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5.2 Asymptotic approximation of the Hessian operator . . . . . . . . . . . . . . . . . 86
5.3 Source encoding and second-order optimization . . . . . . . . . . . . . . . . . . . 87
5.4 FWI of GPR data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Kinematic source inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.6 The SEISCOPE optimization toolbox . . . . . . . . . . . . . . . . . . . . . . . . 89

3 Research project 91
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2 Making the most of the data we record: can optimal transport help? . . . . . . . . . . . 93
3 Additional methodological developments . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.1 Combining FWI with homogenization . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2 Uncertainty quantification in FWI: a data assimilation strategy? . . . . . . . . . 95
3.3 Asymptotic approaches for travel-time computation . . . . . . . . . . . . . . . . 97
3.4 Regularization strategies: what can we learn from image processing techniques? . 98
3.5 Towards 3D elastic multi-parameter FWI in the frequency-domain . . . . . . . . 99
3.6 Particles methods for the wave equation and Hamilton-Jacobi equations . . . . . 99

4 Multiparameter FWI: application to real data . . . . . . . . . . . . . . . . . . . . . . . . 100
4.1 Application to exploration scale and crustal scale seismic data . . . . . . . . . . 100
4.2 Application to GPR and electric data: towards multi-physics inversion . . . . . . 101
4.3 Application to noise correlation data for lithospheric targets . . . . . . . . . . . . 101
4.4 Application to ultrasound data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Development of open source toolboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

References 105

iv



Présentation générale

Ce mémoire résume l’activité de recherche que j’ai entreprise depuis mon recrutement comme chargé
de recherche au CNRS (en octobre 2012) et mon affectation au laboratoire Jean Kuntzmann de l’uni-
versité Grenoble Alpes. Il contient également un résumé de mon projet de recherche pour les prochaines
années.

Mon activité de recherche est principalement concentrée sur le développement et l’analyse de mé-
thodes numériques pour l’imagerie sismique basée sur l’inversion des formes d’ondes. Le développement
de cette méthode d’imagerie sismique date des années 80, cependant son application aux données d’ex-
ploration dans l’industrie pétrolière, et aux données sismologiques dans l’académie, est plus récente : elle
a commencé dans les années 2000 et s’est généralisée ces dix dernières années. Elle a atteint aujourd’hui
le statut de méthode état-de-l’art pour ces applications.

Cependant, cette stratégie fait encore face à de nombreux verrous méthodologiques pour la généralisa-
tion de son approche à des modélisations plus réalistes et plus complexes (élasticité, viscosité, anisotropie),
pour mieux extraire l’information des données, et pour automatiser son application sans nécessiter d’im-
portants pré-traitements dépendants de l’expertise de spécialistes des applications visées. Ces verrous
empêchent aujourd’hui la systématisation de l’approche, qui permettrait son utilisation à des échelles
plus variées (des expériences de laboratoire sur des échantillons de roches jusqu’à la sismologie globale).
Proposer des solutions pour dépasser ces verrous constitue le cœur de mon activité de recherche.

L’inversion des formes d’ondes se formule comme un problème inverse, basé sur la minimisation de
l’écart entre des données simulées et des données observées. Les contributions scientifiques que j’ai pu
apporter concernent à la fois les méthodes numériques utilisées pour la modélisation de la propagation
des ondes et la solution du problème inverse lui-même.

Dans ce mémoire, j’ai choisi de présenter en détail trois de ces contributions. La première est une
stratégie de couches absorbantes qui reste stable dans l’approximation élasto-dynamique anisotrope de
la propagation des ondes, à la différence de la méthode de référence pour ce type de problème (couches
parfaitement adaptées PML).

La seconde de ces contributions consiste en l’analyse et le développement d’une méthode d’optimi-
sation dite de Newton tronquée, adaptée aux grandes tailles de problème associées aux applications de
l’inversion de formes d’ondes. Cette méthode permet une meilleure approximation de la courbure locale
de la fonction coût, amenant des reconstructions plus stables des propriétés mécaniques du sous-sol, en
particulier quand plusieurs classes de paramètres sont reconstruites simultanément.

La troisième contribution présentée en détail dans ce manuscrit concerne la définition de la fonction
coût elle-même. En particulier, je me suis intéressé à l’utilisation de distances de type transport optimal
pour redéfinir la notion d’écart entre données observées et simulées. J’ai pu montrer que la convexité
de ces distances par rapport à des décalages (temporel ou spatio-temporel) est une caractéristique
fondamentale qui pourrait apporter une solution à un problème posé de longue date par l’inversion de
formes d’ondes. La fonctionnelle aux moindre carrés utilisée couramment est en effet non-convexe et la
possibilité de converger vers un minium local est toujours présente dans les applications, ce qui nécessite,
pour les mener à bien, un savoir faire et un traitement des données parfois très lourd, sans garantie de
succès.

La structure du mémoire est la suivante. Dans le premier chapitre, un Curriculum Vitae détaillé est
donné. Il regroupe les informations sur mon parcours académique et professionnel. Le second chapitre
présente mon activité de recherche. Après avoir introduit les concepts clefs de l’inversion de formes
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d’ondes, les trois contributions mentionnées ci-dessus sont détaillées. Ce chapitre est complété par une
présentation plus succincte d’autres travaux que j’ai menés, toujours dans le contexte de l’imagerie
sismique. Le troisième chapitre présente mon projet de recherche pour les prochaines années.

vi



General overview

This manuscript summarizes my research activity since I was engaged by the CNRS in October 2012 as
a permanent researcher in the Jean Kuntzmann Laboratory (LJK), the applied mathematics laboratory
of University Grenoble Alpes. It also contains an overview of my research project for the coming years.

My research activity mainly focuses on the development and the analysis of numerical methods for
seismic imaging using the full waveform. This seismic imaging technique, despite its introduction in the
early 80s and the increase of its use both in the industry and at the academy level, still faces method-
ological issues: accounting for more realistic wave propagation physics (elasticity, viscosity, anisotropy),
extracting more information from the data, designing more robust workflow, less dependent on human
expertise. These issues still prevent today the application of this strategy at more various scales (from
laboratory experiments on rock samples to global seismology) with the objective of reaching unprece-
dented high resolution estimates of the mechanical properties of a material with noninvasive techniques.
Providing methods trying to overcome or mitigate these issues is the main motivation of my research
activity.

Full waveform inversion is an inverse problem, formulated as the minimization of the distance between
simulated data and observed data. The contributions I have been able to bring so far are related both
to the design of numerical strategies for the solution of the forward problem, i.e. the computation of
the solution to the wave equation in complex media, and to the solution of the inverse problem itself.

In this manuscript I have chosen to focus on three of these contributions. The first is a strategy
of absorbing layers which is stable when considering the solution of the elastodynamics equation in
the presence of anisotropy, contrary to the state-of-the-art method for this category of computational
problems (perfectly matched layers method).

The second is the design and the analysis of a truncated Newton strategy adapted to the large-scale
aspect of the problem. Using this method it is possible to better estimate the local curvature of the misfit
function, which yields more stable reconstruction of the subsurface mechanical properties, in particular
for multi-parameter problems.

The third is related to the definition of the misfit function itself. In particular, I have been interested
in the use of optimal transport distances to define the misfit between simulated and observed data. I
have shown that the convexity of theses distances with respect to shifts between compared measures
is a fundamental feature which might be a solution to a long standing problem in the seismic imaging
community regarding the non-convexity of the conventional L2 misfit function, and the convergence
towards spurious local minima. Avoiding these local minima requires a human expertise and a pre-
processing of the data which is often cumbersome and difficult to set up, with no guarantee of success.

The structure of this manuscript is the following. In the first Chapter, a detailed Curriculum Vitae
presents my professional activity and education background. The second Chapter is dedicated to a
summary of my research activity, with a focus on the aforementioned items, after an overview of the
full waveform inversion method and its history is given. This Chapter ends with a shorter description
of other contributions I have proposed, still in the field of seismic imaging using the full waveform. The
third Chapter is dedicated to a presentation of my research project for the coming years.
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2 Education and professional experience

Education
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(IFPEN, Rueil-Malmaison) and F. Delprat-Jannaud (IFPEN, Rueil-Malmaison).

https://www-ljk.imag.fr/membres/Ludovic.Metivier/
https://seiscope2.osug.fr/


CURRICULUM VITAE

� 2005-2006. Master 2 degree, Univ. Paul Sabatier Toulouse, France
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� 2003-2006. Engineer degree, ENSEEIHT, Toulouse, France
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Professional experience

� 2012-present. CNRS Researcher, LJK, Univ. Grenoble Alpes, France

Mathematics and interactions. Research project based on methodological developments for seis-
mic imaging. Modeling of seismic wave: accounting for anisotropy, elasticity, development of
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sion, uncertainty estimation. Development of a large scale numerical optimization strategy for
smooth nonlinear function problems. Development of misfit functions based on optimal transport
distances: application to full waveform inversion.

� 2011-2012. Post-doctoral position, Institut des Sciences de la Terre (ISTerre), Univ. Grenoble
Alpes, France

Study, analysis, and implementation of new numerical strategies for seismic imaging using the
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Application to multi-parameter inversion.

� 2010-2011. Post-doctoral position, CEA Saclay, France

Modeling and numerical solution of a transport/chemical problem for liquid/liquid extraction.
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� 2006-2009. PhD in applied mathematics, Univ. Paris XIII, France

PhD in mathematics applied to geophysics. Nonlinear inversion strategy of walkaway seismic data
for improving the local resolution. PhD defended under the supervision of Laurence Halpern (Paris
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Rueil-Malmaison).

3 Projects and fundings

� 2016-*. SEISCOPE project

co-PI with R. Brossier (ISTerre-UGA) of the research project SEISCOPE. The project is built as a
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3 years period has started in 2016 with 9 industrial partners: CGG, Chevron, Exxon-Mobil, JGI,
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� 2016-2021. ANR project “Défi des Autres savoirs” HIWAI

Local coordinator of the ANR project HIWAI “Homogenized seismic full Waveform Inversion and
downscaling”. The PI of this project is Y. Capdeville (Univ. Nantes, France, LPG)

� 2015-2016 INSU-INSMI project

PI of the INSU-INSMI project “Implicit parallel in time integration strategy through Spectral
Deferred Correction method for magneto-hydro-dynamic equations” (8kE)
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4 Research supervision

� 2015-2016. Projet local AGIR

PI of the local Univ. Grenoble Alpes project “Asymptotic approach for preconditioning a multi-
parameter inverse problem in seismic imaging” (10 kE)

� 2013-2014. Projet local AGIR

PI of the local Univ. Grenoble Alpes project “Wasserstein Distance for Full Waveform Inversion”
(10 kE)

4 Research supervision

Unofficial PhD supervision
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(25 %)

� Summary: Development of preconditioning techniques for the iterative solver CARP-CG. Appli-
cation to 2D and 3D visco-elastic frequency-domain wave propagation modeling.
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� Funding: SEISCOPE
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3. Julien Thurin

� Funding: National grant
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4. Phong-Thu Trinh

� Funding: SEISCOPE

� Start: November 2015
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� Start: December 2015
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5 Scientific animation and teaching

7. Hugo Pinard

� Funding: SEISCOPE

� Start: November 2013

� Advisors: Stéphane Garambois, ISTerre (33 %), Ludovic Métivier, LJK (33 %), Michel Dietrich,
ISTerre (33 %)

� Summary: Multi-parameter full waveform inversion for near surface imaging using Ground Pen-
etrating Radar data. Application to cross-hole data from the LSBB site (Rustrell).

5 Scientific animation and teaching

� 2016. Master 2 module “Frontiers in Geophysics” in Earth Sciences Master (Univ. Grenoble
Alpes)

Three days module on full waveform inversion for the master 2 degree in Earth Sciences, together
with R. Brossier (ISTerre, Univ. Grenoble Alpes).

� 2016. EAGE workshop on seismic wave modeling (Vienna)

Organization of a one day workshop on seismic wave modeling together with R. Brossier (IS-
Terre, Univ. Grenoble Alpes) and M. Huiskes (Shell Global Solutions International) within the
international applied geophysics conference EAGE in Vienna.

� 2016. Doctoral school training on full waveform inversion (Univ. Grenoble Alpes)

Three days training on full waveform inversion for PhD students in Earth Sciences and Applied
Mathematics, together with R. Brossier (ISTerre, Univ. Grenoble Alpes).

� 2015. Mini-symposium at SIAM Conference on Geosciences (Stanford)

Organization of a mini-symposium on elastic imaging together with S. Chaillat (ENSTA, POEMS,
CNRS) at the SIAM Conference on Geosciences in Stanford.

� 2015. Full Waveform Inversion training at CGG and TOTAL

Three days training at TOTAL (Pau) and CGG (Massy) on full waveform inversion, together with
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� 2014-*. SEISCOPE annual meeting (Grenoble)

Organization of the SEISCOPE annual meeting together with R. Brossier (ISTerre, Univ. Grenoble
Alpes) and J. Virieux (ISTerre, Univ. Grenoble Alpes). Two days of scientific presentations on
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laboratories of the university.

� 2012-*. EDP team seminar at LJK (Grenoble)

Organization of the EDP team seminar EDP at LJK together with C. Jourdana (LJK, Univ.
Grenoble Alpes).

6 Scientific production

Summary

� h-factor : 11 / i10 factor : 17 (Google Scholar data https://scholar.google.fr/citations?
user=S2-_b7oAAAAJ&hl=fr)

� 32 articles in peer-reviewed international journals
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7. Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., & Virieux, J., 2016a. Overcoming cycle
skipping in FWI: An optimal transport approach, in Expanded Abstracts, 78th Annual EAGE
Meeting (Vienna)
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1 Introduction: a state of the art of full waveform inversion

1.1 Generalities

Full waveform inversion is an imaging technique developed in the framework of reflection seismology in
the beginning of the 80s (Lailly, 1983a; Tarantola, 1984). Local measurements of the displacement (or
pressure) wavefield at the surface (and/or in boreholes) constitute the observed data. The method is
formulated as the minimization of the distance between this observed data and data simulated through
the solution of a system of partial differential equations modeling the wave propagation within the
subsurface. Different levels of approximation can be used, from the acoustic approximation, to more
realistic visco-elastic anisotropic wave propagation. The minimization is performed over one or several
parameters of these equations, related to the mechanical properties of the subsurface. As such, FWI can
be seen as a parameter identification problem, or a PDE constrained optimization problem (Nocedal &
Wright, 2006). In general, the parameters mainly influencing the wave propagation within the subsurface
are the compressional wave (P-wave) and shear wave (S-wave) velocities. In the acoustic approximation,
the latter is neglected as only compressional waves are considered. Secondary parameters involve density,
attenuation coefficient, and anisotropy parameters.

The FWI method is usually formulated as a least-squares minimization problem, i.e. the distance
used to measure the discrepancy between the observed and synthetic data is the one associated with
the L2 norm. The wave equation is discretized through finite-differences (Virieux, 1986; Levander,
1988) (well adapted to the acoustic case for data acquired on sea) or finite-element strategies (Etienne
et al., 2010; Brossier et al., 2010; Barucq et al., 2016; Komatitsch et al., 2002; Komatitsch & Tromp,
2002b) (well adapted to elastic propagation to include accurate approximation of the topography for
data acquired on land). For realistic applications, the discrete inverse problem usually involves millions
to billions unknown parameters. For this reason, the minimization problem is solved through local
optimization solvers, based on quasi-Newton strategies (Nocedal & Wright, 2006). Global or semi-
global optimization strategies (Monte-Carlo Markov Chain, genetic algorithms, simulated annealing)
are not adapted to solve this problem unless a re-parameterization is used to reduce drastically the
number of discrete unknowns down to few tenths to one hundred. However, such re-parameterization
are difficult to define except for schematic case studies (gradient media, 1D stratified media).

The quasi-Newton strategies require the ability to compute efficiently the misfit function and its
gradient. This is made possible through the use of adjoint techniques, originating from optimal control
theory (Lions, 1968; Plessix, 2006). In the FWI context, the gradient of the misfit function through
the adjoint technique amounts to the correlation of two wavefields: the incident wavefield originating
from the source used to generate the data, and the adjoint wavefield, originating from the receivers used
to acquire the data. These two wavefields are thus solution of the same wave propagation equation
with different source terms. However, the incident wavefield is computed forward in time (from an
initial condition) while the adjoint wavefield is computed backward in time, from a final condition. This
adjoint technique is crucial for FWI as it enables a fast gradient computation, which does not require the
computation of the sensitivity matrix of the wavefield with respect to the subsurface parameters (also
called the Fréchet derivatives matrix). For realistic size applications, storing/computing this matrix
would require prohibitively large storage facilities/computational resources.

Compared to standard imaging technique, such as travel-times tomography, based on the interpreta-
tion of the arrival times only, FWI aims at interpreting the whole signal, without a specific pre-processing
implying any identification of seismic events such as transmitted waves, reflected waves, refracted waves,
converted waves. Such identifications are at the heart of standard geophysical strategies to infer me-
chanical properties from the measurement of the wavefields. In turns, FWI should be able to take
into account all these events, and produce high resolution estimates of the mechanical properties of the
subsurface, in the limit of half the shortest wavelength of the propagated signal (Devaney, 1984).

At the time FWI was introduced, two important limitations were identified for its proper use on
seismic reflection data. First, repeatedly solve 2D or 3D wave propagation problems requested a com-
putational power not available at this time. Second, a sensitivity gap was identified between the low
wavenumber information possibly reconstructed through arrival-time tomography strategies, and the
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high wavenumber information carried out by reflection data (Gauthier et al., 1986; Jannane et al.,
1989).

Because of this sensitivity gap, the method was first thought of as not suitable for seismic imaging.
The work of Pratt & Worthington (1990); Pratt (1990) changed this viewpoint. Instead of considering
reflection data, they considered cross-hole acquisition survey, for which sources and receivers are located
in two boreholes. This acquisition configuration allows to record mainly transmitted energy instead of
reflected energy. Transmitted data contains more information on the intermediated wavenumber which
are lacking in the reflected data. In addition, Pratt & Worthington (1990) set up a multi-scale frequency-
domain strategies. The data is decimated in few discrete frequencies to reduce the computational cost of
the overall strategy and the volume of data to manage. The FWI strategy interprets the low frequency
part of the data first. The reconstructed velocity model is then used as as starting model for the
interpretation of higher frequency data. This multi-scale approach allows for the reconstruction of low
to high resolution feature of the wave velocity. This very important contribution was a proof of concept
for FWI emphasizing the importance of transmitted waves and the possibility to set-up a suitable
computational framework through a frequency-domain strategy.

The joint development, in the beginning of the 2000s, of wide azimuth broadband acquisition systems,
and high performance computing facilities, was the starting point for successful applications of FWI to
seismic exploration data. To illustrate the interest of the FWI strategy and particularly the increase
in resolution that can be achieved compared to travel-time tomography strategies, I present in the
following the results obtained by Operto et al. (2015b) on a shallow water ocean bottom cable (OBC)
data, acquired in the North Sea, near the Valhall oil and gas field.

1.2 An example of application at the seismic exploration scale

A map of the Valhall field and of the acquisition geometry is presented in Figure 1.1. The targeted area
covers a surface of 145 km2. A recording layout of 12 cables equipped with four-component receivers is
located on the sea bottom. The shallow water environment (the water layer is no deeper than 60 m in
this area) is favorable to the deployment of such devices. The nominal distance between cables is 300
m, with the two outer cables at 600 m, for a total of 2302 receivers. The data is acquired using airgun
pressure sources towed along cables at 5 m below the sea surface, for a total of 49954 shots. The inline
spacing between two consecutive shots is 50 m. The source–receiver reciprocity is used, the hydrophone
components being considered as explosive sources while the shots are considered as hydrophones sensors.
The purpose it to reduce the number of forward modeling during FWI by one order of magnitude (from
49954 to 2302).

An instance of seismic data associated with one seismic shot and a line of receivers is presented
in Figure 1.2. The vertical axis corresponds to a time-axis, while the horizontal axis corresponds to
the receiver spatial position. This a typical representation of data in seismic exploration. The black
and white color scale indicates respectively positive and negative values. The complexity of the signal
illustrates the complexity of the wave propagation beneath the subsurface due to its heterogeneous
mechanical properties. Direct waves propagating in the water column can be identified, as well as
diving waves traveling in the upper part of the target, and reflected waves, recorded at later times by
the receivers.

The FWI problem is solved in the 3D visco-acoustic frequency-domain approximation, meaning that
the wave propagation modeling engine is based on the following generalized Helmholtz equation

− ω2

c2
p− div

(
1
ρ
∇p
)

= s, (1.1)

where p is the monochromatic pressure wavefield, ω is the angular frequency, c(x) is the pressure
wave velocity (P-wave velocity) and ρ(x) is the density. A compact finite-difference scheme is used
to discretize this equation (Hustedt et al., 2004; Operto et al., 2014b). The resulting linear system
is solved with a direct solver. The matrix associated to this linear system is factorized as a product
of lower and upper triangular matrices (LU decomposition). The parallel solver MUMPS (Amestoy
et al., 2000; MUMPS team, 2015) is used to this purpose. Given the large number of right hand sides
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Figure 1.1 – (a) OBC acquisition layout. The ocean-bottom cables are denoted by red lines. The shot
positions by black dots. Two receiver positions r1 and r2 at (X,Y)=(5.6 km,14.5 km) and (X,Y)=(8021
m,14108 m), respectively, are denoted by circles. An horizontal slice of the gas cloud at 1 km in depth,
which was obtained by FWI, is shown in transparency to delineate its zone of influence. The star denotes
the position of the well log. Positions of cables 13, 21 and 29 are labeled. (b) Reverse time migrated
image with superimposed in transparency vertical wave velocities determined by reflection traveltime
tomography.The sonic log is also shown by the black line (adapted from Prieux et al. (2011)). Figures
extracted from Operto et al. (2015b).

(associated with the number of sources) which have to be considered at each iteration of the inversion,
this strategy is of particular interest as once the matrix is factorized, the solution of the linear system
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Figure 1.2 – Time-domain common-receiver gathers for inline (Y) shot profile running across the receiver
position. (a) Receiver r1. (b) Receiver r2. The data are plotted with a reduction velocity of 2.5 km.s−1

on the bottom panel. The red, white, black arrows point on the reflection from a shallow reflector,
the top of the low-velocity zone and the top of the reservoir, respectively. The solid arrow points on
the pre-critical reflections, while the dashed ones points on the post-critical reflections. The critical
distance is difficult to identify for the reflection from the top of reservoir because of the interference
with multi-refracted waves at the sea bottom. Figure extracted from (Operto et al., 2015b).

for a given right-hand-side can be computed efficiently through forward/backward substitutions. This
however requires high performance computing devices with sufficient in-core memory as even if the
finite-difference matrix is sparse, the L and U factors are dense over the bandwidth of the initial matrix.
Using today architectures, this strategy is feasible for 3D wave propagation modeling over distances up
to 100 wavelengths in each direction.

The minimization problem amounts to find the P-wave velocity c(x) in equation (1.1) which mini-
mizes the L2 distance between observed and synthetic data. It is solved through a l-BFGS quasi-Newton
algorithm (Nocedal, 1980; Nocedal & Wright, 2006). A frequency continuation/multiscale strategy is
implemented. As set of 11 frequencies is considered from 3.5 Hz to 10 Hz. For each frequency, a FWI
problem is solved, the final result of one inversion being used as an initial guess for the next inver-
sion. The results are presented in Figures 1.3 (3D view) and 1.4 (vertical 2D slices). Starting from a
low resolution estimation of the P-wave velocity obtained through conventional first-arrival traveltime
tomography (Nolet, 2008), FWI yields a high resolution quantitative estimation of the P-wave veloc-
ity model. In particular, the gas cloud (low velocity anomaly) in the center of the model is precisely
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delineated, as well as the high velocity horizontal reflector, the cap rock of the reservoir located just
below. These results clearly illustrate the resolution potential of FWI compared to conventional imaging
methods.

Figure 1.3 – Example of FWI application in the 3D acoustic approximation. The Pressure wave (P-
wave) velocity is inverted from Ocean Bottom Cable (OBC) seismic data recorded near the Valhall oil
field in North sea. From a low resolution estimation computed through tomography (left), FWI builds
a high resolution estimation of the P-wave velocity, which helps in the geological interpretation of the
target. In particular, the low velocity anomaly in blue, which corresponds to the presence of a gas
pocket, is clearly delineated compared to the tomography estimation. Figure extracted from (Operto
et al., 2015b).

1.3 Other application fields

While FWI has been mainly developed in the framework of seismic exploration, its fairly general for-
malism enables to use it at very different scales. We review here other fields where FWI is used (or
starts being used).

1.3.1 Seismology

FWI is used in seismology, for regional to global subsurface imaging. The main difference with seismic
exploration is related to the type of data which is used. While seismic exploration relies on controlled
source experiments, where dense arrays of sources and sensors are used to image a localized target, in
seismology the data is generated by earthquakes, and recorded by few seismometers. As a result, the
coverage is drastically sparser, and unevenly located. Compared to seismic exploration however the
recorded signal is less complex, as the data emitted by earthquakes travel at lower frequencies. This
makes easier data pre-processing for the identification of particular seismic events (phases). Another
difference with seismic exploration also relies on the necessity to use elastic wave propagation modeling
to correctly model surface waves resulting from the interaction between body waves and the free surface.
Their role cannot be neglected in the inversion, while such waves do not exist for marine exploration data
(such as the Valhall case study). For this reason, FWI at global and regional scales relies mainly on 3D
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Figure 1.4 – 2D horizontal slices (constant depth z) of the 3D models presented in Figure 1.3. Slices in
the initial tomography model (a). Slices in the final FWI model (b). At shallow depth (z = 175 m),
FWI reveals the imprint of the OBC acquisition system, as well as the presence of paleochannels. At
500 m depth, the elongated structures correspond to scraps left on the sea bottom by deriving icebergs.
Deeper (z = 1 km), the gas pocket is clearly delineated. The elongated structure on the right side of
the gas pocket suggest the presence of a chimney, which could explain the movement of the gas up to
the shallowest layers of the model. Figure extracted from (Operto et al., 2015b).

finite element modeling schemes, in particular the spectral element strategy introduced by Patera (1984)
and brought later to the seismology community (Komatitsch et al., 2002). The interest in seismology for
using FWI compared to more conventional tomography methods is the same than in seismic exploration:
this strategy yields estimation of the subsurface mechanical properties with unprecedented resolution.
Examples of application at the global scale (Fichtner et al., 2008; Liu & Gu, 2012; Bozdağ et al., 2016)
and the regional scales (Fichtner et al., 2009; Tape et al., 2009; Zhu et al., 2012) demonstrate the interest
of FWI for seismology.

