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Severe low-level vulnerabilities abound in today's computer systems, allowing cyber-attackers to remotely gain full control. This happens in big part because our programming languages, compilation chains, and architectures too often trade o security for e ciency. The semantics of mainstream low-level languages like C is inherently insecure, and even for safer languages, all guarantees are lost when interacting with low-level code, for instance when using low-level libraries. This habilitation presents my ongoing quest to build formally secure compartmentalizing compilation chains that defend against such attacks. In particular, we propose several formal de nitions that characterize what it means for a compartmentalizing compilation chain to be secure, both in the case of safe and of unsafe source languages.

We start by investigating what it means for a compilation chain to provide secure interoperability between a safe source language and linked target-level code that is adversarial. In this model, a secure compilation chain ensures that even linked adversarial target-level code cannot break the security properties of a compiled program any more than some linked source-level code could. However, the precise class of security properties one chooses to preserve crucially impacts not only the supported security goals and the strength of the attacker model, but also the kind of protections the compilation chain has to introduce and the kind of proof techniques one can use to make sure that the protections are watertight. We are the rst to thoroughly explore a large space of secure compilation criteria based on the preservation against adversarial contexts of various classes of trace properties such as safety, of hyperproperties such as noninterference, and of relational hyperproperties such as trace equivalence.

We then extend secure compartmentalizing compilation to unsafe languages like C and C++. We propose a new formal criterion for secure compilation schemes from such unsafe languages, expressing end-to-end security guarantees for software components that may become compromised after encountering unde ned behavior-for example, by accessing an array out of bounds. Our criterion is the rst to model dynamic compromise in a system of mutually distrustful components with clearly speci ed privileges. It articulates how each component should be protected from all the others-in particular, from components that have encountered unde ned behavior and become compromised.

To illustrate this model, we construct a secure compilation chain for a small unsafe language with bu ers, procedures, and components, targeting a simple abstract machine with built-in compartmentalization. We give a careful proof (mostly machine-checked in Coq) that this compiler satis es our secure compilation criterion. We, moreover, show that the protection guarantees o ered by the compartmentalized abstract machine can be achieved at the machine-code level using either software fault isolation or a tag-based reference monitor. Finally, we discuss the perspectives of scaling such formally secure compilation to realistic low-level programming languages like C.

Preface

My research is primarily focused on developing rigorous formal techniques for solving security problems. My contributions span formal methods for computer and network security (memory safety, compartmentalization, dynamic monitoring, integrity, information ow, security protocols, privacy, anonymity), programming-languages techniques (type systems, veri cation, proof assistants, property-based testing, semantics, formal metatheory, certi ed tools), and the design and veri cation of security-critical systems (tag-based reference monitors, secure compilation chains, secure hardware). My research combines practice and theory: On the practical side, I design and build innovative software for solving real security problems, I experiment with this software, and I make it available for everybody to use. On the theoretical side, I make sure that each technique I propose is correct by coming up with appropriate attacker models and formal security de nitions and then distilling the main ideas into a formalism that I prove correct, usually with the help of program veri cation systems and proof assistants.

This report presents research I have done since defending my PhD thesis in January 2012. This preface outlines my 4 main research contributions since 2012, while the rest of the report focuses for the most part on contributions 2 and 1, presenting them through the lens of my ongoing quest for achieving e cient formally secure compilation for realistic programming languages. The 5 research papers on which this thesis builds are reproduced in the appendix.

Contribution 1: Tag-Based Security Monitoring

During my postdoc at University of Pennsylvania I helped propel and steer the very ambitious DARPA CRASH/SAFE project, a large academia-industry collaboration (40+ people) that has undertaken the clean-slate co-design of a secure network host, including the design of novel hardware [Dhawan andDeHon 2013, Dhawan et al. 2012], operating/runtime system [START_REF] Sullivan | SAFE: A clean-slate architecture for secure systems[END_REF], programming language [Hriţcu et al. 2013a[START_REF] Montagu | A theory of information-ow labels[END_REF]], and the systematic testing [Hriţcu et al. 2013b[START_REF] Hriţcu | Testing noninterference, quickly[END_REF] and veri cation of key components [Azevedo de [START_REF] Azevedo De Amorim | A veri ed information-ow architecture[END_REF]Amorim et al. , 2016]]. I was actively involved in most of the design activities of CRASH/SAFE. I was a main designer and implementer of Breeze, a new high-level language with ne-grained dynamic information-ow control (IFC) and label-based access control (clearance). In particular, I was responsible for the novel security and exception handling mechanisms of Breeze [Hriţcu et al. 2013a]. I also took part in the design of the SAFE hardware and runtime system, which dynamically enforce type and memory safety, IFC and access control all the way down to the lowest level [START_REF] Dhawan | Hardware support for safety interlocks and introspection[END_REF], and I played a leading role in designing, formalizing, testing, and verifying the low-level IFC mechanisms of the SAFE system [Azevedo de [START_REF] Azevedo De Amorim | A veri ed information-ow architecture[END_REF], 2016, Hriţcu et al. 2013b, 2016].

Relatively late in the design of SAFE we realized that the tag-based monitoring mechanism, which was originally meant for enforcing IFC and access control, is a lot more general than we rst thought, and can replace most of the other protection mechanisms of SAFE. This idea has lead to a follow up Micro-Policies project between UPenn, Inria, and Portland State. In this project we have shown that a large number of critical safety and security micro-policies can be expressed as tag-based security monitors and e ciently enforced using hardware caching and sophisticated micro-architectural optimizations [Dhawan et al. 2015b]. Moreover, I have led the e ort of devising a formal veri cation methodology for micro-policies and applying it to prove the security of our compartmentalization, control-ow integrity, and memory safety micro-policies [Azevedo de Amorim et al. 2015]. In parallel, our industrial partners at Draper Labs have continued working on a hardware platform for micro-policies based on the RISC-V ISA, and have created Dover Microsystems, a startup aimed at developing and commercializing this technology. This continued academic and industrial interest in micro-policies has recently lead to a new DARPA-funded SSITH/HOPE project, in which I am also involved.

Contribution 2: Formally Secure Compilation

This new research project started around 2015 with my realization that micro-policies would be very well-suited for devising more secure compilation chains [Juglaret et al. 2015], and that this problem is very interesting in general, even irrespective of micro-policies. In particular, even de ning what secure compilation means was a big open problem at that point. So we started by devising a variant of full abstraction that supports protecting mutually distrustful components written in an unsafe low-level language like C [Juglaret et al. 2016]. In the process we realized, however, that full abstraction is di cult to achieve and prove and it does not well match our intuitive attacker model; in particular, it does not interact well with unde ned behavior and is limited to a static compromise model. So we investigated other security criteria based on preserving trace properties, hyperproperties, and relational hyperproperties against adversarial contexts [START_REF] Abate | Journey beyond full abstraction: Exploring robust property preservation for secure compilation[END_REF]]. This solves the issues with full abstraction and in particular allows us to support a model of dynamic component compromise [START_REF] Abate | When good components go bad: Formally secure compilation despite dynamic compromise[END_REF]. This line of research forms the foundation of my ongoing ERC SECOMP project and is also the main focus of this report.

Contribution 3: F* -A Language for Program Verification

Since early 2014, I am actively involved in the design and continuous evolution of F , a generalpurpose functional programming language with e ects targeted at program veri cation. The current F design is aimed at combining SMT-based automation with the power and expressiveness of proof assistants like Coq, which enables users to prove arbitrarily complex properties manually. To achieve this we have introduced full dependent types and tracking of side-e ects, while isolating a core language of pure total functions that can be used to write speci cations and proof terms [START_REF] Swamy | Dependent types and multi-monadic e ects in F*[END_REF]. A key insight in F was that veri cation conditions can be computed generically for any e ect using so called Dijkstra monads, and that these Dijkstra monads can be derived "for free" from the monadic model of the e ect [START_REF] Ahman | Dijkstra monads for free[END_REF]. Moreover, carefully exposing the monadic representation of e ects can be used to verify relational properties that characterize many useful notions of security, program re nement, and equivalence [START_REF] Grimm | A monadic framework for relational veri cation: Applied to information security, program equivalence, and optimizations[END_REF]. This general treatment of side-e ects allowed us to recently implement support for meta-programming and tactics in F simply as a user de ned e ect [START_REF] Martínez | Meta-F*: Proof automation with SMT, tactics, and metaprograms[END_REF]. Finally, we added to F convenient support for the veri cation of programs whose state evolves monotonically [START_REF] Ahman | Recalling a witness: Foundations and applications of monotonic state[END_REF]. The main idea is that a property witnessed in a prior state can be soundly recalled in the current state, provided (1) state evolves according to a given preorder, and (2) the property is preserved by this preorder. All these innovations of F are used to verify an e cient HTTPS stack in Project Everest [Bhargavan et al. 2017a,b, Protzenko et al. 2017, Zinzindohoué et al. 2017].

Contribution 4: Dependable Property-Based Testing

This project, which I initiated in 2013 and lead until 2015, investigates the integration of property-based testing [START_REF] Claessen | QuickCheck: a lightweight tool for random testing of Haskell programs[END_REF] and of formal veri cation in the Coq proof assistant in order to lower the costs of veri cation and increase the thoroughness of testing. For this we investigated realistic case studies [Hriţcu et al. 2013b[START_REF] Hriţcu | Testing noninterference, quickly[END_REF], the integration of testing in Coq [START_REF] Paraskevopoulou | Foundational property-based testing[END_REF], the use of formal veri cation to improve the quality of testing [START_REF] Paraskevopoulou | Foundational property-based testing[END_REF]], domain-speci c languages for property-based generators [START_REF] Lampropoulos | Beginner's Luck: A language for random generators[END_REF], and a novel variant of mutation testing. This project has been successful at producing the QuickChick plugin for Coq, which is now maintained and further improved in the DeepSpec NSF expedition [START_REF] Lampropoulos | Generating good generators for inductive relations[END_REF]].

Introduction

Today's computer systems are distressingly insecure. This a ects the foundation upon which today's information society is built and makes everyone potentially vulnerable. Visiting a website, opening an email, or serving a client request is often enough to cause a computer to be compromised by a cyber-attack that allows remote attackers to gain full control. This often results in the disclosure or destruction of information and the use of the machine in further cyber-attacks. Hundreds of thousands of compromised computers are hoarded into "botnets" that are used to send spam, mount distributed denial of service attacks, or mine cryptocurrency. Botnets are increasingly rented out by cyber-criminals as commodities and according to Symantec and Kaspersky Labs they are currently the biggest threat to the Internet. Given their cyber-attack power, previously unknown ("0-day") exploitable low-level vulnerabilities in widely-used software are often sold to intelligence agencies or botnet "controllers" for tens to hundreds of thousands of dollars.

The causes for this dissatisfying state of a airs are complex, but at this point mostly historical: our programming languages, compilers, and architectures were designed in an era of scarce hardware resources and far too often trade o security for e ciency. Today's mainstream low-level languages, C and C++, give up even on the most basic safety checks for the sake of e ciency, which leaves programmers bearing all the burden for security: the smallest mistake in widely-deployed C and C++ code can cause security vulnerabilities with disastrous consequences [START_REF] Durumeric | The matter of Heartbleed[END_REF]. Four of the top 25 most dangerous software error types (https://cwe.mitre.org/top25/) would be prevented or e ectively mitigated by ensuring memory safety alone, including #3 in the top: "Classic Bu er Over ow. " The C and C++ languages do not guarantee memory safety and their compilation chains do not enforce it because currently deployed hardware provides no good support for it and software checks would incur 70-80% overhead on average [START_REF] Nagarakatte | CETS: compiler enforced temporal safety for C[END_REF][START_REF] Nagarakatte | Everything you want to know about pointer-based checking[END_REF]. Instead, much weaker low-overhead mitigation techniques are deployed and routinely circumvented by practical attacks [START_REF] Conti | Losing control: On the e ectiveness of control-ow integrity under stack attacks[END_REF][START_REF] Evans | Control jujutsu: On the weaknesses of ne-grained control ow integrity[END_REF][START_REF] Szekeres | SoK: Eternal war in memory[END_REF]. Unfortunately, just ensuring memory safety would in fact not be enough to make C and C++ safe, as the standards and compilers for these languages call out a much larger number of unde ned behaviors [START_REF] Hathhorn | De ning the unde nedness of C[END_REF][START_REF] Krebbers | The C Standard Formalized in Coq[END_REF], for which compilers produce code that behaves arbitrarily, often leading to security vulnerabilities, including for instance invalid unchecked type casts [START_REF] Duck | E ectiveSan: Type and memory error detection using dynamically typed C/C++[END_REF]Yap 2018, Haller et al. 2016], data races, and sometimes even integer over ows.

Safer languages such as Java, C#, ML, Haskell, or Rust provide memory safety and type safety by default as well as many useful abstractions for writing more secure code (e.g., modules, interfaces, parametric polymorphism, etc). Unfortunately, these languages are still not immune to low-level attacks. All the safety guarantees of these source languages are lost when interacting with low-level code, for instance when using low-level libraries. This interaction is useful but dangerous because the low-level code can be malicious or compromised (e.g., by a bu er over ow). Currently, not only is the low-level code trusted to be safe, but also to preserve all the complex abstractions and internal invariants of the high-level language semantics, compiler, and runtime system. So even if some critical code is secure with respect to the semantics of a high-level language, any low-level code with which it interacts can break its security.

Veri cation languages such as Coq and F [START_REF] Swamy | Dependent types and multi-monadic e ects in F*[END_REF] provide additional abstractions, such as dependent types, logical pre-and postconditions, and tracking the precise e ects of computations, distinguishing between pure and stateful computations or computations that can raise exceptions. Such abstractions are crucial for making the veri cation e ort more tractable in practice, but they also make the nal veri cation result only valid in these very abstract languages. In order for a Coq or F program to be executed it is rst compiled all the way down to machine code. Even if the compilation is correct [START_REF] Kumar | CakeML: a veri ed implementation of ML[END_REF], Leroy 2009a], this is usually not enough to ensure the security of the veri ed code, since usually not all the code can be written and veri ed in the abstract veri cation language.

For a concrete example, consider the miTLS implementation of the TLS standard, the most widely-used security protocol framework on the Internet. miTLS is being written and formally veri ed in Low , a safe subset of C embedded in F [Bhargavan et al. 2017b, Protzenko et al. 2017, Zinzindohoué et al. 2017]. miTLS includes tens of thousands lines of Low code, and even when all this code will be formally veri ed, it will just be a tiny library linked from large unveri ed applications such as web browsers, web servers, and operating systems, which have millions of lines of C, C++, and ASM code. Not only are these applications not veri ed and can thus break the veri ed security properties of the Low code, but these applications are not even memory safe, and any error can allow remote attackers to take complete control, disclose the memory of the process stealing the TLS private keys, etc. A correct compilation chain is not enough in this case, since (1) a correct compilation chain [Leroy 2009a] for an insecure language like C still produces insecure code and leaves the burden of avoiding unde ned behaviors to the programmer, and (2) a correct compilation chain does not protect the interaction between high-level and low-level code and does not enforce the abstractions of each language against faulty or malicious code written in the lower-level languages. In order for miTLS to be secure in practice we don't need only correct compilation, but also secure compilation.

In the ERC SECOMP project we study the use of compartmentalization to practically defend against low-level attacks and achieve secure compilation. Widely deployed compartmentalization technologies include process-level privilege separation [START_REF] Bittau | Wedge: Splitting applications into reducedprivilege compartments[END_REF], Gudka et al. 2015[START_REF] Kilpatrick | Privman: A library for partitioning applications[END_REF]] (used in OpenSSH [START_REF] Provos | Preventing privilege escalation[END_REF]] and for sandboxing plugins and tabs in web browsers [START_REF] Reis | Isolating web programs in modern browser architectures[END_REF]), software fault isolation [START_REF] Tan | Principles and implementation techniques of software-based fault isolation[END_REF][START_REF] Wahbe | E cient software-based fault isolation[END_REF]] (e.g., Google Native Client [START_REF] Yee | Native Client: A sandbox for portable, untrusted x86 native code[END_REF]), WebAssembly modules [START_REF] Haas | Bringing the web up to speed with WebAssembly[END_REF]] in modern web browsers, and hardware enclaves (e.g., Intel SGX [Intel]); many more are on the drawing boards [Azevedo de Amorim et al. 2015, Chisnall et al. 2015, Skorstengaard et al. 2018a, Watson et al. 2015b]. These compartmentalization mechanisms o er an attractive base for building more secure compilation chains that prevent or at least mitigate low-level attacks [START_REF] Gollamudi | Building secure SGX enclaves using F*, C/C++ and X64. 2[END_REF], Gudka et al. 2015, Juglaret et al. 2015, Patrignani et al. 2016[START_REF] Tsampas | Towards automatic compartmentalization of C programs on capability machines[END_REF][START_REF] Van Ginkel | Towards safe enclaves[END_REF][START_REF] Van Strydonck | Linear capabilities for modular fully-abstract compilation of veri ed code[END_REF].

However, what does it mean for a compartmentalizing compilation chain to be secure? This thesis provides several formal security de nitions that can answer this question for both safe and unsafe source languages.

Secure interoperability with lower-level code In chapter 2 we investigate what it means for a compilation chain to provide secure interoperability between a safe source language and linked target-level code that is adversarial. In this model, a secure compilation chain protects source-level abstractions all the way down, ensuring that even an adversarial target-level context cannot break the security properties of a compiled program any more than some sourcelevel context could. However, the precise class of security properties one chooses to preserve crucially impacts not only the supported security goals and the strength of the attacker model, but also the kind of protections the compilation chain has to introduce and the kind of proof techniques one can use to make sure that the protections are watertight. Since e ciently achieving and proving secure compilation at scale are challenging open problems, designers of secure compilation chains have to strike a pragmatic balance between security and e ciency that matches their application domain.

To inform this di cult design decision, we thoroughly explore a large space of formal secure compilation criteria based on the preservation of properties that are robustly satis ed against arbitrary adversarial contexts. We study robustly preserving various classes of trace properties such as safety, of hyperproperties such as noninterference, and of relational hyperproperties such as trace equivalence. For each of the studied classes we propose an equivalent "propertyfree" characterization of secure compilation that is generally better tailored for proofs. We, moreover, order the secure compilation criteria by their relative strength and prove several separation results.

Finally, we show that even the strongest of our secure compilation criteria, the robust preservation of all relational hyperproperties, is achievable for a simple translation from a statically typed to a dynamically typed language. We prove this using a universal embedding, a context back-translation technique previously developed for fully abstract compilation. We also illustrate that for proving the robust preservation of most relational safety properties including safety, noninterference, and sometimes trace equivalence, a less powerful but more generic technique can back-translate a nite set of nite execution pre xes into a source context.

The presentation in chapter 2 closely follows a research paper draft [START_REF] Abate | Journey beyond full abstraction: Exploring robust property preservation for secure compilation[END_REF]] that I have recently co-authored and which is also included in the appendix.

Secure compartmentalization for unsafe languages

In chapter 3 we extend secure compartmentalizing compilation to unsafe languages like C and C++. We propose a new formal criterion for evaluating secure compilation schemes for such unsafe languages, expressing endto-end security guarantees for software components that may become compromised after encountering unde ned behavior-for example, by accessing an array out of bounds.

Our criterion is the rst to model dynamic compromise in a system of mutually distrustful components with clearly speci ed privileges. It articulates how each component should be protected from all the others-in particular, from components that have encountered unde ned behavior and become compromised. Each component receives secure compilation guaranteesin particular, its internal invariants are protected from compromised components-up to the point when this component itself becomes compromised, after which we assume an attacker can take complete control and use this component's privileges to attack other components. More precisely, a secure compilation chain must ensure that a dynamically compromised component cannot break the safety properties of the system at the target level any more than an arbitrary attacker-controlled component (with the same interface and privileges, but without unde ned behaviors) already could at the source level.

To illustrate the model, we construct a secure compilation chain for a small unsafe language with bu ers, procedures, and components, targeting a simple abstract machine with built-in compartmentalization. We give a careful proof (mostly machine-checked in Coq) that this compiler satis es our secure compilation criterion. Finally, we show that the protection guarantees o ered by the compartmentalized abstract machine can be achieved at the machine-code level using either software fault isolation or a tag-based reference monitor.

The presentation in chapter 3 closely follows a recent research paper [START_REF] Abate | When good components go bad: Formally secure compilation despite dynamic compromise[END_REF]]. The main exceptions are: §3.3.6, which illustrates the more restrictive static compromise model of an earlier paper that served as a stepping stone for the current work [Juglaret et al. 2016]; and §3.4.5, which introduces micro-policies [Azevedo de Amorim et al. 2015], the mechanism for tag-based reference monitors that we use for one of the back ends of our prototype compilation chain and that we hope will allow us to achieve e cient formally secure compilation at scale. Micro-policies generalize a tagging mechanism we originally devised to e ciently enforce information ow control [Azevedo de Amorim et al. 2016], and which also served as a stepping stone for the work presented here. I have substantially contributed to these research papers and they are included in the appendix.

Longer-term perspectives While chapters 2 and 3 use simple secure compilation chains for illustrating the main ideas, scaling this up to realistic languages and compilation chains is still an open challenge. The nal goal of the ERC SECOMP project is to build the rst formally secure compilation chains for realistic programming languages. In particular, we are planning a secure compilation chain starting from programs written in a combination of C and Low [START_REF] Protzenko | Veri ed low-level programming embedded in F*[END_REF]] and targetting a RISC-V architecture [START_REF] Asanović | Instruction sets should be free: The case for RISC-V[END_REF] extended with micro-policies [Azevedo de Amorim et al. 2015], building up on the simple prototype from chapter 3. In order to ensure high con dence in the security of our compilation chains, we plan to thoroughly test them using property-based testing and then formally verify their security using Coq. For measuring and optimizing e ciency we plan to use standard benchmark suites [START_REF] Henning | SPEC CPU2006 benchmark descriptions[END_REF]] and realistic source programs, with miTLS as the main end-to-end case study. Chapter 4 further explains this research plan.

2 Secure Interoperability with Lower-Level Code: Journey Beyond Full Abstraction

Overview

Good programming languages provide helpful abstractions for writing secure code. For example, the HACL [START_REF] Zinzindohoué | HACL*: A veri ed modern cryptographic library[END_REF] and miTLS [Bhargavan et al. 2017b] veri ed cryptographic libraries are written in Low [START_REF] Protzenko | Veri ed low-level programming embedded in F*[END_REF], a language that provides many di erent kinds of abstractions: from low-level abstractions associated with safe C programs (such as structured control ow, procedures, and a block-based memory model inspired by CompCert [START_REF] Leroy | Formal veri cation of a C-like memory model and its uses for verifying program transformations[END_REF]), to higher-level abstractions associated with typed functional languages like ML (such as modules, interfaces, and parametric polymorphism), to features associated with veri cation systems like Coq and Dafny (such as e ects, dependent types, and logical pre-and post-conditions), and, nally, to patterns speci c to cryptographic code (such as using abstract types and restricted interfaces to rule out certain side-channel attacks). Such abstractions are crucial in making the e ort required to reason about the correctness and security properties of realistic code tractable.

However, such abstractions are not enforced all the way down by today's compilation chains.

In particular, the security properties a program has in the source language are generally not preserved when compiling the program and linking it with adversarial low-level code. HACL and miTLS are libraries that get linked into real applications such as web browsers [START_REF] Beurdouche | HACL* in Mozilla Firefox: Formal methods and high assurance applications for the web[END_REF][START_REF] Erbsen | Simple high-level code for cryptographic arithmetic -with proofs, without compromises[END_REF], which include millions of lines of legacy C/C++ code.

Even if we formally proved, say, that because of the way the miTLS library is structured and veri ed, no Low application embedding miTLS can cause it to leak a private decryption key, this guarantee is completely lost when compiling miTLS [Leroy 2009a, Protzenko et al. 2017] and linking it into a C/C++ application that can get compromised via a bu er over ow and simply read o the private key from memory [START_REF] Durumeric | The matter of Heartbleed[END_REF][START_REF] Szekeres | SoK: Eternal war in memory[END_REF]]. More generally, a compromised or malicious application that links in the miTLS library can easily read and write the data and code of miTLS , jump to arbitrary instructions, or smash the stack, blatantly violating any source-level abstraction and breaking any guarantee obtained by source-level reasoning.

An idea that has been gaining increasing traction recently is that it should be possible to build secure compilation chains that protect source-level abstractions all the way down, ensuring that an adversarial target-level context cannot break the security properties of a compiled program any more than some source-level context could [START_REF] Abadi | Protection in programming-language translations[END_REF][START_REF] Abadi | On protection by layout randomization[END_REF][START_REF] Abadi | Secure implementation of channel abstractions[END_REF][START_REF] Abate | When good components go bad: Formally secure compilation despite dynamic compromise[END_REF][START_REF] Ahmed | Veri ed compilers for a multi-language world[END_REF][START_REF] Ahmed | Typed closure conversion preserves observational equivalence[END_REF][START_REF] Lattner | What every C programmer should know about unde ned behavior #1/3[END_REF], Devriese et al. 2016a, 2017[START_REF] Fournet | Fully abstract compilation to JavaScript[END_REF][START_REF] Jagadeesan | Local memory via layout randomization[END_REF], Juglaret et al. 2016[START_REF] Larmuseau | A secure compiler for ML modules[END_REF][START_REF] New | Fully abstract compilation via universal embedding[END_REF], Patrignani and Garg 2018, Patrignani et al. 2015, 2016, 2019]. Such a compilation chain enables reasoning about the security of compiled code with respect to the semantics of the source programming language, without having to worry about "low-level" attacks from the target-level context. In order to achieve this, the various parts of the secure compilation chain-including for instance the compiler, linker, loader, runtime, system, and hardware-have to work together to provide enough protection to the compiled program, so that any security property proved against all source contexts also holds against all target contexts.

However, the precise class of security properties one chooses to preserve is crucial. Full abstraction [START_REF] Abadi | Protection in programming-language translations[END_REF]], currently the most well-known secure compilation criterion [START_REF] Abadi | On protection by layout randomization[END_REF][START_REF] Abadi | Secure implementation of channel abstractions[END_REF][START_REF] Ahmed | Veri ed compilers for a multi-language world[END_REF][START_REF] Ahmed | Typed closure conversion preserves observational equivalence[END_REF][START_REF] Lattner | What every C programmer should know about unde ned behavior #1/3[END_REF], Devriese et al. 2016a, 2017[START_REF] Fournet | Fully abstract compilation to JavaScript[END_REF][START_REF] Jagadeesan | Local memory via layout randomization[END_REF], Juglaret et al. 2016[START_REF] Larmuseau | A secure compiler for ML modules[END_REF][START_REF] New | Fully abstract compilation via universal embedding[END_REF], Patrignani et al. 2015, 2016, 2019], would, for instance, not be very well-suited to preserving the con dentiality of miTLS 's private key. First, while a fully abstract compilation chain preserves (and re ects) observational equivalence, the con dentiality of miTLS 's private key is a noninterference property that is not directly captured by observational equivalence.

