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Résume

e stockage géologique du CO2 est intensivement étudié comme une des solutions
pour réduire les émissions de CO2 dans l’atmosphère. Ce stockage du dioxyde
de carbone (CCS) consiste à capter le CO2 à la source et à l’injecter, dans
un état supercritique, directement dans des lieux de stockage [Fig. 1]. Les

aquifères salins, qui sont des formations de grès (ou calcaire) très poreuses et saturées
en eau trop salée pour être exploitable, sont de fait de très bons candidats. Dans cette
thèse nous allons explorer cette piste en étudiant notamment l’influence du stockage sur
ces formations géologiques. La dissolution du dioxyde de carbone s’accompagne d’une
acidification de l’eau, engendrant des réactions chimiques et une altération de la roche
constituant le réservoir. Les réactions chimiques provoquent des changements importants
et irréversibles des propriétés et de la morphologie de la roche [1].

Figure 1: Options différentes de stockage du CO2 [1].

L’objectif de cette thèse est d’analyser l’évolution des propriétés mécaniques et de
transport d’aquifères salins soumis à une dégradation chimique progressive, liée à la dis-
solution du CO2 et à l’acidification de l’eau saline. En d’autres termes, l’objectif est de
trouver un lien entre l’évolution de la microstructure du matériau, les phénomènes se pro-
duisant à l’échelle microscopique, et le comportement macroscopique. Afin de modéliser
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la dégradation chimique, deux hypothèses principales ont été faites: l’hypothèse du long
terme et celle de condition de champ lointain. Selon ces hypothèses la dissolution peut être
considérée comme uniforme à l’échelle de l’échantillon [2]. La dégradation chimique de la
matière est prise en compte d’une façon simplifiée en effectuant une érosion numérique de
la microstructure. Pour atteindre cet objectif, la méthodologie suivante a été adoptée :

1. analyse statistique et morphologique de la microstructure réelle.

2. reconstruction de la microstructure et validation morphologique.

3. dissolution numérique de l’image réelle et des échantillons générés.

4. estimation du comportement effectif

La méthodologie proposée permet de réaliser une analyse détaillée de la relation entre les
informations statistiques au niveau micro et les caractéristiques macroscopiques obtenues
numériquement.

Analyse statistique et morphologique de la microstruc-

ture réelle

Les formations rocheuses, support des aquifères salins, sont principalement composées de
grès. Le grès est une roche sédimentaire composée de grains de sable qui permet générale-
ment la percolation des fluides. La microstructure étudiée est présentée sur la Figure 2 -
c’est un échantillon de grès de Fontainebleau, qui a été obtenu par microtomographie aux
rayons X. En règle générale, les données sont organisées comme un ensemble d’éléments
cubiques (voxels) ayant une valeur unique de niveaux de gris correspondant à une phase
matérielle distincte. Dans notre cas, nous considérons un milieu biphasique dans lequel
une des valeurs correspond à la phase solide et l’autre aux pores. La taille initiale de la
géométrie du grès est de 256× 256×256 pixels avec une résolution de 5.01 µm par pixel.

(a) couche en 2D (b) microstructure en 3D

Figure 2: Des visualisations de la géométrie du grès.
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Informations morphologiques

Les propriétés macroscopiques de la roche sont directement liées à la morphologie du
réseau de pores et du squelette solide. Pour cette raison la modélisation à l’échelle micro
des matériaux hétérogènes aléatoires (type roche ou milieux poreux) doit se baser sur des
caractérisations morphologiques et statistiques de la microstructure fiables. Aussi, afin de
qualifier morphologiquement le matériau réel, les quatre critères suivants sont utilisés [3] :

• mesures de base : porosité, surface spécifique

• granulométrie : la granulométrie du squelette solide, estimée en effectuant l’opération
de fermeture/ouverture morphologique

• distribution spatiale : en utilisant la fonction de covariance, nous sommes capa-
bles d’estimer la longueur caractéristique de la phase et de vérifier l’isotropie de la
microstructure considérée

• connectivité : elle influe fortement sur la perméabilité du milieu et est caractéris-
able par la tortuosité morphologique.

En effectuant l’analyse morphologique sur la géométrie du grès, nous avons obtenu les
informations suivantes1 :

• porosité : ϕ = 0.046

• rayons moyens2 : r+mean = 23.7± 4.9 et r◦mean = 17.4± 3.5 (Fig. 3)

• distribution spatiale : la distribution spatiale des phases est isotrope; la longueur
caractéristique de la microstructure est de λ = 23 px (Fig. 4)

• connectivité : le milieu est percolé dans toutes les directions (Tab. 1) et la fraction
volumique du réseau percolé est de ϕeff = 0.029.

Table 1: Résumé de le tortuosité morphologique du grès. Pour chaque direction, la valeur
moyenne τ , minimale τmin, maximale τmax et écart-types sont présentés.

τx τy τz
τ 2.21 1.92 2.44
τmin 1.48 1.45 1.25
τmax 3.98 3.58 4.67
στ 0.49 0.38 0.70

1toutes les utiles sont présente en détails dans le Chapitre 2
2les signes + et ◦ correspondent aux deux éléments structuraux différents (cross-shaped/diamond et

circle binarisée respectivement)
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(b) distributions cumulatives et leurs medianes

Figure 3: Granulométrie du grès obtenue en utilisent deux éléments structuraux différents.

(a) phase poreuse
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(b) fonction de covariance

Figure 4: La phase poreuse du grès et sa fonction de covariance (ϕ = 4.63%).

Reconstruction de la microstructure et validation mor-

phologique

Comme nous l’avons précisé, le processus de formation de grès consiste en série de
phénomènes géologiques et hydrodynamiques complexes. L’objectif, ici, est de recon-
struire l’échantillon, par un processus aussi simple que possible en mettant en œuvre des
étapes de base inspirées par le processus naturel de formation de grès. Pour ce faire
nous avons suivi une approche comparable à celle proposée par de Bake et Øren [4,5], la
géométrie 3D modèle du grès est obtenue à l’aide de 3 phases sachant que les informations
morphologiques discriminantes sont vérifiées à posteriori :

• la sédimentation: ou dépôt de grains, nous utilisons des grains monodisperses qui
sont déposés initialement dans une boîte 3D selon l’algorithme de minimisation du
potentiel gravitationnel (LMGC90 [6,7])
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• le compactage: ou réduction de volume en vrac, le compactage est appliqué pour
minimiser l’anisotropie et la porosité initiale de l’échantillon

• la diagenèse: incrément aléatoire des rayons, ce processus consiste à sélectionner
aléatoirement des grains dans l’échantillon puis à en incrémenter le rayon et recom-
mencer ce processus jusqu’à obtenir la valeur de porosité cible. Ici, l’incrément de
rayon est constant.

Afin de choisir la meilleure stratégie, nous avons fait une étude paramétrique de ce pro-
cessus de reconstruction du grès de Fontainebleau. A la suite de cette étude, nous en
sommes arrivés à la conclusion qu’il fallait utiliser un rayon initial de 14 px et un com-
pactage triaxial. Chaque réalisation est obtenue à partir du même dépôt géométrique de
grains soumis au type de compactage choisi. Ensuite, les échantillons sélectionnés doivent
répondre aux deux critères suivants :

1. percolation – les réalisations qui ne sont pas percolées dans toutes les directions
sont exclues de l’analyse.

2. porosité effectife – les échantillons qui ne satisfasse pas la condition suivante :
ϕeff = ϕsandstone

eff ± 5% ont été exclus.

Le processus de génération a été arrêté lorsque 10 réalisations, satisfaisant les critères évo-
quées ci-dessus, ont été générées. Les Figures 5 et 6 montrent une très bonne adéquation
entre la morphologie du matériau modèle et celui d’un grès de Fontainebleau.
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(a) grès

(b) échantillon modèle

Figure 5: Visualisation des microstructures.

!

!"!#

!"!$

!"!%

!"!&

!"!'

! #! $! %! &! '! (! )! *! +! #!! ##! #$! #%!

,
-.
/0
1

023456789:

;<2=262
><2=262

!
$

!

!"!!$

!"!!&

!"!!(

!"!!*

!"!#

! #! $! %! &!

(a) covariance - pour direction !x

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  10  20  30  40  50  60

V
o
lu

m
e 

fr
ac

ti
o
n
 o

f 
th

e 
so

li
d
 m

at
ri

x

size of opening by diamond SE [pixels]

FS
GS

(b) distributions de tailles

Figure 6: La comparaison de deux descripteurs concernent le grès (FS) et les échantillons
générés (GS): la covariance et la granulometrié.
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Dissolution numérique de l’image réelle et des échantil-

lons générés

En ayant une géométrie binarisée de la roche réelle et des géométries reconstruites, nous
pouvons proposer maintenant un scénario de dissolution chimique. Nous savons que la mi-
crostructure obtenue par microtomographie ne donne qu’une approximation de la connec-
tivité réelle entre les pores. Par conséquent, nous avons examiné deux scénarii différents
de dissolution.

Le modèle de la dissolution numérique est basé sur l’opération de base de la morphologie
mathématique - la dilatation. La dégradation chimique du squelette solide est prise en
compte de façon simplifiée, en effectuant la dilatation de la phase poreuse, en utilisant un
élément structurant cubique. Le choix de l’élément structurant isotrope peut être justifié
par les hypothèses de champ lointain et les conditions à long terme, lorsque la concentra-
tion des réactifs est supposée être distribuée d’une manière homogène dans l’espace des
pores à l’échelle de l’échantillon [2, 8]. Deux scenarii différents sont envisagés :

• la dissolution isotrope : consiste à appliquer la dissolution dans toutes les pores
même celles qui ne sont pas connectés [Fig. 7 (a)]

• la dissolution du réseau : consiste à appliquer la dissolution uniquement aux
pores du réseau percolé [Fig. 7 (b)].

(a) isotropic dissolution (ID)

(b) dissolution of percolated network (PND)

Figure 7: Une visualisation des scenarii de la dissolution numérique en 2D, un cas simplifié.

La modélisation proposée est universelle, en ce sens qu’elle utilise une échelle de temps
adimensionnelle. Par conséquent, elle peut être adaptée à tout processus dépendant du
temps. Le processus de dissolution est effectué en 3D et arrêté lorsque la porosité atteind
environ 40%.

Afin de montrer l’influence des scénarii de dissolution sur l’évolution des échantillons, nous
présentons sur la Figure 8, l’évolution de la covariance pour le matériau modèle et le grès
de Fontainebleau. Dans un soucis de clarté, nous présentons uniquement la covariance
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dans la direction %x. La Figure 8 montre que chacune des courbes converge vers sa valeur
asymptotique. Les deux scénarii induisent une augmentation de la valeur initiale et de
fait de la valeur asymptotique. Pour chaque étape de la dissolution, la première valeur,
Cov(0), de la fonction de covariance se réfère à la porosité initiale de l’échantillon. Nous
pouvons voir que la valeur de la porosité varie entre 4.6 et 40%. On observe que les
augmentations sont semblables pour le matériau modèle et pour le matériau réel. Ce qui
tend à montrer le caractère prédictif de ce matériau modèle. En analysant l’evolution
de la covariance, nous pouvons formuler la conclusion suivante, à savoir que, lors de la
dissolution isotrope la taille de VER reste constante, tandis que pour la dissolution en
réseau, la taille du VER augmente d’une manière significative.
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Figure 8: L’evolution de la covariance pour deux matériaux au cours de deux scenarii de
la dissolution.
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Estimation de comportement effectif - homogénéisation

linéaire

Lorsque l’on cherche à estimer les propriétés équivalentes d’un milieu élastique hétérogène,
on peut résoudre les équations locales d’élasticité en utilisant un code d’éléments finis sur
la géométrie d’un VER. L’estimation des propriétés élastiques est alors basée sur la méth-
ode d’homogénéisation périodique [9–11]. Ici, le code d’éléments finis CAST3M est utilisé
afin de mettre en œuvre cette méthode. La matrice de rigidité effective, obtenue en ré-
solvant les six problèmes élémentaires correspondants aux six différents cas de chargements
généralisés, est donnée par:

Cijkh =
〈
cijpq

[
Ikhpq + ǫpq

(
u

′kh
)]〉

, (1)

où u
′

kh est la solution du problème d’élasticité, Ikhpq le tenseur identité d’ordre quatre qui
permet de définir les six chargements généralisés, cijpq le tenseur de rigidité microscopique
et ǫpq le tenseur de deformations microscopique.

Cependant en extrayant un VER à partir d’une image naturelle de roche ou d’un matériau
modèle les hypothèses de périodicité ne sont généralement pas vérifiées. Pour résoudre
ce problème, le VER est inclus dans une couche de matériau homogène (Fig. 9) dont le
comportement sera in-fine celui recherché. Pour ce faire, la méthode du point fixe est
utilisée. Initialement, le tenseur de rigidité de la couche est supposé être égal à celui du
squelette du milieu poreux. À chaque itération les propriétés élastiques de la couche sont
décrites par le tenseur de rigidité homogénéisé du système à l’itération précédente:

c̄layerijkh [i] = Chom
ijkh [i− 1], (2)

où i désigne le nombre d’itération et c̄layerijkh – le tenseur de rigidité microscopique de la
couche.

Figure 9: La géométrie du grès de Fontainebleau incluse dans une couche de matériau
homogène.

Une microstructure définie par une image numérique est déjà naturellement discrétisée.
Lorsque nous utilisons maillage cubique régulier, pour représenter la microstructure,
l’influence de la discrétisation est déterminée explicitement [12–14]. Cette relation peut
être alors estimée par la formule phénoménologique :

P (M) = P0 +
a

M
, (3)
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où P (M) est le module élastique calculé et P0 la valeur continue qui correspond au cas
M → ∞. Pour estimer cette valeur (P0) nous devons calculer les propriétés élastiques,
au moins, pour trois valeurs de M différentes et ensuite extrapoler les résultats.

Méthodologie et résultats

Afin d’estimer le comportement élastique effectif des échantillons considérés, nous avons
utilisé la méthodologie présentée, étape par étape, sur la Figure 10. La Figure 11 montre
la comparaison de l’évolution des modules élastiques normalisés en fonction de la porosité.
Dans les deux scenarii, l’evolution du comportement est presque identique.
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Figure 11: Evolution of normalised elastic moduli of sandstone (FS), averaged over all
generated samples (GS) (with standard deviations) for both scenarii of numerical disso-
lution; comparison with self-consistent estimate (SCE) and with results obtained by Arns
et al. [15].
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Estimation de comportement effectif - perméabilité

L’évolution de la perméabilité est estimée de manière classique en utilisant la méthode
de mise à l’échelle dans la forme de la loi de Darcy. Une approche très courante, dans les
simulations d’écoulement de fluide pour les milieux poreux, est utilisée. À savoir, nous
utilisons un maillage cubique structuré, dont la résolution est identique à la microstructure
considérée. En d’autres termes, chaque voxel est représenté par un élément de maillage
(hexaèdre régulier). Afin d’obtenir des champs de vitesse, dans le domaine des pores, les
simulations de la mécanique des fluides numérique sont réalisées en utilisant le logiciel
OpenFOAM [87]. Dans ce logiciel, les équations de Navier-Stokes sont résolues par la
méthode des volumes finis. Nous avons estimé la perméabilité en utilisant la loi de Darcy
donnée par l’équation suivante :

K =
µQL

∆pA
, (4)

où ∆p est le gradient macroscopique de pression dans la direction d’écoulement, Q le
flux total, L désigne la longueur de la géométrie dans la direction d’écoulement, A la
superficie de la section transversale perpendiculaire à la direction d’écoulement et µ la
viscosité dynamique.

L’augmentation significative de la perméabilité avec la porosité est une observation con-
nue. On remarque que dans le cas de la dissolution du réseau percolé la perméabilité
augmente plus rapidement en fonction de la porosité que dans le scenario de la dissolu-
tion isotrope.

Nous avons remarqué aussi que l’évolution du comportement élastique normalisé peut être
lieé à la perméabilité sous la forme suivante :

P (K) = 1− Kβ

α
et β ∈ (0, 1), (5)

Figures 12 et 13 présentent les modules d’élasticité en fonction de la perméabilité pour le
scenario de la dissolution isotrope et du réseau percolé respectivement. En général,
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aux modèle (GS). Dissolution isotrope.

nous pouvons dire que la méthode de reconstruction proposée, basée sur la reconstruction
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du squelette solide est efficace aussi pour simuler la perméabilité d’échantillon représentant
la microstructure d’une roche.
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Conclusions générales et quelques perspectives

L’objectif de cette thèse est d’analyser l’évolution des propriétés mécaniques et de trans-
port effectives de roches aquifères, qui sont soumises à une dégradation progressive par
attaque chimique due à la dissolution du CO2. L’étude proposée s’appuie sur les condi-
tions à long terme et en champ lointain, lorsque la dégradation de la matrice poreuse peut
être supposée homogène à l’échelle de l’échantillon. Afin d’effectuer la modélisation les
hypothèses suivantes ont été appliquées :

• characterisation à l’échelle micro est effectuée directement sur la microtomo-
graphie et les équations des phénomènes considérés sont résolues à cette échelle,

• evolution de microstructure est représentée par dissolution numérique, au travers
deux scenarii différents pour tenir compte résolution finie de microtomographie,

• modélisation de deux échelles et la périodicité microstructures obtenues sont
supposées être représentatives; les méthodes de techniques de changement d’échelle
peuvent être utilisées pour obtenir des comportements effectifs.

Conclusions

Tout d’abord, une méthode de reconstruction inspirée du processus naturel de formation
des grès est développée afin d’obtenir des représentations statistiquement équivalentes
à de véritables échantillons. Les échantillons générés sont sélectionnés afin de satisfaire
les informations morphologiques extraites de l’analyse des images microtomographiques
d’échantillons de roche naturelle. Une méthodologie afin d’estimer les propriétés mé-
caniques équivalentes des échantillons générés, fondées directement sur des maillages
réguliers considérés comme images binaires, est présentée. Le comportement mécanique
équivalent est obtenu dans le cadre de l’homogénéisation périodique. Ensuite, l’évolution
de la perméabilité est estimée de manière classique en utilisant la méthode de mise à
l’échelle dans la forme de la loi de Darcy. Enfin, la dissolution chimique du matériau est
abordée par dilatation morphologique de la phase poreuse. De plus, une analyse détaillée
de l’évolution des descripteurs morphologiques liée aux modifications de la microstruc-
ture lors des étapes de dissolution est présentée. La relation entre les propriétés mor-
phologiques - perméabilité - modules d’élasticité est également fournie. La méthodologie
développée dans ce travail pourra être facilement appliquée à d’autres classes de matériaux
hétérogènes.

Perspectives

Une première étude peut être serait de valider expérimentalement les estimations obtenues
par ce modèle aussi bien sur le plan mécanique que sur le plan de la perméabilité. Une
autre piste d’étude serait d’améliorer les estimations en utilisant des maillages plus fin et
ou des stratégies différentes.
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One never notices what has been done;

one can only see what remains to be

done.

Marie Skłodowska-Curie

1
Introduction

he geological storage of CO2, a.k.a. Carbon Capture and Storage (CCS), is
intensively investigated as a solution to reduce emission of CO2 to the atmo-
sphere. It consists in capturing carbon dioxide at source and then its injection
into suitable geological formations [1]. European Union climate and energy

package [16] contains directives whose purpose is to create a legal framework for CO2

injection into deep geological formations and to define procedures for a safe storage that
minimizes negative influence to the environment. During geological storage, certain phys-
ical and chemical mechanisms trigger irreversible changes of rock microstructure, which
lead to modifications of its effective properties. In order to avoid catastrophic damages,
it is essential to define geological formations behaviour. In literature, several options of
underground storage [Fig. 1.1 ] are considered:

• depleted oil and gas reservoirs – this method is considered to be one of the most
practical and advantageous. In particular, the geology of these locations is well
known through an exploration process. In these formations gases and liquids have
been held for million of years and due to this fact, the available capacity is considered
to be very substantial and relatively reliable.

• enhanced oil recovery – by using standard extraction methods only a part of oil
can be recovered from the fields. Injection of CO2 can enhance oil recovery. In
supercritical form carbon dioxide can easily penetrate voids of the reservoir. In
contact with crude oil a part of CO2 is absorbed and reduce its initial viscosity.
Thereupon, the oil starts to swell and can be brought out easier by the wells.

• unmineable coal seams – the coal matrix possess a huge amount of micropores into
which gas molecules of methane could be adsorbed. Due to this fact, CO2 injection
can enhance coal bed methane recovery (ECBM). However, permeability of coal
strongly decreases with depth, what may hinder injection of carbon dioxide.
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• saline aquifers – deep underground porous reservoirs located several kilometres below
surface. Those formations are saturated with saline brine which is unsuitable for
consumption. In general, saline aquifers are considered to possess the largest storage
capacity, in comparison to the other underground locations, what makes them a well
promising option for CO2 storage.

Figure 1.1: Options of geological storage of CO2
1.

Figure 1.2: Contribution of trapping mechanisms as a function of time [1].

1source: http: // www. co2crc. com. au/ aboutccs/ storage. html .
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Effectiveness of geological storage depends on a combination of physical and geochemical
trapping phenomena [Fig. 1.2 ]. Carbon dioxide can remain trapped underground by
virtue of a number of mechanisms, such as [1]:

• structural and stratigraphic – existence of caprocks (a low-permeability rock layer),
is the cardinal means to store carbon dioxide in any geological formations. Just after
injection into a formation, CO2 begins to move upwards, until it meets a blockade
in the form of the caprock.

• residual – this mechanism comes into play very quickly after the injection. The
skeleton of porous medium acts like a sponge. In supercritical state carbon diox-
ide is relatively non-wetting in comparison with saline brine, exists as a separate
phase. During migration through the pores some part of CO2 can be spontaneously
disconnected and trapped by acting capillary forces.

• solubility (dissolution) - in the longer term, significant quantities of CO2 dissolve in
saline brine. Water containing carbon dioxide becomes heavier and then starts to
migrate downward to the bottom of geological formation where it rests trapped.

• mineral – carbon dioxide can induce chemical interactions with the rock and saline
water. Solubility triggers formations of ionic species, associated by a rise in the
pH, what causes a chemical reaction with substances formatting the porous skele-
ton. The rate of reactions of the dissolved CO2 highly depends on the chemical
compositions of porous rock. In case of carbonate minerals, reactions proceed very
quick (days), but if skeleton is composed of silicate minerals their rate is rather slow
(thousands of years).

The aim of this thesis is to analyse evolution of mechanical and transport properties
of saline aquifer, which is subjected to progressive chemical degradation due to CO2

dissolution and acidification of the saline water. The objective is to find a link between
evolving microstructure of the material, phenomena occurring at microscopic scale, and
observed macroscopic behaviour. The proposed study focuses on the long-term and the far
field conditions, when dissolution of porous matrix can be assumed to be homogeneous at
sample scale [2,8]. Chemical degradation of material is taken into account in a simplified
way by performing numerical erosion of the microstructure. To achieve the objective, the
following methodology has been proposed:

1. statistical and morphological analysis of real microstructure. To describe a
heterogeneous material, following main morphological criteria have been used [17]:
basic measures, connectivity, sizing and spatial distributions (Chapter 4).

2. reconstruction of microstructure and morphological validation. In this
work a simple method to reconstruct a model material of sandstone is proposed and
implemented. The reconstruction is inspired by nature (formation process of sand-
stone) and consists in two steps: deposit of grains and diagenesis process (Chapter
4).
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3. numerical dissolution of the real image and generated samples. All the mi-
crostructures have been subjected to two different scenarii of dissolution. Evolution
of chosen morphological descriptors is analysed and presented in the Chapter 5.

4. numerical estimations of various mechanical properties. Periodic homogenization
method for linear elasticity [9] is chosen to estimate the mechanical behaviour and
Darcy’s law to calculate permeability [18] (Chapters 6 & 7).

The proposed methodology enables to carry out a detailed analysis about the relation
between obtained morphological, statistical informations and numerical results.