1.3.2 Near surface imaging with seismic data

FWI starts also being used for near-surface imaging (10 to 100 m depth) using seismic waves. At this
scale, the information carried out by the propagation of surface waves is used to infer the properties
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of the subsurface. As these waves are highly dispersive, state-of-the-art techniques rely mainly on the
interpretation of dispersion curves, based on the assumption of 1D stratified media (Socco et al., 2010).
The interest for using FWI at this scale is to overcome this 1D limitation to produce fully 3D high
resolution estimates of the subsurface mechanical properties. However, the high frequency content of
surface waves and the impact of attenuation make successful applications FWI even harder at this scale.
First instance of applications in 2D approximations have been proposed by Groos et al. (2014); Pérez
Solano et al. (2014); Schäfer et al. (2014); Masoni et al. (2014a)

1.3.3 Near surface imaging with ground penetrating radar data

Imaging of the subsurface at shorter scales is possible through the analysis of the propagation of electro-
magnetic waves, which give access to information on the permittivity and the resistivity of the materials.
This is the purpose of ground penetrating radar (GPR) acquisition devices. Recovering the electro-
magnetic properties of the subsurface show to be particularly useful for hydrological and geotechnical
applications, these properties being particularly sensitive to the presence of water. Exactly as for seismic
imaging, FWI yields high resolution quantitative estimations of these properties. The specificity of the
application of FWI to electromagnetic data relies on the higher contrasts of the material properties (1
to 40 for permittivity, while at the exploration scale, velocity contrasts are usually comprised between
1 to 4). The attenuation also plays an important role on the wave propagation, making mandatory to
consider simultaneously both permittivity and conductivity in the inverse problem, in a multi-parameter
fashion. First instances of applications of FWI to GPR data have been proposed by Busch et al. (2012);
Meles et al. (2012); Kalogeropoulos et al. (2013); Klotzsche et al. (2013); Lavoué et al. (2014)

1.3.4 Ultrasound imaging

Finally, FWI starts being considered as a potential strategy to increase the resolution of ultra-sound
imaging. This kind of technology is employed in nondestructive testing to assess the quality of industrial
materials and to detect potential default/weaknesses. It is also used in medical imaging to control the
sanity of the tissues, notably for cancer detection. Again, FWI could be used in this framework to
increase the reliability of the inversion and the resolution of the images. These kind of applications
are particularly promising for FWI as the data coverage could be much more favorable than for seismic
imaging for which the sources and receivers are located only on the surface. The size and configuration of
the targets investigated through ultrasound imaging make possible to use acquisition devices with a far
better coverage/illumination of the structure. This is for instance the case for breast cancer detection,
for which FWI has yield promising results (Pratt et al., 2007; Roy et al., 2016).

1.4 Contributions presented in this manuscript

FWI appears as a very promising technique for general imaging problems, from global and regional seis-
mic scales using earthquake data, to millimeter scales through ultra-sound imaging. However, applying
FWI at this diversity of scales raises numerous challenges, asking for a better controlled and robust
methodology.

Current issues for FWI consist now in going towards more complex physical modeling of the wave
propagation, accounting for elasticity, viscosity and anisotropy. Another topic is related to the design
of efficient multi-parameter inversion strategies, going beyond the simple reconstruction of the P-wave
velocity model toward the reconstruction of secondary attributes such as density, attenuation factor, and
anisotropy parameters. These secondary parameters bring substantial information to better character-
ize the subsurface. Finally, another general topic relies in the design of more automated full waveform
inversion strategies, not requiring a strong human expertise on data processing for successful applica-
tions. This mainly relies on the way the misfit function is designed, as the standard least-squares misfit
function is non convex, leading the local optimization algorithms to converge towards local minima. My
scientific contributions try to address these topics. In the following, I present in details three of these
contributions, before giving a more synthetic overview of other topics I have been working on.
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The first contribution presented in detail is related to the design of numerical strategies for the
modeling of seismic waves in the elastic approximation. More specifically, it is related to the design
of suitable absorbing boundary conditions. Except at the global scale, the subsurface is considered as
a semi-infinite half-plane, raising the question how to design efficient boundary conditions to prevent
from the introduction of parasite reflections in numerical modeling tools. While Perfectly Matched
Layers (PML) (Bérenger, 1994) have become the method of choice for this kind of applications, instabil-
ities/amplification have been observed in the framework of elastic modeling, in particular in the presence
of (anelliptical) anisotropy. We thus have proposed an alternative absorbing layer strategy, based on
the work of Halpern et al. (2011), called SMART layers. This layer is shown to be less accurate than
PML ones, however more robust, with a mathematical proof of non-amplification.

The second contribution is related to the use of a second-order optimization scheme for FWI, named
truncated Newton strategy. It is based on a more accurate approximation of the inverse Hessian operator
(local curvature of the misfit function) than the one obtained through quasi-Newton strategies. We
review what is the physical interpretation of this operator in the context of FWI, why it is important to
approximate it accurately, especially for multi-parameter problems, and how this is possible, for realistic
size problem, through an implementation of Hessian-vector products with a second-order adjoint state
method.

The third contribution is related to the design of a misfit function based on an optimal transport
distance, to mitigate the non-convexity of the standard least-squares misfit function with respect to the
wave velocity model. This non-convexity is one of the main limitation of FWI since it was introduced.
Optimal transport distances exhibit very interesting properties that could help to overcome this difficulty.
A first implementation on 2D and 3D acoustic time-domain problems is presented.
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This section summarizes the work presented in the following publications and expanded abstracts.
Publications:

� Métivier, L., Brossier, R., Labbé, S., Operto, S., & Virieux, J., 2014c. Smart: dissipative absorbing layer
technique for general elastodynamics equations. application as s-waves filter in acoustic ti media., Seismic
Technology , 11(4), 14

� Tago, J., Métivier, L., & Virieux, J., 2014. SMART layers: a simple and robust alternative to PML
approaches for elastodynamics, Geophysical Journal International , 199(2), 700–706

� Métivier, L., Brossier, R., Labbé, S., Operto, S., & Virieux, J., 2014b. A robust absorbing layer for
anisotropic seismic wave modeling, Journal of Computational Physics, 279, 218–240

Abstracts:

� Métivier, L., Brossier, R., Operto, S., & Virieux, J., 2014f. Smart: Robust absorbing layer and s-waves
filtering for acoustic anisotropic wave simulation, in Expanded Abstracts, 84th Annual SEG Meeting (Den-
ver)

� Métivier, L., Brossier, R., Operto, S., & Virieux, J., 2014d. A robust absorbing layer method for seismic
wave simulation in anisotropic media, in Expanded Abstracts, 76th Annual EAGE Meeting (Amsterdam)

2.1 Context and problematic

First-order absorbing boundary conditions (ABC), also known as radiation boundary conditions, were
introduced in the pioneering studies of Clayton & Engquist (1977) and Engquist & Majda (1977). They
are easy to implement for simple wave equations models, such as the acoustic wave equation. In a mono-
dimensional context, these equations are exact: the outgoing waves are absorbed without introducing
spurious reflections. However, the extension to multi-dimensional problems is not trivial. In particular,
waves arriving to the boundary with normal incidence are correctly absorbed, while waves propagating
to the boundary with grazing incidence angles generate spurious reflections.

An improvement of these ABC can be achieved through the design of higher-order versions, as
proposed initially by Collino (1993) or more recently by Givoli (2001). The accuracy of these higher
order ABC is better than standard first-order ABC, however their implementation is not trivial, as
they imply the use of fractional high-order derivatives, which are nonlocal operators. In addition, the
extension of ABC to more complex wave propagation description, such as elasto-dynamic, or acoustic
anisotropy, is not straightforward. In this case, the approximation of the differential operator at the
boundary yields a complex system of equations to solve. In practice, it is difficult to guarantee the
stability of such methods, and a correct absorption of waves at all incidence angles.

An alternative to absorbing boundary conditions consists in the design of absorbing layers: the
domain of interest is surrounded with a layer where waves incoming from the domain of interest are
artificially damped. This idea has first been promoted by Cerjan et al. (1985) for the second-order in
time acoustic equation. Despite this simple formalism, in practice, the design of such absorbing layers is
difficult. Except for the 1D problem, the introduction of the layer generates reflections at the interface
between the domain of interest and the layer. These reflections can be mitigated by choosing variable
damping coefficient that smoothly grow from zero at the interface between the layer and the domain of
interest, to the external boundary of the layer. However, this reduces the absorbing capability of the
layer and requires to increase its size, which, in turn, increases the overall computational time of the
simulation.

The Perfectly Matched Layers (PML) method, introduced by Bérenger (1994), has become rapidly
popular as it achieves an excellent trade-off between these two contradictory requirements. The initial
method is based on a splitting of the hyperbolic system and the introduction of smooth damping
coefficients in the layer. The PML strategy was originally designed for the 2D and 3D Maxwell’s
equations (Bérenger, 1994, 1996). For these equations, a plane wave analysis demonstrates that the
reflection coefficient at the interface between the domain of interest and the layer is null for wave
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propagating at all angles. In practice, the reflectivity for the discrete problem is not exactly zero, and
when the PML are used in heterogeneous models, a WKB analysis shows that only the leading order
of the reflection coefficient is zero (see the review paper by Halpern et al. (2011)). However, in many
practical applications the amplitude of the spurious reflected waves remains very small.

Because of this remarkable property, the PML methods is now the standard for the simulation of
wave propagation in infinite or semi-infinite medium. The method has been progressively extended
to different wave propagation systems, starting from acoustic wave equations, which are in 2D similar
to the Maxwell’s equations (Qi & Geers, 1998; Diaz & Joly, 2006; Bermúdez et al., 2007). The PML
method has then been applied to linearized Euler equations (Hu, 1996; Hesthaven, 1998; Abarbanel
et al., 1999), and to linear elasticity (Hastings et al., 1996; Collino & Tsogka, 2001; Basu & Chopra,
2003; Komatitsch & Tromp, 2003; Appelö & Kreiss, 2006)

While the performances of the PML have been particularly convincing for Maxwell’s, acoustic and
linearized Euler equations, their application to the modeling of elastic seismic waves is less satisfactory.
In particular, it has been observed that the waves arriving at grazing angles to the interface between the
domain of interest and the layer generate strong spurious reflections. To overcome this difficulty, the
design of Convolutional PML (C-PML) (Komatitsch & Martin, 2007) has been proposed. The method
is based on a generalization of the complex-valued stretching related to the standard PML formulation
in the frequency-domain to achieve a better absorption at grazing angles. This implies a loss of the
perfectly matched property of the layer, even at the continuous level. The method can thus be seen as
a way of finding a better compromise between a quasi-perfect absorption at near normal incidence and
a poorer absorption at grazing angles.

However, when applied to the modeling of wave propagation in anisotropic media, the PML and C-
PML methods become amplifying, which causes difficulties for their application to this particular case.
This amplification has first been observed in the case of 2D linear elasticity for VTI media by Becache
et al. (2003), an later on in the case of 2D acoustic TTI equations (Operto et al., 2009; Duveneck &
Bakker, 2011; Zhang et al., 2011). The modification of the PML through the C-PML technique does
not prevent from this amplification phenomena (Komatitsch & Martin, 2007).

The amplification analysis proposed by Becache et al. (2003) is based on slowness diagrams. In
particular, they show that when the slowness vector and the group velocity are in opposite directions
(negative scalar product), the PML becomes amplifying. This amplification phenomenon, numerically
experimented in the aforementioned studies, has also been formalized through a WKB analysis by
Halpern et al. (2011). Depending on the symbol of the propagation operator associated with the PML
strategy, one can see that the amplification phenomenon is indeed common. Acoustic and electromag-
netic wave equations are particular cases for which the amplification does not occur, but this is not true
in general.

These analysis suggest that the use of PML (or variants such as C-PML) for general elastodynamics
equation is not the appropriate choice, raising again the question of a suitable choice of absorbing
conditions. A generalization of the standard PML scheme has been proposed under the name of Modified
PML (M-PML) by Meza-Fajardo & Papageorgiou (2008). Whereas for standard PML, the damping
coefficients introduced in the layer vary only in the direction normal to the interface between the domain
of interest and the layer, the M-PML strategy introduces additional absorption terms in the directions
tangential to this interface. The introduction of this tangential damping actually can be interpreted as
the definition of a trade-off between a standard PML (no tangential absorption) and a standard sponge
layer (same level of tangential and normal absorption). The M-PML is thus not perfectly matched
(Dmitriev & Lisitsa, 2011). In their study, Meza-Fajardo & Papageorgiou (2008) show that a sufficient
level of tangential anisotropy may prevent the amplification phenomenon. However, it is difficult to
correctly define this level as this is intrinsically problem dependent. Besides, the required amplitude
may be large, making the layer method close from a sponge layer, which may yield high amplitude
spurious reflections.
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2.2 Proposed approach: SMART layers method

We have investigated how another absorbing layer method, named SMART layers (Halpern et al., 2011),
can be applied to the general elastodynamics equations to ensure the robustness of the solution to these
equations. The SMART layer is a generalization of a layer method initially introduced by Israeli &
Orszag (1981) as an approximation of radiation boundary conditions. A diagonalization of the matrices
which compose the leading symbol of the first-order hyperbolic operator yields a natural decomposition
of the solution into components propagating inward and outward of the domain of interest in each
spatial direction. This decomposition is used to select the components to be damped, depending on the
position in the computational domain. In the domain of interest, no damping is applied, while in the
left layer, only components of the solution propagating leftward are damped, and similarly for the other
sides. This decomposition is applied directly to the continuous equation, and results in the introduction
of a zero-order term, in a fairly general formalism.

Compared to the PML method, the reflectivity of the SMART layers at the interface between the
computational domain and the layer is larger: the SMART layers are not perfectly matched. However,
the amplitude of this reflection can be controlled, as for the PML strategy, through the choice of
appropriate absorption coefficients and the definition of the layer width. The main interest of the
SMART method compared to the PML is its robustness: we demonstrate that the zero-order term
added to the hyperbolic system by the SMART layer method is dissipative as soon as the initial system
satisfies a symmetrizability condition. This ensures no artificial amplification of the solution. The
symmetrizability condition requires the existence of a symmetrizer common to all the matrices which
compose the leading-order symbol of the first-order differential operator.

2.3 Mathematical description

2.3.1 SMART layers model and stability theorem

Consider the general first-order hyperbolic system ∂tu+
d∑
j=1

Aj(x)∂ju+A0(x)u = f(x, t), (x, t) ∈ Rd × [0, T ], d ∈ N,

u(x, 0) = u0(x),

(2.1)

where d is the dimension of the physical space and{
u(x, t) ∈ L2 (Ω× [0, T ],Rp) , f(x, t) ∈ L2 (Ω× [0, T ],Rp) , u0(x) ∈ L2 (Ω,Rp) ,
∀x ∈ Rd, Aj(x) ∈Mp (R) . (2.2)

Provided the matrices Aj(x), j = 1, . . . d are diagonalizable with real eigenvalues, the SMART layer
is built upon spectral projectors on the eigenspaces of these matrices. For each matrix Aj(x), the
solution of the system (2.1) can be decomposed in the basis formed by its eigenvectors. Components of
the solution associated with positive eigenvalues (respectively with negative eigenvalues) of the matrix
Aj(x) propagate in the direction xj > 0 (respectively in the direction xj < 0). Their propagation
velocity is equal to the modulus of the eigenvalue they are associated with. The SMART layer system
derived from (2.1) is written as

∂tu+
d∑
j=1

Aj(x)∂ju+A0(x)u+B(x)u = f(x, t), (x, t) ∈ Ω× [0, T ], Ω ⊂ Rd, d ∈ N,

u(y, t) = g(y, t), (y, t) ∈ ∂Ω× [0, T ],
u(x, 0) = u0(x),

(2.3)

where Ω is the bounded computational domain, ∂Ω its boundary, and g(y, t) the boundary condition
imposed on ∂Ω.

The additional zero-order term B(x) is a linear combination of the spectral projections on the
eigenspaces of the operators Aj(x) in the layer. We introduce the coefficients d±j (xj) as smooth mono-
dimensional functions which are zero in the domain of interest (without the layers) denoted by Ω̊. These
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coefficients have a smooth growth in the layer (cubic or cosine functions are often used in practice). The
operator B(x) is

B(x) =
d∑
j=1

n+
j∑

n=1

d+
j (xj)B+

j,n(x) +
d∑
j=1

n−j∑
n=1

d−j (xj)B−j,n(x), (2.4)

where n+
j (respectively n−j ) denotes the number of positive (respectively negative) eigenvalues of the

matrix Aj(x) and B+
j,n(x) (respectively B−j,n(x)) denotes the spectral projector on the corresponding

eigenspace. The coefficients d±j ensure that no attenuation is introduced in the domain of interest Ω̊, as
B(x) is zero in Ω̊.

For comparison, the standard sponge layer technique amounts to defining B(x) as

B(x) =
d∑
j=1

d±j (xj)I = α(x)I, (2.5)

where I is the identity operator, and α(x) is defined by

α(x) =
d∑
j=1

d±j (xj). (2.6)

We now introduce the

Definition 1. The system (2.1) is symmetrizable if and only if there exists a symmetrizer S(x) ∈Mp (R)
such that

∀x ∈ Ω, ST (x) = S(x), S(x) > 0, (S(x)Aj(x))T = S(x)Aj(x), 1 ≤ j ≤ d. (2.7)

Definition 2. The S-norm ‖.‖S associated with a symmetric definite matrix S(x) ∈Mp(R) is such that

‖u(., t)‖S = (Su, u)L2 =
∫

Ω

< S(x)u(x, t), u(x, t) > dx, (2.8)

where < ., . > denotes the Euclidean scalar product of Rp.

With these definitions at hand, we can prove the following theorem.

Theorem 1. Assume that

� the system (2.1) is symmetrizable with a symmetrizer S(x);

� the coefficient of the matrices S(x)Aj(x) belong to W1,∞ (regularity condition).

Then

� the SMART layer strategy can be applied to the system (2.1): the matrices Aj(x) are diagonalizable
with real eigenvalues;

� the zero-order term B(x) added by the SMART layer method is dissipative: this ensures that no
spurious amplification will be introduced.

In particular, we have

d

dt
‖u(., t)‖2S ≤ (γ + 1) ‖u(., t)‖2S + ‖f(., t)‖2S − 2 (SBu, u)L2 , (2.9)

where

γ =
d∑
j=1

sup
x
|∂x(SAj)|+ sup

x
|(SA0)|, (2.10)

and
(SBu, u)L2 ≥ 0. (2.11)

The latter inequality ensures that the SMART zero-order term does not generate any energy growth.
No amplification can be caused by its introduction as it is a dissipative term.
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2.3.2 Sketch of the proof

The proof is decomposed in two parts. First, we prove that because the matrices Aj are symmetrizable
with a symmetric operator S they are diagonalizable with real eigenvalues (trivial). Second, we perform
a standard energy estimate for the system (2.3) to obtain the energy inequality (2.9). The difficult part
is to show that the quantity (SBu, u)L2 is positive. To do so we use the following lemma

Lemma 1. Let A ∈ Mp (R). Let S ∈ Mp (R) symmetric positive definite such that SA is symmetric.
Then the eigenspaces of A form an orthogonal direct sum for the scalar product induced by S on Rp.

The proof of this lemma is straightforward. Let (u, v) ∈ Rp × Rp be two eigenvectors of A

Au = λu, Av = µv, (2.12)

where λ and µ are the eigenvalues associated with u and v respectively. We have

< Su, v >=
1
λ
< SAu, v >=

1
λ
< u, SAv >=

µ

λ
< u, Sv >=

µ

λ
< Su, v > . (2.13)

Therefore, either
< Su, v >= 0, (2.14)

and the eigenvectors u, v are orthogonal for the scalar product induced by S or

< Su, v >6= 0, λ = µ, (2.15)

which means that u and v belongs to the same eigenspace of A.

Now, as Aj is diagonalizable, the function u(x, t) ∈ L2 (Ω× [0, T ],Rp) can be decomposed in a basis of
eigenvectors aj,i(x) of the matrix Aj(x) such that

∀(x, t) ∈ Ω× [0, T ], u(x, t) =
∑
i

αj,i(x, t)aj,i(x). (2.16)

Consider B+
j,1, the spectral projector on the eigenspace ker (Aj − λj,1I), where I ∈Mp (R) is the identity

matrix and λj,1(x) the first positive eigenvalue of the matrix Aj(x). We have

B+
j,1(x)u(x, t) = αj,1(x, t)aj,1(x). (2.17)

Therefore, (
SB+

j,1u, u
)
L2 =

∫
Ω

< S(x)B+
j,1(x)u(x, t), u(x, t) > dx

=
∫

Ω

< αj,1(x, t)S(x)aj,1(x),
∑
i

αj,i(x, t)aj,i(x) > dx

=
∫

Ω

∑
i

αj,1(x, t)αj,i(x, t) < S(x)aj,1(x), aj,i(x) > dx.

(2.18)

Using Lemma 1, we find(
SB+

j,1u, u
)
L2 =

∫
Ω

α2
j,1(x, t) < S(x)aj,1(x), aj,1(x) > dx. (2.19)

As S(x) is symmetric definite positive, we have(
SB+

j,1u, u
)
L2 ≥ 0. (2.20)

The same demonstration is valid for any spectral projectors B+
j,i, B

−
j,i on the eigenvalues of Aj , therefore,

as B is a linear combination of these projectors weighted by positive functions d±j (xj) we have

(SBu, u)L2 ≥ 0. (2.21)

The complete proof can be found in Métivier et al. (2014b).
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2.4 Application to elastodynamics

Following the theorem 1, the SMART layer technique can be applied to any first-order symmetrizable
hyperbolic system. Interestingly, we can prove the following theorem

Theorem 2. The system of first-order elastodynamics equations is a first-order symmetrizable hyperbolic
system.

The proof is simple and relies on the symmetric definite positive property of the stiffness tensor. I
reproduce it here. Under the velocity-stress formulation and the Voigt notations, the elastodynamics
equations amount to the first-order hyperbolic system ∂tu =

1
ρ

(Ax∂xσ +Ay∂yσ +Az∂zσ)

∂tσ = C
(
ATx ∂xσ +ATy ∂yσ +ATz ∂zσ

)
,

(2.22)

where u(x, t) ∈ L2
(
Ω× [0, T ],R3

)
and σ(x, t) ∈ L2

(
Ω× [0, T ],R6

)
are the velocity displacement vector

and the stress vector
u(x, t) = [ux, uy, uz] , (2.23)

σ(x, t) = [σxx, σyy, σzz, σxz, σyz, σxy] . (2.24)

In addition, the quantity ρ is the density, C is the stiffness tensor reduced as the 6× 6 matrix Cij , and
the matrices Ax, Ay, Az are

Ax =

1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 , Ay =

0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

 , Az =

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 . (2.25)

The stiffness tensor C is by definition symmetric and positive definite. Its inverse M = C−1, known as
the compliance matrix, is thus also symmetric positive definite. A simple manipulation of the system
(2.22) yields {

ρ∂tu = Ax∂xσ +Ay∂yσ +Az∂zσ

M∂tσ = ATx ∂xσ +ATy ∂yσ +ATz ∂zσ.
(2.26)

We define w ∈ L2
(
Ω× [0, T ],R9

)
as

w = [u, σ]T . (2.27)

We rewrite (2.26) as

S∂tw = Ãx∂xw + Ãy∂yw + Ãz∂zw, (2.28)

where

S =
(
ρI3 0
0 M

)
, Ãj =

(
0 Aj
ATj 0

)
, j ∈ {x, y, z}. (2.29)

In (2.29), I3 denotes the identity matrix of M3(R). It is important to note that the matrix S is therefore
symmetric positive definite, as it is block diagonal with positive definite blocks. In addition, the matrices
Ãj are symmetric. The elastodynamics equations (2.22) are thus equivalent to the first-order hyperbolic
system

∂tw = S−1Ãx∂xw + S−1Ãy∂yw + S−1Ãz∂zw. (2.30)

An obvious symmetrizer for this system is the operator S.
This simple demonstration, inspired from the work of Burridge (1996), enlightens the symmetriz-

ability of the elastodynamics equations, through the definition of the compliance matrix M .
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2.5 Numerical studies

As an illustration, the method has first been tested on so-called “acoustic anisotropic” equations. These
equations are used within the seismic exploration community to account for anisotropic effects (tilted
transverse isotropy) while still focusing on the propagation of pressure waves only as it is the case for the
acoustic approximation. The motivation is to improve the accuracy of the wave model while maintaining
the computational cost of the acoustic approximation (one to two orders of magnitude lower to the one
associated with elastic equations). These equations are derived from the elastodynamics equations
including anisotropy and setting the shear-wave velocity to zero (Alkhalifah, 1998, 2000; Duveneck &
Bakker, 2011). In 2D, these equations can be written as

∂tux =
1
ρ

[
∂x
(
cos2 θσθxx + sin2 θσθzz

)
+ ∂z

(
sin θ cos θ

(
σθzz − σθxx

))]
∂tuz =

1
ρ

[
∂z
(
sin2 θσθxx + cos2 θσθzz

)
+ ∂x

(
sin θ cos θ

(
σθzz − σθxx

))]
∂tσ

θ
xx = ρv2

P (1 + 2ε)
[
cos2 θ∂xux − sin θ cos θ(∂xuz + ∂zux) + sin2 θ∂zuz

]
+ρv2

P

√
1 + 2δ

[
sin2 θ∂xux + sin θ cos θ(∂xuz + ∂zux) + cos2 θ∂zuz

]
∂tσ

θ
zz = ρv2

P

√
1 + 2δ

[
cos2 θ∂xux − sin θ cos θ(∂xuz + ∂zux) + sin2 θ∂zuz

]
+ρv2

P

[
sin2 θ∂xux + sin θ cos θ(∂xuz + ∂zux) + cos2 θ∂zuz

]
.

(2.31)

where vP (x) is the P-wave velocity, ρ(x) is the density, and the anisotropy is described by the Thomsen
parameter ε(x), δ(x), and the tilt angle θ(x). When θ = 0, the anisotropy is vertical: the local vertical
velocity (along the z axis) is different from the horizontal velocity (along the x axis). The tilt angle
represents the local rotation of the anisotropy orientation. For general “anelliptical” anisotropy (ε > δ),
the PML are instable, while for the particular case of “elliptical anisotropy” (ε = δ) the PML are stable.
The results presented here are extracted from (Métivier et al., 2014c,d,f) and focus on a finite-difference
discretization of these 2D acoustic anisotropic equations.

2.5.1 Comparison with PML: stability

This experiment is based on the model presented in Figure 2.1, which is a part of a benchmark model
issued by BP in 2007. This model contains a vertical P-wave velocity model as well as Thomsen
anisotropy parameters ε and δ (Thomsen, 1986) and a tilt angle map θ.

The source is located close from the top of the model such that x1 = 7 km, x2 = 0.05 km. A
reference solution is computed in a domain large enough to ensure no reflection at the boundaries.
We then compute solutions using PML and SMART layers. We compare snapshots of the PML and
SMART wavefields with the reference wavefields in Figure 2.2. As can be seen, the PML solution
suffers from an exponentially growing mode which contaminates the whole domain of interest at the
end of the computation. In comparison, the SMART layer solution remains stable (no growing modes
appear). The SMART layer wavefield shows a satisfactory agreement with the reference solution. This
experiment emphasizes the robustness of the SMART layer in a strongly heterogeneous and anisotropic
model, compared to the PML approach.

