
HAL Id: tel-01995823
https://theses.hal.science/tel-01995823v1

Submitted on 27 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Quest for Formally Secure Compartmentalizing
Compilation
Cătălin Hriţcu

To cite this version:
Cătălin Hriţcu. The Quest for Formally Secure Compartmentalizing Compilation. Programming
Languages [cs.PL]. ENS Paris; PSL Research University, 2019. �tel-01995823�

https://theses.hal.science/tel-01995823v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

École Normale Supérieure

Mémoire d’habilitation à diriger des recherches

Specialité Informatique

The �est for Formally Secure
Compartmentalizing Compilation

Cătălin Hriţcu (Inria Paris)

Correspondant HDR :

David Pointcheval (CNRS, DI/ENS, PSL Research University)

Rapporteurs :

Frank Piessens (KU Leuven)

Gilles Barthe (MPI for Security and Privacy and IMDEA So�ware Institute)

Thomas Jensen (Inria Rennes)

Examinateurs :

David Pichardie (ENS Rennes)

Deepak Garg (MPI-SWS)

Karthikeyan Bhargavan (Inria Paris)

Tamara Rezk (Inria Sophia-Antipolis)

Xavier Leroy (Collège de France and Inria Paris)

January 21, 2019

2

Abstract

Severe low-level vulnerabilities abound in today’s computer systems, allowing cyber-attackers
to remotely gain full control. This happens in big part because our programming languages,
compilation chains, and architectures too often trade o� security for e�ciency. The semantics
of mainstream low-level languages like C is inherently insecure, and even for safer languages,
all guarantees are lost when interacting with low-level code, for instance when using low-level
libraries. This habilitation presents my ongoing quest to build formally secure compartmen-
talizing compilation chains that defend against such attacks. In particular, we propose several
formal de�nitions that characterize what it means for a compartmentalizing compilation chain
to be secure, both in the case of safe and of unsafe source languages.

We start by investigating what it means for a compilation chain to provide secure interoper-
ability between a safe source language and linked target-level code that is adversarial. In this
model, a secure compilation chain ensures that even linked adversarial target-level code cannot
break the security properties of a compiled program any more than some linked source-level
code could. However, the precise class of security properties one chooses to preserve crucially
impacts not only the supported security goals and the strength of the attacker model, but also
the kind of protections the compilation chain has to introduce and the kind of proof techniques
one can use to make sure that the protections are watertight. We are the �rst to thoroughly
explore a large space of secure compilation criteria based on the preservation against adver-
sarial contexts of various classes of trace properties such as safety, of hyperproperties such as
noninterference, and of relational hyperproperties such as trace equivalence.

We then extend secure compartmentalizing compilation to unsafe languages like C and C++.
We propose a new formal criterion for secure compilation schemes from such unsafe lan-
guages, expressing end-to-end security guarantees for software components that may become
compromised after encountering unde�ned behavior—for example, by accessing an array out
of bounds. Our criterion is the �rst to model dynamic compromise in a system of mutually
distrustful components with clearly speci�ed privileges. It articulates how each component
should be protected from all the others—in particular, from components that have encountered
unde�ned behavior and become compromised.

To illustrate this model, we construct a secure compilation chain for a small unsafe language
with bu�ers, procedures, and components, targeting a simple abstract machine with built-in
compartmentalization. We give a careful proof (mostly machine-checked in Coq) that this com-
piler satis�es our secure compilation criterion. We, moreover, show that the protection guaran-
tees o�ered by the compartmentalized abstract machine can be achieved at the machine-code
level using either software fault isolation or a tag-based reference monitor. Finally, we discuss
the perspectives of scaling such formally secure compilation to realistic low-level programming
languages like C.

2

Acknowledgements

My recent research, including this, is to a large extend the result of the hard work of a large
group of outstanding students, post-docs, and engineers, whom I was very fortunate to su-
pervise, including: Alejandro Aguirre, Arthur Azevedo de Amorim, Ana Nora Evans, Carmine
Abate, Clément Pit-Claudel, Danel Ahman, Diane Gallois-Wong, Florian Groult, Guglielmo
Fachini, Guido Martínez, Jérémy Thibault, Kenji Maillard, Li-yao Xia, Marco Stronati, Nick Gi-
annarakis, Rob Blanco, Simon Forest, Théo Laurent, Tomer Libal, Victor Dumitrescu, Yannis
Juglaret, and Zoe Paraskevopoulou. I am deeply indebted to each of them for their contagious
enthusiasm, amazing energy, and all the astonishing things they have taught me.

Together with the other members of the Prosecco research team they have made my time at
Inria Paris fantastic and have served as a second family. In addition, Karthik Bhargavan gave
me insightful advice on many occasions and the freedom I needed to grow as an independent
researcher. Bruno Blanchet always had an open door and was ready to help me on countless
occasions. Graham Steel and Ben Smyth taught me the importance of having a beer. Anna
Bednarik and Mathieu Mourey, the world’s best research team assistants, provided excellent
support on a daily basis.

My amazing external collaborators helped put my research in a broader perspective: Benjamin
Pierce served as an inspiring role model from whom I have learned a great deal, and most
importantly to strive for clarity, simplicity, thoroughness, honesty, and kindness. Nik Swamy
got me thrilled about F? and since then has been a great companion in the quest of turning
interesting ideas into a tool others can use. Andrew Tolmach was always ready to give me
advice and a helping hand. André DeHon taught me that e�ciency and thorough experiments
matter as much as thorough proofs. Deepak Garg is an endless fountain of intuition and good
ideas that I was lucky to recently discover.

Finally, I am eternally grateful to my family for their endless love, care, and compassion. To
my life partner Beate, who never ceases to amaze me with her kindness and sel�essness and
who never gave up on trying to make the world a better place and me a better person. To
my mother Stela, who taught me the most important things in life and made any imaginable
sacri�ce to help me succeed. To my father Ioan, who was a great �rst moral compass and role
model. To my sister Gabriela, with whom I shared both the happiness of childhood and the
pain of growing up. Thank you everyone for being there!

Paris, September 7, 2018 Cătălin Hriţcu

3

https://software.imdea.org/people/alejandro.aguirre
http://www.cis.upenn.edu/~aarthur/
http://ananoraevans.org/
https://www.researchgate.net/profile/Carmine_Abate
https://www.researchgate.net/profile/Carmine_Abate
http://pit-claudel.fr/clement/
https://danelahman.github.io/
https://www.lri.fr/membre.php?mb=2372
https://github.com/floriangru
http://fachini.net/
http://fachini.net/
https://github.com/mtzguido
http://perso.eleves.ens-rennes.fr/people/Jeremy.Thibault/
https://www.eleves.ens.fr/home/kmaillar/
https://poisson.chat/
http://www.stronati.org/
https://scholar.princeton.edu/nick
https://scholar.princeton.edu/nick
https://robblanco.github.io/
http://www.eleves.ens.fr/home/forest
https://github.com/theolaurent
http://tomer.libal.info/
https://github.com/victor-dumitrescu
http://yannis.computer
http://yannis.computer
https://github.com/zoep

Contents

Preface 6
Contribution 1: Tag-Based Security Monitoring . 6
Contribution 2: Formally Secure Compilation . 7
Contribution 3: F* – A Language for Program Veri�cation 7
Contribution 4: Dependable Property-Based Testing 8

1 Introduction 9

2 Secure Interoperability with Lower-Level Code 13
2.1 Overview . 13
2.2 Robustly Preserving Classes of Trace Properties 18

2.2.1 Robust Trace Property Preservation (RTP) 18
2.2.2 Trace Model with Finite and In�nite Traces and Its Impact on Safety

and Liveness . 21
2.2.3 Robust Safety Property Preservation (RSP) 24
2.2.4 Robust Dense Property Preservation (RDP) 25

2.3 Robustly Preserving Classes of Hyperproperties 26
2.3.1 Robust Hyperproperty Preservation (RHP) 26
2.3.2 Robust Subset-Closed Hyperproperty Preservation (RSCHP) 27
2.3.3 Robust Hypersafety Preservation (RHSP) 28
2.3.4 Where is Robust Hyperliveness Preservation? 29

2.4 Robustly Preserving Classes of Relational Hyperproperties 30
2.4.1 Relational Hyperproperty Preservation (RrHP) 30
2.4.2 Relational Trace Property Preservation (RrTP) 32
2.4.3 Robust Relational Safety Preservation (RrSP) 33
2.4.4 Robust Non-Relational Preservation Doesn’t Imply Robust Relational

Preservation . 34
2.5 Where is full abstraction? . 35
2.6 Proving Secure Compilation . 36

2.6.1 Source and Target Languages . 37
2.6.2 The Compiler . 38
2.6.3 Proving Robust Relational Hyperproperty Preservation 38
2.6.4 Proving Robust Finite-Relational Safety Preservation 40

2.7 Related Work . 42
2.8 Conclusion and Future Work . 44

4

Contents 5

3 Secure Compilation for Unsafe Languages 46
3.1 Overview . 46
3.2 RSCC By Example . 49
3.3 Formally De�ning RSCC . 56

3.3.1 RSCDC: Dynamic Compromise . 56
3.3.2 RSCDC

MD: Mutually Distrustful Components 58
3.3.3 Formalizing RSCC . 59
3.3.4 A Generic Proof Technique for RSCC 60
3.3.5 Class of safety properties preserved by RSCDC 63
3.3.6 Comparison to Static Compromise . 65

3.4 Secure Compilation Chain . 65
3.4.1 Source Language . 67
3.4.2 The Compartmentalized Machine . 68
3.4.3 RSCC Proof in Coq . 69
3.4.4 Software Fault Isolation Back End . 72
3.4.5 Micro-policies Tagged Architecture . 74
3.4.6 Tag-based Reference Monitor . 76

3.5 Related Work . 77
3.6 Conclusion . 80

4 Research Plan for the Next 4 Years 81

Bibliography 85

Appendix 96

5

Preface

My research is primarily focused on developing rigorous formal techniques for solving security
problems. My contributions span formal methods for computer and network security (memory
safety, compartmentalization, dynamic monitoring, integrity, information �ow, security pro-
tocols, privacy, anonymity), programming-languages techniques (type systems, veri�cation,
proof assistants, property-based testing, semantics, formal metatheory, certi�ed tools), and the
design and veri�cation of security-critical systems (tag-based reference monitors, secure com-
pilation chains, secure hardware). My research combines practice and theory: On the practical
side, I design and build innovative software for solving real security problems, I experiment
with this software, and I make it available for everybody to use. On the theoretical side, I make
sure that each technique I propose is correct by coming up with appropriate attacker models
and formal security de�nitions and then distilling the main ideas into a formalism that I prove
correct, usually with the help of program veri�cation systems and proof assistants.

This report presents research I have done since defending my PhD thesis in January 2012.
This preface outlines my 4 main research contributions since 2012, while the rest of the report
focuses for the most part on contributions 2 and 1, presenting them through the lens of my
ongoing quest for achieving e�cient formally secure compilation for realistic programming
languages. The 5 research papers on which this thesis builds are reproduced in the appendix.

Contribution 1: Tag-Based Security Monitoring

During my postdoc at University of Pennsylvania I helped propel and steer the very ambitious
DARPA CRASH/SAFE project, a large academia-industry collaboration (40+ people) that has
undertaken the clean-slate co-design of a secure network host, including the design of novel
hardware [Dhawan and DeHon 2013, Dhawan et al. 2012], operating/runtime system [Sullivan
et al. 2013], programming language [Hriţcu et al. 2013a, Montagu et al. 2013], and the system-
atic testing [Hriţcu et al. 2013b, 2016] and veri�cation of key components [Azevedo de Amorim
et al. 2014, 2016]. I was actively involved in most of the design activities of CRASH/SAFE. I was
a main designer and implementer of Breeze, a new high-level language with �ne-grained dy-
namic information-�ow control (IFC) and label-based access control (clearance). In particular,
I was responsible for the novel security and exception handling mechanisms of Breeze [Hriţcu
et al. 2013a]. I also took part in the design of the SAFE hardware and runtime system, which
dynamically enforce type and memory safety, IFC and access control all the way down to the
lowest level [Dhawan et al. 2012], and I played a leading role in designing, formalizing, testing,

6

http://www.crash-safe.org/

Contents 7

and verifying the low-level IFC mechanisms of the SAFE system [Azevedo de Amorim et al.
2014, 2016, Hriţcu et al. 2013b, 2016].

Relatively late in the design of SAFE we realized that the tag-based monitoring mechanism,
which was originally meant for enforcing IFC and access control, is a lot more general than
we �rst thought, and can replace most of the other protection mechanisms of SAFE. This idea
has lead to a follow up Micro-Policies project between UPenn, Inria, and Portland State. In this
project we have shown that a large number of critical safety and security micro-policies can
be expressed as tag-based security monitors and e�ciently enforced using hardware caching
and sophisticated micro-architectural optimizations [Dhawan et al. 2015b]. Moreover, I have
led the e�ort of devising a formal veri�cation methodology for micro-policies and applying it
to prove the security of our compartmentalization, control-�ow integrity, and memory safety
micro-policies [Azevedo de Amorim et al. 2015]. In parallel, our industrial partners at Draper
Labs have continued working on a hardware platform for micro-policies based on the RISC-V
ISA, and have created Dover Microsystems, a startup aimed at developing and commercializing
this technology. This continued academic and industrial interest in micro-policies has recently
lead to a new DARPA-funded SSITH/HOPE project, in which I am also involved.

Contribution 2: Formally Secure Compilation

This new research project started around 2015 with my realization that micro-policies would
be very well-suited for devising more secure compilation chains [Juglaret et al. 2015], and that
this problem is very interesting in general, even irrespective of micro-policies. In particular,
even de�ning what secure compilation means was a big open problem at that point. So we
started by devising a variant of full abstraction that supports protecting mutually distrustful
components written in an unsafe low-level language like C [Juglaret et al. 2016]. In the process
we realized, however, that full abstraction is di�cult to achieve and prove and it does not
well match our intuitive attacker model; in particular, it does not interact well with unde�ned
behavior and is limited to a static compromise model. So we investigated other security criteria
based on preserving trace properties, hyperproperties, and relational hyperproperties against
adversarial contexts [Abate et al. 2018b]. This solves the issues with full abstraction and in
particular allows us to support a model of dynamic component compromise [Abate et al. 2018a].
This line of research forms the foundation of my ongoing ERC SECOMP project and is also the
main focus of this report.

Contribution 3: F* – A Language for Program Verification

Since early 2014, I am actively involved in the design and continuous evolution of F?, a general-
purpose functional programming language with e�ects targeted at program veri�cation. The
current F? design is aimed at combining SMT-based automation with the power and expressive-
ness of proof assistants like Coq, which enables users to prove arbitrarily complex properties

7

http://www.draper.com/
http://www.draper.com/
https://dovermicrosystems.com/

Contents 8

manually. To achieve this we have introduced full dependent types and tracking of side-e�ects,
while isolating a core language of pure total functions that can be used to write speci�cations
and proof terms [Swamy et al. 2016]. A key insight in F? was that veri�cation conditions can
be computed generically for any e�ect using so called Dijkstra monads, and that these Dijk-
stra monads can be derived “for free” from the monadic model of the e�ect [Ahman et al.
2017]. Moreover, carefully exposing the monadic representation of e�ects can be used to ver-
ify relational properties that characterize many useful notions of security, program re�nement,
and equivalence [Grimm et al. 2018]. This general treatment of side-e�ects allowed us to re-
cently implement support for meta-programming and tactics in F? simply as a user de�ned
e�ect [Martínez et al. 2018]. Finally, we added to F? convenient support for the veri�cation of
programs whose state evolves monotonically [Ahman et al. 2018]. The main idea is that a prop-
erty witnessed in a prior state can be soundly recalled in the current state, provided (1) state
evolves according to a given preorder, and (2) the property is preserved by this preorder. All
these innovations of F? are used to verify an e�cient HTTPS stack in Project Everest [Bharga-
van et al. 2017a,b, Protzenko et al. 2017, Zinzindohoué et al. 2017].

Contribution 4: Dependable Property-Based Testing

This project, which I initiated in 2013 and lead until 2015, investigates the integration of
property-based testing [Claessen and Hughes 2000] and of formal veri�cation in the Coq proof
assistant in order to lower the costs of veri�cation and increase the thoroughness of testing.
For this we investigated realistic case studies [Hriţcu et al. 2013b, 2016], the integration of test-
ing in Coq [Paraskevopoulou et al. 2015], the use of formal veri�cation to improve the quality
of testing [Paraskevopoulou et al. 2015], domain-speci�c languages for property-based gener-
ators [Lampropoulos et al. 2017], and a novel variant of mutation testing. This project has been
successful at producing the QuickChick plugin for Coq, which is now maintained and further
improved in the DeepSpec NSF expedition [Lampropoulos et al. 2018].

8

https://github.com/QuickChick/QuickChick
https://deepspec.org

1 Introduction

Today’s computer systems are distressingly insecure. This a�ects the foundation upon which
today’s information society is built and makes everyone potentially vulnerable. Visiting a web-
site, opening an email, or serving a client request is often enough to cause a computer to be
compromised by a cyber-attack that allows remote attackers to gain full control. This often
results in the disclosure or destruction of information and the use of the machine in further
cyber-attacks. Hundreds of thousands of compromised computers are hoarded into “botnets”
that are used to send spam, mount distributed denial of service attacks, or mine cryptocur-
rency. Botnets are increasingly rented out by cyber-criminals as commodities and according
to Symantec and Kaspersky Labs they are currently the biggest threat to the Internet. Given
their cyber-attack power, previously unknown (“0-day”) exploitable low-level vulnerabilities
in widely-used software are often sold to intelligence agencies or botnet “controllers” for tens
to hundreds of thousands of dollars.

The causes for this dissatisfying state of a�airs are complex, but at this point mostly histor-
ical: our programming languages, compilers, and architectures were designed in an era of
scarce hardware resources and far too often trade o� security for e�ciency. Today’s main-
stream low-level languages, C and C++, give up even on the most basic safety checks for the
sake of e�ciency, which leaves programmers bearing all the burden for security: the small-
est mistake in widely-deployed C and C++ code can cause security vulnerabilities with disas-
trous consequences [Durumeric et al. 2014]. Four of the top 25 most dangerous software error
types (https://cwe.mitre.org/top25/) would be prevented or e�ectively mitigated by en-
suring memory safety alone, including #3 in the top: “Classic Bu�er Over�ow.” The C and
C++ languages do not guarantee memory safety and their compilation chains do not enforce
it because currently deployed hardware provides no good support for it and software checks
would incur 70-80% overhead on average [Nagarakatte et al. 2010, 2015]. Instead, much weaker
low-overhead mitigation techniques are deployed and routinely circumvented by practical at-
tacks [Conti et al. 2015, Evans et al. 2015, Szekeres et al. 2013]. Unfortunately, just ensuring
memory safety would in fact not be enough to make C and C++ safe, as the standards and com-
pilers for these languages call out a much larger number of unde�ned behaviors [Hathhorn
et al. 2015, Krebbers 2015], for which compilers produce code that behaves arbitrarily, often
leading to security vulnerabilities, including for instance invalid unchecked type casts [Duck
and Yap 2018, Haller et al. 2016], data races, and sometimes even integer over�ows.

Safer languages such as Java, C#, ML, Haskell, or Rust provide memory safety and type safety
by default as well as many useful abstractions for writing more secure code (e.g., modules, in-
terfaces, parametric polymorphism, etc). Unfortunately, these languages are still not immune

9

https://cwe.mitre.org/top25/
https://cwe.mitre.org/data/definitions/120.html

CHAPTER 1. INTRODUCTION 10

to low-level attacks. All the safety guarantees of these source languages are lost when interact-
ing with low-level code, for instance when using low-level libraries. This interaction is useful
but dangerous because the low-level code can be malicious or compromised (e.g., by a bu�er
over�ow). Currently, not only is the low-level code trusted to be safe, but also to preserve all
the complex abstractions and internal invariants of the high-level language semantics, com-
piler, and runtime system. So even if some critical code is secure with respect to the semantics
of a high-level language, any low-level code with which it interacts can break its security.

Veri�cation languages such as Coq and F? [Swamy et al. 2016] provide additional abstractions,
such as dependent types, logical pre- and postconditions, and tracking the precise e�ects of
computations, distinguishing between pure and stateful computations or computations that
can raise exceptions. Such abstractions are crucial for making the veri�cation e�ort more
tractable in practice, but they also make the �nal veri�cation result only valid in these very
abstract languages. In order for a Coq or F? program to be executed it is �rst compiled all the
way down to machine code. Even if the compilation is correct [Kumar et al. 2014, Leroy 2009a],
this is usually not enough to ensure the security of the veri�ed code, since usually not all the
code can be written and veri�ed in the abstract veri�cation language.

For a concrete example, consider the miTLS? implementation of the TLS standard, the most
widely-used security protocol framework on the Internet. miTLS? is being written and formally
veri�ed in Low?, a safe subset of C embedded in F? [Bhargavan et al. 2017b, Protzenko et al.
2017, Zinzindohoué et al. 2017]. miTLS? includes tens of thousands lines of Low? code, and
even when all this code will be formally veri�ed, it will just be a tiny library linked from large
unveri�ed applications such as web browsers, web servers, and operating systems, which have
millions of lines of C, C++, and ASM code. Not only are these applications not veri�ed and can
thus break the veri�ed security properties of the Low? code, but these applications are not even
memory safe, and any error can allow remote attackers to take complete control, disclose the
memory of the process stealing the TLS private keys, etc. A correct compilation chain is not
enough in this case, since (1) a correct compilation chain [Leroy 2009a] for an insecure language
like C still produces insecure code and leaves the burden of avoiding unde�ned behaviors to
the programmer, and (2) a correct compilation chain does not protect the interaction between
high-level and low-level code and does not enforce the abstractions of each language against
faulty or malicious code written in the lower-level languages. In order for miTLS? to be secure
in practice we don’t need only correct compilation, but also secure compilation.

In the ERC SECOMP project we study the use of compartmentalization to practically defend
against low-level attacks and achieve secure compilation. Widely deployed compartmentaliza-
tion technologies include process-level privilege separation [Bittau et al. 2008, Gudka et al. 2015,
Kilpatrick 2003] (used in OpenSSH [Provos et al. 2003] and for sandboxing plugins and tabs in
web browsers [Reis and Gribble 2009]), software fault isolation [Tan 2017, Wahbe et al. 1993]
(e.g., Google Native Client [Yee et al. 2010]), WebAssembly modules [Haas et al. 2017] in modern
web browsers, and hardware enclaves (e.g., Intel SGX [Intel]); many more are on the drawing
boards [Azevedo de Amorim et al. 2015, Chisnall et al. 2015, Skorstengaard et al. 2018a, Wat-
son et al. 2015b]. These compartmentalization mechanisms o�er an attractive base for building
more secure compilation chains that prevent or at least mitigate low-level attacks [Gollamudi

10

CHAPTER 1. INTRODUCTION 11

and Fournet 2018, Gudka et al. 2015, Juglaret et al. 2015, Patrignani et al. 2016, Tsampas et al.
2017, van Ginkel et al. 2016, Van Strydonck et al. 2018].

However, what does it mean for a compartmentalizing compilation chain to be secure? This
thesis provides several formal security de�nitions that can answer this question for both safe
and unsafe source languages.

Secure interoperability with lower-level code In chapter 2 we investigate what it means
for a compilation chain to provide secure interoperability between a safe source language and
linked target-level code that is adversarial. In this model, a secure compilation chain protects
source-level abstractions all the way down, ensuring that even an adversarial target-level con-
text cannot break the security properties of a compiled program any more than some source-
level context could. However, the precise class of security properties one chooses to preserve
crucially impacts not only the supported security goals and the strength of the attacker model,
but also the kind of protections the compilation chain has to introduce and the kind of proof
techniques one can use to make sure that the protections are watertight. Since e�ciently
achieving and proving secure compilation at scale are challenging open problems, designers of
secure compilation chains have to strike a pragmatic balance between security and e�ciency
that matches their application domain.

To inform this di�cult design decision, we thoroughly explore a large space of formal secure
compilation criteria based on the preservation of properties that are robustly satis�ed against
arbitrary adversarial contexts. We study robustly preserving various classes of trace properties
such as safety, of hyperproperties such as noninterference, and of relational hyperproperties
such as trace equivalence. For each of the studied classes we propose an equivalent “property-
free” characterization of secure compilation that is generally better tailored for proofs. We,
moreover, order the secure compilation criteria by their relative strength and prove several
separation results.

Finally, we show that even the strongest of our secure compilation criteria, the robust preser-
vation of all relational hyperproperties, is achievable for a simple translation from a statically
typed to a dynamically typed language. We prove this using a universal embedding, a con-
text back-translation technique previously developed for fully abstract compilation. We also
illustrate that for proving the robust preservation of most relational safety properties includ-
ing safety, noninterference, and sometimes trace equivalence, a less powerful but more generic
technique can back-translate a �nite set of �nite execution pre�xes into a source context.

The presentation in chapter 2 closely follows a research paper draft [Abate et al. 2018b] that I
have recently co-authored and which is also included in the appendix.

Secure compartmentalization for unsafe languages In chapter 3 we extend secure com-
partmentalizing compilation to unsafe languages like C and C++. We propose a new formal
criterion for evaluating secure compilation schemes for such unsafe languages, expressing end-
to-end security guarantees for software components that may become compromised after en-
countering unde�ned behavior—for example, by accessing an array out of bounds.

11

CHAPTER 1. INTRODUCTION 12

Our criterion is the �rst to model dynamic compromise in a system of mutually distrustful
components with clearly speci�ed privileges. It articulates how each component should be
protected from all the others—in particular, from components that have encountered unde�ned
behavior and become compromised. Each component receives secure compilation guarantees—
in particular, its internal invariants are protected from compromised components—up to the
point when this component itself becomes compromised, after which we assume an attacker
can take complete control and use this component’s privileges to attack other components.
More precisely, a secure compilation chain must ensure that a dynamically compromised com-
ponent cannot break the safety properties of the system at the target level any more than an
arbitrary attacker-controlled component (with the same interface and privileges, but without
unde�ned behaviors) already could at the source level.

To illustrate the model, we construct a secure compilation chain for a small unsafe language
with bu�ers, procedures, and components, targeting a simple abstract machine with built-in
compartmentalization. We give a careful proof (mostly machine-checked in Coq) that this com-
piler satis�es our secure compilation criterion. Finally, we show that the protection guarantees
o�ered by the compartmentalized abstract machine can be achieved at the machine-code level
using either software fault isolation or a tag-based reference monitor.

The presentation in chapter 3 closely follows a recent research paper [Abate et al. 2018a]. The
main exceptions are: §3.3.6, which illustrates the more restrictive static compromise model of
an earlier paper that served as a stepping stone for the current work [Juglaret et al. 2016]; and
§3.4.5, which introduces micro-policies [Azevedo de Amorim et al. 2015], the mechanism for
tag-based reference monitors that we use for one of the back ends of our prototype compilation
chain and that we hope will allow us to achieve e�cient formally secure compilation at scale.
Micro-policies generalize a tagging mechanism we originally devised to e�ciently enforce in-
formation �ow control [Azevedo de Amorim et al. 2016], and which also served as a stepping
stone for the work presented here. I have substantially contributed to these research papers
and they are included in the appendix.

Longer-term perspectives While chapters 2 and 3 use simple secure compilation chains
for illustrating the main ideas, scaling this up to realistic languages and compilation chains
is still an open challenge. The �nal goal of the ERC SECOMP project is to build the �rst for-
mally secure compilation chains for realistic programming languages. In particular, we are
planning a secure compilation chain starting from programs written in a combination of C
and Low? [Protzenko et al. 2017] and targetting a RISC-V architecture [Asanović and Patter-
son 2014] extended with micro-policies [Azevedo de Amorim et al. 2015], building up on the
simple prototype from chapter 3. In order to ensure high con�dence in the security of our
compilation chains, we plan to thoroughly test them using property-based testing and then
formally verify their security using Coq. For measuring and optimizing e�ciency we plan to
use standard benchmark suites [Henning 2006] and realistic source programs, with miTLS? as
the main end-to-end case study. Chapter 4 further explains this research plan.

12

2 Secure Interoperability with Lower-Level
Code: Journey Beyond Full Abstraction

2.1 Overview

Good programming languages provide helpful abstractions for writing secure code. For ex-
ample, the HACL? [Zinzindohoué et al. 2017] and miTLS? [Bhargavan et al. 2017b] veri�ed
cryptographic libraries are written in Low? [Protzenko et al. 2017], a language that provides
many di�erent kinds of abstractions: from low-level abstractions associated with safe C pro-
grams (such as structured control �ow, procedures, and a block-based memory model inspired
by CompCert [Leroy and Blazy 2008]), to higher-level abstractions associated with typed func-
tional languages like ML (such as modules, interfaces, and parametric polymorphism), to fea-
tures associated with veri�cation systems like Coq and Dafny (such as e�ects, dependent types,
and logical pre- and post-conditions), and, �nally, to patterns speci�c to cryptographic code
(such as using abstract types and restricted interfaces to rule out certain side-channel attacks).
Such abstractions are crucial in making the e�ort required to reason about the correctness and
security properties of realistic code tractable.

However, such abstractions are not enforced all the way down by today’s compilation chains.
In particular, the security properties a program has in the source language are generally not
preserved when compiling the program and linking it with adversarial low-level code. HACL?
and miTLS? are libraries that get linked into real applications such as web browsers [Beur-
douche et al. 2018, Erbsen et al. 2019], which include millions of lines of legacy C/C++ code.
Even if we formally proved, say, that because of the way the miTLS? library is structured and
veri�ed, no Low? application embedding miTLS? can cause it to leak a private decryption key,
this guarantee is completely lost when compiling miTLS? [Leroy 2009a, Protzenko et al. 2017]
and linking it into a C/C++ application that can get compromised via a bu�er over�ow and
simply read o� the private key from memory [Durumeric et al. 2014, Szekeres et al. 2013].
More generally, a compromised or malicious application that links in the miTLS? library can
easily read and write the data and code of miTLS?, jump to arbitrary instructions, or smash the
stack, blatantly violating any source-level abstraction and breaking any guarantee obtained by
source-level reasoning.

An idea that has been gaining increasing traction recently is that it should be possible to build
secure compilation chains that protect source-level abstractions all the way down, ensuring that
an adversarial target-level context cannot break the security properties of a compiled program
any more than some source-level context could [Abadi 1999, Abadi and Plotkin 2012, Abadi

13

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 14

et al. 2002, Abate et al. 2018a, Ahmed 2015, Ahmed and Blume 2008, 2011, Devriese et al. 2016a,
2017, Fournet et al. 2013, Jagadeesan et al. 2011, Juglaret et al. 2016, Larmuseau et al. 2015, New
et al. 2016, Patrignani and Garg 2018, Patrignani et al. 2015, 2016, 2019]. Such a compilation
chain enables reasoning about the security of compiled code with respect to the semantics of
the source programming language, without having to worry about “low-level” attacks from
the target-level context. In order to achieve this, the various parts of the secure compilation
chain—including for instance the compiler, linker, loader, runtime, system, and hardware—have
to work together to provide enough protection to the compiled program, so that any security
property proved against all source contexts also holds against all target contexts.

However, the precise class of security properties one chooses to preserve is crucial. Full ab-
straction [Abadi 1999], currently the most well-known secure compilation criterion [Abadi and
Plotkin 2012, Abadi et al. 2002, Ahmed 2015, Ahmed and Blume 2008, 2011, Devriese et al. 2016a,
2017, Fournet et al. 2013, Jagadeesan et al. 2011, Juglaret et al. 2016, Larmuseau et al. 2015, New
et al. 2016, Patrignani et al. 2015, 2016, 2019], would, for instance, not be very well-suited to
preserving the con�dentiality of miTLS?’s private key. First, while a fully abstract compilation
chain preserves (and re�ects) observational equivalence, the con�dentiality of miTLS?’s private
key is a noninterference property that is not directly captured by observational equivalence.
Second, even if one was able to encode noninterference as an observational equivalence [Abadi
1999, Patrignani et al. 2019], the kind of protections one has to put in place for preserving ob-
servational equivalence will likely be overkill if all one wants to preserve is noninterference
against adversarial contexts (or, to use terminology from the next paragraph, to preserve robust
noninterference). It is signi�cantly harder to hide the di�erence between two programs that are
observationally equivalent but otherwise arbitrary, compared to hiding some clearly identi�ed
secret data of a single program (e.g., the miTLS? private key), so a secure compilation chain for
robust noninterference can likely be much more e�cient than one for observational equiva-
lence. Moreover, achieving full abstraction is hopeless in the presence of side-channels, while
preserving noninterference is still possible, at least in speci�c scenarios [Barthe et al. 2018]. In
general, stronger secure compilation criteria are also harder (or even impossible) to achieve ef-
�ciently and designers of secure compilation chains are faced with a di�cult decision, having
to strike a pragmatic balance between security and e�ciency that matches their application
domain. Finally, even when e�ciency is not a concern (e.g., when security is enforced by static
restrictions on target-level contexts [Abadi 1999, Ahmed 2015, Ahmed and Blume 2008, 2011,
New et al. 2016]), stronger secure compilation criteria are still harder to prove. In our example,
proving preservation of noninterference is likely much easier than proving full abstraction, a
notoriously challenging task even for very simple languages, with apparently simple conjec-
tures surviving for decades before being �nally settled, sometimes negatively [Devriese et al.
2018].

