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Abstract

The aim of this project was to build and apply tools for the analysis of muscle omics
data, with a focus on Dysferlin deficiency. This protein is expressed mainly in skeletal
and cardiac muscles, and its loss due to mutation (autosomal-recessive) of the DYSF
gene, results in a progressive muscular dystrophy (Limb Girdle Muscular Dystrophy type
2B (LGMD2B), Miyoshi myopathy and distal myopathy with tibialis anterior onset
(DMAT)). We have developed various tools and pipelines that can be applied towards a
bioinformatics functional analysis of omics data in muscular dystrophies and
neuromuscular disorders. These include: tests for enrichment of gene sets derived from
previously published muscle microarray data and networking analysis of functional
associations between altered transcripts/proteins. To accomplish this, we analyzed
hundreds of published omics data from public repositories. The tools we developed are
called CellWhere and MyoMiner.

CellWhere is a user-friendly tool that combines protein-protein interactions and
protein subcellular localizations on an interactive graphical display. It accepts a list of
genes and generates a protein-protein interaction network graph organized into
subcellular locations to mimic the structure of the cell. Localization annotations
acquired from the manually curated public repositories, Gene Ontology and UniProt
(Swissprot), are mapped to a smaller number of CellWhere localizations. Protein-protein
interactions and their scores are acquired from the Mentha interactome server.

CellWhere can be accessed freely at https://cellwhere-myo.rhcloud.com

MyoMiner is a muscle cell- and tissue-specific database that provides co-
expression analyses in both normal and pathological tissues. Many gene co-expression
databases already exist and are used broadly by researchers, but MyoMiner is the first
muscle-specific tool of its kind. High-throughput microarray experiments measure
mMRNA levels for thousands of genes in a biological sample and most microarray studies
are focused on differentially expressed genes. Another way of using microarray data is

to exploit gene co-expression, which is widely used to study gene regulation and


https://cellwhere-myology.rhcloud.com/

function, protein interactions and signaling pathways. These co-expression analyses will
help muscle researchers to delineate muscle pathology specific protein interactions and
pathways. Changes in co-expression between pathologic and healthy tissue may suggest
new disease mechanisms and therapeutic targets. MyoMiner is a powerful muscle
specific database for the discovery of genes that are associated in related functions

based on their co-expression and is available at https://myominer-myo.rhcloud.com.

These tools will be used in the analysis and interpretation of transcriptomics
data from dysferlinopathic muscle and other neuromuscular conditions and will be

important to understand the molecular mechanisms underlying these pathologies.


https://myominer-myo.rhcloud.com/

Résumé

Le but de mon projet est de créer et d’appliquer des outils pour I'analyse de la biologie
des systémes musculaires en utilisant différentes données OMICS. Ce projet s’intéresse
plus particulierement a la dysferlinopathie due la déficience d’une protéine appelée
dysferline qui est exprimée principalement dans les muscles squelettiques et cardiaque.
La perte du dysferline due a la mutation (autosomique-récessive) du gene DYSF entraine
une dystrophie musculaire progressive (LGMD2B, myopathie Miyoshi, DMAT).

Nous avons déja développé des outils bio-informatiques qui peuvent étre utilisés
pour I'analyse fonctionnelle de données OMICs, relative a la dyspherlinopathie. Ces
derniers incluent le test dit «gene set enrichment analysis», test comparant les profils
OMICS d’intéréts aux données OMICS musculaires préalablement publiées ; et I'analyse
des réseaux impliquant les different(e)s protéines et transcrits entre eux/elles. Ainsi,
nous avons analysé des centaines de données omiques publiées provenant d’archives
publiques. Les outils informatiques que nous avons développés sont CellWhere et
MyoMiner.

CellWhere est un outil facile a utiliser, permettant de visualiser sur un graphe
intéractif a la fois les interactions protéine-protéine et la localisation subcellulaire des
protéines. En résumé, apres avoir téléchargé une liste de génes d’intéréts, CellWhere
génere des graphes de réseaux d’interaction entre protéines. Ces réseaux sont alors
représentés dans les différents compartiments subcellulaires, mimant ainsi la structure
de la cellule. Les localisations subcellulaires détaillées sont obtenues a partir de banques
de données telles que Gene Ontology et UniProt, puis sont regroupées en
compartiments subcellulaires sur CellWhere, permettant ainsi une meilleure lisibilité
des graphes. Les interactions proteines-proteines et leurs scores sont obtenus a partir
du serveur d’interactomes Mentha. Il est possible d’accéder a CellWhere via ce lien :

https://cellwhere-myo.rhcloud.com



https://cellwhere-myo.rhcloud.com/

Myominer est une base de données spécialisée dans le tissu et les cellules
musculaires, et qui fournit une analyse de co-expression, aussi bien dans les tissus sains
gue pathologiques. Plusieurs bases de données de co-expressions géniques existent déja
pour tous les tissus, et sont trés utilisées par les chercheurs, mais Myominer est le
premier outil de ce genre, spécialisé dans le muscle. Des expériences de puces a haut
débit permettent de mesurer des niveaux d’ARN messagers pour des milliers de génes
dans un échantillon biologique, et la plupart des études sur puces sont focalisées sur les
expressions géniques différentielles. Une autre fagon d’utiliser les données de
micropuces est d’exploiter la co-expression génique, qui est largement utilisée pour
étudier la régulation et la fonction des genes, les interactions protéiques, ainsi que les
voies de signalisation. Il est possible d’accéder a Myominer via ce lien

https://myominer-myo.rhcloud.com

Ces outils seront utilisés dans I'analyse et linterprétation de données
transcriptomiques pour les dyspherlinopathies mais également les autres pathologies
neuromusculaires. Par ailleurs, ils faciliteront la compréhension des mécanismes

moléculaires caractérisants ces maladies.


https://myominer-myo.rhcloud.com/

Zusammenfassung

Das Ziel dieser Arbeit war es Anwendungen fiir die Systembiologieanalyse von
Muskel Omics Daten mit einen Fokus auf Dysferlinopathien zu entwickeln und
anzuwenden. Das Dysferlinprotein wird hauptsachlich in der Skeletmuskulatur und im
Herzmuskel exprimiert, wobei das Fehlen dieses Proteins, was durch Genmutationen
(autosomal rezessiv) im Dysferlingen hervorgerufen wird, zu einer progressiven
Muskeldystophie (LGMD 2B, Myoshi Myopathie, DMAT) fiihrt. Wir entwickelten
verschiedene Tools und Pipelines, die fir die bioinformatische Funktionalanalyse von
Omics Daten in Dysferlinopathien und neuromuskuldre Erkrankungen verwendet
werden kdnnen. Unter anderem, einen Test fir Anreicherungen von Gensets, welche
von friher publizierten Muskelarraydaten stammen, und eine Netzwerkanalyse fur
funktionelle Assoziierung zwischen veranderten Transkripten und Proteine. Fir die
Realisation dieser Projekte analysierten wir hunderte von publizierten Omics Dateien
von oOffentlich zuganglichen Dateibanken und entwickelten die Tools CellWhere und
MyoMiner.

CellWhere ist ein anwenderfreundliches Tool, welches die Protein-Protein
Interaktionen und die subzelluldre Lokalisierung der Proteine in einer interaktiven
Grafikanzeige darstellt. Es verwendet eine Liste an Genen und generiert eine Protein-
Protein Interaktionsnetzwerkgraphik, welche dann deren subzelluldre Lokalisierung
darstellt wahrend es die Zellstruktur imitiert. Lokalisierungsannotationen werden von
den gemeinschaftlich gewarteten Datenbanken, Gene Ontology und Uniprot, bezogen
und an eine kleinere Anzahl von CellWhere Lokationen zugeordnet. Die Protein-Protein
Interaktionen und deren Werte stammen vom Mentha interactome Server. CellWhere

ist frei zuganglich unter: https://cellwhere-myo.rhcloud.com

MyoMiner ist eine Muskelzell und —gewebe spezifische Datenbank, die eine
Expressionsanalyse von gesunden und pathologischen Gewebe anbietet. Viele Gen-Co-
Expression Datenbanken sind heutzutage zuganglich und werden auch umfassend von

Wissenschaftlern genutzt. MyoMiner ist jedoch das erste muskelspezifische Tool seiner


https://cellwhere-myology.rhcloud.com/

Art. Hochdurchsatz Microarray Experimente messen die mRNA Levels von tausenden
Gene in einer biologischen Probe, wobei die meisten Microarraystudien auf die
differentielle Genexpression ausgerichtet sind. Eine andere Moglichkeit diese
Microarraydaten zu verwenden ist die Untersuchung von Gen-Co-Expression, welche oft
genutzt wird um Genregulierung und —funktion, Proteininteraktionen und Signalketten
zu erforschen. Solche Co-Expressions-Analysen werden den Muskelforschern helfen die
gewebs-, zell- und pathologiespezifischen Elemente der Muskelproteininteraktionen,
Zellsignalen und Genregulierungen zu beschreiben. Anderungen in der Co-Expression
zwischen kranken und gesunden Gewebe koénnten dann im Weiteren neue
Krankheitsmechanismen und Therapieansatze vorbringen. MyoMiner ist eine machtige
muskelspezifische Datenbank; ausgelegt fiir die Erforschung von Genen, die in
verwandten Funktionen aufgrund ihrer Co-Expression verbunden sind. Diese Datenbank

steht zur Verfugung unter: https://myominer-myo.rhcloud.com

Diese Tools werden fir die Analyse und die Interpretation von Transkriptom
Daten vom Dysferlin-defizienten Muskelgewebe und anderen neuromuskuldren
Erkrankungen verwendet und sind wichtig, um die molekularen Mechanismen der

zugrundeliegenden Pathologien zu verstehen.
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Preamble

Since the explosion of high-throughput technologies, a huge collection of data is
available for researchers, but the processing of this and extraction of information from it
remains a major challenge. In this work, we set out to retrieve and combine muscle-
specific raw data from public repositories, assess their quality and develop a robust
analysis pipeline, which will give consistent and comparable results and systems biology
tools for muscle research. We also set out to analyze the acquired information in the
context of Dysferlin deficiency. This collection of muscle data can complement our
functional understanding of muscle-specific genes, suggest networks of biological
interactions, and enable us to identify sets of genes that are regulated in different

conditions of muscle and muscle neuromuscular pathology.

This doctoral thesis comprises four parts:

a) A general background on muscular dystrophies with emphasis on
dysferlinopathies, and an introduction to the field of omics with emphasis on

microarray transcriptomics technology.

b) Three manuscripts: two peer-reviewed articles and one in preparation, which
document and discuss the scientific work that has been conducted during this
PhD. Two of the manuscripts describe systems biology tools specific to the field

of myology: CellWhere and MyoMiner.
c) A discussion chapter that summarizes the principal outcomes of the thesis.
d) An appendix with two additional peer-reviewed manuscripts: a review on muscle

aging, and a crowdsourced article for the extraction of gene signatures across

multiple microarray samples.
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Chapter 1 — Introduction

1.1.1 Muscular dystrophies

Muscular dystrophies (MD) are a diverse group of inherited diseases that share
features of progressive weakness and wasting of the muscle tissue (Table 1). Although
MDs are known for the selective involvement of skeletal muscles, other abnormalities
can be detected in various tissues such as the cardiac muscles, the respiratory system,
smooth muscles, neurons and the brain (Coral-Vazquez, Cohn et al. 1999; Moore, Saito
et al. 2002). They have traditionally been classified according to the clinical findings,
inheritance type, onset age of the disease, affected muscle group, and overall
progression (Cohn and Campbell 2000). Heterogeneous groups such as congenital and
limb girdle muscular dystrophies (LGMDs) were classified to different subtypes based on
inheritance and genetic defects. Better understanding of the mechanisms involved in
MDs gave insights that the classification cannot be based only on the aforementioned
methods, since some phenotypes are associated with mutations in different but
functionally similar genes (Guglieri, Straub et al. 2008; Mercuri and Muntoni 2012).

After the discovery of the dystrophin gene (DMD) (Hoffman, Brown et al. 1987),
many more genes were identified as being linked to various muscular dystrophies. Most
of the common MDs are related to genes that encode components of the Dystrophin-
associated Glycoprotein Complex (DGC) which links the intracellular actin cytoskeleton
with the extracellular matrix. A defect in a protein belonging to this complex can
destabilize the whole complex which makes the muscle cell membrane (sarcolemma)
susceptible to contraction injuries which in turn leads to muscle necrosis (Petrof,
Shrager et al. 1993). This shows that it is very important to maintain the plasma
membrane structural integrity of muscle cells in order to have normal function. Thus,
mechanisms to repair the sarcolemma (mend the physical injuries) were evolved

(McNeil and Steinhardt 1997; Meldolesi 2003).
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Other forms of muscular dystrophy arise from mutations in genes that are
unrelated to the DGC. For example, defective plasma membrane repair can cause
muscle wasting and will lead to muscular dystrophy. Dysferlin gene (DYSF), even though
it expresses dysferlin protein that it is not a part of the DGC complex (Bansal, Miyake et
al. 2003), was identified as the mutant gene that caused clinically distinct muscular
dystrophies called dysferlinopathies also known as limb girdle musclular dystrophy
(LGMD), miyoshi myopathy (MM) and distal myopathy with anterior tibialis onset
(DMAT) (Bashir, Britton et al. 1998; Liu, Aoki et al. 1998; Illa, Serrano-Munuera et al.
2001). Studies show that Ca?*-dependent membrane repair in skeletal muscles is
disrupted with loss of dysferlin that results in a slowly progressive muscle weakness and
necrosis (Bansal, Miyake et al. 2003; Lennon, Kho et al. 2003).

The most common MD with childhood onset is Duchenne muscular dystrophy
(DMD) and its milder form, Becker muscular dystrophy (BMD), both affecting about 1
out of 5,000 boys. The most common MD with adult age of onset is Myotonic dystrophy
which affects about 1 per 10,000 men followed by facioscapulohumeral muscular
dystrophy (FSHD) that affects about 3 in 100,000 men. The recessive forms of Limb
girdle muscular dystrophies (LGMD) are much more common than the dominant ones
with a 9 to 1 ratio (Thompson and Straub 2016). The frequencies of certain muscular
dystrophies vary by region. For example, LGMD2A is more common in southern Europe
(Fanin, Nascimbeni et al. 2005), while LGMD2I and 2B are common in northern Europe

(Sveen, Schwartz et al. 2006).

Type Description

The most common childhood onset (2 to 6 years old) muscular
dystrophy. Mutation or loss of dystrophin gene causes
Duchenne muscular dystrophy. The gene is located on the X
Duchenne muscular chromosome thus affecting only boys (with rare exceptions).
dystrophy (DMD) Symptoms include muscle wasting, necrosis and weakness.
Affected muscles are lower, upper limbs and pelvis which
eventually spread to all skeletal muscles. The disease
progresses rapidly. Over the past decades, survival of DMD
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patients has improved to mid 20s and 30s (Passamano, Taglia et
al. 2012).

Becker muscular
dystrophy (BMD)

Almost identical to Duchenne muscular dystrophy with less
severe symptoms. Slower progress than Duchenne. Lifespan
range from late adulthood to old age (Lovering, Porter et al.
2005).

Congenital muscular
dystrophy (CMD)

Starts at birth. Multiple organs are involved including the brain.
Muscle weakness could be mild or severe affecting all voluntary
muscles. The disease progress is slow. Patient’s lifespan is
generally shortened (Mercuri and Muntoni 2012).

Emery-Dreifuss
muscular dystrophy
(EDMD)

Age of onset is typically on childhood to early adulthood.
Divided into three subtypes: X-linked, autosomal, dominant and
recessive with the first one being the most common. Emery-
Dreifuss MD is caused by mutations in the LMNA or EMD gene.
Symptoms include muscle weakness and wasting of upper limbs
and shin muscles. Disease progress is slow, but due to problems
in normal cardiac function sudden death may occur (Ostlund
and Worman 2003).

Facioscapulohumeral
muscular dystrophy
(FSHD)

Usually starts from childhood to adulthood. Affected muscles
are: facial, shoulders, and upper limbs. The progress is slow
(rapid deterioration periods are possible). The patients usually
live to old age (Lemmers, Wohlgemuth et al. 2007).

Limb-Girdle muscular
dystrophy (LGMD)

Age of onset is childhood to adulthood. The first affected
muscles are the shoulder and pelvic girdle. More than 30
subtypes of LGMDs have been reported. They are classified
based on inheritance in autosomal dominant and autosomal
recessive. The latter is more common with more severe
symptoms. The disease’s progress is slow with patients living
into old age, even though being non-ambulatory. Usual cause of
death is cardiopulmonary problems (Nigro and Savarese 2014).

Distal muscular
dystrophy (DD)

Age of onset varies from early adulthood to old age. The
affected muscles are the lower legs (calf) and the forearms. Two
of the Distal muscular dystrophies (Miyoshi myopathy and distal
myopathy with tibial anterior onset) are caused by loss of
dysferlin which is also responsible for the type 2B limb girdle
muscular dystrophy. Disease progress is slow and rarely is lethal
(Udd 2011).
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It appears on adults. It is an autosomal dominant disease that
affects the face, neck, and foot muscle groups first and then
Myotonic muscular spreads to all muscles. Clinical characteristics are muscle
dystrophy (MMD)  wasting and weakness alongside delayed relaxation of muscles
after contraction (myotonia). The disease progress is slow with
patients living to old age (Turner and Hilton-Jones 2010).

Age of onset is typically late adulthood. Symptoms include
weakness and degeneration of eyelid, face and throat muscles
first and then shoulder and pelvic girdle muscles. Disease
progress is slow (Trollet, Gidaro et al. 1993).

Oculopharyngeal
muscular dystrophy
(OPMD)

Table 1 | Muscular dystrophy types. Muscular dystrophies are classified into 9 types
according to their characteristics.

1.1.2 Limb-Girdle Muscular Dystrophies (LGMDs)

LGMDs (Walton and Nattrass 1954) are a group of phenotypically and
genotypically heterogeneous rare muscular dystrophies. They are typically characterized
by predominant atrophy and weakness of the proximal muscles (shoulders and pelvic
girdle) of the lower and upper limbs. Cardiac, respiratory and other muscles are often
affected (Verhaert, Richards et al. 2011). The age of onset is usually between childhood
and early adulthood, but for some patients the disease begins much later. If the
myopathy starts in childhood it progresses rapidly, with a more severe and disabling
form. If it begins on adulthood, it progresses more slowly with milder symptoms
allowing some patients to have a fairly normal life (Nigro, Aurino et al. 2011).

LGMDs are separated into two groups: autosomal dominant inheritance where a
mutant gene from one parent is sufficient to cause the disease, called type 1 LGMD
(LGMD1) and the autosomal recessive inheritance where defects or mutations on both
alleles (both parents) are required, called type 2 LGMD (LGMD2). Type 1 LGMDs
typically begin at early adulthood, often exhibit a mild phenotype and are considered
rare as they represent about 10% of all LGMDs. The vast majority of LGMDs are of type
2 with more severe symptoms and disease course. At the time of writing this thesis,

more than 30 different LGMD subtypes have been discovered (Table 2) (Nigro and
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Savarese 2014; Thompson and Straub 2016). All have distinct genetics and a wide
variety of phenotypes.

Mutation in the skeletal muscle sarcoglycan complex genes, SGCG-A-B-C, cause
LGMD2C-D-E-F, respectively (Table 2). Sarcoglycans, members of the dystrophin-
complex, are n-glycosyl transmembrane proteins with a large extracellular, a
transmembrane, and a short intracellular domain. These disorders, also called
sarcoglycanopathies, have some similarities with Duchenne and Becker dystrophies such
as early childhood disease onset with both heart and respiratory muscles being affected.
Another subgroup is the dystroglycanopathies LGMD2I-J-M-N-O-P with mutations to
their respective genes: POMT1, POMT2, POMGNT1, FKTN, FKRP and DAG1 (Table 2)
(Muntoni, Torelli et al. 2011). LGMD2B is caused by mutation in the DYSF gene
(dysferlin) (Liu, Aoki et al. 1998). The diseases related to dysferlin mutations are also
called dysferlinopathies and include LGMD2B (proximal onset), Miyoshi myopathy (MM)
(distal onset), distal myopathy with anterior tibialis onset (DMAT), and other
phenotypes. However, they are not classified based on different mutations of dysferlin.
Patients have normal mobility in childhood as the onset is usually in early adulthood,
although as with the other LGMDs the symptoms range from severe (childhood onset)
to mild (late onset) (Urtizberea, Bassez et al. 2008).

LGMDs can be diagnosed via a combination of a broad range of procedures and
tests that include: clinical assessment, electromyography, muscle biopsy that shows
dystrophic changes indicative of de- and re-generation of muscle fibers, very high
creatine kinase (CK) levels due to myofibre damage and necrosis, genetic testing, and
immunohistochemical tests to determine the absence of the protein involved and thus

the type of muscular dystrophy (Laval and Bushby 2004; Narayanaswami, Carter et al.

2015).
Type OMIM ID Gene Reference
LGMD1A 159000 TTID (Hauser, Horrigan et al. 2000)
LGMD1B 159001 LMNA (Muchir, Bonne et al. 2000)
LGMD1C 607801 CAV3 (McNally, de Sa Moreira et al. 1998; Minetti,
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Sotgia et al. 1998)
LGMD1D 603511 DNAJBE (Harms, Sommerville et al. 2012; Sarparanta,
Jonson et al. 2012)

(Greenberg, Salajegheh et al. 2012; Hedberg,
LGMD1E 601419 DES Melberg et al. 2012)
LGMDF 608423 TNPO3 (Melia, Kubota et al. 2013; Torella, Fanin et

al. 2013)
LGMD1G 609115 HNRPDL (Vieira, Naslavsky et al. 2014)
LGMD1H 613530 3p23-p25 (Bisceglia, Zoccolella et al. 2010)
LGMD2A 253600 CAPN3 (Richard, Broux et al. 1995)
LGMD2B 253601 DYSF (Bashir, Britton et al. 1998; Liu, Aoki et al.
1998)

LGMD2C 253700 SGCG (Noguchi, McNally et al. 1995)
LGMD2D 608099 SGCA (Roberds, Leturcq et al. 1994)
LGMD2E 604286 SGCB (Lim, Duclos et al. 1995)
LGMD2F 601287 SGCD (Nigro, de Sa Moreira et al. 1996)
LGMD2G 601954 TCAP (Moreira, Wiltshire et al. 2000)
LGMD2H 254110 TRIM32 (Frosk, Weiler et al. 2002)
LGMD2I 607155 FKRP (Brockington, Blake et al. 2001)
LGMD2) 608807 TTN (Hackman, Vihola et al. 2002)
LGMD2K 609308 POMT1 (Balci, Uyanik et al. 2005)
LGMD2L 611307 ANO5 (Bolduc, Marlow et al. 2010)
LGMD2M 611588 FKTN (Godfrey, Escolar et al. 2006)
LGMD2N 607439 POMT2 (Biancheri, Falace et al. 2007)
LGMD20 606822 | POMGNTI1 (Clement, Godfrey et al. 2008)
LGMD2P 613817 DAG1 (Hara, Balci-Hayta et al. 2011)
LGMD2Q 613723 PLEC1 (Gundesli, Talim et al. 2010)
LGMD2R 615325 DES (Cetin, Balci-Hayta et al. 2013)
LGMD2S 615356 TRAPPC11 (Bogershausen, Shahrzad et al. 2013)
LGMD2T 615352 GMPPB (Carss, Stevens et al. 2013)
LGMD2U 616052 ISPC (Tasca, Moro et al. 2013)
LGMD2V NA GAA (Preisler, Lukacs et al. 2013)
LGMD2W 616827 LIMS2 (Chardon, Smith et al. 2015)
LGMD2X 616812 BVES (Schindler, Scotton et al. 2016)

Table 2 | Limb Girdle Muscular Dystrophy family. The LGMD1 type are autosomal
dominant and less severe than the LGMD2 which are autosomal recessive.
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1.1.3 Dysferlin

Using a positional cloning strategy, Dysferlin was identified as the gene involved
in LGMD 2B and Miyoshi Myopathy muscular dystrophies (Bashir, Britton et al. 1998;
Liu, Aoki et al. 1998). The human Dysferlin gene (DYSF, FER1L1) is at chromosomal
location 2p13.2. Dysferlin’s original (canonical) isoform consists of 55 exons ranging in
size from 30 to 365 base pairs, comprising a total of 6796 bp in length (Human assembly
GRCh38.p10, Ensembl transcript DYSF-201; ENST00000258104.7 (Aken, Ayling et al.
2016)). Intron lengths range from less than 200 to more than 30,000 bp. The total length
of the dysferlin gene is 223,047 bp. It is expressed in many tissues and cells including
skeletal muscles, heart, brain, spleen, placenta, myoblasts, myotubes, at lower levels in
lung, kidney and liver, and most highly at skeletal, cardiac muscles and whole blood
(Figure 1) (Anderson, Davison et al. 1999; Klinge, Laval et al. 2007).

Dysferlin is a member of the ferlin-1 like (FERLL or simply ferlin) protein family.
Proteins that belong to the FER1L family show structural similarities and sequence
homology with the C. elegans fer-1 protein, which is mainly expressed in spermatocytes.
Defects in fer-1 prevent spermatic vesicle fusion, resulting in infertile sperm (Achanzar
and Ward 1997). Dysferlin is a 2080 amino acids single-pass type Il transmembrane
protein with a 237,295 Da mass, making it one of the largest human proteins (Uniprot
AC: 075923, ID: DYSF_HUMAN) (Liu, Aoki et al. 1998). It contains seven highly conserved
C2 domains (C2A-G) which reside in the cytoplasm, a C-terminal helical transmembrane
domain and a C-terminal extracellular domain (Figure 2). Each C2 domain is conserved
amongst the rest of the ferlin family protein’s corresponding C2 positions, suggesting
that each C2 domain has a specific role (Washington and Ward 2006). A single mutation
in any of the five C2 domains (A, B, D, E, and G) can lead to muscular dystrophy
(Therrien, Dodig et al. 2006). Dysferlin also includes two DysF domains, where one is
nested within the other (DysFN and DysFC) and two Fer domains (FerA and FerB) with
unknown function (Figure 2). The structure of the first C2 domain of dysferlin (C2A) has
been solved (Figure 3). Fuson et al. (Fuson, Rice et al. 2014)showed that it changes

conformation upon interaction with calcium ions, which is consistent with phospholipids
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binding in a Ca?*-dependent manner (Therrien, Di Fulvio et al. 2009) and with dysferlin’s
role in skeletal muscle membrane repair processes (Bansal, Miyake et al. 2003). It was
also shown that dysferlin is expressed less in myoblasts and more in mature myotubes,
suggesting a role in muscle differentiation (de Luna, Gallardo et al. 2006). Dysferlin is
localized at the plasma membrane and t-tubule network of skeletal muscle cells. It co-
localizes with AHNAK1, 2 and PARVB at the site of plasma membrane injury after the
accumulation of Ca2+ around the disruption site and interacts with ANXA1 and 2
(Ampong, Imamura et al. 2005; Matsuda, Kameyama et al. 2005). It co-localizes with
CACNA1S and BIN1 in the t-tubule during muscle differentiation (Klinge, Laval et al.
2007; Klinge, Harris et al. 2010).
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normal cells from 44 tissues (Human Protein Atlas) (Kim, Pinto et al. 2014). F) Mass
spectrometry data from the PRIDE project (Kim, Pinto et al. 2014). All data were
analyzed in Expression Atlas (Petryszak, Keays et al. 2016).

1.1.4 Ferlin protein family

Following the discovery of dysferlin as the gene responsible for LGMD2B and
MM, other genes with similar structure and sequence to dysferlin were reported, and
these were classified into a new protein family, the ferlin-1 like proteins. The ferlin-1 like
family includes 6 members: FER1L1 or DYSF (dysferlin) (Bashir, Britton et al. 1998; Liu,
Aoki et al. 1998), FER1L2 or OTOF (otoferlin) (Yasunaga, Grati et al. 1999; Yasunaga,
Grati et al. 2000), FER1L3 or MYOF (myoferlin) (Britton, Freeman et al. 2000; Davis,
Delmonte et al. 2000), FER1L4, FER1L5, and FER1L6. Ferlins are separated into two
different sub-families based on sequence similarity (Figure 2): the first group includes
dysferlin, myoferlin and FER1L5 and the second otoferlin, FER1L4 and FER1L6. All
contain highly conserved C2 domains and C-terminal transmembrane helices that are
used as anchors to the plasma membrane (Figure 2). Myoferlin and FER1L5 are the
proteins that more closely resemble dysferlin. In fact, each C2 domain is more related to
the positionally correspondent C2 domain of the other ferlin proteins than to the other
C2 domains of the same protein (Washington and Ward 2006). It has been reported that
the C2A domain of dysferlin is more than 70% homologous to that of myoferlin but
much less homologous (about 15% on average) to the other dysferlin C2 domains (Davis,
Doherty et al. 2002). Ferlins and other proteins such as synaptotagmins (SYT), are
considered to be involved in vesicle fusion events. Dysferlin is required for repair of the
muscle plasma membrane and otoferlin for SNARE-mediated membrane fusion (Beurg,
Michalski et al. 2010; Johnson and Chapman 2010). So far, only dysferlin and otoferlin
are known to be associated with diseases. The last three ferlin family proteins, FER1L4,
FER1L5 and FER1L6, are predicted from human and mouse genomic sequences but have

not been described yet.
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The spermatogenesis factor FER-1 is expressed only in primary spermatocytes of
Caenorhabditis elegans. Defects of the FER-1 gene disrupt the fusion of spermatid
membranous organelles with the plasma membrane, which results in sterility due to
immobilization of the spermatids (Achanzar and Ward 1997). A single mutation in any of
the three C2 domains alters the Ca?* sensitivity of FER-1, disrupting the fusion of
membranous organelles (Washington and Ward 2006; Han and Campbell 2007).

Otoferlin is smaller than dysferlin and has 64% sequence similarity to dysferlin
(Bansal and Campbell 2004). It is expressed in the cochlea, brain and vestibule with low
expression levels in kidney, lung, skeletal and cardiac muscles (Yasunaga, Grati et al.
2000). Mutations in otoferlin results in a recessive deafness form, called DFNB9 (OMIM
601071) (Yasunaga, Grati et al. 1999; Yasunaga, Grati et al. 2000). Otoferlin interacts
with SNARE proteins in a Ca?*-dependant manner at the synapses of the cochlear hair in
order to trigger exocytosis of neurotransmitter. The pathology is caused by a loss of
calcium mediated exocytosis without the disruption of the synaptic vesicle structure
(Roux, Safieddine et al. 2006).

Myoferlin was named according to its high sequence homology to dysferlin. Like
dysferlin, it is expressed highly in skeletal and cardiac muscles and is present on the
skeletal muscle plasma membrane (Davis, Delmonte et al. 2000). However, it is found in
the nucleus unlike dysferlin. Both proteins have about identical molecular weight
(~230kDa), seven C2 domains and similar FerA, B and DysFN, C domains (Figure 2). Even
though both dysferlin and myoferlin are so similar, they participate in different events.
Myoferlin is required for myoblast fusion during differentiation (Doherty, Cave et al.
2005). Also, myoferlin is not overexpressed to compensate for the lack of dysferlin in
dysferlin deficient patients, supporting that both proteins have very few overlapping
functions (Inoue, Wakayama et al. 2006). Lack of myoferlin causes muscle atrophy in

mice, although myoferlin has not yet been linked to any human diseases.
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Figure 2 | Ferlin family domain and structural characteristics. C. elegans fer-1 protein is
on top and the human ferlin-1 like proteins are aligned underneath. The green hexagons
represent the conserved C2 domain, FerA is colored red and FerB is blue. DysFN and
DysFC are purple and yellow respectively. The C-terminal transmembrane helical region
is represented by the blue rectangle. The bright pink rectangles on the grey lines
represent low complexity regions and the bright green ones represent coiled coils
regions. FER-1, DYSF and MYOF have FerA, FerB and nested DysFN and DysFC domains.
FERLLS includes all the aforementioned domains except for the DysFN. OTOF, FER1L4
and FER1L6 are smaller in length and include only the FerB domain. Domain location,
architecture and visualization were created with the SMART tool (Letunic, Doerks et al.
2015).

1.1.5 C2 domain

C2 protein structural domains exhibit many functions such as membrane
trafficking and fusion, phospholipid binding and signaling (Pallanck 2003). They are
called C2 as they were reported as the second conserved sequence (domain) in protein
kinase C (Newton 1995). C2 are independently folded protein domains of between 70-
150 amino acid residues that form a beta sandwich structure composed of eight beta

strands (Figure 3) (Sutton, Davletov et al. 1995). On one of the beta-sandwich ends we
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find the Ca?* binding site, which is mediated through a group of aspartic acid residues
(Davis, Doherty et al. 2002).

C2 domains are best studied in the protein family of synaptotagmins which
contain two C2 domains. Synaptotagmin’s first C2A binds Ca?* and anionic phospholipids
(Davletov and Sudhof 1993; Chapman and Jahn 1994), while the second interacts with
proteins and binds phospholipids (Fernandez, Arac et al. 2001). Calcium binds to one
end of the beta-sandwich that involves aspartic acid residues (Rizo and Sudhof 1998),
which are also present in dysferlin, myoferlin and otoferlin. It was suggested that their
interactions with phospholipids or other proteins are Ca2*-dependant (Davis, Doherty et
al. 2002). Especially the C2A domains of dysferlin and myoferlin demonstrate similar
Ca?* binding properties to those of synaptotagmins. Because dysferlin’s C2A domain is
the furthest away from the plasma membrane it is thought that it may attract vesicles
that contain ferlin proteins to the membrane (Davis, Doherty et al. 2002). For dysferlin
to function properly, all C2 domains are required, likely mediating interactions with

other dysferlin interacting proteins (Klinge, Laval et al. 2007).

Figure 3 | The solved C2A canonical structure of human dysferlin. C2 is a structural
domain implicated in membrane trafficking, fusion phospholipid binding and signaling. It
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has a beta-sandwich that is composed of eight beta strands (Sutton, Davletov et al.
1995). At the right end of the beta-sandwich in this representation is the Ca?* binding
loop. This 1.76 A resolution structure was obtained from the RCSB PDB with ID: 4IQH
(Fuson, Rice et al. 2014) and visualized with PyMOL (PyMOL).

1.1.6 Dysferlin protein interactors

Dysferlin interacts with several other proteins that have provided insights in the

function of dysferlin (Figure 4). A few are described below.

\\ — S100A10
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— ¢ DYSF - -
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\_/

Figure 4 | Dysferlin protein associations. Interactions were obtained from the STRING
database (Szklarczyk, Morris et al. 2017). Pink edges represent experimentally
determined associations, light blue show associations from curated databases, black
show co-expressions, olive green show text-mined associations and purple (ANXA1 with
ANXA2) depict protein homology.

Caveolae (CAV) are vesicular invaginations on the plasma membrane with very
small size (<100nm in diameter) (Engelman, Zhang et al. 1998). They participate in signal
transduction, membrane transport and trafficking, acting as scaffolding proteins for the

concentration and organization of specific lipids inside the caveolar membranes
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(Galbiati, Razani et al. 2001). Caveolin-3 (CAV3, P56539) is the muscle-specific member
of the caveolin protein family. Caveolin-3 is localized to the sarcolemma and is a
component of the DGC complex. Defective expression of the CAV3 gene causes LGMD
1C muscular dystrophy (Minetti, Sotgia et al. 1998). Dysferlin was shown to interact with
caveolin-3 by coimmunoprecipitation and it was suggested that one of dysferlin
functions, in regards to caveolin-3 interaction, is to subserve signalling functions of
caveolae (Matsuda, Hayashi et al. 2001). Caveolin-3 deficient patients have a secondary
reduction of dysferlin although a converse reduction in caveolin-3 is not always
observed in dysferlin-deficiency. When caveolin-3 has defective expression, the
localization of dysferlin is abnormal (Matsuda, Hayashi et al. 2001).

Calpain-3 (CAPN3, P20807) is primarily expressed in skeletal muscle and it is the
muscle-specific member of the calpain Ca?*-dependant non-lysosomal cystein protease
family. It is responsible for LGMD 2A muscular dystrophy (Richard, Broux et al. 1995).
Calpain-3 interaction with Dysferlin was shown by coimmunoprecipitation (Huang,
Verheesen et al. 2005). Dysferlin deficient patients were also found to have secondary
reduction of calpain-3 (Anderson, Harrison et al. 2000). Calpain-3 is thought to be
implicated in the muscle membrane repair mechanism because of its interaction with
annexins Al and A2.

Annexins (ANXA1, P04083 and ANXA2, P07355) are ubiquitously expressed Ca?*
phospholipid binding proteins that are implicated in signal transduction, membrane
trafficking, exocytosis and endocytosis (Raynal and Pollard 1994). Dysferlin Ca?*-
dependant interaction with annexins A1 and A2 was shown by coimmunoprecipitation
(Lennon, Kho et al. 2003). Also the expression levels of A1 and A2 are higher in
dysferlinopathy patients and correlate with the severity of the pathology (Cagliani,
Magri et al. 2005), suggesting that A1 and A2 are required in dysferlin-mediated
membrane repair in skeletal muscles. McNeil et al confirmed the need for Al in
membrane repair (McNeil, Rescher et al. 2006). Annexins are thought to be involved in

vesicle to vesicle fusion and movement because they first bind phospholipids, then
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initiate vesicle aggregation and finally interact with the actin cytoskeleton (Gerke,
Creutz et al. 2005).

AHNAK is a protein family that includes two very large, ~600-700 kDa, proteins
that share sequence and structural similarities (Komuro, Masuda et al. 2004): AHNAK1
(Desmoyokin, Q09666) and AHNAK2 (Q8IVF2). They are expressed in many cells but
have higher expression in skeletal and cardiac muscle cells. AHNAKs are localized in the
cytoplasm and nucleus in non-epithelial cells. The C-terminal region of AHNAK1 and 2
interacts with the C2A dysferlin domain (Huang, Laval et al. 2007). Dysferlin and AHNAK
levels are increased and both are relocalized in the cytoplasm during regeneration,
suggesting they function together in membrane fusion events.

Affixin (Beta-parvin, PARVB, Q9HBI1) is a focal adhesion protein, contains two
tandem calponin homology domains and is expressed ubiquitously with higher levels on
cardiac and skeletal muscle (Yamaji, Suzuki et al. 2001). It localizes to the muscle plasma
membrane and coimmunoprecipitates with dysferlin (Matsuda, Kameyama et al. 2005).
The intracellular C-terminal region of dysferlin and the CH1 region of Affixin were found
to be binding partners (Matsuda, Kameyama et al. 2005). Affixin expression is reduced
at the sarcolemma of dysferlinopathic patients (Matsuda, Kameyama et al. 2005). This
interaction could play a role in cytoskeletal reorganization, which is needed for vesicle

trafficking on the damaged membrane.

1.1.7 Dysferlin mediated membrane repair

The details of the mechanisms involved in skeletal muscle membrane repair are
still unclear, although dysferlin plays a major role in it (Bansal and Campbell 2004;
Cooper and Head 2015). Membrane repair requires intracellular vesicles (lysosomes,
endosomes, enlargeosomes, etc) to accumulate on the disrupted area and form a patch
through Ca?*-dependant vesicular exocytosis (Bi, Alderton et al. 1995; Reddy, Caler et al.
2001; McNeil, Miyake et al. 2003). First the intracellular vesicles are transported to the
lesion site via motor proteins such as kinesin, non-muscle myosin IIA and IIB, and MG53

which is a muscle-specific tripartite motif family protein member (TRIM72) (Bi, Morris et

31



al. 1997; Togo and Steinhardt 2004; Weisleder, Takeshima et al. 2009). Then the vesicles
are fused in a Ca2+-dependent manner with the plasma membrane to form a
“membrane patch” (Han and Campbell 2007). Vesicle fusion involves synaptotagmins
and the SNARE protein family. It is thought that dysferlin acts as a Ca2+ sensor that
regulates the SNARE vesicle-membrane fusion, during membrane resealing alongside
annexin. Finally, the patch is thought to be removed either by autophagy, endocytosis or
phagocytosis by macrophages (Middel, Zhou et al. 2016).

Dysferlin is highly expressed and is associated with the t-tubule network. The
network is vulnerable to eccentric stretch, and DYSF-null muscle fibers show t-tubule
abnormalities after in vivo lengthening strain injuries similar to those of CAV3-null
muscle fibers (Klinge, Harris et al. 2010; Kerr, Ziman et al. 2013), suggesting that
dysferlin is important for t-tubule formation and maintenance. Further studies have
shown that dysferlin is cleaved by activated calpains after the plasma membrane is
injured. The cleavage product, mini-dysferlinc7z, has only the last C2 domains and the
transmembrane domain. These are the most conserved C2 domains and the structure of
mini-dysferlinc;z resembles those of synaptotagmins (Lek, Lek et al. 2010). Thus it is
suggested that the cleaved dysferlin may be recruited to the injury site but not the full
length protein. It seems that defective membrane repair could be only one of multiple
contributing factors to dysferlin-deficient pathology. It is known that dysferlin deficiency
affects trafficking and signaling growth factors (Demonbreun, Fahrenbach et al. 2011)
and adhesion molecules (Sharma, Yu et al. 2010) and the late onset of the disease
suggests that there must be differences in the need for dysferlin in trafficking and

membrane repair between children and adult muscles.

1.1.8 Dysferlinopathies

Dysferlin deficiency in skeletal muscle results in a large variety of muscular
dystrophies. Dysferlinopathies are autosomal recessive inherited muscle wasting
diseases. The first phenotype was described in 1967 (Miyoshi, Saijo et al. 1967) and in
1986 (Miyoshi, Kawai et al. 1986) by Miyoshi. Subsequently this disorder was called
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Miyoshi Myopathy (MM). “Dysferlinopathy” as a term was first mentioned by Kate
Bushby when Miyoshi Myopathy and LGMD2B were first found to share the same allele
(Bushby 1999; Bushby 1999).

To date, 416 disease-causing mutations have been reported (see
http://www.umd.be/DYSF/) (Beroud, Collod-Beroud et al. 2000; Beroud, Hamroun et al.
2005; Blandin, Beroud et al. 2012) in different regions of the DYSF gene, but with no
mutation hotspots. These include stop codon mutations, frameshifts which lead to
premature truncated protein, missense mutations that affect protein stability and
deletions (Mahjneh, Bushby et al. 1996; Aoki, Liu et al. 2001; Cagliani, Fortunato et al.
2003; Takahashi, Aoki et al. 2003; Nguyen, Bassez et al. 2005; Therrien, Dodig et al.
2006; Wenzel, Carl et al. 2006; De Luna, Freixas et al. 2007; Krahn, Beroud et al. 2009;
Klinge, Aboumousa et al. 2010). Also, several mutations specific to distinct populations
(founder mutations) have been reported: Italian (Cagliani, Fortunato et al. 2003),
aboriginal Canadian (Weiler, Greenberg et al. 1996), Portuguese (Vernengo, Oliveira et
al. 2011) and Palestinian (Mahjneh, Vannelli et al. 1992).