2.5.2 Accuracy comparison between PML, SPONGE, and SMART layers

We compare the accuracy of the PML, SMART and SPONGE layer strategies in terms of reflectivity at
the interface between the domain of interest and the layer. Here we consider a homogeneous medium with
elliptical anisotropy so that the PML are stable. We compute a reference seismogram for a source located
at x1 = 1 km, z2 = 0.05 km and an array of receivers located all along the surface at the same depth as
the source. This reference solution is computed in a domain large enough to ensure no reflection at the
boundaries during the recording time. It is presented in Figure 2.3, along with residual seismograms
obtained from the difference between the reference seismogram and the seismograms obtained using the
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Figure 2.1 – (a) vertical P -wave velocity, (b) tilt angle, (c) Thomsen parameter ε, (d) Thomsen parameter
δ.

different layer methods, with different thickness. We observe from Figure 2.3 the excellent accuracy of the
PML solution in this case. The color-scale for the residual seismogram is two orders of magnitude lower
than the color-scale used for the reference seismogram, and the residual energy in the PML seismogram
is weak. Using the same layer thickness (15 discretization points), the SPONGE layer method yields
significantly more energetic residuals. In comparison, the SMART layer appears to be less reflective than
the SPONGE layer: the amplitude of the spurious reflections generated by the SMART layer is weaker.
When the layer thickness is increased to 25 discretization points, the SPONGE layer still produces non
negligible spurious reflections, while the SMART layer almost reaches the accuracy of the PML layer
with 15 discretization points.

From this comparison, we see that the SMART layer is not as accurate as the PML method. This
is expected, as the SMART method is not perfectly matched: the reflection coefficient at the interface
between the domain of interest and the layer is zero only for waves arriving at normal incidence. On
the other hand, the SMART layer method represents a significant improvement with respect to the
SPONGE layer in terms of accuracy, as the amplitude of spurious reflection seems to be significantly
reduced. We thus conclude that the SMART layer strategy is a better choice than PML or SPONGE
layers when PML amplification problem arises.

2.6 Short conclusion

SMART layers represent an interesting alternative to PML strategies for robust simulation in elastic
media when anisotropy has to be taken into account. Tests similar to the one presented here for acoustic
transverse isotropy have been conducted on elastodynamics equations discretized with a finite-element
discontinuous Galerkin strategy, leading to the same conclusions (Tago et al., 2014). One remaining
open question for this strategy is related to the fact that the method is designed for first-order hyperbolic
systems. Current FWI applications in the elastic approximation are usually formulated using second-
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Figure 2.2 – Pressure wavefield snapshots in the domain of interest at time t = 4.2 s, 7.8 s and 12
s (from left to right). Reference wavefield (row a). PML wavefield (row b), SMART wavefield (row
c). The PML amplification starts at time t = 7.8 s on the right and bottom edges of the domain and
contaminates almost all the domain at final time t = 12 s

Figure 2.3 – Reference seismogram (a). Residuals seismogram with PML 15 grid points width (b),
SPONGE with 15 grid points, SMART with 15 grid points (c), SPONGE with 25 grid points (d),
SMART with 25 grid points (e). The scale of the residual is 2 orders of magnitude lower than for the
reference wavefields.

order systems based on velocity displacement only. This allows a simple reduction from a system of 9
equations to a system of 3 equations, therefore decreasing the computation cost, either in the time or in
the frequency-domain. Up to now, there is no straightforward extension of the SMART layers approach
to second-order systems, as the projection operators are based on the first-order velocity-stress system.
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Deriving a proper extension to second-order equations thus requires further work to be performed.
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3 Truncated Newton optimization and multiparameter imag-
ing

This section summarizes the work presented in the following publications and expanded abstracts.
Publications:

� Métivier, L., Brossier, R., Operto, S., & J., V., 2017. Full waveform inversion and the truncated Newton
method, SIAM Review , 59(1), 153–195

� Métivier, L. & Brossier, R., 2016a. The seiscope optimization toolbox: A large-scale nonlinear optimization
library based on reverse communication, Geophysics, 81(2), F11–F25

� Métivier, L., Brossier, R., & Virieux, J., 2015c. Combining asymptotic linearized inversion and full wave-
form inversion, Geophysical Journal International , 201(3), 1682–1703

� Métivier, L., Bretaudeau, F., Brossier, R., Operto, S., & Virieux, J., 2014a. Full waveform inversion
and the truncated Newton method: quantitative imaging of complex subsurface structures, Geophysical
Prospecting , 62, 1353–1375

� Operto, S., Brossier, R., Gholami, Y., Métivier, L., Prieux, V., Ribodetti, A., & Virieux, J., 2013. A
guided tour of multiparameter full waveform inversion for multicomponent data: from theory to practice,
The Leading Edge, Special section Full Waveform Inversion(September), 1040–1054

� Métivier, L., Brossier, R., Virieux, J., & Operto, S., 2013. Full Waveform Inversion and the truncated
Newton method, SIAM Journal On Scientific Computing , 35(2), B401–B437

Abstracts:

� Métivier, L., Brossier, R., Operto, S., & Virieux, J., 2015a. Acoustic multi-parameter FWI for the re-
construction of P-wave velocity, density and attenuation: preconditioned truncated newton approach, in
Expanded Abstracts, 85th Annual Meeting , pp. 1198–1203, SEG

� Métivier, L., Brossier, R., Operto, S., & Virieux, J., 2014e. Multi-parameter FWI - an illustration of
the Hessian operator role for mitigating trade-offs between parameter classes, in Expanded Abstracts, 6th

EAGE St-Petersbourg International Conference & Exhibition

� Métivier, L., Brossier, R., Virieux, J., & Operto, S., 2012a. Optimization schemes in FWI: the truncated
Newton method, in 2012 SEG Abstracts

� Métivier, L., Brossier, R., Virieux, J., & Operto, S., 2012b. Toward Gauss-Newton and exact Newton
optimization for full waveform inversion, in EAGE, 74th Conference and Exhibition

3.1 Context and problematic

3.1.1 Notations

For the sake of clarity, we introduce the following notations:

� the domain of interest in which we want to reconstruct the subsurface mechanical properties is
denoted by Ω ⊂ Rd;

� the sources and receivers positions are denoted by xs and xr, they are defined on the boundary of
Ω

xs ∈ Γs ⊂ ∂Ω, xr ∈ Γr ⊂ ∂Ω; (3.1)

� the collection of the subsurface mechanical properties we want to reconstruct are called the model
parameters, they are gathered in a vector m(x) = [m1(x), . . .mN (x)] for x ∈ Ω where N is the
number of different parameter classes;

� the observed seismic data associated with a source located at position xs is a function dobs,s(xr, t)
with t in the time interval [0, T ], T being the recording time, and xr ∈ Γr;

� the corresponding calculated seismic data associated with a source located at position xs and a
model parameter m(x) is denoted by dcal,s[m](xr, t).
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3.1.2 Position of the problem

In its conventional formulation, FWI corresponds to the following nonlinear least-squares minimization
problem

min
m

f(m) =
1
2

∑
s

∑
r

∫
t

|dcal,s[m](xr, t)− dobs,s(xr, t)|2dt. (3.2)

The computation of the synthetic data dcal,s[m](xr, t) is performed through the computation of the
wavefield

us[m](x, t), (x, t) ∈ Ω× [0, T ], (3.3)

as the solution of a set of partial differential equations representing the wave propagation in the medium
of interest Ω,

A(m)u = s(x, t), (x, t) ∈ Ω× [0, T ], u(x, 0) = 0, (3.4)

where s(x, t) represents the source term. We introduce s(x, t) as

s(x, t) = δ(x− xs)ϕ(t), (3.5)

where δ is the Dirac delta function and ϕ(t) is the temporal signature of the source. The medium is
considered to be at rest at the initial time, therefore the zero initial condition in equation (3.4).

In (3.4), the operator A(m) is a compact notation for any wave propagation operator, from the
simple acoustic case to the general visco-elastodynamics case. In the acoustic approximation, we would
have for instance

m = [c ρ]T , A(m) = ∂tt + ρc2div
1
ρ
∇. (3.6)

Given a wavefield us[m](x, t), the synthetic data dcal[m](xr, t) is computed through a restriction
operator R, extracting the value of the wavefield at the receiver locations xr

dcal,s[m](xr, t) = Ru[m] =
∫

Ω

u[m](x, t)δ(x− xr) dx. (3.7)

Note that the nonlinearity of the misfit function with respect to m(x) is related to the nonlinear relation
between the wavefield us[m](x, t) and the model parameter m(x), even though the wave propagation
PDE is linear in u.

In the general case, without strong prior information on the subsurface structure (i.e. layered
medium) a fine discretization of m(x) (down to a fraction of the shortest propagated wavelength) is
used to represent the subsurface mechanical properties. This leads to large scale nonlinear minimization
problems, for which local optimization strategies have to be used. These schemes are based on the
iteration

mk+1 = mk + αk∆mk, (3.8)

starting from an initial guess m0, where αk ∈ R+
∗ is a steplength (scalar parameter) computed through

linesearch or trust-region strategies (Nocedal & Wright, 2006; Bonnans et al., 2006), and ∆mk is the
model update at iteration k also called descent direction.

Local optimization schemes depend on the definition of the descent direction ∆mk. First order
strategies are based on the opposite of the gradient (steepest descent, nonlinear conjugate gradient).
Second-order schemes rely on the solution of the Newton equation

H(mk)∆mk = −∇f(mk), (3.9)

where H(mk) is the Hessian operator, the matrix of second-order derivatives of the misfit function
f(m). The most popular one is the l-BFGS strategy (Nocedal, 1980) which approximates the inverse
Hessian operator H(mk)−1 through finite differences of the l previous gradient and model updates
∇f(mk), . . . ,∇f(mk−l+1), mk, . . . ,mk−l+1.
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3.1.3 Physical interpretation of the gradient and Hessian operators

Geophysicists have inferred insightful physical interpretations of the gradient and Hessian operators
(Pratt et al., 1998), which appear from the previous discussion as the key components of the FWI
process. It is worth recalling the main results here.

We consider the general multi-parameter case. We assume the subsurface model m is discretized in
space. Each discrete model parameter can thus be indexed by ij where i refers to the spatial location
and j to the parameter class (velocity, density, attenuation for instance).

In this framework, the ijth component of the gradient of the misfit function (3.2) is given by

∇f(m)ij =
∑
s

∑
r

∫ T

0

∂dcal,s[m](xr, t)
∂mij

(dcal,s[m](xr, t)− dobs,s(xr, t)) dt. (3.10)

The partial derivatives of the synthetic data ∂dcal,s[m](xr,t)
∂mij

represent the wavefield scattered by a small
perturbation of the parameter mij recorded at the position xr, all the other parameters being kept
constant (Fig. 3.1). This is obtained mathematically by reminding that from the restriction (3.7) we
have

∂dcal,s[m](xr, t)
∂mij

= R
∂us[m]
∂mij

(3.11)

and by deriving the forward problem (3.4) with respect to the model parameter mij

A(m)
∂us[m]
∂mij

= − ∂A

∂mij
us[m]. (3.12)

From (3.12) we see that the wavefield ∂us[m]
∂mij

is the solution of the same wave equation as the incident
wavefield us[m](xr, t) only with a different source term ∂A

∂mij
us[m] which represents the perturbation of

the parameter mij .
The component ij of the gradient is therefore given by the cross-correlation between the data resid-

uals (dcal,s[m](xr, t)− dobs,s(xr, t)) and this scattered response recorded at the receiver level. As such,
building the gradient can be interpreted as systematically probing the scattering response of the medium
to perturbation of each model parameters mij and measuring the correlation of this response with the
unexplained part of the seismic data. The gradient introduces missing heterogeneities in the medium to
reduce the data residuals relying on a single scattering approximation of the wave propagation.

The way the wavefield is scattered by the local heterogeneities of the medium actually depends on the
type of parameter heterogeneity and the choice of the parameterization to represent the medium. This
is what is called the radiation (or scattering) pattern (Fig. 3.2), which is associated with the operator
∂A
∂mij

. The amplitude of the scattered signal depends on the parameterization and the illumination angle
θ formed by the ray connecting the source to the diffraction point, and the ray connecting the receiver
to the diffraction point (Fig. 3.1 d). The differences between the gradients associated with different
parameter classes result only from their different radiation patterns (equation (3.10)). Therefore, if two
different parameter classes have radiation patterns which significantly overlap over a significant range
of θ, deciphering between these parameter classes using only the gradient is difficult: cross-talks (or
trade-offs) impact their reconstruction. In other words, perturbations of different parameter classes
might explain similarly the seismic data. This already highlights the complexity of multi-parameter
FWI.

If now we analyze the Hessian operator, we have, from (3.2), the general formulation

H(m) = B(m) + C(m), (3.13)

where

B(m)ij,kl =
∑
s

∑
r

∫ T

0

∂dcal,s[m](xr, t)
∂mij

∂dcal,s[m](xr, t)
∂mkl

dt, (3.14)
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Figure 3.1 – Physical interpretation of the gradient. The true medium contains three diffracting points
(filled circles in (b)) and the background model is homogeneous. The data residuals (difference between
observed and synthetic data) recorded at receivers (b, thick dashed line, ) correspond to the wavefield
scattered by the three diffracting points (c). The partial derivative of the wavefield with respect to the
model parameter located at the position of the middle diffracting point (b, green circle) corresponds to
the wavefield scattered by this diffracting point normalized by the value of the wave velocity perturbation.
The radiation pattern of the virtual source located at the diffracting point is illustrated by the thin
dashed lines in (b) (here, an isotropic radiation pattern). The zero-lag correlation between the data
residuals (c) and the partial derivative wavefield taken at the receiver positions (a) provides the unscaled
contribution of the source s at the position mij . Figure taken from (Operto et al., 2013).

is the Gauss-Newton approximation of the Hessian operator, and C(m) is defined by

C(m)ij,kl =
∑
s

∑
r

∫ T

0

∂2dcal,s[m](xr, t)
∂mij∂mkl

(dcal,s[m](xr, t)− dobs,s(xr, t)) dt. (3.15)

Assuming the model parameters are organized by parameter classes, the matrices B(m) and C(m) have
a block structure, as illustrated in Figure 3.3 for a three parameter classes problem in the acoustic
approximation. The parameters which are considered in this example are the P-wave velocity, the
density, and an attenuation factor. The upper left diagonal block is associated with the P -wave velocity,
the central diagonal block is associated with the density, the bottom right diagonal block is associated
with the attenuation parameter. The off-diagonal blocks are associated with cross-talks between these
three parameters.

From (3.14), we see that Bij,kl is the correlation of the wavefield scattered by perturbations of the
couple of parameters mij ,mkl. The matrix B(m) thus measures the similarity of this scattering response.
As such, it can be interpreted as a measure of the coupling between discrete parameters when relying
only on the gradient interpretation.
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Figure 3.2 – Radiation patterns of the virtual sources of the partial derivative wavefields for an acoustic
medium parameterized by (a-b) (velocity vP , density ρ) and (c-d) (velocity vP , acoustic impedance IP ).
The figure shows a snapshot of a wavefield that propagates in a homogeneous background model and
which is scattered by a point perturbation located in the middle of the grid. Only one model parameter
of the subsurface parameterization is perturbed, the other one being kept fixed. (a) vP perturbation,
with ρ fixed. (b) ρ perturbation, with vP fixed. (c) vP perturbation, with IP fixed. (d) IP perturbation,
with vP fixed. The scattering angle is labeled by θ. The virtual source at the diffracting point is denoted
by the white-filled star. The incident source, at the vertex of the model perturbation, is denoted by
the blue-filled star. The amplitude variations of the wavefront around the diffracting point result from
the radiation pattern of the virtual sources. The analytical radiation patterns are superimposed (green
curves). Figure taken from (Operto et al., 2013).

For diagonal blocks such that j = l, this coupling is measured between parameters of the same class
j, at different spatial positions i and k. The entry Bij,kj decreases with the spatial distance which
separates mij and mkj and reaches its maximum for the autocorrelation of the two derivatives of the
wavefields (i = k). In the high-frequency approximation, the zero-lag correlation of the derivatives of
the wavefield with respect to mij and mkj would be zero and the blocks of B(m) would be diagonal.
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3 Truncated Newton optimization and multiparameter imaging

Figure 3.3 – Hessian operator H(m0) corresponding to a 2D frequency-domain multi-parameter FWI
problem for the reconstruction of the P -wave velocity, the density, and an attenuation parameter.

The limited frequency content of the seismic data translates in the banded aspect of these blocks.
For non-diagonal blocks such that j 6= l, the coupling is measured between parameters of two different

classes j and l. The diagonal entries of the non-diagonal blocks Bij,il measure the coupling between
parameters of class j and l at the same spatial position i. In the most general settings (i 6= k and j 6= l),
Bij,kl measures the coupling between parameters of two different classes j and l, at two different spatial
positions i and k.

Similarly, the expression (3.15) shows that Cij,kl is the correlation of the residuals with the second-
order derivatives of the wavefield recorded at the receivers, with respect to the parameters mij and mkl.
This second-order wavefield is also called a double-scattered wavefield: it represents a recorded signal
that has been scattered twice, by the parameter mij and mkl.

3.2 Proposed approach: truncated Newton strategy

From this analysis, we see that relying only on the gradient to perform FWI present two difficulties.

� When considering multi-parameter reconstructions, trade-offs/coupling effects between parame-
ters might contaminate the reconstruction, due to an overlap of their radiation patterns over a
significant range of diffraction angles θ.

� When strong multiple reflections are recorded, the gradient might interpret secondary and higher
order reflections as single scattered events and consequently misposition heterogeneities in the
medium (reflectors). This issue might be mitigated by iterating the descent algorithm, however
the convergence might be extremely slow which would make the method improper for practical
applications.

Filtering the gradient ∇f(m) with the matrix H(m)−1 to compute the model update following the
Newton equation (3.9) acts simultaneously as

� a spatial refocusing filter for each parameter class;

� a decoupling filter to mitigate trade-offs between parameter classes.

In addition, the second-order part of the Hessian operator C(m) allows one to compensate for the
artifacts generated by double-scattered waves.
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This analysis underlines the crucial importance of the Hessian operator in the solution of the FWI
problem (3.2). This has been the main motivation to study a specific local optimization scheme named
truncated Newton method (also known as inexact Newton, Newton-CG, or Newton-Krylov method)
(Nash, 2000). Contrary to quasi-Newton algorithms, this method is not based upon an approximation of
the inverse Hessian operator. Instead, the descent direction ∆mk is computed as an approximate solution
of (3.9) using the conjugate gradient algorithm (Saad, 2003). In this framework, the approximation of the
inverse Hessian operator at a given iteration k is local: it only involves first-and second-order derivatives
of the misfit function computed at the model mk. It is an advantage over the l-BFGS algorithm, which
builds an approximation of the inverse Hessian operator which is non-local, as it is based on the gradient
values computed at the l previous iterations k, k− 1, . . . , k− l+ 1. This non locality may be prejudicial
to an accurate approximation of the inverse Hessian operator for strongly nonlinear misfit functions, and
only a rough approximation is possible in the first iterations, as it is only based on the first gradients.

Nonetheless, the implementation of truncated Newton strategies for large scale FWI problems is
not trivial, mainly due to the potentially high computational cost of the method as it requires direct
approximation of the second-order derivatives of the misfit function. We thus have proposed a series of
contributions to design a feasible implementation of this strategy for realistic scale FWI problems.

The guideline is to work in a matrix-free format: the storage or the computation of the Hessian
operator would be prohibitively expensive. The Newton equation (3.9) is solved with a conjugate gradi-
ent iterative solver which is naturally matrix-free. The difficulty thus relies on an efficient computation
of Hessian-vector products H(m)v. We have proposed a second-order adjoint technique to this pur-
pose (Métivier et al., 2012b). An adapted stopping criterion is also mandatory, to adapt the level of
accuracy to which is solved the Newton equation (3.9) to guarantee the convergence of the nonlinear
optimization. We have proposed to use the criterion defined by Eisenstat & Walker (1994) (Métivier
et al., 2013; Métivier et al., 2017). Finally, we have developed specific preconditioning techniques to
accelerate the convergence of the conjugate gradient solver (Métivier et al., 2014a, 2015a), adapted to
the multi-parameter FWI case.

We present these different contributions in more details in the following section, before providing
some illustrations of the interest of this method.

3.3 Mathematical description

3.3.1 Hessian-vector products computation through second-order adjoint techniques

Adjoint state strategy for computing the gradient. The standard approach to compute the
misfit gradient ∇f(m) relies on the adjoint-state technique, which has been introduced in optimal
control theory by (Lions, 1968), and later on adapted to parameter identification problems by Chavent
(1971) and to weather forecasting by Le Dimet & Talagrand (1986). A survey of its use in seismic
imaging has been proposed by Plessix (2006). The purpose of this strategy is to avoid the computation
of the partial derivative wavefield ∂dcal,s[m](xr,t)

∂mij
for each model parameter mij , which would not be

affordable for realistic size FWI problems.
Here we present the general principle of the strategy. For the sake of clarity, we assume that the

number of seismic sources is equal to 1 and we drop the index s in the sequel (the generalization is
straightforward by summation).

The Lagrangian function associated with the problem (3.2) is

L(m,u, λ) =
1
2

∑
r

∫ T

0

|(Ru)(xr, t)− dobs(xr, t)|2 dt+ (A(m)u− s, λ)W , (3.16)

where (., .)W is the L2 scalar product in the wavefield space

(u, v)W =
∫ T

0

∫
Ω

u(x, t)v(x, t) dx dt, (3.17)

and λ is the adjoint wavefield. Denoting u[m] the solution of (3.4), we have

L(m,u[m], λ) = f(m). (3.18)
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Deriving (3.18) with respect to m yields

∂L(m,u[m], λ)
∂m

= ∇f(m), (3.19)

which is equivalent to

∂

∂m
(A(m)u[m], λ)W +

∂L(m,u[m], λ)
∂u

∂u[m]
∂m

= ∇f(m). (3.20)

The adjoint state λ[m] is defined as the solution of

∂L(m,u[m], λ)
∂u

= 0, (3.21)

which is equivalent to

A(m)Tλ = RT (dobs(xr, t)−Ru[m](xr, t)) =
∑
r

(dobs(xr, t)−Ru[m](xr, t)) δ(x− xr), (3.22)

where A(m)T stands for the adjoint wave propagation operator. In the time-domain, this operator
is equivalent to a backpropagation operator. Indeed, through time-integration by parts, the initial
homogeneous condition of the incident wavefield turns to an homogeneous final condition for the adjoint
wavefield. In the frequency domain, this backpropagation turns into a complex conjugation. The formula
(3.22) is important as it reveals that the adjoint is computed as the backpropagation of the residuals
from the receivers location.

We obtain the gradient formula

∇f(m) =
∫ T

0

(
∂A(m)
∂m

u[m](x, t)
)
λ[m](x, t) dt. (3.23)

Using the adjoint formalism, the gradient is thus computed as the correlation between the incident
wavefield u[m] and the adjoint wavefield λ[m]. From a computational point of view, the computation
of the first-order scattered wavefields ∂dcal,s[m](xr,t)

∂mij
is replaced by the solution of one incident and one

adjoint propagation problems, which is much more efficient.
The correlation of these two wavefields to assemble the gradient through the formula (3.23) requires

specific attention in the time-domain as the incident and adjoint wavefields are not in principle accessed
at the same time step following standard time marching schemes. Different options exist to overcome
this difficulty, either relying on storing the incident wavefield during its computation, or recomputing it
from the final step after a first propagation stage. The choice depends of course of the problem size and
the computational architecture available. Combination of these two strategies might be employed: see
for instance checkpointing strategies (Griewank & Walther, 2000), or more recently the CARFS method
we have designed within SEISCOPE (Yang et al., 2016b,a)).

Extension to the computation of Hessian-vector products. To compute Hessian vector products
H(m)v for a given vector v in the model space, the previous strategy is extended to second-order. This
extension simply relies on the definition of a function gv(m) such that

gv(m) = (∇f(m), v)M , (3.24)

where this time (., .)M denotes the L2 scalar product in the model space M

(m, p)M =
N∑
j=1

∫
Ω

mj(x)pj(x). (3.25)

The gradient of the function gv(m) is, by definition

∇gv(m) = H(m)v. (3.26)
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The same adjoint-state formalism can thus be used to compute the gradient of the function gv(m). We
do not give the details of this derivation here: they can be found for instance in (Métivier et al., 2017).
As a result, the Hessian-vector products can be expressed as the sum of three correlation terms (similar
to expression (3.23))

(H(m)v)(x) =
∫ T

0

∑
j

∫
Ω

(
∂2A

∂mj∂m
u[m](x, t)vj(x)λ[m](x, t)dt

)
+∫ T

0

∂A

∂m
λ[m](x, t)µ1[m](x, t) dt+∫ T

0

∂A

∂m
u[m](x, t)µ2[m](x, t) dt,

(3.27)

involving the computation of secondary incident and adjoint wavefields µ1[m] and µ2[m] solutions of
A(m)µ1(x, t) = −

∑
j

(
∂A

∂mj
vj(x)u[m]

)
(x, t),

A(m)Tµ2 = −RTRµ1(x, t)−
∑
j

(
∂AT

∂mj
vj(x)λ[m]

)
(x, t).

(3.28)

Following this strategy, the Hessian-vector product can be expressed only in terms of four wavefields:
the primary incident and adjoint wavefields u[m] and λ[m], together with the secondary incident and
adjoint wavefields µ1[m] and µ2[m]. This thus opens the way to efficient implementation, the formalism
being matrix free. Additional savings can be obtained in the Gauss-Newton approximation for which
only three wavefields need to be computed (the term involving λ[m] vanishes in this case). Depending
on the problem size and available resources, the primary fields might also not be recomputed and kept
in memory, yielding substantial savings.

This mathematical development has been the starting point for the implementation of the truncated
Newton strategy for FWI.

3.3.2 Dynamic stopping criterion for the Newton equation

The second key point for an efficient implementation of the truncated Newton strategy for large scale
nonlinear optimization relies on the definition of the stopping criterion to solve the inner linear system
(3.9). In the Newton optimization framework, the computation of the descent direction ∆mk amounts
to minimizing the local quadratic approximation of the misfit function f(m) defined by

qk(∆mk) = f(mk) + (∇f(mk),∆mk) +
1
2

(H(mk)∆mk,∆mk). (3.29)

If this approximation is accurate, there is interest in computing a precise solution to the problem (3.9).
Conversely, when this quadratic approximation is inexact, computing an exact solution of the system
(3.9) might generate ascent directions. The accuracy with which the linear system (3.9) should be solved
thus depends on the accuracy of this quadratic approximation.