Gentleman, jokes ended, the staircase

begins.

Bolesław Wieniawa-Długoszowski

2
Literature review

his chapter explores the literature that is helpful to understand the develop-
ment of the methodology and to interpret the results. First of all, mathemat-
ical morphology and statistical tools, used to characterise microstructure of
fontainebleau sandstone, are featured. The next subsection presents short the-

oretical introduction of homogenization method for linear elasticity, fluid flow in porous
media and RVE estimation problem. The last subsection contains the state of art of
chemical degradation problem. Finally, a short structure of the thesis is presented.
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2.1 Mathematical morphology and morphological de-

scriptors

Mathematical morphology provides clear and essential description of images by studying
them in the framework of set theory. Using appropriate sets, called structuring elements,
mathematical morphology can simplify image data by presenting their essential shape
characteristic and eliminating irrelevances. Foundations of the theory are attributed to
George Matheron [19] and Jean Serra [20] of École des Mines de Paris. Mathematical mor-
phology has became very popular in recent years in the field of digital image processing,
it is important to highlight that both of them have made a big advance in many areas of
engineering, material since, medicine etc. In this study we propose to use basic concepts
of mathematical morphology and statistical analysis, as a very useful tools to characterise
the properties and to provide an efficient method to generate equivalent heterogeneous
material. This section is written as a basic foundation course that introduces apparatus
used in the thesis.

2.1.1 Mathematical morphology

There is a lot of possible ways to introduce the basics of the theory, for readers who
would like to know more, may see [19–28]. For the purpose of this study we introduce basic
concepts by using binary images. Moreover, this framework poses several advantages, it is
intuitive and relatively simple. Historically, mathematical morphology has been defined
for Euclidean spaces. The transformation from d-dimensional continuous space R

d to
discrete space Z

d is called discretization or quantisation. Discrete space can be sampled
by means of different kinds of grids shown in Figure 2.1. In our case, the regular square
(in 2D) or cubic (in 3D) grid were used. Each point of the grid (pixel in 2D or voxel in
3D) posses a scalar value and is referenced by its coordinates x, y and z.

Figure 2.1: Illustration of grids and connectiveties [23].

Firstly, we have to recall a definition of a binary image [22]:

Definition 2.1 Let Zd be the d-dimensional discrete space and DA ⊂ Z
d is the definition

domain (grid). Binary image A is a mapping

A : DA ⊂ Z
d → {0, 1} . (2.1)
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In that case, to each pixel of the grid one of two possible values, 0 or 1 is assigned. Gen-
erally speaking, a binary image consist in two disjoint sets which represent two phases:
1–valued foreground, usually visualised by white colour, and 0–valued background, rep-
resented by black colour.

(a) cross-shaped in 2D (b) cross-shaped in 3D

(c) square in 2D (d) cube in 3D

Figure 2.2: Examples of isotropic, symmetric structuring elements on regular grids.

In general, morphological operations describe interactions between an image and a struc-
turing element hence provide useful tools to measure the size of objects and to describe
their shapes. The two most basics operations, of mathematical morphology, are dilation
and erosion [19]. They have a wide array of uses, for example: removing noise, isolation
or joining elements in an image.

The structuring element is itself a binary image, subset of the grid [Fig. 2.2]. Its shape,
size and orientation can be adapted to our needs. Structuring element can also define
the connectivity of the grid and plays a important role in the theory. Figure 2.2 (a) and
(c) present structuring elements which are symmetric, they can be described in following
way:

• cross-shaped: B = {(−1, 0), (0,−1), (0, 0), (0, 1), (1, 0)},

• square: B = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)}.

Pixel localised in point (0, 0) is the origin of the structuring element and the rest is called
neighbourhood. Of course structuring element does not have to be symmetric, we can
use, for example, B = {(0, 0), (1, 0)}.
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Before we go further, we introduce a notation that is helpful to explain and understand
the effects of basic operations. Let X be an arbitrary set, Xp is its translation by a vector
p ∈ Z

d, we can write:
Xp = {x+ p | x ∈ X} . (2.2)

A complement of X, denoted by Xc, is given as follows:

Xc =
{
x ∈ Z

d | x /∈ X
}
. (2.3)

A symmetrical set to X, with respect to the origin, is denoted by X̌ and can be given in
following form:

X̌ = {x | b ∈ X, x = −b} . (2.4)

Let us recall definitions of dilation and erosion.

Definition 2.2 The dilation of X by structuring element B is given by:

δB (X) = X ⊕ B =
{
x ∈ Z

d | B̌x ∩X *= ∅

}
= {x+ b | x ∈ X, b ∈ B} . (2.5)

Definition 2.3 The erosion of X by structuring element B is given by:

ǫB (X) = X ⊖ B = {x ∈ X | Bx ⊆ X} = {x ∈ X | x+ b ∈ X, b ∈ B} . (2.6)

(a) initial image X (b) dilation X ⊕B (c) erosion X ⊖B

Figure 2.3: Effects of erosion and dilation, by using the 3×3 square structuring elements.

We can remark that dilation enlarges white phase of binary image while erosion has the
opposite effect [Fig. 2.3 & 2.5]. We can notice that dilation is the dual operation to the
erosion, what can be written as follows:

(X ⊖ B)c = Xc ⊕ B̌. (2.7)

If the structuring element is symmetric, equation 2.7 can be written in following way:

(X ⊖ B)c = Xc ⊕ B. (2.8)

In other words, to obtain the eroded set X we can apply dilation on the complement of
X and, after all, we take the complement of Xc ⊕ B. This procedure is illustrated in
Figure 2.4. An implementation of dilation and erosion, used in the thesis and applied on
3D binary image, is presented by Pseudocodes A.2 and A.3 in Annexe A.
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(a) initial image X (b) erosion X ⊖B

(c) complement of X (d) dilation of Xc (e) complement of
Xc ⊕B

Figure 2.4: Visualisation of duality between erosion and dilation.

(a) photography of LMGC (b) binarised photography

(c) effect of erosion (d) effect of dilation

Figure 2.5: Effects of erosion and dilation, by using the 5×5 square structuring elements.
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Other operations, that play important role in the theory, are opening and closing. In
digital image analysis, those two operations, are the workhorse of morphological noise
removal and filtering. We start with the definition of opening.

Definition 2.4 The set X opened by structuring element B is given by:

X ◦B = (X ⊖ B)⊕ B. (2.9)

(a) initial image (b) effect of opening

Figure 2.6: Effects of opening, by using disk shaped structuring element of 11 pixels in
diameter.1 Size of images is 222×217 px. Sticks possess thickens of 6 pixels, while diameter
of circles is 14 px.

Generally speaking, opening consist of dilation that is followed by erosion. It removes
certain objects of the foreground and places them in the background. In other words,
opening acts like a filter, result of this operation depends strictly on the shape and size
of structuring elements [Fig. 2.6]. Closing is defined in following way:

Definition 2.5 The set X closed by structuring element B is given by:

X •B = (X ⊕ B)⊖ B. (2.10)

After performing closing on image, small objects from background are moved to fore-
ground [Fig. 2.7]. Like in case of opening, result depends on the structuring element,
that was used to perform the operation. Closing and opening are satisfying duality, what
can be written in following form:

X •B =
(
Xc ◦ B̌

)c
. (2.11)

2.1.2 Morphological descriptors

Porosity ϕ is one of the most basic global descriptor of porous media. It is defined as a
ratio of the volume of the pore space Vp to the total volume of a sample Vtotal, what can
be written as follows:

ϕ =
Vp

Vtotal

=
Vp

Vp + Vs

= 1− Vs

Vp + Vs

, (2.12)

1source: http: // homepages. inf. ed. ac. uk/ rbf/ HIPR2/ open. htm
2source: http: // homepages. inf. ed. ac. uk/ rbf/ HIPR2/ close. htm
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(a) initial image (b) effect of closing

Figure 2.7: Effects of closing, by using disk shaped structuring element of diameter equal
to 22 px. Diameter of larger inclusions is 31 px while smaller ones is 14 px.2 Size of the
image is 300×300 px.

where Vs denotes the volume of the solid phase. Measurement of porosity, adapted to
binarized media and used in the thesis, is presented by Pseudocode A.4 in Annexe A. In the
field of porous media theory we have to distinguish between two main types of porosities
[18, 29]. The first kind is a so-called interconnected or effective porosity which forms
percolated/percolating pore network. The second one is the isolated or non-interconnected
porosity. Let ϕeff and ϕiso denote effective and isolated porosity respectively. We can
write, that:

ϕeff = ϕ− ϕiso. (2.13)

From the point of view of transport properties like diffusion or fluid conductivity isolated
pores are irrelevant (they can not be penetrated) hence, it is important to consider only the
effective porous space to estimate their values. In the literature we can find also ’dead-end’
and ’blind’ pores [Fig. 2.8], which are interconnected from one side. However, their impact
on the mass transport properties is relatively small. In this work all pores of type d will
be treated as the isolated ones [Fig. 2.8]. To extract the interconnected pores (percolated
porous network) Connected Components Labelling algorithm was implemented [25, 30].
The program scans an image and groups its pixels into components shearing the same
value (label) if they are connected. The central role is played by definition of pixels
connectivity, which can be represented by an arbitrary structuring element. To illustrate
the method, geometry presented in Figure 2.8 is subjected to Connected Components
Labelling algorithm. In Figure 2.9 we can see 6 separated pores having different labels,
which where visualised by different colours. For the purpose of this study, the cross-
shaped element [Fig. 2.2 (b)] has been chosen to analyse connectivity of 3D structures.
Figure 2.10 shows the result of the algorithm, which was applied to the microtomography
of Fontainebleau sandstone.

Specific surface [18, 29] has an important influence to a variety of physico-chemical
properties of the medium like, for example, adsorption capacity, heat transfer and fluid
conductivity. Specific surface can be defined as ratio of the measure of interstitial surface
of pores to the total volume of the investigated sample. Let us denote the specific surface
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Figure 2.8: Different types of pores: a – interconnected; b - blind; c – isolated; d - open.

Figure 2.9: Visualisation of CCL algorithm effect.

(a) total; ϕ = 4.62% (b) percolated; ϕeff = 2.87% (c) isolated; ϕiso = 1.75%

Figure 2.10: Visualisation of Fontainebleau sandstone (FS) microstructure.

as St, we can write:

St =
S(ϕ)

Vtotal

, (2.14)
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where Vtotal is a volume of the sample and S(ϕ) is the interstitial surface of the pores.
Making the direct link with main types of porosity, we can define effective specific surface
Seff and the isolated one Siso. It can be written as follows:

Seff =
S(ϕeff )

Vtotal

, (2.15)

Siso =
S(ϕiso)

Vtotal

= St − Seff , (2.16)

where S(ϕeff ) and S(ϕiso) is the interstitial surface of the interconnected and isolated
pores respectively.

Specific surface can be estimated directly by analysing binary image of the medium, pixel
by pixel. For this purpose for each pixel of porous phase its neighbourhood is scanned by
using cross–shaped structuring element [Fig. 2.2 (b)]. If any component of structuring
element is located in opposite (solid) phase the value of specific surface counter S̃t increase
by 1, after all counter is divided by the total volume (in 3D). The method is presented by
Pseudocode A.5 Annexe A. It is very well known that discretization of the image induce
an overestimated value for the measure of the specific surface. However, in our study the
relative changes of the parameter are much more important than the value itself. Figure

(a) r = 256 px,

S̃t = 2048 px,
S̃analytical = 1607.68 px

(b) r = 384 px,

S̃t = 3072 px,
S̃analytical = 2411.52 px

Figure 2.11: Estimation of specific surface counters of circle in relation to radii increase.

2.11 presents an estimation of specific surface counters S̃t of a circle for two different
values of radius. In case presented in Figure 2.11, we can notice, that relative change of
specific surface is the same for both examples – calculated S̃t and analytical one S̃analytical

– and is equal to 0.5. Value of S̃analytical is given by equation:

S̃analytical = 2πr. (2.17)
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(a) 2D (b) 3D

Figure 2.12: Structuring elements of radii r ∈ {10, 20, 30} px, representing binarized
spheres.

Granulometric curve describe well investigated media and give an idea of the charac-
teristic size of the underlying granular structure. Polydispersity is characterised by the
proportions of particles having different sizes - radii or diameters. Depending on a method
of estimation, polydispersity can be presented by the number n(r) or the volume g(r) of
particles as a function of their size r. Mathematical morphology allows us to measure
particle size, with respect to their volume, by morphological opening [20, 22, 23, 31]. The
principle of the method consists in performing morphological openings on the investigated
phase of a microstructure and in successive increasing the structuring element’s size. After
each operation, the change of solid volume fraction is calculated. It is obvious that the
central role in this methodology is played by the shape of used structuring element. Let B
be a structuring element, and Br, r = 0, 1, . . ., is a family of structuring elements where,
r has a notion of characteristic length. Let X be a set (binary image), the granulometric
function Gr(X) is given by:

Gr(X) = 1− |X ◦Br|

|X|
, (2.18)

where symbol |·| denotes the measure (cardinality) of a set. By using such defined granu-
lometric function we have to notice that we estimate cumulative particle size distribution
with respect to the volume. Volumetric size distribution is defined in following way:

gr(X) = Gr+1(X)−Gr(X), (2.19)

Figures 2.13 and 2.14 present granulometric function obtained for different shapes of
structuring elements. It is important to notice that the shape has a direct influence on
the results. If the shape of the structuring element does not corresponds to the geometry
of investigated set the results could be encumbered with significant error. Missing of shape
may change main characteristics of grain size distribution - its mean, median, extremities
and standard deviation.

Therefore, for the purpose of the thesis binarized sphere and cross - shaped element are
used to characterise granulometry of solid matrix.
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Figure 2.13: Granulometric function of two population of discs of diameters d1 = 143 px
and d2 = 201. Both populations poses the same volume fraction.
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Figure 2.14: Granulometric function of two populations: squares of edge length a = 143
px and overlapping circles of diameter d = 201. Both populations possess the same volume
fraction.
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Covariance function and covariogram [3,24,32] are used to describe spatial distribu-
tion of phase of microstructure and other useful characteristics of investigated structure.
In the framework of set theory, binary image consist in two sets (phases). We can assume
that a binary image representing heterogeneous medium is one of the possible realisations
generated by a specific stochastic process [24, 32]. The domain of the porous medium
consist of two disjoint sets (phases), solid Xs and porous one Xp. We can write as follows:

Xs ∩Xp = ∅. (2.20)

For example, porous phase can be described by the characteristic or indicator function.
It is defined by the following equation:

kp(x) =

{
1 if x ∈ Xp

0 if x /∈ Xp
, (2.21)

analogically we can define ks. Each phase, solid and porous, possesses its volume fraction
ϕs and ϕ respectively. What can be written as:

ϕ = 〈kp(x)〉 , (2.22)

ϕs = 〈ks(x)〉 , (2.23)

where 〈·〉 denotes volume average, given by:

〈·〉 = 1

|V |

∫

V

· dV (2.24)

It is easy to note, that:
kp(x) + ks(x) = 1. (2.25)

Among statistical descriptors, the covariogram is a convenient tool to investigate station-
ary and ergodic media3. It characterises geometrical dispersion of the set representing a
phase of a binary image. To simplify notation, let X denotes porous or solid phase. The
covariogram K(X,%h) is a measure of the intersection of set X and its translation by vector
%h [Fig. 2.15], we may write (where k = kp for the covariogram of porous phase and k = ks
for the covariogram of solid phase):

K(X,%h) = K(%h) = µ(X ∩X
−#h) =

∫

Rd

k(x)k(x+ %h)dx %h ∈ R
d, (2.26)

where µ(·) denotes a measure. Covariogram possesses following properties:




K(%0) =

∫

Rd

k(x)2dx = µ(X),

K(%h) = K(−%h),∫

Rd

K(%h)d%h =

[∫

Rd

k(x)dx

]2
= [µ(X)]2 ,

lim
||#h||→∞

K(%h) = 0.

(2.27)

3ergodic system possesses the same behaviour averaged over time as averaged over the space for each
state of the system
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Figure 2.15: Surface area of black region is the graphical representation of K(X,%h) for a
given vector %h.

Probabilistic interpretation of covariogram is covariance function denoted by C(X,%h). It
is a two-point probability function, which returns the value of probability that two points
x and x+ %h belong to the set X. We may define this function as follows:

C(X,%h) = P
{
x ∈ X, x+ %h ∈ X

}
. (2.28)

In order to link covariance function with covariogram, we can write:

C(X,%h) = E
{
K(X,%h)

}
= E

{∫

Rd

k(x)k(x+ %h)dx

}
, (2.29)

where E {·} means the expected value. In case of isotropic media, values of covariogram
and covariance are invariant to the direction of the translation vector %h. It can be easily
examined by plotting covariance function for different directions. From this point of view,
covariance is an interesting tool to investigate anisotropy of the medium. Covariance
function provides a number of interesting information, concerning geometrical structure
of investigated medium:

• the value of ||%h|| at which C(X,%h) = ϕ2(X) is the covariance range (which is denoted
in this work as A3 and ϕ(X) denotes volume fraction of considered phase), this
distance gives an information about points correlations, over this distance two points
can be considered as non-correlated (independent)

• the first local minimum of C(X,%h), if exists, has a notion of characteristic length
between inclusions, it is so-called repulsion distance (denoted as δ),

• if C(X,%h), does not converge to its theoretical asymptotic value ϕ2(X) we can as-
sume that the chosen scale is to small, does not contain sufficiently enough statistical
information of the medium, or that the medium has a long-distance interactions and
does not verify the hypothesis of stationarity assumption,

• the periodicity of C(X,%h) implies the periodicity of the microstructure and vice
versa,
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• the slope for all orientations of vector %h is proportional to the specific surface of the

phase St ∝
∫ 4π

0

[
∂C (h, θ)

∂h

]

h=0

dθ.

As we said before, covariance function should be calculated for all possible directions of
vector %h. One of the solution is to use discrete Fourier transform (DFT). This choice
seems to be natural, since eq. 2.29 presents convolution of characteristic function with
itself. In practice, we apply a series of DFT operations on a binary image X, according
to the equation:

C̃(X) = F−1
(
|F (X)|2

)
, (2.30)

where | · | stands for absolute value, we obtain the map in grey level values - C̃(X).
Therefore, the C̃(X) should be correlated to satisfy following properties:





C(%0) = ϕ(X),

C(%h) = C(−%h) ≤ C(%0),

lim
||#h||→∞

C(%h) = [ϕ(X)]2 .
(2.31)

In order to achieve the goal, we measure the maximum of grey level value in region Ω1 and

(a) binary image X4
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Figure 2.16: Microstructure and its covariance functions

the mean value of the domain Ω2 which correspond to ϕ(X) and to ϕ2(X) respectively.

4source: http: // ciks. cbt. nist. gov/ garbocz/ paper19/ node2. html .
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Finally, by using this linear correlation, each point of the domain possess a value in range
[0,ϕ(X)]. This method is summarised in Algorithm A.7 and illustrated in the Figure
2.16.

Morphological tortuosity is one of the measurements which characterises complexity
of porous network. Like covariance function it is an inartistically three–dimensional func-
tion and can not be obtained from slices. This parameter has a significant influence to
transport properties.

In order to define tortuosity, let us begin with a definition of the geodesic distance [22,
33, 34]. We consider two points x, y which belong to a set X. The length of the shortest
curve, which connects this two points and remains in the set X, is called the geodesic
distance. Let L(c) be the length of the curve c = (c1, c2, ..., cn), where ci is the ith element
of the curve, a pixel in our case. Thus, by recalling the definition proposed by [22,33], we
can write:

Dgeo(x, y) = min {L(c)|c1 = x, cn = y} , (2.32)

In the next step of the methodology we have to consider two disjoint sets A and B that
will play a role of a source of propagation. The geodesic distance between a point x ∈ X
and a subset A is defined by following equation [Soille (2003)]:

Dgeo(x,A) = min {Dgeo(x, y)|x ∈ X, y ∈ A} , (2.33)

In order to define tortuosity of a medium we have to consider that sources A and B are
placed in the opposite boundaries of the investigated geometry [Fig. 2.19]. Let DAB

denotes the euclidean distance between the sources. Morphological tortuosity for each
point x ∈ X is defined as follows:

τAB(x) =
Dgeo(x,A) +Dgeo(x,B)

DAB

, (2.34)

In order to obtain a spatial distribution of morphological tortuosity we used the method
proposed by Decker et al. [35]:

1. determination of geodesic distance map to the set A – Dgeo(x,A)

2. determination of geodesic distance map to the set B – Dgeo(x,B)

3. conditional sum of two maps – ∀x∈X τ
′

AB(x) = Dgeo(x,A) +Dgeo(x,B)
if Dgeo(x,A) ∧Dgeo(x,B) *= 0, else τ

′

AB(x) = 0

4. normalisation by the euclidean distance – τAB(x) = τ
′

AB(x)/DAB.

Since we are analysing digitised images of a real material, we can compute tortuosity by
using geodesic dilations. In this method the shape of the structuring element, used to
estimate the geodesic distance maps, has a direct influence on the morphological tortuos-
ity. It was showed by Peyrega et al. [36], that the structuring elements like squares (2D)
or cubes (3D) are irrelevant to estimate the morphological tortuosity. The solution is to
use discretised disc and spheres in 2D and 3D respectively. The fast marching method
as a numerical, iterative method to solve eikonal equation, was proposed by Sethian [37].
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(a) results of fast marching (b) results of geodesic dilations

Figure 2.17: Map of distances calculated by two methods: solving eikonal equation by
fast marching and geodesic dilation (cross-shaped structuring element). For both cases
the source is located in the centre of the image. Grey scale colours represent arrival
times (distance) from the centre of the image to each pixel. Brightness increase with the
distance.

Figure 2.17 shows the differences between geodesic distance maps calculated by two meth-
ods (fast marching and geodesic dilation). Generally speaking, the equation describes a
wavefront propagation and is given as follows:

||∇T (x)| | =
1

f(x)
, (2.35)

where T (x) is the arrival time of a wavefront propagating with speed f(x) at point x ∈ X.
The method and algorithm are explained and presented by Sethian [37]. In our case the
speed will be equal to 1 (propagation of one pixel per iteration), it means that arrival time
T (x) returns the value corresponding to a distance. The result of the method is a maps
of pixels possessing a values corresponding to the length of the shortest path containing
x and connecting two disjoint sets A and B.

To illustrate the method we will use the contour map of France, for the purpose of the
explanation the localisation of Corsica was changed [Fig. 2.18 (a)]. At the first step we
placed the set A on the upper boundary and started to solve eikonal equation by fast
marching method. For the sake of clarity, part of images, where the wave is not propa-
gating, is coloured in green. Figure 2.19 shows the evolution of arrival times calculated
for the image (in the image dark colour corresponds to short arrival times and red one
area where the wave has not arrived yet). As a result we obtained the map of arrival
times (geodesic distance map) from the source [Fig. 2.21 (a)]. We can clearly see how the
wavefront is propagating and that the wavefront has not arrived to Corsica, which is un-
connected. The next step is analogical, the only difference is localisation of the set B [Fig.
2.21 (b)]. Figure 2.20 presents propagation of the wavefront in this case. Since we have
two maps of distances we perform the conditional addition, described in the algorithm.
After all, we have to divide obtained values by the euclidean distance between sources.
Figure 2.22 shows the results of the methodology. It is easy to notice that the results are
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(a) binary image of contour
our map

(b)
source sets: A (red) and B (blue)

Figure 2.18: Initial binary image and localisation of sources; white phase is the medium
in which the wave is propagating.

(a) evolution of propagation i
= 368

(b) evolution of propagation i
= 658

Figure 2.19: Map of arrival time of a wavefront calculated at two different iterations, in
case when the set A plays the role of the source. Red colour demotes the area where the
wave has not arrived yet.

not affected by non-interconnected subsets. As a results of the conditional addition, at
the final step Corsica possess 0-valued tortuosity.
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(a) evolution of propagation i
= 86

(b) evolution of propagation i
= 826

Figure 2.20: Map of arrival time of a wavefront calculated at two different iterations, in
case when the set B plays the role of the source. Red colour denotes the area where the
wave has not arrived yet.