Second, even if one was able to encode noninterference as an observational equivalence [START_REF] Abadi | Protection in programming-language translations[END_REF][START_REF] Patrignani | Formal approaches to secure compilation: A survey of fully abstract compilation and related work[END_REF], the kind of protections one has to put in place for preserving observational equivalence will likely be overkill if all one wants to preserve is noninterference against adversarial contexts (or, to use terminology from the next paragraph, to preserve robust noninterference). It is signi cantly harder to hide the di erence between two programs that are observationally equivalent but otherwise arbitrary, compared to hiding some clearly identi ed secret data of a single program (e.g., the miTLS private key), so a secure compilation chain for robust noninterference can likely be much more e cient than one for observational equivalence. Moreover, achieving full abstraction is hopeless in the presence of side-channels, while preserving noninterference is still possible, at least in speci c scenarios [START_REF] Barthe | Secure compilation of side-channel countermeasures: the case of cryptographic "constant-time[END_REF]. In general, stronger secure compilation criteria are also harder (or even impossible) to achieve efciently and designers of secure compilation chains are faced with a di cult decision, having to strike a pragmatic balance between security and e ciency that matches their application domain. Finally, even when e ciency is not a concern (e.g., when security is enforced by static restrictions on target-level contexts [START_REF] Abadi | Protection in programming-language translations[END_REF][START_REF] Ahmed | Veri ed compilers for a multi-language world[END_REF][START_REF] Ahmed | Typed closure conversion preserves observational equivalence[END_REF][START_REF] Lattner | What every C programmer should know about unde ned behavior #1/3[END_REF][START_REF] New | Fully abstract compilation via universal embedding[END_REF]), stronger secure compilation criteria are still harder to prove. In our example, proving preservation of noninterference is likely much easier than proving full abstraction, a notoriously challenging task even for very simple languages, with apparently simple conjectures surviving for decades before being nally settled, sometimes negatively [START_REF] Devriese | Parametricity versus the universal type[END_REF].

Convinced that there is no "one-size-ts-all" solution to secure compilation, we set out to explore a large space of security properties that can be preserved against adversarial target-level contexts. We explore preserving classes of trace properties such as safety and liveness [START_REF] Lamport | Formal foundation for speci cation and veri cation[END_REF], of hyperproperties such as noninterference [START_REF] Clarkson | Hyperproperties[END_REF], and of relational hyperproperties such as trace equivalence, against adversarial targetlevel contexts. All these property notions are phrased in terms of ( nite and in nite) execution traces that are built over events such as inputs from and outputs to an external environment [START_REF] Kumar | CakeML: a veri ed implementation of ML[END_REF], Leroy 2009a]. For instance, trace properties are de ned simply as sets of allowed traces [START_REF] Lamport | Formal foundation for speci cation and veri cation[END_REF]. One says that a whole program W satis es a trace property π when the set of traces produced by W is included in the set π or, formally, {t | W t} ⊆ π, where W t indicates that program W can emit trace t. More interestingly, we say that a partial program P robustly satis es [START_REF] Gordon | Types and e ects for asymmetric cryptographic protocols[END_REF][START_REF] Kupferman | Robust satisfaction[END_REF][START_REF] Swasey | Robust and compositional veri cation of object capability patterns[END_REF]] a trace property π when P linked with any (adversarial) context satis es π. More formally, P robustly satis es π if for all contexts C we have that C[P ] satis es π, where C[P ] is the operation of linking the partial program P with the context C to produce a whole program that can be executed. Armed with this, we de ne our rst secure compilation criterion as the preservation of robust satisfaction of trace properties, which we call Robust Trace Property Preservation (RTP). So if a partial source program P robustly satis es a trace property π ∈ 2 Trace (wrt. all source contexts) then its compilation P↓ must also robustly satisfy π (wrt. all target-level contexts). If we unfold all intermediate de nitions, a compilation chain satis es RTP if

RTP : ∀π ∈ 2 Trace . ∀P. (∀C S t. C S [P] t ⇒ t ∈ π) ⇒ (∀C T t. C T [ P↓] t ⇒ t ∈ π)
In such criteria we use a blue, sans-serif font for source elements, an orange, bold font for target elements and a black, italic font for elements common to both languages. Throughout this thesis we assume that traces are exactly the same in both the source and target language, as is also the case in CompCert [Leroy 2009a] (we discuss lifting this limitation in §2.8).

In this chapter we study various such secure compilation criteria, all based on the preservation of robust satisfaction, as outlined by the nodes of the diagram in Figure 2.1. We rst look at robustly preserving classes of trace properties ( §2.2) such as safety and dense properties-i.e., the criteria in the yellow area in Figure 2.1. Safety properties intuitively require that a violation never happens in a nite pre x of a trace, since this pre x is observable for instance to a reference monitor. Less standardly, in our trace model with both nite and in nite traces, the role of liveness is taken by what we call dense properties, which are simply trace properties that can only be falsi ed by non-terminating executions. We then generalize robust preservation from properties of individual program traces to hyperproperties ( §2.3), which are properties over multiple traces of a program [START_REF] Clarkson | Hyperproperties[END_REF] (the criteria in the red area in Figure 2.1). The canonical example of a hyperproperty is noninterference, which generally requires considering two traces of a program that di er on secret inputs [START_REF] Askarov | Termination-insensitive noninterference leaks more than just a bit[END_REF][START_REF] Goguen | Security policies and security models[END_REF][START_REF] Mclean | Proving noninterference and functional correctness using traces[END_REF][START_REF] Sabelfeld | Language-based information-ow security[END_REF][START_REF] Sabelfeld | A PER model of secure information ow in sequential programs[END_REF][START_REF] Zdancewic | Observational determinism for concurrent program security[END_REF]. We then generalize this further to what we call relational hyperproperties ( §2.4), which relate multiple runs of di erent programs (the criteria in the blue area in Figure 2.1). An example of relational hyperproperty is trace equivalence, which requires that two programs produce the same set of traces.

For each of the studied criteria we propose an equivalent "property-free" characterization that is generally better tailored for proofs. For instance, by simple logical reasoning we prove that RTP can equivalently be stated as follows: t. In contrast, for stronger criteria a single context C S will have to work for several traces. In general, the shape of the property-free characterization gives us a good clue for what kind of back-translation techniques are possible for producing C S , when proving that a concrete compilation chain is secure.

RTC : ∀P. ∀C T . ∀t. C T [ P↓] t ⇒ ∃C S . C S [P] t
We order the secure compilation criteria we study by their relative strength as illustrated by the partial order in Figure 2.1. In this Hasse diagram edges represent logical implication from higher criteria to lower ones, so the higher is a property, the harder it is to achieve and prove. While most of the implications in the diagram are unsurprising and follow directly from the inclusion between the property classes [START_REF] Clarkson | Hyperproperties[END_REF], we discover that preserving hyperliveness is in fact equivalent to preserving all hyperproperties ( §2.3.4). To show the absence of more such collapses, we also prove various separation results, for instance that Robust Safety Property Preservation (RSP) and Robust Dense Property Preservation (RDP) when taken separately are strictly weaker than RTP. While these results are natural, the separation result for dense properties crucially relies on a trace model that explicitly distinguishes nite and in nite traces ( §2.2.2), since with just in nite traces [START_REF] Alpern | De ning liveness[END_REF]Schneider 1985, Clarkson and[START_REF] Clarkson | Hyperproperties[END_REF] things do collapse even for liveness.

We moreover show ( §2.4.1) that in general Robust Trace Equivalence Preservation (RTEP) follows only from Robust 2-relational Hyperproperty Preservation, which is one of our strongest criteria. However, in the absence of internal nondeterminism (i.e., if the source and target languages are determinate [START_REF] Engelfriet | Determinacy implies (observation equivalence = trace equivalence)[END_REF], Leroy 2009a]) and under some mild extra assumptions (such as input totality [START_REF] Focardi | A taxonomy of security properties for process algebras[END_REF]Gorrieri 1995, Zakinthinos and[START_REF] Zakinthinos | A general theory of security properties[END_REF]) RTEP follows from the weaker Robust 2-relational Trace Property Preservation (R2rTP), and under much stronger assumptions (divergence being nitely observable) from Robust 2-relational Safety Preservation (R2rSP). In determinate settings, where observational equivalence is equivalent to trace equivalence [START_REF] Cheval | Deciding equivalence-based properties using constraint solving[END_REF][START_REF] Engelfriet | Determinacy implies (observation equivalence = trace equivalence)[END_REF], these results provide a connection to Observational Equivalence Preservation, i.e., the direction of fully abstract compilation that is interesting for secure compilation ( §2.5).

Finally, we show that even the strongest of our secure compilation criteria, Robust Relational Hyperproperty Preservation (RrHP), is achievable for a simple translation from a statically typed to a dynamically typed language with rst-order functions and input-output ( §2.6). We prove this using a "universal embedding, " which is a context back-translation technique previously developed for fully abstract compilation [START_REF] New | Fully abstract compilation via universal embedding[END_REF]. For the same simple translation we also illustrate that for proving Robust Finite-relational Safety Preservation (RFrSP) a less powerful but more generic technique can back-translate a nite set of nite execution pre xes into a source context. This technique is applicable to all the criteria contained in area below RFrSP (indicated in green in Figure 2.1), which includes robust preservation of safety, of noninterference, and sometimes even trace equivalence.

We close with discussions of related ( §2.7) and future ( §2.8) work. Appendices included as supplementary material present omitted technical details. Many of the formal results of §2.2, §2.3, and §2.4 were mechanized in Coq and are marked with . This Coq development is available as another supplementary material. All these materials are available at https:// github.com/secure-compilation/exploring-robust-property-preservation

Robustly Preserving Classes of Trace Properties

We start by looking at robustly preserving classes of trace properties. The introduction already de ned RTP, the robust preservation of all trace properties, so we rst explore this criterion in more detail ( §2.2.1). We then step back and de ne a model for program execution traces that can be non-terminating or terminating, nite or in nite ( §2.2.2). Using this model we de ne safety properties in the standard way as the trace properties that can be falsi ed by a nite trace pre x (e.g., a program never performs a certain dangerous system call). Perhaps more surprisingly, in our model the role usually played by liveness is taken by what we call dense properties, which we de ne simply as the trace properties that can only be falsi ed by non-terminating traces (e.g., a reactive program that runs forever eventually answers every network request it receives). To validate that dense properties indeed play the same role liveness plays in previous models [START_REF] Alpern | De ning liveness[END_REF][START_REF] Lamport | Specifying systems: the TLA+ language and tools for hardware and software engineers[END_REF][START_REF] Lamport | Formal foundation for speci cation and veri cation[END_REF][START_REF] Manna | Temporal veri cation of reactive systems: safety[END_REF][START_REF] Schneider | On Concurrent Programming[END_REF], we prove various properties, including that every trace property is the intersection of a safety property and a dense property (this is our variant of a standard decomposition result [START_REF] Alpern | De ning liveness[END_REF]). We then use these de nitions to study the robust preservation of safety properties (RSP; §2.2.3) and dense properties (RDP; §2.2.4). These secure compilation criteria are highlighted in yellow in Figure 2.1.

Robust Trace Property Preservation (RTP)

Like all secure compilation criteria we study in this chapter, the RTP criterion presented in the introduction and further explained below is a generic property of a compilation chain, which includes a source and a target language, each with a notion of partial programs (P ) and contexts (C) that can be linked together to produce whole programs (C[P ]), and each with a traceproducing semantics for whole programs (C[P ] t). The sets of partial programs and of contexts of the source and target languages are arbitrary parameters of our secure compilation criteria; our generic criteria make no assumptions about their structure, or whether static typing is involved or not, or whether the program or the context gets control initially once linked and executed (e.g., the context could be an application that embeds a library program or the context could be a library that is embedded into an application program). Similarly, the traces of the source and target semantics are arbitrary for RTP, while starting with §2.2.2 we will consider nite or in nite lists of events drawn from an arbitrary set. The intuition is that the traces capture the interaction between a whole program and its external environment, including for instance user input, output to a terminal, network communication, system calls, etc. [START_REF] Kumar | CakeML: a veri ed implementation of ML[END_REF], Leroy 2009a]. As opposed to a context, which is just a piece of a program, the environment is not (and often cannot be) precisely modeled by the programming language, beyond the (often nondeterministic) events that we store in the trace (and which often record the data that the program inputs and outputs). Finally, a compilation chain includes a compiler. The compilation of a partial source program P is a partial target program written P↓.

The responsibility of enforcing secure compilation does not have to rest just with the compiler, but may be freely shared by various parts of the compilation chain. In particular, to help enforce security, the target-level linker could disallow linking with a suspicious context (e.g., one that is not well-typed [START_REF] Abadi | Protection in programming-language translations[END_REF][START_REF] Ahmed | Veri ed compilers for a multi-language world[END_REF][START_REF] Ahmed | Typed closure conversion preserves observational equivalence[END_REF][START_REF] Lattner | What every C programmer should know about unde ned behavior #1/3[END_REF][START_REF] New | Fully abstract compilation via universal embedding[END_REF]) or could always allow linking but introduce protection barriers between the program and the context (e.g., by instrumenting the program [Devriese et al. 2016a[START_REF] New | Fully abstract compilation via universal embedding[END_REF] or the context [START_REF] Abate | When good components go bad: Formally secure compilation despite dynamic compromise[END_REF][START_REF] Tan | Principles and implementation techniques of software-based fault isolation[END_REF][START_REF] Wahbe | E cient software-based fault isolation[END_REF] to introduce dynamic checks). Similarly, the semantics of the target language can include various protection mechanisms (e.g., processes with di erent virtual address spaces [START_REF] Bittau | Wedge: Splitting applications into reducedprivilege compartments[END_REF], Gudka et al. 2015[START_REF] Kilpatrick | Privman: A library for partitioning applications[END_REF][START_REF] Provos | Preventing privilege escalation[END_REF][START_REF] Reis | Isolating web programs in modern browser architectures[END_REF], protected modules [Patrignani et al. 2015], capabilities [START_REF] El-Korashy | Compiling a secure variant of C to capabilities[END_REF], tags [START_REF] Abate | When good components go bad: Formally secure compilation despite dynamic compromise[END_REF], Azevedo de Amorim et al. 2015]). Finally, the compiler might have to refrain from too aggressive optimizations that would break security [START_REF] Barthe | Secure compilation of side-channel countermeasures: the case of cryptographic "constant-time[END_REF][START_REF] Silva | The correctness-security gap in compiler optimization[END_REF][START_REF] Simon | What you get is what you C: Controlling side e ects in mainstream C compilers[END_REF]. In this chapter we propose general secure compilation criteria that are agnostic to the concrete enforcement mechanism used by the compilation chain to protect the compiled program from the adversarial target context.

In §2.1, we de ned RTP as the preservation of robust satisfaction of trace properties:

RTP : ∀π ∈ 2 Trace . ∀P. (∀C S t. C S [P] t ⇒ t ∈ π) ⇒ (∀C T t. C T [ P↓] t ⇒ t ∈ π)
Trace properties are simply sets of allowed traces [START_REF] Lamport | Formal foundation for speci cation and veri cation[END_REF]] and a whole program satis es a trace property if all the traces it can produce are in the set of allowed traces representing the trace property. A partial program robustly satis es a property if the traces it can produce when linked with any context are all included in the set representing the property.

The de nition of RTP above directly captures which security properties of the source are preserved by the compilation chain. However, in order to prove that a compilation chain satis es RTP we gave an equivalent "property-free" characterization in the introduction:

RTC : ∀P. ∀C T . ∀t. C T [ P↓] t ⇒ ∃C S . C S [P] t
The equivalence proof between RTP and RTC is simple, but still illustrative: The RTC characterization is similar to "backward simulation", which is the standard criterion for compiler correctness [Leroy 2009a]:

TP : ∀W. ∀t. W↓ t ⇒ W t
Maybe less known is that this property-free characterization of correct compilation also has an equivalent property-full characterization as the preservation of all trace properties:

TP : ∀π ∈ 2 Trace . ∀W. (∀t. W t ⇒ t ∈ π) ⇒ (∀t. W↓ t ⇒ t ∈ π)
The major di erence compared to RTP is that TP only preserves the trace properties of whole programs and does not allow any form of linking. In contrast, RTP allows linking a compiled partial program with arbitrary target contexts and protects the program so that all robust trace properties are preserved. In general, RTP and TP are incomparable. However, RTP strictly implies TP when whole programs (W ) are a subset of partial programs (P ) and, additionally, the semantics of whole programs is independent of any linked context (i.e., ∀W t C. W t ⇐⇒ C[W ] t, which happens, intuitively, when the whole program starts execution and, being whole, never calls into the context).

More compositional criteria for compiler correctness have been proposed in the literature [START_REF] Kang | Lightweight veri cation of separate compilation[END_REF][START_REF] Neis | Pilsner: a compositionally veri ed compiler for a higher-order imperative language[END_REF][START_REF] Perconti | Verifying an open compiler using multi-language semantics[END_REF][START_REF] Stewart | Compositional CompCert[END_REF]. At a minimum such criteria allow linking with contexts that are the compilation of source contexts [START_REF] Kang | Lightweight veri cation of separate compilation[END_REF], which in our setting can be formalized as follows:

SCC : ∀P. ∀C S . ∀t. C S ↓ [ P↓] t ⇒ C S [P] t
More permissive criteria allow linking with any target context that behaves like some source context [START_REF] Neis | Pilsner: a compositionally veri ed compiler for a higher-order imperative language[END_REF], which in our setting can be written as:

CCC : ∀P. ∀C T . ∀C S . ∀t. C T ≈ C S ∧ C T [ P↓] t ⇒ C S [P] t
RTP is incomparable to SCC and CCC. On one hand, RTP allows linking with arbitrary targetlevel contexts, which is not allowed by SCC and CCC and requires inserting strong protection barriers. On the other hand, in RTP all source-level reasoning has to be done with respect to an arbitrary source context, while with SCC and CCC one can reason about a known source context. Technically, RTC does not imply SCC, since even if we instantiate RTC with C S ↓ for C T , what we obtain in the source is ∃C S . C S [P] t, for some C S that is unrelated to the original C S . Similarly, RTC does not imply CCC, which is strictly stronger than SCC under the natural assumption that C S ↓ ≈ C S .

Trace Model with Finite and Infinite Traces and Its Impact on Safety and Liveness

For studying safety and liveness, traces need a bit of structure. We do this by introducing a precise model of traces and of nite trace pre xes, which also forms the base of our Coq formalization. Our trace model is a non-trivial extension of the standard trace models used for studying safety and liveness of reactive systems [START_REF] Alpern | De ning liveness[END_REF][START_REF] Clarkson | Hyperproperties[END_REF][START_REF] Lamport | Specifying systems: the TLA+ language and tools for hardware and software engineers[END_REF][START_REF] Lamport | Formal foundation for speci cation and veri cation[END_REF][START_REF] Manna | Temporal veri cation of reactive systems: safety[END_REF][START_REF] Schneider | On Concurrent Programming[END_REF], since (1) we need to balance the strength of the properties we preserve and the optimizations the compiler can still perform; and (2) we are interested in securely compiling both terminating and non-terminating programs. The extension of the trace model directly impacts the meaning of safety, which we try to keep as natural as possible, and also created the need for a new de nition of dense properties to take the place of liveness.

The rst departure from some of the previous work on trace properties [START_REF] Lamport | Specifying systems: the TLA+ language and tools for hardware and software engineers[END_REF][START_REF] Lamport | Formal foundation for speci cation and veri cation[END_REF][START_REF] Manna | Temporal veri cation of reactive systems: safety[END_REF][START_REF] Schneider | On Concurrent Programming[END_REF]] and hyperproperties [START_REF] Clarkson | Hyperproperties[END_REF] for reactive systems is that our traces are built from events, not from states. This is standard for formalizing correct compilation [START_REF] Kumar | CakeML: a veri ed implementation of ML[END_REF], Leroy 2009a], where one wants to give the compiler enough freedom to perform optimizations by requiring it only to preserve relatively coarse-grained events such as input from and outputs to an external environment. For instance, the CompCert veri ed compiler [Leroy 2009a] follows the C standard and de nes the result of a program to be a trace of all I/O and volatile operations it performs, plus an indication of whether and how it terminates.1 

The events in our traces are drawn from an arbitrary nonempty set (and a few of our results require at least 2 events). Intuitively, traces t are nite or in nite lists of events, where a nite trace means that the program terminates or enters an unproductive in nite loop after producing all the events in the list. This is natural for usual programming languages where most programs do indeed terminate and is standard for veri ed compilers like CompCert. This constitutes a second non-trivial extension of the trace model usually considered for abstract modeling of reactive systems (e.g., in a transition system or a process calculus), which looks only at in nite traces [START_REF] Clarkson | Hyperproperties[END_REF][START_REF] Lamport | Specifying systems: the TLA+ language and tools for hardware and software engineers[END_REF][START_REF] Manna | Temporal veri cation of reactive systems: safety[END_REF][START_REF] Schneider | On Concurrent Programming[END_REF]].

Safety Properties For de ning safety properties the main ingredient is a de nition of nite trace pre xes, which capture the nite observations that can be made about an execution, for instance by a reference monitor. A reference monitor can generally observe that the program has terminated, so in our extended trace model nite trace pre xes are lists of events in which it is observable whether a pre x is terminated and can no longer be extended or if it is not yet terminated and can still be extended with more events. Moreover, we take the stance that while termination and silent divergence are two di erent terminal trace events, no observer can distinguish the two in nite time, since one cannot tell whether a program that seems to be looping will eventually terminate. Technically, in our model nite trace pre xes m are lists with two di erent nil constructors: • for terminated pre xes and • for not yet terminated pre xes. In contrast, traces can end either with • if the program terminates or with if the program silently diverges, or they can go on in nitely. The pre x relation m ≤ t is de ned between a nite pre x m and a trace t according to the intuition above: • ≤ •, • ≤ t for any t, and e • m ≤ e • t whenever m ≤ t (we write • for concatenation).

The de nition of safety properties is unsurprising for this trace model:

Safety {π ∈ 2 Trace | ∀t ∈π. ∃m≤t. ∀t ≥m. t ∈π}
A trace property π is Safety if, within any trace t that violates π, there exists a nite "bad pre x" m that can only be extended to traces t that also violate π. For instance, the trace property π ¬e = {t | e ∈ t}, stating that the bad event e never occurs in the trace, is Safety, since for every trace t violating π ¬e there exists a nite pre x m = m • e • • (some pre x m followed by e and then by the un nished pre x symbol •) that is a pre x of t and so that every trace extending m still contains e, so it still violates π ¬e . Similarly, 𠬕 = {t | • ∈ t} is a safety property that rejects all terminating traces and only accepts the non-terminating ones. This being safety crucially relies on allowing • in the nite trace pre xes: For any nite trace t rejected by 𠬕 there exists a bad pre x m = m •• so that all extensions of m are also rejected by 𠬕 ; where this last part is trivial since the pre x m is terminating (ends with •) and can thus only be extended to t itself. Finally, the trace property π term ♦e = {t | t terminating ⇒ e ∈ t}, stating that in every terminating trace the event e must eventually happen, is also a safety property in our model, since for each terminating trace t = m • • violating π term ♦e there exists a bad pre x m = t that can only be extended to traces t = t that also violate π term ♦e . In general, all trace properties like 𠬕 and π term ♦e that only reject terminating traces and thus allow all non-terminating traces are safety properties in our model; i.e., if ∀t non-terminating. t ∈ π then π is safety. So the trace property π S = π ∪ {t | t non-terminating} is safety for any π.

Dense Properties In our trace model the liveness de nition of [START_REF] Alpern | De ning liveness[END_REF] does not have its intended intuitive meaning, so instead we focus on the main properties that the Alpern and Schneider liveness de nition satis es in the in nite trace model and, in particular, that each trace property can be decomposed as the intersection of a safety property and a liveness property. We discovered that in our model the following surprisingly simple notion of dense properties satis es all the characterizing properties of liveness and is, in fact, uniquely determined by these properties and the de nition of safety above:

Dense {π ∈ 2 Trace | ∀t terminating. t ∈ π}
We say that a trace property π is Dense if it allows all terminating traces; or, conversely, it can only be violated by non-terminating traces. For instance, the trace property π ¬term ♦e = {t | t non-terminating ⇒ e ∈ t}, stating that the good event e will eventually happen along every non-terminating trace is a dense property, since it accepts all terminating traces. The property π ¬ = {t | ∈ t} = {t | t non-terminating ⇒ t in nite} stating that the program does not silently diverge is also dense. Similarly, π ¬term ♦e = {t | t non-terminating ⇒ t in nite ∧ ∀m. ∃m . m • m • e ≤ t} is dense and states that the event e happens in nitely often in any non-terminating trace. The trace property π ♦• = {t | t terminating}, which only contains all the terminating traces and thus rejects all the non-terminating traces, is the minimal dense property in our model. Finally, any property becomes dense in our model if we change it to allow all terminating traces: i.e., π L = π ∪ {t | t terminating} is dense for any π. For instance, while π ¬e is safety, the following dense property π ¬term ¬e states that event e never occurs along the non-terminating traces: π ¬term ¬e = {t | t non-terminating ⇒ e ∈ t}. We have proved that our de nition of dense properties satis es the good properties of Alpern and Schneider's liveness [START_REF] Alpern | De ning liveness[END_REF], including their topological characterization, and in particular that any trace property can be decomposed as the intersection of a safety property and of a dense property ( ). For instance, the trace property π ♦e = {t | e ∈ t} that in our model is neither safety nor dense, decomposes as the intersection of π term ♦e (which is safety) and π ¬term ♦e (which is dense). The proof of this decomposition theorem is in fact very simple in our model: Given any trace property π, de ne π S = π ∪ {t | t non-terminating} and π D = π ∪ {t | t terminating}. As discussed above, π S ∈ Safety and π D ∈ Dense. Finally,

π S ∩ π L = (π ∪ {t | t non-terminating}) ∩ (π ∪ {t | t terminating}) = π.
Moreover, we have proved that our de nition of dense properties is uniquely determined given our trace model, our de nition of safety, and the following 3 properties: What does not hold in our model though, is that any trace property can also be decomposed as the intersection of two liveness properties [START_REF] Alpern | De ning liveness[END_REF], since this rather counterintuitive decomposition seems to crucially rely on all traces of the system being in nite.

Finally, in case one wonders about the relation between dense properties and the liveness denition of [START_REF] Alpern | De ning liveness[END_REF], the two are in fact equivalent in our model, but this seems to be a coincidence and only happens because the Alpern and Scheinder de nition completely loses its original intent in our model, as the following theorem and simple proof suggests:

Theorem 2. ∀π ∈ 2 Trace . π ∈ Dense ⇐⇒ ∀m. ∃t. m≤t ∧ t ∈ π
For showing the ⇒ direction take some π ∈ Dense and some nite pre x m. We can construct t m• from m by simply replacing any nal • with •. By de nition m≤t m• and moreover, since t m• is terminating and π ∈ Dense, we can conclude that t ∈ π. For showing the ⇐ direction take some π ∈ 2 Trace and some terminating trace t; since t is terminating we can choose m = t and since this nite pre x extends only to t we immediately obtain t ∈ π.

Robust Safety Property Preservation (RSP)

Robust safety preservation is an interesting criterion for secure compilation because it is easier to achieve and prove than most criteria of Figure 2.1, while still being quite expressive [Gordon andJe rey 2004, Swasey et al. 2017].