This issue has been clearly pointed out by Eisenstat & Walker (1994) who provide three stopping
criteria related to the accuracy of the local quadratic approximation. For each of these criteria, a
convergence proof of the truncated Newton method is provided. These criteria take the following form:
the linear iterations are stopped whenever

‖H(mk)∆mk +∇f(mk)‖ ≤ ηk‖∇f(mk)‖. (3.30)

where the quantity ηk is defined as the forcing term. The value of ηk controls the required accuracy on
the solution of the system (3.9).

Among the three possible definitions of ηk, we have illustrated in a numerical study (Métivier et al.,
2013) that the following choice appears as the most appropriate for FWI applications

ηk =
‖∇f(mk)−∇f(mk−1)− αk−1H(mk−1)∆mk−1‖

‖∇f(mk−1)‖
, (3.31)
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The measure of the accuracy of the quadratic approximation of the misfit function is obtained
through a comparison between the gradient and its first-order Taylor expansion

∇f(mk) ' ∇f(mk−1) + αk−1H(mk−1)∆mk−1 + o(‖∆mk−1)‖. (3.32)

The choice of the forcing term and the definition of the associated stopping criterion for the linear
iteration is complemented with an appropriate strategy to deal with the detection of negative curvatures.
Indeed, while the Gauss–Newton approximation of the Hessian B(m) is symmetric positive, the second-
order part C(m) may render the full Hessian operator H(m) symmetric indefinite. Therefore, during the
solution of the linear system (3.9) with the conjugate gradient algorithm, the probability of encountering
a curvature associated with a negative eigenvalue of the operator H(m) cannot be ignored. In this case,
the linear iterations are stopped and the last value of the descent direction ∆mk which is computed is
returned. If this negative curvature is met at the very first linear iteration, the steepest-descent direction
is returned. This safeguard provides a very robust stopping criterion: the model update computed in
the inner conjugate gradient loop is always guaranteed to be a descent direction for the misfit function
f(m).

3.3.3 Preconditioning techniques

Improving the convergence rate when solving the Newton equation (3.9) with CG iterations is crucial
for an efficient implementation of the truncated Newton strategy as for realistic applications, controlling
the computational time might require to perform only few CG iterations (up to 10 for instance, for linear
systems involving millions of unknowns or more). This requires the design of a suitable preconditioner
for the linear system (3.9).

The first possibility we have explored consists in coupling the truncated Newton and l-BFGS strate-
gies, where the l-BFGS approximation of the inverse Hessian operator is used as a preconditioner (Mé-
tivier et al., 2013). However, this approach suffers from the same limitation than the l-BFGS strategy
itself: the inverse Hessian approximation is not accurate at the first iterations of the method, therefore
the quality of the preconditioner might not be sufficient in the first iteration.

The second strategy we have explored is related to what is referred to as the pseudo-Hessian operator
in the FWI community (Shin et al., 2001; Choi & Shin, 2008). This is an approximation B̃ of the Gauss-
Newton part of the Hessian such that

B̃(m)ij,kl =
∑
s

∫
Ω

∫ T

0

us[m](x, t)
∂A

∂mij
us[m](x, t)us[m](x, t)

∂A

∂mkl
us[m](x, t)dxdt. (3.33)

This rather crude approximation is based on an approximation of the Green function at a receiver
position by the incident wavefield us[m] itself, which is a quantity already computed when the gradient
is assembled.

In the mono-parameter case, a crude approximation of H−1 is deduced from (3.33) by selecting only
the diagonal components of this operator, such that the preconditioner P is

P =
(

diagB̃ii
)−1

. (3.34)

We have generalized this approximation to the multi-parameter settings in Métivier et al. (2015a),
following a block diagonal approximation initially proposed in Innanen (2014) and (Korta et al., 2013).
The principle is that each block of the Hessian operator is approximated by its diagonal, which leads to
the preconditioner

P =


diagB̃ii,11 diagB̃ii,12 . . . diagB̃ii,1N
diagB̃ii,21 diagB̃ii,22 . . . diagB̃ii,2N

...
. . .

diagB̃ii,NN diagB̃ii,NN . . . diagB̃ii,NN


−1

. (3.35)

These off-diagonal blocks contributions approximate the trade-off between parameter classes, neglecting
the spatial interactions between parameters. The structure of P implies that its application only requires
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the solution of a N ×N linear system at each grid points which is negligible from a computational point
of view, as in practice the number of parameter classes simultaneously inverted will not exceed the order
of 10 (the maximum number of independent parameter in the stiffness matrix is equal to 21 to which
could be added parameters associated with attenuation mechanisms).

3.4 Numerical studies

We now provide several illustrations of the interest of the truncated Newton strategy in the framework
of FWI. These examples are obtained on synthetic cases, in the 2D acoustic approximation, using a
frequency-domain FWI algorithm. We first focus on the mono-parameter case for the reconstruction
of the P -wave velocity only, to emphasize the interest for accounting for second-order scattering when
strong amplitude multiple reflections are recorded. Two illustrations are provided. We then present
a three parameters inversion for the simultaneous reconstruction of the P -wave velocity, the density,
and an adimensional factor accounting for the subsurface attenuation. We emphasize the interest of the
preconditioned truncated Newton strategy in this case to better decouple these parameters.

3.4.1 Mono-parameter velocity reconstruction with large amplitude multiple reflections

Civil engineering application. We first consider a schematic synthetic case study, inspired from a
civil engineering application. The model to reconstruct is composed of a homogeneous background at
300 m.s−1 and two superimposed concrete structures at 4000 m.s−1 (Fig. 3.4). The initial model misses
the two concrete structures. Detecting and correctly imaging these structures is challenging due to the
strong multiple reflections generated by the interaction between the two structures. A full acquisition
system with four line of sources and receivers (one line on each side) is used. The inversion is performed
in the frequency-domain: we invert 9 data-sets from 100 to 300 Hz at 25 Hz interval. No preconditioning
is used for this case study (no improvements were observed in this case).

Figure 3.4 – Exact pressure wave velocity model.

Two time-domain data-sets computed with the exact wave-velocity model and with the initial
homogeneous-velocity model are presented in Figure 3.5. These two data-sets are obtained using a
source located at the surface, between the two concrete structures, at x = 6.75 m. While the direct
waves are well predicted by the initial model, all the multiples coming from the reverberation between
the two structures are missing in the data modeled in the initial model.

We compare the convergence of the steepest descent algorithm, l-BFGS algorithm, and the truncated
Newton algorithm either in the Gauss-Newton or full Newton settings (Fig 3.6). The convergence
is observed in terms of the number of solutions of wave propagation problems: while the truncated
Newton method might converge more rapidly than gradient based algorithms, each nonlinear iteration
is more expensive as the computation of Hessian-vector products implies the solution of additional wave
propagation problems. It it thus more “fair” to compare the convergence of the different algorithms in
functions of these wave propagation solves. In this case, only the truncated Newton method using the
full Hessian operator is able to substantially decrease the misfit. The three other methods, steepest
descent, l-BFGS, truncated Newton in the Gauss-Newton approximation, fail to converge.
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Figure 3.5 – Dataset computed in the exact model (left) and in the initial homogeneous model (right).

Figure 3.6 – Convergence curves: N: truncated Newton, GN: truncated Gauss–Newton, LB: l-BFGS,
ST: steepest-descent.

The corresponding inversion results are presented in Figure 3.7. The four results are plotted with
the same color scale. As indicated by the misfit function decrease, the two concrete structures are
better reconstructed using the truncated Newton method based on the full Hessian operator, even if the
wave-velocity amplitude is underestimated (this value reaches 810 m·s−1, which is still far from the real
value which is 4000 m·s−1). The structures and their edges appear more clearly.

We compare the synthetic data computed in the time domain associated with each of the estimated
wave-velocity models. The corresponding residuals (difference with the data computed in the exact
model) are presented in Figure 3.9.

These figures illustrate that the multi-scattered waves appearing between the two concrete structures
are only correctly interpreted by the truncated Newton strategy using the full Hessian operator.

From these results, we see that this strategy is preferable in this case than l-BFGS and first-order
strategies. The imprint of high order reflections in the residuals is high, therefore an accurate estimation
of the Hessian operator is required at the first iteration of the inversion. In addition, we see that
the complete Hessian is required to reach satisfactory results: this is expected as the Gauss-Newton
estimation discards the Hessian term correcting for second-order reflections.

The 2004 BP model. The experiment on the 2004 BP model can be seen as an exploration scale
extension of the previous case study (Fig. 3.10a.). Instead of considering buried concrete structure, we
consider salt bodies (red structures with velocity reaching 4500 m.s−1 in Fig. 3.10) below a deep water
layer (blue top layer with velocity equal to 1500 m.s−1 in Fig. 3.10). The contrast is lower than in the
previous case, however it is sufficient to create energetic multiple reflections. This effect is amplified
by the introduction of a free surface condition at the air/water layer interface at the top of the model.
Such geological configuration can be for instance found in the Mexico gulf environment. The 2004 BP
model is representative of this environment (Billette & Brandsberg-Dahl, 2004).
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Figure 3.7 – Pressure wave velocity estimation, steepest-descent (top left) l-BFGS (top right ), truncated
Gauss-Newton (bottom left), truncated Newton (bottom right).

Figure 3.8 – Dataset computed in the estimated models. Steepest-descent (top left), l-BFGS (top right),
Gauss–Newton (bottom left), Newton (bottom right).
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Figure 3.9 – Residuals associated with the estimated models. Steepest-descent (top left), l-BFGS (top
right), Gauss–Newton (bottom left), Newton (bottom right).

Figure 3.10 – BP 2004 synthetic exact model (a), initial model (b).

We use a surface acquisition configuration with 62 sources and 248 receivers, from x = 50 m to
x = 6225 m at 25 m below the sea-level. The spatial sampling of the receivers and the sources is set up
to 25 m and 100 m, respectively. A diagonal preconditioner based on the pseudo-Hessian approach is
used in this experiment (equation (3.34)).

The cycle of FWI starts with an initial model which is a smooth version of the exact model. A
Gaussian smoothing with 500 m correlation length (Fig. 3.10b) is used to generate it. A hierarchical
frequency strategy is set up. We generate 27 data sets, from 2 Hz frequency to 19.5 Hz gathered into 8
overlapping subgroups, as presented in Table 3.1.

The four models obtained using nonlinear conjugate gradient, l-BFGS, and the truncated Newton
strategy (Gauss-Newton and full Newton settings) are presented in Figure 3.11. From x = 1 km to 6
km, the top salt-structure is correctly delineated in the four estimations. The reconstruction of the basin
between x = 0 km and x = 1 km is more difficult. This basin is responsible for high amplitude multi-
scattered waves difficult to interpret, and is located at one extremity of the acquisition. The nonlinear
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Group 1 2 Hz 2.25 Hz 2.5 Hz 2.75 Hz
Group 2 2.5 Hz 3 Hz 3.5 Hz 4 Hz
Group 3 4 Hz 4.5 Hz 5 Hz 5.5 Hz
Group 4 5.5 Hz 6 Hz 6.5 Hz 7 Hz
Group 5 7 Hz 7.5 Hz 8 Hz 8.5 Hz
Group 6 8.5 Hz 9.5 Hz 10.5 Hz 11.5 Hz
Group 7 11.5 Hz 12.5 Hz 13.5 Hz 14.5 Hz 15.5 Hz
Group 8 15.5 Hz 16.5 Hz 17.5 Hz 18.5 Hz 19.5 Hz

Table 3.1 – Frequency group strategy for the BP 2004 case study

Figure 3.11 – Estimated models for the BP case study. Nonlinear conjugate gradient (a), l-BFGS method
(b), truncated Gauss-Newton method (c), truncated Newton method (d).

conjugate gradient method and the l-BFGS method seem to be the most affected by this particular
configuration. The geometry of the basin is not recovered and is filled with high amplitude velocities.
These perturbations are also responsible for obscuring the sub-salt targets, and creating erroneous slow
velocity anomalies.

Conversely, the results provided by the truncated Newton are more reliable, both using the Gauss-
Newton approximation or the full Hessian operator. The best estimation is provided when using the full
Hessian operator. The geometry of the basin is better recovered, and the sub-salt slow velocity anomalies
better reconstructed. The possible enhancement of the inverse Hessian approximation yielded by the
truncated Newton method may explain this improvement in the resolution and the stability of the
inversion. The regularization effect of the truncation strategy (Kaltenbacher et al., 2008) may also
contribute to the better quality of the subsurface BP 2004 model estimations. We see particularly
that the l-BFGS estimation (and the nonlinear conjugate gradient estimation to a lesser extent) are
affected by high frequency artifacts. Conversely, the truncated Newton and Gauss-Newton estimations
are significantly smoother.
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3.4.2 Multi-parameter reconstruction

The multi-parameter experiment we present is based on a 2D synthetic model extracted from the Valhall
case study (Fig. 3.12). In this experiment we aim at reconstructing simultaneously the P -wave velocity
vP as well as the density ρ and an attenuation factor QP . This attenuation factor is introduced in the 2D
frequency-domain modeling as a complex part of the velocity, following the Kolsky (1956) attenuation
model

vP = vP

(
1− i

2QP

)
, (3.36)

where i is the imaginary unit.
We are interested in the simultaneous reconstruction of these parameters, intending to mitigate as

much as possible potential trade-offs. We compare the efficiency of a standard l-BFGS approach with the
truncated Newton method. The results obtained with and without the multi-parameter preconditioner
(equation (3.35)) are presented to emphasize its role. We refer to the methods as (P)LB and (P)TRN
in the sequel for the sake of concision.

A fixed-spread surface acquisition with sources and receivers located along the surface each 25 m
is used. Six synthetic data-sets are generated from 3 Hz to 8 Hz with 1 Hz sampling. The smooth
initial P-wave model is obtained using a Gaussian smoothing of the exact P-wave velocity model with a
correlation length of 500 m. The Gardner’s law is then used to generate an initial density model. The
initial QP value is equal to 150 except for the water layer where it is set to 1000.

The convergence of the different strategies over 40 iterations is presented in Figure 3a. The TRN
benefits from a faster convergence rate in the early iterations. The effect of the preconditioner on the
convergence profile is visible only after 20 iterations for the TRN method. The LB and PLB methods
follow approximately the same path excepted that PLB stops at iteration 18 due to a linesearch failure,
which indicates a poor behavior of the preconditioner for the LB method.

To further compare the methods, the model error

emodel(m) =
100
M

M∑
j=1

|mj −mj |
mj

(3.37)

is introduced, where m denotes the exact model. In Figures 3(b-d) the evolution of these model errors
with respect to the decrease of the data misfit is presented. The starting point (first iteration) is located
at the top right side of the figures (the data misfit is normalized and is equal to 1).

The decrease of evP
(Fig. 3b) is monotonic for the four methods. The LB method provides the

smallest evP
model. Conversely, eρ increases after approximately 10 iterations for LB and PLB (Fig 3c).

This illustrates the trade-off between ρ and vP : while the vP estimation is improved, the ρ estimation
is degraded. In particular, high frequency artifacts are introduced, and density values in the gas layers
are overestimated (see also Fig. 3.12d). For PLB, the preconditioner accelerates the decrease of eρ at
the first iterations but does not prevent its increase after 10 iterations. This could be interpreted as
follows: as vP and ρ exact models share some similarities, the cross-talk between the two parameters
does not hamper their reconstruction in the early stage of the inversion. However, after few iterations,
the cross-talks cause the ρ estimation to diverge from the true one.

Comparatively, TRN and PTRN provide a monotonic decrease of eρ (Fig 3c). The estimation of the
Hessian thus seems to prevent from cross-talk effects. In addition, PTRN provides a faster reduction
of the ρ error, which indicates that the preconditioner enhances the decoupling effect of the Hessian
operator. The evolution of eQP

presents the same pattern: TRN and PTRN benefit from an (almost)
monotonic decrease, while LB and PLB suffer from cross-talks after approximately 10 iterations (Fig
3d). The preconditioner accelerates significantly the reconstruction of QP both for PLB and PTRN.

Parameter estimations obtained after 40 iterations using the methods LB, TRN and PTRN are
presented in Figure 3.12(c-f). Results obtained with LB after 10 iterations, before the density starts
degrading, are added (denoted by LB10 in the sequel) (Fig 2c). Results obtained with PLB are omitted
as they are similar to those obtained with LB.

The TRN and PTRN vP estimations are slightly more resolved than the one provided by LB10.
The gas layers are well reconstructed as well as the cap-rock above the reservoir. Due to attenuation,

49



RESEARCH ACTIVITY

almost no updates are brought below the cap-rock. The LB vP estimation after 40 iterations has better
amplitude values in the gas layers but also seems to be corrupted by high frequency artifacts (Fig 2d).
The ρ estimations provided by LB10, TRN and PTRN are similar. The gas layers and the cap-rock
reflector are well delineated while very small updates are brought below the cap rock (similar to vP ). The
LB10 QP estimation shows few modifications from the starting model, although the highly attenuating
shallow sediment layer starts being reconstructed. The imprint of the gas layers and the cap-rock in the
attenuation model can also be seen but is weak. After 40 iterations, the amplitude of these features is
better estimated however some high frequency artifacts appear. The TRN QP model is close from the
one obtained with LB10 however the amplitude is slightly better estimated. The QP result provided by
PTRN is the closest from the true model, even if the imprint of the gas layers is overestimated (Fig 2f).

Vertical logs extracted at x = 7.5 km, traversing the gas layers, are presented in Figure 4. The final
LB estimation is omitted (only LB10 is presented). For vP and ρ the estimations are similar. The trend
of the rapid variations corresponding to the layers are correctly recovered, although the amplitudes
are underestimated. The strong reflector corresponding to the cap-rock is not reconstructed. For QP ,
the LB10 and TRN estimations present few modifications of the initial model. Conversely, the PTRN
estimation recovers correctly the attenuation value in the shallow layer. The variation of the shallowest
gas layers seems to be shifted in depth. Deeper gas layers are correctly positioned, although the deepest
one is clearly overestimated. The imprint of the cap rock reflector is not recovered.

3.5 Short conclusion

The truncated Newton approach allows to better account for the inverse Hessian operator within the
FWI scheme. This operator has a crucial important in the subsurface parameter reconstruction process,
particularly when several parameter classes are reconstructed simultaneously. We have been able to
show on simple 2D acoustic frequency-domain synthetic case studies the benefit one could expect from
a truncated Newton approach for the reconstruction of P-wave velocity when high amplitude multiple
reflections are recorded. In a multi-parameter approach, for the simultaneous reconstruction of the
P -wave velocity, density, and an attenuation parameter, the truncated Newton approach combined with
a suitable preconditioner also appears to provide better results.

In the particular 2D acoustic frequency-domain context, substantial computational savings can be
done by storing incident and adjoint wavefields. The feasibility of the method for time-domain approach
thus still needs to be assessed. This is a very important step for moving towards more realistic large
scale 3D and/or elastic FWI case studies, for which only time-domain approaches are affordable at this
time. This is the topic of ongoing studies led within the SEISCOPE group.
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3 Truncated Newton optimization and multiparameter imaging

Figure 3.12 – P -wave velocity (left column), density (middle column) and attenuation (right column).
Exact models (a), initial models (b), estimated models with 10 l-BFGS iterations (c), 40 l-BFGS iteration
(d), 40 truncated Newton iterations (e), 40 preconditioned truncated Newton iterations (f).
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Figure 3.13 – Convergence profiles of LB, PLB, TRN, PTRN. Misfit reduction depending on the number
of iterations (a). Evolution of evP

(b), eρ (c), eQP
(d) depending on the misfit reduction.

Figure 3.14 – Vertical logs taken at x = 7.5 km. Results after 10 l-BFGS iterations, 40 TRN iterations,
40 PTRN iterations. P-wave velocity (a), density model (b), attenuation model (c).
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4 Optimal transport distance for full waveform inversion

This section summarizes the work presented in the following publications and expanded abstracts.
Publications:

� Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., & Virieux, J., 2016b. An optimal transport approach
for seismic tomography: Application to 3D full waveform inversion, Inverse Problems, 32(11), 115008

� Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., & Virieux, J., 2016c. Increasing the robustness and
applicability of full waveform inversion: an optimal transport distance strategy, The Leading Edge, 35(12),
1060–1067

� Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., & Virieux, J., 2016d. Measuring the misfit between
seismograms using an optimal transport distance: Application to full waveform inversion, Geophysical
Journal International , 205, 345–377

Abstracts:

� Métivier, L., Brossier, R., Oudet, E., Mérigot, Q., & Virieux, J., 2016e. An optimal transport distance for
full-waveform inversion: Application to the 2014 chevron benchmark data set, in SEG Technical Program
Expanded Abstracts 2016 , pp. 1278–1283

� Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., & Virieux, J., 2016a. Overcoming cycle skipping in
FWI: An optimal transport approach, in Expanded Abstracts, 78th Annual EAGE Meeting (Vienna)

4.1 Context and problematic

The work presented in this Section is related to one of the most stringent limitation for the applicability
of FWI at the exploration scale, which is usually referred to as cycle skipping, or phase ambiguity. This
difficulty appears for the reconstruction of wave velocity models, the primary parameter usually inverted
through FWI. The cycle skipping is a difficulty coming from the least-squares formalism of FWI. Each
sample of the observed data is compared to the sample of the synthetic data at the same position in time
and/or in space. This choice is problematic: if the initial velocity model predicts the signal with a time
shift larger than half a period, minimizing the least-squares distance between observed and calculated
data amounts to match the observed data up to one or several phase shifts. This yields an incorrect
estimation of the subsurface model which cannot be overcome through iterations: the optimization is
locked into a local minimum. An illustration of this phenomenon, where the seismic data is considered
schematically as a sinusoidal temporal signal, is presented in Figure 4.1.

Overcoming this difficulty has been a recurrent objective since the introduction of FWI by Lailly
(1983b) and Tarantola (1984). We start this section by summarizing the different approaches which
have been proposed to mitigate this difficulty in the last decades.

The probably first strategy to overcome this limitation has been proposed by Pratt (1999). It consists
in matching the data following a multi-scale (hierarchical) approach. The lowest frequency components
of the data are matched first. This increases the attraction valley of the misfit function as, in this case,
the initial velocity model should only explain the data up to half the period corresponding to the lowest
frequency components that have been extracted. The result of the first inversion serves as an initial
model for an inversion of data containing higher frequencies. This procedure can be iterated until the
whole seismic data has been interpreted. This strategy is used for instance in Bunks et al. (1995); Sirgue
& Pratt (2004) and Operto et al. (2004).

This multi-scale approach can be complemented with offset and time-windowing strategies. Time-
windowing is used to select the diving waves and remove the reflected energy from the observed seismo-
grams. The offset is increased progressively, as large offsets correspond to diving waves traveling across
a long distance between the subsurface, therefore containing a large number of oscillations. These waves
are more subject to cycle skipping. This time-windowing and offset selection is also known as layer
stripping technique: the shallow part of the subsurface is first reconstructed, the depth of investigation
being progressively increased by this data selection strategy. See Shipp & Singh (2002); Wang & Rao
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Figure 4.1 – Schematic example of the cycle skipping/phase ambiguity issue on sinusoidal signals. As
soon as the initial shift is larger than half a period of the signal, the fit of the signal using a least-squares
distance is performed up to one or several phase shifts. On may try to fit the n + 1 dashed wriggle
of the top signal with the n continuous wriggle of the middle signal moving to the wrong direction.
The bottom dashed signal predicts the n wriggle in less than half-period leading to a correct updating
direction (figure from Virieux & Operto, 2009).

(2009) and Brossier et al. (2009) for examples of applications in the 2D acoustic (respectively elastic)
approximation.

Despite these successful applications, the multi-scale approach does not really overcome the cycle
skipping limitation. Instead, the data interpretation is re-organized in such a way that this limitation
does not preclude the estimation of the velocity through FWI. Commonly encountered difficulties for
real data application preventing this strategy to produce reliable velocity estimations encompass: the
impossibility of building an accurate enough and kinematically compatible initial velocity model, the
presence of strong noise corrupting the low frequency part of the data, or offset limitations in the
acquisition design.

Several attempts have thus been made to modify the FWI misfit function itself, to avoid comparing
the seismic signal using the L2 distance, and to yield a more robust, convex misfit function, less prone
to cycle skipping. Two classes of strategies designed to achieve this objective can be identified, referred
to as data-domain and image-domain techniques in the following.

The underlying concept of data-domain technique relies so far on a hybridization between tomography
methods and FWI. These hybrid methods try to emphasize the matching of travel-times instead of the
full signal, to recover the properties of tomography methods, while still benefiting from the expected
high resolution power of FWI. One of the first attempt is the design of the wave-equation tomography
(WETT) proposed by Luo & Schuster (1991). This is a tomography method, aiming at matching
travel-times. However, while classical tomography methods rely on travel-time picking in the observed
data (a possibly heavy pre-processing step) and the computation of travel-times through asymptotic
approaches, the travel-times misfit is directly estimated from the cross-correlation of the observed and
synthetic traces. This method is interesting as it bridges the gap between tomography and FWI from
a formal point of view: a full wave modeling engine is used to compute the synthetic data, and the
method can be interpreted as a modification of the FWI misfit function, making possible to use the
adjoint formalism to compute the associated gradient, as is commonly done in FWI. Originating from
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exploration geophysics, this strategy has been adopted by the seismology community as the finite-
frequency tomography method (Dahlen et al., 2000; Montelli et al., 2004; Tromp et al., 2005; Nolet,
2008).

An attempt to enhance the robustness of the automatic travel-time misfit computation through
warping has been proposed by Ma & Hale (2013). Dynamic image warping is a technology originally
designed for pattern recognition in signal processing. In a recent study, Hale (2013) has demonstrated
that this method could be applied to determine time shifts between seismograms. However, in the
presence of non-predicted events (i.e. reflections), the estimation of the time-shifts through cross-
correlation or warping technique collapses.

More recently, the design of a misfit function based on deconvolution has been proposed by Luo &
Sava (2011). The travel-time misfit between the synthetic and observed data is computed through a
matching filter obtained by the deconvolution of the synthetic data by the observed data. The FWI
problem is reformulated as the focusing of the energy at zero-lag for these matching filters. This method
has started to be applied to realistic scale case-studies in seismic exploration and seems to provide a
more robust misfit function, less prone to cycle skipping (Warner & Guasch, 2014). The main difficulty
for the application of this strategy consists in the proper design of the penalization function which is
used to refocus the energy at zero-lag, which might be application dependent.

In seismology, other data-domain modifications of the misfit function have been proposed. Fichtner
et al. (2008) propose to use a time-frequency analysis of the data through a Gabor transform in order
to extract both the travel-times and the amplitude envelope information from the seismic signal. This
allows to define a misfit function as a sum of two terms measuring the misfit between travel-times
and amplitude envelope separately. A similar strategy has been proposed by Bozdağ et al. (2011)
where the amplitude and travel-time information are computed following the Hilbert transform instead
of the Gabor transform. Both strategies can be used in combination with different time-windowing
strategies (Maggi et al., 2009). Envelope inversion has also been investigated in the context of exploration
seismology (Luo & Wu, 2015).