Convinced that there is no “one-size-�ts-all” solution to secure compilation, we set out to ex-
plore a large space of security properties that can be preserved against adversarial target-level
contexts. We explore preserving classes of trace properties such as safety and liveness [Lam-
port and Schneider 1984], of hyperproperties such as noninterference [Clarkson and Schneider
2010], and of relational hyperproperties such as trace equivalence, against adversarial target-
level contexts. All these property notions are phrased in terms of (�nite and in�nite) execution

14

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 15

traces that are built over events such as inputs from and outputs to an external environment
[Kumar et al. 2014, Leroy 2009a]. For instance, trace properties are de�ned simply as sets of
allowed traces [Lamport and Schneider 1984]. One says that a whole program W satis�es a
trace property π when the set of traces produced by W is included in the set π or, formally,
{t |W t} ⊆ π, where W t indicates that program W can emit trace t. More interest-
ingly, we say that a partial program P robustly satis�es [Gordon and Je�rey 2004, Kupferman
and Vardi 1999, Swasey et al. 2017] a trace property π when P linked with any (adversarial)
context satis�es π. More formally, P robustly satis�es π if for all contextsC we have thatC[P]
satis�es π, where C[P] is the operation of linking the partial program P with the context C
to produce a whole program that can be executed. Armed with this, we de�ne our �rst secure
compilation criterion as the preservation of robust satisfaction of trace properties, which we
call Robust Trace Property Preservation (RTP). So if a partial source program P robustly satis�es
a trace property π ∈ 2Trace (wrt. all source contexts) then its compilation P↓must also robustly
satisfy π (wrt. all target-level contexts). If we unfold all intermediate de�nitions, a compilation
chain satis�es RTP if

RTP : ∀π ∈ 2Trace. ∀P. (∀CS t.CS [P] t⇒ t ∈ π)⇒ (∀CT t.CT [P↓] t⇒ t ∈ π)

In such criteria we use a blue, sans-serif font for source elements, an orange,bold font for
target elements and a black, italic font for elements common to both languages. Throughout
this thesis we assume that traces are exactly the same in both the source and target language,
as is also the case in CompCert [Leroy 2009a] (we discuss lifting this limitation in §2.8).

In this chapter we study various such secure compilation criteria, all based on the preservation
of robust satisfaction, as outlined by the nodes of the diagram in Figure 2.1. We �rst look at
robustly preserving classes of trace properties (§2.2) such as safety and dense properties—i.e., the
criteria in the yellow area in Figure 2.1. Safety properties intuitively require that a violation
never happens in a �nite pre�x of a trace, since this pre�x is observable for instance to a ref-
erence monitor. Less standardly, in our trace model with both �nite and in�nite traces, the
role of liveness is taken by what we call dense properties, which are simply trace properties that
can only be falsi�ed by non-terminating executions. We then generalize robust preservation
from properties of individual program traces to hyperproperties (§2.3), which are properties
over multiple traces of a program [Clarkson and Schneider 2010] (the criteria in the red area
in Figure 2.1). The canonical example of a hyperproperty is noninterference, which generally
requires considering two traces of a program that di�er on secret inputs [Askarov et al. 2008,
Goguen and Meseguer 1982, McLean 1992, Sabelfeld and Myers 2003, Sabelfeld and Sands 2001,
Zdancewic and Myers 2003]. We then generalize this further to what we call relational hyper-
properties (§2.4), which relate multiple runs of di�erent programs (the criteria in the blue area
in Figure 2.1). An example of relational hyperproperty is trace equivalence, which requires
that two programs produce the same set of traces.

For each of the studied criteria we propose an equivalent “property-free” characterization that
is generally better tailored for proofs. For instance, by simple logical reasoning we prove that
RTP can equivalently be stated as follows:

RTC : ∀P. ∀CT. ∀t. CT [P↓] t⇒ ∃CS.CS [P] t

15

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 16

Robust Relational Hyperproperty
Preservation (RrHP)

Robust K-Relational Hyperproperty
Preservation (RKrHP)

Robust 2-Relational Hyperproperty
Preservation (R2rHP)

Robust Relational
Property Preservation (RrTP)

Robust K-Relational
Property Preservation (RKrTP)

Robust 2-Relational
Property Preservation (R2rTP)

Robust Relational
Safety Preservation (RrSP)

Robust Finite-Relational
Safety Preservation

(RFrSP)

Robust K-Relational
Safety Preservation

(RKrSP)

Robust 2-Relational
Safety Preservation

(R2rSP)

Robust Hyperproperty
Preservation (RHP)

Robust Subset-Closed
Hyperproperty Preservation

(RSCHP)

Robust K-Subset-Closed
Hyperproperty Preservation

(RKSCHP)

Robust 2-Subset-Closed
Hyperproperty Preservation

(R2SCHP)

Robust Trace Property
Preservation (RTP)

Robust Hypersafety
Preservation (RHSP)

Robust K-Hypersafety
Preservation (RKHSP)

Robust 2-Hypersafety
Preservation (R2HSP)

Robust Safety Property
Preservation (RSP)

Robust Dense Property
Preservation (RDP)

Robust Trace
Equivalence
Preservation

(RTEP)

Robust Trace Equivalence
Preservation (RTEP)

Robust Trace Equivalence
Preservation (RTEP)

Robust Termination-Insensitive
Noninterference Preservation

(RTINIP)

+ determinacy
+ observable
divergence

+ determinacy

Figure 2.1: Partial order with the secure compilation criteria studied in this chapter. Criteria
higher in the diagram imply the lower ones to which they are connected by edges.
Criteria based on trace properties are grouped in a yellow area, those based on
hyperproperties are in a red area, and those based on relational hyperproperties are
in a blue area. Criteria in the green area can be proved by back-translating a �nite
set of �nite execution pre�xes into a source context. Criteria with an italics name
preserve a single property that belongs to the class they are connected to; dashed
edges require additional assumptions (stated on the edge) to hold. Finally, edges
with a thick arrow denote a strict implication.

16

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 17

This requires that, given a compiled program P↓ and a target context CT which together
produce some bad trace t, we can generate a source context CS that produces trace t when
linked with P. When proving that a compilation chain satis�es RTC we can pick a di�erent
context CS for each t and, in fact, construct CS from the trace t itself or from the execution
CT [P↓] t. In contrast, for stronger criteria a single context CS will have to work for several
traces. In general, the shape of the property-free characterization gives us a good clue for what
kind of back-translation techniques are possible for producingCS, when proving that a concrete
compilation chain is secure.

We order the secure compilation criteria we study by their relative strength as illustrated by
the partial order in Figure 2.1. In this Hasse diagram edges represent logical implication from
higher criteria to lower ones, so the higher is a property, the harder it is to achieve and prove.
While most of the implications in the diagram are unsurprising and follow directly from the
inclusion between the property classes [Clarkson and Schneider 2010], we discover that pre-
serving hyperliveness is in fact equivalent to preserving all hyperproperties (§2.3.4). To show
the absence of more such collapses, we also prove various separation results, for instance that
Robust Safety Property Preservation (RSP) and Robust Dense Property Preservation (RDP) when
taken separately are strictly weaker than RTP . While these results are natural, the separation
result for dense properties crucially relies on a trace model that explicitly distinguishes �nite
and in�nite traces (§2.2.2), since with just in�nite traces [Alpern and Schneider 1985, Clarkson
and Schneider 2010] things do collapse even for liveness.

We moreover show (§2.4.1) that in general Robust Trace Equivalence Preservation (RTEP) follows
only from Robust 2-relational Hyperproperty Preservation, which is one of our strongest criteria.
However, in the absence of internal nondeterminism (i.e., if the source and target languages
are determinate [Engelfriet 1985, Leroy 2009a]) and under some mild extra assumptions (such
as input totality [Focardi and Gorrieri 1995, Zakinthinos and Lee 1997]) RTEP follows from
the weaker Robust 2-relational Trace Property Preservation (R2rTP), and under much stronger
assumptions (divergence being �nitely observable) from Robust 2-relational Safety Preservation
(R2rSP). In determinate settings, where observational equivalence is equivalent to trace equiv-
alence [Cheval et al. 2013, Engelfriet 1985], these results provide a connection to Observational
Equivalence Preservation, i.e., the direction of fully abstract compilation that is interesting for
secure compilation (§2.5).

Finally, we show that even the strongest of our secure compilation criteria, Robust Relational
Hyperproperty Preservation (RrHP), is achievable for a simple translation from a statically typed
to a dynamically typed language with �rst-order functions and input-output (§2.6). We prove
this using a “universal embedding,” which is a context back-translation technique previously
developed for fully abstract compilation [New et al. 2016]. For the same simple translation we
also illustrate that for proving Robust Finite-relational Safety Preservation (RFrSP) a less power-
ful but more generic technique can back-translate a �nite set of �nite execution pre�xes into
a source context. This technique is applicable to all the criteria contained in area below RFrSP
(indicated in green in Figure 2.1), which includes robust preservation of safety, of noninterfer-
ence, and sometimes even trace equivalence.

17

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 18

We close with discussions of related (§2.7) and future (§2.8) work. Appendices included as
supplementary material present omitted technical details. Many of the formal results of §2.2,
§2.3, and §2.4 were mechanized in Coq and are marked with . This Coq development is
available as another supplementary material. All these materials are available at https://
github.com/secure-compilation/exploring-robust-property-preservation

2.2 Robustly Preserving Classes of Trace Properties

We start by looking at robustly preserving classes of trace properties. The introduction already
de�ned RTP , the robust preservation of all trace properties, so we �rst explore this criterion in
more detail (§2.2.1). We then step back and de�ne a model for program execution traces that can
be non-terminating or terminating, �nite or in�nite (§2.2.2). Using this model we de�ne safety
properties in the standard way as the trace properties that can be falsi�ed by a �nite trace pre�x
(e.g., a program never performs a certain dangerous system call). Perhaps more surprisingly,
in our model the role usually played by liveness is taken by what we call dense properties,
which we de�ne simply as the trace properties that can only be falsi�ed by non-terminating
traces (e.g., a reactive program that runs forever eventually answers every network request it
receives). To validate that dense properties indeed play the same role liveness plays in previous
models [Alpern and Schneider 1985, Lamport 2002, Lamport and Schneider 1984, Manna and
Pnueli 2012, Schneider 1997], we prove various properties, including that every trace property
is the intersection of a safety property and a dense property (this is our variant of a standard
decomposition result [Alpern and Schneider 1985]). We then use these de�nitions to study the
robust preservation of safety properties (RSP ; §2.2.3) and dense properties (RDP ; §2.2.4). These
secure compilation criteria are highlighted in yellow in Figure 2.1.

2.2.1 Robust Trace Property Preservation (RTP)

Like all secure compilation criteria we study in this chapter, the RTP criterion presented in the
introduction and further explained below is a generic property of a compilation chain, which in-
cludes a source and a target language, each with a notion of partial programs (P) and contexts
(C) that can be linked together to produce whole programs (C[P]), and each with a trace-
producing semantics for whole programs (C[P] t). The sets of partial programs and of
contexts of the source and target languages are arbitrary parameters of our secure compilation
criteria; our generic criteria make no assumptions about their structure, or whether static typ-
ing is involved or not, or whether the program or the context gets control initially once linked
and executed (e.g., the context could be an application that embeds a library program or the
context could be a library that is embedded into an application program). Similarly, the traces
of the source and target semantics are arbitrary for RTP , while starting with §2.2.2 we will
consider �nite or in�nite lists of events drawn from an arbitrary set. The intuition is that the
traces capture the interaction between a whole program and its external environment, includ-
ing for instance user input, output to a terminal, network communication, system calls, etc.
[Kumar et al. 2014, Leroy 2009a]. As opposed to a context, which is just a piece of a program,

18

https://github.com/secure-compilation/exploring-robust-property-preservation
https://github.com/secure-compilation/exploring-robust-property-preservation

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 19

the environment is not (and often cannot be) precisely modeled by the programming language,
beyond the (often nondeterministic) events that we store in the trace (and which often record
the data that the program inputs and outputs). Finally, a compilation chain includes a compiler.
The compilation of a partial source program P is a partial target program written P↓.

The responsibility of enforcing secure compilation does not have to rest just with the com-
piler, but may be freely shared by various parts of the compilation chain. In particular, to help
enforce security, the target-level linker could disallow linking with a suspicious context (e.g.,
one that is not well-typed [Abadi 1999, Ahmed 2015, Ahmed and Blume 2008, 2011, New et al.
2016]) or could always allow linking but introduce protection barriers between the program
and the context (e.g., by instrumenting the program [Devriese et al. 2016a, New et al. 2016]
or the context [Abate et al. 2018a, Tan 2017, Wahbe et al. 1993] to introduce dynamic checks).
Similarly, the semantics of the target language can include various protection mechanisms (e.g.,
processes with di�erent virtual address spaces [Bittau et al. 2008, Gudka et al. 2015, Kilpatrick
2003, Provos et al. 2003, Reis and Gribble 2009], protected modules [Patrignani et al. 2015],
capabilities [El-Korashy et al. 2018], tags [Abate et al. 2018a, Azevedo de Amorim et al. 2015]).
Finally, the compiler might have to refrain from too aggressive optimizations that would break
security [Barthe et al. 2018, D’Silva et al. 2015, Simon et al. 2018]. In this chapter we propose
general secure compilation criteria that are agnostic to the concrete enforcement mechanism
used by the compilation chain to protect the compiled program from the adversarial target
context.

In §2.1, we de�ned RTP as the preservation of robust satisfaction of trace properties:

RTP : ∀π ∈ 2Trace. ∀P. (∀CS t.CS [P] t⇒ t ∈ π)⇒ (∀CT t.CT [P↓] t⇒ t ∈ π)

Trace properties are simply sets of allowed traces [Lamport and Schneider 1984] and a whole
program satis�es a trace property if all the traces it can produce are in the set of allowed traces
representing the trace property. A partial program robustly satis�es a property if the traces it
can produce when linked with any context are all included in the set representing the prop-
erty.

The de�nition of RTP above directly captures which security properties of the source are pre-
served by the compilation chain. However, in order to prove that a compilation chain satis�es
RTP we gave an equivalent “property-free” characterization in the introduction:

RTC : ∀P. ∀CT. ∀t. CT [P↓] t⇒ ∃CS.CS [P] t

The equivalence proof between RTP and RTC is simple, but still illustrative:

Theorem 1. RTP ⇐⇒ RTC

Proof. (⇒) LetP be arbitrary. We need to show that ∀CT. ∀t.CT [P↓] t⇒ ∃CS.CS [P] t.
We can directly conclude this by applying RTP toP and the property π = {t | ∃CS.CS [P] t};
for this application to be possible we need to show that ∀CS t.CS [P] t ⇒ ∃C′S. C′S [P] t,
which is trivial if taking C′S = CS.

19

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 20

(⇐) Given a compilation chain that satis�es RTC and some P and π so that ∀CS t.CS [P] t⇒
t ∈ π (H) we have to show that ∀CT t.CT [P↓] t ⇒ t ∈ π. Let CT and t so that
CT [P↓] t, we still have to show that t ∈ π. We can apply RTC to obtain ∃CS.CS [P] t,
which we can use to instantiate H to conclude that t ∈ π.

The RTC characterization is similar to “backward simulation”, which is the standard criterion
for compiler correctness [Leroy 2009a]:

TP : ∀W. ∀t. W↓ t⇒W t

Maybe less known is that this property-free characterization of correct compilation also has
an equivalent property-full characterization as the preservation of all trace properties:

TP : ∀π ∈ 2Trace. ∀W. (∀t.W t⇒ t ∈ π)⇒ (∀t.W↓ t⇒ t ∈ π)

The major di�erence compared to RTP is that TP only preserves the trace properties of whole
programs and does not allow any form of linking. In contrast, RTP allows linking a compiled
partial program with arbitrary target contexts and protects the program so that all robust trace
properties are preserved. In general, RTP and TP are incomparable. However, RTP strictly
implies TP when whole programs (W) are a subset of partial programs (P) and, additionally,
the semantics of whole programs is independent of any linked context (i.e., ∀W t C. W
t ⇐⇒ C[W] t, which happens, intuitively, when the whole program starts execution and,
being whole, never calls into the context).

More compositional criteria for compiler correctness have been proposed in the literature
[Kang et al. 2016, Neis et al. 2015, Perconti and Ahmed 2014, Stewart et al. 2015]. At a minimum
such criteria allow linking with contexts that are the compilation of source contexts [Kang et al.
2016], which in our setting can be formalized as follows:

SCC : ∀P. ∀CS. ∀t. CS↓ [P↓] t⇒ CS [P] t

More permissive criteria allow linking with any target context that behaves like some source
context [Neis et al. 2015], which in our setting can be written as:

CCC : ∀P. ∀CT. ∀CS. ∀t. CT ≈ CS ∧CT [P↓] t⇒ CS [P] t

RTP is incomparable to SCC and CCC. On one hand, RTP allows linking with arbitrary target-
level contexts, which is not allowed by SCC and CCC and requires inserting strong protection
barriers. On the other hand, in RTP all source-level reasoning has to be done with respect to
an arbitrary source context, while with SCC and CCC one can reason about a known source
context. Technically, RTC does not imply SCC, since even if we instantiate RTC with CS↓ for
CT, what we obtain in the source is ∃C′S.C′S [P] t, for some C′S that is unrelated to the
original CS. Similarly, RTC does not imply CCC, which is strictly stronger than SCC under the
natural assumption that CS↓ ≈ CS.

20

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 21

2.2.2 Trace Model with Finite and Infinite Traces and Its Impact on Safety
and Liveness

For studying safety and liveness, traces need a bit of structure. We do this by introducing a
precise model of traces and of �nite trace pre�xes, which also forms the base of our Coq for-
malization. Our trace model is a non-trivial extension of the standard trace models used for
studying safety and liveness of reactive systems [Alpern and Schneider 1985, Clarkson and
Schneider 2010, Lamport 2002, Lamport and Schneider 1984, Manna and Pnueli 2012, Schnei-
der 1997], since (1) we need to balance the strength of the properties we preserve and the
optimizations the compiler can still perform; and (2) we are interested in securely compiling
both terminating and non-terminating programs. The extension of the trace model directly
impacts the meaning of safety, which we try to keep as natural as possible, and also created
the need for a new de�nition of dense properties to take the place of liveness.

The �rst departure from some of the previous work on trace properties [Lamport 2002, Lamport
and Schneider 1984, Manna and Pnueli 2012, Schneider 1997] and hyperproperties [Clarkson
and Schneider 2010] for reactive systems is that our traces are built from events, not from states.
This is standard for formalizing correct compilation [Kumar et al. 2014, Leroy 2009a], where
one wants to give the compiler enough freedom to perform optimizations by requiring it only
to preserve relatively coarse-grained events such as input from and outputs to an external en-
vironment. For instance, the CompCert veri�ed compiler [Leroy 2009a] follows the C standard
and de�nes the result of a program to be a trace of all I/O and volatile operations it performs,
plus an indication of whether and how it terminates.1

The events in our traces are drawn from an arbitrary nonempty set (and a few of our results
require at least 2 events). Intuitively, traces t are �nite or in�nite lists of events, where a
�nite trace means that the program terminates or enters an unproductive in�nite loop after
producing all the events in the list. This is natural for usual programming languages where
most programs do indeed terminate and is standard for veri�ed compilers like CompCert. This
constitutes a second non-trivial extension of the trace model usually considered for abstract
modeling of reactive systems (e.g., in a transition system or a process calculus), which looks
only at in�nite traces [Clarkson and Schneider 2010, Lamport 2002, Manna and Pnueli 2012,
Schneider 1997].

Safety Properties For de�ning safety properties the main ingredient is a de�nition of �nite
trace pre�xes, which capture the �nite observations that can be made about an execution, for
instance by a reference monitor. A reference monitor can generally observe that the program
has terminated, so in our extended trace model �nite trace pre�xes are lists of events in which
it is observable whether a pre�x is terminated and can no longer be extended or if it is not
yet terminated and can still be extended with more events. Moreover, we take the stance that
while termination and silent divergence are two di�erent terminal trace events, no observer
can distinguish the two in �nite time, since one cannot tell whether a program that seems

1Our trace model is close to that of CompCert, but as opposed to CompCert, in this thesis we use the word “trace”
for the result of a single program execution and later “behavior” for the set of all traces of a program (§2.3).

21

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 22

to be looping will eventually terminate. Technically, in our model �nite trace pre�xes m are
lists with two di�erent nil constructors: • for terminated pre�xes and ◦ for not yet terminated
pre�xes. In contrast, traces can end either with • if the program terminates or with 			 if the
program silently diverges, or they can go on in�nitely. The pre�x relation m ≤ t is de�ned
between a �nite pre�x m and a trace t according to the intuition above: • ≤ •, ◦ ≤ t for any
t, and e ·m′ ≤ e · t′ whenever m′ ≤ t′ (we write · for concatenation).

The de�nition of safety properties is unsurprising for this trace model:

Safety , {π ∈ 2Trace | ∀t6∈π. ∃m≤t. ∀t′≥m. t′ 6∈π}

A trace property π is Safety if, within any trace t that violates π, there exists a �nite “bad
pre�x” m that can only be extended to traces t′ that also violate π. For instance, the trace
property π�¬e = {t | e 6∈ t}, stating that the bad event e never occurs in the trace, is Safety,
since for every trace t violating π�¬e there exists a �nite pre�x m = m′ · e · ◦ (some pre�x m′
followed by e and then by the un�nished pre�x symbol ◦) that is a pre�x of t and so that every
trace extending m still contains e, so it still violates π�¬e. Similarly, π�¬• = {t | • 6∈ t} is a
safety property that rejects all terminating traces and only accepts the non-terminating ones.
This being safety crucially relies on allowing • in the �nite trace pre�xes: For any �nite trace t
rejected by π�¬• there exists a bad pre�xm = m′ ·• so that all extensions ofm are also rejected
by π¬•; where this last part is trivial since the pre�xm is terminating (ends with •) and can thus
only be extended to t itself. Finally, the trace property πterm♦e = {t | t terminating ⇒ e ∈ t},
stating that in every terminating trace the event e must eventually happen, is also a safety
property in our model, since for each terminating trace t = m′ · • violating πterm♦e there exists a
bad pre�x m = t that can only be extended to traces t′ = t that also violate πterm♦e . In general,
all trace properties like π�¬• and πterm♦e that only reject terminating traces and thus allow all
non-terminating traces are safety properties in our model; i.e., if ∀t non-terminating. t ∈ π
then π is safety. So the trace property πS = π ∪ {t | t non-terminating} is safety for any π.

Dense Properties In our trace model the liveness de�nition of Alpern and Schneider [1985]
does not have its intended intuitive meaning, so instead we focus on the main properties that
the Alpern and Schneider liveness de�nition satis�es in the in�nite trace model and, in partic-
ular, that each trace property can be decomposed as the intersection of a safety property and
a liveness property. We discovered that in our model the following surprisingly simple notion
of dense properties satis�es all the characterizing properties of liveness and is, in fact, uniquely
determined by these properties and the de�nition of safety above:

Dense , {π ∈ 2Trace | ∀t terminating. t ∈ π}

We say that a trace property π is Dense if it allows all terminating traces; or, conversely, it
can only be violated by non-terminating traces. For instance, the trace property π¬term♦e =
{t | t non-terminating ⇒ e ∈ t}, stating that the good event e will eventually happen along
every non-terminating trace is a dense property, since it accepts all terminating traces. The
property π�¬			 = {t | 			6∈ t} = {t | t non-terminating ⇒ t in�nite} stating that the program
does not silently diverge is also dense. Similarly, π¬term�♦e = {t | t non-terminating⇒ t in�nite∧

22

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 23

∀m. ∃m′. m ·m′ · e ≤ t} is dense and states that the event e happens in�nitely often in any
non-terminating trace. The trace property π♦• = {t | t terminating}, which only contains all
the terminating traces and thus rejects all the non-terminating traces, is the minimal dense
property in our model. Finally, any property becomes dense in our model if we change it to
allow all terminating traces: i.e., πL = π ∪ {t | t terminating} is dense for any π. For instance,
while π�¬e is safety, the following dense property π¬term�¬e states that event e never occurs along
the non-terminating traces: π¬term�¬e = {t | t non-terminating⇒ e 6∈ t}.

We have proved that our de�nition of dense properties satis�es the good properties of Alpern
and Schneider’s liveness [Alpern and Schneider 1985], including their topological character-
ization, and in particular that any trace property can be decomposed as the intersection of a
safety property and of a dense property (). For instance, the trace property π♦e = {t | e ∈ t}
that in our model is neither safety nor dense, decomposes as the intersection of πterm♦e (which
is safety) and π¬term♦e (which is dense). The proof of this decomposition theorem is in fact very
simple in our model: Given any trace property π, de�ne πS = π ∪ {t | t non-terminating}
and πD = π ∪ {t | t terminating}. As discussed above, πS ∈ Safety and πD ∈ Dense. Finally,
πS ∩ πL = (π ∪ {t | t non-terminating}) ∩ (π ∪ {t | t terminating}) = π.

Moreover, we have proved that our de�nition of dense properties is uniquely determined given
our trace model, our de�nition of safety, and the following 3 properties:

1. Every trace property can be written as the intersection of a safety property and a dense
property: ∀π ∈ 2Trace. ∃πS ∈ Safety. ∃πD ∈ Dense. π = πS ∩ πD

2. Safety and Dense are nearly disjoint: Safety ∩ Dense = {π | ∀t. t ∈ π}

3. Dense properties cannot be empty: ∀π ∈ Dense. ∃t. t ∈ π

What does not hold in our model though, is that any trace property can also be decomposed as
the intersection of two liveness properties [Alpern and Schneider 1985], since this rather coun-
terintuitive decomposition seems to crucially rely on all traces of the system being in�nite.

Finally, in case one wonders about the relation between dense properties and the liveness de�-
nition of Alpern and Schneider [1985], the two are in fact equivalent in ourmodel, but this seems
to be a coincidence and only happens because the Alpern and Scheinder de�nition completely
loses its original intent in our model, as the following theorem and simple proof suggests:

Theorem 2. ∀π ∈ 2Trace. π ∈ Dense ⇐⇒ ∀m. ∃t. m≤t ∧ t ∈ π

For showing the⇒ direction take some π ∈ Dense and some �nite pre�x m. We can construct
tm• from m by simply replacing any �nal ◦ with •. By de�nition m≤tm• and moreover, since
tm• is terminating and π ∈ Dense, we can conclude that t ∈ π. For showing the⇐ direction
take some π ∈ 2Trace and some terminating trace t; since t is terminating we can choosem = t
and since this �nite pre�x extends only to t we immediately obtain t ∈ π.

23

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 24

2.2.3 Robust Safety Property Preservation (RSP)

Robust safety preservation is an interesting criterion for secure compilation because it is easier
to achieve and prove than most criteria of Figure 2.1, while still being quite expressive [Gordon
and Je�rey 2004, Swasey et al. 2017].

The de�nition of RSP simply restricts the preservation of robust satisfaction from all trace
properties in RTP to only the safety properties; otherwise the de�nition is exactly the same:

RSP : ∀π ∈ Safety. ∀P. (∀CS t.CS [P] t⇒ t ∈ π)⇒ (∀CT t.CT [P↓] t⇒ t ∈ π)

One might wonder how one can get safety properties to be robustly satis�ed in the source,
given that the execution traces can potentially be in�uenced not only by the partial program
but also by the adversarial context, who could cause “bad events” to happen. A �rst alternative
is for the semantics of the source language to simply prevent the context from producing any
events, maybe other than termination, as we do in the compilation chain from §2.6, or be more
�ne-grained and prevent the context from producing only certain privileged events. With this
alternative the source program will robustly satisfy safety properties over the privileged events
the context cannot produce, but then the compilation chain needs to sandbox [Tan 2017, Wahbe
et al. 1993] the context to make sure that it can only produce non-privileged events. A second
alternative is for the source semantics to record enough information in the trace so that one
can determine the originator of each event (as done for instance by the informative traces of
§2.6.4); then safety properties can explicitly talk only about the events of the program, not the
ones of the context. With this second alternative the compilation chain does not need to restrict
the context from producing certain events, but the obtained global guarantees are weaker, e.g.,
one cannot enforce that the whole program does not cause a dangerous system call, only that
the trusted partial program cannot be tricked into causing it.

The equivalent property-free characterization forRSP () simply requires one to back-translate
a program (P), a target context (CT), and a �nite bad execution pre�x (CT [P↓] m) into a
source context (CS) producing the same �nite trace pre�x (m) in the source (CS [P] m):

RSC : ∀P. ∀CT. ∀m. CT [P↓] m⇒ ∃CS.CS [P] m

Syntactically, the only change with respect to RTC is the switch from whole traces t to �nite
trace pre�xes m. Similarly to RTC, we can pick a di�erent context CS for each execution
CT [P↓] m, which in our formalization we de�ne generically as ∃t≥m. W t. The fact
that for RSC these are �nite execution pre�xes can signi�cantly simplify the back-translation
task, since we can produce a source context only from this �nite execution pre�x. In fact,
in §2.6.4 we produce a single source context in a fairly generic way even from a �nite set of
(related) �nite execution pre�xes.

Finally, we have proved that RTP strictly implies RSP (). The implication follows immediately
from safety properties being trace properties, but showing the lack of an implication from RSP
to RTP is more interesting and involves constructing a counterexample compilation chain. We
take any target language that can produce in�nite traces. We take the source language to be

24

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 25

a variant of the target with the same partial programs, but where we extend whole programs
and contexts with a bound on the number of events they can produce before being termi-
nated. Compilation simply erases this bound. (While this construction might seem arti�cial,
languages with a fuel bound are gaining popularity [Wood 2014].) This compilation chain sat-
is�es RSP but not RTP . To show that it satis�es RSP , we simply back-translate a target context
CT and a �nite trace pre�x m to a source context (CT, length(m)) that uses the length of m
as the correct bound, so this context can still produce m in the source without being prema-
turely terminated. However, this compilation chain does not satisfy RTP , since in the source
all executions are �nite, so all dense properties are vacuously satis�ed, which is clearly not the
case in the target, where we also have in�nite executions.

2.2.4 Robust Dense Property Preservation (RDP)

RDP simply restricts RTP to only the dense properties:

RDP : ∀π ∈ Dense. ∀P. (∀CS t.CS [P] t⇒ t ∈ π)⇒ (∀CT t.CT [P↓] t⇒ t ∈ π)

Again, one might wonder how one can get dense properties to be robustly satis�ed in the source
and then preserved by compilation. Enforcing that the context is responsive or eventually gives
back control along the in�nite traces seems often di�cult, but one can still imagine devising
enforcement mechanisms for this, for instance running the context in a separate process that
gets terminated or preempted if a certain amount of time has passed, and then exposing such
asynchronous programming in the source language. Alternatively, one can keep the source
language unchanged but make the traces informative enough to identify the actions of the
program and of the context, so that we can guarantee that the program satis�es dense proper-
ties like being responsive, even if the context does not.

The property-free variant of RDP restricts RTC to only back-translating non-terminating traces:

RDC : ∀P. ∀CT. ∀t non-terminating. CT [P↓] t⇒ ∃CS.CS [P] t

In contrast to RSC, we are not aware of good ways to make use of the in�nite execution
CT [P↓] t to produce a �nite context CT, so the back-translation for RDC will likely have
to use CT and P.

Finally, we have proved that RTP strictly implies RDP (). The counterexample compilation
chain we use for showing the separation is roughly the inverse of the one we used for RSP .
We take the source to be arbitrary, with the sole assumption that there exists a program PΩ

that can produce a single in�nite trace w irrespective of the context. We compile programs
by simply pairing them with a constant bound on the number of steps, i.e., P↓ = (P, k). On
the one hand, RDC holds vacuously, as target programs cannot produce in�nite traces. On the
other hand, this compilation chain does not have RTP , since the property π = {w} is robustly
satis�ed by PΩ in the source but not by its compilation (PΩ, k) in the target.

25

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 26

This separation result does not hold in models with only in�nite traces, wherein any trace prop-
erty can be decomposed as the intersection of two liveness properties [Alpern and Schneider
1985]. In such a model, Robust Liveness Property Preservation and RTP collapse.

From the decomposition into safety and liveness from §2.2.2 and the fact that RDP does not
imply RTP , it follows that RDP also does not imply RSP . Similarly, RSP does not imply RDP .

2.3 Robustly Preserving Classes of Hyperproperties

So far, we have studied the robust preservation of trace properties, which are properties of indi-
vidual traces of a program. In this section we generalize this to hyperproperties, which are prop-
erties of multiple traces of a program [Clarkson and Schneider 2010]. The most well-known
hyperproperty is noninterference, which has many variants [Askarov et al. 2008, Goguen and
Meseguer 1982, McLean 1992, Sabelfeld and Myers 2003, Zdancewic and Myers 2003], but usu-
ally requires considering two traces of a program that di�er on secret inputs. Another hyper-
property is bounded mean response time over all executions. We study the robust preservation
of various subclasses of hyperproperties: all hyperproperties (§2.3.1), subset-closed hyperprop-
erties (§2.3.2), hypersafety and K-hypersafety (§2.3.3), and hyperliveness (§2.3.4). The corre-
sponding secure compilation criteria are outlined in red in Figure 2.1.