The de nition of RSP simply restricts the preservation of robust satisfaction from all trace properties in RTP to only the safety properties; otherwise the de nition is exactly the same:

RSP : ∀π ∈ Safety. ∀P. (∀C S t. C S [P] t ⇒ t ∈ π) ⇒ (∀C T t. C T [ P↓] t ⇒ t ∈ π)
One might wonder how one can get safety properties to be robustly satis ed in the source, given that the execution traces can potentially be in uenced not only by the partial program but also by the adversarial context, who could cause "bad events" to happen. A rst alternative is for the semantics of the source language to simply prevent the context from producing any events, maybe other than termination, as we do in the compilation chain from §2.6, or be more ne-grained and prevent the context from producing only certain privileged events. With this alternative the source program will robustly satisfy safety properties over the privileged events the context cannot produce, but then the compilation chain needs to sandbox [START_REF] Tan | Principles and implementation techniques of software-based fault isolation[END_REF][START_REF] Wahbe | E cient software-based fault isolation[END_REF]] the context to make sure that it can only produce non-privileged events. A second alternative is for the source semantics to record enough information in the trace so that one can determine the originator of each event (as done for instance by the informative traces of §2.6.4); then safety properties can explicitly talk only about the events of the program, not the ones of the context. With this second alternative the compilation chain does not need to restrict the context from producing certain events, but the obtained global guarantees are weaker, e.g., one cannot enforce that the whole program does not cause a dangerous system call, only that the trusted partial program cannot be tricked into causing it.

The equivalent property-free characterization for RSP ( ) simply requires one to back-translate a program (P), a target context (C T ), and a nite bad execution pre x (C T [ P↓] m) into a source context (C S ) producing the same nite trace pre x (m) in the source (C S [P] m):

RSC : ∀P. ∀C T . ∀m. C T [ P↓] m ⇒ ∃C S . C S [P] m
Syntactically, the only change with respect to RTC is the switch from whole traces t to nite trace pre xes m. Similarly to RTC, we can pick a di erent context C S for each execution C T [ P↓] m, which in our formalization we de ne generically as ∃t≥m. W t. The fact that for RSC these are nite execution pre xes can signi cantly simplify the back-translation task, since we can produce a source context only from this nite execution pre x. In fact, in §2.6.4 we produce a single source context in a fairly generic way even from a nite set of (related) nite execution pre xes.

Finally, we have proved that RTP strictly implies RSP ( ). The implication follows immediately from safety properties being trace properties, but showing the lack of an implication from RSP to RTP is more interesting and involves constructing a counterexample compilation chain. We take any target language that can produce in nite traces. We take the source language to be a variant of the target with the same partial programs, but where we extend whole programs and contexts with a bound on the number of events they can produce before being terminated. Compilation simply erases this bound. (While this construction might seem arti cial, languages with a fuel bound are gaining popularity [START_REF] Wood | Ethereum: A secure decentralised generalised transaction ledger[END_REF]].) This compilation chain satis es RSP but not RTP. To show that it satis es RSP, we simply back-translate a target context C T and a nite trace pre x m to a source context (C T , length(m)) that uses the length of m as the correct bound, so this context can still produce m in the source without being prematurely terminated. However, this compilation chain does not satisfy RTP, since in the source all executions are nite, so all dense properties are vacuously satis ed, which is clearly not the case in the target, where we also have in nite executions.

Robust Dense Property Preservation (RDP)

RDP simply restricts RTP to only the dense properties:

RDP : ∀π ∈ Dense. ∀P. (∀C S t. C S [P] t ⇒ t ∈ π) ⇒ (∀C T t. C T [ P↓] t ⇒ t ∈ π)
Again, one might wonder how one can get dense properties to be robustly satis ed in the source and then preserved by compilation. Enforcing that the context is responsive or eventually gives back control along the in nite traces seems often di cult, but one can still imagine devising enforcement mechanisms for this, for instance running the context in a separate process that gets terminated or preempted if a certain amount of time has passed, and then exposing such asynchronous programming in the source language. Alternatively, one can keep the source language unchanged but make the traces informative enough to identify the actions of the program and of the context, so that we can guarantee that the program satis es dense properties like being responsive, even if the context does not.

The property-free variant of RDP restricts RTC to only back-translating non-terminating traces:

RDC : ∀P. ∀C T . ∀t non-terminating. C T [ P↓] t ⇒ ∃C S . C S [P] t
In contrast to RSC, we are not aware of good ways to make use of the in nite execution C T [ P↓] t to produce a nite context C T , so the back-translation for RDC will likely have to use C T and P.

Finally, we have proved that RTP strictly implies RDP ( ). The counterexample compilation chain we use for showing the separation is roughly the inverse of the one we used for RSP. We take the source to be arbitrary, with the sole assumption that there exists a program P Ω that can produce a single in nite trace w irrespective of the context. We compile programs by simply pairing them with a constant bound on the number of steps, i.e., P↓ = (P, k). On the one hand, RDC holds vacuously, as target programs cannot produce in nite traces. On the other hand, this compilation chain does not have RTP, since the property π = {w} is robustly satis ed by P Ω in the source but not by its compilation (P Ω , k) in the target. This separation result does not hold in models with only in nite traces, wherein any trace property can be decomposed as the intersection of two liveness properties [START_REF] Alpern | De ning liveness[END_REF]. In such a model, Robust Liveness Property Preservation and RTP collapse.

From the decomposition into safety and liveness from §2.2.2 and the fact that RDP does not imply RTP, it follows that RDP also does not imply RSP. Similarly, RSP does not imply RDP.

Robustly Preserving Classes of Hyperproperties

So far, we have studied the robust preservation of trace properties, which are properties of individual traces of a program. In this section we generalize this to hyperproperties, which are properties of multiple traces of a program [START_REF] Clarkson | Hyperproperties[END_REF]. The most well-known hyperproperty is noninterference, which has many variants [START_REF] Askarov | Termination-insensitive noninterference leaks more than just a bit[END_REF][START_REF] Goguen | Security policies and security models[END_REF][START_REF] Mclean | Proving noninterference and functional correctness using traces[END_REF][START_REF] Sabelfeld | Language-based information-ow security[END_REF][START_REF] Zdancewic | Observational determinism for concurrent program security[END_REF], but usually requires considering two traces of a program that di er on secret inputs. Another hyperproperty is bounded mean response time over all executions. We study the robust preservation of various subclasses of hyperproperties: all hyperproperties ( §2.3.1), subset-closed hyperproperties ( §2.3.2), hypersafety and K-hypersafety ( §2.3.3), and hyperliveness ( §2.3.4). The corresponding secure compilation criteria are outlined in red in Figure 2.1.

Robust Hyperproperty Preservation (RHP)

While trace properties are sets of traces, hyperproperties are sets of sets of traces [START_REF] Clarkson | Hyperproperties[END_REF]]. If we call the set of traces of a whole program W the behavior of W (Behav (W ) = {t | W t}) then a hyperproperty is a set of allowed behaviors. We say that W satis es hyperproperty H if the behavior of W is a member of the set H (i.e., Behav (W ) ∈ H, or, if we unfold, {t | W t} ∈ H). Contrast this to W satisfying trace property π, which holds if the behavior of W is a subset of the set π (i.e., Behav (W ) ⊆ π, or, if we unfold, ∀t. W t ⇒ t ∈ π). So while a trace property determines whether each individual trace of a program should be allowed or not, a hyperproperty determines whether the set of traces of a program, its behavior, should be allowed or not. For instance, the trace property π 123 = {t 1 , t 2 , t 3 } is satis ed by programs with behaviors such as {t 1 }, {t 2 }, {t 2 , t 3 }, and {t 1 , t 2 , t 3 }, but a program with behavior {t 1 , t 4 } does not satisfy π 123 . A hyperproperty like H 1+23 = {{t 1 }, {t 2 , t 3 }} is satis ed only by programs with behavior {t 1 } or with behavior {t 2 , t 3 }. A program with behavior {t 2 } does not satisfy H 1+23 , so hyperproperties can express that if some traces (e.g., t 2 ) are possible then some other traces (e.g., t 3 ) should also be possible. A program with behavior {t 1 , t 2 , t 3 } also does not satisfy H 1+23 , so hyperproperties can express that if some traces (e.g., t 2 and t 3 ) are possible then some other traces (e.g., t 1 ) should not be possible. Finally, trace properties can be easily lifted to hyperproperties: A trace property π becomes the hyperproperty [π] = 2 π , which is just the powerset of π.

We say that a partial program P robustly satis es a hyperproperty H if it satis es H for any context C. Given this we de ne RHP as the preservation of robust satisfaction of arbitrary hyperproperties:

RHP : ∀H ∈ 2 2 Trace . ∀P. (∀C S . Behav (C S [P]) ∈ H) ⇒ (∀C T . Behav (C T [ P↓]) ∈ H)
The equivalent property-free characterization of RHP ( ) is not very surprising:

RHC : ∀P. ∀C T . ∃C S . Behav (C T [ P↓]) = Behav (C S [P]) RHC : ∀P. ∀C T . ∃C S . ∀t. C T [ P↓] t ⇐⇒ C S [P] t
This requires that, each partial program P and target context C T can be back-translated to a source context C S in a way that perfectly preserves the set of traces produced when linking with P and P↓ respectively. There are two di erences from RTP: (1) the ∃C S and ∀t quanti ers are swapped, so now one needs to produce a C S that works for all traces t, and (2) the implication in RTP (⇒) became a two-way implication in RHP ( ⇐⇒ ), so compilation has to perfectly preserve the set of traces. Because of point (2), if the source language is nondeterministic a compilation chain satisfying RHP cannot re ne this nondeterminism, e.g., it cannot implement nondeterministic scheduling via an actual deterministic scheduler, etc.

In the following subsections we study restrictions of RHP to various sub-classes of hyperproperties. To prevent duplication we de ne RHP(X) to be the robust satisfaction of a class X of hyperproperties (so RHP above is simply RHP(2 2 Trace )):

RHP(X) : ∀H ∈ X. ∀P. (∀C S . Behav (C S [P]) ∈ H) ⇒ (∀C T . Behav (C T [ P↓]) ∈ H)

Robust Subset-Closed Hyperproperty Preservation (RSCHP)

If one restricts robust preservation to only subset-closed hyperproperties then re nement of nondeterminism is again allowed. A hyperproperty H is subset-closed, written H ∈ SC, if for any two behaviors b 1 and b

2 so that b 1 ⊆ b 2 , if b 2 ∈ H then b 1 ∈ H. For instance, the lifting [π]
of any trace property π is subset-closed, but the hyperproperty H 1+23 above is not. It can be made subset-closed by allowing all smaller behaviors:

H SC 1+23 = {∅, {t 1 }, {t 2 }, {t 3 }, {t 2 , t 3 }} is subset-closed,
although it is not the lifting of a trace property (i.e., not a powerset).

Robust Subset-Closed Hyperproperty Preservation (RSCHP) is simply de ned as RHP(SC). The equivalent property-free characterization of RSCHC ( ) simply gives up the ⇐ direction of RHP:

RSCHC : ∀P. ∀C T . ∃C S . ∀t. C T [ P↓] t ⇒ C S [P] t
The most interesting sub-class of subset-closed hyperproperties is hypersafety, which we discuss in the next sub-section. The appendix also introduces and studies a series of sub-classes we call K-subset-closed hyperproperties that can be seen as generalizing K-hypersafety below.

Robust Hypersafety Preservation (RHSP)

Hypersafety is a generalization of safety that is very important in practice, since several important notions of noninterference are hypersafety, such as termination-insensitive noninterference [START_REF] Askarov | Termination-insensitive noninterference leaks more than just a bit[END_REF][START_REF] Fenton | Memoryless subsystems[END_REF][START_REF] Sabelfeld | A PER model of secure information ow in sequential programs[END_REF], observational determinism [START_REF] Mclean | Proving noninterference and functional correctness using traces[END_REF][START_REF] Roscoe | CSP and determinism in security modelling[END_REF][START_REF] Zdancewic | Observational determinism for concurrent program security[END_REF], and nonmalleable information ow [START_REF] Cecchetti | Nonmalleable information ow control[END_REF]].

According to [START_REF] Alpern | De ning liveness[END_REF], the "bad thing" that a safety property disallows must be nitely observable and irremediable. For safety the "bad thing" is a nite trace pre x that cannot be extended to any trace satisfying the safety property. For hypersafety, [START_REF] Clarkson | Hyperproperties[END_REF] generalize the "bad thing" to a nite set of nite trace pre xes that they call an observation, drawn from the set Obs = 2 FinPref Fin , which denotes the set of all nite subsets of nite pre xes. They then lift the pre x relation to sets: an observation o ∈ Obs is a pre x of a behavior b ∈ 2 Trace , written o≤b, if ∀m ∈ o. ∃t ∈ b. m≤t. Finally, they de ne hypersafety analogously to safety, but the domains involved include an extra level of sets:

Hypersafety {H | ∀b ∈ H. (∃o ∈ Obs. o≤b ∧ (∀b ≥o. b ∈ H))}
Here the "bad thing" is an observation o that cannot be extended to a behavior b satisfying the hypersafety property H. We use this to de ne Robust Hypersafety Preservation (RHSP) as RHP(Hypersafety) and propose the following equivalent characterization for it ( ):

RHSC : ∀P. ∀C T . ∀o ∈ Obs. o ≤ Behav (C T [ P↓]) ⇒ ∃C S . o ≤ Behav (C S [P])
This says that to prove RHSP one needs to be able to back-translate a partial program P, a context C T , and a pre x o of the behavior of C T [ P↓], to a source context C S so that the behavior of C S [P] extends o. It is possible to use the nite set of nite executions corresponding to observation o to drive this back-translation, as we illustrate in §2.6.4 for a stronger criterion.

For hypersafety the involved observations are nite sets but their cardinality is otherwise unrestricted. In practice though, most hypersafety properties can be falsi ed by very small observations: counterexamples to termination-insensitive noninterference [START_REF] Askarov | Termination-insensitive noninterference leaks more than just a bit[END_REF][START_REF] Fenton | Memoryless subsystems[END_REF][START_REF] Sabelfeld | A PER model of secure information ow in sequential programs[END_REF] and observational determinism [START_REF] Mclean | Proving noninterference and functional correctness using traces[END_REF][START_REF] Roscoe | CSP and determinism in security modelling[END_REF][START_REF] Zdancewic | Observational determinism for concurrent program security[END_REF] are observations containing 2 nite pre xes, while counterexamples to nonmalleable information ow [START_REF] Cecchetti | Nonmalleable information ow control[END_REF] are observations containing 4 nite pre xes. To account for this, [START_REF] Clarkson | Hyperproperties[END_REF] introduce K-hypersafety as a restriction of hypersafety to observations of a xed cardinality K. Given Obs K = 2 FinPref Fin(K) , the set of observations with cardinality K, all de nitions and results above can be ported to K-hypersafety by simply replacing Obs with Obs K .

The set of lifted safety properties, {[π] | π ∈ Safety}, is precisely the same as 1-hypersafety, since the counterexample for them is a single nite pre x. For a more interesting example, termination-insensitive noninterference (TINI ) [START_REF] Askarov | Termination-insensitive noninterference leaks more than just a bit[END_REF][START_REF] Fenton | Memoryless subsystems[END_REF][START_REF] Sabelfeld | A PER model of secure information ow in sequential programs[END_REF]] can be de ned as follows in our setting:

TINI {b | ∀t 1 , t 2 ∈ b. (t 1 terminating ∧ t 2 terminating ∧ pub-inputs(t 1 ) = pub-inputs(t 2 ))
⇒ pub-events(t 1 ) = pub-events(t 2 )} This requires that trace events are either inputs or outputs, each of them associated with a security level: public or secret. TINI ensures that for any two terminating traces of the program behavior for which the two sequences of public inputs are the same, the two sequences of public events-inputs and outputs-are also the same. TINI is in 2-hypersafety, since b ∈ TINI implies that there exist nite traces t 1 and t 2 that agree on the public inputs but not on all public events, so we can simply take o = {t 1 , t 2 }. Since the traces in o end with • any extension b of o can only add extra traces, i.e., {t 1 , t 2 } ⊆ b , so b ∈ TINI as needed to conclude that TINI is in 2hypersafety. In Figure 2.1, we write Robust Termination-Insensitive Noninterference Preservation (RTINIP) for RHP({TINI}).

Enforcing RHSP is strictly more demanding than enforcing RSP. Because even R2HSP implies the preservation of noninterference properties like TINI, a compilation chain satisfying R2HSP has to make sure that a target-level context cannot infer more information from the internal state of P↓ than a source context could infer from the state of P. By contrast, a RSP compilation chain can allow arbitrary reads of P↓'s internal state, even if P's state is private at the source level. Intuitively, for proving RSC, the source context produced by back-translation can guess any secret P↓ receives in the single considered execution, but for R2HSP the single source context needs to work for two di erent executions, potentially with two di erent secrets, so guessing is no longer an option. We use this to prove a separation result between RHSP and RSP, by exhibiting a toy compilation chain in which private variables are readable in the target language, but not in source. This compilation chain satis es RSP but not R2HSP. Using a more complex counterexample involving a system of K linear equations, we have also shown that, for any K, robust preservation of K-hypersafety (RKHSP), does not imply robust preservation of (K+1)-hypersafety (R(K+1)HSP).

Where is Robust Hyperliveness Preservation?

Robust Hyperliveness Preservation (RHLP) does not appear in Figure 2.1, because it is equivalent to RHP. We de ne RHLP as RHP(Hyperliveness) for the following standard de nition of Hyperliveness [START_REF] Clarkson | Hyperproperties[END_REF]:

Hyperliveness {H | ∀o ∈ Obs. ∃b≥o. b ∈ H} The proof that RHLP implies RHC ( ) involves showing that {b | b =Behav (C T [ P↓]
)}, the hyperproperty allowing all behaviors other than Behav (C T [ P↓]), is hyperliveness. Another way to obtain this result is from the fact that, as in previous models [START_REF] Alpern | De ning liveness[END_REF], each hyperproperty can be decomposed as the intersection of two hyperliveness properties. This collapse of preserving hyperliveness and preserving all hyperproperties happens irrespective of the adversarial contexts.

Robustly Preserving Classes of Relational Hyperproperties

So far, we have described the robust preservation of trace properties and hyperproperties, which are predicates on the behavior of a single program. However, we may be interested in showing that compilation robustly preserves relations between the behaviors of two or more programs. For example, suppose we hand-optimize a partial source program P 1 to a partial source program P 2 and we reason in the source semantics that P 2 runs faster than P 1 in any source context. We may want compilation to preserve this "runs faster than" relation between the two program behaviors even against arbitrary target contexts. Similarly, we may reason that in any source context the behavior (i.e., set of traces) of P 1 is the same as that of P 2 and then want secure compilation to preserve such trace equivalence [START_REF] Baelde | A reduced semantics for deciding trace equivalence[END_REF][START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security protocols theory and practice[END_REF], Delaune and Hirschi 2017] against arbitrary target contexts. This last criterion, which we call Robust Trace Equivalence Preservation (RTEP) in Figure 2.1, is interesting because in various determinate settings [START_REF] Cheval | Deciding equivalence-based properties using constraint solving[END_REF][START_REF] Engelfriet | Determinacy implies (observation equivalence = trace equivalence)[END_REF]] it coincides with preserving observational equivalence, i.e., the direction of full abstraction interesting for security, as discussed in §2.5.

In this section, we study the robust preservation of such relational hyperproperties and several interesting subclasses, all of which are predicates on the behaviors of multiple programs. Unlike hyperproperties and trace properties, relational hyperproperties have not been de ned as a general concept in the literature, so even their de nitions are new. We describe relational hyperproperties and their robust preservation in §2.4.1, then look at a subclass called relational properties in §2.4.2, and a smaller subclass, relational safety properties, in §2.4.3. The corresponding secure compilation criteria are highlighted in blue in Figure 2.1. In §2.4.4 we show that none of these relational criteria are implied by any non-relational criterion (from §2.2 and §2.3).

Relational Hyperproperty Preservation (RrHP)

Recall that the behavior Behav (P ) of a program P is the set of all traces of P and let Behavs = 2 Trace be the set of all possible behaviors. We de ne a relational hyperproperty as a predicate (relation) on a list of behaviors. A list of programs is then said to have the relational hyperproperty if their respective behaviors satisfy the predicate. Depending on the arity of the predicate, we get di erent subclasses of relational hyperproperties. For arity 1, the resulting subclass describes relations on the behavior of individual programs, which coincides with hyperproperties de ned in §2.3. For arity 2, the resulting subclass consists of relations on the behaviors of pairs of programs. Both examples described at the beginning of this section lie in this subclass. This can then be generalized to any nite arity K (predicates on behaviors of K programs), and to the in nite arity (predicates on all programs of the language).

Next, we de ne the robust preservation of these subclasses. For arity 2, robust 2-relational hyperproperty preservation, R2rHP, is de ned as follows:

R2rHP : ∀R ∈ 2 (Behavs 2 ) . ∀P 1 P 2 . (∀C S . (Behav (C S [P 1 ]), Behav (C S [P 2 ])) ∈ R) ⇒ (∀C T . (Behav (C T [ P 1 ↓]), Behav (C S [ P 2 ↓])) ∈ R)
R2rHP says that for any binary relation R on behaviors of programs, if the behaviors of P 1 and P 2 satisfy R in every source context, then so do the behaviors of P 1 ↓ and P 2 ↓ in every target context. In other words, a compiler satis es R2rHP i it preserves any relation between pairs of program behaviors that hold in all contexts. In particular, such a compilation chain preserves trace equivalence in all contexts (i.e., RTEP), which we obtain by instantiating R with equality in the above de nition ( ). Similarly, such a compiler preserves the may-and must-testing equivalences [START_REF] De Nicola | Testing equivalences for processes[END_REF]. If execution time is recorded on program traces, then such a compiler also preserves relations like "the average execution time of P 1 across all inputs is no more than the average execution time of P 2 across all inputs" and "P 1 runs faster than P 2 on all inputs" (i.e., P 1 is an improvement of P 2 ). The last property can also be described as a relational predicate on traces (rather than behaviors); we return to this point in §2.4.2.

Like all our earlier de nitions, R2rHP has an equivalent ( ) property-free characterization that does not mention the relations R:

R2rHC : ∀P 1 P 2 C T . ∃C S . Behav (C T [ P 1 ↓])=Behav (C S [P 1 ]) ∧ Behav (C T [ P 2 ↓])=Behav (C S [P 2 ])
R2rHC is a direct generalization of RHC from §2.3.1. Di erent from RHC is the requirement that the same source context C S simulate the behaviors of two target programs,

C T [ P 1 ↓] and C T [ P 2 ↓].
R2rHP generalizes to any nite arity K in the obvious way, yielding RKrHP. Finally, R2rHP generalizes to the in nite arity. We call this Robust Relational Hyperproperty Preservation (RrHP); it robustly preserves relations over the behaviors of all programs of the source language or, equivalently, relations over functions from source programs (drawn from the set Progs) to behaviors.

RrHP : ∀R ∈ 2 (Progs→Behavs) .

(∀C S . (λP. Behav (C S [P])) ∈ R) ⇒ (∀C T . (λP. Behav (C T [ P↓])) ∈ R)
RrHP is the strongest criterion we study and, hence, it is the highest point in the partial order of Figure 2.1. It also has an equivalent ( ) property-free characterization, RrHC, requiring for every target context C T , a source context C S that can simulate the behavior of C T for any program:

RrHC : ∀C T . ∃C S . ∀P. Behav (C T [ P↓]) = Behav (C S [P])
It is instructive to compare the property-free characterizations of the robust preservation of trace properties (RTC), hyperproperties (RHC) and relational hyperproperties (RrHC). In RTC, the source context C S may depend on the target context C T , the source program P and a given trace t. In RHC, C S may depend only on C T and P. In RrHC, C S may depend only on C T . This directly re ects the increasing expressive power of trace properties, hyperproperties, and relational hyperproperties, as predicates on traces, behaviors (set of traces), and programindexed sets of behaviors (sets of sets of traces), respectively.

Relational Trace Property Preservation (RrTP)

Relational (trace) properties are the subclass of relational hyperproperties that are fully characterized by relations on traces of multiple programs. Speci cally, a K-ary relational hyperproperty is a relational trace property if there is a K-ary relation R on traces such that P 1 , .., P K are related by the relational hyperproperty i (t 1 , . . . , t k ) ∈ R for any t 1 ∈ Behav (P 1 ), . . . , t k ∈ Behav (P K ). For example, the relation "P 1 runs faster than P 2 on every input" is a 2-ary relational property characterized by pairs of traces which either di er in the input or on which P 1 's execution time is less than that of P 2 . Relational properties of some arity are a subclass of relational hyperproperties of the same arity. Next, we de ne the robust preservation of relational properties of di erent arities. For arity 1, this coincides with RTP from §2.2.1. For arity 2, we de ne Robust 2-relational Property Preservation or R2rTP as follows.

R2rTP : ∀R ∈ 2 (Trace 2 ) . ∀P 1 P 2 . (∀C S t 1 t 2 . (C S [P 1 ] t 1 ∧ C S [P 2 ] t 2 ) ⇒ (t 1 , t 2 )∈R) ⇒ (∀C T t 1 t 2 . (C T [ P 1 ↓] t 1 ∧ C T [ P 2 ↓] t 2 ) ⇒ (t 1 , t 2 )∈R)
R2rTP implies the robust preservation of relations like "P 1 runs faster than P 2 on every input". However, R2rTP is weaker than its relational hyperproperty counterpart, R2rHP ( §2.4.1): Unlike R2rHP, R2rTP does not imply the robust preservation of relations like "the average execution time of P 1 across all inputs is no more than the average execution time of P 2 across all inputs" (a relation between average execution times of P 1 and P 2 cannot be characterized by any relation between individual traces of P 1 and P 2 ). We have also proved that R2rTP implies robust trace equivalence preservation (RTEP) for languages without internal nondeterminism, under standard conditions.

R2rTP also has an equivalent ( ) property-free characterization, R2rTC.

R2rTC :

∀P 1 P 2 . ∀C T . ∀t 1 t 2 . (C T [ P 1 ↓] t 1 ∧ C T [ P 2 ↓] t 2 ) ⇒ ∃C S . (C S [P 1 ] t 1 ∧ C S [P 2 ] t 2 )
Establishing R2rTC requires constructing a source context C S that can simultaneously simulate a given trace of C T [ P 1 ↓] and a given trace of

C T [ P 2 ↓].
R2rTP generalizes from arity 2 to any nite arity K in the obvious way. It also generalizes to the in nite arity, i.e., to the robust preservation of all relations on all programs of the language that can be characterized by individual traces or, equivalently, relations on functions from programs to traces. We call this Robust Relational Trace Property Preservation or RrTP. This and its equivalent ( ) property-free characterization, RrTC, are de ned as follows.

RrTP : ∀R ∈ 2 (Progs→Trace) . (∀C S . ∀f. (∀P. C S [P] f (P)) ⇒ R(f )) ⇒ (∀C T . ∀f. (∀P. C T [ P↓] f (P)) ⇒ R(f )) RrTC : ∀f : Progs → Trace. ∀C T . (∀P. C T [ P↓] f (P)) ⇒ ∃C S . (∀P. C S [P] f (P))
In RrTC, the same context C S must simulate one selected trace of every source program.

Robust Relational Safety Preservation (RrSP)

Relational safety properties are a subclass of relational trace properties, much as safety properties are a subclass of trace properties. Speci cally, a K-ary relational hyperproperty is a K-ary relational safety property if there is a set M of size-K sets of trace pre xes with the following condition: P 1 , . . . , P K are not related by the hyperproperty i P 1 , . . . , P K respectively have traces t 1 , . . . , t K such that m ≤ {t 1 , . . . , t K }. Here, ≤ is the lifted pre x relation from §2.3.3. This is quite similar to hypersafety, except that the "bad" traces {t 1 , . . . , t K } come from di erent programs.

