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Abstract
Extreme events are phenomena, often considered as catastrophic, that occur in
the tail of a distribution usually deviating from an expected, exponential decay.
In optics, these events were first studied in the context of fibers, where they have
been extensively analyzed, as optical rogue waves, in light of the well known
analogy between optics and hydrodynamics, through the nonlinear Schroedin-
ger equation. With the development and the broadening of the field, extreme
events have been also studied in dissipative optical systems with or without
spatial degrees of freedom.
In this Thesis we focused on the study of extreme events in three different active
and dissipative optical systems, each presenting one or two spatial degrees of
freedom, either in the transverse plane, perpendicular to the direction of propa-
gation of light, or in the propagation direction. Localized structures of different
nature represent an important possible solution in each one of the systems here
studied, hence their interaction and the role played in the formation of extreme
events have been also investigated into details.
In the first system, a monolithic broad-area semiconductor laser (VCSEL) with
an intracavity saturable absorber, we report on the occurrence of extreme events
in the 2D transverse plane of the electric field intensity. In particular we high-
light the connection between these objects and cavity solitons, both stationary
and oscillatory, also present in the system.
In the second system, a highly multimode laser with optical injection spatially
extended along the propagation direction, we analyze the interaction and merg-
ing of phase solitons, localized structures propagating along the cavity carrying
a 2π phase rotation. Extreme events have been investigated in two configura-
tions: a first one where they emerge from the collision of phase solitons with
other transient structures carrying a negative chiral charge, and a second one
where high-peak events emerge from an unstable roll regime where phase soli-
tons are not a stable solution. In both these systems we investigate the role of
chirality in the extreme event formation.
In the third system, a broad-area semiconductor laser (VCSEL) with optical in-
jection, we study into details the interaction of cavity solitons in the transverse
plane, described as two particles subjected to an interaction potential exponen-
tially decreasing with the distance between the two objects: a possible analogy
with hydrophobic materials is here suggested. Some preliminary results show-
ing spatiotemporal extreme events in this system are also given.

KEYWORDS: dynamics of nonlinear optical systems – semiconductor lasers
– extreme events – rogue waves – dissipative solitons.
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Résumé
Les événements extrêmes sont des phénomènes, souvent considérés catastro-
phiques, qui se produisent dans la queue d’une distribution généralement en
s’écartant d’une décroissance attendue exponentielle. En optique, ces événe-
ments ont été étudié dans le contexte des fibres, où ils ont été amplement ana-
lysés, comme des vagues scélérates, par analogie bien connue entre l’optique et
l’hydrodynamique à travers l’équation de Schroedinger non linéaire. Avec le dé-
veloppement et l’élargissement du domaine, l’étude des événements extrêmes a
été étendue à des systèmes dissipatifs avec ou sans degrés spatiaux de liberté.
Dans cette thèse on se concentre sur l’étude des événements extrêmes dans trois
différents types de systèmes optiques actifs et dissipatifs, présentant chacun un
ou deux degrés spatiales de liberté, soit dans le plan transversal (perpendicu-
laire à la direction de propagation de la lumière) soit dans la direction de pro-
pagation. Des structures localisées de nature différente constituent une solution
possible importante dans chacun des systèmes étudiés ; leurs interaction autant
que leurs rôle dans la formation des événements extrêmes ont donc été analysés
en détails.
Dans le premier système, un laser à semiconducteur monolithique (VCSEL) à
large surface avec un absorbant saturable, on présente la formation d’événe-
ments extrêmes dans le plan transversal à deux dimensions de l’intensité du
champ électrique. En particulier, on met en évidence la liaison entre ces objets
et les solitons de cavité, soit stationaires soit oscillatoires, aussi présents dans le
système.
Dans le deuxième système, un laser multimodal spatialement étendu dans la
direction de propagation avec injection optique, on analyse l’interaction et la
fusion des solitons de phase, des structures localisées qui se propagent dans la
cavité en transportant une rotation de phase de 2π. Les événements extrêmes
ont été étudié dans deux configurations : une première où ils émergent de la col-
lision des solitons de phase avec des autres structures transitoires transportant
une charge chirale négative, et une deuxième où des événements d’intensité éle-
vée émergent d’un régime instable de motif en rouleau où les solitons de cavité
ne sont pas des solutions stables. Dans les deux systèmes, on examine le rôle de
la chiralité dans la formation des événements extrêmes.
Dans le troisième système, un laser à semiconducteur avec injection optique, on
étudie dans les détails l’interaction des solitons de cavité dans le plan transver-
sal, décrits comme deux particules soumises à un potentiel d’interaction décrois-
sant exponentiellement avec la distance entre les deux objets : une analogie pos-
sible avec les matériaux hydrophobes a été proposée. Des résultats préliminaires
présentant des événements extrêmes spatiotemporels dans ce système sont aussi
donnés.

MOTS-CLÉS : Dynamique des systèmes non linéaires – lasers à semiconduc-
teur – événements extrêmes – vagues scélérates – solitons dissipatifs.
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Introduction

Preface

This manuscript is focused on the study of extreme and abnormal events in ac-
tive, dissipative optical systems, such as lasers, with a focus on extended cavity
lasers.
Extreme events have been a topic of rising importance in the past decades and,
even though initially their main field of study in optics regarded passive systems
such as fibers, the playground has significantly broaden to include a multitude
of different areas. In particular lasers are found to be an interesting workbench
for the study of these phenomena, since they could allow us to shed some light
on the deterministic nature of the extreme events observed and, in the case of
extended cavities, to investigate the role of spatial effects.
The aim of this introduction is to place the topic of this Thesis in the context
of extreme events, a subject of study in many different fields (i.e. society, econ-
omy, geology, weather forecast and so forth). Then we will illustrate the main
results that prompted the field in the optical context and focus on its broadening
to nonlinear active dissipative systems. Finally we will discuss the role of local-
ized structures and their interaction in this framework and illustrate the content
of the present manuscript.