2.3.1 Robust Hyperproperty Preservation (RHP)

While trace properties are sets of traces, hyperproperties are sets of sets of traces [Clarkson
and Schneider 2010]. If we call the set of traces of a whole program W the behavior of W
(Behav (W) = {t |W t}) then a hyperproperty is a set of allowed behaviors. We say thatW
satis�es hyperpropertyH if the behavior ofW is a member of the setH (i.e., Behav (W) ∈ H ,
or, if we unfold, {t | W t} ∈ H). Contrast this to W satisfying trace property π, which
holds if the behavior of W is a subset of the set π (i.e., Behav (W) ⊆ π, or, if we unfold,
∀t. W t ⇒ t ∈ π). So while a trace property determines whether each individual trace
of a program should be allowed or not, a hyperproperty determines whether the set of traces
of a program, its behavior, should be allowed or not. For instance, the trace property π123 =
{t1, t2, t3} is satis�ed by programs with behaviors such as {t1}, {t2}, {t2, t3}, and {t1, t2, t3},
but a program with behavior {t1, t4} does not satisfy π123. A hyperproperty like H1+23 =
{{t1}, {t2, t3}} is satis�ed only by programs with behavior {t1} or with behavior {t2, t3}. A
program with behavior {t2} does not satisfy H1+23, so hyperproperties can express that if
some traces (e.g., t2) are possible then some other traces (e.g., t3) should also be possible. A
program with behavior {t1, t2, t3} also does not satisfyH1+23, so hyperproperties can express
that if some traces (e.g., t2 and t3) are possible then some other traces (e.g., t1) should not be
possible. Finally, trace properties can be easily lifted to hyperproperties: A trace property π
becomes the hyperproperty [π] = 2π , which is just the powerset of π.

26

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 27

We say that a partial program P robustly satis�es a hyperproperty H if it satis�es H for any
context C . Given this we de�ne RHP as the preservation of robust satisfaction of arbitrary
hyperproperties:

RHP : ∀H ∈ 22
Trace
. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒ (∀CT. Behav (CT [P↓]) ∈ H)

The equivalent property-free characterization of RHP () is not very surprising:

RHC : ∀P. ∀CT. ∃CS. Behav (CT [P↓]) = Behav (CS [P])

RHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓] t ⇐⇒ CS [P] t

This requires that, each partial program P and target context CT can be back-translated to a
source contextCS in a way that perfectly preserves the set of traces produced when linking with
P and P↓ respectively. There are two di�erences from RTP : (1) the ∃CS and ∀t quanti�ers are
swapped, so now one needs to produce a CS that works for all traces t, and (2) the implication
in RTP (⇒) became a two-way implication in RHP (⇐⇒), so compilation has to perfectly
preserve the set of traces. Because of point (2), if the source language is nondeterministic a
compilation chain satisfying RHP cannot re�ne this nondeterminism, e.g., it cannot implement
nondeterministic scheduling via an actual deterministic scheduler, etc.

In the following subsections we study restrictions of RHP to various sub-classes of hyperprop-
erties. To prevent duplication we de�ne RHP(X) to be the robust satisfaction of a class X of
hyperproperties (so RHP above is simply RHP(22

Trace
)):

RHP(X) : ∀H ∈ X. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒ (∀CT. Behav (CT [P↓]) ∈ H)

2.3.2 Robust Subset-Closed Hyperproperty Preservation (RSCHP)

If one restricts robust preservation to only subset-closed hyperproperties then re�nement of
nondeterminism is again allowed. A hyperproperty H is subset-closed, written H ∈ SC, if for
any two behaviors b1 and b2 so that b1 ⊆ b2, if b2 ∈ H then b1 ∈ H . For instance, the lifting [π]
of any trace property π is subset-closed, but the hyperproperty H1+23 above is not. It can be
made subset-closed by allowing all smaller behaviors: HSC

1+23 = {∅, {t1}, {t2}, {t3}, {t2, t3}}
is subset-closed, although it is not the lifting of a trace property (i.e., not a powerset).

Robust Subset-Closed Hyperproperty Preservation (RSCHP) is simply de�ned as RHP(SC). The
equivalent property-free characterization of RSCHC () simply gives up the ⇐ direction of
RHP :

RSCHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓] t⇒ CS [P] t

The most interesting sub-class of subset-closed hyperproperties is hypersafety, which we dis-
cuss in the next sub-section. The appendix also introduces and studies a series of sub-classes we
callK-subset-closed hyperproperties that can be seen as generalizingK-hypersafety below.

27

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 28

2.3.3 Robust Hypersafety Preservation (RHSP)

Hypersafety is a generalization of safety that is very important in practice, since several impor-
tant notions of noninterference are hypersafety, such as termination-insensitive noninterfer-
ence [Askarov et al. 2008, Fenton 1974, Sabelfeld and Sands 2001], observational determinism
[McLean 1992, Roscoe 1995, Zdancewic and Myers 2003], and nonmalleable information �ow
[Cecchetti et al. 2017].

According to Alpern and Schneider [Alpern and Schneider 1985], the “bad thing” that a safety
property disallows must be �nitely observable and irremediable. For safety the “bad thing” is
a �nite trace pre�x that cannot be extended to any trace satisfying the safety property. For
hypersafety, Clarkson and Schneider [2010] generalize the “bad thing” to a �nite set of �nite
trace pre�xes that they call an observation, drawn from the set Obs = 2

FinPref
Fin , which denotes the

set of all �nite subsets of �nite pre�xes. They then lift the pre�x relation to sets: an observation
o ∈ Obs is a pre�x of a behavior b ∈ 2Trace, written o≤b, if ∀m ∈ o. ∃t ∈ b. m≤t. Finally,
they de�ne hypersafety analogously to safety, but the domains involved include an extra level
of sets:

Hypersafety , {H | ∀b 6∈ H. (∃o ∈ Obs. o≤b ∧ (∀b′≥o. b′ 6∈ H))}

Here the “bad thing” is an observation o that cannot be extended to a behavior b′ satisfying
the hypersafety property H . We use this to de�ne Robust Hypersafety Preservation (RHSP) as
RHP(Hypersafety) and propose the following equivalent characterization for it ():

RHSC : ∀P. ∀CT. ∀o ∈ Obs. o ≤ Behav (CT [P↓])⇒ ∃CS. o ≤ Behav (CS [P])

This says that to prove RHSP one needs to be able to back-translate a partial program P, a con-
text CT, and a pre�x o of the behavior of CT [P↓], to a source context CS so that the behavior
of CS [P] extends o. It is possible to use the �nite set of �nite executions corresponding to
observation o to drive this back-translation, as we illustrate in §2.6.4 for a stronger criterion.

For hypersafety the involved observations are �nite sets but their cardinality is otherwise unre-
stricted. In practice though, most hypersafety properties can be falsi�ed by very small observa-
tions: counterexamples to termination-insensitive noninterference [Askarov et al. 2008, Fenton
1974, Sabelfeld and Sands 2001] and observational determinism [McLean 1992, Roscoe 1995,
Zdancewic and Myers 2003] are observations containing 2 �nite pre�xes, while counterexam-
ples to nonmalleable information �ow [Cecchetti et al. 2017] are observations containing 4
�nite pre�xes. To account for this, Clarkson and Schneider [2010] introduce K-hypersafety as
a restriction of hypersafety to observations of a �xed cardinality K . Given ObsK = 2

FinPref
Fin(K) ,

the set of observations with cardinality K , all de�nitions and results above can be ported to
K-hypersafety by simply replacing Obs with ObsK .

The set of lifted safety properties, {[π] | π ∈ Safety}, is precisely the same as 1-hypersafety,
since the counterexample for them is a single �nite pre�x. For a more interesting example,
termination-insensitive noninterference (TINI) [Askarov et al. 2008, Fenton 1974, Sabelfeld and
Sands 2001] can be de�ned as follows in our setting:

TINI , {b | ∀t1, t2 ∈ b. (t1 terminating ∧ t2 terminating

28

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 29

∧ pub-inputs(t1) = pub-inputs(t2))

⇒ pub-events(t1) = pub-events(t2)}

This requires that trace events are either inputs or outputs, each of them associated with a
security level: public or secret. TINI ensures that for any two terminating traces of the program
behavior for which the two sequences of public inputs are the same, the two sequences of public
events—inputs and outputs—are also the same. TINI is in 2-hypersafety, since b 6∈ TINI implies
that there exist �nite traces t1 and t2 that agree on the public inputs but not on all public events,
so we can simply take o = {t1, t2}. Since the traces in o end with • any extension b′ of o can
only add extra traces, i.e., {t1, t2} ⊆ b′, so b′ 6∈ TINI as needed to conclude that TINI is in 2-
hypersafety. In Figure 2.1, we write Robust Termination-Insensitive Noninterference Preservation
(RTINIP) for RHP({TINI}).

Enforcing RHSP is strictly more demanding than enforcing RSP . Because even R2HSP implies
the preservation of noninterference properties like TINI, a compilation chain satisfying R2HSP
has to make sure that a target-level context cannot infer more information from the internal
state of P↓ than a source context could infer from the state of P. By contrast, a RSP compilation
chain can allow arbitrary reads of P↓’s internal state, even if P’s state is private at the source
level. Intuitively, for proving RSC, the source context produced by back-translation can guess
any secret P↓ receives in the single considered execution, but for R2HSP the single source
context needs to work for two di�erent executions, potentially with two di�erent secrets, so
guessing is no longer an option. We use this to prove a separation result between RHSP and
RSP , by exhibiting a toy compilation chain in which private variables are readable in the target
language, but not in source. This compilation chain satis�es RSP but not R2HSP . Using a more
complex counterexample involving a system of K linear equations, we have also shown that,
for anyK , robust preservation ofK-hypersafety (RKHSP), does not imply robust preservation
of (K+1)-hypersafety (R(K+1)HSP).

2.3.4 Where is Robust Hyperliveness Preservation?

Robust Hyperliveness Preservation (RHLP) does not appear in Figure 2.1, because it is equiva-
lent to RHP . We de�ne RHLP as RHP(Hyperliveness) for the following standard de�nition of
Hyperliveness [Clarkson and Schneider 2010]:

Hyperliveness , {H | ∀o ∈ Obs. ∃b≥o. b ∈ H}

The proof that RHLP implies RHC () involves showing that {b | b6=Behav (CT [P↓])}, the
hyperproperty allowing all behaviors other than Behav (CT [P↓]), is hyperliveness. Another
way to obtain this result is from the fact that, as in previous models [Alpern and Schneider
1985], each hyperproperty can be decomposed as the intersection of two hyperliveness prop-
erties. This collapse of preserving hyperliveness and preserving all hyperproperties happens
irrespective of the adversarial contexts.

29

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 30

2.4 Robustly Preserving Classes of Relational Hyperproperties

So far, we have described the robust preservation of trace properties and hyperproperties,
which are predicates on the behavior of a single program. However, we may be interested in
showing that compilation robustly preserves relations between the behaviors of two or more
programs. For example, suppose we hand-optimize a partial source program P1 to a partial
source program P2 and we reason in the source semantics that P2 runs faster than P1 in any
source context. We may want compilation to preserve this “runs faster than” relation between
the two program behaviors even against arbitrary target contexts. Similarly, we may reason
that in any source context the behavior (i.e., set of traces) of P1 is the same as that of P2 and
then want secure compilation to preserve such trace equivalence [Baelde et al. 2017, Cheval
et al. 2018, Delaune and Hirschi 2017] against arbitrary target contexts. This last criterion,
which we call Robust Trace Equivalence Preservation (RTEP) in Figure 2.1, is interesting because
in various determinate settings [Cheval et al. 2013, Engelfriet 1985] it coincides with preserv-
ing observational equivalence, i.e., the direction of full abstraction interesting for security, as
discussed in §2.5.

In this section, we study the robust preservation of such relational hyperproperties and several
interesting subclasses, all of which are predicates on the behaviors of multiple programs. Un-
like hyperproperties and trace properties, relational hyperproperties have not been de�ned as
a general concept in the literature, so even their de�nitions are new. We describe relational
hyperproperties and their robust preservation in §2.4.1, then look at a subclass called relational
properties in §2.4.2, and a smaller subclass, relational safety properties, in §2.4.3. The corre-
sponding secure compilation criteria are highlighted in blue in Figure 2.1. In §2.4.4 we show
that none of these relational criteria are implied by any non-relational criterion (from §2.2 and
§2.3).

2.4.1 Relational Hyperproperty Preservation (RrHP)

Recall that the behavior Behav (P) of a program P is the set of all traces of P and let Behavs =
2Trace be the set of all possible behaviors. We de�ne a relational hyperproperty as a predicate
(relation) on a list of behaviors. A list of programs is then said to have the relational hyperprop-
erty if their respective behaviors satisfy the predicate. Depending on the arity of the predicate,
we get di�erent subclasses of relational hyperproperties. For arity 1, the resulting subclass de-
scribes relations on the behavior of individual programs, which coincides with hyperproperties
de�ned in §2.3. For arity 2, the resulting subclass consists of relations on the behaviors of pairs
of programs. Both examples described at the beginning of this section lie in this subclass. This
can then be generalized to any �nite arity K (predicates on behaviors of K programs), and to
the in�nite arity (predicates on all programs of the language).

Next, we de�ne the robust preservation of these subclasses. For arity 2, robust 2-relational
hyperproperty preservation, R2rHP , is de�ned as follows:

R2rHP : ∀R ∈ 2(Behavs
2). ∀P1 P2. (∀CS. (Behav (CS [P1]), Behav (CS [P2])) ∈ R)⇒

30

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 31

(∀CT. (Behav (CT [P1↓]), Behav (CS [P2↓])) ∈ R)

R2rHP says that for any binary relationR on behaviors of programs, if the behaviors of P1 and
P2 satisfy R in every source context, then so do the behaviors of P1↓ and P2↓ in every target
context. In other words, a compiler satis�es R2rHP i� it preserves any relation between pairs of
program behaviors that hold in all contexts. In particular, such a compilation chain preserves
trace equivalence in all contexts (i.e., RTEP), which we obtain by instantiating R with equality
in the above de�nition (). Similarly, such a compiler preserves the may- and must-testing
equivalences [De Nicola and Hennessy 1984]. If execution time is recorded on program traces,
then such a compiler also preserves relations like “the average execution time of P1 across all
inputs is no more than the average execution time of P2 across all inputs” and “P1 runs faster
than P2 on all inputs” (i.e., P1 is an improvement of P2). The last property can also be described
as a relational predicate on traces (rather than behaviors); we return to this point in §2.4.2.

Like all our earlier de�nitions, R2rHP has an equivalent () property-free characterization that
does not mention the relations R:

R2rHC : ∀P1 P2 CT. ∃CS. Behav (CT [P1↓])=Behav (CS [P1]) ∧
Behav (CT [P2↓])=Behav (CS [P2])

R2rHC is a direct generalization of RHC from §2.3.1. Di�erent from RHC is the requirement
that the same source context CS simulate the behaviors of two target programs, CT [P1↓] and
CT [P2↓].

R2rHP generalizes to any �nite arityK in the obvious way, yielding RKrHP . Finally, R2rHP gen-
eralizes to the in�nite arity. We call this Robust Relational Hyperproperty Preservation (RrHP);
it robustly preserves relations over the behaviors of all programs of the source language or,
equivalently, relations over functions from source programs (drawn from the set Progs) to be-
haviors.

RrHP : ∀R ∈ 2(Progs→Behavs). (∀CS. (λP. Behav (CS [P])) ∈ R)⇒
(∀CT. (λP. Behav (CT [P↓])) ∈ R)

RrHP is the strongest criterion we study and, hence, it is the highest point in the partial order
of Figure 2.1. It also has an equivalent () property-free characterization, RrHC, requiring for
every target context CT, a source context CS that can simulate the behavior of CT for any
program:

RrHC : ∀CT. ∃CS. ∀P. Behav (CT [P↓]) = Behav (CS [P])

It is instructive to compare the property-free characterizations of the robust preservation of
trace properties (RTC), hyperproperties (RHC) and relational hyperproperties (RrHC). In RTC,
the source context CS may depend on the target context CT, the source program P and a
given trace t. In RHC, CS may depend only on CT and P. In RrHC, CS may depend only on
CT. This directly re�ects the increasing expressive power of trace properties, hyperproperties,
and relational hyperproperties, as predicates on traces, behaviors (set of traces), and program-
indexed sets of behaviors (sets of sets of traces), respectively.

31

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 32

2.4.2 Relational Trace Property Preservation (RrTP)

Relational (trace) properties are the subclass of relational hyperproperties that are fully charac-
terized by relations on traces of multiple programs. Speci�cally, aK-ary relational hyperprop-
erty is a relational trace property if there is aK-ary relationR on traces such that P1, .., PK are
related by the relational hyperproperty i� (t1, . . . , tk) ∈ R for any t1 ∈ Behav (P1), . . . , tk ∈
Behav (PK). For example, the relation “P1 runs faster than P2 on every input” is a 2-ary re-
lational property characterized by pairs of traces which either di�er in the input or on which
P1’s execution time is less than that of P2. Relational properties of some arity are a subclass of
relational hyperproperties of the same arity. Next, we de�ne the robust preservation of rela-
tional properties of di�erent arities. For arity 1, this coincides with RTP from §2.2.1. For arity
2, we de�ne Robust 2-relational Property Preservation or R2rTP as follows.

R2rTP : ∀R ∈ 2(Trace
2). ∀P1 P2. (∀CS t1 t2. (CS [P1] t1 ∧ CS [P2] t2)⇒ (t1, t2)∈R)⇒

(∀CT t1 t2. (CT [P1↓] t1 ∧ CT [P2↓] t2)⇒ (t1, t2)∈R)

R2rTP implies the robust preservation of relations like “P1 runs faster than P2 on every in-
put”. However, R2rTP is weaker than its relational hyperproperty counterpart, R2rHP (§2.4.1):
Unlike R2rHP , R2rTP does not imply the robust preservation of relations like “the average exe-
cution time of P1 across all inputs is no more than the average execution time of P2 across all
inputs” (a relation between average execution times of P1 and P2 cannot be characterized by
any relation between individual traces of P1 and P2). We have also proved that R2rTP implies
robust trace equivalence preservation (RTEP) for languages without internal nondeterminism,
under standard conditions.

R2rTP also has an equivalent () property-free characterization, R2rTC.

R2rTC : ∀P1 P2. ∀CT. ∀t1 t2. (CT [P1↓] t1 ∧ CT [P2↓] t2)⇒
∃CS. (CS [P1] t1 ∧ CS [P2] t2)

Establishing R2rTC requires constructing a source context CS that can simultaneously simulate
a given trace of CT [P1↓] and a given trace of CT [P2↓].

R2rTP generalizes from arity 2 to any �nite arity K in the obvious way. It also generalizes to
the in�nite arity, i.e., to the robust preservation of all relations on all programs of the language
that can be characterized by individual traces or, equivalently, relations on functions from
programs to traces. We call this Robust Relational Trace Property Preservation or RrTP . This and
its equivalent () property-free characterization, RrTC, are de�ned as follows.

RrTP : ∀R ∈ 2(Progs→Trace). (∀CS.∀f. (∀P.CS [P] f(P))⇒ R(f))⇒
(∀CT.∀f. (∀P.CT [P↓] f(P))⇒ R(f))

RrTC : ∀f : Progs→ Trace. ∀CT. (∀P. CT [P↓] f(P))⇒ ∃CS. (∀P. CS [P] f(P))

In RrTC, the same context CS must simulate one selected trace of every source program.

32

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 33

2.4.3 Robust Relational Safety Preservation (RrSP)

Relational safety properties are a subclass of relational trace properties, much as safety proper-
ties are a subclass of trace properties. Speci�cally, aK-ary relational hyperproperty is aK-ary
relational safety property if there is a set M of size-K sets of trace pre�xes with the follow-
ing condition: P1, . . . , PK are not related by the hyperproperty i� P1, . . . , PK respectively
have traces t1, . . . , tK such that m ≤ {t1, . . . , tK}. Here, ≤ is the lifted pre�x relation from
§2.3.3. This is quite similar to hypersafety, except that the “bad” traces {t1, . . . , tK} come from
di�erent programs.

Relational safety properties are a natural generalization of safety and hypersafety properties
to multiple programs, and an important subclass of relational trace properties. Several inter-
esting relational trace properties are actually relational safety properties. For instance, if we
restrict the earlier relational trace property “P1 runs faster than P2 on all inputs” to terminat-
ing programs it becomes a relational safety property, characterized by pairs of bad pre�xes in
which both pre�xes have the termination symbol, both pre�xes have the same input, and the
left pre�x shows termination no earlier than the right pre�x. In a setting without internal non-
determinism (i.e., determinate [Engelfriet 1985, Leroy 2009a]) where, additionally, divergence
is observable, trace equivalence in all contexts is also a 2-relational safety property, so robustly
preserving all 2-relational safety properties (R2rSP) implies RTEP ().

Next, we de�ne the robust preservation of relational safety properties for di�erent arities. At
arity 2, we de�ne robust 2-relational safety preservation or R2rSP as follows.

R2rSP :∀R ∈ 2(FinPref
2). ∀P1 P2.

(∀CS m1 m2. (CS [P1] m1 ∧ CS [P2] m2)⇒ (m1,m2) ∈ R)⇒
(∀CT m1 m2. (CT [P1↓] m1 ∧ CT [P2↓] m2)⇒ (m1,m2) ∈ R)

In words: If all pairs of �nite trace pre�xes of source programs P1, P2 robustly satisfy a relation
R, then so do all pairs of trace pre�xes of the compiled programs P1↓, P2↓. R here represents
the complement of the bad pre�xes M in the de�nition of relational safety properties. So, this
de�nition can also be read as saying that if all pre�xes of P1, P2 in every context are good
(for any de�nition of good), then so are all pre�xes of P1↓, P2↓ in every context. The only
di�erence from the stronger R2rTP (§2.4.2) is between considering full traces and only �nite
pre�xes, and the same holds for the equivalent property-free characterization, R2rSC ().

Comparison of proof obligations We brie�y compare the robust preservation of (variants
of) relational hyperproperties (RrHP , §2.4.1), relational trace properties (RrTP , §2.4.2) and re-
lational safety properties (RrSP , this subsection) in terms of the di�culty of back-translation
proofs. For this, it is instructive to look at the property-free characterizations. In a proof of
RrSP or any of its variants, we must construct a source context CS that can induce a given set
of �nite pre�xes of traces, one from each of the programs being related. In RrTP and its variants,
this obligation becomes harder—now the constructed CS must be able to induce a given set of
full traces. In RrHP and its variants, the obligation is even harder—CS must be able to induce

33

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 34

entire behaviors (sets of traces) from each of the programs being related. Thus, the increasing
strength of RrSP , RrTP and RrHP is directly re�ected in corresponding proof obligations.

Looking further at just the di�erent variants of relational safety described in this subsection,
we note that the number of trace pre�xes the constructed context CS must simultaneously
induce in the source programs is exactly the arity of the relational property. Constructing CS

from a �nite number of pre�xes is much easier than constructing CS from an in�nite number of
pre�xes. Consequently, it is meaningful to de�ne a special point in the partial order of Figure 2.1
that is the join of RKrSP for all �niteKs, which is the strongest preservation criterion that can
be established by back-translating source contexts CS starting from a �nite number of trace
pre�xes. We call this robust �nite-relational safety preservation, or RFrSP . Its property-free
characterization, RFrSC, is shown below.

RFrSC : ∀K. ∀P1 . . .PK. ∀CT. ∀m1 . . .mK . (CT [P1↓] m1 ∧ . . . ∧ CT [PK↓] mK)⇒
∃CS. (CS [P1] m1 ∧ . . . ∧ CS [PK] mK)

We sketch an illustrative proof of RFrSC in §2.6.4. In Figure 2.1, all criteria weaker than RFrSP
are highlighted in green.

2.4.4 Robust Non-Relational Preservation Doesn’t Imply Robust Relational
Preservation

Relational (hyper)properties (§2.4.1, §2.4.2) and hyperproperties (§2.3) are di�erent but both
have a “relational” nature: Relational (hyper)properties are relations on the behaviors or traces
of multiple programs, while hyperproperties are relations on multiple traces of the same pro-
gram. So one may wonder whether there is any case in which the robust preservation of a
class of relational hyper(properties) is equivalent to that of a class of hyperproperties. Might
it not be the case that a compiler that robustly preserves all hyperproperties (RHP , §2.3.1) also
robustly preserves at least some class of 2-relational (hyper)properties?

This is, in fact, not the case—RHP does not imply the robust preservation of any subclass of
relational properties that we have described in this section (except, of course, relational prop-
erties of arity 1, that are just hyperproperties). Since RHP is the strongest non-relational robust
preservation criterion that we study, this also means that no non-relational robust preservation
criterion implies any relational robust preservation criterion in Figure 2.1. In other words, all
edges from relational to non-relational points in Figure 2.1 are strict implications.

To prove this, we construct a compiler that satis�es RHP , but does not have R2rSP , the weakest
relational criterion in Figure 2.1.

Theorem 3. There is a compiler that satis�es RHP but not R2rSP .

Proof sketch. Consider a source language that lacks code introspection, and a target language
which is exactly the same, but additionally has a primitive with which the context can read
the code of the compiled partial program as data (and then analyze it). Consider the trivial

34

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 35

compiler that is syntactically the identity. It should be clear that this compiler satis�es RHP
since the added operation of code introspection o�ers no advantage to the context when we
consider properties of a single program (as is the case in RHP). More precisely, in establishing
RHC, given a target context CT and a program P, we can construct a simulating source context
CS by modifying CT to hard-code P wherever CT performs code introspection. (Note that CS

can depend on P in RHC.)

Now consider two programs that di�er only in some dead code, that both read a value from
the context and write it back verbatim to the output. These two program satisfy the relational
safety property “the outputs of the two programs are equal” in any source context. However,
there is a trivial target context that causes the compiled programs to break this relational prop-
erty. This context reads the code of the program it is linked to, and provides 1 as input if it
happens to be the �rst of our two programs and 2 otherwise. Consequently, in this target con-
text, the two programs produce outputs 1 and 2 and do not have this relational safety property
in all contexts. Hence, this compiler does not satisfy R2rSP . (Technically, the trick of hard-
coding the program in CS no longer works since there are two di�erent programs here.)

This proof provides a fundamental insight: To robustly preserve any subclass of relational (hy-
per)properties, compilation must ensure that target contexts cannot learn anything about the
syntactic program they interact with beyond what source contexts can also learn (this require-
ment is in addition to everything needed to attain the robust preservation of the corresponding
subclass of non-relational hyperproperties). When the target language is low-level, hiding code
attributes can be di�cult: it may require padding the code segment of the compiled program
to a �xed size, and cleaning or hiding any code-layout-dependent data like code pointers from
memory and registers when passing control to the context. These complex protections are not
necessary for any non-relational preservation criteria (even RHP), but are already known to be
necessary for fully abstract compilation to low-level code [Juglaret et al. 2016, Kennedy 2006,
Patrignani et al. 2015, 2016]. They can also be trivially circumvented if the context has access
to side-channels (e.g., it can measure time via a di�erent thread).

2.5 Where is full abstraction?

Full abstraction—the preservation and re�ection of observational equivalence—is a well-studied
criterion for secure compilation (§2.7). The actually security-relevant direction of full abstrac-
tion is Observational Equivalence Preservation (OEP):

OEP : ∀P1 P2. P1 ≈ P2 ⇒ P1↓ ≈ P2↓

One natural question, then, is how OEP relates to our criteria of robust preservation.

The answer to this question seems to be nuanced and we haven’t fully resolved it, but we
provide a partial answer here in the speci�c case where programs don’t have internal nonde-
terminism. In various such determinate settings observational equivalence coincides with trace
equivalence in all contexts [Cheval et al. 2013, Engelfriet 1985] and, hence, OEP coincides with

35

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 36

robust trace-equivalence preservation (RTEP , §2.4). Further, we argued in §2.4.2 that, in this
setting, RTEP is implied by robust 2-relational property preservation (R2rTP), so OEP is also
implied by R2rTP . If we additionally assume that divergence is �nitely observable, or that the
language is terminating, then RTEP and OEP are both implied by the weaker criterion, robust
2-relational safety preservation (R2rSP , §2.4.3).

In the other direction, we have proved that for determinate programs, RTEP (and, hence, OEP)
does not imply any of the criteria that are above RSP or RDP in Figure 2.1. We explain here
the key idea behind the construction. Fundamentally, RTEP (or OEP) only requires preserv-
ing equivalence of behavior. Consequently, a compiler from a language of booleans to itself
that bijectively renames true to false, false to true, AND to OR, and OR to AND has RTEP . On
the other hand, this compiler does not have RSP or RDP since it does not preserve safety or
dense properties. For example, the constant function that outputs an in�nite stream of trues is
mapped to the constant function that outputs an in�nite stream of falses. The source function
satis�es the safety property “never output false”, while the compiled function does not. Simi-
larly, the source function satis�es the dense property “on any in�nite trace, output at least one
true”, while the compiled function does not.

Our actual result is a bit stronger: We show that there exists a compiler that has both RTEP and
compiler correctness—in the sense of TP , SCC, and CCC de�ned in §2.2.1—but has neither RSP
nor RDP . The proof is similar, but the construction is di�erent, basically exploiting that even
with SCC andCCC a correctly compiled program P↓ only needs to be able to properly deal with
interactions with target contexts that behave like source contexts, and thus P↓ can perform
unsafe actions when interacting with target contexts that have no source equivalent.

Theorem 4. There is a compiler between two deterministic languages that satis�es RTEP , TP ,
SCC, and CCC, but none of the criteria above RSP and RDP in Figure 2.1.

2.6 Proving Secure Compilation

This section demonstrates that the studied criteria can be proved by adapting existing back-
translation techniques. We introduce a statically typed source language with �rst-order func-
tions and input-output and a similar dynamically typed target language (§2.6.1), and we present
a simple compiler between the two (§2.6.2). We then describe two very di�erent secure com-
pilation proofs for this compilation chain, both based on techniques originally developed for
showing fully abstract compilation. The �rst proof shows RrHP (§2.6.3), the strongest criterion
from Figure 2.1, using a context-based back-translation, which provides an “universal embed-
ding” of a target context into a source context [New et al. 2016]. The second proof shows a
slightly weaker criterion, Robust Finite-Relational Safety Preservation (§2.6.4), which, how-
ever, still includes robust preservation of safety, of noninterference, and in some settings also
of trace equivalence, as illustrated by the green area of Figure 2.1. This second proof relies
on a trace-based back-translation [Je�rey and Rathke 2005a, Patrignani et al. 2015, 2016], ex-
tended to back-translating a �nite set of �nite execution pre�xes. This second technique is
more generic, as it only depends on the model for context-program interaction (e.g., calls and

36

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 37

returns), not on all other details of the languages. Since back-translation is often the hardest
part of proving a compilation chain secure [Devriese et al. 2016a], we believe that a such a
generic back-translation technique that requires less creativity can be very useful, especially
when the source and target languages have large abstraction gaps that would make context-
based back-translation complicated, if at all possible.

2.6.1 Source and Target Languages

For the sake of simplicity, the languages we consider are simple �rst-order languages with
named procedures where values are boolean and naturals. The source language Lτ is typed
while the target language Lu is untyped. A program in either language is a collection of func-
tion de�nitions, each function body is a pure expression that can perform comparison and
natural operations (⊕), branch and use let-in bindings. Expressions can read naturals from and
write naturals to the environment, which generates trace events. Additionally, Lu has a prim-
itive e has τ to dynamic check whether expression e has type τ . Contexts C can call in the
program and can manipulate its returned values, but cannot contain read nor write e actions,
as those are security-sensitive.

Program P ::= I;F Functions F ::= f(x : τ) : τ 7→ return e Interfaces I ::= f : τ → τ

Contexts C ::= e Types τ ::= Bool | Nat
Expressions e ::= x | true | false | n ∈ N | e⊕ e | let x : τ = e in e | if e then e else e | e ≥ e

| call f e | read | write e | fail
Program P ::= I;F Functions F ::= f(x) 7→ return e Interfaces I ::= f

Contexts C ::= e Types τ ::= Bool | N
Expressions e ::= x | true | false | n ∈ N | e⊕ e | let x = e in e | if e then e else e | e ≥ e

| call f e | read | write e | fail | e has τ

Labels λ ::= ε | α Actions α ::= read n | write n | ↓ | ↑ | ⊥

Program states either describe the evaluation of an expression, given a lookup table for proce-
dure bodies or they describe the reaching of a stuck state: ˙ ::= P . e | fail. Each language has
a standard small-step operational semantics (Ω λ−−→ Ω′) that describes how a program state
evolves, as well as a big step trace semantics (Ω α, to use the same notation of §2.1) that
concatenates all actions α in a trace α. The initial state of a program P plugged in context C,
denoted as Ω0(C[P]), is the state P .e, where C = e. We now have all the necessary material to
de�ne the behavior of a program as the set of traces that it can perform following the semantics
rules starting from its initial state.

Behav (C[P]) = {α | Ω0(C[P]) α}

37

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 38

2.6.2 The Compiler

The compiler ·↓ takes Lτ programs and generates Lu ones; technically speaking the compiler
operates on programs and then on expressions; we overload the compiler notation for sim-
plicity to refer to all of them. The main feature of the compiler is that it replaces static type
annotations with dynamic type checks of function arguments upon invocation of a function
(case ·↓-Fun).