(a) set A as the source (top) (b) set B as the source
(bottom)

Figure 2.21: Map of arrival time of a wavefront calculated for two different localisations
of the source.

(a) map of tortuosity
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Figure 2.22: Map of tortuosity and its distribution.
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2.2 Effective behaviour: elasticity and permeability

One of the main, classical idea of continuum mechanics is the assumption that a considered
medium is ’averagely’ homogeneous in its volume. A lot of materials, like composites,
porous media etc., seem to satisfy this idea at certain scale. However, analysing the
microstructure of any material we may conclude that each of them poses its scale, at which
inhomogeneities (heterogeneities) appear. In this section a brief introduction to periodic
homogenization and RVE’s estimation are presented. Nextly, influence of discretization
on elastic properties is featured. Finally, a method of permeability estimation by solving
Stoke’s equation and upscaling method in the framework of Darcy’s law are presented.

2.2.1 About homogenisation

The upscaling method consist in two main issues: separation of scales and structure–
property relation. Role of the homogenisation may be interpreted as a bridge which
links effective behaviour of the medium with its microstructure. Or, we can say that ho-
mogenisation provides quantitative description of microstructure–property relation, which
enables to determine bounds of the effective behaviour. Due to this fact, we can briefly say
that the method of homogenisation is ’correctly’ used if exists, between considered micro
and macro scales, a finite number of separable scales. Once we are handled with the sep-
aration of scales, we can take up the structure–property estimation. Generally speaking,
it consists in a determination of the representative volume element (RVE). All definitions
reveal that the RVE should contain enough microstructural informations of the studied
medium to determine its effective behaviour. Covariance function, presented before, is
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Figure 2.23: Covariance function of sandstone.

an efficient tool, that gives informations of lower bound of RVE size [Fig. 2.23]. The
covariance range is the distance (length) over which two points in the microstructure are
uncorrelated (independent), hence the RVE size can not be smaller than the covariance
range. The method of RVE estimation is presented further in the subsection.
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Figure 2.24: The periodic cell Ω. The symbol ∂Ω represents the outer boundary. Ωs and
Ωp denote solid and porous phase respectively.

2.2.2 Periodic homogenisation method for linear elasticity

In this work, periodic boundary conditions, prescribed on the RVE cell, are considered.
Within the strain approach framework, the method of periodic homogenization can be
briefly summarised as follows [9–11].

For a periodic geometry of a RVE Ω [Fig. 2.24], submitted to an overall prescribed strain
E, the local fields of stress σ and strain ǫ(u) are also Ω-periodic (u denotes displacement
filed). Let u

′

stands for periodic displacement field, therefore we can write that the strain
field can be decomposed in following way ǫ(u) = E + ǫ(u

′

), where E is the constant part
and ǫ(u

′

) denotes fluctuating one. What is more, in particular, this decomposition implies

that
〈
ǫ(u

′

)
〉

= 0 and 〈ǫ(u)〉 = E, where the brackets 〈·〉 denotes the average of a field on

the RVE, in the sense:

〈·〉 = 1

|Ω|

∫

Ω

· dΩ (2.36)

Let the property of solid phase is defined by microscopic stiffness tensor c and %n is the
outer unit vector of outer boundary δΩ. Therefore, the local problem can be written in
following way: 




div (σ) = 0 in Ωs,

σ = c :
(
E + ǫ

(
u

′

))
in Ωs,

u
′

is periodic, σ · %n is antiperiodic on ∂Ω,

(2.37)

The effective (homogenized) stiffness tensor C satisfies following equation:

C : E = Σ = 〈σ〉 =
〈
c :

(
E + ǫ

(
u

′

))〉
, (2.38)

where Σ stands for the overall stress field. A classical way in order to compute the effective
stiffness tensor C is to solve three tractions and three shearing tests. Let u

′

kh stands for
the solution of the mechanical test, given by E = Ikh, where:

Ikh =
1

2
(δikδjh + δihδjk) , (2.39)

where Ikh is the fourth order identity tensor, and δ denotes the Kronecker delta symbol.
Finally, the macroscopic stiffness tensor Cijkh element is given by:

Cijkh =
〈
cijpq

[
Ikhpq + ǫpq

(
u

′kh
)]〉

. (2.40)
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To obtain full effective, macroscopic stiffness tensor, six tests have to be performed over
a cell of RVE.

When RVE geometry presents three planes of symmetry, periodic boundary conditions can
be replaced by symmetry boundary conditions [9] imposed on the external boundary
∂Ω. Therefore, local boundary value problem can be solved in the 1/8 of the whole
periodic cell (in 3D). The type of the symmetry boundary conditions depends on the
mechanical test that is being performed:

• for traction test
%uN = %0 on ∂Ω (2.41)

%σT = %0 on ∂Ω

• for shearing test in the plane (%i,%j)

– on the external planes orthogonal to the axis %i and %j

%uT = %0 (2.42)

%σN = %0

– on the external planes orthogonal to the axis %k

%uN = %0 (2.43)

%σT = %0

where %uN , %uT are displacements in normal and tangential directions respectively, given
by:

%uN = (%uN · %n)%n and %uT = %u− %uN .

Analogically %σN and %σT represent normal and tangential stress vectors what can by written
in following way:

%σN = ((σ · %n) · %n))%n and %σT = σ · %n− %σN .

The set (%i,%j,%k) represents unit vectors of the standard basis.

2.2.3 RVE’s size estimation

As we said before, within a general multi–scale method, it is necessary to determine the
RVE over which the measured physical properties (e.g. aforementioned effective linear
elastic properties ) become representative for the entire material [32, 38–41]. We evoke
two main, classical approaches of RVE determination, and later a statistical one:

• geometrical RVE - consist in dividing the entire investigated geometry into cubic
subsamples, the size effect of searched descriptor (e.g. porosity, specific surface) can
be determined by changing the cube size, localisation and orientation. It is assumed
that the ’geometrical RVEs’ are independent of the investigated physical property.
Finally, RVE is defined when the searched descriptor begins to converge to its global
value [Fig. 2.25 (a)]
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(a) geometrical estimation of porosity [18] (b) physical estimation of compliance
tensor component

Figure 2.25: Different methods of RVE size determination.

• physical RVE - consist in dividing the entire investigated geometry into cubic sub-
samples and based on the requirement that the overall responses with respect to
some given physical behavior do not depend on the actual position. The size of
such ’physical RVEs’ depends on the physical property considered and on the mi-
crostructure. Finally, RVE is defined when the searched effective property begins
to stabilise [Fig. 2.25 (b)].

Statistical approach presents other kind of RVE estimation proposed by Kanit et al [42].
Which can be briefly introduced as physico – statistical approach. Generally speaking,
the method consist in extraction of sub-samples of investigated material and analysis
of standard deviation’s fluctuations of searched physical property, as a functions of size
and number of realisations. What is more, the methodology describes quantitatively
the relation between number of realisations, precision (error) and size of the RVE. The
results of the study can also be interpreted as a determination of the minimal number of
statistically equivalent realisations of the microstructure that have to be investigated for
a fixed size of RVE and wanted precision in order to predict the effective behaviour of the
medium.

Previously mentioned covariance function allows us to introduce a tool that gives an
information on the domain size of considered microstructure for which measured effective
properties can be considered as representative. This tool is so-called integral range which
is given by equation [9, 19,42]:

Ãd =
1

C(X, 0)− C(X, 0)2

∫

Rn

[
C(X,%h)− C(X, 0)2

]
d%h. (2.44)

Let 〈Z(V )〉 denotes the spatial average of a scalar random field Z(%x) over a volume V.
Kanit et al. [42] introduced the integral range Ãd of Z(%x) to any random function. The
statistical fluctuations of 〈Z(V )〉, are related to the integral range Ãd by equation:

D2
Z(V ) = D2

Z ×
(
Ãd

V

)α

, (2.45)

where α = 1 in geostatistic, D2
Z is point variance of the random process Z. In case of

biphasic media with property Z1 for first phase and Z2 for the second one, point variance
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is defined as:
D2

Z = Vf (1− Vf ) (Z1 − Z2)
2 , (2.46)

where Vf denotes volume fraction of the first phase. Merging (2.45) and (2.46) we obtain:

D2
Z(V ) = Vf (1− Vf ) (Z1 − Z2)

2

(
Ãd

V

)α

. (2.47)

Knowing that in classical sample theory the absolute error εabs and relative error εrel
are connected with exact mean value M of the random process 〈Z(V )〉 obtained from N
statistically independent realisations, we can write:

εabs =
2DZ(V )√

N
, εrel =

εabs

M
=

2DZ(V )√
NM

. (2.48)

By combining (2.45) and (2.48) we obtain:

N =
4

M2ε2rel
Vf (1− Vf ) (Z1 − Z2)

2

(
Ãd

V

)α

. (2.49)

And finally the size of RVE may be obtained by transforming eq. (2.49):

VRV E =

(
4

Nε2abs
Vf (1− Vf ) (Z1 − Z2)

2

)1/α

Ãd. (2.50)

For the determination of RVE size, the methodology of Kanit et al. [2003] can be
briefly summarised in following way:

• generating different realisations (which are assumed to be statistically equivalent)
of the reference microstructure for 4-5 different sizes of the edge length

• performing the mechanical tests to obtain effective elastic properties

• obtaining mean value and variances of effective properties for chosen volume sizes

• identifying the integral range Ad and power α in the eq. 2.45

• setting wanted precision for estimation and number of realisations - using eq. 2.50
to estimate RVE size

2.2.4 Influence of the discretization on the effective elastic be-

haviour estimation

Since the RVE is defined we can predict the effective elastic behaviour using the rule
described by equation 2.40. However, results of finite element method are sensitive to the
discretization (meshing). In the case of heterogenous materials the amount of publication
dealing with influence of mesh, mesh density, size etc. is not significant.
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Since we are dealing with digitised heterogeneous media a natural way is to represent
each voxel by a cubic mesh element. In literature we can find publications which are
essential to deal with discretisation problem for such a kind of mesh. Papers that presents
quantitative description of a relation between number of mesh elements (resolution) and
effective stiffness of the system were published by Garboczi and Day [12] and Roberts
and Garboczi [13, 14]. Their results were confirmed by Gatt et al. [43] in the case of
porous ceramics with ellipsoidal inclusions, randomly distributed in space. Relations
between computed elastic moduli and resolution is presented in Figure 2.26 and 2.27.
This overestimation of stiffness may be interpreted as a consequence of lack of precision
in the representation of contours of the interfaces between phases.

Let M denotes the number of voxels (elements of regular mesh) along the cubic edge of
the cell. It is shown that discretization error for FE methods can be estimated according
to following phenomenological formula:

PFEM ≈ P0 +
a

M
, (2.51)

where PFEM is the computed elastic modulus and P0 is so-called continuum value, which
corresponds to the case when M → ∞. To deal with this error we have to compute
elastic properties at least for three different values of M and then extrapolate the results,
by fitting linear function according to the least squares method.

(a) model of open-cell solid (b) Young’s modulus of the cell

Figure 2.26: Results of Roberts and Garboczi [14]. The Young’s modulus evolution as a
function of the resolution M .

2.2.5 Upscaling Stoke’s equation - Darcy’s law

Permeability is a measure of the ability of a porous media to transmit fluids. It is a critical
property in defining the flow capacity of a rock sample. The true absolute permeability
of porous rock is an intrinsic property of the rock, reflecting its internal structure. The
permeability of a rock is a constant value, unchanged by different types of fluids that
have different viscosities or other physical properties. This rule is followed by all liquids at
laminar flow rates that are nonreactive with the rock. Understanding interactions between
micro-structural geometry and macroscopic effective properties of porous media is an issue
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(a) model of spherical cavities (b) Elastic moduli of the cell

Figure 2.27: Results of Gatt et al. [43]. Influence of the resolution M on the Young’s and
shear moduli values.

in a wide range of industrial fields as hydrology, petrology etc. A huge efort has been
spent to theoretically estimate or to numerically establish a relation between geometric
microstructure and macroscopic physical properties. For porous media, permeability is
the macroscopic parameter of significant interest, and its measurement is essential to
predict macro-scale behaviour of flows.

In order to estimate effective permeability, we considered two scales: the microscale,
where structure of the material of the porous phase is determined [Fig. 2.28] and the
macro-scale, where the computed effective properties are assumed to be representative.
For the purpose of the study we consider incompressible single phase flow characterised
by low Reynolds numbers. Above assumptions lead us to solve the Stokes’ equations.
By neglecting gravity, the conservation equation in the porous space can be written as
follows:

∇%v = 0 (2.52)

and the momentum equation:
µ̃∇(∇%v) = ∇p, (2.53)

where %v denotes the velocity field, p is the pressure and µ̃ stands for dynamic viscosity
of the investigated fluid. The Stoke’s equation at macroscale is transformed into Darcy’s
law, which can be written as follows:

〈%v〉 = −K

µ̃
∇P, (2.54)

where 〈%v〉 is the average velocity of the fluid, K denotes the permeability tensor and ∇P
is the macroscopic gradient of pressure. Since %v is defined only in the porous domain Ωp

we have:

〈%v〉 = 1

|Ω|

∫

Ωp

%v dΩ, (2.55)

Finally, the permeability of porous rock can be calculated by solving a local boundary
value problem of water flow in the pore domain eq. 2.52 and eq. 2.53. As the boundary
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(a) pression distribution in a porous network

(b) velocity field (pression distribution colours)

Figure 2.28: Visualisation of pressure distribution and streams.

conditions, at the pore geometry of the microstructure, we will apply the non – slip
conditions. We can determine e.g. the permeability tensor component Kxx as follows:

Kxx = −< vx > µ̃

∆Px

, (2.56)

where ∆Px denotes macroscopic gradient of pressure in the %x direction, < vx > is the
average velocity of the fluid in the %x direction (< vx >=< %v · %x >) and µ̃ is the dynamic
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viscosity.

2.3 Chemical degradation

Chemical dissolution is the main phenomenon which increases porosity of materials and
affects their properties. The chemo-mechanical coupling problem has been intensively
studied in recent years. Historically, first publications dealing with chemo-mechanical
coupling concerned concrete, mortar or cement paste. There is also a wide range of
recently published papers concerning experiments of chemical degradation of these mate-
rials tested in different conditions (see for example Nguyen et al. [44], Yurtdas et al. [45],
Huang et al. [46]). The results obtained confirm a general weakening of the material
during chemical degradation (loss of strength and stiffness). Significant part of numerical
models focus on leaching of calcium from cementitious structures. For example, a model
based on scalar continuum damage was presented by Le Bellego et al. [47]. Ulm et al. [48]
introduced an analytical model linked to the theory of Biot-Coussy. From the other hand,
discrete model is shown in paper of Chatzigeorgiou et al. [49]. Finally, homogenization
approach was applied in works by Nguyen et al. [50] and Stora et al. [51].

The experimental studies considering CO2 injection into the rock reservoirs performed in
the laboratory conditions, relatively close to the injection point, show different behaviours
depending on physical parameters of injected fluid (temperature, pressure), chemical com-
position of injected fluid and initial rock parameters (see Luquot et al. [52], Gouze et
al. [53], Eggermann et al. [54], Egermann et al. 2006 [8], Izgec et al. 2008 [55] among
others). For example, Egermann et al. [54] performed an experimental study of chemical
degradation of hydrocarbon rock reservoirs (which are considered by them as potentially
the best candidates for CO2 geological storage) in the far field region. They analysed
three different scenarios of dissolution: uniform, compact and wormholing. Xie et al. [56]
performed hydrostatic and triaxial compression tests on samples of limestone, chemically
degraded by dissolved CO2. The significant influence of chemical degradation, in im-
mersion condition, on the mechanical behaviour of material have been shown. They also
showed that chemical degradation intensifies deformation of material with time. The CO2

injection to non-carbohydrate rock sample has been studied by Canal et al. [57]. They
focused on the siliceous sandstone reservoirs. Their results suggest that mineral dissolu-
tion and cracking processes act in a synergetic way during the acidic injection. At the
same time, they emphasize that increase of permeability noticed after a long time can
be explained mainly by dissolution process of a solid phase. On the other hand some
investigations showed the decrease of permeability at the beginning of injection of fluid
into rock samples (Qajar et al. [58], Izgec et al. [55]). The authors relate this phenomenon
with closing of pores throats by solid particles disconnected from the solid skeleton near
to the inlet of injection. Later, increase and stabilization of permeability were noticed.
In the experimental research of behaviour of soil at long time scale after CO2 injection
(Bemer et al. [2], Nguyen et al. [59]) it is assumed that porous aquifer is saturated by saline
water and concentration of the dissolved CO2 is uniformly distributed in the pore space.
The authors showed that chemical degradation can be considered as homogenous in the
sample scale. Moreover, their results show that porosity increases uniformly in time over
the whole length of the sample. Because of increasing porosity material weakening occurs.
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Decrease of both, stiffness and shear strength, and increase of permeability have been also
noticed. The comparison of measured petrophysical properties of limestone and bioclastic
grainstone samples under no flow conditions in two different environment (exposition to
wet supercritical CO2 and CO2 saturated water) has been shown in the paper of Rimmelé
et al. [60]. The significant homogeneous porosity increase over whole sample, for both
fluid compositions, has been noticed. Under no flow conditions (for both compositions)
the fluid reaction with the rocks occurred, but CO2 saturated water was more reactive
than supercritical CO2. The experiments of permeability of cap rocks have been carried
out by Bachaud et al. [61]. Diffusion and permeability coefficients have been measured
under reservoir thermodynamic conditions and compared before and after the alternation.
Despite of increase of porosity, the initial low-value transport parameters were conserved.
This was called by the authors a non-catastrophic weakening of the material. Moreover,
for few samples a decrease of diffusion coefficients was noticed.

The modelling of chemo-mechanical coupling is a subject of a large number of papers pub-
lished in the recent years. The proposed approaches are very different. Several models
were obtained by periodic homogenization method [62]– [63]. For example, Peter [62], [64],
Peter and Böhm [65] proposed a homogenisation analysis of elasticity problem with time
evolving microstructure. In this model the equations are transformed to a fixed peri-
odic reference geometry. This operation was necessary because during the evolution of
the geometry the periodicity was not conserved. The obtained model seems to be diffi-
cult to perform numerical simulations. In Lewandowska [66] a macroscopic incremental
model of chemo-mechanical coupling by using the periodic homogenization was proposed.
In this study it was assumed that the chemical dissolution of solid at the microscopic
scale is governed by diffusion equation. Coussy [67] proposed a phenomenological model
in which variations of poroelastic parameters are described as a function of irreversible
porosity caused by chemical degradation. Numerical and computational aspects of chemo-
mechanical modelling related to flow and transport phenomena during the injection pro-
cess are presented in the papers by Doughty et al. [68], Kumar et al. [69], Hovorka et
al. [70], analytical models of the same phenomena are presented by Saripalli et al. [71]
and Nordbotten et al. [72]. In conclusion, the state of the art shows that although there
is a lot of publications dealing with the problem of chemo-mechanical coupling, the ap-
propriate model of anisotropic rock dissolution with geomechanical effects in the context
of CO2 geological storage, is still lacking. The difficulty resides in the fact that, by its
nature, the problem is site specific in the sense the chemical composition of both the rock
and saline water determine the behaviour of the system. The experiments are difficult to
perform because of the involved time-scale. For all these reasons, a universal model which
would be able to link the macroscopic behaviour with the microscopic scale (evolving
microstructure), is still searched.

2.4 Structure of the thesis

Chapter 3 presents work that has been done during the first year of my thesis, under
the supervision of Jolanta Lewandowska and Philippe Gouze. One of the points of the
work was to reconstruct periodic RVE by using reflectional symmetry. The first approach
concerned evolution of effective parameters (tortuosity, stiffness and permeability ten-
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sors) trigger by dissolution process of oolitic limestone [73]. The sequel concerns the work
done during the two last years under the supervision of Loïc Daridon and Yann Monerie.
Chapter 4 contains a morphological description of the microstructure of Fontainebleau
sandstone. It also shows the reconstruction method that has been used to generate statis-
tically equivalent realisations of sandstone, and morphological validation of the samples.
Chapter 5 presents two different scenarii of numerical dissolution. Natural microstructure
and generated samples were subjected to the method. Evolution of morphological de-
scriptors is compared and analysed. Chapters 6 & 7 present numerical results concerning
estimations of effective properties. Finally, Chapter 8 contains general conclusions and
perspectives.



We are not to tell nature what she’s gotta be.

. . . She’s always got better imagination than

we have.

Richard Feynman

3
Limestone - RVE reconstruction by

reflectional symmetry

his first approach is based on reconstruction method of RVE by using reflec-
tional symmetry (periodisation process). In the chapter, estimation of effective
behaviour of limestone is presented. Periodic homogenization method for linear
elasticity, with symmetric boundary conditions, is used to estimate effective be-

haviour of the medium. Than, chemical degradation of porous matrix is taken into account
by performing morphological erosion by cross - shaped structuring element. Numerical
computations show progressive degradation of all components of the stiffness (orthotropic)
tensor. Moreover, evolution of associated mass transfer properties (as tortuosity and con-
ductivity tensors), is discussed.
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3.1 Introduction

A first methodology (Fig. 3.1), provides in a simple way how to take into account the
chemo-mechanical coupling in multi-scale modelling of porous media, represented by lime-
stone microstructure. In the proposed method, chemical degradation is performed as a
numerical dissolution (dilation/erosion) of REV’s geometry. The link between evolving
microstructure and macroscopic scale is found by periodic homogenization, which assumes
periodicity of material. The problem of periodicity of RVE, which is a digitised image of
a rock, is tackled by assumption of symmetry – orthotrophy (see 3.2.2). The numerical
computations are performed on a set of samples presenting different degraded states. By
solving particular boundary value problems, given by homogenization theory, the evolu-
tion of macroscopic parameters is obtained. In the modelling, that is performed during the
first year of PhD, the X-ray tomography of oolitic limestone (from Paris Basin) is used.
Samples preparation and numerical dissolution are carried out by ImageJ [74]. Numerical
calculations were performed by Comsol Multiphysics. As an example of an application
of the study, a simple model of a one-dimensional settlement of the rock formation is
presented in Annexe B.

Figure 3.1: Ilustration of the proposed methodology.

Methodology we propose can take into account the geometry evolution effects of real
anisotropic rock sample on mechanical properties and estimate the subsidence due to
chemical degradation. (problem of settlement, formulated in Annexe B, is an iterative
process for which continuous functions of material parameters dependent of porosity vari-
ations have to be known). To predict deformation due to time dependent changes of rock
microstructure we propose a general methodology presented in Figure 3.1. The first step
is to prepare the digital image of the microstructure of the rock which will be investigated.
The second step consists in preparation of samples to perform mechanical tests at different
degraded states. The next step is to perform, for each state, appropriate numerical com-
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putations by solving local boundary value problem and calculating the full macroscopic
stiffness tensor. Afterward, the data should be processed and the degradation functions
have to be fitted. The last step is to use obtained functions to compute the subsidence.

3.2 Microstructure and numerical dissolution

3.2.1 Limestone - reference geometry

We investigated a geometry of a natural rock. It is a sample of an oolitic limestone
from Mondeville formation of the Middle Jurasic age (Paris Basin) [53]. The chemical
composition of the rock corresponds to a magnesium-calcite formula CaαMgβCO3 with
α = 0.99 and β = 0.01. The digital image of the microstructure has been obtained by
X-ray tomography. The size of the image is 1067 × 1067 × 2000 pixels, where 1 pixel
= 5.06 µm, so the physical dimensions are 5.4× 5.4× 10.12 mm3. The raw images were
processed (see for example [75]) in order to obtain a binary image displaying the solid
fraction and the void fraction (or porosity). The initial porosity of the sample calculated
by ImageJ software is ϕ = 9.3%.

Figure 3.2: Front view of the microstruc-
ture in XY plane of size 1067×1067 pix-
els. White part corresponds to the solid
phase, black to pore space.