Relational safety properties are a natural generalization of safety and hypersafety properties to multiple programs, and an important subclass of relational trace properties. Several interesting relational trace properties are actually relational safety properties. For instance, if we restrict the earlier relational trace property "P 1 runs faster than P 2 on all inputs" to terminating programs it becomes a relational safety property, characterized by pairs of bad pre xes in which both pre xes have the termination symbol, both pre xes have the same input, and the left pre x shows termination no earlier than the right pre x. In a setting without internal nondeterminism (i.e., determinate [START_REF] Engelfriet | Determinacy implies (observation equivalence = trace equivalence)[END_REF], Leroy 2009a]) where, additionally, divergence is observable, trace equivalence in all contexts is also a 2-relational safety property, so robustly preserving all 2-relational safety properties (R2rSP) implies RTEP ( ).

Next, we de ne the robust preservation of relational safety properties for di erent arities. At arity 2, we de ne robust 2-relational safety preservation or R2rSP as follows.

R2rSP :∀R ∈ 2 (FinPref 2 ) . ∀P 1 P 2 . (∀C S m 1 m 2 . (C S [P 1 ] m 1 ∧ C S [P 2 ] m 2 ) ⇒ (m 1 , m 2 ) ∈ R) ⇒ (∀C T m 1 m 2 . (C T [ P 1 ↓] m 1 ∧ C T [ P 2 ↓] m 2 ) ⇒ (m 1 , m 2 ) ∈ R)
In words: If all pairs of nite trace pre xes of source programs P 1 , P 2 robustly satisfy a relation R, then so do all pairs of trace pre xes of the compiled programs P 1 ↓, P 2 ↓. R here represents the complement of the bad pre xes M in the de nition of relational safety properties. So, this de nition can also be read as saying that if all pre xes of P 1 , P 2 in every context are good (for any de nition of good), then so are all pre xes of P 1 ↓, P 2 ↓ in every context. The only di erence from the stronger R2rTP ( §2.4.2) is between considering full traces and only nite pre xes, and the same holds for the equivalent property-free characterization, R2rSC ( ).

Comparison of proof obligations

We brie y compare the robust preservation of (variants of) relational hyperproperties (RrHP, §2.4.1), relational trace properties (RrTP, §2.4.2) and relational safety properties (RrSP, this subsection) in terms of the di culty of back-translation proofs. For this, it is instructive to look at the property-free characterizations. In a proof of RrSP or any of its variants, we must construct a source context C S that can induce a given set of nite pre xes of traces, one from each of the programs being related. In RrTP and its variants, this obligation becomes harder-now the constructed C S must be able to induce a given set of full traces. In RrHP and its variants, the obligation is even harder-C S must be able to induce entire behaviors (sets of traces) from each of the programs being related. Thus, the increasing strength of RrSP, RrTP and RrHP is directly re ected in corresponding proof obligations.

Looking further at just the di erent variants of relational safety described in this subsection, we note that the number of trace pre xes the constructed context C S must simultaneously induce in the source programs is exactly the arity of the relational property. Constructing C S from a nite number of pre xes is much easier than constructing C S from an in nite number of pre xes. Consequently, it is meaningful to de ne a special point in the partial order of Figure 2.1 that is the join of RKrSP for all nite Ks, which is the strongest preservation criterion that can be established by back-translating source contexts C S starting from a nite number of trace pre xes. We call this robust nite-relational safety preservation, or RFrSP. Its property-free characterization, RFrSC, is shown below.

RFrSC : ∀K. ∀P 1 . . . P K . ∀C T . ∀m 1 . . . m K . (C T [ P 1 ↓] m 1 ∧ . . . ∧ C T [ P K ↓] m K ) ⇒ ∃C S . (C S [P 1 ] m 1 ∧ . . . ∧ C S [P K ] m K )
We sketch an illustrative proof of RFrSC in §2.6.4. In Figure 2.1, all criteria weaker than RFrSP are highlighted in green.

Robust Non-Relational Preservation Doesn't Imply Robust Relational Preservation

Relational (hyper)properties ( §2.4.1, §2.4.2) and hyperproperties ( §2.3) are di erent but both have a "relational" nature: Relational (hyper)properties are relations on the behaviors or traces of multiple programs, while hyperproperties are relations on multiple traces of the same program. So one may wonder whether there is any case in which the robust preservation of a class of relational hyper(properties) is equivalent to that of a class of hyperproperties. Might it not be the case that a compiler that robustly preserves all hyperproperties (RHP, §2.3.1) also robustly preserves at least some class of 2-relational (hyper)properties? This is, in fact, not the case-RHP does not imply the robust preservation of any subclass of relational properties that we have described in this section (except, of course, relational properties of arity 1, that are just hyperproperties). Since RHP is the strongest non-relational robust preservation criterion that we study, this also means that no non-relational robust preservation criterion implies any relational robust preservation criterion in Figure 2.1. In other words, all edges from relational to non-relational points in Figure 2.1 are strict implications.

To prove this, we construct a compiler that satis es RHP, but does not have R2rSP, the weakest relational criterion in Figure 2.1.

Theorem 3. There is a compiler that satis es RHP but not R2rSP.

Proof sketch. Consider a source language that lacks code introspection, and a target language which is exactly the same, but additionally has a primitive with which the context can read the code of the compiled partial program as data (and then analyze it). Consider the trivial compiler that is syntactically the identity. It should be clear that this compiler satis es RHP since the added operation of code introspection o ers no advantage to the context when we consider properties of a single program (as is the case in RHP). More precisely, in establishing RHC, given a target context C T and a program P, we can construct a simulating source context C S by modifying C T to hard-code P wherever C T performs code introspection. (Note that C S can depend on P in RHC.)

Now consider two programs that di er only in some dead code, that both read a value from the context and write it back verbatim to the output. These two program satisfy the relational safety property "the outputs of the two programs are equal" in any source context. However, there is a trivial target context that causes the compiled programs to break this relational property. This context reads the code of the program it is linked to, and provides 1 as input if it happens to be the rst of our two programs and 2 otherwise. Consequently, in this target context, the two programs produce outputs 1 and 2 and do not have this relational safety property in all contexts. Hence, this compiler does not satisfy R2rSP. (Technically, the trick of hardcoding the program in C S no longer works since there are two di erent programs here.)

This proof provides a fundamental insight: To robustly preserve any subclass of relational (hyper)properties, compilation must ensure that target contexts cannot learn anything about the syntactic program they interact with beyond what source contexts can also learn (this requirement is in addition to everything needed to attain the robust preservation of the corresponding subclass of non-relational hyperproperties). When the target language is low-level, hiding code attributes can be di cult: it may require padding the code segment of the compiled program to a xed size, and cleaning or hiding any code-layout-dependent data like code pointers from memory and registers when passing control to the context. These complex protections are not necessary for any non-relational preservation criteria (even RHP), but are already known to be necessary for fully abstract compilation to low-level code [Juglaret et al. 2016[START_REF] Kennedy | Securing the .net programming model[END_REF], Patrignani et al. 2015, 2016]. They can also be trivially circumvented if the context has access to side-channels (e.g., it can measure time via a di erent thread).

Where is full abstraction?

Full abstraction-the preservation and re ection of observational equivalence-is a well-studied criterion for secure compilation ( §2.7). The actually security-relevant direction of full abstraction is Observational Equivalence Preservation (OEP):

OEP : ∀P 1 P 2 . P 1 ≈ P 2 ⇒ P 1 ↓ ≈ P 2 ↓
One natural question, then, is how OEP relates to our criteria of robust preservation.

The answer to this question seems to be nuanced and we haven't fully resolved it, but we provide a partial answer here in the speci c case where programs don't have internal nondeterminism. In various such determinate settings observational equivalence coincides with trace equivalence in all contexts [START_REF] Cheval | Deciding equivalence-based properties using constraint solving[END_REF][START_REF] Engelfriet | Determinacy implies (observation equivalence = trace equivalence)[END_REF]] and, hence, OEP coincides with robust trace-equivalence preservation (RTEP, §2.4). Further, we argued in §2.4.2 that, in this setting, RTEP is implied by robust 2-relational property preservation (R2rTP), so OEP is also implied by R2rTP. If we additionally assume that divergence is nitely observable, or that the language is terminating, then RTEP and OEP are both implied by the weaker criterion, robust 2-relational safety preservation (R2rSP, §2.4.3).

In the other direction, we have proved that for determinate programs, RTEP (and, hence, OEP) does not imply any of the criteria that are above RSP or RDP in Figure 2.1. We explain here the key idea behind the construction. Fundamentally, RTEP (or OEP) only requires preserving equivalence of behavior. Consequently, a compiler from a language of booleans to itself that bijectively renames true to false, false to true, AND to OR, and OR to AND has RTEP. On the other hand, this compiler does not have RSP or RDP since it does not preserve safety or dense properties. For example, the constant function that outputs an in nite stream of trues is mapped to the constant function that outputs an in nite stream of falses. The source function satis es the safety property "never output false", while the compiled function does not. Similarly, the source function satis es the dense property "on any in nite trace, output at least one true", while the compiled function does not.

Our actual result is a bit stronger: We show that there exists a compiler that has both RTEP and compiler correctness-in the sense of TP, SCC, and CCC de ned in §2.2.1-but has neither RSP nor RDP. The proof is similar, but the construction is di erent, basically exploiting that even with SCC and CCC a correctly compiled program P↓ only needs to be able to properly deal with interactions with target contexts that behave like source contexts, and thus P↓ can perform unsafe actions when interacting with target contexts that have no source equivalent.

Theorem 4. There is a compiler between two deterministic languages that satis es RTEP, TP, SCC, and CCC, but none of the criteria above RSP and RDP in Figure 2.1.

Proving Secure Compilation

This section demonstrates that the studied criteria can be proved by adapting existing backtranslation techniques. We introduce a statically typed source language with rst-order functions and input-output and a similar dynamically typed target language ( §2.6.1), and we present a simple compiler between the two ( §2.6.2). We then describe two very di erent secure compilation proofs for this compilation chain, both based on techniques originally developed for showing fully abstract compilation. The rst proof shows RrHP ( §2.6.3), the strongest criterion from Figure 2.1, using a context-based back-translation, which provides an "universal embedding" of a target context into a source context [START_REF] New | Fully abstract compilation via universal embedding[END_REF]]. The second proof shows a slightly weaker criterion, Robust Finite-Relational Safety Preservation ( §2.6.4), which, however, still includes robust preservation of safety, of noninterference, and in some settings also of trace equivalence, as illustrated by the green area of Figure 2.1. This second proof relies on a trace-based back-translation [Je rey and Rathke 2005a, Patrignani et al. 2015[START_REF] Patrignani | On modular and fully-abstract compilation[END_REF], extended to back-translating a nite set of nite execution pre xes. This second technique is more generic, as it only depends on the model for context-program interaction (e.g., calls and returns), not on all other details of the languages. Since back-translation is often the hardest part of proving a compilation chain secure [Devriese et al. 2016a], we believe that a such a generic back-translation technique that requires less creativity can be very useful, especially when the source and target languages have large abstraction gaps that would make contextbased back-translation complicated, if at all possible.

Source and Target Languages

For the sake of simplicity, the languages we consider are simple rst-order languages with named procedures where values are boolean and naturals. The source language L τ is typed while the target language L u is untyped. A program in either language is a collection of function de nitions, each function body is a pure expression that can perform comparison and natural operations (⊕), branch and use let-in bindings. Expressions can read naturals from and write naturals to the environment, which generates trace events. Additionally, L u has a primitive e has τ to dynamic check whether expression e has type τ . Contexts C can call in the program and can manipulate its returned values, but cannot contain read nor write e actions, as those are security-sensitive. Program states either describe the evaluation of an expression, given a lookup table for procedure bodies or they describe the reaching of a stuck state: ˙::= P e | fail. Each language has a standard small-step operational semantics (Ω λ --→ Ω ) that describes how a program state evolves, as well as a big step trace semantics (Ω α, to use the same notation of §2.1) that concatenates all actions α in a trace α. The initial state of a program P plugged in context C, denoted as Ω 0 (C[P]), is the state P e, where C = e. We now have all the necessary material to de ne the behavior of a program as the set of traces that it can perform following the semantics rules starting from its initial state.

Behav (C[P]) = {α | Ω 0 (C[P]) α}

The Compiler

The compiler •↓ takes L τ programs and generates L u ones; technically speaking the compiler operates on programs and then on expressions; we overload the compiler notation for simplicity to refer to all of them. The main feature of the compiler is that it replaces static type annotations with dynamic type checks of function arguments upon invocation of a function (case •↓-Fun). 

I 1 , • • • , I m ; F 1 , • • • , F n ↓ = I 1 ↓, • • • , I m ↓; F 1 ↓, • • • , F n ↓ ( •↓-Prog) f : τ → τ  = f ( •↓-Intf) f(x : τ ) : τ → return e  = f (x) → return if x has τ ↓ then e↓ else fail ( •↓-Fun) Nat↓ = N Bool↓ = Bool

Proving Robust Relational Hyperproperty Preservation

To prove that •↓ attains RrHP, we need a way to back-translate target contexts into source ones, and we use an universal embedding as previously proposed for showing fully abstract compilation [START_REF] New | Fully abstract compilation via universal embedding[END_REF]]. The back-translation needs to generate a source context that respects source-level constraints, in this case it must be well typed. To ensure this, we use Nat as a Universal Type in back-translated source contexts. The intuition of the back-translation is that it will encode true as 0, false as 1 and any n as n + 2. Next we need ways to exchange values to and from a regular source type and our universal type. Speci cally, we de ne the following shorthands: inject τ (e) takes an expression e of type τ and returns an expression whose type is the universal type while extract τ (e) takes an expression e of universal type and returns an expression whose type is τ . 

let x : Nat= e↑ in if x ≥ 2 then 1 else 0 if τ ≡ N call f e↑ = inject τ (call f extract τ ( e↑)) if f : τ → τ ∈ I fail↑ = fail
Example 1 (Back-Translation). We show the back-translation of two simple target contexts and intuitively explain why the back-translation is correct and why it needs inject • and extract • .

Consider context C 1 = 3 * 5 that reduces to 15 irrespective of the program it links against. The back-translation must intuitively ensure that C 1 ↑ reduces to 17, which is the back-translation of 15. If we unfold the de nition of C 1 ↑ we have the following (given that 3↑=5 and 5↑=7).

let x1 : Nat=extract Nat (5) in let x2 : Nat=extract Nat (7) in inject Nat (x1 * x2)
By examining the code of extract Nat we see that in both cases it will just perform a subtraction by 2 turning the 5 and 7 respectively into 3 and 5. So after few reduction steps we have the following term: inject Nat (3 * 5). This again seems correct: the multiplication returns 15 and the inject returns 17, which would be the result of 15 .

Let us now consider a di erent context C 2 = false + 3. We know that no matter what program links against it, it will reduce to fail. Its statically typed back-translation is:

let x1 : Nat=extract Nat (0) in let x2 : Nat=extract Nat (7) in inject Nat (x1 * x2)
By looking at its code we can see that the execution of extract Nat (0) will indeed result in a fail, which is what we want and expect, as that is the back-translation of fail.

We proved RrHP for this simple compilation chain, using a simple logical relation that includes cases both for terms of source type (intuitively used for compiler correctness) as well as for terms of back-translation type [Devriese et al. 2016a[START_REF] New | Fully abstract compilation via universal embedding[END_REF]]. We prove the usual compatibility lemmas at source type for the compiler case while each back-translation case is proved correct at back-translation type, as illustrated by Example 1. The appendix in the supplementary materials provides full details.

Proving Robust Finite-Relational Safety Preservation

Proving that this simple compilation chain attains RFrSC does not require back-translating a target context, as we only need to build a source context that can reproduce a nite set of nite trace pre xes, but that is not necessarily equivalent to the original target context. We describe this back-translation on an example. The interested reader can nd all details in the appendix.

Example 2 (Back-Translation of traces). Consider the following programs (the interfaces are omitted for concision):

P 1 = (f(x : Nat) : Nat → return x, P 2 = (f(x : Nat) : Nat → return read, g(x : Nat) : Bool → return true) g(x : Nat) : Bool → return true)
The compiled programs are analogous, except they include dynamic type checks of the arguments: The programs plugged into the context can generate (at least) the following traces, where ⇓ means termination and ⊥ means failure:

P 1 ↓ = (f (x) → return (if x
C[ P 1 ↓] ; ⇓ C[ P 2 ↓] ; read 5; ⇓ C[ P 2 ↓] ; read 0; ⊥
In the rst execution of C[ P 2 ↓], the programs reads 5, and the rst branch of the if-then-else of the context is entered. In the second execution of C[ P 2 ↓], the programs reads 0, the second branch of the context is entered and the program fails in g after detecting a type error.

These traces alone are not enough to construct a source context since they do not have any information on the control ow of the program, and in particular on which function produces which input or output. Therefore, we use the execution pre xes to we enrich the traces with information about the calls and returns between program and context. To do so, we modify the semantics to record the call stack. Now, there are two rules for handling calls and returns: one modelling control ow going from context to program (and this is decorated with a ?) and one modelling the opposite: control ow going from program to context (and this is decorated with a !). Each rule generates the appropriate event, call f v? or ret v! respectively. If the call or the return occurs within the program no event is generated, as such calls and returns are not recorded, as they are not relevant for back-translating a context.

Since the semantics are otherwise identical, obtaining the new informative traces is straightforward: we can just replay the execution by substituting the rules for calls and returns.

Labels λ ::= • • • | β Interactions β ::= call f v? | ret v!
Now, the traces generated by the compiled programs plugged into the context become: In our example language, read and writes are only performed by the programs. The context speci es the ow of the program. Therefore, the role of the back-translated source context will be to perform appropriate calls; the I/O events will be obtained by correctness of the compiler.

C[ P 1 ↓] ; call f 5?; ret 5 
Since the context is the same in all executions, the only source of non-determinism in the execution is the program. Therefore, two traces generated by the same context (but not necessarily the same program), where I/O events have been removed, must be equal up to the point where there are two di erent return events: these traces are organized as a tree (Figure 2.2, on the left). This tree can be back-translated to a source context using nested if-then-else as depicted below (Figure 2.2, on the right, dotted lines indicate what the back-translation generates for each action in the tree). When additional branches are missing (e.g., there is no third behavior that analyzes the rst return or no second behavior that analyses the second return on the left execution), the back-translation inserts fail in the code -they are dead code branches (marked with a **). Correctness of the back-translation shows that this source context will produce exactly the same non-informative traces as before, therefore yielding RFrSP. However, would not be true of informative traces (that track calls and returns). In fact the call to g with a boolean would be ill-typed, and the back-translation has to solve this issue by shifting the failure from the program to the context, so the picture links the call g false? action to a fail. The call will never be executed at the source level.

Using the technique illustrated on the example above we have proved RFrSP for the compilation chain of this section. Complete details are in the appendix.

Related Work

Full Abstraction, originally applied to secure compilation in the seminal work of [START_REF] Abadi | Protection in programming-language translations[END_REF], has since received a lot of attention [START_REF] Patrignani | Formal approaches to secure compilation: A survey of fully abstract compilation and related work[END_REF]. [START_REF] Abadi | Protection in programming-language translations[END_REF] and, later, [START_REF] Kennedy | Securing the .net programming model[END_REF] identi ed failures of full abstraction in the Java to JVM and C# to CIL compilers, some of which were xed, but also others for which xing was deemed too costly compared to the perceived practical security gain. [START_REF] Abadi | Secure implementation of channel abstractions[END_REF] proved full abstraction of secure channel implementations using cryptography, but to prevent network tra c attacks they had to introduce noise in their translation, which in practice would consume network bandwidth. Ahmed et al. [START_REF] Ahmed | Veri ed compilers for a multi-language world[END_REF][START_REF] Ahmed | Typed closure conversion preserves observational equivalence[END_REF][START_REF] Lattner | What every C programmer should know about unde ned behavior #1/3[END_REF][START_REF] New | Fully abstract compilation via universal embedding[END_REF]] proved the full abstraction of type-preserving compiler passes for simple functional languages. [START_REF] Abadi | On protection by layout randomization[END_REF] and [START_REF] Jagadeesan | Local memory via layout randomization[END_REF] expressed the protection provided by address space layout randomization as a probabilistic variant of full abstraction. [START_REF] Fournet | Fully abstract compilation to JavaScript[END_REF] devised a fully abstract compiler from a subset of ML to JavaScript. Patrignani et al. [START_REF] Larmuseau | A secure compiler for ML modules[END_REF], Patrignani et al. 2015, 2016] studied fully abstract compilation to machine code, starting from single modules written in simple, idealized object-oriented and functional languages and targeting a hardware isolation mechanism similar to Intel's SGX [Intel].

Until recently, most formal secure compilation work was focused only on fully abstract compilation. The goal of our work is to explore a diverse set of secure compilation criteria, a few of them formally stronger than (the interesting direction of) full abstraction at least in various determinate settings, but most of them not directly comparable to full abstraction, some of them easier to achieve and prove than full abstraction, while others potentially harder to achieve and prove. This exploration clari es the trade-o between security guarantees and efcient enforcement for secure compilation: On one extreme, RTP robustly preserves only trace properties, but does not require enforcing con dentiality; on the other extreme, robustly preserving relational properties gives very strong guarantees, but requires enforcing that both the private data and the code of a program remain hidden from the context, which is often harder to achieve. The best criterion to apply depends on the application domain, but we provide a framework in which interesting design questions such as the following two can be addressed:

(1) What secure compilation criterion, when violated, would the developers of the Java to JVM and C# to CIL compilers, at least in principle, be willing to x? The work of [START_REF] Kennedy | Securing the .net programming model[END_REF] indicates that fully abstract compilation is not such a good answer to this question, and we wonder whether RTP or RHP could be better answers. (2) What weaker secure compilation criterion would the translations of [START_REF] Abadi | Secure implementation of channel abstractions[END_REF] satisfy if they did not introduce (ine cient) noise to prevent network tra c analysis? [START_REF] Abadi | Secure implementation of channel abstractions[END_REF] explicitly leave this problem open in their paper, and we believe one answer could be RTP, since it does not require preserving any con dentiality.

Our exploration also forced us to challenge the assumptions and design decisions of prior work. This is most visible in our attempt to use as generic and realistic a trace model as possible. To start, this meant moving away from the standard assumption in the hyperproperties literature [START_REF] Clarkson | Hyperproperties[END_REF]] that all traces are in nite, and switching instead to a trace model inspired by CompCert's [Leroy 2009a] with both terminating and non-terminating traces, and where non-terminating traces can be nite but not nitely observable (to account for silent divergence). This more realistic model required us to nd a class of trace properties to replace liveness. At places, this model is also at odds with the external observation notions typically used for fully abstract compilation, speci cally that divergence is an observable event. To accommodate such cases, extra assumptions are needed, such as the one we used to show that RTEP follows from R2rSP in some settings ( §2.4.3).

Proof techniques

The context-based back-translation we use to prove RrHP in §2.6.3 is adapted from the universal embedding technique of [START_REF] New | Fully abstract compilation via universal embedding[END_REF], who propose it for proving full abstraction of translations from typed to untyped languages. Devriese et al. [2016a[START_REF] Devriese | Modular, fully-abstract compilation by approximate back-translation[END_REF] show that even when a precise universal type does not exist in the source, one can use an approximate embedding that only works for a certain number of execution steps. They illustrate such an approximate back-translation by proving full abstraction for a compiler from the simply typed to the untyped λ-calculus. The trace-based back-translation technique we use in §2.6.4 was rst proposed by Je rey and Rathke [2005a,b] for proving the full abstraction of so called "trace semantics" (which are often used to prove observational equivalences). This back-translation technique was then adapted to show full abstraction of compilation chains to low-level target languages [START_REF] Agten | Sound modular veri cation of C code executing in an unveri ed context[END_REF], Patrignani and Clarke 2015, Patrignani et al. 2016]. While many other proof techniques have been previously investigated [START_REF] Abadi | On protection by layout randomization[END_REF][START_REF] Abadi | Secure implementation of channel abstractions[END_REF][START_REF] Ahmed | Typed closure conversion preserves observational equivalence[END_REF][START_REF] Lattner | What every C programmer should know about unde ned behavior #1/3[END_REF][START_REF] Fournet | Fully abstract compilation to JavaScript[END_REF][START_REF] Jagadeesan | Local memory via layout randomization[END_REF]], proofs of full abstraction remain notoriously di cult, even for very simple languages, with apparently simple conjectures surviving for decades before being nally settled [START_REF] Devriese | Parametricity versus the universal type[END_REF]].

It will be interesting to investigate how many of the existing full abstraction proofs can be repurposed to show stronger criteria from Figure 2.1, like we did in §2.6.3 for the universal embedding technique of [START_REF] New | Fully abstract compilation via universal embedding[END_REF]. For instance, it will be interesting to determine the strongest criterion from Figure 2.1 for which the approximate back-translation of Devriese et al. [2016a[START_REF] Devriese | Modular, fully-abstract compilation by approximate back-translation[END_REF] can be used.

Development of RSP Two pieces of concurrent work have examined more carefully how to attain and prove one of the weakest of our preservation criteria, RSP ( §2.2.3). [START_REF] Patrignani | Robustly safe compilation[END_REF] show RSP for compilers from simple sequential and concurrent languages to capability machines [Watson et al. 2015b]. They observe that that if the source language has a veri cation system for robust safety and compilation is limited to veri ed programs, then RSP can be established without directly resorting to back-translation. Independently, in chapter 3 we aim at devising realistic secure compilation chains for protecting mutually distrustful components written in an unsafe language like C. We show that by moving away from the full abstraction variant used in earlier work [Juglaret et al. 2016] to a variant of the RSP criterion from §2.2.3, we can support a more realistic model of dynamic compromise of components, while at the same time obtaining a criterion that is easier to achieve and prove.

Hypersafety Preservation

The high-level idea of specifying secure compilation as the preservation of properties and hyperproperties in adversarial contexts goes back to the work of [START_REF] Patrignani | Secure compilation and hyperproperty preservation[END_REF]. However, that work's technical development is limited to one criterion-the preservation of nite pre xes of program traces by compilation. Super cially, this is similar to one of our criteria, RHSP, but there are several di erences even from RHSP. First, [START_REF] Patrignani | Secure compilation and hyperproperty preservation[END_REF] do not consider adversarial contexts explicitly. This su ces for their setting of closed reactive programs, where traces are inherently fully abstract (so considering the adversarial context is irrelevant), but not in general. Second, they are interested in designing a criterion that accommodates speci c fail-safe like mechanisms for low-level enforcement, so the preservation of hypersafety properties is not perfect, and one has to show, for every relevant property, that the criterion is meaningful. However, [START_REF] Patrignani | Secure compilation and hyperproperty preservation[END_REF] consider translations of trace symbols induced by compilation, something that our criteria could also be extended with.