Patients usually have varying symptoms but commonly include slow progressive
muscle wasting and weakness accompanied with increased serum levels of creatine
kinase (CK) at the early stages of the disease (Urtizberea, Bassez et al. 2008). Typically,
the lower limbs are affected prior to upper ones (Mahjneh, Marconi et al. 2001). There
are also dysferlin mutations that have no symptoms or with only higher CK levels
(HyperCKemia) (Urtizberea, Bassez et al. 2008). Dysferlinopathies in general do not
seem to interfere with the respiratory system or cardiac muscles, but studies suggest a
mild cardiomyopathy (Wenzel, Geier et al. 2007; Chase, Cox et al. 2009). Dysferlin
deficient carriers are usually unaffected, but mild muscle weakness is reported to be
present sometimes (llla, De Luna et al. 2007). The three main clinical phenotypes are: (i)
Miyoshi Myopathy (MM) (Miyoshi, Kawai et al. 1986; Bejaoui, Hirabayashi et al. 1995;
Liu, Aoki et al. 1998), the distal onset muscular dystrophy; (ii) Limb-Girdle Muscular
Dystrophy type 2B (LGMD2B) (Bashir, Strachan et al. 1994; Bashir, Britton et al. 1998),

the proximal muscular dystrophy form; and (iii) Distal Myopathy with Anterior Tibial
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onset (DMAT) (llla, Serrano-Munuera et al. 2001), which is very similar to MM except

that in the beginning it affects the anterior muscles of the lower limbs. Other clinical

phenotypes have also been reported such as proximo-distal weakness (Nguyen, Bassez

et al. 2007; Seror, Krahn et al. 2008). A short description of the three main phenotypes

follows.

Miyoshi Myopathy: MM or Miyoshi Muscular Dystrophy 1 (MMD1) (OMIM #
254130) (Miyoshi, Kawai et al. 1986; Bejaoui, Hirabayashi et al. 1995; Liu, Aoki et
al. 1998) is the most common autosomal recessive myopathy with distal onset
and is also the most known type of dysferlinopathy. MM progress is typically
slow (decades) and around 15% of the patients will become non-ambulatory.
The symptoms usually appear at early adulthood, and include elevated levels of
CK and lactate dehydrogenase (LDH), at the early stages of the disease, and
muscle weakness that initially begins from the gastrocnemius muscle (calf
muscle). Patients usually first report inability to stand on their toes, difficulties
getting downstairs and leg pains alongside calf swelling (Diers, Carl et al. 2007).
The symptoms, in early adulthood, are quite delayed compared to other early
onset muscular dystrophies such as Duchenne Muscular Dystrophy (DMD)
(Blake, Weir et al. 2002). Most of the patients have no signs of muscle weakness
in their early adulthood. The most notable symptom is the reduced calf size.
Over time, muscle wasting extends to the distal upper limb and the pelvic
muscles.

Limb-Girdle Muscular Dystrophy type 2B: The clinical phenotype of LGMD2B
(OMIM # 253601) (Bashir, Strachan et al. 1994; Bashir, Britton et al. 1998) is very
similar with that of MM but, predominantly affects proximal muscles especially
guadriceps and hamstrings. The age of onset is on early adulthood and the
progression is slow. The shoulder girdle is affected after years of progression

have passed.

34



e Distal Myopathy with Anterior Tibial onset: Distal Myopathy with Anterior Tibial
onset (DMAT) (OMIM # 606768) (llla, Serrano-Munuera et al. 2001), is
comparable to MM with different affected muscles. It first affects the anterior
tibial muscles of the lower limbs and the progresses to the posterior ones. Onset
of the disorder is in early adulthood and is rapidly progressive with involvement
of the proximal muscles. DMAT is also similar to Nonaka myopathy (Nonaka,
Sunohara et al. 1981) since the onset is on the anterior tibial muscles, but with

higher CK levels.

1.1.9 Mouse and cell models of dysferlin deficiency

Two mouse strains are typically used to study dysferlinopathy because they each
contain a natural occurring dysferlin mutation: SIL/J (JAX 000686) and A/J (JAX 000646)
strains (a short description follows). More information about dysferlin deficient mouse

models is available at the Jain Foundation website (https://www.jain-foundation.org).
1.1.9a SJL/J and SJL-Dysf

The SJL/J mouse was developed in 1955 at The Jackson Laboratory. It has been
reported that the mouse was susceptible to autoimmune disorders and inflammatory
muscle diseases (Bernard and Carnegie 1975; Rosenberg, Ringel et al. 1987). It was later
shown that the skeletal muscle of SIL/J had increased regenerative capacity compared
to BALB/c mouse (Grounds and McGeachie 1989; Mitchell, McGeachie et al. 1992;
McGeachie and Grounds 1995). In 1999, Bittner et al. uncovered a reduction in dysferlin
protein that is consistent with the reduction in dysferlinopathy patients (Bittner,
Anderson et al. 1999). A splicing mutation in the 3’ splice junction of the Dysf gene
results in the deletion of exon 45 from dysferlin’s mRNA. This is a 171 bp in-frame
deletion, removing 57 amino acids (predicted) which belong to the C2E domain of
dysferlin (Vafiadaki, Reis et al. 2001) (https://www.jax.org). The Dysf™ (inflammatory

myopathy) allele results to decreased dysferlin protein levels (<15% than the controls).
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Mild muscle weakness can be detected histologically at about 3 weeks of age with the
main pathology presentation occurring after 6 months by affecting the proximal muscles
first (Bittner, Anderson et al. 1999). At 16 months half of the skeletal muscles are
replaced by fat tissue (Weller, Magliato et al. 1997). The proximal muscles, quadriceps
femoris and triceps brachii, are more severely affected than the distal ones
(gastrocnemius, soleus and tibialis anterior) and the progression of the disease is faster
than the A/J strain. Dysf™/Dysf™ mutation has been transferred to the C57BL/10
background (C57BL/10.SJL-Dysf, JAX 011128) in order for the C57BI/10J to be used as an

experimental control (https://www.jain-foundation.org). This background exhibits

similar characteristics: progressive muscular dystrophy, myofiber degeneration,
increased fibrosis and CK levels, which makes it ideal as a model of dysferlinopathy

(https://www.jax.org).

1.1.9b A/J and Bla/J

The A/J mouse was first developed in 1921 from a cross between Cold Spring

Harbor albino and Bagg albino (Strong 1936) (https://www.jax.org). A unique

retrotransposon (6000 bp) is inserted in Dysferlin’s fourth intron (5’ end) that causes
alternative splicing and loss of dysferlin protein (Ho, Post et al. 2004). First symptoms
are observed within 4 or 5 months with slow muscle weakness progression with
proximal and abdominal being the first affected muscles followed by the distal muscles.
In 2010 the Dysf™™?/Dysf’'™ (progressive muscular dystrophy) mutation of the A/J
mouse was transferred to the C57BL/6J background, called Bla/J (B6.A-Dysf"™dGene/)),
making the C57BL/6J mouse a control for experiments (Lostal, Bartoli et al. 2010). The
Bla/) mouse exhibits elevated numbers of centronucleated fibers and muscle
impairment in most muscle groups within 4 months (disease onset is 2 months). The
most affected muscles are psoas, quadriceps femoris, tibialis anterior, and
gastrocnemius, in order of severity (Lostal, Bartoli et al. 2010). Reduced membrane
repair capability following laser wounding was also shown by Lostal et al (Lostal, Bartoli

et al. 2010). New studies reported that the C57BL/6J background results in a more
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severe form of dysferlinopathy through increased membrane leakage and inflammation
(Demonbreun, Allen et al. 2016). Like the SIL/J strain, the proximal muscles are severely
affected while the distal present a milder weakness (abdominal muscles are severely

affected too). The progress of the disease is slower than the SJL/J strain.

1.1.9¢ Cell models

Human immortalized primary myoblasts were isolated from dysferlin patients
muscle biopsies and transduced with hTERT and cdk-4 for immortalization while
preserving the symptoms of the human dysferlin deficient cells (Philippi, Bigot et al.
2012). Mouse immortalized dysferlin deficient myoblast cells (GREG cells) were derived
from the A/J mouse (Humphrey, Mekhedov et al. 2012). These cells also preserve the
characteristics of dysferlin deficiency such as, reduced overall dysferlin expression and

membrane repair capacity following wounding.

1.1.10 Therapeutic approaches for Dysferlinopathy

There is currently no effective therapeutic option for dysferlinopathy patients.
Disease progression is different for dysferlinopathy types and palliative interventions
can help: most of the MM patients remain ambulatory throughout their lives, however
LGMD 2B patients require a wheelchair within two or three decades after diagnosis.

Since dysferlin deficiency impairs skeletal muscle membrane repair, gene based
therapies (gene replacement) that could increase functional dysferlin expression look
very promising. Most of these methods use adeno-associated viral vectors (AAVs) to
systemically deliver the dysferlin gene while not causing immunological reaction.
However, AAVs have a limited size capacity and the dysferlin gene is one of the largest
in the human body, thus a truncated and functional version of dysferlin must be
generated. One technique is to use a two-vector system to deliver the dysferlin gene in

two segments with a large overlapping region and reassemble it inside the cell
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(Sondergaard, Griffin et al. 2015). A first phase clinical trial using this method began in
2016 with the participation of 3 low dose and 3 high dose patients of the dual dysferlin
AAVs (rAAVrh74.MHCK7.DYSF.DV) on the extensor digitorum brevis muscles. A new
study from the same team demonstrated that dysferlin was still expressed in 15 months
dysferlin-null mice after the initial injection at 8 weeks old (Potter, Griffin et al. 2017).
They also treated DYSF-null mice at a later age, 6 months, which is about the time the
phenotype starts to appear, and found improvement on the treated muscles compared
to untreated (Potter, Griffin et al. 2017). In a new study a nano-dysferlin, including the
important regions, was designed so it could fit inside an AAV and was reported to
successfully improve expression levels of dysferlin in Bla/J mice (Llanga, Nagy et al.

2017).

Other therapeutic methods are being investigated such as exon skipping. Exon
skipping as a therapy has been developed first for DMD, and is designed to restore the
reading frame by removal of an exon adjacent to the deletion site, thereby generating a
protein that is truncated but still partially functional. New studies show that certain
forms of truncated dysferlin are functional in patient cells (Barthelemy, Blouin et al.
2015). However as there is no mutation hotspot in dysferlin, multiple sites will have to
be tested. Furthermore, it is difficult to know which regions are essential for dysferlin to

function and if the truncated protein will be functional.
1.2.1 Omics in muscle and neuromuscular pathologies

Omics (also referred as high dimensional biology) approaches aim at the
thorough understanding of a complex system by viewing it as a whole. Traditionally,
their main goal is to systematically quantify genes, mRNA, proteins, metabolites, etc
from a biological sample in an unbiased manner. Omics have revolutionized the field of
systems biology (Westerhoff and Palsson 2004). The main difference of systems biology
with traditional studies is that the latter are largely hypothesis driven. On the other

hand omics experiments are commonly used to generate hypotheses using a holistic
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approach, with no prior knowledge or driver, acquiring and analyzing data and defining
a hypothesis which can be then tested (Kell and Oliver 2004). Omics approaches are
used to understand biological processes but also disease conditions where they can be
used for diagnostic or screening purposes. Another way of using omics is for biomarker
discovery as they can be used to investigate multiple genes, proteins or molecules at
once across multiple conditions. This has led to the currently very popular use of omics
technologies for drug discovery assessment and efficacy (Gerhold, Jensen et al. 2002)
through the field of pharmacogenomics which could potentially deliver individualized
drugs (Evans and Relling 2004).

The Next Generation Sequencing (NGS) explosion has affected all fields of
medicine, including neuromuscular disorders, with whole exome, genome or targeted
sequencing. NGS can detect genetic single base variations and can therefore be used for
diagnostics or gene discovery. NGS diagnostics are strongly applicable to LGMDs as a
large number of genes are related with different LGMD subtypes. Also the associated
genes have large size and do not have mutation hotspots (Thompson and Straub 2016).
Several of the LGMD mutations are rare and usually confined to small populations.
Therefore, targeted NGS is used more often as a first diagnosis tool, replacing the single
gene methods (Biancalana and Laporte 2015; Thompson and Straub 2016). Instead of
immunoanalysis of muscle biopsy and identification of the affected proteins, NGS first
methods will use targeted (selected genes after narrowing down the related MDs
through clinical screening) or exome sequencing before any further analyses (Lek and
MacArthur 2014). If the results show a pathogenic mutation very little follow-up work is
required. If they do not give a clear result, then the downstream analyses that were
used so far can be used to identify the pathology. Targeted gene sequencing has already
been used in many neuromuscular disorders successfully (Ankala, da Silva et al. 2015;
Biancalana and Laporte 2015). This can result in associating phenotypes with genes that
could not have been tested with the low-throughput methods as they did not seem
relevant to the phenotype. Many patients remain with unknown causative mutation(s)

even after targeted NGS. In cases like this whole genome sequencing presents a way to
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discover genes associated with the phenotypes. In conjunction with NGS, transcriptomic
and proteomic approaches are also utilized to evaluate the mutation effect on
transcripts and protein levels.

Several large projects aim to understand the genetic causal mutation, underlying
mechanisms and ways to develop therapeutic targets in regards to MDs: The European
project NeurOmics (http://rd-neuromics.eu) uses omics technologies to develop
treatments for 10 neuromuscular diseases, SeqNMD an NIH project that focuses on
gene discovery in patients and MYO-SEQ (http://myo-seq.org), a project that collects
whole exome sequencing data to patients with unexplained LGMDs. These projects have
accumulated more than a thousand LGMD patient sequences so far (Thompson and
Straub 2016).

Transcriptomics is the study of the expression levels of total mRNA in a cell or
organism. The transcriptome is defined as the genes that are actively expressed at a
given moment. One of the first truly high-throughput technologies, the microarray, was
developed in the mid to late 90s and was used broadly by researchers for the past 20
years giving new insights on gene functions and interactions. There are many types of
microarrays for various biological assays. For example, SNP (single nucleotide
polymorphisms) arrays can detect variations in DNA sequences. Gene expression
microarrays measure mRNA as gene activity (expression levels). They measure the
expression of thousands of genes simultaneously and can analyze the difference of DNA
sequence between biological samples.

Although microarrays gave a huge boost in genomics and transcriptomics
studies, they have several limitations. DNA microarrays measure changes in
fluorescence signal following hybridization to predetermined cDNA probe sequences
and by default cannot measure the absolute mRNA abundance (i.e. to compare one
probe to another). This became possible with the introduction of RNA-Seq which is the
high throughput sequencing of transcript cDNAs. RNA-Seq technology maps the entire
transcriptome at an affordable cost. A great wealth of microarray data has been

accumulated in public repositories, but in the past few years microarray assays are
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gradually being replaced with NGS technology for new studies. NGS can reveal
abnormalities such as chromosomal insertions and deletions and measure the absolute
expression value of genes simultaneously and more accurately than microarrays,
although at a higher computational time cost. NGS technologies have a profound effect
on every field of biology and medicine due to the spiraling low cost of the technology,
the accuracy and ease of use.

Proteomics is the study of the proteome and its function in a system. The
proteome is the set of all expressed proteins in a system at a certain time-point. The
goal of proteomics can range from simple cataloging of proteins in a system to more
complex study such as quantitative and functional proteomics in different states, and
the understanding of this in the context of protein pathways and networks (Larance and
Lamond 2015). Proteomics is very promising tool for biomarker discovery since proteins
are frequently affected in a disease state, and once identified as biomarkers they can be
sensitively assayed using very specific antibody-based detection kits (e.g. ELISA). This is
reflected in the many protein disease biomarkers already available (Parker and Borchers
2014). Limitations of proteomics include the inability to accurately detect low abundant
proteins and that the approach is very expensive.

Metabolomics is the study of global metabolite profiles in a system (organism or
tissue) under a given set of conditions. The metabolome is the complement of all low
molecular weight molecules (metabolites) that are present in a specific physiological
state. The metabolome is also closer to the phenotype being studied, since metabolites
are often the immediate effectors of function. Although the metabolome contains about
5000 metabolites the diversity of the molecules makes it more challenging to assay and
to interpret than other omics approaches.

Several aspects of this thesis relate to microarray technology because of their
abundance in public data repositories. A short but comprehensive review of this

technology, especially for Affymetrix arrays and public repositories, follows.
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1.2.2 DNA microarrays

Microarray technology has been developed over the past twenty years and has
led to more holistic approaches to cellular activity than are possible by the study of
individual biological functions of a few related genes, proteins or cell pathways. The
development of this technology has provided new and interesting information, and
exponentially increased the available data for the understanding of biological systems.
Microarrays, similarly to other high-throughput methods, are important for the full
understanding of processes taking place in biological systems, and are complementary
to common procedures (Schena 2002). Since their initial application as a new technique
for large-scale mapping of DNA and the initial success as transcriptome analysis tools,
they are used in many areas, adapting the basic concept and combining it with other
techniques.

Each DNA microarray consists of a large number of DNA probe assemblies
representing specific genetic loci. The probes are immobilized by covalent bonds on a
solid surface (usually glass). In other words, gene detectors are immobilized at specific
points on a glass tile, smaller than the human palm, with techniques of modern
nanotechnology, and this structure is called a microarray. In addition to gene detection
probes, protein probes, tissue fragments, metabolite probes, and the like can also be
used. Microarrays allow analysis of gene expression, DNA sequence diversity, protein
levels and modification and more, with massive and parallel processing. It is a
technology with many applications in areas such as genomics, proteomics, diagnostics,
etc. Since early 2000, it has enabled the analysis of the whole transcriptome from a
tissue or cell in a single experiment.

A researcher can extract useful information about the biological function of an
organism by finding out what genes are induced or suppressed at different cell cycles or
developmental stages or in response to environmental stimuli, such as hormone
response or high temperature. Groups of genes whose expression increases or
decreases under the same conditions, are likely to have associated biological function

and perhaps a common adjusting mechanism (Brown and Botstein 1999). They could,
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for example, have similar promoter sequences for the same transcription factors.
Additionally, a pattern of expression for a specific condition represents a useful
reference to characterize similar unfamiliar situations. Gene expression is directly
correlated with biological functions and microarrays provide large data sets on diseases,
aging, pharmaceutical action, hormonal action, mental illness, metabolism, and many
other clinical issues. Microarrays also opened a new road in diagnostic methods, and
have become increasingly available to use in laboratories and diagnostic facilities

(Schena 1996).
1.2.3 The creation of the modern microarray

In the mid-90’s the technology of microarrays was born, as we understand it
nowadays (Pease, Solas et al. 1994; Schena, Shalon et al. 1995; DeRisi, Penland et al.
1996; Lockhart, Dong et al. 1996). The forerunner of the microarrays is arguably the
colony hybridization method, where DNA was cloned to E. coli plasmids plated on agar
petri plates covered with nitrocellulose leaves (Grunstein and Hogness 1975). Similar

but also different microarray technologies were developed:

e Spotted arrays: An array of pins is dipped into wells that contain already
synthesized DNA probes and deposits (spots) them to predetermined locations
on the array surface (DeRisi, Penland et al. 1996).

e In-situ synthesized arrays: Short oligonucleotide sequences (oligos) are
synthesized directly onto the array surface using photolithographic (Fodor, Read
et al. 1991) (Affymetrix / Nimblegen) or inkjet printing methods (Blanchard,
Kaiser et al. 1996; Hughes, Mao et al. 2001) (Agilent Technologies). Since 1995,
the Affymetrix company has introduced the GeneChip® array (Lockhart, Dong et
al. 1996) with proprietary technology and prohibits the use of such technology
by others after patenting. The microarrays from Affymetrix are the most

commonly used arrays and were also used in several parts of this thesis because
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of their abundance. A section below describes in greater detail about its
construction, experimental design and data analysis methods.

e Self assembled arrays: A collection of beads that contains a set of diverse oligos
is applied to a surface with wells slightly larger than the beads (Michael, Taylor
et al. 1998; Ferguson, Steemers et al. 2000; Steemers, Ferguson et al. 2000; Walt

2000). This method was patented by Illumina.

In attempting to analyze the genome of many organisms, the need for a functional
study of thousands of genes was born simultaneously. One step in this direction was the

recognition of gene expression patterns under physiological and pathological conditions.
1.2.4 Description of experimental process

The experimental process concerns the steps to be followed in conducting a
microarray experiment (Figure 5). We will focus on gene profile analysis experiments in
this short description.

A microarray experiment is a complex sequence of processes that must be
completed successfully to ensure the acceptable quality of the data that will be
generated and the conclusions to be drawn. Since the steps are many and complex, the
chances for the experiment to fail increase. Thus, we must be cautious about high-
throughput microarray data (or any other kind of high-throughput data), although, as
the techniques improve, it is easier to get the experiments done correctly and extract
safer conclusions.

Microarray experiments are also called modern Northern analyzes. In a Northern
analysis, a cell’s RNA is isolated and separated by its size, in agarose gel, after
electrophoresis on a special surface of nitrocellulose or nylon. The surface is then
exposed to a solution of labeled probes that specifically detect RNA molecules and

fluoresce.
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Figure 5 | Experimental procedure in a microarray experiment. Microarray
experiments involve isolation of RNA from biological samples of interest, making it
fluorescent, hybridize it to the chip, washing off the excess and passing the microarray
though a laser light scanner. Image from Butte et al. 2002 (Butte 2002).

If we briefly look at a microarray gene profile analysis, initially, we formulate a
biological question, which we hope to answer at the end of the experiment. We then
proceed to select or construct the microarray, which means what type of microarray will
be able to answer the biological question. We then select the microarray in terms of
how it is prepared, but also what is the arrangement and type of detectors immobilized
on the surface (probes). Probes are the most important selection criterion as they
detect the sample’s complementary DNA (cDNA) molecules.

At the same time, the biological material is prepared: RNA is isolated from two
or more conditions of cells or tissues (e.g. control vs. diseased), if necessary amplified
and finally labeled with different pigments for each condition. If using the Affymetrix
GeneChip single-channel array (see below), only one condition per tissue can be

hybridized in each array. The next step is the hybridization of the fluorescence labeled
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target sequences with the microarray probes. Finally, after washing off the excess, we
scan the surface of the microarray with a laser light scanner, which returns a digital
image derived from the excitation of the labeled molecules found in the target
sequences and fluorescing at specific wavelengths.

In a two-channel (two-color) experiment, the target sequences from two
different samples are individually stained and hybridized on a single chip. This means
that each sample outputs a different colored image at its fluorescent molecule
excitation level. If, for example, a control sample is labeled with red fluorescent
molecule (Cy5) and a diseased sample with green (Cy3), we are given the possibility of
comparing the intensity of the image of each probe after hybridization. Due to the fact
that hybridization occurs simultaneously for both samples, there is clear competition
between targets for the probes. The labeled target sequences in excess of each sample
will bind greater to their corresponding probe. We will see the probe colored red if this
gene is overexpressed in the cells of the control sample or, we will see the probe
colored green if the corresponding gene for the diseased sample is overexpressed.
Finally, the probe will be colored yellow if the expression is similar. In the case that
there is no expression we will see the probe colored black (Schena 2002).

When, finally, we obtain the digitally scanned image, we proceed to its analysis,
from which quantified data arise. These data are processed with a variety of algorithms
to eliminate errors by performing quality controls and to draw conclusions by further
downstream analyses: differential expression, clustering, enrichment, correlation,
network construction, etc. In the next sections we will focus on the Affymetrix GeneChip

array.
1.2.5 Affymetrix GeneChip single-channel oligo arrays

Affymetrix GeneChip arrays consist of monoclonal 25mer oligonucleotide
probes, which are synthesized on the solid surface of the microarray by the method of

photolithography (Figure 6).
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The process begins with the glass plate (wafer), the solid surface of the
microarray. The plate is immersed in silane (SiH4) whose molecules are combined with
the glass. A linker molecule together with a photosensitive molecule is added to each
silane molecule. The linker molecule is the first DNA binding site. The photosensitive
molecule acts as a protective molecule (blocker), not allowing new nucleotides to bind
to it. A photo mask is placed on the wafer and allows ultraviolet to pass through
predetermined points. The exposed spots lose their protection and the wafer is washed
with a solution that contains free and single photosensitive modified nucleotides (one at
a time). The newly added nucleotides form the substrate where the next ones will bind.
This process is repeated until specific 25mer oligonucleotides are formed at every probe

location (Lipshutz, Fodor et al. 1999).
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Figure 6 | Affymetrix GeneChip. Top | Photolithography. Ultraviolet radiation passes
through the lithographic mask, acting as a filter either to transmit or block the radiation
from the chemically protected surface of the microarray. The sequential application of
specific lithographic masks determines the order of synthesis of the oligonucleotide
probes. Bottom | Chemical synthesis cycle. Ultraviolet radiation removes the protective
groups from the surface of the microarray, allowing the addition of a single
photochemically protected nucleotide. Successive irradiation cycles of de-protection, a
change in the filter pattern of lithographic masks, and adding one mononucleotide type
at a time, forms microarrays with specific 25mer oligonucleotides-probes. Image from
(Dalma-Weiszhausz, Warrington et al. 2006; Miller and Tang 2009).

Each gene or nucleotide sequence is represented by 11 to 20 unique computer-
generated probes which are scattered in the microarray to avoid mis-estimation of the
guantification of expression due to their location. The probes serve as sensitive, unique
and specific sequence sensors. Typically, the probes hybridize to individual regions of
the sequence, but sometimes they may overlap a little if deemed necessary. The group
of probes specific to a gene or to a similar gene group is known as a probe-set which
provides, with high accuracy, the expression value of the target gene. Oligonucleotide
probes recognizing parts of the 3’ end of the gene are called perfect match probes (PM).
The large number of detectors for different regions of the same RNA significantly
improves the signal to noise ratio (due to the calculation of a robust mean measure of
the intensities of the multiple detection points) and provides precision in the
guantification of RNA while preventing cross-hybridization effects and drastically
reduces the false positive signals (Lipshutz, Fodor et al. 1999).

Additional quality testing is possible with the use of incomplete match probes
(Mismatch or MM). The MM probes have exactly the same nucleotide sequence as the
corresponding PM except for the 13th base (middle) which is complementary (Figure 7).
The MM probes act as specialized controls that allow direct removal of background and
cross-hybridization noise, while distinguishing between true signals and those resulting
from non-specific or partial hybridization. Hybridization of labeled RNA sequences in PM
produces a higher signal than in MM, resulting in stable patterns that are unlikely to
occur randomly. Even at low concentrations of RNA, PM/MM hybridization attributes

recognizable patterns which can be quantified (Lipshutz, Fodor et al. 1999). Each MM
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detector is located adjacent to that of the corresponding PM to exclude any positional

effect.
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Figure 7 | Affymetrix microarray probe design. Oligonucleotide probes are selected on
the basis of uniqueness and design rules. For eukaryotic organisms, the probes are
typically selected from the 3’ end of the gene or transcript (near the polyA tail), to
reduce the problems that may occur from the use of partially degraded RNA. Utilizing
the PM difference from MM significantly reduces background and cross-hybridization
noise, and increases quantitative precision and reproducibility of the measurements.

1.2.6 Affymetrix GeneChip files

This section describes the most common Affymetrix microarray file formats from
raw images to fluorescence light intensities and processed expression values (Figure 8)

(Affymetrix 2009):

e DAT: Contains the intensity values for each pixel, collected from an Affymetrix
scanner.
e CDF (Chip Description File): Describes the arrangement of probes on the

Affymetrix microarray. A chip usually contains expression, genotyping, specific
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labeled and housekeeping probe-sets. All probe-set names within a microarray
are unique. Multiple copies of a probe-set may be present, in a chip, if each copy
has a unique name.

CEL: Holds the data from each pixel derived from the DAT file and are mostly
known as the microarray’s raw files. The data include: the light intensity value,
the standard deviation of the intensity and the number of pixels used to
calculate it. These values are stored for every probe in the array. Two versions of
CEL files exist: V3, the text format version and V4 which is the binary version.
CHP: Contains the expression values for each probe-set after background
correction, normalization and probe summarization in binary format. The
expression values vary based on the preprocessing algorithm that was used. For
example, MAS 5.0 exports linear while RMA outputs log2 transformed
expression values.

TXT: Usually is the combined probe-set or gene expression matrix in text format,

which is used for further downstream analyses (e.g. enrichment analysis).

Initially the DAT file is produced from the Affymetrix scanner and then transformed to

the CEL file. Then using the most appropriate CDF in context with the pre-processing

algorithm (MAS 5.0, RMA, etc.) the binary CHP file is generated which can then be

converted to text and combined with all the samples of the study. Newer versions of

pre-processing algorithms export the text file that contains the expression values matrix

directly.

Preprocessing:
MAS 5.0 or RMA or GC-RMA, etc

DAT '( CEL | '( CHP | > TXT
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Figure 8 | Common Affymetrix Genechip microarray files.

e DAT: Unprocessed digital image of the hybridized array

e CDF: Chip Description File contains the probes layout within the chip and their
assigned transcripts (library is provided by Affymetrix or other sources)

e CEL: Processed DAT file (fluorescence intensity values for each probe and its
location)

e CHP: Expression values of each probe-set or gene in binary format after
normalization and probe summarization of the corresponding CEL file.

e TXT: Gene expression matrix of every sample in text format.

1.2.8 Microarray data preprocessing

The goal of microarray data analysis is to produce a list of expressed genes for
each sample and includes several stages which may vary depending on the type of data
analyzed. Prior to any kind of microarray data analysis, several steps are needed to
ensure the high quality of the chip. The sample quality and experimental design should
be evaluated in order to ensure its integrity. Sources of unwanted variation could be
tissue contamination, amount of RNA and its degradation and amplification, reverse
transcription and labeling efficiency. Other sources include the DNA quality, PCR yield
and cross or unspecific hybridization which may lead to data noise. For some of the
variations we can estimate corrections from the data by preprocessing them (Yang Y.H.
and P. 2003). Unprocessed raw data are always subject to some form of technical
variation and therefore must be preprocessed (often referred to as ‘normalization’
despite that it includes several other steps) to remove as much as possible undesirable
variation to ensure that the results have the highest level of accuracy.

All microarray technologies follow the same general methodology. First, we
evaluate the sample quality and experimental design. Then we read the raw data,
remove low quality probe-sets or microarrays from further analysis, perform data
preprocessing (e.g. RMA (Irizarry, Hobbs et al. 2003)), do more quality controls (Bolstad,
Collin et al. 2005; Brettschneider, Collin et al. 2007) on the expression values
(preprocessed data) and continue with downstream analyses, such as the calculation of

differential expression using appropriate statistics (e.g. t-test, limma (Smyth 2004), etc).
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The list of differentially expressed genes then can be supplemented with useful
information explaining the function of the various genes, for example, with gene
ontology terms (Gene Ontology Consortium 2015) or KEGG pathways (Kanehisa,
Furumichi et al. 2017).

Ideally, the data to be analyzed should be preprocessed using various methods,
the results of which should be examined to determine which method is best suited
(Cope, lIrizarry et al. 2004). The most appropriate method should then be used to
preprocess the raw data before any further downstream analysis. The next section
describes some of the most commonly used preprocessing methods on Affymetrix

arrays.
1.2.9 Affymetrix array preprocessing

Due to the design of Affymetrix microarrays, the steps to be taken prior to

statistical analysis are slightly more complicated than other cDNA arrays.

1.2.9a Background correction

The first step is the background intensity correction for each probe. The
background fluorescence can arise from many sources, such as non-specific binding of
the labeled sample to the microarray surface, deposits remaining after the washing step
or optical noise from the scanner. Slight fluorescence intensity levels (background noise)
will be detected by the scanner, even if only sterile water is labeled and hybridized to
the microarray. Preprocessing algorithms use different background correction methods,
for example, the RMA algorithm (Irizarry, Hobbs et al. 2003) assumes that PM is a
convolution of the true signal (exponential distribution) with the background noise

(normal distribution).

1.2.9b Normalization
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The next step is normalization. The purpose of this step is to remove the
technical variance, while maintaining biological differences between samples. There are
always small differences between the hybridization processes for each microarray and
these variations tend to lead to large discrepancies between different sample
intensities. For example, the amount of RNA in a sample, the time that a sample is
hybridized or the volume of a sample, can introduce substantial fluctuations. Even
subtle physical differences between or amongst microarray scanners used to scan
microarrays, may affect the results.

Simply put, the normalization ensures that the comparison of different
microarray sample expression levels is possible. Studies have shown that the
normalization methods used play a significant role on the downstream statistic analysis,

so it is crucial to choose the appropriate method.

1.2.9¢ Perfect Match (PM) correction

As mentioned previously, PM probes count both the relative abundance of the
corresponding sequence and the amount of nonspecific binding, which occurs when the
RNA sequence binds to a probe that should not. The MM probes are designed to count
the non-specific binding of the respective detectors PM. MM intensity values should
then be subtracted from their respective PM values.

In reality, however, this does not work, because in general about 30% of the MM
values are actually higher than their PM counterparts (Naef, Lim et al. 2002; Irizarry,
Hobbs et al. 2003). This is because, in addition to the background signal measurement, a
significant amount of RNA recognized by the PM, tends to also bind to the MM probes.
Many of the most popular preprocessing algorithms solve this problem by simply
ignoring the MM probes completely while PM values are corrected for non-specific
binding using different approaches (Li and Wong 2001; Naef, Lim et al. 2001; Irizarry,
Hobbs et al. 2003).

1.2.9d Probe summarization
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We have already seen how the microarray GeneChip operates using 11-20
different PM probes targeting 11-20 nucleotide RNA segments separately. The final step
in Affymetrix microarrays data preprocessing is to summarize the intensities from the
11-20 separate probes to one expression value, called probe-set. Several ways are
available to achieve this, but the end result is always a unique expression value for each
probe-set (Hubbell, Liu et al. 2002; Li 2002; Irizarry, Hobbs et al. 2003; Hochreiter,
Clevert et al. 2006; Xing, Kapur et al. 2006).

1.2.10 Preprocessing algorithms for Affymetrix microarrays

Having introduced the general methodology used for preprocessing Affymetrix
microarray data, we will describe some of the most popular complex preprocessing
algorithms. These algorithms apply all pretreatment steps described above: background
correction, expression value normalization for each probe on every microarray, and
probe to probe-set summarization. An overall comparison of the preprocessing
algorithms can be found at the affycomp website:

http://rafalab.rc.fas.harvard.edu/affycomp (Cope, Irizarry et al. 2004; Irizarry, Wu et al.

2006).

1.2.10a MicroArray Suite 5.0 (MAS 5 .0)

MAS 5.0 algorithm was developed by Affymetrix (Affymetrix 2002; Hubbell, Liu
et al. 2002; Bolstad, Irizarry et al. 2003; Affymetrix 2004; Gentleman, Carey et al. 2004)
and is one of the most widely used single-array method, meaning that it can be
computed for each array separately. It consists of 4 steps:
e Global background correction: The 2% intensity quantile is subtracted from all
probes.
e Local background correction: The Ideal Mismatch intensity (IM) is calculated and
subtracted from all PM probes. Remember that about 30% of MM probes have

higher intensities than their corresponding PM pairs. If the MM intensity is lower

54


http://rafalab.rc.fas.harvard.edu/affycomp

than its PM pair, then IM equals to MM intensity. In the case that MM is equal or
greater than the PM, the IM becomes a fraction of the PM intensity.

e Summarization: The PM probes are summarized into probe-sets using the one-
step Tukey biweight M-estimator.

¢ Normalization: In this step a trimmed mean is calculated, excluding the highest
and lowest 2% of the expression values and a target intensity is set (default 500).
All expression values are then multiplied by the scaling factor which is the target
intensity divided by the trimmed mean value. Therefore, the MAS 5.0 normalizes

the data following summarization, not before, as many other algorithms do.

1.2.10a1l Calling absent / present probe-sets

Affymetrix introduced a version of a qualitative expression measurement in the
MAS 5.0 algorithm. The reason is that MM probes give a reasonable estimate of the
background noise for the majority of the probes in a specific array. So if there is no
statistical difference between the PM and MM probe pairs, the gene is considered as
non-expressed. As to the accuracy of the MAS 5.0 absent / present call, 85% of the true
positive RNA transcripts that are designed to hybridize to control probes, were correctly
identified as present (Choe, Boutros et al. 2005). The Wilcoxon’s rank test is used for the
characterization of a gene as present or absent. This method is used with great success
for the quality assessment of the array (McCall, Murakami et al. 2011): Affymetrix
recommends a similar percentage of present genes per sample. In the event of uneven
percentage of present genes between samples, the sample that has more than 10%

difference than the rest, should be considered as a low quality sample.

1.2.10b Probe Logarithmic Intensity Error (PLIER) estimation

PLIER is a multiple array analysis method introduced by Affymetrix, which means
it shares information across all samples (Hubbell 2005; Hubbell 2005). It introduces
higher signal reproducibility (less variation) without loss of accuracy. It offers higher

sensitivity to changes in target abundance near background and dynamically balances
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the probes that contain more information from a probe-set to determine the expression

value.

1.2.10c Robust Multi-array Average (RMA)

RMA is the most frequently used algorithm to convert probe intensities into
gene expression values (Irizarry, Bolstad et al. 2003; Irizarry, Hobbs et al. 2003). As the
name suggests, it combines information across the samples, except for the background
correction step. This method differs from the Affymetrix methods described above,
because it ignores the MM probe values and the normalization step is before the
summarization. While recognizing that the MM sensors provide useful information they
also introduce noise and at the time of publication of the method, the authors could not
find a productive way to use them. A convolution model is used for background
correction. It assumes that PM intensity is a sum of background noise and real signal.
The corrected PM intensity is the expectation of the real intensity given the total signal.
The intensities are then normalized with quantile normalization (Amaratunga and
Cabrera 2001). Finally, each probe-set is summarized separately but within all arrays,
with the median polish algorithm (Tukey 1977) fitting a two-way ANOVA model.

Because the expression values are the estimated array effects, they are in log2 scale.

1.2.10d Gene Chip RMA (GC-RMA)

The GC-RMA is a modification of the RMA algorithm and can only be used in
Affymetrix Genechip arrays. In reality, it differs from RMA in the background correction
step which makes use of both PM and MM probes to estimate the background better
(Wu, Irizarry et al. 2004). It also uses the probe sequence information to detect probe
affinity to non-specific binding. This model suggests a probe affinity that is dependent
on the position of each base and the base composition of each probe, suggesting that
the sequence can affect the intensity of the probe, independent of target concentration
(Naef and Magnasco 2003). This leads to improved precision, but at the expense of

slightly lower accuracy (detection of relative transcript expression without
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concentration bias). It is reported that GC-RMA performs better than the other
algorithms on detecting low-intensity, differentially expressed genes (Wu, Irizarry et al.

2004; Schuster, Blanc et al. 2007).
1.2.11 Data standards and data exchange

Microarrays are possibly the earliest biological technology that allowed the
collection of vast amounts of digital raw data and processed information. As microarrays
gained popularity, a common method that described in detail the microarray chip, the
study, its samples, the protocols and the data analysis techniques used, needed to be
established so the microarray experiments can be reproduced easily. It also rapidly
became apparent that other researchers should have access to raw and processed data
that would allow them to (a) perform analyses that the original researchers had not
conceived, (b) analyze the data with future state-of-the-art techniques or (c) combine
samples from different studies to perform meta-analyses. To overcome these issues, the
members of the Microarray Gene Expression Data Society (Brazma, Robinson et al.
2000) (now Functional Genomics Data Society) created the MIAME (Minimum
Information About a Microarray Experiment) standards for the description of microarray
experiments (Brazma, Hingamp et al. 2001; Ball and Brazma 2006). MIAME is a common
language for representing and communicating microarray data. It includes information
about the overall experimental design, the design of the microarray (i.e. identification of
each probe in each microarray), the origin of each probe and the labeling method,
procedures, hybridization parameters and measurement (including the normalization

methods). The six most critical MIAME elements are:

e Primary data for each hybridized sample (e.g. CEL or GPR files).
e Preprocessed (normalized) data for all hybridized samples in the experimental
study (e.g. the gene expression data matrix used to draw conclusions from the

study).
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e Basic sample annotation, including experimental factors and their values (e.g.
agent and dose in a dose response experiment).

e Experimental design, including relations of samples with data (e.g. which raw
data files is associated with which samples, which samples are technical and
which biological replicates).

e Sufficient microarray annotation (e.g. gene symbols and names, genomic
coordinates, oligonucleotide probe sequences, commercial microarray catalog
number).

e Basic laboratory and data processing protocols (e.g. which normalization method

is used to obtain the final processed data).

For microarray data exchange, using the unified modeling language (UML), the
MIAME metadata were translated to XLM based MAGE-ML and later MAGE-TAB data
formats (Spellman, Miller et al. 2002; Rayner, Rocca-Serra et al. 2006). These efforts
influenced the creation of data standards in other biological areas as well (Taylor, Paton
et al. 2007; Deutsch, Ball et al. 2008; Field, Garrity et al. 2008). As the technology was
extensively used, vast amounts of complex transcriptomics data started to accumulate
and the need to store and distribute the data gave birth to the two major high
throughput genomic databases: GEO (Gene Expression Omnibus) (Edgar, Domrachev et
al. 2002; Barrett, Troup et al. 2007) maintained from NCBI and ArrayExpress (Brazma,
Parkinson et al. 2003; Brazma, Kapushesky et al. 2006) maintained from EBI. A short
description of the GEO database follows. ArrayExpress follows a similar design and

definitions.

1.2.12 The GEO repository

The database Gene Expression Omnibus (GEO) (Barrett, Wilhite et al. 2013) of
NCBI serves as a public repository for a wide diversity of high-thoughput data. These
data include single-channel (Affymetrix GeneChip or lllumina BeadArrays) and two-

channel (cDNA) mRNA, genomic DNA, proteins microarrays, and other technologies such

58



as serial analysis of gene expression (SAGE) (Velculescu, Zhang et al. 1995), mass
spectrometry proteomics data and next-generation sequencing (NGS) (Pettersson,
Lundeberg et al. 2009). Furthermore, the unprocessed raw data files are almost always
deposited alongside the processed high-throughput data.

At the basic organization level of GEO, there are four basic types of entity. The
first three (samples, platforms and series) are supplied to GEO by the submitters. The
GEO staff assembles and curates the fourth type, datasets, using the data submitted by

the users (Figure 9). A short description of the GEO entities follows.
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Figure 9 | Representation of database records GEO. A) Description of the microarray.
B) Table showing the platform model. C) Description of the biological sample and
protocols incurred. D) Sample expression matrix with the processed expression values.
E) Original raw data file. F) Experiment description (Series). G) Compressed tar file with
the primary values of all samples from that Series. H) Datasets have a separate interface
with additional computational tools (https://www.ncbi.nlm.nih.gov/sites/GDSbrowser).
1) Profiles are derived from datasets and consist of the expression measurements for an
individual gene across all Samples in a dataset. Profiles can be searched using the GEO
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Profiles interface (https://www.ncbi.nlm.nih.gov/geoprofiles). Image from GEO
(https://www.ncbi.nlm.nih.gov/geo/info/overview.html).

1.2.12a Platforms (GPL)

A GEO platform record (GPL) describes the features of a microarray chip (e.g.
cDNA, oligonucleotide probes, ORFs, antibodies), the list of elements that can be
detected and quantified in this experiment (e.g., SAGE signatures, peptides), etc. Each
platform record has a unique and stable GEO number and always starts with the letters
"GPL" followed by numbers (e.g. The platform GPL 96 describes the Affymetrix Human
Genome U133A microarray). The platform may refer to many samples submitted by

various users (Figure 10).

1.2.12b Samples (GSM)

A GEO sample record (GSM) describes the origin of each individual sample, the
experimental collection, extraction, labeling, hybridization and scanning organization,
the computational preprocessing of the primary raw data and the expression value of
each probe-set in that sample. Each sample record has a unique and stable GEO number
always starting with the letters "GSM" followed by numbers (e.g. the sample
GSM845740 is an injured skin biopsy from a patient suffering from psoriasis and was
hybridized on the Affymetrix Human Genome U133 Plus 2.0 microarray). Each sample
must refer to only a single platform and can be included in one or more series (Figure

10).