I1, · · · , Im;F1, · · · ,Fn↓ = I1↓, · · · , Im↓; F1↓, · · · , Fn↓ (·↓-Prog)
f : τ → τ ′

y = f (·↓-Intf)
f(x : τ) : τ ′ 7→ return e

y = f(x) 7→ return if x has τ↓ then e↓ else fail (·↓-Fun)
Nat↓ = N Bool↓ = Bool

n↓ = n true↓ = true false↓ = false

x↓ = x e⊕ e′
y = e↓ ⊕ e′

y e ≥ e′
y = e↓ ≥ e′

y
call f e↓ = call f e↓ read↓ = read write e↓ = write e↓

let x : τ = e in e′
y = let x = e↓ in e′

y if e then e′ else e′′
y = if e↓ then e′

y else e′′
y

2.6.3 Proving Robust Relational Hyperproperty Preservation

To prove that ·↓ attains RrHP , we need a way to back-translate target contexts into source
ones, and we use an universal embedding as previously proposed for showing fully abstract
compilation [New et al. 2016]. The back-translation needs to generate a source context that
respects source-level constraints, in this case it must be well typed. To ensure this, we use Nat
as a Universal Type in back-translated source contexts. The intuition of the back-translation is
that it will encode true as 0, false as 1 and any n as n + 2. Next we need ways to exchange
values to and from a regular source type and our universal type. Speci�cally, we de�ne the
following shorthands: injectτ (e) takes an expression e of type τ and returns an expression
whose type is the universal type while extractτ (e) takes an expression e of universal type and
returns an expression whose type is τ .

injectNat(e) = e + 2 injectBool(e) = if e then 1 else 0

extractNat(e) = let x = e in if x ≥ 2 then x− 2 else fail

extractBool(e) = let x = e in if x ≥ 2 then fail else if x + 1 ≥ 2 then true else false

injectτ (e) will never incur in runtime errors while extractτ (e) can. This mimics the target con-
text ability to write ill-typed code such as 3 + true, which we must be able to back-translate
and preserve the semantics of (see Example 1)

38

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 39

The back-translation is de�ned inductively on the structure of target contexts. For clarity we
omit the list of function interfaces I (i.e., what the back-translated context links against) that is
needed for the call · case.

true↑ = 1 false↑ = 0 n↑ = n + 2 x↑ = x

e ≥ e′
x = let x1 : Nat=extractNat(e↑)

in let x2 : Nat=extractNat(e
′x)

in injectBool(x1 ≥ x2)

e⊕ e′
x = let x1 : Nat=extractNat(e↑)

in let x2 : Nat=extractNat(e
′x)

in injectNat(x1⊕ x2)(
let x=e

in e′

)x =
let x : Nat=e↑
in e′

x
(
if e then

e′ else e′′

)x =
if extractBool(e↑) then
e′
x else e′′

x
e has τ↑ =

{
let x : Nat=e↑ in if x ≥ 2 then 0 else 1 if τ ≡ Bool

let x : Nat=e↑ in if x ≥ 2 then 1 else 0 if τ ≡ N

call f e↑ = injectτ ′(call f extractτ (e↑)) if f : τ → τ ′ ∈ I fail↑ = fail

Example 1 (Back-Translation). We show the back-translation of two simple target contexts
and intuitively explain why the back-translation is correct and why it needs inject· and extract·.

Consider context C1 = 3 ∗ 5 that reduces to 15 irrespective of the program it links against.
The back-translation must intuitively ensure that C1↑ reduces to 17, which is the back-translation
of 15. If we unfold the de�nition of C1↑ we have the following (given that 3↑=5 and 5↑=7).

let x1 : Nat=extractNat(5) in let x2 : Nat=extractNat(7) in injectNat(x1 ∗ x2)

By examining the code of extractNat we see that in both cases it will just perform a subtraction
by 2 turning the 5 and 7 respectively into 3 and 5. So after few reduction steps we have the
following term: injectNat(3 ∗ 5). This again seems correct: the multiplication returns 15 and
the inject returns 17, which would be the result of 〈〈15〉〉.

Let us now consider a di�erent contextC2 = false + 3. We know that no matter what program
links against it, it will reduce to fail. Its statically typed back-translation is:

let x1 : Nat=extractNat(0) in let x2 : Nat=extractNat(7) in injectNat(x1 ∗ x2)

By looking at its code we can see that the execution of extractNat(0) will indeed result in a fail,
which is what we want and expect, as that is the back-translation of fail. �

We proved RrHP for this simple compilation chain, using a simple logical relation that includes
cases both for terms of source type (intuitively used for compiler correctness) as well as for
terms of back-translation type [Devriese et al. 2016a, New et al. 2016]. We prove the usual
compatibility lemmas at source type for the compiler case while each back-translation case
is proved correct at back-translation type, as illustrated by Example 1. The appendix in the
supplementary materials provides full details.

39

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 40

2.6.4 Proving Robust Finite-Relational Safety Preservation

Proving that this simple compilation chain attains RFrSC does not require back-translating a
target context, as we only need to build a source context that can reproduce a �nite set of
�nite trace pre�xes, but that is not necessarily equivalent to the original target context. We
describe this back-translation on an example. The interested reader can �nd all details in the
appendix.

Example 2 (Back-Translation of traces). Consider the following programs (the interfaces are
omitted for concision):

P1 = (f(x : Nat) : Nat 7→ return x, P2 = (f(x : Nat) : Nat 7→ return read,

g(x : Nat) : Bool 7→ return true) g(x : Nat) : Bool 7→ return true)

The compiled programs are analogous, except they include dynamic type checks of the argu-
ments:

P1↓ = (f(x) 7→ return (if x has Nat then x else fail),

g(x) 7→ return (if x has Nat then true else fail))

P2↓ = (f(x) 7→ return (if x has Nat then read else fail),

g(x) 7→ return (if x has Nat then true else fail))

Now, consider the target context

C = let x1=call f 5 in if x1 ≥ 5 then call g (x1) else call g (false)

The programs plugged into the context can generate (at least) the following traces, where ⇓
means termination and ⊥ means failure:

C[P1↓] ; ⇓ C[P2↓] ; read 5;⇓ C[P2↓] ; read 0;⊥

In the �rst execution of C[P2↓], the programs reads 5, and the �rst branch of the if-then-else
of the context is entered. In the second execution of C[P2↓], the programs reads 0, the second
branch of the context is entered and the program fails in g after detecting a type error.

These traces alone are not enough to construct a source context since they do not have any
information on the control �ow of the program, and in particular on which function produces
which input or output. Therefore, we use the execution pre�xes to we enrich the traces with
information about the calls and returns between program and context. To do so, we modify
the semantics to record the call stack. Now, there are two rules for handling calls and returns:
one modelling control �ow going from context to program (and this is decorated with a ?) and
one modelling the opposite: control �ow going from program to context (and this is decorated
with a !). Each rule generates the appropriate event, call f v? or ret v! respectively. If the

40

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 41

call or the return occurs within the program no event is generated, as such calls and returns
are not recorded, as they are not relevant for back-translating a context.

Since the semantics are otherwise identical, obtaining the new informative traces is straight-
forward: we can just replay the execution by substituting the rules for calls and returns.

Labels λ ::= · · · | β Interactions β ::= call f v? | ret v!

Now, the traces generated by the compiled programs plugged into the context become:

C[P1↓] ; call f 5?; ret 5!; call g 5?; ret true!;⇓
C[P2↓] ; call f 5?; read 5; ret 5!; call g 5?; ret true!;⇓
C[P2↓] ; call f 5?; read 0; ret 0!; call g false?;⊥

In our example language, read and writes are only performed by the programs. The context
speci�es the �ow of the program. Therefore, the role of the back-translated source context will
be to perform appropriate calls; the I/O events will be obtained by correctness of the compiler.

Since the context is the same in all executions, the only source of non-determinism in the exe-
cution is the program. Therefore, two traces generated by the same context (but not necessarily
the same program), where I/O events have been removed, must be equal up to the point where
there are two di�erent return events: these traces are organized as a tree (Figure 2.2, on the
left). This tree can be back-translated to a source context using nested if-then-else as depicted
below (Figure 2.2, on the right, dotted lines indicate what the back-translation generates for
each action in the tree). When additional branches are missing (e.g., there is no third behavior
that analyzes the �rst return or no second behavior that analyses the second return on the left
execution), the back-translation inserts fail in the code – they are dead code branches (marked
with a **).

call f 5?

ret 5!

call g 5?

ret true!

⇓

ret 0!

call g false?

⊥

let x=call f 5

in if x == 5

then let y=call g 5 in

if y == true then 0 else fail

else if x == 0

then fail else fail **

Figure 2.2: Example of a back-translation of traces.

Correctness of the back-translation shows that this source context will produce exactly the
same non-informative traces as before, therefore yielding RFrSP . However, would not be true
of informative traces (that track calls and returns). In fact the call to g with a boolean would

41

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 42

be ill-typed, and the back-translation has to solve this issue by shifting the failure from the
program to the context, so the picture links the call g false? action to a fail. The call will
never be executed at the source level. �

Using the technique illustrated on the example above we have proved RFrSP for the compilation
chain of this section. Complete details are in the appendix.

2.7 Related Work

Full Abstraction, originally applied to secure compilation in the seminal work of Abadi
[1999], has since received a lot of attention [Patrignani et al. 2019]. Abadi [1999] and, later,
Kennedy [2006] identi�ed failures of full abstraction in the Java to JVM and C# to CIL compilers,
some of which were �xed, but also others for which �xing was deemed too costly compared
to the perceived practical security gain. Abadi et al. [2002] proved full abstraction of secure
channel implementations using cryptography, but to prevent network tra�c attacks they had
to introduce noise in their translation, which in practice would consume network bandwidth.
Ahmed et al. [Ahmed 2015, Ahmed and Blume 2008, 2011, New et al. 2016] proved the full
abstraction of type-preserving compiler passes for simple functional languages. Abadi and
Plotkin [2012] and Jagadeesan et al. [2011] expressed the protection provided by address space
layout randomization as a probabilistic variant of full abstraction. Fournet et al. [2013] devised
a fully abstract compiler from a subset of ML to JavaScript. Patrignani et al. [Larmuseau et al.
2015, Patrignani et al. 2015, 2016] studied fully abstract compilation to machine code, starting
from single modules written in simple, idealized object-oriented and functional languages and
targeting a hardware isolation mechanism similar to Intel’s SGX [Intel].

Until recently, most formal secure compilation work was focused only on fully abstract com-
pilation. The goal of our work is to explore a diverse set of secure compilation criteria, a few
of them formally stronger than (the interesting direction of) full abstraction at least in vari-
ous determinate settings, but most of them not directly comparable to full abstraction, some
of them easier to achieve and prove than full abstraction, while others potentially harder to
achieve and prove. This exploration clari�es the trade-o� between security guarantees and ef-
�cient enforcement for secure compilation: On one extreme, RTP robustly preserves only trace
properties, but does not require enforcing con�dentiality; on the other extreme, robustly pre-
serving relational properties gives very strong guarantees, but requires enforcing that both the
private data and the code of a program remain hidden from the context, which is often harder
to achieve. The best criterion to apply depends on the application domain, but we provide a
framework in which interesting design questions such as the following two can be addressed:
(1) What secure compilation criterion, when violated, would the developers of the Java to JVM
and C# to CIL compilers, at least in principle, be willing to �x? The work of Kennedy [2006]
indicates that fully abstract compilation is not such a good answer to this question, and we
wonder whether RTP or RHP could be better answers. (2) What weaker secure compilation cri-
terion would the translations of Abadi et al. [2002] satisfy if they did not introduce (ine�cient)
noise to prevent network tra�c analysis? Abadi et al. [2002] explicitly leave this problem open

42

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 43

in their paper, and we believe one answer could be RTP , since it does not require preserving
any con�dentiality.

Our exploration also forced us to challenge the assumptions and design decisions of prior work.
This is most visible in our attempt to use as generic and realistic a trace model as possible. To
start, this meant moving away from the standard assumption in the hyperproperties literature
[Clarkson and Schneider 2010] that all traces are in�nite, and switching instead to a trace model
inspired by CompCert’s [Leroy 2009a] with both terminating and non-terminating traces, and
where non-terminating traces can be �nite but not �nitely observable (to account for silent
divergence). This more realistic model required us to �nd a class of trace properties to replace
liveness. At places, this model is also at odds with the external observation notions typically
used for fully abstract compilation, speci�cally that divergence is an observable event. To
accommodate such cases, extra assumptions are needed, such as the one we used to show that
RTEP follows from R2rSP in some settings (§2.4.3).

Proof techniques The context-based back-translation we use to prove RrHP in §2.6.3 is
adapted from the universal embedding technique of New et al. [2016], who propose it for prov-
ing full abstraction of translations from typed to untyped languages. Devriese et al. [2016a,
2017] show that even when a precise universal type does not exist in the source, one can use
an approximate embedding that only works for a certain number of execution steps. They il-
lustrate such an approximate back-translation by proving full abstraction for a compiler from
the simply typed to the untyped λ-calculus. The trace-based back-translation technique we
use in §2.6.4 was �rst proposed by Je�rey and Rathke [2005a,b] for proving the full abstraction
of so called “trace semantics” (which are often used to prove observational equivalences). This
back-translation technique was then adapted to show full abstraction of compilation chains to
low-level target languages [Agten et al. 2015, Patrignani and Clarke 2015, Patrignani et al. 2016].
While many other proof techniques have been previously investigated [Abadi and Plotkin 2012,
Abadi et al. 2002, Ahmed and Blume 2008, 2011, Fournet et al. 2013, Jagadeesan et al. 2011],
proofs of full abstraction remain notoriously di�cult, even for very simple languages, with ap-
parently simple conjectures surviving for decades before being �nally settled [Devriese et al.
2018].

It will be interesting to investigate how many of the existing full abstraction proofs can be
repurposed to show stronger criteria from Figure 2.1, like we did in §2.6.3 for the universal
embedding technique of New et al. [2016]. For instance, it will be interesting to determine
the strongest criterion from Figure 2.1 for which the approximate back-translation of Devriese
et al. [2016a, 2017] can be used.

Development of RSP Two pieces of concurrent work have examined more carefully how
to attain and prove one of the weakest of our preservation criteria, RSP (§2.2.3). Patrignani
and Garg [2018] show RSP for compilers from simple sequential and concurrent languages to
capability machines [Watson et al. 2015b]. They observe that that if the source language has
a veri�cation system for robust safety and compilation is limited to veri�ed programs, then

43

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 44

RSP can be established without directly resorting to back-translation. Independently, in chap-
ter 3 we aim at devising realistic secure compilation chains for protecting mutually distrustful
components written in an unsafe language like C. We show that by moving away from the full
abstraction variant used in earlier work [Juglaret et al. 2016] to a variant of the RSP criterion
from §2.2.3, we can support a more realistic model of dynamic compromise of components,
while at the same time obtaining a criterion that is easier to achieve and prove.

Hypersafety Preservation The high-level idea of specifying secure compilation as the preser-
vation of properties and hyperproperties in adversarial contexts goes back to the work of
Patrignani and Garg [2017]. However, that work’s technical development is limited to one
criterion—the preservation of �nite pre�xes of program traces by compilation. Super�cially,
this is similar to one of our criteria, RHSP , but there are several di�erences even from RHSP .
First, Patrignani and Garg [2017] do not consider adversarial contexts explicitly. This su�ces
for their setting of closed reactive programs, where traces are inherently fully abstract (so con-
sidering the adversarial context is irrelevant), but not in general. Second, they are interested
in designing a criterion that accommodates speci�c fail-safe like mechanisms for low-level en-
forcement, so the preservation of hypersafety properties is not perfect, and one has to show,
for every relevant property, that the criterion is meaningful. However, Patrignani and Garg
[2017] consider translations of trace symbols induced by compilation, something that our cri-
teria could also be extended with.

Source-level reasoning about robust satisfaction While this chapter studies secure com-
pilation criteria based on preserving the robust satisfaction for various classes of properties,
formally verifying that a partial source program robustly satis�es a speci�cation is a challeng-
ing problem. So far, most of the research has focused on techniques for proving observational
equivalence [Abadi et al. 2018, Cheval et al. 2018, Delaune and Hirschi 2017, Je�rey and Rathke
2005a,b] or trace equivalence [Baelde et al. 2017, Cheval et al. 2013]. For robust satisfaction of
trace properties, Kupferman and Vardi [1999] study robust model checking of systems modeled
by nondeterministic Moore machines and properties speci�ed by branching temporal logic. Ro-
bust safety, the robust satisfaction of safety properties, was studied for the analysis of security
protocols [Backes et al. 2008, 2011, Gordon and Je�rey 2004], and more recently for compo-
sitional veri�cation [Swasey et al. 2017]. Verifying the robust satisfaction of hyperproperties
and relational hyperproperties beyond observational equivalence and trace equivalence seems
to be an open research problem.

2.8 Conclusion and Future Work

This chapter proposes a possible foundation for secure compilation by exploring many di�er-
ent criteria based on robust property preservation (Figure 2.1), but the road to building practical
compilation chains achieving one of these criteria is still long and challenging. Even for RSP ,

44

CHAPTER 2. SECURE INTEROPERABILITY WITH LOWER-LEVEL CODE 45

scaling up to realistic programming languages and e�ciently enforcing protection of the com-
piled program without restrictions on the linked context is challenging [Abate et al. 2018a, Pa-
trignani and Garg 2018]. For R2HSP the problem becomes harder because one needs to protect
the secrecy of the program’s data, which is especially challenging in a realistic attacker model
with side-channels, in which a RTINIP-like property seems the best one can hope for in prac-
tice. Finally, as soon as one is outside the green area of Figure 2.1 the generic back-translation
technique of §2.6.4 stops applying and one needs to get creative about the proofs.

We made the simplifying assumption that the source and the target languages have the same
trace model, and while this assumption is currently true for CompCert [Leroy 2009a], it is a big
restriction in general. Fortunately, the criteria of this chapter can be easily extended to take
a relation between source and target traces as an extra component of the compilation chain.
It is also easy to automatically lift this relation on traces to a relation on sets of traces, sets of
sets of traces, etc. What is less obvious is whether this automatic lifting is what one always
wants, and more importantly whether the users of a secure compilation chain will understand
this relation between the properties they reason about at the source languages and the ones
they get at the target level.

Finally, the relation between the criteria of Figure 2.1 and fully abstract compilation requires
further investigation. We identify the su�cient conditions under which trace-equivalence
preservation follows from certain of these criteria, which gives us a one-way relation to obser-
vational equivalence preservation in the cases in which observational equivalence coincides
with trace equivalence [Cheval et al. 2013, Engelfriet 1985]. Even under this assumption, what
is less clear is whether there are any su�cient conditions for fully abstract compilation to imply
any of the criteria of Figure 2.1. The separation result of §2.5 shows that compiler correctness,
even when reasonably compositional (i.e., satisfying SCC and CCC), is not enough. Yet the fact
that fully abstract compilers often provide both the necessary enforcement mechanisms and
the proof techniques to achieve even the highest criterion in Figure 2.1 (as illustrated in §2.6.3)
suggests that there is more to full abstraction than currently meets the eye. One lead is to look
at source program encodings targeted at illustrating con�dentiality and internally observable
safety properties in terms of observational equivalence [Abadi 1999, Patrignani et al. 2019].

45

3 When Good Components Go Bad: Secure
Compilation for Unsafe Languages

3.1 Overview

Compartmentalization o�ers a strong, practical defense against a range of devastating low-level
attacks, such as control-�ow hijacks exploiting bu�er over�ows and other vulnerabilities in C,
C++, and other unsafe languages [Bittau et al. 2008, Gudka et al. 2015, Watson et al. 2015b].
Widely deployed compartmentalization technologies include process-level privilege separation
[Bittau et al. 2008, Gudka et al. 2015, Kilpatrick 2003] (used in OpenSSH [Provos et al. 2003] and
for sandboxing plugins and tabs in web browsers [Reis and Gribble 2009]), software fault isola-
tion [Tan 2017, Wahbe et al. 1993] (e.g., Google Native Client [Yee et al. 2010]), WebAssembly
modules [Haas et al. 2017] in modern web browsers, and hardware enclaves (e.g., SGX [In-
tel]); many more are on the drawing boards [Azevedo de Amorim et al. 2015, Chisnall et al.
2015, Skorstengaard et al. 2018a, Watson et al. 2015b]. These mechanisms o�er an attractive
base for building more secure compilation chains that mitigate low-level attacks [Gollamudi
and Fournet 2018, Gudka et al. 2015, Juglaret et al. 2015, Patrignani et al. 2016, Tsampas et al.
2017, van Ginkel et al. 2016, Van Strydonck et al. 2018]. In particular, compartmentalization
can be applied in unsafe low-level languages to structure large, performance-critical applica-
tions into mutually distrustful components that have clearly speci�ed privileges and interact
via well-de�ned interfaces.

Intuitively, protecting each component from all the others should bring strong security ben-
e�ts, since a vulnerability in one component need not compromise the security of the whole
application. Each component will be protected from all other components for as long as it re-
mains “good.” If, at some point, it encounters an internal vulnerability such as a bu�er over�ow,
then, from this point on, it is assumed to be compromised and under the control of the attacker,
potentially causing it to attack the remaining uncompromised components. The main goal of
this chapter is to formalize this dynamic-compromise intuition and precisely characterize what
it means for a compilation chain to be secure in this setting.

We want a characterization that supports source-level security reasoning, allowing program-
mers to reason about the security properties of their code without knowing anything about the
complex internals of the compilation chain (compiler, linker, loader, runtime system, system
software, etc). What makes this particularly challenging for C and C++ programs is that they
may encounter unde�ned behaviors—situations that have no source-level meaning whatsoever.
Compilers are allowed to assume that unde�ned behaviors never occur in programs, and they

46

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 47

aggressively exploit this assumption to produce the fastest possible code for well-de�ned pro-
grams, in particular by avoiding the insertion of run-time checks. For example, memory safety
violations [Azevedo de Amorim et al. 2018, Szekeres et al. 2013] (e.g., accessing an array out of
bounds, or using a pointer after its memory region has been freed) and type safety violations
[Duck and Yap 2018, Haller et al. 2016] (e.g., invalid unchecked casts)—cause real C compilers to
produce code that behaves arbitrarily, often leading to exploitable vulnerabilities [Heartbleed,
Szekeres et al. 2013].

Of course, not every unde�ned behavior is necessarily exploitable. However, for the sake of
strong security guarantees, we make a worst-case assumption that any unde�ned behavior
encountered within a component can lead to its compromise. Indeed, in the remainder we
equate the notions of “encountering unde�ned behavior” and “becoming compromised.”

While the dangers of memory safety and casting violations are widely understood, the C and
C++ standards [ISO/IEC 2011] call out large numbers of unde�ned behaviors [Hathhorn et al.
2015, Krebbers 2015] that are less familiar, even to experienced C/C++ developers [Lattner
2011, Wang et al. 2013]. To minimize programmer confusion and lower the risk of introducing
security vulnerabilities, real compilers generally give sane and predictable semantics to some
of these behaviors. For example, signed integer over�ow is o�cially an unde�ned behavior in
standard C, but many compilers (at least with certain �ags set) guarantee that the result will
be calculated using wraparound arithmetic. Thus, for purposes of de�ning secure compilation,
the set of unde�ned behaviors is e�ectively de�ned by the compiler at hand rather than by the
standard.

The purpose of a compartmentalizing compilation chain is to ensure that the arbitrary, poten-
tially malicious, e�ects of unde�ned behavior are limited to the component in which it occurs.
For a start, it should restrict the spatial scope of a compromise to the component that encoun-
ters unde�ned behavior. Such compromised components can only in�uence other components
via controlled interactions respecting their interfaces and the other abstractions of the source
language (e.g., the stack discipline on calls and returns) Moreover, to model dynamic compro-
mise and give each component full guarantees as long as it has not yet encountered unde�ned
behavior, the temporal scope of compromise must also be restricted. In particular, compiler
optimizations should never cause the e�ects of unde�ned behavior to show up before earlier
“observable events” such as system calls. Unlike the spatial restriction, which requires some
form of run-time enforcement in software or hardware, the temporal restriction can be enforced
just by foregoing certain aggressive optimizations. For example, the temporal restriction (but
not the spatial one) is already enforced by the CompCert C compiler [Leroy 2009a, Regehr
2010], providing a signi�cantly cleaner model of unde�ned behavior than other C compilers
[Regehr 2010].

We want a characterization that is formal—that brings mathematical precision to the security
guarantees and attacker model of compartmentalizing compilation. This can serve both as a
clear speci�cation for veri�ed secure compilation chains and as useful guidance for unveri�ed
ones. Moreover, we want the characterization to provide source-level reasoning principles that
can be used to assess the security of compartmentalized applications. To make this feasible in
practice, the amount of source code to be veri�ed or audited has to be relatively small. So, while

47

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 48

we can require developers to carefully analyze the privileges of each component and the cor-
rectness of some very small pieces of security-critical code, we cannot expect them to establish
the full correctness—or even absence of unde�ned behavior—for most of their components.

Our secure compilation criterion improves on the state of the art in three important respects.
First, our criterion applies to compartmentalized programs, while most existing formal criteria
for secure compilation are phrased in terms of protecting a single trusted program from an
untrusted context [Abadi 1999, Abadi and Planul 2013, Abadi and Plotkin 2012, Abate et al.
2018b, Agten et al. 2012, 2015, Fournet et al. 2013, Larmuseau et al. 2015, Patrignani et al. 2015].
Second, unlike some recent criteria that do consider modular protection [Devriese et al. 2017,
Patrignani et al. 2016], our criterion applies to unsafe source languages with unde�ned behav-
iors. And third, it considers a dynamic compromise model—a critical advance over the recent
proposal of Juglaret et al. [2016], which does consider components written in unsafe languages,
but which is limited to a static compromise model. This is a serious limitation: components
whose code contains any vulnerability that might potentially manifest itself as unde�ned be-
havior are given no guarantees whatsoever, irrespective of whether an attacker actually ex-
ploits these vulnerabilities. Moreover, vulnerable components lose all guarantees from the
start of the execution—possibly long before any actual compromise. Experience shows that
large enough C or C++ codebases essentially always contain vulnerabilities [Szekeres et al.
2013]. Thus, although static compromise models may be appropriate for safe languages, they
are not useful for unsafe low-level languages.

As we will see in §3.5, the limitation to static compromise scenarios seems inescapable for pre-
vious techniques, which are all based on the formal criterion of full abstraction [Abadi 1999].
To support dynamic compromise scenarios, we take an unconventional approach, dropping full
abstraction and instead phrasing our criterion in terms of preserving safety properties [Lam-
port and Schneider 1984] in adversarial contexts (chapter 2), where, formally, safety properties
are predicates over execution traces that are informative enough to detect the compromise of
components and to allow the execution to be “rewound” along the same trace. Moving away
from full abstraction also makes our criterion easier to achieve e�ciently in practice and to
prove at scale. Finally, we expect our criterion to scale naturally from properties to hyperprop-
erties such as con�dentiality (see §2.3.3, §3.5, and §3.6).

Contributions Our �rst contribution is Robustly Safe Compartmentalizing Compilation (RSCC),
a new secure compilation criterion articulating strong end-to-end security guarantees for com-
ponents written in unsafe languages with unde�ned behavior. This criterion is the �rst to
support dynamic compromise in a system of mutually distrustful components with clearly speci-
�ed privileges. We start by illustrating the intuition, informal attacker model, and source-level
reasoning behind RSCC using a simple example application (§3.2).

Our second contribution is a formal presentation of RSCC. We start from Robustly Safe Compi-
lation (RSC), the simple security criterion from §2.2.3, and extend this �rst to dynamic compro-
mise (RSCDC, §3.3.1), then mutually distrustful components (RSCDC

MD, §3.3.2), and �nally to the
full de�nition of RSCC (§3.3.3). We also give an e�ective and generic proof technique for RSCC

48

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 49

(§3.3.4). We start with a target-level execution and explain any �nite sequence of calls and
returns in terms of the source language by constructing a whole source program that produces
this pre�x. We then use standard simulation proofs to relate our semantics for whole programs
to semantics that capture the behavior of a partial program in an arbitrary context. This proof
architecture yields simpler and more scalable proofs than previous work in this space [Juglaret
et al. 2016]. One particularly important advantage is that it allows us to reuse a whole-program
compiler correctness result à la CompCert [Leroy 2009a] as a black box, avoiding the need to
prove any other simulations between the source and target languages.

Our third contribution is a proof-of-concept secure compilation chain (§3.4) for a simple unsafe
sequential language featuring bu�ers, procedures, components, and a CompCert-like block-
based memory model [Leroy and Blazy 2008] (§3.4.1). Our entire compilation chain is imple-
mented in the Coq proof assistant. The �rst step compiles our source language to a simple low-
level abstract machine with built-in compartmentalization (§3.4.2). We use the proof technique
from §3.3.4 to construct careful proofs—many of them machine-checked in Coq—showing that
this compiler satis�es RSCC (§3.4.3). Finally, we describe two back ends for our compiler, show-
ing that the protection guarantees of the compartmentalized abstract machine can be achieved
at the lowest level using either software fault isolation (SFI, §3.4.4) or a tag-based reference
monitor (§3.4.6). The tag-based back end, in particular, is novel, using linear return capabilities
to enforce a cross-component call/return discipline. Neither back end has yet been formally
veri�ed, but we have used property-based testing to gain con�dence that the SFI back end
satis�es RSCDC

MD.

These contributions lay a solid foundation for future secure compilation chains that could bring
sound and practical compartmentalization to C, C++, and other unsafe low-level languages. We
address three fundamental questions: (1) What is the desired secure compilation criterion and to
what attacker model and source-level security reasoning principles does it correspond? Answer:
We propose the RSCC criterion from §3.2-§3.3. (2) How can we e�ectively enforce secure com-
pilation? Answer: Various mechanisms are possible; the simple compilation chain from §3.4
illustrates how either software fault isolation or tagged-based reference monitoring can en-
force RSCC. (3) How can we achieve high assurance that the resulting compilation chain is indeed
secure? Answer: We show that formal veri�cation (§3.4.3) and property-based testing (§3.4.4)
can be successfully used together for this in a proof assistant like Coq.

We close with related (§3.5) and future (§3.6) work. Our Coq development is available at https:
//github.com/secure-compilation/when-good-components-go-bad/

3.2 RSCC By Example

We begin by an overview of compartmentalizing compilation chains, our attacker model, and
how viewing this model as a dynamic compromise game leads to intuitive principles for secu-
rity analysis.

49

https://github.com/secure-compilation/when-good-components-go-bad/
https://github.com/secure-compilation/when-good-components-go-bad/

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 50

We need not be very precise, here, about the details of the source language; we just assume that
it is equipped with some compartmentalization facility [Gudka et al. 2015, Vasilakis et al. 2018]
that allows programmers to break up security-critical applications into mutually distrustful
components that have clearly speci�ed privileges and can only interact via well-de�ned inter-
faces. In fact we assume that the interface of each component gives a precise description of its
privilege. The notions of component and interface that we use for de�ning the secure com-
pilation criteria in §3.3 are quite generic: interfaces can include any requirements that can be
enforced on components, including type signatures, lists of allowed system calls, or more de-
tailed access-control speci�cations describing legal parameters to cross-component calls (e.g.,
ACLs for operations on �les). We assume that the division of an application into components
and the interfaces of those components are statically determined and �xed. For the illustrative
language of §3.4, we will use a simple setup in which components don’t directly share state,
interfaces just list the procedures that each component provides and those that it expects to
be present in its context, and the only thing one component can do to another one is to call
procedures allowed by their interfaces.

The goal of a compartmentalizing compilation chain is to ensure that components interact ac-
cording to their interfaces even in the presence of unde�ned behavior. Our secure compilation
criteriondoes not �x a speci�c mechanism for achieving this: responsibility can be divided
among the di�erent parts of the compilation chain, such as the compiler, linker, loader, run-
time system, system software, and hardware. In §3.4 we study a compilation chain with two
alternative back ends—one using software fault isolation and one using tag-based reference
monitoring for compartmentalization. What a compromised component can still do in this
model is to use its access to other components, as allowed by its interface, to either trick them
into misusing their own privileges (i.e., confused deputy attacks) or even compromise them as
well (e.g., by sending them malformed inputs that trigger control-hijacking attacks exploiting
unde�ned behaviors in their code).

We model input and output as interaction with a designated environment component E that is
given an interface but no implementation. When invoked, environment functions are assumed
to immediately return a non-deterministically chosen value [Leroy 2009a]. In terms of security,
the environment is thus the initial source of arbitrary, possibly malformed, inputs that can
exploit bu�er over�ows and other vulnerabilities to compromise other components.

As we argued in the introduction, it is often unrealistic to assume that we know in advance
which components will be compromised and which ones will not. This motivates our model of
dynamic compromise, in which each component receives secure compilation guarantees until
it becomes compromised by encountering an unde�ned behavior, causing it to start attacking
the remaining uncompromised components. In contrast to earlier static-compromise models
[Juglaret et al. 2016], a component only loses guarantees in our model after an attacker dis-
covers and manages to exploit a vulnerability, by sending it inputs that lead to an unde�ned
behavior. The mere existence of vulnerabilities—unde�ned behaviors that can be reached after
some sequence of inputs—is not enough for the component to be considered compromised.

