d. Write Fπ(a, β) = (A, ξ, e).

From Lemma 2.3.9 we have that there are NormK0/Q(µ)+1 non-isomorphic µ-isogenies from any object
in POrdC,K0

. (See Definition 2.1.3 to recall how Lemma 2.3.9 relates to objects in POrdC,K0
). Hence,

it suffices to show that every µ-isogeny from (A, ξ, e|OK0
) in OrdC,K0

comes from a unique µ-isogeny in
OrdC,π.

Given a µ-isogeny
f : (A, ξ, e|OK0

)→ (A′, ξ′, ι′)

in OrdC,K0
, embed K into End(A′)⊗Q via e′ = f ◦ e ◦ f−1. Then

End((A, e)) = End(a) = OK0
+ µifCOK ⊆ OK ,

therefore by Proposition 3.3.1 we have that (e′)−1(End(A′)) = OK0 + µjfCOK where j ∈ {i− 1, i, i+ 1}.
In particular, as i < d this implies that

f : (A, ξ, e)→ (A′, ξ′, e′)

is in OrdC,π,K0 . Conversely, for every embedding e′ such that f : (A, ξ, e)→ (A′, ξ′, e′) is a µ-isogeny in
OrdC,π,K0 , by definition we have that e′ = f ◦ e ◦ f−1.

3.9 The order of the Shimura class group

In this section we prove Proposition 3.9.1, which was used in the proof of the Volcano Theorem. We
will use notation as in the proof of the volcano theorem: recall that for a connected component C of the
µ-isogeny graph for the Weil q-number π, we defined fC to be the real conductor of C, and we defined OC
to be the order given by OK0

+ fCOK . Recall also that we defined V (I) to be the set of vertices with
endomorphism ring of real conductor I, we defined v = NormK0/Q(µ) + 1, and we defined

v′ =

 v if ΓOC ,µ = I,
v − 1 if ΓOC ,µ = Rn for some n,
v − 2 if ΓOC ,µ = Cn for some n.

(3.31)

Proposition 3.9.1. Let all notation be as above. If d > 0, we have

#V (µfC) = v′#V (fC)

and for 1 ≤ i < d,
#V (µi+1fC) = (v − 1)#V (µifC).

Also, for every 0 < i ≤ d, there is a unique ascending edge from every vertex in V (µifC).
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Lemma 3.9.2. Let K be a CM-field with maximal totally real subfield K0 such that that the only roots
of unity in OK are ±1, and let O′ ⊂ O be orders in OK containing OK0

. Write fO′ and fO for the real
conductors of O′ and O respectively, and suppose that that fO′ = µfO. Then the map

ρ : SCl(O′) −→ SCl(O)
[(a′, λ′)] 7→ [(a′O, λ′)].

is a surjective homomorphism. Furthermore, if µOK0
6 |fO, then

# ker(ρ) =

 NormK0/Q(µ) + 1 if µOK0
is inert in K/K0

NormK0/Q(µ) if µOK0
is ramified in K/K0

NormK0/Q(µ)− 1 if µOK0
is split in K/K0,

and otherwise
# ker(ρ) = NormK0/Q(µ).

To prove Lemma 3.9.2, we first prove some lemmas. The proofs of Lemma 3.9.3 and Lemma 3.9.6 are
based on the proofs of two similar results in [BS17, Lemma 7] and [BS17, Lemma 8].

Lemma 3.9.3. Let K be a CM field with maximal totally real subfield K0, let O be an order in K that
contains K0, and let fO be the real conductor of O. Suppose that a is an invertible ideal of O. Then
a + fOOK = O if and only if a + fOO = O.

Proof. Recall from Proposition 3.2.1 that O = OK0 + fOOK so that in particular

fOO ⊆ fOOK ⊆ O

and hence
a + fOO ⊆ a + fOOK ⊆ a +O = O.

So one implication is clear. It remains to prove the other implication, so assume that a + fOOK = O.
Observe that fOO = fO(OK0

+ fOOK) = fO + f2OOK , giving

f2OOK ⊆ fOO, (3.32)

and that
a + fOOK = O = O2 = (a + fOOK)2 ⊆ a + f2OOK . (3.33)

Together, (3.32) and (3.33) give us
a + fOOK ⊆ a + fOO,

hence
a + fOO = a + fOOK = O.

We will make implicit use of Lemma 3.9.3 from this point on.

Definition 3.9.4. For R a ring and f an ideal in R, a fractional R-ideal a is defined to be coprime to f if
for every prime ideal p of R that divides f, the localisation a⊗R Rp at p of a is Rp.

Lemma 3.9.5. Let K, O, O′, fO, and fO be as in Lemma 3.9.2. For R = O or O′, define GO to be the
group of invertible fractional R-ideals that are coprime to f = fO′OK . Then there is an isomorphism of
groups

r : GO′ −→ GO
a′ 7→ a′O.

Proof. We first check that r is well-defined. Suppose that a′ is an invertible fractional O′-ideal coprime to
f. Then for every prime ideal p′ of O′ dividing f, we have that a′ ⊗O′ O′p′ = O′p′ . Let p be a prime of O
lying above p′. Then

a′O ⊗O Op = a′ ⊗O′ Op = a′ ⊗O′ O′p′ ⊗O′p′ Op = O′p′ ⊗O′p′ Op = Op.

Hence a′O is coprime to f, so r is well-defined.

45



By [Ste08, Theorem 5.3], there is an isomorphism of groups

ψR : GR −→
⊕

prime p⊆RGRp

a 7→ (a⊗Op)p.

Furthermore, we claim that ⊕
prime p′⊆O′

GO′
p′

=
⊕

prime p⊆O

GOp
. (3.34)

To see this, given a prime ideal p ⊆ O, let p′ = p ∩ O′. Then if p 6 |f, we get an isomorphism O′p′ ∼= Op.
This gives all primes of O′ that are coprime to f. Also GO′

p′
is trivial if p′|f and GOp

is trivial if p|f, so

(3.34) holds. Hence ψ−1
O ◦ ψO′ : GO′ → GO defines an isomorphism from GO′ to GO.

It remains to show that r = ψ−1
O ◦ ψO′ . Let a′ ∈ GO′ . Then

ψO′(a
′) = (a′ ⊗O′p′)p′ = (a′ ⊗Op)p ∈

⊕
prime p⊆O

GOp
,

and
ψO ◦ r(a′) = ψO(a′O) = (a′O ⊗Op)p = (a′ ⊗Op)p,

so r = ψ−1
O ◦ ψO′ and the lemma now follows.

Lemma 3.9.6. Let K, O, O′, fO′ , and ρ be as in Lemma 3.9.2. Then ρ is a surjective homomorphism
and

ker(ρ) ∼=
(O/fO′OK)×

(O′/fO′OK)×
.

Proof. For any order R in K, define

IR =

{
(a, α) :

a an invertible fractional R-ideal,
aa = αR, α ∈ K0, α >> 0

}
and

PR = {(xR, xx) : x ∈ K∗}

so that
SCl(R) = IR/PR.

Furthermore, for any ideal f in R, define

IR(f) =

{
(a, α) :

a an invertible fractional R-ideal coprime to f,
aa = αR, α ∈ K0, α >> 0

}
,

and define
PR(f) = IR(f) ∩ PR,

so that
IR(f)/PR(f) ↪→ SCl(R).

In fact, by [Ste08, Proposition 4.4] and the Chinese Remainder Theorem, we get an isomorphism

IR(f)/PR(f) ∼= SCl(R).

In particular, it suffices to show that

ρ̃ : IO′(f)/PO′(f) −→ IO(f)/PO(f)
[(a′, α′)] 7→ [(a′O, α′)]

with f = fO′OK is a surjective homomorphism with kernel isomorphic to

(O/fO′OK)×

(O′/fO′OK)×
.

We claim first that
IO′(f) −→ IO(f)
(a′, α′) 7→ (a′O, α′) (3.35)
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defines a bijection. This is well-defined and injective by Lemma 3.9.5, so we only prove surjectivity.
Suppose that (a, α) ∈ IO(f), and let a′ = r−1(a), where r is the isomorphism of Lemma 3.9.5. As r is an
isomorphism, we only show that αO′ is coprime to f. It suffices to show that αOK0

and fO′ are coprime
as OK0-ideals: as OK0 ⊆ O′ in this case

O′ = O′OK0
= O′(αOK0

+ fO′) ⊆ αO′ + f,

so αO′ is coprime to f. Note that αO is coprime to f, so (α mod f) ∈ (O/f)× defines an automorphism on
O/f. Also, there is an injective ring homomorphism

OK0
/fO′ ↪→ O/f

that sends
α mod fO′ 7→ α mod f.

Hence multiplication by (α mod fO′) defines an injective endomorphism on OK0/fO′ , which is a finite
ring, hence multiplication by (α mod fO′) is an automorphism. In particular, this gives that

α mod fO′ ∈ (OK0/fO′)
×

and hence αOK0 is coprime to fO′ . We have now proved the surjectivity of (3.35), hence (3.35) is a
bijection.

We have proven that ρ̃ is surjective and has kernel PO(f)/PO′(f). Suppose that (xO, xx) ∈ PO(f).
Then there exist invertible O-ideals b and c, coprime to f, such that xO = b/c. Furthermore, without loss
of generality we may assume that b and c are principal: let r ∈ Z>0 be minimal such that cr is principal,
then xO = (bcr−1)/cr, and bcr−1 and cr are coprime to f and principal. For (xO, xx) ∈ PO(f), choose α
and β ∈ O such that xO = (αO)/(βO) and xx = αβ−1αβ−1. We claim that

i : PO(f) −→ (O/f)×/(O′/f)×
(xO, xx) 7→ αβ−1

is a well-defined surjective morphism with kernel PO′(f). Well-defined is clear as αβ−1 is uniquely defined
up to roots of unity in O, and O and O′ have the same roots of unity by assumption. Surjectivity is also
clear: for every x+ f ∈ (O/f)×, we have an O-ideal xO that is coprime to f. The kernel of i is given by

{(xO, xx) ∈ PO(f) : αβ−1 + f ∈ (O′/f)×},

hence
ker(i) −→ PO′(f)

(xO, xx) 7→ (xO′, xx)

defines a bijection. This proves the lemma.

Proof of Lemma 3.9.2. We have from Lemma 3.9.6 that ρ is a well-defined surjective homomorphism and
that

ker(ρ) ∼=
(O/fO′OK)×

(O′/fO′OK)×
. (3.36)

To count # ker(ρ), we first show that

ker(ρ) ∼=
(O/µO)×

(O′/µO)×
.

We have that
fO′OK = µfOOK ⊆ µ(OK0 + fOOK) = µO,

so that in particular there is a natural map

O/fO′OK // // O/µO

and an induced morphism of unit groups

(O/fO′OK)× // // (O/µO)×.
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Define

ϕ : (O/fO′OK)× −→ (O/µO)×

(O′/µO)×

to be the composition of this with the natural quotient morphism. We claim that

ker(ϕ) = (O′/fO′OK)×. (3.37)

Clearly (O′/fO′OK)× ⊆ ker(ϕ). To show that ker(ϕ) ⊆ (O′/fO′OK)×, suppose that x+ fO′OK ∈ ker(ϕ).
Then there exists y ∈ O′ such that x − y ∈ µO ⊆ O′, so x ∈ O′. Hence (3.37) holds, so that by the
isomorphism theorem we have a group isomorphism

(O/fO′OK)×

(O′/fO′OK)×
∼=

(O/µO)×

(O′/µO)×
. (3.38)

Then by (3.36),

# ker(ρ) =
#(O/µO)×

#(O′/µO)×
. (3.39)

We first count the denominator. By Proposition 3.2.1, we have that

O′ = OK0 + fO′OK = OK0 + µfOOK = OK0 + µO,

hence
O′/µO = (OK0

+ µO)/µO ∼= OK0
/(µO ∩OK0

) = OK0
/µOK0

.

Write
` = NormK0/Q(µ).

We assumed µOK0
to be prime, so O′/µO ∼= OK0

/µOK0
is an integral domain with ` elements. Hence

#(O′/µO)× = `− 1.

We now count the numerator of (3.39). If either

(a) µOK0
- fO and µOK0

is ramified in K/K0 so that µO = m2 is a square in O, or

(b) µOK0 | fO, so that by Lemma 3.6.3, the O-ideal m = µOK0 + fOOK is the unique prime O-ideal
containing µO,

then there is a unique maximal ideal m/µO in O/µO, and this is the set of non-units. Therefore in either
case

#(O/µO)× = #(O/µO)−#(m/µO) = `2 − ` = `(`− 1).

If µOK0
6 |fO and µOK0

is inert in K/K0, then µO is prime in O and hence O/µO is an integral domain
with NormK/Q(µ) = `2 elements, giving

#(O/µO)× = `2 − 1.

Finally, if µOK0 6 |fO and µOK0 splits in K/K0, then there are 2 distinct prime ideals m and m of O lying
above µO. This gives

#(O/µO)× = #(O/mO)×#(O/mO)× = (`− 1)2.

The result now follows from (3.39).

Proof of Proposition 3.9.1. Recall that C is a connected component of the µ-isogeny graph for Weil
q-number π, so in particular contains a vertex ν. If ν 6∈ V (fC), there is an ascending µ-isogeny from ν by
Proposition 3.7.1, so inductively we see that V (fC) is non-empty. We first show that

#V (µfC) = v′#V (fC),

where

v′ =

 NormK0/Q(µ) + 1 if µOK0
is inert in K/K0

NormK0/Q(µ) if µOK0
is ramified in K/K0

NormK0/Q(µ)− 1 if µOK0
is split in K/K0.
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By assumption d > 0, so by Proposition 3.8.1 there are NormK0/Q(µ) + 1 edges from every vertex in
V (fC), and by Proposition 3.6.1, we have that v′ of these are non-horizontal, hence descending to V (µfC)
by Proposition 3.3.1. Note that NormK0/Q(µ) ≥ 2, so that v′ > 0, and hence V (µfC) is non-empty.

Also, by Proposition 3.5.1, for any K-order Õ such that OK0
[π, π] ⊆ Õ, if V (fO) 6= ∅ we have that

#SCl(Õ) = #V (fO), so by Lemma 3.9.2 we get that

#V (µfC) = #SCl(OK0 + µfCOK) = v′#SCl(OK0 + fCOK) = v′#V (fC).

Observe that there is a unique ascending µ-isogeny from every vertex in V (µfC): by Proposition 3.7.1
there is an ascending µ-isogeny from every vertex in V (µfC), which accounts for #V (µfC) of the descending
µ-isogenies from V (fC), but this is all of them as #V (µfC) = v′#V (fC).

By induction, for every 1 < i < d we have that

#V (µi+1fC) = (v − 1)#V (µifC).

(The induction is the same argument as for i = 1 above, where we replace the horizontal edges between
elements of V (fC) by the unique ascending edge from every element of V (µi−1fC).)

3.10 Example computation of a µ-isogeny graph

All the calculations for this example were done in Sage [Sage]. Let us consider the curve

C : y2 = 902701461021360x6 + 938022069033830x5 + 2496384827106779x4

+ 560788189813847x3 + 2116308108498283x2

+ 1865564692722366x+ 2658210628678317

defined over Fp, with p = 2681144777671301, which is a prime. This curve was taken from the Echidna
Database [Echidna, https://www.i2m.univ-amu.fr/perso/david.kohel/dbs/cgi-bin/quartic_cm_
field.py?D=5&A=37&B=281] and has endomorphism ring isomorphic to the maximal order of the quartic
CM-field

K := Q[x]/(x4 + 37x2 + 281),

in which p splits completely and p = ππ, where K = Q(π), and π is the Frobenius morphism on the
Jacobian of C. The minimal polynomial of π is

χπ(x) =x4 − 605104x3 − 5215893977257194x2 − 1622371429548014920304x

+ 7188537318834090069340399032601.