1.2.12c Series (GSE)

A GEO series (GSE) record defines a collection of samples that belong to a group
(experiment) and explains how the samples are related and arranged. The Series is the
focal point of the collection of experimental descriptions. The series documents may

also contain tables that describe exported data, summary conclusions or analyses. Each
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series record has a unique and fixed GEO number that always begins with the letters
"GSE", followed by numbers (e.g. the series GSE34248 includes 28 samples from skin
biopsies of patients with and without psoriasis) and may also include samples from

different platforms (Figure 10).
1.2.12d Datasets (GDS)

The GEO Datasets (GDS) are curated series or groups of samples. A Dataset
record is a collection of biological and statistically comparable samples and is the
foundation of the GEO analytical and data display web applications. Samples of each
dataset belong exclusively to a platform (Figure 10). The values of each sample that
belongs to a given dataset are calculated in an identical manner: factors such as
background processing and normalization are common throughout the dataset. Further
information, reflecting the experimental design, is provided through dataset subsets.
Each dataset record has a unique and fixed GEO number that always begins with the
letters "GDS" followed by numbers (e.g. the dataset GDS4100 includes 24 saliva samples

from patients with pancreatic cancer and from healthy donors).

/aesm1 //esm2/ /asm3 /) /Gsma / / Gsms / / Gsme /

GSE1

Figure 10 | GEO data structure. Each platform has a unique GPL number. Each sample
has a unique GSM number and belongs to only one platform. Each Series has a unique
GSE number and it is a set of one or more samples (GSM) that may belong to one or
more platforms (GPL). Each dataset has a unique GDS number comprising a set of
samples which belong to only one platform and one series.
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1.2.13 Data analysis techniques

Described below, are few statistical methods that are used to analyze high

dimensional data. These methods are used in general in all types of high-throughput

omics data. In biology, they were first used and further developed in the field of

transcriptomics, with the rise of microarray technology.

Differential expression analysis: One of the most common downstream types of
analysis is the calculation of the differentially expressed genes. First the arrays
go through quality controls and after preprocessing an expression matrix with
each sample and each gene or probe-set is produced. We can apply the following
methods on the gene expression matrix directly.

One of the simplest methods which is used frequently to rank genes with
respect to differential expression, is the fold change. Fold change is the ratio of
two means (e.g. diseased/control). The means are calculated for the replicated
arrays of each condition. If the values are log transformed, then the ratio is their
difference (e.g. logx(diseased) — logz(control)). Usually, the genes with fold-
change above 2 and below 1/2 are selected. However, the variability of the
values is ignored, meaning that genes with high fold-change could also be highly
variable and the high fold-change may occur in just one sample.

Student’s t-test has also been used but is also not ideal. Due to the high
cost of the experiments, the number of samples is usually small and the variance
estimators could appear by chance. Moderated t-tests were developed to
improve on the performance of the student’s t-test. The empirical Bayes
methods (Baldi and Long 2001; Lonnstedt and P. 2002; Kristiansson, Sjogren et
al. 2006; Sartor, Tomlinson et al. 2006) modify the variance estimates for more
stable results. Alongside the probe-set specific estimators, a global estimator is
calculated. Then, weights are computed and used to calculate a weighted mean

of the global and probe-set estimators, depending on the variability and
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accuracy of the latter ones. Finally, the weighted mean is used as the
denominator, instead of the probe-set estimator. The methods of Lonnstedt and
Speed (Lonnstedt and P. 2002) were used to develop Limma, one of the most
popular empirical bayes t-test package, which is not only used for microarray but
also for next generation sequencing data (Smyth 2004; Ritchie, Phipson et al.
2015). Another popular type of moderated t-tests is the Significance Analysis of
Microarrays (SAM) method, which adds a constant to the probe-set standard
deviation (Tusher, Tibshirani et al. 2001).

Dimensionality reduction: A way to detect non-apparent errors in the
experimental data is to use a suitable visualization method. Making a single
scatterplot of the data is impossible since each point is highly dimensional. We
can explore their relations by dimensionality reduction: instead of having 20,000
dimensions (genes) for each sample, we collapse the information to just 2 or 3
dimensions, while approximately preserving important characteristics such as,
the distance between samples. In genomics, the most commonly method used is
the linear principal components analysis (PCA) (Pearson 1901). PCA is also used
as a dimensionality reduction technique before classification as the principal
components maintain the highest variance. Having fewer dimensions with high
variance most often increases the accuracy of the classifiers, because the
importance of dimensions without variation, that will not help the classifier, is
reduced.

Clustering: Unsupervised classification is used to discover whether samples
(tissues, conditions, etc.) or genes can be clustered together (Figure 11). It is
important to note that sample clustering is different from gene clustering. In the
former, tens or hundreds of high-dimensional (described by thousands of genes)
samples have to be clustered. In the latter, thousands of genes that are
represented by a small number of samples (dimensions) are clustered
(D'Haeseleer 2005; de Souto, Costa et al. 2008). Clustering is helpful to

determine the relationship of samples and can be used to discover new groups
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that were not previously known. Some clustering methods include: hierarchical
cluster analysis, k-means clustering (Forgy 1965; Lloyd 1982) and self-organizing
maps (Kohonen 1982). These methods require a distance measure between pairs
of samples or genes which is usually the Euclidean or Pearson’s correlation

coefficient distance (Pearson 1920).
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Figure 11 | Part of a typical hierarchical clustering and heatmap between
samples and genes. Four dysferlin deficient (bright green) and five control
microarray samples (yellow) (GEO series ID: GSE2507) are clustered on the top
and are clearly separated. Differentially expressed genes are clustered on the
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right. A heatmap is displayed on the center of the image showing the expression
levels of the genes (green represents low expression and red high expression).

e Classification: Supervised classification is used to train a predictive model to
classify future unknown samples into their most likely group/category from the
test samples. The input is usually an interesting filtered list of genes derived from
other analyses. Classification methods commonly used in genomics are logistic
regression, k-nearest neighbor (Altman 1992), random forests (Tin Kam 1998),
naive Bayes (Hand and Yu 2001), neural networks and support vector machines
(Cortes and Vapnik 1995).

e Network methods: Network statistics can be used to represent associative or
causative relationships among gene pairs (Emmert-Streib and Dehmer 2008).
Gene co-expression networks are often used to identify functional associations
of genes “guilt by association”, discover hub genes in scale-free topology
networks and even correlations between groups of genes that belong to

pathways or gene ontology terms (Langfelder and Horvath 2008).
1.2.14 Omics approaches in dysferlinopathy

Since the early 2000s several dysferlin-related omics experiments have already
been performed and published in GEO, of which the majority used microarray
technology (Table 3). In the course of this thesis, dysferlin-related processed and raw
data were collected and analyzed with modern methods and often in a different context
from what was intended by the original authors (e.g. combination of the studies or
between omics results). We narrowed down the most up-to-date algorithms that are
most appropriate for each technology. Each sample was then quality assessed, manually
curated and analyzed with modern algorithms, and with identical algorithms if it was
from the same technology, so that the obtained information can be more directly

compared or combined.
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Raw

Technology GEO ID Samples | Organism / Tissue data References
M M left
Affymetrix Murine Genome ouse_/ ousg € (Wenzel, Zabojszcza et
GSE2507 20 ventricle cardiac Yes
U74Av2 al. 2005)
muscle, skeletal muscle
Affymetrix Murine Genome Mouse / quadriceps, (von der Hagen, Laval et
U74Av2 GSE2629 12 tibialis anterior No al. 2005)
Affymetrix Human Genome HG- Human / skeletal (Bakay, Wang et al.
U133A and U133B GSE3307 28/30 muscle Yes | 5006)
Affymetrix C. elegans Genome GSE16753 12 C. elegans / adult worm Yes (Krajacic, Hermanowski
Array supernatant et al. 2009)
Illumina HumanHT-12 v3.0 Human / quadriceps, (Tasca, Pescatori et al.
GSE26852 11 Y
Expression BeadChip SE2685 deltoids es 2012)
Affymetrix GeneChip Human Human / vastus (Pakula, Schneider et al.
GSE44874 11 . Y
Exon 1.0 ST lateralis myotubes es 2013)
IIIumlna. MouseWG.—G v2.0 GSEA6420 18 Mouse A/) / tibialis Yes (Uaesoontrachoon, Cha
Expression BeadChip anterior et al. 2013)
Affymetrix GeneChip Mouse .
Exon 1.0 ST GSE62945 18 Mouse / quadriceps Yes (Lee, Lehar et al. 2015)
Spotted oligonucleotide non-
commercial LGTCmuOLIs2 (2
M L Turk l.
channel) (GPL1770). Used GSE2112 4 ouse SIL/J / No | (Turk Sterrenburgeta
. . . quadriceps 2006)
Sigma-Genosys oligonucleotide
library
Spotted cDNA non-commercial .
Human Array 1.0 (GPL2677) (2 GSE3022 10 Human / skeletal No | (Campanaro, Romualdi
muscle et al. 2002)
channel)
M B keletal
Mass spec NA 2 ouse Bla/J / skeleta Yes unpublished
muscle
Mouse Bla/J /
Mass spec: SILAM LC-MS/MS NA 45 quadriceps, tibialis Yes | unpublished

anterior, psoas,
gastrocnemius

Table 3 | Dysferlin-related omics data. 10 microarray series from GEO and 2 proteomic
studies were analyzed in the course of this thesis.

1.2.15 Objectives

Although omics repositories are accessible to everyone, it is rather challenging

for a bench researcher to retrieve raw data, assess their quality and gather the

information needed. Also with the amount of raw data produced, methods and tools are

required to combine all this information in various ways. Such combination will allow
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researchers to identify new functions and interactions or to improve statistical tests and
presently undeveloped methods.

For this purpose, we set out to develop bioinformatics tools specific for muscle
researchers to have access to omics information without the need of specialized
knowledge. The most straightforward way to realize this was to build and maintain the
tools as websites. An important requirement for the tools was to bring together
information from various resources and databases such as Uniprot and Gene Ontology
but oriented towards striated muscle. Finally, we wanted to retrieve and combine all
muscle-related available samples from omics repositories and analyze them with state-
of-the-art algorithms and most importantly with a robust pipeline that will give us
consistent and comparable results.

One of our tools, MyoMiner, retrieves all muscle-related microarray samples
that are available in GEO and ArrayExpress in order to calculate the co-expression of
expressed gene pairs on muscle tissues and cells with various conditions. From the co-
expression matrices, we can then develop networks and use them to functionally
associate genes or to interrelate them with other association networks, such as protein-
protein interactions (PPI) and pathways. Integrating and curating vast amounts of data
can give clearer answers to biological questions. The collection of muscle data
accumulated in MyoMiner can complement functional information to muscle-specific
genes, create biological networks, identify sets of genes that are regulated on different
conditions, and find many more applications.

In the following chapter three publications are provided, describing the
MyoMiner and CellWhere tools and a study where dysferlin microarray data were used.

A short summary and statement of contribution precedes each publication.
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Chapter 2 — Manuscripts

2.1 List of papers and statement of contribution

1. Apostolos Malatras, loannis Michalopoulos, Gillian Butler-Browne, Simone
Spuler, William Duddy. MyoMiner: A tool to Explore Gene Co-expression in

Muscle (in preparation).

Together with Dr. William Duddy we conceived the project. | assembled and designed a
data analysis pipeline, developed analytical tools and constructed the database

including the web interface.

2. Aurelia Defour, Sushma Medikayala, Jack H Van der Meulen, Marshall W ,
ogarth, Nicholas Holdreith, Apostolos Malatras, William Duddy, Jessica Boehler,
Kanneboyina Nagaraju, Jyoti K Jaiswal (2017). Annexin A2 links poor myofiber
repair with inflammation and adipogenic replacement of the injured muscle.

Human Molecular Genetics. February 21 doi: 10.1093/hmg/ddx065.

Alongside Dr. William Duddy we analyzed the ANXA2 knockout (KO) microarray samples.
| collected and analyzed the Dysferlin deficient samples that were compared with the

ANXA2 KO samples.

3. Zhu L*, Malatras A*, Thorley M, Aghoghogbe |, Mer A, Duguez S, Butler-Browne
G, Voit T, Duddy W. (2015). CellWhere: graphical display of interaction networks
organized on subcellular localizations. Nucleic Acids Res. July 1 (* co-first

authors) doi: 10.1093/nar/gkv354.
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| designed the database, analyzed the Uniprot, GO and Mentha data and implemented

the automatic database updates.

The following publications are in Appendix:

4. Wang Z, Monteiro CD, Jagodnik KM, Fernandez NF, Gundersen GW, Rouillard AD,
Jenkins SL, Feldmann AS, Hu KS, McDermott MG, Duan Q, Clark NR, Jones MR,
Kou Y, Goff T, Woodland H, Amaral FM, Szeto GL, Fuchs O, Schissler-Fiorenza
Rose SM, Sharma S, Schwartz U, Bausela XB, Szymkiewicz M, Maroulis V, Salykin
A, Barra CM, Kruth CD, Bongio NJ, Mathur V, Todoric RD, Rubin UE, Malatras A,
Fulp CT, Galindo JA, Motiejunaite R, Jischke C, Dishuck PC, Lahl K, Jafari M, Aibar
S, Zaravinos A, Steenhuizen LH, Allison LR, Gamallo P, de Andres Segura F, Dae
Devlin T, Pérez- Garcia V, Ma'ayan A (2016). Extraction and analysis of signatures
from the Gene Expression Omnibus by the crowd. Nature Communications. Sep

26 doi: 10.1038/ncomms12846.

| collected and extracted gene signatures from numerous (mostly muscle) microarray

series.

5. Thorley M*, Malatras A*, Duddy W¥*, Le Gall L, Mouly V, Butler-Browne G,
Duguez S. (2015). Changes in Communication between Muscle Stem Cells and
their Environment with Aging. Journal of Neuromuscular Diseases. Review (* co-

first authors) doi: 10.3233/JND-150097.

| retrieved and analyzed GSE9103 series to answer the question of whether oxidative

stress is affected in aged muscles.
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2.2 “MyoMiner: A tool to Explore Gene Co-expression in Muscle”
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Abstract

MyoMiner is a muscle cell- and tissue-specific database that supports co-
expression analyses in both normal and pathological muscle tissues. Many gene co-
expression databases already exist and are used broadly by researchers but MyoMiner is
the first muscle-specific database of its kind. MyoMiner can be accessed at

https://myominer-myo.rhcloud.com

High-throughput microarray experiments measure mRNA levels for thousands of
genes in a biological sample and most microarray studies are focused on differentially
expressed genes. Another way of using microarray data collections is to exploit gene co-
expression, which is widely used to study gene regulation and function, protein

interactions and signaling pathways.

MyoMiner was created to provide a simple and easy-to-use web interface for
muscle scientists to search for transcriptional correlation of any expressed gene pair in
muscle cells/tissues and various pathological conditions. We chose the most abundant
microarray platforms found on ArrayExpress and GEO repositories, HG-U133 Plus 2.0 for
human and MG 430 2.0 for mouse, acquiring 2,376 mouse and 2,228 human samples,
and separating them into 142 human, mouse and cell striated muscle categories based
on age, sex, anatomic part, and condition. Within each category, users can select a gene
of interest, and MyoMiner will return all correlated genes. For each co-expressed gene
pair, FDR adjusted p-value and Confidence Intervals are provided as measures of
expression correlation strength. A standardized expression-level scatterplot is available
for every gene pair’s r value. A network tool is also implemented which can be used by
the user to create a 2-shell network, based either on the most highly correlated genes,
or on a list of genes provided by the user and their correlated or linked genes in the
database. Users can also test whether any two correlation coefficients from different

conditions are significantly different by using the comparison tool.
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These co-expression analyses will help investigators to delineate the tissue-, cell-,
and pathology-specific elements of muscle protein interactions, cell signaling and gene
regulation. Changes in co-expression between pathologic and healthy tissue may
suggest new disease mechanisms and help define novel therapeutic targets. Thus,
MyoMiner is a powerful muscle-specific database for the discovery of genes that are

associated in related functions based on their co-expression.
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Introduction

High-throughput data are an important tool for the study of modern biology.
DNA microarrays provide an efficient way to measure the expression of thousands of
genes simultaneously (Schena, Shalon et al. 1995; Lockhart, Dong et al. 1996), thus
helping the study of fundamental biological processes like gene regulation, signaling
pathways and even complex disease traits. The main use of microarrays is differential
gene expression analysis where two or more sets of samples are compared (e.g. normal
versus treated or diseased) and the up- or down-regulated genes are identified. The
integration of large amounts of data over the years on public high-throughput data
repositories such as ArrayExpress (Kolesnikov, Hastings et al. 2015) and Gene Expression
Omnibus (Barrett, Wilhite et al. 2013) may allow us to identify relations between genes
through correlation analysis. However, it is difficult for experimental researchers to
extract or combine the information they seek if they have limited bioinformatics

expertise.

Correlation data are now widely used to study gene function, protein interactors
and biological networks such as signaling pathways (De Smet and Marchal 2010;
Marbach, Costello et al. 2012). Furthermore, pathology-specific gene co-expression can
be used as a biomarker discovery tool (Sun, Zhang et al. 2014) or for patient prognosis
(Futamura, Nishida et al. 2014; Ma, Shen et al. 2014). Several organism-specific co-
expression databases already exist such as the Arabidopsis Co-expression Tool (ACT)
(Jen, Manfield et al. 2006) and ATTED-II (Aoki, Okamura et al. 2016) for Arabidopsis
thaliana, and CoXPRESdb (Okamura, Aoki et al. 2015), STARNET (Jupiter, Chen et al.
2009) and Human Gene Correlation Analysis (HGCA) (Michalopoulos, Pavlopoulos et al.
2012) for mammals. They collect gene expression data and a Pearson correlation
coefficient is calculated between probes or genes, which can be used as a measure of

expression correlation and for network construction from the highly-correlated genes.

However, these databases are not tissue- or cell-specific, because their

expression matrices are derived from a mix of tissue types and in some cases from
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mixed conditions (e.g. treated and untreated cells). Since gene expression differs
between types of tissues and cells (Piro, Ala et al. 2011), it is expected that gene co-
expression will also vary. Experimentalists seeking to identify correlation patterns for a
chosen gene of interest, usually focus on a specific tissue or cell model and thus the
relevance of co-expression values is greatly enhanced by the specificity of the data used
(Greene, Krishnan et al. 2015). ImmuCo (Wang, Qi et al. 2015) and Immuno-Navigator
(Vandenbon, Dinh et al. 2016) gene co-expression databases are among the first to
address immune cell specific correlation, and the latter also correcting the expression
matrices for batch effects. Many conditions, such as reagents, equipment, software and
personnel, can vary during the course of an experiment and may introduce batch
effects, which is a common and strong source of variation on high-throughput data
(Leek, Scharpf et al. 2010; Leek 2014). Batch effects are unrelated to biological or
scientific variables, are not corrected by normalization (Leek, Scharpf et al. 2010) and
must be removed before any further analysis. By combining studies one extra layer of
batch effects is introduced: experiments from different laboratories (Irizarry, Warren et
al. 2005). If left uncorrected, this technical variation will introduce error into the results
of correlation analysis. Another difference of the aforementioned databases is that they
only include gene correlation from healthy samples or a mix of healthy and diseased
conditions. Studying the changes in correlation between healthy and pathological states
could lead to biomarker discovery and to improved understanding of disease

mechanisms.

Here, we introduce MyoMiner (https://myominer-myo.rhcloud.com), the first

striated muscle cell- and tissue-specific database that provides co-expression analyses in
both normal and pathological tissues, addressing both issues of overall correlation and
batch effects. MyoMiner includes 2,376 mouse and 2,228 human microarray samples
separated in 142 human, mouse and cell categories based on age, sex, anatomic part
and condition. We built a simple and easy-to-use web interface to search for
transcriptional correlation of any expressed gene pair in muscle cells/tissues and the

various pathological conditions. Users can select a category and a gene of interest, and
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MyoMiner will return all the expressed correlated genes for that category. Correlation
strength is measured by the provided FDR adjusted p-value (g-value) and Confidence

Intervals for each correlation.
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Materials and Methods

Microarray data collection

Even though ArrayExpress mirrors Gene Expression Omnibus, we searched both
repositories for striated muscle (skeletal and cardiac), cells and cell line experiments. In
this initial screening we found that the most abundant microarray chips used for muscle
related experiments were Affymetrix Human Genome U133 Plus 2.0 GeneChip (GEO
platform GPL570 or ArrayExpress ID A-AFFY-44) for human and Affymetrix Mouse
Genome 430 2.0 GeneChip (GEO platform GPL1261 or ArrayExpress ID A-AFFY-45) for
murine samples. Since a correlation analysis requires very homogenous data, we limited
our more refined subsequent searches to these two platforms, which represent about

50 % of all muscle arrays on both repositories.

We searched ArrayExpress using the following string: (muscle(s) OR myoblast(s)
OR myotube(s) OR myofiber(s) OR cardiomyocyte(s) OR myocyte(s) OR heart(s) OR
HSMM) AND A-AFFY-44 for human samples and (muscle(s) OR myoblast(s) OR
myotube(s) OR myofiber(s) OR cardiomyocyte(s) OR myocyte(s) OR heart(s) OR C2C12 OR
HL1 OR G8 OR S0L8) AND A-AFFY-45 for murine samples. GEO and ArrayExpress assign a
different ID (GPL) to each alternative platform. An alternative platform uses the same
chip as the original but pre-processed with a different probe-to-gene mapping file called
Chip Description File (CDF). It is quite popular for researchers to use a different CDF than
the original for better probe-to-probeset and probeset-to-gene targeting accuracy (see
“Probes to gene mapping” section). GEO provides a list of alternative platforms in the
original platform GPL, but is not well maintained and many are missing. A better way to
identify them is to search on ArrayExpress (which is manually curated) for alternative
IDs. In the browse page of ArrayExpress* we searched for U133 Plus 2.0, MG 430 2.0
and retrieved all the alternative GEO platforms and IDs to A-AFFY-44 (GPL570) for
human and to A-AFFY-45 (GPL1261) for mouse (Table S1).

* https://www.ebi.ac.uk/arrayexpress/arrays/browse.html
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Next, we parsed their MIAME (Brazma, Hingamp et al. 2001) metadata and
confirmed them manually, selecting only those pertinent to muscle research. We
excluded all series that did not include the raw CEL files (Affymetrix fluorescence light
intensity files), as we pre-processed the CEL files using the robust data analysis pipeline

described in detail below, in order to homogenize the data as much as possible.

Particular microarray samples may have been used for several experiments, or
analyzed with different normalization algorithms, or even grouped with other samples
in big meta-analyses, the results of which have been re-submitted to the repositories.
The reused microarrays get a different ID (GSM number in GEO) and it is crucial to
identify and remove them from co-expression analysis, as duplicates will erroneously
introduce perfect correlation scores. Using the conversion tool (apt-cel-convert.exe) of
Affymetrix Power Tools (Affymetrix 2006), we transformed the binary CEL files (version
4) to ASCII text format (version 3) in order to parse them. Their light intensity values
(Figure 12) were concatenated into a string and used as input to three hash algorithms:
MDS5 (Turner and Chen 2011), SHA-1 (Eastlake 2001) and CRC32 (Brayer and Hammond
1975). The hashes act as a unique key for each sample and the duplicate arrays were
then easily identified and removed (A simpler version of this algorithm (MD5 on file

only) is available in S1).

78



[CEL]
Version=3

[HEADER]

Cols=712 GridCornerUL=222 233

Rows=712 GridCaormnerdR=4484 257

TotalX=712 GridCornerLR=4460 4527

TotalY=712 GridCornerLL=198 4503

OffsetX=0 Axis-invertX=0

OffsetY=0 AxislnvertY=0

swapXY=0

DatHeader=[36..65524] Fusco:CLS=4733.VE=17 08/08/03 11:39:34 HG-U133_Plus_2.1sq
Algorithm=Percentile

AlgorithmParameters=Percentile:75;CellMargin:2;OutlierHigh: 1.500; OutlierLow:1.004

[INTENSITY]
NumberCells=1354896
CellHeader=X Y MEAN STDV NPIXELS
0 0 3383 39.1 16
1 0 9772 748.2 16
2 0 3515 38.9 18
3 0| 100861.3 817.5 16
4 0 157.5 20.7 16
5 0 171.8 26.4 18
6 0] 9317.5 946.2 16
7 0 188.8 23.2 16
8 0] 91495 857.6 16
9 0 163.8 25.1 16
10 0] 88853 886.9 16
11 0 185.8 255 16

Figure 12 | A typical Affymetrix ASCII text format CEL file. To create a sample-specific
hash key we concatenated only the light intensity values (red rectangle) in order to
distinguish the unique arrays. It is virtually impossible for different arrays to provide the
same intensity values. If the CEL file is in binary format (version 4) we convert it to text
format using the Affymetrix Power Tools suit. The processing date of this chip is also
visible in row 11 starting with DatHeader.

Quality assessment of Affymetrix microarrays

Even though the arrays are published and are thus reported to have passed
rigorous quality controls (QC) we performed a global quality control using a battery of
BioConductor (Gentleman, Carey et al. 2004; Huber, Carey et al. 2015) packages:
‘simpleaffy’ (Miller 2017), ‘affyQCReport’ (Parman, Halling et al. 2017), and ‘affyPLM’
(Bolstad, Collin et al. 2005; Brettschneider, Collin et al. 2007), using the MAS 5.0
algorithm (Hubbell, Liu et al. 2002) and the Affymetrix default Chip Description File (CDF).

We used the Affymetrix chip embedded single array quality metrics for each sample,

79



such as average background, scale factor, the percentage of genes called present and 3’
to 5" RNA hybridization ratios for B-actin and GAPDH. We also used two multi-array
quality metrics for each series, Normalized Unscaled Standard Error (NUSE) and Relative
Log Expression (RLE). As a general guideline we followed thresholds as recommended by
Affymetrix: differences in average background per sample not higher than 20, scale
factor within 3-fold change of one sample to another, no higher than 10 % difference of
percent present genes and 3’ to 5’ ratio threshold of GAPDH to 1.25 and B-actin to 3. Also
the NUSE boxplots should be centered at 1 with the bad quality ones centered above 1.1.
Samples were also deemed as low quality if they had globally higher spread of NUSE
distribution than others. Sinse most probes are not changed across the arrays, it is
expected that the ratio of probeset expression and the median probeset expression
across all samples of a series will be around 0 on a log scale. The RLE boxplots presenting
the distribution of these log-ratios should be centered near 0 and have similar spread
with low quality samples having a spread higher than 0.2. Arrays that had extreme values
or were above our set thresholds on the combined QC’s were not used for any further
analysis. In total we removed 160 human and 122 mouse samples (Table S2, S3). We
identified the poor quality arrays based primarily on the output of percent present, RLE
and NUSE, as they are known to perform well (McCall, Murakami et al. 2011), and

secondarily on GAPDH and B-actin ratios.

Data normalization

Pre-processing algorithms, usually termed normalization algorithms, are three-
step processes: background correction, normalization and probe summarization. The
arrays that passed quality controls were pre-processed with the Single Channel Array
Normalization (SCAN) algorithm (Piccolo, Sun et al. 2012) with default parameters
except for the CDFs, which were downloaded from BrainArray ENSG version 20.0.0 (Dai,
Wang et al. 2005). SCAN normalizes each array independently from its series, corrects
GC bias and reduces probe and array variation from each individual sample, while

increasing signal-to-noise ratio. Single array normalization is preferred when combining
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microarray samples from different series or laboratories, because other pre-processing
algorithms such as RMA (Irizarry, Hobbs et al. 2003) or GC-RMA (Zhijin Wu 2004) use
information across samples for both normalization and summarization steps, and could

introduce correlation artifacts (Lim, Wang et al. 2007; Usadel, Obayashi et al. 2009).
Probes-to-genes mapping

The microarray Affymetrix GeneChips we used for MyoMiner are the most
abundantly used chips for human and mouse microarray experiments. However, their
selection of probes relied on early genome and transcriptome annotation which is
significantly different from our current knowledge. The genes on the microarray chips
are usually represented by multiple probesets and, conversely, in many cases a single
probeset could target multiple genes. Multiple probesets targeting the same gene could
exhibit wildly different expression levels making downstream analysis challenging. Dai et
al. (Dai, Wang et al. 2005), had observed this limitation and created the BrainArray
portal where they reorganize probes with up-to-date genomic, cDNA and single
nucleotide polymorphism (SNP) information in order to create a more accurate and
precise CDF. This has become very popular amongst researchers (Sandberg and Larsson
2007). BrainArray’s CDF is updated annually with most microarray algorithms and tools
now supporting its CDF by default. The SCAN normalization algorithm has in-built
parameters to download and use BrainArray CDFs. For MyoMiner we used Ensembl
genome (Aken, Ayling et al. 2016) (ENSG) version 20.0.0. We set the SCAN CDF specified
parameter probeSummaryPackage to
InstallBrainArrayPackage(“human_sample_name.CEL”, “20.0.0”, “hs”, “ensg”) and
InstallBrainArrayPackage(“mouse_sample_name.CEL”, “20.0.0”, “mm”, “ensg”) for

human and mouse organisms respectively.
Filtering and annotation of expressed genes

In order to distinguish between expressed and unexpressed genes, but also to

remove genes with expression levels close to or lower than the background noise, we
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used the Universal exPression Code (UPC) algorithm (Piccolo, Withers et al. 2013)
separately for each category. We did that because different tissues, cells or pathological
conditions have distinct genetic profiles. UPC is a 2-step algorithm that corrects for
background noise using linear statistical models and estimates the percentage of gene
expression by calculating the active and inactive gene population. An assumption is
made that genes with identical molecular characteristics should share the same
background expression levels. To identify expressed genes for each category, we
calculated UPC’s percentage expression 3™ quartile for each gene and categorized it as

being expressed if its value was higher than 50 %.

To map Ensembl gene IDs to gene symbols, Entrez IDs (Maglott, Ostell et al.
2011) and Uniprot accession numbers (The UniProt Consortium 2017), we used Ensembl
BioMart (Kinsella, Kahari et al. 2011). We extracted the required information from

GRCh38.p5 assembly for human and GRCm38.p4 assembly for mouse.
Gender prediction

On half of the MIAME metadata entries for both organisms, the gender
information was missing (Florez-Vargas, Brass et al. 2016). To predict the missing gender
entries we used hgfocus.db (Carlson 2016) and mouse4302.db (Carlson 2016) from
Bioconductor to map genes to chromosomes and then we calculated the median
expression of Y chromosome genes. Males should have higher expression values than
females, which was visible on the Y chromosome gene expression histogram with two

clearly separated gender peaks.
Batch effects evaluation

For batch effect reduction we used the ComBat algorithm (Johnson, Li et al.
2007) from the “SVA” Bioconductor package (Leek, Johnson et al. 2012). ComBat is a
robust empirical Bayes method that adjusts for known batch covariates. By default, we

used each series as a different batch for every category (gender, age, etc). However, it is
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also known that processing time can be a strong batch surrogate (Leek, Scharpf et al.
2010). From the ASCII converted CEL files we retrieved the scan dates (Figure 12 row 11)
and used them as batch surrogates for each series, assuming that microarray
experiments performed on the same day belonged to the same experimental batch,
thus subdividing the aforementioned default series batches to date and series batches.
Using principal component analysis (PCA) 3D plots, by the “rgl” R package (Adler, D. et
al. 2016), for each category, we identified if the samples correlate with batch surrogates
and proceeded with batch correction if necessary. We did not use the category
differences as input for the ComBat algorithm
(modcombat=model.matrix(~1,numbatches)), because a) all samples were from the
same category and b) samples that are assigned to a batch are usually unevenly
distributed which can induce incorrect differences (Nygaard, Rodland et al. 2016). In
some cases, when a batch was represented by a single sample, after assessing the PCA
3D plot we assigned the sample to the closest batch cluster if possible, otherwise we
used the mean.only = TRUE parameter in ComBat that corrects only the mean of the

batch effect not adjusting for scale.
Gene expression correlation

Spearman’s rank correlation (Spearman 1904) is a non-parametric rank statistic
that measures the strength of a monotonic, linear or non-linear, relationship between
two sets of data. Monotonic is a function that increases when its independent variable
increases, having a positive correlation. If the independent variable decreases while the
function increases, the correlation will be negative. Spearman’s correlation is a simply
the application of Pearson’s correlation (Pearson 1920) on rank converted data. A faster
method to calculate Spearman’s r is to rank the values of Xi and yi, and calculate their

difference di. The rank correlation can then be computed as follows:

6 d?
r=1-— Z;:l !
n{n

( _1j (Equation 1)
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where “n” is the number of samples and d, =rank(x;)—rank(y,). Spearman’s

correlation assumes values between -1 and +1, where -1 describes a perfect
monotonically decreasing relation and +1 a perfect monotonically increasing relation. If
the data are monotonically independent, Spearman’s r is equal to 0. However, this does

not necessarily mean that the data are independent in other ways.

Since Spearman’s correlation can be asymptotically approximated by a t-
distribution with n-2 degrees of freedom under the null hypothesis of no correlation, we
used Student’s t-test to examine whether a correlation was significantly different from

the null hypothesis:

n-—2
/1_ r2 (Equation 2)

To adjust for multiple testing we used the Benjamini — Hochberg (BH) method

t=r

(Benjamini and Hochberg 1995) to control the false discovery rate (FDR). Correlation r

and adjusted p values were computed with the “psych” R package (Revelle 2017).

Because the correlation coefficient is not distributed normally and its variance is
dependent on both sample size and the correlation coefficient from the entire
population p, we cannot compute confidence intervals directly for the r values (Lu and
Shen). First we have to convert r values into additive quantities with r to Z Fisher

transformation (Fisher 1915) which is the inverse hyperbolic tangent function (arctanh):

Z = EIn @ = arctanh (r)

2 | (@-r)

its standard error is given by

(Equation 3)

1

SEZ - /n_3 (Equation 4)
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where In is the natural logarithm. Second we compute the confidence intervals as

CI =Z + Ztable

upper r
Cl — Ztable n _3

r_\/i Cl _7 _ Ztable (Equation 5)

lower = “r
" n—3

follows:

at 95% confidence level Z,,,=1.96. The final step is to convert Z scores back to r

values using the hyperbolic tangent function (tanh):

1- g%’
o tanh( Z) (Equation 6)
1+e% a
where e is the natural base. So in any sample correlation coefficient r, there is a 95%

probability that the true population correlation coefficient value p will be in the range of

Cl and ClI

lower upper *

For comparing whether any two correlation coefficients r; and r;, for different
categories (various samples and sample sizes), are significantly different, we make the

null hypothesis (Hp) that the correlation coefficients are not statistically different. Then

—I ( +r) = arctanh ()

2| [-r)

(Equation 3), calculate the difference between them and calculate an absolute Z score

we transform the r values to Z scores

by dividing the difference with the pooled standard error:

Z, -2, c 1 N 1
¢ SEzp , Where zp n, _3 n, _3 (Equation7)
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If Zo < Zppe where Z,.,.=1.96 or more commonly Z; >0.05 since Z is reported

as p-value on MyoMiner, we cannot reject Ho. The difference between r; and rz is not

significant at 95% confidence level.
Database construction and website implementation

We developed an easy to use HTML5 web portal that allows querying and visualizing for
the requested gene correlations. The interface was developed using the Bootstrap
responsive framework. Scatterplots and correlation networks are visualized with the
NVD3.js and D3.js javascript libraries respectively. All Spearman’s rank and its p values
pairwise matrices, and metadata are stored on a relational MySQL database
management system which runs on the Apache web server. Dynamic content is
processed by the PHP programming language: data retrieval, r to Z transformations and
Cl calculations. The front-end is powered by Openshift and the back-end by Okeanos

cloud services.

Results

Data statistics

MyoMiner was constructed in several steps using various tools and processes
(Figure 13). Initially we intended to populate MyoMiner with the most extensively used
microarray chips worldwide: Affymetrix Human Genome U133 Plus 2.0 (GPL570) and
Affymetrix Mouse Genome 430 2.0 (GPL1261). After screening for muscle related
experiments, these chips remained the most popular, accounting for about half of the
muscle microarray experiments, in both human and mouse organisms, which had raw
CEL files deposited on GEO or ArrayExpress public repositories. We kept only the
experiments with raw CEL files, as we wanted to check for their quality and pre-process

all collected samples with the same algorithm and parameters.
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Figure 13 | Workflow of data pre-processing method used for MyoMiner. We
identified studies that are pertinent to muscle research from GEO and ArrayExpress.
Only the studies that provided the raw CEL files proceeded to quality controls. Samples
that passed QC were pre-processed with the SCAN algorithm. We thoroughly curated
the metadata files and separated them into categories. We used PCA to detected and
remove batch effects using the ComBat algorithm. Users have access to muscle tissue
and cells gene-pair co-expression, differential co-expression of every category and co-
expression networks. All data are available on the MyoMiner web portal.

Using the advanced search option on the ArrayExpress repository, we filtered
and programmatically retrieved 81 human (2541 samples) and 198 mouse (2642
samples) muscle series. We manually parsed each series MIAMI compliant SDRF (sample
and data relationship format) metadata file while crosschecking them, if applicable, with

the corresponding SOFT (simple omnibus format in text) file from GEO. If there were
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missing data or differences between ArrayExpress and GEO we tracked the publication
that described the series to correct the missing information. If we still could not extract
the missing data, we came in contact with the corresponding authors in case they could
provide us with the correct data. Being in close co-operation with ArrayExpress and GEO
personnel we corrected several series metafiles, although the most common

mismatches were copying errors.

We identified and removed 169 human and 144 mouse samples as duplicates.
Finally, 160 human and 122 mouse samples did not pass quality controls and were
discarded, leaving us with 74 human series (2228 samples) and 189 mouse series (2376
samples). The samples were then assigned to different categories excluding those that
had less than 12 samples. In total 1810 human samples were assigned to 69 categories

and 1155 mouse samples were assigned to 73 categories (Table S4).

Categories were created based on gender, age, muscle tissue, condition and
strain. A total of 7 skeletal and cardiac muscles tissues are included on MyoMiner
together with the combination of those. Human age was classified in years as follows: 0
to 14 as child, 15 to 24 as young, 25 to 59 as adult and 60+ as elderly. For mouse the
classification is in weeks: E (embryonic days) as embryo, 0 to 11 weeks as young, 12 to
24 as adult and 25+ as old. We also included 4 separate strains for mouse: C57BL/6),
CD1, C3H/HelJ and FVB but also the combinations of them and more strains (Table 4).
Cells are derived from mouse microarrays: skeletal muscle precursor cells and
cardiomyocytes, but also from the immortalized C2C12 mouse cell lines in different
stages of differentiation: myoblasts, myotubes 1-2, 3-4 and 5+ days after differentiation.
MyoMiner covers 53 distinct conditions including normal and pathological ones. In
detail, several exercise categories: aerobic, resistance, endurance, trained or sedentary,
different types of diets: high fat or calorie restricted diet, type 2 diabetes (DM2): Pre-
DM2, DM2 relatives, etc, muscle regeneration: cardiotoxin and glycerol injections,
several cardiomyopathies: Idiopathic, Dilated, Ischemic and Arrhythmogenic, muscular
dystrophies: Duschenne muscular dystrophy, Mdx, Myotonic dystrophy type 2 and many
more (Table S4, MyoMiner web portal).
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Organism Human Mouse
Gender Both Male Female Both Male Female
Age All ages  Child Young Adult old Allages Embryo Young Adult Oold
Combined Lef.t Bth Myocardium Combined heart Left ventricle Both ventricles
heart ventricle ventricles
Anatomic
C i C i
part ombined ) Rectus Biceps ombined Quad- Gastro- Tibialis
skeletal Quadriceps . " skeletal ) . . Soleus
abdominis brachii riceps cnemius  anterior
muscle muscle
Strain NA Combined C57BL/6)J CcDh1 C3H/He) FVB

Table 4 | Gender, age, tissue and strain classification for each organism. 7 distinct
muscle tissues, 4 different age stages (years for human and weeks for mouse) and 4
separated mouse strains with their combinations.

To measure the accuracy of the gender prediction method we first tried it on the
samples with known gender. For human only 1135 out of 2228 samples had their gender
reported. The method classified 98% of the samples correctly to their respected gender.
23 samples (~2%) did not match and we investigated further into their original
publications. We then identified and corrected 5 samples out of 23 which were
predicted as opposite sex incorrectly and increased the initial accuracy to 98.4%. For
mouse the gender was known in 1390 out of 2376 samples. Again testing this method
on the known gender samples resulted in about 98% accuracy, with 56 samples being
predicted as opposite sex from the ones reported. We identified and corrected 16 mis-
predicted cases and increased the prediction accuracy to 98.3% (Table S5). All gender

mismatches that we corrected occurred from copying errors.
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Query results and features

MyoMiner was designed as a simple, easy-to-use and understand website that users
could search and immediately retrieve the transcriptional co-expression of any
expressed gene pair in muscle tissue and cells. All categories are presented as buttons
on the main page (Figure 14 A). When selecting a category, the options that are not
relevant to it are deactivated, in order to help the user with the remaining options.
MyoMiner supports queries using gene symbols, Ensembl IDs (e.g. ENSG00000135636),
Entrez gene IDs (e.g. 8291) and Uniprot accession numbers (e.g. 075923). The table
output retrieves the correlation values for all expressed gene pairs in the selected
category (Figure 14 B) sorted by r-value. The first column comprises the paired gene
symbols which can also be clicked to search for their list of correlated genes. The second
column is a description of the paired gene, also serving as a link to the associated gene
on GeneCards (Safran, Dalah et al. 2010). The third column shows the Spearman’s
correlation coefficient but also if clicked the scatterplot of this pair. The fourth and fifth
columns report two statistic summaries for the user to judge the significance of the
correlation: the BH FDR adjusted p-value and, the Cl at 95% confidence level that
include information about the estimated effect size and the uncertainty associated with

this estimate. Cl translates to 95% probability that the population correlation coefficient
true value p is between Cl, ., and C|upper. A search bar is provided on the top right

corner of the table output for easy gene pair finding and the columns can be sorted by
clicking on their headers (e.g. sort by positive or negative correlation). The table can be

downloaded, in various formats, using the buttons at the bottom left corner.

Scatterplots are important as supplementary information to help interpret the
correlation coefficient. In MyoMiner, interactive expression scatterplots for any gene
pair can be accessed by clicking on the r value. A modal window will appear showing the
normalized expression values obtained by SCAN for the selected gene pair (Figure 14 C).
The series that were used for the selected category are displayed at the top of the

scatterplot. By clicking or double-clicking the series ID, one can either remove the
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selected series or retain that series only, respectively. Removing series on the
scatterplot window will not affect the r value as it is pre-computed for all series shown

on the scatterplot.

Correlation networks can be accessed by selecting the network tab and pressing
the submit button without the need to re-select the category (Figure 14 D). A signed un-
weighted 2-shell network will be constructed. It works either with the number of co-
expressed genes in each shell (default: 15 and 5 genes for 1st and 2nd shell respectively)
or by setting a correlation threshold through the advanced options. A combination of

these two methods is also possible.

Another feature is the gene list network, available through the advanced
options, where the user can input a list of genes to create the correlation network. In
this case, default 15t and 2" shell values are set to 0 in order to firstly identify if the
genes on the list are related. These values can be changed by the users need. The search
form “Locate genes in the network” will hide for a short time all the genes in the
network except for the searched gene, making it easy to pinpoint the location of genes
inside the network. The link threshold bar can be used to remove edges below a certain
correlation value, creating sub networks in the process. The blue colored node is used to
point the queried gene, the light blue depicts the 1% shell connected nodes and orange
the 2" shell nodes. Users can pan and zoom by click-dragging on an empty space of the
interactive network area and using the mouse wheel, respectively. The nodes are
interactive and can be moved to any space of the network area. Users can also double-

click a node to highlight its immediate connected nodes.