This model allows developers to reason informally about various compromise scenarios and
their impact on the security of the whole application [Gudka et al. 2015]. If the consequences

50

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 51

component C0 {
export valid ;
valid (data) { . . . }

}
component C1 {

import E . read , C2 . init , C2 . process ;
main () {

C2 . init () ;
x : = E . read () ;
y : = C1 . parse (x) ; / / (V1) can y i e l d Undef f o r some x
C2 . process (x , y) ;

}
parse (x) { . . . }

}
component C2 {

import E . write , C0 . valid ;
export init , process ;
init () { . . . }
process (x , y) {

C2 . prepare () ; / / (V2) can y i e l d Undef i f n o t i n i t i a l i z e d
data : = C2 . handle (y) ; / / (V3) can y i e l d Undef f o r some y
if C0 . valid (data) then E . write (< data , x >)

}
prepare () { . . . }
handle (y) { . . . }

}
Figure 3.1: Pseudocode of compartmentalized application

of some plausible compromise seem too serious, developers can further reduce or separate
privilege by narrowing interfaces or splitting components, or they can make components more
defensive by validating their inputs.

As a �rst running example, consider the idealized application in Figure 3.1. It de�nes three
components (C0, C1, and C2) that interact with the environment E via input (E .read) and output
(E .write) operations. Component C1 de�nes a main() procedure, which �rst invokes C2.init()
and then reads a request x from the environment (e.g., coming from some remote client), parses
it by calling an internal procedure to obtain y, and then invokes C2.process(x,y). This, in turn,
calls C2.prepare() and C2.handle(y), obtaining some data that it validates using C0.valid and,
if this succeeds, writes data together with the original request x to the environment.

Suppose we would like to establish two properties:

(S1) any call E .write(<data,x>) happens as a response to a previous E .read() call by C1
obtaining the request x; and

(S2) the application only writes valid data (i.e., data for which C0.valid returns true).

These can be shown to hold of executions that do not encounter unde�ned behavior simply
by analyzing the control �ow. But what if unde�ned behavior does occur? Suppose that we
can rule out this possibility—by auditing, testing, or formal veri�cation—for some parts of the
code, but we are unsure about three subroutines:

51

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 52

(V1) C1.parse(x) performs complex array computations, and we do not know if it is immune
to bu�er over�ows for all x;

(V2) C2.prepare() is intended to be called only if C2.init() has been called beforehand to set
up a shared data structure; otherwise, it might dereference an unde�ned pointer;

(V3) C2.handle(y) might cause integer over�ow on some inputs.

If the attacker �nds an input that causes the unde�ned behavior in V1 to occur, then C1 can
get compromised and call C2.process(x,y) with values of x that it hasn’t received from the
environment, thus invalidatingS1. Nevertheless, if no other unde�ned behavior is encountered
during the execution, this attack cannot have any e�ect on the code run by C2, so S2 remains
true.

Now consider the possible unde�ned behavior from V2. If C1 is not compromised, this unde-
�ned behavior cannot occur, since C2.init() will be called before C2.prepare(). Moreover, this
unde�ned behavior cannot occur even if C1 is compromised by the unde�ned behavior in V1,
because that can only occur after C2.init() has been called. Hence V1 and V2 together are no
worse than V1 alone, and property S2 remains true. Inferring this crucially depends on our
model of dynamic compromise, in which C1 can be treated as honest and gets guarantees until
it encounters unde�ned behavior. If instead we were only allowed to reason about C1’s ability
to do damage based on its interface, as would happen in a model of static compromise [Juglaret
et al. 2016], we wouldn’t be able to conclude that C2 cannot be compromised: an arbitrary
component with the same interface as C1 could indeed compromise C2 by calling C2.process
before C2.init. Finally, if execution encounters unde�ned behavior in V3, then C2 can get
compromised irrespective of whether C1 is compromised beforehand, invalidating both S1 and
S2.

Though we have not yet made it formal, this security analysis already identi�es C2 as a sin-
gle point of failure for both desired properties of our system. This suggests several ways the
program could be improved: The code in C2.handle could be hardened to reduce its chances
of encountering unde�ned behavior, e.g. by doing better input validation. Or C1 could validate
the values it sends to C2.process, so that an attacker would have to compromise both C1 and
C2 to break the validity of writes. To ensure the correspondence of reads and writes despite
the compromise of C1, we could make C2 read the request values directly from E, instead of via
C1.

To achieve the best security though, we can refactor so that the read and write privileges are
isolated in C0, which performs no complex data processing and thus is a lot less likely to be com-
promised by unde�ned behavior (Figure 3.2). In this variant, C0 reads a request, calls C1.parse
on this request, passes the result to C2.process, validates the data C2 returns and then writes
it out. This way both our desired properties hold even if both C1 and C2 are compromised,
since now the core application logic and privileges have been completely separated from the
dangerous data processing operations that could cause vulnerabilities.

Let’s begin making all this a bit more formal. The �rst step is to make the security goals of
our example application more precise. We do this in terms of execution traces that are built

52

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 53

component C0 {
import E . read , E . write , C2 . init , C1 . parse , C2 . process ;
main () {

C2 . init () ;
x : = E . read () ;
y : = C1 . parse (x) ;
data : = C2 . process (y) ;
if C0 . valid (data) then E . write (< data , x >)

}
valid (data) { . . . }

}
component C1 {

export parse ;
parse (x) { . . . } / / (V1) can y i e l d Undef f o r some x

}
component C2 {

export init , process ;
init () { . . . }
process (y) {

C2 . prepare () ; / / (V2) can y i e l d Undef i f n o t i n i t i a l i z e d
return C2 . handle (y) ; / / (V3) can y i e l d Undef f o r some y

}
prepare () { . . . }
handle (y) { . . . }

}

Figure 3.2: More secure refactoring of the application

from events such as cross-component calls and returns. The two intuitive properties from our
example can be phrased in terms of traces as follows: If E .write(<data,x>) appears in an
execution trace, then

(S1) E .read was called previously and returned x, and

(S2) C0.valid(data) was called previously and returned true.

The refactored application in Figure 3.2 achieves both properties despite the compromise of
both C1 via V1 and C2 via V3, but, for the �rst variant in Figure 3.1 the properties need to be
weakened as follows: If E .write(<data,x>) appears in an execution trace then

(W1) E .read previously returned x or E .read previously returned an x’ that can cause unde-
�ned behavior in C1.parse(x’) or C2.process(x,y) was called previously with a y that can
cause unde�ned behavior in C2.handle(y), and

(W2) C0.valid(data) was called previously and returned true or C2.process(x,y) was called
previously with a y that can cause unde�ned behavior in C2.handle(y).

While these properties are signi�cantly weaker (and harder to understand), they are still not
trivial; in particular, they still tell us something useful under the assumption that the attacker
has not actually discovered how to compromise C1 or C2.

Properties S1, S2, W1, W2 are all safety properties [Lamport and Schneider 1984]—inspired, in
this case, by the sorts of “correspondence assertions” used to specify authenticity in security
protocols [Gordon and Je�rey 2003, 2004, Woo and Lam 1993]. A trace property is a safety

53

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 54

property if, within any (possibly in�nite) trace that violates the property, there exists a �nite
“bad pre�x” that violates it. For instance here is a bad pre�x for S2 that includes a call to
E .write(<data,x>) with no preceding call to C0.valid(data):

[C0 . main () ; C2 . init () ; Ret ; E . read ; Ret (x) ; C1 . parse (x) ;
Ret (y) ; C2 . process (y) ; Ret (data) ; E . write (< data , x >)]

The program from Figure 3.2 cannot produce traces with this bad pre�x, but it could do so if
we removed the validity check in C0.main(); this variant would invalidate safety property S2.

Compiler correctness is often phrased in terms of preserving trace properties in general [Leroy
2009a] (and thus safety properties as a special case). However, this is often predicated on
the assumption that the source program has no unde�ned behavior; if it does, all security
guarantees are lost, globally. By contrast, we want our secure compilation criterion to still
apply even when some components are dynamically compromised by encountering unde�ned
behavior. In particular, we want to ensure that dynamically compromised components are not
able to break the safety properties of the system at the target level any more than equally
privileged components without unde�ned behavior already could in the source.

We call our criterion Robustly Safe Compartmentalizing Compilation (RSCC). It is phrased in
terms of a “security game,” illustrated in Figure 3.3 for our running example. With an RSCC
compilation chain, given any execution of the compiled and linked components C0↓, C1↓ and,
C2↓ producing trace t in the target language, we can explain any (intuitively bad) �nite pre�x
m of t (written m ≤ t) in terms of the source language. As soon as any component of the
program has an unde�ned behavior though, the semantics of the source language can no longer
directly help us. Similar to CompCert [Leroy 2009a], we model unde�ned behavior in our
source language as a special event Undef(Ci) that terminates the trace. For instance, in step
0 of Figure 3.3, component C1 is the �rst to encounter unde�ned behavior after producing a
pre�x m1 of m.

Since unde�ned behavior can manifest as arbitrary target-level behavior, the further actions of
component C1 can no longer be explained in terms of its source code. So how can we explain the
rest ofm in the source language? Our solution in RSCC is to require that one can replace C1, the
component that encountered unde�ned behavior, with some other source component A1 that
has the same interface and can produce its part of the wholem in the source language without
itself encountering unde�ned behavior. In order to replace component C1 with A1 we have to
go back in time and re-execute the program from the beginning obtaining a longer trace, in this
case m2·Undef(C2) (where we write “·” for appending the event Undef(C2) to m2). We iterate
this process until all components that encountered unde�ned behavior have been replaced with
new source components that do not encounter unde�ned behavior and produce the whole m.
In the example dynamic compromise scenario from Figure 3.3, this means replacing C1 with A1
and C2 with A2, after which the program can produce the whole pre�x m in the source.

Let’s now use this RSCC security game to deduce that in our example from Figure 3.2, even
compromising both C1 and C2 does not break property S2 at the target level. Assume, for the
sake of a contradiction, that a trace of our compiled program breaks property S2. Then there
exists a �nite pre�x “m · E .write(<data,x>)” such that C0.valid(data) does not appear in m.

54

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 55

I
0

I
1

I
2

C0 C1 C2

∀m finite prefix of t (m ≤ t)∃ a dynamic compromise scenario explaining m in source

for instance ∃[A1,A2] leading to compromise sequence:

↓ ↓ ↓ ⇝ t

I
0

I
1

I
2

C0 C1 C2
⇝* m

1
· Undef(C1)↯(0)

(1)

I
0

I
1

I
2

C0 A1 C2
⇝* m

2
· Undef(C2)↯

(2)
I
0

I
1

I
2

C0 A1 A2
⇝* m

≤
≤

Suppose running compiled components C
0
↓, C

1
↓, C

2
↓

with interfaces I
0
, I

1
, I

2
yields trace t:

Then:

The trace pre�xes m, m1, m2 might, for instance, be:
m = [C0 . main () ; C2 . init () ; Ret ; E . read ; Ret (x) ; C1 . parse (x) ;

Ret (y) ; C2 . process (y) ; Ret (d) ;
C0 . valid (d) ; Ret (true) ; E . write (<d , x >)]

m1 = [C0 . main () ; C2 . init () ; Ret ; E . read ; Ret (x) ; C1 . parse (x)]

m2 = [C0 . main () ; C2 . init () ; Ret ; E . read ; Ret (x) ; C1 . parse (x) ;
Ret (y) ; C2 . process (y)]

Figure 3.3: The RSCC dynamic compromise game for our example. We start with all compo-
nents being uncompromised (in green) and incrementally replace any component
that encounters unde�ned behavior with an arbitrary component (in red) that has
the same interface and will do its part of the trace pre�x m without causing unde-
�ned behavior.

55

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 56

Using RSCC we obtain that there exists some dynamic compromise scenario explaining m in
the source. The simplest case is when no components are compromised. The most interesting
case is when this scenario involves the compromise of both C1 and C2 as in Figure 3.3. In
this case, replacing C1 and C2 with arbitrary A1 and A2 with the same interfaces allows us to
reproduce the whole bad pre�x m in the source (step 2 from Figure 3.3). We can now reason
in the source, either informally or using a program logic for robust safety [Swasey et al. 2017],
that this cannot happen, since the source code of C0 does call C0.valid(data) and only if it gets
true back does it call E .write(<data,x>).

While in this special case we have only used the last step in the dynamic compromise sequence,
where all compromised components have already been replaced (step 2 from Figure 3.3), the
previous steps are also useful in general for reasoning about the code our original compo-
nents execute before they get compromised. For instance, this kind of reasoning is crucial for
showing property W2 for the original example from Figure 3.1. Property W2 gives up on the
validity of the written data only if C2 receives a y that exploits C2.handle(y) (vulnerability V3).
However, as discussed above, a compromised C1 could, in theory, try to compromise C2 by
calling C2.process without proper initialization (exploiting vulnerability V2). Showing that
this cannot actually happen requires using step 0 of the game from Figure 3.3, which gives us
that the original compiled program obtained by linking C0↓, C1↓ and, C2↓ can produce the trace
m1 · Undef(C1), for some pre�xm1 of the bad trace pre�x in which C2.process is called without
calling C2.init �rst. But it is easy to check that the straight-line code of the C1.main() proce-
dure can only cause unde�ned behavior after it has called C2.init, contradicting the existence
of a bad trace exploiting V2.

3.3 Formally Defining RSCC

For pedagogical purposes, we de�ne RSCC in stages, incrementally adapting the Robust Safety
Properties Preservation (RSC) criterion introduced in §2.2.3. We �rst bring RSC to unsafe lan-
guages with unde�ned behavior (§3.3.1), and then further extend its protection to any set of
mutually distrustful components (§3.3.2). These ideas lead to the more elaborate RSCC property
(§3.3.3), which directly captures the informal dynamic compromise game from §3.2. These def-
initions are generic, and will be illustrated with a concrete instance in §3.4. In the reminder
of this section, we describe an e�ective and general proof technique for RSCC (§3.3.4). Finally,
we investigate the class of trace properties preserved by our simplest de�nition (§3.3.5) and
contrast our dynamic compromise model with previous work in the static compromise model
[Juglaret et al. 2016] (§3.3.6).

3.3.1 RSCDC: Dynamic Compromise

The RSC criterion from §2.2.3 is about protecting a partial program written in a safe source
language against adversarial target-level contexts. We now adapt the idea behind RSC to an
unsafe source language with unde�ned behavior, in which the protected partial program itself

56

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 57

can become compromised. As explained in §3.2, we model unde�ned behavior as a special
Undef event terminating the trace: whatever happens afterwards at the target level can no
longer be explained in terms of the code of the source program. We further assume that each
unde�ned behavior in the source language can be attributed to the part of the program that
causes it by labeling the Undef event with “blame the program” (P) or “blame the context” (C)
(while in §3.3.2 we will blame the precise component encountering unde�ned behavior).
De�nition 3.3.1. A compilation chain provides Robustly Safe Compilation with Dynamic Com-
promise (RSCDC) i�

∀P CT t. CT [P↓] t⇒ ∀m≤t. ∃CS t′. CS [P] t′ ∧ (m≤t′∨t′≺Pm).

Roughly, this de�nition relaxes RSC by forgoing protection for the partial program P af-
ter it encounters unde�ned behavior. More precisely, instead of always requiring that the
trace t′ produced by CS [P] contain the entire pre�x m (i.e., m≤t′), we also allow t′ to be
itself a pre�x of m followed by an unde�ned behavior in P , which we write as t′≺Pm (i.e.,
t′≺Pm , ∃m′≤m. t′=(m′ · Undef(P))). In particular, the context CS is guaranteed to be
free of unde�ned behavior before the whole pre�x m is produced or P encounters unde�ned
behavior. However, nothing prevents CS from passing values to P that try to trick P into
causing unde�ned behavior.

To illustrate, consider the partial program P de�ned below.

program P {
import E . write ; export foo ;
foo (x) {

y : = P . process (x) ;
E . write (y) ;

}
/ / can e n c o u n t e r Undef f o r some x
process (x) { . . . }

}

context CS {
import E . read , P . foo ;
main () {

x : = E . read () ;
P . foo (x) ;

}
}

Suppose we compile P with a compilation chain that satis�es RSCDC, link the result with a tar-
get context CT obtaining CT [P↓], execute this and observe the following �nite trace pre�x:
m = [E . read () ; Ret (" feedbeef ") ; P . foo (" feedbeef ") ; E . write (" bad ")]

According to RSCDC there exists a source-level context CS (for instance the one above) that
explains the pre�x m in terms of the source language in one of two ways: either CS [P] can do
the entire m in the source, or CS [P] encounters an unde�ned behavior in P after a pre�x of
m, for instance the following one:
t′ = [E . read () ; Ret (" feedbeef ") ; P . foo (" feedbeef ") ; Undef (P)]

As in CompCert [Leroy 2009a, Regehr 2010], we treat unde�ned behaviors as observable events
at the end of the execution trace, allowing compiler optimizations that move an unde�ned
behavior to an earlier point in the execution, but not past any other observable event. While
some other C compilers would need to be adapted to respect this discipline [Regehr 2010],
limiting the temporal scope of unde�ned behavior is a necessary prerequisite for achieving

57

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 58

security against dynamic compromise. Moreover, if trace events are coarse enough (e.g., system
calls and cross-component calls) we expect this restriction to have a negligible performance
impact in practice.

One of the top-level CompCert theorems does, in fact, already capture dynamic compromise
in a similar way to RSCDC. Using our notations this CompCert theorem looks as follows:

∀P t. (P↓) t⇒ ∃t′. P t′ ∧ (t′=t ∨ t′≺t)

This says that if a compiled whole program P↓ can produce a trace t with respect to the target
semantics, then in the source P can produce either the same trace or a pre�x of t followed by
unde�ned behavior. In particular this theorem does provide guarantees to unde�ned programs
up to the point at which they encounter unde�ned behavior. The key di�erence compared to
our secure compilation chains is that CompCert does not restrict unde�ned behavior spatially:
in CompCert unde�ned behavior breaks all security guarantees of the whole program, while in
our work we restrict unde�ned behavior to the component that causes it. This should become
clearer in the next section, where we explicitly introduce components, but even in RSCDC we
can already imagine P↓ as a set of uncompromised components for trace pre�x m, and CT as
a set of already compromised ones.

A smaller di�erence with respect to the CompCert theorem is that (like RSC) RSCDC only looks
at �nite pre�xes in order to simplify the di�cult proof step of context back-translation, which is
not a concern that appears in CompCert and the usual veri�ed compilers. Abate et al. [2018b]
precisely characterize the subclass of safety properties that is preserved by RSCDC even in
adversarial contexts.

3.3.2 RSCDC
MD: Mutually Distrustful Components

RSCDC gives a model of dynamic compromise for secure compilation, but is still phrased in
terms of protecting a trusted partial program from an untrusted context. We now adapt this
model to protect any set of mutually distrustful components with clearly speci�ed privileges
from an untrusted context. Following Juglaret et al.’s [2016] work in the full abstraction set-
ting, we start by taking both partial programs and contexts to be sets of components; linking
a program with a context is then just set union. We compile sets of components by sepa-
rately compiling each component. Each component is assigned a well-de�ned interface that
precisely captures its privilege; components can only interact as speci�ed by their interfaces.
Most importantly, context back-translation respects these interfaces: each component of the
target context is mapped back to a source component with exactly the same interface. As
Juglaret et al. argue, least-privilege design crucially relies on the fact that, when a component
is compromised, it does not gain any more privileges.
De�nition 3.3.2. A compilation chain provides Robustly Safe Compilation with Dynamic Com-
promise and Mutual Distrust (RSCDC

MD) if there exists a back-translation function ↑ taking a �nite
trace pre�x m and a component interface Ii to a source component with the same interface,

58

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 59

such that, for any compatible interfaces IP and IC ,

∀P :IP . ∀CT :IC . ∀t. (CT ∪ P↓) t⇒ ∀m≤t.
∃t′. ({(m, Ii)↑ | Ii ∈ IC} ∪ P) t′ ∧ (m≤t′ ∨ t′≺IPm).

This de�nition closely follows RSCDC, but it restricts programs and contexts to compatible
interfaces IP and IC . We write P : I to mean “partial program P satis�es interface I .” The
source-level context is obtained by applying the back-translation function ↑ pointwise to all
the interfaces in IC . As before, if the pre�x m is cropped prematurely because of an unde�ned
behavior, then this unde�ned behavior must be in one of the program components, not in the
back-translated context components (t′≺IPm).

3.3.3 Formalizing RSCC

Using these ideas, we now de�ne RSCC by following the dynamic compromise game illustrated
in Figure 3.3. We use the notationP ∗mwhen there exists a trace t that extendsm (i.e.,m ≤ t)
such thatP t. We start with all components being uncompromised and incrementally replace
each component that encounters unde�ned behavior in the source with an arbitrary component
with the same interface that may now attack the remaining components.
De�nition 3.3.3. A compilation chain provides Robustly Safe Compartmentalizing Compilation
(RSCC) i� ∀compatible interfaces I1, ..., In,

∀C1:I1, ..., Cn:In. ∀m. {C1↓, ..., Cn↓} ∗m⇒
∃Ai1 :Ii1 , ..., Aik :Iik .

(1) ∀j ∈ 1...k. ∃mj . (mj ≺Iij m) ∧ (mj−1 ≺Iij−1
mj) ∧

({C1, ..., Cn}\{Ci1 , ..., Cij−1}∪{Ai1 , ..., Aij−1}) ∗mj

∧ (2) ({C1, ..., Cn}\{Ci1 , ..., Cik}∪{Ai1 , ..., Aik}) ∗m.

This says that Ci1 , ..., Cik constitutes a compromise sequence corresponding to �nite pre�x
m produced by a compiled set of components {C1↓, ..., Cn↓}. In this compromise sequence
each component Cij is taken over by the already compromised components at that point in
time {Ai1 , ..., Aij−1} (part 1). Moreover, after replacing all the compromised components
{Ci1 , ..., Cik} with their corresponding source components {Ai1 , ..., Aik} the entire m can
be reproduced in the source language (part 2).

This formal de�nition allows us to play an iterative game in which components that encounter
unde�ned behavior successively become compromised and attack the other components. This
is the �rst security de�nition in this space to support both dynamic compromise and mutual
distrust, whose interaction is subtle and has eluded previous attempts at characterizing the
security guarantees of compartmentalizing compilation as extensions of fully abstract compi-
lation [Juglaret et al. 2016] (further discussed in §3.5).

59

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 60

(CT ∪ P↓) ∗m (CS↓ ∪ P ′↓) ∗m

(m, IC ∪ IP)↑
= (CS ∪ P ′) ∗m

CS↓ ∗IPm

P↓ ∗ICm

(CS↓ ∪P↓) ∗m

m ≤ t ∨ t ≺P m
(CS ∪ P) t ∧ (m ≤ t ∨ t ≺ m)

3 Decomposition

1 Back-translation 2 Forward Compiler Correctness

3 Decomposition

6 Blame

4 Composition

5 Backward Compiler CorrectnessPartial Semantics

So
ur

ce
Ta

rg
et

Figure 3.4: Outline of our generic proof technique for RSCDC
MD

3.3.4 A Generic Proof Technique for RSCC

We now describe an e�ective and general proof technique for RSCC. First, we observe that
the slightly simpler RSCDC

MD implies RSCC. Then we provide a generic proof in Coq that any
compilation chain obeys RSCDC

MD if it satis�es certain well-speci�ed assumptions on the source
and target languages and the compilation chain.

Our proof technique yields simpler and more scalable proofs than previous work in this space
[Juglaret et al. 2016]. In particular, it allows us to directly reuse a compiler correctness result à
la CompCert, which supports separate compilation but only guarantees correctness for whole
programs [Kang et al. 2016]; which avoids proving any other simulations between the source
and target languages. Achieving this introduces some slight complications in the proof struc-
ture, but it nicely separates the correctness and security proofs and allows us to more easily
tap into the CompCert infrastructure. Finally, since only the last step of our proof technique is
speci�c to unsafe languages, our technique can be further simpli�ed to provide scalable proofs
of vanilla RSC for safe source languages [Abate et al. 2018b, Patrignani and Garg 2018].

RSCDC
MD implies RSCC The �rst step in our proof technique reduces RSCC to RSCDC

MD, using
a theorem showing that RSCC can be obtained by iteratively applying RSCDC

MD. This result cru-
cially relies on back-translation in RSCDC

MD being performed pointwise and respecting interfaces,
as explained in §3.3.2.
Theorem 3.3.4. RSCDC

MD implies RSCC.

We proved this by de�ning a non-constructive function that produces the compromise se-
quence Ai1 , ..., Ai1 by case analysis on the disjunction in the conclusion of RSCDC

MD (using ex-
cluded middle in classical logic). If m ≤ t′ we are done and we return the sequence we ac-
cumulated so far, while if t′≺Pm we obtain a new compromised component ci : Ii that we
back-translate using (m, Ii) ↑ and add to the sequence before iterating this process.

Generic RSCDC
MD proof outline Our high-level RSCDC

MD proof is generic and works for any com-
pilation chain that satis�es certain well-speci�ed assumptions, which we introduce informally
for now, leaving details to the end of this sub-section. The RSCDC

MD proof for the compiler chain
in §3.4 proves all these assumptions.

The proof outline is shown in Figure 3.4. We start (in the bottom left) with a complete target-
level program CT ∪ P↓ producing a trace with a �nite pre�x m that we assume contains no

60

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 61

unde�ned behavior (since we expect that the �nal target of our compilation will be a machine
for which all behavior is de�ned). The pre�xm is �rst back-translated to synthesize a complete
source programCS∪P ′ producingm (the existence and correctness of this back-translation are
Assumption 1). For example, for the compiler in §3.4, each component Ci produced by back-
translation uses a private counter to track how many events it has produced during execution.
Whenever Ci receives control, following an external call or return, it checks this counter to
decide what event to emit next, based on the order of its events on m (see §3.4.3 for details).

The generated source program CS ∪ P ′ is then separately compiled to a target program CS↓
∪ P ′↓ that, by compiler correctness, produces again the same pre�x m (Assumption 2). Now
from (CT ∪ P ↓) ∗m and (CS↓ ∪ P ′↓) ∗m we would like to obtain (CS↓ ∪ P ↓) ∗m by
�rst “decomposing” (Assumption 3) separate executions for P↓ and CS↓, which we can then
“compose” (Assumption 4) again into a complete execution for (CS↓ ∪ P ↓). However, since
P↓ and CS are not complete programs, how should they execute? To answer this we rely on
a partial semantics that captures the traces of a partial program when linked with any context
satisfying a given interface. When the partial program is running, execution is the same as in
the normal operational semantics of the target language; when control is passed to the context,
arbitrary actions compatible with its interface are non-deterministically executed. Using this
partial semantics we can execute CS↓ with respect to the interface of P↓, and P↓ with respect
to the interface of CS↓, as needed for the decomposition and composition steps of our proof.

Once we know that (CS↓ ∪ P↓) ∗m, we use compiler correctness again—now in the back-
wards direction (Assumption 5)—to obtain an execution of the source programCS ∪P produc-
ing trace t. Because our source language is unsafe, however, t need not be an extension of m:
it can end earlier with an unde�ned behavior (§3.3.1). So the �nal step in our proof shows that
if the source execution ends earlier with an unde�ned behavior (t′≺m), then this unde�ned
behavior can only be caused by P (i.e., t′≺Pm), not by CS , which was correctly generated by
our back-translation (Assumption 6).

Assumptions of the RSCDC
MD proof The generic RSCDC

MD proof outlined above relies on assump-
tions about the compartmentalizing compilation chain. In the reminder of this subsection we
give details about these assumptions, while still trying to stay high level by omitting some of
the low-level details in our Coq formalization.

The �rst assumption we used in the proof above is that every trace pre�x that a target program
can produce can also be produced by a source program with the same interface. A bit more
formally, we assume the existence of a back-translation function ↑ that given a �nite pre�x m
that can be produced by a whole target program PT , returns a whole source program with the
same interface IP as PT and which can produce the same pre�x m (i.e., (m, IP)↑ ∗m).
Assumption 1 (Back-translation).

∃ ↑ . ∀P :IP . ∀m de�ned. P ∗m⇒ (m, IP)↑ : IP ∧ (m, IP)↑ ∗m

Back-translating only �nite pre�xes simpli�es our proof technique but at the same time limits
it to only safety properties. While the other assumptions from this section can probably also

61

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 62

be proved for in�nite traces, there is no general way to de�ne a �nite program that produces
an arbitrary in�nite trace. We leave devising scalable back-translation proof techniques that
go beyond safety properties to future work.

It is not always possible to take an arbitrary �nite sequence of events and obtain a source pro-
gram that realizes it. For example, in a language with a call stack and events {call, return},
there is no program that produces the single event trace return, since every return must be
preceded by a call. Thus we only assume we can back-translate pre�xes that are produced by
the target semantics.

As further discussed in §3.5, similar back-translation techniques that start from �nite execu-
tion pre�xes have been used to prove fully abstract compilation [Je�rey and Rathke 2005a,
Patrignani and Clarke 2015] and very recently RSC [Patrignani and Garg 2018] and stronger
variants, such as the one from §2.6.4. Our back-translation, on the other hand, produces not
just a source context, but a whole program. In the top-left corner of Figure 3.4, we assume that
this resulting program, (m, IC ∪ IP)↑, can be partitioned into a context CS that satis�es the
interface IC , and a program P ′ that satis�es IP .

Our second assumption is a form of forward compiler correctness for unsafe languages and a
direct consequence of a forward simulation proof in the style of CompCert [Leroy 2009a]. We
assume separate compilation, in the style of a recent extension proposed by Kang et al. [2016]
and implemented in CompCert since version 2.7. Our assumption says that if a whole program
composed of parts P and C (written C ∪ P) produces the �nite trace pre�x m that does not
end with unde�ned behavior (m de�ned) then P and C when separately compiled and linked
together (C↓ ∪P↓) can also produce m.
Assumption 2 (Forward Compiler Correctness with Separate Compilation and Unde�ned Behavior).

∀C P. ∀m de�ned. (C ∪ P) ∗m⇒ (C↓ ∪P↓) ∗m

The next assumption we make is decomposition, stating that if a program obtained by linking
two partial programs PT and CT produces a �nite trace pre�x m that does not end in an
unde�ned behavior in the complete semantics, then each of the two partial programs (below
we take PT , but the CT case is symmetric) can produce m in the partial semantics:
Assumption 3 (Decomposition).

∀PT :IP . ∀CT :IC . ∀m de�ned. (CT ∪ PT) ∗m⇒ PT
∗
IC
m

The converse of decomposition, composition, states that if two partial programs with matching
interfaces produce the same pre�x m with respect to the partial semantics, then they can be
linked to produce the same m in the complete semantics:
Assumption 4 (Composition). For any IP , IC compatible interfaces:

∀PT :IP . ∀CT :IC . ∀m. PT ∗ICm ∧ CT
∗
IP
m⇒ (CT ∪ PT) ∗m

62

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 63

When taken together, composition and decomposition capture that the partial semantics of the
target language is adequate with respect to its complete counterpart. This adequacy notion is
tailored to the RSC property and thus di�erent from the requirement that a so called “trace
semantics” is fully abstract [Je�rey and Rathke 2005a, Patrignani and Clarke 2015].

In order to get back to the source language our proof uses a backwards compiler correctness
assumption, again with separate compilation. As also explained in §3.3.1, we need to take into
account that a trace pre�xm in the target can be explained in the source either by an execution
producing m or by one ending in an unde�ned behavior (i.e., producing t≺m).
Assumption 5 (Backward Compiler Correctness with Separate Compilation and Unde�ned Behav-
ior).

∀C P m. (C↓ ∪P↓) ∗m⇒ ∃t. (C ∪ P) t ∧ (m ≤ t ∨ t≺m)

Finally, we assume that the context obtained by back-translation can’t be blamed for unde�ned
behavior:
Assumption 6 (Blame). ∀CS : IC . ∀P, P ′ : IP . ∀m de�ned. ∀t.
If (CS ∪ P ′) ∗m and (CS ∪ P) t and t ≺ m then m ≤ t ∨ t ≺P m.

We used Coq to prove the following theorem that puts together the assumptions from this
subsection to show RSCDC

MD:
Theorem 3.3.5. The assumptions above imply RSCDC

MD.

3.3.5 Class of safety properties preserved by RSCDC

Since RSC corresponds exactly to preserving robust safety properties (§2.2.3), one might won-
der what properties RSCDC preserves. In fact, RSCDC corresponds exactly to preserving the
following class ZP against an adversarial context:
De�nition 3.3.6. ZP , Safety ∩ Closed≺P , where

Safety , {π | ∀t6∈π. ∃m≤t. ∀t′≥m. t′ 6∈π}
Closed≺P , {π | ∀t∈π. ∀t′. t≺P t′ ⇒ t′∈π}

= {π | ∀t′ 6∈π. ∀t. t≺P t′ ⇒ t 6∈π}

The class of properties ZP is de�ned as the intersection of Safety and the class Closed≺P of
properties closed under extension of traces with unde�ned behavior in P [Leroy 2009a]. If a
property π is in Closed≺P and it allows a trace t that ends with an unde�ned behavior inP—i.e.,
∃m. t = m · Undef(P)—then π should also allow any extension of the trace m—i.e., any trace
t′ that has m as a pre�x. The intuition is simple: the compilation chain is free to implement a
trace with unde�ned behavior in P as an arbitrary trace extension, so if the property accepts
traces with unde�ned behavior it should also accept their extensions. Conversely, if a property
π in Closed≺P rejects a trace t′, then for any pre�xm of t′ the property π should also reject the
trace m · Undef(P).