The maximal totally real subfield of K is K0 = Q(
√

5), and we will now fix

µ = (5 +
√

5)/2.

Then µ is a totally positive algebraic integer in K0 with norm 5, and µOK splits into prime ideals of OK
as mm, where

m =5OK + (−66584412017/973349359248690349479457148650000π3

+ 17464102246896083/486674679624345174739728574325000π2

+ 179358776708395470690104969/973349359248690349479457148650000π

− 22924673687227109/181517493451825000)OK .

We can easily check that the order of [(m, µ)] in SCl(OK) is 3, and that

d = max{k ∈ Z : OK0 [π, π] ⊆ OK0 + µkOK} = 4,

so that by Theorem 3.1.9, the connected component of the µ-isogeny graph in which C lies is a (C3, 6, 4)-
volcano, pictured below.
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Colour Blue Purple Green Orange Red
End(A) OK OK0

+ µOK OK0
+ µ2OK OK0

+ µ3OK OK0
+ µ4OK

Table 3.1: Colour coding

A (C3, 6, 4)-volcano.
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Chapter 4

Isogenies for point counting on genus
two hyperelliptic curves with
maximal real multiplication

This chapter is joint work with Ballentine, Guillevic, Lorenzo-Garćıa, Massierer, Smith, and Top, and has
been published as [Bal+17].

This chapter reports on work carried out at the workshop Algebraic Geometry for Coding Theory and
Cryptography at the Institute for Pure and Applied Mathematics (IPAM), University of California, Los
Angeles, February 22–26, 2016. The authors thank IPAM for its generous support.

Please note that the numbering in this thesis is different from the published version; due to this being
Chapter 4 of the thesis every number of the form 4.x appears in the published version as 3.x.
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Abstract

Schoof’s classic algorithm allows point-counting for elliptic curves over finite fields in polynomial time.
This algorithm was subsequently improved by Atkin, using factorizations of modular polynomials, and by
Elkies, using a theory of explicit isogenies. Moving to Jacobians of genus-2 curves, the current state of
the art for point counting is a generalization of Schoof’s algorithm. While we are currently missing the
tools we need to generalize Elkies’ methods to genus 2, recently Martindale and Milio have computed
analogues of modular polynomials for genus-2 curves whose Jacobians have real multiplication by maximal
orders of small discriminant. In this article, we prove Atkin-style results for genus-2 Jacobians with real
multiplication by maximal orders, with a view to using these new modular polynomials to improve the
practicality of point-counting algorithms for these curves.

4.1 Introduction

Efficiently computing the number of points on the Jacobian of a genus 2 curve over a finite field is
an important problem in experimental number theory and number-theoretic cryptography. When the
characteristic of the finite field is small, Kedlaya’s algorithm and its descendants provide an efficient
solution (see [Ked01], [Har07], and [Har12]), while in extremely small characteristic we have extremely
fast AGM-style algorithms (see for example [Mes01], [Mes02], and [Car04]). However, the running times
of these algorithms are exponential in the size of the field characteristic; the hardest case, therefore (and
also the most important case for contemporary cryptographic applications) is where the characteristic is
large, or even where the field is a prime field.

So let q be a power of a large prime p, and let C be a genus-2 curve over Fq. Our fundamental problem
is to compute the number of Fq-rational points on the Jacobian JC of C.

4.1.1 The state of the art

In theory, the problem is solved: we can compute #JC(Fq) in polynomial time (that is, polynomial
in log q) using Pila’s algorithm [Pil90], which is the immediate generalization of Schoof’s elliptic-curve
point-counting algorithm [Sch85] to higher-dimensional abelian varieties. But the exponent in Pila’s
polynomial time is extremely large; so, despite its theoretical importance, this algorithm is completely
impractical (see §4.3.4). Indeed, to our knowledge it has never been implemented.

Gaudry and Schost have developed and successfully implemented a much more practical variant
of Pila’s algorithm for the case q = p that runs in time Õ(log8 p); not just polynomial time, but on
the edge of practicality [GS12]. Still, their algorithm requires an extremely intensive calculation for
cryptographic-sized Jacobians: Gaudry and Schost estimated a running time of around one core-month
(in 2008) to compute #JC(Fp) when p has around 128 bits [GS12].

The situation improves dramatically if JC is equipped with an efficiently computable real multiplication
endomorphism. For such Jacobians, Gaudry, Kohel, and Smith [GKS11] give an algorithm to compute

#JC(Fq) in time Õ(log5 q). This allowed the computation of #JC(Fp) for one curve C drawn from the
genus-2 family in [TTV91] with p = 2512 + 1273 in about 80 core-days (in 2011); this remains, to date,
the record for genus-2 point counting over prime fields. For 128-bit fields, the cost is reduced to 3 core
hours (in 2011).

All of these algorithms are generalizations of Schoof’s algorithm, which computes the Frobenius
trace (and hence the order #E(Fq)) of an elliptic curve E/Fq modulo ` for a series of small primes ` by
considering the action of Frobenius on the `-torsion. But Schoof’s algorithm is not the state of the art for
elliptic-curve point counting: it has evolved into the much faster Schoof–Elkies–Atkin (SEA) algorithm,
surveyed in [Sch95]. Atkin’s improvements involve factoring the `-th modular polynomial (evaluated at the
j-invariant of the target curve) to deduce information on the Galois structure of the `-torsion, which then
restricts the possible values of the trace modulo ` (see §4.2.6). Elkies’ improvements involve computing
the kernel of a rational `-isogeny, which takes the place of the full `-torsion; deducing the existence of the
isogeny, and computing its kernel, requires finding a root of the `-th modular polynomial evaluated at the
j-invariant of the target curve (see §4.2.7).
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4.1.2 Our contributions, and beyond

Our ultimate goal is to generalize Atkin’s and Elkies’ improvements to genus 2. In this article, we
concentrate on generalizing Atkin’s methods to genus-2 Jacobians with known real multiplication. This
project is prompted by the recent appearance of two new algorithms for computing modular ideals, the
genus-2 analogue of modular polynomials: Milio [Mil15a] has computed modular ideals for general genus-2
Jacobians, while Milio [Mil15b, §5] and Martindale [Mar18] have independently computed modular ideals
for genus-2 Jacobians with RM by orders of small discriminants.

To extend Elkies’ methods to genus 2 we would need an analogue of Elkies’ algorithm [Sch95, §§7-8],
which computes defining equations for the kernel of an isogeny of elliptic curves (and the isogeny itself)
corresponding to a root of the evaluated modular polynomial. We do not know of any such algorithm in
genus 2. Couveignes and Ezome have recently developed an algorithm to compute explicit (`, `)-isogenies
of genus-2 Jacobians [CE15], presuming that the kernel has already been constructed somehow—but
kernel construction is precisely the missing step that we need.1

In contrast, Atkin’s improvements for elliptic-curve Schoof require nothing beyond the modular
polynomial itself; so we can hope to achieve something immediately in genus 2 by generalizing Atkin’s
results on factorizations of modular polynomials to the decomposition of genus-2 modular ideals. This is
precisely what we do in this article.

We focus on the RM case for three reasons. First, the construction of explicit modular ideals is furthest
advanced in this case: Milio has constructed modular ideals for primes in Q(

√
5) of norm up to 31, while

for general Jacobians the current limit is 3. It is therefore already possible to compute nontrivial and
interesting examples in the RM case. Second, point counting is currently much more efficient for Jacobians
with efficiently computable RM; we hope that, at some point, our methods can help tip RM point counting
from “feasible” into “routine”. Third, from a purely theoretical point of view, the RM case is more similar
to the elliptic curve case in the sense that real multiplication allows us, in favorable circumstances, to
split `-torsion subgroups of the Jacobian into groups of the same size as encountered for elliptic curves.

After recalling the SEA algorithm for elliptic curves in §4.2, we describe the current state of genus 2
point counting, and set out our program for a generalized SEA algorithm in §4.3. We describe the modular
invariants we need for this in §4.4, and the modular ideals that relate them in §4.4.2. We can then state
and prove our main theoretical results, which are generalizations of Atkin’s theorems for these modular
ideals, in §4.5. In §4.6 we provide some concrete details on the special case of RM by Q(

√
5), before

concluding with some experimental results in §4.7.

4.1.3 Vanilla abelian varieties

We can substantially simplify the task ahead by restricting our attention to a class of elliptic curves
and Jacobians (more generally, abelian varieties) with sufficiently general CM endomorphism rings. The
following definition makes this precise.

Definition 4.1. We say that a g-dimensional abelian variety A/Fq is vanilla2 if its endomorphism algebra
EndFq (A)⊗Q (over the algebraic closure) is a CM field of degree 2g that does not contain any roots of
unity other than ±1.

If an elliptic curve E/Fq is vanilla, then E is nonsupersingular and j(E) is neither 0 nor 1728: these
are the conditions Schoof applies systematically in [Sch95]. We note that in particular, vanilla abelian
varieties are absolutely simple.

To fix notation, we recall that if A is an abelian variety, then a principal polarization is an isomorphism
ξ : A → A∨ associated with an ample divisor class on A, where A∨ = Pic0(A) is the dual abelian variety
(see for example [Mil86, §13]). We will be working with elliptic curves and Jacobians of genus-2 curves;
these all have a canonical principal polarization. Each endomorphism φ of A has a corresponding dual

1 We would also like mention Bisson, Cosset, and Robert’s AVIsogenies software package [BCR], which provides some
functionality in this direction. However, their methods apply to abelian surfaces with a lot of rational 2- and 4-torsion, and
applying them to general genus-2 Jacobians (with or without known RM) generally requires a substantial extension of the
base field to make that torsion rational. This is counterproductive in the context of point counting.

2Vanilla is the most common and least complicated flavour of abelian varieties over finite fields. Heuristically, over large
finite fields, randomly sampled abelian varieties are vanilla with overwhelming probability. Indeed, being vanilla is invariant
in isogeny classes, and Howe and Zhu have shown in [HZ02, Theorem 2] that the fraction of isogeny classes of g-dimensional
abelian varieties over Fq that are ordinary and absolutely simple tends to 1 as q → ∞. All absolutely simple ordinary abelian
varieties are vanilla, except those whose endomorphism algebras contain roots of unity; but the number of such isogeny
classes for fixed g is asymptotically negligible.
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endomorphism φ∨ of A∨. If (A, ξ) is a principally polarized abelian variety, then ξ induces a Rosati
involution on End(A), defined by

φ 7−→ φ† := ξ−1 ◦ φ∨ ◦ ξ for φ ∈ End(A) .

In the world of elliptic curves, the Rosati involution is the familiar dual. For vanilla abelian varieties, the
Rosati involution acts as complex conjugation on the endomorphism ring.

Fix a real quadratic field F = Q(
√

∆), with fundamental discriminant ∆ > 0 and ring of integers
OF . We write α 7→ ᾱ for the involution of F over Q; we emphasize that in this article, ·̄ does not denote
complex conjugation.

From a theoretical point of view, when talking about real multiplication, our fundamental data are
triples (A, ξ, ι) where A is an abelian surface, ξ : A → A∨ is a principal polarization, and ι : OF ↪→ End(A)

is an embedding stable under the Rosati involution (that is, ι(µ)
†

= ι(µ) for all µ in OF ; we can then
think of the Rosati involution as complex conjugation on the endomorphism ring). While this notation
(A, ξ, ι) may seem quite heavy at first glance, we remind the reader that generally there are only two
choices of embedding ι (corresponding to the two square roots of ∆), and we are only really interested in
the case where A is a Jacobian, in which case the polarization ξ is canonically determined.

4.2 Genus one curves: elliptic curve point counting

We begin by briefly recalling the SEA algorithm for elliptic curve point counting in large characteristic.
First we describe Schoof’s original algorithm [Sch95], before outlining the improvements of Elkies and
Atkin. This will provide a point of reference for comparisons with genus-2 algorithms.

Let E be an elliptic curve over a finite field Fq of large characteristic (or at least, with char(Fq)� log q).
We may suppose that E is defined by a (short) Weierstrass equation E : y2 = x3 + ax+ b, with a and b in
Fq.

Like all modern point-counting algorithms, the Schoof and SEA algorithms compute the characteristic
polynomial

χπ(X) = X2 − tX + q

of the Frobenius endomorphism π of E . We call t the trace of Frobenius. Since the Fq-rational points on
E are precisely the fixed points of π, we have

#E(Fq) = χπ(1) = q + 1− t ;

so determining #E(Fq) is equivalent to determining t. Hasse’s theorem tells us that

|t| ≤ 2
√
q . (4.1)

4.2.1 Schoof’s algorithm

Schoof’s basic strategy is to choose a set L of primes ` 6= p such that
∏
`∈L ` > 4

√
q. We then compute

t` := t mod ` for each of the primes ` in L, and then recover the value of t from {(t`, `) : ` ∈ L} using the
Chinese Remainder Theorem. The condition

∏
`∈L ` > 4

√
q ensures that t is completely determined by

the collection of t` (by Hasse’s theorem, Equation (4.1)).
For Schoof’s original algorithm, the natural choice is to let L be the set of the first O(log q) primes,

stopping when the condition
∏
`∈L ` > 4

√
q is satisfied. When applying Elkies’ and Atkin’s modifications,

we will need to be more subtle with our choice of L. It is also possible to replace primes with small prime
powers; we will not explore this option here.

Now, let ` be one of our primes in L; our aim is to compute t`. We know that π2(P )− [t]π(P )+[q]P = 0
for all P in E , and hence

π2(P )− [t`]π(P ) + [q mod `]P = 0 for all P ∈ E [`] .

We can therefore compute t` as follows:

1. Construct a point P of order `.

2. Compute Q = π(P ) and R = π2(P ) + [q mod `]P .
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3. Search for 0 ≤ t` < ` such that [t`]Q = R, using Shanks’ baby-step giant-step algorithm in the cyclic
subgroup of the `-torsion generated by Q.

To construct such a P , we begin by computing the `-th division polynomial Ψ` in Fq[X], which is the
polynomial whose roots in Fq are precisely the x-coordinates of the nontrivial points in E [`]. When ` is
odd and prime to q, we have deg Ψ` = (`2 − 1)/2. We then define the ring

A = Fq[X,Y ]/(Ψ`(X), Y 2 −X3 − aX − b),

and take P = (X,Y ) in E(A).
In order to work efficiently with Q = π(P ) = (Xq, Y q) in the search for t`, we need to compute

a compact form for Q. This means computing reduced representatives for Xq and Y q in the ring A—
that is, reducing Xq modulo Ψ`(X) and Y q modulo (Ψ`(X), Y 2 −X3 − aX − b)—which costs O(log q)
Fq-operations.

Having computed t` for each ` in L, we recover t (and hence χπ) using the Chinese Remainder Theorem;
this then yields #E(Fq) = q + 1− t. In cryptographic contexts, we are generally interested in curves of
(almost) prime order. One particularly convenient feature of Schoof’s algorithm is that it allows us to
detect small prime factors of #E(Fq) early: we can determine if any ` in L divides #E(Fq) by checking
whether t` ≡ q + 1 (mod `). If we find such a factor, then we can immediately abort the calculation of t
and move on to another candidate curve.

The cost to compute χ` is Õ(`2 +(log q)`2 +
√
``2) Fq-operations. We can take L to be a set of O(log q)

primes, the largest of which is in O(log q); the total cost is therefore Õ(log4 q) Fq-operations.