Since correlation networks can grow quite large, including thousands of nodes
and many more edges, it could take several minutes to retrieve the values for large
networks from the database. For this reason, we decided that network construction will
be a client side task, using the D3 javascript library. For large networks, we recommend

using the Chrome browser as it could take some time to render big networks, especially
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on low end machines. We also recommend having the graphics card enabled for the

browser in order to avoid lag on the rendered network.

Differential co-expression analysis is emerging as a method to complement
traditional differential expression analysis (Kostka and Spang 2004; de la Fuente 2010).
It can detect biologically important differentially co-expressed gene pairs that would
otherwise not be detected via co-expression or differential expression (Hudson,
Reverter et al. 2009). Differentially co-expressed genes between different conditions are
likely to be regulators, thus explaining differences between phenotypes (Li 2002).
MyoMiner provides differential co-expression analysis for any gene pair from any
category combination. In the “Compare gene co-expression” form, users can set the
categories for comparison (Figure 14 E). The first category is compared to the rest after
the gene in question is selected. The output includes the gene symbol and its
description, the r1 value from the first category, the r; value from the second category
and the p-value of the comparison. If the p-value is higher than 0.05 the difference of r1
and r2 is not significant at 95% confidence level. MyoMiner supports multiple

simultaneously comparisons.
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Figure 14 | How to browse MyoMiner. (A) Select a category of interest. All categories
are visible at the beginning, so that the user can find with ease what is available on
MyoMiner. By clicking on a category only the options that are related with this category
will remain visible. This way the user is guided to the available MyoMiner category. (B)
Table output. Search by gene symbol, Ensembl or Entrez gene ID. All transcriptional co-
expressions of any expressed gene-pair displayed when hitting submit. The first column
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is the paired gene symbol, the second is the annotation of the paired gene, the third is
the Sprearman’s correlation of that pair, the fourth and fifth are the BH FDR adjusted p-
value and the confidence intervals. The table can be downloaded in CSV format or
copied directly to the clipboard (C) Gene pair scatterplot. The expression values of every
sample of the selected category for that gene pair are plotted by clicking on the r value.
Each series is shown at the top and can be toggled to display the expression values for
any series independently. (D) Correlation network. The network is constructed based on
gene correlation. Users can change the number of relations or set a correlation
threshold from the advanced options. (E) Differential co-expression analysis. Select two
or more categories and compare the first to the rest. A gene may be a regulator if its co-
expression is significantly altered (p-value) between pathological conditions. MyoMiner
can be accessed at https://myominer-myo.rhcloud.com

Improved combined data quality after the correction of batch effects

By combining data from different data sets and laboratories from around the
world we introduce unwanted technical variation which needs to be corrected. Another
source of strong non-biological variation, we also observed through PCA plots, was the
different chip processing days (Leek, Scharpf et al. 2010). To improve the quality of the
co-expression values obtained from tens to hundreds of samples, we check each
category for the presence of batch effects by different series and/or processing dates.
To acquire the scan dates from the microarray CEL files, we parsed them in text format.
We then used PCA to visualize the samples from each category, colored by series or
processing dates, on a 3D plane (Figure 15 B), in order to identify underlying batch
effects. When we observed non-biological variation we corrected it using the ComBat

algorithm (Johnson, Li et al. 2007), as described in the Methods section.

Below, we present two examples where batch effect treatment drastically
altered the correlation coefficient between the gene pairs (Figure 15). Dysferlin is a type
Il transmembrane protein that is enriched in skeletal and cardiac muscle and involved in
membrane repair (Han and Campbell 2007). Mutations or loss of DYSF gene lead to
muscular dystrophies called dysferlinopathies. Synaptopodin 2-like (SYNPO2L) protein is
an important paralog of Synaptopodin-2 (SYNPO2) that is involved in active binding and

bundling and associated with Duchene muscular dystrophy and myofibrilar myopathy 2.
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We selected the adult human resistance exercise category to illustrate how batch
correction removes bias introduced when combining data. Before correction, no strong
correlation is observed between DYSF and SYNPO2L: r = -0.05 (Table 5, also shown with
Pearson’s correlation coefficients). Clustering and PCA plots show that the samples are
grouped by series which may indicate bias (Figure 15 A, B left). The DYSF and SYNPO2L
gene expression scatterplot reveal the extent of the batch effect: even though individual
series (different colors) have clear positive correlation the overall correlation is
cancelled out when combined (Figure 15 C). In detail the selected category is comprised
of three series. Individual series Spearman correlation is GSE47881 r = 0.6, GSE48278 r =

0.3 and GSE28422 r = 0.67. We can also average the correlation values using r-to-Z

Z = lIn @ = arctanh ()

2 | (@-r)
to convert the non additive r values to Z scores, then average the Z scores and finally

1— eZZ
T 1re”

Fisher’s transformation (Equation 3)

= tanh( Z)
convert the mean Z back to r value (Equation 6).
DYSF-SYNPO2L average Spearman r for the category is 0.54. After we treated the
samples with ComBat which reduced the aforementioned bias (Figure 15 A, B, C right)
the correlation value increased to 0.62 which could indicate a possible functional
association between DYSF and SYNPO2L (Assadi, Schindler et al. 2008).

In another example between DYSF and Synaptopodin (SYNPO), which may be
modulating actin-based shape and mobility of dendritic spines, we find that batch
effects correction reduces the bias inflated correlation r = 0.62. Individual series
correlation is as follows: GSE47881 r = 0.31, GSE48278 r = -0.4 and GSE28422 r = 0.64.
The scatterplot also reveals that the series have mixed correlations (Figure 15 D left) and
the overall r is biased when we combined the series. The average correlation of the

three series is 0.21. After removing the bias (Figure 15 D right) the correlation is reduced

from 0.62 to 0.36. Gene pairs that had reduced correlation after batch treatment were
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more common which indicates that batch correction could reduce the false positive

correlations.

DYSF - SYNPO2L DYSF - SYNPO
Spearman r Pearson r Spearman r Pearson r
Untreated -0.05 0.02 0.62 0.53
Batch treated 0.62 0.65 0.36 0.42
GSE47881 0.6 0.67 0.31 0.39
GSE48278 0.3 0.31 -0.4 -0.08
GSE28422 0.67 0.79 0.64 0.71
Average 0.54 0.62 0.21 0.38

Table 5 | Examples of gene pairs correlation changes after batch treatment. We
illustrate two correlation examples i) between DYSF and SYNPO2L, where the
correlation increases significantly and ii) between DYSF and SYNPO, where the
correlation decreases. Both Spearman and Pearson’s correlations are available to
indicate that batch effects are prevalent in both parametric and non-parametric
statistics. We see big changes on their combined correlation coefficients, which is due to
the correction of the variation between studies having been done in different labs by
different people. In the case of DYSF - SYNPO2L, originally there seems to be no
correlation on the combined samples, whilst calculating the correlation on the individual
series we see a strong positive correlation. This bias is removed after treating for
batches with ComBat, resulting in a positive correlation. The example of the DYSF —
SYNPO pair shows an initial strong positive correlation, while the individual series have
mixed positive and negative correlations. Once the bias is removed we see a reduced
correlation.
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Figure 15 | Example of batch effects treatment. The adult human quadriceps resistance
exercise category is constructed from three series: GSE47881 (olive green), GSE28422
(pink) and GSE48278 (turquoise) that include 45 samples in total. GSE9103 (magenta)
series, from sedentary individuals, is used as a visual control. On the left, one can see
the untreated samples and on the right the batch-treated samples, using each series as
a surrogate. (A) Hierarchical clustering of both resistance exercise and sedentary
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samples shows a clear separation. Note that resistance exercise samples are clustered
by their corresponding series even after pre-processing (normalization). After treating
the samples with ComBat, the resistance exercise samples are now mixed, reducing the
batch effect. (B) Principal component analysis plots of the same samples. In the
untreated plot, samples are clustered very well by their series (olive green, pink and
turquoise). However, the resistance exercise series are as far from each other as the
sedentary (visual control in this case) series. After the batch correction (right) all
resistance exercise samples are clustered together and are clearly separated from the
sedentary samples cluster. (C) The expression values of DYSF and SYNPO2L are grouped
by series resulting in a correlation value r=-0.05. After batch correction the samples are
mixed with r=0.62. (D) Inversely, in the example of DYSF and SYNPO where the r value is
artificially high, before the treatment (r=0.62), the correction reduces it to r=0.36.

Discussion

Gene expression profiling is the most common type of omics data. In this project
we retrieved and analyzed striated muscle pertinent microarray samples and combined
them effectively for the construction of a muscle-tissue-specific co-expression database.
MyoMiner provides a simple, effective and easy way to identify co-expressed gene pairs
under a vast number of experimental conditions. This was not available in any other
existing co-expression database. Thus, MyoMiner represents a powerful tool for muscle

researchers, helping them to delineate gene function and key regulators.

For MyoMiner we chose to use the Spearman correlation coefficient, despite the
fact that Pearson correlation seems to be more popular in other correlation databases.
We did not use the Pearson correlation because it is sensitive to outliers and because of
the assumptions that need to be met, in order to calculate adjusted p-values: every
gene would have to be normally distributed, while gene pairs have to be bivariately
normally distributed. On the other hand, Spearman correlation is robust to outliers and
does not require assumptions of linearity. To determine the strength of the correlation
we have provided the adjusted p-value and the confidence intervals, although in cases
of many samples in a category, we do not recommend using the arbitrary chosen 0.05 g-

value cut-off, but a more stringent value, e.g. 0.005.
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It is noteworthy that the most correlated genes for a driver gene may vary
significantly between co-expression databases. This can be attributed to different
microarray data, although most of these databases use GPL570 and GPL1261 platforms
as we did. Moreover, different pre-processing methods, batch effect correction
methods or the lack thereof, tissue- and cell-specific expression, variable cell states,
different correlation coefficients, etc, add to the differences found in co-expression
databases. An investigation of the inconsistencies between co-expression databases
could identify common gene characteristics or the key factors that contribute to those

differences.

We intend to incorporate GO annotations, protein-protein interaction data from
IntACT (Orchard, Ammari et al. 2014) and Mentha (Calderone, Castagnoli et al. 2013),
and KEGG pathways (Kanehisa, Furumichi et al. 2017) to further enrich MyoMiner’s
content. Furthermore, we plan to create three condition-dependant categories; one for
cardiac muscles, one for skeletal muscles and one for muscle cell samples. The idea is to
include as many different conditions as possible, using a balanced number of
representative samples from each condition. This analysis can be used as an initial
screening and will help us identify underlying gene pair relationships independent of
phenotypes, ages or muscle-tissue type. Since we have a baseline of muscle data and co-
expressions, we aim to include more microarray platforms and even RNA-Seq data, so as

to include as many neuromuscular disorders as possible.
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Supplementary information for MyoMiner

Table S1 | Alternative IDs to the originals A-AFFY-44 for human UG-U133 Plus 2.0 and A-
AFFY-45 for mouse MG 430 2 arrays. These experiments get an alternative ID even if
they use the same chip because they mapp the probes to probesets and then to
transcripts or genes with a different Chip Description File (CDF) than the original. For the
muscle microarray collection we pinpointed and downloaded three more series for
human and two for mouse.

Affymetrix GeneChip Human Genome U133 | Affymetrix GeneChip Mouse Genome 430

Plus 2.0 alternative ArrayExpress IDs 2.0 alternative ArrayExpress IDs
A-GEOD-4454 A-GEOD-10184  A-GEOD-16268 A-GEOD-5008 A-GEOD-14657
A-GEOD-4866 A-GEOD-10274  A-GEOD-16273 A-GEOD-5759 A-GEOD-14661
A-GEOD-5760 A-GEOD-10335  A-GEOD-16311 A-GEOD-5766 A-GEOD-14757
A-GEOD-6671 A-GEOD-10371  A-GEOD-16356 A-GEOD-6456 A-GEOD-14996
A-GEOD-6732 A-GEOD-10881  A-GEOD-16372 A-GEOD-6526 A-GEOD-15041
A-GEOD-6791 A-GEOD-10925  A-GEOD-17175 A-GEOD-6886 A-GEOD-15592
A-GEOD-6823 A-GEOD-11084  A-GEOD-17180 A-GEOD-7368 A-GEOD-15722
A-GEOD-6879 A-GEOD-11364  A-GEOD-17392 A-GEOD-7546 A-GEOD-15967
A-GEOD-7566 A-GEOD-11433  A-GEOD-17394 A-GEOD-7635 A-GEOD-16225
A-GEOD-7567 A-GEOD-11670  A-GEOD-17810 A-GEOD-8059 A-GEOD-16368
A-GEOD-7869 A-GEOD-13232  A-GEOD-17811 A-GEOD-8462 A-GEOD-16582
A-GEOD-8019 A-GEOD-13668  A-GEOD-17929 A-GEOD-8492 A-GEOD-17109
A-GEOD-8542 A-GEOD-13695  A-GEOD-17996 A-GEOD-9523 A-GEOD-17114
A-GEOD-8715 A-GEOD-13916  A-GEOD-18121 A-GEOD-9746 A-GEOD-18078
A-GEOD-9099 A-GEOD-14837  A-GEOD-18478 A-GEOD-10288  A-GEOD-18122
A-GEOD-9101 A-GEOD-14877  A-GEOD-18850 A-GEOD-10369  A-GEOD-18223
A-GEOD-9102 A-GEOD-15308  A-GEOD-19109 A-GEOD-10773  A-GEOD-18376
A-GEOD-9419 A-GEOD-15394  A-GEOD-19171 A-GEOD-11044  A-GEOD-18416
A-GEOD-9454 A-GEOD-15445  A-GEOD-19883 A-GEOD-13502  A-GEOD-18615
A-GEOD-9486 A-GEOD-15676  A-GEOD-19918 A-GEOD-13621  A-GEOD-18854
A-GEOD-9987 A-GEOD-16006  A-GEOD-20182 A-GEOD-13763  A-GEOD-20766
A-GEOD-10175  A-GEOD-16100  A-MEXP-2335

Table S2 | Samples and series removed from the human microarray data collection
because they failed quality controls. In total 160 samples were considered of low quality
and were not used for any further analyses. All samples are removed from the gray
shaded series.

Series

Sample Reason

E-GEOD-1145

GSM18435_PA-D_93_2.CEL NuSE above 1.1 and RLE wider than +-0.2

E-GEOD-12486

GSM313633.CEL NUSE above 1.1 and RLE wider than +-0.2

E-GEOD-13070

Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE

GSM342678.CEL wider than +-0.2

E-GEOD-13070

Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE

GSM342677.CEL wider than +-0.2
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E-GEOD-13070

GSM342673.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13070

GSM342808.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13070

GSM342814.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13070

GSM342821.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13070

GSM342836.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13070

GSM342850.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13070

GSM342857.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13070

GSM342879.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13070

GSM342884.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13070

GSM342888.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13070

GSM342900.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13070

GSM342931.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13205

GSM333440.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-15090

GSM377469.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-18715

GSM464627_C12.CEL

RLE wider than +-0.2

E-GEOD-19420

GSM482956.CEL

RLE wider than +-0.2

E-GEOD-22435

GSM557526.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-24199

8 samples

Whole series due to Low percent present and other fluctuations

E-GEOD-24235

GSM596038.CEL

Low percent present compared to other samples from the same series

E-GEOD-24235

GSM595901.CEL

Low percent present compared to other samples from the same series

E-GEOD-25462

GSM624971.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-25462

GSM624970.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-25462

GSM624938.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-28392

70 samples

Whole series due to actin3/actin5 ration being 3 times higher than the recommended limits and RLE

widen than +-0.2

E-GEOD-28422

GSM702359.CEL

RLE wider than +-0.2

E-GEOD-28422

GSM702374.CEL

RLE wider than +-0.2

E-GEOD-28422

GSM702438.CEL

RLE wider than +-0.2

E-GEOD-28422

GSM702442.CEL

RLE wider than +-0.2

E-GEOD-34111

GSM842037.CEL

Low percent present compared to other samples from the same series.

Also NUSE above 1.1 and RLE

wider than +-0.2. Also actin3/5 and gapdh3/5 higher than recommended values

E-GEOD-34111

GSM842028.CEL

Low percent present compared to other samples from the same series.

Also NUSE above 1.1 and RLE

wider than +-0.2. Also actin3/5 and gapdh3/5 higher than recommended values

E-GEOD-34111

GSM842024.CEL

Low percent present compared to other samples from the same series.

Also NUSE above 1.1 and RLE

wider than +-0.2. Also actin3/5 and gapdh3/5 higher than recommended values

E-GEOD-34111

GSM842022.CEL

Low percent present compared to other samples from the same series.

Also NUSE above 1.1 and RLE

wider than +-0.2. Also actin3/5 and gapdh3/5 higher than recommended values

E-GEOD-34111

GSM842018.CEL

Low percent present compared to other samples from the same series.

Also NUSE above 1.1 and RLE

wider than +-0.2. Also actin3/5 and gapdh3/5 higher than recommended values

E-GEOD-34111

GSM842017.CEL

Low percent present compared to other samples from the same series.

Also NUSE above 1.1 and RLE

wider than +-0.2. Also actin3/5 and gapdh3/5 higher than recommended values

E-GEOD-34111

GSM842014.CEL

Low percent present compared to other samples from the same series.

Also NUSE above 1.1 and RLE

wider than +-0.2. Also actin3/5 and gapdh3/5 higher than recommended values
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E-GEOD-3526

GSM80797.CEL

Low percent present compared to other samples from the same series.

RLE wider than +-0.2

E-GEOD-3526

GSM80796.CEL

Low percent present compared to other samples from the same series.

RLE wider than +-0.2

E-GEOD-38780

GSM949395 AA12_15 11 D8.CEL

RLE wider than +-0.2

E-GEOD-39454

GSM969502_MA45_GEIM385.CEL

RLE wider than +-0.2

E-GEOD-39454

GSM969496_MA45_GEIM375.CEL

RLE wider than +-0.2

E-GEOD-39454

GSM969489_MA45_GEIM354.CEL

RLE wider than +-0.2

E-GEOD-40231

GSM988933_STAGE_9_SKLM.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-40231

GSM988889_STAGE_59_SKLM.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-40231

GSM988877_STAGE_56_SKLM.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-40231

GSM988762_STAGE_31_SKLM.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-40231

GSM988759_STAGE_30_SKLM.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-45426

GSM1104107_526.CEL

RLE wider than +-0.2

E-GEOD-45426

GSM1104095_514.CEL

RLE wider than +-0.2

E-GEOD-47874

GSM1161401_75_51545Pre.CEL

RLE wider than +-0.2

E-GEOD-47881

GSM1161775_D4_BHO73F.CEL

Low percent present compared to other samples from the same series.

wider than +-0.4

Also NUSE above 1.1 and RLE

E-GEOD-47881

GSM1161834_D79_PCO35F.CEL

Low percent present compared to other samples from the same series.

wider than +-0.4

Also NUSE above 1.1 and RLE

E-GEOD-47969

GSM1163791_DUKE38_334.CEL

Low percent present compared to other samples from the same series.

wider than +-0.4

Also NUSE above 1.1 and RLE

E-GEOD-48278

GSM1174154_MJH_STRRIDE_S401_F_POST_1

_HG-U133_Plus_2_.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-48278

GSM1174122_MJH_STRRIDE_S317_F_POST_1

_HG-U133_Plus_2_.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-48278

GSM1174123_MJH_STRRIDE_S317 F PRE 1_

HG-U133_Plus_2_.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-48278

GSM1174116_MJH_STRRIDE_S301_E_POST 1

HG-U133_Plus_2_.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-48278

ESM1174096_MJH_STRRIDE_SZ35_C_POST_1

_HG-U133_Plus_2_.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-48278

GSM1174061_MJH_STRRIDE_S172_A_PRE_1_

HG-U133_Plus_2_.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-48278

GSM1174053_MJH_STRRIDE_S156_A_PRE_1_

HG-U133_Plus_2_.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-48278

GSM1174050_MJH_STRRIDE_S146_C_POST_1

_HG-U133_Plus_2_.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-48278

GSM1174106_MJH_STRRIDE_S257_D_POST_1

_HG-U133_Plus_2_.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-62203

8 samples

Whole series due to Low percent present and other fluctuations

Low percent present compared to other samples from the same series.

Also NUSE above 1.1 and RLE

E-GEOD-7014 GSM161970.CEL wider than +-0.2
Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE
E-GEOD-7014 GSM161944.CEL wider than +-0.2
Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE
E-GEOD-7014 GSM161943.CEL wider than +-0.2
A-673_S5271874_HG-U133_Plus_2_HCHP-
E-MTAB-37 167937_.CEL RLE wider than +-0.2
RD_SS275763_HG-U133_Plus_2_HCHP-
E-MTAB-37 170309_.CEL RLE wider than +-0.2

E-GEOD-18732

GSM465386.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-18732

GSM465281.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-18732

GSM465319.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE
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E-GEOD-9103 GSM230397.cel RLE wider than +-0.2

E-GEOD-9103 GSM230407.cel RLE wider than +-0.3

E-GEOD-9103 GSM230418.cel RLE wider than +-0.4
Table S3 | Samples and series removed from the mouse microarray data collection
because they failed quality controls. In total 122 samples were considered of low quality
and were not used for any further analyses. All samples are removed from the gray
shaded series.

Series Samples Reason

E-GEOD-12730

GSM319343.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-13347

GSM313205.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-16438

GSM413181.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-16438

GSM413176.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-16438

GSM413161.CEL

NUSE above 1.1 and RLE wider than +-0.2

E-GEOD-16486

GSM414370.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-18033

56 samples

Whole series due to abnormal high percent present

E-GEOD-25908

GSM636278.cel

NUSE above 1.1 and RLE wider than +-0.2

E-GEOD-25908

GSM636225.cel

NUSE above 1.1 and RLE wider than +-0.2

E-GEOD-38870

18 samples

Whole series due to Low percent present and other fluctuations

E-GEOD-43373

GSM1061639_Mus_SE2_ D4 13515.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-43373

GSM1061638_Mus_SE2__D4_13514.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-43779

GSM1071181_Rahme_04-06-10_2-
AA_treated_muscle_4D_replicate_3.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-43779

GSM1071179_Rahme_04-06-10_2-
AA_treated_muscle_4D_replicate_1.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-45577

GSM1109982_NUID-0000-0150-3235.cel

RLE off limits

E-GEOD-45577

GSM1109962_NUID-0000-0150-3224.cel

RLE off limits

E-GEOD-45577

GSM1109961_NUID-0000-0150-3205.cel

RLE off limits

E-GEOD-45577

GSM1109960_NUID-0000-0150-3200.cel

RLE off limits

E-GEOD-45577

GSM1109959_NUID-0000-0150-3238.cel

RLE off limits

E-GEOD-47104

GSM1144810_KT-
13MB6D2F1old_5.14.08_2.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-47104

GSM1144808_KT-
11MB6D2Fl1adult_5.14.08_2.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-6398

GSM147516.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-65927

GSM1611277_15_4semN1.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-65927

GSM1611276_14_4semB.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-65927

GSM1611275_13_4semA.CEL

Low percent present compared to other samples from the same series.

wider than +-0.2

Also NUSE above 1.1 and RLE

E-GEOD-7605 GSM183976.CEL NUSE above 1.1 and RLE wider than +-0.2
E-GEOD-7605 GSM183977.CEL NUSE above 1.1 and RLE wider than +-0.2
E-MEXP-1623 C9.CEL Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE

103



wider than +-0.2

Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE

E-MEXP-2446 681WTmuscleLADROSEMOU_03_080814.CEL wider than +-0.2
Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE
E-MEXP-2446 482WTmuscleShamROSEMOU_02_080814.CEL wider than +-0.2

E-GEOD-12337

GSM309962.CEL

Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE
wider than +-0.2

E-GEOD-13031

GSM326496.cel

NUSE above 1.1 and RLE wider than +-0.2

E-GEOD-13874

GSM349106.CEL

NUSE above 1.1 and RLE wider than +-0.2

E-GEOD-13874

GSM349107.CEL

NUSE above 1.1 and RLE wider than +-0.2

E-GEOD-13874

GSM349108.CEL

NUSE above 1.1 and RLE wider than +-0.2

E-GEOD-1479

GSM25168.CEL

NUSE above 1.1 and RLE wider than +-0.2

E-GEOD-19079

GSM472351.CEL

Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE
wider than +-0.2

E-GEOD-21368

GSM372908.CEL

Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE
wider than +-0.2

E-GEOD-23101

GSM569342.CEL

NUSE above 1.1 and RLE wider than +-0.2

E-GEOD-23101

GSM569339.CEL

NUSE above 1.1 and RLE wider than +-0.2

E-GEOD-30164

4 samples

Very low percent present 1.4-4%

E-GEOD-50399

GSM1218142_3wks_cko3.CEL

NUSE above 1.1 and RLE wider than +-0.2

Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE

E-GEOD-5500 GSM126911.CEL wider than +-0.2
E-GEOD-62049 GSM1518961_CD117310DN_Mouse430_2_.CEL | RLE off limits
E-GEOD-7424 GSM179576.CEL NUSE above 1.1 and RLE wider than +-0.2
Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE
E-GEOD-8199 GSM202774.CEL wider than +-0.2

E-GEOD-58676

GSM1416750_GFP_S48_3.CEL

Low percent present compared to other samples from the same series. Also NUSE above 1.1 and RLE
wider than +-0.2

Table S4 | Number of samples, series and expressed genes for each of 69 and 73
categories in human and mouse respectively.

Organism Category (Anatomic part, condition, gender, age, strain mouse specific) Samples | Series | Expressed genes

Human Heart, Normal, Both, All 60 10 5280
Heart, Normal, Male, All 43 9 4934
Heart, Normal, Female, All 17 6 5879
Heart, Normal, Both, Old 15 4 4289
Heart, Normal, Both, Adult 20 5 4535
Heart - Myocardium, Normal, Both, All 19 4 3773
Heart - Left ventricle, Normal, Both, All 31 6 6108
Heart - Left ventricle, Normal, Female, All 12 5 6397
Heart- Left ventricle, Normal, Male, All 19 5 5873
Heart - Both ventricles, Normal, Both, All 37 6 5899
Heart - Left ventricle, Idiopathic cardiomyopathy, Both, All 26 1 6184
Heart - Left ventricle, Idiopathic cardiomyopathy, Male, All 16 1 6319
Heart - Loth ventricles, Arrhythmogenic right ventricular cardiomyopathy, Both, All 12 1 3880
Heart, Dilated cardiomyopathy, Both, All 35 2 4451
Heart - Myocardium, Dilated cardiomyopathy, Both, Adult 21 1 3809
Heart - Both ventricles, Dilated cardiomyopathy, Both, All 14 1 5111
Heart, Ischemic cardiomyopathy, Both, All 55 6 6536
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Skeletal muscle - Rectus abdominis, Upper gastrointestinal cancer, Both, All 17 1 4035
Skeletal muscle - Quadriceps, Type 2 diabetes DM2, Both, All 68 4 3738
Skeletal muscle - Quadriceps, Type 2 diabetes DM2, Female, Adult 16 2 3268
Skeletal muscle - Quadriceps, Type 2 diabetes DM2, Male, All 52 4 3913
Skeletal muscle - Quadriceps, Thiazolidinedione TZD PPAR gamma ligand treatment for 3 months, All, All 16 1 3722
Skeletal muscle - Quadriceps, Septic, All, All 12 1 4741
Skeletal muscle - Quadriceps, Pre type 2 diabetes DM2, Male, All 12 1 5653
Skeletal muscle - Quadriceps, Post hyperinsulinemic euglycemic clamp, All, All 16 1 4000
Skeletal muscle - Quadriceps, Post hyperinsulinemic euglycemic clamp thiazolidinedione TZD PPAR

gamma ligand treatment for 3 months, All, All 17 1 4065
Skeletal muscle, Myotonic dystrophy type 2, All, All 20 1 3863
Skeletal muscle - Quadriceps, Insulin resistant polycystic ovary syndrome PCOS, Female, Adult 16 1 2828
Skeletal muscle - Quadriceps, Insulin resistant, All, Adult 38 1 3724
Skeletal muscle - Quadriceps, Insulin resistant thiazolidinedione TZD PPAR gamma ligand treatment for 3

months, All, Adult 46 1 3721
Skeletal muscle - Quadriceps, Insulin resistant post hyperinsulinemic euglycemic clamp, All, Adult 42 1 3955
Skeletal muscle - Quadriceps, Insulin resistant post hyperinsulinemic euglycemic clamp thiazolidinedione

TZD no response to treatment, All, Adult 12 1 3582
Skeletal muscle - Quadriceps, Insulin resistant post hyperinsulinemic euglycemic clamp thiazolidinedione

TZD response to treatment, All, Adult 12 1 3631
Skeletal muscle - Quadriceps, Insulin resistant post hyperinsulinemic euglycemic clamp thiazolidinedione

TZD unresponsive to treatment, All, Adult 25 1 3556
Skeletal muscle - Quadriceps, Glucose intolerant, All, All 26 1 3408
Skeletal muscle - Rectus abdominis, Coronary Artery Disease, All, All 61 1 4339
Skeletal muscle - Quadriceps, Chronic Obstructive Pulmonary disease sedentary, All, Old 15 1 4580
Skeletal muscle - Quadriceps, Chronic Obstructive Pulmonary disease trained, All, old 15 1 4407
Skeletal muscle - Quadriceps, Chronic Obstructive Pulmonary disease, All, Old 30 1 4509
Skeletal muscle - Quadriceps, Calorie restrictive for 12 weeks, Female, All 14 1 3484
Skeletal muscle, Normal, All, All 1107 46 5257
Skeletal muscle, Normal, Female, All 438 33 5524
Skeletal muscle, Normal, Male, All 666 41 5103
Skeletal muscle - Biceps brachii, Normal, All, All 45 5 3984
Skeletal muscle - Quadriceps, Normal, All, All 994 32 5298
Skeletal muscle - Rectus abdominis, Normal, All, All 13 2 4050
Skeletal muscle - Quadriceps, Normal, Female, All 379 20 5631
Skeletal muscle - Quadriceps, Normal, Male, All 614 28 5125
Skeletal muscle, Normal, All, young 192 17 4071
Skeletal muscle, Normal, All, adult 565 25 5298
Skeletal muscle, Normal, All, old 261 21 7020
Skeletal muscle - Quadriceps, First degree diabetes relative, All, All 39 2 3656
Skeletal muscle - Quadriceps, Reported protein intake 0.75 g kg, Male, All 22 1 3115
Skeletal muscle - Quadriceps, Reported protein intake 0.75 g kg, Male, adult 12 1 3154
Skeletal muscle - Quadriceps, Reported protein intake 1.00 g kg, Male, All 22 1 3018
Skeletal muscle - Quadriceps, Reported protein intake 1.00 g kg, Male, adult 12 1 3059
Skeletal muscle - Quadriceps, Reported protein intake 0.50 g kg, Male, All 22 1 3178
Skeletal muscle - Quadriceps, Reported protein intake 0.50 g kg, Male, adult 12 1 3188
Skeletal muscle, Resistance exercise, All, All 114 6 6167
Skeletal muscle, Resistance exercise, Female, All 42 6 7154
Skeletal muscle, Resistance exercise, Male, All 73 6 5827
Skeletal muscle, Resistance exercise, All, Young 39 4 4319
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Skeletal muscle - Quadriceps, Resistance exercise, All, Adult 45 3 7172
Skeletal muscle - Quadriceps, Resistance exercise, All, Old 30 3 7817
Skeletal muscle - Quadriceps, Trained, All, All 38 2 7915
Skeletal muscle - Quadriceps, Endurance exercise, All, All 42 2 3170
Skeletal muscle - Quadriceps, Aerobic exercise, All, All 27 1 5297
Skeletal muscle - Quadriceps, Sedentary, All, All 38 3 3493
Skeletal muscle, DMD, Male, Child 16 1 6400
Mouse Heart, Normal, Both, All, All 296 65 5437
Heart, Normal, Male, All, All 219 49 5371
Heart, Normal, Female, All, All 63 19 5479
Heart, Normal, Both, Young, All 161 38 5763
Heart, Normal, Male, Young, All 107 26 5765
Heart, Normal, Female, Young, All 44 13 5578
Heart, Normal, Both, Adult, All 80 16 4834
Heart, Normal, Both, Old, All 32 9 5508
Heart, Normal, Male, Young, C3H-He) 16 1 6140
Heart - Cardiomyocyte, Normal, Both, All, All 18 5 6178
Heart - Left ventricle, Normal, Both, All, All 38 9 5302
Heart - Both ventricles, Normal, Both, All, All 55 12 5569
Heart, Normal, Both, All, CD1 28 4 6359
Heart, Normal, Both, All, C57BL-6J 140 33 5318
Heart, Normal, Male, All, C57BL-6J 105 27 5183
Heart, Normal, Female, All, C57BL-6J 26 6 5441
Heart, Normal, Both, Young, C57BL-6J 76 18 5261
Heart, Normal, Female, Young, C57BL-6J 23 5 5380
Heart, Normal, Male, Young, C57BL-6J a7 12 4829
Heart, Normal, All, Adult, C57BL-6J 36 9 4802
Heart, Normal, Male, Old, C57BL-6J 16 5 5493
Heart, Normal, Both, Embryo, All 88 10 7318
Heart, Aortic banding, Both, All, All 14 3 6538
Heart, Calorie restricted diet, Both, All, All 15 3 4529
Heart, Sham, Both, All, All 23 4 5566
Heart, Transverse aortic constriction, Both, All, All 14 2 5765
Skeletal muscle - Precursor cells, Normal, Male, All, All 14 1 4125
Skeletal muscle - Gastrocnemius, Tenotomy, Male, Young, C57BL-6) 17 1 4439
Skeletal muscle - Gastrocnemius, Sham, Both, Young, All 17 2 4638
Skeletal muscle, Sham, Male, All, All 13 2 5552
Skeletal muscle, Calpain3 knockout, Male, All, All 21 1 4745
Skeletal muscle - Tibialis anterior, Cardiotoxin injection, Male, Adult, C57BL-6J 20 1 8245
Skeletal muscle - Gastrocnemius, Casting, Male, Young, C57BL-6J 25 1 5885
Skeletal muscle - Tibialis anterior, Glycerol injection, Male, Adult, C57BL-6J 18 1 8672
Skeletal muscle, Mdx, Male, Young, All 16 4 6445
Skeletal muscle, High fat diet, Both, All, All 99 6 4727
Skeletal muscle, High fat diet, Male, Young, All 16 2 4692
Skeletal muscle, High fat diet, Both, Adult, All 83 6 4714
Skeletal muscle - Gastocnemius, High fat diet, Both, Adult, C57BL-6J 15 2 4603
Skeletal muscle - Quadriceps, High fat diet, Male, Adult, C57BL-6J 22 2 4614
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Skeletal muscle, Normal, Both, All, All 346 57 5216
Skeletal muscle, Normal, Female, All, All a4 17 4860
Skeletal muscle, Normal, Female, Adult, All 14 4 4786
Skeletal muscle, Normal, Female, Young, All 15 7 5270
Skeletal muscle - Quadriceps, Normal, Female, All, All 15 5 4747
Skeletal muscle, Normal, Both, Old, All 42 8 5117
Skeletal muscle - Gastrocnemius, Normal, Male, Old, All 18 4 5803
Skeletal muscle - Quadriceps, Normal, Male, Old, All 14 3 4591
Skeletal muscle, Normal, Both, Adult, All 119 19 5033
Skeletal muscle, Normal, Both, Adult, C57BL-6J 59 8 4884
Skeletal muscle, Normal, Male, Adult, FVB 15 2 5128
Skeletal muscle - Gastrocnemius, Normal, Both, Adult, All 32 6 4535
Skeletal muscle - Quadriceps, Normal, Both, Adult, All 49 6 4996
Skeletal muscle, Normal, Both, Young, All 145 26 5381
Skeletal muscle, Normal, Both, Young, C57BL-6J 79 11 5473
Skeletal muscle - Quadriceps, Normal, Both, Young, All 15 5 4492
Skeletal muscle, Normal, Male, All, All 305 46 5294
Skeletal muscle - Gastrocnemius, Normal, Both, All, All 127 16 5473
Skeletal muscle - Quadriceps, Normal, Both, All, All 81 14 4892
Skeletal muscle - Soleus, Normal, Both, All, All 22 3 4884
Skeletal muscle - Tibialis anterior, Normal, Both, All, All 15 5 6971
Skeletal muscle, Normal, Male, Old, All 34 6 5172
Skeletal muscle, Normal, Male, Adult, All 105 15 5056
Skeletal muscle, Normal, Male, Adult, C57BL-6J 52 4930
Skeletal muscle - Gastrocnemius, Normal, Male, Adult, All 23 4 4646
Skeletal muscle - Quadriceps, Normal, Male, Adult, All 45 5 4925
Skeletal muscle, Normal, Male, Young, All 127 21 5403
Skeletal muscle, Normal, Male, Young, C57BL-6J 72 8 5506
Skeletal muscle - Gastrocnemius, Normal, Male, Young, All 76 8 5665
Skeletal muscle - C2C12, Normal undifferentiated, Female, All, All 20 6 7121
Skeletal muscle - C2C12, Normal 1-2 days differentiated, Female, All, All 39 2 5815
Skeletal muscle - C2C12, Normal 3-4 days differentiated, Female, All, All 14 5 6999
Skeletal muscle - C2C12, Normal 5 days differentiated, Female, All, All 12 4 7366

Table S5 | Samples that were predicted to have opposite gender from what was

reported on the metadata but turned out to be copying errors.

Organism Series Samples Reported Prediction | Reason
gender
Human GSE13205  GSM333436 60 ye;ars old Female | The corresponding publication
septic Male reports only a 60 years old female
GSM80654, All males | These samples were
GSE3526 GSM80658, All females identified as duplicates. The original IDs
GSM80790 report them as males
GSE38780 GSM949391 17 years old Male | The publication states one 17
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Mouse

female years old male

E-MEXP-733  All samples Mixed gender

All samples were strongly predicted as
opposite gender | Possible copying error

GSE25729 GSM632001 Male Female | Possible copying error

Mixed gender | Gender differentiation
in mice happens between E11 and E12
past E11 from which we had mixed gender

Samples

GSE1479 All females

predicted

S1 | A two step PHP script that first calculates and assigns MD5 hash keys to all files
within a folder and then compares them to identify the duplicate files. Useful to find
duplicate raw CEL files with different IDs.

<?php

/) e
// A fast and simple script that finds the MD5 hash keys

// for all files within a folder and compares them

// in order to detect duplicates.

//

[/ S -
// How to execute this script from the command line interface (CLI):

// "path/to/php" "path/to/this script.php" "path/to/CEL directory/"

//

[/ S -
// If you do not have PHP (CLI) installed in your computer, you can

// download the latest version from http://php.net/downloads.php

//

/) T
// Author: Apostolos Malatras, email: apmalatras@biol.uoa.gr

// Date: April 21, 2016

[/ mm e -

$argument 1 = Sargv[l];

if (is_dir(Sargument 1)) {

$dir=scandir ($argument 1);
Sdirnum=count ($dir) ;

//calculate hash keys
for ($i=2;$i<$dirnum; $Si++) {

$dir[$i]l=trim(Sdir[$i]);

//Hash array

$mdSarray[$dir[$i]] = md5_file("$argument 1/Sdir[$i]");
}

//compare
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$dup=array () ;
Srep=array () ;
foreach (array count_values (SmdS5array) as Sval => $Sc) {
if($c > 1){
Sdup[] = Sval;
}
}
foreach (Sdup as Skey dup => Sval dup) {
foreach (Smd5array as S$key md5 => $val md5) {

if ($val dup == $val md5) {
$rep[$val dup].= "$key md5\t";
}
}
Srep[$val dup] = trim(Srep[$val dup]);

}

if (Srep==NULL) {
echo "No duplicate files detected\n";
}else({
print_r(Srep);
}
lelse(
die("First argument must be a directory\n");

}

7>
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2.3 “Annexin A2 links poor myofiber repair with inflammation and

adipogenic replacement of the injured muscle”
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Abstract

Repair of skeletal muscle after sarcolemmal damage involves dysferlin and dysferlin-interacting proteins such as annexins.
Mice and patient lacking dysferlin exhibit chronic muscle inflammation and adipogenic replacement of the myofibers. Here,
we show that similar to dysferlin, lack of annexin A2 (AnxA?2) also results in poor myofiber repair and progressive muscle
weakening with age. By longitudinal analysis of AnxA2-deficient muscle we find that poor myofiber repair due to the lack of
AnxA2 does not result in chronic inflammation or adipogenic replacement of the myofibers. Further, deletion of AnxA2 in
dysferlin deficient mice reduced muscle inflammation, adipogenic replacement of myofibers, and improved muscle function.
These results identify multiple roles of AnxA2 in muscle repair, which includes facilitating myofiber repair, chronic muscle
inflammation and adipogenic replacement of dysferlinopathic muscle. It also identifies inhibition of AnxA2-mediated inflam-
mation as a novel therapeutic avenue for treating muscle loss in dysferlinopathy.

Introduction

Skeletal muscle responds to minor damage of the myofiber sar- repair involves subcellular processes that occur over minutes
colemma by repairing the damaged membrane. However, myo- following an injury, myofiber regeneration involves inflamma-
fibers that fail to repair and undergo necrotic death, are replaced tory and myogenic processes that occur over hours to days fol-
through regeneration. Together, repair and regeneration of the lowing injury (1,2). Cellular proteins that coordinate myofiber
injured myofibers enable repair of muscle injury. While myofiber repair and regeneration over this timescale and ensure efficient
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muscle repair, are poorly understood. Proteins that can coordi-
nate both, myofiber repair and myofiber regeneration in vivo
should be able to 1) sense and respond to myofiber injury, 2) acti-
vate inflammatory and myogenic cells in response to myofiber
injury, and 3) facilitate myogenesis to replace necrotic myofibers.
Defects in the above processes exacerbate tissue damage and
lead to the loss of muscle function, underscoring the need to
identify proteins and the mechanisms involved in it.

Annexins are calcium binding proteins that regulate various
intracellular events that are altered in muscle diseases (3-7).
Recent in vitro and in vivo studies of myofibers and other cells
have found that annexin and their binding partners are re-
cruited to and facilitate repair of plasma membrane (PM) injury
(8-13). A role of annexins in myofiber regeneration is supported
by our previous analysis of Annexin A1 and by gene expression
analysis of muscles acutely injured in vivo by cardiotoxin injec-
tion, which shows expression of annexins, including annexins
A1l and A2 increases immediately following injury and remains
elevated for days, during the course of muscle repair
(Supplementary Material, Fig. S1; (14,15)). In addition to myo-
fiber regeneration, in vivo and ex vivo analyses show that annex-
ins also mediate tissue inflammation (15-18). Tissue
inflammation has a complex relationship with muscle repair,
while acute inflammation is required for myofiber regeneration,
chronic inflammation causes muscle disease (1). Such muscle
diseases include Limb Girdle Muscular Dystrophy (LGMD) 2B
and Miyoshi Myopathy (MM), which are caused by mutations in
dysferlin gene. Lack of dysferlin compromises repair of myofib-
ers following ex vivo sarcolemmal injury, and leads to chronic
inflammation, increased muscle degeneration and, gradual adi-
pogenic replacement of myofibers in vivo (19-25). Eccentric exer-
cise accelerates disease progression and adipogenic muscle
replacement in dysferlinopathic mice and patients (26,27).
However, with the link between the incidence of in vivo sarco-
lemmal lesions and dysferlinopathic myofiber degeneration due
to myofiber loss and adipogenic replacement being unclear, the
basis for dysferlinopathic muscle pathology remains elusive.