Parallel to the development of these data-domain techniques, the development of image-domain
techniques started with the design of Differential Semblance Optimization (DSO) (Symes & Kern, 1994)
and later on wave equation migration velocity analysis (WEMVA) (Sava & Biondi, 2004a,b; Symes,
2008). These methods rely on the separability of scales assumption: the velocity model is decomposed
as the sum of a smooth background model and a high wavenumber reflectivity model. The reflectivity
is related to the smooth background model through an imaging condition: it is the sum for each source
of the cross-correlation between the incident wavefield and the back-propagated residuals computed in
the smooth background velocity model. This imaging condition can be extended using either an offset
selection (Symes & Kern, 1994) or an illumination angle selection (Biondi & Symes, 2004) in the residuals
(the angles are easily accessible when the reflectivity is computed through asymptotic techniques), or a
time lag in the cross-correlation (Faye & Jeannot, 1986; Sava & Fomel, 2006; Biondi & Almomin, 2013).

Within this framework, an extended image consists in a collection of reflectivity models depending
on one of these additional parameters (offset, angle, time lag). This extended image is used to probe the
consistency of the smooth background velocity model: the uniqueness of the subsurface implies that for
the correct background, the energy should be focused in the image domain, either along the offset/angle
dimension, or at zero lag. A new optimization problem is thus defined, either as the penalization of the
defocusing of the energy, or as the maximization of the coherency of the energy in the image domain.
The corresponding misfit function is minimized iteratively, following standard numerical optimization
schemes.

As for the deconvolution approach, one drawback of these strategies rely on the potential sensitivity
to the choice of the penalization function (also called annihilator function). Another difficulty is related
to their computational cost, because of the repeated construction of reflectivity images, which has to
be performed at each iteration of the reconstruction of the smooth background velocity model. This
high computational cost seems to have precluded the use of these techniques for 3D waveform inversion
up to now. It should also be noted that these methods are based on the assumption that only primary
reflections will be used to generate the extended image through migration, which requires non negligible
data pre-processing. Locally coherent events in the image-domain associated with, for instance, multiple
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reflections, would yield inconsistent smooth background velocity models (Lambaré, 2002). Accounting
for higher order reflection within this framework is nontrivial (Cocher & Chauris, 2014; Cocher et al.,
2015)

4.2 Proposed approach: a misfit function based on an optimal transport
distance

Recently, a new data-domain modification of the misfit function based on optimal transport distances
has been proposed by Engquist & Froese (2014). We first introduce briefly the main concepts of optimal
transport. For the sake of simplicity, this introduction relies on a discrete formulation of the problem,
even if the formalism of optimal transport is much more general (the Wasserstein distance introduced
hereafter is defined on measure spaces).

In the last fifteen years, the field of optimal transport has been put on the front scene through the
work of many mathematicians, as testified by the books of Villani (2003, 2008); Ambrosio et al. (2008);
Santambrogio (2015). In particular, the metric underlain by the optimal transport distance has been
used to establish new existence results of solution to nonlinear partial differential equations such as the
Boltzmann equations. Applications of optimal transport to image processing have also been investigated
and have yield very convincing result, for instance for contrast and color mappings, pattern recognition,
shape classification, texture synthesis and texture mixing (see Lellmann et al. (2014) and references
therein for a detailed state-of-the-art in image processing)

Optimal transport finds its roots back in 1780, in the work of the French mathematician Gaspard
Monge. Monge supervised a bridge building site. Piles of sand needed to be displaced to fill in holes.
Monge expressed mathematically how this displacement could be achieved optimally, to minimize the
effort of the workers. More than 150 years later, a modern and suitable mathematical formulation
for this problem was introduced by Kantorovich (1942), as a relaxation of the Monge problem. In
his description, the initial piles can be associated with N quantities µi, located at the points xi, for
i = 1, . . . N . The configuration of the holes is associated with M quantities νj , located at point yj , for
j = 1, . . . ,M . The total quantity of sand requested to fill in the holes νj is assumed to be exactly equal
to the total quantity of available sand µi (mass conservation assumption).

N∑
i=1

µi =
M∑
j=1

νj . (4.1)

Kantorovich considers the ensemble of displacements making possible to fill the holes with the quantities
νj from the sand piles µi. These displacements can be represented as matrices γ with N rows and M
columns. An entry γij tells how much from the pile µi should be moved to fill in the hole νj . Mapping
the ensemble of piles µ onto the holes ν requires that the sum of the elements of the ith row of γij is
equal to µi, while the sum of the elements of the jth column of γij is equal to νj . A matrix satisfying
this assumption is called a “transport plan”. An example of such transport plan is presented in Figure
4.2.

An infinity of transport plan allowing to move the sand piles µ to the holes ν exists. The optimal
transport plan γ minimizes a function measuring the total displacement cost. This cost is the sum of the
elementary costs associated with the elementary displacements. The cost of an elementary displacement
between xi and yj is measured as the product between the mass which is actually transferred γij , mul-
tiplied by the distance between xi and yj . This measure implies that a balance has to be found between
the amount of mass which is transported, and the distance on which it is transported. Mathematically,
this is formulated as the linear programming problem

min
γij≥0

∑
ij

γij‖xi − yj‖, subject to
∑
j

γij = pi,
∑
i

γij = qj . (4.4)

where ‖xi − yj‖ denotes a distance between xi and yj , called the ground distance (often the Euclidean
distance).
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4 Optimal transport distance for full waveform inversion

Figure 4.2 – An example of transport plan for the solution of the transport problem between a dis-
tribution µ1, µ2, µ3 towards a distribution ν1, ν2, ν3, ν4. The matrix γ representing this transport plan
is

γ =

3 2 0 0
0 0 2 0
0 0 0 2

 . (4.3)

The solution of the problem (4.4) defines a distance between µ and ν, named Wasserstein distance,
defined by

Wp(µ, ν) =

min
γij≥0

∑
ij

γij‖xi − yj‖p subject to
∑
j

γij = pi,
∑
i

γij = qj

1/p

. (4.5)

These distances are of particular interest for FWI because of their convexity with respect to shifts
between the distribution µ and ν. This property is demonstrated by Engquist & Froese (2014) for the
hat function, and illustrated numerically for a Ricker function decomposed in its positive in negative
part. In short, considering two real positive functions f1(t) and f2(t) such that

f2(t) = f1(t− t0), (4.6)

one can expect that
W p
p (f1, f2) ' |t0|p. (4.7)

This property is extremely interesting in the context of seismic imaging and FWI. Velocity perturbations
are mainly responsible for shifting in time the seismic data. Therefore a FWI misfit function which is
convex with respect to time shifts should be convex with respect to the velocity. This has been the main
motivation for investigating the use of these distances in the framework of FWI.
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Measuring the misfit between seismic data using an optimal transport distance is nonetheless not
straightforward. Two requirements must be fulfilled by the data for the optimal transport problem (4.4)
to have a solution.

� The data must be positive: f1(t) ≥ 0, f2(t) ≥ 0;

� The total mass has to be conserved:
∫
t
f1(t)dt =

∫
t
f2(t)dt.

The positivity assumption is clearly not satisfied by seismic data, as it is oscillatory in essence. On
the other hand the second assumption should be satisfied, as the integral in time of a seismic signal
amounts to its zero frequency, which is zero in practice. In addition to this positivity issue, the size
of the discrete problem which has to be solved is a severe limitation for the use of optimal transport
for FWI. Standard seismic data involve from O(106) discrete data for 2D acquisition to O(109) discrete
data in 3D. Standard linear programming algorithms based on the simplex strategy can not be used to
treat these problems as they have a cubic complexity in O(N3).

4.3 Mathematical description

4.3.1 The Kantorovich-Rubinstein norm

We have proposed a strategy to overcome these two limitations which is based on the W1 distance. Our
strategy relies on the dual formulation of the Kantorovich problem, which is expressed in discrete form
as

max
ϕi,ψj

∑
i

ϕiµi +
∑
j

ψjνj , ϕi + ψj ≤ ‖xi − yj‖p. (4.8)

(see for instance Villani (2003) or Santambrogio (2015) for this duality result).
In the particular case where µ and ν are discretized in the same space, and p = 1, the dual problem

(4.8) can be simplified into the linear programming problem

max
ϕi

∑
i

ϕi(µi − νi), ϕ ∈ Lip1, (4.9)

where Lip1 denotes the space of 1 Lipschitz function i.e.

Lip1 = {ϕ : ∀i, j, |ϕi − ϕj | ≤ ‖xi − xj‖} . (4.10)

The duality result in this particular case is known as the Kantorovich-Rubinstein theorem (Santambro-
gio, 2015, chap. 3.2.1). While, under its primal form (4.4), the optimal transport problem has a solution
only for data satisfying the positivity and mass conservation assumption, the dual problem (4.9) has a
solution even if the positivity assumption breaks down. This interesting property makes this problem
an interesting tool for comparing seismic data.

In addition, in case the mass conservation is not satisfied, a generalization of (4.9) can be easily
found: this generalization consists in complementing the 1-Lipschitz constraint with a bound constraint
on the infinity norm of the dual variable ϕ. The problem (4.9) thus becomes

max
ϕi

∑
i

ϕi(µi − νi), ϕ ∈ Lip1, ∀i, |ϕi| ≤ λ. (4.11)

The generalization (4.11) corresponds to the definition of the Kantorovich-Rubinstein (KR) norm
(Bogachev, 2007). Besides the link with optimal transport, the KR norm can also be interpreted as a
generalization of the L1 norm (in a similar sense that the generalization from Total Variation to Total
Generalized Variation norms), and shares some properties with the Meyer’s G-norm. These similarities
are studied in detail by Lellmann et al. (2014), where the use of the KR norm is proposed as an
alternative to the L1 norm in a Total Variation denoising problem.

The distance based on (4.11) is the one we have decided to implement in the framework of FWI.
The first reason is its ability to deal with non-positive data. The second reason is, in case the mass
conservation is not strictly satisfied because of numerical approximation, there is a straightforward fix
to this difficulty.
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4.3.2 Numerical strategy

At this stage, the difficulty relies in the design of an efficient enough numerical scheme to estimate this
distance. We give a description of this scheme in the following. We assume in this description that the
dimension d is set to 3. This means that we are going to compute the distance between data cubes
µ and ν, where the vertical dimension corresponds to the time t, and the horizontal x and transverse
dimensions y correspond to the location of receivers at the surface. Using a triplet of index ijk to denote
one position in the data cube, the problem (4.11) is discretized as

max
ϕijk

∑
ijk

ϕijk (µijk − νijk) , s.c.{
∀ (i, j, k), (l,m, n) |ϕijk − ϕlmn| < ‖(ti, xj , yk)− (tl, xm, yn)‖,
∀ (i, j, k) |ϕijk| ≤ λ.

(4.12)

Computing a numerical approximation of the solution of (4.12) requires the solution of a convex opti-
mization problem involving O(N2) linear constraints which would lead to an unacceptable computational
time for the large scale problems induced by FWI applications. For this reason, we consider an alterna-
tive problem where the Lipschitz constraint is expressed in terms of the `1 norm instead of the standard
Euclidean norm ‖.‖. This leads to

max
ϕijk

∑
ijk

ϕijk (µijk − νijk) , s.c.{
∀ (i, j, k), (l,m, n) |ϕijk − ϕlmn| < |ti − tl|+ |xj − xm|+ |yk − yn|,
∀ (i, j, k) |ϕijk| ≤ λ.

(4.13)

This change amount to a change of the ground distance from the Euclidean to the `1 distance in the
primal optimal transport problem (4.4).

We then use a property of the `1 norm on Rd to reduce the number of constraints from O(N2) to
O(N). We can prove indeed that the two following assertions are equivalent

(A1) ∀ (i, j, k), (l,m, n) |ϕijk − ϕlmn| < |ti − tl|+ |xj − xm|+ |yk − yn|,

(A2)

 ∀ (i, j, k) |ϕi+1,j,k − ϕijk| < |ti+1 − ti|,
∀ (i, j, k) |ϕi,j+1,k − ϕijk| < |xj+1 − xj |,
∀ (i, j, k) |ϕi,j,k+1 − ϕijk| < |yk+1 − yk|.

(4.14)

(A1) obviously implies (A2). To prove the reciprocal implication, consider a pair of points on the mesh
denoted by u and v, such that

u = (ti, xj , yk), v = (tl, xm, yn). (4.15)

A sequence of points wq = (tiq , xjq , ykq ), q = 1, . . . ,M can be selected to form a path on the mesh from
u to v, such that w1 = u, wM = v, and wq are all adjacent on the grid, with monotonically varying
coordinates. The key is to see that, for such a sequence of points, the `1 distance on Rd ensures that

||v − u||1 =
M∑
q=1

||wq+1 − wq||1. (4.16)

(see Fig. 4.3 for an illustration). Now, consider a function ϕ satisfying (A2). The triangle inequality
yields

||ϕ(v)− ϕ(u)||1 ≤
M∑
q=1

||ϕ(wq+1)− ϕ(wq)||1. (4.17)
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Figure 4.3 – Illustration of the property (4.16) for a 2D mesh. Considering two points u and v, a sequence
of adjacent points w1, . . . , w6 with monotonically varying coordinates is found to connect them. Such a
sequence always exists and is non-unique.

As the points wq are adjacent, the local inequalities described by (A2), satisfied by ϕ, yield

M∑
q=1

||ϕ(wq+1)− ϕ(wq)||1 ≤
M∑
q=1

||wq+1 − wq||1. (4.18)

Putting together equations (4.17), (4.18) and (4.16) yields

||ϕ(v)− ϕ(u)||1 ≤ ||v − u||1, (4.19)

or
|ϕijk − ϕlmn| < |ti − tl|+ |xj − xm|+ |yk − yn|, (4.20)

which proves the proposition.
Using the equivalence (4.14), the problem (4.12) can be rewritten in its equivalent form

max
ϕijk

∑
ijk

ϕijk (µijk − νijk) , s.c.
∀ (i, j, k), |ϕi+1,j,k − ϕijk| < |ti+1 − ti| = ht,
∀ (i, j, k), |ϕi,j+1,k − ϕijk| < |xj+1 − xj | = hx,
∀ (i, j, k), |ϕi,j,k+1 − ϕijk| < |yk+1 − yk| = hy,
∀ (i, j, k), |ϕijk| < λ.

(4.21)

The problem (4.21) is equivalent to (4.12) and only involves O(N) constraints. This reduction of the
order of the number of constraints gives the possibility to design an efficient numerical strategy to
compute the KR norm.

After this first step, we reformulate the problem (4.21) as the convex non-smooth problem

max
ϕ

f1(ϕ) + f2(Aϕ), (4.22)

where
f1(ϕ) =

∑
i,j,k∈A

ϕijk (µijk − νijk) , f2(ϕ) = iK (ϕ) , (4.23)

with K the unit hypercube
K =

{
x ∈ RP , |xi| ≤ 1, i = 1, . . . P

}
, (4.24)

where P is the total number of linear constraints, iK the indicator function of K

iK(x) =
∣∣∣∣ 0 if x ∈ K

+∞ if x /∈ K, (4.25)
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and A ∈MP,N (R) is a rectangular real matrix with P rows and N columns (N being the total number
of discrete unknowns) such that

A =
[
Dt Dx Dy

1
λ
IN

]T
, (4.26)

where IN is the real identity matrix of size N and Dt, Dx, Dy are the forward finite differences operators
(Dtϕ)ijk =

ϕi+1,j,k − ϕijk
ht

,

(Dxϕ)ijk =
ϕi,j+1,k − ϕijk

hx
,

(Dyϕ)ijk =
ϕi,j,k+1 − ϕijk

hy
.

(4.27)

Convex optimization problems of type (4.22) involving at least one non differentiable functions (here
f2(ϕ)) can be efficiently solved through proximal splitting techniques. From our numerical experiments,
among this class of methods, the simultaneous-direction method of multipliers (SDMM) was found to
achieve the fastest convergence (Combettes & Pesquet, 2011).

At each iteration of the SDMM algorithm, the computation of the proximity operators of the two
functions f1 and f2 (scaled by a positive factor γ) is required. Closed-form formulations for these
operators can be found such that

proxγf1(ϕ) = ϕ− γ(µ+ ν), (4.28)

∀i = 1, . . . , P,
(
proxγf2(x)

)
i

=
(
proxiK (x)

)
i

=

∣∣∣∣∣∣
xi if −1 ≤ xi ≤ 1
1 if xi > 1
−1 if xi < −1.

(4.29)

Note that the scaling γ only acts on the proximity operator of γf1 as γiK = iK . The closed-form
formulations (4.28) and (4.29) are inexpensive to compute with an overall complexity inO(N) operations.

In addition, the SDMM algorithm requires at each iteration the solution of a linear system involv-
ing the matrix I + ATA, which is the most time-consuming part of the algorithm. The important
result we have obtained in (Métivier et al., 2016b) is to show that the operator ATA corresponds
to the second-order finite difference discretization of the Laplacian operator with Neumann homoge-
neous boundary conditions. Therefore, the inversion of the matrix I +ATA can be performed in quasi-
linear complexity ((O(N logN)) through FFT based solvers Swarztrauber (1974) or in linear complexity
(O(N)) through multigrid algorithms Brandt (1977).

The combination of the reduction of the number of constraints using the property of the `1 distance
and the observation that the matrix appearing in the SDMM strategy actually corresponds to the
discretization of the Poisson’s equation offers the possibility to design an efficient numerical method to
compute the KR norm for large scale problems.

4.3.3 Implementation within the FWI scheme

The implementation of this new misfit function within the FWI scheme requires the ability to compute
its gradient, such that it can be minimized following a local optimization scheme (nonlinear conjugate
gradient, l-BFGS). The adjoint state formalism for the computation of the misfit function presented
in the previous Section provides a very systematic way to investigate this question. Following this
formalism, it can be shown that a modification of the misfit function corresponds, for the gradient
computation, to a modification of the source term for the adjoint wavefield equation.

In the particular case of the KR norm considered here, one can show that this source term is actually
the dual variable ϕ which realizes the maximum of the maximization problem (4.22).

ϕ = arg max
ϕ

f1(ϕ) + f2(Aϕ), (4.30)

The demonstration of this property is given in (Métivier et al., 2016d,b). In other words, at each FWI
nonlinear iteration, only one optimal transport problem has to be solved to compute the value of the
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Figure 4.4 – Ricker signal playing the role of observed data (thick line). Example of shifted in time
Ricker (dash line).

misfit function and its gradient. The value of the misfit function is the direct output of the optimal
transport problem. The gradient is obtained by correlating the incident and adjoint wavefields, the
adjoint wavefields being computed as the backpropagation of a source term which is the argmax of the
same optimal transport problem.

4.4 Numerical studies

We now provide a summary of the different numerical illustrations we have been able to conduct to assess
the interest of the KR distance for FWI, compared to the standard least-squares approach. We first
compare the misfit function itself with respect to the least-squares distance in simplified configuration.
We then present 2D FWI results on three case studies: Marmousi, BP2004, Chevron 2014 data. We
finally provide an example of 3D FWI results on the Overthrust SEG/EAGE model.

4.4.1 Misfit functions comparison

1D Ricker time functions. We start with a schematic 1D experiment similar to the one proposed
in Engquist & Froese (2014). A Ricker time signal serves as observed data, and the predicted data
corresponds to this same Ricker signal, shifted in time (Fig. 4.4). The L2 and KR distances, as
functions of the time shift, are compared. The corresponding misfit profiles are presented in Figure
4.5. The misfit based on the L2 distance presents two local minima, typical of cycle skipping, apart the
global minimum. The misfit based on the KR distance presents a single minimum, which indicates a
better robustness to the time shift. The misfit function appears as not differentiable at its minimum
and concave. The non-differentiability at the minimum is reminiscent of the L1 norm, which might not
be surprising according to the strong relation between the KR norm and this norm (Lellmann et al.,
2014).

The increase of the attraction valley is therefore not as important as one would expect from a
strategy supposed to improve the convexity of the misfit function, however recovering a single minimum
is already an interesting feature. In addition, the non-differentiability at the minimum should not be
a strong problem for applications as noise (coming from data, imperfect modeling, for instance) always
prevent to converge towards the exact minimum.

2D misfit map with velocity gradient and surface acquisition. Going further in the analysis
of misfit maps, a 2D configuration is considered. A fixed-spread surface acquisition is used, constituted
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Figure 4.5 – Misfit function depending on the time shift of the Ricker signal, using the L2 distance
(black) and the KR distance (red).

of 168 receivers equally spaced each 100 m, at 50 m depth, from x = 0 km to x = 16.85 km. A single
source is located at x = 8.45 km. Similar to the experiment presented in Mulder & Plessix (2008) to
emphasize the local minima of the L2 misfit function, the velocity model is assumed to vary linearly in
depth such that

vP (x, z) = vP,0 + αz. (4.31)

The P-wave velocity is thus parameterized by the velocity at the origin vP,0 and the velocity vertical
gradient α. The reference velocity model is chosen so that vP,0 = 2000 m s−1 and α = 0.7 s−1. A
reference data set is computed in this model. The L2 and KR misfit functions are then evaluated on a
grid of 41× 41 points such that

vP,0 ∈ [1750, 2250], α ∈ [0.4, 0.9], (4.32)

with discretization steps ∆vP,0 = 12.5 m s−1 and ∆α = 0.015 s−1. The results are presented in Figure
4.6. Interestingly, the L2 misfit function presents two narrow valleys of attraction, on both sides of the
valley where the global minimum is located. Finding this global minimum with local descent methods
thus requires to start in the correct valley. Conversely, even if the KR misfit function still possesses
local minima, the two narrow valleys of attraction on both sides of the central valley containing the
global minima have been lifted up. The valley on the left is not anymore an obstacle to converge to the
central valley. The valley on the right still plays the role of a barrier, however the height of the barrier
has been significantly reduced compared to the L2 case. This is an indication of a better behavior of
the KR misfit function compared to the L2 misfit function.

Contrary to the previous 1D experiment, the misfit function appears as more regular. A better
insight on the shape of the global minimum is provided in Figure 4.7 where misfit function profiles along
the velocity gradient α and the background velocity vP,0 respectively are presented. These profiles well
illustrate how the secondary valley of attraction are lifted up for the KR distance. They also show that
even if the KR misfit function is smoother, in the vicinity of the global minimum, the misfit function
exhibits similarities with the L1 norm and appears as not differentiable at the global minimum.

In terms of resolution power, it should be noted that the width of the global valley of attraction
is almost the same for the L2 and KR misfit functions. This is different from what is observed when
cross-correlation or deconvolution approaches are used to reduce the sensitivity to the initial model and
cycle skipping: in this case the valley of attraction is strongly widen. This reflects a resolution loss of
the imaging method as, near the solution, models possibly quite different yield approximately the same
misfit. The KR misfit function is thus expected to keep the same resolution as the L2 misfit function
while relaxing the constraint on the choice of the initial model.
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Figure 4.6 – L2 misfit function (a) and KR misfit function (b) depending on the background velocity
vP,0 and the slope α.

4.4.2 2D FWI results

Marmousi 2 model. The P-wave velocity of the Marmousi 2 benchmark model is presented in Figure
4.8a. A fixed-spread surface acquisition with 128 sources each 125 m and 168 receivers each 100 m, at
50 m depth, is considered. The synthetic data is generated using a Ricker source function centered on
5 Hz. The frequency content of the source is low-pass filtered below 3 Hz to mimic realistic seismic
data for which this frequency band is contaminated by noise and therefore unavailable for inversion.
Two initial models are considered: the first contains the main features of the exact model, only with
smoother interfaces. The second is a strongly smoothed version of the exact model with very weak
lateral variation and underestimated growth of the velocity in depth.

The results obtained using the L2 and KR distances are presented in Figure 4.8(d-g). The conver-
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Figure 4.7 – L2 (black) and KR (red) misfit function depending on the velocity gradient α for a constant
vP,0 = 2000 m.s−1 (a). L2 (black) and KR (red) misfit function depending on vP,0 for a constant velocity
gradient α = 0.7 (b).

gence to a correct estimation of the P-wave velocity model is reached using both the L2 and KR distances
starting from the first initial model. Starting from the second initial model, only the results obtained
using the KR distance are meaningful (Fig.4.8g). The poor initial approximation of the P-wave velocity
is responsible for cycle skipping and the L2 estimation converges towards a local minimum (Fig.4.8f).
The estimation obtained with the KR norm is significantly closer from the true model, despite low
velocity artifacts in the shallow part and in depth. This result highlights the strong potential of the KR
approach for FWI. When the inaccuracy of the initial model would yield to cycle skipping issues using
the L2 distance, the KR distance is able to produce a meaningful estimation of the true model.

BP 2004 model. To further assess the interest of the KR approach, we investigate the BP 2004
model. This model is representative of the geology of the Gulf of Mexico (Billette & Brandsberg-Dahl,
2004). It is presented in Figure 4.10a. This area is characterized by a deep water environment and the
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Figure 4.8 – Marmousi model case study. Exact model (a), initial model 1 (b), initial model 2 (c),
results obtained with the L2 distance starting from model 1 (d), from model 2 (e), results obtained with
the KR distance starting from model 1 (f), from model 2 (g).

presence of complex salt structures. The large P-wave velocity value of the salt structures is responsible
for most of the energy of the seismic signal to be reflected back to the receivers from the interface between
the water layer and the salt. Only a few percentage of energy of the seismic signal travels within the
structure and below before being recorded. This particular configuration makes seismic imaging in the
presence of salt structures challenging. In this experiment, we want to assess if the KR distance can
help in dealing with this issue and with the reconstruction of salt bodies. To this end, the initial model
has been designed such that the imprint of the salt structure has been totally removed (Fig 4.10b).

A fixed-spread surface acquisition is used, with 128 sources and 161 receivers distant from 125 m
and 100 m respectively. The depth of the sources and receivers is set to z = 50 m. The density model
is assumed to be homogeneous such that ρ0 = 1000 kg.m−3. The wavelet used to generate the data is
based on a Ricker wavelet centered on 5 Hz. A whitening of the frequency content is performed before a
minimum phase Butterworth low-pass and high-pass filters are applied. The spectrum of the resulting
wavelet is within an interval from 3 Hz to 9 Hz (Fig. 4.9).

From the starting model, FWI using a standard L2 distance fails to produce meaningful results (Fig.
4.10c). The time-window is reduced to 4.6 s to focus the inversion on the shallowest part of the model
and to reduce cycle skipping issues, however this does not prevent the minimization from converging
towards a local minimum. The incorrect P-wave velocity estimation of the starting model prevents the
FWI algorithm from locating the reflectors associated with the top of the salt. Instead, diffracting points
are created to match the most energetic events without lateral coherency.