4.2.2 Frobenius eigenvalues and subgroups

Fix a basis of E [`], and thus an isomorphism E [`] ∼= F`2. Now π acts on E [`] as an element of GL2(F`).
The local characteristic polynomial χ` is just the characteristic polynomial of this matrix.

Likewise, π permutes the `-subgroups of E [`]; that is, the one-dimensional subspaces of E [`] ∼= F`2.
These are the points of P(E [`]) ∼= P1(F`), and we can consider the image of π in PGL2(F`) ∼= Aut(P(E [`])).
The order of π as an element of PGL2(F`) is clearly independent of the choice of basis.

Proposition 4.2. Let E/Fq be an elliptic curve with Frobenius endomorphism π, and let ` 6= p = char(Fq)
be an odd prime. If e is the order of the image of π in PGL2(F`), then the trace t of π satisfies

t2 = ηeq in F` ,

where ηe =

{
ζ + ζ−1 + 2 with ζ ∈ F×`2 of order e if gcd(`, e) = 1 ,

4 otherwise .

Proof. We follow the proof of [Sch95, Proposition 6.2] (correcting the minor error that leads in the case
e even to an e/2-th rather than e-th root of unity appearing in the last part of the statement). Let
λ1, λ2 ∈ F`2 be the eigenvalues of the image of π in Aut(E [`]) ∼= GL2(F`); then

λ1 + λ2 = t and λ1λ2 = q in F` .

In case λ1 = λ2 we have e | ` and the assertion follows. In case λ1 6= λ2 the given e is the minimal integer
> 0 with λe1 = λe2. In particular gcd(e, `) = 1 and λ2 = λ1ζ for some primitive e=th root of unity ζ (in
F`2 ; in fact e | ` − 1 in case the eigenvalues are in F` and e | ` + 1 otherwise). Hence q = λ1λ2 = λ2

1ζ
which implies

t2 = (λ1 + λ2)2 = λ2
1(1 + ζ)2 = qζ−1(ζ2 + 2ζ + 1) = (ζ + ζ−1 + 2)q.

4.2.3 Modular polynomials and isogenies

The order-` subgroups of E [`] are precisely the kernels of `-isogenies from E to other elliptic curves, and
the set of all such `-isogenies (up to isomorphism) corresponds to the set of roots of Φ`(j(E), x) in Fq. The
classical modular polynomial Φ`(X,Y ), of degree `+ 1 (in X and Y ) over Z, is defined by the property
that Φ`(j(E1), j(E2)) = 0 precisely when there exists an `-isogeny E1 → E2. For ` in O(log q), one can

compute Φ`(j(E), x) in Õ(`3) Fq-operations using Sutherland’s algorithm [Sut13]. Alternatively, we can
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use precomputed databases of modular polynomials over Z, reducing them modulo p and specializing
them at j(E).

The Galois orbits of the roots of Φ`(j(E), x) correspond to orbits of `-isogeny kernels under π, and
to orbits of points of P1(F`) under the image of π in PGL2(F`). If j(E1) and j(E2) are both in Fqk , then
the isogeny is defined over Fqk (up to a possible twist); in particular, its kernel is defined over Fqk . More
precisely, we have the following key lemma:

Lemma 4.3 (Proposition 6.1 of [Sch95]). Let E/Fq be a vanilla elliptic curve with Frobenius endomorphism
π.

1. The polynomial Φ`(j(E), x) has a root in Fqe if and only if the kernel of the corresponding `-isogeny
is a one-dimensional eigenspace of πe in E [`].

2. The polynomial Φ`(j(E), x) splits completely over Fqd if and only if πd acts as a scalar matrix on
E [`]; that is, if and only if d is a multiple of the order e of the image of π in PGL2(F`). In particular,
the minimal such d is e.

4.2.4 Elkies, Atkin, and volcanic primes

The primes ` 6= p are divided into 3 classes, or types, with respect to a given E/Fq: Elkies, Atkin, and
volcanic. The type of ` simultaneously reflects the factorization of Φ`(j(E), x) and the Galois structure
of the `-subgroups of E [`]. Here we recall a number of facts about these classes, all of which are proven
in [Sch95, §6]; see also [Was08, §12.4].

A prime ` is Elkies if the ideal (`) is split in Z[π]; or, equivalently, if t2 − 4q is a nonzero square
modulo `. Each of the two prime ideals over (`) defines the kernel of an `-isogeny, φi : E → Ei for i = 1, 2,
say. This means that j(E1) and j(E2) must be roots in Fq of Φ`(j(E), x). Lemma 4.3 then implies that

Φ`(j(E), x) = (x− j(E1))(x− j(E2))

(`−1)/e∏
i=1

fi(x)

where each of the fi are irreducible of degree e, and e > 1 is the order of the image of π in PGL2(F`),
which must divide `− 1 in this case.

A prime ` is Atkin if the ideal (`) is inert in Z[π]; or, equivalently, if t2 − 4q is not a square modulo `.
There are no Fq-rational `-isogenies from E , and no Fq-rational `-subgroups of E [`]. Looking at the
modular polynomial, Lemma 4.3 implies

Φ`(j(E), x) =

(`+1)/e∏
i=1

fi(x) ,

where each of the fi is an irreducible polynomial of degree e, and e > 1 is the order of the image of π in
PGL2(F`), which must divide `+ 1 in this case.

Finally, a prime ` is volcanic if the ideal (`) is ramified in Z[π]; or, equivalently, if ` divides t2 − 4q.
Applying Lemma 4.3, either

Φ`(j(E), x) =

`+1∏
i=1

(x− ji)

with all of the ji in Fq (so there are `+ 1 rational `-isogenies, and `+ 1 rational `-subgroups of E [`]); or

Φ`(j(E), x) = (Y − j1) · f(x) ,

with f irreducible of degree ` (so there is a single rational `-isogeny, and one rational `-subgroup of E [`]).
In either situation, π|E[`] acts on E [`] with eigenvalues λ1 = λ2, so its image in PGL2(F`) therefore has
order e | `.

We note an interesting and useful fact in passing: if E/Fq is vanilla, ` 6= p is an odd prime, and r is
the number of irreducible factors of Φ`(j(E), x), then

(−1)r =
(q
`

)
(4.2)

(cf. [Sch95, Proposition 6.3]; the proof generalizes easily from q = p to general prime powers).
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4.2.5 Computing the type of a prime

The type of a given prime ` for E (that is, being volcanic, Atkin, or Elkies) is defined in terms of the
structure of Z[π] and the trace t. When we are point-counting, these are unknown quantities; but we
can still determine the type of ` without knowing t or Z[π], by factoring Φ`(j(E), x) and comparing
with the possible factorization types above. This, in turn, gives us useful information about t and Z[π].

Determining the type of ` in this way costs Õ(`2 + (log q)`) Fq-operations.
In fact, computing the type of ` for E is a good way of checking the correctness of a claimed modular

polynomial. Suppose somebody has computed a polynomial F (J1, J2), and claims it is equal to Φ`. The
factorization patterns for modular polynomials corresponding to the prime types above are so special that
there is very little hope of getting these patterns for F (j(E), x) for varying E and p unless F and Φ` define
the same variety in the (J1, J2)-plane. We will use the genus-2 analogue of this observation in §4.7 to
check the correctness of some of Martindale’s modular polynomials.

4.2.6 Atkin’s improvement

Atkin’s contribution to the SEA algorithm was to exploit the factorization type of the modular polynomial
to restrict the possible values of t (mod `). While this does not improve the asymptotic complexity of
Schoof’s algorithm, it did allow significant practical progress before the advent of Elkies’ improvements.

For example: if ` is volcanic, then by definition

t2 = 4q in F` , (4.3)

which determines t` up to sign: t ≡ ±2
√
q (mod `). Note that this is also a consequence of Proposition 4.2,

which we will now apply to the other two prime types.
If ` is Elkies or Atkin for E , then Proposition 4.2 tells us that

t2 = (ζ + ζ−1 + 2)q in F` (4.4)

for some primitive e-th root of unity ζ in F`2 , where e | ` − 1 if ` is Elkies and e | ` + 1 if ` is Atkin.
The number of possible values of t2` is therefore half the number of primitive e-th roots in these cases.
Note that modular polynomials can only give us information about t2`—that is, t` up to sign—since their
solutions tell us about isogenies only up to quadratic twists, and twisting changes the sign of the trace.

Obviously, the smaller the degree e of the non-linear factors of Φ`(j(E), x), the fewer the values that t`
can possibly take. For example, if e = 2 then t` = 0; if e = 3, then t` = ±√q in F`; and if e = 4, then
t` = ±

√
2q in F`.

The challenging part of Atkin’s technique is making use of these extra modular congruences. Atkin’s
match-and-sort algorithm (see for example [Ler97, §11.2]) is a sort of sophisticated baby-step giant-step in
E(Fq) exploiting this modular information. Alternatively, we can use Joux and Lercier’s Chinese-and-match
algorithm [JL01].

4.2.7 Elkies’ improvement

Elkies’ contribution to the SEA algorithm was to note that when computing t`, we can replace E [`] with
the kernel of a rational `-isogeny, if it exists. Looking at the classification of primes, we see that there
exists a rational `-isogeny precisely when ` is volcanic or Elkies (whence the terminology). Of course, as
we saw above, if ` is one of the rare volcanic primes then t` is already determined up to sign; it remains
to see what can be done for Elkies primes.

Let ` be an Elkies prime for E , and let φ1 and φ2 be `-isogenies corresponding to the two roots of
Φ`(j(E), x) in Fq. First, we note that π(Pi) = [λi]Pi for Pi in kerφi, and λ1 + λ2 ≡ t (mod `). We only
need to compute one of the λi, since then the other is determined by the relation λ1λ2 = q.

So let φ be one of the two `-isogenies; we want to compute its eigenvalue λ. The nonzero elements
(x, y) of kerφ satisfy fφ(x) = 0, where fφ is a polynomial of degree (`− 1)/2 (if ` is odd; if ` = 2, then
deg fφ = 1). To compute λ, we define the ring A = Fq[X,Y ]/(fφ(X), Y 2 −X3 − aX − b), set P = (X,Y )
in E(A), then compute Q = π(P ) and solve for λ in Q = [λ]P ; then t` ≡ λ+ q/λ (mod `).

This approach is substantially faster than Schoof’s algorithm for Elkies `, because the degree of fφ is
only (`− 1)/2, whereas the degree of Ψ` is (`2 − 1)/2; so each operation in E(A) costs much less than it
would if we used Ψ` instead of fφ. (In practice, it is also nice to be able to reduce the number of costly
Frobenius computations, since we only need to compute π(P ) and not π(π(P )).)
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The crucial step is computing fφ given only E and the corresponding root ji of Φ`(j(E), X). We can
do this using Elkies’ algorithm, which is explained in [Sch95, §§7–8]. The total cost of computing t` is

then Õ(log3 q) Fq-operations: that is, a whole factor of log q faster compared to Schoof’s algorithm.
Ideally, then, we should choose L to only contain Elkies and volcanic primes: that is, non-Atkin

primes. The usual naive heuristic on prime classes is to suppose that as q → ∞, the number of Atkin
and non-Atkin primes less than B for E/Fq is approximately equal when B ∼ log q; under this heuristic,

taking L to contain only non-Atkin primes, the SEA algorithm computes t in Õ(log4 q) Fq-operations.
While the heuristic holds on the average, assuming the GRH, Galbraith and Satoh have shown that it

can fail for some curves [Sat02, Appendix A]: there exist curves E/Fq such that if we try to compute t`
using ` in the smallest possible set L containing only non-Atkin primes, then L must contain primes in
Ω(log2 q).

Remark 4.4. It is important to note that Elkies’ technique applies only to primes ` where there exists a
rational `-isogeny: that is, only Elkies and volcanic primes. Atkin’s technique for restricting the possible
values of t` applies to all primes—not only Atkin primes.

4.3 The genus 2 setting

Let C be a genus-2 curve defined over Fq (again, for q odd). We suppose that C is defined by an equation
of the form y2 = f(x), where f is squarefree of degree 5.3 The curve C then has a unique point at infinity,
which we denote ∞.

4.3.1 The Jacobian

We write JC for the Jacobian of C. Our main algorithmic handle on JC is Mumford’s model for hyperelliptic
Jacobians, which represents the projective JC as a disjoint union of three affine subsets. In this model,
points of JC correspond to pairs of polynomials 〈a(x), b(x)〉 where a is monic, deg b < deg a ≤ 2, and
b2 ≡ f (mod a) (we call 〈a, b〉 the Mumford representation of the Jacobian point). Mumford’s coordinates
on the affine subsets of JC are the coefficients of the polynomials a and b (and in particular, a point 〈a, b〉
of JC is defined over Fq if and only if a and b have coefficients in Fq). The three affine subsets are

W2 := {〈a, b〉 ∈ JC | deg(a) = 2} (“general” elements) ,

W1 := {〈a, b〉 ∈ JC | deg(a) = 1} (“special” elements) ,

W0 := {0JC = 〈1, 0〉} (the trivial element) ,

and JC = W2 tW1 tW0. The group law on JC can be explicitly computed on Mumford representatives
using Cantor’s algorithm [Can87].

The point of JC corresponding to a general divisor class [(xP , yP ) + (xQ, yQ)− 2∞] on C is represented
by 〈a, b〉 where a(x) = (x − xP )(x − xQ) and b is the linear polynomial such that b(xP ) = yP and
b(xQ) = yQ. Special classes [(xP , yP ) −∞] are represented by 〈a, b〉 = 〈x− xP , yP 〉, while 0JC = [0] is
represented by 〈a, b〉 = 〈1, 0〉.

4.3.2 Frobenius and endomorphisms of JC

The characteristic polynomial χπ of the Frobenius endomorphism π has the form

χπ(X) = X4 − tX3 + (2q + s)X2 − tqX + q2 ,

where s and t are integers satisfying the inequalities (cf. [Rüc90])

|s| < 4q , |t| ≤ 4
√
q , t2 > 4s , s+ 4q > 2|t|√q .

We have
#JC(Fq) = χπ(1) = 1− t+ 2q + s− tq + q2 ,

as well as #C(Fq) = 1 − t + q and #C(Fq2) = 1 − t2 + 4q + 2s + q2. In genus 2, therefore, the point
counting problem is to determine the integers s and t.

3For full generality, we should also allow deg f = 6; the curve C then has two points at infinity. This substantially
complicates the formulæ without significantly modifying the algorithms or their asymptotic complexity, so we will not treat
this case here.
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4.3.3 Real multiplication

We are interested in Jacobians JC with real multiplication by a fixed order O in a quadratic real field
F := Q(

√
∆); that is, such that there is an embedding ι : O → End(JC). In this article, we will further

restrict to the case where O is the maximal order OF of F ; note that if O is an order in F that is not
locally maximal at a prime `, then there exist no isogenies of degree ` that preserve the polarization (see
Definition 4.5). These Jacobians can be constructed either from points in their moduli spaces (as in §4.4),
or from a few known explicit families (as in §4.7).

The fixed field Q(π + π†) of the Rosati involution on Q(π) is a real quadratic field, and Z[π + π†] is a
suborder of OF . The characteristic polynomial of π + π† is

χπ+π†(X) = (X2 − tX + s)2 ,

so determining χπ+π† also solves the point counting problem for JC .
Later, we will be particularly interested in C such that JC has real multiplication by an order of

small discriminant. While such curves are special, from a cryptographic perspective they are not “too
special”. From an arithmetic point of view, all curves (with ordinary simple Jacobians) over Fq have
real multiplication. Here, we simply require that real multiplication to have small discriminant; the
discriminant of the entire endomorphism ring of JC can still be just as large as for a general choice of curve
over the same field. From a geometric point of point view, the moduli of these C live on two-dimensional
Humbert surfaces inside the three-dimensional moduli space of genus-2 curves. In concrete terms, this
means that when selecting random curves over a fixed Fq, only ∼ 1/q of them have real multiplication by
a fixed order; but if we restrict our choice to those curves then there are still O(q2) of them to choose
from.