Source-level reasoning about robust satisfaction While this chapter studies secure compilation criteria based on preserving the robust satisfaction for various classes of properties, formally verifying that a partial source program robustly satis es a speci cation is a challenging problem. So far, most of the research has focused on techniques for proving observational equivalence [START_REF] Abadi | The applied pi calculus: Mobile values, new names, and secure communication[END_REF][START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security protocols theory and practice[END_REF], Delaune and Hirschi 2017, Je rey and Rathke 2005a,b] or trace equivalence [START_REF] Baelde | A reduced semantics for deciding trace equivalence[END_REF][START_REF] Cheval | Deciding equivalence-based properties using constraint solving[END_REF]. For robust satisfaction of trace properties, [START_REF] Kupferman | Robust satisfaction[END_REF] study robust model checking of systems modeled by nondeterministic Moore machines and properties speci ed by branching temporal logic. Robust safety, the robust satisfaction of safety properties, was studied for the analysis of security protocols [START_REF] Backes | Type-checking zero-knowledge[END_REF][START_REF] Lattner | What every C programmer should know about unde ned behavior #1/3[END_REF][START_REF] Gordon | Types and e ects for asymmetric cryptographic protocols[END_REF], and more recently for compositional veri cation [START_REF] Swasey | Robust and compositional veri cation of object capability patterns[END_REF]]. Verifying the robust satisfaction of hyperproperties and relational hyperproperties beyond observational equivalence and trace equivalence seems to be an open research problem.

Conclusion and Future Work

This chapter proposes a possible foundation for secure compilation by exploring many di erent criteria based on robust property preservation (Figure 2.1), but the road to building practical compilation chains achieving one of these criteria is still long and challenging. Even for RSP, scaling up to realistic programming languages and e ciently enforcing protection of the compiled program without restrictions on the linked context is challenging [Abate et al. 2018a, Patrignani andGarg 2018]. For R2HSP the problem becomes harder because one needs to protect the secrecy of the program's data, which is especially challenging in a realistic attacker model with side-channels, in which a RTINIP-like property seems the best one can hope for in practice. Finally, as soon as one is outside the green area of Figure 2.1 the generic back-translation technique of §2.6.4 stops applying and one needs to get creative about the proofs.

We made the simplifying assumption that the source and the target languages have the same trace model, and while this assumption is currently true for CompCert [Leroy 2009a], it is a big restriction in general. Fortunately, the criteria of this chapter can be easily extended to take a relation between source and target traces as an extra component of the compilation chain. It is also easy to automatically lift this relation on traces to a relation on sets of traces, sets of sets of traces, etc. What is less obvious is whether this automatic lifting is what one always wants, and more importantly whether the users of a secure compilation chain will understand this relation between the properties they reason about at the source languages and the ones they get at the target level.

Finally, the relation between the criteria of Figure 2.1 and fully abstract compilation requires further investigation. We identify the su cient conditions under which trace-equivalence preservation follows from certain of these criteria, which gives us a one-way relation to observational equivalence preservation in the cases in which observational equivalence coincides with trace equivalence [START_REF] Cheval | Deciding equivalence-based properties using constraint solving[END_REF][START_REF] Engelfriet | Determinacy implies (observation equivalence = trace equivalence)[END_REF]. Even under this assumption, what is less clear is whether there are any su cient conditions for fully abstract compilation to imply any of the criteria of Figure 2.1. The separation result of §2.5 shows that compiler correctness, even when reasonably compositional (i.e., satisfying SCC and CCC), is not enough. Yet the fact that fully abstract compilers often provide both the necessary enforcement mechanisms and the proof techniques to achieve even the highest criterion in Figure 2.1 (as illustrated in §2.6.3) suggests that there is more to full abstraction than currently meets the eye. One lead is to look at source program encodings targeted at illustrating con dentiality and internally observable safety properties in terms of observational equivalence [START_REF] Abadi | Protection in programming-language translations[END_REF][START_REF] Patrignani | Formal approaches to secure compilation: A survey of fully abstract compilation and related work[END_REF]].

3 When Good Components Go Bad: Secure Compilation for Unsafe Languages

Overview

Compartmentalization o ers a strong, practical defense against a range of devastating low-level attacks, such as control-ow hijacks exploiting bu er over ows and other vulnerabilities in C, C++, and other unsafe languages [START_REF] Bittau | Wedge: Splitting applications into reducedprivilege compartments[END_REF], Gudka et al. 2015, Watson et al. 2015b].

Widely deployed compartmentalization technologies include process-level privilege separation [START_REF] Bittau | Wedge: Splitting applications into reducedprivilege compartments[END_REF], Gudka et al. 2015[START_REF] Kilpatrick | Privman: A library for partitioning applications[END_REF]] (used in OpenSSH [START_REF] Provos | Preventing privilege escalation[END_REF]] and for sandboxing plugins and tabs in web browsers [START_REF] Reis | Isolating web programs in modern browser architectures[END_REF]), software fault isolation [START_REF] Tan | Principles and implementation techniques of software-based fault isolation[END_REF][START_REF] Wahbe | E cient software-based fault isolation[END_REF] Intuitively, protecting each component from all the others should bring strong security bene ts, since a vulnerability in one component need not compromise the security of the whole application. Each component will be protected from all other components for as long as it remains "good. " If, at some point, it encounters an internal vulnerability such as a bu er over ow, then, from this point on, it is assumed to be compromised and under the control of the attacker, potentially causing it to attack the remaining uncompromised components. The main goal of this chapter is to formalize this dynamic-compromise intuition and precisely characterize what it means for a compilation chain to be secure in this setting.

We want a characterization that supports source-level security reasoning, allowing programmers to reason about the security properties of their code without knowing anything about the complex internals of the compilation chain (compiler, linker, loader, runtime system, system software, etc). What makes this particularly challenging for C and C++ programs is that they may encounter unde ned behaviors-situations that have no source-level meaning whatsoever.

Compilers are allowed to assume that unde ned behaviors never occur in programs, and they aggressively exploit this assumption to produce the fastest possible code for well-de ned programs, in particular by avoiding the insertion of run-time checks. For example, memory safety violations [Azevedo de Amorim et al. 2018[START_REF] Szekeres | SoK: Eternal war in memory[END_REF]] (e.g., accessing an array out of bounds, or using a pointer after its memory region has been freed) and type safety violations [START_REF] Duck | E ectiveSan: Type and memory error detection using dynamically typed C/C++[END_REF]Yap 2018, Haller et al. 2016] (e.g., invalid unchecked casts)-cause real C compilers to produce code that behaves arbitrarily, often leading to exploitable vulnerabilities [Heartbleed, Szekeres et al. 2013].

Of course, not every unde ned behavior is necessarily exploitable. However, for the sake of strong security guarantees, we make a worst-case assumption that any unde ned behavior encountered within a component can lead to its compromise. Indeed, in the remainder we equate the notions of "encountering unde ned behavior" and "becoming compromised. "

While the dangers of memory safety and casting violations are widely understood, the C and C++ standards [ISO/IEC 2011] call out large numbers of unde ned behaviors [START_REF] Hathhorn | De ning the unde nedness of C[END_REF][START_REF] Krebbers | The C Standard Formalized in Coq[END_REF]] that are less familiar, even to experienced C/C++ developers [START_REF] Lattner | What every C programmer should know about unde ned behavior #1/3[END_REF][START_REF] Wang | Towards optimization-safe systems: Analyzing the impact of unde ned behavior[END_REF]]. To minimize programmer confusion and lower the risk of introducing security vulnerabilities, real compilers generally give sane and predictable semantics to some of these behaviors. For example, signed integer over ow is o cially an unde ned behavior in standard C, but many compilers (at least with certain ags set) guarantee that the result will be calculated using wraparound arithmetic. Thus, for purposes of de ning secure compilation, the set of unde ned behaviors is e ectively de ned by the compiler at hand rather than by the standard.

The purpose of a compartmentalizing compilation chain is to ensure that the arbitrary, potentially malicious, e ects of unde ned behavior are limited to the component in which it occurs.

For a start, it should restrict the spatial scope of a compromise to the component that encounters unde ned behavior. Such compromised components can only in uence other components via controlled interactions respecting their interfaces and the other abstractions of the source language (e.g., the stack discipline on calls and returns) Moreover, to model dynamic compromise and give each component full guarantees as long as it has not yet encountered unde ned behavior, the temporal scope of compromise must also be restricted. In particular, compiler optimizations should never cause the e ects of unde ned behavior to show up before earlier "observable events" such as system calls. Unlike the spatial restriction, which requires some form of run-time enforcement in software or hardware, the temporal restriction can be enforced just by foregoing certain aggressive optimizations. For example, the temporal restriction (but not the spatial one) is already enforced by the CompCert C compiler [Leroy 2009a[START_REF] Regehr | A guide to unde ned behavior in C and C++, part 3[END_REF], providing a signi cantly cleaner model of unde ned behavior than other C compilers [START_REF] Regehr | A guide to unde ned behavior in C and C++, part 3[END_REF]].

We want a characterization that is formal-that brings mathematical precision to the security guarantees and attacker model of compartmentalizing compilation. This can serve both as a clear speci cation for veri ed secure compilation chains and as useful guidance for unveri ed ones. Moreover, we want the characterization to provide source-level reasoning principles that can be used to assess the security of compartmentalized applications. To make this feasible in practice, the amount of source code to be veri ed or audited has to be relatively small. So, while we can require developers to carefully analyze the privileges of each component and the correctness of some very small pieces of security-critical code, we cannot expect them to establish the full correctness-or even absence of unde ned behavior-for most of their components.

Our secure compilation criterion improves on the state of the art in three important respects. First, our criterion applies to compartmentalized programs, while most existing formal criteria for secure compilation are phrased in terms of protecting a single trusted program from an untrusted context [START_REF] Abadi | Protection in programming-language translations[END_REF][START_REF] Abadi | On layout randomization for arrays and functions[END_REF][START_REF] Abadi | On protection by layout randomization[END_REF][START_REF] Abate | Journey beyond full abstraction: Exploring robust property preservation for secure compilation[END_REF][START_REF] Agten | Secure compilation to modern processors[END_REF], 2015[START_REF] Fournet | Fully abstract compilation to JavaScript[END_REF][START_REF] Larmuseau | A secure compiler for ML modules[END_REF], Patrignani et al. 2015]. Second, unlike some recent criteria that do consider modular protection [START_REF] Devriese | Modular, fully-abstract compilation by approximate back-translation[END_REF], Patrignani et al. 2016], our criterion applies to unsafe source languages with unde ned behaviors. And third, it considers a dynamic compromise model-a critical advance over the recent proposal of Juglaret et al. [2016], which does consider components written in unsafe languages, but which is limited to a static compromise model. This is a serious limitation: components whose code contains any vulnerability that might potentially manifest itself as unde ned behavior are given no guarantees whatsoever, irrespective of whether an attacker actually exploits these vulnerabilities. Moreover, vulnerable components lose all guarantees from the start of the execution-possibly long before any actual compromise. Experience shows that large enough C or C++ codebases essentially always contain vulnerabilities [START_REF] Szekeres | SoK: Eternal war in memory[END_REF]]. Thus, although static compromise models may be appropriate for safe languages, they are not useful for unsafe low-level languages.

As we will see in §3.5, the limitation to static compromise scenarios seems inescapable for previous techniques, which are all based on the formal criterion of full abstraction [START_REF] Abadi | Protection in programming-language translations[END_REF]].

To support dynamic compromise scenarios, we take an unconventional approach, dropping full abstraction and instead phrasing our criterion in terms of preserving safety properties [START_REF] Lamport | Formal foundation for speci cation and veri cation[END_REF] in adversarial contexts (chapter 2), where, formally, safety properties are predicates over execution traces that are informative enough to detect the compromise of components and to allow the execution to be "rewound" along the same trace. Moving away from full abstraction also makes our criterion easier to achieve e ciently in practice and to prove at scale. Finally, we expect our criterion to scale naturally from properties to hyperproperties such as con dentiality (see §2.3.3, §3.5, and §3.6).

Contributions Our rst contribution is Robustly Safe Compartmentalizing Compilation (RSCC), a new secure compilation criterion articulating strong end-to-end security guarantees for components written in unsafe languages with unde ned behavior. This criterion is the rst to support dynamic compromise in a system of mutually distrustful components with clearly specied privileges. We start by illustrating the intuition, informal attacker model, and source-level reasoning behind RSCC using a simple example application ( §3.2).

Our second contribution is a formal presentation of RSCC. We start from Robustly Safe Compilation (RSC), the simple security criterion from §2.2.3, and extend this rst to dynamic compromise (RSC DC , §3.3.1), then mutually distrustful components (RSC DC MD , §3.3.2), and nally to the full de nition of RSCC ( §3.3.3). We also give an e ective and generic proof technique for RSCC ( §3.3.4). We start with a target-level execution and explain any nite sequence of calls and returns in terms of the source language by constructing a whole source program that produces this pre x. We then use standard simulation proofs to relate our semantics for whole programs to semantics that capture the behavior of a partial program in an arbitrary context. This proof architecture yields simpler and more scalable proofs than previous work in this space [Juglaret et al. 2016]. One particularly important advantage is that it allows us to reuse a whole-program compiler correctness result à la CompCert [Leroy 2009a] as a black box, avoiding the need to prove any other simulations between the source and target languages.

Our third contribution is a proof-of-concept secure compilation chain ( §3.4) for a simple unsafe sequential language featuring bu ers, procedures, components, and a CompCert-like blockbased memory model [START_REF] Leroy | Formal veri cation of a C-like memory model and its uses for verifying program transformations[END_REF] ( §3.4.1). Our entire compilation chain is implemented in the Coq proof assistant. The rst step compiles our source language to a simple lowlevel abstract machine with built-in compartmentalization ( §3.4.2). We use the proof technique from §3.3.4 to construct careful proofs-many of them machine-checked in Coq-showing that this compiler satis es RSCC ( §3.4.3). Finally, we describe two back ends for our compiler, showing that the protection guarantees of the compartmentalized abstract machine can be achieved at the lowest level using either software fault isolation (SFI, §3.4.4) or a tag-based reference monitor ( §3.4.6). The tag-based back end, in particular, is novel, using linear return capabilities to enforce a cross-component call/return discipline. Neither back end has yet been formally veri ed, but we have used property-based testing to gain con dence that the SFI back end satis es RSC DC MD . These contributions lay a solid foundation for future secure compilation chains that could bring sound and practical compartmentalization to C, C++, and other unsafe low-level languages. We address three fundamental questions: (3) How can we achieve high assurance that the resulting compilation chain is indeed secure? Answer: We show that formal veri cation ( §3.4.3) and property-based testing ( §3.4.4) can be successfully used together for this in a proof assistant like Coq.

We close with related ( §3.5) and future ( §3.6) work. Our Coq development is available at https: //github.com/secure-compilation/when-good-components-go-bad/

RSCC By Example

We begin by an overview of compartmentalizing compilation chains, our attacker model, and how viewing this model as a dynamic compromise game leads to intuitive principles for security analysis.

We need not be very precise, here, about the details of the source language; we just assume that it is equipped with some compartmentalization facility [START_REF] Gudka | Clean application compartmentalization with SOAAP[END_REF][START_REF] Vasilakis | BreakApp: Automated, exible application compartmentalization[END_REF]] that allows programmers to break up security-critical applications into mutually distrustful components that have clearly speci ed privileges and can only interact via well-de ned interfaces. In fact we assume that the interface of each component gives a precise description of its privilege. The notions of component and interface that we use for de ning the secure compilation criteria in §3.3 are quite generic: interfaces can include any requirements that can be enforced on components, including type signatures, lists of allowed system calls, or more detailed access-control speci cations describing legal parameters to cross-component calls (e.g., ACLs for operations on les). We assume that the division of an application into components and the interfaces of those components are statically determined and xed. For the illustrative language of §3.4, we will use a simple setup in which components don't directly share state, interfaces just list the procedures that each component provides and those that it expects to be present in its context, and the only thing one component can do to another one is to call procedures allowed by their interfaces.

The goal of a compartmentalizing compilation chain is to ensure that components interact according to their interfaces even in the presence of unde ned behavior. Our secure compilation criteriondoes not x a speci c mechanism for achieving this: responsibility can be divided among the di erent parts of the compilation chain, such as the compiler, linker, loader, runtime system, system software, and hardware. In §3.4 we study a compilation chain with two alternative back ends-one using software fault isolation and one using tag-based reference monitoring for compartmentalization. What a compromised component can still do in this model is to use its access to other components, as allowed by its interface, to either trick them into misusing their own privileges (i.e., confused deputy attacks) or even compromise them as well (e.g., by sending them malformed inputs that trigger control-hijacking attacks exploiting unde ned behaviors in their code).

We model input and output as interaction with a designated environment component E that is given an interface but no implementation. When invoked, environment functions are assumed to immediately return a non-deterministically chosen value [Leroy 2009a]. In terms of security, the environment is thus the initial source of arbitrary, possibly malformed, inputs that can exploit bu er over ows and other vulnerabilities to compromise other components.

As we argued in the introduction, it is often unrealistic to assume that we know in advance which components will be compromised and which ones will not. This motivates our model of dynamic compromise, in which each component receives secure compilation guarantees until it becomes compromised by encountering an unde ned behavior, causing it to start attacking the remaining uncompromised components. In contrast to earlier static-compromise models [Juglaret et al. 2016], a component only loses guarantees in our model after an attacker discovers and manages to exploit a vulnerability, by sending it inputs that lead to an unde ned behavior. The mere existence of vulnerabilities-unde ned behaviors that can be reached after some sequence of inputs-is not enough for the component to be considered compromised. This model allows developers to reason informally about various compromise scenarios and their impact on the security of the whole application [START_REF] Gudka | Clean application compartmentalization with SOAAP[END_REF] of some plausible compromise seem too serious, developers can further reduce or separate privilege by narrowing interfaces or splitting components, or they can make components more defensive by validating their inputs. As a rst running example, consider the idealized application in Figure 3.1. It de nes three components (C 0 , C 1 , and C 2 ) that interact with the environment E via input (E.read) and output (E.write) operations. Component C 1 de nes a main() procedure, which rst invokes C 2 .init() and then reads a request x from the environment (e.g., coming from some remote client), parses it by calling an internal procedure to obtain y, and then invokes C 2 .process(x,y). This, in turn, calls C 2 .prepare() and C 2 .handle(y), obtaining some data that it validates using C 0 .valid and, if this succeeds, writes data together with the original request x to the environment. Suppose we would like to establish two properties:

(S 1 ) any call E .write(<data,x>) happens as a response to a previous E .read() call by C 1 obtaining the request x; and

(S 2 ) the application only writes valid data (i.e., data for which C 0 .valid returns true).

These can be shown to hold of executions that do not encounter unde ned behavior simply by analyzing the control ow. But what if unde ned behavior does occur? Suppose that we can rule out this possibility-by auditing, testing, or formal veri cation-for some parts of the code, but we are unsure about three subroutines:

(V 1 ) C 1 .parse(x) performs complex array computations, and we do not know if it is immune to bu er over ows for all x;

(V 2 ) C 2 .prepare() is intended to be called only if C 2 .init() has been called beforehand to set up a shared data structure; otherwise, it might dereference an unde ned pointer;

(V 3 ) C 2 .handle(y) might cause integer over ow on some inputs.

If the attacker nds an input that causes the unde ned behavior in V 1 to occur, then C 1 can get compromised and call C 2 .process(x,y) with values of x that it hasn't received from the environment, thus invalidating S 1 . Nevertheless, if no other unde ned behavior is encountered during the execution, this attack cannot have any e ect on the code run by C 2 , so S 2 remains true.

Now consider the possible unde ned behavior from V 2 . If C 1 is not compromised, this undened behavior cannot occur, since C 2 .init() will be called before C 2 .prepare(). Moreover, this unde ned behavior cannot occur even if C 1 is compromised by the unde ned behavior in V 1 , because that can only occur after C 2 .init() has been called. Hence V 1 and V 2 together are no worse than V 1 alone, and property S 2 remains true. Inferring this crucially depends on our model of dynamic compromise, in which C 1 can be treated as honest and gets guarantees until it encounters unde ned behavior. If instead we were only allowed to reason about C 1 's ability to do damage based on its interface, as would happen in a model of static compromise [Juglaret et al. 2016], we wouldn't be able to conclude that C 2 cannot be compromised: an arbitrary component with the same interface as C 1 could indeed compromise C 2 by calling C 2 .process before C 2 .init. Finally, if execution encounters unde ned behavior in V 3 , then C 2 can get compromised irrespective of whether C 1 is compromised beforehand, invalidating both S 1 and S 2 .

Though we

have not yet made it formal, this security analysis already identi es C 2 as a single point of failure for both desired properties of our system. This suggests several ways the program could be improved: The code in C 2 .handle could be hardened to reduce its chances of encountering unde ned behavior, e.g. by doing better input validation. Or C 1 could validate the values it sends to C 2 .process, so that an attacker would have to compromise both C 1 and C 2 to break the validity of writes. To ensure the correspondence of reads and writes despite the compromise of C 1 , we could make C 2 read the request values directly from E, instead of via C 1 .

To achieve the best security though, we can refactor so that the read and write privileges are isolated in C 0 , which performs no complex data processing and thus is a lot less likely to be compromised by unde ned behavior (Figure 3.2). In this variant, C 0 reads a request, calls C 1 .parse on this request, passes the result to C 2 .process, validates the data C 2 returns and then writes it out. This way both our desired properties hold even if both C 1 and C 2 are compromised, since now the core application logic and privileges have been completely separated from the dangerous data processing operations that could cause vulnerabilities.

Let's begin making all this a bit more formal. The rst step is to make the security goals of our example application more precise. We do this in terms of execution traces that are built The refactored application in Figure 3.2 achieves both properties despite the compromise of both C 1 via V 1 and C 2 via V 3 , but, for the rst variant in Figure 3.1 the properties need to be weakened as follows: If E .write(<data,x>) appears in an execution trace then (W 1 ) E .read previously returned x or E .read previously returned an x' that can cause undened behavior in C 1 .parse(x') or C 2 .process(x,y) was called previously with a y that can cause unde ned behavior in C 2 .handle(y), and (W 2 ) C 0 .valid(data) was called previously and returned true or C 2 .process(x,y) was called previously with a y that can cause unde ned behavior in C 2 .handle(y).

While these properties are signi cantly weaker (and harder to understand), they are still not trivial; in particular, they still tell us something useful under the assumption that the attacker has not actually discovered how to compromise C 1 or C 2 .

Properties S 1 , S 2 , W 1 , W 2 are all safety properties [START_REF] Lamport | Formal foundation for speci cation and veri cation[END_REF]-inspired, in this case, by the sorts of "correspondence assertions" used to specify authenticity in security protocols [START_REF] Gordon | Typing correspondence assertions for communication protocols[END_REF][START_REF] Gordon | Types and e ects for asymmetric cryptographic protocols[END_REF][START_REF] Woo | A semantic model for authentication protocols[END_REF]. A trace property is a safety property if, within any (possibly in nite) trace that violates the property, there exists a nite "bad pre x" that violates it. For instance here is a bad pre x for S 2 that includes a call to The program from Figure 3.2 cannot produce traces with this bad pre x, but it could do so if we removed the validity check in C 0 .main(); this variant would invalidate safety property S 2 .

Compiler correctness is often phrased in terms of preserving trace properties in general [Leroy 2009a] (and thus safety properties as a special case). However, this is often predicated on the assumption that the source program has no unde ned behavior; if it does, all security guarantees are lost, globally. By contrast, we want our secure compilation criterion to still apply even when some components are dynamically compromised by encountering unde ned behavior. In particular, we want to ensure that dynamically compromised components are not able to break the safety properties of the system at the target level any more than equally privileged components without unde ned behavior already could in the source.

We call our criterion Robustly Safe Compartmentalizing Compilation (RSCC). It is phrased in terms of a "security game, " illustrated in Figure 3.3 for our running example. With an RSCC compilation chain, given any execution of the compiled and linked components C 0 ↓, C 1 ↓ and, C 2 ↓ producing trace t in the target language, we can explain any (intuitively bad) nite pre x m of t (written m ≤ t) in terms of the source language. As soon as any component of the program has an unde ned behavior though, the semantics of the source language can no longer directly help us. Similar to CompCert [Leroy 2009a], we model unde ned behavior in our source language as a special event Undef(C i ) that terminates the trace. For instance, in step 0 of Figure 3.3, component C 1 is the rst to encounter unde ned behavior after producing a pre x m 1 of m.

Since unde ned behavior can manifest as arbitrary target-level behavior, the further actions of component C 1 can no longer be explained in terms of its source code. So how can we explain the rest of m in the source language? Our solution in RSCC is to require that one can replace C 1 , the component that encountered unde ned behavior, with some other source component A 1 that has the same interface and can produce its part of the whole m in the source language without itself encountering unde ned behavior. In order to replace component C 1 with A 1 we have to go back in time and re-execute the program from the beginning obtaining a longer trace, in this case m 2 •Undef(C 2 ) (where we write "•" for appending the event Undef(C 2 ) to m 2 ). We iterate this process until all components that encountered unde ned behavior have been replaced with new source components that do not encounter unde ned behavior and produce the whole m.

In the example dynamic compromise scenario from Figure 3.3, this means replacing C 1 with A 1 and C 2 with A 2 , after which the program can produce the whole pre x m in the source.

Let's now use this RSCC security game to deduce that in our example from Figure 3.2, even compromising both C 1 and C 2 does not break property S 2 at the target level. Assume, for the sake of a contradiction, that a trace of our compiled program breaks property S 2 . Then there exists a nite pre x "m • E .write(<data,x>)" such that C 0 .valid(data) does not appear in m.

I 0 I 1 I 2 C 0 C 1 C 2 ∀m finite prefix of t (m ≤ t) ∃ a dynamic compromise scenario explaining m in source for instance ∃[A 1 ,A 2 ] leading to compromise sequence: ↓ ↓ ↓ ⇝ t I 0 I 1 I 2 C 0 C 1 C 2 ⇝* m 1 • Undef(C 1 ) ↯ (0)
(1)

I 0 I 1 I 2 C 0 A 1 C 2 ⇝* m 2 • Undef(C 2 )

↯

(2)

I 0 I 1 I 2 C 0 A 1 A 2 ⇝* m ≤ ≤ Suppose running compiled components C 0 ↓, C 1 ↓, C 2 ↓
with interfaces I 0 , I 1 , I 2 yields trace t:

Then:

The trace pre xes m, m 1 , m 2 might, for instance, be: Figure 3.3: The RSCC dynamic compromise game for our example. We start with all components being uncompromised (in green) and incrementally replace any component that encounters unde ned behavior with an arbitrary component (in red) that has the same interface and will do its part of the trace pre x m without causing undened behavior.

Using RSCC we obtain that there exists some dynamic compromise scenario explaining m in the source. The simplest case is when no components are compromised. The most interesting case is when this scenario involves the compromise of both C 1 and C 2 as in Figure 3.3. In this case, replacing C 1 and C 2 with arbitrary A 1 and A 2 with the same interfaces allows us to reproduce the whole bad pre x m in the source (step 2 from Figure 3.3). We can now reason in the source, either informally or using a program logic for robust safety [START_REF] Swasey | Robust and compositional veri cation of object capability patterns[END_REF], that this cannot happen, since the source code of C 0 does call C 0 .valid(data) and only if it gets true back does it call E .write(<data,x>).