Extreme events in different fields

There are many phenomena that fall or could fall under the definition of extreme
events, depending on the point of view of a person [Jentsch 2006]. For instance
an event is usually considered extreme according to its rarity and catastrophic
nature but these can be subjective concepts, for instance to an insurance com-
pany an event is to be considered rare if it presents a low probability of occur-
rence and catastrophic if it implicates big consequences. Hence, in this case, the
extremeness of an event is considered in terms of both its impact and its fre-
quency. To a scientist instead the main charm regarding extreme events consists
in their uniqueness, and in the concept of whether or not it is actually possible
to predict these objects. An event is considered extreme if it involves a big de-
viation from a series of measurement [Jentsch 2006]. In this view for example
a magnetic storm or a particularly violent earthquake can be considered as ex-
treme events even if they do not, respectively, affect any device or occur in a
inhabited area.

Extreme events in nature and society can affect a single individual, for ex-
ample the contraction of a rare disease, as well as multiple people or the en-
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(a) Hurricane Hugo in 1989 (b) Crowd gathering on Wall
Street after the 1929 crash

Fig. 1 – Examples of extreme events in nature and society. (a) Hurricane Hugo occurring
in 1989. Photo by NOAA / Satellite and Information Service, from Wikimedia Com-
mons - Public Domain. (b) Crowd gathering on Wall Street after the 1929 Wall Street
Crash which many believe lead to the following 12-year Great Depression affecting all
Western industrialized countries. Photo from Wikimedia Commons - Public Domain.

vironment, for example natural disasters, such as floods or hurricanes, societal
disasters, such as pandemics, or market crashes.
Given the variety of possible phenomena to be considered as extreme the most

obvious approach for their characterization consists in the study of their statis-
tics and dynamics, focusing in particular on the possible analogies between dif-
ferent extreme events, their generating mechanisms and thus their predictability.

In general extreme events occur in the tail of a probability distribution. In
many, but not all, cases [Jentsch 2006] the tails of a distribution containing ex-
treme events are heavy, or subexponential, with exponential tails characterizing
any Gaussian distribution. Given the probability distribution of an event it is
possible to evaluate their probability of occurrence or even the probability of
having any event larger than a certain threshold.
Some statistical theories have been developed on this topic [Gumbel 1958], but
their working assumptions for the events to be independent and identically dis-
tributed are very strong and rarely in good agreement with reality.

The other main approach in the study of extreme events consists in looking
at the dynamical properties of the phenomenon. All extreme events in nature
are usually expression of the complex dynamics of a system [Jentsch 2006]: they
do not occur randomly but due to a dynamical mechanism that introduces huge
excursions in the system trajectory, bringing it far from its normal state. Some
examples of possible extreme events scenarios are those leading to deterministic
chaos or turbulence [Jentsch 2006].

Even if no universal theory can be developed for extreme events, we may
expect some similarities between different phenomena. We also would like to
point out that these similarities can be both in the cause, i.e. the generating
mechanism or the initial conditions, or in the effects. Similarities between dif-
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ferent classes of extreme events in their effects are in fact much more easy to
observe since they usually cause some sort of destruction (i.e. victims in the case
of natural or financial disasters, system damage in case of power spikes and so
forth). For these reasons prediction of extreme events is a rather important task.
One of the main problems regarding predictability for these objects consists in
the fact that many models are built on mean values [Jentsch 2006], hence when
trying to describe extreme events such models either underestimate or fail in
their prediction.

For a quantity to be predictable some amount of determinism is needed
[Jentsch 2006]. Nevertheless we have to remind that also in deterministic sys-
tems chaos can emerge, causing the impossibility of long-term predictions [Erk-
intalo 2015] even if this does not imply, on a short scale, the total lack of possible
precursors.

Fiber optics and the analogy with hydrodynamics

A particular kind of extreme events, often studied in optics are rogue waves (RWs)
which are also studied in oceanography and can be compared with this field,
due to the well-known analogy between optics and hydrodynamics. Rogue
waves are isolated high-amplitude waves occurring more frequently than ex-
pected from Gaussian statistics [Kharif 2009, Onorato 2013].

The concept of rogue waves has been infamously well-known in oceanogra-
phy since centuries, initially as anecdote or sailors’ tale and then, after the first
experimental observations, like the Drapner wave in 1995 (see for example [Ha-
ver 2000, Kharif 2009]), as an actual topic of study. In oceanography these objects
are also called monster or freak waves and are known to destructively dam-
age ships. There are different definitions for RWs, the main ones defining them
as waves whose trough-to-crest height exceeds either two times the significant
wave height (i.e. the mean of the highest third of the wave heights detected), or
the mean plus eight times the standard deviation of the data. More details on
the derivation of these definitions and rogue waves statistics are given in Chap-
ter 1.

Experimental measurements of rogue waves in oceanography present some
difficulties [Onorato 2013]. The most used instrumentation consist in a buoy,
registering the surface elevation data in a single point of the sea. Some evolu-
tions of this technique include the possibility of collecting also the direction in-
formation through the use of a directional buoy (see for example [De Pinho 2004])
and an alternative detection method consists in the use of a wave radar [Wy-
att 2009]. In any case this kind of single point measurement presents some is-
sues, since a simple temporal trace is not able to fully describe the spatiotempo-
ral complexity of the sea surface. Since, to get a physical understanding of RW
formation, some kind of space-time measurement is required [Onorato 2013],
some alternative techniques have been proposed, among which the use of syn-
thetic aperture radars (SARs) [Schulz-Stellenfleth 2004], but are still regarded
with skepticism by the community [Janssen 2006]. More details on the experi-
mental evidence of rogue waves in the ocean can be found in [Kharif 2009, Ono-
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Fig. 2 – Reprinted with permission from [Solli 2007]. Schematization of the experimen-
tal setup used by Solli et al. for the first reported experimental observation of rogue
waves in fibers.

rato 2013].

To understand the analogy drawn between optics and hydrodynamics re-
garding rogue waves we have to consider the one dimensional nonlinear Schroe-
dinger equation (NLSE)

i
∂A
∂z

+ c1
∂2A
∂t2 + c2 |A|2 A = 0 .