4.3.4 From Schoof to Pila

The Schoof–Pila algorithm deals with higher dimensions [Sch85; Pil90]. Its input is a set of defining
equations for a projective model of the abelian variety, and its group law. Jacobians of genus-2 curves are
abelian varieties, and we can apply Pila’s algorithm to them using the defining equations computed by
Flynn [Fly90] or Grant [Gra90]. However, the complexity of Pila’s algorithm is O((log q)∆), where ∆ (and
the big-O constant) depends on the number of variables (i.e., the dimension of the ambient projective
space) and the degree and number of the defining equations. Pila derives an upper bound for ∆ in [Pil90,
§4], but when we evaluate this bound in the parameters of Flynn’s model for JC (72 quadratic forms in 16
variables) we get a 30-bit ∆; Grant’s model (13 quadratic and cubic forms in 9 variables) yields a 23-bit
∆.4 While these are only upper bounds, we are clearly in the realm of the impractical here.

4.3.5 The Gaudry–Schost approach

Pila’s algorithm requires a concrete (and necessarily complicated) nonsingular projective model for JC .
The Gaudry–Schost algorithm applies essentially the same ideas to Mumford’s affine models for subsets of
JC .

Our first problem is to find an analogue for JC of the elliptic division polynomials Ψ`. Ultimately,
we want an ideal I` = (F0, . . . , Fr) ⊂ Fq[A1, A0, B1, B0] such that 〈a, b〉 = 〈x2 + a1x+ a0, b1x+ b0〉 is in
JC [`] if and only if (a1, a0, b1, b0) is in the variety of I`: that is,

[`]〈x2 + a1x+ a0, b1x+ b0〉 = 0⇐⇒F (a1, a0, b1, b0) = 0 for all F ∈ I` .

Then, the image of 〈x2 +A1x+A0, B1x+B0〉 in JC(Fq[A1, A0, B1, B0]/I`) is an element of order ` that
we can use for a Schoof-style computation of χ(T ) (mod `).

The simplest approach here would be to take a general Mumford representative

〈x2 +A1x+A0, B1x+B0〉,

compute L = [`]〈x2 +A1x+A0, B1x+B0〉, and then equate coefficients in L = 0JC to derive the relations
in I`. But we cannot do this, because L is in W2(Fq(A1, A0, B1, B0)) (that is, its a-polynomial has degree
2, and its b-polynomial degree 1), while 0JC = 〈1, 0〉 is in W0: these elements are not in the same affine
subvariety, and cannot be directly compared or equated in this form.

4With polynomial time estimates like these, who needs enemies?
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Gaudry and Harley [GH00] neatly stepped around this problem by observing that any element of JC can
be written as the difference of two elements of W1 (which may be defined over a quadratic extension). They
therefore start with D = [(xP , yP ) + (xQ, yQ)− 2∞] = [(xP , yP )− (xQ,−yQ)] in JC , and find polynomial
relations on xP , yP , xQ, and yQ such that [`]D = 0 by computing [`]〈x− xP , yP 〉 and [`]〈x− xQ,−yQ〉,
and equating coefficients in [`]〈x− xP , yP 〉 = [`]〈x− xQ,−yQ〉. There is a quadratic level of redundancy in
these relations, which is a direct result of the redundancy in the initial representation of D: the involution
(xP , yP )↔ (xQ, yQ) fixes D.

Gaudry and Schost remove this redundancy by resymmetrizing the relations with respect to this
involution, re-expressing them in terms of A1 = −(xP + xQ), A0 = xPxQ, B1 = (yP − yQ)/(xP − xQ),
and B0 = (xP yQ − xQyP )/(xP − xQ), and computing a triangular basis for the resulting division ideal I`.
Their algorithm yields a triangular basis for I`, which facilitates fast reduction modulo I`.

Once we have I`, we can compute t (mod `) and s (mod `) as follows:

1. Construct the symbolic `-torsion point

P := 〈x2 +A1x+A0, B1x+B0〉 ∈ JC(Fq[A1, A0, B1, B0]/I`) ;

2. Compute the points

Qs := π2(P ) ,

Qt := π(π2(P ) + [q mod `]π(P )) ,

R := π4(P ) + [2q mod `]π2(P ) + [q2 mod `]P

using Cantor arithmetic, with reduction of coefficients modulo I`;

3. Search for 0 ≤ s`, t` < ` such that
[t`]Qt − [s`]Qs = R

(using, say, a two-dimensional baby-step giant-step algorithm).

The result is an algorithm that runs in time Õ(log8 q). Of course, once t has been determined, we can
simplify Steps (2) and (3) above to find s` more quickly for the remaining `, but this does not change the
asymptotic complexity. In practice, the algorithm has been used to construct cryptographically secure
curves: Gaudry and Schost computed a generic genus-2 curve over F2127−1 such that both the Jacobian
and its quadratic twist have prime order [GS12]. Instances of the discrete logarithm problem in this
Jacobian offer a claimed security level of roughly 128 bits, which is the current minimum for serious
cryptosystems. This computation also represents the current record for point counting for general genus-2
curves.

The Gaudry–Schost computation illustrates not only the state-of-the-art of genus-2 point counting,
but also the practical challenge involved in producing cryptographically strong genus-2 Jacobians. The
Schoof-like point counting algorithm was only applied using the prime powers 217, 39, 54, and 72, and the
primes 11 through 31. Combining the information given by these prime powers completely determines
t, but not s; but it still gives us enough modular information about s to be able to recover its precise
value using Pollard’s kangaroo algorithm in a reasonable time (≈ 2 hours, in this case). The kangaroo
algorithm is exponential, and would not be practical for computing this Jacobian order alone without the
congruence data generated by the Schoof-like computations. Gaudry and Schost estimated the average
cost of these calculations as one core-month (in 2008) per curve.

4.3.6 Point counting with efficiently computable RM

In [GKS11], Gaudry, Kohel, and Smith described a number of improvements to the Gaudry–Schost
algorithm that apply when JC is equipped with an explicit and efficiently computable endomorphism φ
generating a real quadratic subring of End(JC). When we say that φ is explicit we mean that we can
compute the images under φ of divisor classes on JC, including symbolic Mumford representatives for
generic divisor classes. When we say that φ is efficiently computable, we mean that these images can be
computed for a cost comparable with a few group operations: that is, from an algorithmic point of view,
we may view evaluation of φ as an elementary group operation like adding or doubling.

Suppose that Z[π + π†] is contained in Z[φ] (this is reasonable, since in the examples we know, Z[φ] is
a maximal order), and let ∆ be the discriminant of Z[φ]. Then π+ π† = mφ+ n for some m and n, which
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completely determine s and t: if the characteristic polynomial of φ is (X2− tφX+ sφ)2, then t = 2m+ntφ
and s = (t2 − s2

φ∆)/4. It follows that m and n are both in O(
√
q).

We can compute m and n using a technique similar to Gaudry–Schost. Multiplying the relation
π + π† = mφ + n through by π, we have π2 − (mφ + n)π + q = 0. Imitating Schoof’s algorithm, we
can compute m` := m (mod `) and n` := n (mod `) by taking a generic element D of JC[`] (as in
Gaudry–Schost), computing (π2 + q)(D), π(D), and φπ(D) (using two applications of π), and then solving
for m` and n`.

We can do even better by exploiting split primes in Z[φ]. If ` = l1l2 is split, then the `-torsion
decomposes as JC [l1]⊕ JC [l2], and once we have found a short generator (or generators) for li we can take
D to be an element of JC [li] instead of JC [`]. Such generators can be found with coefficients in O(

√
`); the

result is that we work modulo a much smaller ideal, of degree O(`2) rather than O(`4).
But going further, π + π† acts as a scalar on JC [li], and so we can compute its eigenvalue to determine

m` and n`. The total cost of computing m` and n`, and hence t` and s`, is then Õ(log5 q) [GKS11,

Theorem 1], a substantial improvement on Gaudry–Schost’s Õ(log8 q).
The computation resembles what we would do for an Elkies prime in the elliptic case, except that there

is no need for modular polynomials to compute the prime type, or for an analogue of Elkies’ algorithm: we
know in advance which primes split in Z[φ], and we can compute the kernel using the decomposition. But
if we did have an analogue of Elkies’ algorithm, then we could further reduce the complexity by further
decomposing some of the JC [li] into cyclic factors, and thus working modulo ideals of degree O(`). If we
have an analogue of Atkin’s algorithm, then we can restrict the possible values of m` and n`; this would
not change the asymptotic complexity of the algorithm, but it could have a significant practical impact.

4.3.7 Generalizing Elkies’ and Atkin’s improvements to genus 2

Ultimately, we would like to generalize the SEA algorithm to genus 2. The first requirement is a genus-2
analogue of elliptic modular polynomials; so assume for the moment that we have a modular ideal relating
suitable invariants of genus-2 curves.

To generalize Elkies’ improvements to genus 2, we need an analogue of Elkies’ algorithm: that is,
an algorithm which, given two general moduli points corresponding to isogenous Jacobians, constructs
defining polynomials for (the kernel of) the isogeny. The most convenient such presentation would be as
an ideal cutting out the intersection of the kernel with W2, since then the Gaudry–Schost approach could
be adapted without too much difficulty (at least in theory). Unfortunately, at present, no such algorithm
is known.

In contrast, Atkin’s techniques for elliptic curves require only the factorization of (specializations of)
elliptic modular polynomials; we deduce possible congruences on the trace from the degrees of the factors.
It is clear how we should generalize Atkin’s techniques to genus 2: we should deduce possible congruences
on s and t from the degrees of primary components of specialized modular ideals.

The following sections make this concrete. In §4.4, we define the appropriate analogues of the elliptic
j-invariant for genus-2 curves with real multiplication. We can then define real-multiplication analogues
of the elliptic modular polynomials in §4.4.2, before investigating their factorization in §4.5.

4.3.8 µ-isogenies

Before defining any generalized invariants or modular polynomials, we must define an appropriate class of
isogenies in genus 2: that is, isogenies that are compatible with the real multiplication structure. (This is
not an issue for elliptic curves, because the elliptic analogue of the real endomorphism subring is just
Z—and everything is compatible with integer multiplications.)

Definition 4.5. Let (A, ξ, ι) and (A′, ξ′, ι′) be triples encoding principally polarized abelian surfaces
with real multiplication by OF . Here ξ : A → A∨ and ξ′ : A′ → (A′)∨ are principal polarizations, and
ι : OF ↪→ End(A) and ι′ : OF ↪→ End(A′) are embeddings that are stable under the Rosati involution. If
µ is a totally positive element of F , then a µ-isogeny (A, ξ, ι)→ (A′, ξ′, ι′) is an isogeny f : A → A′ such
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that the diagrams

A
ι(µ)
//

f

��

A
ξ
// A∨

A′
ξ′

// (A′)∨
f∨

OO and F
ι //

ι′

%%

End(A)⊗Q

φ

��

End(A′)⊗Q

commute, where φ is the map induced by f on endomorphism algebras.

If f : (A, ξ, ι) → (A′, ξ′, ι′) is a µ-isogeny, then the polarization ξ′ pulls back via f to ξ ◦ ι(µ). For
comparison, an elliptic `-isogeny is an f : E → E ′ such that the canonical polarization on E ′ pulls back via
f to ` times the polarization on E (in more concrete terms: the identity point 0E′ on E pulls back via f to
a divisor on E equivalent to ` · 0E).

4.4 Invariants

Elliptic modular polynomials relate isogenous elliptic curves in terms of their j-invariants; their genus-2
analogues must relate invariants of genus-2 Jacobians. This section describes and relates the various
invariants that we will need. Since we are dealing with classical constructions in this section, we work over
a field k ⊆ C. However, the resulting algebraic expressions carry over to the case where k = Fq (at least
for large enough p). All of the results in this section are well-known, and are shown here for completeness
and easy reference; we refer the reader to [Lan82], [LNY16], [LY11], and [Mar18] for further detail.

4.4.1 Invariants for RM abelian surfaces

Let F be a real quadratic field with ring of integers OF . We need RM analogues of the elliptic j-invariant
and elliptic modular polynomials for µ-isogenies of abelian surfaces with RM by OF . Our first step is to
define appropriate replacements for the j-invariant that classify our triples (A, ξ, ι) up to isomorphism.
Instead of a single j-invariant, we will have a triple (J1, J2, J3) of RM invariants, which are functions on
the corresponding Hilbert modular surface.

The invariants (J1, J2, J3) are constructed as follows. For a field k, we consider the coarse moduli
space HF (k) of triples (A, ξ, ι) (where as before, A/k is an abelian variety with a principal polarization
ξ : A → A∨ and an embedding ι : OF ↪→ Endk(A) stable under the Rosati involution). Then HF (k)
is coarsely represented by the Hilbert modular space SL2(OF ⊕ OF ) \ (F ⊗ H) (see [Gee88]), where
F ⊗H := {τ ∈ F ⊗ C : =(τ) > 0} and for any fractional ideal f of F ,

SL2(OF ⊕ f) :=

{(
a b
c d

)
∈ SL2(F ) : a, d ∈ OF , b ∈ f, c ∈ f−1

}
acts on F ⊗H by (

a b
c d

)
· τ =

aτ + b

cτ + d
.

Proposition 4.6. Let V be the Baily–Borel compactification of SL2(OF )\(F ⊗H), and C(V ) the function
field of V . There exist rational functions J1, J2, and J3 on V such that

C(V ) = C(J1, J2, J3) .

Proof. The transcendence degree of C(V ) over C is 2, so there exist 2 algebraically independent functions
J1, J2 in C(V ). Furthermore, C(V ) is a finite separable field extension of C(J1, J2), so it is generated by
at most one further element, J3.

Definition 4.7. Fixing a choice of rational functions J1, J2, and J3 as in Proposition 4.6, we call
(J1, J2, J3) the RM invariants for F .
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4.4.2 Hilbert modular polynomials for RM abelian surfaces

We are now ready to define modular polynomials for abelian surfaces with RM structure. For elliptic
curves we have a single j-invariant, and we can relate `-isogenous j-invariants using a single bivariate
polynomial Φ`(X,Y ). For our abelian surfaces, we have a tuple of three invariants (J1, J2, J3), and to
relate µ-isogenous tuples of invariants we need a modular ideal of polynomials in Q[X1, X2, X3, Y1, Y2, Y3],
such that when we specialize the first three variables in the (J1, J2, J3) corresponding to the isomorphism
class of some triple (A, ξ, ι), the result is an ideal cutting out the moduli points (J ′1, J

′
2, J
′
3) for triples

(A′, ξ′, ι′) that are µ-isogenous to (A, ξ, ι).
The Hilbert modular polynomials below represent a particularly convenient basis for this ideal. We refer

the reader to [Mar18, Chapter 2] for theoretical details and proofs, as well as algorithms for computing
the polynomials. Alternatively, Milio’s algorithm can be used to compute Hilbert modular polynomials
Φ`(X, J1, J2) and Ψ`(X, J1, J2), in time O(dT dJ2

)Õ(`N) + 4(` + 1)Õ(dT dJ2
N) ⊆ Õ(dT dJ2

`N) [Mil15b,
Theorem 5.4.4], where N is the precision and dT , dJ2

are degrees involved in the computation, see [Mil15b,
§5.4].