63

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 64

For a negative example that is not in Closed≺P , consider the following formalization of the
property S1 from §3.2, requiring all writes in the trace to be preceded by a corresponding
read:

S1={t | ∀m d x. m · E .write(<d,x>) ≤ t
⇒ ∃m′. m′ · E .read · Ret(x) ≤ m}

While propertyS1 is Safety it is notClosed≺P . Consider the trace t′ = [C0.main(); E .write(<d,x>)] 6∈
S1 that does a write without a read and thus violates S1. For S1 to be Closed≺P it would have
to reject not only t′, but also [C0.main(); Undef(P)] and Undef(P), which it does not. One can,
however, de�ne a stronger variant of S1 that is in ZP :

S
Z+
P

1 ={t|∀m d x.(m · E .write(<d,x>)≤t ∨m · Undef(P)≤t)
⇒ ∃m′. m′ · E .read · Ret(x) ≤ m}

The property SZ
+
P

1 requires any write or unde�ned behavior in P to be preceded by a corre-
sponding read. While this property is quite restrictive, it does hold (vacuously) for the strength-
ened system in Figure 3.2 when taking P = {C0} and C = {C1, C2}, since we assumed that
C0 has no unde�ned behavior.

Using ZP , we proved an equivalent RSCDC characterization:
Theorem 3.3.7.

RSCDC ⇐⇒
(
∀P π∈ZP . (∀CS t. CS [P] t⇒ t∈π)

⇒ (∀CT t. CT [P↓] t⇒ t∈π)

)
This theorem shows that RSCDC is equivalent to the preservation of all properties in ZP for
all P . One might still wonder how one obtains such robust safety properties in the source
language, given that the execution traces can be in�uenced not only by the partial program
but also by the adversarial context. In cases in which the trace records enough information
so that one can determine the originator of each event, robust safety properties can explicitly
talk only about the events of the program, not the ones of the context. Moreover, once we
add interfaces in RSCDC

MD (§3.3.2) we are able to e�ectively restrict the context from directly
performing certain events (e.g., certain system calls), and the robust safety property can then
be about these privileged events that the sandboxed context cannot directly perform.

One might also wonder what stronger property does one have to prove in the source in order to
obtain a certain safety property π in the target using an RSCDC compiler in the case in which π is
not itself in ZP . Especially when all unde�ned behavior is already gone in the target language,
it seems natural to look at safety properties such as S1 6∈ZP above that do not talk at all about
unde�ned behavior. For S1 above, we manually de�ned the stronger property SZ

+
P

1 ∈ZP that
is preserved by an RSCDC compiler. In fact, given any safety property π we can easily de�ne
πZ

+
P that is in ZP , is stronger than π, and is otherwise as permissive as possible:

πZ
+
P , π ∩ {t | ∀t′. t≺P t′ ⇒ t′∈π}

We can also easily answer the dual question asking what is left of an arbitrary safety property
established in the source when looking at the target of an RSCDC compiler:

πZ
−
P , π ∪ {t′ | ∃t∈π. t≺P t′ ∨ t′ ≤ t}

64

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 65

3.3.6 Comparison to Static Compromise

It is instructive to contrast the dynamic compromise model of our RSCDC criterion with previ-
ous work in the static compromise model by Juglaret et al. [2016]. While the secure compilation
criteria of Juglaret et al. are variants of full abstraction, the core idea is easy to port to robust
safety preservation:
De�nition 3.3.8. A compilation chain provides Robustly Safe Compilation with Static Compro-
mise (RSCSC) i�

∀P CT t. P fully de�ned ∧ CT [P↓] t⇒ ∀m≤t. ∃CS t′. CS [P] t′ ∧m≤t′.

Instead of the second disjunct in the conclusion of RSCDC (§3.3.1), which deals with the pos-
sibility of unde�ned behavior in P , RSCSC imposes a strong precondition, requiring that P
does not cause unde�ned behavior in any context. In our trace model, which keeps track of
whether the program or context causes unde�ned behavior, P fully de�ned can be de�ned sim-
ply as ¬(∃CS m. CS [P] m ·Undef(P)). With these de�nitions in place one can easily show
that RSCDC is strictly stronger than RSCSC. For proving that RSCDC implies RSCSC all we have
to show is that a fully de�ned P cannot be blamed for unde�ned behavior, which is true by the
de�nition of full de�nedness. For proving the strictness of this implication it su�ces to exhibit a
compiler that only restricts the spatial scope of unde�ned bahavior but not the temporal scope,
for instance because it performs optimizations that aggressively use the assumption that the
program does not have unde�ned behavior (e.g., unrestricted code motion, unrestricted back-
wards propagation of static analysis “facts” derived from the absence of unde�ned behavior).
GCC and LLVM are already known to perform such aggressive optimizations [Regehr 2010].

As we already explained in §3.1, the full de�nedness precondition in RSCSC is a serious prac-
tical limitation: a partial program P whose code contains any vulnerability that might poten-
tially manifest itself as unde�ned behavior is given no guarantees whatsoever, irrespective of
whether an attacker actually exploits these vulnerabilities. Moreover, a vulnerable P loses all
guarantees from the start of the execution—possibly long before any actual compromise. In §3.5
we will argue that this limitation to static compromise scenarios seems inescapable for de�ni-
tions based on full abstraction, like the one of Juglaret et al. [2016]. In this section we showed
that, by moving away from full abstraction and by restricting the temporal scope of unde�ned
behavior, we can overcome this limitation and support a dynamic compromise model.

3.4 Secure Compilation Chain

We designed a simple proof-of-concept compilation chain to illustrate the RSCC property. The
compilation chain is implemented in Coq and outlined in Figure 3.5. The source language is a
simple, unsafe imperative language with bu�ers, procedures, and components (§3.4.1). It is �rst
compiled to an intermediate compartmentalizedmachine featuring a compartmentalized, block-
structured memory, a protected call stack, and a RISC-like instruction set augmented with
an Alloc instruction for dynamic storage allocation plus cross-component Call and Return

65

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 66

Source §3.4.1

Compartmentalized Machine §3.4.2

Bare-Metal Machine Micro-Policies Machine

compiler

SFI back end §3.4.4
Micro-Policies
back end §3.4.6

Pr
ov

ed
Te

st
ed

Figure 3.5: Our secure compilation chain

instructions (§3.4.2). We can then choose one of two back ends, which use di�erent techniques
to enforce the abstractions of the compartmentalized machine against realistic machine-code-
level attackers, protecting the integrity of component memories and enforcing interfaces and
cross-component call/return discipline.

When the compartmentalized machine encounters unde�ned behavior, both back ends instead
produce an extended trace that respects high-level abstractions; however, they achieve this in
very di�erent ways. The SFI back end (§3.4.4) targets a bare-metal machine that has no pro-
tection mechanisms and implements an inline reference monitor purely in software, by instru-
menting code to add address masking operations that force each component’s writes and (most)
jumps to lie within its own memory. The Micro-policies back end (§3.4.6), on the other hand,
relies on specialized hardware [Dhawan et al. 2015b] to support a novel tag-based reference
monitor for compartmentalization. These approaches have complementary advantages: SFI re-
quires no specialized hardware, while micro-policies can be engineered to incur little overhead
[Dhawan et al. 2015b] and are a good target for formal veri�cation [Azevedo de Amorim et al.
2015] due to their simplicity. Together, these two back ends provide evidence that our RSCC
security criterion is compatible with any su�ciently strong compartmentalization mechanism.
It seems likely that other mechanisms such as capability machines [Watson et al. 2015b] could
also be used to implement the compartmentalized machine and achieve RSCC.

Both back ends target variants of a simple RISC machine. In contrast to the abstract, block-
based memory model used at higher levels of the compilation chain, the machine-level memory
is a single in�nite array addressed by mathematical integers. (Using unbounded integers is a
simpli�cation that we hope to remove in the future, e.g. by applying the ideas of Mullen et al.
[2016].) All compartments must share this �at address space, so—without proper protection—
compromised components can access bu�ers out-of-bounds and read or overwrite the code and
data of other components. Moreover, machine-level components can ignore the stack discipline
and jump to arbitrary locations in memory.

We establish high con�dence in the security of our compilation chain with a combination of
proof and testing. For the compiler from the source language to the compartmentalized ma-
chine, we prove RSCC in Coq (§3.4.3) using the proof technique of §3.3.4. For the SFI back end,
we use property-based testing with QuickChick [Paraskevopoulou et al. 2015] to systematically
test RSCDC

MD.

66

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 67

e ::= v values
| local local static bu�er
| e1 ⊗ e2 binary operations
| e1; e2 sequence
| if e1 then e2 else e3 conditional
| alloc e memory allocation
| !e dereferencing
| e1 := e2 assignment
| C.P(e) procedure call
| exit terminate

Figure 3.6: Syntax of source language expressions

3.4.1 Source Language

The source language from this section was designed with simplicity in mind. Its goal was
to allow us to explore the foundational ideas of this work and illustrate them in the simplest
possible concrete setting, keeping our formal proofs tractable. The language is expression
based (see Figure 3.6). A program is composed of an interface, a set of procedures, and a set
of static bu�ers. Interfaces contain the names of the procedures that the component exports to
and imports from other components. Each procedure body is a single expression whose result
value is returned to the caller. Internal and external calls share the same global, protected call
stack. Additional bu�ers can be allocated dynamically. As in C, memory is manually managed;
out-of-bounds accesses lead to unde�ned behavior.

Values include integers, pointers, and an unde�ned value >, which is obtained when reading
from an uninitialized piece of memory or as the result of an erroneous pointer operation. As in
CompCert and LLVM [Lee et al. 2017], our semantics propagates these > values and yields an
unde�ned behavior if a> value is ever inspected. (The C standard, by contrast, speci�es that a
program is unde�ned as soon as an uninitialized read or bad pointer operation takes place.)

Memory Model The memory model for both source and compartmentalized machine is a
slightly simpli�ed version of the one used in CompCert [Leroy and Blazy 2008]. Each compo-
nent has an in�nite memory composed of �nite blocks, each an array of values. Accordingly, a
pointer is a triple (C, b, o), where C is the identi�er of the component that owns the block, b is
a unique block identi�er, and o is an o�set inside the block. Arithmetic operations on pointers
are limited to testing equality, testing ordering (of pointers into the same block), and changing
o�sets. Pointers cannot be cast to or from integers. Dereferencing an integer yields unde�ned
behavior. For now, components are not allowed to exchange pointers; as a result, well-de�ned
components cannot access each others’ memories at all. We hope to lift this restriction in the
near future. This abstract memory model is shared by the compartmentalized machine and is
mapped to a more realistic �at address space by the back ends.

Events Following CompCert, we use a labeled operational semantics whose events include
all interactions of the program with the external world (e.g., system calls), plus events track-

67

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 68

instr ::= Nop | Halt | Jal l
| Const i -> r | Jump r
| Mov rs -> rd | Call C P
| BinOp r1⊗r2 -> rd | Return
| Load *rp -> rd | Bnz r l
| Store *rp <- rs | Alloc r1 r2

Figure 3.7: Instructions of compartmentalized machine

ing control transfers from one component to another. Every call to an exported procedure
produces a visible event C Call P(n) C’, recording that component C called procedure P of
component C’, passing argument n. Cross-component returns are handled similarly. All other
computations, including calls and returns within the same component, result in silent steps in
the operational semantics.

3.4.2 The Compartmentalized Machine

The compartmentalized intermediate machine aims to be as low-level as possible while still
allowing us to target our two rather di�erent back ends. It features a simple RISC-like instruc-
tion set (Figure 3.7) with two main abstractions: a block-based memory model and support for
cross-component calls. The memory model leaves the back ends complete freedom in their
layout of blocks. The machine has a small �xed number of registers, which are the only shared
state between components. In the syntax, l represent labels, which are resolved to pointers in
the next compilation phase.

The machine uses two kinds of call stacks: a single protected global stack for cross-component
calls plus a separate unprotected one for the internal calls of each component. Besides the
usual Jal and Jump instructions, which are used to compile internal calls and returns, two
special instructions, Call and Return, are used for cross-component calls. These are the only
instructions that can manipulate the global call stack.

The operational semantics rules for Call and Return are presented in Figure 3.8. A state is
composed of the current executing component C , the protected stack σ, the memory mem, the
registers reg and the program counter pc. If the instruction fetched from the program counter is
a Call to procedureP of componentC ′, the semantics produces an eventα recording the caller,
the callee, the procedure and its argument, which is stored in register R_COM. The protected
stack σ is updated with a new frame containing the next point in the code of the current
component. Registers are mostly invalidated at Calls; reg> has all registers set to > and only
two registers are passed on: R_COM contains the procedure’s argument and R_RA contains the
return address. So no data accidentally left by the caller in the other registers can be relied upon;
instead the compiler saves and restores the registers. Finally, there is a redundancy between
the protected stack and R_RA because during the Return the protected frame is used to verify
that the register is used correctly; otherwise the program has an unde�ned behavior.

68

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 69

fetch(E, pc) = Call C ′ P C 6= C ′

P ∈ C.import entry(E,C ′, P) = pc′

reg′ = reg>[R_COM← reg[R_COM], R_RA← pc + 1]
α = C Call(P, reg[R_COM]) C ′

E ` (C, σ,mem, reg, pc) α−→ (C ′, (pc + 1) :: σ,mem, reg′, pc′)

fetch(E, pc) = Return C 6= C ′

reg[R_RA] = pc′ component(pc′) = C ′

reg′ = reg>[R_COM← reg[R_COM]]
α = C Return(reg[R_COM]) C ′

E ` (C, pc′ :: σ,mem, reg, pc) α−→ (C ′, σ,mem, reg′, pc′)

Figure 3.8: Compartmentalized machine semantics

3.4.3 RSCC Proof in Coq

We have proved that a compilation chain targeting the compartmentalized machine satis�es
RSCC, applying the technique from §3.3.4. As explained in §3.2, the responsibility for enforcing
secure compilation can be divided among the di�erent parts of the compilation chain. In this
case, it is the target machine of §3.4.2 that enforces compartmentalization, while the compiler
itself is simple, standard, and not particularly interesting (so omitted here).

For showing RSCDC
MD, all the assumptions from §3.3.4 are proved using simulations. Most of

this proof is formalized in Coq: the only non-trivial missing pieces are compiler correctness
(Assumptions 2 and 5) and composition (Assumption 4). The �rst is standard and essentially
orthogonal to secure compilation; eventually, we hope to scale the source language up to a
compartmentalized variant of C and reuse CompCert’s mechanized correctness proof. A mech-
anized proof of composition is underway. Despite these missing pieces, our formalization is
more detailed than previous paper proofs in the area [Abadi and Plotkin 2012, Abadi et al. 2002,
Ahmed 2015, Ahmed and Blume 2008, 2011, Fournet et al. 2013, Jagadeesan et al. 2011, Je�rey
and Rathke 2005a, Juglaret et al. 2016, New et al. 2016, Patrignani and Clarke 2015, Patrignani
et al. 2015, 2016]. Indeed, we are aware of only one fully mechanized proof about secure com-
pilation: Devriese et al.’s [2017] recent full abstraction result for a translation from the simply
typed to the untyped λ-calculus in around 11KLOC of Coq.

Our Coq development comprises around 22KLOC, with proofs taking about 60%. Much of the
code is devoted to generic models for components, traces, memory, and unde�ned behavior that
we expect to be useful in proofs for more complex languages and compilers, such as CompCert.
We discuss some of the most interesting aspects of the proof below.

Back-translation function We proved Assumption 1 by de�ning a ↑ function that takes
a �nite trace pre�x m and a program interface I and returns a whole source program that
respects I and produces m. Each generated component uses the local variable local[0] to

69

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 70

ECall MainC p 0 C
ERet C 1 MainC
ECall MainC p 2 C
ECall C mainP 3 MainC

(a) Trace of 4 events

MainC {
mainP (_) {

if (local [0] == 0) {
local [0] + + ;
C . p (0) ;
MainC . mainP (0) ;

} else if (local [0] == 1) {
local [0] + + ;
C . p (2) ;
MainC . mainP (0) ;

} else {
exit () ;

}
}

} (b) Component MainC

C {
p (_) {

if (local [0] == 0) {
local [0] + + ;
return 1 ;

} else if (local [0] == 1) {
local [0] + + ;
MainC . mainP (3) ;
C . p (0) ;

} else {
exit () ;

}
}

}
(c) Component C

Figure 3.9: Example of program with two components back-translated from a trace of 5 events.

track how many events it has emitted. When a procedure is invoked, it increments local[0]
and produces the event in m whose position is given by the counter’s value. For this back-
translation to work correctly, m is restricted to look like a trace emitted by a real compiled
program with an I interface—in particular, every return in the trace must match a previous
call.

This back-translation is illustrated in Figure 3.9 on a trace of four events. The generated pro-
gram starts running MainC.mainP, with all counters set to 0, so after testing the value of
MainC.local[0], the program runs the �rst branch of mainP:
local [0] + + ; C . p (0) ; MainC . mainP (0) ;

After bumping local[0], mainP emits its �rst event in the trace: the call C.p(0). When that
procedure starts running, C’s counter is still set to 0, so it executes the �rst branch of procedure
p:
local [0] + + ; return 1 ;

The return is C’s �rst event in the trace, and the second of the program. When mainP regains
control, it calls itself recursively to emit the other events in the trace (we can use tail recursion
to iterate in the standard way, since internal calls are silent events). The program continues
executing in this fashion until it has emitted all events in the trace, at which point it terminates
execution.
Theorem 3.4.1 (Back-translation). The back-translation function ↑ illustrated above satis�es As-
sumption 1.

Partial semantics Our partial semantics has a simple generic de�nition based on the small-
step operational semantics of awhole target program, which we denote as α−→. In this semantics,
each step is labeled with an action α that is either an event or a silent action τ . The de�nition
of the partial semantics α−⇀ uses a partialization function par that, given a complete state cs

70

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 71

and the interface IC of a program partC , returns a partial state pswhere all information about
C (such as its memory and stack frames) is erased.

par(cs, IC) = ps par(cs′, IC) = ps′ cs
α−→ cs′

ps
α−⇀ ps′

The partial semantics can step with action α from the partial state ps to ps′, if there exists a
corresponding transition in the complete semantics whose states partialize to ps and ps′. We
denote with P ∗ICm that the partial program P produces the trace pre�x m in the partial
semantics after a �nite execution pre�x, with respect to the context interface IC .

A consequence of abstracting away part of the program as non-deterministic actions allowed
by its interface is that the abstracted part will always have actions it can do and it will never be
stuck, whereas stuckness is the standard way of modeling unde�ned behavior [Leroy 2009a].
Given P ∗ICm, if m ends with an unde�ned behavior, then this was necessarily caused by P ,
which is still a concrete partial program running actual code, potentially unsafe.

Our partial semantics was partially inspired by so-called “trace semantics” [Je�rey and Rathke
2005a, Juglaret et al. 2016, Patrignani and Clarke 2015], where a partial program of interest
is decoupled from its context, of which only the observable behavior is relevant. One impor-
tant di�erence is that our de�nition of partial semantics in terms of a partialization function is
generic and can be easily instantiated for di�erent languages. On the contrary previous works
de�ned “trace semantics” as separate relations with many rules, making the proofs to corre-
late partial and complete semantics more involved. Moreover, by focusing on trace properties
(instead of observational equivalence) composition and decomposition can be proved using
standard simulations à la CompCert, which is easier than previous proof techniques for fully
abstract “trace semantics.”
Theorem 3.4.2 (Partial Semantics). The source language and compartmentalized machine partial
semantics de�ned as described above provide decomposition and composition (Assumptions 3
and 4).

Blame We prove Assumption 6 by noting that the behavior of the context CS can only de-
pend on its own state and on the events emitted by the program. A bit more formally, suppose
that the states cs1 and cs2 have the same context state, which, borrowing the partialization
notation from above, we write as par(cs1, IP) = par(cs2, IP). Then:

• If cs1
α1−→ cs′1, cs2

α2−→ cs′2, and CS has control in cs1 and cs2, then α1 = α2 and
par(cs′1, IP) = par(cs′2, IP).

• If cs1
τ−→ cs′1 and the program has control in cs1 and cs2, then par(cs′1, IP) = par(cs2, IP).

• If cs1
α−→ cs′1, the program has control in cs1 and cs2, and α 6= τ , then there exists cs′2

such that cs2
α−→ cs′2 and par(cs′1, IP) = par(cs′2, IP).

71

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 72

By repeatedly applying these properties, we can analyze the behavior of two parallel executions
(CS ∪ P ′) ∗m and (CS ∪ P) t, with t ≺ m. By unfolding the de�nition of t ≺ m we
get that ∃m′≤m. t = m′ · Undef (_). It su�ces to show that m≤t ∨ t=m′ · Undef(P). If
m = t = m′ · Undef (_), we have m≤t, and we are done. Otherwise, the execution of CS ∪ P
ended earlier because of unde�ned behavior. After producing pre�x m′, CS ∪ P ′ and CS ∪ P
will end up in matching states cs1 and cs2. Aiming for a contradiction, suppose that unde�ned
behavior was caused by CS . By the last property above, we could �nd a matching execution
step for CS ∪ P that produces the �rst event in m that is outside of m′; therefore, CS ∪ P
cannot be stuck at cs2. Hence t ≺P m.
Theorem 3.4.3 (Blame). Assumption 6 is satis�ed.
Theorem 3.4.4 (RSCC). The compilation chain described so far in this section satis�es RSCC.

3.4.4 So�ware Fault Isolation Back End

The SFI back end uses a special memory layout and code instrumentation sequences to realize
the desired isolation of components in the produced program. The target of the SFI back end is
a bare-metal RISC processor with the same instructions as the compartmentalization machine
minus Call, Return, and Alloc. The register �le contains all the registers from the previous
level, plus seven additional registers reserved for the SFI instrumentation.

The SFI back end maintains the following invariants: (1) a component may not write outside
its own data memory; (2) a component may transfer control outside its own code memory only
to entry points allowed by the interfaces or to the return address on top of the global stack;
and (3) the global stack remains well formed.

Figure 3.10 shows the memory layout of an application with three components. The entire
address space is divided in contiguous regions of equal size, which we will call slots. Each slot
is assigned to a component or reserved for the use of the protection machinery. Data and code
are kept in disjoint memory regions and memory writes are permitted only in data regions.

An example of a logical split of a physical address is shown in Figure 3.11. A logical address
is a triple: o�set in a slot, component identi�er, and slot identi�er unique per component. The
slot size, as well as the maximum number of the components are constant for an application,
and in Figures 3.10 and 3.11 we have 3 components and slots of size 212 bits.

The SFI back end protects memory regions with instrumentation in the style of Wahbe et al.
[1993], but adapted to our component model. Each memory update is preceded by two instruc-
tions that set the component identi�er to the current one, to prevent accidental or malicious
writes in a di�erent component. The instrumentation of the Jump instruction is similar. The
last four bits of the o�set are always zeroed and all valid targets are sixteen-word-aligned by
our back end [Morrisett et al. 2012]. This mechanism, along with careful layout of instructions,
ensure that the execution of instrumentation sequences always starts from the �rst instruction
and continues until the end.

72

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 73

Reserved
(Code)

Component Code Protected
Stack

Component Data
1 2 3 1 2 3

Init
Code Slot 0 Slot 0 Slot 0 Slot 1 Slot 1 Slot 1 Slot 1

Unused Slot 2 Slot 2 Slot 2 Slot 3 Slot 3 Slot 3 Slot 3
Unused Slot 4 Slot 4 Slot 4 Slot 5 Slot 5 Slot 5 Slot 5

...

Figure 3.10: Memory layout of three user components

Slot (Unbounded) Component Identifier (2 bits) Offset (12 bits)

Figure 3.11: Address Example

The global stack is implemented as a shadow stack [Szekeres et al. 2013] in memory acces-
sible only from the SFI instrumentation sequences. Alignment of code [Morrisett et al. 2012]
prevents corruption of the cross-component stack with prepared addresses and ROP attacks,
since it is impossible to bypass the instructions in the instrumentation sequence that store the
correct address in the appropriate register.

The Call instruction of the compartmentalized machine is translated to a Jal (jump and link)
followed by a sequence of instructions that push the return address on the stack and then
restore the values of the reserved registers for the callee component. To protect from malicious
pushes that could try to use a forged address, this sequence starts with a Halt at an aligned
address. Any indirect jump from the current component, will be aligned and will execute the
Halt, instead of corrupting the cross-component stack. A call from a di�erent component,
will execute a direct jump, which is not subject to masking operations and can thus target
an unaligned address (we check statically that it is a valid entry point). This Halt and the
instructions that push on the stack are contained in the sixteen-unit block.

The Return instruction is translated to an aligned sequence: pop from the protected stack
and jump to the retrieved address. This sequence also �ts entirely in a sixteen-unit block. The
protection of the addresses on the stack itself is realized by the instrumentation of all the Store
and Jump instructions in the program.

We used the QuickChick property-based testing tool [Paraskevopoulou et al. 2015] for Coq to
test the three compartmentalization invariants described at the beginning of the subsection. For
each invariant, we implemented a test that executes the following steps: (i) randomly generates
a valid compartmentalized machine program; (ii) compiles it; (iii) executes the resulting target
code in a simulator and records a property-speci�c trace; and (iv) analyzes the trace to verify if
the property has been violated. We also manually injected faults in the compiler by mutating
the instrumentation sequences of the generated output and made sure that the tests can detect
these injected errors.

More importantly, we also tested two variants of the RSCDC
MD property, which consider di�erent

73

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 74

parts of a whole program as the adversarial context. Due to the strict memory layout and
the requirement that all components are instrumented, the SFI back end cannot to link with
arbitrary target code, and has instead to compile a whole compartmentalized machine program.
In a �rst test, we (1) generate a whole compartmentalized machine program P ; (2) compile P ;
(3) run a target interpreter to obtain trace tt; (4) if the trace is empty, discard the test; (5)
for each component CT in the trace tt (5-1) use back-translation to replace, in the program
P , the component CT with a component CS without unde�ned behavior (5-2) run the new
program on the compartmentalized machine and obtain a trace ts (5-3) if the condition tt ≤ ts
or ts≺P\∪CS

tt is satis�ed then the test passes, otherwise it fails. Instead of performing step (5),
our second test replaces in one go all the components exhibiting unde�ned behavior, obtaining
a compartmentalized machine program that should not have any unde�ned behavior.

3.4.5 Micro-policies Tagged Architecture

Our second back end is a novel application of a programmable tagged architecture that allows
reference monitors, called micro-policies, to be de�ned in software but accelerated by hardware
for performance [Azevedo de Amorim et al. 2015, Dhawan et al. 2015b]. On a micro-policy ma-
chine, each word in memory or registers carries a metadata tag large enough to hold a pointer
to an arbitrary data structure in memory. As each instruction is dispatched by the processor, the
opcode of the instruction as well as the tags on the instruction, its argument registers or mem-
ory cells, and the program counter are all passed to a software monitor that decides whether
to allow the instruction and, if so, produces tags for the results. The positive decisions of this
monitor are cached in hardware, so that, if another instruction is executed in the near future
with similarly tagged arguments, the hardware can allow the request immediately, bypassing
the software monitor.

This enforcement mechanism has been shown �exible enough to implement a broad range
of tag-based reference monitors, and for many of them it has a relatively modest impact on
runtime (typically under 10%) and power ceiling (less than 10%), in return for some increase
in energy (typically under 60%) and chip area (110%) [Dhawan et al. 2015b]. Moreover, the
mechanism is simple enough that we could formally verify in Coq that micro-policies for heap
memory safety, compartment isolation, control-�ow integrity, information-�ow control, and
dynamic sealing are correct and provide the expected security guarantees [Azevedo de Amorim
2017, Azevedo de Amorim et al. 2014, 2015, 2018]. The rest of this subsection introduces the
micro-policies framework using heap memory safety as an illustrative example, while the next
subsection (§3.4.6) presents our micro-policy for compartmentalization.

Our micro-policy for heap memory safety [Azevedo de Amorim et al. 2015, Dhawan et al. 2015a]
enforces safe access to heap-allocated data, by preventing both spatial violations (e.g., access-
ing an array out of its bounds) and temporal violations (e.g., referencing through a pointer
after the region has been freed). As explained above, such violations are a common source of
serious security vulnerabilities. Moreover, with our micro-policy, pointers to the heap become
unforgeable capabilities: one can only obtain a valid pointer to a heap region by allocating
that region or by copying or o�setting an existing pointer to that region. To achieve this we

74

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 75

tag words representing pointers di�erently from non-pointers. We use tags to color each heap
region di�erently and to record for each pointer the color of the memory region to which it
should point. When a pointer is dereferenced we check that its color matches the color of
the memory cell to which it points. We allow pointer arithmetic, which does not a�ect the
color of pointers in any way. In particular, pointers can be taken temporarily out of bounds, as
long as out-of-bounds pointers are not accessed. Computing an out-of-bounds pointer is not a
violation per se—indeed, it happens quite often in practice, e.g., at the end of loops.

More precisely, we use di�erent sets of tags for registers (denoted tv) and memory (tm). Values
in registers are either pointers tagged with a color c or non-pointers tagged ⊥. Allocated
memory locations are tagged with a pair (c, tv), where c is the color of the encompassing region
and tv is the tag of the stored value. Unallocated memory is tagged with the special tag F (free).
Programs can directly interact with the monitor by calling (privileged) monitor services; for this
policy there are only 2 such services: malloc and free. The malloc service �rst allocates a
region as usual, then generates a fresh color c (e.g., by incrementing a counter), initializes the
new heap region with 0@(c,⊥) (i.e., the integer 0 tagged with memory tag (c,⊥)), and returns
w@c, where w is the start address of the region. The free service makes sure that the region
is currently allocated and tags the whole deallocated region with F. The F tags prevent any
remaining pointers to the deallocated region from being used to access it. If a later allocation
reuses the same memory, it will be tagged with a di�erent color, so these dangling pointers
will still be unusable.

Outside of monitor services, all the propagation and checking of tags is performed using rules.
While the hardware uses a cache of low-level rules, these can be automatically obtained from
a domain-speci�c language (DSL) of symbolic rules. Together with the representation of tags
as algebraic datatypes the symbolic rules provide a convenient language for designing micro-
policies. Symbolic rules have the form:

opcode : {PC=tpc,CI=tci,OP1=t1,OP2=t2,OP3=t3} → {PC′=tpc′ , RES=tr}

which says that the rule matches on a particular instruction opcode together with the tags on
the program counter (PC), the current instruction (CI), and up to two three operands from
registers or memory (OP1, OP2, OP3). If the rule matches, the right-hand side determines how
to update the tags on the program counter (PC′) and on the result of the operation (RES). The
t metavariables above range over symbolic expressions, including variables. We freely omit
input �elds that are ignored. Returning to our heap memory safety policy, here is the symbolic
rule for adding an integer to a pointer:

Add : {PC=cpc,CI=(cpc,⊥),OP1=c,OP2=⊥} → {PC′=cpc, RES=c}
This rule says that when the current instruction is Add, the �rst operand is a pointer tagged
with color c, and the second operand is an integer tagged ⊥ the result is again tagged c. The
color of the PC, cpc, is left unchanged and we additionally require that cpc matches the color of
the region from which the instruction was fetched. This ensures that the PC cannot be used to
fetch instructions from inaccessible regions. Similarly, the rules for Load and Store check that
the pointer and the referenced location have the same color c. We use descriptive tag names
like P (pointer), M (memory), S (source), D (destination), instead of OP1, OP2, and RES.

75

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 76

Load : {PC=cpc,CI=(cpc,⊥), P=c,M=(c, tv)} → {PC′=cpc, D=tv}
Store : {PC=cpc,CI=(cpc,⊥), P=c,M=(c, t′v), S=tv} → {PC′=cpc,M=(c, tv)}

For Load the tag of the destination register, tv , is taken from the tag (c, tv) of the loaded mem-
ory location. For Store the tag of the written memory location is changed from (c, t′v) to
(c, tv), where tv is the tag of the word being written.

3.4.6 Tag-based Reference Monitor

The micro-policy machine targeted by our compartmentalizing back end builds on a “symbolic
machine” that Azevedo de Amorim et al. [2017, 2015, 2018] used to prove the correctness and
security of several micro-policies in Coq. The code generation and static linking parts of the
micro-policy back end are much simpler than for the SFI one. The Call and Return instructions
are mapped to Jal and Jump. The Alloc instruction is mapped to a monitor service that tags
the allocated memory according to the calling component.