Dysferlinopathic muscles show increased macrophages, in
addition to CD4+ and CD8+ cells (28,29). While muscle inflam-
mation is required during the early phase of muscle repair (30),
the basis for increased and chronic inflammation in dysferlin-
opathy remains enigmatic. Some of the suggested links for poor
muscle repair and inflammation in dysferlinopathy include the
chemotactic factor thrombospondin 1 (31), TNF-x (32), and com-
plement factor C3 (33). Testing the importance of these links is
complicated by discordant effects of reducing muscle inflam-
mation in dysferlinopathy: while use of anti-inflammatory ste-
roid therapy is not beneficial for dysferlinopathy, loss of B and T
lymphocytes and loss of Toll-like receptor (TLR)-mediated in-
nate immune response reduces muscle pathology and improves
muscle strength (34-36). Thus, to develop anti-inflammatory
therapy for LGMD2B there is a need to identify the link between
poor myofiber sarcolemmal repair and chronic muscle inflam-
mation. Annexins have been postulated as a regulator of dis-
ease in dysferlinopathy - annexins, such as annexin A1l and A2
co-localize and interact with dysferlin in injured muscle cells
(13,37). Annexins Al and A2 are also increased in LGMD2B pa-
tients and mice, in a manner that correlates positively with the
severity of their symptoms (6,37,38).

Using AnxA1l-null mice, we recently identified that AnxA1l
deficit does not compromise repair of injured myofibers, but
slows satellite cell fusion and thus myofiber regeneration (15).
Here, we have examined the role of AnxA2 in the repair of in-
jured muscles. We have tested the role of AnxA2 in healthy and
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dysferlin-deficient mouse (B6A/J) muscle by using mice lacking
AnxA2 (A2) or lacking AnxA2 and dysferlin (B6A/JA2). Similar to
dysferlin deficient myofibers, AnxA2-deficient myofibers are poor
at repairing injury to their sarcolemma and show a progressive
age-dependent decline in muscle function. However, unlike the
dysferlin-deficient muscle, AnxA2-deficient muscles do not ex-
hibit chronic inflammation even as muscle function declines
with age. While AnxA2-deficient dysferlinopathic myofibers re-
pair poorly, these muscles exhibit reduced inflammation. This
identifies a need for AnxA2 to activate chronic inflammation
caused by poor repair. In the absence of AnxA2, dysferlinopathic
muscle shows extensive myofiber regeneration, but not degener-
ation or adipogenic replacement. These reductions in muscle
histopathology occur concomitantly with improved muscle
strength and in vivo muscle function. Thus, we identify AnxA2 as
a regulator of myofiber repair and muscle inflammation, which
facilitates adipogenic conversion of dysferlinopathic muscle and
is thus a potential target to treat dysferlinopathy.

Results

Annexin A2 is required for myofiber sarcolemmal repair

With the association of annexin A2 to dysferlin and the role of
annexin A2 in PM repair in non-muscle cells (9,37), we exam-
ined the PM repair ability of Anx2-deficient (A2) myofibers. To
monitor the kinetics of repair, myofibers in intact isolated mus-
cles were injured ex vivo by focal laser injury as we previously
described (21,39,40). The kinetics of sarcolemmal repair follow-
ing injury was monitored by measuring the cellular entry of
membrane impermeable dye FM1-43. Injury to parental wild
type (WT; C57BL/6) and A2 mice showed that lack of AnxA2 re-
duced the ability of the injured myofibers to repair (Fig. 1A
and B). Next, we examined the effect of AnxA2 deficit on repair
of myofibers injured mechanically by ex vivo lengthening con-
traction (LC)-induced injury. Using Extensor Digitorum Longus
(EDL) and Soleus (SOL) muscles we monitored the recovery of
muscle contractile force and the ability to exclude entry of cell
impermeant dye procion orange, following repeated LC injury
by stretching of 10% for fast (EDL) and slow (SOL) muscle. Both
EDL and SOL muscles from A2 mice showed a greater decrease
in contractile force following each round of LC injury (Fig. 1C
and D). After nine consecutive LC injuries, A2 EDL muscle
showed over 20% greater loss in contractile force as compared
to the WT muscle (Fig. 1C). To assess the extent of sarcolemmal
damage due to LC-injury, injured EDL muscle was incubated in
cell impermeant dye procion orange. Compared to WT EDL
muscle, more myofibers in the A2 muscle were labeled with pro-
cion orange (Fig. 1E). Thus, use of two independent assays to
monitor the repair of injured myofibers shows that, similar to
what is known for dysferlin, lack of AnxAz2 also reduces the abil-
ity of injured myofibers to repair.

Mice lacking annexin A2 show age-dependent loss of
muscle function

Due to the reduced ability of the A2 myofiber to repair sarcolem-
mal injury, we next assessed the effect of AnxA2 deficit on
in vivo muscle growth and function. Over the first 9 months of
life A2 mice showed a similar increase in body and muscle mass
as the parental WT, but by 12 months the increase in body mass
and muscle mass declined in the A2 animals, but the myofibers
did not show concomitant decrease in size, indicating
they were not atrophic (Supplementary Material, Fig. S2A-F).
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Figure 1. Lack of AnxA2 causes poor sarcolemmal repair. (A) Freshly isolated intact Soleus (SOL) muscle isolated from WT or A2 mice were injured ex vivo in presence of
FM1-43 dye. The images show time lapse images of fibers visualized for brightfield (pre injury, left panel), and for fluorescence emission of the FM dye pre and post in-

jury (middle, right panels). Individual myofibers are marked by dotted white line, and arrows indicated the site of sarcolemmal injury. Scale bar

20pm.

(B) Quantification of FM1-43 influx, following laser injury, into fiber isolated from WT in presence (n = 14 fibers) or absence of calcium (n =4 fibers) and AnxA2 deficient
(n=22 fibers) mice. (C) Percentage of initial force as a result of repeated 10% ex vivo lengthening contractions of WT or A2 Extensor Digitorum Longus (EDL) muscle from 1
year old animal (n = 3-4 animals each). (D) Percentage of initial force as a result of repeated 10% ex vivo lengthening contractions of WT or A2 SOL muscle from 1-year-

old animal (n

from 1-year-old animal: brightfield (left panel) and procion orange (right panel). Scale bar

3 animals each). (E) Cross-section of EDL muscle section stained with procion orange following 10 repeated lengthening contractions in WT and A2

50 um. All images were acquired and scaled similarly and quantifications

show means = S.E.M. B: ** P<0.01 and ***P <0.001 compared to WT and **’P < 0.001 compared to A2 by ANOVA,; C: P < 0.05 compared to WT by unpaired t-test.

To assess the effect of AnxA2 deletion on muscle strength we
performed in vivo and ex vivo measurements of muscle contrac-
tile strength. In vivo measurement of the forelimb grip strength
showed a decrease in grip strength of A2 mice at 3 months of
age and the forelimb continued to remain weaker at all ages
tested till 12-months-old (Fig. 2A). To assess if there is a poten-
tial involvement of neurological effects in the decrease of in vivo
contractile force, we measured the contractile ability of isolated
EDL muscle ex vivo. EDL muscle from A2 mice showed a lower
force production starting from 3 months of age, but the differ-
ence became a significant starting from 6-months-old and con-
tinued to remain weak even thereafter (Fig. 2B). These results
indicate that lack of AnxA2 decreases muscle force generation.
To assess if the decline in muscle strength is reflected in volun-
tary physical activity of the A2 animals we measured the activ-
ity of the mice in an open field behavioral assessment at 3 and
6 months of age. At 3 months of age, the activity of A2 mice was
indistinguishable from the WT mice, but by 6 months of age, A2
mice showed a 2- to 5-fold decline in all the activity measures
assessed (Fig. 2C-E). Together, these data show that AnxA2 defi-
cit recapitulates the age dependent decrease in muscle strength
and physical activity seen in dysferlinopathy.
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Lack of annexin A2 does not cause muscle
inflammation and degeneration

In view of the above similarities in the effect of dysferlin and
AnxA? deficit at the cellular and tissue level, we next examined
if AnxA2 and dysferlin deficient muscle also exhibit similar
changes in gene expression. Principal component analysis of
the microarray gene expression data for the Gastrocnemius
(GSC) muscles of 6-month-old AnxA2 deficient and parental WT
mice (n=4 per group) showed no clustering of samples into the
two genotypes (Supplementary Material, Fig. S3A). Accordingly,
we observed only six differentially-expressed genes (including
AnxA?2) with a false discovery rate (FDR) of <0.1 (Supplementary
Material, Table S1). To test for accumulation of weak changes
across gene sets we carried out gene set enrichment analysis
against 2,510 canonical pathways, gene ontology terms, and
gene lists derived from previous muscle gene expression stud-
ies. This identified 16 gene sets with FDR <0.1, many of which
are related to protein degradation (Supplementary Material, Fig.
S3B). The leading edge analysis suggested this is driven by the
up-regulation of a small subset of proteasomal subunit proteins
(Supplementary Material, Fig. S3B and C). This is a modest
change in gene expression as compared to the hundreds of
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Figure 2. AnxA2 deficient mice show progressive muscle weakness and decline in locomotor activity. A2 and parental WT mice at different ages (3-24-months-old)
were assessed for muscle strength and voluntary locomotor activity. (A) Forelimb grip strength measurement (GSM). (B) Specific force of isolated Extensor Digitorum
Longus (EDL) muscle. (C-E) Voluntary locomotor activity assessed by open-field behavior measurements. All data are expressed as medians * extreme values through
whisker plot (n > 9 animals). ‘P < 0.05, **P < 0.01 and ***P < 0.001 compared to WT by unpaired t-test.

genes that show altered expression in recent studies of dysfer-
lin deficient muscles (41-43). Dysferlin deficient muscles show a
notable increase in muscle inflammation (44). For a focused
analysis of alterations in inflammatory genes between AnxA2
and dysferlin deficient mouse muscles we compared muscle
gene expression data obtained from the A2 muscle with com-
plete transcriptomic profiles of three recent murine dysferlino-
pathic muscle studies GSE2629 (41), GSE2507 (42), and GSE2112
(43). None of the inflammation-related gene ontology (GO)
terms dysregulated in these dysferlin-deficient datasets were
dysregulated in the A2 muscle (Supplementary Material,
Table S2).

To further examine this lack of any remarkable change in in-
flammatory gene expression in the 6-month-old A2 muscle, we
performed longitudinal muscle histopathological analysis of the
GSC muscle from A2, WT and dysferlinopathic (B6A/J) mice at 3,
6 and 9 months of age (Fig. 3A). In agreement with the gene ex-
pression analysis, we observed that compared to the dysferlino-
pathic (B6A/J) muscle, A2 muscles showed relatively little
histopathology even at 9 months of age. While compared to the
WT muscle, B6A/] GSC muscle showed an increase in the num-
ber of degenerating fibers, inflammatory foci and regenerating
fibers at all ages (up to 17, 20 and 35-fold, respectively, at
9 months), A2 muscle do not show any difference (Fig. 3B-D).
Thus, despite similar loss in ex vivo measures of myofiber repair
and muscle function for AnxA2 and dysferlin deficient mice,
AnxA?2 deficient mice exhibit minimal muscle histopathology
and inflammation in vivo.

Annexin A2 links poor myofiber repair and
dysferlinopathic muscle inflammation

AnxA?2 facilitates inflammatory signaling, and increase in
AnxA?2 expression in dysferlinopathic and regenerating muscle
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is linked to increased muscle inflammation (6,17,38,45).
We thus hypothesized that the lack of A2 muscle inflammation
despite poor myofiber repair indicates a requirement of AnxA2
for triggering muscle inflammation. To test this hypothesis, we
generated mice deficient in dysferlin and AnxA2. As the A2
mice are on the C57BL/6 strain, we cross-bred it with dysferlin
deficient mice on the C57BL/6 strain - B6A/] (27). The genotype
of the dysferlin/AnxA2 null (B6A/JA2) mice was confirmed as be-
fore (21,46) (Supplementary Material, Fig. S4A and B). The B6A/
JA2 mice were viable, with no obvious defect in growth and de-
velopment (Fig. 4A-C).

To test the ability of myofibers from the B6A/JA2 mice to re-
pair sarcolemmal injury, we used the ex vivo laser injury assay
as described above. PM injury in the B6A/JA2 myofibers resulted
in even greater FM dye entry as compared to the B6A/] myofib-
ers, indicating their reduced ability to repair the sarcolemmal
injury (Fig. 4D). Further, this indicates that AnxA2 helps with re-
pair of the dysferlinopathic myofibers. If the role of AnxA2 in
muscle injury was limited to its role in myofiber repair, this ob-
servation would predict a worse pathology for B6A/JA2 mice as
compared to the B6A/] mice. However, if as per our hypothesis,
AnxA2 does indeed link myofiber repair deficit with muscle in-
flammation, B6A/JA2 mice will have reduced inflammation and
thus reduced muscle pathology as compared to B6A/] mice.
Since muscle pathology in B6A/] mouse gets progressively
worse at older ages, we examined the histology of muscle sec-
tions in old (>18 months) WT, A2, B6A/] and B6A/JA2 mice
(Fig. 4E). As previously shown in GSC (Fig. 3) there was a signifi-
cantly greater number of degenerating and regenerating fibers,
as well as inflammatory foci in the EDL muscle of B6A/] mice as
compared to the WT and A2 mice (Fig. 4F-H). However, in com-
parison to B6A/] muscles, EDL muscles of 18-24-month-old B6A/
JA2 showed 2- to 7-fold decreases in the number of degenerat-
ing fibers, regenerating fibers, and inflammatory foci (Fig. 4F-H).
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Figure 3. Annexin A2 deficit does not increase muscle degeneration and inflammation. Gastrocnemius (GSC) muscle sections from A2, WT and dysferlin deficient (B6A/J)
mice at different ages (3, 6 and 9-months-old) were stained with haematoxylin & eosin (H&E) and various histological features were quantified. (A) Representative his-
tological images of GSC muscle for WT, A2 and B6A/] mice. (B) H&E stained muscle sections were imaged from >4 independent animals and the entire muscle section
was used to quantify the number of (B) degenerated fibers (open arrow), (C) inflammatory foci (white arrow) and (D) centrally nucleated fibers (black arrow). Scale
bar = 100 um. All data are expressed as mean + S.EM (n >4 animals). P < 0.05 and™ P < 0.01 compared to WT and “P < 0.05 compared to A2 by Kruskal Wallis test.

This reduction in muscle pathology was also observed in all the
other muscles, namely Tibialis Anterior (TA), GSC, and Psoas
that were examined (Supplementary Material, Fig. S5). This
identifies that AnxA2 deficit is protective against the muscle de-
generation caused by dysferlin deficit.

As an independent assessment of the nature of muscle in-
flammation, we quantified inflammatory markers for B cell, T
cell, macrophages, and TLR-mediated innate immune response,
all of which are involved in dysferlinopathy (35,36,47). Using
qRT-PCR, we assessed the expression of B cell marker CD19, T
cell markers CD4, CD8A, macrophage marker EMR1 (F4/80), and
innate immune signaling (TLR4, IL12, and TNFu). Compared to
18-24-month-old WT muscles, these markers were unaltered in
age-matched A2 muscles, but up-regulated in age-matched
B6A/] muscle (Fig. 41 and J). Compared to B6A/] muscle, B6A/JA2
muscles showed up to 7-fold reduction in expression of B and T
lymphocyte markers, and showed a trend for reduced expres-
sion of TLR4 as well as TLR-regulated genes IL-12 and TNFu
(Fig. 41 and ]). However, the expression of the macrophage
marker F4/80 (EMR1) was unaltered (Fig. 4I). These results show
that lack AnxA2 inhibits inflammation of dysferlin deficient
muscles even at late symptomatic stage.

Adipogenic conversion of the dysferlinopathic muscle
depends on annexin A2
Previous studies have shown that dysferlin deficiency in pa-

tients and animals results in a significant fatty replacement of
muscle cells in age and symptom dependent manner, which
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may relate to altered inflammatory response due to dysferlin
deficit (23,24). To assess the appearance of the adipogenic signa-
ture in muscle we used the transcriptomic profiles of GSC mus-
cle from dysferlinopathic mice (GSE2629 (41), GSE2507 (42), and
GSE2112 (43)) for GO terms relating to cellular markers for adipo-
genic and fatty acid metabolism genes to assess if any of these
were dysregulated in muscle of 7-month-old dysferlin deficient
mice (Supplementary Material, Table S2). To aid in interpreta-
tion of this analysis, we also assessed these GO terms in a data-
set comparing adipose tissue to muscle (GSE51866). Adipogenic
GO terms dysregulated in 7-month-old dysferlin deficient mus-
cle changed similarly to that observed for the fat versus muscle
comparison; however, similar to the young (< 2-months-old)
dysferlin deficient muscles, these terms were not dysregulated
in AnxA2 deficient muscles. This identifies that adipogenic GO
terms that are responsive to disease progression in dysferlin de-
ficient muscle are unaltered in AnxA2 deficient muscle.
In agreement with the results from gene expression analysis,
histological analysis of one-year old GSC muscle showed obvi-
ous signs of adipogenic muscle replacement in dysferlinopathic
muscle, while WT and AnxA2 muscle showed no detectable adi-
pogenic conversion (Fig. 5A). Use of Oil red O staining showed
that adipogenic deposits are found within and between myofib-
ers, both of which are missing from age matched GSC muscle
from WT and AnxA2 deficient mice. Interestingly, these adipo-
genic deposits are significantly reduced in B6A/JA2 mice (Fig.
5B). To quantify the extent of adipogenic conversion of muscle
we immunostained the muscles with lipid droplet specific pro-
tein Perilipinl which is not abundant in healthy muscle (48).
Unlike WT muscles, Perilipin1 staining was abundant in B6A/J
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Figure 4. Lack of AnxA2 reduces muscle inflammation in dysferlinopathic mouse. B6A/] and B6A/JA2 mice at 6-24 months of age were assessed for (A) body mass and
(B, C) muscle mass (Gastrocnemius, GSC or Tibialis Anterior, TA), as well as (D) the ability of the myofiber from Extensor Digitorum Longus (EDL) or biceps muscle of B6A/]
(n=13 fibers) or B6A/JA2 (n=15 fibers) mice to repair from laser injury ex vivo. (E) Representative histological images of the haematoxylin & eosin stained EDL muscle
cross section from WT, A2, B6A/] and B6A/JA2 at 24-months-old. Scale bar =100 pym. Number of (F) degenerating muscle fibers (open arrow), (G) inflammatory foci
(white arrow) and (H) central nucleated fibers (black arrow) were quantified from entire EDL muscles of WT, A2, B6A/] and B6A/JA2 at 24 months of age (n >3 animals).
(I,J) mRNA expression level (normalized to HPRT and presented as fold-change over the WT) for (I) various inflammatory cell population and (j) genes involved in TLR-
signaling response in A2, B6A/J or B6A/JA2 GSC muscle at 24 months (n > 3 animals). All data are expressed as means = S.E.M. **P < 0.01 compared to B6A/) by unpaired

t-test. P <0.05 and ""P < 0.01 compared to WT and **P < 0.01 compared to A2 by Kruskal Wallis test.

muscle, but lacking in A2 as well as B6A/JA2 muscles (Fig. 5C
and D). While the staining was observed both within the myo-
fiber (arrows) and between the myofibers (arrowheads), the little
Perilipin1 staining observed in B6A/JA2 muscle rarely occurred
within the myofiber.

To assess if the lack of adipogenic replacement of B6A/JA2
muscle is due to a delay (not a block) in adipogenic conversion
of muscle we further investigated multiple muscles by H&E and
Oil Red O staining (Supplementary Materials, Fig. S4C and S5).
These staining showed that there is a gradation of adipogenic
replacement of dysferlinopathic muscle with Psoas, and GSC
muscles being more affected than EDL and TA (Fig. 4E,
Supplementary Material, Fig. S4C). Similar to the EDL muscles
from two-year old B6A/] mice, which showed reduced histopa-
thology in AnxA2 and in B6A/JA2 muscle (Fig. 4E), we observed
consistently reduced lipid deposition in all B6A/JA2 muscles
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when compared to B6A/] (Supplementary Material, Fig. S5).
In view of the poor myofiber repair of B6A/] and B6A/JA2 mus-
cles, but protection of B6A/JA2 muscle from adipogenic replace-
ment, this demonstrates the requirement of AnxA2 to trigger
the adipogenic conversion of dysferlin deficient myofibers.

Lack of annexin A2 improves dysferlinopathic
muscle function

Due to the reduced inflammation and adipogenic conversion of
muscle we hypothesized that AnxA2 deficiency may improve
dysferlinopathic muscle function. We first tested if AnxA2 and
dysferlin deficient muscle show improved muscle strength
in vivo. To assess muscle contractile ability we measured
the forelimb and hindlimb grip strength at pre-symptomatic
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Figure 5. Lack of AnxA2 reduces fatty replacement of dysferlinopathic muscles. Gastrocnemius muscle from 12-month-old WT, A2, B6A/J and B6A/JA2 mice were stained
with (A) haematoxylin & eosin, (B) Oil Red O and (C) immunostained for Perilipin1 (red). Scale =200 pm for A & B and 100 ym for C. (D) Using images of whole muscle
section the number of perlilipin1 stained foci were quantified (n=3 animals each). Blue: DAPI, Green: Wheat germ Agglutinin (Alexa Fluor 488 conjugate), and Red:
Perilipin1 (Alexa fluor 568 conjugate).The plots represent mean + SEM. *P < 0.05 compared to WT by Kruskal Wallis test.

(< 6-months-old) and late symptomatic (>20-months-old) B6A/J
and B6A/JA2 mice. B6A/JA2 showed a significantly slower de-
cline in grip strength of both the limbs as the disease prog-
ressed. While the grip strength of both limbs was similar
between pre-symptomatic B6A/J and B6A/JA2 mice, at the late
symptomatic stage B6A/JA2 mice showed significantly greater
grip strength than B6A/) muscle (Fig. 6A and B). As the decline in
muscle strength in late symptomatic B6A/JA2 mice occurs de-
spite poor myofiber sarcolemmal repair (Fig. 4D), we assessed if
this is due to an improved ability of the asymptomatic and early
symptomatic B6A/JA2 muscles to withstand injury. To test this
we subjected 6- and 12- month-old EDL muscle from B6A/] and
B6A/JA2 mice to ex vivo eccentric injury by repeated 10% LC. At
both these ages we observed that the EDL muscles from B6A/JA2
mice were more resistant to the damaging effects of LC injury,
resulting in reduced loss in contractile force upon successive LC
injuries (Fig. 6C). The improved resistance of B6A/JA2 EDL mus-
cles to LC injuries is not due to an increase in the strength of the
EDL muscle as shown by similar maximal contractile force of
this muscle in B6A/J and B6A/JA2 at pre-symptomatic, as well as
early and late symptomatic ages (Fig. 6D).

With the improved function and reduced adipogenic conver-
sion of the B6A/JA2 muscle, we tested if this improvement is
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reflected in the functional measures of activity of the mice. For
this, we performed open-field measurements of activities of
mice at early-symptomatic (<6 months) and late-symptomatic
(>20 months) age. As compared to B6A/] mice, B6A/JA2 mice
displayed significantly increased activity in all the measures
tested, including total vertical and horizontal activities, as well
as total number of all voluntary movements (Fig. 6E-G), at a
level similar or close to WT animals. All the measures of volun-
tary activities were noticeably improved at both stages, such
that B6A/JA2 mice showed increased movement by 50% at an
early age and 20% at a later age (Fig. 6F) and vertical activity was
improved by as much as 3-fold in early-symptomatic stage and
increased to 6-fold by late-symptomatic stage (Fig. 6E). Taken
together, analysis of muscle function and voluntary activities
demonstrate that the reduced muscle pathology in the B6A/JA2
mice results in improved functional performance of these mice
offering a strong indication in support of the functional benefits
of AnxA? deficiency in dysferlinopathic muscle.

Discussion

Muscular dystrophies such as LGDM2B and Miyoshi Myopathy
are characterized by poor myofiber repair, exhibit chronic
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Figure 6. Lack of AnxA2 improves dysferlinopathic muscle function. (A,B) Forelimb and hindlimb grip strength (GSM) measurement of B6A/] or B6A/JA2 mice at <6
months and WT, B6A/J or B6A/JA2 at >20 months (n > 10 animals). (C) Percentage of initial force as a result of successive 10% ex vivo lengthening contractions of B6A/]
or B6A/JA2 Extensor Digitorum Longus (EDL) muscle from 6 months or 1-year-old animal (n >4 animals). (D) Specific force of EDL muscle from B6A/J or B6A/JA2 mice at 6,
12 and 24 months (n > 6 animals). (E-G) Voluntary locomotor activity assessed by open-field behavioral activity measurements of B6A/J or B6A/JA2 mice at < 6 months
and WT, B6A/] or B6A/JA2 mice at >20 months (n > 10 animals). Box whisker plots show median * extreme values, while line plot (C) shows means + S.EM. A, B, E-G:
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pared to B6A/] by ANOVA.

muscle inflammation and degeneration (19,22,23,25,46).
Dysferlin, the protein mutated in LGMD2B and MM, interacts
with AnxA1, and AnxA2, and is required for sarcolemmal repair
(37). Studies in C. elegans have underlined the importance of
dysferlin interaction with annexins in sarcolemmal repair (13).
Annexin A6 has been the only annexin implicated so far in sar-
colemmal repair in mammals (4). Mutation of AnxA6 was re-
cently identified to worsen muscle repair and pathology in a
dysferlinopathic mouse model (49). Our recent analysis of
AnxA1 deficient mice identified that instead of facilitating sar-
colemmal repair, AnxA1 facilitates myoblast fusion required for
the regeneration of injured myofibers (15). Similar to the role of
AnxA1l in non-muscle cells, we have found that AnxA2 is re-
quired for repairing injury to the plasma membrane (9,12). Here,
we show that AnxA2 is also required for the repairing injured
mouse myofibers. Our studies with AnxA2 identified that
AnxA2 helps with plasma membrane repair by facilitating
F-actin buildup at the site of injury (9). F-actin buildup has also
been shown to facilitate repair of injured myofibers (8,50). In
light of the ability of AnxA2 to interact with F-actin and with
dysferlin, it is plausible that AnxA2 facilitates sarcolemmal re-
pair by facilitating F-Actin buildup and dysferlin recruitment at
the injured plasma membrane (50). However, with the role of
AnxA2 in aggregating and fusing membranes, AnxA2 may also
facilitate fusion of dysferlin containing membranes at the site
of cell membrane injury (3,50).

Similar to dysferlin, lack of AnxA2 also causes poor myofiber
repair and progressive decline in muscle function. However,
AnxA?2 deficiency does not cause inflammation, or lead to de-
generation of the muscles, identifying AnxA2 as the protein
that regulates myofiber repair as well as injury-triggered muscle
inflammation. Dysferlinopathic patient’s muscles show adipo-
genic replacement of myofibers and increasing disease severity
with increasing level AnxA2 in the muscle (6,23,26). Such a role
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of AnxA2 is further supported by previous reports showing that
AnxA2 expression is increased rapidly following injury of
healthy muscle, and during the course of disease progression in
dysferlinopathic patients (6,14,37,38). These two distinct roles of
AnxA2 may be linked to the two distinct localizations of AnxA2
- intracellular (for membrane repair) and extracellular (for acti-
vating inflammation). Despite lacking a signal peptide, AnxA2 is
secreted by cells in a variety of tissues where AnxA2 binds cell
surface receptors (51). Extracellular AnxA2 activates inflamma-
tion by regulating shedding of pro-tumor necrosis factor-alpha
and by functioning as a ligand of TLR4 (17,45,52). Activation of
classical innate immune response due to poor repair of dysferli-
nopathic myofiber has been shown to play a role in disease pro-
gression (33). Additionally, poor cell membrane repair is also
proposed to activate alternate innate immune signaling
through the release of Danger Associated Molecular Patterns
(DAMPs) (53). One such DAMP is the high mobility group
1 (HMGB1) protein which, similar to AnxA2, resides in the cell
and upon secretion activates inflammation (54). A role of
HMGB1 as a DAMP has been proposed for dystrophin deficient
muscle, but protein(s) responsible for activating innate immune
response in dysferlinopathy has not been identified. This role of
AnxA2 is supported by the reduced expression of TLR-regulated
genes in AnxA2 deficient muscle.

In addition to muscle inflammation, a recently identified fea-
ture of dysferlinopathic patient and mouse muscle is the adipo-
genic replacement of myofibers (23). The adipogenic replacement
of muscle is a feature of symptomatic patient’s muscles, which is
exacerbated by eccentric exercise-induced muscle injury (23,26).
The adipogenic replacement of muscle correlates with the onset
of muscle weakness and enhancing disease severity enhances
fatty deposition in dysferlinopathic muscles (24,55). Thus, a viable
therapeutic approach to treat dysferlinopathy is one which can
minimize muscle adipogenic conversion. It was suggested that



adipogenic pathology in dysferlin-deficient muscle is regulated by
transcription factor CCAAT/enhancer binding protein-5. By dele-
tion of AnxA2 in dysferlinopathic muscle here we have identified
AnxA? is necessary for adipogenic conversion of dysferlin defi-
cient myofibers. It is worth noting that AnxA2 knockout reduces
inflammation and adipogenic conversion of dysferlin deficient
muscle despite poor myofiber repair ability. Deletion of AnxA2 in
dysferlin deficient mice (B6A/JA2 mice) lowers the level of TLR4
and other inflammatory mediators (Fig. 4). Recently, the impor-
tance of TLR signaling for dysferlinopathic muscle pathology was
uncovered by the knockout of Myd88 - the central facilitator of
TLR signaling, which reduced histopathology and improved dys-
ferlinopathic muscle function (36). By identifying that loss of
AnxA?2 improves dysferlinopathic muscle function, here we show
AnxA? functions as a link between poor myofiber repair and ensu-
ing inflammation and adipogenesis in dysferlinopathic muscle. It
appears to do so by linking muscle injury and TLR4-mediated
chronic muscle inflammation with subsequent adipogenic re-
placement of dysferlinopathic myofibers (Supplementary
Material, Fig. S6). Future studies using inflammatory and non-
inflammatory cell-specific AnxA2 knockout will help determine
the relative contribution of muscle and inflammatory cells in adi-
pogenic replacement of dysferlin-deficient muscle and the nature
of the signal that leads to myofiber adipogenesis. The observation
that AnxA?2 deficit breaks the link between poor myofiber repair
and dysferlinopathic muscle pathology provides direct evidence
that approaches to prevent adipogenic conversion of dysferlino-
pathic muscle can be therapeutic even when myofiber repair is de-
ficient. Additionally, in view of the link between muscle
adipogenic conversion and clinical severity in dysferlinopathy it
identifies blocking AnxA2 function as a potential therapy for dys-
ferlinopathy. Insight into the mechanism by which AnxA2 links
dysferlin deficit to dysferlinopathic muscle degeneration will help
unravel the mechanism by which muscle injury, inflammation
and adipogenesis are coordinated in dysferlinopathy and provide
additional avenues for developing therapies for dysferlinopathy.

Materials and Methods

Animal

Methods involving animals were approved by the local institu-
tional animal research Committee and animals were main-
tained in a facility accredited by the American Association for
Accreditation of Laboratory Animal Care. Wild type (WT) mice
(C57BL/6) were obtained from Jackson Laboratory (Bar Harbor,
ME), annexin A2 knockout mice (A2) were a gift of Dr. Katherine
Hajjar from Cornell University Medical Center (New York) and
dysferlin deficient mice (B6A/J) were a gift of Dr. I Richard from
Genethon (Paris). To generate mice lacking both dysferlin and
annexin A2 (B6A/JA2), B6A/] mice were crossed with A2 mice.
Homozygous null mice for annexin A2 and dysferlin were ob-
tained in F2 generation and genotyped as described below.

PCR genotyping

To assess the status of both dysferlin null allele and annexin A2
null allele, genomic DNA was PCR amplified as described before
by (21) for dysferlin allele and (46) for annexin A2 allele
(Supplementary Material, Fig. S4). The primers used to identify
dysferlin mutation (A/] Etn insertion in intron 4) were: dysf-F,
S’-TTCCTCTCTTGTCGGTCTAG-3’; dysf-R, 5-CTTCACTGGGAA
GTATGTCG-3’; ETn-oR, 5'-GCCTTGATCAGAGTAACTGTC-3’ and
for annexin A2 allele: A2WT, 5-GCACAGCAATTCATCA
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CACTAATGTCTTCTTG-3"; A2KO, 5’-GCTGACTCTAGAGGATCCC
C-3’; Anint, 5’-TGCGCCACCACGCCCGGCTT GTGCTTGCCAC-3'.

Ex vivo cell membrane injury

Extensor Digitorum Longus (EDL) or Soleus (SOL) muscle were sur-
gically isolated from euthanized WT, A2, B6A/] and B6A/JA2
mice in Tyrode’s solution and laser injury was carried out as de-
scribed (39) in the Tyrode’s buffer containing 1.33 mg/ml FM1-43
dye. The kinetics of repair was determined by measuring the
cellular FM1-43 dye fluorescence. FM-dye intensity (F-F, where
Fo is the original value) was used to quantify the kinetics of cell
membrane repair and represented with intervals of five frames.

Ex vivo force contraction

Mice at the age of 3, 6, 9, 12 and/or 24 months were anesthetized
with intraperitoneal injections containing ketamine (100 mg/kg)
and xylazine (10mg/kg). From the right hindlimb, EDL muscle
was dissected and brought into a bath containing Ringer solu-
tion (composition in mM: 137 NaCl, 24 NaHCO;, 11 glucose,
5 KCl, 2 CaCl,, 1 MgSO,4, 1 NaH,PO,, and 0.025 turbocurarine
chloride) at 25°C that was bubbled with a mixture of 95% O, and
5% CO,. With 6-0 silk suture, the proximal tendon was tied to a
fixed bottom plate and the distal tendon was tied to the arm of
a force transducer (Aurora Scientific, Ontario, Canada, model
305B). The muscle was surrounded by two platinum electrodes
to stimulate the muscle. The optimal length of the muscle was
established using single 0.2ms square stimulation pulses.
At optimal length, with tetani 300ms in duration and at fre-
quencies of 30, 100, 150, 200, 220 and 250 Hz, each separated by
2min intervals, the maximal force of the EDL was measured
and normalized for the muscle cross section area. After measur-
ing the length of the muscle with calipers, the muscle was re-
moved from the bath and weighed. The cross section was
calculated based on muscle mass, fiber length and muscle tis-
sue density. Fiber length was determined based on the ratio of
fiber length to muscle length of 0.45 (56). The same procedure
was repeated for SOL muscle from the right hind limb, but the
stimulation duration was 1000ms at frequencies of 30, 50, 80
and 100 Hz. The fiber length to muscle length for the SOL muscle
was 0.71. Before removing the EDL or SOL muscle from the bath,
the muscle was subjected to a protocol of lengthening contrac-
tions. At optimal length, the EDL muscle was stimulated at
250Hz for 300ms until a plateau of maximal force generation
was reached. From this plateau, with the muscle stimulated,
the muscle was lengthened over 10% of its length with a veloc-
ity of two fiber lengths per second after which the muscle was
passively returned to the optimal length. This was repeated
9 times with 1min interval between the lengthening contrac-
tions. The same procedure was repeated for the SOL muscle, but
the muscle was stimulated for 1000 ms at 100 Hz and the muscle
was lengthened over 10% its length. After removal of the SOL
muscle, the mice were euthanized by CO, asphyxiation.

Procion orange staining

After performing the ex vivo lengthening contraction injury mus-
cles were placed in 0.2% procion orange dye solution (in Ringer’s)
for 1h at room temperature. After removing the excess dye by
washing with Ringer’s solution, the muscle was immediately fro-
zen using isopentane pre-chilled in liquid nitrogen. Frozen tis-
sues were sectioned (8 ym) and imaged under the red channel
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using a Nikon Eclipse E800 (Nikon, Japan) microscope that was fit-
ted with a SPOT digital color camera with SPOT advanced
software (Diagnostic Instruments, Sterling Heights, MI).
Representative pictures (20X) were taken and procion orange pos-
itive fibers/image were measured for each section.

Grip strength measurement

At 3, 6,9, 12 and >20 months, forelimb and hindlimb grip strength
were performed in the morning hours with Grip Strength Meter
(GSM, Columbus instruments, Columbus, USA) as described (57).
The absolute GSM values (Kgf) for each measurement were used
for analysis. The grip strength measurements were collected over
a 5-day period after a period of acclimation of 5 days.

Open-field behavioral activity measurements (Digiscan)

At 3, 6 and >20 months, voluntary locomotor activity (move-
ment number, horizontal activity and vertical activity) was
measured using an open field digiscan apparatus (Omnitech
Electronics, Columbus, Ohio, USA) as described previously (57).
Locomotor activity data were collected over a 1-h period in the
morning hours over a four consecutive days with a previous pe-
riod of acclimation of 4 days.

Expression profiling

Directly following euthanasia, Gastrocnemius (GSC) muscles from
the left hindlimb were directly frozen liquid nitrogen and stored
at —80°C. Total RNA was extracted from frozen GSC muscles us-
ing Trizol reagent (Life Technologies, USA) and cleaned up with
the RNeasy MinElute cleanup kit (Qiagen, USA) according to the
manufacturers’ instructions, and then stored at —80°C until use.
RNA samples were analyzed with GeneChip Mouse Genome 430
2.0 microarrays (Affymetrix, Santa Clara, CA). An aliquot of 250ng
of total high-quality RNA from each sample was used. cDNA and
biotinylated cRNA were synthesized using the Affymetrix
GeneChip” 3’ IVT Express Target Amplification, Labeling and
Control Reagent kit according to manufacturer’s instructions.
15.2 pg of biotinylated cRNA was fragmented and hybridized to
Affymetrix Gene-Chips MG 430 2.0 for 16h. The arrays were
washed and stained on the Affymetrix Fluidics station 400 and
scanned with a Hewlett Packard G2500A gene Array Scanner ac-
cording to manufacturer’s protocol.

Bioinformatics functional analyses

For datasets for which raw chip image files were available
(A2, GSE2507, GSE51866), the following analysis pipeline was fol-
lowed: (1) microarray quality control was carried out by checking
the % present, average background, scale factors and GAPDH and
actin 3':5’ ratios for each chip using the affyQCReport R package
from Bioconductor (58), and by NUSE and RLE analysis as de-
scribed previously (59); (2) robust multichip averaging (RMA), con-
sisting of background adjustment, quantile normalization and
probeset summarization (60); (3) the characteristic direction geo-
metrical approach was then used to identify differentially ex-
pressed genes (DEGs) (61). For dataset GSE2629, raw chip image
files were unavailable, so the characteristic direction analysis
was run on the expression matrix provided by that study’s au-
thors, after log2 transformation. For dataset GSE2112, only a pub-
lished list of differentially expressed genes with fold-changes
and p-values was available. For calculation of FDR q-values for
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the A2 dataset (since characteristic direction does not give a mea-
sure of significance), a separate differential expression analysis
was carried out using NIA Array Analysis (62). For the A2 dataset,
principal component analysis (PCA) was carried out using TM4:
Multi-experiment Viewer (63). Rank-based gene set enrichment
tests were done using GSEA (64) on normalized, non-log2, gene
expression values, applying default settings (e.g. permutations
on phenotype, collapse genes to max of probesets) except that
minimum overlap with gene sets was changed from 15 to 8 to al-
low for the small sizes of some dysferlin-related muscle gene
sets. Gene Sets were taken from the Muscle Gene Sets homepage
(Muscle Gene Sets v1) http:/sys-myo.rhcloud.com/muscle_gene_
sets.php and from MSigDB http:/software.broadinstitute.org/
gsea/msigdb/. Gene set enrichment mapping was generated us-
ing Cytoscape (65) and Enrichment Map (66). Enrichment tests for
inflammation-related and fat-related gene ontology terms were
carried out on the most differentially expressed 250 genes from
each comparison, using Enrichr (67). The gene expression data
are publicly available from the Gene Expression Omnibus (GEO),
series number GSE87557. https://www.ncbinlm.nih.gov/geo/
query/acc.cgi?acc=GSE87557.

Histopathology scoring

Directly following euthanasia, GSC or EDL muscles from the left
hindlimb were removed and embedded in OCT and snap frozen
in liquid nitrogen-cooled isopentane. For histological analysis,
muscles embedded in OCT were subsequently sectioned and
stained with haematoxylin and eosin (H&E) as far as possible
using the TREAT-NMD guidelines for the DMD mouse (http://
www.treat-nmd.eu/research/preclinical/dmd-sops/). The slides
were acquired at 40X magnification with Nanozomer micro-
scope (Hamamatsu, Japan) or with VS120 (Olympus, USA) with
OlyVIA software, and myofibers in muscle section were as-
sessed for the following features: central nuclei/muscle, regen-
erating (centrally nucleated) fibers/muscle, and degenerating
and necrotic myofibres (that show microscopic evidence of
structural damage to the myofibers such as hypercontraction
and fragmented sarcoplasm that is accompanied with or with-
out the inflammatory cell invasion) using Image J (NIH).

Quantitative RT-PCR

Directly following euthanasia, GSC muscles from the left hindlimb
were directly frozen liquid nitrogen and stored at —80°C. To isolate
RNA for qRTPCR analysis, frozen GSC muscles were homogenized
in Trizol (Life technologies) with homogenizer according to manu-
facturer’s instructions. After RNA isolation, RNA was quantified
on a Nanodrop N1000 spectrophotometer and a total of 300ng of
RNA was used to produce cDNA using ABI High Capacity cDNA Kit
(Thermofisher). Tagman mouse primers were used: CD19, CD4,
CD8A, EMR1, IL12, TLR4, TNFx and HRPT (Thermofisher). All
qRTPCR reactions were prepared according to the manufacturer’s
instructions using ABI Tagman Gene Expression Master Mix
(Thermofisher) and measured on ABI 7900HT Fast-Time PCR
System through SDS 2.4 software. Relative gene expression was
calculated using the ACt method, with HRPT as the internal refer-
ence gene with RQ Manager 1.2.1 software.

Lipid staining
To monitor the presence of lipids, Oil red O staining was per-
formed with 8 um frozen sections from the GSC of 12-month-old



WT, A2, B6A/] and B6A/JA2 (n =3 animals per group) using a com-
mercial staining kit (American MasterTech, Lodi CA, USA), as per
manufacturer’s instructions. To quantify skeletal muscle lipid de-
position, frozen 8 um GSC sections were fixed with chilled 4%
paraformaldehyde and incubated with anti-perilipin A/B (Sigma
Aldrich; Cat #: P1873) at 5 pug/ml in PBS-Tween with 1% BSA and
10% goat serum. Perilipin staining was visualized using goat ant-
rabbit conjugated to A568 (4 pg/ml, ThermoFisher) and co-stained
with A488-conjugated wheat germ agglutinin (2pg/ml,
ThermoFisher) to mark sarcolemmal membranes. Sections were
mounted with ProLong Gold including DAPI and imaged using a
VS120 slide scanner (Olympus). Perilipin images were thresh-
olded in MetaMorph, and the number and average size of
perilipin-positive foci in the entire section was quantified using
the program’s Integrated Morphometry Analysis.

Statistics

Unless otherwise stated, all analyses were performed using
GraphPad Prism version 5. Normality test was assessed for each
measurement. Value which was < or > average + 2 standard de-
viation was removed. Data are presented as means * S.E.M. or
as medians * extreme values through whisker plot. Statistical
analyses were performed using Student’s t-test, ANOVA or
Kruskal Wallis test for each age-matched data. Nominal statisti-
cal significance was set at P <0.05.