Definition 4.8. The Hilbert modular polynomials

Gµ(X1, X2, X3, Y1) ,

Hµ,2(X1, X2, X3, Y1, Y2) = H
(1)
µ,2(X1, X2, X3, Y1)Y2 +H

(0)
µ,2(X1, X2, X3, Y1) ,

Hµ,3(X1, X2, X3, Y1, Y3) = H
(1)
µ,3(X1, X2, X3, Y1)Y3 +H

(0)
µ,3(X1, X2, X3, Y1)

in Q[X1, X2, X3, Y1, Y2, Y3] are defined such that for all triples (A, ξ, ι) and (A′, ξ′, ι′) representing points
τ and τ ′ in a certain Zariski-open subset5 of the Baily–Borel compactification of SL2(OF ⊕ f) \ (F ⊗H),
there exists a µ-isogeny f : (A, ξ, ι)→ (A′, ξ′, ι′) if and only if

Gµ(J1(τ), J2(τ), J3(τ), J1(τ ′)) = 0 ,

Hµ,2(J1(τ), J2(τ), J3(τ), J1(τ ′), J2(τ ′)) = 0 ,

Hµ,3(J1(τ), J2(τ), J3(τ), J1(τ ′), J3(τ ′)) = 0 .

The special form of Gµ, H2,µ, and H3,µ are very convenient for computations. If (J1, J2, J3) is a fixed
moduli point, then each root α of G(J1, J2, J3, x) corresponds to a unique µ-isogenous moduli point

(J ′1, J
′
2, J
′
3) =

(
α,−

H
(0)
µ,2(J1, J2, J3, α)

H
(1)
µ,2(J1, J2, J3, α)

,−
H

(0)
µ,3(J1, J2, J3, α)

H
(1)
µ,3(J1, J2, J3, α)

)
.

We observe that the action of Galois on the set of µ-isogenies from an RM abelian variety representing
(J1, J2, J3) is completely described by the action of Galois on the roots of Gµ(J1, J2, J3, x); in particular,
over Fq, rational cycles of µ-isogenies under Frobenius correspond to irreducible factors of Gµ(J1, J2, J3, x).
From the point of view of Atkin generalizations, therefore, we only really need Gµ to replace Φ`.

4.4.3 Invariants for curves and abelian surfaces

We need to relate the RM invariants (J1, J2, J3) to the invariants for plain old principally polarized abelian
surfaces, and in particular Jacobians of genus 2 curves without any special RM structure. The moduli
space A2 of principally polarized abelian surfaces is coarsely represented by the Siegel modular space
Sp2(Z)\H2, where

H2 :=

{
τ =

(
τ1 τ2
τ2 τ3

)
∈ Sym2(C) : =(τ) > 0

}
,

and the symplectic group

Sp2(Z) =

{
g ∈ GL4(Z) : g

(
0 I2
−I2 0

)
gt =

(
0 I2
−I2 0

)}
5 See [Mar18, Chapter 2, Section 2] for details on this subset. For point counting over large finite fields, it is enough

to note that since the subset is Zariski open, randomly sampled Jacobians with real multiplication by OF have their RM
invariants in this subset with overwhelming probability.
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acts on H2 via (
a b
c d

)
· τ =

aτ + b

cτ + d
.

Every rational function on Sp2(Z)\H2 is a quotient of elements of the graded ring of holomorphic
Siegel modular forms for Sp2(Z). Igusa proved in [Igu60] that this ring is generated by ψ4, ψ6, χ10, and
χ12, where

ψk(τ) =
∑

(
a b
c d

)
∈P\Sp2(Z)

det(cτ + d)−k

is the normalized Eisenstein series of weight k for even integers k ≥ 4 (here P is the standard Siegel
parabolic subgroup of Sp2(Z)), and

χ10 = −2−12 · 3−5 · 5−2 · 7−1 · 43867(ψ4ψ6 − ψ10) ,

χ12 = 2−13 · 3−7 · 5−3 · 7−2 · 337−1 · 131 · 593(32 · 72ψ3
4 + 2 · 53ψ2

6 − 691ψ12)

are Siegel modular cusp forms of weight 10 and 12 respectively.
Curves of genus 2 are typically classified up to isomorphism by their Igusa invariants (j1, j2, j3), or by

their Igusa–Clebsch invariants (A,B,C,D). Since the map C 7→ JC is an open immersion of the (coarse)
moduli space of genus-2 curves M2 into A2, the Igusa invariants ji can be written as rational functions of
ψ4, ψ6, χ10 and χ12 as follows [Igu67]:

j1(τ) = 2 · 35 · χ5
12χ
−6
10 ,

j2(τ) = 2−3 · 33 · ψ4χ
3
12χ
−4
10 ,

j3(τ) = 2−5 · 3 ·
(
ψ6χ

2
12χ
−3
10 + 22 · 3 · ψ4χ

3
12χ
−4
10

)
.

Here ji(τ) = ji(C) if there is a genus 2 curve C/C such that JC is isomorphic to the abelian surface
C2/(Z2τ+Z2). If there is no such C, which happens exactly when χ10(τ) = 0, then ji(τ) is not well-defined.
The Igusa–Clebsch invariants are related to the Siegel modular forms by

(ψ4, ψ6, χ10, χ12) =
(
2−2B, 2−3(AB − 3C), −2−14C, 2−173−1AD

)
. (4.5)

4.4.4 Pulling back curve invariants to RM invariants

The natural maps H2 → H2, SL2(F )→ Sp2(Q), and (OF /2OF )2 → (Z/2Z)4 induce an embedding

φ : HF (k) ↪→ A2(k) ,

which we can use to pull back Igusa invariants to RM invariants, thus expressing the ji in terms of the Ji.
We will see detailed formulæ for this pullback for F = Q(

√
5) in Proposition 4.17.

This pullback from curves and their invariants to RM invariants is essential for our computations:
after all, in point counting one usually starts from a curve. In our applications, we are given the equation
of a curve C/Fq drawn from a family of curves with known RM by OF . Having computed the Igusa
or Igusa–Clebsch invariants of C, we can pull them back to RM invariants (J1, J2, J3). This pullback is
possible, because C was chosen from an appropriate family, but choosing a preimage (J1, J2, J3) implicitly
involves choosing one of the two embeddings of OF into End(JC). This choice cannot always be made over
the ground field: a point in A2(k) may not pull back to a pair of points in HF (k), but rather a conjugate
pair of points over a quadratic extension of k. Proposition 4.18 makes this subtlety explicit in the case
F = Q(

√
5).

4.5 Atkin theorems in genus 2

We are now ready to state some Atkin-style results for µ-isogenies in genus 2.
Let (A, ξ, ι) be a triple describing a vanilla abelian surface over Fq with real multiplication by OF ,

and let µ be a totally positive element of OF of norm `. Then ι(µ) is an endomorphism of degree `2, and
we have a subgroup6

A[µ] := ker(ι(µ)) ⊂ A[`] .

6We emphasize that the subgroup A[µ] depends on ι, but we have chosen to write A[µ] instead of the more cumbersome
A[ι(µ)].
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If (µ̄) 6= (µ) (that is, (`) 6= (µ2)), then we have a decomposition A[`] = A[µ]⊕A[µ̄]. The one-dimensional
subspaces of A[µ] are the kernels of µ-isogenies.

In §4.2 we used the elliptic modular polynomial Φ` to study the structure of E [`]. Here, we will use
the Hilbert modular polynomial Gµ to study the structure of A[µ]. The propositions of this section are
generalizations for curves of genus 2 to Schoof’s Propositions 6.1, 6.2 and 6.3 for elliptic curves in [Sch95].

4.5.1 Roots of Gµ and the order of Frobenius

Our first result relates the order of Frobenius acting on P(A[µ]) to the extensions of Fq generated by roots
of specialized Hilbert modular polynomials.

Proposition 4.9. 7 Let A/Fq be a vanilla abelian surface with RM by OF and RM invariants (J1, J2, J3)
in F3

q, and with Frobenius endomorphism π. Let µ be a totally positive element of OF of prime norm
` = µµ.

1. The polynomial Gµ(J1, J2, J3, x) has a zero J̃1 in Fqe if and only if the kernel of the corresponding

µ-isogeny A → Ã is a 1-dimensional eigenspace of πe in A[µ].

2. The polynomial Gµ(J1, J2, J3, x) splits completely in Fqe [x] if and only if πe acts as a scalar matrix
on A[µ].

Proof. The proof follows that of [Sch95, Proposition 6.1] (stated as Lemma 4.3 here).
For (1): Let f : A → Ã be a µ-isogeny with kernel S, and let (J̃1, J̃2, J̃3) be the RM invariants of Ã.

If S is an eigenspace of πe, then the quotient A → A/S is defined over Fqe . The Igusa invariants of A/S
are therefore all in Fqe , and since A/S is isomorphic to Ã as a principally polarized abelian surface, the

Igusa invariants of Ã are all in Fqe . To conclude that J̃1 is in Fqe , we need to show that the injection

ι̃ : OF ↪→ End(Ã) is defined over Fqe ; but this follows from the commutativity of the second diagram in
Definition 4.5.

Conversely: suppose Gµ(J1, J2, J3, J̃1) = 0 for some J̃1 in Fqe . Then the fact that each of the Hµ,i is a

linear polynomial in Yi with coefficients in Fq[J1, J2, J3, J̃1] = Fqe shows that there exist J̃2 and J̃3 in Fqe
such that (J̃1, J̃2, J̃3) are the RM invariants of a triple (Ã, ξ̃, ι̃) that is µ-isogenous to (A, ξ, ι). This means
that there is an Fq-isomorphism (Ã, ξ̃, ι̃)→ (A′, ξ′, ι′) where (A′, ξ′, ι′) is defined over Fqe . Let f : A → A′
be the composite µ-isogeny. Its kernel S is a one-dimensional subspace of A[`]. It remains to show that S
is an eigenspace of πe; this is the case if and only if f is defined over Fqe . The Z-module HomFq(A,A

′)

is free of rank 4 (because A is vanilla); and its submodule HomFqe (A,A′) of Fqe-isogenies is either 0 or
equal to HomFq (A,A

′). Hence, f is defined over Fqe if HomFqe (A,A′) 6= 0; and HomFqe (A,A′) 6= 0 if and

only if the Frobenius endomorphisms of A/Fqe and A′ have the same characteristic polynomial.
Since A is vanilla, and A′ is Fq-isogenous to A, we have EndFq(A

′) ⊗ Q ∼= EndFq(A) ⊗ Q ∼= K for

some quartic CM-field K. So let ψ and ψ′ be the images in K of the Frobenius endomorphisms of A/Fqe
and A′, respectively (note that ψ = πe). Now up to complex conjugation, we have ψs = (ψ′)s in K for
some s > 0. If ψ = ψ′, then A and A′ are Fqe-isogenous, and we are done. If ψ = −ψ′, then we replace
(A′, ξ′, ι′) by its quadratic twist; and then A and A′ are Fqe -isogenous. Otherwise, if ψ 6= ±ψ′, then ψ/ψ′

must be a root of unity of order at least 3 in K, which is impossible because A is vanilla. Hence ψ = ψ′,
so ψ and ψ′ have the same characteristic polynomial, and therefore f is defined over Fqe .

For (2): If all of the zeroes of Gµ(J1, J2, J3, x) are contained in Fqe , then all of the 1-dimensional
subspaces of A[µ] are eigenspaces of πe by Part (1). This implies that πe acts as a scalar matrix on
A[µ].

Remark 4.10. As an example of what can go wrong if the vanilla condition is dropped, consider the curve

C : y2 = x5 + 1 .

The Jacobian JC of this curve has complex multiplication by Q(ζ5), so it is not vanilla. While JC
has real multiplication by the maximal order of Q(

√
5), the Siegel modular form ψ4 is zero for this

curve. Proposition 4.18 below gives explicit formulæ for J1, J2, and J2
3 for Jacobians with maximal real

multiplication by Q(
√

5); and when we look at those formulæ, we see that J1 is not well-defined when
ψ4 = 0.

7This is conditional under the heuristics of Remark 2.5.6
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4.5.2 The factorization of Gµ

The Frobenius endomorphism π of A commutes with ι(µ) (since A is vanilla), so it restricts to an
endomorphism of A[µ].

Lemma 4.11. Let A/Fq be a vanilla abelian surface with Frobenius endomorphism π, and let ` be an
odd prime.

1. If ` splits in Z[π + π†] (or equivalently, if t2 − 4s is a square in F`), then

χπ(T ) ≡ (T 2 − uT + q)(T 2 − u′T + q) (mod `)

for some u and u′ in Z/`Z.

2. If ` is ramified in Z[π + π†] (or equivalently, if ` divides t2 − 4s), then

χπ(T ) ≡ (T 2 − uT + q)2 (mod `)

where u = t/2 in Z/`Z.

3. If ` is inert in Z[π + π†] (or equivalently, if t2 − 4s is a square in F`), then

χπ(T ) 6≡ (T 2 − uT + q)(T 2 − u′T + q) (mod `)

for any u, u′ ∈ Z/`Z.

Proof. This is a direct consequence of [Lan86, Chapter 1, Proposition 25].

Lemma 4.12. Let (A, ξ, ι) be a triple describing a vanilla abelian surface over Fq with real multiplication
by OF , and let µ be a totally positive element of OF of prime norm µµ = `. The restriction of the
Frobenius endomorphism π to A[µ] has characteristic polynomial

χπ,µ(T ) ≡ T 2 − uT + q (mod `) for some u ∈ Z/`Z .

Proof. By definition, ` = µµ̄ splits in OF , so it either splits or ramifies in the suborder

Z[π + π†] ⊆ OF ;

we are therefore in Case (1) or (2) of Lemma 4.11. In particular, both π and π† restrict to endomorphisms
of A[µ], and they have the same eigenvalues λ and q/λ; so the characteristic polynomial of π is

T 2 − (λ+ q/λ)T + q.

The result follows with u = λ+ q/λ.

Proposition 4.13 uses the factorization of the modular polynomial Gµ, specialized at the RM invariants
of A, to derive information χπ,µ(T ) (mod `).

Proposition 4.13. 8 Let (A, ξ, ι) be a triple describing a vanilla abelian surface over Fq with real
multiplication by OF and with RM invariants (J1, J2, J3), and let µ be a totally positive element of OF
of prime norm µµ = `. Let π be the Frobenius endomorphism of A, with χπ,µ(T ) = T 2 − uT + q the
characteristic polynomial of the restriction of π to A[µ], and let e be the order of π in Aut(P(A[µ])) ∼=
PGL2(F`).

The polynomial Gµ(J1, J2, J3, x) has degree `+ 1 in Fq[x], and its factorization type is as follows:

1. If u2 − 4q is not a square in F`, then e > 1 and the factorization type is

(e, . . . , e) where e | `+ 1 .

2. If u2 − 4q is a nonzero square in F`, then the factorization type is

(1, 1, e, . . . , e) where e | `− 1 .

8This is conditional under Remark 2.5.6 and should include the assumption that Gµ(J1, J2, J3, x) is separable.
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3. If u2 − 4q = 0 in F`, then the factorization type is

(1, e) where e = ` .

Proof. By Lemma 4.11, the endomorphism π acts on A[µ] as a 2× 2 matrix in GL2(F`) with characteristic
polynomial T 2−uT +q = 0. If the matrix has two conjugate eigenvalues λ1, λ2 in F`2 , then we are in Case
(1): there are no 1-dimensional eigenspaces of π in A[µ], and all irreducible factors of Gµ(J1, J2, J3, x)
have degree e, where e is the smallest exponent such that λei is in F`.