Figure 3.3: Porosity as a function of edge
length of the REV n.

3.2.2 Sample preparation

By using ImageJ application image of microstructure has been imported, as shown in
Figure 3.2. In order to know the size of the REV for the particular material, the porosity
as function of the dimension of the REV, taken from seven different regions in the sample,
was analysed (Figure 3.3). From Figures 3.3 and 3.4 it can be clearly seen that all lines
converge toward the average value of porosity ϕ = 9.3% when the dimension of the REV
approaches 200 pixels. However, the microstructure of the size 200 × 200 × 200 pixels
appeared to be too large for numerical computations. Therefore, in what follows we
adopted a particular strategy. We assumed that the rock microstructure is periodic, and
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Figure 3.4: Samples preparation - cross section of the microstructure.

Figure 3.5: Periodization process.

that the period presents three reflectional planes of symmetry. Then, seven cubic sub-
samples of the size 50 × 50 × 50 pixels, each representing 1/8 of the complete period,
were selected for further analysis. So, the real size of the analysed microstructure was
100×100×100 pixels. These samples are located in the central part of the microstructure
as shown in Figure 3.4. The samples localization are the vertices of a symmetrical hexagon
and the centre point. Each sample was further processed (see section 3.2.3). Finally, on
seven cubic sub-samples computations were performed at different dissolution states and
all results of numerical computations were interpreted together (see section 3.3 for further
discussion).

In the numerical computations, each sample is considered as a 1/8 of the period. That
means that if we want to reconstruct the period we have to perform the so called ’peri-
odization process’ by using symmetries, as shown in Figure 3.5. We can see three reflection
symmetries by using three perpendicular planes. Note that X, Y, Z are assumed to be the
axes of natural anisotropy.
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3.2.3 Numerical dissolution

The aim is to perform parametric study to present dependence of mechanical properties
in the whole range the theoretical porosity changes. We assume that dissolution of porous
matrix is the only process responsible for chemo-mechanical coupling. Chemical degrada-
tion has been performed as a numerical dissolution (dilation/erosion) of the solid phase
by ImageJ [74]. For three selected samples (sample 1, sample 4, sample 7) numerical
dissolution is performed. The main assumption is that solid part of each microstructure
dissolves uniformly in all directions. It consist in removing one pixel in 6-directional neigh-
bourhood in single non-dimensional time step. This assumption was appropriate due to
the uniformity of the chemical composition and long time scale (long term behaviour) in
which the distribution of pressure and CO2 concentration in saline water is approximately
uniform at the sample scale [2, 59].

For each of seven samples we performe numerical dissolution. As an example in Figures
3.6-3.7, the dissolution process of sample 4 is shown. We can see the evolving pores and the
solid skeleton volumes. The total porosity varies between 16.3% to 37.8%. Note that ϕeff

corresponds to effective porosity of samples in which unconnected pores and unconnected
solid parts have been deleted. In Figure 3.6 percolation in %z direction appears. At the
last state of dissolution the percolation in all directions exists, as shown in Figure 3.7. As
to the solid part, it is connected in each direction at each solid state.

(a) effective pore phase (b) solid phase

Figure 3.6: Microstructure of sample 4; ϕ = 16.3%, ϕeff = 14.9%.
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(a) effective pore phase (b) solid phase

Figure 3.7: Microstructure of sample 4; ϕ = 37.8%, ϕeff = 37.8%.

3.3 Numerical computations of stiffness tensor

3.3.1 Computations of degradation functions of material param-

eters

In order to compute degradation functions of mechanical parameters the numerical compu-
tations using homogenization approach are performed. We adopte the following strategy.
The computations are carried out for all seven samples at the initial state of the rock and
three selected samples at different states of chemical degradation. Than, all results were
interpreted together to define the degradation functions. The choice of such approach can
be justified by the experimental results [2], [59]. Indeed, the experiments showed that the
spatial variations of measured porosity within the rock material were of the same order
that porosity variations of a sample due to the dissolution.

The computations are carried out for all seven samples at the initial state of the rock and
three selected samples (sample 1, sample 4, sample 7) at different degraded states. We
assumed that the solid material (at microscopic scale) is isotropic with following values
of Young modulus and Poisson ratio: Emicro = 27.7 GPa, νmicro = 0.27. These values
correspond to the average material parameters of Euville limestone from the basin of
Paris, measured by Nguyen et al. [63]. The computations has been performed by using
FEM code with a number of mesh elements varying from 100000 to 250000.

3.3.2 Results

All results (for initial and degraded samples) were interpreted together as functions of
porosity. The mean degradation functions were fitted to all samples data. The character
of variations for each parameter can be described by exponential decay function in the
form A exp(−x/B) + C, where constants A, B, C were fitted by least square method.
The correlation coefficient varies between 0.94 and 0.99.
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Figure 3.8: Degradation function of Ex. Figure 3.9: Degradation function of Ey.

In Figures 3.8 - 3.16 the variation of engineering parameters (Ex, Ey, Ez, Gyz, Gzx, Gxy,
νxy, νyz, νzx ) with porosity are shown . Nine of them are independent, since material
is orthotropic [76]. This property was systematically checked by veryfing the relations
between Poisson ratios and Young’s moduli

νij

Ei

=
νji

Ej

i *= j and i, j ∈ (x, y, z). (3.1)

The relative error for each test is less than 0.1%. Also the zero-elements of the matrix were
confirmed by computations. Figures 3.8-3.10 show Young’s modulus for each direction as
function of porosity. The drop of Ex is the most significant. Figures 3.11-3.13 present
three shear moduli. As we can see, the most significant decrease concerns Gzx. For Poisson
ratios νxy, νyz, νzx, no general trends appear (Figures 3.14-3.16). Finally, the analysis of
the results presented in Figures 3.8-3.13 show that degradation data for sample 4 is very
close to the plot of mean degradation function. For this reason sample 4 was chosen to
further computations (see section 3.4).

The numerical results could be compared with experimental data. Unfortunately, no
experiments on orthotropic material are available in the literature. The comparison with
experimental results of degradation of isotropic material provided in [2] and [59] shows a
similar trend of dependence of mechanical parameters on porosity.
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Figure 3.10: Degradation function of Ez.
Figure 3.11: Degradation function of
shear modulus Gyz.

Figure 3.12: Degradation function of
shear modulus Gzx.

Figure 3.13: Degradation function of
shear modulus Gxy.

Figure 3.14: Poisson ratio νxy as a func-
tion of porosity.

Figure 3.15: Poisson ratio νyz as a func-
tion of porosity.



44 Limestone - RVE reconstruction by reflectional symmetry

Figure 3.16: Poisson ratio νzx as a function of porosity.

3.4 Mechanical parameters versus morphological prop-

erties of the rock material

The upscaling method by periodic homogenization provides the link between the micro-
scopic and macroscopic scales. Therefore, the variations of mechanical parameters of the
rock can be analysed in relation with microstructure and its morphological properties. In
this section permeability, diffusion and tortuosity tensors for selected rock sample (sam-
ple nr 4) at initial and degraded states are calculated. In view of previous assumption of
existence of three planes of symmetry, X, Y , Z are the principal axes of these tensors.
This situation does not change during the one-dimensional settlement due to the material
degradation process. The aim is to analyse the correlation between those parameters and
the mechanical properties when microstructure is subjected to evolution.

3.4.1 Mechanical properties versus diffusive properties

In order to calculate effective diffusion tensor for a particular periodic microstructure
following local boundary value problem for the vector %χ is solved [77–79]

∂

∂yi

[
D

(
Iij +

∂χj

∂yi

)]
= 0 in Ωp and i, j ∈ (1, 2, 3), (3.2)

Ni

[
D

(
Iij +

∂χj

∂yi

)]
= 0 on Γ and i, j ∈ (1, 2, 3), (3.3)

where %χ is y-periodic and its volumetric average is equal to zero. D is the diffusion
coefficient at the microscopic scale. %N is the external normal unit vector to the Ωp (pore
domain). In the computations periodic boundary conditions are replaced by the symmetry
conditions, as proposed in [80]. The effective diffusion tensor is given by

Deff
ij =

1

|Ω|

∫

Ωp

D

(
Iij +

∂χj

∂yi

)
dΩ (3.4)
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and the tortuosity tensor by

τij =
1

|Ω|

∫

Ωp

(
Iij +

∂χj

∂yi

)
dΩ. (3.5)

Note that tortuosity is usually defined in phenomenological approaches, see for example
[18], as the ratio

τ =
Λ

Λ′
, (3.6)

where Λ is the straight distance between two positions of a particle, Λ′ is length of tra-
jectory connecting these two positions. According to this definition, tortuosity varies
between 0 and 1. In Figure 3.17 the tortuosity of the sample 4 as a function of the in-
creasing porosity, occurring during chemical degradation, is presented. We can observe
the increase of the tortuosity in the direction %y and %z, and constant (almost zero value)
in the %x direction. In general, the increase of tortuosity is related to the decrease of the
particles trajectory in the pores [18]. Therefore, it can be interpreted as "straightening"
of pores (pores become less tortuous). In the %x direction there is no percolation until the
effective porosity reaches about 38%. Figure 3.18 presents tortuosity tensor components
divided by the effective porosity. It can be said, that kinetics of changes of tortuosity in
relation to increase of the effective porosity is different for τz, than τy. It can be seen that
the rate of "straightening" of trajectories for τy is almost constant during dissolution.

In Figures 3.19–3.22 relations between tortuosity tensor components and mechanical pa-
rameters are shown. For all parameters the increase of tortuosity (τy and τz) is associated
with the decrease of Young and shear moduli.

Figure 3.17: Tortuosity parameters for
each direction as a function of effective
porosity.

Figure 3.18: Tortuosity parameters for
each direction divided by corresponding
effective porosity.

Finally, specific surface of the microstructure for sample 4 (in evolution), is calculated.
In Figure 3.23 the specific surface as a function of the effective porosity, is drawn. We
can see a general trend of increase of specific surface with porosity. For porosity equal to
21% a local decrease appears, that can be explained by fusion of pores forced by chemical
dissolution.
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Figure 3.19: Young modulus as function
of tortuosity τy.

Figure 3.20: Young modulus as function
of tortuosity τz.

Figure 3.21: Shear modulus as function
of tortuosity τy.

Figure 3.22: Shear modulus as function
of tortuosity τz.

3.4.2 Mechanical properties versus permeability

Permeability of porous rock can be calculated by solving a local boundary value problem
of water flow in pore domain. Since microstructure presents symmetries, problem to be
solved in order to compute permeability in %z direction (for example), is as follows:

1. Stokes equation
η∆%v −∇p = 0 in Ωp, (3.7)

2. Incompressibility condition
∇%v = 0 in Ωp, (3.8)

with following boundary conditions (Figure 3.24)

• on the surface 1: pressure p1 = 1

• on the surface 2: pressure p2 = 0

• on all other external surfaces: slip condition

• on all internal solid surfaces: non-slip condition
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Figure 3.23: Specific surface as function
of effective porosity.

Figure 3.24: Pore volume of sample 4 in
degraded state, with indicated notation
for boundary conditions.

Figure 3.25: Comparison of permeability tensor elements and Kozeny-Carman permeabil-
ity.

The permeability Kz can be calculated from the Darcy law that is valid at the macroscopic
scale [81]

Kz = −< vz > η
∂
∂z
p

, (3.9)

where ∂p/∂z means macroscopic gradient of pressure in the %z direction, < vz >=< %v ·%z >
is the average fluid velocity component in the %z direction and η is the dynamic viscosity.
In the problem formulation we use result of theoretical analysis, concerning the scale
separation, for the case of symmetry of the period, as in [80]. The computations are
performed for sample 4 in its initial and degraded states. The results of computations
of three components (Kx, Ky, Kz) as functions of the effective porosity are presented in
Figure 3.25. We can observe a significant increase of Ky while Kz increases only slightly
and Kx remains zero (no percolation in X direction in this range of porosity). In the same
figure, the Kozeny-Carman classical solution for isotropic media is shown for comparison.
Similar study was performed by Narsilio et al. [82].

In Figures 3.26-3.29 the relations between Young and shear moduli, and non-zero elements
of permeability tensor, are presented. A general trend of decrease of the mechanical
parameters as function of increasing permeability is confirmed.
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Figure 3.26: Young moduli as a function
of Ky.

Figure 3.27: Young moduli as a function
of Kz.

Figure 3.28: Shear moduli as a function
of Ky.

Figure 3.29: Shear moduli as a function
of Kz.
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Numerical computations confirm that the loss of mass of solid (increase of porosity) is
linked with weakening of the material. Although, porosity systematically increases, the
hydraulic conductivity increases significantly only in the direction %y. On the other hand,
the Young’s modulus in the direction %y (Ey) is not the most affected by the degradation. It
seems that in the direction %y a preferential path appeared within which a lot of contacts
in the directions %x and %z had been lost. Since the most significant decrease of Young
modulus occurred in the direction %x, we can suppose that the preferential path cut the
maximum number of contacts in the %x direction with respect to others (%y and %z). It is
also confirmed by the decrease of two shear moduli linked to the direction %x, namely (Gxy

and Gzx). The modulus Gxy decreases less rapidly than Gzx that can be explained by
the fact that the number of lost contacts in the direction %y is less than in the direction %z.
Similarly, we can expect that the drop of modulus Gyz is less than the two others since
the lost of contacts in the direction %y and %z is less important than in the direction %x. The
latter is confirmed in Figures 3.11-3.13.

Interestingly, the highest decrease of Young modulus Ex (and associated shear moduli
Gxy and Gzx) is not related with the important variations of the transfer parameters
(tortuosity, conductivity). Therefore, we can say more generally, that the decrease of
mechanical parameters is not necessarily related with percolation.

As far as tortuosity is concerned, we observed that the rate of increase of the tortuosity
is constant in the direction %y, but is subjected to significant changes in the direction %z.
Nevertheless, the change of kinetics of tortuosity is not reflected in the kinetics of changes
of mechanical parameters in the respective directions.

These conclusions have to be verified by performing more numerical computations and
experiments.

3.5 Conclusions

A methodology linking dissolution of rock at the microscopic scale during the geological
storage of CO2, and the geomechanical behaviour of the saline aquifer, is proposed. The
performed numerical computations for an orthotropic microstructure showed progressive
degradation of all components of the stiffness tensor that follow an exponential decay
function. The relation between the mechanical parameters and the transfer properties
(tortuosity and conductivity tensors) during the dissolution process are also studied. It
was found that the high increase of conductivity (in the direction %y) does not correspond
(as could be expected) to the highest weakening of the Young modulus in this direction.
Moreover, the highest decrease of Young modulus (in the direction %x) is not associated
with percolation in this direction. This first results clearly show that morphological
information about microstructure can be very useful in qualitative explanation of chemical
degradation process.

Regarding first approach, in order to understand better the mechanism of numerical
dissolution and its influence to microstructure we propose to develop much more detailed
morphological analysis. Particularly we focus on much bigger RVE size and we suggest
to modify periodisation process.
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There is no branch of mathematics, however

abstract, which may not some day be applied

to phenomena of the real world.

Nikolai Lobachevsky

4
Fontainebleau sandstone - morphology,

reconstruction & validation

n this chapter, a new approach based on equivalent media more than on real
sample is proposed. The morphological tools, introduced in Chapter 2 are used
to perform quantitative description of microstructure of Fontainebleau sand-
stone. The extracted informations help us to adapt the reconstruction method-

ology and to choose suitable generated microstructures, which are in good agreement with
the studied rock sample.
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4.1 Introduction

Sandstone is a type of sedimentary rock composed of sand-sized grains of minerals. Rock
formations that are primarily composed of sandstone usually allow percolation of water or
other fluids and are enough porous to store large quantities of fluid, making them valuable
aquifers and petroleum reservoirs.

Sandstones are clastic in origin and are formed from cemented grains that may either be
fragments of pre-existing rock or mono-minerallic crystals. Grain sizes in sands are defined
(in geology) within the range from 0.0625 mm to 2 mm. Formation of sandstone involves
two principal stages illustrated in Figure 4.1. Firstly, layers of sand accumulate as the
result of sedimentation. Finally, once it has accumulated, the sand becomes sandstone
when it is compacted by pressure of overlying deposits and cemented by precipitation of
minerals within the pore spaces between sand grains.

Figure 4.1: Simplified visualisation of formation process of sandstone. We can see two
phases: the first one is the deposit of subsequent layers of sand grains (deposit); conse-
quently during sedimentation the upper layers press the grains localised on the bottom
(compaction); in the meantime, the precipitation of minerals, cementation occurs (diage-
nesis)1.

The investigated microstructure is presented in Figure 4.2. Standard X-ray microtomog-
raphy images comprise grayscale maps with values proportional to the linear attenuation
coefficient at each material point. Typically, data is organized as a collection of cubic
volume elements (voxels), each of which is assigned a unique grayscale value. Next, the
data are segmented into a number of distinct categories corresponding to distinct material
phases. In our case we consider biphasic (binary) media in which one of values correspond
to solid or pore phase. The initial size of the sandstone geometry is 256×256×256 voxels
with resolution 5.01 µm per voxel.

1source: https: // en. wikipedia. org/ wiki/ Sedimentary_ rock# /media/ File: Pressure_

solution_ sandstone. svg .
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(a) a slice of sandstone (b) 3D microstructure

Figure 4.2: Visualisation of sandstone geometry.

4.2 Morphological characterisation of sandstone

Modelling of microstructure of random heterogeneous materials (porous media) can be
based on morphological and statistical characterisation. In this part, basic morphological
tools that are available to quantitatively characterise a structure of heterogeneous media
are presented. They can be easily obtained from analysis of binary images of the mi-
crostructure. To describe a random media, we can use the following main morphological
criteria [17]:

• basic measures are global measures e.g. porosity, specific surface. To describe
a heterogeneous material (sandstone) we also investigate distribution of global de-
scriptors, e.g. porosity, number of pores, by analysing slices of the geometry in
different planes.

• sizing of objects consist in quantitative description of particular characteristics
like length, surface or volume. To characterise sandstone, which is composed by sand
grains, we use granulometric function, obtained by morphological openings/closings.

• spatial distribution is a very important descriptor to investigate characteristic
length and presence of scales. Scales, characteristic lengths, clustering of object and
isotropy can be described by so called, second order statistics. In the thesis, for this
purpose we use covariance function.

• connectivity has a significant influence on physical properties of media consist of
different phases. Fluid flow in porous media involve the existence of percolated
network across its domain. For the purpose of this work, the connectivity of the
porous phase is quantitatively described by morphological tortuosity.

4.2.1 Basic measures

Porosity is calculated in two steps: by counting the number of voxel representing the pore
space (Vp) and then by dividing the value by number of all voxels representing the entire
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microstructure (Vtotal = 256×256×256 = 16777216 voxels). The method of estimation of
porosity is presented by Pseudocode A.4 in Annexe A. Finally, global value of porosity

obtained for the studied specimen is:

ϕ =
Vp

Vtotal

= 0.046. (4.1)

To perform more detailed analysis of porosity distribution, the 3D microstructure of
sandstone is decomposed into individual slices, like presented in Figure 4.2 (a). For each
projection (XY,XZ and Y Z planes) the value of porosity of each image is measured. In
Figure 4.3 (a) we can see fluctuations around the mean value of porosity from about 2.7%
to 7.5%. The slice number equal to 0 corresponds to the top of the the specimen and the
slice number 255 to the bottom of the specimen in the considered plane. The porosity is
quite homogeneously distributed in the specimen. In Figure 4.3 (b), results are presented
by normalised histograms, distributions possess similar character. Average value for each
plane is of course the same (ϕ = 4.63%), standard deviations are equal 0.74, 0.63 and
0.82 for plane XY , XZ and Y Z respectively.
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Figure 4.3: Porosity of each slice estimated for all planes of the microstructure.

In order to obtain effective porosity, we extract percolated porous network of sandstone,
using CCL [Annexe C]. A visualisation of the network is presented in Figure 4.6 (a). The
estimated effective porosity of the specimen is:

ϕeff =
Veff

Vtotal

= 0.029. (4.2)

In oder to estimate specific surface for each pixel of porous phase its neighbourhood
is scanned by cross-shaped SE. If any component of structuring element is located in
opposite (solid) phase the value of surface increase by 1 px2. After all, obtained value is
divided by total volume Vtotal. The method is presented by Pseudocode A.5 contained in
the Annex A. Specific surface of the microstructure of sandstone is equal to:

St =
S(ϕ)

Vtotal

=
853054

Vtotal

= 0.051 px−1. (4.3)



56 Fontainebleau sandstone - morphology, reconstruction & validation

Table 4.1: Mean number of pores n per slice and standard deviations σ for each plane
(FS).

XY XZ Y Z
n 66 68 72
σ 7 6 7

Effective specific surface Seff is calculated in analogical way for the extracted perco-
lated network, its value is:

Seff =
S(ϕeff )

Vtotal

=
484604

Vtotal

= 0.029 px−1. (4.4)

4.2.2 Number of pores per slice

This descriptor is obtained by analysing the microstructure of sandstone in 2D images.
In order to compute number of disjoint pores, connectivity is defined by 4-neighbourhood
cross - shaped structuring element (SE) In Figure 4.4 (a) we can see the fluctuations of
number of pore per slice around a mean value [Tab. 4.1]. Normalised histograms are
presented in Figure 4.4 (b).
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Figure 4.4: Number of pores per slice computed for each plane of the microstructure.

Finally, the mean number of pores per slice and their standard deviations [Fig. 4.4 (b)],
for each plane, are summarised in Table 4.1.

The both distributions of global descriptors [Fig. 4.3 and Fig. 4.4] give the first impression
that microstructure of sandstone possess geometrical isotropy.
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4.2.3 Granulometry

Granulometry is an approach to compute a volumetric size distribution of objects in binary
images, using a series of morphological opening operations with progressively increasing
size of structuring element. In order to estimate granulometry of sandstone we use two
different structuring elements: binarized sphere and cross - shaped. Aforementioned
method is presented in Section 2.1.

Figure 4.5 (a) shows normalised radii distribution by volume, corresponding to cumula-
tive distribution, presented on the right side [Fig. 4.5 (b)]. Analysis of the figures is
summarised in Table 4.2, where mean, median, maximal value of the distributions and
standard deviations are presented. As we can see, both distribution are translated with
respect to each other, and their values should be tread only as a rough approximation of
real granulometry and as a tool to validate reconstructed equivalent samples.
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Figure 4.5: Granulometry of sandstone obtained using two different SE.

Table 4.2: Summary of morphological granulometry of sandstone (FS). Notation is follow-
ing: sign ◦ denote resultats obtained using binarized spheres, while + denotes cross-shaped
SE and σr stands for standard deviation of distribution.

r◦max r◦mean r◦median σ◦

r r+max r+mean r+median σ+
r

FS 30 17.4 17 3.5 43 23.7 23.5 4.9

Both mean values, r+mean = 23.7 ± 4.9 and r◦mean = 17.4 ± 3.5, gives an approximation
of the radii that should be used in the reconstruction process, which is discussed and
presented in the next section [Section 4.3].

4.2.4 Spatial distribution - covariance function

In order to compute covariance of the microstructure we follow the method featured in
Section 2.1. Pseudocode A.7 presents this method step by step. Figure 4.6 (b) shows
covariance function calculated for three different orientations, along %x, %y and %z axes.
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(a) extracted pore phase
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(b) covariance function of the phase

Figure 4.6: Covariance function calculated for entire microstructure of sandstone (ϕ =
4.63%).

The analysis of Figure 4.6 (b) gives us following informations about sandstone’s mi-
crostructure :

• geometrical isotropy - we can see that for each investigated orientations, all plots
reach the asymptotic value almost at the same point, what is more, the curves are
almost perfectly overlapping

• covariance range is about A3 = 23 pixels - the point when the plot reach the
asymptotic value

• repulsion distance of structure varies from about δ = 24 to 31 pixels - the first
local minima

The same method was applied to the binary image representing percolated porous network
[Fig. 4.7 (a)]. Figure 4.7 (b) presents following informations

• geometrical isotropy - we can see that for all investigated orientations each plot
presents similar trend

• covariance range depends significantly on the orientation e.g. Ax
3 = 55 pixels,

Ay
3 = 70 pixels, while Az

3 = 79 pixels

What means that from morphological point of view, the RVE size should be bigger if we
consider transport phenomena. In this case isolated pores are irrelevant and it is necessary
to consider only the percolated network.