In particular in hydrodynamics [Osborne 2010], with

c1 = − k0

ω2
0

, c2 = −k3
0 ,

where k0 is the wave number and ω0 is the carrier frequency, the NLSE describes
the evolution of the surface wave group envelope in deep water. In fiber optics
[Agrawal 2013], with

c1 =
|β2|2

2
, c2 = γ ,

where β2 < 0 is the group velocity dispersion and γ the nonlinear coefficient,
the NLSE describes the evolution of a light pulse envelope propagating inside a
fiber. Note that usually the NLSE in hydrodynamics has time and space switched,
but this poses no peculiar obstacle to the analogy, except the fact that the coeffi-
cients c1 and c2 need to be adapted [Osborne 2010, Dudley 2014].

From an historical point of view [Randoux 2016b] the discovery of multi-
solitons as solutions of the NLSE [Zakharov 1972] prompted the optical field to
the study of new solutions of the NLSE and eventually lead to the discovery of
a new class of objects, describing the instability of a finite coherent background:
these solutions are usually known as breathers, and include the Akhmediev
breather [Akhmediev 1985] and the Peregrine soliton [Peregrine 1983], that is
the Akhmediev breather limiting case for a period going to infinity [Kibler 2010].
These two solutions, in particular, fully describe the modulational instability
process and were then suggested as rogue wave prototypes in oceanography
[Dysthe 1999].
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Fig. 3 – Reprinted with permission from [Solli 2007]. Histogram of the pulse
heights, displaying a large deviation from the distribution of most stochastic processes
[Solli 2007].

With the seminal paper by Solli [Solli 2007] the concept of rogue waves
started to be extended also to the optical context and the experimental obser-
vation of breather solutions in both water wave tanks [Chabchoub 2011] and
fibers [Kibler 2010, Frisquet 2013] brought forward the NLSE analogy in a rigor-
ous way.

In the work by Solli, using the setup schematized in Fig. 2, the authors in-
ject a mode-locked ytterbium-doped fiber laser into a nonlinear fiber generating
supercontinuum: rogue waves where found in the heights of the electric field
intensity at the output of the fiber, collected through the use of a photodetec-
tor, after a filtering and signal enlargement process. A statistical analysis of the
pulse heights showed L-shaped histograms largely deviating from the distribu-
tion of most stochastic processes [Solli 2007] as illustrated in Fig. 3.
This pioneering paper has the merit of introducing the concept of rogue waves

to the optical community. Ever since the field has notably broadened and spe-
cialized. In particular, regarding rogue waves in fibers, detection without the
use of signal filters, has become more precise, allowing for a single-shot, real-
time measurements [Suret 2016, Närhi 2016] in propagation.

Among other works in the fiber supercontinuum context we mention [Erk-
intalo 2009, Kibler 2009, Mussot 2009]. Rogue waves have also been studied in
the case of optical fiber propagation with [Taki 2010, Conforti 2015] and without
[Walczak 2015] higher order dispersion, in the case of laser filamentation [Kas-
parian 2009], passive cavities [Conforti 2015] and photorefractive ferroelectrics
[Pierangeli 2015]. In the context of fibers but in case of an active system we
mention RW study in Raman fiber amplifiers [Hammani 2008] and mode-locked
fiber lasers [Zaviyalov 2012]. For a full review on the study of rogue waves and
extreme events in different optical contexts please refer to [Onorato 2013, Dud-
ley 2014, Akhmediev 2016].

The two most common generating mechanisms for rogue waves in fiber are
modulational instability [Mussot 2009, Dudley 2009] and soliton or breather oc-
currence [Akhmediev 2009, Kibler 2010, Kedziora 2013].

Rogue wave predictability has been investigated as well, in the systems de-
scribed by the NLSE, both in oceanography [Latifah 2012, Alam 2014] and in
optics [Akhmediev 2011a, Akhmediev 2011b, Birkholz 2015].
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In the optical context in particular, Refs. [Akhmediev 2011a, Akhmediev 2011b]
identify as an early warning for rogue wave occurrence, the emergence of a
triangular shape (in logarithmic scale) in the spectrum related to the forma-
tion of the Peregrine soliton and other higher-order solutions of the NLSE. In
Ref. [Birkholz 2015] the authors use a novel approach, applying nonlinear time
series analysis to search for traces of predictability directly in the experimen-
tal data. Through the use of an adapted version of the method proposed by
Grassberger and Procaccia [Grassberger 1983], the authors are able to distin-
guish stochastic processes from processes where determinism prevails, making
possible a prediction. In particular the method is based on dividing the time
series in a sequence of smaller segments and computing the distances between
the points of different segments: an elevated number of small distances implies
similarities between different segments and can be interpreted as a signature of
determinism, while in the stochastic case most distances will show large differ-
ences between different segments. The authors search for similarities close to
RW occurrence and identify multifilamentation as a mainly deterministic pro-
cess where rogue waves appear with a warning. The application of the same
method to the experimental data of the Draupner wave and to the power fluc-
tuation data in the tail of the supercontinuum generation by Solli [Solli 2007]
does not lead to the same conclusions but some issues are to be addressed [Erk-
intalo 2015].

In general we can observe that, within the scientific community two parallel
ways of exploring the analogy between optics and hydrodynamics have been
outlined.

The first method focuses on the shape of the possible rogue waves: this ap-
proach bases itself on the powerful possibility of finding the exact solutions of
the NLSE and has fundamental historical reasons. As a general reminder we
would like to point out that the NLSE in hydrodynamics, and also in optics, does
not describe the shape of individual waves but their envelope, hence all the spe-
cific envelope solutions of the NLSE, among which breathers and solitons, are
not, in general, to be considered as individual rogue waves [Dudley 2014].
In recent works it has been observed that the shape of rogue waves, even in sys-
tem configurations well described by the NLSE, might differ significantly from
the well-known breather and Peregrine soliton solutions [Randoux 2016a]. Fur-
thermore these specific solutions are generated in optical systems under very
specific initial conditions, which result unlikely to be observed in the ocean
[Randoux 2016b].