If the matrix has two eigenvalues in F` and is diagonalizable, then the discriminant t2 − 4s is a square
modulo `: we are in Case (2). This time A[µ] is the direct product of two 1-dimensional eigenspaces,
which account for two linear factors of Gµ(J1, J2, J3, x). The remaining factors have degree e, where e is
the smallest positive integer such that πe acts as a scalar matrix.

If the matrix has a double eigenvalue and is not diagonalizable, then we are in Case (3): there is only
one 1-dimensional eigenspace, and the matrix of π` is scalar.

4.5.3 The characteristic polynomial of Frobenius

Now that we can compute the order of Frobenius, we want to use this to derive information on the
characteristic polynomial. Proposition 4.14 generalizes Proposition 4.2 to genus 2.

Proposition 4.14. Let (A/Fq, ξ, ι) be a triple describing a vanilla abelian surface with real multiplication
by OF , and let µ be a totally positive element of prime norm ` = µµ̄ 6∈ {2, p}. Let π be the Frobenius
endomorphism of A, and χπ,µ(T ) = T 2 − uT + q the characteristic polynomial of its restriction to A[µ].
If e is the order of the image of π in Aut(P(A[µ])) ∼= PGL2(F`), then

u2 = ηeq in F` ,

where ηe =

{
ζ + ζ−1 + 2 with ζ ∈ F×`2 of order e if gcd(`, e) = 1 ,

4 otherwise .

Proof. The proof is identical to that of Proposition 4.2.

Coming back to point counting: suppose we have a Jacobian JC with real multiplication by OF ; we
want to compute the characteristic polynomial

χπ(T ) = T 4 − tT 3 + (2q + s)T 2 − tqT + q2 .

If we have a totally positive element µ in OF such that µµ̄ = `, then we know that χπ(T ) (mod `) splits
into two quadratic factors:

χπ(T ) ≡ χπ,µ(T )χπ,µ̄(T ) ≡ (T 2 − uT + q)(T 2 − u′T + q) (mod `) ,

so
t ≡ u+ u′ (mod `) and s ≡ uu′ − 2q (mod `) . (4.6)

Given precomputed Hilbert modular polynomials Gµ and Gµ̄, then, we can specialize them at the RM
invariants of JC and factor to determine the order of Frobenius on JC [µ] and on JC [µ̄] using Proposition 4.13.
We can then apply Proposition 4.14 and Equations (4.6) to restrict the possible values of s and t modulo
`.

The question of how best to exploit this extra modular information remains open. Atkin’s match-and-
sort and Joux and Lercier’s Chinese-and-match algorithms for elliptic curves cannot be re-used directly
here, because they were designed to solve the one-dimensional problem of determining the elliptic trace,
while here we have the two-dimensional problem of determining (s, t).

4.5.4 Prime types for real multiplication by OF
The factorization patterns in Proposition 4.13 are the same as those we saw for specialized elliptic modular
polynomials in §4.2.4. This leads us to define an analogous classification of prime types, for totally positive
elements in OF of prime norm.
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Definition 4.15. Let µ be a totally positive element of OF such that µµ̄ = (`) for some prime ` 6= 2, p.
We say that

• µ is OF -Elkies for a vanilla triple (A, ξ, ι) with RM invariants (J1, J2, J3) if the factorization type
of Gµ(J1, J2, J3, x) is (1, 1, e, . . . , e) with e > 1;

• µ is OF -Atkin for a vanilla triple (A, ξ, ι) with RM invariants (J1, J2, J3) if the factorization type
of Gµ(J1, J2, J3, x) is (e, . . . , e) with e > 1; and

• µ is OF -volcanic for a vanilla triple (A, ξ, ι) with RM invariants (J1, J2, J3) if the factorization
type of Gµ(J1, J2, J3, x) is (1, e) or (1, . . . , 1).

If K ∼= EndFq(A) ⊗ Q is Galois then the type of µ completely determines the type of µ̄ (and vice

versa). For general K, however, this does not hold: the type of µ̄ is not determined by the type of µ.

4.5.5 The parity of the number of factors of Gµ

The following proposition is the genus-2 real multiplication analogue of Equation (4.2) (cf. [Sch95,
Proposition 6.3]).

Proposition 4.16. Let (A, ξ, ι) be a triple describing a vanilla abelian surface over Fq with real multipli-
cation by OF , and with RM invariants (J1, J2, J3). Let µ be a totally positive element of OF of prime
norm µµ = `, let χπ,µ(T ) = T 2 − uT + q be the characteristic polynomial of π restricted to A[µ], and let r
denote the number of irreducible factors in the factorization of Gµ(J1, J2, J3, x). Then

(−1)r =
(q
`

)
.

Proof. If ` divides u2 − 4q and π has order ` in Case (3) of Proposition 4.13, then the result is true.
Suppose therefore that u2 − 4q 6= 0 (mod `), that is, we are in Cases (1) or (2) of Proposition 4.13,
and let T ⊆ GL2(F`) be a maximal torus containing π. In other words, we take T = {diag(α, β) :
α, β ∈ F×` } split in Case (2), and T non-split (i.e., isomorphic to F×`2) in Case (1). The image T of T
in PGL2(F`) is cyclic of order ` + 1 in Case (1) and ` − 1 in Case (2). The determinant induces an

isomorphism det : T /T 2 → F×` /(F
×
` )2. The action of π is via det(π) = q, and we obtain an isomorphism

det : T /〈T 2
, π〉 → F×` /〈(F

×
` )2, q〉. This shows that the index [T : π] is odd if and only if q is not a square

mod `. Since the number r of irreducible factors of Gµ(J1, J2, J3, x) over Fq is equal to r = (l + 1)/e or
r = 2 + (l − 1)/e = [T : π], the proposition follows.

4.6 The case F = Q(
√

5): Gundlach–Müller invariants

All of the theory above can be made much more explicit in the case where F = Q(
√

5), where the invariants
J1, J2, and J3 are known as Gundlach–Müller invariants [Gun63; Mue85]. Our computational results are
based on this case, so we will work out the details here, following the treatment in [LY11].

Fixing a square root of 5 in C, we set ε := (1 +
√

5)/2 and ε̄ := (1−
√

5)/2; each is the image of the
fundamental unit of OQ(

√
5) under one of its two embeddings into C. Let

q1 := e

(
εz1 − εz2√

5

)
and q2 := e

(
z2 − z1√

5

)
for z = (z1, z2) ∈ H2 .

The Eisenstein series of even weight k ≥ 2 are defined by

gk(z) = 1 +
∑

t=a+bε̄∈O+
F

bk(t)qa1q
b
2 ,

where the coefficients bk(t) are defined by

bk(t) = κk
∑

(µ)⊇(t)

N(µ)k−1 with κk =
(2π)2k

√
5

(k − 1)!25kζF (k)
∈ Q
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(here N(µ) is the norm #OF /(µ)). The Hilbert modular forms s6, s10, s12, and s15 of respective weight 6,
10, 12, and 15 for HQ(

√
5) are defined by

s6 := − 67

25 · 33 · 52
(g6 − g3

2) ,

s10 :=
1

210 · 35 · 55 · 7
(
191 · 2161g10 − 5 · 67 · 2293g2

2g6 + 22 · 3 · 7 · 4231g5
2

)
,

s12 :=
1

22

(
s2

6 − g2s10

)
,

s2
5 := s10 ,

s2
15 := 55s3

10 −
53g2

2s6s
2
10

2
+
g5

2s
2
10

24
+

32 · 52g2s
3
6s10

2
− g4

2s
2
6s10

23
− 2 · 33s5

6 +
g3

2s
4
6

24
.

Finally, the Gundlach–Müller invariants for Q(
√

5) are

J1 := s6/g
3
2 , J2 := g5

2/s
2
5 , and J3 := s3

5/s15 .

The Hilbert modular polynomials for Q(
√

5) are too large to reproduce here, but they can be downloaded
from martindale.info.9

Proposition 4.17 ([LY11, Proposition 4.5] with correction to φ∗(j1)). For F = Q(
√

5), the Igusa
invariants pull back to

φ∗(j1) = 4J2(3J2
1J2 − 2)5 ,

φ∗(j2) =
1

2
J2(3J2

1J2 − 2)3 ,

φ∗(j3) = 2−3J2(2J2
1J2 − 2)2(4J2

1J2 + 25 · 32J1 − 3) .

For our computations, we want to write J1, J2 and J3 in terms of the Siegel modular forms ψ4, ψ6,
χ10 and χ12. (For a canonical way of writing J1, J2 and J3 in terms of Igusa–Clebsch invariants, we refer
to [Mar18, Example 2.5.4].)

Proposition 4.18 ([Mar18, Example 2.5.4]10). For F = Q(
√

5), we have

J2 = φ∗
(
(ψ4ψ6/χ10 − 35212)(−2− 2(ψ2

6 − 21236χ12)/ψ3
4)−1

)
,

J1 = 3225J−1
2 + φ∗

(
2−63−3(1− (ψ2

6 − 21236χ12)/ψ3
4)
)
,

J2
3 = 55 − 2−153J1J2 + 2−4J2 + 2−13252J2

2J
3
1 − 2−3J2

1J
2
2 − 2 · 33J3

2J
5
1 + 2−4J3

2J
4
1 .

The choice of square root for J3 corresponds to the choice of embedding ι.

Proposition 4.18 can be used to find RM invariants for curves drawn from families with known real
multiplication, before factoring specialized Hilbert modular polynomials in those RM invariants to derive
information on Frobenius. However, it also crystallizes the rationality question alluded to at the end
of §4.4.4: as we see, a set of values of the Hilbert modular forms over Fq (or, equivalently, a tuple of Igusa
or Igusa–Clebsch invariants over Fq) only determine J1, J2, and J2

3 over Fq.
To get J3, we need to choose a square root of J2

3 ; but J2
3 is not guaranteed to be a square in Fq. If

J2
3 is not a square in Fq, then we cannot apply Propositions 4.9 or 4.13—not even if J3 does not appear

unsquared in the specialized polynomial Gµ.

4.7 Experimental results

In order to validate the factorization patterns of Proposition 4.13, we ran a series of experiments for
F = Q(

√
5), using the family of curves [TTV91]

Ca : y2 = x5 − 5x3 + 5x+ a

9 The polynomials Hµ,3 do not appear there, but only Gµ is required to apply our results in §4.5.
10The number of this example has changed to Example 2.4.4
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whose Jacobians all have real multiplication by OQ(
√

5). This family was used in the point-counting records

of [GKS11]. The Igusa–Clebsch invariants of Ca are

(A,B,C,D) =
(
25 · 52 · 7, 210 · 54,−213 · 55 · (9a2 − 236), 220 · 55 · (a2 − 4)2

)
.

Our experiments treated

1. the ramified prime ` = 5, with µ = (5 +
√

5)/2, and the modular polynomial Gµ from martindale.

info;

2. the split prime ` = 11, with µ = (7+
√

5)/2, and the modular polynomial Gµ from martindale.info.

We collected statistics on the factorization patterns for 10000 tests. For each test, we chose a random
prime q of ten decimal digits, and we chose a randomly from Fq subject to the requirement that Ca be
nonsingular, which is a2 6= 4. We then applied the formulæ of Equation (4.5) and Proposition 4.18 to
obtain the RM invariants J2 and J1 for the Jacobian of Ca, as well as the squared invariant J2

3 .
In half the cases on average, J2

3 had a square root in Fq; in these cases we could obtain J3, and
proceed to factor Gµ(J1, J2, J3, x). The average frequencies of the resulting factorization patterns appear
in Tables 4.1 and 4.2 (here we take the averages over the roughly 5000 tests where J2

3 has a root in Fq;
for the two roots J3 and −J3 in Fq, we always obtained the same factorization pattern).

Factorization pattern, type of µ Number found Percentage

OQ(
√

5)-Elkies: (1, 1, e, . . . , e) with e > 1 total 1835 total 36.8%

(1, 1, 4) 1266 25.4%
(1, 1, 2, 2) 569 11.4%

OQ(
√

5)-Atkin: (e, . . . , e) with e > 1 total 2049 total 41.1%

(6) 844 16.9%
(3, 3) 794 15.9%
(2, 2, 2) 411 8.2%

OQ(
√

5)-Volcanic: (1, e) or (1, . . . , 1) total 1105 total 22.1%

(1, 5) 1058 21.2%
(1, 1, 1, 1, 1, 1) 47 0.9%

Table 4.1: Factorization pattern frequencies for the modular polynomial Gµ(J1, J2, J3, x) for µ = (5+
√

5)/2
of norm ` = 5. The degree of Gµ(J1, J2, J3, x) in x is 6. We only factored when J2

3 was a square in Fq,
which happened in 4989 of the 10000 trials (49.9%).

According to Proposition 4.13, we would expect that 1/` of the time µ should be OQ(
√

5)-volcanic,

(`−1)/2` of the time µ should be OQ(
√

5)-Elkies, and (`−1)/2` of the time µ should be OQ(
√

5)-Atkin. The
summary of our above results in Table 4.3 appears to confirm this. This gives us considerable confidence
that the Hilbert modular polynomials computed in [Mar18, Chapter 2] are correct.

Finally, we ran the same tests on Milio’s modular polynomial11 Φ(J1, J2, X) for ` = 5 and µ =
(5 +

√
5)/2, where J1 = J2 and J2 = J1J2. We obtained exactly the same factorization patterns each time

J3 was in Fq.

11Available from https://members.loria.fr/EMilio/modular-polynomials/
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Factorization pattern, type of µ Number found Percentage

OQ(
√

5)-Elkies: (1, 1, e, . . . , e) with e > 1 total 2262 total 44.7%

(1, 1, 10) 994 19.7%
(1, 1, 5, 5) 1040 20.6%
(1, 1, 2, 2, 2, 2, 2) 228 4.5%

OQ(
√

5)-Atkin: (e, . . . , e) with e > 1 total 2329 total 46.1%

(12) 859 17.0%
(6, 6) 404 8.0%
(4, 4, 4) 424 8.4%
(3, 3, 3, 3) 429 8.5%
(2, 2, 2, 2, 2, 2) 213 4.2%

OQ(
√

5)-volcanic: (1, e) or (1, . . . , 1) total 466 total 9.2%

(1, 11) 461 9.1%
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 5 0.1%

Table 4.2: Factorization pattern frequencies for the modular polynomial Gµ(J1, J2, J3, x) for µ = (7+
√

5)/2
of norm ` = 11. The degree of Gµ(J1, J2, J3, x) in x is 12. We only factored when J2

3 was a square in Fq,
which happened in 5057 of the 10000 trials (50.6%).

Prime type frequencies for µ
OQ(

√
5)-volcanic OQ(

√
5)-Elkies OQ(

√
5)-Atkin

µ = 5−
√

5
2

Theory 20.0% 40.0% 40.0%
Experiments 22.1% 36.8% 41.1%

µ = 7+
√

5
2

Theory 9.1% 45.5% 45.5%
Experiments 9.2% 44.7% 46.1%

Table 4.3: Experimental evidence supporting the correctness of Martindale’s Hilbert modular polynomials.
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Appendix A

The notions of dual and polarisation
in equivalent categories

In all that follows C and D will denote categories with an involution called dual and denoted by ∨.
Furthermore, functors F : C → D and G : D → C will denote an adjoint equivalence (cf. [Lan78,
Definition on p. 93]) of categories via natural isomorphisms

γ = {γA : GFA−̃→A : A ∈ C} (A.1)

and
δ = {δA : FGA−̃→A : A ∈ D}. (A.2)

Recall from Mac Lane [Lan78, Theorem IV.1.1] that in this situation, for all A ∈ C, we have that

F (γA) = δF (A), (A.3)

and for all B ∈ D, we have that G(δB) = γG(B).
The purpose of this Appendix is to prove that, as stated in Remark 1.3.12, if F preserves the notion

of dual (resp. polarisation), then G preserves the notion of dual (resp. polarisation). For the convenience
of the reader, we repeat the definitions from Remark 1.3.12 of the preservation of the notions of dual and
polarisation.