In conclusion, microstructure of the studied sandstone presents spatial isotropy of the
phases distribution. Hence, we can expect isotropic behaviour in the sense of linear
elasticity, where all pores play a role. However, spatial isotropy of the percolated porous
phase distribution does not have to imply directly isotropic behaviour in the case of
transport properties e.g. tortuosity or permeability.
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(a) extracted percolated pore phase

!

!"!!#

!"!$

!"!$#

!"!%

!"!%#

!"!&

! $# &! '# (! )# *! $!# $%!

+
,-
./
0

/123456789

-1:1;4<6=>4?@
A1:1;4<6=>4?@
B1:1;4<6=>4?@
!
%

!

!"!!%

!"!!'

!"!!(

!"!!C

!"!$

! $# &!

(b) covariance function of the phase

Figure 4.7: Covariance function calculated for percolated porous network of sandstone
(ϕeff = 2.86%).

4.2.5 Morphological tortuosity

Tortuosity of sandstone is estimated according to the method presented in section 2.1,
using Fast Marching algorithm. In order to compute tortuosity we performed 6 tests,
two tests for %x, %y and %z directions. The histograms in Figures 4.8 – 4.10 present the
distribution of tortuosity, which were computed for the investigated microstructure. The
mean value of tortuosity components τi is obtained according to following equation:

τi =
1

ϕeff

〈τi〉 . (4.5)

Table 4.3: Summary of morphological tortuosity of sandstone. For each direction the
average value τ , minimal τmin, maximal one τmax and standard deviation are presented.

τx τy τz
τ 2.21 1.92 2.44
τmin 1.48 1.45 1.25
τmax 3.98 3.58 4.67
στ 0.49 0.38 0.70

Table 4.3 gives more details about the extremities and average values of tortuosities.
Analysing Figures 4.8 – 4.10, we can say that the tortuosity distributions presents differ-
ent trends. What is more, we can see differences in both between the values of diagonal
components as in the character of the distributions. However, for all distributions sig-
nificant part is included in common range of tortuosities values (τ i ± σi). Tortuosity
in direction %z, which is parallel to gravitational acceleration vector, represent the most
tortuous structure. What can be explained by formation process of sandstone, in which
gravitational compression induce significant changes of the microstructure.
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Figure 4.8: Tortuosity of sandstone; component τx.
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Figure 4.9: Tortuosity of sandstone; component τy.
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Figure 4.10: Tortuosity of sandstone; component τz.
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4.3 Reconstruction methodology

As we said before, formation process of sandstone consists in series of complex geological
and hydrodynamical phenomena. For the purpose of this work, we did not attempt
to numerically imitate the natural process of formation of sandstone. The aim is to
reconstruct the specimen, in a simplest possible way, by implementing some basic stages
inspired by natural process of sandstone formation. In our approach we followed the works
of Bake and Øren [4,5], in which the reconstruction is undertaken by following processes:

• grain deposit - grain assembly. This stage can be seen as sandgrains transport
and deposition.

• compaction - bulk volume reduction. This step mimics the natural compression
caused by sedimentation.

• diagenesis - radii increment. This stage is imitating the cementation and mineral-
ization process.

4.3.1 Grain deposit

From the previous analysis we know that the microstructure of sandstone is fully perco-
lated and possess geometrical isotropy. Due to this fact, we used monodisperse spheres,
whose deposit is initially isotropic [Figure 4.13]. Besides, in 3D this kind of deposit is
initially percolated in all directions. The grains were placed one by one into a three-
dimensional box according to the algorithm of gravitational potential minimization [83].
The position of each new grain is chosen to minimise the gravitational potential and no
overlapping is allowed. Hence, the grain is placed along line L such that the z coordinate
of its centre is minimum in the space [Fig. 4.11].
The grains deposit was performed by using LMGC902, which was developed in Mechanics
and Civil Engineering Laboratory of the University of Montpellier (LMGC) by F. Dubois
and M. Jean [6, 7]. The software allows to model a collections of deformable or rigid
particles of various shapes. The size of the three-dimensional box is 400×400×500 pixels.
To reconstruct the microstructure of sandstone we used three different values of initial
radii:

• 10 pixels (8813 grains in the box)

• 15 pixels (2718 grains in the box)

• 20 pixels (1127 grains in the box).

All the initial values of radii were smaller than the mean radius identified by morphological
granulometry [Fig. 4.5]. Even if the initial deposit is composed of monodisperse grains,
the diagenesis process induces polydispersity and heterogeneity in the sample. For the
sake of simplicity, each geometrical deposit is named R10, R15 and R20, where the number
denotes the value of initial radius of considered grains assembly.

2https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home
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Figure 4.11: Construction of a geometrical deposit. Centre of deposited sphere is located
along the curve L and at a point where the gravitational potential is minimum [84].

4.3.2 Compaction

Samples, generated according to geometrical rules (potential minimisation), present loose
packing of spheres, to increase compacity a compaction step is applied. During com-
paction, friction coefficient is set to zero, to facilitate rearrangements of the grains. For
each geometrical deposit, two different scenarii of compaction are proposed:

• gravitational sedimentation, illustrated in Figure 4.12 (b)

• triaxial compaction, presented in Figure 4.12 (c)

For the sedimentation scenario, a gravity force F = mg is acting for each grain. The
sedimentation is characterised by relative displacement ǫz = z1/h, where h is the initial
hight of a grain assembly and z1 is the total change of this height during the sedimentation
[Table 4.4].
In case of triaxial compaction, a force is applied on the three walls (right, back, top),
while other walls were fixed [Fig. 4.12 (c)]. The triaxial compaction is characterised by
relative volume reduction ǫV = V1/V0, where V0 is the initial volume of the box and V1 is
the volume after the compaction [Table 4.4]. Moreover, for the triaxial compaction the
relative displacements ǫx, ǫy an ǫz are also presented.

After this stage of reconstruction we export the positions of grains centres to perform the
next step of the method - diagenesis. Finally, nine different cases are analysed, and for
the sake of clarity a new notation is introduced:

• triaxial compactions: C10, C15 and C20

• gravitational sedimentation: S10, S15 and S20

• geometrical deposit: G10, G15 and G20
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Table 4.4: Summary of compactions characteristics. For each geometrical deposit: R10,
R15 and R20 the values of maximal sedimentation (grey) and relative volume reduction,
in case of triaxial compaction, are presented.

R10 R15 R20
ǫz [%] 19.82 18.97 16.35
ǫV [%] 24.95 20.66 19.88
ǫx [%] 4.56 3.98 2.98
ǫy [%] 4.01 3.01 3.40
ǫz [%] 17.69 15.22 14.52

(a) grains deposit (b) sedimentation (c) triaxial compaction

Figure 4.12: Visualisation of the grain deposit stages.

where numbers denote initial radii of the grains assembly.
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4.3.3 Diagenesis

In general, aim of diagenesis is to control porosity of a specimen by increasing radii
of grains. In order to avoid border effects and regular packing of spheres, porosity is
measured in a window (256×256×256 pixels), placed inside the box. The localisation of
the window is showed in Figure 4.14. After compaction step, positions of each grain and
radii values are exported and treated in code written in c++ to perform the next step of
the methodology.

In this thesis, diagenesis process consists of two steps. First step is uniform radii increment
by the value of 1 px at the time, until the following criterion is satisfied:

ϕwindow − ϕsandstone

ϕsandstone
≥ 0.8, (4.6)

where ϕwindow denotes the porosity measured in the window and ϕsandstone is the porosity
of the reference sample.

The second one, consist in radii increment by 1 px of randomly chosen grains. This step
took a place until porosity is adjusted to the desired one with a relative error lower than
10−2.

(a) step i (b) step i+ 1

Figure 4.14: Simplified visualisation of the diagenesis process and localistion of the win-
dow.

4.3.4 Choosing the initial radius

In order to choose the appropriate initial radius of the grain deposit, all the realisations are
analysed using following descriptors: specific surface, number of pores per slice, morpho-
logical granulometry and covariance function. Aforementioned descriptors are summarised
in Table 4.5. We can clearly see that in all cases, except covariance ranges for G15, S15
and G15, the generated samples are missing the reference values - sandstone character-
istics. Analysing specific surface St, number of pores per slice n and mean radii r+, we
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can deduce that the searched radii lays between 10 and 15 px. From the point of view
of compaction scenarii, no significant difference between generated samples is noticed.
However, some characteristics of geometrical deposit G10 (St and n) are substantially
different in comparison with each scenario of compaction (S10 and C10). It seems that it
is triggered by fact that geometrical deposit possess significant initial porosity. Therefore,
relatively more iterations of radii increment are performed, what can provoke vanishing
of small pores. Due to this fact, we can notice low value of specific surface St and number
of inclusion in comparison with other deposits with initial radius 10 px.

Table 4.5: Summary of morphological descriptors of each scenario: geometrical deposit
(G10, G15, G20); triaxial compaction (C10, C15, C20) and sedimentation (S10, S15, S20)

G10 G15 G20 C10 C15 C20 S10 S15 S20 FS
St 0.059 0.045 0.033 0.066 0.047 0.034 0.065 0.047 0.034 0.051
nxy 87 48 30 108 52 29 106 56 28 66
nxz 88 50 28 107 52 29 104 54 27 68
nyz 87 48 29 107 53 30 104 54 29 72
r+ 20.5 26.9 35.4 18.4 25.4 34.1 18.4 25.1 34.8 23.7
Ax

3 17 19 28 15 20 23 14 19 29 23
Ay

3 34 20 31 15 19 30 15 20 30 21
Az

3 33 23 32 16 22 35 32 23 28 19

Figure 4.15 presents covariance functions computed, for each realisation and for sandstone,
in directions %x, %y and %z. Figures 4.16 and 4.17 show granulometric function and number of
pores for plane XZ respectively. Analysing those plots we can see that deposits composed
of grains having the initial radius value rinitial = 15 px are in better correlation with
sandstone, than the other initial granulometries.

In general, the process of diagenesis can introduce more heterogeneities to the system
what can entail differences between plots of covariance function, plotted for different
orientations. However, in our case, it is negligible and to justify above, we presented
in Figure 4.13 the covariance of generated realisations (R15) before subjecting them to
the diagenesis process. We can see that for all scenarios initial isotropy is present and
covariance ranges have almost the same value.

Figure 4.18 presents variations of porosity for plane XY , we can clearly see that fluctu-
ations in the case of triaxial compaction are significantly smaller than in other scenarii
and are in better correlations with the reference geometry [Fig. 4.3]. This fact can be ex-
plained by more homogenous compaction due to grain rearrangements induced by triaxial
compression.

Summarising all, the searched initial radius is in the range from 10 up to 15 px.
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(c) geometrical deposit

Figure 4.15: Covariance function ob-
tained for sandstone and for each de-
posit. For clarity, only covariance in
direction %x of the reference geometry
(sandstone) is presented.
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Figure 4.16: Cumulative granulometric
curve by volume obtained for sandstone
and for each deposit. For each gran-
ulometry median value is presented by
dashed vertical lines.
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Figure 4.17: Histograms presenting
number of pores per slice (plane XZ)
obtained for sandstone and for each de-
posit.
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Figure 4.18: Histograms presenting
porosity variations per slice (plane XY)
obtained for sandstone and for each de-
posit.
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4.3.5 Choosing the compaction scenario

Since we know that searched value of initial radius is in the range from 10 up to 15 px, in
order to chose the scenario of compaction, we analyse covariance functions presented in
Figure 4.19. Each figure presents covariances plotted for each scenario of compaction. The
letters C, S, G denote triaxial compaction, sedimentation and geometrical (no compaction)
deposit respectively. The numbers 10 [blue] and 15 [red] correspond to different initial
radii of grain deposit. Regarding Figure 4.19 and approaching to initial radii of 10 px we
can see that the most isotropic geometry is obtained by applying triaxial compaction.
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Figure 4.19: Covariance function of deposits as a descriptor used to compaction scenario.
Covariances are plotted for initial values of radii: 10 and 15 px, for each scenario of
compaction

4.3.6 Analysis of anisotropy of contacts

To dispel any doubts concerning the choice of the scenario of compaction, we present inhere
a brief analysis of anisotropy of contacts. Within the framework of contact dynamic, it is
convenient to use fabric tensor F [85] to characterize the distribution of normal directions
nc at contacts. Fabric tensor is given by:

Figure 4.20: Contact force f c between two grains and its decomposition on normal nc and
tangential component tc.
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F =
1

Nc

Nc∑

c=1

nc ⊗ nc, (4.7)

where nc is unit vector representing the normal direction of the force at contact, ⊗ is the
dyadic product [Fig. 4.20] and Nc is the number of contacts. The anisotropy parameter
ac of fabric tensor is characterized by:

ac(F ) = 1− ||F : I − F ||

||F ||
, (4.8)

where Iij = δij, with δ the Kronecker delta and ||F || =
√
F : F =

√
FijFij for any second

order tensor. We investigate distributions of contacts for sedimentation scenario S15 [Fig.
4.21] and triaxial compaction C15 [Fig. 4.22] in both cases rinitial = 15 px. The anisotropy
parameter ac(F ) are equal 0.982 and 0.999 for S15 and C15 respectively. The analysis of
contacts anisotropy confirms that the scenario of triaxial compaction with initial radius
rinitial = 15 px gives the most isotropic results.
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(a) sedimentation scenario and
normal forces distribution;

rinitial = 15 px

(b) transformation of the unit
sphere (red) by the fabric tensor

(blue)

(c) transformation of the unit
sphere in plane ZY for x = 0

Figure 4.21: Visualisation of normal
forces distribution of sedimentation sce-
nario and of associated fabric tensor; the
anisotropy parameter ac = 0.982.

(a) triaxial compaction scenario
and normal forces distribution;

rinitial = 15 px

(b) transformation of the unit
sphere (red) by the fabric tensor

(blue)

(c) transformation of the unit
sphere in plane ZY for x = 0

Figure 4.22: Visualisation of normal
forces distribution of triaxial compaction
and of associated fabric tensor; the
anisotropy parameter ac = 0.999.
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4.4 Morphological validation

Finally, to reconstruct the microstructure of Fontainebleau sandstone, we have chosen
rinitial = 14 px and triaxial compaction scenario. Each sample is obtained from the same
geometrical grain deposit subjected to chosen type of compaction. Nevertheless, the dia-
genesis process, consisting of random radii increment, allows us to obtain morphologically
different microstructures. After all, generated realisations are subjected to rough sorting
process, which consists of two filters:

1. percolation – samples which were not percolated in all directions were excluded
from the further analysis.

2. effective porosity – samples which were not satisfying the following condition were
excluded: ϕeff = ϕsandstone

eff ± 5%.

The generation process is stopped when 10 realisations, satisfying above conditions, are
constructed. According to the aforementioned conditions, 70 realisations are generated.
CPU time necessary to generate those realisations is equal to 21h 7min, what gives 18min
6s per one realisation [2.6 GHz Intel Core i7].

In Figures 4.23, 4.24 and 4.25 we can see comparison of the real microstructure and one
of the generated samples. At first sight, we can see that the 3D visualisations of porous
network are very similar, therefore, two-dimensional slice as well.

Figure 4.23: 3D visualisation of porous phases of sandstone.
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Figure 4.24: 3D visualisation of one selected generated sample porous network.

(a) sandstone, plane XY (b) generated sample, plane
XY

Figure 4.25: Example of 2D images of microstructures: sandstone and generated one.

4.4.1 Basic descriptors and tortuosity

Selected 10 samples are subjected to morphological analysis. Table 4.6 presents basic
descriptors like porosity, effective porosity, specific surface, effective specific surface and
diagonal components of tortuosity tensor. First row of the table presents the results
obtained for the reference geometry - sandstone (FS). The two last ones show average
values of the descriptors and standard deviation calculated for the generated specimens.
The results present good convergence of global descriptors. The tortuosity, as a descriptor
is very sensitive to both, connectivity and spatial distribution of pore phase. However,
the values of sandstone’s tortuosity are contained in the range of average tortuosities of
generated samples and their standard deviations.
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Table 4.6: Morphological validation of generated microstructures vs. sandstone.

Name ϕeff [%] St[1/px] Seff
t [1/px] τx τy τz

FS 2.87 0.0508 0.0289 2.22 1.92 2.44

G1 2.87 0.0497 0.0284 2.41 2.39 2.50
G2 2.86 0.0500 0.0287 2.46 2.59 3.12
G3 2.85 0.0502 0.0289 2.44 2.10 1.99
G4 2.89 0.0499 0.0283 2.40 2.49 1.98
G5 2.72 0.0491 0.0273 1.93 1.85 1.92
G6 2.96 0.0493 0.0292 2.44 2.01 1.91
G7 2.74 0.0500 0.0278 2.64 2.66 2.49
G8 2.96 0.0494 0.0268 2.12 1.96 2.34
G9 2.78 0.0500 0.0275 2.16 2.18 2.89
G10 2.84 0.0502 0.0280 2.09 2.11 1.88

mean 2.80 0.0498 0.0281 2.31 2.23 2.30
st. dev. 0.12 0.0005 0.0007 0.39 0.37 0.41

4.4.2 Covariance

Figure 4.26 presents a spatial descriptor - covariance function. For clarity, results for each
direction are presented separately. The figure shows comparison between sandstone and
averaged covariance of generated samples for directions: %x, %y, %z, and %d. We can see a very
good spatial correlation between reconstructed specimens and the real microstructure.
Table 4.7 presents covariance ranges and their standard deviations obtained for generated
samples. For comparison the same characteristics of sandstone are also showed.

Table 4.7: Summary of averaged covariance ranges of the generated samples (GS) and
comparison with sandstone (FS).

Ax
3 Ay

3 Az
3 Ad

3

FS 23 21 19 18
GS 20 19 19 21

What is interesting, mean repulsion distance δ of generated samples [Fig. 4.26], does
not depend on the orientation. What can be induces by regular shape of solid skeleton
components, binarized spheres, and homogeneous distribution of pores.

4.4.3 Granulometry

Figures 4.27–4.28 presents comparison of grain size distribution and cumulative granulo-
metric function by volume of sandstone and averaged ones obtained for generated samples.
Although, the methodology of reconstruction is not strictly based on the granulometry of
sandstone nevertheless, the results are in good correlation. Table 4.8 presents the most
important characteristics e.g. maximal, mean, median values and standard deviations
obtained for both structuring elements: binarized sphere and diamond/cross-shaped.
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Figure 4.26: Comparison of covariance function of sandstone (FS) and averaged covariance
of generated samples (GS); plotted for different directions.
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Figure 4.27: Comparison of granulometry (by volume) of sandstone (FS) and averaged
obtained for generated samples (GS) using diamond (cross-shaped) SE.

Analysis of covariance function and granulometry, obtained by binarized circle, presents
consistency between the repulsion distances δ and average solid particle size. We have
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Figure 4.28: Comparison of granulometry (by volume) of sandstone (FS) and averaged
obtained for generated samples (GS) using diamond binarized spheres.

Table 4.8: Summary of averaged morphological granulometry of generated samples (GS)
and comparison with sandstone (FS).

r◦max r◦mean r◦median σ◦

r r+max r+mean r+median σ+
r δ

FS 30 17.4 17 3.5 43 23.7 23.5 4.9 24-31
GS 31 19.4 18.9 2.5 48 24.3 23.7 5.2 23

to note that repulsion distance is a half of a measure of characteristic length between
inclusions, therefore the average value of radius of solid particles should satisfy following
condition:

r ≤ δ. (4.9)

Hence, we can say that granulometry obtained using cross-shaped SE is slightly overes-
timated. However, taking into account a numerical bias (1 px), we may conclude that
grnulometry obtained by cross-shaped structuring element is passable.

4.5 Partial conclusions

In this chapter, firstly, a detailed characterisation of the real microstructure is provided.
Performed morphological description is based on binary image analysis and mathematical
morphology, that can quantitatively describe the geometrical properties of the microstruc-
ture. In the analysis, four types of descriptors are: global, sizing of objects, spatial
distribution and connectivity. Porosity and specific surface are introduced as a basic
global descriptors. Morphological openings operations are used to extract granulometry
of specimen. Spatial distribution of phases is characterised by covariance function. Mor-
phological tortuosity, used to describe connectivity, confirms the fact that the investigated
microstructure is percolated in each direction.

Secondly, an efficient method to generated equivalent microstructure, inspired by natural
process, is proposed. The method consist in three steps: grain deposit, compaction and
diagenesis process. Grain deposit, a step that imitates the transport of sand grains, is
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composed of monodisperse spheres which are deposed in 3D box.
During the compaction step, that can be seen as a sandgrains bulk volume reduction,
a triaxial compression is used. The diagenesis process, that imitates mineralization, is
composed of two phases, first is a uniform radii increment and second, composed of random
radii increment. The diagenesis process - induces heterogeneity of grains collection and
polydispersity.

Finally, the morphological description of the generated samples confirms that they can be
treated as statistically equivalent realisations of investigated Fontainebleau sandstone’s
microstructure. To select 10 representative realisations a rough sorting process, consists of
two filters concerning effective porosity and connectivity, is used. Using the reconstruction
methodology we can easily obtain samples which are percolated in all directions.



—When shall we three meet again in

thunder, lightning, or in rain? —When

the hurlyburly’s done, when the battle’s

lost and won.

Shakespeare, Macbeth

5
Numerical dissolution and evolution of

morphological descriptors

n this chapter two models of chemical dissolution are presented. Microstruc-
ture of Fontainebleau sandstone and all generated samples are subjected to two
different scenarii of numerical dissolution. Chemical dissolution triggers mi-
crostructure modifications which induce evolution of the macroscopic behaviour

of the media. Therefore, evolution of certain morphological descriptors is presented and
discussed.
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5.1 Methodology

Analysis of binarized geometry of natural rock gives only approximation of real connec-
tivity. Therefore, we investigate two different scenarii of dissolution - firstly, dissolution of
the entire pore space and than of the percolated network. Model of numerical dissolution
is based on basic operation of mathematical morphology - dilation. Chemical degradation
of the solid skeleton is taken into account in a simplified way, by performing dilation of the
porous phase using cubic structuring element. The choice of an 3D isotropic SE can be
justified by far field and long term conditions, when concentration of reactants is assumed
to be homogeneously distributed in the pores space at the sample scale [2, 8]. Hence, at
each iteration (dissolution step) all solid voxels from 26-neighbourhood of the pores are
removed. Two different scenarii are considered:

• isotropic dissolution – consist in dissolving all void space even if pores are isolated
[Fig. 5.1 (a)]

• dissolution of percolated network – consist in dissolving only percolated porous
network [Fig. 5.1 (b)].

The proposed modelling is universal, in the sense that it uses non-dimensional time scale.
Therefore, it can be adjusted to any time-dependent process. Moreover, the precipitation
of minerals could also be easily introduced by this method.

(a) isotropic dissolution (ID)

(b) dissolution of percolated network (PND)

Figure 5.1: Visualisation of two scenarii of numerical dissolution in 2D, simplified case.

Let set X represents binary image of porous medium. The results of i-th step of isotropic
dissolution is defined by dilation of porous phase, by structuring element B. We can
write, in recursive form:

X iso
i = X iso

i−1 ⊕ B, i ∈ {1, 2, 3 . . .} , (5.1)

where X iso
0 = X0 is the initial image and exponent iso stands for isotropic dissolution.