A more interesting aspect of this back end is the way memory must be tagged by the (static)
loader based on metadata from previous compilation stages. Memory tags are tuples of the
form tm ::= (tv, c, cs). The tag tv is for the payload value. The component identi�er c, which
we call a color, establishes the component that owns the memory location. Our monitor forbids
any attempt to write to memory if the color of the current instruction is di�erent from the color
of the target location. The set of colors cs identi�es all the components that are allowed to call
to this location and is by default empty. The value tags used by our monitor distinguish cross-
component return addresses from all other words in the system: tv ::= Ret(n) | ⊥. To enforce
the cross-component stack discipline return addresses are treated as linear return capabilities,
i.e., unique capabilities that cannot be duplicated [Knight et al. 2012] and that can only be used
to return once. This is achieved by giving return addresses tags of the form Ret(n), where
the natural number n represents the stack level to which this capability can return. We keep
track of the current stack level using the tag of the program counter: tpc ::= Level(n). Calls
increment the counter n, while returns decrement it. A global invariant is that when the stack
is at Level(n) there is at most one capability Ret(m) for any level m from 0 up to n−1.

Our tag-based reference monitor for compartmentalization is simple; the complete de�nition
is given in Figure 3.12. For Mov, Store, and Load the monitor copies the tags together with the
values, but for return addresses the linear capability tag Ret(n) is moved from the source to
the destination. Loads from other components are allowed but prevented from stealing return
capabilities. Store operations are only allowed if the color of the changed location matches
the one of the currently executing instruction. Bnz is restricted to the current component. Jal
to a di�erent component is only allowed if the color of the current component is included in
the allowed entry points; in this case and if we are at some Level(n) the machine puts the
return address in register RA and the monitor gives it tag Ret(n) and it increments the pc tag
to Level(n+1). Jump is allowed either to the current component or using a Ret(n) capability,

76

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 77

Nop :{PC=tpc,CI=(_ , c, _),NI=(_ , c, _)} → {PC′=tpc}
Const :{PC=tpc,CI=(_ , c, _),NI=(_ , c, _)} → {PC′=tpc,D=⊥}
BinOp :{PC=tpc,CI=(_ , c, _),NI=(_ , c, _), S1=_ , S2=_} → {PC′=tpc,D=⊥}
Mov :{PC=tpc,CI=(_ , c, _),NI=(_ , c, _), S=tv} → {PC′=tpc, S=⊥,D=tv}

Load :{PC=tpc,CI=(_ , c, _),NI=(_ , c, _),M=(tv, c, _)} → {PC′=tpc,M=(⊥, c, _), D=tv}
Load :{PC=tpc,CI=(_ , c, _),NI=(_ , c, _),M=(tv, c

′, _)} → {PC′=tpc,M=(tv, c
′, _), D=⊥}

Store :{PC=tpc,CI=(_ , c, _),NI=(_ , c, _),M=(_ , c, _), S=tv}→ {PC′=tpc,M=(tv, c, _), S=⊥}
Bnz :{PC=tpc,CI=(_ , c, _),NI=(_ , c, _)} → {PC′=tpc}
Jal :{PC=tpc,CI=(_ , c, _),NI=(_ , c, _), P=_} → {PC′=tpc, RA=⊥}
Jal :{PC=Level(n),CI=(_ , c, _),NI=(_ , c′, cs 3 c), P=_} → {PC′=Level(n+1), RA=Ret(n)}

Jump :{PC=tpc,CI=(_ , c, _),NI=(_ , c, _), P=_} → {PC′=tpc, RA=⊥}
Jump :{PC=Level(n+1),CI=(_ , c, _),NI=(_ , c′, _), P=Ret(n)}→ {PC′=Level(n), P=⊥}

Figure 3.12: Compartmentalization micro-policy rules

but only if we are at Level(n+1); in this case the pc tag is decremented to Level(n) and the
Ret(n) capability is destroyed. Instruction fetches are also checked to ensure that one cannot
switch components by continuing to execute past the end of a code region. To make these
checks as well as the ones for Jal convenient we use the next instruction tag NI directly;
in reality one can encode these checks even without NI by using the program counter and
current instruction tags [Azevedo de Amorim et al. 2015]. The bigger change compared to
the micro-policy mechanism of Azevedo de Amorim et al. [2015] is our overwriting of input
tags in order to invalidate linear capabilities in the rules for Mov, Load, and Store. For cases in
which supporting this in hardware is not feasible we have also devised a compartmentalization
micro-policy that does not rely on linear return capabilities but on linear entry points.

A variant of the compartmentalization micro-policy above was �rst studied by Juglaret et al.
[2015], in an unpublished technical report. Azevedo de Amorim et al. [2015] also devised a
micro-policy for compartmentalization, based on a rather di�erent component model. The
biggest distinction to Azevedo de Amorim et al.’s work is that our micro-policy enforces the
stack discipline on cross-component calls and returns.

3.5 Related Work

Fully Abstract Compilation, originally introduced in seminal work by Abadi [1999], is
phrased in terms of protecting two partial program variants written in a safe source language,
when these are compiled and linked with a malicious target-level context that tries to dis-
tinguish the two variants. This original attacker model di�ers substantially from the one we
consider in this work, which protects the trace properties of multiple mutually-distrustful com-
ponents written in an unsafe source language.

77

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 78

In this line of research, Abadi [1999] and later Kennedy [2006] identi�ed failures of full ab-
straction in the Java and C# compilers. Abadi et al. [2002] proved full abstraction of secure
channel implementations using cryptography. Ahmed et al. [Ahmed 2015, Ahmed and Blume
2008, 2011, New et al. 2016] proved the full abstraction of type-preserving compiler passes
for functional languages. Abadi and Plotkin [2012] and Jagadeesan et al. [2011] expressed
the protection provided by address space layout randomization as a probabilistic variant of
full abstraction. Fournet et al. [2013] devised a fully abstract compiler from a subset of ML
to JavaScript. More recently, Patrignani et al. [Larmuseau et al. 2015, Patrignani et al. 2015]
studied fully abstract compilation to machine code, starting from single modules written in
simple, idealized object-oriented and functional languages and targeting a hardware enclave
mechanism similar to SGX [Intel].

Modular, Fully Abstract Compilation. Patrignani et al. [2016] subsequently proposed a
“modular” extension of their compilation scheme to protecting multiple components from each
other. The attacker model they consider is again di�erent from ours: they focus on separate
compilation of safe languages and aim to protect linked target-level components that are ob-
servationally equivalent to compiled components. This could be useful, for example, when
hand-optimizing assembly produced by a secure compiler. In another thread of work, Devriese
et al. [2017] proved modular full abstraction by approximate back-translation for a compiler
from simply typed to untyped λ-calculus. This work also introduces a complete Coq formal-
ization for the original (non-modular) full abstraction proof of Devriese et al. [2016a].

Beyond Good and Evil. The closest related work is that of Juglaret et al. [2016], who also
aim at protecting mutually distrustful components written in an unsafe language. They adapt
fully abstract compilation to components, but observe that de�ning observational equivalence
for programs with unde�ned behavior is highly problematic. For instance, is the partial pro-
gram “int buf[5]; return buf[42]” equivalent to “int buf[5]; return buf[43]”? Both
encounter unde�ned behavior by accessing a bu�er out of bounds, so at the source level they
cannot be distinguished. However, in an unsafe language, the compiled versions of these pro-
grams will likely read (out of bounds) di�erent values and behave di�erently. Juglaret et al.
avoid this problem by imposing a strong limitation: a set of components is protected only
if it cannot encounter unde�ned behavior in any context. This amounts to a static model of
compromise: all components that can possibly be compromised during execution have to be
treated as compromised from the start. Our aim here is to show that, by moving away from
full abstraction and by restricting the temporal scope of unde�ned behavior, we can support
a more realistic dynamic compromise model. As discussed below, moving away from full ab-
straction also makes our secure compilation criterion easier to achieve in practice and to prove
at scale.

Robust Safety Property Preservation. Our criterion builds on the RSC criterion proposed
in §2.2.3, where we studied several secure compilation criteria that are similar to fully abstract

78

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 79

compilation, but that are phrased in terms of preserving hyperproperties [Clarkson and Schnei-
der 2010] (rather than observational equivalence) against an adversarial context. In particular,
RSC is equivalent to preservation of robust safety, which has been previously employed for the
model checking of open systems [Kupferman and Vardi 1999], the analysis of security protocols
[Gordon and Je�rey 2004], and compositional veri�cation [Swasey et al. 2017].

Though RSC is a bit less extensional than fully abstract compilation (since it is stated in terms
of execution traces), it is easier to achieve. In particular, because it focuses on safety instead of
con�dentiality, the code and data of the protected program do not have to be hidden, allowing
for more e�cient enforcement, e.g., there is no need for �xed padding to hide component sizes,
no cleaning of registers when passing control to the context (unless they store capabilities), and
no indirection via integer handlers to hide pointers; cross-component reads can be allowed and
can be used for passing large data. We believe that in the future we can obtain a more practical
notion of data (but not code) con�dentiality by adopting the hypersafety preservation criterion
of §2.3.3.

While RSC serves as a solid base for our work, the challenges of protecting unsafe components
from each other are unique to the setting of this chapter, since, like full abstraction, RSC is
about protecting a partial program written in a safe source language against low-level contexts.
Our contribution is extending RSC to reason about the dynamic compromise of components
with unde�ned behavior, taking advantage of the execution traces to detect the compromise
of components and to rewind the execution along the same trace.

Proof Techniques. In §2.2.3 we observe that, to prove RSC, it su�ces to back-translate �nite
execution pre�xes, and in §2.3.3 we propose such a proof for a stronger criterion where multiple
such executions are involved. In recent concurrent work, Patrignani and Garg [2018] also
construct such a proof for RSC. The main advantages of the RSCDC

MD proof from this chapter
are that (1) it applies to unsafe languages with unde�ned behavior and (2) it directly reuses a
compiler correctness result à la CompCert. For safe source languages or when proof reuse is
not needed our proof could be further simpli�ed.

Even as it stands though, our proof technique is simple and scalable compared to previous full
abstraction proofs. While many proof techniques have been previously investigated [Abadi
and Plotkin 2012, Abadi et al. 2002, Ahmed and Blume 2008, 2011, Devriese et al. 2017, Fournet
et al. 2013, Jagadeesan et al. 2011, New et al. 2016], fully abstract compilation proofs are noto-
riously di�cult, even for very simple languages, with apparently simple conjectures surviving
for decades before being �nally settled [Devriese et al. 2018]. The proofs of Juglaret et al. [2016]
are no exception: while their compiler is similar to the one in §3.4, their full abstraction-based
proof is signi�cantly more complex than our RSCDC

MD proof. Both proofs give semantics to par-
tial programs in terms of traces, as was proposed by Je�rey and Rathke [2005a] and adapted
to low-level target languages by Patrignani and Clarke [2015]. However, in our setting the
partial semantics is given a one line generic de�nition and is related to the complete one by
two simulation proofs, which is simpler than proving a “trace semantics” fully abstract.

79

CHAPTER 3. SECURE COMPILATION FOR UNSAFE LANGUAGES 80

Verifying Low-Level Compartmentalization. Recent successes in formal veri�cation have
focused on showing correctness of low-level compartmentalization mechanisms based on soft-
ware fault isolation [Morrisett et al. 2012, Zhao et al. 2011] or tagged hardware [Azevedo de
Amorim et al. 2015]. That work only considers the correctness of low-level mechanisms in iso-
lation, not how a secure compilation chain makes use of these mechanisms to provide security
reasoning principles for code written in a higher-level programming language with compo-
nents. However, more work in this direction seems underway, with Wilke et al. [2017] working
on a variant of CompCert with SFI, based on previous work by Kroll et al. [2014]; we believe
RSCC or RSCDC could provide good top-level theorems for such an SFI compiler. In most work
on veri�ed compartmentalization [Azevedo de Amorim et al. 2015, Morrisett et al. 2012, Zhao
et al. 2011], communication between low-level compartments is done by jumping to a speci-
�ed set of entry points; the model considered here is more structured and enforces the correct
return discipline. Skorstengaard et al. [2018a] have also recently investigated a secure stack-
based calling convention for a simple capability machine; they plan to simplify their calling
convention using a notion of linear return capability [2018b] that seems similar to the one
used in our micro-policy from §3.4.6.

A�acker Models for Dynamic Compromise. While our model of dynamic compromise
is speci�c to secure compilation of unsafe languages, related notions of compromise have been
studied in the setting of cryptographic protocols, where, for instance, a participant’s secret keys
could inadvertently be leaked to a malicious adversary, who could then use them to imperson-
ate the victim [Backes et al. 2009, Basin and Cremers 2014, Fournet et al. 2007, Gordon and
Je�rey 2005]. This model is also similar to Byzantine behavior in distributed systems [Castro
and Liskov 2002, Lamport et al. 1982], in which the “Byzantine failure” of a node can cause it
to start behaving in an arbitrary way, including generating arbitrary data, sending con�icting
information to di�erent parts of the system, and pretending to be a correct node.

3.6 Conclusion

We introduced RSCC, a new formal criterion for secure compilation providing strong security
guarantees despite the dynamic compromise of components with unde�ned behavior. This cri-
terion gives a precise meaning to informal terms like dynamic compromise and mutual distrust
used by proponents of compartmentalization, and it o�ers a solid foundation for reasoning
about security of practical compartmentalized applications and secure compiler chains.

80

4 Research Plan for the Next 4 Years

The goal of the ERC SECOMP project is to build the �rst formally secure compartmentalizing
compilation chains for realistic programming languages. In particular, we are planning a secure
compilation chain starting from programs written in a combination of C and Low? [Protzenko
et al. 2017] and targetting a RISC-V architecture extended with micro-policies [Azevedo de
Amorim et al. 2015]. In order to ensure high con�dence in the security of our compilation
chains, we plan to thoroughly test them using property-based testing and eventually formally
verify their security using Coq. For measuring and optimizing e�ciency we plan to use stan-
dard benchmark suites [Henning 2006] and realistic source programs, with miTLS? as the main
end-to-end case study. Achieving all this requires overcoming several major conceptual and
technological challenges, which constitute the main scienti�c objectives of this project.

Further Studying Secure Compilation Criteria As illustrated by this thesis, so far most
the work on this project has been focused on devising secure compilation criteria based on
preserving classes of properties against adversarial contexts [Abate et al. 2018b, Juglaret et al.
2016] and extending these criteria to unsafe languages [Abate et al. 2018a]. Various interesting
open problems remain in this space, including fully working out the connection between our
secure compilation criteria and fully abstract compilation (see §2.8). Even closer related to our
long term goals is extending the component model from chapter 3 with dynamic component
creation. This would make crucial use of our dynamic compromise model, since components
would no longer be statically known, and thus static compromise would not apply at all. We
hope that our RSCC de�nition can be adapted to rewind execution to the point at which the
compromised component was created, replace the component’s code with the result of our
back-translation, and then re-execute. This extension could allow us to move from our current
“code-based” compartmentalization model to a “data-based” one [Gudka et al. 2015], e.g., one
compartment per incoming network connection.

Formally Secure Compartmentalization for C. We plan to devise a compartmentalizing
compilation chain based on the CompCert C compiler and targetting a RISC-V architecture.
Scaling up to the whole of C and RISC-V will certainly entail challenges such as de�ning
a variant of C with components and e�ciently enforcing compartmentalization all the way
down using micro-policies. Targetting a realistic language like C is, however, the only way
we can measure and optimize the e�ciency of our compilation chain on standard benchmark
suites [Henning 2006] and realistic source programs, such as miTLS?. To achieve this, we will
build on the solid basis built by this work: the RSCC formal security criterion, the scalable
proof technique, and the proof-of-concept secure compilation chain from §3.4.

81

CHAPTER 4. RESEARCH PLAN FOR THE NEXT 4 YEARS 82

As an interesting �rst step, we plan to extend our simple compilation chain to allow sharing
memory between components. Since we already allow arbitrary reads at the lowest level, it
seems appealing to also allow external reads from some of the components’ memory in the
source. The simplest would be to allow certain static bu�ers to be shared with all other com-
ponents, or only with some if we also extend the interfaces. For this extension we need to set
the shared static bu�ers to the right values every time a back-translated component gives up
control; for this back-translation needs to look at the read events forward in the back-translated
trace pre�x. More ambitious would be to allow pointers to dynamically allocated memory to
be passed to other components, as a form of read capabilities. This would make pointers ap-
pear in the traces and one would need to accommodate the fact that these pointers will vary
at the di�erent levels in our compilation chain. Moreover, each component produced by the
back-translation would need to record all the read capabilities it receives for later use. Finally, to
safety allow write capabilities we could combine compartmentalization with memory safety.

Dynamic Privilege Notions The compilation chain from §3.4 used a very simple notion of
interface to statically restrict the privileges of components. This could, however, be extended
with dynamic notions of privilege such as capabilities and history-based access control [Abadi
and Fournet 2003]. In one of its simplest form, allowing pointers to be passed between com-
ponents and then used to write data, as discussed above, would already constitute a dynamic
notion of privilege, that is not captured by the static interfaces, but nevertheless needs to be
enforced to achieve RSCC, in this case using some form of memory safety.

Memory Safety for C We also plan to enforce memory safety for C and its interactions
with untrusted RISC-V assembly. This will protect buggy programs from malformed inputs
that would normally trigger a memory safety violation. Enforcing memory safety requires
changes to the C compiler and a sophisticated micro-policy, which extends our simple heap
memory safety policy [Azevedo de Amorim 2017, Azevedo de Amorim et al. 2015, Dhawan
et al. 2015a] to additionally deal with unboxed structs, stack allocation [Roessler and DeHon
2018], byte addressing, unaligned memory accesses, custom allocators, etc. We plan to build
an extension of CompCert [Leroy 2009b] that is memory safe. To verify security we will target
both properties describing the absence of spatial (e.g., bu�er over�ows) and temporal (e.g., use
after free, double free) memory safety violations [Nagarakatte et al. 2010] and our higher-level
reasoning principles enabled by memory safety [Azevedo de Amorim et al. 2018].

In a follow up step we will obtain stronger properties by combining memory safety and com-
partmentalization. This will give us a �ne-grained object-capability model [Watson et al. 2015a]
on a fully generic tagged architecture and will enable compartmentalized applications that
are much more granular and thus more secure than using currently-deployed isolation tech-
niques [Gudka et al. 2015, Reis and Gribble 2009, Yee et al. 2010].

Verifying Compartmentalized Applications. It would also be interesting to build veri�ca-
tion tools based on the source reasoning principles provided by RSCC and to use these tools to
analyze the security of practical compartmentalized applications. E�ective veri�cation on top

82

CHAPTER 4. RESEARCH PLAN FOR THE NEXT 4 YEARS 83

of RSCC will, however, require good ways for reasoning about the exponential number of dy-
namic compromise scenarios. One idea is to do our source reasoning with respect to a variant
of our partial semantics, which would use nondeterminism to capture the compromise of com-
ponents and their possible successive actions. Correctly designing such a partial semantics for
a complex language is, however, challenging. Fortunately, our RSCC criterion provides a more
basic, low-TCB de�nition against which to validate any fancier reasoning tools, like partial
semantics, program logics [Jia et al. 2015], logical relations [Devriese et al. 2016b], etc.

Secure compilation of Low* to C using Components, Contracts, and Sealing We also
plan to devise a secure compilation chain from Low? to C. Low? programs are veri�ed with
respect to Hoare-style pre- and post- conditions to achieve correctness and use the F? module
system (i.e., data abstraction and parametricity) to achieve con�dentiality of secret data, even
against certain side-channels. These high-level abstractions will have to the protected at the C
level, and while compartmentalization will o�er a �rst barrier of defense, more work will be
needed. We plan to enforce speci�cations by turning them into dynamic contracts and para-
metricity by relying on dynamic sealing. We hope that micro-policies can help us implement
both contracts and sealing e�ciently.

Micro-policies for C Micro-policies operate at the lowest machine-code level. While this is
appropriate for devising secure C compilers, we also want our secure Low? to C compiler to
directly make use of micro-policies in order to e�ciently enforce the high-level abstractions
of Low?. Moreover, we want a general solution that is not tied to our compilation chain, but
instead allows arbitrary programs in C to bene�t from e�cient programmable tag-based mon-
itoring. Exposing micro-policies in C and then translating them down is challenging, because
the structure of programs in these languages is di�erent than that of machine code.

We will extend the semantics of C with support for tag-based reference monitoring. These tag-
based monitors–i.e., high-level micro-policies–will be written in rule-based domain-speci�c
languages (DSLs) inspired by our rule format for micro-policies monitoring machine code
[Azevedo de Amorim et al. 2014, 2015, Dhawan et al. 2015a]. Some parts of the micro-policy
DSLs for C and machine code will be similar: for instance, we want a simple way to de�ne
the structure of tags using algebraic datatypes, sets, and maps. The kinds of tags di�ers from
level to level though: at the machine code level we have register, program counter, and mem-
ory tags, while in C we could replace register tags with value and procedure tags. The way
tags are checked and propagated also di�ers signi�cantly between levels. At the machine-code
level, propagation is done via rules that are invoked on each instruction, while in C we have
many di�erent operations that can be monitored, e.g., primitive operations, function calls and
returns etc. Moreover, the tags of C values could be propagated automatically as values are
copied around, without needing to write explicit rules for that. Finally, we want to automati-
cally translate micro-policies for C to micro-policies for machine-code.

Securemicro-policy composition Our secure compilation chains require composing many
di�erent micro-policies. For instance, we need to simultaneously enforce isolation of mutual

83

CHAPTER 4. RESEARCH PLAN FOR THE NEXT 4 YEARS 84

distrustful components and memory safety for some of the components. Recent microar-
chitectural optimizations enable us to e�ciently enforce multiple micro-policies simultane-
ously [Dhawan et al. 2015a], by taking tags to be tuples, where each tag component is handled
by a di�erent sub-policy. Yet composing isolation and memory safety is non-trivial, since each
of them has its own view on memory, and a naive composition would be dysfunctional, for
instance dynamically allocating in the memory of the wrong component. While this problem
can be �xed by changing the code of the composed micro-policies, the bigger conceptual dif-
�culty is in composing speci�cations and security proofs. Secure composition principles are
badly needed, since verifying each composed micro-policy from scratch does not scale. Secure
composition is, however, very di�cult to achieve in our setting, because micro-policies can di-
rectly in�uence the monitored code by answering to direct calls and by raising exceptions, and
thus one micro-policy’s observable behavior can break the other micro-policy’s guarantees.

We will study several techniques for composing micro-policy speci�cations and proofs, with
the composite policies needed by our secure compilation chains as the main motivating exam-
ples. First, we will investigate layering micro-policies, by choosing an order among them and
constructing a sequence of abstract machines, each of which “virtualizes” the tagging mech-
anisms in the hardware so that further micro-policies can be implemented on top. We will
then use ideas from monad transformers and algebraic e�ects to allow the micro-policies to be
veri�ed separately and layered in any order. Finally, we will investigate other forms of compo-
sition, for instance, those in which each micro-policy speci�es how its tags should be a�ected
by the interactions of the other policies with the monitored code.

Preserving Con�dentiality and Hypersafety It would be interesting to extend our RSCC
security criterion and enforcement mechanisms from robustly preserving safety to con�den-
tiality and hypersafety (§2.3.3). For this we need to control the �ow of information at the target
level—e.g., by restricting direct reads and read capabilities, cleaning registers, etc. This becomes
very challenging though, in a realistic attacker model in which low-level contexts can observe
time. While at �rst we could assume that low-level contexts cannot exploit side-channels, an
interesting challenge will be to try to extend our enforcement to also protect against timing
side-channels. In this context, we could investigate preserving various K-Safety Hyperprop-
erties such as nonmalleable information �ow control [Cecchetti et al. 2017], timing-sensitive
noninterference [Rafnsson et al. 2017], and cryptographic “constant time” [Barthe et al. 2018]
(i.e. secret independent timing).

84

Bibliography

M. Abadi. Protection in programming-language translations. Secure Internet Programming.
1999. 13, 14, 19, 42, 45, 48, 77, 78

M. Abadi and C. Fournet. Access control based on execution history. NDSS. The Internet
Society, 2003. 82

M. Abadi and J. Planul. On layout randomization for arrays and functions. POST . 2013. 48

M. Abadi and G. D. Plotkin. On protection by layout randomization. ACM TISSEC, 15(2):8,
2012. 13, 14, 42, 43, 48, 69, 78, 79

M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel abstractions. Infor-
mation and Computation, 174(1):37–83, 2002. 13, 14, 42, 43, 69, 78, 79

M. Abadi, B. Blanchet, and C. Fournet. The applied pi calculus: Mobile values, new names, and
secure communication. J. ACM, 65(1):1:1–1:41, 2018. 44

C. Abate, A. Azevedo de Amorim, R. Blanco, A. N. Evans, G. Fachini, C. Hriţcu, T. Laurent,
B. C. Pierce, M. Stronati, and A. Tolmach. When good components go bad: Formally secure
compilation despite dynamic compromise. CCS. 2018a. 7, 12, 14, 19, 45, 81

C. Abate, R. Blanco, D. Garg, C. Hriţcu, M. Patrignani, and J. Thibault. Journey beyond full ab-
straction: Exploring robust property preservation for secure compilation. arXiv:1807.04603,
2018b. 7, 11, 48, 58, 60, 81

P. Agten, R. Strackx, B. Jacobs, and F. Piessens. Secure compilation to modern processors. CSF .
2012. 48

P. Agten, B. Jacobs, and F. Piessens. Sound modular veri�cation of C code executing in an
unveri�ed context. POPL. 2015. 43, 48

D. Ahman, C. Hriţcu, K. Maillard, G. Martínez, G. Plotkin, J. Protzenko, A. Rastogi, and
N. Swamy. Dijkstra monads for free. POPL. 2017. 8

D. Ahman, C. Fournet, C. Hriţcu, K. Maillard, A. Rastogi, and N. Swamy. Recalling a witness:
Foundations and applications of monotonic state. PACMPL, 2(POPL):65:1–65:30, 2018. 8

A. Ahmed. Veri�ed compilers for a multi-language world. SNAPL. 2015. 14, 19, 42, 69, 78

A. Ahmed and M. Blume. Typed closure conversion preserves observational equivalence. ICFP .
2008. 14, 19, 42, 43, 69, 78, 79

85

http://dx.doi.org/10.1007/3-540-48749-2_2
https://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/7.pdf
http://dx.doi.org/10.1007/978-3-642-36830-1_9
http://dx.doi.org/10.1145/2240276.2240279
http://dx.doi.org/10.1006/inco.2002.3086
http://dx.doi.org/10.1145/3127586
http://dx.doi.org/10.1145/3127586
http://dx.doi.org/10.1145/3243734.3243745
http://dx.doi.org/10.1145/3243734.3243745
https://arxiv.org/abs/1807.04603
https://arxiv.org/abs/1807.04603
http://dx.doi.org/10.1109/CSF.2012.12
http://dx.doi.org/10.1145/2676726.2676972
http://dx.doi.org/10.1145/2676726.2676972
http://dx.doi.org/10.1145/3009837.3009878
https://arxiv.org/abs/1707.02466
https://arxiv.org/abs/1707.02466
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15
http://dx.doi.org/10.1145/1411204.1411227

Bibliography 86

A. Ahmed and M. Blume. An equivalence-preserving CPS translation via multi-language se-
mantics. ICFP . 2011. 14, 19, 42, 43, 69, 78, 79

B. Alpern and F. B. Schneider. De�ning liveness. IPL, 21(4):181–185, 1985. 17, 18, 21, 22, 23, 26,
28, 29

K. Asanović and D. A. Patterson. Instruction sets should be free: The case for RISC-V. Technical
Report UCB/EECS-2014-146, EECS Department, University of California, Berkeley, 2014. 12

A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninterference leaks
more than just a bit. ESORICS. 2008. 15, 26, 28

A. Azevedo de Amorim. A methodology for micro-policies. PhD thesis, University of Pennsyl-
vania, 2017. 74, 76, 82

A. Azevedo de Amorim, N. Collins, A. DeHon, D. Demange, C. Hriţcu, D. Pichardie, B. C. Pierce,
R. Pollack, and A. Tolmach. A veri�ed information-�ow architecture. POPL. 2014. 6, 7, 74,
83

A. Azevedo de Amorim, M. Dénès, N. Giannarakis, C. Hriţcu, B. C. Pierce, A. Spector-Zabusky,
and A. Tolmach. Micro-policies: Formally veri�ed, tag-based security monitors. Oakland
S&P . 2015. 7, 10, 12, 19, 46, 66, 74, 76, 77, 80, 81, 82, 83

A. Azevedo de Amorim, N. Collins, A. DeHon, D. Demange, C. Hriţcu, D. Pichardie, B. C. Pierce,
R. Pollack, and A. Tolmach. A veri�ed information-�ow architecture. Journal of Computer
Security (JCS); Special Issue on Veri�ed Information Flow Security, 24(6):689–734, 2016. 6, 7,
12

A. Azevedo de Amorim, C. Hriţcu, and B. C. Pierce. The meaning of memory safety. In 7th
International Conference on Principles of Security and Trust (POST), 2018. 47, 74, 76, 82

M. Backes, C. Hriţcu, and M. Ma�ei. Type-checking zero-knowledge. CCS. 2008. 44

M. Backes, M. P. Grochulla, C. Hriţcu, and M. Ma�ei. Achieving security despite compromise
using zero-knowledge. CSF . 2009. 80

M. Backes, C. Hriţcu, and M. Ma�ei. Union and intersection types for secure protocol imple-
mentations. TOSCA (precursor of POST). 2011. Invited paper. 44

D. Baelde, S. Delaune, and L. Hirschi. A reduced semantics for deciding trace equivalence.
LMCS, 13(2), 2017. 30, 44

G. Barthe, B. Grégoire, and V. Laporte. Secure compilation of side-channel countermeasures:
the case of cryptographic “constant-time”. CSF . 2018. 14, 19, 84

D. A. Basin and C. Cremers. Know your enemy: Compromising adversaries in protocol analysis.
TISSEC, 17(2):7:1–7:31, 2014. 80

86

http://dx.doi.org/10.1145/2034773.2034830
http://dx.doi.org/10.1145/2034773.2034830
http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://dx.doi.org/10.1007/978-3-540-88313-5_22
http://dx.doi.org/10.1007/978-3-540-88313-5_22
http://www.seas.upenn.edu/~aarthur/thesis.pdf
http://www.crash-safe.org/node/29
http://dx.doi.org/10.1109/SP.2015.55
http://dx.doi.org/10.3233/JCS-15784
http://dx.doi.org/10.1007/978-3-319-89722-6_4
http://prosecco.gforge.inria.fr/personal/hritcu/publications/zk-types-ccs2008.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/zk-compromise-csf2009.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/zk-compromise-csf2009.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/rcf-and-or-coq-tosca2011-post.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/rcf-and-or-coq-tosca2011-post.pdf
http://dx.doi.org/10.23638/LMCS-13(2:8)2017
http://dx.doi.org/10.1109/CSF.2018.00031
http://dx.doi.org/10.1109/CSF.2018.00031
http://dx.doi.org/10.1145/2658996

Bibliography 87

B. Beurdouche, K. Bhargavan, F. Kiefer, J. Protzenko, E. Rescorla, T. Taubert, M. Thomson,
and J.-K. Zinzindohoue. HACL* in Mozilla Firefox: Formal methods and high assurance
applications for the web. Real World Crypto Symposium, 2018. 13

K. Bhargavan, B. Bond, A. Delignat-Lavaud, C. Fournet, C. Hawblitzel, C. Hriţcu, S. Ishtiaq,
M. Kohlweiss, R. Leino, J. Lorch, K. Maillard, J. Pang, B. Parno, J. Protzenko, T. Ramananan-
dro, A. Rane, A. Rastogi, N. Swamy, L. Thompson, P. Wang, S. Zanella-Béguelin, and J.-K.
Zinzindohoué. Everest: Towards a veri�ed, drop-in replacement of HTTPS. SNAPL, 2017a.
8

K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Pan, J. Protzenko, A. Rastogi,
N. Swamy, S. Zanella Béguelin, and J. K. Zinzindohoue. Implementing and proving the TLS
1.3 record layer. IEEE Security & Privacy, 2017b. 8, 10, 13

A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: Splitting applications into reduced-
privilege compartments. USENIX NSDI , 2008. 10, 19, 46

M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery. TOCS, 20
(4):398–461, 2002. 80

E. Cecchetti, A. C. Myers, and O. Arden. Nonmalleable information �ow control. CCS. 2017.
28, 84

V. Cheval, V. Cortier, and S. Delaune. Deciding equivalence-based properties using constraint
solving. TCS, 492:1–39, 2013. 17, 30, 35, 44, 45

V. Cheval, S. Kremer, and I. Rakotonirina. DEEPSEC: Deciding equivalence properties in secu-
rity protocols theory and practice. S&P . 2018. 30, 44

D. Chisnall, C. Rothwell, R. N. M. Watson, J. Woodru�, M. Vadera, S. W. Moore, M. Roe, B. Davis,
and P. G. Neumann. Beyond the PDP-11: Architectural support for a memory-safe C abstract
machine. ASPLOS. 2015. 10, 46

K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of Haskell
programs. ICFP . 2000. 8

M. R. Clarkson and F. B. Schneider. Hyperproperties. JCS, 18(6):1157–1210, 2010. 14, 15, 17,
21, 26, 28, 29, 43, 79

M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen, M. Qunaibit, and
A. Sadeghi. Losing control: On the e�ectiveness of control-�ow integrity under stack attacks.
CCS. 2015. 9

R. De Nicola and M. Hennessy. Testing equivalences for processes. TCS, 34:83–133, 1984. 31

S. Delaune and L. Hirschi. A survey of symbolic methods for establishing equivalence-based
properties in cryptographic protocols. JLAMP , 87:127–144, 2017. 30, 44