While in this special case we have only used the last step in the dynamic compromise sequence, where all compromised components have already been replaced (step 2 from Figure 3.3), the previous steps are also useful in general for reasoning about the code our original components execute before they get compromised. For instance, this kind of reasoning is crucial for showing property W 2 for the original example from Figure 3 

Formally Defining RSCC

For pedagogical purposes, we de ne RSCC in stages, incrementally adapting the Robust Safety Properties Preservation (RSC) criterion introduced in §2.2.3. We rst bring RSC to unsafe languages with unde ned behavior ( §3.3.1), and then further extend its protection to any set of mutually distrustful components ( §3.3.2). These ideas lead to the more elaborate RSCC property ( §3.3.3), which directly captures the informal dynamic compromise game from §3.2. These definitions are generic, and will be illustrated with a concrete instance in §3.4. In the reminder of this section, we describe an e ective and general proof technique for RSCC ( §3.3.4). Finally, we investigate the class of trace properties preserved by our simplest de nition ( §3.3.5) and contrast our dynamic compromise model with previous work in the static compromise model [Juglaret et al. 2016] ( §3.3.6).

RSC DC : Dynamic Compromise

The RSC criterion from §2.2.3 is about protecting a partial program written in a safe source language against adversarial target-level contexts. We now adapt the idea behind RSC to an unsafe source language with unde ned behavior, in which the protected partial program itself can become compromised. As explained in §3.2, we model unde ned behavior as a special Undef event terminating the trace: whatever happens afterwards at the target level can no longer be explained in terms of the code of the source program. We further assume that each unde ned behavior in the source language can be attributed to the part of the program that causes it by labeling the Undef event with "blame the program" (P ) or "blame the context" (C) (while in §3.3.2 we will blame the precise component encountering unde ned behavior).

De nition 3.3.1. A compilation chain provides Robustly Safe Compilation with Dynamic Compromise (RSC DC ) i

∀P C T t. C T [P↓] t ⇒ ∀m≤t. ∃C S t . C S [P ] t ∧ (m≤t ∨t ≺ P m).
Roughly, this de nition relaxes RSC by forgoing protection for the partial program P after it encounters unde ned behavior. More precisely, instead of always requiring that the trace t produced by C S [P ] contain the entire pre x m (i.e., m≤t ), we also allow t to be itself a pre x of m followed by an unde ned behavior in P , which we write as t ≺ P m (i.e., t ≺ P m ∃m ≤m. t =(m • Undef(P ))). In particular, the context C S is guaranteed to be free of unde ned behavior before the whole pre x m is produced or P encounters unde ned behavior. However, nothing prevents C S from passing values to P that try to trick P into causing unde ned behavior.

To illustrate, consider the partial program P de ned below. According to RSC DC there exists a source-level context C S (for instance the one above) that explains the pre x m in terms of the source language in one of two ways: either C S [P ] can do the entire m in the source, or C S [P ] encounters an unde ned behavior in P after a pre x of m, for instance the following one: As in CompCert [Leroy 2009a[START_REF] Regehr | A guide to unde ned behavior in C and C++, part 3[END_REF], we treat unde ned behaviors as observable events at the end of the execution trace, allowing compiler optimizations that move an unde ned behavior to an earlier point in the execution, but not past any other observable event. While some other C compilers would need to be adapted to respect this discipline [START_REF] Regehr | A guide to unde ned behavior in C and C++, part 3[END_REF]], limiting the temporal scope of unde ned behavior is a necessary prerequisite for achieving security against dynamic compromise. Moreover, if trace events are coarse enough (e.g., system calls and cross-component calls) we expect this restriction to have a negligible performance impact in practice.

One of the top-level CompCert theorems does, in fact, already capture dynamic compromise in a similar way to RSC DC . Using our notations this CompCert theorem looks as follows:

∀P t. (P↓) t ⇒ ∃t . P t ∧ (t =t ∨ t ≺t)
This says that if a compiled whole program P↓ can produce a trace t with respect to the target semantics, then in the source P can produce either the same trace or a pre x of t followed by unde ned behavior. In particular this theorem does provide guarantees to unde ned programs up to the point at which they encounter unde ned behavior. The key di erence compared to our secure compilation chains is that CompCert does not restrict unde ned behavior spatially: in CompCert unde ned behavior breaks all security guarantees of the whole program, while in our work we restrict unde ned behavior to the component that causes it. This should become clearer in the next section, where we explicitly introduce components, but even in RSC DC we can already imagine P↓ as a set of uncompromised components for trace pre x m, and C T as a set of already compromised ones.

A smaller di erence with respect to the CompCert theorem is that (like RSC) RSC DC only looks at nite pre xes in order to simplify the di cult proof step of context back-translation, which is not a concern that appears in CompCert and the usual veri ed compilers. [START_REF] Abate | Journey beyond full abstraction: Exploring robust property preservation for secure compilation[END_REF] precisely characterize the subclass of safety properties that is preserved by RSC DC even in adversarial contexts.

RSC DC MD : Mutually Distrustful Components

RSC DC gives a model of dynamic compromise for secure compilation, but is still phrased in terms of protecting a trusted partial program from an untrusted context. We now adapt this model to protect any set of mutually distrustful components with clearly speci ed privileges from an untrusted context. Following Juglaret et al.'s [2016] work in the full abstraction setting, we start by taking both partial programs and contexts to be sets of components; linking a program with a context is then just set union. We compile sets of components by separately compiling each component. Each component is assigned a well-de ned interface that precisely captures its privilege; components can only interact as speci ed by their interfaces. Most importantly, context back-translation respects these interfaces: each component of the target context is mapped back to a source component with exactly the same interface. As Juglaret et al. argue, least-privilege design crucially relies on the fact that, when a component is compromised, it does not gain any more privileges.

De nition 3.3.2. A compilation chain provides Robustly Safe Compilation with Dynamic Compromise and Mutual Distrust (RSC DC MD ) if there exists a back-translation function ↑ taking a nite trace pre x m and a component interface I i to a source component with the same interface, such that, for any compatible interfaces I P and I C ,

∀P :I P . ∀C T :I C . ∀t. (C T ∪ P↓) t ⇒ ∀m≤t. ∃t . ({(m, I i )↑ | I i ∈ I C } ∪ P ) t ∧ (m≤t ∨ t ≺ I P m).
This de nition closely follows RSC DC , but it restricts programs and contexts to compatible interfaces I P and I C . We write P : I to mean "partial program P satis es interface I. " The source-level context is obtained by applying the back-translation function ↑ pointwise to all the interfaces in I C . As before, if the pre x m is cropped prematurely because of an unde ned behavior, then this unde ned behavior must be in one of the program components, not in the back-translated context components (t ≺ I P m).

Formalizing RSCC

Using these ideas, we now de ne RSCC by following the dynamic compromise game illustrated in Figure 3.3. We use the notation P * m when there exists a trace t that extends m (i.e., m ≤ t) such that P t. We start with all components being uncompromised and incrementally replace each component that encounters unde ned behavior in the source with an arbitrary component with the same interface that may now attack the remaining components.

De nition 3.3.3. A compilation chain provides Robustly Safe Compartmentalizing Compilation (RSCC) i ∀compatible interfaces I 1 , ..., I n ,

∀C 1 :I 1 , ..., C n :I n . ∀m. {C 1 ↓, ..., C n ↓} * m ⇒ ∃A i 1 :I i 1 , ..., A i k :I i k . (1) ∀j ∈ 1...k. ∃m j . (m j ≺ I i j m) ∧ (m j-1 ≺ I i j-1 m j ) ∧ ({C 1 , ..., C n }\{C i 1 , ..., C i j -1 }∪{A i 1 , ..., A i j -1 }) * m j ∧ (2) ({C 1 , ..., C n }\{C i 1 , ..., C i k }∪{A i 1 , ..., A i k }) * m.
This says that C i 1 , ..., C i k constitutes a compromise sequence corresponding to nite pre x m produced by a compiled set of components {C 1 ↓, ..., C n ↓}. In this compromise sequence each component C i j is taken over by the already compromised components at that point in time {A i 1 , ..., A i j -1 } (part 1). Moreover, after replacing all the compromised components {C i 1 , ..., C i k } with their corresponding source components {A i 1 , ..., A i k } the entire m can be reproduced in the source language (part 2).

This formal de nition allows us to play an iterative game in which components that encounter unde ned behavior successively become compromised and attack the other components. This is the rst security de nition in this space to support both dynamic compromise and mutual distrust, whose interaction is subtle and has eluded previous attempts at characterizing the security guarantees of compartmentalizing compilation as extensions of fully abstract compilation [Juglaret et al. 2016] (further discussed in §3.5). 

(C T ∪ P↓) * m (C S ↓ ∪ P ↓) * m (m, I C ∪ I P )↑ = (C S ∪ P ) * m C S ↓ * IP m P↓ * IC m (C S ↓ ∪P↓) * m m ≤ t ∨ t ≺ P m (C S ∪ P ) t ∧ (m ≤ t ∨ t ≺ m) 3 

A Generic Proof Technique for RSCC

We now describe an e ective and general proof technique for RSCC. First, we observe that the slightly simpler RSC DC MD implies RSCC. Then we provide a generic proof in Coq that any compilation chain obeys RSC DC MD if it satis es certain well-speci ed assumptions on the source and target languages and the compilation chain.

Our proof technique yields simpler and more scalable proofs than previous work in this space [Juglaret et al. 2016]. In particular, it allows us to directly reuse a compiler correctness result à la CompCert, which supports separate compilation but only guarantees correctness for whole programs [START_REF] Kang | Lightweight veri cation of separate compilation[END_REF]; which avoids proving any other simulations between the source and target languages. Achieving this introduces some slight complications in the proof structure, but it nicely separates the correctness and security proofs and allows us to more easily tap into the CompCert infrastructure. Finally, since only the last step of our proof technique is speci c to unsafe languages, our technique can be further simpli ed to provide scalable proofs of vanilla RSC for safe source languages [START_REF] Abate | Journey beyond full abstraction: Exploring robust property preservation for secure compilation[END_REF]Garg 2018].

RSC DC MD implies RSCC

The rst step in our proof technique reduces RSCC to RSC DC MD , using a theorem showing that RSCC can be obtained by iteratively applying RSC DC MD . This result crucially relies on back-translation in RSC DC MD being performed pointwise and respecting interfaces, as explained in §3.3.2. Theorem 3.3.4. RSC DC MD implies RSCC.

We proved this by de ning a non-constructive function that produces the compromise sequence A i 1 , ..., A i 1 by case analysis on the disjunction in the conclusion of RSC DC MD (using excluded middle in classical logic). If m ≤ t we are done and we return the sequence we accumulated so far, while if t ≺ P m we obtain a new compromised component c i : I i that we back-translate using (m, I i ) ↑ and add to the sequence before iterating this process.

Generic RSC DC

MD proof outline Our high-level RSC DC MD proof is generic and works for any compilation chain that satis es certain well-speci ed assumptions, which we introduce informally for now, leaving details to the end of this sub-section. The RSC DC MD proof for the compiler chain in §3.4 proves all these assumptions. The proof outline is shown in Figure 3.4. We start (in the bottom left) with a complete targetlevel program C T ∪ P ↓ producing a trace with a nite pre x m that we assume contains no unde ned behavior (since we expect that the nal target of our compilation will be a machine for which all behavior is de ned). The pre x m is rst back-translated to synthesize a complete source program C S ∪P producing m (the existence and correctness of this back-translation are Assumption 1). For example, for the compiler in §3.4, each component C i produced by backtranslation uses a private counter to track how many events it has produced during execution. Whenever C i receives control, following an external call or return, it checks this counter to decide what event to emit next, based on the order of its events on m (see §3.4.3 for details).

The generated source program C S ∪ P is then separately compiled to a target program C S ↓ ∪ P ↓ that, by compiler correctness, produces again the same pre x m (Assumption 2). Now from (C T ∪ P ↓) * m and (C S ↓ ∪ P ↓) * m we would like to obtain (C S ↓ ∪ P ↓) * m by rst "decomposing" (Assumption 3) separate executions for P ↓ and C S ↓, which we can then "compose" (Assumption 4) again into a complete execution for (C S ↓ ∪ P ↓). However, since P ↓ and C S are not complete programs, how should they execute? To answer this we rely on a partial semantics that captures the traces of a partial program when linked with any context satisfying a given interface. When the partial program is running, execution is the same as in the normal operational semantics of the target language; when control is passed to the context, arbitrary actions compatible with its interface are non-deterministically executed. Using this partial semantics we can execute C S ↓ with respect to the interface of P↓, and P↓ with respect to the interface of C S ↓, as needed for the decomposition and composition steps of our proof.

Once we know that (C S ↓ ∪ P ↓) * m, we use compiler correctness again-now in the backwards direction (Assumption 5)-to obtain an execution of the source program C S ∪ P producing trace t. Because our source language is unsafe, however, t need not be an extension of m: it can end earlier with an unde ned behavior ( §3.3.1). So the nal step in our proof shows that if the source execution ends earlier with an unde ned behavior (t ≺m), then this unde ned behavior can only be caused by P (i.e., t ≺ P m), not by C S , which was correctly generated by our back-translation (Assumption 6).

Assumptions of the RSC DC

MD proof The generic RSC DC MD proof outlined above relies on assumptions about the compartmentalizing compilation chain. In the reminder of this subsection we give details about these assumptions, while still trying to stay high level by omitting some of the low-level details in our Coq formalization.

The rst assumption we used in the proof above is that every trace pre x that a target program can produce can also be produced by a source program with the same interface. A bit more formally, we assume the existence of a back-translation function ↑ that given a nite pre x m that can be produced by a whole target program P T , returns a whole source program with the same interface I P as P T and which can produce the same pre x m (i.e., (m, I P )↑ * m).

Assumption 1 (Back-translation).

∃ ↑ . ∀P :I P . ∀m de ned. P * m ⇒ (m, I P )↑ : I P ∧ (m, I P )↑ * m Back-translating only nite pre xes simpli es our proof technique but at the same time limits it to only safety properties. While the other assumptions from this section can probably also be proved for in nite traces, there is no general way to de ne a nite program that produces an arbitrary in nite trace. We leave devising scalable back-translation proof techniques that go beyond safety properties to future work.

It is not always possible to take an arbitrary nite sequence of events and obtain a source program that realizes it. For example, in a language with a call stack and events {call, return}, there is no program that produces the single event trace return, since every return must be preceded by a call. Thus we only assume we can back-translate pre xes that are produced by the target semantics.

As further discussed in §3.5, similar back-translation techniques that start from nite execution pre xes have been used to prove fully abstract compilation [Je rey and Rathke 2005a, Patrignani and Clarke 2015] and very recently RSC [START_REF] Patrignani | Robustly safe compilation[END_REF] and stronger variants, such as the one from §2.6.4. Our back-translation, on the other hand, produces not just a source context, but a whole program. In the top-left corner of Figure 3.4, we assume that this resulting program, (m, I C ∪ I P )↑, can be partitioned into a context C S that satis es the interface I C , and a program P that satis es I P .

Our second assumption is a form of forward compiler correctness for unsafe languages and a direct consequence of a forward simulation proof in the style of CompCert [Leroy 2009a]. We assume separate compilation, in the style of a recent extension proposed by [START_REF] Kang | Lightweight veri cation of separate compilation[END_REF] and implemented in CompCert since version 2.7. Our assumption says that if a whole program composed of parts P and C (written C ∪ P ) produces the nite trace pre x m that does not end with unde ned behavior (m de ned) then P and C when separately compiled and linked together (C↓ ∪ P↓) can also produce m. The next assumption we make is decomposition, stating that if a program obtained by linking two partial programs P T and C T produces a nite trace pre x m that does not end in an unde ned behavior in the complete semantics, then each of the two partial programs (below we take P T , but the C T case is symmetric) can produce m in the partial semantics: Assumption 3 (Decomposition).

∀P T :I P . ∀C T :I C . ∀m de ned. (C T ∪ P T ) * m ⇒ P T * I C m
The converse of decomposition, composition, states that if two partial programs with matching interfaces produce the same pre x m with respect to the partial semantics, then they can be linked to produce the same m in the complete semantics: Assumption 4 (Composition). For any I P , I C compatible interfaces:

∀P T :I P . ∀C T :I C . ∀m. P T * I C m ∧ C T * I P m ⇒ (C T ∪ P T ) * m
When taken together, composition and decomposition capture that the partial semantics of the target language is adequate with respect to its complete counterpart. This adequacy notion is tailored to the RSC property and thus di erent from the requirement that a so called "trace semantics" is fully abstract [Je rey and Rathke 2005a, Patrignani and Clarke 2015].

In order to get back to the source language our proof uses a backwards compiler correctness assumption, again with separate compilation. As also explained in §3.3.1, we need to take into account that a trace pre x m in the target can be explained in the source either by an execution producing m or by one ending in an unde ned behavior (i.e., producing t≺m).

Assumption 5 (Backward Compiler Correctness with Separate Compilation and Unde ned Behavior).

∀C P m.

(C↓ ∪P↓) * m ⇒ ∃t. (C ∪ P ) t ∧ (m ≤ t ∨ t≺m)
Finally, we assume that the context obtained by back-translation can't be blamed for unde ned behavior:

Assumption 6 (Blame). ∀C S : I C . ∀P, P : I P . ∀m de ned. ∀t.

If (C S ∪ P ) * m and (C S ∪ P ) t and t ≺ m then m ≤ t ∨ t ≺ P m.
We used Coq to prove the following theorem that puts together the assumptions from this subsection to show RSC DC MD : Theorem 3.3.5. The assumptions above imply RSC DC MD .

Class of safety properties preserved by RSC DC

Since RSC corresponds exactly to preserving robust safety properties ( §2.2.3), one might wonder what properties RSC DC preserves. In fact, RSC DC corresponds exactly to preserving the following class Z P against an adversarial context:

De nition 3.3. The class of properties Z P is de ned as the intersection of Safety and the class Closed ≺ P of properties closed under extension of traces with unde ned behavior in P [Leroy 2009a]. If a property π is in Closed ≺ P and it allows a trace t that ends with an unde ned behavior in P -i.e., ∃m. t = m • Undef(P )-then π should also allow any extension of the trace m-i.e., any trace t that has m as a pre x. The intuition is simple: the compilation chain is free to implement a trace with unde ned behavior in P as an arbitrary trace extension, so if the property accepts traces with unde ned behavior it should also accept their extensions. Conversely, if a property π in Closed ≺ P rejects a trace t , then for any pre x m of t the property π should also reject the trace m • Undef(P ).

For a negative example that is not in Closed ≺ P , consider the following formalization of the property S 1 from §3.2, requiring all writes in the trace to be preceded by a corresponding read:

S 1 ={t | ∀m d x. m • E .write(<d,x>) ≤ t ⇒ ∃m . m • E .read • Ret(x) ≤ m}
While property S 1 is Safety it is not Closed ≺ P . Consider the trace t = [C 0 .main(); E .write(<d,x>)] ∈ S 1 that does a write without a read and thus violates S 1 . For S 1 to be Closed ≺ P it would have to reject not only t , but also [C 0 .main(); Undef(P )] and Undef(P ), which it does not. One can, however, de ne a stronger variant of S 1 that is in Z P :

S Z + P 1 ={t|∀m d x.(m • E .write(<d,x>)≤t ∨ m • Undef(P )≤t) ⇒ ∃m . m • E .read • Ret(x) ≤ m}
The property S

Z + P 1
requires any write or unde ned behavior in P to be preceded by a corresponding read. While this property is quite restrictive, it does hold (vacuously) for the strengthened system in Figure 3.2 when taking P = {C 0 } and C = {C 1 , C 2 }, since we assumed that C 0 has no unde ned behavior.

Using Z P , we proved an equivalent RSC DC characterization:

Theorem 3.3.7. RSC DC ⇐⇒ ∀P π∈Z P . (∀C S t. C S [P ] t ⇒ t∈π) ⇒ (∀C T t. C T [P↓] t ⇒ t∈π)
This theorem shows that RSC DC is equivalent to the preservation of all properties in Z P for all P . One might still wonder how one obtains such robust safety properties in the source language, given that the execution traces can be in uenced not only by the partial program but also by the adversarial context. In cases in which the trace records enough information so that one can determine the originator of each event, robust safety properties can explicitly talk only about the events of the program, not the ones of the context. Moreover, once we add interfaces in RSC DC MD ( §3.3.2) we are able to e ectively restrict the context from directly performing certain events (e.g., certain system calls), and the robust safety property can then be about these privileged events that the sandboxed context cannot directly perform.

One might also wonder what stronger property does one have to prove in the source in order to obtain a certain safety property π in the target using an RSC DC compiler in the case in which π is not itself in Z P . Especially when all unde ned behavior is already gone in the target language, it seems natural to look at safety properties such as S 1 ∈Z P above that do not talk at all about unde ned behavior. For S 1 above, we manually de ned the stronger property S Z + P 1 ∈Z P that is preserved by an RSC DC compiler. In fact, given any safety property π we can easily de ne π Z + P that is in Z P , is stronger than π, and is otherwise as permissive as possible:

π Z + P π ∩ {t | ∀t . t≺ P t ⇒ t ∈π}
We can also easily answer the dual question asking what is left of an arbitrary safety property established in the source when looking at the target of an RSC DC compiler: . With these de nitions in place one can easily show that RSC DC is strictly stronger than RSC SC . For proving that RSC DC implies RSC SC all we have to show is that a fully de ned P cannot be blamed for unde ned behavior, which is true by the de nition of full de nedness. For proving the strictness of this implication it su ces to exhibit a compiler that only restricts the spatial scope of unde ned bahavior but not the temporal scope, for instance because it performs optimizations that aggressively use the assumption that the program does not have unde ned behavior (e.g., unrestricted code motion, unrestricted backwards propagation of static analysis "facts" derived from the absence of unde ned behavior). GCC and LLVM are already known to perform such aggressive optimizations [START_REF] Regehr | A guide to unde ned behavior in C and C++, part 3[END_REF]].

π Z - P π ∪ {t |
As we already explained in §3.1, the full de nedness precondition in RSC SC is a serious practical limitation: a partial program P whose code contains any vulnerability that might potentially manifest itself as unde ned behavior is given no guarantees whatsoever, irrespective of whether an attacker actually exploits these vulnerabilities. Moreover, a vulnerable P loses all guarantees from the start of the execution-possibly long before any actual compromise. In §3.5 we will argue that this limitation to static compromise scenarios seems inescapable for de nitions based on full abstraction, like the one of Juglaret et al. [2016]. In this section we showed that, by moving away from full abstraction and by restricting the temporal scope of unde ned behavior, we can overcome this limitation and support a dynamic compromise model.

Secure Compilation Chain

We designed a simple proof-of-concept compilation chain to illustrate the RSCC property. The compilation chain is implemented in Coq and outlined in Figure 3.5. The source language is a simple, unsafe imperative language with bu ers, procedures, and components ( §3.4.1). It is rst compiled to an intermediate compartmentalized machine featuring a compartmentalized, blockstructured memory, a protected call stack, and a RISC-like instruction set augmented with an Alloc instruction for dynamic storage allocation plus cross-component Call and Return When the compartmentalized machine encounters unde ned behavior, both back ends instead produce an extended trace that respects high-level abstractions; however, they achieve this in very di erent ways. The SFI back end ( §3.4.4) targets a bare-metal machine that has no protection mechanisms and implements an inline reference monitor purely in software, by instrumenting code to add address masking operations that force each component's writes and (most) jumps to lie within its own memory. The Micro-policies back end ( §3.4.6), on the other hand, relies on specialized hardware [Dhawan et al. 2015b] to support a novel tag-based reference monitor for compartmentalization. These approaches have complementary advantages: SFI requires no specialized hardware, while micro-policies can be engineered to incur little overhead [Dhawan et al. 2015b] and are a good target for formal veri cation [Azevedo de Amorim et al. 2015] due to their simplicity. Together, these two back ends provide evidence that our RSCC security criterion is compatible with any su ciently strong compartmentalization mechanism. It seems likely that other mechanisms such as capability machines [Watson et al. 2015b] could also be used to implement the compartmentalized machine and achieve RSCC.

Both back ends target variants of a simple RISC machine. In contrast to the abstract, blockbased memory model used at higher levels of the compilation chain, the machine-level memory is a single in nite array addressed by mathematical integers. (Using unbounded integers is a simpli cation that we hope to remove in the future, e.g. by applying the ideas of [START_REF] Mullen | Veri ed peephole optimizations for Comp-Cert. PLDI[END_REF].) All compartments must share this at address space, so-without proper protectioncompromised components can access bu ers out-of-bounds and read or overwrite the code and data of other components. Moreover, machine-level components can ignore the stack discipline and jump to arbitrary locations in memory.

We establish high con dence in the security of our compilation chain with a combination of proof and testing. For the compiler from the source language to the compartmentalized machine, we prove RSCC in Coq ( §3.4.3) using the proof technique of §3.3.4. For the SFI back end, we use property-based testing with QuickChick [START_REF] Paraskevopoulou | Foundational property-based testing[END_REF] 

Source Language

The source language from this section was designed with simplicity in mind. Its goal was to allow us to explore the foundational ideas of this work and illustrate them in the simplest possible concrete setting, keeping our formal proofs tractable. The language is expression based (see Figure 3.6). A program is composed of an interface, a set of procedures, and a set of static bu ers. Interfaces contain the names of the procedures that the component exports to and imports from other components. Each procedure body is a single expression whose result value is returned to the caller. Internal and external calls share the same global, protected call stack. Additional bu ers can be allocated dynamically. As in C, memory is manually managed; out-of-bounds accesses lead to unde ned behavior.

Values include integers, pointers, and an unde ned value , which is obtained when reading from an uninitialized piece of memory or as the result of an erroneous pointer operation. As in CompCert and LLVM [START_REF] Lee | Taming unde ned behavior in LLVM[END_REF], our semantics propagates these values and yields an unde ned behavior if a value is ever inspected. (The C standard, by contrast, speci es that a program is unde ned as soon as an uninitialized read or bad pointer operation takes place.)

Memory Model The memory model for both source and compartmentalized machine is a slightly simpli ed version of the one used in CompCert [START_REF] Leroy | Formal veri cation of a C-like memory model and its uses for verifying program transformations[END_REF]. Each component has an in nite memory composed of nite blocks, each an array of values. Accordingly, a pointer is a triple (C, b, o), where C is the identi er of the component that owns the block, b is a unique block identi er, and o is an o set inside the block. Arithmetic operations on pointers are limited to testing equality, testing ordering (of pointers into the same block), and changing o sets. Pointers cannot be cast to or from integers. Dereferencing an integer yields unde ned behavior. For now, components are not allowed to exchange pointers; as a result, well-de ned components cannot access each others' memories at all. We hope to lift this restriction in the near future. This abstract memory model is shared by the compartmentalized machine and is mapped to a more realistic at address space by the back ends.

Events Following CompCert, we use a labeled operational semantics whose events include all interactions of the program with the external world (e.g., system calls), plus events track- 

The Compartmentalized Machine

The compartmentalized intermediate machine aims to be as low-level as possible while still allowing us to target our two rather di erent back ends. It features a simple RISC-like instruction set (Figure 3.7) with two main abstractions: a block-based memory model and support for cross-component calls. The memory model leaves the back ends complete freedom in their layout of blocks. The machine has a small xed number of registers, which are the only shared state between components. In the syntax, l represent labels, which are resolved to pointers in the next compilation phase.

The machine uses two kinds of call stacks: a single protected global stack for cross-component calls plus a separate unprotected one for the internal calls of each component. Besides the usual Jal and Jump instructions, which are used to compile internal calls and returns, two special instructions, Call and Return, are used for cross-component calls. These are the only instructions that can manipulate the global call stack.