The second approach consists instead in finding similarities between the two
fields from a statistical point of view [Onorato 2004, Erkintalo 2010]. In fact
as we will illustrate more into details in Chapter 1, under the assumption of a
Gaussian distribution for the sea surface elevation it can be demonstrated that
the amplitude of the water wave envelope (and with good approximation its
height) would follow a Rayleigh distribution. In optics the main quantity un-
der analysis is the intensity of the electric field and it can be demonstrated that,
assuming a Gaussian distribution for the amplitude of the real and imaginary
part of the electric field envelope, a negative exponential distribution for the in-
tensity of the electric field envelope is to be expected. Hence if in oceanography
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a series of data acquisitions presents a Rayleigh distribution for the amplitude
of the water wave envelope and in optics an experimental setup configuration
displays a negative exponential distribution for the intensity of the electric field
envelope, the two systems are to be consider analog. Furthermore a positive de-
viation from such distributions can be identified in both fields as a signature of
rogue waves in the system, admitted it is large enough to pass the rogue waves
thresholds.

The analogy between optics and hydrodynamics through the use of the non-
linear Schroedinger equation is certainly a powerful tool. In order to correctly
exploit its potential it is nevertheless necessary to treat such analogy within its
limit. Since the NLSE has been reported as not able to describe ocean waves
on short scales [Dyachenko 2005] we might expect other models, other than the
NLSE, or an analogy on a statistical level to give us some additional insight on
this topic. Furthermore a statistical approach could also help establish a link
with the wider theory of extreme events in physics [Dudley 2014].

Extreme events in active optical systems

In the previous Section we have illustrated the development of the extreme
event field in the context of fibers and some other optical systems. Most of the
work on fibers is developed in conservative (or weakly dissipative) systems with
propagative geometry. Lasers on the other hand are active, dissipative systems
with possibly spatial degrees of freedom. Extreme events in this context have
been observed in the configurations of optically injected [Bonatto 2011], mode-
locked [Kovalsky 2011, Zaviyalov 2012, Lecaplain 2012], Raman [Randoux 2012]
and pump-modulated [Pisarchik 2011] lasers.

The study of extreme events in (active) nonlinear optical cavities presents
usually a different focus with respect to the fiber case. First of all, in the laser
case, the main approach used in the investigation of extreme events is statistical,
since none of the systems here presented are describable through the use of the
one-dimensional nonlinear Schroedinger equation. Far from being a obstacle,
this issue offers us the opportunity to reconnect to extreme event theory and
even to the concept of rogue waves from a statistical perspective, exploring the
analogy between the two field on a different level.
Most of research interest in this field is gathered around the investigation of the
general physical or dynamical mechanisms at the base of extreme event forma-
tion. In particular in the case of lasers these mechanisms include spatiotem-
poral chaos [Selmi 2016], vortex turbulence [Gibson 2016], external crisis [Bon-
atto 2011, Zamora-Munt 2013], dissipative solitons [Rimoldi 2017b] and soliton
interaction [Walczak 2017].
The broadening of the extreme event field to the context of lasers allowed to
study the deterministic nature of RWs and the consequences of the spatial ef-
fect [Bonazzola 2013], an issue very relevant also in light of the analogy with
oceanography.

In this Section we propose a summary of the results obtained in the systems
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Fig. 4 – Reprinted with permission from [Liu 2015]. Rogue wave formation in the spatial
distribution of the electromagnetic energy. The color bar values are rescaled on the
significant wave height of the field intensity. The white circle highlights the ultrafast,
subwavelength rogue wave triggered by spontaneous synchronization.

more relevant to this Thesis.
In particular, regarding the subject of lasers with saturable absorber (LSA), we
would like to mention the main results of [Bonazzola 2013, Selmi 2016, Couli-
baly 2017].
In [Bonazzola 2013] the authors study the importance of spatial effects in the
description of an all-solid-state LSA. In particular, using a rate-equation model
with one equation for the electric field intensity, three equations for the pop-
ulations in the laser levels and in the ground state and one equation for the
difference of population in the saturable absorber, the authors analyze numer-
ically different regimes, among which self-Q-switching, period doubling and
deterministic chaos, well described by the model. Extreme events have been ob-
served experimentally in some of the chaotic regimes for this type of laser [Ko-
valsky 2011, Hnilo 2011] but have no matching numerical description with the
rate-equation model, leading to the conclusion that spatial effects, not included
in the model, actually play an essential role in the formation of extreme events
for this kind of laser.

A few years later, in [Selmi 2016, Coulibaly 2017], the presence of extreme
events is investigated experimentally and numerically in the transverse sec-
tion of a semiconductor laser with an intracavity saturable absorber in a con-
figuration of spatiotemporal chaos. The model there used to describe the laser
[Bache 2005] includes spatial coupling through a diffractive term in the second
derivative of the spatial coordinate in the equation for the electric field. Limiting
their analysis to a single transverse spatial dimension, the authors observe the
presence of extreme events in the experiment and in the simulations for certain
choices of parameters. The origin of the observed extreme events is identified
in spatiotemporal chaos, characterized through the Lyapunov coefficient anal-
ysis and the Kaplan-Yorke dimension: in particular [Selmi 2016] a growth in
the percentage of the observed extreme events is associated to an increase of
the Kaplan-Yorke dimension. As a general reminder we would like to stress
that, while a certain degree of spatiotemporal complexity might be considered
a requirement for the observation of extreme events in this kind of system, de-
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Fig. 5 – Reprinted with permission from [Zamora-Munt 2013]. System dynamics in
the phase space when approaching and extreme event. S1, S2, S3 are three fixed points
of the system, in particular S1 is a saddle, S2 and S3 are unstable foci. In (a) the blue
dotted and green solid lines indicate, respectively, the stable and unstable manifolds
of S2. (b) illustrates the system trajectory (highlighted in red) when approaching an
extreme event, zoomed in (c). (d) Shows the intensity time trace.

terministic chaos is in general, at least experimentally, not a sufficient condi-
tion [Kovalsky 2011].
More details on the results of these two articles in comparison with the results
shown in this Thesis will be given in Chapter 1.

In the context of lasers with optical injection we are going to focus on the
study of systems with a different number of spatial dimensions [Bonatto 2011,
Zamora-Munt 2013, Gibson 2016]. This will help us understand better if indeed
spatial dimensionality affects the generating mechanisms of extreme events. Fur-
thermore works in purely temporal (or with a very small transverse section) sys-
tems confirm that space is actually not a requirement for the observation of ex-
treme events, allowing for a simpler study of predictability and the role of noise.