Definition A.1. If F comes together with a natural isomorphism

f : F ◦ ∨−̃→ ∨ ◦F,

we say that (F, f) preserves the notion of dual. For an object A ∈ C, we write fA for the isomorphism
F (A∨)−̃→F (A)∨.

Claim A.2. Suppose that (F, f) preserves the notion of dual. Then there is a natural isomorphism
g : G ◦ ∨−̃→ ∨ ◦G given by

{gB = γ(GB)∨ ◦G(f−1
GB) ◦G(δ∨B) : B ∈ D}. (A.4)

In particular, by definition (G, g) preserves the notion of dual.

Proof. The morphism g given in (A.4) is a natural isomorphism if for every ϕ ∈ HomD(A,B), the diagram

G(A∨)
G(δ∨A)

// G((FGA)∨)
G(f−1

GA)
// GF ((GA)∨)

γ(GA)∨
// (GA)∨

G(B∨)

G(ϕ∨)

OO

G(δ∨B)

// G((FGB)∨)
G(f−1

GB)

//

(
1) G((FGϕ)∨)

OO

GF ((GB)∨)
γ(GB)∨

//

(
2) GF ((Gϕ)∨

OO

(GB)∨

(
3) (Gϕ)∨

OO

commutes. But (1) commutes as δ is a natural isomorphism, (2) commutes as f is a natural isomorphism,
and (3) commutes as γ is a natural isomorphism. Hence

g = {gB = γ(GB)∨) ◦G(f−1
GB) ◦G(δ∨B) : B ∈ D}
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is a natural isomorphism
g : G ◦ ∨−̃→ ∨ ◦G.

From now on, we suppose that for all objects in C (resp. D), we have a subset PA ⊆ Hom(A,A∨) of
‘polarisations’ such that for every isomorphism m : B→ A in C (resp. D), the map

Hom(A,A∨) −→ Hom(B,B∨)
ϕ 7→ m∨ϕm

(A.5)

induces a bijection between PA and PB.

Definition A.3. Suppose that (F, f) preserves the notion of dual. We say that (F, f) preserves the
notion of polarisation if for all objects A ∈ C the map

Hom(A,A∨) −→ Hom(F (A), F (A)∨)
ξ 7→ fA ◦ F (ξ)

induces a bijection between PA and PF (A).

Claim A.4. Suppose that (F, f) preserves the notions of dual and of polarisation. Then (G, g) with g as
in (A.4) preserves the notion of polarisation.

Lemma A.5. Suppose that (F, f) preserves the notion of dual. Then (FG, h) preserves the notions of
dual and of polarisation, where

h = {hB = fGB ◦ F (gB) : B ∈ D} (A.6)

and g is as in (A.4).

Proof. We have that (G, g) preserves the notion of dual by Claim A.2, and it is easy to check that (FG, h)
also preserves the notion of dual. Therefore it suffices to prove that the isomorphism

HomD(B,B∨) −→ HomD(FGB, (FGB)∨)
ξ 7→ hB ◦ FG(ξ)

induces a bijection between PB and PFGB. By (A.5), the isomorphism
δB : FGB→̃B gives an isomorphism

HomD(B,B∨) −→ HomD(FGB, (FGB)∨)
ξ 7→ δ∨B ◦ ξ ◦ δB,

which in turn induces a bijection between PB and PFGB. Hence, it suffices to show that for every
ξ ∈ HomD(B,B∨), we have that

hB ◦ FG(ξ) = δ∨B ◦ ξ ◦ δB. (A.7)

Note, by definition of hB and gB , that

hB ◦ FG(ξ) = fGB ◦ F (gB) ◦ FG(ξ)

= fGB ◦ F (γ(GB)∨) ◦ FG(f−1
GB ◦ δ

∨
B ◦ ξ),

and F (γ(GB)∨) = δF ((GB)∨) by (A.3), so

hB ◦ FG(ξ) = fGB ◦ δF ((GB)∨) ◦ FG(f−1
GB ◦ δ

∨
B ◦ ξ). (A.8)

Furthermore, as f−1
GB ◦ δ∨B ◦ ξ ∈ HomD(B,F ((GB)∨) and δ is a natural isomorphism, the diagram

B
f−1
GB◦δ

∨
B◦ξ // F ((GB)∨)

FGB

δB

OO

FG(f−1
GB◦δ

∨
B◦ξ)// FGF ((GB)∨)

δF ((GB)∨)

OO

commutes, so that
δF ((GB)∨) ◦ FG(f−1

GB ◦ δ
∨
B ◦ ξ) = f−1

GB ◦ δ
∨
B ◦ ξ ◦ δB.

Plugging this into (A.8) gives (A.7) and the result follows.
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Proof of Claim A.4. As (F, f) preserves the notion of dual, by Claim A.2 (G, g) also preserves the notion
of dual. Therefore, it suffices to show that the isomorphism

bB : HomD(B,B∨) −→ HomC(GB, (GB)∨)
ξ 7→ gB ◦G(ξ)

induces a bijection between PB and PGB. But by Claim A.5 (FG, h) preserves the notion of polarisation,
where h is as in (A.6), hence the isomorphism

cB : HomD(B,B∨) −→ HomD(FGB, (FGB)∨)
ξ 7→ fGB ◦ F (gB) ◦ FG(ξ)

induces a bijection between PB and PFGB, and as (F, f) preserves the notion of polarisation, the
isomorphism

dGB : HomC(GB, (GB)∨) −→ HomD(FGB, (FGB)∨)
ξ 7→ fGB ◦ F (ξ)

induces a bijection between PGB and PFGB. Therefore the sets PB and PGB are in bijection via the
isomorphism d−1

GB ◦ cB, which is indeed bB as, for any ξ ∈ HomD(B,B∨), we have that

dGB(bB(ξ)) = dGB(gB ◦G(ξ))

= fGB ◦ F (gB ◦G(ξ))

= fGB ◦ F (gB) ◦ FG(ξ)

= cB(ξ).
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Summary

This thesis is primarily concerned with topics in and around the study of isogenies of abelian varieties.
The precise definitions of both abelian varieties and isogenies are unfortunately beyond the scope of this
summary, but we aim to give the reader an intuitive notion of both.

The most common example of an abelian variety that occurs in number theory is that of an elliptic
curve. Let us consider the equation

E : y2 = x3 − x+ 1.

This equation has a solution (x, y) = (1, 1), because 12 = 13 − 1 + 1. Equation E is an example of an
elliptic curve, and if we plot it, then it looks like this:

We can also see from the picture that we have a solution (x, y) = (1, 1) to the equation, because the point
with coordinates (1, 1) lies on the curve. We can also spot other points that lie on the curve with integral
(whole number) coordinates, such as (x, y) = (0,−1), which also then give a solution to equation E.

Having found two points on the curve with integral coordinates, we can find more: in this example,
drawing a straight line between the points (0,−1) and (1, 1) yields the following picture:

The straight line then intersects the curve in a third point (x, y) = (3, 5), giving us a third solution to our
equation. As it happens, this third point still has integral coordinates, although the same construction
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starting from different points with integer coordinates could have yielded fractions (rational numbers).
For example, the straight line passing through (3,−5) and (0,−1) intersects the curve in a third point
(− 11

9 ,
17
27 ). However, this construction will never yield an irrational number like π or e!

In fact, in this example, infinitely many rational solutions (i.e. x and y can be written as fractions)
to our equation can be found in this way - that is, by drawing a straight line between two points that
we already know (or their reflections in the x-axis) and looking for a third point of intersection with the
curve. Even better, in this example, it is possible to find all the rational solutions to our equation in this
way as long as we use well-chosen points at each stage.

This is however, quite a ‘special’ example in this regard - an abelian variety is a geometric object that
can be defined by polynomial equations like the one above, for which the rational solutions are related to
one another in a prescribed way, for example by drawing straight lines and looking for intersection points
as above. However, it’s not always easy to find enough starting points to find all the solutions in this way,
sometimes there are only finitely many solutions, and sometimes you don’t even know if there should be a
finite number or an infinite number of solutions. Also, for equations with higher degree than the example
above (i.e. higher powers of x and y), or more variables (or more difficult in other ways), the relations
between the points become more complicated.

Another way of finding solutions to such equations is via isogenies. An isogeny is a map between
abelian varieties that ‘preserves the geometric structure’. We explain by example what we mean by this:
consider the map

(x, y) 7→ (x− 11, y),

which sends the above equation E : y2 = x3 − x+ 1 to

y2 = x3 − 33x2 + 362x− 1319,

which looks like this:

Above, we found three solutions (0,−1), (1, 1), and (3, 5) to our equation E that lie on the same straight
line. Note that if (x, y) is a solution to equation E, then (x+ 11, y) will be a solution to the new equation.
So, we can use our map to compute three corresponding solutions to the new equation:

(0,−1) 7→ (11,−1)

(1, 1) 7→ (12, 1)

(3, 5) 7→ (14, 5).

If you plot them, they still all lie on a straight line:
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So the geometric relationship between these solutions is somehow preserved. This map is called an isogeny
because this happens.

So, an isogeny from an abelian variety A to an abelian variety B not only maps points on A to points
on B but preserves the relations between those points. Most importantly, if you are given an abelian
variety A and asked to find points on A or relations between those points, it may be easier to look for an
abelian variety B on which you can easily spot points, and an isogeny from B to A.

The take home message is: we are interested in knowing, given two abelian varieties, whether there
exists an isogeny from one to the other. Normally, we are checking a bit more: whether or not there exists
an isogeny of a certain type (for mathematicians: in the case of elliptic curves, this type is the degree). In
Chapter 2, we give an algorithm to do this, which we have implemented for some ‘small’ abelian varieties.
(Here ‘small’ means abelian varieties coming from genus 2 curves, which will be explained shortly.)

Another approach to help understand, given two abelian varieties, whether or not there exists an
isogeny between them is to make a diagram of the information, called an isogeny graph. An isogeny graph
is a diagram with: nodes labelled as abelian varieties, and an arrow between two nodes if there is an
isogeny (of a certain prescribed type) from one node to the other.

For example, represent the equation E : y2 = x3 − x + 1 as a white node, and the equation
E′ : y2 = x3− 33x2 + 362x− 1319 as a black node. We saw already that there exists an isogeny from E to
E′ given by (x, y) 7→ (x− 11, y). Also, there exists an isogeny from E′ to E given by (x, y) 7→ (x+ 11, y)
so part of our diagram would look like this:

We could also draw one undirected line instead of the two arrows, giving the following diagram:

In Chapter 3, we show that for our type of isogenies an isogeny graph 1 of abelian varieties consists of
volcano graphs, an example of which is below:

1In this thesis, we also equate some nodes (for mathematicians: we identify isomorphic nodes), and E and E′ would
actually be represented by the same node. However, there do exist many graphs with lots of nodes even after equating some
of the nodes.
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This type of graph has become known as a volcano as it resembles the bird’s eye view of a volcano:
the triangle in the centre is the ‘rim’ of the volcano (this could be replaced by any n-gon), and the lines
going away from the rim is the ‘lava’ flowing down to the ground.

In Chapter 4 we study solutions of equations defining curves of genus 2. Except for some special cases,
a genus 2 curve is given by an equation y2 = f(x), where f(x) is a degree 5 or 6 polynomial (this means
that the highest power of x that appears in f(x) is 5 or 6). For example the equation

y2 = x5 + 1

represents a genus 2 curve. It looks like this:

We can associate an abelian variety to any genus 2 curve; the study of genus 2 curves lies within the
study of abelian varieties (in some sense). Also, instead of only looking for solutions of the equation given by
whole numbers or fractions, we choose a prime number, say 101, and try to find integer coordinates (x, y) on
the curve such that x5+1−y2 is divisible by 101, e.g. x = 6 and y = 0. One can count the number of choices
for (x, y) with 0 ≤ x, y < 101 that yield x5 +1−y2 divisible by 101 just by listing every possibility for x and
y and checking whether you get a solution (in this case there are 97 solutions). However, if the prime is not
101, but 115792089237316195423570985008687907853269984665640564039457584007913129640233, then
just counting all the solutions in this way cannot be done by modern computers, and many cryptographic
protocols are based on the difficulty of this kind of problem. However, sometimes it is possible to count
more efficiently by using the abelian variety structure. In Chapter 4, we give an efficient algorithm to
count all the solutions (for a given large prime) for equations defining certain genus 2 curves. Chapter 4 is
joint work with Sean Ballentine, Aurore Guillevic, Elisa Lorenzo-Garcia, Maike Massierer, Ben Smith,
and Jaap Top.
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Samenvatting

Dit proefschrift gaat hoofdzakelijk over isogenieën en abelse variëteiten. De precieze definities van de twee
begrippen zijn helaas te geavanceerd voor deze samenvatting, maar wij proberen om wat intüıtie te geven
voor beide concepten.

Het meest voorkomende voorbeeld van een abelse variëteit die zich in getaltheorie voordoet is een
elliptische kromme. Beschouw de vergelijking

E : y2 = x3 − x+ 1.

Deze vergelijking heeft een oplossing (x, y) = (1, 1), want 12 = 13 − 1 + 1. De vergelijking E is een
voorbeeld van een elliptische kromme, en als we deze plotten krijgen we:

Wij zien ook direct uit de grafiek dat er een oplossing (x, y) = (1, 1) is, omdat het punt met coördinaten
(1, 1) op de kromme ligt. Wij kunnen ook andere punten met geheeltallige coördinaten die op de kromme
liggen nu zien, zoals (x, y) = (0,−1), en die geven nog meer oplossingen van de vergelijking E.

Nu dat wij twee punten met geheeltallige coördinaten op de kromme hebben gevonden, kunnen wij er
meer vinden: in dit voorbeeld tekenen wij een rechte lijn tussen de punten (0,−1) en (1, 1). Dit geeft de
volgende grafiek:
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De rechte lijn snijdt de kromme in een derde punt (x, y) = (3, 5), dus wij krijgen een derde oplossing van
onze vergelijking. Het derde punt heeft weer geheeltallige coördinaten, maar dezelfde constructie kan ook
breuken geven. Bijvoorbeeld, de rechte lijn die door (3,−5) en (0,−1) gaat, heeft een derde snijpunt met
de kromme op (− 11

9 ,
17
27 ). Aan de andere kant kan deze constructie nooit een irrationaal getal zoals π of e

geven!
In dit voorbeeld kunnen wij op deze manier, dat is door het tekenen van een rechte lijn tussen twee

punten die wij al gevonden hebben (of hun reflecties in de x-as) en het zoeken naar een derde snijpunt, een
oneindig aantal rationale oplossingen vinden, dat wil zeggen: x en y kunnen als breuk geschreven worden.

Beter zelfs: in dit voorbeeld is het mogelijk om alle rationale oplossingen van onze vergelijking op
deze manier te vinden, zolang wij op elk moment de beste punten kiezen om te gebruiken.

Aan de andere kant, dit voorbeeld is best wel ‘speciaal’ – een abelse variëteit is een meetkundig object
dat door polynomen gedefinieerd kan worden (de vergelijkingen hierboven zijn polynomen) waarvoor
bovendien de rationale oplossingen een voorgeschreven relatie hebben, bijvoorbeeld door het tekenen van
rechte lijnen die de kromme in drie rationale punten snijden. Vaak is het niet mogelijk om de beginpunten
te vinden, of er is maar een eindige hoeveelheid rationale oplossingen, en soms weten wij niet of er een
eindige of oneindige hoeveelheid rationale oplossingen is. Daarnaast worden voor vergelijkingen met een
hogere graad dan ons voorbeeld (i.e. hogere machten van x en y), of meer variabelen, de relaties tussen
de punten gecompliceerder.