The operational semantics rules for Call and Return are presented in Figure 3.8. A state is composed of the current executing component C, the protected stack σ, the memory mem, the registers reg and the program counter pc. If the instruction fetched from the program counter is a Call to procedure P of component C , the semantics produces an event α recording the caller, the callee, the procedure and its argument, which is stored in register R _ COM. The protected stack σ is updated with a new frame containing the next point in the code of the current component. Registers are mostly invalidated at Calls; reg has all registers set to and only two registers are passed on: R _ COM contains the procedure's argument and R _ RA contains the return address. So no data accidentally left by the caller in the other registers can be relied upon; instead the compiler saves and restores the registers. Finally, there is a redundancy between the protected stack and R _ RA because during the Return the protected frame is used to verify that the register is used correctly; otherwise the program has an unde ned behavior. 

RSCC Proof in Coq

We have proved that a compilation chain targeting the compartmentalized machine satis es RSCC, applying the technique from §3.3.4. As explained in §3.2, the responsibility for enforcing secure compilation can be divided among the di erent parts of the compilation chain. In this case, it is the target machine of §3.4.2 that enforces compartmentalization, while the compiler itself is simple, standard, and not particularly interesting (so omitted here).

For showing RSC DC MD , all the assumptions from §3.3.4 are proved using simulations. Most of this proof is formalized in Coq: the only non-trivial missing pieces are compiler correctness (Assumptions 2 and 5) and composition (Assumption 4). The rst is standard and essentially orthogonal to secure compilation; eventually, we hope to scale the source language up to a compartmentalized variant of C and reuse CompCert's mechanized correctness proof. A mechanized proof of composition is underway. Despite these missing pieces, our formalization is more detailed than previous paper proofs in the area [START_REF] Abadi | On protection by layout randomization[END_REF][START_REF] Abadi | Secure implementation of channel abstractions[END_REF][START_REF] Ahmed | Veri ed compilers for a multi-language world[END_REF][START_REF] Ahmed | Typed closure conversion preserves observational equivalence[END_REF][START_REF] Lattner | What every C programmer should know about unde ned behavior #1/3[END_REF][START_REF] Fournet | Fully abstract compilation to JavaScript[END_REF][START_REF] Jagadeesan | Local memory via layout randomization[END_REF], Je rey and Rathke 2005a, Juglaret et al. 2016[START_REF] New | Fully abstract compilation via universal embedding[END_REF], Patrignani and Clarke 2015, Patrignani et al. 2015, 2016]. Indeed, we are aware of only one fully mechanized proof about secure compilation: [START_REF] Devriese | Modular, fully-abstract compilation by approximate back-translation[END_REF] recent full abstraction result for a translation from the simply typed to the untyped λ-calculus in around 11KLOC of Coq.

Our Coq development comprises around 22KLOC, with proofs taking about 60%. Much of the code is devoted to generic models for components, traces, memory, and unde ned behavior that we expect to be useful in proofs for more complex languages and compilers, such as CompCert. We discuss some of the most interesting aspects of the proof below. The partial semantics can step with action α from the partial state ps to ps , if there exists a corresponding transition in the complete semantics whose states partialize to ps and ps . We denote with P * I C m that the partial program P produces the trace pre x m in the partial semantics after a nite execution pre x, with respect to the context interface I C .

Back-translation function

A consequence of abstracting away part of the program as non-deterministic actions allowed by its interface is that the abstracted part will always have actions it can do and it will never be stuck, whereas stuckness is the standard way of modeling unde ned behavior [Leroy 2009a]. Given P * I C m, if m ends with an unde ned behavior, then this was necessarily caused by P , which is still a concrete partial program running actual code, potentially unsafe.

Our partial semantics was partially inspired by so-called "trace semantics" [Je rey and Rathke 2005a, Juglaret et al. 2016, Patrignani andClarke 2015], where a partial program of interest is decoupled from its context, of which only the observable behavior is relevant. One important di erence is that our de nition of partial semantics in terms of a partialization function is generic and can be easily instantiated for di erent languages. On the contrary previous works de ned "trace semantics" as separate relations with many rules, making the proofs to correlate partial and complete semantics more involved. Moreover, by focusing on trace properties (instead of observational equivalence) composition and decomposition can be proved using standard simulations à la CompCert, which is easier than previous proof techniques for fully abstract "trace semantics. " Theorem 3.4.2 (Partial Semantics). The source language and compartmentalized machine partial semantics de ned as described above provide decomposition and composition (Assumptions 3 and 4).

Blame We prove Assumption 6 by noting that the behavior of the context C S can only depend on its own state and on the events emitted by the program. A bit more formally, suppose that the states cs 1 and cs 2 have the same context state, which, borrowing the partialization notation from above, we write as par(cs 1 , I P ) = par(cs 2 , I P ). Then:

• If cs 1 α 1 -→ cs 1 , cs 2 α 2
-→ cs 2 , and C S has control in cs 1 and cs 2 , then α 1 = α 2 and par(cs 1 , I P ) = par(cs 2 , I P ).

• If cs 1 τ -→ cs 1 and the program has control in cs 1 and cs 2 , then par(cs 1 , I P ) = par(cs 2 , I P ).

• If cs 1 α -→ cs 1 , the program has control in cs 1 and cs 2 , and α = τ , then there exists cs 2 such that cs 2 α -→ cs 2 and par(cs 1 , I P ) = par(cs 2 , I P ).

By repeatedly applying these properties, we can analyze the behavior of two parallel executions (C S ∪ P ) * m and (C S ∪ P ) t, with t ≺ m. By unfolding the de nition of t ≺ m we get that ∃m ≤m. t = m • Undef (_ ). It su ces to show that m≤t ∨ t=m • Undef(P ). If m = t = m • Undef (_ ), we have m≤t, and we are done. Otherwise, the execution of C S ∪ P ended earlier because of unde ned behavior. After producing pre x m , C S ∪ P and C S ∪ P will end up in matching states cs 1 and cs 2 . Aiming for a contradiction, suppose that unde ned behavior was caused by C S . By the last property above, we could nd a matching execution step for C S ∪ P that produces the rst event in m that is outside of m ; therefore, C S ∪ P cannot be stuck at cs 2 . Hence t ≺ P m.

Theorem 3.4.3 (Blame). Assumption 6 is satis ed.

Theorem 3.4.4 (RSCC). The compilation chain described so far in this section satis es RSCC.

So ware Fault Isolation Back End

The SFI back end uses a special memory layout and code instrumentation sequences to realize the desired isolation of components in the produced program. The target of the SFI back end is a bare-metal RISC processor with the same instructions as the compartmentalization machine minus Call, Return, and Alloc. The register le contains all the registers from the previous level, plus seven additional registers reserved for the SFI instrumentation.

The SFI back end maintains the following invariants: (1) a component may not write outside its own data memory; (2) a component may transfer control outside its own code memory only to entry points allowed by the interfaces or to the return address on top of the global stack; and (3) the global stack remains well formed. Figure 3.10 shows the memory layout of an application with three components. The entire address space is divided in contiguous regions of equal size, which we will call slots. Each slot is assigned to a component or reserved for the use of the protection machinery. Data and code are kept in disjoint memory regions and memory writes are permitted only in data regions.

An example of a logical split of a physical address is shown in Figure 3.11. A logical address is a triple: o set in a slot, component identi er, and slot identi er unique per component. The slot size, as well as the maximum number of the components are constant for an application, and in Figures 3.10 and 3.11 we have 3 components and slots of size 2 12 bits.

The SFI back end protects memory regions with instrumentation in the style of [START_REF] Wahbe | E cient software-based fault isolation[END_REF], but adapted to our component model. Each memory update is preceded by two instructions that set the component identi er to the current one, to prevent accidental or malicious writes in a di erent component. The instrumentation of the Jump instruction is similar. The last four bits of the o set are always zeroed and all valid targets are sixteen-word-aligned by our back end [START_REF] Morrisett | RockSalt: better, faster, stronger SFI for the x86[END_REF]. This mechanism, along with careful layout of instructions, ensure that the execution of instrumentation sequences always starts from the rst instruction and continues until the end. The global stack is implemented as a shadow stack [START_REF] Szekeres | SoK: Eternal war in memory[END_REF]] in memory accessible only from the SFI instrumentation sequences. Alignment of code [START_REF] Morrisett | RockSalt: better, faster, stronger SFI for the x86[END_REF] prevents corruption of the cross-component stack with prepared addresses and ROP attacks, since it is impossible to bypass the instructions in the instrumentation sequence that store the correct address in the appropriate register.

The Call instruction of the compartmentalized machine is translated to a Jal (jump and link) followed by a sequence of instructions that push the return address on the stack and then restore the values of the reserved registers for the callee component. To protect from malicious pushes that could try to use a forged address, this sequence starts with a Halt at an aligned address. Any indirect jump from the current component, will be aligned and will execute the Halt, instead of corrupting the cross-component stack. A call from a di erent component, will execute a direct jump, which is not subject to masking operations and can thus target an unaligned address (we check statically that it is a valid entry point). This Halt and the instructions that push on the stack are contained in the sixteen-unit block.

The Return instruction is translated to an aligned sequence: pop from the protected stack and jump to the retrieved address. This sequence also ts entirely in a sixteen-unit block. The protection of the addresses on the stack itself is realized by the instrumentation of all the Store and Jump instructions in the program.

We used the QuickChick property-based testing tool [START_REF] Paraskevopoulou | Foundational property-based testing[END_REF] for Coq to test the three compartmentalization invariants described at the beginning of the subsection. For each invariant, we implemented a test that executes the following steps: (i) randomly generates a valid compartmentalized machine program; (ii) compiles it; (iii) executes the resulting target code in a simulator and records a property-speci c trace; and (iv) analyzes the trace to verify if the property has been violated. We also manually injected faults in the compiler by mutating the instrumentation sequences of the generated output and made sure that the tests can detect these injected errors.

More importantly, we also tested two variants of the RSC 

Micro-policies Tagged Architecture

Our second back end is a novel application of a programmable tagged architecture that allows reference monitors, called micro-policies, to be de ned in software but accelerated by hardware for performance [Azevedo de Amorim et al. 2015, Dhawan et al. 2015b]. On a micro-policy machine, each word in memory or registers carries a metadata tag large enough to hold a pointer to an arbitrary data structure in memory. As each instruction is dispatched by the processor, the opcode of the instruction as well as the tags on the instruction, its argument registers or memory cells, and the program counter are all passed to a software monitor that decides whether to allow the instruction and, if so, produces tags for the results. The positive decisions of this monitor are cached in hardware, so that, if another instruction is executed in the near future with similarly tagged arguments, the hardware can allow the request immediately, bypassing the software monitor.

This enforcement mechanism has been shown exible enough to implement a broad range of tag-based reference monitors, and for many of them it has a relatively modest impact on runtime (typically under 10%) and power ceiling (less than 10%), in return for some increase in energy (typically under 60%) and chip area (110%) [Dhawan et al. 2015b]. Moreover, the mechanism is simple enough that we could formally verify in Coq that micro-policies for heap memory safety, compartment isolation, control-ow integrity, information-ow control, and dynamic sealing are correct and provide the expected security guarantees [Azevedo de Amorim 2017, Azevedo de [START_REF] Azevedo De Amorim | A veri ed information-ow architecture[END_REF]Amorim et al. , 2015Amorim et al. , 2018]]. The rest of this subsection introduces the micro-policies framework using heap memory safety as an illustrative example, while the next subsection ( §3.4.6) presents our micro-policy for compartmentalization.

Our micro-policy for heap memory safety [Azevedo de Amorim et al. 2015, Dhawan et al. 2015a] enforces safe access to heap-allocated data, by preventing both spatial violations (e.g., accessing an array out of its bounds) and temporal violations (e.g., referencing through a pointer after the region has been freed). As explained above, such violations are a common source of serious security vulnerabilities. Moreover, with our micro-policy, pointers to the heap become unforgeable capabilities: one can only obtain a valid pointer to a heap region by allocating that region or by copying or o setting an existing pointer to that region. To achieve this we tag words representing pointers di erently from non-pointers. We use tags to color each heap region di erently and to record for each pointer the color of the memory region to which it should point. When a pointer is dereferenced we check that its color matches the color of the memory cell to which it points. We allow pointer arithmetic, which does not a ect the color of pointers in any way. In particular, pointers can be taken temporarily out of bounds, as long as out-of-bounds pointers are not accessed. Computing an out-of-bounds pointer is not a violation per se-indeed, it happens quite often in practice, e.g., at the end of loops.

More precisely, we use di erent sets of tags for registers (denoted t v ) and memory (t m ). Values in registers are either pointers tagged with a color c or non-pointers tagged ⊥. Allocated memory locations are tagged with a pair (c, t v ), where c is the color of the encompassing region and t v is the tag of the stored value. Unallocated memory is tagged with the special tag F (free).

Programs can directly interact with the monitor by calling (privileged) monitor services; for this policy there are only 2 such services: malloc and free. The malloc service rst allocates a region as usual, then generates a fresh color c (e.g., by incrementing a counter), initializes the new heap region with 0@(c, ⊥) (i.e., the integer 0 tagged with memory tag (c, ⊥)), and returns w@c, where w is the start address of the region. The free service makes sure that the region is currently allocated and tags the whole deallocated region with F. The F tags prevent any remaining pointers to the deallocated region from being used to access it. If a later allocation reuses the same memory, it will be tagged with a di erent color, so these dangling pointers will still be unusable.

Outside of monitor services, all the propagation and checking of tags is performed using rules.

While the hardware uses a cache of low-level rules, these can be automatically obtained from a domain-speci c language (DSL) of symbolic rules. Together with the representation of tags as algebraic datatypes the symbolic rules provide a convenient language for designing micropolicies. Symbolic rules have the form:

opcode : {PC=t pc , CI=t ci , OP 1 =t 1 , OP 2 =t 2 , OP 3 =t 3 } → {PC =t pc , RES=t r }
which says that the rule matches on a particular instruction opcode together with the tags on the program counter (PC), the current instruction (CI), and up to two three operands from registers or memory (OP 1 , OP 2 , OP 3 ). If the rule matches, the right-hand side determines how to update the tags on the program counter (PC ) and on the result of the operation (RES). The t metavariables above range over symbolic expressions, including variables. We freely omit input elds that are ignored. Returning to our heap memory safety policy, here is the symbolic rule for adding an integer to a pointer:

Add : {PC=c pc , CI=(c pc , ⊥), OP 1 =c, OP 2 =⊥} → {PC =c pc , RES=c}
This rule says that when the current instruction is Add, the rst operand is a pointer tagged with color c, and the second operand is an integer tagged ⊥ the result is again tagged c. The color of the PC, c pc , is left unchanged and we additionally require that c pc matches the color of the region from which the instruction was fetched. This ensures that the PC cannot be used to fetch instructions from inaccessible regions. Similarly, the rules for Load and Store check that the pointer and the referenced location have the same color c. We use descriptive tag names like P (pointer), M (memory), S (source), D (destination), instead of OP 1 , OP 2 , and RES.

Load : {PC=c pc , CI=(c pc , ⊥), P =c, M =(c, t v )} → {PC =c pc , D=t v } Store : {PC=c pc , CI=(c pc , ⊥), P =c, M =(c, t v ), S=t v } → {PC =c pc , M =(c, t v )}
For Load the tag of the destination register, t v , is taken from the tag (c, t v ) of the loaded memory location. For Store the tag of the written memory location is changed from (c, t v ) to (c, t v ), where t v is the tag of the word being written.

Tag-based Reference Monitor

The micro-policy machine targeted by our compartmentalizing back end builds on a "symbolic machine" that Azevedo de Amorim et al. [2017,2015,2018] used to prove the correctness and security of several micro-policies in Coq. The code generation and static linking parts of the micro-policy back end are much simpler than for the SFI one. The Call and Return instructions are mapped to Jal and Jump. The Alloc instruction is mapped to a monitor service that tags the allocated memory according to the calling component.

A more interesting aspect of this back end is the way memory must be tagged by the (static) loader based on metadata from previous compilation stages. Memory tags are tuples of the form t m ::= (t v , c, cs). The tag t v is for the payload value. The component identi er c, which we call a color, establishes the component that owns the memory location. Our monitor forbids any attempt to write to memory if the color of the current instruction is di erent from the color of the target location. The set of colors cs identi es all the components that are allowed to call to this location and is by default empty. The value tags used by our monitor distinguish crosscomponent return addresses from all other words in the system: t v ::= Ret(n) | ⊥. To enforce the cross-component stack discipline return addresses are treated as linear return capabilities, i.e., unique capabilities that cannot be duplicated [START_REF] Knight | SAFE ISA (version 3.0 with interrupts per thread)[END_REF] and that can only be used to return once. This is achieved by giving return addresses tags of the form Ret(n), where the natural number n represents the stack level to which this capability can return. We keep track of the current stack level using the tag of the program counter: t pc ::= Level(n). Calls increment the counter n, while returns decrement it. A global invariant is that when the stack is at Level(n) there is at most one capability Ret(m) for any level m from 0 up to n-1.

Our tag-based reference monitor for compartmentalization is simple; the complete de nition is given in Figure 3.12. For Mov, Store, and Load the monitor copies the tags together with the values, but for return addresses the linear capability tag Ret(n) is moved from the source to the destination. Loads from other components are allowed but prevented from stealing return capabilities. Store operations are only allowed if the color of the changed location matches the one of the currently executing instruction. Bnz is restricted to the current component. Jal to a di erent component is only allowed if the color of the current component is included in the allowed entry points; in this case and if we are at some Level(n) the machine puts the return address in register RA and the monitor gives it tag Ret(n) and it increments the pc tag to Level(n+1). Jump is allowed either to the current component or using a Ret(n) capability, In this line of research, [START_REF] Abadi | Protection in programming-language translations[END_REF] and later [START_REF] Kennedy | Securing the .net programming model[END_REF] identi ed failures of full abstraction in the Java and C# compilers. [START_REF] Abadi | Secure implementation of channel abstractions[END_REF] proved full abstraction of secure channel implementations using cryptography. [START_REF] Ahmed | Veri ed compilers for a multi-language world[END_REF][START_REF] Ahmed | Typed closure conversion preserves observational equivalence[END_REF][START_REF] Lattner | What every C programmer should know about unde ned behavior #1/3[END_REF][START_REF] New | Fully abstract compilation via universal embedding[END_REF] proved the full abstraction of type-preserving compiler passes for functional languages. [START_REF] Abadi | On protection by layout randomization[END_REF] and [START_REF] Jagadeesan | Local memory via layout randomization[END_REF] expressed the protection provided by address space layout randomization as a probabilistic variant of full abstraction. [START_REF] Fournet | Fully abstract compilation to JavaScript[END_REF] devised a fully abstract compiler from a subset of ML to JavaScript. More recently, Patrignani et al. [START_REF] Larmuseau | A secure compiler for ML modules[END_REF], Patrignani et al. 2015] studied fully abstract compilation to machine code, starting from single modules written in simple, idealized object-oriented and functional languages and targeting a hardware enclave mechanism similar to SGX [Intel].

Modular, Fully Abstract Compilation. [START_REF] Patrignani | On modular and fully-abstract compilation[END_REF] subsequently proposed a "modular" extension of their compilation scheme to protecting multiple components from each other. The attacker model they consider is again di erent from ours: they focus on separate compilation of safe languages and aim to protect linked target-level components that are observationally equivalent to compiled components. This could be useful, for example, when hand-optimizing assembly produced by a secure compiler. In another thread of work, [START_REF] Devriese | Modular, fully-abstract compilation by approximate back-translation[END_REF] proved modular full abstraction by approximate back-translation for a compiler from simply typed to untyped λ-calculus. This work also introduces a complete Coq formalization for the original (non-modular) full abstraction proof of Devriese et al. [2016a].

Beyond Good and Evil. The closest related work is that of Juglaret et al. [2016], who also aim at protecting mutually distrustful components written in an unsafe language. They adapt fully abstract compilation to components, but observe that de ning observational equivalence for programs with unde ned behavior is highly problematic. For instance, is the partial program "int buf[5]; return buf[42]" equivalent to "int buf[5]; return buf[43]"? Both encounter unde ned behavior by accessing a bu er out of bounds, so at the source level they cannot be distinguished. However, in an unsafe language, the compiled versions of these programs will likely read (out of bounds) di erent values and behave di erently. Juglaret et al. avoid this problem by imposing a strong limitation: a set of components is protected only if it cannot encounter unde ned behavior in any context. This amounts to a static model of compromise: all components that can possibly be compromised during execution have to be treated as compromised from the start. Our aim here is to show that, by moving away from full abstraction and by restricting the temporal scope of unde ned behavior, we can support a more realistic dynamic compromise model. As discussed below, moving away from full abstraction also makes our secure compilation criterion easier to achieve in practice and to prove at scale. Robust Safety Property Preservation. Our criterion builds on the RSC criterion proposed in §2.2.3, where we studied several secure compilation criteria that are similar to fully abstract compilation, but that are phrased in terms of preserving hyperproperties [START_REF] Clarkson | Hyperproperties[END_REF] (rather than observational equivalence) against an adversarial context. In particular, RSC is equivalent to preservation of robust safety, which has been previously employed for the model checking of open systems [START_REF] Kupferman | Robust satisfaction[END_REF], the analysis of security protocols [START_REF] Gordon | Types and e ects for asymmetric cryptographic protocols[END_REF], and compositional veri cation [START_REF] Swasey | Robust and compositional veri cation of object capability patterns[END_REF]].

Though RSC is a bit less extensional than fully abstract compilation (since it is stated in terms of execution traces), it is easier to achieve. In particular, because it focuses on safety instead of con dentiality, the code and data of the protected program do not have to be hidden, allowing for more e cient enforcement, e.g., there is no need for xed padding to hide component sizes, no cleaning of registers when passing control to the context (unless they store capabilities), and no indirection via integer handlers to hide pointers; cross-component reads can be allowed and can be used for passing large data. We believe that in the future we can obtain a more practical notion of data (but not code) con dentiality by adopting the hypersafety preservation criterion of §2.3.3.

While RSC serves as a solid base for our work, the challenges of protecting unsafe components from each other are unique to the setting of this chapter, since, like full abstraction, RSC is about protecting a partial program written in a safe source language against low-level contexts. Our contribution is extending RSC to reason about the dynamic compromise of components with unde ned behavior, taking advantage of the execution traces to detect the compromise of components and to rewind the execution along the same trace.

Proof Techniques. In §2.2.3 we observe that, to prove RSC, it su ces to back-translate nite execution pre xes, and in §2.3.3 we propose such a proof for a stronger criterion where multiple such executions are involved. In recent concurrent work, [START_REF] Patrignani | Robustly safe compilation[END_REF] also construct such a proof for RSC. The main advantages of the RSC DC MD proof from this chapter are that (1) it applies to unsafe languages with unde ned behavior and (2) it directly reuses a compiler correctness result à la CompCert. For safe source languages or when proof reuse is not needed our proof could be further simpli ed.

Even as it stands though, our proof technique is simple and scalable compared to previous full abstraction proofs. While many proof techniques have been previously investigated [START_REF] Abadi | On protection by layout randomization[END_REF][START_REF] Abadi | Secure implementation of channel abstractions[END_REF][START_REF] Ahmed | Typed closure conversion preserves observational equivalence[END_REF][START_REF] Lattner | What every C programmer should know about unde ned behavior #1/3[END_REF], Devriese et al. 2017[START_REF] Fournet | Fully abstract compilation to JavaScript[END_REF][START_REF] Jagadeesan | Local memory via layout randomization[END_REF][START_REF] New | Fully abstract compilation via universal embedding[END_REF], fully abstract compilation proofs are notoriously di cult, even for very simple languages, with apparently simple conjectures surviving for decades before being nally settled [START_REF] Devriese | Parametricity versus the universal type[END_REF]]. The proofs of Juglaret et al. [2016] are no exception: while their compiler is similar to the one in §3.4, their full abstraction-based proof is signi cantly more complex than our RSC DC MD proof. Both proofs give semantics to partial programs in terms of traces, as was proposed by Je rey and Rathke [2005a] and adapted to low-level target languages by Patrignani and Clarke [2015]. However, in our setting the partial semantics is given a one line generic de nition and is related to the complete one by two simulation proofs, which is simpler than proving a "trace semantics" fully abstract.

Verifying Low-Level Compartmentalization. Recent successes in formal veri cation have focused on showing correctness of low-level compartmentalization mechanisms based on software fault isolation [START_REF] Morrisett | RockSalt: better, faster, stronger SFI for the x86[END_REF][START_REF] Zhao | ARMor: Fully veri ed software fault isolation[END_REF] or tagged hardware [Azevedo de Amorim et al. 2015]. That work only considers the correctness of low-level mechanisms in isolation, not how a secure compilation chain makes use of these mechanisms to provide security reasoning principles for code written in a higher-level programming language with components. However, more work in this direction seems underway, with [START_REF] Wilke | CompCert for software fault isolation. Secure Compilation Meeting (SCM)[END_REF] working on a variant of CompCert with SFI, based on previous work by [START_REF] Kroll | Portable software fault isolation[END_REF]; we believe RSCC or RSC DC could provide good top-level theorems for such an SFI compiler. In most work on veri ed compartmentalization [Azevedo de Amorim et al. 2015, Morrisett et al. 2012[START_REF] Zhao | ARMor: Fully veri ed software fault isolation[END_REF], communication between low-level compartments is done by jumping to a specied set of entry points; the model considered here is more structured and enforces the correct return discipline. Skorstengaard et al. [2018a] have also recently investigated a secure stackbased calling convention for a simple capability machine; they plan to simplify their calling convention using a notion of linear return capability [2018b] that seems similar to the one used in our micro-policy from §3.4.6.

A acker Models for Dynamic Compromise. While our model of dynamic compromise is speci c to secure compilation of unsafe languages, related notions of compromise have been studied in the setting of cryptographic protocols, where, for instance, a participant's secret keys could inadvertently be leaked to a malicious adversary, who could then use them to impersonate the victim [START_REF] Backes | Achieving security despite compromise using zero-knowledge[END_REF][START_REF] Basin | Know your enemy: Compromising adversaries in protocol analysis[END_REF][START_REF] Fournet | A type discipline for authorization policies[END_REF][START_REF] Gordon | Secrecy despite compromise: Types, cryptography, and the picalculus[END_REF]. This model is also similar to Byzantine behavior in distributed systems [START_REF] Castro | Practical byzantine fault tolerance and proactive recovery[END_REF]Liskov 2002, Lamport et al. 1982], in which the "Byzantine failure" of a node can cause it to start behaving in an arbitrary way, including generating arbitrary data, sending con icting information to di erent parts of the system, and pretending to be a correct node.

Conclusion

We introduced RSCC, a new formal criterion for secure compilation providing strong security guarantees despite the dynamic compromise of components with unde ned behavior. This criterion gives a precise meaning to informal terms like dynamic compromise and mutual distrust used by proponents of compartmentalization, and it o ers a solid foundation for reasoning about security of practical compartmentalized applications and secure compiler chains.