In comparison, the same experiment is performed using the optimal transport distance (Fig. 4.10d).
As can be seen, the top of the salt structure is correctly delineated. Synthetic shot-gathers corresponding
to the source located at x = 8 km, computed in the exact model, initial model, L2 estimation, and
optimal transport estimation, are presented in Figure 4.11. The strong reflection coming from the
top of salt is inaccurately predicted by the L2 estimation; in particular, the reflected energy which is
introduced is discontinuous (Fig.4.11c). In comparison, the optimal transport estimation yields a correct
prediction of this reflection (Fig.4.11d).
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Figure 4.9 – Source wavelet used to generate the synthetic dataset on the BP 2004 model (a). This
source is obtained from a Ricker wavelet centered on 5 Hz. A whitening of its frequency content is
performed before a low-pass and high-pass filter are applied, so that the corresponding spectrum spans
an interval from 3 Hz to 9 Hz (b).

Figure 4.10 – BP 2004 exact model (a) and initial model (b). P-wave velocity estimation with a standard
L2 norm on short-time window data (4.6 s) (c). The same with the optimal transport distance (d).

Building on this result, a layer stripping workflow is suggested. Five increasing time-windows are
defined, with recording time equal to 4.6 s, 5.75 s, 6.9 s, 9.2 s, and finally 10.3 s. For each time window,
several inversions are performed, with decreasing levels of smoothing, for a total of 15 inversions across
all the time windows.

Intermediate to final results are presented in Figure 4.12. As can be seen, the salt structure is
practically entirely recovered at the end of the cycle of inversions (Fig 4.12f). A continuous progression
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Figure 4.11 – BP 2004 exact data (a) and initial data (b). Predicted data in the final model using a
standard L2 norm (c). Predicted data in the final model using the optimal transport distance using to-
gether with a layer stripping workflow (d). The red ellipses highlight the reflection on the salt roof. This
reflection is not present in the initial data (b). Its reconstruction using the L2 distance is discontinuous
(c). The use of the optimal transport distance yields a better reconstruction of this event (d).

is achieved from the initial delineation of the top of the salt structure to the full reconstruction of its
deeper parts. The subsalt zone, however, whose reconstruction is critical, is not satisfactorily recovered.
To this purpose, a possibility would consist in building an initial model from this reconstruction by
freezing the salt, which is correctly delineated, and smoothing below the salt. From such an initial model,
our previous study show that FWI based on the the L2 distance with a truncated Newton optimization
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strategy should be able to reconstruct accurately the subsalt region (Métivier et al., 2014a).

Figure 4.12 – BP 2004 P-wave velocity estimation computed after the 1st(a), 3rd (b), 6th (c), 9th (d),
12th (e), and 15th (f) inversion using the optimal transport distance.

A better insight of the reconstruction process is given by the synthetic data computed in intermediate
models throughout the different steps of the workflow presented in Figure 4.13. The shot-gathers are
computed for a source located at x = 8 km. A particular attention should be accorded to the left part of
the seismogram (red rectangles), as this part corresponds to the main salt structure in the exact model.
After interpreting correctly the reflections coming from the salt roof (Fig.4.13a), the transmitted wave
traveling within and below the salt is progressively adjusted while deeper reflections are also progressively
integrated (Fig.4.13b to Fig.4.13f). This behavior is in contrast with standard multi-scale approaches
for which the transmitted energy is fitted prior to the reflected energy. However, this might not be input
to the use of the optimal transport distance. Due to the high velocity contrast, the reflected energy
dominates the transmitted energy in the data. This, in conjunction with the layer stripping strategy
which focuses the prior steps of the inversion toward short offset data, favors the fit of the reflections
prior to the diving waves.
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Figure 4.13 – Synthetic data in the exact model (a) and in the intermediate models obtained with FWI
using an optimal transport distance after the 1st(b), 3rd (c), 6th (d), 9th (e), 12th (f), and 15th (g)
inversion. The red rectangles highlight the shot-gather zone associated with the diving waves traveling
within the salt dome and the reflections generated by deeper interfaces.
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Chevron 2014 data. In 2014, the Chevron oil company has issued a blind benchmark synthetic
dataset for FWI. The aim of such blind benchmark is to provide realistic exploration seismic data to
practitioners with which they can experiment various FWI workflow and test methodological develop-
ments. As the exact model which has served to build the data is not known, such a case study is closer
from an application to field data than synthetic experiments for which the exact model is known.

The Chevron 2014 benchmark dataset is built from a 2D isotropic elastic modeling engine. A
frequency-dependent noise has been added to the data to mimic a realistic dataset. Especially, the
Signal Over Noise Ratio (SNR) for low frequencies (below 3 Hz) is much less than for higher frequencies.
Free surface multiples are incorporated in the data. A streamer acquisition is used, with a maximum
of 8 km offset, with 321 receivers by sources equally spaced each 25 m. The depth of the sources and
receivers is z = 15 m. Among the 1600 available shots gathers, 256 have been used in this study, with a
distance of 150 m between each sources. A frequency continuation strategy similar to the one proposed
by Bunks et al. (1995) is implemented: Butterworth low-pass and high-pass filters are applied to the
selected shot-gathers to generate an ensemble of 15 datasets with an increasing bandwidth from 2 − 4
Hz to 2− 25 Hz.

The shot-gathers corresponding to the source located at x = 150 m are presented for the 1st, 5th,
10th and 15th frequency bands in Figure 4.14. As mentioned previously, the noise imprint is clearly
stronger for the first frequency bands.

The initial model provided by Chevron is presented in Figure 4.15a. This is a 1D layered model
with no horizontal variations except for the water layer on top for which the correct bathymetry has
been incorporated. The P-wave velocity in the water layer is set to 1500 m.s−1. The initial model
incorporates an important feature: a low velocity layer is located between the depth z = 2.3 km and
z = 3 km. This velocity inversion and the relatively short available offsets (only 8 km) prevent diving
waves from sampling the deepest part of the model. This makes the benchmark data challenging as
only reflection information is available for constraining the deep part of the model.

The results obtained after inverting the data up to 4 Hz (frequency band 1), 10 Hz (frequency band
8), 16 Hz (frequency band 12) and 25 Hz (frequency band 15) are presented in Figure 4.15b,c,d,e. Three
shallow low velocity anomalies are recovered at approximately 500 m depth and at the lateral positions
x = 12 km, x = 18 km and x = 30 km. An additional small scale low velocity anomaly appears at
x = 14.75 km and z = 1 km in the highest resolution estimation. The original layered structure of the
initial model is tilted in the final estimation. The upper (faster) layers bend downward (from left to
right), while the low velocity layer at depth z = 2.5 km bends upward. Three high velocity anomalies
are also recovered on top of the layer above the low velocity layer, at depth 1.8 km and lateral positions
x = 8 km, x = 19 km, x = 22 km. The deeper part of the model, below 3 km depth, seems less well
reconstructed, as it could be expected from the lack of illumination of this zone. However, a curved
interface seems to be properly recovered at a depth between 4.5 and 5 km. A flat reflector is also clearly
visible at the bottom of the model, at depth z = 5.8 km.

As the exact model is not known, it is important to perform quality controls of the computed P-wave
velocity estimation. A first indication of the result quality is its similarity with results presented by
other teams from the industry and the academy who have worked on the same dataset.

A standard quality control relies on the comparison between synthetic and observed data. To this
end, a synthetic shot-gather in the model estimated at 25 Hz is computed and compared to the corre-
sponding benchmark shot-gather in Figure 4.16. The similarity between the two gathers is important.
The kinematic of the diving waves is correctly predicted. Most of the reflected events are in phase.
Destructive interference due to free surface effects are also correctly recovered. A slight time-shift can
however be observed for the long-offsets diving waves. This time-shift is not in the cycle skipping regime.
A similar phenomenon is observed in Operto et al. (2015b) where FWI is applied to invert the 3D Val-
hall data. As mentioned in this study, this time-shift may be due to the accumulation of error with
propagating time or an increasing kinematic inconsistency with large scattering angles.

Another quality control consists in comparing the reconstructed P -wave velocity model with in situ
measurements in some wells. To this end, Chevron has provided a vertical well log of the exact P -wave
velocity model at x = 39375 m, at a depth between 1000 m and 2450 m. The corresponding log is
extracted from the final estimation obtained at 25 Hz maximum frequency and compared to this log
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Figure 4.14 – Chevron 2014 dataset. Common shot-gather for the source situated at x = 0 km for the
frequency bands 1 (a), 5 (b), 10 (c), and 15 (d).

in Figure 4.17. This provides another criterion to assess the quality of the estimation. As can be
seen in Figure 4.17, the agreement between the exact and estimated logs is excellent. However, only the
shallowest part of the model is constrained here. A deeper exact log would be interesting to have quality
control on the deeper part of the model, which is more challenging to recover in this configuration.

To emphasize the benefits provided by using the optimal transport distance, the same frequency
continuation workflow is applied to the Chevron 2014 benchmark dataset, with a FWI algorithm based
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Figure 4.15 – Chevron 2014 starting P-wave velocity model (a). Estimated P-wave velocity model at 4
Hz (b), 10 Hz (c), 16 Hz (d), 25 Hz (e).

on the conventional L2 distance. The results obtained after the first frequency band and the 8th
frequency band are compared to the results obtained when the optimal transport distance is used in
Figure 4.18. As can be seen, the L2 distance based FWI converges to a local minimum. Already after the
first frequency band, the shallow part of the P -wave velocity estimation seems incorrect as a strong, flat
reflector is introduced at the depth z = 500 m. Note that for this simple comparison, no data-windowing
strategy is used. As previous experiments in our group indicate, better results using the L2 distance can
be obtained for the reconstruction of the shallow part of the model by designing a hierarchical workflow
based on the interpretation of transmitted energy first.
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Figure 4.16 – Exact common shot-gather for the left most source at 25 Hz, compared to the corresponding
synthetic in the final model at 25 Hz (orange panels). The synthetic data is mirrored and placed on
both sides of the real data to better compare the match of the different phases.

4.4.3 3D FWI

In this experiment, the shallow left part of the 3D SEG/EAGE overthrust model is considered (Fig.
4.19). A 250 m deep water layer is added on top. This model covers a surface of 10× 10 km2 and is 2.5
km deep. A fixed spread surface acquisition is used, with 8×8 = 64 sources (respectively 97×97 = 9409
receivers) regularly located each 1.2 km (respectively 100 m) in both x and y directions, and at 50 m
depth. The synthetic dataset is generated using a Ricker source band-pass filtered between 3 Hz and
7.5 Hz (Fig. 4.20). The spatial discretization leads to a representation of the P-wave velocity model
with 201× 201× 51 discrete points with a discretization step h equal to 50 m. The time step is chosen
equal to 0.004 s to respect the CFL condition. The recording time for one seismogram is fixed to 4 s
(1000 discrete time steps). Each seismogram thus corresponds to a data cube of 97 × 97 × 1000 ' 107

discrete points.
The purpose of this experiment is to focus on cycle skipping problems in a 3D context and compare

the results obtained with the L2 distance and the KR distance. Cycle skipping is mostly observed on
diving waves, which sample the shallowest part of the model. For this reason, the initial model is chosen
to poorly represent the exact model, especially in its shallow part. Slices of the exact and initial models
at constant y = 5 km and constant depth z = 1.5 km, z = 2 km are presented in Figure 4.21. The initial
model is an almost constant velocity model around 3000 m.s−1, while the velocity of the exact model
reaches 3500 m.s−1 already at z = 1 km depth. For this reason, the kinematic of the diving waves is
not correctly predicted by the initial model (Fig. 4.22). The data is dominated by the direct arrival
propagating in the water layer and the strong reflection coming from the interface between the water
layer and the see bottom. The relative complexity of the signal is related to the source signature: the
Butterworth filters applied to the Ricker wavelet yield a complicated wavelet with a large time support
(Fig. 4.20). As the source and the water layer are considered to be known, the initial model correctly
reproduces the direct arrivals. However, a time shift of at least 0.3 s can be observed for the diving waves
recorded by the farthest receivers. Conventional FWI using the L2 distance is thus likely to produce
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Figure 4.17 – Vertical P -wave velocity log taken at x = 39, 375 km. Initial model (blue), exact model
(black), estimation at 25 Hz (red).

inaccurate results in this configuration.
In Figure 4.23, the L2 and KR residuals in the initial model are presented. The three panels

correspond to slices in the residual volume at constant x = 5 km, constant y = 5 km, and constant
t = 3 s., similarly as for the data in Figure 4.22. The energy of the seismic events in the KR residuals
is balanced so that the amplitude of each event is comparable, while the L2 residuals are dominated
by short-to-intermediate offset missing events. Interestingly, this balance can be observed in the three
panels, which testifies that the solution of the optimal transport problem is performed in the 3D volume
without privileging one dimension over the two others.

The results are presented in Figure 4.24. Obvious signs of cycle skipping are visible in the estimation
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Figure 4.18 – Chevron 2014 starting P-wave velocity model (a). Estimated P-wave velocity model at 4
Hz with the optimal transport distance (b), with the L2 distance (c). Estimated P-wave velocity model
at 10 Hz with the optimal transport distance (d), with the L2 distance (e).

obtained with the L2 distance. In the constant y sections (Fig. 4.24a), low velocity artifacts can be
observed at 1 km depth, in zones where the velocity update should be positive. Conversely, the KR
distance provides a more reliable result in the shallow part of the model, until z > 1.5 km (Fig. 4.24b).
This difference between the L2 and KR distance is emphasized by the constant z cross-sections presented
in Figure 4.24c-f. At z = 1.5 km, the cross-section of the KR estimation presents the main structures
of the exact model (Fig. 4.24d). Conversely, the L2 estimation does not exhibit these structures and
present low velocity artifacts caused by cycle skipping (Fig. 4.24c). At z = 2 km, the KR estimation
still provides some relevant information on the exact model, for instance in the zone 6 km < y < 8 km,
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Figure 4.19 – Exact (a) and initial (b) models used for the 3D SEG/EAGE overthrust case study.

2 km < x < 8 km (Fig. 4.24f). Conversely, the L2 estimation at this depth is completely cycle skipped
exhibiting low velocity structures at the location where high velocity updates would be expected (Fig.
4.24g).

An additional illustration of the cycle skipping in the shallow part of the model using the L2 distance
is provided in Figure 4.25. The slices at constant y = 5 km of the estimated models are compared with
the exact one and the zone below z = 1.25 km is shaded. As can be seen, the curved reflector at 1 km
depth is replaced with a low velocity anomaly in the L2 estimation, while its structure is arising in the
KR estimation.

An analysis of the residuals in the final estimations is provided in Figure 4.26. As can be seen
in constant x and constant y panels (Fig. 4.26b,e), the residuals corresponding to the diving waves
(arrival between t = 2 s and t = 2.5 for farthest offset receivers) are strong in the L2 final model.
Comparatively, these residuals are strongly attenuated in the KR final model (Fig. 4.26c,f). This
observation is confirmed by the residual panel at constant t = 3 s, where the fringes associated to
mismatched event are considerably reduced for receivers between x = 2km, y = 2 km and x = 8 km,
y = 8 km (Fig. 4.26h,i).
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Figure 4.20 – Source wavelet profile and spectrum for the 3D overthrust experiment.

4.5 Short conclusion

This work exhibits promising properties of the optimal transport distance used as a measure of the
discrepancy between seismic datasets. The main difficulty to overcome is related to the oscillatory
nature of the seismic signal which leads to the comparison of signed measures, for which no definition
of optimal transport exists. The second difficulty is related to the size of the data sets for realistic
applications, which requires efficient approximation algorithms to be implemented.

A first implementation based on the dual form of the Wasserstein-1 distance and a `1 ground dis-
tance has been presented here. This dual problem provides a natural extension of the optimal transport
framework to the comparison of signed measures through its relation with the Kantorovich-Rubinstein
norm in the space of Radon’s measures. The choice of the `1 ground distance yields a natural simplifi-
cation of the underlying linear programming to be solved. Reformulating the problem as a convex non
smooth problem, an efficient iterative scheme has been designed, where the computational complexity
of each iteration is at most quasi-linear with respect to the number of discrete data.

Promising results are obtained, as the new misfit function appears to be less sensitive to the choice
of the initial model, the FWI scheme being able to produce meaningful subsurface properties estimation
while a standard least-squares approach fails. However, the simple 1D test performed on shifted Ricker
signal clearly illustrates the non convexity with respect to the time shifts of the distance which is
employed here. This loss of convexity is due to the use of the dual version of the Wasserstein-1 distance
to compare signed quantities. The convexity is ensured only when the positivity assumption is valid.

This leaves the question opened how to better/more appropriately use the optimal transport to
compare seismic data. Is it possible to find extension of the optimal transport distance which remain
convex with respect to shifts? Is it possible to find nonlinear transformations of the data into positive
quantities that would allow to use conventional optimal transport distances while preserving all the
information within the signal? These questions are developed in more details in my research project.
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Figure 4.21 – Exact and initial model overthrust model cross-sections. Cross-section at constant y = 5
km for the exact model (a), initial model (b). Cross-section at constant z = 1.5 km for the exact model
(c), initial model (d). Cross-section at constant z = 2 km for the exact model (e), initial model (f).
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Figure 4.22 – Seismograms in the exact (left column) and initial (right column) models. Seismogram
cross-section at constant y = 5 km in the exact (a) and initial (b) models. Seismogram cross-section at
constant x = 5 km in the exact (a) and initial (b) models. Seismogram cross-section at constant t = 3
s in the exact (e) and initial (f) models.
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Figure 4.23 – Residuals in the initial model for the L2 distance (first row), for the KR distance (second
row). Cross-section for constant y = 5 km (a,b). Cross-section for constant x = 5 km (c,d). Cross-
section for constant t = 3 s (e,f).
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Figure 4.24 – Cross-sections of the L2 and KR estimations. Cross-section at constant y = 5 km for the
L2 estimation (a), KR estimation (b). Cross-section at constant z = 1.5 km for the L2 estimation (c),
KR estimation (d). Cross-section at constant z = 2 km for the L2 estimation(e), KR estimation (f).
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Figure 4.25 – Focus on the shallow reconstruction. Constant y = 5 km cross-section for the exact model
(a), L2 estimation (b), KR estimation (c).
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Figure 4.26 – L2 residuals in the initial model (left column), in the final model obtained using the L2

(middle column) and KR (right column) distances. Cross-section for constant y = 5 km in the initial
model (a), in the final model obtained using the L2 (b) and KR (c) distances. Cross-section for constant
x = 5 km in the initial model (d), in the final model obtained using the L2 (e) and KR (f) distances.
Cross-section for constant t = 3 s in the initial model (g), in the final model obtained using the L2 (h)
and KR (i) distances.
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In this Section, I summarize my other scientific contributions in the field of seismic imaging with FWI.

5.1 Iterative solvers for frequency-domain visco-elastic wave modeling

Frequency-domain full waveform inversion is an appealing strategy when the redundancy of the data
allows to extract few discrete frequencies to invert rather than the whole time series. This redundancy
is met at the exploration scale, when dense acquisition systems involving large number of sources and
receivers can be used. The extraction of few discrete frequencies leads to significant computation cost
reductions.

However, the dynamic wave propagation problem is transformed into a time-harmonic problem
generalizing the Helmholtz equation, which requires the solution of a poorly conditioned linear system
(Ernst & Gander, 2012). In addition, this linear system has to be solved for a large number of right
hand sides, corresponding to the number of seismic sources used during the acquisition.

State-of-the-art techniques consist in factorizing this linear system into a product of lower and upper
triangular matrices through a Gaussian elimination approach (LU decomposition). Once factorized, the
system can be efficiently solved through forward and backward substitution for any right hand side.
This is the direct solver approach.

This strategy has a drawback: the memory consumption. Starting from a banded sparse matrix,
its LU factorization yields triangular matrices which are dense on the bandwidth of the initial matrix.
Using specifically designed compact stencils (Operto et al., 2014b) and a specialized parallel direct
solver (MUMPS team, 2015) based on a multi-frontal approach (Duff & Reid, 1983; Amestoy et al.,
2000) and a block low rank reduction (Amestoy et al., 2015c, 2016b), we have been able to push the
limit of this strategy to the inversion of a moderate target at the oil exploration scale (Valhall field) in
the 3D visco-acoustic approximation (propagation of approximately 100 wavelengths in each direction)
(Amestoy et al., 2015b, 2016b,a).

Working in the frequency-domain 3D visco-elastic approximation requires the solution of one to two
order larger linear system. The use of direct solvers thus seems still out of reach for these problems,
even using modern computational architectures. This is the reason why we are still interested in the
potential of iterative solvers to solve these large and ill conditioned linear systems.

The state-of-the-art techniques for the solution of the frequency-domain wave equation using iterative
solvers are mainly dedicated to the solution of the acoustic equations. We thus have developed a special
interest to what is possible to perform with iterative solvers for frequency-domain elastic wave equations.

The first step has been the identification of the CARP-CG solver as a good candidate for the solution
of the corresponding linear systems (Gordon & Gordon, 2010; van Leeuwen et al., 2012). This solver
derives from the Kaczmarz technique (Kaczmarz, 1937), one of the oldest algorithm for the solution of
linear systems. It can be seen as a conjugate gradient acceleration of the Kaczmarz strategy applied
with double sweeps to the original linear system. The main virtue of the CARP-CG strategy is its
robustness. We have emphasized this property for the solution of 2D and 3D frequency-domain elastic
wave equation in realistic media, focusing on the impact of the complexity of the physics (free surface
condition and propagation of surface waves, high Poisson’ ratio representing sharp contrasts between S-
wave velocities and P-wave velocities) on the convergence of the solver. In all cases, CARP-CG appears
as more robust than its alternatives, GMRES, BiCGSTAB, or conjugate gradient applied on normal
equations. This work has been performed during the 2 years stay of Y. Li as an exchange PhD student,
and has been published in Li et al. (2014a,b, 2016, 2015b).

The second step of this work has consisted in designing a preconditioning approach compatible
with the CARP-CG strategy. This has been the main objective of the PhD work of O. Hamitou
(Hamitou, 2016). We have been able to generalize an approach based on the approximation of the wave
propagation operator through a damped version of this same operator. A sparse preconditioner for
this damped operator can be efficiently computed. It is used as a preconditioner for the linear system
before applying the CARP-CG strategy. We have been able to show that this strategy exhibits good
acceleration of the convergence rate for the computation of the solution in 2D and 3D realistic visco-
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elastic media. This work has been presented at the 2015 SEG conference (Hamitou et al., 2015) and a
publication is now in preparation.

5.2 Asymptotic approximation of the Hessian operator

In the framework of the studies led on the approximation of the Hessian operator, I have also investigated
how asymptotic approximation of the wave equation can lead to design approximations of this operator
and its inverse. This work has been presented in (Métivier et al., 2015c). The starting point is the
linearized inverse problem approach promoted in particular by Beylkin (1985). This linearized inverse
problem can be written as the reconstruction of the subsurface parameter m as m0 + δm such that

J(m0)δm = dobs − dcal(m0). (5.1)

where J(m0) is the Jacobian operator

J(m0) =
∂dcal
∂m

(5.2)

The strategy proposed by Beylkin for solving this problem includes three steps.

� Use the first-order Born approximation to derive an analytic expression for J(m0) depending on
the source and receiver Green functions G0(x, ω, xs) and G0(x, ω, xr) representing the wavefield
recorded at point x from an impulse source located at xs (respectively xr).

� Compute an asymptotic approximation of J(m0), denoted by J (m0), through the asymptotic
approximation of the Green functions G0(x, ω, xs) and G0(x, ω, xr).

� Compute an approximate left inverse of J (m0), denoted by B(m0). The latter operator is roughly
equivalent to a preserved-amplitude migration operator.

Based on this approach we have proposed to consider the misfit function g(m) defined as

g(m) =
1
2
‖B(m0) (dcal(m)− dobs)‖2M , (5.3)

as an extension of the work of Jin (1992). The expression for the gradient of g(m) is

∇g(m) = J∗(m)B(m0)∗B(m0) (dcal(m)− dobs) . (5.4)

Compared to the gradient of the standard misfit function f(m) (equation (3.23)), the difference induced
by the integration of the migration operator relies on the multiplication of the residuals by B(m0) and
its adjoint B(m0)∗. These two multiplications can be interpreted as migration (from data to image
domain) and demigration (from image to data domain) acting on the residuals. This mapping from the
data space to the model space is performed following the geodesics defined by rays connecting sources
and receivers to the scattering point of the investigated domain.

The Gauss-Newton approximation of the Hessian of g(m), denoted by Hg
GN (m), is

Hg
GN (m) = J∗(m)B(m0)∗B(m0)J(m) = (B(m0)J(m))∗ (B(m0)J(m)) . (5.5)

From equation (5.5), it is clear that the operator Hg
GN (m) is the normal operator associated with the

operator B(m0)J(m). In the asymptotic approximation,

B(m0)J(m) ' B(m0)J (m). (5.6)

In addition at the first iteration

B(m0)J (m) = B(m0)J (m0). (5.7)
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Following the work of (Beylkin, 1985), the operator B(m0)J (m0) is proved to be a pseudo-differential
operator which tends towards the identity as the illumination of the subsurface increases. As a pseudo-
differential operator, this property holds for its adjoint. In addition, the composition of two pseudo-
differential operators which tends to the identity tends also towards the identity. Therefore, Hg

GN (m0)
can be approximated as

Hg
GN (m0) ' (B(m0)J (m0))∗ (B(m0)J (m0)) ' I +

∑
i

Ti, (5.8)

where the operators Ti belong to classes of increasingly smooth operators. The introduction of the
integral operator B(m0) in the misfit function thus yields a better conditioned inverse problem, as the
Hessian operator associated with the new misfit function should be closer to the identity.

Because the modified misfit function g(m) possesses a Hessian operator which tends asymptotically
towards the identity operator, the trade-offs between discrete parameters are reduced in the inversion
scheme. Results on 2D synthetic case studies demonstrate the fast convergence of this inversion method
in a migration regime. From an accurate estimation of the initial velocity, three and five iterations only
are required to generate high resolution P-wave velocity estimations models on the Marmousi 2 and
synthetic Valhall case studies.

5.3 Source encoding and second-order optimization

The PhD of C. Castellanos was dedicated to the investigation of source encoding technique in FWI.
Source encoding is a strategy used to reduce the computational cost of FWI. When dense acquisition
systems are used, involving large number of seismic sources (up to thousands), each iteration of FWI
requires the solution of the same number of PDE. The solution of these PDE is embarrassingly parallel,
however, performing simultaneously thousand of 3D acoustic or elastic simulations might require a
computation power not always available (or one would like to distribute the computational tasks in a
different way to increase the efficiency of the overall inversion).