Supplementary Material

Supplementary Material is available at HMG online.
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XA2 Dysferlin-deficient Fatv
AN Y muscle
KO  GSE2507 GSE2629_QF GSE2629_TA GSE2112  (GSE51866)*

Inflammation-related
Gene Ontology terms

Inflammatory response NS NS 0.002 0.002 0.001
fjﬁgﬁﬁﬁggfrespense NS 0.003 0.009 0.001  0.007
ﬁ‘;;'};"r; gfogw“fféfgoﬁ;e NS  0.009 0.087 0.016  0.003
e reopones. NS 0.002 NS NS 0.003
f;‘;‘g’j;‘;’: of immune NS  0.010 NS NS NS
f‘eds"'i‘;;t;‘fe‘mm““e NS 0.002 0.094 0.075 NS
Positive regulation of NS 0.006 NS NS 0.012

innate immune response

Fat-related Gene
Ontology terms

brown fat cell

diffarontiation NS 0.079 NS NS  0.017 <0.001
fat cell differentiation NS NS 0.028 NS NS <0.001
fatty acid metabolic

brotess NS  0.019 NS NS NS 0.016
fatty acid oxidation NS 0.003 NS NS NS 0.060
regulation of fat cell NS NS NS NS NS 0.034

differentiation

Supplementary table 1. Enrichment of inflammation-related and fat-related gene ontology terms
among the 250 most differentially expressed genes in muscle of the ANXA2 murine model and of
several dysferlin-deficient murine datasets when compared again their respective wild-type controls.
P-values of 0.1 or less are shown. *For fat-related gene ontology terms, an additional dataset (fat
tissue v muscle tissue) was included for comparison.
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Supplementary figure 1. Heatmap showing dysregulation of inflammation-related genes (left) and fat-
related genes in 3 recently published studies of dysferlin-deficient murine muscle (indicated by their
GSE identifiers from the gene expression omnibus). For fat-related genes, a fourth study is included
for comparison, in which fat tissue was compared with muscle. Genes are shown if they are annotated
to an inflammation-related or fat-related gene ontology term and were differentially expressed (q <
0.1) in at least one of the dysferlin-deficient datasets. None of these genes were differentially
expressed (q <0.1) in the ANXA2 KO. Upregulated genes are indicated in red, downregulated in blue.
Some datapoints (NA) were not available due to absence of probesets or unavailability of data.
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Gene Set Size ES NES NOM p-val FDR g-val
REACTOME_APC_C_CDC20_MEDIATED_DEGRADATION_OF_MITOTIC_PROTEINS 62 0424 2042 0 0.019
REACTOME_VIF_MEDIATED_DEGRADATION_OF_APOBEC3G 47 0441 198 0 0.025
REACTOME_ACTIVATION_OF_NF_KAPPAB_IN_B_CELLS 59 0.393 1978 0 0.023
REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMIL 47 0448 1927 0 0.035
REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE 73 0401 1913 0 0.036
KEGG_PROTEASOME 44 0.388 1903 0 0.043
REACTOME_CDK_MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF_CDC6 45 044 1897 0 0.044
REACTOME_ER_PHAGOSOME_PATHWAY 51 0436 1.896 0 0.041
REACTOME_ORC1_REMOVAL_FROM_CHROMATIN 64 039 1845 0 0.062
REACTOME_P53_INDEPENDENT_G1_S_DNA_DAMAGE_CHECKPOINT 47 0.395 1844 0 0.061
REACTOME_INTERFERON_SIGNALING 115 0435 181 0 0.077
REACTOME_AUTODEGRADATION_OF_THE_E3_UBIQUITIN_LIGASE_COP1 45 0393 1.806 0 0072
REACTOME_SCFSKP2_MEDIATED_DEGRADATION_OF_P27_P21 50 0.345 1.787 0 0.09
REACTOME_P53_DEPENDENT_G1_DNA_DAMAGE_RESPONSE 51 0331 1777 0 0.091
REACTOME_INTERFERON_GAMMA_SIGNALING 40 0.541 1.767 0 0.094
REACTOME_PROLACTIN_RECEPTOR_SIGNALING 10 0,698 1762 0 01

Supplementary figure 2. Rank-based gene set enrichment test (GSEA) of ANXA2 knockout transcriptome
against 2,145 canonical pathways and gene ontology terms. The test identified 16 terms having FDR g-val <0.1.
Enrichment scores (ES, and normalized - NES) indicate that each of these 16 were upregulated in the ANXA2

KO.
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Supplementary figure 3. Of the 16 gene sets that were upregulated in the ANXA2 KO, 13 of these showed
considerable overlap of genes. These 13 are circled in the enrichment map here (upper panel). 37 genes were
shared by these 13 and all encode proteasome components (indicated by first arrow). 5 of these proteasomal
genes were present in the leading edges (the leading edge is the part of the gene set distribution that drives its
enrichment) of 12 of the 13 gene sets, indicating that just these 5 genes are responsible for the enrichment of all
13 of the proteasome-related gene sets. Other proteasome-related genes are not dysregulated, instead being
distributed in the centre when the transcriptomic profile is ranked by fold-change (lower panel: black bars
indicate positions of individual proteasome genes within the transcriptome profile; green graph line indicates
derivation of enrichment score).
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Dysferlin-deficient: GSE2629
DISTAL (tibialis anterior)

Gene Set Size ES NES NOM p-val FDR g-val -
UPIN39B_MOUSE_QUAD_DYSF_V_CTL 86 0,578 1881 0 0,048
UPIN39A_MOUSE_QUAD_DYSF_V_CTL 86 0,562 1879 0 0,048
UPIN52_MOUSE_QUAD_DYSF_V_CTL 105 0,545 1,789 0 0,051
UPINS_MOUSE_GASTROC_AND_QUAD_DYSF_V_CTL 63 0,688 1,755 0 0,052
UPIN75A_MOUSE_QUAD_AND_TIBIALIS_ANTERIOR_DYSF_V_CTL_AGE21D 23 0,724 1724 0 0,053
UPIN16_HUMAN_DYSF_V_CTL 34 0,55 1636 0 0,072
DOWNINS2_MOUSE_QUAD_DVSF_V_CTL 116 0,384 141 0 0,48
DOWNINS_MOUSE_GASTROC_AND_QUAD_DYSF_V_CTL 81 -0,436 -1,358 0 0,496
DOWNIN33A_MOUSE_QUAD_DYSF_V_CTL 39 -0,36 -1,141 0,315 0,694
DOWNIN39B_MOUSE_QUAD_DYSF_V_CTL 52 -0,338 -1,096 0317 0,782
DOWNIN75SA_MOUSE_QUAD_AND_TIBIALIS_ANTERIOR DYSF_V_CTL_AGE21D 9 0,712 -1,746 0 1
PROXIMAL (quadriceps femoris)

Gene Set Size ES NES NOM p-val FDRg-val =
UPIN52_MOUSE_QUAD_DYSF_V_CTL 105 0,545 1,819 0 0,045
UPIN39A_MOUSE_QUAD_DYSF_V_CTL 86 0,562 1,898 0 0,045
UPIN39B_MOUSE_QUAD_DYSF_V_CTL 86 0,578 1,909 1] 0,045
UPIN7SA_MOUSE_QUAD_AND_TIBIALIS_ANTERIOR_DYSF_V_CTL_AGE21D 3 0724 1,749 0 0,048
UPINB_MOUSE_GASTROC_AND_QUAD_DYSF_V CTL 63 0,688 1,76 0 0,048
UPIN16_HUMAN_DYSF_V_CTL 34 0,55 1,606 0 0072
DOWNINS_MOUSE_GASTROC_AND_QUAD_DYSF_V_CTL 81 -0,436 -1,367 0 0,515
DOWNIN52_MOUSE_QUAD_DYSF_V_CTL 116 -0,384 -1421 0 0,59
DOWNIN39A_MOUSE_QUAD_DYSF V_CTL 39 -0,36 -113 0335 071
DOWNIN39B_MOUSE_QUAD_DYSF_V_CTL 52 -0338 -1,083 0,355 0,755
DOWNINTSA_MOUSE_QUAD_AND_TIBIALIS_ANTERIOR_DYSF_V_CTL_AGE21D 9 0,712 -1,721 0 1
Dysferlin-deficient: GSE2507
Cardiac (left ventricle)

Gene Set Size ES NES NOM p-val FDRg-val =
DOWNINS2_MOUSE_QUAD_DYSF_V_CTL 116 -05 -1,806 0,023
DOWNIN39A_MOUSE_QUAD_DVSF_V_CTL 39 -0,486 -1,683 0 0,039
DOWNIN39B_MOUSE_QUAD_DYSF_V_CTL 52 -0475 -1,668 0 0,044
DOWNINTSA_MOUSE_QUAD_AND_TIBIALIS_ANTERIOR_DYSF_V_CTL_AGE21D 9 -0,626 -1641 0,004 0,052
UPIN16_HUMAN_DYSF_V_CTL 34 -0415 -1,308 0,04 0,332
UPIN52_MOUSE_QUAD_DYSF_V_CTL 105 0,288 1223 015 0,701
UPIN39A_MOUSE_QUAD_DYSF_V_CTL 86 0,407 1374 0,064 0,751
UPIN39B_MOUSE_QUAD_DYSF_V_CTL 86 0,422 1413 0,032 0,773
DOWNINS_MOUSE_GASTROC_AND_QUAD_DYSF_V_CTL 81 0,252 0,901 0,626 0,818
UPINS_MOUSE_GASTROC_AND_QUAD_DYSF_V_CTL 63 0,289 087 06 0,834
UPIN75A_MOUSE_QUAD_AND_TIBIALIS_ANTERIOR_DYSF_V_CTL_AGE21D 23 0,181 0,489 098 0,993
Skeletal (quadriceps)

Gene Set Size ES NES INOM p-val FDRg-val =
UPIN39A_MOUSE_QUAD_DYSF_V_CTL 86 0,715 1878 0 0,031
DOWNIN33A_MOUSE_QUAD_DYSF_V_CTL 39 0,674 1,774 [ 0,047
DOWNIN3I9B_MOUSE_QUAD_DYSF_V_CTL 52 -0,689 -1,852 [} 0,049
UPIN39B_MOUSE_QUAD_DYSF_V_CTL 86 0,69 1,807 0 0,064
UPINS_MOUSE_GASTROC_AND_QUAD_DYSF_V_CTL 63 074 1,746 0 0,083
DOWNIN52_MOUSE_QUAD_DYSF_V_CTL 116 -0,446 -1,533 0 0,166
UPIN52_MOUSE_QUAD_DYSF_V_CTL 105 0,586 1554 0,017 0,187
DOWNINS_MOUSE_GASTROC_AND_QUAD_DYSF_V_CTL 81 -0,448 -1,516 0,015 0,189
UPIN16_HUMAN_DYSF_V_CTL 34 0,468 1,244 0217 0,408
UPIN75A_MOUSE_QUAD_AND_TIBIALIS_ANTERIOR_DYSF_V_CTL_AGE21D 23 0,495 122 0,196 0,435
DOWNIN75SA_MOUSE_QUAD_AND_TIBIALIS_ANTERIOR_DYSF_V_CTL_AGE21D 9 0451 1,004 0488 0,608
Dysferlin-deficient: GSE2112
Hindlimb muscle

Gene Set Size s | MNEs | NOMp-wsl FORgval =
UPINS2_MOUSE_QUAD_DYSF_V_CTL 122 0,863 4914 0 0
DOWNIN52_MOUSE_QUAD_DYSF_V_CTL 126 -0,826 -7.146 0 0
UPIN329A_MOUSE_QUAD_DYSF_V_CTL 15 0,672 2322 [ 0,001
UPIN29B_MOUSE_QUAD_DYSF_V_CTL 15 0,674 2,208 L] 0,001
UPINS_MOUSE_GASTROC_AND_QUAD_DYSF_V_CTL 1 0,704 2193 0 0,003
DOWNIN39B_MOUSE_QUAD_DYSF_V_CTL a9 -0,675 -2,301 L] 0,004
DOWNIN39A_MOUSE_QUAD_DYSF_V_CTL 8 -0,669 -2,203 0 0,006
ANXA2 KO

Gene Set | sze | ES NES | NOMp-val = | FDRg-val |
DOWNIN52_MOUSE_QUAD_DYSF_V_CTL 139 -0.227 -1.201 0.237 1
DOWNIN39B_MOUSE_QUAD_DYSF_V_CTL 2 0263 1148 0.242 1
UPIN52_MOUSE_QUAD_DYSF_V_CTL 134 0336 0983 0407 0.974
UPIN16_HUMAN_DYSF_V_CTL 36 -0.361 -1.033 0.411 1
DOWNINTSA_MOUSE_QUAD_AND_TIBIALIS_ANTERIOR_DYSF_V_CTL_AGE21D 15 -0.532 -1.038 0477 1
DOWNINS_MOUSE_GASTROC_AND_QUAD_DYSF_V_CTL 92 0,265 0983 0492 0966
UPIN39B_MOUSE_QUAD_DYSF_V_CTL 11 0293 -0.952 0.506 1
DOWNINI6_HUMAN_DYSF_V_CTL 13 0.455 0928 0.593 0.839
DOWNIN39A_MOUSE_QUAD_DYSF_V_CTL 54 0.213 0.844 0.621 079
UPINB_MOUSE_GASTROC_AND_QUAD_DYSF_V_CTL 64 0.254 0,685 0.752 0.892
UPIN39A_MOUSE_QUAD_DYSF_V_CTL 107 -0.259 -0.849 0.767 0.943
UPIN7SA_MOUSE_QUAD_AND_TIBIALIS_ANTERIOR_DYSF_V_CTL_AGE21D 2% 0.3% 0728 0.784 0.846

Supplementary figure 4. Results of rank-based gene set enrichment (GSEA) for ANXA2 KO transcriptome and
for recent murine dysferlin-deficient muscle transcriptomes against gene sets derived from older (pre-2005)
dysferlin-related datasets of the muscle gene sets v1 (http:/sys-myo.rhcloud.com/muscle_gene_sets.php).
Dysferlin-deficient studies showed strong overlap with previous dysferlin-deficient data: genes that were up-
regulated in older studies had positive (i.e. upregulated) enrichment scores (ES) in these three more recent
studies, whereas genes that were down-regulated previously had negative enrichment scores. FDR g-values were
usually <0.1, except for the ANXA2 data which showed no overlap with any of the dysferlin-deficient datasets.
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ABSTRACT

Given a query list of genes or proteins, CellWhere
produces an interactive graphical display that mim-
ics the structure of a cell, showing the local in-
teraction network organized into subcellular loca-
tions. This user-friendly tool helps in the formula-
tion of mechanistic hypotheses by enabling the ex-
perimental biologist to explore simultaneously two
elements of functional context: (i) protein subcellu-
lar localization and (ii) protein—protein interactions
or gene functional associations. Subcellular local-
ization terms are obtained from public sources (the
Gene Ontology and UniProt—together containing
several thousand such terms) then mapped onto a
smaller number of CellWhere localizations. These
localizations include all major cell compartments,
but the user may modify the mapping as desired.
Protein—protein interaction listings, and their associ-
ated evidence strength scores, are obtained from the
Mentha interactome server, or power-users may up-
load a pre-made network produced using some other
interactomics tool. The Cytoscape.js JavaScript li-
brary is used in producing the graphical display. Im-
portantly, for a protein that has been observed at
multiple subcellular locations, users may prioritize
the visual display of locations that are of special
relevance to their research domain. CellWhere is at
http://cellwhere-myology.rhcloud.com.

INTRODUCTION

In the analysis of omics data, a researcher is often con-
fronted with a short list of genes and, by extension, their
encoded proteins. This list may simply contain differentially
expressed genes from a single experimental comparison, or

it may result from some secondary analysis, such as func-
tional enrichment using a tool such as DAVID (1), lead-
ing edge analysis of Gene Set enrichments (2), clustering of
transcripts based on the correlation of their expression pro-
files (3) or network clustering based on gene functional as-
sociations (4,5). More generally, based on specialist knowl-
edge, genes/proteins may be listed based on their special in-
terest to a particular research project. In any case, to inter-
pret such a list and to formulate mechanistic hypotheses,
it is useful to explore previously published data concerning
two areas of functional context: (1) subcellular locations at
which the proteins have been reported and (ii) interactions
between proteins, both within the list and with other pro-
teins outside the list. These two types of data are now avail-
able from various public sources, but a tool to combine them
in an informative and user-friendly way has not existed in
the public domain.

Subcellular localization

Owing to the annotation efforts of model organism
databases, high-quality subcellular localization information
for the proteins of many organisms can be obtained from
two carefully curated sources: UniProt (6) and the Gene
Ontology (GO) (7). UniProt stores this information in its
‘Subcellular location’ field for each protein, while GO an-
notates proteins to the Cellular Component branch of its
ontology. In both annotation systems, terms may vary from
low specificity (e.g. ‘Membrane’) to higher specificity (e.g.
‘Gap junction’), and a given protein may be annotated to
multiple terms. As of writing, some 1283 terms are in use
by UniProt, and 3812 by GO. Terms are fewer in UniProt
because they are applied conservatively: in general only
the more classically recognized location(s) of a given pro-
tein are noted, whereas GO is structured toward a system-
atic listing of all of the known (published) locations of a
protein, even those that are rarely observed. For example,
the protein Dystrophin is most studied at the membrane
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of muscle cells and its Uniprot Subcellular location is re-
stricted to this location. However, GO lists several related
and sometimes more specific Cellular Components includ-
ing the ‘dystrophin-associated glycoprotein complex” and ‘Z
disc’, but also ‘Filopodium’ which has been reported not in
muscle cells but in platelets. Thus, the UniProt subcellular
location field is useful to obtain the ‘classically” described
location(s) of a protein, whereas GO can suggest locations
that are of special interest to a specific research area.

Protein—protein interactions and gene functional associations

Interaction networks are usually based on empirical data
from direct physical protein—protein binding assays (such
as co-immunoprecipitation or yeast 2-hybrid experiments)
and/or from indirect ‘functional associations’ such as gene
co-expression or genetic interactions, but may also incorpo-
rate derived knowledge of signaling pathways. Various user-
friendly interactome exploration tools are easily accessible
to the bench researcher (a few examples include: NetGestalt
(5), GeneMANIA (4), PathwayLinker (8), STRING (9), In-
tAct (10) and Mentha (11)). These tools vary in the types of
experimental data that they include. For example, IntAct
consists of curated listings of direct protein—protein inter-
actions (PPIs) or colocalizations conforming to the MIMIx
standard (for the minimum information required for report-
ing a molecular interaction experiment (12)), whereas Gen-
eMANIA includes multiple functional association types
from a large set of selected publications. Tools may com-
bine data from stringent curation of individual experiments
but also from text-mining and predictive approaches. Men-
tha is one of the more stringent: similarly to IntAct, it limits
itself to direct physical PPIs curated by members of the In-
ternational Molecular Exchange consortium (IMEx; (13)).
It is also unique in having both a powerful interface for pro-
grammatic access and a simple scoring function that allows
query cut-offs based on the strength of the interaction evi-
dence. Each of these interactomics tools may serve different
purposes and in CellWhere we make direct use of Mentha
to build PPI networks from query lists, but we also facilitate
(via Cytoscape 3 (14,15)) the import of networks created us-
ing other tools.

RATIONALE

The purpose of CellWhere is to enable bench researchers
to quickly explore the reported subcellular locations of a
list of genes/proteins, and to put these subcellular loca-
tions into the context of previously identified physical in-
teractions that could be occurring between them and other
genes/proteins within the cell. As such, CellWhere was cre-
ated with three goals in mind:

(i) To aid in the formulation of mechanistic hypotheses by
showing where proteins are typically described to lo-
cate in the cell and what their most strongly evidenced
interactions are.

(i1) To act as a screening tool to show whether proteins and
their interactors could be at selected locations of spe-
cial interest.

132

(i) To add subcellular location information to gene asso-
ciation networks that have been created using other
tools.

METHODS: NETWORK GENERATION, PROTEIN LO-
CALIZATION AND GRAPH ORGANIZATION

UniProt compiles a downloadable data file that includes
both UniProt and GO localizations for all manually an-
notated (i.e. Swiss-Prot) and non-redundant protein se-
quences. Mentha maintains a file listing protein interac-
tions. CellWhere downloads these files automatically within
24 h of each UniProt or Mentha update. Identifiers, local-
izations and interactions are then parsed and organized to-
gether with mapping information in a relational database.
A CellWhere query begins by first mapping submitted gene
symbols or other identifiers to the Swiss-Prot accession of
the corresponding protein.

Mentha data are queried to obtain (i) evidence scores for
interactions between proteins of the query list and (ii) pro-
teins that interact with the query list, selected based on the
strength of the evidence score. In this way a network is cre-
ated and grown, up to a maximum size set by the user. Cer-
tain proteins (for example, Ubiquitins and heat shock pro-
teins) form a great many interactions due to general func-
tions that are unlikely to be pertinent to a specific mecha-
nistic pathway. To filter out such ‘promiscuous interactors’,
CellWhere pre-processes the Mentha data, making interac-
tion counts for every protein. By default, when adding in-
teractors, CellWhere ignores proteins that bind more than
100 partners. This corresponds to 1271 (1.6%) of the 81 919
proteins currently documented by Mentha. The user may
adjust this cut-off as desired.

The UniProt accessions of the network are mapped to
localization terms from UniProt and/or GO. These terms
are then mapped to CellWhere’s own localizations. This
is achieved by means of a manually created mapping file,
which maps UniProt/GO terms to 50 CellWhere localiza-
tions. These 50 localizations include all major cell compart-
ments, and 50 is a sufficiently small number that the out-
put visual display does not become overly crowded by dif-
ferent localizations. However, if desired the user may mod-
ify the mapping file to add more CellWhere localizations.
CellWhere currently maps all Uniprot and GO localization
terms that have been applied to more than 25 proteins. This
covers more than 99% of all protein localization annota-
tions (1 258 337 out of a total of 1 269 645) and includes
the most frequently used 1013 of the 3812 terms that com-
prise the GO Cellular Component namespace, and 422 of
the 1283 terms parsed from the Uniprot Subcellular loca-
tion field. The user may modify these mappings, including
to add mappings for the rarely used terms.

An example localization procedure is shown in Table 1.
For a given query gene or protein, all of its retrieved lo-
calization terms and their mappings to CellWhere localiza-
tions can be downloaded from CellWhere in tabular format,
but for proteins with multiple CellWhere locations only se-
lected locations are chosen at which to display the protein
in CellWhere’s interactive graph display. The user has two
options regarding how these locations are chosen: a generic
option, in which the most frequently annotated locations



are selected, and a prioritization option, in which a location
is selected based on its user-specified score (which the user
may set. for example, in accordance with the relevance of
the location to their research project). Table 1 shows several
examples, indicating (by the red coloring) which CellWhere
location would be selected using either of the two options.
Selection using the generic option is according to the “fre-
quency’ column, whereas selection by the prioritization op-
tion is according to the score set in a user-defined ‘flavor’
(in this example, we set priority scores according to the lo-
cation’s relevance to muscle physiology, the ‘Muscle flavor
priority’). Using the Generic option would place RRAD,
EMILIN2 and ACTCI, primarily at the Membrane, ECM
and Cytoplasm, respectively. Whereas, using the muscle pri-
oritization flavor, ACTCI would be placed into the “Focal
adhesion’ location, because the muscle flavor sets a high pri-
ority score on this location, due to its being of special inter-
est to muscle research. The user may choose whether the
graph will show only the most frequently annotated loca-
tion or also show duplicate nodes at alternative locations.

Several pre-made flavors for prioritization scoring are
provided, but the user can customize their own flavor by
creating and uploading a new mapping file. Instructions to
do this are given in drop-down information on CellWhere’s
front page, and in the User Guide section. As described on
the site, users are encouraged to email their flavors to us to
be included on the drop-down list available as a pre-made
option to all users.

After localizations have been obtained, automated spa-
tial organization of the graph is then achieved using a lim-
ited vocabulary that was created to tell CellWhere how
to place locations relative to the boundaries of the cell.
This vocabulary includes terms such as ‘IN Cytoplasm’,
‘UNDER Membrane” and ‘ACROSS Membrane” and is
explained in more detail in the user guide. Spatial rela-
tion mappings are provided, but may also be set by the
user. The Cytoscape.js JavaScript library (http://cytoscape.
github.io/cytoscape.js/) is used to produce the graphical dis-
play in an html format that is readable by all common
web browsers. Cytoscape.js was chosen over other graph-
ing platforms—such as Cytoscape Web (16), D3 (http://d3js.
org/) or sigmajs (http://sigmajs.org/)—in large part because
of its built-in support for compound nodes (used by Cell-
Where to group proteins into their localizations), but also
its shared philosophy with the Cytoscape desktop applica-
tion.

RESULTS: VISUAL DISPLAY AND INTERFACE

The user can submit a list of query IDs—several identi-
fier types are supported—or upload a pre-made network
(in xgmml! format from Cytoscape 3) and has the option
to retrieve localizations from UniProt, GO or both. Local-
izations may be prioritized based on their annotation fre-
quency (‘generic’) or by priority scores (a user-created ‘fla-
vor’, or one of those already provided). If the option to add
Mentha interactions and interactors is selected, then the
maximum size of the network can be selected. If a pre-made
network is uploaded, then a parameter (e.g. ‘fold-change’)
may be used on which to color the nodes of the network.
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Example output is shown in Figure I. The localized net-
work is graphed to resemble a physical map of the cell, plac-
ing proteins in a way that can help to hypothesize and in-
terpret mechanistic links between genes or proteins of in-
terest. Edges connecting the nodes are thicker when the
Mentha evidence to support the interaction is stronger. The
graph is interactive: edges can be selected to list Mentha ev-
idence, and links are provided to supporting publications in
PubMed: protein nodes link to their UniProt page; nodes
and localization groupings can be moved around by the
user.

The output may be downloaded in html format for shar-
ing. or as a network for more advanced manipulation in the
Cytoscape 3 desktop application (or any other tool capable
of importing xgmml format). For each query, a complete
unfiltered list of retrieved localizations and their CellWhere
location mappings can be downloaded.

As well as the user-friendly interface, there is also an API
for programmatic access using the http POST method. This
is explained in detail, listing input fields and example code,
in the developer guide section of the help menu.

RESULTS: COMPARISON WITH RELATED TOOLS

A general-purpose network manipulation and analysis tool
such as Cytoscape can facilitate the integration and visual-
ization of many types of information, including to group or
color nodes according to subcellular localizations, but lo-
calization information must first be obtained and summa-
rized. Further work is then required if the user desires to
organize the graphical layout based on these localizations,
such that the network resembles a schematic of the cell.
Besides Cytoscape, there are several popular free-to-access
tools that are focused on biological network analysis and/or
visualization (some of which are listed above), but these
tools generally lack the automatic integration of subcellular
localization information. However, the localization-related
functionalities of CellWhere have limited overlap with two
existing pieces of software, one publicly available (Cerebral
viewer (17)) and the other commercial (Ingenuity IPA (QI-
AGEN Redwood City, www.giagen.com/ingenuity)).

Cerebral viewer is a plug-in currently only available for
the older version 2.8 of the Cytoscape desktop application.
It facilitates a stratified graph layout based on localizations,
but does not provide localization or interaction informa-
tion, which must be provided by the user (discussed further
in Supplementary note SI).

Ingenuity IPA is a data integration and exploration tool
for omics data analysis, Provided as part of its network-
based clustering approach is a graph output in which genes
are positioned into stratified localizations. IPA identifies
interactions and localizations using a proprietary knowl-
edgebase derived from Ingenuity’s in-house literature cura-
tion. To highlight the similarities and differences between
IPA and CellWhere, we re-analyzed in CellWhere a previ-
ously published (18) network that was produced using IPA
(Supplementary note S1). A notable difference was that.
whereas the IPA-generated network is limited to primary
compartments (nucleus, cytoplasm, membrane, extracellu-
lar), CellWhere can display and automatically position nu-
merous sub-compartments. If we ignore sub-compartments
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Table 1. In this example of CellWhere’s localization procedure, three query IDs are submitted

INPUT RETRIEVAL OUTPUT
Query ID |Uniprot MX:I “:M” Localization term Description CellWhere locall F L %
GO GO:0005886 plasma membrane
RRAD P55042 UniProt Cell membrane Cell membrane Membrane 100% 2500
GO G0:0016020 membrane
GO G0:0031012 extracellular matrix
GO GO:0005578 proteinaceous extracellular matrix
UniProt extracellular matrix extracellular matrix Bxeacallata matri
EMILIN2 Q9BXX0 GO G0:0005581 collagen
GO GO:0005576 extracellular region
UniProt Secreted Secreted Extracellular
UniProt extracellular space extracellular space
GO G0:0005925 focal adhesion Focal adhesi 8%
GO G0:0031674 Iband
Go 60:0030017 sarcomere Sucomere e
GO GC actin fil t Actin cytoskel 8%
GO G0:0070062 i It 8%
GO G0:0005615 | space E llul 8%
P68032
Acrcl GO G0:0016020 membrane Membrane 8%
GO GO:0005856 cytoskeleton
GO GO:0005737 cytoplasm
GO G0:0005829 cytosol Cytoplasm 2000
UniProt cytoskeleton cytoskeleton
UniProt Cytoplasm Cytoplasm

Localizations are retrieved for their corresponding UniProt (Swiss-Prot) accessions and mapped to CellWhere localizations. For each query protein a
single CellWhere localization is selected for display on the network graph. Selection may be ‘generic’—based on annotation frequency—or by localization
‘flavor’—based on priority scores (provided or set by the user) to select localizations that are of special interest to a particular research domain (in the
example, muscle research is chosen).

Figure 1. Screenshot of an interactive graph generated by submitting CellWhere’s pre-loaded example query. Proteins can be placed into their classically
reported locations or, as in this example, the user can prioritize locations that are of special interest to their research area (in this case, muscle; DGC =
Dystroglycan complex—a complex of glycoproteins that interact with Dystrophin, located at the muscle cell membrane).
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and compare the tools’ placements of proteins into just the
four primary compartments and use CellWhere’s “generic’
localization option, then the placement outputs were sim-
ilar (87% of proteins were placed into the same compart-
ment). Where differences arose, it was usually among pro-
teins that were annotated to multiple locations by UniProt
and GO, usually with clear biological basis: for example,
heat shock factor protein 2 (HSF2) is cytoplasmic (where it
was placed by CellWhere) during normal growth and moves
to the nucleus (where it was placed by IPA) upon activation
(more examples are given in Supplementary note S1).

Thus CellWhere showed strong agreement of generic lo-
calizations with the IPA-generated network, but it provides
a more deeply resolved representation of protein subloca-
tions within the cell, and in addition it provides the facility
to highlight rare localizations according to the user’s inter-
ests.

CONCLUSION

Tools such as Cerebral viewer and Ingenuity IPA have
shown that it can be informative and useful to integrate a
summary of subcellular localization into an interaction net-
work. Integrated displays can help to suggest mechanistic
links between parts of the network. CellWhere is the first
free-to-access public tool to summarize subcellular local-
izations and integrate this information with the local inter-
actome. CellWhere can be used to visually structure a net-
work based on the classically known locations of proteins.
Notably, it can also be used as a screening tool to identify
proteins (and their interactors) that may be present at lo-
cations of special interest to a specific research project or
domain.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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CellWhere: user-friendly graphical display of gene association networks organized on subcellular localizations

Supplementary note S1: comparison with other tools

Cerebral

In the public domain, Cerebral viewer® (a plug-in currently only available for the older version 2.8 of the Cytoscape desktop application) facilitates a
stratified layout based on localizations, and can place genes into further groupings that are automatically displayed below the stratifications. An example is
shown below where we took a gene network that we had generated previously, and used an early version of the CellWhere localization process to allocate
genes into stratifications and groupings that were then displayed using Cerebral. This layout, in which relatively specific localizations are grouped and placed
within (less specific) stratified localizations, is not exactly what Cerebral was designed for, and requires some manual repositioning of the nodes within
Cytoscape: in particular, the grouped localizations must be moved up from their automatic positioning underneath the stratified localizations — they are not
automatically positioned, unlike in CellWhere’s graphical display, which is supported by CellWhere’s spatial location vocabulary. More importantly, in
regards to comparison with CellWhere, Cerebral does not provide localization or interaction information (these must be added by the user), and although
displays such as the one below are possible, they are not trivial to obtain, requiring some investment of time and an understanding of Cytoscape 2.8.
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It is worth noting that Cerebral was originally developed in conjunction with the InnateDB?, a knowledgebase and tool for systems level analysis of the
innate immune response. InnateDB itself can provide interactions and basic localization attributes, and an automated link out function to display these
attributes using various visualization tools, one of which is Cerebral. However, these attributes are defined by InnateDB only within the scope of the innate
immune response.

Ingenuity IPA

The commercial software, Ingenuity IPA (QIAGEN Redwood City, www.giagen.com/ingenuity), a data integration and exploration tool for omics data
analysis, provides as part of its network-based clustering approach, a graph output in which genes are positioned into stratified localizations. IPA identifies
interactions and localizations using a proprietary knowledgebase derived from Ingenuity’s in-house literature curation. It is important to note that the
comparison described here pertains only to the example given of a previously published network that was generated using specific features of Ingenuity IPA
and does not relate to the multitude of other components of this powerful commercial tool.

The image shown below is adapted from Nghiem et al. (2013)°. It was produced using Ingenuity IPA, and represents a protein network organized according
to subcellular locations (orange divisions are overlaid by us for clarity, and we have labelled the region containing non-localized proteins as ‘unknown’). This
network was strongly affected at the transcriptional level in their study of a specific muscular hypertrophy caused by deficiency of the dystrophin protein in
a canine model, and they found this network of special interest because two of its genes, DAG1 and LARGE, are implicated in the dystrophin-associated
glycoprotein complex.
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We queried the genes of this network to obtain a CellWhere graph, as shown below. IPA grouped certain proteins into complexes (e.g. the NFkB complex),
which CellWhere did not — in these cases, we included only one or two major proteins of the complex (e.g. NFKB1). In this query, localization terms were
obtained from UniProt alone (GO terms were not retrieved), and the generic prioritization method was used. A key difference in the two displays is the
greater resolution of localizations used by CellWhere, which can give the user more specific information about the locations of proteins of interest.

We then compared the placement of nodes into primary localizations by CellWhere and IPA for this same network (i.e. we compared which nodes were
placed into the nucleus, cytoplasm, membrane, and extracellular locations). Nodes marked in green below were in agreement between the two graphs,
whereas those in red were placed differently. Agreement between the tools was strong (87% - 27 of 31 nodes were similarly placed). When proteins were
placed differently, the UniProt localization field usually included both the location used by IPA and at least one other location, and the annotation
frequencies had caused CellWhere to select one of these other localizations for placement in the graphical display. These multiple locations usually had a
clear biological basis:
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e CAMK2D is located on the membrane at the cytoplasmic (IPA) side, and it’s function is to regulate Ca+ channels at the membrane (CellWhere)
e ZDHHC?7 is localized by UniProt to both the membrane (CellWhere) and the golgi (cytoplasm: IPA)

* HSF2 is cytoplasmic (CellWhere) during normal growth and moves to the nucleus upon activation (IPA)

e ITCH is localized by UniProt to the membrane (CellWhere), cytoplasm, and nucleus (IPA)
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The same query, but this time using the muscle priority flavor and including localizations from both UniProt and GO, generates the CellWhere graph below.
This approach highlights muscle-relevant locations — for example, a researcher using CellWhere would not be dependent on specialist knowledge to be
reminded that the DAG1 protein can localize to the Dystrophin-associated complex. Similarly, the researcher would quickly observe that certain proteins of
this network may locate to focal adhesion or to the sarcoplasmic reticulum, locations that are important in muscle cell function. Due to the inclusion of
rarely reported localizations into the Gene Ontology, a large number of potential muscle-relevant locations are identified, such as HOMER1 at the
Costamere, and CLIP2 at the microtubule cytoskeleton. This highlights the usefulness of combining GO localizations with a priority flavor, as this approach
provides a quick method of screening a gene list or network for locations of special interest to a specific research area.
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With this approach, due to the inclusion of rare locations from the Gene Ontology combined with the use of the priority flavor, the agreement between IPA
and CellWhere for placement into primary locations is reduced to 48% of nodes.
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Chapter 3 — Discussion

In this thesis we developed two muscle-specific bioinformatics tools, CellWhere
and Myominer, which will help myologists and other researchers in the analysis and
interpretation of various tissue-, cell- or pathology-specific elements of gene expression,
regulation, function and protein localizations and interactions. We also accumulated
and analyzed a substantial proportion of all publicly available muscle-related microarray

data that could also be used in further tools or studies.
3.1 CellWhere tool

With CellWhere users can input a list of genes and discover protein localization
from Uniprot, GO or both. The localizations can be prioritized on their annotation
frequency or by premade priority scores (flavors): muscle, secretory and mitochondria.
Custom-made priority flavours are also supported, allowing researchers to adapt
CellWhere to their field of interest. The interactive network resembles the cell and
proteins (nodes) placed on appropriate compartments. Edge-thickness depicts the
interaction score and can be clicked to reveal its value alongside the relevant
publications that it is derived from (evidence). Nodes and intermediate subcellular
compartments are interactive and can be moved to different locations in order to create
a visually clear network for publication or sharing. CellWhere automatically retrieves the
non-redundant manually-annotated compressed version of Uniprot (Swiss-Prot)
automatically within 24 hours of its monthly release. The same automated process is
used weekly to acquire protein interactions and scores from the Mentha interactome
browser (Calderone, Castagnoli et al. 2013). Identifiers, UniProt/GO localizations and
interactions are parsed and stored in a relational database. The UniProt and GO
localizations are collapsed to 50 CellWhere localizations which include all major cell
compartments. Proteins that form many non-pathway-specific interactions (e.g.

ubiquitins), are removed them from the final output, using a filter. By default the filter
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removes proteins that bind more than 100 partners, corresponding to 1.6% of the total
number of proteins. All data are stored on the Openshift cloud in two separate virtual
machines: one used for update, raw compressed data parsing and analysis and the
second for data storage and the web interface. CellWhere summarizes subcellular
localizations and local interactions quickly and accurately while visualizing them on an
interactive network.

CellWhere has already been cited by several researchers who have used it to
map proteins to subcellular localizations (He, Vanlandewijck et al. 2016; Simon,
Murchison et al. 2017). It was also used for the representation of the most common
cellular compartments of the dystrophin interactome project (https://sys-
myo.rhcloud.com/dystrophin-interactome/index.html) (Thorley 2016).

After the completion of CellWhere, we accumulated the majority of published
muscle pertinent raw transcriptomic microarray data. After researching preprocessing,
quality control and analysis options, we configured an analysis pipeline for combinatory
studies and a pipeline for differential expression analyses. The collected microarray data
were already used for two studies (see Appendix) and for the creation of a muscle

specific co-expression tool, MyoMiner.

3.2 MyoMiner database

Since the dramatic expansion and accumulation of gene expression data, pooled
data analyses, such as co-expression or meta-analyses, could provide a better
understanding of biological systems. In co-expression analyses, if gene expression levels
are calculated on combined data from multiple experiments, higher statistical power
can be achieved and interesting conclusions about multiple conditions can be drawn.
Also the difference in co-expression between conditions can reveal potential gene
regulators. The idea behind co-expression analyses is to determine gene function as
genes that are correlated, in multiple samples, are likely to be involved in similar
functions (guilt by association). As with other omics approaches, co-expression can be

used to generate hypotheses for gene function and regulation.
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In order to ensure high quality of the resulting databses, a large part of this
thesis involved the curation and meticulous analysis, either with custom-written
programmatic scripts or manually, of the collected muscle microarray data. Thus, we
tested the available high-throughput quality controls, pre-processing and downstream
analysis methods, ranging from the initial ones introduced in the 90s to the newest.
Moreover, we sought to gather any missing information from the metadata. We
crosschecked the entries from the original publications, supplementary data or by
communicating with the corresponding authors. Since we had a large collection of
samples we also used algorithms or other databases to predict some of the missing
values. For example, because half of our samples had their gender missing, we mapped
the genes from each sample to their corresponding chromosomes and then classified
the samples by gender, based on Y chromosome gene expression. This method had
more than 98% accuracy and we were even able to detect and correct 21 samples that
were present on the GEO and AE repositories (see MyoMiner “Data statistics” section
and table S5). We sent our findings to GEO and AE curators and most of them have been
corrected.

For MyoMiner we selected the microarray platforms from GEO and AE that are
linked to the largest number of experiments for humans and mice. We processed the
raw data using various methods which are now streamlined for easier insertion of new
transcriptomic data in MyoMiner.

We also built a simple and easy-to-use web interface to search for the
transcriptional co-expression of any expressed gene pair in muscle cells and tissues in
various conditions. So far we have included 142 human and mouse categories based on
age, gender, anatomic part and condition. Users select category and gene of interest
and MyoMiner returns all expressed correlated gene-pairs with their r and adjusted p
value. Follow up tools are included to narrow down the list of genes that may be
functionally associated with initial gene, such as a standardized expression level
scatterplot, a network creation tool and a comparison tool to search for differentially

co-expressed genes. The calculated co-expression data are stored in the Okeanos and
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Openshift clouds. These co-expression analyses will help muscle researchers to
delineate the tissue-, cell, and pathology-specific elements of muscle protein
interactions, cell signaling and gene regulation. Changes in co-expression between
pathologic and healthy tissue may suggest new disease mechanisms and therapeutic
targets. MyoMiner is a powerful muscle-specific tool for the discovery of genes that are
associated in related functions based on their co-expression.

MyoMiner was used in two analyses regarding dysferlin co-expression in normal
muscle tissue: first to identify genes that are co-expressed with Dysferlin; and secondly
to test how the gene co-expression of dysferlin’s known protein binding partners
changes across different muscle conditions.

In the first analysis, we accumulated the DYSF co-expressed genes with r values
higher than 0.4 in all normal muscle tissues and muscle cells (11 categories) that are
currently present on MyoMiner, in order to obtain an overview across the normal
muscle (the categories are: human quadriceps, rectus abdominis, biceps brachii, heart,
mouse quadriceps, tibialis anterior, gastrocnemius, soleus, heart and two C2C12
myotubes). We kept the genes that are present in at least 6 categories (Table 6). Several
of these genes, including OBSCN, ITGA7, FLNC, and CACNA1S, are related with myo- and
cardiomyopathies. Enrichment analysis of the co-expressed genes on Mouse Genome
Informatics phenotypes returns the following terms: centrally nucleated skeletal muscle
fibers, abnormal skeletal muscle fiber morphology, decreased skeletal muscle mass,
abnormal sarcoplasmic reticulum morphology, myopathy, among others (Figure 16,
left). Enrichment of the same genes on the Reactome pathway database (Fabregat,
Sidiropoulos et al. 2016) outputs membrane trafficking and vesicle-mediated transport

(Figure 16, right)
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MGI phenotype Reactome

MP:0009404 _centrally_nucleated _skeletal_muscle_fibers Membrane Trafficking_Homo sapiens_R-HSA-199991
MP:0000876_Purkinje_cell_degeneration Vesicle-mediated transport_Homo sapiens_R-HSA-5653656
MP:0002279_abnormal_diaphragm_morphology HIV Infection_Homo sapiens_R-HSA-162906
MP:0000751_myopathy Budding and maturation of HIV virion_Homo sapiens_R-HSA-162588
MP:0004088_abnormal_sarcoplasmic_reticulum_maorphology [Infectious disease_Homo sapiens_R-HSA-5663205
MP:0D03081_abnormal_soleus_morphology Gene Expression_Homo sapiens_R-HSA-74160
MP:OO04819_decreased_skeletal_muscle_mass Disease_Homo sapiens_R-HSA-1643685
MPO00B035_abnatmal_mitochondrion_morphology mRNA Splicing - Minor Pathway_Homo sapiens_R-HSA-72165
MP 0003084 _abnormal_skeletal_muscle_fiber_morphology Late Phase of HIV Life Cycle_Homo sapiens_R-HSA-162599

MPOO0O0LS7 _abnormal_sternum_morphology Uptake and function of anthrax toxins_Homo sapiens_R-HSA-5210891

Figure 16 | Enrichment analysis of DYSF consensus co-expressed genes. On the left is
the output of the enrichment analysis from Mouse Genome Informatics database of the
DYSF consensus co-expressed genes. The genes that contribute to muscle related terms
are AFG3L2, SRPK3, OBSCN, ITGA7, FLNC and CACNA1S. On the right is the output from
Reactome pathway database. The genes associated with the first two results,
membrane trafficking and vesicle-mediated transport are: ARFRP1, MYO1C, TBC1D20,
VPS4A, PPP6R3, VVPS37C, AP1B1, KIF1C, SEC24C and AGPAT3.