Research Plan for the Next Years

The goal of the ERC SECOMP project is to build the rst formally secure compartmentalizing compilation chains for realistic programming languages. In particular, we are planning a secure compilation chain starting from programs written in a combination of C and Low [START_REF] Protzenko | Veri ed low-level programming embedded in F*[END_REF]] and targetting a RISC-V architecture extended with micro-policies [Azevedo de Amorim et al. 2015]. In order to ensure high con dence in the security of our compilation chains, we plan to thoroughly test them using property-based testing and eventually formally verify their security using Coq. For measuring and optimizing e ciency we plan to use standard benchmark suites [START_REF] Henning | SPEC CPU2006 benchmark descriptions[END_REF]] and realistic source programs, with miTLS as the main end-to-end case study. Achieving all this requires overcoming several major conceptual and technological challenges, which constitute the main scienti c objectives of this project.

Further Studying Secure Compilation Criteria As illustrated by this thesis, so far most the work on this project has been focused on devising secure compilation criteria based on preserving classes of properties against adversarial contexts [START_REF] Abate | Journey beyond full abstraction: Exploring robust property preservation for secure compilation[END_REF], Juglaret et al. 2016] and extending these criteria to unsafe languages [START_REF] Abate | When good components go bad: Formally secure compilation despite dynamic compromise[END_REF]. Various interesting open problems remain in this space, including fully working out the connection between our secure compilation criteria and fully abstract compilation (see §2.8). Even closer related to our long term goals is extending the component model from chapter 3 with dynamic component creation. This would make crucial use of our dynamic compromise model, since components would no longer be statically known, and thus static compromise would not apply at all. We hope that our RSCC de nition can be adapted to rewind execution to the point at which the compromised component was created, replace the component's code with the result of our back-translation, and then re-execute. This extension could allow us to move from our current "code-based" compartmentalization model to a "data-based" one [START_REF] Gudka | Clean application compartmentalization with SOAAP[END_REF]], e.g., one compartment per incoming network connection.

Formally Secure Compartmentalization for C. We plan to devise a compartmentalizing compilation chain based on the CompCert C compiler and targetting a RISC-V architecture. Scaling up to the whole of C and RISC-V will certainly entail challenges such as de ning a variant of C with components and e ciently enforcing compartmentalization all the way down using micro-policies. Targetting a realistic language like C is, however, the only way we can measure and optimize the e ciency of our compilation chain on standard benchmark suites [START_REF] Henning | SPEC CPU2006 benchmark descriptions[END_REF]] and realistic source programs, such as miTLS . To achieve this, we will build on the solid basis built by this work: the RSCC formal security criterion, the scalable proof technique, and the proof-of-concept secure compilation chain from §3.4.

As an interesting rst step, we plan to extend our simple compilation chain to allow sharing memory between components. Since we already allow arbitrary reads at the lowest level, it seems appealing to also allow external reads from some of the components' memory in the source. The simplest would be to allow certain static bu ers to be shared with all other components, or only with some if we also extend the interfaces. For this extension we need to set the shared static bu ers to the right values every time a back-translated component gives up control; for this back-translation needs to look at the read events forward in the back-translated trace pre x. More ambitious would be to allow pointers to dynamically allocated memory to be passed to other components, as a form of read capabilities. This would make pointers appear in the traces and one would need to accommodate the fact that these pointers will vary at the di erent levels in our compilation chain. Moreover, each component produced by the back-translation would need to record all the read capabilities it receives for later use. Finally, to safety allow write capabilities we could combine compartmentalization with memory safety.

Dynamic Privilege Notions The compilation chain from §3.4 used a very simple notion of interface to statically restrict the privileges of components. This could, however, be extended with dynamic notions of privilege such as capabilities and history-based access control [START_REF] Abadi | Access control based on execution history[END_REF]. In one of its simplest form, allowing pointers to be passed between components and then used to write data, as discussed above, would already constitute a dynamic notion of privilege, that is not captured by the static interfaces, but nevertheless needs to be enforced to achieve RSCC, in this case using some form of memory safety.

Memory Safety for C We also plan to enforce memory safety for C and its interactions with untrusted RISC-V assembly. This will protect buggy programs from malformed inputs that would normally trigger a memory safety violation. Enforcing memory safety requires changes to the C compiler and a sophisticated micro-policy, which extends our simple heap memory safety policy [Azevedo de Amorim 2017, Azevedo de Amorim et al. 2015, Dhawan et al. 2015a] to additionally deal with unboxed structs, stack allocation [START_REF] Roessler | Protecting the stack with metadata policies and tagged hardware[END_REF], byte addressing, unaligned memory accesses, custom allocators, etc. We plan to build an extension of CompCert [START_REF] Leroy | Formal veri cation of a realistic compiler[END_REF]] that is memory safe. To verify security we will target both properties describing the absence of spatial (e.g., bu er over ows) and temporal (e.g., use after free, double free) memory safety violations [START_REF] Nagarakatte | CETS: compiler enforced temporal safety for C[END_REF] and our higher-level reasoning principles enabled by memory safety [Azevedo de Amorim et al. 2018].

In a follow up step we will obtain stronger properties by combining memory safety and compartmentalization. This will give us a ne-grained object-capability model [Watson et al. 2015a] on a fully generic tagged architecture and will enable compartmentalized applications that are much more granular and thus more secure than using currently-deployed isolation techniques [START_REF] Gudka | Clean application compartmentalization with SOAAP[END_REF][START_REF] Reis | Isolating web programs in modern browser architectures[END_REF][START_REF] Yee | Native Client: A sandbox for portable, untrusted x86 native code[END_REF].

Verifying Compartmentalized Applications. It would also be interesting to build veri cation tools based on the source reasoning principles provided by RSCC and to use these tools to analyze the security of practical compartmentalized applications. E ective veri cation on top of RSCC will, however, require good ways for reasoning about the exponential number of dynamic compromise scenarios. One idea is to do our source reasoning with respect to a variant of our partial semantics, which would use nondeterminism to capture the compromise of components and their possible successive actions. Correctly designing such a partial semantics for a complex language is, however, challenging. Fortunately, our RSCC criterion provides a more basic, low-TCB de nition against which to validate any fancier reasoning tools, like partial semantics, program logics [START_REF] Jia | A logic of programs with interface-con ned code[END_REF], logical relations [Devriese et al. 2016b], etc.

Secure compilation of Low* to C using Components, Contracts, and Sealing We also plan to devise a secure compilation chain from Low to C. Low programs are veri ed with respect to Hoare-style pre-and post-conditions to achieve correctness and use the F module system (i.e., data abstraction and parametricity) to achieve con dentiality of secret data, even against certain side-channels. These high-level abstractions will have to the protected at the C level, and while compartmentalization will o er a rst barrier of defense, more work will be needed. We plan to enforce speci cations by turning them into dynamic contracts and parametricity by relying on dynamic sealing. We hope that micro-policies can help us implement both contracts and sealing e ciently.

Micro-policies for C Micro-policies operate at the lowest machine-code level. While this is appropriate for devising secure C compilers, we also want our secure Low to C compiler to directly make use of micro-policies in order to e ciently enforce the high-level abstractions of Low . Moreover, we want a general solution that is not tied to our compilation chain, but instead allows arbitrary programs in C to bene t from e cient programmable tag-based monitoring. Exposing micro-policies in C and then translating them down is challenging, because the structure of programs in these languages is di erent than that of machine code.

We will extend the semantics of C with support for tag-based reference monitoring. These tagbased monitors-i.e., high-level micro-policies-will be written in rule-based domain-speci c languages (DSLs) inspired by our rule format for micro-policies monitoring machine code [Azevedo de [START_REF] Azevedo De Amorim | A veri ed information-ow architecture[END_REF], 2015, Dhawan et al. 2015a]. Some parts of the micro-policy DSLs for C and machine code will be similar: for instance, we want a simple way to de ne the structure of tags using algebraic datatypes, sets, and maps. The kinds of tags di ers from level to level though: at the machine code level we have register, program counter, and memory tags, while in C we could replace register tags with value and procedure tags. The way tags are checked and propagated also di ers signi cantly between levels. At the machine-code level, propagation is done via rules that are invoked on each instruction, while in C we have many di erent operations that can be monitored, e.g., primitive operations, function calls and returns etc. Moreover, the tags of C values could be propagated automatically as values are copied around, without needing to write explicit rules for that. Finally, we want to automatically translate micro-policies for C to micro-policies for machine-code.

Secure micro-policy composition Our secure compilation chains require composing many di erent micro-policies. For instance, we need to simultaneously enforce isolation of mutual distrustful components and memory safety for some of the components. Recent microarchitectural optimizations enable us to e ciently enforce multiple micro-policies simultaneously [Dhawan et al. 2015a], by taking tags to be tuples, where each tag component is handled by a di erent sub-policy. Yet composing isolation and memory safety is non-trivial, since each of them has its own view on memory, and a naive composition would be dysfunctional, for instance dynamically allocating in the memory of the wrong component. While this problem can be xed by changing the code of the composed micro-policies, the bigger conceptual difculty is in composing speci cations and security proofs. Secure composition principles are badly needed, since verifying each composed micro-policy from scratch does not scale. Secure composition is, however, very di cult to achieve in our setting, because micro-policies can directly in uence the monitored code by answering to direct calls and by raising exceptions, and thus one micro-policy's observable behavior can break the other micro-policy's guarantees.

We will study several techniques for composing micro-policy speci cations and proofs, with the composite policies needed by our secure compilation chains as the main motivating examples. First, we will investigate layering micro-policies, by choosing an order among them and constructing a sequence of abstract machines, each of which "virtualizes" the tagging mechanisms in the hardware so that further micro-policies can be implemented on top. We will then use ideas from monad transformers and algebraic e ects to allow the micro-policies to be veri ed separately and layered in any order. Finally, we will investigate other forms of composition, for instance, those in which each micro-policy speci es how its tags should be a ected by the interactions of the other policies with the monitored code.

Preserving Con dentiality and Hypersafety It would be interesting to extend our RSCC security criterion and enforcement mechanisms from robustly preserving safety to con dentiality and hypersafety ( §2.3.3). For this we need to control the ow of information at the target level-e.g., by restricting direct reads and read capabilities, cleaning registers, etc. This becomes very challenging though, in a realistic attacker model in which low-level contexts can observe time. While at rst we could assume that low-level contexts cannot exploit side-channels, an interesting challenge will be to try to extend our enforcement to also protect against timing side-channels. In this context, we could investigate preserving various K-Safety Hyperproperties such as nonmalleable information ow control [START_REF] Cecchetti | Nonmalleable information ow control[END_REF], timing-sensitive noninterference [START_REF] Rafnsson | Timing-sensitive noninterference through composition[END_REF]], and cryptographic "constant time" [START_REF] Barthe | Secure compilation of side-channel countermeasures: the case of cryptographic "constant-time[END_REF] (i.e. secret independent timing).
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  Every trace property can be written as the intersection of a safety property and a dense property: ∀π ∈ 2 Trace . ∃π S ∈ Safety. ∃π D ∈ Dense. π = π S ∩ π D 2. Safety and Dense are nearly disjoint: Safety ∩ Dense = {π | ∀t. t ∈ π} 3. Dense properties cannot be empty: ∀π ∈ Dense. ∃t. t ∈ π

  Program P ::= I; F Functions F ::= f(x : τ ) : τ → return e Interfaces I ::= f : τ → τ Contexts C ::= e Types τ ::= Bool | Nat Expressions e ::= x | true | false | n ∈ N | e ⊕ e | let x : τ = e in e | if e then e else e | e ≥ e | call f e | read | write e | fail Program P ::= I; F Functions F ::= f (x) → return e Interfaces I ::= f Contexts C ::= e Types τ ::= Bool | N Expressions e ::= x | true | false | n ∈ N | e ⊕ e | let x = e in e | if e then e else e | e ≥ e | call f e | read | write e | fail | e has τ Labels λ ::= | α Actions α ::= read n | write n | ↓ | ↑ | ⊥

  n↓ = n true↓ = true false↓ = false x↓ = x e ⊕ e  = e↓ ⊕ e  e ≥ e  = e↓ ≥ e  call f e↓ = call f e↓ read↓ = read write e↓ = write e↓ let x : τ = e in e  = let x = e↓ in e  if e then e else e  = if e↓ then e  else e 

inject

  Nat (e) = e + 2 inject Bool (e) = if e then 1 else 0 extract Nat (e) = let x = e in if x ≥ 2 then x -2 else fail extract Bool (e) = let x = e in if x ≥ 2 then fail else if x + 1 ≥ 2 then true else false inject τ (e) will never incur in runtime errors while extract τ (e) can. This mimics the target context ability to write ill-typed code such as 3 + true, which we must be able to back-translate and preserve the semantics of (see Example 1)The back-translation is de ned inductively on the structure of target contexts. For clarity we omit the list of function interfaces I (i.e., what the back-translated context links against) that is needed for the call • case. true↑ = 1 false↑ = 0 n↑ = n + 2 x↑ = x e ≥ e  = let x1 : Nat=extract Nat ( e↑) in let x2 : Nat=extract Nat ( e  ) in inject Bool (x1 ≥ x2) e ⊕ e  = let x1 : Nat=extract Nat ( e↑) in let x2 : Nat=extract Nat ( e  ) in inject Nat (x1 ⊕ x2) Bool ( e↑) then e  else e  e has τ ↑ = let x : Nat= e↑ in if x ≥ 2 then 0 else 1 if τ ≡ Bool

  has Nat then x else fail), g(x) → return (if x has Nat then true else fail)) P 2 ↓ = (f (x) → return (if x has Nat then read else fail), g(x) → return (if x has Nat then true else fail)) Now, consider the target context C = let x1=call f 5 in if x1 ≥ 5 then call g (x1) else call g (false)

  !; call g 5?; ret true!; ⇓ C[ P 2 ↓] ; call f 5?; read 5; ret 5!; call g 5?; ret true!; ⇓ C[ P 2 ↓] ; call f 5?; read 0; ret 0!; call g false?; ⊥

  Figure 2.2: Example of a back-translation of traces.

  (1) What is the desired secure compilation criterion and to what attacker model and source-level security reasoning principles does it correspond? Answer: We propose the RSCC criterion from §3.2- §3.3. (2) How can we e ectively enforce secure compilation? Answer: Various mechanisms are possible; the simple compilation chain from §3.4 illustrates how either software fault isolation or tagged-based reference monitoring can enforce RSCC.

  Figure 3.1: Pseudocode of compartmentalized application

  Figure 3.2: More secure refactoring of the application

  p r o g r a m P { i m p o r t E . w ri t e ; e x p o r t foo ; foo ( x ) { y : = P . p r o c e s s ( x ) ; E . w r it e ( y ) ; } / / c a n e n c o u n t e r U n d e f f o r some x p r o c e s s ( x ) { . . . } } c o n t e x t C S { i m p o r t E . read , P . foo ; main ( ) { x : = E . read ( ) ; P . foo ( x ) ; } } Suppose we compile P with a compilation chain that satis es RSC DC , link the result with a target context C T obtaining C T [P↓], execute this and observe the following nite trace pre x: m = [ E . read ( ) ; Ret ( " f e e d b e e f " ) ; P . foo ( " f e e d b e e f " ) ; E . w r it e ( " bad " ) ]

t

  = [ E . read ( ) ; Ret ( " f e e d b e e f " ) ; P . foo ( " f e e d b e e f " ) ; U nd e f ( P ) ]

  Figure 3.4: Outline of our generic proof technique for RSC DC MD

Assumption 2 (

 2 Forward Compiler Correctness with Separate Compilation and Unde ned Behavior). ∀C P. ∀m de ned. (C ∪ P ) * m ⇒ (C↓ ∪ P↓) * m

  Figure 3.5: Our secure compilation chain

Figure 3 . 7 :

 37 Figure 3.7: Instructions of compartmentalized machine

Figure 3 . 8 :

 38 Figure 3.8: Compartmentalized machine semantics

  We proved Assumption 1 by de ning a ↑ function that takes a nite trace pre x m and a program interface I and returns a whole source program that respects I and produces m. Each generated component uses the local variable local[0] to and the interface I C of a program part C, returns a partial state ps where all information about C (such as its memory and stack frames) is erased. par(cs, I C ) = ps par(cs , I C ) = ps cs α

Figure 3 .

 3 Figure 3.10: Memory layout of three user components

  

3

  Secure Compilation for Unsafe Languages 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 RSCC By Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Formally De ning RSCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 RSC DC : Dynamic Compromise . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 RSC DC MD : Mutually Distrustful Components . . . . . . . . . . . . . . . . 3.3.3 Formalizing RSCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.4 A Generic Proof Technique for RSCC . . . . . . . . . . . . . . . . . . . 3.3.5 Class of safety properties preserved by RSC DC . . . . . . . . . . . . . . 3.3.6 Comparison to Static Compromise . . . . . . . . . . . . . . . . . . . . 3.4 Secure Compilation Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Source Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 The Compartmentalized Machine . . . . . . . . . . . . . . . . . . . . . 3.4.3 RSCC Proof in Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.4 Software Fault Isolation Back End . . . . . . . . . . . . . . . . . . . . . 3.4.5 Micro-policies Tagged Architecture . . . . . . . . . . . . . . . . . . . . 3.4.6 Tag-based Reference Monitor . . . . . . . . . . . . . . . . . . . . . . . 3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	4 Research Plan for the Next 4 Years
	Bibliography
	Appendix

  This requires that, given a compiled program P↓ and a target context C T which together produce some bad trace t, we can generate a source context C S that produces trace t when linked with P. When proving that a compilation chain satis es RTC we can pick a di erent context C S for each t and, in fact, construct C S from the trace t itself or from the execution C

	Robust Relational Hyperproperty
	Preservation (RrHP)
	Robust K-Relational Hyperproperty
	Preservation (RKrHP)
	+ determinacy
	+ determinacy
	+ observable
	divergence
	(RTINIP)

Figure 2.1: Partial order with the secure compilation criteria studied in this chapter. Criteria higher in the diagram imply the lower ones to which they are connected by edges. Criteria based on trace properties are grouped in a yellow area, those based on hyperproperties are in a red area, and those based on relational hyperproperties are in a blue area. Criteria in the green area can be proved by back-translating a nite set of nite execution pre xes into a source context. Criteria with an italics name preserve a single property that belongs to the class they are connected to; dashed edges require additional assumptions (stated on the edge) to hold. Finally, edges with a thick arrow denote a strict implication. T [ P↓]

  Theorem 1. RTP ⇐⇒ RTC Proof. (⇒) Let P be arbitrary. We need to show that ∀C T . ∀t.C T [ P↓] t ⇒ ∃C S . C S [P] t.We can directly conclude this by applying RTP to P and the property π = {t | ∃C S . C S [P] t}; for this application to be possible we need to show that ∀C S t.C S [P] t ⇒ ∃C S . C S [P] t, which is trivial if taking C S = C S .(⇐) Given a compilation chain that satis es RTC and some P and π so that ∀C S t. C S [P] t ⇒ t ∈ π (H) we have to show that ∀C T t. C T [ P↓] t ⇒ t ∈ π. Let C T and t so that C T [ P↓] t, we still have to show that t ∈ π. We can apply RTC to obtain ∃C S . C S [P] t, which we can use to instantiate H to conclude that t ∈ π.

  ]. If the consequences c o m p o n e n t C 0 { e x p o r t v a l id ; v a li d ( data ) { . . . } } c o m p o n e n t C 1 { i m p o r t E . read , C 2 . init , C 2 . p r o c e s s ;

		/ / ( V 1 ) c a n y i e l d U n d e f f o r some x
	C 2 . p r o c e s s ( x , y ) ;	
	}	
	p a rs e ( x ) { . . . }	
	}	
	c o m p o n e n t C 2 {	
	i m p o r t E . write , C 0 . v a li d ;
	e x p o r t init , p r o c e s s ;	
	init ( ) { . . . }	
	p r o c e s s ( x , y ) {	
	C 2 . p r e p a r e ( ) ;	/ / ( V 2 ) c a n y i e l d U n d e f i f n o t i n i t i a l i z e d

main ( ) { C 2 . init ( ) ;

x : = E . read ( ) ; y : = C 1 . p a rs e ( x ) ; data : = C 2 .

  c o m p o n e n t C 0 { i m p o r t E . read , E . write , C 2 . init , C 1 . parse , C 2 . p r o c e s s ; C 2 . p r o c e s s ( y ) ; if C 0 . v al i d ( data ) then E . w r it e ( < data ,

		x > )
	}	
	v a li d ( data ) { . . . }	
	}	
	c o m p o n e n t C 1 {	
	e x p o r t p a r se ;	
	p a rs e ( x ) { . . . }	/ / ( V 1 ) c a n y i e l d U n d e f f o r some x
	}	
	c o m p o n e n t C 2 {	
	e x p o r t init , p r o c e s s ;	
	init ( ) { . . . }	
	p r o c e s s ( y ) {	
	C 2 . p r e p a r e ( ) ;	/ / ( V 2 ) c a n y i e l d U n d e f i f n o t i n i t i a l i z e d
	r e t u r n C 2 .	

main ( ) { C 2 . init ( ) ;

x : = E . read ( ) ; y : = C 1 . p a rs e ( x ) ; data : =

  E .write(<data,x>) with no preceding call to C 0 .valid(data): [ C 0 . main ( ) ; C 2 . init ( ) ; Ret ; E . read ; Ret ( x ) ; C 1 . p ar s e ( x ) ; Ret ( y ) ; C 2 . p r o c e s s ( y ) ; Ret ( data ) ; E . w r it e ( < data , x > ) ]

  .1. Property W 2 gives up on the validity of the written data only if C 2 receives a y that exploits C 2 .handle(y) (vulnerability V 3 ). However, as discussed above, a compromised C 1 could, in theory, try to compromise C 2 by calling C 2 .process without proper initialization (exploiting vulnerability V 2 ). Showing that this cannot actually happen requires using step 0 of the game from Figure3.3, which gives us that the original compiled program obtained by linking C 0 ↓, C 1 ↓ and, C 2 ↓ can produce the trace m 1 • Undef(C 1 ), for some pre x m 1 of the bad trace pre x in which C 2 .process is called without calling C 2 .init rst. But it is easy to check that the straight-line code of the C 1 .main() procedure can only cause unde ned behavior after it has called C 2 .init, contradicting the existence of a bad trace exploiting V 2 .

  6. Z P Safety ∩ Closed ≺ P , where Safety {π | ∀t ∈π. ∃m≤t. ∀t ≥m. t ∈π} Closed ≺ P {π | ∀t∈π. ∀t . t≺ P t ⇒ t ∈π} = {π | ∀t ∈π. ∀t. t≺ P t ⇒ t ∈π}

  ∃t∈π. t≺ P t ∨ t ≤ t}3.3.6 Comparison to Static CompromiseIt is instructive to contrast the dynamic compromise model of our RSC DC criterion with previous work in the static compromise model byJuglaret et al. [2016]. While the secure compilation criteria of Juglaret et al. are variants of full abstraction, the core idea is easy to port to robust safety preservation:∀P C T t. P fully de ned ∧ C T [P↓] t ⇒ ∀m≤t. ∃C S t . C S [P ] t ∧ m≤t .Instead of the second disjunct in the conclusion of RSC DC ( §3.3.1), which deals with the possibility of unde ned behavior in P , RSC SC imposes a strong precondition, requiring that P does not cause unde ned behavior in any context. In our trace model, which keeps track of whether the program or context causes unde ned behavior, P fully de ned can be de ned simply as ¬(∃C S m. C S [P ] m • Undef(P ))

	De nition 3.3.8. A compilation chain provides Robustly Safe Compilation with Static Compro-
	mise (RSC SC ) i

  DC MD property, which consider di erent parts of a whole program as the adversarial context. Due to the strict memory layout and the requirement that all components are instrumented, the SFI back end cannot to link with arbitrary target code, and has instead to compile a whole compartmentalized machine program. In a rst test, we (1) generate a whole compartmentalized machine program P ; (2) compile P ;(3) run a target interpreter to obtain trace t t ; (4) if the trace is empty, discard the test; (5) for each component C T in the trace t t (5-1) use back-translation to replace, in the program P , the component C T with a component C S without unde ned behavior (5-2) run the new program on the compartmentalized machine and obtain a trace t s (5-3) if the condition t t ≤ t s or t s ≺ P \∪C S t t is satis ed then the test passes, otherwise it fails. Instead of performing step (5), our second test replaces in one go all the components exhibiting unde ned behavior, obtaining a compartmentalized machine program that should not have any unde ned behavior.

Our trace model is close to that of CompCert, but as opposed to CompCert, in this thesis we use the word "trace" for the result of a single program execution and later "behavior" for the set of all traces of a program ( §2.3).
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track how many events it has emitted. When a procedure is invoked, it increments local[0] and produces the event in m whose position is given by the counter's value. For this backtranslation to work correctly, m is restricted to look like a trace emitted by a real compiled program with an I interface-in particular, every return in the trace must match a previous call.

This back-translation is illustrated in Figure 3.9 on a trace of four events. The generated program starts running MainC.mainP, with all counters set to 0, so after testing the value of MainC.local[0], the program runs the rst branch of mainP: l oc a l [ 0 ] + + ; C . p ( 0 ) ; M ai n C . m ai n P ( 0 ) ; After bumping local[0], mainP emits its rst event in the trace: the call C.p(0). When that procedure starts running, C's counter is still set to 0, so it executes the rst branch of procedure p: l oc a l [ 0 ] + + ; r e t u r n 1 ;

The return is C's rst event in the trace, and the second of the program. When mainP regains control, it calls itself recursively to emit the other events in the trace (we can use tail recursion to iterate in the standard way, since internal calls are silent events). The program continues executing in this fashion until it has emitted all events in the trace, at which point it terminates execution.

Theorem 3.4.1 (Back-translation). The back-translation function ↑ illustrated above satis es Assumption 1.

Partial semantics Our partial semantics has a simple generic de nition based on the smallstep operational semantics of a whole target program, which we denote as α -→. In this semantics, each step is labeled with an action α that is either an event or a silent action τ . The de nition of the partial semantics α uses a partialization function par that, given a complete state cs

.12: Compartmentalization micro-policy rules but only if we are at Level(n+1); in this case the pc tag is decremented to Level(n) and the Ret(n) capability is destroyed. Instruction fetches are also checked to ensure that one cannot switch components by continuing to execute past the end of a code region. To make these checks as well as the ones for Jal convenient we use the next instruction tag NI directly; in reality one can encode these checks even without NI by using the program counter and current instruction tags [Azevedo de Amorim et al. 2015]. The bigger change compared to the micro-policy mechanism of Azevedo de Amorim et al. [2015] is our overwriting of input tags in order to invalidate linear capabilities in the rules for Mov, Load, and Store. For cases in which supporting this in hardware is not feasible we have also devised a compartmentalization micro-policy that does not rely on linear return capabilities but on linear entry points.

A variant of the compartmentalization micro-policy above was rst studied by Juglaret et al. [2015], in an unpublished technical report. Azevedo de Amorim et al. [2015] also devised a micro-policy for compartmentalization, based on a rather di erent component model. The biggest distinction to Azevedo de Amorim et al.'s work is that our micro-policy enforces the stack discipline on cross-component calls and returns.

Related Work

Fully Abstract Compilation, originally introduced in seminal work by [START_REF] Abadi | Protection in programming-language translations[END_REF], is phrased in terms of protecting two partial program variants written in a safe source language, when these are compiled and linked with a malicious target-level context that tries to distinguish the two variants. This original attacker model di ers substantially from the one we consider in this work, which protects the trace properties of multiple mutually-distrustful components written in an unsafe source language.

Appendix

The results presented in this habilitation have previously appeared in a series of research papers that are appended below. I have substantially contributed to each of these papers, which I coauthored with my students and several external collaborations.