Figure 5.2 presents effect of this scenario on 3D microstructures.
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Let us denote by Ξ(·) an operator acting on binary image, which returns percolated porous
network. The results of i-th step of percolated network dissolution is defined by dilation
of the extracted percolated porous phase, by structuring element B. It can be written in
following way:

Xpnd
i =

[
Ξ

(
Xpnd

i−1

)
⊕ B

]
+X0, i ∈ {1, 2, 3 . . .} , (5.2)

where Xpnd
0 = X0 is the initial image, sign ’+’ is the addition of binary images and

exponent pnd stands for percolated network dissolution.

The following equation:

Ξ

(
Xpnd

i

)
= Ξ

(
X iso

i

)
, i ∈ {1, 2, 3 . . .} , (5.3)

is satisfied only when percolated network never connects with isolated pores in both cases
or isolated pores do not exist.

Dissolution processes, described by equations 5.1 – 5.2 are performed in 3D and are
stopped when porosity reach about 40%. What means that in both cases, of isotropic
dissolution and percolated porous network, we perform respectively, 4 and 6 iterations.
Aforementioned method is illustrated in Figures 5.3 and 5.4. Both figures present evolving
microstructure of Fontainebleau sandstone (2D slices) during isotropic and percolated
network dissolution scenario respectively. In Figure 5.4 two pores are included in a circle,
pore in blue circle connects and get dissolved [Fig. 5.4 (d) - (e)], while the pore in red
circle remains isolated.

Methodology of estimating morphological descriptors is the same like in previous chapter.
Analysis is performed for each geometry representing different stage of dissolution. In this
chapter main global parameters, like porosity, specific surface and their effective equiva-
lents, are presented and analysed. To describe modifications of solid skeleton, evolution
of granulometric function is showed. Evolution of spatial distribution of porous phase
is presented using covariance functions. Finally, morphological tortuosity is discussed.
Aforementioned analysis is provided for both scenarii of numerical dissolution. All the
figures present comparison between behaviour of real geometry (blue) and averaged trend
of generated realisations (red).
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(a) FS

(b) G4

Figure 5.2: Visualisation of pores space at 2nd dissolution step of isotropic dissolution.
Fontainebleau sandstone (FS) and one of the generated samples (G4).
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(a) initial image X0

(b) first step Xiso
1

(c) second step Xiso
2

(d) third step Xiso
3

(e) fourth step Xiso
4

Figure 5.3: Four steps of isotropic disso-
lution scenario. Example of sandstone,
plane XY , z = 1.

(a) initial image X0

(b) first step X
pnd
1

(c) second step X
pnd
2

(d) third step X
pnd
3

(e) fourth step X
pnd
4

Figure 5.4: Four steps of dissolution of
percolated network. Example of sand-
stone, plane XY , z = 1.
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5.2 Isotropic dissolution – morphological description

Analysis begins with the evolution of global descriptors like porosity and effective porosity,
which are presented in Figure 5.5 (a) and Figure 5.5 (b) respectively. We can see a
comparison of sandstone behaviour and average trend obtained for generated samples.
Porosity and effective porosity of sandstone increase faster in function of dissolution step.
This can be trigger by fusions of pores whose are distributed initially in slightly different
way. Moreover, during isotropic dissolution connections with isolated pores are easily
achieved and can change significantly evolution of mentioned descriptors.
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Figure 5.5: Evolution of porosity and effective porosity as a function of dissolution step.

Figure 5.6 (a) and Figure 5.6 (b) present evolution of specific surface and effective specific
surface respectively. In general, specific surface and effective specific surface of sandstone
increase faster. Moreover, the significant increase of effective specific surface value, be-
tween step 1 and 2, presented in Figure 5.6 (b), with respect to quite uniform increase of
specific surface [Fig. 5.6 (a)], may be explained by fusion of isolated pores with percolated
network.
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Figure 5.6: Evolution of specific surface and effective specific surface as a function of
dissolution step.
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The next descriptor is covariance function. Figures 5.7 and 5.8 present averaged covariance
evolution of generated samples and covariance of sandstone. For the sake of simplicity the
functions are plotted for three chosen directions: %x, %y and %z. Values of covariance ranges
and repulsion distances of generated samples and sandstone are summarised in Table 5.1
and 5.2 respectively.
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(c) covariance function for direction !z

Figure 5.7: Evolution of averaged covari-
ance of generated samples.
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Figure 5.8: Evolution of covariance func-
tion of Fontainebleau sandstone.
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At first sight we can see that in both figures evolution of generated samples and sandstone
is almost the same. Moreover, for both specimen, covariance range remains quasi-constant
for all dissolution steps and geometrical isotropy is conserved. Small fluctuations of co-
variance range may be explained by a numerical bias linked to the method of estimation.
In general, a fact that characteristic length of microstructure is almost constant during
isotropic dissolution scenario implies that the RVE size can remain constant. The method
of dissolution by cubic SE does not perturb initial isotropy of the system. General decrease
of repulsion distance is present. However, the change is expected to be more significant
(1 px for each dissolution step).

Figures 5.9 and 5.10 present evolutions of covariance functions of generated samples and
sandstone calculated for extracted percolated network (isotropic dissolution). At first
sight we can see that both function present similar behaviour. However, for generated
samples, covariance range increases almost twice in comparison to the covariance range
of entire pore network. This implies that the RVE size should be bigger in the case when
only the percolated network is taken into account. Nonetheless, the geometrical isotropy
is conserved.

Table 5.1: Evolution of covariance ranges and repulsion distances obtained from averaged
covariance function of generated samples. Isotropic dissolution scenario.

Ax
3 Ay

3 Az
3 δx δy δz

Initial 20 19 19 23 23 23
Step 1 18 18 18 21 21 23
Step 2 18 19 18 21 22 22
Step 3 18 19 18 21 21 22
Step 4 19 20 18 21 21 21

In case of sandstone, evolution of covariance of entire [Fig. 5.8] and percolated network
[Fig. 5.10] are almost identical, what is caused by the fact that since 2nd dissolution
step more than 90% of the pore space is represented by percolated network. Interesting
conclusion is the fact that for initial state and 1st dissolution state the covariance ranges
are significantly greater than for other further stages. Hence, it is possible, that the RVE
size of percolated network can decrease during the isotropic dissolution process.

Table 5.2: Evolution of covariance ranges and repulsion distances obtained for sandstone.
Isotropic dissolution scenario.

Ax
3 Ay

3 Az
3 δx δy δz

Initial 23 21 19 31 26 24
Step 1 24 19 18 27 26 24
Step 2 20 19 18 26 25 24
Step 3 20 19 19 26 25 24
Step 4 19 20 19 25 26 24
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Figure 5.9: Evolution of averaged co-
variance function of generated samples.
Case of extracted percolated network
during isotropic dissolution.
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Figure 5.10: Evolution of covariance
function of Fontainebleau sandstone.
Case of extracted percolated network
during isotropic dissolution.
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Figure 5.11 presents evolution of tortuosity components during isotropic dissolution. Re-
sults are summarised in Table 5.3, general decreasing trend versus asymptotic value equal
to 1 is observed. At first sight we can notice that with progressive dissolution both evo-
lutions of tortuosities (sandstone and generated samples) get more convergent. Similar
behaviour concerns values of all components what is triggered by fusions of isotropically
distributed pores and straightening of paths due to the dilation. Moreover, standard
deviations decrease progressively what can be explained by translation of distributions
towards the limit value equal to 1. Similar behaviour is observed for all directions. For
the sake of simplicity, the fact is justified by Figure 5.11 (d) presenting distributions of
tortuosity component τz, of one of generated samples, at initial state, 2nd and final one.
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Figure 5.11: Evolution of tortuosity components τx, τ y and τ z as a function of effective
porosity – isotropic dissolution scenario. Subfigure (d) presents evolution of distribution
for one of the generated samples.
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Table 5.3: Evolution of tortuosity components and standard deviations of mean distribu-
tions. Isotropic dissolution scenario.

FS τx τ y τ z στx στy στz

Initial 2.22 1.92 2.44 0.49 0.38 0.70
Step 1 1.63 1.57 1.61 0.27 0.28 0.27
Step 2 1.43 1.42 1.43 0.26 0.22 0.20
Step 3 1.22 1.25 1.27 0.15 0.13 0.12
Step 4 1.12 1.11 1.14 0.07 0.06 0.06

GS τx τ y τ z στx στy στz

Initial 2.31 2.23 2.30 0.50 0.49 0.55
Step 1 1.63 1.65 1.68 0.31 0.33 0.32
Step 2 1.45 1.44 1.47 0.24 0.25 0.25
Step 3 1.29 1.28 1.29 0.18 0.18 0.17
Step 4 1.16 1.16 1.16 0.11 0.11 0.11

The next descriptor, which is presented in Figure 5.12, is morphological granulometry. In
order to estimate the grain size distribution we use two structuring elements: cross-shaped
and binarized sphere. Obtained data is summarised in Table 5.4. At the first sight we can
notice two important things, remarked for both SE. The first one is a progressive decrease
of mean and maximal radii, for both specimens, what is triggered by the erosion of solid
matrix. The second, is the fact that standard deviations, calculated using cross-shaped
SE, are bigger then those for binarized spheres. It can be explained by more significant
mismatching of shape of cross-shaped SE with the shape of solid skeleton subjected to
progressive dissolution. What reveals also in overestimating of extremities of r.

Table 5.4: Evolution of granulometry of generated samples and sandstone using two SE:
+ cross-shaped and ◦ binarized spheres.

FS r+ r+max σ+
r r◦ r◦max σ◦

r

Initial 24 43 4.9 17 30 3.5
Step 1 20 40 5.2 15 29 3.7
Step 2 18 36 5.3 14 27 3.7
Step 3 15 34 5.3 12 26 3.8
Step 4 13 31 5.1 11 24 3.8

GS r+ r+max σ+
r r◦ r◦max σ◦

r

Initial 24 48 5.2 19 31 2.5
Step 1 21 47 5.3 17 30 2.7
Step 2 19 45 5.0 15 28 3.0
Step 3 16 42 4.9 13 27 3.3
Step 4 14 40 4.8 12 26 3.4

Numerical dissolution by cubic SE changes shape of the solid skeleton what can be notice
by missing the shape of both, cross-shaped and spherical structuring element. This can be
seen in the distributions plots [Fig. 5.12 (a) and (c)]. The situation recalls data presented
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Figure 5.12: Evolution of morphological granulometry during isotropic dissolution.

in Figure 2.14 (b).

Comparing the evolution of mean radii, obtained by morphological granulometry using
both SE, with evolution of repulsion distance we can say that the results are satisfying
eq. 4.9. This condition is crucial to eventually prove irrelevancy of using certain SE.

5.3 Dissolution of percolated porous network

Like before, we begin analysis with evolution of global descriptors namely porosity and
effective porosity, which are presented in Figure 5.13 (a) and Figure 5.13 (b) respectively.
In those figures, a comparison between sandstone behaviour and average trend obtained
for generated samples is shown. Both evolutions are almost perfectly overlapping, this fact
may be explained by very similar initial values of effective porosity. Moreover, during per-
colated dissolution scenario fusions of isolated pores does not induce significant changes of
porosity. Since they are not dissolved their contribution is rather irrelevant in comparison
with increase of porosity of percolated network. Figure 5.14 presents evolution of specific
surface and effective specific surface as a function of dissolution step respectively. We
can see that both behaviours are almost the same. What can be explained by the same
reasons as for the previous descriptors.
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Figure 5.13: Evolution of porosity and effective porosity as a function of dissolution step.
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Figure 5.14: Evolution of specific surface and effective specific surface as a function of
dissolution step.

Spatial distributions of porous phase, obtained by covariance function, are presented in
Figure 5.15 and Figure 5.16. For the sake of clarity, three chosen directions are presented
separately. For real and reconstructed samples we can notice similar behaviour. In the
first sight we can see that covariance do not cross the sill for all considered directions.
In this case, that covariance range can be defined as a value of h over which the plot is
’sufficiently’ close to the theoretical asymptote. Due to the ambiguity of the ’definition’
data is not presented in any table. However, we can see that progressive dissolution of
percolated network increase consistently value of covariance ranges. This implies that
RVE size increases in comparison to the initial state. Analysing Figure 5.15 (b) and
5.16 (b), and the plot representing last dissolution state, we can notice that covariance
range is about 100 px. What means that at the RVE size increases significantly during
percolated network dissolution. For investigated geometries, real and generated, we can
see that covariance losses clearly marked repulsion distances with progressive dissolution.
This can be explained by existence of of an agglomeration of pores. However geometrical
isotropy is conserved but not at the same extent as for isotropic dissolution scenario.
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Figure 5.15: Evolution of averaged covariance function C(X, ||%h||) of generated samples
during dissolution of percolated porous network.



92 Numerical dissolution and evolution of morphological descriptors

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  10  20  30  40  50  60  70  80  90  100  110  120  130

C
(X

,h
)

h [pixels]

FS direction x
φ

2
 Dil 0

φ
2
 Dil 1

φ
2
 Dil 2

φ
2
 Dil 3

φ
2
 Dil 4

φ
2
 Dil 5

φ
2
 Dil 6

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0  10  20  30  40  50

(a) covariance function for direction !x

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  10  20  30  40  50  60  70  80  90  100  110  120  130

C
(X

,h
)

h [pixels]

FS direction y
φ

2
 Dil 0

φ
2
 Dil 1

φ
2
 Dil 2

φ
2
 Dil 3

φ
2
 Dil 4

φ
2
 Dil 5

φ
2
 Dil 6

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0  10  20  30  40  50

(b) covariance function for direction !y

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  10  20  30  40  50  60  70  80  90  100  110  120  130

C
(X

,h
)

h [pixels]

FS direction z
φ

2
 Dil 0

φ
2
 Dil 1

φ
2
 Dil 2

φ
2
 Dil 3

φ
2
 Dil 4

φ
2
 Dil 3

φ
2
 Dil 4

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0  10  20  30  40  50

(c) covariance function for direction !z

Figure 5.16: Evolution of covariance function C(X, ||%h||) of sandstone during dissolution
of percolated porous network.
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Figure 5.17 presents evolution of tortuosity components caused by dissolution of per-
colated porous matrix. Results are summarised in Table 5.5. Like in case of isotropic
dissolution a general decreasing trend versus value 1 is observed. We can see, that results
representing tortuosity evolution of sandstone are less convergent with those obtained for
generated samples. Standard deviations values became smaller what can be explained
by translation of distributions towards 1 triggered by straightening of paths due to the
dilation. Similar behaviour is observed for all tortuosity components and both specimens.
Figure 5.17 (d) presenting distributions of tortuosity component τz, of one of generated
samples, at initial state, 2nd and final one, to visualise the fact that distribution becomes
more regular during dissolution and to justify decrease of standard deviations.
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Figure 5.17: Comparison of tortuosity components evolution τx, τy and τz as a function
of effective porosity – dissolution of percolated network.

The next descriptor is granulometry, which is presented in Figure 5.18 and summarised
in Table 5.6. At the first sight we can notice two important things, remarked for both
structuring elements. The first one is a progressive decrease of mean and maximal radii,
for both specimens, sandstone and reconstructed, what is triggered by the erosion of
solid matrix. The next is the fact that standard deviations increase significantly during
progressive dissolution [Tab. 5.6]. The overestimation for smaller values of r is caused
by mismatching the shape of solid skeleton by both SE. From the right sight distribution
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Table 5.5: Evolution of tortuosity components and standard deviations of mean distribu-
tions. Percolated network dissolution.

FS τx τ y τ z στx στy στz

Initial 2.22 1.92 2.44 0.49 0.38 0.70
Step 1 1.89 1.57 1.71 0.38 0.26 0.33
Step 2 1.63 1.40 1.48 0.25 0.20 0.19
Step 3 1.41 1.29 1.34 0.21 0.16 0.16
Step 4 1.32 1.22 1.26 0.17 0.15 0.15
Step 5 1.19 1.15 1.19 0.12 0.13 0.13
Step 6 1.12 1.11 1.13 0.11 0.11 0.10

GS τx τ y τ z στx στy στz

Initial 2.31 2.23 2.30 0.50 0.49 0.55
Step 1 1.87 1.81 1.89 0.44 0.38 0.42
Step 2 1.63 1.61 1.62 0.36 0.31 0.31
Step 3 1.43 1.41 1.40 0.25 0.23 0.22
Step 4 1.29 1.30 1.28 0.19 0.20 0.17
Step 5 1.20 1.20 1.19 0.15 0.14 0.13
Step 6 1.13 1.13 1.15 0.11 0.11 0.11

is moved only slightly what is an effect of less homogenous spatial dissolution what also
causes significant increase of standard deviations for both SE.

Like in the case of isotropic dissolution, dilation of effective porous phase by cubic SE
changes shape of the solid skeleton what can be notice by missing the shape of both,
cross-shaped and spherical structuring element. This can be seen in the distributions
plots [Fig. 5.18].
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Figure 5.18: Evolution of morphological granulometry during dissolution of percolated
network.
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Table 5.6: Evolution of granulometry of generated samples and sandstone using two SE:
+ cross-shaped and ◦ binarized spheres.

FS r+ r+max σ+
r r◦ r◦max σ◦

r

Initial 24 43 5.0 17 30 3.5
Step 1 23 40 5.1 16.5 29 3.6
Step 2 21 38 5.4 16 28 3.7
Step 3 20 36 5.7 15 27 3.9
Step 4 18 35 5.9 14 25 4.1
Step 5 17 33 6.1 13 24 4.3
Step 6 16 32 6.2 12 24 4.5

GS r+ r+max σ+
r r◦ r◦max σ◦

r

Initial 24 48 5.1 19 31 2.5
Step 1 22 47 5.5 18 30 3.0
Step 2 21 45 5.8 17 29 3.5
Step 3 20 44 6.2 16 28 4.0
Step 4 19 43 6.0 16 27 4.4
Step 5 18 41 6.9 15 27 4.7
Step 6 17 39 7.3 13 25 4.8

5.4 Conclusions

In the chapter two methods of numerical dissolution are clearly featured: isotropic scenario
and dissolution of percolated porous network. The numerical erosion of solid skeleton is
being performed till the value of total porosity reaches 40%.

Microstructural changes triggered by both scenarii are quantified using morphological de-
scriptors like: porosity, specific surface, morphological granulometry, covariance function
and morphological tortuosity.

Despite of different behaviour of evolution of global descriptors the spatial distribution of
phases and morphological tortuosity present good convergence between real geometry and
reconstructed samples. While for percolated network dissolution the situation is opposite.
For both scenarii of microstructure evolution, morphological granulometry, obtained by
using two different SE (cross-shaped and binarized sphere), demonstrate that the grains
size estimation is encumbered with significant errors due to the overestimation of extremal
values of radii. What is caused by mismatching the evolving solid skeleton’s shape, by
used structuring elements.

Analysing covariance ranges, two important conclusions are noticed. Namely, that during
isotropic dissolution of entire network, RVE’s size remains constant, while for the second
scenario the size increases significantly.



All models are wrong, but some are useful.

George E. P. Box

6
Elastic behaviour modelling

methodology to estimate effective mechanical properties of investigated mate-
rial is presented in this chapter. The method is based directly on binary images.
To estimate the effective behaviour periodic homogenisation is used. Due to lack
of geometrical periodicity a fixed point method, using additional layer spread

over the considered image, is adapted. This method is used to estimate effective mechan-
ical properties in case of two scenarii of numerical dissolution. Therefore, comparison of
this two scenarii is presented and discussed.
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6.1 Introduction

One of the tools that allows us to obtain effective properties is so-called periodic homog-
enization. It is a classic and common methodology enabling to obtain effective elastic
properties. This classical approach treats heterogeneous media as materials possessing
hierarchical structure which can be described by a finite number of separable scales. For
the purpose of this study, two levels are used: micro and macro-scale. Effective properties
(macro-scale) are assumed to be homogeneous and can be estimated through averaging
process. This approach takes into account all interactions between phases forming hetero-
geneous structure at micro-scale. Aforementioned method is implemented using computer
code for the analysis of structures by the finite element method - Cast3M. This code was
developed in the Service of Mechanical and Thermal Studies (SEMT) of the French Atomic
Energy Commission (CEA). Cast3M is a powerful software designed for mechanical lin-
ear elastic, thermal and heat transfer problems as well as nonlinear problems (elastic,
plastic, creep materials). CT image is in fact a sub-sample of investigated heterogeneous
structure, therefore important questions, concerning the validity of estimated properties,
arrives: what is the influence of the RVE size representing random microstructure and
what are the errors of carried out numerical estimations?

In this chapter we are going to answer to those questions step by step. Firstly, the prepa-
ration of samples in order to obtain different discretizations is presented. Secondly, the
problem of geometrical periodicity of considered microstructure is illustrated and certain
solution is proposed. Nextly, the influence of discretization by using structured mesh is
clearly featured [12–14]. After this a parametrical study concerning used methodology
is presented. The next section presents influence of RVE size according to methodology
proposed by Kanit et al. [42]. Finally, the evolutions of effective properties, triggered by
two different scenarii of dissolution are showed and discussed.

6.2 Methodology

In order to estimate effective behaviour of considered samples and elastic moduli - porosity
relationships we used a methodology [Fig. 6.1], which is explained, step by step, in the
following section.

6.2.1 Samples preparation

The firs step to estimate effective behaviour of considered samples via 3D binary image
is to prepare geometries representing studied microstructures at different resolutions. A
convenient way is perform scaling of binary image using ImageJ. Each considered ge-
ometry is imported to the software and rescaled by desired factor. For such obtained
samples structured meshes (hexahedron), are used to create discretised grid. Each voxel
of 3D binary image is represented by one cubic mesh element. Aforementioned steps are
necessary to obtain different resolutions which are required to estimate influence of the
discretization. The explicit estimation is presented later [Subsection 6.2.4]. The struc-
tured grid is created by code which was developed for this purpose. Mesh is described
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Figure 6.1: Visualisation of computational methodology. From sample preparation to
effective behaviour estimation.
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(a) arbitrary geometry (b) geometry covered by the layer

Figure 6.2: Visualisation of the periodisation method by using homogeneous layer.

in a way that is compatible with GMSH, a open source three-dimensional finite element
mesh generator [86]. Nextly, using the script written by Laurent Champaney1 the grid
is transformed into code readable for Cast3m. The mesh is represented by two volumes:
solid and porous phase.

6.2.2 Periodisation - fixed point method

However, since we are dealing with images of rocks or generated equivalent samples,
geometrical periodicity is not achieved in a direct way. To solved this problem we use
fixed point method. First step is to spread a layer over the extracted cubic cell [Fig.
6.2]. Initially, stiffness tensor of the layer is assumed to be equal to the stiffness tenor
of solid phase. This choice is as good as any other initial values prescribed to the tensor
components. However, the choice affects the number of iteration which are necessary
to obtain convergence defined below. By treating the layer as an other phase, at each
iteration its elastic properties are described by the calculated homogenised stiffness tensor
of system from the previous step:

clayerklmn[i] = chomklmn[i− 1], (6.1)

where i denotes iteration number. The stopping criterion for this method is defined by
following equation: ∣∣∣∣C layer[i]− Chom[i]

∣∣∣∣
||Chom[i]||

≤ 10−4, (6.2)

where symbol || · || stands for a quadratic norm. Therefore, to the grid an additional
volume, representing layer is adjoined.

6.2.3 Effective properties

In order to calculate the effective stiffness matrix of considered geometry technique of
periodic homogenization is used, which is presented in Chapter 2. Effective stiffness

1http://laurent.champaney.free.fr/perso/conversion.html
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tensor C is obtained by using following relation:

Σ = C : E, (6.3)

where Σ is the macroscopic stress tensor and E denotes macroscopic deformation tensor. A
typical way, in order to obtain the homogenised stiffness tensor C is to solve six elementary
problems, three tractions and three shear tests. Finally, C is given by following rule:

Cijkh =
〈
cijkh + cijlmǫlm(u

kh)
〉
, (6.4)

where ǫlm is the microscopic strain tensor. And ukh is a local displacement periodic vector,
the solution of the problem given by the unit macroscopic strain Ekh = (ek ⊗ eh + eh ⊗ ek) /2,
where symbol ⊗ means the tensorial product.