The role of spatial dimensionality has been also investigated in other opti-
cal context for example in cavities with liquid-crystal light valve as gain media
[Montina 2009] and in the passive case, in photorefractive media [Pierangeli 2015]
and photonic crystals [Liu 2015]. In particular in [Montina 2009] the nonlocal
coupling between different spatial regions of the electric field intensity gives
rise to symmetry breaking in the system and the presence of extreme events and
in [Pierangeli 2015] the combination of disorder and nonlinearity appears to lead
to extreme events observation. In [Liu 2015] extreme events are triggered in a
photonic crystal through the control of a spontaneous synchronization mech-
anism that enlarges the frequency bandwidth leading to high-peak pulses. A
picture of rogue wave formation in the spatial distribution of the electromag-
netic energy is illustrated in Fig. 4.

In [Bonatto 2011, Zamora-Munt 2013] the authors study the setup of a single-
transverse mode optically injected semiconductor laser (in particular a VCSEL).
Given the very small laser transverse section, it is possible to describe the setup
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as a zero-spatial dimension, purely temporal system. Extreme events are exper-
imentally obtained when the slave laser emission frequency is unlocked from
the frequency of the master laser and passes to a chaotic regime through period
doubling. Note that extreme events are here observed at the beginning of the
chaotic region but, since for more chaotic parameter choices the probability of
large excursions in intensity increases, the extreme events threshold moves to-
wards higher values of intensity displaying less extreme events in the system.
The experimental results appear in good agreement with the numerical ones,
achieved with a class-B rate-equation model for a semiconductor laser. Since ex-
treme events do not appear every time the system is in a chaotic regime but in a
very specific region of the phase space, the authors investigate the properties of
the chaotic regions needed for the occurrence of extreme events. As illustrated
in Fig. 5(a), the system presents three fixed points two of which (S2 and S3) are
unstable foci and one (S1) is a saddle point. To S2 are associated a stable (blue
dotted line) and an unstable manifold (green solid line). When an extreme event
is about to occur, the trajectory of the system moves along the stable manifold
of S2, as illustrated in Fig. 5(b) and in the zoom in (c). Due to the presence of
the two-dimensional unstable manifold of S2 while approaching the blue dot-
ted line the trajectory of the system spirals out. Finally, since while approaching
S2, which is the low intensity frequency-locked solution for the injected laser,
the system has accumulated carriers, a high-peak pulse is emitted, returning the
system to low values of carrier density. Every time the system approaches the
stable manifold of S2 an extreme event is likely to occur.
It is important to note that [Zamora-Munt 2013], since the amplitude of the elec-
tric field intensity excursion depends on the system trajectory (varying) entry
conditions along the stable manifold of S2, this process is not to be classified as
excitable.
Further numerical analysis draws the authors to suggest that the mechanism
at the origin of extreme event formation in this system consists in the collision
of the attractor associated to the fixed point S3 with the stable manifold of the
saddle point S1. In particular, in the chaotic regions where there are no extreme
events, the stable manifold of S1 assumes the role of a barrier, preventing the
system from approaching S2. Instead in the chaotic regions with extreme events
the collision of such manifold with the attractor provokes an expansion of the
attractor itself, allowing for the system trajectory to approach S2 and trigger ex-
treme events.

Finally in [Zamora-Munt 2013], the role of noise has been investigated, in
order to characterize the deterministic nature of the extreme events observed. In
particular the authors notice that in regions where extreme events occur without
noise, and are then deterministic, noise can be detrimental because it diminishes
the chances of the system to approach the stable manifold of the fixed point S2.
Instead in cases where deterministic extreme events do not occur (i.e. there is
no collision between the attractor of S3 and the stable manifold of S1), noise can
actually trigger stochastic extreme events, helping the system to overcome the
barrier set by the stable manifold of the fixed point S1.

Another important study in the context of lasers with injection is that of a
singly resonant optical parametric oscillator with external seeding [Oppo 2013]
and a class-A laser with optical injection [Gibson 2016], both in the case of a two-
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Fig. 6 – Reprinted with permission from [Gibson 2016]. Vortices and extreme event
formation in the transverse plane of the electric field intensity. (a) hexagonal Turing
pattern whose breaking leads to (b) optical vortex-mediated turbulence. (c) is a zoom
on the extreme event highlighted in (b) where we can distinguish the presence of two
optical vortices where the phase (d) in the transverse plane performs full 2π rotations
in the opposite directions.

dimensional transverse plane.
In both cases it is possible to describe the system through a single (complex)

equation for the electric field. In particular, in the case of the optical parametric
oscillator, the system is described by a forced complex Swift-Hohenberg equa-
tion, while, in the case of the class-A laser, the model is a forced Ginzburg-
Landau equation, both with external driving. The spatial dependence is in-
troduced through a transverse Laplacian term, for the diffraction, and a Swift-
Hohenberg correction in case of the parametric oscillator [Lega 1994, Oppo 2009].
In both these systems the authors find, numerically, the presence of extreme
events in an irregular regime, emerging for low values of injection, when pat-
terned solutions such as hexagons (see Fig. 6(a)) become unstable. This spe-
cific regime of optical turbulence results dominated by interacting vortices, as
shown in Fig. 6(b-d). In particular, when the patterned stationary solution of
the system becomes unstable the system exhibits at first phase instability, with
the trajectory in the Argand plane spreading on a limit cycle. Amplitude insta-
bility then occurs, where the trajectory displays large fluctuations from the limit
cycle. Finally, where the amplitude fluctuations reach zero intensity, pairs of
vortices of opposite charge start to appear. Vortex nucleation and annihilation
continues then to occur and, since the turbulent state displays globally almost
constant intensity, when zero-intensity moving vortices occur, high-amplitude
spikes appear at the same time. For large vortex density, collisions between dif-
ferent vortices can occur, giving rise short-lived spikes, among which extreme
events can be found. The number and position of the interacting vortices defines
the shape of the spikes. The regime here illustrated is associated by the authors
to the defect-mediated turbulence studied in [Coullet 1989].