To understand the relationship of these co-expressed genes to existing
knowledge of Dysferlin interactions, color-coding is used in table 6 to indicate DYSF
interactors that are present in other databases: grey indicates interactors from
PSICQUIC (Aranda, Blankenburg et al. 2011), blue are from (Assadi, Schindler et al. 2008)
using tandem affinity purification mass spectrometry, orange are differentially
expressed proteins from Bla/j mouse quadriceps using liquid chromatography tandem-
mass spectrometry (LC-MC/MC) and green are differentially expressed genes from
microarray studies. However, many of the co-expressed genes have not been

characterized for their possible interaction with DYSF and may be important to

understand the molecular mechanisms underlying dysferlinopathies.

EIF3B (10) PPM1G (7) CYHR1 NSUN2 SON
ITGA7 (10) SEC24C (7) D17WSU92E NUDCD3 SRPK3
DHX16 (8) TSC2 (7) DENND4B OBSCN STAU1
NPLOCA4 (8) UBAC2 (7) DUSP27 PACSIN3 TBC1D20
PPMEL1 (8) USP7 (7) ESYT1 PARP1 TCEB3
TTC7B (8) UTP6 (7) FLII PDCD6IP THUMPD1
ABCF1 (7) VPS37C (7) GYS1 PDCD? TRAK1
ACTRI1B (7) VPS4A (7) HIVEP2 PPP6R3 TTC17
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AGPAT3 (7) AARS ICMT PRPE8 UBE4B
ARFRP1 (7) ABHD12 KIF1C QRICH1 UBQLN4
CD99L2 (7) AFG3L2 KPNB1 RRN3 uspP22
COROG6 (7) AGO2 MAP3K4 RRP12 USP5
EIF4E2 (7) Al464131 MAP4 SAE1l ZDHHC7
FLNC (7) AP1B1 MRPS27 SCAMP2 ZFYVE26
LRRCA47 (7) ATP6V1B2 MYO10 SCAMP3
MAP2K4 (7) CACNA1S MYO1C SEC14L1
NEURL4 (7) CDK16 NOMO1 SF3B3
NXN (7) CIPC NRBP1 SH2B1

Table 6 | Genes highly correlated with DYSF across several normal categories. Nine
normal muscle tissues (human and mouse quadriceps and heart, mouse gastrocnemius,
tibialis anterior, soleus, human biceps brachii, rectus abdominis) and two C2C12
myotube cells categories (3-4 and 5+ days after differentiation) were used to acquire the
above list of co-expressed genes that have r value above 0.4 in at least 6 categories of
the aforementioned categories (the number of categories is next to the gene in case of
more than 6).

In the second analysis, to explore the gene co-expression of dysferlin with its
known protein binding partners across different muscle conditions, we collected and
mapped to gene symbols the dysferlin protein interactions using PSICQUIC view from
EBI (Aranda, Blankenburg et al. 2011). We also concatenated the Spearman correlation r
values of the interactors from different tissues and conditions and clustered them as
shown (Figure 17). We used two C2C12 immortalized muscle cell categories, two muscle
regeneration categories (cardiotoxin and glycerol), six skeletal muscle tissues and the
heart in order to have an overview across muscle tissue and cell and conditions.
Dysferlin gene expression correlates well with known protein binding partners in mouse
and cell samples, but not in human samples. This may suggest that some of what is
known from normal cell and mouse studies, since these are the origin of most protein
binding data, is questionable in the human context and that more human tissue and
cells transcriptomic studies are needed in the dysferlinopathic state. For example,
PARVB is highly correlated on mouse samples and cells and much lower on human. It is
known from previous studies (Cagliani, Magri et al. 2005) that in dysferlinopathic

muscles, ANXA1 and ANXA2 gene and protein expression have an inverse relationship to

DYSF expression, and in these muscle conditions we see this reflected in normal C2C12
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cell samples and also in damaged muscle tissue (cardiotoxin and glycerol), where
Annexin genes are highly anti-correlated with DYSF (Figure 17 top), but not in
undamaged whole muscle. Several of the consistently co-expressed genes are related
with neuromuscular disorders, including filamin C (FLNC) an actin-cross-linking protein,
caveolin 3 (CAV3), desmin (DES), ring finger protein 10 (RNF10) and kinesin family
member 1B (KIF1B).
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Organism Organism

002 | -0.19 | -0.03 —0.14 | -0.04 -012 | ANXA1 Cells
0.33 0.05 0.16 046 | 007 | -0.36 | -0.05 | ANXA2 Human
0.10 | -0.13 | -0.03 -0.12 | 0.01 [ -0.01 | -0.05 | SGOL1 M 05 Mouse
-023 | -0.12 | 0.07 -0.09 | 0.16 | -0.03 | -0.05 | DHX15
-0.39 | -0.12 | -0.03 5 NA NA NA NA | NPHP3
025 | -003 | 030 | -032 | 030 | 0.07 0.36 -001 | -0.12 | 0.00 | GNL3
016 | 016 | 016 | 017 | -007 | -0.11 | 047 013 | 025 | 012 | -04 025 | COLBA3
006 | -009 | 006 | 009 | 004 0.15 008 | 012 | 030 | -048 | 005 | SAMHD1 0
-024 | 015 | 002 | -0.19 | -0.20 | -0.28 | 046 046 | -0.16 011 | -011 | 000 | YWHAE
004 | -003 | -003 | 033 | NA NA NA NA NA NA NA NA NA NA | XIRP2
f-004 [ 001 | 001 [ 019 | NA NA NA NA NA NA NA NA NA NA | ALMS1
U 000 | NA NA NA 0.27 | 048 | -007 ﬁ -0.29 |=049'| 009 |UBC
021 | 000 | 022 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |MORF4L1 [ 0.5
039 | 008 | 020 | -0.16 | NA NA NA NA NA NA NA NA NA NA | MYOM1
022 | 000 | 014 | 002 [ -005 | -036 0.09 -016 | 036 | 039 | -0.24 | -0.01 | CETN2
027 | 025 | 044 | -005 | 007 | -0.23 041 | 035 0.16 0.09 |FTSJ1
-0.04 | -0.16 | -0.13 | -0.05 | 0.27 -0.31 025 | 031 | 037 | -0.14 | 009 | APPL1
-0.10 | 0.10 | 003 | 0.16 | 026 -0.09 046 | 013 033 | 013 | 0.16 | HNRNPD
045 | 019 | -003 | -0.03 | 005 | 024 | -0.02 007 | 047 | 015 | 015 | 0.11 | SNAPIN
046 | 001 | -009 | 033 | 0.18 -022 | 0.36 -0.03 | 040 | -0.06 | 0.15 | -0.03 [ HECW2
-0.14 | -0.09 | -0.20 | 0.27 040 | 044 | -027 | 022 | 008 | CMYA5
016 | 008 | 006 | 017 033 | 020 | 022 | 003 | 034 | 034 | 034 | 003 |ACTN2
-0.06 | -0.17 | -0.02 | -0.10 | 0.38 -0.02 037 | 005 | 025 | -0.12 -0.04 | MYBPC1
-015 | 014 | 025 | 005 | 039 | 045 -036 | 023 | -030 | -033 | 0.199 | MYBPC2
000 | 010 | 031 | -0.16 | 049 | -0.06 | 046 -0.34 | 032 | -007 [ -0.14 | -0.19 | MYOM2
=041 | 003 | -0.01 | -0.22 0.16 -038 | 010 | -028 | -0.17 | -0.01 | TTN
009 | 008 | -0.05 | -0.01 045 | 018 034 | 018 | 034 | 030 | 0.10 |NEB
002 | -020 | 012 | 003 015 | 022 -005 | 017 | 001 [ -003 | 004 | SGCG
-002 | 017 | 019 | 026 011 | -028 | 017 | 022 035 | -0.14 | -0.11 | AHNAK
000 [ NA NA NA | 013 011 | 015 [ 028 | 023 037 | 008 | 024 | XRCC6
000 | -0.14 | -0.10 | -0.18 | NA NA NA NA NA NA NA NA NA NA | SGO1
000 | NA NA NA 048 -002 | 035 | -004 014 | CAPN3
0.02 - 019 | 003 | NA | NA NA NA NA NA | NA NA NA | NA |TRIM72
003 | 006 | 009 | -0.03 -034 | 047 033 0.26 AKAP1
037 | 001 | 023 -0.40 | 043 025 | 019 | 029 | 046 | 028 |KIF1B
003 | 036 | 018 | 018 | 0.11 042 | -0.03 049 0.40 040 | PARVB
— 008 | 019 | 012 | 006 | 024 | 020 | 037 027 | 023 041 034 | KARS
036 | -0.03 | -006 | -0.00 [ NA NA NA NA NA NA NA NA NA NA | EEF1A1
029 | 000 | -007 | 014 | 045 | 043 0.24 038 018 |OPTN
0.04 039 0.25 -0.30 | 047 0.34 034 |FLNC
015 | 013 | 033 | 016 | 036 | 033 -019 | 019 | 040 | 037 021 |PHF1
026 | 020 | 031 | 015 | 024 [ -0.10 -0.06 | 030 | -0.09 0.14 026 |DES
036 H 038 | 040 | 049 | 041 -009 | 029 | 014 030 020 | RNF10
037 | 040 | 039 | 047 -0.26 046 | 024 | 031 | 022 | 049 | 029 | DGKD
047 | 026 | 004 | 015 | 034 | 038 | -011 | 011 | 039 | 035 | 009 | 049 | 049 | 033 |FAM120A
044 | 020 | 003 | 045 | 006 | -026 | 004 | 028 | 035 | 017 | 034 028 |CAV3
037 | 014 | 012 | 014 | 047 | -0.17 | -0.34 034 -0.05 | -0.14 | 003 |MYH3
009 | -021] 005 | 025 0.19 -001 | 029 | 001 [ -001 | 006 | AHNAK2
-0.11 | -020 | 001 | 023 | 0.30 -0.11 019 | -040 | -0.03 | 0.11 | 004 | COL12A1
007 | 029 | 012 | 026 | 004 | 020 | 008 -0.39 | -0.00 | -0.37 | 001 | -0.01 | -0.00 | DNAJB6
-024 | 020 | 006 | 039 | -035 | -044 | -0.16 | -0.38 043 | 010 | 025 024 |MSN
012 | 016 | 005 | 003 | 004 040 | 034 | -034 | 043 | 030 | 030 | 019 | -0.11 | ANKRD1
004 | 015 | 000 | 008 [ NA NA NA NA NA NA NA NA NA NA | SLC12A6
009 | 030 | 005 | 039 | 014 | 007 | -001 [ 0.07 045 0.27 015 | YWHAZ
-003 | -0.11 | -003 | 0.19 | 036 -012 | 002 | -022 | 035 | 025 | 033 | 037 | 0.14 |RNF2
-011 | 004 | -019 [ 000 | 036 | 037 | 012 [ -043 012 | -022 | 034 0.17 | TAF1
-025 | 018 | 021 | 033 | 042 | -0.12 | -0.33 019 | 007 | 024 0.17 | OS9
015 | 009 | 019 | 008 | 039 |NO46N| -0.23 030 | 110560] 040 014 | HDAC6
2 o r @ g ¢ ¥ ¥ ¢ 3 2 ¢ %
@ o) ) o o) o a | | @« I o o) o
1 ES] o = s = =] (o] 0] = = aQ = =
I @ R II ~ N g o < S @ @ lg
T T w a2 s 8 3 z =z
I o o =] =3 @
£ | (s} 3 o 3
e [ ‘% X lg =i
a = Im |3 |m
= = = =

Figure 17 | Dysferlin interactors clustered with several co-expression categories. On
the right are DYSF interactors acquired from PSICQUIC and their correlation values with
DYSF. The categories include both genders and all ages unless otherwise stated: human
rectus abdominis, biceps brachii, quadriceps, heart, C2C12 cells 3 to 4 days after
differentiation, C2C12 cells 5 days and more after differentiation, mouse
cardiomyocytes, tibialis anterior from adult male mice after cardiotoxin injection, tibialis
anterior from adult male mice after glycerol injection, mouse tibialis anterior,
quadriceps, soleus and heart. The genes that could not be measured by the microarrays
have white background (NA).
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The carefully pre-processed microarray data that we have accumulated have
many more uses outside of the scope of MyoMiner. One application is to create
collections (sets) consisting of the most differentially expressed genes in various normal
or pathological muscle tissues or cells experiments. To create these muscle-specific gene
sets (https://sys-myo.rhcloud.com/muscle_gene_sets.php - the new collection will be
available on the website soon) we performed differential expression analysis on each
series with our already established microarray analysis pipeline. Gene sets can be used
for further downstream analyses and especially for gene set enrichment analysis (GSEA).
Our “SysMyo” muscle gene sets have already been incorporated into the popular online
enrichment tools Enrichr (Kuleshov, Jones et al. 2016) and WebGestalt (Wang, Vasaikar
et al. 2017). We have also constructed gene set networks by using the Python
implementation of Sets2Networks algorithm (Clark, Dannenfelser et al. 2012) on all the
muscle gene sets, while retaining only the relations with higher than 20 % probability of
interaction (~6,000 edges, the probability being used as a score) for the final network.
From this network we selected their top connections for DYSF and DMD and
constructed a predicted gene association network (list). We have also created specific
networks for the DYSF and DMD neuromuscular disorders using only their related gene
sets (>98 % interaction probability, ~500 edges). The predicted networks can suggest
novel gene relationships or protein-protein interactors. For example, the DYSF gene
association network has 9 genes in common with its protein-protein interaction network
from PSICQUIC: TTN, MYH3, CAV3, SGCG, MYOM2, MYOM1, FLNC, ACTN2, and NEB.
These networks are available at: https://sys-

myo.rhcloud.com/MuscleGeneSets_networks

3.3 Dysferlin transcriptomic analyses

We also brought together dysferlinopathy microarray expression datasets and
analyzed them in the context of Annexin-A2 (ANXA2) knockout (KO). We tested for
similarities between three dysferlinopathic mice series (GSE2507, GSE2112 and

GSE2629), ANXA2 KO microarrays and dysferlinopathy gene sets derived from older
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studies (https://sys-myo.rhcloud.com/muscle_gene_sets.php). The dysferlin deficient
microarray series showed significant overlap with dysferlin gene sets but the ANXA2 KO
arrays did not show any overlap with them. We also tested for enrichment on
inflammation-related processes. Seven related gene ontology terms where enriched in
all microarray datasets but none of them (and the majority of the genes involved) were
enriched on ANXA2 KO data. We also observed dysregulation of fat marker and fatty
acid metabolism gene ontology terms in dysferlin deficient dataset. We analyzed
another dataset comparing fat with muscle tissue to help interpret the results and
found that fat-related terms where rather similar and genes where regulated with the
same direction.

Our analysis of dysferlinopathic microarrays was stringent and thorough. For
example, GSE2507 series is comprised of two experiments: SJL/J dysferlin deficient vs.
C57BL/6 normal mice skeletal and cardiac muscles. From the skeletal muscles, n=5
samples are dysferlinopathic and n=5 are normal. A first look at the samples showed a
good separation between the two conditions, but a clustering on the scan dates was

also observed (Figure 18).

Sample Scan date Condition
GSM46161.CEL | 11/04/03 09:30:07 DYSF - SM Jub;
GSM46162.CEL | 11/13/03 08:57:16 DYSF - SM .
GSM46163.CEL | 11/13/03 09:13:04 DYSF - SM =
GSM46164.CEL | 11/13/03 09:27:19 DYSF - SM
GSM46165.CEL | 11/04/03 09:41:41 DYSF - SM
GSM46166.CEL | 10/30/03 09:14:45 WT - SM "
GSM46167.CEL | 10/30/03 09:27:09 WT - SM
GSM46168.CEL | 10/30/03 09:51:20 WT - SM f‘“ | ‘
GSM46169.CEL | 11/13/03 09:41:27 WT - SM Z — <
GSM46170.CEL | 10/30/03 10:04:07 WT - SM v o e I

Figure 18 | Sample clustering in dysferlinopathy study GSE2507. On the left is a table
with the skeletal muscle samples from GSE2507 alongside their scan dates. We
separated them in batches based on the different scan dates. On the right is a PCA plot
showing a good separation between dysferlin deficient and normal samples. However, it
can also be seen that samples that were scanned on the same day are clustered
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together. This could have led to technical artifacts in the results of the analysis, so we
corrected it during data processing.

Further quality controls showed a low percent present of the GSM46169 sample 31.87%
compared to the ~40% average, so this sample was removed (Figure 19 left). We then
estimated the proportion of variation with the Principal Variable Components Analysis
(PVCA) (Boedigheimer, Wolfinger et al. 2008) method for the scan dates and the
biological group (DYSF vs WT) (Figure 19 A).
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Figure 19 | GSE2507 skeletal muscle quality control and batch effects signal
estimation. On the left is a typical Affymetrix quality control output. We see the
percentage of present (expressed genes) next to each sample ID. In this case one of the
samples, GSM46169, is colored red as it has more than 10% of expressed gene variation
with the other samples. Below the percentage of present genes is the background noise
value. The B-actin 3’ to 5’ ration is shown with a triangle and GAPDH ratio with a circle.
Also the scaling factor is shown as the blue lines with a filled circle at their end, which
should be inside the light blue background. On the right we see the proportion of batch
effects using the date as a source. The first bar (group:batch_dates) shows the
combined biological and date variation. The second (batch_dates) shows the variation
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derived (technical variation) from the different scan dates. In this case (A) we see that
most of the variation (and perhaps most of the differential expression) is due to the
different dates that the microarrays were scanned. The third column (group) shows the
biological and the fourth the remaining unknown variation. When the samples are batch
corrected (B) we see that the scan date variation (batch_dates) is reduced to zero,
although the biological (group) variation is also reduced. The bottom barplot (C) shows
the variation when we removed the GSM46169 sample which has much less percent
present genes. The biological variation is greatly increased to 55.4%, while the scanned
date variation is reduced.

Since the scanned date accounts for almost half (49.6%) (Figure 19 A) of the
differentially expressed genes, we used the ComBat and SVA (Leek, Johnson et al. 2012)
algorithms to reduce the technical variation. Even though technical variation was
completely removed, biological variation was also reduced (Figure 19 B). Thus, we
concluded to only remove the low quality GSM46169 sample, which increased the
biological variation while reducing the scan date variation (Figure 19 C). After pre-
processing with the RMA algorithm and BrainArray CDF, we performed differential
expression analysis with the Characteristic Direction algorithm (Clark, Hu et al. 2014)
and continued with enrichment analysis using Enrichr (Kuleshov, Jones et al. 2016). This

careful re-analysis yielded enrichment results that were much more muscle-relevant

than those of the original publication (Figure 20).
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Figure 20 | Enrichment analysis of differentially-expressed genes in study GSE2507,
comparing original and state-of-the-art methods. On the left we used the top 250
differentially expressed genes from the original publication for enrichment analysis on
three databases using Enrichr: Gene Ontology biological process, Mouse Genome
Informatics (MGI) and Online Mendelian Inheritance in Man (OMIM). On the right we
used the top 250 differentially expressed genes for enrichment analysis, using our
stringent pipeline. In all three enrichment analyses we see much more relevant results.

3.4 Co-expression on high throughput genomic data

Gene co-expression measures how similar the expression levels of different

genes are, under the same or different conditions. Several analysis steps on raw data
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are required to obtain to this information. Therefore, several co-expression databases
have been constructed to provide easy access to co-expression information alongside
other bioinformatics tools. Below we discuss some of the decisions and caveats when
constructing co-expression databases.

Co-expression values (between -1 and +1) are calculated to show how similar is
the expression of two genes under a certain condition is. Selecting the data to define a
condition can be done in two ways. In a condition-dependant approach (Aoki, Ogata et
al. 2007) the datasets are divided into categories and analyzed separately. Categories
can be different tissues, developmental stage, phenotypes, etc. The co-expression
values can vary, based on different conditions and with this approach the r-values can
be used to calculate the difference in co-expression per condition. In a condition-
independent approach (Aoki, Ogata et al. 2007) the goal is to use as many different
conditions as possible. This analysis can show underlying gene pair relationships,
independent of phenotypes or tissue type. This method is more appropriate for an initial
screening of gene pair relationships.

Proper normalization of the data prior to correlation is required, since some
correlation coefficients are sensitive to outliers. Most of the co-expression databases
use the Affymetrix GeneChip technology as they are the most abundant microarrays.
The popular pre-processing algorithms are MAS 5.0, RMA, GC-RMA. Only MAS 5.0 is
using the information from MM probes and normalizes each sample independently.
Although RMA is claimed to be superior to MAS 5.0 for differential expression (Jiang,
Leach et al. 2008), it is not clear that this hold also for co-expression analysis. Lim et al.
(Lim, Wang et al. 2007) concluded that MAS 5.0 would be the best option in this case,
because inter-array pre-processing (RMA, GC-RMA, PLIER) introduces artificial
correlations. However, MAS 5.0 computes expression values on a linear scale (and
usually returns values below 1) by default and must be log-transformed to approximate
normal distribution before using parametric correlation (e.g. Pearson). A better single-

array normalization alternative is the SCAN algorithm (Piccolo, Sun et al. 2012) which
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also corrects GC bias and reduces probe and array variation from each individual
sample.

The choice of correlation coefficient also plays a major role. Most of the publicly
available co-expression databases use Pearson correlation. It ranges from -1, meaning
that genes tend to respond in opposite directions (anti-correlated) to +1, where genes
respond the same way in all samples. Zero correlation represents no association. A
drawback of Pearson correlation is its sensitivity to outliers, as one low quality sample
could drive a false relationship. A robust alternative is Spearman correlation which can
be obtained by ranking the gene expressions across samples before using the Pearson
correlation formula. However, sometimes outliers could have biological meaning. Thus
screening the expression values is important. Spearman correlation measures
monotonic relationship, in contrast to Pearson that measures linear correlation.
Monotonic correlations occur more frequently than linear ones. There are also other
kinds of relationships like the mutual information (M) (information theory) which has
been used to identify relationships between genes (Steuer, Kurths et al. 2002). It
assumes zero value in case of independence and unlike correlation, it has no upper limit
for its relation score. However, because of the way Ml is calculated, many more samples
are required for the calculation of its score than the estimation of correlation
coefficients. One of the most popular network construction tools ARACNE uses Ml
exclusively (Margolin, Nemenman et al. 2006).

One caveat of gene expression correlation is that it can be driven by other
factors. For example, a transcription factor (TF) when is upregulated, drives the
expression of gene X and Y. In this scenario, TF with X and TF with Y will be highly
correlated. However, X and Y will be highly correlated as well, since both are
upregulated from the same TF. This can be beneficial as X and Y could be involved in the
same processes, but if we are interested specifically in the relation of X with Y, their
correlation would be zero if TF was not upregulated. In order to extract the correlation
between X and Y without TF interfering, we should calculate the partial correlation (Yule

1907). Partial correlation could theoretically be used to remove all the gene effects from
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a pair of genes, but it would require more microarray experiments than the genes. It has
been used successfully to create relatively small networks (Ma, Gong et al. 2007).

The g-value of a co-expression can be calculated by transforming the r-values to
scores that approximately follow a t distribution and then adjusting for multiple testing
by controlling the false discovery rate either with Bonferroni or the less conservative BH
method. In cases where many samples were used to calculate gene co-expression, even
with the multiple hypothesis adjustment, r-values as low as 0.2 can be significant and
the abstract g-value cut-off of 0.05 will not be of practical importance. Therefore, on
categories with many samples we recommend using lower cut-offs: at least 0.005 or
even lower. Another way of determining co-expression significance is to use the g-value
in conjunction with the confidence intervals (see MyoMiner manuscript) or the
coefficient of determination r?. Coefficient of determination is simply the r-value
squared and it measures the scale of shared variance between the genes in question

(from 0 - no shared variance to 1 — 100 % shared variance).

3.5 Training k-nearest-neighbor (k-NN) classifiers to predict specific

muscle tissues

One of the direct uses of the microarray data collected in MyoMiner is to use
them to train a tissue classifier. Specifically, we trained a k-nearest-neighbor (k-NN)
classifier in order to predict specific skeletal and cardiac muscles. The classifier could
help distinguish muscle anatomic parts when they are not given in the metadata or the
original publications. For example, in many experiments the tissue is specified as
skeletal muscle or heart but the exact part (e.g. quadriceps femoris or vastus lateralis,
etc) is not provided. We constructed two classifiers for human: one for the skeletal
muscles and one for the cardiac muscles. Even though both groups are categorized as
striated muscles their genetic profile is quite different. We also constructed the
corresponding classifiers for mouse.

First we trained (train/test split was 80/20) the classifier without any

dimensionality reduction methods and got poor predictions (accuracy ~ 0.7). Then we
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applied multidimensional scaling (MDS also known as principal coordinates analysis)
(Gower 1966) to reduce the data dimensions (genes) to 100 or 50, or even to first select
the highly expressed genes using UPC percentages (Piccolo, Withers et al. 2013) and
then reduce them to 100 or 50. We then trained the k-NN with a repeated n-fold cross
validation with 10 folds and 15 repeats (Table 7). Even though the accuracy of the
classifiers is rather high, when tested on samples outside of the training and testing set
the results were mixed. When an experiment contained samples from a class that
appeared in the training set, the classifier predicted the majority of samples correctly.
We could have then infer that the erroneous predicted samples fall in the same
category as the correctly predicted, because most of the times, researchers, gather
samples from the same tissue (e.g. if all samples are predicted as quadriceps and one as
vastus lateralis, we can say that this was incorrectly predicted as vastus lateralis as
researchers usually take their samples from the same tissues). However, if the data
were from an unknown class, all the predictions were wrong so we did not use these

classifiers to predict the missing anatomic parts in our data thus far.

Classifier Bestk Accuracy Classes
Human cardiac 4: atrium, left ventricle, right ventricle,
7 0.9540
muscles myocardium

7: biceps brachii, deltoid, extraocular,
Human skeletal

3 0.9719 paravertebral, quadriceps, rectus
muscles
abdominus, vastus lateralis
4: atrial, cardiomyocytes, myocardium,
Mouse cardiac muscles 5 0.9615
ventricle
Mouse skeletal 4: gastrocnemius, quadriceps, soleus,
5 0.9858
muscles tibialis anterior

Table 7 | k-NN classifiers for specific muscle tissues. The accuracy of the classifiers is
quite high. However, since we wanted to predict muscle tissues that could potentially
belong to other classes, we did not use the classifiers for any further predictions.
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3.6 Microarray limitations

Microarrays have been extremely useful in a wide area of biological applications
but they also have a number of limitations. Most importantly, a microarray can only
detect RNA sequences that the designed probes can detect. Simply put, if the RNA
contains sequences that have no corresponding oligos in the array, the sequences will
not be measured. In gene expression analysis, a gene that was not described before will
not be present in the array. Also non-coding RNA sequences are typically not present on
arrays. This problem is more pronounced in older arrays where only a set number of
probes could be printed on the array; thus a portion of the genes could eventually be
measured (e.g. Affymetrix Murine Genome U74Av2). Newer commercial arrays have
tried to compensate for this by including probes that do not match to any known genes
at the time they are designed - transcripts which can then be assigned to newly
discovered genes if their sequences match. Also, as time progresses more researches
are using the now popular BrainArray CDF (Dai, Wang et al. 2005), which is updated with
new information annually.

Another difficulty in terms of probe design, is to generate probes of which the
RNA sequences do not overlap. If sequences are homologous, then a probe could detect
multiple genes at once, which is particularly problematic for genes with many splice
variants or for genes that belong to the same family. Dai et al. (Dai, Wang et al. 2005),
address this issue by selecting probes that detect specific and unique parts of the gene
(whenever this is possible). It should be noted that specific arrays can detect splice
variants by having probes detect specific exons or exon junctions (Castle, Garrett-Engele
et al. 2003; Gardina, Clark et al. 2006; Bumgarner 2013).

Finally, microarrays measure, by design, relative concentration indirectly. The
intensity measured in a probe, is proportional to the concentration of a sequence that
can hybridize to this probe. However, experimental spike-in studies (Affymetrix 2001)

showed that the probe intensity is nonlinearly proportional to the target concentration
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(Chudin, Walker et al. 2002; Hekstra, Taussig et al. 2003; Skvortsov, Abdueva et al.
2007). The array will become saturated at high target concentrations, while at low
concentrations there will be no binding. The intensities are linear within a very limited

range of RNA concentration.

3.7 Microarray technology in the future

Technology that detects directly DNA or RNA sequences, such as NGS, will be
much more preferable in the future. The massive decrease of sequencing cost has made
NGS comparable in terms of cost with the microarrays (at the moment of writing, NGS is
even cheaper for a few assays). Thus with similar costs, sequencing has several
advantages relative to microarrays. Sequencing measures directly which nucleic acids
are present in a sample and you only have to count the frequency of occurrence of a
sequence is present in the sample to determine its abundance. Other advantages
include the signal-to-noise ration which is limited by the number of reads for each
sample and that counting is linearly related with the sample concentration. Sequencing
is also less biased than microarrays in measuring which sequence is present in the
sample. Unlike microarrays, sequencing is independent of prior design (knowledge) of
which sequences might be present. It can also reliably measure the expression of
homologous gene sequences and novel splice forms that cannot be reliably detected on
microarrays.

As a result of sequencing decreasing cost and the aforementioned advantages,
microarrays are gradually replaced by NGS for almost every assay. A search on the GEO
public repository for arrays deposited within a 300day time period (between 21-June-
2017 and 22-July-2017) (Table 8) reveals that microarrays are in decline, even though
they still cover a big proportion of the data deposited on the repository. We did not use
NGS on this thesis because there is much lower number of NGS muscle related data

produced compared to microarray ones.
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21/06/2017 to 22/07/2017 Microarrays Next generation

sequencing
Series 334 415
Samples 12474 19280
Median series | samples per 81228 13 | 270

day

Table 8 | GEO high-through put data submissions. Microarray and NGS data submitted
in GEO during a 30 day period. Although microarrays are still used en-mass nowadays,

the samples submitted are in decline as next generation sequencing is becoming
cheaper.
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mics repositories such as the NCBI Gene Expression

Omnibus (GEO)! and EBI }‘u‘myExpress2 accumulate
and serve gene expression data from thousands of
studies. It is clear that these data contain much more
information than what has typically been extracted from each
individual dataset for the accompanying initial publication.
However, currently, performing integrative analysis of large
collections of gene expression studies to obtain a global integrated
view of cellular regulation requires a significant data wrangling
effort, that is, manually unifying data formats, adding metadata
and converting the data to be more machine readable.

Due to high cost, gene expression profiling data are typically
produced on a small scale, in targeted studies that are diverse with
respect to tissue or cell type, genetic or chemical perturbation,
disease model, expression assay platform and model organism.
When submitted into public repositories such as GEO, the
requirement for metadata annotation is minimal. Lack of
standards for extensive metadata collection, and the diversity of
individual studies, prohibits the easy reuse and integration of this
type of data.

One of the advantages of carefully annotating studies from
databases such as GEO is the potential for developing a signature
search engine that operates at the data level. Tools such as
SIGNATURE?, SPIEDY, Cell Montage’, ProfileChaser,
ExpressionBlast” and SEEK3 automatically attempt to compute
differentially expressed signatures from GEO to provide a
signature search engine at the data level. However, these tools
are prone to mistakes because they automatically select the
control and perturbation samples, as well as other aspects of
signature generation and annotation, without relying on an
extensive high-quality gold standard, which is needed for training
better-quality classifiers.

Manual extraction of collections of gene expression signatures
from GEO has been demonstrated to be highly useful. It was
applied for drug repurposing’, suggesting novel drugs for
many dlseasesm. and explaining mechanisms of action for many
approved drugs'!. Several efforts have attempted to further
annotate datasets from GEO manually; one example is Gene
Expression data Mining Toward Relevant Network DISL,OVCI’Y
(GEM-TREND)'2, The disadvantage of manual curation is that it
does not scale up to cover the thousands of studies currently
available. For similar challenges, crowdsourcing projects have been
developed as a potential solution to overcome this obstacle.

Crowdsourcing projects fall into two categories: microtasks and
megatasks'>!4, Microtasks consist of relatively trivial tasks that
require a large number of Fartlapant‘: for example, extracting
features from images of cells'®. Crowdsourcing microtask projects
in biomedical research have been established to improve
automated mining of biomedical text for annotating diseases'®,
curation of gene-mutation relations'”, identifying relationships
between drugs and side-effects'®, drugs and their indications'?, as
well as annotation of microRNA functions. These efforts
produce large collections of high-quality datasets that can be
further utilized by algorithms that can extract new knowledge
from already-published data that require better annotation,
cleaning and reprocessing.

When  computing gene  expression  signatures, the
computational method used to identify the differentially
expressed genes (DEGs) has a significant impact on the results.
Using several benchmarks, including matching expression
changes after transcription factor perturbations with ChIP-seq
data, we previously showed that a method we developed called the
Characteristic Direction (CD) mgmﬁcantzy improves the
prioritization of differentially expressed genes=' when compared
with several commonly applied methods such as fold change,
T-test or ANOVA, SAM??, limma®® or DESeq™*.

2

183

In this study, we present the results of a crowdsourcing
microtask project implemented to annotate and extract gene
expression signatures from GEO. Our analysis of the
crowdsourced gene expression signatures demonstrates that our
collection of signatures is of high quality and can be used to
recover prior knowledge, as well as discover new knowledge,
about associations between drugs, genes and diseases. We also
develop a web portal for users to visually identify associations
between signatures, download the signatures for further
computational analyses, and search the collections of gene
expression signatures created for this project with their own
signatures or by keywords. To scale up the collection of signatures
for the three themes: disease, drug and gene perturbation, we use
the manually extracted signature collections as a gold standard to
train classifiers that automatically extract signatures from GEO.

Results

Crowdsourcing gene expression signatures. The crowdsourcing
challenge we designed followed several steps and consisted of
several components and processes (Fig. 1). First, participants were
asked to identify GEO studies in which single-gene or -drug
perturbations were applied to mammalian cells, or in which
normal versus diseased tissues were compared. After identifying
relevant studies, participants extracted metadata from the studies
and computed differential expression using GEO2Enrichr?®®, a
Chrome extension we developed that makes the elgnature
extraction process easy for non-experts. Extracted signatures
were stored in a local database and sanitized by automated filters
and manual inspection for improving accuracy and quality.
The cleaned database of extracted signatures was used to visualize
and analyse these signatures on the CRowd Extracted Expression
of Differential Signatures (CREEDS) web portal. To scale up the
collections, the human-extracted signatures were used as a gold
standard for training machine learning classifiers for automated
signature extraction. To date, the manual component of the
signature database contains 3,100 submissions for single-gene
perturbations, covering 1,186 genes from 1,635 studies; 1,081
disease signature submissions covering 450 diseases from 748
studies; as well as 1,238 submissions for drug perturbations
covering 343 drugs from 443 studies (Supplementary Fig. 1a).
After sanitizing the collections of signatures, a total of 2,177;
828 and 1,221 unique and valid signatures remained in the
CREEDS database for single-gene perturbations, disease
signatures, and drug perturbation signatures, respectively. The
automated expansion of the signatures resulted in an additional
set of 8,620 single-gene, 1,430 disease and 4,295 single-drug
signatures extracted from 2,543 GEQ studies.

We observe a skewed distribution with a long tail for the
number of submissions per contributor (Supplementary Fig. 1b).
A few enthusiastic curators contributed many more signatures
than most others. The median number of signatures submitted
per person was 16. We found no significant correlation between
the number of signatures submitted per user and the quality of
submissions (Supplementary Fig. lc, Spearman’s p= — 0.08,
P wvalue =042). The leaderboard generally incentivized
volunteers to submit more gene expression signatures. We found
a significant negative correlation (Spearman’s p= —0.64,
P value<8.0e 5!) between the scaled ranks of contributors
and the number of newly submitted studies per day
(Supplementary Fig. 1d). This suggests that highly ranked
curators were inclined to continue to submit more.

Quality improvement of crowdsourced gene expression signatures.
To improve the quality of the gene expression signatures derived
from thousands of GEO studies, we first checked for batch effects.
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Figure 1 | Workflow of the crowdsourcing project. Participants identify relevant studies from GEO and then extract gene expression signatures using
GEOZEnrichr. Participants also add metadata to each signature. Submitted signatures were manually reviewed and then used to scale up the collections
with machine learning methods. All signatures are served on the CRowd Extracted Expression of Differential Signatures (CREEDS) web portal.

To achieve this, we obtained the ‘scan date’ from the raw
microarray data files as an indicator of a potential source for
batch effects. We then estimated the magnitude of such batch
effect using principal variation component anal}'siszﬁ‘n. We
estimate that batch effects on average account for ~ 18.7% of the
variance in the gene expression dataset collections, whereas
the perturbation versus control on average accounts for ~16.7%
of the variance (Supplementary Fig. 2a).

To correct for these batch effects, we applied the surrogate
variable analysis (SVA)?® algorithm and generated new signatures
using both the CD and limma methods to call the DEGs. To
benchmark the quality of these signatures with or without the
batch correction, we used collections of genes that are expected to

be differentially expressed: direct protein interactions for gene
perturbation, disease-gene associations for disease signatures, and
targets of drugs for the drug-induced signatures. We observe that
the batch correction improves the signal and quality of signatures
(Fig. 2). We also found that the CD method outperformed limima
in ranking the expected DEGs with these benchmarks.

Comparing the collections with other similar resources. Next,
we compared the collection of the crowdsourced gene expression
signatures with MSigDB?®, which contains 8 collections of gene
sets. The collection C2 has curated gene sets extracted manually
from tables and figures within publications. We compared the
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Figure 2 | Batch effect correction influence on the quality of gene expression signatures, Line plots show the probability density distribution of the
scaled ranks of expected DEGs in gene expression signatures from the three collections: (a) single-gene perturbations, (b) disease signatures, and
(e) single-drug perturbations. The colours indicate which algorithm was used to call the differentially expressed genes: Characteristic Direction (CD),
limma, or fold change; and whether batch effect correction was applied with surrogate variable analysis (SVA).

Chemical and Genetic Perturbations (CGP) subset within C2
from the latest version of MSigDB (v5.1) with our collections of
signatures. The CGP subset has 3,396 gene sets, 33% of which
have GEO identifiers (GSE) (Supplementary Fig. 3a). We first
compared the overlapping GSEs and found that our collection
covers 2,066 microarray studies, whereas the CGP subset covers
361 microarray studies with 54 shared studies (Supplementary
Fig. 3b). Breaking down the overlap into the three collections, the
shared GSEs with MSigDB are 31, 21 and 7 for the gene, disease
and drug perturbations, respectively (Supplementary Fig. 3b).
To compare the concordance of the gene-set for the 31 shared
gene perturbations, we plotted the cumulative distribution from
uniform distribution of the scaled ranks of the genes from our
collection and those matching from MSigDB, and found that
these gene sets are significantly similar (Supplementary Fig. 3c).
Overall, we find that the MSigDB signatures overlap significantly
with matched crowd-generated signatures, with only a few
exceptions (Supplementary Fig. 3d, Supplementary Table 1).
The discrepancies were due to a figure from He ef al®® that
only reported genes related to the cell-cycle as opposed to all
DEGs; the Sagiv et al 3! study reported DEGs in both siRNA
knockdown and mAb treatment, whereas the DEGs in our
database were derived from knockdown versus control only; and
the gene sets curated from Soucek et al’? by MSigDB do not
match the original figure from that paper. However, overall, our
analysis shows strong agreement between the matched signatures
in both databases.

185

Assessment of signature associations within each collection.
We next asked whether signature similarity within and across the
three collections can recover prior knowledge and discover novel
connections. To globally assess associations between signatures
within each collection, we used various methods to compute
similarity between all pairs of signatures, and compared ranked
signature associations with prior knowledge. Our results show
that all of the three signature collections recover prior knowledge
associations between genes, drugs and diseases (Supplementary
Tables 2-4), and these associations are more discernable when
computing differential expression with the CD method (Fig. 3).
For example, individual independent studies that perturbed
Prkag3 by either knockout or gain-of-function mutation were
identified as opposing signatures®® (Supplementary Table 2).
An example that emerged from comparing disease signatures
was the high similarity between hypercholesterolaemia and
hepatocellular carcinoma signatures (Supplementary Table 3). It
was shown that cholesterol metabolism is indeed deregulated in
hypercholesterolaemia  and  hepatocellular ~ carcinoma®®3,
There are some top-ranked drug pairs that induce similar gene
expression changes. For instance, the gene expression signatures
for diethylstilbestrol, estradiol and tamoxifen from independent
studies are very similar (Supplementary Table 4). The
confirmation with prior knowledge associations suggests that
we can predict novel associations with these data. In other words,
top-ranked associations or top-ranked opposing signatures
between drugs, diseases or genes that do not have literature
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similar chemical structure.

support should be considered as high-quality predictions. Given
the observation that drugs with highly similar chemical structure
induce slightly more similar gene expression signatures than
expected by chance (Fig. 3c), we further investigated whether the
correlation between chemical similarity and gene expression
signature similarity also applied to drugs pairs with lower
chemical similarity scores. By binning the signed Jaccard index
by Tanimoto coefficients, we found no correlation between lower
chemical similarity and gene expression signature similarity
(Supplementary Fig. 4), suggesting that partial chemical similarity
is not predictive of expression similarity.

Signature associations across the three collections. Using the
signed Jaccard index, we computed an adjacency matrix for all
possible pairs of signatures from the three collections (Fig. 4a)
and observed many clusters. These clusters are heterogeneous,
containing connections between genes, diseases and drugs.
We highlight a few of these clusters (Fig. 4¢,d), while others can
be explored using the interactive clustergram or packed circles
plot on the CREEDS web portal. In the first cluster that we chose
to highlight, imatinib, a small molecule that is known to be a
tyrosine kinase inhibitor®, has signatures that were generated
from multiple cell lines, including K562 leukaemia cell line
(GSE1922), chronic myelogenous leukaemia (CML) CD34 + cells
(GSE12211) and three other CML cell lines (KU-812, KCL-22,

JURL-MK1) (GSE24493), which cluster together with knockdown
signatures of NRAS in melanoma cell lines (GSE12445) (Fig. 4b).
This strongly suggests that NRAS is targeted by imatinib.
Although NRAS is currently not considered a direct target of
imatinib, a recent study showed that melanoma patients with
NRAS mutations are resistant to imatinib therapy. This raises
the possibility that the wild-type form of NRAS is at least a key
downstream effector of imatinib.