Obtained effective stiffness tensors are projected on the classical isotropy basis, defined
by matrix J = 1/3 ei ⊗ ei and K = I − J . The measure of the isotropy of an arbitrary
tensors C is given by following equation:

ζ (C) =
||C − projJ,K (C) ||

||C||
, (6.5)

where the operator of projection projJ,K(·) is defined in following way:

projJ,K (C) =

[
C :: J

J :: J
J +

C :: K

K :: K
K

]
. (6.6)

Aforementioned method of periodic homogenisation is using code CAST3M, which is a
software designed for the analysis of structures using finite element method.

6.2.4 Influence of discretization on elastic moduli

Discretization error comes out always when the real continuous model is assembled by a
grid. When we are using regular cubic mesh to represent continuum media the influence
can be explicitly determined [12–14], as mentioned in Section 2.2.4.

Let M denotes the number of hexahedrons along the edge of the discretised geometry, it
is shown that discretization error for FE methods of any elastic moduli can be estimated
according to following formula:

P (M) = P0 +
a

M
, (6.7)

where P (M) is the computed elastic modulus and P0 is so-called continuum value, which
corresponds to the case when M → ∞. To estimate this searched value, we have to
compute elastic properties at least for three different values of M and then extrapolate
the results, by fitting linear function according to the least squares method.
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6.2.5 Precision of the simulations

Concerning the aforementioned method, important questions arise:

• what should be the contrast between Young moduli of solid matrix and pores?

• what is the influence of the layer and its thicknes d?

The elastic properties of the solid phase are taken form Mavko et al. [87]: bulk modulus is
equal k = 37.0 GPa and the shear modulus µ = 44.0 GPa. Using the relation between the
elastic moduli of homogeneous isotropic materials it means that Young modulus E and
Poisson ratio ν are equal 94.53 GPa and 0.0742 respectively. Firstly, we answer to the
question concerning contrast of properties, Poisson ratios of phases are set to be equal.
Let contrast between Young moduli of the solid and porous phase be denoted by κ and
defined in following way:

κ =
Esolid

Epores

. (6.8)

The influence of κ arises from the potentially ill-conditioned finite element stiffness matrix.
Since the property of a cubic mesh corresponds to the phase associated to the voxel, the
boundaries of the porous phase are not explicitly meshed. A small value of Young modulus
Epores is affected to the meshes associated to the porous phase, small compared to the
value of the Young modulus of the solid phase Ematrix. The contrast κ has thus to tend
to infinity and in practice to a huge value. However, when κ increases, the porous phase
is better represented, but the finite element stiffness matrix is worse conditioned. Since
the Poisson ratios of phases are set to be equal, the influence of κ is studied. Numerical
results are obtained for entire sample of size 256× 256× 256 pixels scaled by factor four.
What means that size of the geometry is 64× 64× 64 pixels. In this study we investigate
10 different contrast values varying from 1 to 10. Figure 6.3 presents bulk and shear
moduli normalised by their values obtained for maximal considered contrast κ = 1010.
We can see that convergence is obtained for κ = 108.
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In order to evaluate the influence of added layer associated to fixed point method to deter-
mine bulk and shear moduli we perform estimation using geometrically periodic sample
at three different dissolved states. To obtain periodic image we scale sandstone geometry
and then by symmetrical reflections the desired sample is reconstructed. Properties of
phases are same as those mentioned in previous section. Over the three same samples a
layer is added and aforementioned methodology is applied. Figures 6.4 presents obtained
results. As we can see, estimated bulk and shear moduli are slightly overestimated. The
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Figure 6.4: Influence of the methodology

relative error is less than 0.6% in considered range of porosity. Therefore, we can assume
that the results are not encumbered by error related to used methodology.

The last question is the influence of layer thickness. Inhere we investigate the last degraded
state of sandstone in case of percolated network dissolution and resolution M = 50.
Figure 6.5 presents normalised bulk and shear moduli as function of layer thickness. The
normalisation factor is the value of the moduli obtained for layer thickness d = 1 px.
The small fluctuations (ǫrelative ≪ 0.1%) are observed rather due to the different values
obtained by stopping criterion (eq. 6.2) then due to the real influence of the thickness.
Therefore for all further computations layer thickness is set to be equal to 1.
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Figure 6.5: Parametrical study - layer thickness d.

6.3 First results

Aforementioned methodology is applied for each considered sample at different dissolved
state. For the purpose of the thesis we investigate entire geometry of sandstone and
degraded samples, however due to the limitations of memory in used computers, we use
smaller resolutions: M = 64 px, M = 50 px, M = 40 px and M = 32 px. Finally, 484
computations are performed, 121 for each resolution: 11 different degraded states of each
sample: real sandstone and 10 realisations.

For each sample having different resolution the computations are performed. Nextly,
the obtained effective stiffness tensors are projected on the isotropy basis (eq. 6.5) and
corresponding bulk and shear moduli are extracted. Figure 6.6 presents evolution of
isotropy factor ζ(C) of sandstone and averaged value for 10 realisations in function of
dissolution step (M = 64). We can see that in case of isotropic dissolution obtained factor
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Figure 6.6: Evolutions of samples effective stiffness tensor isotropy factor ζ(C).

is smaller, what stands for closer isotropy of stiffness effective tensor. The results are in
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Figure 6.7: Influence of discretization - isotropic dissolution. For both plots the correlation
factor r2 > 0.99.

good agreement with covariance function evolution, which was presented in Section 5.2
and 5.3. We could see, that during dissolution of percolated network, obtained covariance
functions were overlapping with less consistency than in the other scenario.

Figures 6.7 and 6.8 presents the linear fit to obtained data, according to the equation
6.7. For all functions the correlation factor r2 > 0.99. The y-intercept of each function
stands for the continuum value of searched moduli. Figure 6.7 presents results obtained
for normalised averaged values of bulk and shear moduli over 10 realisations for isotropic
scenario dissolution and initial states. At first sight a decreasing trend for all curves is
noticed what is confirmed in the literature. A general non monotonic trend of standard
deviations is viewed, however following relation is always satisfied for both moduli:

σP (M=64) < σP (M=32), (6.9)

where σP (M) stands for standard deviations obtained for given resolution M over generated
samples. Hence, we assume that σP (M=64) stands as a standard deviation for continuum
values of elastic moduli k and µ. The same analysis concerns Figure 6.8, where results
obtained for percolated network dissolution are presented.
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Figure 6.8: Influence of discretization - percolated network dissolution. For both plots
the correlation factor r2 > 0.99.

6.4 Influence of RVE size

Inhere, the methodology of RVE size estimation, presented in Section 2.2.3 is evoked. As
it is said before for the purpose of this thesis we use maximal possible size of investigated
microstructure, V = 256 × 256 × 256 pixel. Therefore, according to the methodology of
Kanit [42], relative errors ǫrel are estimated by following equation:

ǫrel =
2DZ(V )

Z
√
N

, (6.10)

where Z denotes the mean of searched property (effective bulk modulus k or shear modulus
µ), DZ(V ) is standard deviation and N stands for number of realisations. In our case
number of equivalent independent realisations N = 11. Relative errors obtained using
this method are presented in Tables 6.1 and 6.2. General increasing trend with increasing
dissolution is noticed. Estimated errors are significantly bigger for percolated network
dissolution. What confirms a fact that a bigger RVE size is needed in order to obtain
similar accuracy in comparison with isotropic dissolution scenario. However, due to scaling
it seems that errors are slightly overestimated (eq. 6.9).

Table 6.1: Relative errors of apparent moduli estimation; V = 256× 256× 256 pixel,
N = 11. Isotropic dissolution scenario.

ǫkrel [%] ǫ
µ
rel [%]

Initial 0.04 0.05
Dil 1 0.15 0.18
Dil 2 0.36 0.42
Dil 3 0.88 1.04
Dil 4 1.18 2.06



108 Elastic behaviour modelling

Table 6.2: Relative errors of apparent moduli estimation; V = 256× 256× 256 pixel,
N = 11. Percolated network dissolution scenario.

ǫkrel [%] ǫ
µ
rel [%]

Initial 0.04 0.05
Dil 1 0.45 0.57
Dil 2 0.70 0.87
Dil 3 0.98 1.20
Dil 4 1.41 1.70
Dil 5 2.19 2.57
Dil 6 3.41 3.88

6.5 Final results

Extracted continuum values of bulk and shear moduli (M → ∞), for both scenarii of
dissolution, are presented in Figure 6.9. Previously mentioned figures present also results
obtained by Arns et al. [15] who was using methodology, based directly via microtomog-
raphy of sandstone. In this paper, different realisations of sandstone microstructure were
extracted from 4 images representing real core samples. In their study porosity is varying
from 0.055 to 0.24.

At the first sight, evolution of elastic properties as a function of porosity [Fig.6.9] for
sandstone and the generated samples are in excellent consistency (for each scenario). In
general, for both scenarii, shear modulus decreases more significantly than bulk modulus.

Although different mechanism responsible for porosity variation, our results and those
presented in [15] show very similar trend.

In Figure 6.9, the comparison of (a) and (b), (c) and (d) shows that results obtained for
both scenarii of dissolution are very similar. The obtained results as well as those of Arns
et al. [15] are in coherence with the self-consistent estimate [88] which often represents
media with total disorder.
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Figure 6.9: Evolution of normalised elastic moduli of sandstone (FS), averaged over all
generated samples (GS) (with standard deviations) for both scenarii of numerical disso-
lution; comparison with self-consistent estimate (SCE) and with results obtained by Arns
et al. [15].

6.6 Conclusions

In this chapter a methodology to predict effect of dissolution on elastic behaviour is
presented. The relation between elastic properties and porosity is derived directly using
microtomographic images. Due to the lack of geometrical periodicity a new method
of periodisation is proposed. It consist in spreading a layer over the 3D image, which
mechanical properties change during the calculations and are adjusted by the estimated
effective stiffness tensor of the investigated system. In order to decrease an influence
of finite resolution a method proposed by Roberts, Day and Garboczi et al. [12–14] is
applied.

In comparison with Arns et al. [15] obtained results are overestimated, probably due
to the limit of image resolution or due to different mechanism responsible for increase
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of porosity. In order to dispel any doubts we should use higher resolution to perform
numerical computations.

However, the fixed point method works well with the methodology of Roberts and Gar-
boczi and induces negligible errors in comparison analysing geometrically periodic case.
The relations of average elastic behaviour - porosity of reconstructed samples are in very
good agreement with evolution of the properties calculated for sandstone.

A complete methodology to estimate evolution of mechanical behaviour from generated
samples morphologically equivalent to microtomographies was presented. Modelling of
dissolution phenomenon and the final results shows that a sophisticated modelling of the
dissolution process will not affect significantly the results.



Water is the driving force of all nature.

Leonardo da Vinci

7
Hydraulic conductivity modelling

classical way in order to estimate permeability, based on the binary image,
is presented in this chapter. To estimate the effective behaviour Darcy’s law
is used as upscaling technique of governing Navier-Stokes equations solved at
micro-scale. Analysis of permeability evolution triggered by two scenarii of

numerical dissolution, provided on real rock image as well as on the generated samples,
is featured. Relationships of elastic moduli - permeability is proposed.
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7.1 Methodology

Recent development of pore-scale imaging techniques and computer science have notably
simplified studies of transport phenomena in heterogeneous media. Nowadays, a common
approach to estimate permeability is to process X-ray microtomography images, extract
effective porous phase and then to calculate numerically the steady-state flow for incom-
pressible fluid. We apply the same way of calculations on binary images representing
different dissolved states of sandstone and generated samples. In the method two-scales
are considered. Firstly, a micro-scale where the governing equations are discretised and
numerically solved. Secondly, a macro-scale where the estimated effective properties,
obtained by using averaging techniques, are assumed to be representative.

7.1.1 Samples preparation

Sample preparation is made by means of an extraction of the percolated porous network.
As we said before, isolated pores are irrelevant in order to investigate transport phenomena
in porous media. A very common approach in fluid flow simulations, based on X-ray
microtomography image, is to use structured cubic mesh whose resolution is the same
as the resolution of the image of the considered geometry. It means that each voxel is
represented by one cubic mesh element (regular hexahedra). However, the recent studies of
Guibert et al. [89] have shown that mesh resolution can affect significantly on the results.
They observed that the obtained permeability decreases with increasing mesh refinement
level. This suggests that numerical error related to permeability determination is linked
with the number of cells discretising the smallest pore throats of a sample. Moreover, even
the finest mesh refinement used in their work highlights the fact that the permeability
obtained numerically must be taken with caution. Nevertheless, for the purpose of this
work, structured meshes, are used to create discretised grid, with the same resolution
as the resolution of the image. In regard of work of Guibert et al., it can be explained
by a fact that since first step of isotropic dissolution the smallest pores are represented
minimum by 3 voxels.

7.1.2 Solving algorithm

In order to obtain velocity field in pore domain, a computational fluid dynamics simu-
lations are run using free open source software OpenFOAM [90]. In this software the
governing equations of Navier-Stokes, for single phase flow, are solved using finite volume
method. Pressure and velocity are calculated iteratively by a steady-state solver based on
Semi- Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm [91]. This al-
gorithm is a type of Pressure-Based Method techniques which deal with pressure-velocity
coupling in numerical simulations of the fluid flow [92,93].
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Algorithm 7.1 Semi-Implicit Method for Pressure-Linked Equations (SIMPLE).

1. setting the boundary conditions

2. solving the discretised equations to estimate intermediate velocity field

3. computing mass fluxes at the cell faces

4. solving the pressure equation and applying under-relaxation

5. correcting fluxes at the cell faces

6. correcting velocities by using updated pressure filed

7. updating boundary conditions

8. repeating 1 - 7 till arriving to prescribed convergence criterion (which is discussed
later)

In our case simulations are pressure driven. It means that pressure is imposed on inlet
and outlet of the system and flow is driven only by gradient of pressure. Example of flow
field and pressure distribution in pore space is given in Figure 7.1.

(a) pression distribution in a porous network (b) velocity field (pression distribution colours)

Figure 7.1: Visualisation of pressure distribution and velocity field.

Boundary conditions at the edges of computational domains are set to mimic experimental
conditions. On the inlet and outlet of samples a gradient of pressure is imposed. No-flow
conditions are specified on the external surfaces of the samples and no-slip conditions are
imposed on the pore-solid surface [Fig. 7.2].

The convergence criterion of steady-state simulations is based on initial residual values.
This value presents relative differences in flow field parameters (velocity components,
pressure) between current and precedent iteration. Convergence, and stoppage of compu-
tations, occurs when the residuals for each of parameters are reduced to a value below a
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Figure 7.2: Simplified visualisation of boundary conditions.

tolerance. In order to estimate a convenient value we run simulations for initial and final
dissolved state (percolated network dissolution) for geometry of sandstone using eight dif-
ferent initial residual values: 10−1, 10−2, . . . , 10−8. Computed fluxes were normalised by
the flux obtained for initial residual value equal to 10−8. Figure 7.3 present evolution of
normalised flux as a function of the logarithm of initial residual. Permeability is stabilised
when initial residual level is equal to 10−3 for the initial state of dissolution and 10−5 for
the last stage, for chosen geometry.
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Figure 7.3: Convergence - normalised flux as function of initial residual.

7.1.3 Characteristic length and Reynolds number

When modelling a flow at the pore scale it is a common approach to solve Stokes equation,
so the laminar regime is assumed. To justify the hypothesis we can estimate Reynolds
number which is defined as follows:

Re =
ρ < ||%v|| > λ

µ̃
, (7.1)
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where ρ is fluid density, < ||%v|| > is the mean velocity, µ̃ denotes dynamic viscosity and
λ denotes the characteristic length.

Characteristic length is a property of porous media characterising its internal structure.
In case of porous media it is usually mean grain diameter or mean pore diameter. For
heterogeneous porous medium mean pore size or grain size can be estimated by covariance
function or by morphological granulometry respectively. To ensure that the Reynolds
number is much smaller than 1, the estimation is performed using the mean grain diameter
and only for the final states where fluid velocities are expected to be maximal and by using
mean grain sizes. Such estimation guarantee the following relation:

Re ≪ 1. (7.2)

In spite of small Reynolds number which implies occurrence of Stokes flow, compari-
son between built-in solvers in OpenFOAM shows that the solver for full Navier-Stokes
equation, based on SIMPLE algorithm, is more efficient than the one for Stokes equation.

7.1.4 RVE size estimation

To obtain a realistic velocity field of heterogeneous medium it is necessary to define RVE.
Properties of a heterogeneous medium vary in space and therefore the volume on which
simulations are performed should be large enough to the capture sufficient amount of
morphological properties of medium.

As we said before the maximal possible size of sample is considered as RVE. In order to
verify a hypothesis that considered microstructure is sufficiently large we analyse evolution
of covariance function, presented in Chapter 5. In term of covariance function, where the
covariance range converges versus theoretical sill, the entire geometry can be considered
as RVE. Due to the relation λ < L, where L denotes the size of the geometry and λ is
a characteristic length. For both scenarii the entire geometry of sandstone and virtual
samples (256× 256× 256 px) are chosen to compute the flow.
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7.2 Results

Permeability of investigated samples can be calculated according to Darcy’s law which is
given by following equation:

K =
µQL

∆pA
, (7.3)

where ∆p denotes macroscopic gradient of pressure in flow direction, Q is total flux,
L denotes length of geometry in the flow direction, A is surface area of cross section
perpendicular to the flow direction and µ is dynamic viscosity [Fig. 7.2].

Aforementioned methodology was applied to estimate the diagonal permeability tensor
components, what means that for each geometry 3 tests corresponding to three perpen-
dicular directions of applied gradients of pressure (x, y and z), are performed. In order
to obtain evolution of the components, for each geometry representing different dissolved
state, numerical computations are performed. It means that for the scenario of isotropic
dissolution, which is represented by 4 stages 132 velocity fields are obtained. In case of
percolated network dissolution, represented by 6 stages, 198 computations are run and 33
calculations to obtain the initial permeability tensors.

7.2.1 Porosity - permeability relationships

In this subsection a porosity - permeability relationships for both scenarii of dissolution are
presented. Figure 7.6 and Figure 7.7 present obtained results for isotropic and percolated
network dissolution respectively.

Inhere, we start by analysing isotropic case. Evolution of each diagonal component of
permeability tensor as a function of effective porosity is presented in Figure 7.6. For the
sake of clarity, each component is presented separately. At first sight we can see that each
components increase according to power law in the function of effective porosity. By using
the least squares method the following relations, concerning sandstone, are obtained:

Kxx = 281797× ϕ3.18
eff , (7.4a)

Kyy = 244819× ϕ3.07
eff , (7.4b)

Kzz = 248655× ϕ3.10
eff , (7.4c)

and for averaged components of generated samples:

Kxx = 293665× ϕ3.16
eff , (7.5a)

Kyy = 327661× ϕ3.25
eff , (7.5b)

Kzz = 349107× ϕ3.30
eff , (7.5c)

Figure 7.7 shows evolution of each diagonal component of permeability tensor as a function
of effective porosity in case of percolated network dissolution. Like in the previous case,
for the sake of clarity, each component is presented separately. By using the same method,
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the following relations for sandstone are obtained:

Kxx = 755820× ϕ3.46
eff , (7.6a)

Kyy = 1223793× ϕ3.47
eff , (7.6b)

Kzz = 1073691× ϕ3.46
eff , (7.6c)

and for averaged components of generated samples:

Kxx = 1015321× ϕ3.48
eff , (7.7a)

Kyy = 990757× ϕ3.55
eff , (7.7b)

Kzz = 982042× ϕ3.57
eff , (7.7c)

For each fit the correlation coefficient satisfies the inequality r2 > 0.99. However, for each
estimation the factor of proportionality is significantly different. To compare obtained
results we evoke some commonly know models which deal with the permeability - porosity
relationship.

Kozeny-Carman model [94] assumes that the porous media can be considered as a bundle
of tubes of different radii and that the flow is laminar. The model is given by following
equation:

K =
ϕ3
eff

ωτs2
, (7.8)

where, ω, τ and s stands for shape factor, tortuosity and specific surface respectively. It
is to notice that the power law is characterised by exponent equal to 3.
In the paper of Bourbie and Zinszner [95], where permeability was experimentally deter-
mined for 240 samples of Fontainebleau sandstone having different porosity values, it has
been found that porosity-permeability relation can be described by two separate power
laws: an exponent equal to 3.05 for porosities grater than 9 % and exponent equal to
7.33 for lower porosities. On the other hand Doyen [96] described this relation by an
exponent equal to 3.8. Aforementioned models confirms consistency of obtained results
of permeability - porosity relationships. However, in general, the relationship between
porosity and the permeability can not be described by a simple power law over the whole
range of porosity. Obtained results should be treated with a caution.

Analysing evolution for both scenarii we can say that permeability components increase
much faster during percolated network dissolution. It may be explained by larger pore
diameter due to bigger number of iterations corresponding to dissolution steps. More-
over, effective porosity is not a good descriptor for isotropic dissolution scenario due to
the fact that during dissolution isolated pores (which are enlarging) get connected but
their contribution to flow may be irrelevant since they can be treated as dead-ends pores
[Fig. 7.5]. In case of percolated network dissolution, when the connections with isolated
(non-dissolved) pores appears, we can assume that their influence to the permeability is
negligible since their contribution to effective porosity is irrelevant [Fig. 7.5]. In general,
reconstructed samples have similar behaviour satisfactorily imitates sandstone.
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Figure 7.5: Visualtisation of isolated pores connections during isotropic and percolated
network dissolution respectively.

7.2.2 Tortuosity - permeability relationships

In general there exists a lot of different approaches to define tortuosity. Nevertheless,
we present some basic estimations of tortuosity - permeability relationship based on the
obtained results like in the previous subsection. Figures 7.6 and 7.7 present evolution
of permeability components as a function of morphological tortuosity components for
isotropic and percolated network scenario respectively. At first sight we can notice a
general decreasing trend of permeability with increasing value of tortuosity. Obtained
results for sandstone and reconstructed samples are in good convergence. Estimated
sandstone’s permeability is included in square determined by generated samples mean
values and their standard deviations. By using the least squares method the following
relations, concerning sandstone, are obtained:

Kxx = 61734× τ−12.47
x , (7.9a)

Kyy = 127625× τ−15.35
y , (7.9b)

Kzz = 52355× τ−11.06
z , (7.9c)

and for averaged components of generated samples:

Kxx = 81613× τ−12.64
x , (7.10a)

Kyy = 89350× τ−12.95
y , (7.10b)

Kzz = 81064× τ−12.11
z , (7.10c)

Figure 7.7 shows evolution of each diagonal component of permeability tensor as a function
of effective porosity in case of percolated network dissolution. Like in the previous case,
for the sake of clarity, each component is presented separately. By using the same method,
the following relations for sandstone are obtained:

Kxx = 138171× τ−12.77
x , (7.11a)

Kyy = 194089× τ−16.54
y , (7.11b)

Kzz = 100456× τ−11.95
z , (7.11c)
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Figure 7.6: Diagonal components evo-
lution during isotropic dissolution sce-
nario of Fontainebleau sandstone (FS)
and generated samples (GS) as a func-
tion of effective porosity.
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Figure 7.7: Diagonal components evo-
lution during percolated network disso-
lution of sandstone (FS) and generated
samples (GS) as a function of effective
porosity.
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and for averaged components of generated samples:

Kxx = 155911× τ−12.81
x , (7.12a)

Kyy = 187083× τ−13.49
y , (7.12b)

Kzz = 155978× τ−12.46
z , (7.12c)

For each fit the correlation coefficient satisfies the inequality r2 > 0.98.
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Figure 7.8: Diagonal components evolu-
tion during scenario of isotropic disso-
lution of sandstone (FS) and generated
samples (GS) as a function of tortuosity.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1  1.5  2  2.5  3

P
er

m
ea

b
il

it
y

 [
m

D
]

Tortuosity τx

FS - Kxx
GS - Kxx

(a) component Kxx

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1  1.5  2  2.5  3

P
er

m
ea

b
il

it
y

 [
m

D
]

Tortuosity τy

FS - Kyy
GS - Kyy

(b) component Kyy

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1  1.5  2  2.5  3

P
er

m
ea

b
il

it
y

 [
m

D
]

Tortuosity τz

FS - Kzz
GS - Kzz

(c) component Kzz

Figure 7.9: Diagonal components evo-
lution during percolated network disso-
lution of sandstone (FS) and generated
samples (GS) as a function of tortuosity.
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Estimation of anisotropy of permeability tensor has been proposed by Clavaud et al. [97]
and can be evaluated using the anisotropy ratio R given by following formula:

R =
Kmin√

Kint Kmax

, (7.13)

where Kmin, Kmax and Kint denotes respectively minimal, maximal and intermediate value
of diagonal permeability tensor components. We note that a perfectly isotropic tensor
gives value equal to 1. Measurements of anisotropy of permeability tensor performed by
Clavaud et al. (2008) give a large range of possible values of the factor R. It varies from
0.84 to 0.19 for the highest anisotropic sample. However, for the purpose of this thesis
we use following anisotropy factor ζ, given by equation:

ζ(K) = 1− ||K − ProjI(K)||

||K||
, (7.14)

where I is the identity matrix and ProjI(K) is given by:

ProjI(K) =
1

3
(K : I)I. (7.15)

Tables 7.1 and 7.2 present evolution of anisotropy factor calculated for sandstone’s perme-
ability tensors and for averaged permeability tensor obtained for generated samples. Due
to errors related to refinement level and possible significant overestimations we skip the
results obtained for the initial step. Therefore, we can say that during isotropic dissolution
of sandstone no specific trend is observed, while for generated samples a quasi constant
trend is observed. In case of virtual material we can say that anisotropy has constant
value. In the other hand during dissolution of percolated porous network anisotropy factor
of sandstone decreases systematically while for generated samples remains quasi constant.