Predictability has been investigated through different techniques, from the
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simple comparison of the power fluctuation time traces in presence of an ex-
treme event (see for example [Zamora-Munt 2013]), and to a method of symbolic
ordinal time-series analysis [Alvarez 2017].
In [Zamora-Munt 2013] the authors superimpose the time traces of different ex-
treme events, centered on the extreme event maximum: when approaching the
extreme event, the intensity temporal profile shows a behavior common to the
different time traces, giving the ability to predict extreme event occurrence be-
fore it actually happens. The addition of noise does not destroy this common
behavior but instead it just reduces the window of predictability.
Another method [Alvarez 2017] uses symbolic ordinal time series analysis to in-
vestigate predictability. In particular, considering the intensity peak heights for
each peak above a certain threshold, the method studies the height of the pre-
vious three peaks. Comparing the height of the three different peaks, a symbol,
taking into account just the relative temporal ordering of the values, is applied
to each three-valued segment. All the pattern combination probabilities are then
plotted as a function of the varying threshold: the pattern combination with the
highest probability, also for high threshold values, is the more likely to precede
an extreme event.
One drawback of this method consists in the fact that it does not predict the
height of the extreme event following a specific pattern combination. Further-
more we would like to stress that the most likely pattern combination identified
through this method is to be considered just as a precursor: in fact nothing pre-
vents such pattern to occur also in other places of the time trace that do not lead
to the formation of an extreme event.

Another possible predictability technique is the one based on the Grassberger-
Procaccia algorithm [Grassberger 1983], used in the context of fibers (and oceanog-
raphy) [Birkholz 2015] and already illustrated in the previous Section.

Cavity solitons and their interactions

In the context of fibers we have pointed out that one of the possible approaches
to study extreme events and, in particular, rogue waves, consists in focusing on
the shape of the solutions of the NLSE. Some of these solutions (for example the
Peregrine soliton and breathers such as the Akhmediev breather) have been sug-
gested as prototypes of rogue waves. It is important to remark that the solutions
of the NLSE regard a conservative system, hence, for instance, the Peregrine
soliton is a conservative localized structure. Collisions between conservative
solitons or breather solutions have been also studied as possible mechanisms
for the formation of rogue waves [Frisquet 2013].

Conservative solitons represent a continuous family where all amplitude
sizes can be obtained, in the weakly dissipative case instead, due to broken scale
invariance, these structures are discrete members of such continuous family, be-
ing stable only for specific amplitude sizes [Fauve 1990].

In the case of dissipative systems, such as lasers, localized structures can also
appear. Cavity solitons (CS) belong to this category: in particular localized struc-
tures present themselves in situations where a physical quantity self-organizes
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in one or more isolated regions, surrounded by a qualitative-different, homo-
geneous state. Localized structures have been widely studied theoretically and
experimentally since the 1980s [Koga 1980, Laughlin 1983, Rosanov 1988, Lu-
giato 2003, Akhmediev 2005, Akhmediev 2008].

Cavity solitons appear as bright intensity peaks that coexist with a stable ho-
mogeneous background. The term “soliton” describes in general solitary waves
propagating without any change in shape. Given that solitons appear also in
conservative systems, with the name of “cavity” solitons we are able to address
the dissipative character of the system under study.
Physically speaking CSs emerge from the compensation, on one side, of the ef-
fects of nonlinearity and diffraction and, on the other side, of gain and losses,
since we are dealing with a dissipative system. This double compensation makes
it possible for CSs to maintain a specific shape in space and time, independently
from the boundary condition.

Spatial cavity solitons were theoretically predicted in the transverse plane of
semiconductor microcavities in [Brambilla 1997, Michaelis 1997, Spinelli 1998,
Spinelli 2001]. The main advantages of generating CSs in these devices instead
of the previous experimental implementations in macroscopic cavities and sys-
tems with optical feedback (see for example [Saffman 1994, Taranenko 1997,
Schreiber 1997]), consists in the fast response of the devices and their compact-
ness. The plasticity of cavity solitons, that is the possibility of switching on and
off these objects (due to bistability), manipulate them independently and set
in controlled motion, through the application of an external gradient, together
with the additional advantages of developing these structures on a semiconduc-
tor device, makes cavity solitons very good candidates for optical information
processing [Firth 1996, Brambilla 1997]. In particular spatially modulating a pa-
rameter of the setup can trap CSs in specific locations of the transverse plane,
basically providing an optical memory array.
The first experimental evidence of cavity solitons in a vertical-cavity surface-
emitting laser (VCSEL) with optical injection is reported in [Barland 2002], where
the authors independently manipulate CSs on a diameter of ≈200 µm, through
an external optical perturbation. Furthermore in [Pedaci 2006] an optical mem-
ory array is realized through the spatial modulation of the holding beam phase.

In absence of an optical injection, cavity solitons can be observed in lasers
with saturable absorber. Self-sustained cavity soliton emission presents a great
advantage in terms of compactness and stability of the setup. In the present
case the laser threshold can be subcritical, allowing for the coexistence of two
stationary solutions, one of which is strictly greater than zero. This configura-
tion implies optimal conditions for the observation of cavity solitons, since the
background intensity is simply given by spontaneous emission, setting the con-
trast between CSs and the surrounding homogeneous state at its maximum. In
this layout the system acts as a Cavity Soliton Laser (CSL), that is, a laser, homo-
geneously pumped along its transverse section, that emits localized structures
surrounded by spontaneous emission [Bache 2005, Prati 2007a, Aghdami 2008,
Prati 2010a].
One of the main differences regarding CSs with and without optical injection
consists in the fact that, in the forced system, phase symmetry is broken and the
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CSs are locked to the phase of the holding beam, which is not the case for the
system without optical injection, where phase symmetry is preserved.

There are two different experimental realization of a CSL in semiconductor
materials through the use of a saturable absorber. The first realization exploits an
experimental setup with two VCSELs in a face-to-face configuration, one acting
as amplifier and the other acting as absorber [Genevet 2008]. The second experi-
mental realization consists in a monolithic VCSEL with intracavity saturable ab-
sorber [Elsass 2010], which results very close to the theoretical model elaborated
for this kind of system [Bache 2005]. Another type of CSL [Tanguy 2006, Tan-
guy 2008] exploits frequency-selective feedback [Giudici 1999] from a Bragg
grating.