While it is straightforward to decimate the data volume to reduce the computational cost, either
by extracting few discrete frequencies, as in the frequency-domain approach, or by sub-sampling the
number of seismic sources, another possibility to decrease this computational cost is to take advantage
of the linearity of the wave propagation problem with respect to the source and to use random linear
combinations of the sources at each inversion iteration rather than all the sources treated independently.
Several choices for these linear combinations exist: deterministic stacking of all sources (Gao et al.,
2010; Habashy et al., 2011), random stacking of all sources (Romero et al., 2000; Haber et al., 2012),
or random linear combinations of smaller ensemble of sources (Krebs et al., 2009; Schuster et al., 2011;
Ben Hadj Ali et al., 2011; Baumstein et al., 2011). The latter have been introduced as source encoding
strategies within the FWI community. One can prove that if the random linear combination satisfies
specific stochastic properties, provided a sufficient number of inversion iterations is performed, the
“noise” artificially introduced by the linear combination of the data can be arbitrarily decrease below a
given level.

A trade-off is therefore required to be found between the reduction of the computational cost associ-
ated with the decrease of the number of PDEs to be solved and the increase of computational cost due
to the slower convergence of the minimization method. Based on this, the use of second-order l-BFGS
and truncated Newton strategies has been investigated to evaluate if a better trade-off can be obtained
with these methods compared to first-order methods such as steepest descent or nonlinear conjugate
gradient (Castellanos et al., 2015). The conclusion show that l-BFGS with adequate restarting strategies
is probably the best optimization algorithm in this configuration.

5.4 FWI of GPR data

Ground-penetrating radar (GPR) is a subsurface prospecting technique used in civil engineering based
on the propagation of electromagnetic waves, dedicated to the characterization of the near surface,
from few hundred meters to few centimeters depth. GPR imaging is therefore a technique widely
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used in geology, glaciology, hydrology, and civil engineering, with applications such as: active faults
imaging (McClymont et al., 2008), rock fractures characterization (Deparis & Garambois, 2009), ice sheet
thickness measurement (Walford, 1964; Bailey et al., 1964; Bentley, 1964), water content evaluation,
salinity and/or pollution contamination of the soil (Lambot et al., 2006; Deeds & Bradford, 2002),
anthropic structures detection and road pavement inspection (Evans et al., 2008) or land mine detections
(Daniels, 2004).

GPR data is sensitive to the electromagnetic properties of the subsurface, mainly the permittivity,
the conductivity and the magnetic permeability. Imaging from GPR data shares many similarities with
seismic imaging techniques. While the first applications are mainly based on common offset measurement
and standard imaging techniques based on tomography or migration, multi-offset measurements have
been deployed in the last decade, yielding an interest for this community towards using FWI techniques,
with the objective to quantitatively estimate the electromagnetic properties of the subsurface with high
resolution (Ernst et al., 2007; Meles et al., 2010; Klotzsche et al., 2013).

The first applications have been proposed in cross-hole configurations, where sources and receivers
are deployed in boreholes. In this configuration, the data is dominated by transmitted energy, which
is favorable for the use of FWI. The results which are obtained were encouraging and prompted the
investigation of FWI applied to surface GPR data. This was the main objective of the PhD of F. Lavoué
(Lavoué, 2014).

Based on the analogy between 2D acoustic equations and 2D Maxwell’s equation, a 2D frequency-
domain FWI code has been designed for the inversion of GPR data and the reconstruction of permittivity,
conductivity, and magnetic permeability. In the transverse electric (TE) mode, permittivity is an
analogous of the P-wave velocity, conductivity an analogous of a quality factor (attenuation modeling)
inducing attenuation effects, and the permeability is an analogous of the density. The GPR data is
mainly sensitive to permittivity and conductivity. Compared to seismic data, the imprint of the quality
factor cannot be neglected, and a simultaneous reconstruction of both conductivity and permittivity is
required, leading naturally to a multi-parameter inversion with a strong trade off between permittivity
and conductivity, the radiation patterns being isotropic for both parameters. Another difficulty for
GPR applications is related to the strong contrasts in permittivity that can be found in the subsurface,
with ratios reaching factors as large as 30, while at the exploration scale a ratio reaching 3 is already
considered as challenging (salt structures for instance).

A first strategy based on an ad-hoc scaling of the parameters and the l-BFGS algorithm has been
designed based on synthetic experiments (Lavoué et al., 2014), and successfully applied to experimental
data of the Fresnel institute (Lavoué et al., 2015).

Elaborating on these first results, a second PhD project has been launched in 2013 with H. Pinard, to
assess how to better decouple the permittivity and conductivity parameters, for instance using truncated
Newton strategies, and to apply the method to real data. From this work we conclude that the truncated
Newton without an adequate preconditioning strategy does not really mitigate the trade-off between
parameters, which is consistent with what is observed with seismic data: only the combination of
the truncated Newton strategy and a multi-parameter preconditioner provides an efficient decoupling.
However, the results obtained on cross-hole GPR data acquired at the LSBB laboratory (Gaffet et al.,
2003) are quite encouraging, as a high resolution estimation of the permittivity, consistent with local
geological information, was reconstructed.

5.5 Kinematic source inversion

Another topic I have the opportunity to contribute to is related to the application of full waveform
inversion procedure to earthquake source reconstruction. These reconstructions are primordial to unveil
earthquake rupture. They are used on ground motion predictions, and there results shed light on seismic
cycle for better tectonic understanding. They are not yet used for quasi-real-time analysis, and this is
the direction towards which the PhD project of H. Sanchez intends to go.

Most of the current techniques for earthquake source imaging are posterior procedures once seis-
mograms are available. Incorporating source parameters estimation into early warning systems would
require to update the source build-up while the data is recorded. In order to go towards this dy-
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namic estimation, we developed a kinematic source inversion formulated in the time-domain, for which
seismograms are linearly related to the slip distribution on the fault through convolutions with Green
functions previously estimated and stored. These convolutions are performed in the time-domain as
we progressively increase the time window of records at each station specifically. The unknowns are
the spatio-temporal slip-rate distribution on the fault to keep the linearity of the forward problem with
respect to unknowns, as promoted by Liu & Archuleta (2004) and Fan et al. (2014) among others.
Through the spatial extension of the expected rupture zone, we progressively build-up the slip-rate
when adding new data by assuming rupture causality.

This formulation is based on the adjoint-state method for efficiency (Plessix, 2006). The inverse
problem is non-unique and, in most cases, underdetermined. The key is thus to determined adequate
regularization strategies to reduce the null space. We use standard Tikhonov regularization terms for
stabilizing the inversion, introducing regularity and prior information on the source. We avoid strategies
based on parameter reduction leading to an unwanted non-linear relationship between parameters and
seismograms. Satisfactory results have been obtained on a synthetic example proposed by the Source
Inversion Validation project (Mai et al., 2016). A real case application on the Kumamoto earthquake in
Japan (Asano & Iwata, 2016; Uchide et al., 2016) yields also promising results. Our specific formulation
combined with simple prior information, as well as numerical results obtained so far, yields interesting
perspectives for a real-time implementation.

5.6 The SEISCOPE optimization toolbox

The idea of designing an open-source optimization toolbox came from the need to compare different
optimization schemes, namely steepest descent, nonlinear conjugate gradient, l-BFGS, and truncated
Newton methods. When it comes to comparison, the question of the linesearch algorithm is crucial.
Therefore, the four optimization schemes implemented in our toolbox use the same linesearch strategy.
It is based on a bracketing algorithm and the satisfaction of the Wolfe conditions. This impacted the
particular choice of the nonlinear conjugate gradient algorithm we made (Dai & Yuan, 1999), as not all
the nonlinear conjugate variant are compatible with the Wolfe conditions (most require the strong Wolfe
conditions to be enforced to ensure convergence, for instance the Polak Ribière or the Fletcher-Reeves
ones). Also, each method can be combined with any user-defined preconditioner.

From an implementation point of view, we opted for a reverse communication strategy (Dongarra
et al., 1995), so as to make easy the coupling with any code where nonlinear optimization problem has
to be solved. The principle is the following: the computation of the solution of the optimization problem
is performed in a specific routine of the code. This routine is organized as a minimization loop. At each
iteration of the loop, the minimization routine chosen by the user is called. This routine communicates
what is the quantity required at the current iteration: objective function, gradient, or Hessian-vector
product. These quantities are computed by the user in specific routines, external to the minimization
loop. The process continues until the convergence is reached. This implementation paradigm yields a
complete separation between the code related to the physics of the problem and the code related to the
solution of the minimization problem. This ensures a greater versatility as one can easily modify one of
these parts while keeping the other unchanged.

This work has been published in the Algorithms & Softwares Section of Geophysics (Métivier &
Brossier, 2016a) together with the FORTRAN 90 source code in which it is implemented.
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1 Introduction

Full waveform inversion is dedicated to the quantitative characterization, with high resolution, of the
subsurface physical properties. This characterization is performed from local, incomplete measurements
of the seismic wavefields, possibly complemented with prior information on these physical properties
(upper and lower bound, in situ measurement, structural information for instance).

The physics of wave propagation can be represented with reasonable accuracy through the use of
partial differential equations. In this representation, the physical properties of the medium in which
the waves propagate are spatially dependent coefficients of these equations. This understanding of the
physics of wave propagation is the reason why full waveform inversion is designed as a PDE parameter
identification problem: the estimation of the physical properties are computed as PDE coefficients
yielding the minimum misfit between observed and synthetic measurements. Note that this is not
always possible: there are research areas where the physical phenomenon which are considered cannot
be simply represented through the use of partial differential equations.

This first step in the formulation of FWI might however already be questionable: how can we
relate the estimation of the coefficients of the PDE to the real physical properties we are interested in
recovering? A key concept to answer to this question is the concept of homogenization. The information
we can recover strongly depends on the way we illuminate our target. Waves propagate with a finite
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frequency content, and their sensitivity to heterogeneities with small scales (much smaller than the
smallest propagated wavelength) is different from the macro and meso-scale heterogeneities (up to the
order of the smallest wavelength). The small heterogeneities are seen as a larger scale, smooth anisotropy
of the medium by the waves. The theory of homogenization tells us that it is possible to compute, from
a set of different media with different local, small heterogeneities, an “equivalent” homogenized smooth
(no small scale heterogeneities) anisotropic media, for which the wave propagation, in the frequency
range associated with the signal we use to illuminate our target, is the same. This already tells us that
the best estimation we can make of the PDE parameters only carries information about a homogenized
version of the real physical parameters we are interested in recovering. It also gives a hint on how ill
posed the problem can be, as a wide variety of parameters can yield approximately the same wavefield.

Another fundamental question in the design of the FWI problem relies on the way the data is in-
terpreted. For now on, this interpretation is mostly based on the Lp differences of some observables
computed from the data. As such it is based on local, point-to-point comparisons, where the geometrical
information carried by the natural organization of the data, depending on the space in which it is rep-
resented, is lost. The recent development of new similarity measures between images, in the framework
of image processing (some of which being based on the optimal transport theory) might represent an
opportunity to significantly improve the solution of inverse problems based on the estimation of PDE
parameters, such as FWI. The similarity measures should be able to capture geometrical, global features
of the data, allowing to automatically incorporate this information in the inverse problem solution.

Finally, even if the tools which are used to measure the similarity between observed and synthetic
data are improved, we know that the solution of such an inverse problem will remain highly non-unique.
It is therefore primordial to move from a deterministic point of view to a statistical interpretation of the
inverse problem solution. This means that the computation of uncertainty estimation on the solution
will become mandatory in the forthcoming years. This is an old dream (Tarantola, 2006), however,
both the methodology developed in data assimilation communities and the design of new exascale HPC
devices might allow to step forward in this direction.

The research project I intend to lead is built along these lines. The first axis of my project is related
to the use of optimal transport distances as a new similarity measurements between datasets. Given
the impact the use of these distances already had in image processing, with applications in pattern
recognition and learning strategies, their use in the context of geophysical application could be decisive.
The two main difficulties to overcome are the extension of these distances to the comparison of signed
measures, and the design of approximation strategies making these methods amenable to the comparison
of large scale discrete datasets involving millions to billions of discrete parameters.

The second axis of my project is the investigation of methodological developments aiming at reducing
the size of the solution space (through homogenization and/or regularization), accessing to the uncer-
tainty of the solution (through data assimilation techniques), and improving our modeling capabilities
(through the design of efficient solvers for elastodynamics frequency-domain equations, and the use of
particle methods for wave propagation as an open, more speculative project).

The third axis of my project is related to the application of the methodologies we develop, in partic-
ular multi-parameter FWI, to real data-sets. Exploration scale targets should be investigated through
interactions with the sponsors of the SEISCOPE consortium, as well as larger scale targets such as sub-
duction zones, through a collaboration with the Japan-Agency for Marine-Earth Science (JAMSTEC).
A project on the interpretation of passive seismic data through noise correlation techniques combined
with FWI should also allow to aim at larger scale crustal targets. This should be performed through a
collaboration with the team of M. Campillo in ISTerre. I also intend to pursue the collaboration with
S. Garambois on the application of FWI to GPR data, and I would like to promote the use of FWI
for ultra-sound imaging, through collaboration within ISTerre on non destructive testing (L. Moreau),
and possibly for medical imaging (this is a longer term project). What we have learned within the
SEISCOPE project is that application to real data is the best way to promote and reveal the potential
of FWI as a versatile and generic high resolution imaging method, and that the problems to overcome
when facing the application to real data are always the source for new methodological developments.

The fourth axis of my project is transverse to the three first ones, and relies on the objective to
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provide, along with developments and applications, easy-to-use, versatile, open-source implementations,
however adapted to large scale computing, of the strategies which are designed, to better benefit the
community.

2 Making the most of the data we record: can optimal trans-
port help?

The constant progresses in the design of acquisition systems leads to the collection of increasing amounts
of data, in various fields of experimental science. This is particularly true in geophysics: denser and
denser acquisition systems are deployed, either at the exploration scale (active seismic) or for lithospheric
and global imaging (permanent networks). These data are rich of information, however, in most of the
applications, they are carefully pre-processed so that the interpretation focus on few pieces of observables
selected before hand. This questions the robustness of the tools which are used to compare these datasets
and extract the information from the data.

I think the use of optimal transport distances might significantly improve this aspect of the problem
in geosciences, and, to a larger extent, for PDE parameter identification problems. The main reason
for that is its ability to perform global comparisons as opposed to the local, sample by sample compar-
isons performed by Lp distances. This induces that any geometrical coherence in the space where the
data is represented is really taken into account when the data is compared through optimal transport
distances, while this information is discarded when using Lp distances. In most applications, the first
step of data pre-processing consists in finding a suitable representation space in which the physics of
the studied phenomenon expresses itself as recognizable patterns. In this respect, optimal transport
distances provide a way to automatize the incorporation of an information which is, for now, used only
at a human expertise level, for a pre-processing step.

An example is the representation of seismograms as 2D or 3D shot-gathers, where the vertical axis
is the time-axis and the horizontal axis correspond to the spatial location of the receivers at the surface.
This representation allows to visualize precisely the organization of waves through their propagation,
as surface waves, direct waves, diving waves, reflected and converted waves. Currently this information
is used only to display the data and pre-process it through the definition of specific filters. However
within the inversion, the misfit function is based only on local comparison of observed and predicted
data, which does not account for this spatial coherency. Optimal transport offers a way to account for
it automatically within the inversion.

The first applications I have lead so far for FWI lead me to the conclusion that the main difficulty to
be overcome to apply optimal transport distance in this general framework is the non-positivity of the
data. The optimal transport problem is defined for positive measures, and there is no straightforward
extension to signed measures which ensures that the properties of the optimal transport problem are
preserved.

Several transforms of the data can be applied to the data to recover positive quantities. Engquist &
Froese (2014) for instance propose to separate the positive and negative part of the data and transport
them separately. Other approaches could consist in rescaling and shifting the data by the opposite of its
minimum value (proposed by (Yang et al., 2016), taking the absolute value of the signal, or finally the
envelope of the signal, following approaches already used in seismology (Fichtner et al., 2008; Bozdağ
et al., 2011). All these strategies are straightforward, however not really satisfactory. Important physical
information are lost through these transformations: artificially de-correlating the positive and negative
part of the signal is difficult to justify, absolute value and envelope lose the sensitivity of phase. In
addition, nothing ensures that the mass conservation is satisfied by the transformed signal. Shifting the
data with a given amount of mass also modifies the optimal transport process, as it creates artificial
mass everywhere which can be moved locally to match the observed data. The convexity of the resulting
distance with shifted patterns is thus lost.

The question how to extend optimal transport distances to signed measures is actually investigated
in the work of Mainini (2012) and Ambrosio et al. (2011) from a more theoretical point of view. Given
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⇒
Mainini decomposition

Figure 2.1 – Mainini decomposition.

two signed functions f(x) and g(x) satisfying the mass conservation assumption∫
f(x)dx =

∫
g(x)dx, (2.1)

a generalization of the Wasserstein distance is proposed as

W̃p(f, g) = Wp(f+ + g−, g+ + f−), (2.2)

where the positive and negative parts of a function h are defined as

h+ =
h+ |h|

2
, h− =

|h− |h
2

, h = h+ − h−. (2.3)

An illustration of such a decomposition is provided in Figure 2 for two time-shifted Ricker signals.
Interestingly, provided the mass conservation assumption (2.1) is satisfied, the mass conservation is also
satisfied by f+ +g− and f−+g+. These two quantities are also positive, therefore the optimal transport
distance between them can be effectively computed.

In the particular case of the Wasserstein-1 distance we have used so far, following the dual formulation
of W1 , such a decomposition yields

W1(f+ + g−, g+ + f−) = max
ϕ∈Lip1

∫
ϕ
(
f+ + g− − (g+ + f−)

)
dx

= max
ϕ∈Lip1

∫
ϕ
(
f+ − f− − (g+ − g−)

)
dx

= max
ϕ∈Lip1

∫
ϕ (f − g) dx

= W1(f, g).

(2.4)

From the identity (2.4), we see that the strategy we have used, based on the dual form of the W1 dis-
tance and its extension as the Kantorovich-Rubinstein norm, corresponds actually to the decomposition
proposed by (Mainini, 2012). This brings an answer to the loss of convexity with respect to the time
shifts observed on the simple comparison of Ricker signals. The decomposition does not ensure this
convexity as it amounts to compute the optimal transport between the positive and the negative part
of the residuals f − g.

This leads to two open questions which will be at the heart of my short term research activity.

1. The W1 distance already provided interesting results for FWI, despite the loss of the convexity
property which could be expected from optimal transport. What would be the results using the
same decomposition with the W2 distance (A. Allain PhD project) ?

2. Are there other ways of considering the data to recover the convexity property of the optimal
transport without losing the physical information in the signal?
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These questions will be investigated conjointly with the design of efficient numerical strategies for
computing the optimal transport solution for large scale problems (several tens of millions to billions of
unknowns). For such large scale problems, exact algorithms cannot be used, therefore we will rely on
approximation schemes either based on

� the solution of the Monge-Ampère equation (Benamou et al., 2014) (W2 only);

� the solution of the Benamou-Brenier equation (Benamou & Brenier, 2000) (W2 only);

� semi-discrete multiscale approaches (Mérigot, 2011) (W2 only);

� the solution through entropic regularization (Benamou et al., 2015) (general Wp distances).

Regarding the second question, one possibility which I want to investigate is based on an idea
proposed by Thorpe et al. (2016). Instead of considering the optimal transport of functions f(x) and
g(x) in a space of dimension d, one could consider transporting the graph (x, f(x)) (x, g(x)) in a space
of dimension d+ 1. This higher dimensional space induces an increase of the computational complexity,
however, after discretization, the two signals are described as point clouds in the graph space. The
optimal transport problem is brought back to the comparison of these point clouds, yielding naturally
the mass conservation and positivity properties required, without destroying the physical information
carried by the signal. This strategy is thus appealing: the main difficulty will rely on the design of an
efficient enough numerical strategy for the computation of the optimal transport solution in a space of
dimension d+ 1.

3 Additional methodological developments

3.1 Combining FWI with homogenization

Seismic waves propagate within the subsurface with a given frequency content. They can bring structural
information only on heterogeneities with scales to the order of the shortest propagated wavelength (at
best a fraction of this shortest wavelength). Heterogeneities at smaller scales are seen by these waves
as a local anisotropy of the subsurface. For a given small scale model (containing or not anisotropy),
its homogenized counterpart (for a given frequency content) is a fully anisotropic medium which does
not contain any heterogeneities smaller than the reference wavelength. For a wave propagating within
this frequency band, the propagation both in the small scale and the homogenized model is strictly
equivalent. First results on homogenization for seismic waves go back to Backus (1962) for 1D tabular
models. Recent generalization to 2D non-periodic elastic media have been proposed by Capdeville
et al. (2010); Capdeville & Marigo (2013); Capdeville & Cance (2015), where the homogenized model
is computed through the solution of an elliptical equation.

In the frame of a French national research project (ANR project) with Y. Capdeville as principal
investigator, we want to investigate how homogenization can help to mitigate the non-uniqueness of the
FWI problem. In other words, while for a given FWI problem, there is an infinite number of solutions
satisfying the data at a given accuracy, it might be possible that in the homogenized model space, these
models correspond to the homogenized version of the “true” model (Capdeville, 2016). This is a conjec-
ture which needs to be investigated (is it true? to what extent? what are the limitations?), but which
makes sense from a physical point of view: homogenization takes into account the effective sensitivity of
the recorded waves to the subsurface heterogeneities. Trying to recover information below this sensitiv-
ity is equivalent to explore the null space and is thus subjected to the introduction of spurious artifacts
in the reconstruction. While this issue is usually mitigated through the use of appropriate regularization
technique (see for instance Trinh et al. (2017b)), homogenization might provide a systematic approach
to perform it.

3.2 Uncertainty quantification in FWI: a data assimilation strategy?

One very important question which has so far not really been addressed in the framework of FWI is
related to uncertainty quantification. The indetermination of the FWI problem (due to the presence
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of noise, inaccurate modeling, lack of illumination, cycle skipping) leads to the non-uniqueness of the
subsurface parameters being able to provide the same level of misfit. This non-uniqueness prompts us
to investigate strategies to compute the uncertainty associated with the reconstructed parameters.

In a Bayesian inversion framework, this information is carried out by the posterior covariance matrix,
which corresponds, in the least-squares formalism, to the inverse Hessian operator. The size of the
Hessian matrix for realistic scale application makes it impossible to compute and invert with reasonable
computational resources. We want to exploit to this end uncertainty estimation strategies which have
been at the heart of research lead in the data assimilation community for weather forecasting, known
as extended Kalman filter techniques (Evensen, 2003, 2009).

These techniques are based on the assumption of a unimodal function with a potentially very flat
valley of attraction, leading to strong indetermination of the parameter reconstruction. This is the case
for FWI when the initial velocity model is sufficiently accurate to avoid cycle skipping. The presence of
cycle skipping would lead to a multi-modal misfit function.

Data assimilation problems consist in determining the initial state of a dynamical system (for in-
stance salinity, or temperature of the ocean, or density, pressure, and flow velocity vector field of the
atmosphere) given a modeling operator for this dynamical system and some local, sparse observations.
The uncertainty on the reconstruction is often crucial (for instance for weather forecasting). The basis
of extended Kalman filter is to consider the evolution of a population of initial states of the system, with
a given statistical repartition (covariance operator). Each member of the population is forecast in time
(forecasting step) following the dynamic modeling operator available, and then corrected to account for
the observed data (analysis step). The statistic of the ensemble is also forecast and analyzed. This
iterative process yields an estimation of the initial state of the system as the mean of the member of
the ensemble. The spreading of the members in the model space also yields an information on the
posterior-covariance operator, under the form of a low-rank approximation of this operator. The rank
of approximation of this operator should be equal to the number of members in the ensemble.

Being able to compute this low rank approximation of the posterior-covariance matrix in the context
of FWI is appealing. However, this is not straightforward because the theory of the extended Kalman
filter is based on the assumption that an information on the initial state of a dynamical system is
computed, while in FWI we are interested in the reconstruction of PDE parameters (a static problem).

We have proposed in a PhD research project to mimic a dynamic evolution through the hierarchical
approaches which are usually considered in FWI. In this framework, the ensemble is a set of subsurface
models built around a reasonable initial model. The forecasting step is the solution of a FWI problem
itself, for a subset of the data (data filtered in a particular band, subset of sources and/or receivers,
specific time-window for instance). The analysis step consists in the comparison of modeled data with
observed data for the next subset of data. In this framework, the final ensemble yields a low-rank
estimation of the posterior covariance operator, from which we can extract the variance map of the
reconstructed parameters (diagonal of the operator). Resolution and trade-offs between parameters can
be extracted from the analysis of the rows of this operator.

The first results we have obtained for 2D frequency-domain acoustic FWI are encouraging (Thurin
et al., 2017a). The system dynamic is mimicked with the conventional multi-scale hierarchical frequency
approach (interpretation from low to high frequency). On the 2D Marmousi model with a surface ac-
quisition, the variance which is reconstructed increases smoothly with depth and with the horizontal
distance, which is related to the illumination of the subsurface: the uncertainty is higher for less illumi-
nated parameters. The variance also increases along the interfaces of the model, where the solution is
not enough constrained by the band-limited data.

These results open many questions which need to be investigated.

� Is it possible to go beyond a qualitative interpretation of the variance map and infer some quan-
titative estimate of the uncertainty on the parameter reconstruction?

� How to design the initial covariance matrix of the ensemble? This estimation should incorporate
the prior information available on the solution. Also, finding efficient numerical techniques to
ensure the initial population satisfies this initial covariance is not straightforward.

� How will behave other hierarchical strategies to mimic the dynamic evolution: sources/receivers
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subsets or random sampling, time-windowing?

� How can we control the accuracy of the low-rank approximation of the posterior covariance matrix
depending on the number of members in the population?

Furthermore, we think that the method would be extremely valuable in multi-parameter contexts,
where the trade-offs between parameters increases the uncertainty in the reconstruction. It should
also allow to better handle the incorporation of prior information through the natural incorporation
of prior covariance matrices in the framework of data assimilation. The method could also be used
to assess the sensitivity of a FWI application with respect to empirically chosen parameters such as
regularization weights, and other pre-processing parameters that are needed to be set up by hand for
practical applications.

3.3 Asymptotic approaches for travel-time computation

Asymptotic approximation of the wave equation is a less expensive alternative (in terms of computational
cost and specifically in terms of memory request) to the computation of the full wavefield. An ansatz
of the solution, composed as the product of a smoothly varying amplitude term and rapidly oscillating
term, is plugged into the wave equation. Assuming the variation of the medium are large compared to
the wavelength of the propagated signal, the asymptotic approximation yields a set of equations related
to the first arrival travel-time (Eikonal equation) and the amplitude term (transport equation).

The asymptotic approximation of the wave propagation was used in seismic imaging already by
(Clayton & Stolt, 1981) under the name WKBJ development, and later on by Beylkin (1985) and
Bleistein (1987) for designing a seismic migration operator for reflection data.

It was also used in the so-called Ray+Born inversion scheme (Lambaré et al., 1992; Forgues &
Lambaré, 1997; Lambaré et al., 2003). The computation of first-arrival traveltimes can also be used
directly for tomography methods dedicated to the reconstruction of smoothly varying velocity models
(Nolet, 2008). In Métivier et al. (2015c) we have shown that the asymptotic approximation can provide
an asymptotic version of the Hessian operator that can be used to precondition inversion methods based
on the full wavefield, such as FWI, and possibly with more impact, reverse time migration (RTM)
algorithms.