Table 7.1: Evolution of anisotropy coefficient: definition proposed by Clavaud et al. [97]
(grey) and according to equation 7.14. Isotropic dissolution scenario.

Initial Dil 1 Dil 2 Dil 3 Dil 4
FS 0.85 0.87 0.87 0.97 0.91
GS 0.75 0.98 0.98 0.97 0.96
FS 0.91 0.93 0.93 0.98 0.95
GS 0.83 0.99 0.99 0.98 0.98
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Table 7.2: Evolution of anisotropy coefficient: definition proposed by Clavaud et al. [97]
(grey) and according to equation 7.14. Percolated network dissolution.

Initial Dil 1 Dil 2 Dil 3 Dil 4 Dil 5 Dil 6
FS 0.85 0.58 0.57 0.59 0.67 0.72 0.77
GS 0.75 0.90 0.90 0.89 0.90 0.90 0.90
FS 0.91 0.77 0.76 0.78 0.82 0.85 0.86
GS 0.83 0.94 0.93 0.92 0.93 0.95 0.95

7.3 Mechanical properties versus permeability

Figures 7.10 and 7.11 present elastic moduli as a function of permeability, projected
on isotropic basis, for isotropic and percolated network dissolution respectively. To the
obtained results we fit function in the form:

P (K) = 1− Kβ

α
and β ∈ (0, 1), (7.16)

where P stands for normalised elastic modulus and K is a permeability. For all obtained
functions correlation factor satisfies inequality r2 > 0.98.

In the first sight, a general decreasing trend is observed. For both scenarii shear modulus
is more affected with increasing permeability. However, despite of significantly higher in-
crease of permeability in case of percolated network dissolution, the corresponding elastic
moduli show similar behaviour.
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Figure 7.10: Elastic moduli as a function of permeability of sandstone (FS) and generated
samples (GS). Isotropic dissolution scenario.
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Figure 7.11: Elastic moduli as a function of permeability of sandstone (FS) and generated
samples (GS). Percolated network dissolution.

7.4 Conclusions

In this chapter the common methodology used for solving flow from X-ray tomography
images is presented. Starting from image analysis and segmentation, to the estimation of
velocity field by using OpenFOAM and estimation of permeability according to Darcy’s
law are presented.

Similar to the other authors a significant increase in the permeability with the increase of
porosity and progressive dissolution as well as with decreasing tortuosity are observed. It
is noticed that in the case of percolated network dissolution permeability increases faster
as a function of effective porosity and morphological tortuosity.

Numerical results show that the relationship permeability - morphological tortuosity is
much complicated for 3D structure in considered media.

Moreover, a simple relation linking elastic moduli with permeability is proposed.

The reconstruction method based on the skeleton reconstruction is efficient in order to
simulate behaviour of natural rock sample. What is confirmed by comparison of expo-
nential power law describing porosity - permeability relation with some models existing
in the literature.



Everything has to come to an end, sometime.

L. Frank Baum

8
General conclusions & perspectives

Conclusions

Studies presented in this thesis are set out to explore the evolution of mechanical and
transport properties of saline aquifer, subjected to progressive chemical degradation trig-
gered by acidification of saline water by injected CO2. For the purpose of the thesis
chemical dissolution is taken into account in simplified way using morphological dilation
of porous phase. In order to perform the modelling following main assumptions were
applied:

• phenomena at micro-scale - considering microtomography image of investigated mi-
crostructure, numerical dissolution is performed directly on the image and governing
equations of considered phenomena are solved at micro-scale

• uniform dissolution - this assumption led us to use isotropic structuring elements
(cubic); due to the finite resolution of microtomography we investigate two different
scenarii of numerical dissolution

• two-scale modelling and periodicity - obtained degraded microstructures are as-
sumed to be representative, therefore upscaling methods of averaging techniques
are used to obtain effective behaviour

Chapter 3 presents a first approach, linking the dissolution of rock at the microscopic
scale and the effective behaviour of the saline aquifer. The point of this approach is to
reconstruct periodic RVE using reflectional symmetry. Performed numerical computa-
tions for an orthotropic microstructure show progressive degradation of all components of
the stiffness tensor that follow an exponential decay function. The relation between the
mechanical parameters and the transfer properties (tortuosity and permeability tensors)
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during the dissolution process is also studied. It is found that the high increase of con-
ductivity (in the direction %y) does not correspond (as could be expected) to the highest
weakening of the Young modulus in this direction. Moreover, the highest decrease of
Young modulus (in the direction %x) is not associated with percolation in this direction.
The results clearly show that the morphological information about the microstructure can
be very useful in the qualitative explanation of the chemical degradation process.

Next chapter (Chapter 4), provides detailed characterisation of Fontainebleau sandstone
microstructure and proposes a reconstruction method. Performed morphological charac-
terisation is based on binary image analysis. In this analysis four main types of descriptors
are used: global, sizing, spatial distribution and connectivity. An efficient method to gen-
erated equivalent microstructures, inspired by natural process and based on the extracted
morphological characterization, is proposed. The reconstruction method consists in three
steps: grain deposit, compaction and diagenesis process. Finally, morphological valida-
tion of the generated samples confirms that they can be treated as statistically equivalent
realisations of investigated Fontainebleau sandstone microstructure.

Chapter 5 introduces two different scenarii of numerical dissolution that are imitating in
simplified way chemical degradation of microstructure. Those scenarii are: isotropic sce-
nario and dissolution of percolated porous network. Detailed analysis of micro-structural
changes triggered by both scenarii is quantified using aforementioned morphological char-
acterisation. Analysing covariance function, the most important facts state that:

1. during the isotropic dissolution scenario RVE size can remains constant

2. during the percolated network dissolution scenario RVE size increases significantly

3. entire geometry of sandstone and generated samples can be viewed as RVEs

Evolution of mechanical properties in the framework of linear elasticity is presented in
Chapter 6. The point of the method is to find a solution in order to apply periodic bound-
ary conditions on geometrically non-periodic RVE. This solution consists in spreading a
layer over the considered RVE and to prescribe its properties (each component of stiffness
matrix) by using fixed point method. The estimation of mechanical behaviour evolution
is performed directly via binary images using a methodology proposed by Roberts, Day
and Garboczi et al.. Due to the limitation of computer memory only the small resolutions
were taken into account. Obtained results are in good agreement with this presented by
Arns et al.. Analysis of evolution of effective properties of periodic geometry and the
evolution of the same sample with using layer and fixed point method, shows that our
method overestimate the result with relative error smaller than 1%. Averaged relation-
ships of elastic behaviour - porosity of reconstructed samples are in very good agreement
with evolution of the properties calculated for sandstone. It is showed that both scenarii
give similar results of evolution of effective elastic moduli.

Chapter 7 presents the common methodology used for solving flow via binary images.
Similar to the other authors a significant increase in the permeability with the increase of
porosity and progressive dissolution as well as with decreasing tortuosity are observed. It
is noticed that in the case of percolated network dissolution permeability increases faster
as a function of effective porosity and morphological tortuosity. Numerical results show
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that the relationship permeability - morphological tortuosity is much complicated for 3D
structure in considered media. Moreover, a simple relation linking elastic moduli with
permeability is proposed.

Perspectives

In regarding to the modelling of chemical dissolution and its effects on effective properties
of considered media few comments concerning used methodology are remarked.

Due to the implementation of numerical dissolution, in order to minimise some border ef-
fects, the used method should be performed on bigger image representing microstructures
than the size of samples on which morphological analysis and numerical computations
were performed. In order to confirm modelling of dissolution an analysis of microtomo-
graphic images representing real dissolved microstructures would be expected.

In regarding to the method of effective elastic properties estimation combined with using
additional external layer requires more computation. In order to described properly the
influence of the layer more detailed analysis is required.

In order to dispel any doubts concerning overestimation of mechanical properties evolu-
tion, in terms of the reason of overestimation - mechanism of dissolution or small resolu-
tion, computations should be performed using better resolution.

Analysis of evolution of homogenised stiffness tensors projected on orthotropic basis would
be well viewed development in order to understand better impact of dissolution.

Methodology proposed in this thesis can be easily adapted, in order to perform simi-
lar analysis, on aforementioned limestone. This point of the perspectives is during the
implementation.
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A
Algorithms and pseudocodes

For the purpose of the work, the 3D binary image was imported as a three-dimensional
matrix. Where pixel which represents pore possess assigned value equal to 1 and a pixel
denoting solid phase is valued by 0. Inhere we presented implementations of basic mor-
phological operations: dilation and erosion.

A.1 Morphological operations

According to the definition 2.2, dilation was implemented in following way, presented by
Pseudocode A.2.

Pseudocode A.2 Implementation of dilation

1: Input matrix[ N ][ N ][ N ];
2: Output matrix_dilated[ N ][ N ][ N ];
3: Initialization matrix_dilated[ N ][ N ][ N ] = matrix[ N ][ N ][ N ]
4: function dilation {
5: for all elements : i, j, k in N do

6: if matrix[ i ][ j ][ k ] == 1 then

7: matrix_dilated[ i ][ j ][ k ] == 1;
8: for all elements : i_next, j_next, k_next in neigbourhood do

9: matrix_dilated[ i_next ][ j_next ][ k_next ] == 1;
10: end for

11: end if

12: end for

13: return dilated matrix: matrix_dilated[ N ][ N ][ N ];
14: }
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According to the definition 2.2, erosion was implemented like dilation of solid phase.

Pseudocode A.3 Implementation of erosion

1: Input matrix[ N ][ N ][ N ];
2: Output matrix_eroded[ N ][ N ][ N ];
3: Initialization matrix_eroded[ N ][ N ][ N ] = matrix[ N ][ N ][ N ]
4: function erosion {
5: for all elements : i, j, k in N do

6: if matrix[ i ][ j ][ k ] == 0 then

7: matrix_eroded[ i ][ j ][ k ] == 0;
8: for all elements : i_next, j_next, k_next in neigbourhood do

9: matrix_dilated[ i_next ][ j_next ][ k_next ] == 0;
10: end for

11: end if

12: end for

13: return matrix_eroded[ N ][ N ][ N ];
14: }

A.2 Morphological descriptors

Estimation of porosity consist of scanning pixel by pixel and increasing a counter p when
scanned pixel represents porous phase

Pseudocode A.4 Estimation of porosity – pseudocode

1: Input matrix[ N ][ N ][ N ]
2: Output porosity
3: function porosity {
4: variable p = 0;
5: for all elements : i j k in N do

6: if matrix[ i ][ j ][ k ] == 1 then

7: p = p+1;
8: end if

9: end for

10: return porosity: p/N3;
11: }

Specific surface is estimated directly by analysing binary image of the medium, pixel by
pixel. For this purpose for each pixel of porous phase its neighbourhood is scanned by
the structuring element. If any component of structuring element is located in opposite
(solid) phase the value of specific surface counter increase by 1.
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Pseudocode A.5 representing estimation of specific surface

1: Input matrix[ N ][ N ][ N ]
2: Output specific surface
3: function specific surface {
4: variable s = 0;
5: for all elements : i, j, k in N do

6: if matrix[ i ][ j ][ k ] == 1 then

7: for all elements : i_next, j_next, k_next in 6-nearest neigbourhood do

8: if matrix[ i_next ][ j_next ][ k_next ] == 0 then

9: s = s+1;
10: end if

11: end for

12: end if

13: end for

14: return specific surface: s/N3;
15: }

As presented in Section 2, morphological granulometry is estimated according to the
method illustrated by Algorithm A.6.

Algorithm A.6 Estimation of granulometry

1. import the initial image X0.

2. perform erosion on X0 by using Br, → Xeroded (r).

3. perform dilation on Xeroded by using Br, → Xopened (r).

4. compute porosity of the opened image → ϕ (Xopened (r)).

5. if ϕ (Xopened (r)) *= 0 increase r.

6. repeat steps 1 – 5 until ϕ (Xopened (r)) = 0.

Estimation of covariance function is summarised in Algorithm A.7. For the sake of clarity,
Figure A.1 visualises the process.

1source: http: // ciks. cbt. nist. gov/ garbocz/ paper19/ node2. html .
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Algorithm A.7 Estimation of covariance function

1. import the image X.

2. compute the power spectrum of DFT of the image X → |F (X)|2.

3. compute the invert DFT → C̃(X) = F−1
(
|F (X)|2

)
.

4. estimate the maximum grey level value of the field Ω1 → ωmax = max
{
C̃(x ∈ Ω1)

}
.

5. find the mean grey level value of the field Ω2 → ωmean =
〈
C̃(x ∈ Ω2)

〉
.

6. correlate linearly the map C̃(X) using relations: ωmax = ϕ (X) ; ωmean = ϕ (X)2.

7. the result of the correlation is C(X); plot the covariance function for desired orien-
tation.
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Figure A.1: Microstructure and its covariance functions
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Macroscopic problem

In the model, we assume that all upper layers apply constant stress σ0 on the aquifer and
that the variations of stress caused by human or environment activities are negligible.
We also consider the so called ’far field’ and/or long term situation which means that the
CO2 was completely dissolved in the saline aquifer. The presence of CO2 in water creates
the acid environment, therefore, dissolution of rock material begins. The progressive dis-
solution causes changes of porosity, and variations of material properties, this process can
take thousands of years. In the analysis we assume that the porous rock is homogeneous
and periodic. The objective is to formulate an incremental model, in the framework of
linear theory of elasticity, that will be able to capture the subsidence due to the chemical
degradation of solid under a constant load.

Let us consider a macroscopic, one dimensional problem of settlement (creep) taking
place in a rocks formation (saline aquifer). The medium is characterised by three dimen-
sional microstructure presented in Figure B.1, where axis %z is parallel to the gravitational
force and position of all axes remains unchanged during the process of settlement. We
assume that saline water can flow out from the aquifer with no resistance (drained condi-
tions) and that the external stress is constant in time. In order to derive an incremental
law of elasticity, let us assume the validity of Hooke’s law in which material properties
(e.g. Young’s modulus) and deformation depend on porosity ϕ

σ0 = E(ϕ)ǫ(ϕ). (B.1)

By calculating the derivative with respect to porosity we obtain

0 =
dE(ϕ)

dϕ
ǫ(ϕ) + E(ϕ)

dǫ(ϕ)

dϕ
. (B.2)

Equation B.2 can be presented in the following form

0 = ǫ(ϕ)dE(ϕ) + E(ϕ)dǫ(ϕ), (B.3)
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Figure B.1: Macroscopic problem with evolving microstructure.

which is equivalent to

0 = ǫ(ϕ) [E(ϕ+ dϕ)− E(ϕ)] + E(ϕ) [ǫ(ϕ+ dϕ)− ǫ(ϕ)] . (B.4)

After an algebraic transformation we can write

ǫ(ϕ+ dϕ) = ǫ(ϕ)

[
2− E(ϕ+ dϕ)

E(ϕ)

]
. (B.5)

By introduction the iterative notation we obtain

ǫi+1 = ǫi

[
2− Ei+1

Ei

]
. (B.6)

We must notice that our problem is a feedback process. At each step, the change of
porosity due to mass loss (dissolution) causes the decrease of Young’s modulus and in-
crease of deformation. But on the other hand, each increment of deformation (settlement)
leads to decrease of porosity and to associated increase of Young’s modulus value. For
clarity the process is illustrated in Figure B.2, where ϕi is the current value of porosity

Figure B.2: Illustration of the algorithm.

of i step, ∆ϕm
i is the change of porosity caused by loss of mass and ∆ϕǫ

i is the variation
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of porosity caused by deformation. The next step (i + 1) starts from value of porosity
ϕi +∆ϕm

i −∆ϕǫ
i . If we assume that the skeleton material is incompressible with respect

to the porous material, than the macroscopic deformation can be considered as equal to
the change of porosity. Finally, we write

∆ϕǫ
i =

σ0

E(ϕi +∆ϕm
i )

, (B.7)

where E(ϕi+∆ϕm
i ) means the value of Young modulus for porosity (ϕi+∆ϕm

i ), which is
taken from the degradation function. Finally, to solve the problem we need to know the
degradation functions of material parameters.

B.0.1 Solution of the macroscopic boundary problem

The one-dimensional problem of subsidence defined in Annexe B was solved by using the
degradation function of the Young modulus in the z direction (Figure 3.10), given by

Ez = A exp (−ϕ/B) + C

where A = 16.78 GPa, B = 0.16, C = 10.02 GPa and ϕ is a porosity. It is assumed that
vertical stress is constant and equal σz = 20 MPa. This stress corresponds to the weight of
layer of 1 km of the unit volumetric weight 20 kN/m3. In Figure B.3 the strain variation
ǫz = ∆s/h (decreased by the value of initial deformation ǫ0 = σ0/Ez(ϕ0)) as a function of
porosity is shown. We observe the increase of strain to the value of −0.65 × 10−3, while
the porosity varies from the 0.093 to 0.40 (initial and final values). The corresponding
Young modulus varies from Ez = 20.19 GPa to Ez = 12.19 GPa, respectively. It can be
said, that in the framework of the assumption of long term behaviour, drained condition
and uniform dissolution the macroscopic effects of subsidence are very limited.

Figure B.3: Settlement problem; ǫz denotes vertical macroscopic deformation and ∆s is
the change in height.
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C
Connected component labelling

Connected components labelling scans an image and groups its pixels into components
based on pixel connectivity. For the purpose of this work we assume binary input images
and 6-connectivity in 3D. The connected components labelling scans the image by moving
along a row until it comes to a point p (where p denotes the pixel to be labeled) belonging
to the foreground. When this is true, it examines the six neighbours of p. Labelling of
scanned pixel p occurs as follows:

• if all four neighbours are 0 or 1 assign new label to p

• if neighbourhood has a prescribed label, assign the maximal label to p

After completing the scan, all the pixels representing porous phase possess assigned label.
After this first step an iterative method is adapted to merge neighbouring labels sharing
different values. This operation is repeated iteratively. Program stops when for each pixel
of the foreground its neighbourhood (also belonging to the foreground) possess the same
label value. Algorithm is illustrated in Figures C.2 and C.3

A pore, whose labels are located on opposite external faces of the geometry, is assumed to
belong to percolated network. For the sake of clarity an example is illustrated in Figure
C.1.
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Figure C.1: Schema illustrating extracting of percolated network. Red colour stands for
a pore which does not belong to percolated network.
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Figure C.2: Schema illustrating first step of the algorithm. All pixels have an assigned
label.
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Couplage entre transport, comportement mécanique et dégradation par dissolution de

réservoirs de roche

Résumé : L’objectif de cette thèse est d’analyser l’évolution des propriétés mécaniques et de transport effectives

de roches aquifères, qui sont soumises à une dégradation progressive par attaque chimique due à la dissolution par CO2.

L’étude proposée porte sur les conditions à long terme et en champ lointain, lorsque la dégradation de la matrice poreuse peut

être supposée homogène à l’échelle de l’échantillon. La morphologie du réseau de pores et du squelette solide définissant

les propriétés macroscopiques majeures de la roche (perméabilité, élasticité), la modélisation d’un tel matériau poreux

doit être basée sur une caractérisation morphologique et statistique des roches étudiées. Tout d’abord, une méthode

de reconstruction inspirée du processus naturel de formation des grès est développée afin d’obtenir des représentations

statistiquement équivalentes à de véritables échantillons. Les échantillons générés sont sélectionnés afin de satisfaire les

informations morphologiques extraites de l’analyse des images microtomographiques d’échantillons de roche naturelle. Une

méthodologie afin d’estimer les propriétés mécaniques équivalentes des échantillons générés, fondées directement sur des

maillages régulièrs considèrés comme images binaires, est présentée. Le comportement mécanique équivalent est obtenu dans

le cadre de l’homogénéisation périodique. Mais en raison du manque de périodicité géométrique des échantillons considérés,

deux approches différentes sont développées : la reconstruction de VER par symétrie de réflexion ou l’addition d’une couche

homogène associée à une méthode de point fixe. L’évolution de la perméabilité est estimée de manière classique en utilisant

la méthode de mise à l’échelle dans la forme de la loi de Darcy. Enfin, la dissolution chimique du matériau est abordée par

dilatation morphologique de la phase poreuse. De plus, une analyse détaillée de l’évolution des descripteurs morphologiques

liée aux modifications de la microstructure lors des étapes de dissolution est présentée. La relation entre les propriétés

morphologiques - perméabilité - modules d’élasticité est également fournie. La méthodologie développée dans ce travail

pourra être facilement appliquée à d’autres classes de matériaux hétérogènes.

Mots-clés : milieux poreux, modélisation multi-échelles, couplage chemo-mécanique, homogénéisation, morphologie

mathématique, numérique.

Coupling between transport, mechanical properties and degradation by dissolution of rock

reservoir

Abstract: The aim of this thesis is to analyse evolution of effective mechanical and transport properties of rock

aquifer, which is subjected to progressive chemical degradation due to CO2 dissolution. The proposed study focuses on

long-term and far field conditions, when degradation of porous matrix can be assumed to be homogeneous at sample scale.

It is very well known that morphology of pore network and solid skeleton defines important macroscopic properties of the

rock (permeability, stiffness). Therefore, modelling of such porous material should be based on morphological and statistical

characterisation of investigated rocks. First of all, in order to obtain statistically equivalent representations of real specimen

a reconstruction method inspired by natural process of sandstone formation is adapted. Then the selected generated samples

satisfy morphological informations which are extracted by analysing microtomography of the natural rock sample. Secondly,

a methodology to estimate effective mechanical properties of investigated material, based directly on pixel-like regular

meshes, is featured. Effective mechanical behaviour is obtain within the framework of periodic homogenization. However

due to lack of geometrical periodicity two different approaches are used (reflectional symmetry of considered RVE and a

fixed point method, using additional layer spread over the considered geometry). Evolution of permeability is estimated in

classical way using upscaling method in the form of Darcy’s law. Finally, chemical dissolution of material is tackled in a

simplified way by performing morphological dilation of porous phase. Detailed analysis of chosen morphological descriptors

evolution, triggered by modifications of microstructures is provided. The relation between morphological properties –

permeability – elastic moduli is also provided. The methodology developed in this work could be easily applied to other

heterogeneous materials.

Key words: porous media, multi-scale modeling, chemo-mechanical coupling, homogenization, mathematical mor-

phology, numerical computation.