In comparison with the spatial localization here illustrated, temporal local-
ization along the propagation direction of nonlinear cavities can lead to the pos-
sibility of temporal cavity solitons. These objects rise from the compensation of
nonlinearity and chromatic dispersion [Grelu 2012] and can occur both in sys-
tem with [Leo 2010] and without optical injection [Grelu 2012]. The possibility of
generating solitons at arbitrary distances inside the cavity, presents once again
an interesting development in the context of information storage, with temporal
cavity solitons as optical bits living indefinitely inside the cavity.
In particular the observation that temporal solitons in microresonators are de-
scribed by frequency combs [Del’Haye 2007, Herr 2014], spanning large portions
of an octave, in the frequency domain attracted ever since a lot of interest in the
study of these objects.

Three-dimensional localized structures, also known as spatiotemporal soli-
tons or light bullets, represent an interesting possible merging of the properties
of the two kinds of localization here presented. Three-dimensional dissipative
solitons have been predicted in prototypical nonlinear resonators [Tlidi 1999,
Brambilla 2004, Jenkins 2009] and nonlinear mirrorless configurations [Vladi-
mirov 1999]. Experimental observations of this phenomenon are, for now, still
lacking.

Given the potential application of CS studies to the context of information
encoding, the interaction between these structures is of fundamental interest: in
order to be treated independently as bits of information, cavity solitons need
to exhibit no interaction effect. Hence the presence of a critical distance below
which CSs tend to merge defines the maximum information density of a poten-
tial optical memory array.
Regarding temporal cavity solitons in a fiber laser with a passive resonator driven
by an external field, the critical temporal distance at which two CSs start to in-
teract was shown to be around 40 ps, implying an information storage density
of 125 bit/m [Leo 2010].
In more general and earlier studies on spatial localized structures where the
nonlinear medium was a bistable interferometer or a collection of two-level
atoms [Rosanov 1990, Brambilla 1996] two critical distances, d1 and d2, relevant
for cavity soliton interaction, have been found. In particular for an initial dis-
tance d between the two objects smaller than d1 the two CSs would merge or
annihilate, for d larger than d2 they would not interact and for d1 < d < d2 the
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Fig. 7 – Reprinted with permission from [Chaté 1999]. Simulation results of a forced
complex Ginzburg-Landau equation corresponding to different forcing and detuning
with as a common initial condition a phase jump of 2π.

two CSs would repel till they reach a distance d = d2 and then stop interacting.
These results have been later confirmed in [Tissoni 1999] for a bulk semiconduc-
tor model, except one or more (depending on the sign of the detuning) equi-
librium distances d∗ in between d1 and d2 were found, making the interaction
between the two CSs either attractive or repulsive until the condition d = d∗

was reached.
Finally in [Vladimirov 2002] clusters of localized structures are studied in the
transverse plane of driven optical cavities below transparency, through the cal-
culation of an interaction potential. In particular it was shown that the inter-
action between two nearby CSs implies a non-Newtonian motion between the
two structures, with a velocity proportional to the perturbation generated by
one soliton onto the other.

A special kind of localized structures

A special kind of localized structures characterized by a phase jump, has been
predicted in extended oscillators in presence of spatially periodic forcing [Coul-
let 1986]: the origin of these objects is, according to the author, the result of a
transition between commensurate states, of uniform or modulated type, and in-
commensurate states, with soliton-like phase disturbances. The same kind of lo-
calized structure has been studied in the context of a forced complex Ginzburg-
Landau model, in one-dimensional, symmetric space [Chaté 1999]. As an exam-
ple some of the results in this paper are illustrated in Fig. 7. In particular Fig.
7 shows different simulation results obtained when setting as initial condition a
phase jump of 2π. In the case on the left side the phase jump propagates in a
stable behavior, in the case in the middle, for a larger forcing, the solution be-
comes unstable and, in the case to the right, for a larger detuning and forcing,
spatiotemporal intermittency is observed. In [Coullet 1998] the authors describe
this kind of structures as optical excitable waves, occurring in the 2D transverse
plane of a laser with optical injection. A similar kind of excitable wave, along
the propagation direction, has been predicted in [Longhi 1998], where the au-
thor shows that soliton solutions of the Sine-Gordon equation are responsible
for the localized structures observed in forced extended oscillators.
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Motivation and contents

The purpose of the work here presented consists in studying extreme and ab-
normal events as well as localized structures interaction in three different active
optical systems.
The first system considered, studied in Chapter 1, is a broad-area semiconductor
laser with an intracavity saturable absorber, like the one used in experiments [El-
sass 2010]. The previous and contemporary work by other groups on extreme
events in this context, illustrated in [Selmi 2016, Coulibaly 2017], has been de-
veloped in one transverse spatial dimension. In our case we instead consider a
system with a two-dimensional transverse plane where we will characterize all
the possible solutions available, including cavity solitons. The study of extreme
events in the chaotic regime has required the development, for the first time, of
an algorithm for the detection of spatiotemporal maxima in three dimensions
(2D+time). Through a detailed statistical analysis we will show the presence of
extreme events in this system for specific parameter regions. The inclusion of 2D
spatial effects in our simulations plays a crucial role in the formation of extreme
events, as suggested in [Bonazzola 2013], and it is at the origin of the discrep-
ancies with the one-dimensional studies. Finally the observed striking similar
spatial and temporal shape of the extreme events and stationary and self-pulsing
CS will imply the enhancement of extreme events when the system is close to
the cavity soliton attractor.
Future development of this work consist, on one side, in the investigation of
predictability, through the application of techniques such as the Grassberger-
Procaccia algorithm [Grassberger 1983, Birkholz 2015] and the method of sym-
bolic ordinal time series analysis [Alvarez 2017], and, on the other hand in the
study of the conservative limit of this system and its possible implications in the
observation of extreme events.