The possibility to compute the travel-times and their gradient in a given velocity model is therefore
appealing. Conventional strategies are either based on ray tracing approaches (Lagrangian approach),
or on finite-difference solvers for the Eikonal equation (Eulerian approach).

Ray-tracing approaches are limited because of multipathing and triplication phenomena. Several rays
may cross at a given point, and sometimes at an infinity of them, where are located caustics, yielding
different traveltime values for one couple of points. In addition, there exist some source-receiver couples
for which no classical ray can be found (existence of shadow zones).

The most efficient finite-difference techniques for the solution of the Eikonal equation are coupled
with what is called Fast Sweeping Method (FSM) (Tsai et al., 2003; Noble et al., 2014). FSM are
multi-pass algorithms relying on global orderings of the nodes. All the nodes are updated at each
Gauss-Seidel iteration (sweep), following alternative orderings (see Fomel et al. (2009); Waheed et al.
(2015) for instance). However, these solvers are limited to the Eikonal equation coming from simple
acoustic equations. Accounting for anisotropy of the subsurface is not straightforward.

In an attempt to overcome the difficulties of these two techniques, we have investigated a more generic
approach. The Eikonal equation can be rewritten under the form of a Hamilton-Jacobi equation. Each
wave equation gives rise to a new Hamiltonian function, however the Hamilton-Jacobi formalism remains
valid. This class of equations has extensively been studied in the mathematical and numerical analysis
literature. A fundamental result is the existence and uniqueness of a class of solutions named “viscosity
solutions” (Crandall & Lions, 1983). Recently, a discontinuous Galerkin scheme has been proposed with
a particular definition of the fluxes, adapted to the solution of Hamilton-Jacobi equation (Cheng &
Wang, 2014). The investigation of the efficiency of this scheme for 2D acoustic anisotropic modeling is
the main topic of the PhD project of P. Le Bouteiller started at the end of 2015.

A 2D solver which follows this approach has already been developed, and tested on realistic subsurface
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models, yielding promising results (Le Bouteiller et al., 2017). The next step for this work is to combine
this approach with fast sweeping techniques, to improve the computational efficiency of the method.
The extension to a 3D framework should also be straightforward, at least from a methodological point
of view.

More interestingly, this research project should provide an efficient Hamilton-Jacobi Discontinuous
Galerkin solver for the computation of the viscosity solution. This might open the way towards the
computation of not only first-arrival travel-times but any travel-times, working in the phase space
(potentially a 7D space for 3D geometries). Being able to compute the travel times of all the seismic
events would be a significant step towards an automatic interpretation of the seismic data. This would
yield the possibility to detect particular phases traveling in zones of interest: for instance for sub-salt
imaging.

Interestingly, the design of a Hamilton-Jacobi solver also make a link with the optimal transport topic
as following the approach proposed by (Benamou & Brenier, 2000), the computation of the Wasserstein-
2 distance amounts to the solution of a Hamilton-Jacobi equation for the computation of a pressure-less
potential flow. This might provide an alternative numerical approach to the one proposed by these
authors, which is based on convex optimization techniques and the Uzawa relaxation algorithm.

3.4 Regularization strategies: what can we learn from image processing
techniques?

Regularization strategies take an important part in the success of FWI applications. While a system-
atic approach might rely on an homogenization approach (see 3.1) more pragmatic approaches rely on
smoothing techniques (Gaussian filter, Laplace filter, more recently Bessel filters (Trinh et al., 2017b)),
either applied to the subsurface model or to the descent direction within the nonlinear optimization
scheme. A standard challenge is the ability to remove oscillatory components associated with noise
(scale below the smallest wavelength), while being able to preserve the main interfaces/discontinuities.
The Bessel filter we have introduce is flexible enough to incorporate local directions and coherent lengths.

However, a number of methods have been designed in the image processing community to overcome
the same difficulties. Of particular interest are the methods based on nonlinear anisotropic diffusion
(Perona & Malik, 1990; Weickert, 1998; Cottet & Germain, 1993). The smoothing is performed through
the solution of the equation

∂u

∂t
= ∇(g(|∇u|)u), (3.1)

where the diffusivity g(|x|) is a non-negative decreasing function tending to 0 at infinity. The function g
controls the smoothing process by admitting strong diffusion if the gradient ∇u is small (possibly caused
by noise) and by slowing down (or even stopping) the smoothing for large gradients. As an example of
diffusivity function, the Perona-Malik function is given by

g(|x|) :=
1

1 + x2

κ2

. (3.2)

The strength of the filter thus increases in the region where the gradient of the model is small, while it
decreases near discontinuities where the gradient of the model is large. These methods can be combined
with curvelet/wavelet denoising operator in a very efficient manner (Plonka & Ma, 2008). Recently,
strategies have also been proposed to determine the parameter of these filters through machine learning
strategies (Chen et al., 2015).

These techniques could be applied as regularization tool for FWI, and also for seismic data denoising
and inpainting. There are always inoperative sensor during a seismic acquisition, leading to empty traces
on 2D common shot gathers, which need to be filled in, more often through interpolation techniques.
The nonlinear diffusion technique has been proven to be quite efficient for inpainting problems, it would
be interesting to assess the interest of this strategy in the context of seismic data.

An alternative to anisotropic nonlinear diffusion in the seismic imaging community rely on Total
Variation (TV) regularization with a L1 measure of the misfit between the original image and the
denoised image. In Lellmann et al. (2014), the link between the L1 norm and the Kantorovich-Rubinstein
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norm we have used for modifying the FWI misfit function is presented. It is shown that this norm can
be seen as a generalization of the L1 norm, and that it shares some similarities with the G-Meyer’s norm
used for cartoon-texture decomposition. It is thus suggested that the KR-TV problem might be a good
candidate for efficient denoising algorithms. Assessing the interest of this approach for seismic data
denoising, FWI regularization, and seismic imaging through migration could be an interesting topic to
investigate in the future.

3.5 Towards 3D elastic multi-parameter FWI in the frequency-domain

The successful results obtained on the 3D Valhall data-set using acoustic frequency-domain FWI (Operto
et al., 2015b) lead us towards extending these results to frequency-domain elastic inversion. Frequency-
domain strategies bring substantial computational savings when the redundancy of the data is sufficient,
which is the case for dense marine Ocean Bottom Cable (OBC) surveys. Going towards elastic inversion
is a step further that should give complementary information on the structure of the subsurface through
information on shear wave velocities and possibly density and anisotropy parameters.

In this perspective, we need to design a feasible strategy for computing frequency-domain solution
of the elastic wave equation. This strategy must handle acoustic/elastic interfaces as the main target
is 3D OBC data. We thus have started a post-doc project which should assess and compare different
strategies, using either iterative or direct solver approaches.

As spectral element methods are not well suited to handle acoustic/elastic interfaces, the first step
of this project is to design a 3D optimized finite difference compact stencil following the approach of
Gosselin-Cliche & Giroux (2014).

For the solution of the corresponding linear system, we will investigate the efficiency of the pre-
conditioned CARP-CG strategy we have designed (Li et al., 2015b; Hamitou, 2016), combined with
multiple right hand sides acceleration such as block conjugate gradient approaches (O’Leary, 1980)
and/or Galerkin projection approaches (Chan & Ng, 1999).

We will compare this approach with direct solvers developed by different groups: the MUMPS solver
(MUMPS team, 2015), the PASTIX solver (Hénon et al., 2002), and the IBM WSMP solver (Gupta
et al., 2009). All of these solvers start implementing recently introduced low rank compression strategies
to reduce the memory imprint of the LU factorization (Amestoy et al., 2015c). The question for us is
to assess which linear system size these methods can handle on common HPC resources available for
academics (local, national and European centers), which have limited memory per node.

Alternatively, we will investigate the feasibility of other sparse factorizations based on low rank
compression to serve as preconditioner for the solution through Krylov-based iterative solvers. This is
an approach promoted by Engquist & Ying (2011) and Gatto & Hesthaven (2017), where the low rank
factorization is obtained through a low-rank compression of the Schur complement. No application to
visco-elastic equation of this strategy has been reported yet to the best of our knowledge.

3.6 Particles methods for the wave equation and Hamilton-Jacobi equations

Finally, another (more speculative) topic that could be investigated is related to the application of
particle methods for the modeling of wave propagation.

The particle strategies have been developed mainly in the framework of fluid dynamics equations:
Navier-Stokes equations, plasma equations (Bergdorf et al., 2005; Cottet, G.-H. et al., 2014). They
are mesh free: instead of solving the equation on a given mesh, a Lagrangian approach is used. They
have shown very impressive results in terms of computational efficiency, making an efficient use of GPU
architectures. This efficiency is due to the fact that no CFL condition has to be satisfied by the time step
(this is an inherent advantage of mesh-free technique). Also, directional splitting make the treatment
of high dimension space very efficient.

These methods are adapted to the solution of first-order advection equations. Since the wave prop-
agation equation can be cast as a first-order hyperbolic system, the particle filter technique could be
applied to the solution of these equations, considering the wave equation as a generalized advection
system. Some attempts in this direction have already been proposed in the framework of Smoothed
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Particle Hydrodynamics (SPH) methods (Li et al., 2015a; Zhang et al., 2016) and Lattice-Boltzmann
strategies (Salomons et al., 2016).

This technique could also be applied to the solution of Hamilton-Jacobi equations. We have seen in
Section 3.3 that the computation of asymptotic solution to the wave equation amounts to the solution
of Hamilton-Jacobi equations. In particular, in the framework of the computation of the asymptotic
solution in the phase space, for retrieving not only the first-arrival travel-times but all the travel-
times (any phase), these kind of techniques might be helpful to mitigate the strong increase of the
computational cost due to the high dimension of the problem (up to 7D for 3D applications).

This is a topic that could be investigated through a strong interaction with experts from the LJK:
C. Picard, G.H. Cottet.

4 Multiparameter FWI: application to real data

4.1 Application to exploration scale and crustal scale seismic data

The third main objective of my research project is related to the application of 3D multi-parameter
FWI strategies to real data. Investigating large scale FWI problems currently requires time-domain
based algorithms. Frequency-domain approaches are still limited by the memory imprint of direct
solvers for large scale problems. For this reason, the implementation of 3D visco-acoustic (using finite-
differences (Virieux, 1986; Levander, 1988; Fornberg, 1998)) and 3D visco-elastic (using spectral elements
(Komatitsch & Tromp, 2002a; Capdeville et al., 2003)) time-domain codes has been recently performed
within the SEISCOPE project.

We have introduced attenuation through standard linear solid models in both codes (Yang et al.,
2016c). A specific strategy has been designed for the computation of gradient through the adjoint
strategy in the time-domain. The correlation of the incident and adjoint wavefield requires to access
the two wavefields at the same time while the incident wavefields is propagating forward from an initial
condition and the adjoint is propagating backward from a final condition. Our strategy is based on an
extension of checkpointing strategies and makes possible the efficient computation of the gradient with
limited memory resources, working only in-core (no storage on disks) (Yang et al., 2016a). Based on
this strategy, the truncated Newton strategy has been implemented in the visco-acoustic time domain
FWI code (Yang et al., 2017b). It should be soon implemented in its visco-elastic counterpart.

Applying these codes to the inversion of real marine and land data will be the objective of the next
years. These applications will be conducted through the definition of PhD projects. Several targets have
already been identified and some of these PhD projects have already started. At the exploration scale,
we shall have access, through the sponsors of the SEISCOPE project, to several industrial data-sets. The
first is a land data-set with complex topography. The main difficulty will be associated with the correct
modeling and interpretation of surface waves. We might have access to another land data set acquired
in Mongolia where very low frequencies (down to 1.5 Hz) have been recorded. The topography is flat
for this case study, but the problem size is challenging for elastic FWI because of low shear velocities.

A 4D marine data set acquired in the North sea in a shallow water environment might also be made
available to SEISCOPE. These data are acquired with a dense receiver coverage using ocean bottom
cables (OBC). The term 4D refers to the fact that the acquisition has been repeated at different times to
monitor the evolution in time of the subsurface (Lumley, 2001). This yields very interesting challenges
and perspectives both in terms of applications and methodology. Specific FWI techniques are designed
for 4D imaging, to try to account at best for the changes between the two acquisition times (Asnaashari
et al., 2015). The inversion should be performed first in the visco-acoustic approximation. Apart from
the imaging challenge, optimal transport could also reveal as an important tool to directly process the
data. The localization of the time shifts between two data-sets acquired at different times could be
performed through the computation and the analysis of the transport plan.

A collaboration with the Japan-Agency for Marine-Earth Science (JAMSTEC) http://www.jamstec.
go.jp/e/ is also starting, which should give us access to ultra long offset marine seismic data acquired
for imaging deep crustal targets, such as subduction zones. Improving the resolution of the subsur-
face parameters estimation in these zones is crucial to better understand the geodynamic processes in
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progress which are responsible for earthquakes. One of the first successful application of FWI on real
data was performed on the Nankai trough (Dessa et al., 2004; Operto et al., 2006; Gorszczyk et al., 2017).
Since then the quality of the data and the coverage have substantially increased, yielding interesting
perspectives in terms of imaging, with new acquisition vessels deployed by JAMSTEC in 2018.

4.2 Application to GPR and electric data: towards multi-physics inversion

We have started investigating how FWI can be applied to GPR data through two PhD projects. From
the applications to real data, two main limitations have been emphasized.

� The inaccurate modeling of electromagnetic wave propagation, due to the 2D assumption.

� The strong indetermination on the conductivity parameter and the important coupling between
the conductivity and the resistivity.

Further exploring the application of FWI to GPR data would thus require to overcome these limitations.
The design of a 3D time-domain Maxwell’s equations solver adapted to the GPR data modeling

would be a first step. State-of-the-art numerical methods for the solution of the Maxwell’s equations
either rely on finite-differences schemes (FDTD) such as the open-source solver gprMAX (Warren et al.,
2016), or finite-element discontinuous Galerkin methods (Hesthaven & Warburton, 2002). An alternative
would be to consider a spectral element discretization of these equations, similar as the one we use for
3D visco-elastic time-domain modeling, to ensure we properly account for the free surface topography,
while mitigating the high computational cost associated with discontinuous Galerkin strategies.

The combination of GPR data with other electric measurement such as Transient Electromagnetic
data (TEM) and Electrical Resistivity Tomography (ERT) data would be the second step, to better con-
strain the conductivity reconstruction. These data bring low resolution information on the conductivity
that may help mitigate the trade-offs between conductivity and permittivity in the GPR data.

The question how to combine these different type of data would be crucial. Besides step by step
inversion, the combination of all the data in a single inversion problem would be a significant progress.
This would require an adaptation of the modeling code for Maxwell’s equation to the diffusion regime
(TEM) and the static regime (ERT) which might not be a difficult task. The difficulty for TEM and
ERT modeling code relies more on an accurate source implementation, which is usually treated through
local mesh refinement techniques. Another option might be to use source injection technique (scattering
problem in electromagnetism).

The question how to combine different types of data would also yield important perspectives for
exploration geophysics. The FWI community working at the seismic exploration scale has been interested
for some time in the combination of seismic data with gravity measurement (equivalent of ERT data for
electromagnetic waves) to better constrain the reconstruction of the density (see for instance the work
of Wehner et al. (2015)). The discrepancy of the wavenumber information between the two types of
data (high resolution information from seismic, very low resolution information for gravity) make this
combination hard when trying to go beyond simple step by step separate reconstructions. This work on
electromagnetic data could be a first step towards providing answers to this question.

4.3 Application to noise correlation data for lithospheric targets

On a longer term, the feasibility of applying FWI algorithms to noise-correlation data will be investi-
gated through an interaction between the SEISCOPE group and geophysicists from ISTerre laboratory,
working in the team of M. Campillo. Noise-correlation is a passive seismic imaging technique relying
on mathematical and statistical studies, and applied to geophysics data since the work of Campillo &
Paul (2003); Shapiro & Campillo (2004); Shapiro et al. (2005). The leading idea is that the impulse
seismic response between a couple of stations can be inferred through the correlation of the ambient
noise which has been recorded, provided the recording duration is long enough and that the noise source
is isotropically spread around the couple of stations (Bardos et al., 2008). During the last decades, this
strategy has made increasing progresses towards the reconstruction of these impulse responses, from the
reconstruction of surface waves to the detection of volumetric waves. The method seems mature enough
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now so that the waveform reconstructed through ambient noise correlation might serve as observables
that could be modeled and interpreted through FWI. The presence of experts in noise correlation in
ISTerre is a very nice opportunity to investigate these questions I would like to benefit.

4.4 Application to ultrasound data

Another application I would like also to develop on a longer term is related to ultrasound data imaging
through FWI. Already two types of applications could be investigated.

The first is the detection of defaults in industrial materials, in the field of non destructive testing. L.
Moreau at ISTerre laboratory is currently working in this topic, and we have started interacting to go
towards application of FWI to this type of data. The objective is to detect defaults in welds in metallic
pieces. Compared to exploration seismic, the ability to record data both in transmission and reflection
modes make us think it as a very promising field of application for FWI.

The second kind of application I would be interested in developing with ultrasound data is medical
imaging. The techniques developed in FWI can be applied to breast cancer detection with ultra-
sound(Pratt et al., 2007). Taking into account the frequency of the signal (up to 1 MHz), the sound
speed in human tissues (1500 m.s−1), the average wavelength of the signal reaches 1.5 mm, for target
size of approximately 250 mm, yielding a number of wavelength to propagate to the order of 200. This
corresponds to medium to large size problems for exploration scale studies. These applications imply
strong trade-offs between the wave velocity and the attenuation parameter, for which the methods we
develop for multi-parameter inversions should be helpful. A strong advantage of medical imaging over
seismic applications is again the target illumination: contrary to the seismic case, sources and receivers
can be located all around the target, offering an optimal illumination of the target.

Going a step beyond, accounting for the elastic effect of the propagation at this scale might also
yield the possibility to retrieve even finer details on the characteristics and the sanity of the tissues.
This would of course imply significant computational cost because of low shear wave velocities.

Besides this extension, quasi real time inversion would be needed for medical imaging applications,
which would require to design faster and more efficient algorithms compared to what is used for explo-
ration seismic. For these applications, the computation of the results can take several days, a delay which
seems less reasonable in a medical imaging framework. One possibility to initiate this research project
would be to start interacting with S. Catheline in Univ. Claude Bernad (Lyon), who is a specialist in
medical imaging with ultrasonic and elastic fields.

5 Development of open source toolboxes

Finally, an important point for the diffusion of research dedicated to the design of numerical strategies
is the ability to provide small, versatile, open-source codes, however adapted to large scale computing.
This is something I will try to enforce within my research activity, based on the positive experience of
the design of the SEISCOPE toolbox (Métivier & Brossier, 2016b). This nonlinear smooth optimization
toolbox is used in all the codes developed in the SEISCOPE research group, and starts being used
outside.

The next toolbox that should be designed is related to the optimal transport strategy we have
implemented for the computation of the Wasserstein-1 distance. It should be a FORTRAN90 package
linked with the FISHPACK https://www2.cisl.ucar.edu/resources/legacy/fishpack and the MUD-
PACK https://www2.cisl.ucar.edu/resources/legacy/mudpack libraries for the solution of the Pois-
son equation which has to be solved at each iteration of the SDMM algorithm. The input should two
1D to 3D datasets, and the output should give the Wasserstein-1 distance between these two datasets,
as well as the corresponding dual variable at optimum.

Another toolbox that should be developed is associated with the PhD project of A. Pladys started
within SEISCOPE. One aim of this project is to perform an exhaustive review of all the misfit functions
which have been proposed to mitigate cycle skipping (non-convexity) in FWI. This work should yield
a benchmark 2D acoustic FWI FORTRAN90 code implementing these misfit functions. In addition, it
will offer the possibility for implementing any other misfit functions through very simple modifications.
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5 Development of open source toolboxes

This is a benefit from the adjoint state formulation for FWI: the gradient of the misfit function is
given by a weighted correlation between the incident and the adjoint wavefield. Modifying the misfit
function implies only to modify the adjoint source implementation to find its gradient. In terms of
computer implementation, this means that modifying the misfit function can be done by modifying only
two specific routines: one for the misfit function itself, one for the corresponding adjoint source. This
would yield a very flexible tool to test already published misfit functions, and compare them with new
propositions.
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Bozdağ, E., Trampert, J., & Tromp, J., 2011. Misfit functions for full waveform inversion based on
instantaneous phase and envelope measurements, Geophysical Journal International , 185(2), 845–
870.

Brandt, A., 1977. Multi-level adaptive solutions to boundary-value problems, Mathematics of Compu-
tation, 31, 333–390.

Bretaudeau, F., Brossier, R., Métivier, L., & Virieux, J., 2014. First-arrival delayed tomography using
1st and 2nd order adjoint-state method, in Expanded Abstracts, pp. 4757–4762, Society of Exploration
Geophysics.

Brossier, R., Operto, S., & Virieux, J., 2009. Seismic imaging of complex onshore structures by 2D
elastic frequency-domain full-waveform inversion, Geophysics, 74(6), WCC105–WCC118.

Brossier, R., Gholami, Y., Virieux, J., & Operto, S., 2010. 2D frequency-domain seismic wave modeling
in VTI media based on a hp-adaptive discontinuous galerkin method, in Expanded Abstracts, 72th

Annual International Meeting, EAGE , p. C046.

Brossier, R., Pajot, B., Combe, L., Operto, S., Métivier, L., & Virieux, J., 2014. Time and frequency-
domain FWI implementations based on time solver: analysis of computational complexities, in Ex-
panded Abstracts, 76th Annual EAGE Meeting (Amsterdam).

Bunks, C., Salek, F. M., Zaleski, S., & Chavent, G., 1995. Multiscale seismic waveform inversion,
Geophysics, 60(5), 1457–1473.

107



REFERENCES

Burridge, R., 1996. Elastic waves in anisotopric media, Schlumberger-Doll Research.

Busch, S., van der Kruk, J., Bikowski, J., & Vereecken, H., 2012. Quantitative conductivity and
permittivity estimation using full-waveform inversion of on-ground GPR data, Geophysics, 77(6),
H79–H91.

Campillo, M. & Paul, A., 2003. Long Range Correlations in the Diffuse Seismic Coda, Science, 299,
547.

Capdeville, Y., 2016. Non-periodic homogeneization for seismic forward and inverse problems, in Meth-
ods and Challenges of Seismic Wave Modelling for Seismic Imaging Workshop, 78th Annual EAGE
Meeting (Vienna).

Capdeville, Y. & Cance, P., 2015. Residual homogenization for elastic wave propagation in complex
media, Geophysical Journal International , 200(2), 986.

Capdeville, Y. & Marigo, J.-J., 2013. A non-periodic two scale asymptotic method to take account of
rough topographies for 2D elastic wave propagation, Geophysical Journal International , 192, 163–189.

Capdeville, Y., Chaljub, E., Vilotte, J., & Montagner, J., 2003. Coupling the spectral element method
with a modal solution for elastic wave propagation in global earth models, Geophysical Journal In-
ternational , 152, 34–67.

Capdeville, Y., Guillot, L., & Marigo, J.-J., 2010. 2-D non-periodic homogenization to upscale elastic
media for P-SV waves, Geophysical Journal International , 182, 903–922.

Castellanos, C., Métivier, L., Operto, S., Brossier, R., & Virieux, J., 2015. Fast full waveform inversion
with source encoding and second-order optimization methods, Geophysical Journal International ,
200(2), 720–744.

Castellanos-Lopez, C., Métivier, L., Operto, S., & Brossier, R., 2013. Fast full waveform inversion with
source encoding and second order optimization methods, in 75th EAGE Conference & Exhibition
incorporating SPE EUROPEC 2013 , p. We 11 10.

Cerjan, C., Kosloff, D., Kosloff, R., & Reshef, M., 1985. A nonreflecting boundary condition for discrete
acoustic and elastic wave equations, Geophysics, 50(4), 2117–2131.

Chan, T. F. & Ng, M. K., 1999. Galerkin projection methods for solving multiple linear systems, SIAM
Journal on Scientific Computing , 21(3), 836–850.

Chavent, G., 1971. Analyse fonctionnelle et identification de coefficients répartis dans les équations aux
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Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., & Virieux, J., 2016a. Overcoming cycle skipping in
FWI: An optimal transport approach, in Expanded Abstracts, 78th Annual EAGE Meeting (Vienna).
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Pérez Solano, C., Donno, D., & Chauris, H., 2014. Alternative waveform inversion for surface wave
analysis in 2-d media, Geophysical Journal international , 198, 1359–1372.

Perona, P. & Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.
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Wehner, D., Köhn, D., De Nil, D., Schmidt, S., al Hagrey, S., & Rabbel, W., 2015. A combined elastic
waveform and gravity inversion for improved density model resolution applied to the Marmousi-II
model, in Proceedings of the 77th EAGE Conference & Exhibition, EAGE.

Weickert, J., 1998. Anisotropic diffusion in image processing, Treubner Verlag, Stuttgart , Treubner
Verlag.

Yang, P., Brossier, R., Métivier, L., & Virieux, J., 2016a. Wavefield reconstruction in attenuating media:
A checkpointing-assisted reverse-forward simulation method, Geophysics, 81(6), R349–R362.

Yang, P., Brossier, R., Métivier, L., & Virieux, J., 2016b. Checkpointing-assisted reverse forward
simulation: an optimal recomputation method for fwi and rtm, in SEG Technical Program Expanded
Abstracts 2016 , pp. 1089–1093.

Yang, P., Brossier, R., Métivier, L., & Virieux, J., 2016c. A review on the systematic formulation of 3D
multiparameter full waveform inversion in viscoelastic medium, Geophysical Journal International ,
207(1), 129–149.

Yang, P., Brossier, R., Métivier, L., Virieux, J., & Zhou, W., 2017a. A second-order adjoint truncated
newton approach to time-domain multiparameter full waveform inversion in viscoacoustic medium, in
Proceedings of the 79th EAGE Conference & Exhibition, EAGE.

Yang, P., Brossier, R., Métivier, L., Virieux, J., & Zhou, W., 2017b. A second-order adjoint truncated
Newton approach to time-domain multiparameter full waveform inversion in viscoacoustic medium,
SIAM Journal on Scientific Computing , p. submitted.

Yang, Y., Engquist, B., Sun, J., & Froese, B. D., 2016. Application of optimal transport and the
quadratic wasserstein metric to full-waveform inversion, ArXiv e-prints.

Zhang, Y., Zhang, H., & Zhang, G., 2011. A stable TTI reverse time migration and its implementation,
Geophysics, 76(3), WA3–WA11.

Zhang, Y., Zhang, T., Ouyang, H., & Li, T., 2016. Efficient SPH simulation of time-domain acoustic
wave propagation, Engineering Analysis with Boundary Elements, 62, 112 – 122.
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