Een andere manier van oplossingen vinden is via isogenieën. Een isogenie is een afbeelding tussen
abelse variëteiten die ‘de meetkundige structuur bewaart’ (voor wiskundigen: de groepsstructuur). Wij
leggen met een voorbeeld uit wat dit betekent: beschouw de afbeelding

(x, y) 7→ (x− 11, y),

die de vergelijking E : y2 = x3 − x+ 1 van hierboven naar

y2 = x3 − 33x2 + 362x− 1319

stuurt. De grafiek van deze nieuwe vergelijking ziet er uit als:

Wij vonden hierboven drie oplossingen (0,−1), (1, 1), en (3, 5) van onze vergelijking E die op dezelfde
rechte lijn liggen. Merk op dat als (x, y) een oplossing van de vergelijking E is, dan (x+11, y) een oplossing
van de nieuwe vergelijking wordt. Dus kunnen wij onze afbeelding gebruiken om drie overeenkomende
oplossingen van de nieuwe vergelijking te berekenen:

(0,−1) 7→ (11,−1)

(1, 1) 7→ (12, 1)

(3, 5) 7→ (14, 5).

Laten wij hen plotten en zien we dat zij nog steeds op een rechte lijn liggen:
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Dus de meetkundige relatie tussen deze oplossingen is in zekere zin behouden. De afbeelding is een isogenie
omdat dit gebeurt.

Wij hebben gezien dat een isogenie van een abelse variëteit A naar een abelse variëteit B niet alleen
maar punten van A naar punten van B stuurt, maar ook de relatie tussen de punten behoudt. Het is
belangrijk om in te zien dat als een abelse variëteit A gegeven is en u bent gevraagd om punten van A
te vinden, of relaties tussen de punten, het dan makkelijker kan zijn om naar een abelse variëteit B te
zoeken waar het makkelijk is om punten en relaties te vinden, en een isogenie van B naar A te geven.

De boodschap is: wanneer twee abelse variëteiten zijn gegeven dan willen wij weten of er een isogenie
bestaat van de ene naar de andere. Normaalchecken wij nog een beetje meer: of er een isogenie bestaat
van een specifiek type (voor wiskundigen: in het geval van elliptische krommen is het type de graad). In
hoofdstuk 2 geven wij een algoritme om dit te doen, dat wij voor een paar ‘kleine’ abelse variëteiten ook
hebben geimplementeerd. (Hier betekent ‘klein’ abelse variëteiten die van geslacht twee krommen vandaan
komen, dit zullen wij straks uitleggen.)

Nog een manier die kan helpen om te zien of er een isogenie tussen twee abelse variëteiten bestaat, is
door een diagram te maken van de informatie; dit heet een isogenieëngraaf. Een isogenieëngraaf is een
diagram dat bestaat uit knopen gemarkeerd als abelse variëteiten, met steeds een pijl van een knoop naar
een andere als er een isogenie (van een gegeven type) bestaat van de ene abelse variëteit naar de andere.

Bijvoorbeeld, neem voor de vergelijking E : y2 = x3 − x+ 1 een witte knoop, en voor de vergelijking
E′ : y2 = x3 − 33x2 + 362x − 1319 een zwarte knoop. Wij hebben al gezien dat er een isogenie van E
naar E′ is gegeven door (x, y) 7→ (x− 11, y). Er bestaat ook een isogenie van E′ naar E gegeven door
(x, y) 7→ (x+ 11, y) dus een deel van ons diagram ziet er als volgt uit:

Wij zouden ook een ongerichte lijn kunnen tekenen in plaats van de twee pijlen, zodat het diagram
wordt:

In hoofdstuk 3 bewijzen wij dat voor onze type isogenieën bestaat de isogenieëngraaf 2 uit vulkanen.
Een vulkaan ziet er bijvoorbeeld als volgt uit:

2In dit proefschrift stellen we sommige knopen gelijk (voor de wiskundigen: wij stellen isomorfe knopen gelijk), en E en
E′ worden eigenlijk door dezelfde knoop gerepresenteerd. Maar er bestaan wel grafen met heel veel knopen, zelfs na dit
gelijkstellen.
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Dit type graaf wordt vulkaan genoemd omdat het eruitziet als het bovenaanzicht van een vulkaan: de
driehoek in het centrum is de ‘rand’ van de vulkaan (deze kan ook door iedere n-hoek vervangen worden),
en de lijnen die weg gaan van de rand stellen de lava voor dat naar beneden stroomt.

In hoofdstuk 4 bestuderen wij oplossingen van vergelijkingen die geslacht 2 krommen definiëren. Buiten
wat speciale gevallen wordt een geslacht 2 kromme door een vergelijking y2 = f(x) gegeven, waar f(x)
een polynoom is van graad 5 of 6 (dit betekent dat de hoogste macht van x die in f(x) voorkomt 5 of 6
is). Bijvoorbeeld de vergelijking

y2 = x5 + 1

is een geslacht 2 kromme. Deze ziet er uit als:

Wij kunnen met elke geslacht 2 kromme een abelse variëteit associëren; de studie naar geslacht 2
krommen is een substudie van die naar abelse variëteiten (in zekere zin). In plaats van alleen te zoeken
naar oplossingen die zijn gegeven door gehele getallen of breuken, kiezen wij daarnaast een priemgetal,
bijvoorbeeld 101, en proberen wij geheeltallige coördinaten (x, y) te vinden zodat x5 + 1− y2 gedeeld kan
worden door 101, bijvoorbeeld x = 6 en y = 0.

Wij kunnen het aantal mogelijkheden tellen voor (x, y) met 0 ≤ x, y < 101 zodat x5 + 1 − y2

gedeeld kan worden door 101 door elke optie voor x en y op te sommen en te checken of het een
oplossing geeft (in dit geval er zijn 97 oplossingen). Aan de andere kant, als de priem niet 101 is, maar
115792089237316195423570985008687907853269984665640564039457584007913129640233, dan kan het op
deze manier tellen van alle oplossingen niet door moderne computers gedaan worden. Cryptographische
protocollen zijn op de moelijkheid van dit soort problemen gebaseerd. Maar soms is het efficiënter om
te tellen door gebruik te maken van de structuur van de abelse variëteit. In hoofdstuk 4 geven wij een
efficiënt algoritme om alle oplossingen (voor een gegeven grote priem) te tellen voor vergelijkingen van
bepaalde geslacht 2 krommen. Hoofdstuk 4 is een samenwerking met Sean Ballentine, Aurore Guillevic,
Elisa Lorenzo-Garcia, Maike Massierer, Ben Smith, en Jaap Top.
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Résumé

Dans cette thèse nous étudions les isogénies entre variétés abéliennes. Les définitions précises de variété
abélienne et d’isogénie dépassent malheureusement le cadre de ce résumé, mais nous essayons d’en donner
une idée intuitive.

L’exemple le plus commun d’une variété abélienne dans la théorie des nombres est celui de courbe
elliptique. Considérons l’équation

E : y2 = x3 − x+ 1.

Cette équation admet (x, y) = (1, 1) pour solution car 12 = 13− 1 + 1. L’équation E est un exemple d’une
courbe elliptique, et si nous la dessinons, elle ressemble à ceci:

Il est évident sur l’image que (x, y) = (1, 1) est une solution de l’équation, parce que le point de coordonnées
(1, 1) se trouve sur la courbe. Nous pouvons aussi trouver d’autres points sur la courbe avec des coordonnées
entières (nombres entiers), telles que (x, y) = (0,−1), qui donnent solutions de l’équation E.

Ayant trouvé deux points sur la courbe avec des coordonnées entières, nous pouvons les utiliser pour
en trouver d’autres: dans notre exemple, traçons la ligne droite entre les points (0,−1) et (1, 1); nous
obtenons l’image suivante:
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La droite coupe la courbe en un troisième point (x, y) = (3, 5), ce qui nous fournit une troisième solution
à notre équation. Dans cet exemple, ce troisième point a lui aussi des coordonnées entières, bien que la
même construction à partir de points différents aurait pu donner des fractions (nombres rationnels). Par
exemple, la ligne droite passant par (3,−5) et (0,−1) coupe la courbe en un troisième point (− 11

9 ,
17
27 ).

Cependant, cette construction ne donnera jamais un nombre irrationnel comme π ou e!
En fait, dans cet exemple, il y a une infinité de solutions rationnelles (c’est-à-dire que x et y sont

des fractions) à notre équation qui peuvent être trouvées de cette façon - en dessinant une ligne droite
entre deux points connu (ou leurs réflexions par rapport à l’axe x) et en cherchant le troisième point
d’intersection avec la courbe. Mieux encore, dans cet exemple, il est possible de trouver toutes les solutions
rationnelles à notre équation de cette manière pour peu que l’on utilise des points bien choisis à chaque
étape.

Cet exemple est, cependant, spécial à cet égard - une variété abélienne est un objet géométrique
qui peut être défini par des équations polynômiales comme celle ci-dessus, pour lesquelles les solutions
rationnelles ont des relations prescrites, par exemple en dessinant des lignes droites et en recherchant les
points d’intersection comme ci-dessus. En général, ce n’est pas toujours possible à trouver des points
de départ pour cette construction, ou parfois il y a seulement un nombre fini de solutions, et parfois on
ne sait pas s’il y a un nombre fini ou infini de solutions. De même, pour des équations ayant un degré
supérieur à l’exemple ci-dessus (c’est-à-dire des puissances supérieures de x et y) ou plus de variables (ou
qui sont plus compliquées d’une autre manière), les relations deviennent plus compliquées.

Une autre façon de trouver des solutions à de telles équations est d’utiliser des isogénies. Une isogénie
est une application entre variétés abéliennes qui �préserve la structure géométrique�. Expliquons ceci sur
un exemple: considérer l’application

(x, y) 7→ (x− 11, y),

qui envoie les solutions de l’équation E : y2 = x3 − x+ 1 vers des solutions de

y2 = x3 − 33x2 + 362x− 1319,

qui ressemble à:

Nous avons trouvé ci-avant trois solutions (0,−1), (1, 1) et (3, 5) à notre équation E et celles-si se trouvent
sur la même droite. Notons que si (x, y) est une solution de l’équation E, alors (x+ 11, y) sera bien une
solution de la nouvelle équation. Ainsi, on peut utiliser l’application pour exprimer les trois solutions
correspondantes de la nouvelle équation:

(0,−1) 7→ (11,−1)

(1, 1) 7→ (12, 1)

(3, 5) 7→ (14, 5).

Si l’on ajoute ces trois solutions sur le dessin ci-dessus, on constate que les trois points sont alignés:
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Alors, parce que l’application est une isogénie, la relation géométrique (i.e. le fait d’être alignées) entre
ces solutions est préservée.

À l’aide d’une isogénie d’une variété abélienne A vers une variété abélienne B, et étant donnés des
points sur A, on peut trouver des points sur B. L’isogénie préserve de plus les relations entres ces points.
Plus important encore, si l’on se donne une variété abélienne A et que l’on veut trouver des points sur A
ou des relations entre ces points, il peut être plus facile de chercher une variété abélienne B sur laquelle
on peut plus facilement trouver des points et une isogénie de B à A.

Le message principal est donc: il est intéressant de savoir, étant donné deux variétés abéliennes, s’il
existe une isogénie entre elles. En fait, on pose une question un peu plus précise: existe-t-il une isogénie
d’un type spécifique entre deux variétés abéliennes données? (Pour les mathématiciennes, dans le cas des
courbes elliptiques, le type d’une isogénie est son degré.) Dans le chapitre 2, nous donnons un algorithme
qui répond à cette question. Nous avons de plus implémenté celui-ci pour certaines �petites� variétés
abéliennes. (Ici �petit� signifie des variétés abéliennes qui viennent des courbes de genre 2, qui nous
définissons plus loin.)

Une autre approche pour aider à voir, étant données deux variétés abélienne, s’il existe ou pas une
isogénie entre elles, est de faire un diagramme de la situation, appelé graphe d’isogénie. Un graphe
d’isogénie est un diagramme dont les sommets sont des variétés abéliennes, et dans lequel deux sommets
sont reliés par une arête s’il y a une isogénie (d’un type donné) entre eux.

Par exemple, représentons l’équation E : y2 = x3 − x + 1 par un sommet blanc, et l’équation
E′ : y2 = x3 − 33x2 + 362x − 1319 par un sommet noir. Nous avons déjà vu qu’il existe une isogénie
de E vers E′ donnée par (x, y) 7→ (x − 11, y). De plus, il existe une isogénie de E′ vers E donnée par
(x, y) 7→ (x+ 11, y). Une partie de notre graphe ressemblerait alors à:

Nous aurions pu aussi dessiner une arête non orientée au lieu des deux arêtes orientées, ce qui donnerait
le graphe suivant:

Au chapitre 3, nous prouvons que pour notre type d’isogénie, le graphe d’isogénie 3 se compose de
volcans, dont un exemple est ci-dessous:

3 Dans cette thèse, nous aussi assimilons des sommets (pour les mathéciennes: nous identifions des sommets isomorphiques),
et en fait E et E′ seraient représenté par la même sommet. Cependant, c’éxiste des graphes avec beaucoup de sommets
même après en idenfier un part des sommets.
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Ce type de graphe s’appelle un volcan car il ressemble à une vue aérienne d’un volcan: le triangle au
centre correspond au �cratère� du volcan (on pourrait le remplacer par n’importe quel n-gone) et les
lignes qui s’éloignent du cratère sont la �lave� qui coule vers le sol.

Au chapitre 4, nous étudions des solutions d’équations définissant des courbes de genre 2. En dehors
de quelques cas particuliers, une courbe de genre 2 est donnée par une équation y2 = f(x), où f(x) est un
polynôme de degré 5 ou 6 (c’est-à-dire que la plus grande puissance de x apparaissant dans f(x) est x5 ou
x6). Par exemple l’équation

y2 = x5 + 1

représente une courbe de genre 2. Elle ressemble à ceci:

On peut associer une variété abélienne à n’importe quelle courbe de genre 2; l’étude des courbes de
genre 2 se ramène donc à l’étude de certaines variétés abéliennes (dans un certain sens). Au lieu de chercher
seulement des solutions de l’équation donnée par des nombres entiers ou des fractions, on choisit un nombre
premier, disons 101, et on essaie de trouver des points à coordonnées entières (x, y) tels que x5 + 1− y2

est divisible par 101, par exemple x = 6 et y = 0. On peut compter le nombre des choix de (x, y) avec
0 ≤ x, y < 101 qui donnent x5 + 1− y2 divisible par 101, simplement en énumérant toutes les possibilités
pour x et y et en vérifiant si on a une solution (dans ce cas, il y a 97 solutions). Toutefois, si le premier n’est
pas 101, mais 115792089237316195423570985008687907853269984665640564039457584007913129640233,
alors le comptage de toutes les solutions ne peut pas être effectué de cette manière par les ordinateurs
modernes, et de nombreux protocoles cryptographiques sont basés sur la difficulté de ce type de problème.
Cependant, parfois c’est possible à compter le nombre de solutions si on utilise la structure de variété
abélienne. Au chapitre 4, nous donnons un algorithme efficace pour compter toutes les solutions (pour un
grand nombre premier donné) pour les équations définissant des certaines courbes de genre 2. Le chapitre
4 est un travail en commun avec Sean Ballentine, Aurore Guillevic, Elisa Lorenzo-Garcia, Maike Massierer,
Ben Smith et Jaap Top.
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