In the second cluster that we chose to highlight, multiple
myelodysplastic syndrome (MDS) signatures from CD34 + cells
(GSE4619, GSE19429) and ERBB2 overexpression signature from
MCFI10A cells (GSE14990) cluster together (Fig. 4c), suggesting
that the up-regulation of ERBB2 may have a role in MDS. Indeed,
it was shown that ERBB2 amplification is present in 35% of a
cohort of MDS patients®®. In the third example, endometrial
cancer signatures (GSE17025) are shown to cluster with
estradiol signatures derived from MCF7 cells from multiple
independent studies (GSE4668, GSE11352, GSE53394), as well as
MIR34A overexpression signature from HCT116 cells (GSE7754),
PPARG overexpression signature from NIH-3T3 cells (GSE2192),
and IGF1 stimulation signature from MCEF7 cells (GSE7561)
(Fig. 4d). Estradiol has been shown to increase the risk for
endometrial cancer®*? and was previously discovered in a
meta-analysis study of this disease!. Insulin-like growth factor 1
(IGFI) and its receptor IGFIR are known to be indirectly
activated by estradiol*>=*4, Downstream of the IGFIR receptor
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Figure 4 | Hierarchical clustering of the adjacency matrix of all gene expression signatures and selected clusters. (a) The entire adjacency matrix of all
signatures. (b-d) Three selected zoomed-in views of clusters from the adjacency matrix displayed in (a).

phosphoinositide kinase 3 (PI3K), the mammalian target of
rapamycin (mTOR) and MAPK signalling promote protein
synthesis, cell growth, and cell proliferation, fotentially driving
the progression of endometrial cancer*®.  Peroxisome
proliferator-activated receptor gamma (PPARG) has also been
shown to induce the development of multiple types of cancers?’,
and it is known to glay a role downstream of adiponectin during
insulin resistance®, which is a significant risk factor for
endometrial cancer’®. The fourth cluster contains a YYI
knockout (GSE39009) signature produced in mice soleus, and
an autosomal muscular dystrophy signature from a mouse model
sourced from the diaphragm (GSE3252). This association
suggests that YYI may be disrupted in muscular dystrophy
tissues. Literature supports that almost all facioscapulohumeral
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muscular dystrophy patients carry deletions of repetitive elements
(D4Z4) that contain binding sites for YYI?931 Al of the
aforementioned examples are just a small portion of the signature
connections our integrative analysis offers. These examples
illustrate how novel associations between diseases, genes and
drugs can be discovered through a crowdsourcing project.

Identifying drug mimickers. To further demonstrate the utility
of the crowdsourced gene expression signatures of drug pertur-
bations, we queried these signatures against the database of drug
or other small molecule compound signatures derived from the
LINCS L1000 dataset. We then recorded the ranks of the matched
drugs out of >30,000 LINCS L1000 signatures and found that
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many crowdsourced drug perturbation signatures are significantly
highly ranked (Rank sum P value <4.8e 5] (Fig. 5a,b, Table 1).
Similarly, the results can also be reproduced when querying the
drug perturbation signatures a%ainst >6,000 signatures from
the Connectivity Map dataset’> (Supplementary Fig. 5). We
additionally queried the gene perturbation signatures against
109,000 shRNA knockdown and over-expression profiles from
the LINCS L1000 data and found similar consistency (Fig, 5¢.d).
These results suggest that some drugs induce similar
transcriptional changes in small-scale studies, when compared
with results from large-scale studies such as LINCS L1000 and the
original Connectivity Map. This means that we can identify
potential mimickers using the LINCS L1000 dataset for drugs
whose signatures are highly similar between the LINCS L1000
dataset and the GEO studies. Interestingly, we found that
dexamethasone signatures in the LINCS L1000 dataset were
ranked in the top 10 using dexamethasone-induced gene
expression signatures from three independent GEO studies:
GSE34313, GSE7683 and GSE54608 (Supplementary Table 5).
The three studies treated dexamethasone in different cell types:
human airway smooth muscle cells, mice primary chondrocytes,
and in a human oviductal cell line, suggesting that the effect of
this glucocorticoid agonist is robust across mammalian cells.
Among the top-ranked potential mimickers of dexamethasone,
flumetasone and betamethasome are both corticosteroids
indicated for inflammation, confirming that the approach is
able to identify drugs with similar physiological effects. Moreover,

we found a small molecule compound 5,6-epoxycholesterol
(BRD-K61480498) with gene expression profiles highly similar
to that of dexamethasone. 5,6-epoxycholesterol also has a similar
chemical structure, but unknown anti-inflammatory effects. As
such, it is an example of a strong candidate for further
experimental validation.

Web portal to visualize and query the signatures database. To
provide easier access to the three collections of the gene
expression signatures for knowledge reuse and exploration, we
developed a web portal (Supplementary Fig. 6). This portal
visualizes all of the signatures in a packed circles layout in which
similar signatures are closer to each other. Furthermore, the
portal has interactive heatmaps of hierarchically clustered
matrices of all signatures. The web portal is available at:
http://famp.pharm.mssm.edu/creeds. The portal also has a search
engine that enables users to search by text or by providing lists of
up and down DEGs. Since DEGs for the gene expression profiles
in the CREEDS database were computed with the CD method,
which is not a standard method, we tested whether signatures
computed via other methods would produce similar results. We
found that most signatures computed by fold change or limma
are ranked similarly (Supplementary Fig. 7). However, some
signatures were not ranked as expected. The CD is a multivariate
method, whereas fold change and limma are univariate; a gene
can be identified as significantly differentially expressed by a
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Table 1 | Top hits for drug signatures extracted from GEO queried against drug perturbations from the LINCS L1000 dataset
processed using the Characteristic Direction method.

Drug name PubChem ID GEO Accession organism GEO platform Rank
Dexamethasone 5743 GSE34313 human GPL6480 1
Doxorubicin 31703 GSE58074 human GPL10558 1
Azacitidine 9444 GSE29077 human GPL571 1
Azacitidine 9444 GSE29077 human GPL571 1
Azacitidine 9444 GSE29077 human GPL571 1
Lapatinib 208908 GSE38376 human GPL6947 2
Methylprednisolone 6741 GSE490 rat GPL85 2
Lapatinib 208908 GSE38376 human GPL6947 2
Dexamethasone 5743 GSE54608 human GPL10558 3
Lapatinib 208908 GSE38376 human GPL6947 3
Tretinoin 444795 GSE1588 mouse GPL81 3
Methylprednisolone 6741 GSE490 rat GPL85 3
Tretinoin 444795 GSE32161 human GPL570 3
Methylprednisolone 6741 GSE490 rat GPL85 3
Methylprednisolone 6741 GSE490 rat GPL85 4
Trichostatin A 444732 GSE1437 mouse GPL81 4
Dexamethasone 5743 GSE7683 mouse GPL1261 5
Cycloheximide 6197 GSE8597 human GPL570 5
Methylprednisolone 6741 GSE490 rat GPL85 6
Sorafenib 216239 GSE39192 human GPLE947 7
Vemurafenib 4261257 GSE37441 human GPL10558 8
Methylprednisolone 6741 GSE490 rat GPL85 10
Curcumin 969516 GSE10896 human GPL570 14
Curcumin 969516 GSE10896 human GPL570 15
Vemurafenib 4261257 GSE37441 human GPL10558 15
Lapatinib 208908 GSE38376 human GPL6947 16
Methylprednisolone 6741 GSE420 rat GPL85 17
Tretinoin 444795 GSE1588 mouse GPL81 20
Vemurafenib 4261257 GSE42872 human GPL6244 23
Azacitidine 9444 GSE29077 human GPL571 24
Troglitazone 5591 GSE21329 rat GPL341 31
Decitabine 451668 GSE29077 human GPL571 36
Vemurafenib 4261257 GSE37441 human GPL10558 36
Thapsigargin 446378 GSE19519 human GPL570 37
Methylprednisolone 6741 GSE4S0 rat GPL85 48

univariate method but may not contribute to the joint expression
changes of large sets of genes.

Finally, to scale up the three collections of signatures, we
developed machine learning classifiers that use the manually
curated signatures as a training set. The classification task was
divided into two parts: (1) classify whether a GEO dataset is likely
to contain gene, disease or drug signatures, and (2) label the
samples as control and perturbation. The features for the
classifiers were extracted from the text associated with the each
GEO study in our manually curated collection as well as from all
currently available studies on GEO where genome-wide expres-
sion was assessed by microarrays to profile human, mouse or rat
cells and tissues. Overall, we observe that various classifiers
perform very well (Supplementary Fig. 8).

We next asked whether we have collected a sufficient number
of manually curated studies or whether more manual
curation could improve the performance of the classifiers.
We see, for example, that Naive Bayesian classifiers no longer
improve once ~1,000 annotated studies are used for each
collection category (Supplementary Figs 9-13). With these
machine learning classifiers, we automatically identified a
large collection of additional signatures for the three collections.
In total, this process enabled us to add 8,620 gene; 4,295
drug and 1,430 disease automatically extracted signatures.
Each signature carries a P-value for confidence, and all these
signatures are available for download and search on the CREEDS
web portal.

8

189

Discussion

Gene expression profiling is arguably the most common type of
omic data. The resource we developed for this project can be
combined with transcriptomics profiling projects such as
Genotype-Tissue Expression®, the Cancer Genome Atlas™, the
Cancer Cell-Line Encyclopaedia®, and the Library of Integrated
Network-based Cellular Signatures (LINCS). Here we show, for
example, how combining drug perturbation signatures collected
from GEO with the LINCS L1000 data can be used to identity
potential novel drug mimickers.

The manually extracted and cleaned signatures were proven to
be useful as a training set that enabled us to scale up the three
collections of signatures using machine learning. However, we are
aware that the quality of the automatically generated signatures is
not as good as the signatures created by the human annotators.
One solution to improve the process is to intelligently integrate
machine learning with crowdsourcing by using active learning.
With active learning, unlabelled instances are presented to human
annotators with suggestions; this allows the classifiers to be
improved dynamically while reducing the effort required of the
curators®®. Active learning methods have been shown to achieve
improved performance in similar settings®”>,

This project highlights the commitment of citizen scientists to
spare their time in pursuit of a common goal that can advance
science and medicine. Indeed, we show how this collective effort
was used to identify novel relationships between genes, drugs and
diseases. While we highlighted several top predictions that
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emerged from our analysis, many more hypotheses can be
formed by interacting with the CREEDS portal at:
http://amp.pharm.mssm.edu/creeds.

Methods

Extracting gene expression signatures from GEO by the crowd. Three
crowdsourcing microtasks were established to collect gene expression

signatures from GEO. These are: single-gene perturbations, comparison between
diseased and normal tissues, and single-drug perturbations. These three types of
signatures were extracted using the Google Chrome extension GEO2Enrichr?®
and submitted through the BD2K-LINCS-DCIC Crowdsourcing Portal at:
http://www.maayanlab.net/crowdsourcing/. These crowdsourcing tasks were open
to all participants, but a significant majority of the contributors were students from
the massive open online course Network Analysis in Systems Biology 2015
(NASB2015) offered on the Coursera platform. These participants were given
detailed instructions for finding, labelling, and extracting gene expression profiles
from GEO. Participation was strictly voluntary, and was not required for
completion of any parts of the course. Participants were not provided with a list of
predefined gene expression profiles; instead, they were encouraged to find diverse,
yet relevant, gene expression studies from GEO. Briefly, contributors first had to
locate relevant GEO studies fitting into one of the three themes, and then select the
perturbation and control samples (GSMs) from GEO series (GSE) or GEO datasets
(GDS). Only gene expression studies from selected species of mammals (human,
mouse and rat) were considered valid. Participants were also asked to submit
additional metadata about the cell or tissue type, and gene, disease or drug used in
each experiment and associate these with common published identifiers. Standard
names of genes, diseases, and drugs were provided as autocomplete options in the
submission forms, created from controlled vocabularies: HGNC for genes”,
disease names from the Disease Ontology® and drug names from DrugBank®!. To
incentivize participants, a real-time leaderboard was developed to display the
number of submissions from each user, and modest prizes were promised to the
top ten contributors (custom T-shirt and headphones). Additionally, co-authorship
on the published research resulting from these crowdsourcing tasks was promised
to contributors of a minimum of 15 valid entries.

Sanitization of the crowdsourced gene expression signatures. Multiple steps of
quality control filters were applied to improve the collection of the gene expression
signatures extracted by the crowd. We first performed integrity checks using the
association between GEO studies (GSE or GDS) and samples within these studies
(GSMs) by re-processing all the collected gene expression signatures based on the
metadata supplied by the curators. Signatures in which GSMs did not match their
GSE or GDS, as well as signatures with the same GSMs in the control and per-
turbation groups, were automatically detected and removed. The next filter was
applied only to the single-gene perturbation collection. We checked whether gene
symbols submitted by the curators are valid HGNC gene symbols, removing all
entries with invalid genes. The next filter was semi-automatic: we corrected sig-
natures in which the control and perturbation samples were switched. Our final
filter was to manually check if the submitted signatures agree with the descriptions
associated with the original GEO studies. After applying each of these filters, we
recorded the number of invalid submissions by curators and removed the sub-
missions from any curators who had submitted more than 10% invalid signatures.
As a result, ~20% of all the submissions were removed from the final collections.

Evaluation of batch effects. To obtain batch information from each study, we
retrieved the ‘scan date’ from the raw microarray CEL files and assumed that the
experiments were performed on the same dates that were listed within the
experimental batch. We then quantified the batch effect using principal variation
component analysis*®*”, which attributes the variation in the gene expression data
to known sources such as batches and experimental conditions. Batch effects were
corrected using the surrogate variable analysis (SVA) algorithm®® implemented in
R%? with default parameters.

Construction of expected DEGs from prior knowledge. To generate lists of
expected DEGs for the three collections of signatures for benchmarking, we used:
(1) the known direct physical interactors of the protein product of a gene from a
consolidated protein-protein interaction network we assembled for a previous
smdy(’}; (2) a consolidated collection of manually-curated disease-gene associations
from the DISEASES resource®; and (3) known drug targets from DrugBank v4.3°1.

Measuring similarity between signatures. To compare signatures, we abstracted
signatures to sets of up- and down-regulated genes. The signed Jaccard index for
two signatures S; and S is defined as:

I(82.87) + (50 55 =1 (8.5 ) — s 8
2

where §*7and $%"" denote the up- and down-regulated gene sets, respectively. The
signed Jaccard index considers the direction when comparing a pair of gene

SI(S,AS,) =
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expression signatures. It has a range of [ — 1. 1] where 1 represents identical
signatures, and — 1 represents signatures of reverse effect, whereas 0 represents
unrelated signatures.

Signature pairs from different GEO studies were ranked based on the signed
Jaccard index. Prior knowledge from various resources about known connections
between genes, diseases and drugs was used to examine whether signature
similarity can be used to recover known associations between genes, drugs and
diseases. zgeciﬁcally, pairs of diseases were connected through the Disease
Ontology®, and pairs of drugs were connected by the drugs’ molecular structure
fingerprints and considered similar if the Tanimoto coefficient was > 0.9.
Structural fingerprints were computed with the extended-connectivity fingerprints
ECFP4%. To score the predictions of associations between genes, drugs and
diseases, receiver operating characteristic (ROC) curves were plotted and the area
under the ROC curve (AUC) was calculated. DeLong’s test®® was performed to
compare the difference between ROC curves.

Il pr ing of text from GEO series. The text from each GEO
series including title, summary, and keywords were extracted and processed
separately. Text was first tokenized into words that were then lemmatized using the
WordNet Lemmatizer®” and stemmed using the Porter stemming algorithm®.
Term frequency-inverse document frequency (TE-IDF)®® was used to convert
stems of both unigrams and bigrams into numerical values that measure the
importance of an n-gram to a document in the context of the collection of
documents. Truncated singular value decomposition was used to reduce
dimensionality of the TF-IDF matrices to capture at least 10% of the variance. To
visualize the GEO studies in the textural feature space, t-Distributed Stochastic
Neighbour Embedding” was used to reduce the dimensionality of the matrices
from the truncated singular value decomposition. To classify whether a GEO series
contains a disease signature, three textural feature matrices representing the title,
summary and keywords were used to train and test a classifier. To measure the
performance of the classification, three-fold cross-validation was applied to
calculate the area under the ROC curve, area under the precision-recall curve,
Matthew’s correlation coefficient and F1 score. Classifiers from the scikit-learn
package were tested including: random forest’?, extra trees’>, support vector
classifier and the XGBoost implementation of gradient boosting machines’*.
Hyperparameters of the classifiers were optimized using grid search.

71

Classifying control versus treatment samples based on text. We formulate the
problem of classifying GEO samples as a binary classification problem. This means
that we aim to learn from text-derived features whether a sample is part of the
control or treatment group. Features were extracted from the following text fields
associated with each GEO sample: title, description, characteristics and source
name. These text elements were tokenized and converted to binary vectors
representing the presence or absence of tokens for each sample. The classifier we
used for solving this problem is a Bagging”> of 20 multinomial Bernoulli Naive
Bayesian® classifiers after probability calibration with isotonic regression’®. To
measure the performance of the classifier, 10-fold cross-validation was applied to
calculate area under the ROC curve, area under the precision-recall curve,
Matthew’s correlation coefficient and F1 score.

Development of the CREEDS web portal. A web portal was developed for
visualizing and querying the collections of the gene expression signatures. Rela-
tionships between all signatures are visualized using the D3.js pack layout and D3.js
clustergrammer. Clustergrammer is a visualization tool we developed starting with
the open-source code example for the matrix co-occurrence visualization on the
D3.js website. All data and metadata of the signatures are stored in a MongoDB
database. The portal uses the Python Flask framework. Signed Jaccard index was
implemented to query signatures in which users input up or down gene lists into
two separate text boxes. The text signature search option queries the metadata text
of all signatures in the database. RESTful application programming interface (API)
endpoints were also developed to enable users to programmatically query and
search the CREEDS database.

of gene exp i es from GEO. To
automatically extract gene expression signatures from GEO, we first applied the
gradient boosting machines classifier (described above) to predict the categories of
all GEO studies (1 = 31,905) performed in human, mouse or rat using microarrays.
The classifier utilized the title, summary and keywords from each study. After this
step, we selected the studies that were predicted to be gene, disease or drug per-
turbations with a probability threshold greater than P>0.9. We then applied the
Naive Bayesian-based classifiers described above to predict the probability of
whether samples associated with these studies have controls based on the sample
titles. Next, we computed the pairwise Manhattan distance between the samples
based on features extracted from sample descriptive terms, and then used the
DBSCAN77 algorithm with minimum samples set of 2 to perform clustering on the
distance matrix between samples to identify clusters of semantically similar
samples. We removed any clusters with large standard deviation (P> 0.2) to reduce
instances of mixture between control and perturbation samples. To determine
whether a cluster of samples is a control group or a perturbation group, we chose
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the average probability P> 0.7 and P<0.3 from the Naive Bayesian-based classifier
as control group and treatment group, respectively. Next, we enumerated every pair
of valid control groups and perturbation groups within each study as metadata for
valid predicted gene expression signatures.

To properly label the terms associated with each predicted signature, we used

the API of BeCAS’® to tag biological entities from the text associated with each
study, as well as the text associated with the samples, including: genes, cell or tissue,
disease, and drug or other small molecule chemical; and then recorded these term
counts for a final decision of which terms we should use to label each signature. To
process the gene expression data of the predicted gene expression signatures, we
first used SVAZ® to correct the batch effect as described above, and then applied the
CD algorithm?! to compute differential expression.

Data availability. All extracted and processed signatures with their accession
numbers and other metadata are freely available for download from the CREEDS
portal at: http://amp.pharm.mssm.edu/creeds. The CREEDS portal also provides
the data through API. Users can search the data by submitting their own signatures
for analysis. The site also provides two modes of visualization of all signatures.
Accession codes for top hits for drug signatures extracted from GEO queried
against drug perturbations can be found in Table 1.
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Abstract. Aging is associated with both muscle weakness and a loss of muscle mass, contributing towards overall frailty in the
elderly. Aging skeletal muscle is also characterised by a decreasing efficiency in repair and regeneration, together with a decline
in the number of adult stem cells. Commensurate with this are general changes in whole body endocrine signalling, in local
muscle secretory environment, as well as in intrinsic properties of the stem cells themselves. The present review discusses the
various mechanisms that may be implicated in these age-associated changes, focusing on aspects of cell-cell communication
and long-distance signalling factors, such as levels of circulating growth hormone, IL-6, IGFI, sex hormones, and inflammatory
cytokines. Changes in the local environment are also discussed. implicating IL-6, IL-4, FGF-2, as well as other myokines, and
processes that lead to thickening of the extra-cellular matrix. These factors, involved primarily in communication, can also
modulate the intrinsic properties of muscle stem cells, including reduced DNA accessibility and repression of specific genes by
methylation. Finally we discuss the decrease in the stem cell pool, particularly the failure of elderly myoblasts to re-quiesce
after activation, and the consequences of all these changes on general muscle homeostasis.

Keywords: Aging, adult stem cells, muscles, skeletal, myoblasts, intercellular signaling peptides and proteins, homeostasis

INTRODUCTION [2], blood vessels [3]. peripheral blood [4], skin [5],

teeth [6], gut [7], liver [8], heart [9], brain [10] and

Over the last 60 years, work performed on animal
models, chiefly mouse, rat, and avian, and on human
samples. has revealed and explored the capacity of
adult stem cells - also called somatic stem cells — to
self-renew and to differentiate into unipotent progeny
within their residing tissue [1], generally for the pur-
pose of repair. Resident stem cell populations have now
been described in most tissues. including bone marrow
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skeletal muscle [11]. Once body growth has stopped
and adulthood is reached, most of these stem cells
become quiescent, and will only be activated for tissue
turnover. Although this turnover can be very active as
in circulating blood or gut epithelium in other tissues
such as liver the stem cells usually remain unsolicited
as hepatic damage rarely occurs in healthy adults [8].
Despite this heterogeneity, a decline in number and
properties is universally observed in aged stem cells,
a phenomenon which alters the maintenance of tissue
homeostasis with aging. In aged skeletal muscle, a tis-
sue with low turnover. this decline in the adult stem
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cell (also called satellite cell), which is responsible for
muscle repair [12], is associated with muscle atrophy
and muscle weakness [13-15], although their deple-
tion in the mouse has differential effects depending on
the muscle [12].

Muscle stem cells or satellite cells are localized
beneath the basal lamina, peripheral to the muscle
fibers [11], and express Pax7 [16] and Notch3 [17].
After muscle injury, satellite cells are driven out of
their quiescent state, and start to proliferate. Most of
the activated satellite cells rapidly co-express MyoD
or Myf5 [16, 18]. The proliferating satellite cells - also
called myogenic precursor cells or myoblasts - expand
under the control of Notch3 [17] and Notchl/Heyl
pathways [19, 20]. They divide asymmetrically, with
self-renewal of the stem cell pool being maintained by
a minor population of myogenic precursor cells that
down-regulate their expression of MyoD and Myf5
and return to a quiescent state [ 18, 21-23]. This asym-
metrical division involves Numb, an antagonist of the
Notch signalling pathway [19, 24]. Numb is asymmet-
rically localized during myoblast mitosis and it is the
cell that has a high level of Numb that goes back to
quiescence for self-renewal [19, 24-26]. After several
rounds of proliferation, activated myoblasts decrease
their expression levels of Pax7, Myf5 [16, 18] and
Notch3 [17]. The Notchl pathway is then repressed
by Stral3 [20] through the CBF1 pathway [20, 27].
Simultaneously, the Wnt pathway is activated and
promotes myoblast differentiation through B-catenin
[28]. Myoblasts exit the cell cycle by expressing p57
[29], and then cyclin inhibitors - p21 and hypophos-
phorylated pRb [30-32] - together with higher levels
MyoD followed by myogenin, a driver which trig-
gers the expression of the differentiation genes [33,
34]. The myoblasts consequently undergo differenti-
ation into myocytes, and fuse either with each other
or with existing multi-nucleated myofibers in order
to repair injured muscle [35, 36]. The differentiation
and maturation process is regulated by MEF2, MEF3,
and Mrf4 pathways [37-39], while other factors, such
as Myomaker, are involved in fusion [40]. Muscle
precursor cell proliferation, fusion and differentiation
are tightly orchestrated by circulating hormones (e.g.
growth hormone [41], testosterone [42, 43] and thyroid
hormones [44, 45]), growth factors (e.g. IGF system
[41], FGF system [46-48], TGF-b [49, 50]), G-CSF
[51], chemokines (e.g. interleukines [52-55]. MPC
[55, 56]) and other secreted components (e.g. vesicles
[57, 58]) present in the muscle stem cell environment.

Aged human [59] or murine [60-62] muscle can
regenerate and repair, although the rate of regeneration

195

declines [60-62]. This slower regeneration can be
explained by: (1) changes in the muscle stem
cell environment (growth factors, growth hormones,
inflammation, and extracellular matrix content); (2) a
lowered responsiveness of progenitor cells to repair
stimuli; and (3) decrease in the number of muscle stem
cells with aging. Each of these factors may impact on
muscle homeostasis and each may both participate to,
and be affected by, age-associated changes in inter-
cellular communication. The subsequent sections will
describe the different roles that intercellular communi-
cation may play in muscle aging, from hormonal and
other circulating endocrine factors to local paracrine
and autocrine secretory environment of the stem cell
niche that may also modify the intrinsic properties of
the stem cells themselves.

HORMONAL AND OTHER CIRCULATING
FACTORS: CHANGE IN ENDOCRINE
COMMUNICATION WITH AGING

The decline in muscle regenerative capacity with age
[63] has been partly attributed to a decline in extrinsic
environmental cues (see Fig. 1). Levels of circulating
hormones, such as testosterone or IL-6 or growth hor-
mone (GH) or IGF-1, are low in serum samples of aged
subjects [64-66].

The endocrine hypothalamic-pituitary axis is altered
with aging, leading to changes in hormone secretion
that can contribute to cognitive decline or depression.
Epidemiological studies have also shown a correlation
between the decrease in growth hormone (GH) secre-
tion and sarcopenia as well as other signatures of aging
(e.g. intra-abdominal adiposity, osteopenia, etc.) [67].
GH is a stress hormone produced by the hypothalamus.
It plays a key role in muscle mass maintenance through
life [66]. It acts on myoblasts through its receptor GHR
and activates NFATc2 that in turn stimulates the expres-
sion and secretion of IL-4 [41, 68, 69] - IL-4 being
critical for myoblast fusion [68. 69]. GH also stimu-
lates IGF-1 secretion by both liver and muscle [66].
IGF-1 and its splice variants - IGF-1Ea and IGF-1EDb -
modulate myoblast proliferation [70] and differentia-
tion [71] through MAPK and ERK1/2 signalling [70].
The latter regulates myogenesis, for example by inter-
acting with p38a3 MAPK and the asymmetric division
and self-renewal of satellite cells [72].

These age-associated changes in the endocrine
hypothalamic-pituitary axis can have further effects
on the gonadotropic axis. Sex-steroid privation associ-
ated with age participates to, among other phenomena,
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Fig. 1. Age alters serum composition and thereby affects intercellular communication at distance. The endocrine hypothalamic-pituitary axis is
altered with aging, affecting the composition of circulating hormones in the serum. For instance, the secretion of growth hormone is decreased,
leading to loss of muscle mass. In addition, the lower level of growth hormone will also stimulate less the secretion of IGF-1 - IGF-1 being involved
in muscle mass maintenance and in the satellite cell myogenic program. The endocrine hypothalamic-gonadotropic axis is also affected, leading
to a decrease of sex steroids such as Testosterone, another hormone involved in muscle mass maintenance. Similarly, a decrease in oestrogen
can act on the myogenic program through IGF-1 signaling. The decrease in circulating hormones affects the capacity of the satellite cells to
respond to muscle damage. Aging is also associated with an increase in inflammation. The cytokines secretion by aged inflammatory cells as
well as their ROS production is modified and can also affect the capacity of the satellite cells to respond to muscle damage. The modification
of the entire serum composition with aging has negative effects on muscle mass and on muscle regeneration capacity.

loss of muscle mass [67]. The sex-steroid testosterone,
secreted by the testis, has been extensively studied
in muscle, and can be considered as a double-sided
blade, acting both on myoblast proliferation and dif-
ferentiation. It acts on myoblasts through the androgen
receptor localized in the nucleus [73] or through G
protein-coupled receptors [74]. It promotes myoblast
proliferation through protein kinase C (PKC) signaling
[74] - for instance through nPKC§ and extracellular
signal-regulated kinases 1 and 2 (ERK1/2) activation
[75]. Once ERK1/2 is phosphorylated, it is accompa-
nied by an increase in cyclin E and Cdk2 — which are
involved in myoblast proliferation [76]. Testosterone
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acts also on myoblast differentiation via protein kinase
A (PKA) signaling [74] - PKA being required for
myoblast fusion [77, 78]. Interestingly, oestrogens act
similarly on the myogenic program through IGF-1
signaling [79].

Aging is associated with an increase in low grade
chronic and systemic inflammation, also called inflam-
maging [80]. Inflammaging could be due to microbial
infection, cell debris, over-activated coagulation sys-
tem, or an increase in cellular senescence with the
associated changes in secretion [80]. This increased
inflammation is generally attributed to a modified
immune partner. Indeed, while young macrophages
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have been shown to have a beneficial effect to clear
muscle debris after injury and stimulate myogenesis
[81-83], aged macrophages can release a higher level
of osteopontin that inhibits the muscle regeneration
process [84]. Not only macrophages are involved in
the muscle regeneration process. but also neutrophils,
lymphocytes, dendritic cells, etc. These inflammatory
cells secrete numerous chemokines and cytokines, but
little is known about the impact of aging on cytokine
secretion [85]. In the literature, it is described that IL-
6 serum level is decreasing during aging [65]. IL-6
originates from the inflammatory cells, but also from
the skeletal muscle itself [86]. It has been shown to be
an important regulator of muscle stem cells [53], as it
activates janus kinase 2 (Jak2) that will in turn phos-
phorylate STAT3 [52]. Once STAT3 is phosphorylated,
it homodimerizes and translocates to the nucleus to
bind to the y-interferon activation sequence [87] in the
promoter regions of genes involved in myoblast pro-
liferation such as c-myc [52]. IL-6 not only regulates
myoblast proliferation, but also promotes myoblast dif-
ferentiation through the p38 MAPK pathway [88]. A
decrease in IL-6 serum level could thus impact muscle
regeneration efficacy.

The tissues from which circulating factors origi-
nate, such as muscle, hypothalamus, gonads, and liver,
become atrophic and less active with age [8, 66, 89].
This change in body composition and activity with
aging can thus participate to the decrease in circulat-
ing hormones (see Fig. 1). Consequently, when muscle
damage occurs in an aged person, satellite cells be
less prone to activation and differentiation, leading to
a less efficient repair. Ten years ago, Conboy et al.
elegantly showed that muscle regeneration could be
partly rescued in aged mice exposed to serum from
young mice through a parabiosis system [90]. Sim-
ilarly, hormones released during pregnancy rescued
the muscle regenerative capacity of aged female mice
[91]. When aged subjects are trained, a rejuvenating
effect is observed on muscle. This benefit effect could
probably be due to a decrease of the inflammation for
instance, as observed in exercised patients affected by
myositis [92, 93]. When aged muscle stem cells were
engrafted into young mice [94], their capacities to pro-
liferate and differentiate were partly restored. Together
these data suggest that circulating agents, which can
originate from different tissues, impinge on muscle
regeneration efficiency. Aging affects both the size
and function of each tissue and consequently tissue
secretory capacity. This alters the composition of circu-
lating serum effecting intercellular communication at
distance.
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SECRETORY ENVIRONMENT OF THE
STEM CELL NICHE: CHANGE IN
PARACRINE AND AUTOCRINE
CELL-CELL COMMUNICATION WITH
AGING

In addition to its classical role as a locomotive sys-
tem, skeletal muscle has recently been shown to have
a secretory activity. For instance, IL-6 [86] and mus-
culin [95] have been identified to originate from and
be secreted by skeletal muscle in vivo. In vitro, the
secretome profile of C2C12 myotubes [55. 56], human
myotubes [57] and rat muscle explants [96] suggest that
muscle cells secrete numerous growth factors (e.g. fol-
listatin like protein 1, IGF-2, TGF, etc) and cytokines.
Secreted proteins - also named myokines [95] - may
act in an autocrine/paracrine manner on neighboring
muscle cells and contribute to muscle growth and regen-
eration. This local muscle secretome can be altered with
aging. For instance, Chakkalakal et al. have shown that
an increased secretion of FGF-2 by aged myofibers
in mice inhibits sproutyl expression in satellite cells,
and consequently reduces their capacity to go back
to quiescence and replenish the pool of the muscle
stem cell [47]. The muscle secretome includes not only
hormones, but also extracellular matrix components
(ECM, e.g. TIMP2, fibronectin), miRNAs, and vesi-
cles (exosomes and microvesicles) [57, 58, 97, 98].
Interestingly, exosomes originating from differentiated
myocytes stimulate the myogenic program of prolif-
erating myoblasts [58]. Myocyte exosomes contain
miRNAs that inhibit Sirtuin expression, and thus stim-
ulate the myoblast differentiation into myotubes [98].
A decrease in muscle mass with aging may thus reduce
muscle secretory output. In a transcriptomic analysis
performed on quadriceps muscle from young (15-24
years old) and elderly (72-80 years old) subjects, we
indeed observed down-regulation of secretome mark-
ers in aged muscle [99]. However, little is known about
the changes in the composition of the muscle secretome
of aged muscle and further investigation is needed.

The local niche of muscle stem cells includes
growth factors and cytokines secreted not only by the
myofibers themselves, but also potentially by other
cell types present within muscle, such as fibroblasts,
endothelial or peri-endothelial cells [100, 101]. This
local secretome can also be altered with aging (Fig. 2).
Forinstance, fibroblasts present in aged skeletal muscle
express a high level of TGF-f [101] — a growth fac-
tor that inhibits differentiation of myoblasts [102], and
thus slows down the regeneration process. In addition,
aging is described to be associated with an increase
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Fig. 2. Aging changes the microenvironment of the satellite cell. Decreased muscle mass can be accompanied by a decrease in myokines
and vesicles secreted into the microenvironment of the satellite cells. Aged myofibers produce more ROS and FGF-2, factors that can change
epigenetic marking of the satellite cells and shut down their myogenic program and their capacity to re-quiesce. They also release less NO into
their environment, stimulating vasoconstriction which may inhibit serum tissue perfusion. Aged fibroblasts present in the muscle can secrete more
fibrous proteins, thickening the ECM. In turn, this decreases the diffusion of growth factors toward the satellite cells and thus their responsiveness
to muscle repair cues. Increase in senescent cells with age can secrete factors that inhibit tissue regeneration. The microenvironment of the
satellite cells is thus altered and affects their capacity to respond to any muscle damage.

in senescent or pre-senescent cells in muscle and other
tissue [103, 104]. During the last decade, the secretome
of senescent cells from different tissues has been inves-
tigated and has been described to have an impact on
the inflammatory response (by stimulating it in chronic
obstructive pulmonary disease [105]) and to be instru-
mental in poor tissue regeneration (as observed in aged
skin [106]). Altogether, these data suggest that the
presence of senescent cells distinct from satellite cells
within muscle tissue could alter these microenviron-
ment of the satellite cells, and thus their behavior.
Muscle perfusion is decreased with aging [107],
which may render myofibers and satellite cells less
accessible to circulating hormones. This loss of per-
fusion may be maintained by the muscle loss itself.
Indeed, sarcopenic muscle presents a disruption of the
dystroglycan complex [108], leading to NOS-1 mis-
localization, due to the link of NOS-1 to the dystrophin
protein [109]. The mis-localization of NOS-1 results
in decreased NO production, thereby diminishing
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muscle perfusion [110]. A second effect of decreased
NO production is a reduction in satellite cell activation
[111].

Aged skeletal muscle presents a thickening of the
ECM and a general increase in fibrosis [112]. Even
if muscle fibers can secrete collagens and other com-
ponents of the ECM [57, 97], little is known about
their role in ECM thickening. A recent study shows
that fibroblasts present in aged rat muscles express a
higher level of collagen IVa2 and laminin 2 — which
may participate in the thickening of the ECM [101].
This increase in the ECM thickness can interfere
with the muscle regeneration process by modifying
myoblast activation, proliferation and migration [48,
113]. Finally, a thickened ECM may act as a par-
tial barrier, reducing the accessibility of the satellite
cells to circulating growth factors, as observed for
smooth muscle cells [114], and thus impair satel-
lite cell activation and differentiation during muscle
repair.
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Together, these data suggest that the changes in
the secretory composition of the muscle stem cell’s
local niche with aging can slow down the regeneration
process and decrease the replenishment of the pool of
reserve cells. Repetitive iterations of this could con-
tribute to the loss of muscle stem cells with aging.

CHANGE IN THE INTRINSIC PROPERTIES
OF STEM CELLS WITH AGING

Exposure to a young environment by engraftment
into young subjects or by parabiosis experiments only
partly rescues the properties of aged satellite cells [90].
For instance their capacity to replenish the pool of
reserve cells is not rescued (our unpublished data and
[115]). These data suggest that some intrinsic proper-
ties of satellite cells are altered with aging and are not
easily manipulated by external cues.

Intrinsic properties rely at least partly on DNA
methylation, which may regulate gene expression
in two ways [116]: (1) the accessibility of methy-
lated enhancer regions to transcription factors is
reduced, resulting in gene expression repression;
(2) methyl-CpG-binding proteins bind to methylated
DNA and alter the activity of histone deacetylases
and methyltransferases. Consequently, local histones
are hypermethylated, stabilizing the nucleosomes. so
that DNA in methylated regions is tightly packed
preventing binding of transcription factors or RNA
polymerases. A recent study shows that histone methy-
lation patterns are different between aged and young
satellite cells in mice [117], and that the methylation
profile can be modified by the presence of local growth
factors such as FGF-2 [118]. The authors associated
this histone methylation profile to a slower capacity of
aged satellite cells to re-enter the cell cycle for aged
satellite cells [117]. Interestingly, this study [117], as
well as our own observations on culture of aged human
muscle stem cells, show that once activated, aged satel-
lite cells have a similar myogenic potential to young
satellite cells. This indicates that muscle stem cells do
not lose their differentiation potency with age, suggest-
ing that the decrease with aging in the differentiation
program during muscle regeneration is strongly related
to changes in circulating factors.

DNA methylation has been shown to be increased
in several tissues with aging, and the skeletal muscle
is no exception [119, 120]. We have observed a higher
level of DNA methylation in satellite cells of aged sub-
jects (unpublished data). This hypermethylation could
impact on the satellite cell fate and interfere with their
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capacity for self-renewal as observed in previously
published studies (our data and [47, 115]). How DNA
methylation is regulated with aging is not well known.
Repeated stress over time can be one of the parame-
ters implicated [121], involving for instance reactive
oxygen species (ROS) [122]. Increased ROS produc-
tion with age can be due to an increase in inflammation
with aging [80] or to mitochondrial dysfunction in aged
muscle [123, 124]. A decrease of circulating GH is also
associated with a higher level of ROS and a lower level
of anti-oxidants [125]. This overproduction of ROS
could participate to increased DNA damage observed
with aging [126]. Consequently, DNA methyltrans-
ferases (DNMT) are recruited to the DNA damage
site, potentially inducing DNA silencing of the region
nearby [127]. When we re-analyzed the transcriptome
data available online (GSE9103), we indeed confirm
a significant enrichment in the cellular response to
oxidative stress in aged muscles (Fig. 3), suggesting
a higher stress in aged muscle. ROS diffuse easily
through membranes of fibers, thus potentially affect-
ing DNA damage in neighboring satellite cells, and
modifying their methylation status.

Factors discussed above - changes in the composi-
tion of circulating hormones in serum, as well as in
the microenvironment - could also modify the epige-
netic status of satellite cells and thus their behavior
during regeneration, slowing satellite cell activation
and decreasing their capacity to go back to quiescence

THE LOSS OF MUSCLE STEM CELLS
WITH AGING AND ITS CONSEQUENCES
ON MUSCLE HOMEOSTASIS

The number of muscle stem cells declines with
age in mouse [13, 47, 90, 94] and humans [128,
129]. Although this loss can be caused by an increase
in cell death, cellular senescence, or a deficiency in
re-quiescence, apoptosis is rarely observed in aged
murine and human muscle stem cells [94, 130, 131],
suggesting that this cannot by itself explain the loss
of muscle stem cells with aging. However, we cannot
exclude the fact that apoptosis is a short punctual event
that may be missed experimentally. Cellular senes-
cence - also called replicative senescence - is defined
as a phenomenon by which normal diploid cells cease
to divide. It can be induced by telomere shortening
that occurs during cell proliferation, and has been pro-
posed to contribute to the loss of satellite cell function
with aging [103]. However, shortened telomere length
has not been reported in aged human satellite cells.
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gene content similarity between the nodes.

Furthermore, there may be insufficient activation and
turnover of satellite cells to allow senescence to be a
major contributor to stem cell decline. Satellite cells
are rarely activated in healthy adult human or mouse,
and once muscle growth is complete in young human
adults [14], subsequent myonuclear turnover is slow,
being estimated at 15 years during adulthood [132]. In
mouse models, myofiber growth by the addition of new
nuclei through satellite cell fusion is completed by 21
days postnatally [133], and there is little evidence to
suggest significant turnover. As discussed earlier, the
capacity to re-quiesce through the sprouty | pathway is
decreased in aged stem cells [47, 117]. Consequently,
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when satellite cells are activated for muscle repair
in elderly subjects, they do not replenish the pool of
reserve cells. This failure of re-quiescence is a likely
contributor to stem cell population decline.

The decrease in the number of satellite cells with
aging can affect muscle homeostasis by altering the
ECM composition. Indeed, aged muscle depleted in
satellite cells in a Pax7"*ER_DTA murine model shows
an increase in fibrotic deposition [134], while fiber
size was unaffected [135]. Resulting thickening of the
ECM may increase myofiber fragility, and reduce the
response of satellite cells to muscle damage, as dis-
cussed earlier. Therefore a loss of satellite cells could
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affected with age, through the presence of aged fibroblasts, of senescent cells, and aged myofibers. These local changes contribute to the fragility

of the myofibers and to a decrease in the regenerative potency.

impinge directly upon muscle homeostasis, and exac-
erbate muscle fragility with aging.

CONCLUSION

The interplay between whole-body tissue compo-
sition, the quantity and content of circulating serum
hormones, and whole-body stress, such as ROS pro-
duction, changes with age, and contributes to the
decline in muscle mass and function (Fig. 4). Increased
stress can act through epigenetic marking of satellite
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cells, changing their intrinsic properties with age -
aged satellite cells show a decrease in their activation
rate due to epigenetic changes. In addition, satellite
cell number is decreased during aging, a loss that can
contribute not only to a decreased regenerative capac-
ity, but also to an increase in fibrotic deposition and
ECM thickening. Increased muscle stiffness renders
myofibers more fragile, requiring the activation of an
already reduced and less responsive satellite cell pop-
ulation. Age-associated changes in the local signalling
environment can affect the myogenic program causing
alower regeneration efficacy, a decrease in myonuclear



M. Thorley et al. / Cell-Cell Communication with Age in Muscle Stem Cells

turnover, and a failure in replenishing the pool of
reserve cells, further contributing to the loss of mus-
cle mass. Changes in the whole system of intercellular
communication — both at the whole-body scale and in
muscle microenvironment — may thus act as a vicious
circle to exacerbate sarcopenia as the body ages. It is
noteworthy that most studies on muscle aging in the
literature have been done on muscle stem cells, rather
than myofibers, and thus emphasize the role of satellite
cells in muscle mass maintenance. The effect of hor-
mones and cytokines and more generally the effect of
aging on myofibers is difficult to assess directly and
should not be neglected. The myofibers themselves
comprise the bulk of the muscle mass and are clearly
a key part of the maintenance of their own mass with
aging, as indicated by disequilibrium of protein synthe-
sis and degradation or the expression of micropeptides
such as myoregulin that have a key role in muscle
performance [138].
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