87

https://rwc.iacr.org/2018/Slides/Beurdouche.pdf
https://rwc.iacr.org/2018/Slides/Beurdouche.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
http://www.usenix.org/legacy/events/nsdi08/tech/full_papers/bittau/bittau.pdf
http://www.usenix.org/legacy/events/nsdi08/tech/full_papers/bittau/bittau.pdf
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1145/3133956.3134054
http://dx.doi.org/10.1016/j.tcs.2013.04.016
http://dx.doi.org/10.1016/j.tcs.2013.04.016
http://dx.doi.org/10.1109/SP.2018.00033
http://dx.doi.org/10.1109/SP.2018.00033
http://dx.doi.org/10.1145/2694344.2694367
http://dx.doi.org/10.1145/2694344.2694367
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.1145/2810103.2813671
http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.1016/j.jlamp.2016.10.005
http://dx.doi.org/10.1016/j.jlamp.2016.10.005

Bibliography 88

D. Devriese, M. Patrignani, and F. Piessens. Fully-abstract compilation by approximate back-
translation. POPL, 2016a. 14, 19, 37, 39, 43, 78

D. Devriese, F. Piessens, and L. Birkedal. Reasoning about object capabilities with logical rela-
tions and e�ect parametricity. EuroS&P . 2016b. 83

D. Devriese, M. Patrignani, F. Piessens, and S. Keuchel. Modular, fully-abstract compilation by
approximate back-translation. LMCS, 13(4), 2017. 14, 43, 48, 69, 78, 79

D. Devriese, M. Patrignani, and F. Piessens. Parametricity versus the universal type. PACMPL,
2(POPL):38:1–38:23, 2018. 14, 43, 79

U. Dhawan and A. DeHon. Area-e�cient near-associative memories on FPGAs. FPGA, 2013. 6

U. Dhawan, A. Kwon, E. Kadric, C. Hriţcu, B. C. Pierce, J. M. Smith, G. Malecha, G. Morrisett,
T. F. Knight, Jr., A. Sutherland, T. Hawkins, A. Zyxnfryx, D. Wittenberg, P. Trei, S. Ray,
G. Sullivan, and A. DeHon. Hardware support for safety interlocks and introspection. In
SASO Workshop on Adaptive Host and Network Security, 2012. 6

U. Dhawan, C. Hriţcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith, T. F. Knight, Jr., B. C.
Pierce, and A. DeHon. Architectural support for software-de�ned metadata processing. AS-
PLOS. 2015a. 74, 82, 83, 84

U. Dhawan, C. Hriţcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith, T. F. Knight, Jr., B. C.
Pierce, and A. DeHon. Architectural support for software-de�ned metadata processing. AS-
PLOS. 2015b. 7, 66, 74

V. D’Silva, M. Payer, and D. X. Song. The correctness-security gap in compiler optimization.
S&P Workshops. 2015. 19

G. J. Duck and R. H. C. Yap. E�ectiveSan: Type and memory error detection using dynamically
typed C/C++. PLDI , 2018. 9, 47

Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li, N. Weaver, J. Amann,
J. Beekman, M. Payer, and V. Paxson. The matter of Heartbleed. IMC. 2014. 9, 13

A. El-Korashy, S. Tsampas, M. Patrignani, D. Devriese, D. Garg, and F. Piessens. Compiling a
secure variant of C to capabilities. Dagstuhl Seminar 18201 on Secure Compilation, 2018. 19

J. Engelfriet. Determinacy implies (observation equivalence = trace equivalence). TCS, 36:
21–25, 1985. 17, 30, 33, 35, 45

A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Simple high-level code for crypto-
graphic arithmetic - with proofs, without compromises. IEEE S&P , 2019. 13

I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and S. Sidiroglou-Douskos.
Control jujutsu: On the weaknesses of �ne-grained control �ow integrity. To appear at CCS,
2015. 9

88

http://www.mpi-sws.org/~marcopat/marcopat/Publications_files/logrel-for-facomp.pdf
http://www.mpi-sws.org/~marcopat/marcopat/Publications_files/logrel-for-facomp.pdf
http://dx.doi.org/10.1109/EuroSP.2016.22
http://dx.doi.org/10.1109/EuroSP.2016.22
http://dx.doi.org/10.23638/LMCS-13(4:2)2017
http://dx.doi.org/10.23638/LMCS-13(4:2)2017
http://dx.doi.org/10.1145/3158126
http://www.crash-safe.org/node/21
http://www.crash-safe.org/sites/default/files/interlocks_ahns2012.pdf
http://ic.ese.upenn.edu/abstracts/sdmp_asplos2015.html
http://dx.doi.org/http://doi.acm.org/10.1145/2694344.2694383
http://dx.doi.org/10.1109/SPW.2015.33
http://arxiv.org/abs/1710.06125
http://arxiv.org/abs/1710.06125
http://dx.doi.org/10.1145/2663716.2663755
https://materials.dagstuhl.de/files/18/18201/18201.AkramEl-Korashy.Slides.pdf
https://materials.dagstuhl.de/files/18/18201/18201.AkramEl-Korashy.Slides.pdf
http://dx.doi.org/10.1016/0304-3975(85)90028-3
http://dx.doi.org/10.1109/SP.2019.00005
http://dx.doi.org/10.1109/SP.2019.00005
https://people.csail.mit.edu/stelios/papers/jujutsu_ccs15.pdf

Bibliography 89

J. S. Fenton. Memoryless subsystems. The Computer Journal, 17(2):143–147, 1974. 28

R. Focardi and R. Gorrieri. A taxonomy of security properties for process algebras. JCS, 3(1):
5–34, 1995. 17

C. Fournet, A. D. Gordon, and S. Ma�eis. A type discipline for authorization policies. ACM
Trans. Program. Lang. Syst., 29(5):25, 2007. 80

C. Fournet, N. Swamy, J. Chen, P. Dagand, P. Strub, and B. Livshits. Fully abstract compilation
to JavaScript. POPL. 2013. 14, 42, 43, 48, 69, 78, 79

J. A. Goguen and J. Meseguer. Security policies and security models. S&P , 1982. 15, 26

A. Gollamudi and C. Fournet. Building secure SGX enclaves using F*, C/C++ and X64. 2nd
Workshop on Principles of Secure Compilation (PriSC), 2018. 10, 46

A. D. Gordon and A. Je�rey. Typing correspondence assertions for communication protocols.
TCS, 300(1-3):379–409, 2003. 53

A. D. Gordon and A. Je�rey. Types and e�ects for asymmetric cryptographic protocols. JCS,
12(3-4):435–483, 2004. 15, 24, 44, 53, 79

A. D. Gordon and A. Je�rey. Secrecy despite compromise: Types, cryptography, and the pi-
calculus. CONCUR. 2005. 80

N. Grimm, K. Maillard, C. Fournet, C. Hriţcu, M. Ma�ei, J. Protzenko, T. Ramananandro, A. Ras-
togi, N. Swamy, and S. Zanella-Béguelin. A monadic framework for relational veri�cation:
Applied to information security, program equivalence, and optimizations. CPP . 2018. 8

K. Gudka, R. N. M. Watson, J. Anderson, D. Chisnall, B. Davis, B. Laurie, I. Marinos, P. G.
Neumann, and A. Richardson. Clean application compartmentalization with SOAAP. CCS.
2015. 10, 11, 19, 46, 50, 81, 82

A. Haas, A. Rossberg, D. L. Schu�, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Zakai,
and J. F. Bastien. Bringing the web up to speed with WebAssembly. PLDI , 2017. 10, 46

I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giu�rida, H. Bos, and E. van der Kouwe. TypeSan:
Practical type confusion detection. CCS, 2016. 9, 47

C. Hathhorn, C. Ellison, and G. Rosu. De�ning the unde�nedness of C. PLDI . 2015. 9, 47

Heartbleed. The Heartbleed bug. http://heartbleed.com/, 2014. 47

J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Archit. News, 34(4):
1–17, 2006. 12, 81

C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett. All your IFCException are
belong to us. Oakland S&P . 2013a. 6

89

http://comjnl.oxfordjournals.org/content/17/2/143.short
http://dx.doi.org/10.3233/JCS-1994/1995-3103
http://dx.doi.org/10.1145/1275497.1275500
http://dx.doi.org/10.1145/2429069.2429114
http://dx.doi.org/10.1145/2429069.2429114
https://www.cs.purdue.edu/homes/ninghui/readings/AccessControl/goguen_meseguer_82.pdf
https://popl18.sigplan.org/event/prisc-2018-building-secure-sgx-enclaves-using-f-c-c-and-x64
http://dx.doi.org/10.1016/S0304-3975(02)00333-X
http://ect.bell-labs.com/who/ajeffrey/papers/jcs03.pdf
http://dx.doi.org/10.1007/11539452_17
http://dx.doi.org/10.1007/11539452_17
http://dx.doi.org/10.1145/3167090
http://dx.doi.org/10.1145/3167090
http://dx.doi.org/http://doi.acm.org/10.1145/2810103.2813611
http://dx.doi.org/10.1145/3062341.3062363
http://dx.doi.org/10.1145/2976749.2978405
http://dx.doi.org/10.1145/2976749.2978405
http://dx.doi.org/10.1145/2737924.2737979
http://heartbleed.com/
http://dx.doi.org/10.1145/1186736.1186737
http://prosecco.gforge.inria.fr/personal/hritcu/publications/all-your-ifcexception-oakland2013-full.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/all-your-ifcexception-oakland2013-full.pdf

Bibliography 90

C. Hriţcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky, D. Vytiniotis, A. Azevedo de Amorim,
and L. Lampropoulos. Testing noninterference, quickly. ICFP . 2013b. 6, 7, 8

C. Hriţcu, L. Lampropoulos, A. Spector-Zabusky, A. Azevedo de Amorim, M. Dénès, J. Hughes,
B. C. Pierce, and D. Vytiniotis. Testing noninterference, quickly. JFP , 26:e4 (62 pages), 2016.
6, 7, 8

Intel. Software guard extensions (SGX) programming reference, 2014. 10, 42, 46, 78

ISO/IEC. ISO/IEC 9899:2011 - programming languages – C, 2011. 47

R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely. Local memory via layout randomization. CSF .
2011. 14, 42, 43, 69, 78, 79

A. Je�rey and J. Rathke. Java Jr: Fully abstract trace semantics for a core Java language. ESOP .
2005a. 36, 43, 44, 62, 63, 69, 71, 79

A. Je�rey and J. Rathke. A fully abstract may testing semantics for concurrent objects. TCS,
338(1-3):17–63, 2005b. 43, 44

L. Jia, S. Sen, D. Garg, and A. Datta. A logic of programs with interface-con�ned code. CSF .
2015. 83

Y. Juglaret, C. Hriţcu, A. A. de Amorim, B. C. Pierce, A. Spector-Zabusky, and A. Tolmach.
Towards a fully abstract compiler using micro-policies: Secure compilation for mutually
distrustful components. CoRR, abs/1510.00697, 2015. 7, 11, 46, 77

Y. Juglaret, C. Hriţcu, A. Azevedo de Amorim, B. Eng, and B. C. Pierce. Beyond good and evil:
Formalizing the security guarantees of compartmentalizing compilation. CSF , 2016. 7, 12,
14, 35, 44, 48, 49, 50, 52, 56, 58, 59, 60, 65, 69, 71, 78, 79, 81

J. Kang, Y. Kim, C.-K. Hur, D. Dreyer, and V. Vafeiadis. Lightweight veri�cation of separate
compilation. POPL, 2016. 20, 60, 62

A. Kennedy. Securing the .net programming model. Theoretical Computer Science, 364(3):311–
317, 2006. 35, 42, 78

D. Kilpatrick. Privman: A library for partitioning applications. USENIX FREENIX . 2003. 10, 19,
46

T. F. Knight, Jr., A. DeHon, A. Sutherland, U. Dhawan, A. Kwon, and S. Ray. SAFE ISA (version
3.0 with interrupts per thread), 2012. 76

R. Krebbers. The C Standard Formalized in Coq. PhD thesis, Radboud University Nijmegen,
2015. 9, 47

J. Kroll, G. Stewart, and A. Appel. Portable software fault isolation. CSF . 2014. 80

90

http://prosecco.gforge.inria.fr/personal/hritcu/publications/testing-noninterference-icfp2013.pdf
http://dx.doi.org/10.1017/S0956796816000058
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://dx.doi.org/10.1109/CSF.2011.18
http://dx.doi.org/10.1007/978-3-540-31987-0_29
http://dx.doi.org/10.1016/j.tcs.2004.10.012
http://dx.doi.org/10.1109/CSF.2015.38
http://arxiv.org/abs/1510.00697
http://arxiv.org/abs/1510.00697
http://dx.doi.org/10.1109/CSF.2016.11
http://dx.doi.org/10.1109/CSF.2016.11
http://sf.snu.ac.kr/sepcompcert/
http://sf.snu.ac.kr/sepcompcert/
http://dx.doi.org/10.1016/j.tcs.2006.08.014
http://www.usenix.org/events/usenix03/tech/freenix03/kilpatrick.html
http://ic.ese.upenn.edu/distributions/safe_processor/
http://ic.ese.upenn.edu/distributions/safe_processor/
http://robbertkrebbers.nl/research/thesis.pdf
http://www.cs.princeton.edu/~appel/papers/psfi.pdf

Bibliography 91

R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: a veri�ed implementation of
ML. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL. 2014. 10, 15, 18, 21

O. Kupferman and M. Y. Vardi. Robust satisfaction. CONCUR, 1999. 15, 44, 79

L. Lamport. Specifying systems: the TLA+ language and tools for hardware and software engi-
neers. Addison-Wesley, 2002. 18, 21

L. Lamport and F. B. Schneider. Formal foundation for speci�cation and veri�cation. In Dis-
tributed Systems: Methods and Tools for Speci�cation, An Advanced Course, 1984. 14, 15, 18,
19, 21, 48, 53

L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM Transactions
on Programming Languages and Systems, 4(3):382–401, 1982. 80

L. Lampropoulos, D. Gallois-Wong, C. Hriţcu, J. Hughes, B. C. Pierce, and L. Xia. Beginner’s
Luck: A language for random generators. POPL. 2017. 8

L. Lampropoulos, Z. Paraskevopoulou, and B. C. Pierce. Generating good generators for induc-
tive relations. PACMPL, 2(POPL):45:1–45:30, 2018. 8

A. Larmuseau, M. Patrignani, and D. Clarke. A secure compiler for ML modules. APLAS, 2015.
14, 42, 48, 78

C. Lattner. What every C programmer should know about unde�ned behavior #1/3. LLVM
Project Blog, 2011. 47

J. Lee, Y. Kim, Y. Song, C. Hur, S. Das, D. Majnemer, J. Regehr, and N. P. Lopes. Taming unde�ned
behavior in LLVM. PLDI , 2017. 67

X. Leroy. Formal veri�cation of a realistic compiler. CACM , 52(7):107–115, 2009a. 10, 13, 15,
17, 18, 20, 21, 33, 43, 45, 47, 49, 50, 54, 57, 62, 63, 71

X. Leroy. Formal veri�cation of a realistic compiler. CACM , 52(7):107–115, 2009b. 82

X. Leroy and S. Blazy. Formal veri�cation of a C-like memory model and its uses for verifying
program transformations. JAR, 41(1):1–31, 2008. 13, 49, 67

Z. Manna and A. Pnueli. Temporal veri�cation of reactive systems: safety. Springer Science &
Business Media, 2012. 18, 21

G. Martínez, D. Ahman, V. Dumitrescu, N. Giannarakis, C. Hawblitzel, C. Hriţcu,
M. Narasimhamurthy, Z. Paraskevopoulou, C. Pit-Claudel, J. Protzenko, T. Ramananandro,
A. Rastogi, and N. Swamy. Meta-F*: Proof automation with SMT, tactics, and metaprograms.
arXiv:1803.06547, 2018. 8

J. McLean. Proving noninterference and functional correctness using traces. Journal of Com-
puter Security, 1(1):37–58, 1992. 15, 26, 28

91

http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1007/3-540-48320-9_27
https://www.microsoft.com/en-us/research/uploads/prod/2018/05/book-02-08-08.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/05/book-02-08-08.pdf
http://dx.doi.org/10.1007/3-540-15216-4_15
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1145/3009837.3009868
http://dx.doi.org/10.1145/3009837.3009868
http://dx.doi.org/10.1145/3158133
http://dx.doi.org/10.1145/3158133
https://www.it.uu.se/research/publications/reports/2015-017/2015-017-nc.pdf
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://dx.doi.org/10.1145/3062341.3062343
http://dx.doi.org/10.1145/3062341.3062343
http://dx.doi.org/10.1145/1538788.1538814
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://pauillac.inria.fr/~xleroy/publi/memory-model-journal.pdf
http://pauillac.inria.fr/~xleroy/publi/memory-model-journal.pdf
https://arxiv.org/abs/1803.06547
http://dx.doi.org/10.3233/JCS-1992-1103

Bibliography 92

B. Montagu, B. C. Pierce, and R. Pollack. A theory of information-�ow labels. CSF . 2013. 6

G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan. RockSalt: better, faster, stronger
SFI for the x86. PLDI . 2012. 72, 73, 80

E. Mullen, D. Zuniga, Z. Tatlock, and D. Grossman. Veri�ed peephole optimizations for Comp-
Cert. PLDI , 2016. 66

S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. CETS: compiler enforced temporal
safety for C. ISMM . 2010. 9, 82

S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Everything you want to know about
pointer-based checking. SNAPL. 2015. 9

G. Neis, C. Hur, J. Kaiser, C. McLaughlin, D. Dreyer, and V. Vafeiadis. Pilsner: a compositionally
veri�ed compiler for a higher-order imperative language. ICFP . 2015. 20

M. S. New, W. J. Bowman, and A. Ahmed. Fully abstract compilation via universal embedding.
ICFP , 2016. 14, 17, 19, 36, 38, 39, 42, 43, 69, 78, 79

Z. Paraskevopoulou, C. Hriţcu, M. Dénès, L. Lampropoulos, and B. C. Pierce. Foundational
property-based testing. ITP . 2015. 8, 66, 73

M. Patrignani and D. Clarke. Fully abstract trace semantics for protected module architectures.
CL, 42:22–45, 2015. 43, 62, 63, 69, 71, 79

M. Patrignani and D. Garg. Secure compilation and hyperproperty preservation. CSF . 2017. 44

M. Patrignani and D. Garg. Robustly safe compilation. CoRR, abs/1804.00489, 2018. 14, 43, 45,
60, 62, 79

M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and F. Piessens. Secure compilation to
protected module architectures. TOPLAS, 2015. 14, 19, 35, 36, 42, 48, 69, 78

M. Patrignani, D. Devriese, and F. Piessens. On modular and fully-abstract compilation. CSF .
2016. 11, 14, 35, 36, 42, 43, 46, 48, 69, 78

M. Patrignani, A. Ahmed, and D. Clarke. Formal approaches to secure compilation: A survey
of fully abstract compilation and related work. ACM Computing Surveys, 2019. 14, 42, 45

J. T. Perconti and A. Ahmed. Verifying an open compiler using multi-language semantics.
ESOP . 2014. 20

J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro, P. Wang, S. Zanella-Béguelin,
A. Delignat-Lavaud, C. Hriţcu, K. Bhargavan, C. Fournet, and N. Swamy. Veri�ed low-level
programming embedded in F*. PACMPL, 1(ICFP):17:1–17:29, 2017. 8, 10, 12, 13, 81

N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation. In 12th USENIX Security
Symposium. 2003. 10, 19, 46

92

http://www.crash-safe.org/node/25
http://www.cse.lehigh.edu/~gtan/paper/rocksalt.pdf
http://www.cse.lehigh.edu/~gtan/paper/rocksalt.pdf
http://dx.doi.org/10.1145/2908080.2908109
http://dx.doi.org/10.1145/2908080.2908109
http://acg.cis.upenn.edu/papers/ismm10_cets.pdf
http://acg.cis.upenn.edu/papers/ismm10_cets.pdf
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.190
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.190
http://dx.doi.org/10.1145/2784731.2784764
http://dx.doi.org/10.1145/2784731.2784764
http://dx.doi.org/10.1145/2951913.2951941
http://dx.doi.org/10.1007/978-3-319-22102-1_22
http://dx.doi.org/10.1007/978-3-319-22102-1_22
http://dx.doi.org/10.1016/j.cl.2015.03.002
http://dx.doi.org/10.1109/CSF.2017.13
http://arxiv.org/abs/1804.00489
https://people.mpi-sws.org/~marcopat/marcopat/Publications_files/scoo-j.pdf
https://people.mpi-sws.org/~marcopat/marcopat/Publications_files/scoo-j.pdf
http://arxiv.org/abs/1604.05044
http://theory.stanford.edu/~mp/mp/Publications_files/main-full.pdf
http://theory.stanford.edu/~mp/mp/Publications_files/main-full.pdf
http://www.ccs.neu.edu/home/jtpercon/multilang-verify.pdf
http://dx.doi.org/10.1145/3110261
http://dx.doi.org/10.1145/3110261
https://www.usenix.org/conference/12th-usenix-security-symposium/preventing-privilege-escalation

Bibliography 93

W. Rafnsson, L. Jia, and L. Bauer. Timing-sensitive noninterference through composition. In
M. Ma�ei and M. Ryan, editors, Principles of Security and Trust - 6th International Conference,
POST 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. 2017. 84

J. Regehr. A guide to unde�ned behavior in C and C++, part 3. Embedded in Academia blog,
2010. 47, 57, 65

C. Reis and S. D. Gribble. Isolating web programs in modern browser architectures. EuroSys.
2009. 10, 19, 46, 82

N. Roessler and A. DeHon. Protecting the stack with metadata policies and tagged hardware.
IEEE S&P . 2018. 82

A. W. Roscoe. CSP and determinism in security modelling. S&P . 1995. 28

A. Sabelfeld and A. C. Myers. Language-based information-�ow security. IEEE Journal on
Selected Areas in Communications, 21(1):5–19, 2003. 15, 26

A. Sabelfeld and D. Sands. A PER model of secure information �ow in sequential programs.
HOSC, 14(1):59–91, 2001. 15, 28

F. Schneider. On Concurrent Programming. Texts in Computer Science. Springer New York,
1997. 18, 21

L. Simon, D. Chisnall, and R. J. Anderson. What you get is what you C: Controlling side e�ects
in mainstream C compilers. EuroS&P . 2018. 19

L. Skorstengaard, D. Devriese, and L. Birkedal. Reasoning about a machine with local capabil-
ities - provably safe stack and return pointer management. ESOP , 2018a. 10, 46, 80

L. Skorstengaard, D. Devriese, and L. Birkedal. Enforcing well-bracketed control �ow and stack
encapsulation using linear capabilities. 2nd Workshop on Principles of Secure Compilation
(PriSC), 2018b. 80

G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. Compositional CompCert. POPL. 2015. 20

G. T. Sullivan, S. Chiricescu, A. DeHon, D. Demange, S. Iyer, A. Kliger, G. Morrisett, B. C.
Pierce, H. Reubenstein, J. M. Smith, A. Thomas, J. Tov, C. M. White, and D. Wittenberg.
SAFE: A clean-slate architecture for secure systems. In Proceedings of the IEEE International
Conference on Technologies for Homeland Security, 2013. 6

N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Four-
net, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue, and S. Zanella-Béguelin. Dependent types
and multi-monadic e�ects in F*. POPL. 2016. 8, 10

D. Swasey, D. Garg, and D. Dreyer. Robust and compositional veri�cation of object capability
patterns. PACMPL, 1(OOPSLA):89:1–89:26, 2017. 15, 24, 44, 56, 79

93

http://dx.doi.org/10.1007/978-3-662-54455-6_1
https://blog.regehr.org/archives/232
http://dx.doi.org/10.1145/1519065.1519090
http://dx.doi.org/10.1109/SP.2018.00066
http://dx.doi.org/10.1109/SECPRI.1995.398927
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1023/A:1011553200337
https://books.google.fr/books?id=O0_5uT5vKigC
http://dx.doi.org/10.1109/EuroSP.2018.00009
http://dx.doi.org/10.1109/EuroSP.2018.00009
http://dx.doi.org/10.1007/978-3-319-89884-1_17
http://dx.doi.org/10.1007/978-3-319-89884-1_17
https://popl18.sigplan.org/event/prisc-2018-enforcing-well-bracketed-control-flow-and-stack-encapsulation-using-linear-capabilities
https://popl18.sigplan.org/event/prisc-2018-enforcing-well-bracketed-control-flow-and-stack-encapsulation-using-linear-capabilities
http://dx.doi.org/10.1145/2676726.2676985
http://www.crash-safe.org/docs/HST2013-SAFE.html
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/3133913
http://dx.doi.org/10.1145/3133913

Bibliography 94

L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal war in memory. IEEE S&P . 2013. 9, 13,
47, 48, 73

G. Tan. Principles and implementation techniques of software-based fault isolation. FTSEC, 1
(3):137–198, 2017. 10, 19, 24, 46

S. Tsampas, A. El-Korashy, M. Patrignani, D. Devriese, D. Garg, and F. Piessens. Towards
automatic compartmentalization of C programs on capability machines. FCS, 2017. 11, 46

N. van Ginkel, R. Strackx, J. T. Muehlberg, and F. Piessens. Towards safe enclaves. HotSpot,
2016. 11, 46

T. Van Strydonck, D. Devriese, and F. Piessens. Linear capabilities for modular fully-abstract
compilation of veri�ed code. 2nd Workshop on Principles of Secure Compilation (PriSC),
2018. 11, 46

N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon, and J. M. Smith. BreakApp:
Automated, �exible application compartmentalization. NDSS. 2018. 50

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. E�cient software-based fault isolation.
SOSP , 1993. 10, 19, 24, 46, 72

X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama. Towards optimization-safe sys-
tems: Analyzing the impact of unde�ned behavior. SOSP . 2013. 47

R. N. M. Watson, J. Woodru�, P. G. Neumann, S. W. Moore, J. Anderson, D. Chisnall, N. H.
Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch, R. Norton, M. Roe, S. Son, and M. Vadera.
CHERI: A hybrid capability-system architecture for scalable software compartmentalization.
S&P . 2015a. 82

R. N. M. Watson, J. Woodru�, P. G. Neumann, S. W. Moore, J. Anderson, D. Chisnall, N. H.
Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch, R. Norton, M. Roe, S. Son, and M. Vadera.
CHERI: A hybrid capability-system architecture for scalable software compartmentalization.
IEEE S&P . 2015b. 10, 43, 46, 66

P. Wilke, F. Besson, S. Blazy, and A. Dang. CompCert for software fault isolation. Secure
Compilation Meeting (SCM), 2017. 80

T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. IEEE S&P . 1993. 53

G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project
yellow paper, 151:1–32, 2014. 25

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and N. Ful-
lagar. Native Client: A sandbox for portable, untrusted x86 native code. CACM , 53(1):91–99,
2010. 10, 46, 82

A. Zakinthinos and E. S. Lee. A general theory of security properties. S&P . 1997. 17

94

http://dx.doi.org/10.1109/SP.2013.13
http://dx.doi.org/10.1561/3300000013
https://lirias.kuleuven.be/handle/123456789/593124
https://lirias.kuleuven.be/handle/123456789/593124
https://lirias.kuleuven.be/bitstream/123456789/537986/1/SafeEnvlaves.pdf
https://popl18.sigplan.org/event/prisc-2018-linear-capabilities-for-modular-fully-abstract-compilation-of-verified-code-extended-abstract
https://popl18.sigplan.org/event/prisc-2018-linear-capabilities-for-modular-fully-abstract-compilation-of-verified-code-extended-abstract
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_08-3_Vasilakis_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_08-3_Vasilakis_paper.pdf
http://www.eecs.harvard.edu/~greg/cs255sp2004/wahbe93efficient.pdf
http://dx.doi.org/10.1145/2517349.2522728
http://dx.doi.org/10.1145/2517349.2522728
http://dx.doi.org/10.1109/SP.2015.9
http://dx.doi.org/10.1109/SP.2015.9
https://popl17.sigplan.org/event/scm-2017-software-fault-isolation-avec-compcert
http://dx.doi.org/10.1109/RISP.1993.287633
http://gavwood.com/paper.pdf
http://dx.doi.org/10.1145/1629175.1629203
http://dx.doi.org/10.1109/SECPRI.1997.601322

Bibliography 95

S. Zdancewic and A. C. Myers. Observational determinism for concurrent program security.
CSFW . 2003. 15, 26, 28

L. Zhao, G. Li, B. D. Sutter, and J. Regehr. ARMor: Fully veri�ed software fault isolation.
EMSOFT . 2011. 80

J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche. HACL*: A veri�ed modern
cryptographic library. CCS, 2017. 8, 10, 13

95

http://dx.doi.org/10.1109/CSFW.2003.1212703
http://dx.doi.org/10.1145/2038642.2038687

Appendix

The results presented in this habilitation have previously appeared in a series of research papers
that are appended below. I have substantially contributed to each of these papers, which I co-
authored with my students and several external collaborations.

Carmine Abate, Roberto Blanco, Deepak Garg, Cătălin Hriţcu, Marco Patrignani, and
Jérémy Thibault. Journey beyond full abstraction: Exploring robust property preserva-
tion for secure compilation.arXiv:1807.04603, July 2018b.

Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco, Ana Nora Evans, Guglielmo
Fachini, Cătălin Hriţcu, Théo Laurent, Benjamin C. Pierce, Marco Stronati, and Andrew
Tolmach. When good components go bad: Formally secure compilation despite dynamic
compromise. In 25th ACM Conference on Computer and Communications Security (CCS
2018), pages 1351–1368, October 2018a. (Acceptance rate: 134/809=16.6).

Yannis Juglaret, Cătălin Hriţcu, Arthur Azevedo de Amorim, Boris Eng, and Benjamin C.
Pierce. Beyond good and evil: Formalizing the security guarantees of compartmentaliz-
ing compilation. In 29th IEEE Symposium on Computer Security Foundations (CSF), pages
45–60. IEEE Computer Society Press, July 2016. (Acceptance rate: 31/87=0.36).

Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Cătălin Hriţcu, Ben-
jamin C. Pierce, Antal Spector-Zabusky, and Andrew Tolmach. Micro-Policies: Formally
veri�ed, tag-based security monitors. In 36th IEEE Symposium on Security and Privacy
(Oakland S&P), pages 813–830. IEEE Computer Society, May 2015. (Acceptance rate:
55/420=0.13).

Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine Demange, Cătălin
Hriţcu, David Pichardie, Benjamin C. Pierce, Randy Pollack, and Andrew Tolmach. A
veri�ed information-�ow architecture. Journal of Computer Security (JCS); Special Issue
on Veri�ed Information Flow Security, 24(6):689–734, December 2016. (Supersedes POPL
2014 paper with the same name; Acceptance rate: 51/220=0.23)

96

https://arxiv.org/abs/1807.04603
https://arxiv.org/abs/1807.04603
https://arxiv.org/abs/1802.00588
https://arxiv.org/abs/1802.00588
https://arxiv.org/abs/1602.04503
https://arxiv.org/abs/1602.04503
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf
https://arxiv.org/abs/1509.06503
https://arxiv.org/abs/1509.06503

	Preface
	Contribution 1: Tag-Based Security Monitoring
	Contribution 2: Formally Secure Compilation
	Contribution 3: F* – A Language for Program Verification
	Contribution 4: Dependable Property-Based Testing

	Introduction
	Secure Interoperability with Lower-Level Code
	Overview
	Robustly Preserving Classes of Trace Properties
	Robust Trace Property Preservation (RTP)
	Trace Model with Finite and Infinite Traces and Its Impact on Safety and Liveness
	Robust Safety Property Preservation (RSP)
	Robust Dense Property Preservation (RDP)

	Robustly Preserving Classes of Hyperproperties
	Robust Hyperproperty Preservation (RHP)
	Robust Subset-Closed Hyperproperty Preservation (RSCHP)
	Robust Hypersafety Preservation (RHSP)
	Where is Robust Hyperliveness Preservation?

	Robustly Preserving Classes of Relational Hyperproperties
	Relational Hyperproperty Preservation (RrHP)
	Relational Trace Property Preservation (RrTP)
	Robust Relational Safety Preservation (RrSP)
	Robust Non-Relational Preservation Doesn't Imply Robust Relational Preservation

	Where is full abstraction?
	Proving Secure Compilation
	Source and Target Languages
	The Compiler
	Proving Robust Relational Hyperproperty Preservation
	Proving Robust Finite-Relational Safety Preservation

	Related Work
	Conclusion and Future Work

	Secure Compilation for Unsafe Languages
	Overview
	RSCC By Example
	Formally Defining RSCC
	RSCDC: Dynamic Compromise
	RSCDCMD: Mutually Distrustful Components
	Formalizing RSCC
	A Generic Proof Technique for RSCC
	Class of safety properties preserved by RSCDC
	Comparison to Static Compromise

	Secure Compilation Chain
	Source Language
	The Compartmentalized Machine
	RSCC Proof in Coq
	Software Fault Isolation Back End
	Micro-policies Tagged Architecture
	Tag-based Reference Monitor

	Related Work
	Conclusion

	Research Plan for the Next 4 Years
	Bibliography
	Appendix