Chapter 2 is devoted to the study of a highly multimode semiconductor
laser with optical injection, alternatively in a ring or Fabry-Perot configura-
tion. This system, being 1D+time, spatially extended along the propagation
direction, builds a bridge between the cases, illustrated in the present Introduc-
tion, of lasers with injection in zero-spatial dimension [Bonatto 2011, Zamora-
Munt 2013] and with a two-dimensional transverse plane [Gibson 2016]. A full
derivation of the model used to describe this kind of laser and its comparison
with other possible system descriptions are fully analyzed in the text. Interest-
ingly enough, of the two mechanisms for the formation of extreme or abnormal
events observed in this laser, one presents striking dynamical similarities with
the zero-dimensional case. Furthermore some parallels on the role of chirality in
the formation of these high-peak events, with the emergence of extreme events
in vortex turbulence of [Gibson 2016], can also be drawn.
Interaction between chiral localized structures in the laser is also studied, lead-
ing to the merging of these objects in soliton complexes. Instead the collision
of the same localized structures with some transitory state carrying an oppo-
site chiral charge leads to the formation of another kind of extreme events, once
again highlighting the role of chirality in the collision process [Gibson 2016].

Finally the last system considered, in Chapter 3, is a broad-area semicon-
ductor laser with optical injection pumped above threshold. In this case the
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interaction of cavity solitons is extensively studied, opening the way to a pos-
sible analogy with hydrophobic materials. One main difference with respect
to similar systems below transparency [Tissoni 1999] consists in the absence of a
critical distance for which cavity solitons stop interacting. Interestingly a similar
kind of long-range interaction has been observed in the case of the chiral local-
ized structures illustrated in the previous Chapter. Extreme events in a class-A
laser with optical injection have been already reported in [Gibson 2016]. In the
present case we will consider instead a semiconductor class-B laser and search
for extreme events in a chaotic regime for low values of optical injection. Some
preliminary results of this analysis will be here shown but further investigation
is still in order.

The study of extreme events in active optical systems represents an inter-
esting challenge and opportunity to address the dynamical mechanisms behind
the formation of these objects. This investigation will in time allow for a general
deeper understanding of the systems considered and their dynamics. Finally the
connection of this field to the wider topic of extreme events in physics presents
an interesting development in terms of possible analogies, given the high capa-
bility to observe, control and study these events in an optical system.





Chapter 1

Broad-area semiconductor laser
with saturable absorber

Preface

This Chapter is devoted to the description of a semiconductor laser (specifically
a VCSEL, Vertical Cavity Surface Emitting Laser) with an intracavity saturable
absorber. In particular, after a brief description of the system, the model used
to represent it and an analysis of the possible attractors for this kind of laser, we
are going to concentrate our attention towards the analysis of the extreme events
observed numerically in the transverse plane of laser, perpendicular to the di-
rection of propagation, in a chaotic regime. In the final part of the Chapter we
are going to draw a comparison of extreme events with the other states possible
for this kind of system, namely stable, oscillatory and chaotic cavity solitons.
The main results here illustrated have been published in [Rimoldi 2017b].
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1.1 Introduction

A laser with a saturable absorber [Antoranz 1982] as the one here studied can be
schematized as a laser whose cavity contains, together with the active medium,
with population inversion, also an absorber, or passive medium. In this kind of
laser there is no external optical injection as the coherent light is generated inside
the same cavity. The presence of the absorber grants the possibility of obtaining
bistability in the system between the trivial laser-off state, which results stable
up to a threshold, and the nontrivial stationary solution. The single mode laser
with saturable absorber allows, given certain choices of parameters, for passive
Q-switching in the region where both stationary solutions result unstable.
Semiconductor lasers [Agrawal 1986] are one of the classes of lasers most com-
monly used in applications. VCSELs (Vertical Cavity Surface Emitting Lasers)
in particular have been of rising importance in the past forty years.

Fig. 1.1 – Example of experimen-
tal setup used at the laboratory of
C2N in Marcoussis, Paris.
Courtesy of C2N - Paris

These devices [Wilmsen 2001] are grown
by placing layers of different materials on the
substrate: the gain region lays between two
mirrors (one at the top and one at the bot-
tom), which are both distributed Bragg reflec-
tors containing about twenty alternating λ/4
layers of semiconductor material to produce
a reflectivity > 99%. In comparison with the
other conventional semiconductor lasers, as
edge-emitting lasers, VCSELs present the pe-
culiarity of having a cavity axis perpendicular
to the mirrors. It is for this reason that such
a high reflectivity is required for the laser to
work properly, as in a single passage the light
gain results pretty small, since the active re-
gion, consisting of a few quantum wells, is

crossed perpendicularly by light involving a length of just ≈ 10 nm.
Typically the diameter of a VCSEL is around 10 µm, but large diameter VCSELs
up to 200 µm have been produced and analyzed extensively [Lugiato 2015] for
the study of cavity solitons (see [Elsass 2010] and the European projects PIANOS
and FunFACS1). Comparatively the height of a VCSEL is around a few microns,
the laser cavity being almost completely occupied by the two mirrors.
There are multiple advantages in the use of VCSELs , namely their compact-
ness, their low cost and low threshold. Furthermore it is very useful to observe

1www.funfacs.org
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that the shortness of the cavity in these devices implies that no more than one
longitudinal mode can oscillate, and, in particular for large-area devices, the
transverse modes result similar to those of lasers with a planar cavity. Finally,
regarding the way we model this kind of lasers, we can observe that the low
transmission limit is here very well fulfilled, and, since the active region is much
smaller than a wavelength, we can also neglect the grating of the active medium
and reduce the equations to those of a ring cavity.
The fact that large-area VCSELs can be well modeled in low-transmission limit,
single longitudinal mode approximation and planar transverse mode approxi-
mation makes them the perfect candidates for the study of cavity solitons (CSs)
in a broad-area cavity with planar mirrors [Lugiato 2015].

The model here analyzed has been widely used by our group for the study
of cavity solitons [Bache 2005, Prati 2007a, Prati 2010a, Tissoni 2011, Vahed 2014,
Turconi 2015]: in particular it has been casted as illustrated in the next Sections
to well describe the experimental setup at the laboratory of C2N in Paris [El-
sass 2010, Selmi 2016, Coulibaly 2017]. In this case, as depicted in Fig. 1.1 the
VCSEL presents three quantum wells, two of which are pumped and act as gain
and a third one with no pumping that acts as the saturable absorber. The sys-
tem presents then an intracavity saturable absorber, in contrast with other ex-
perimental implementations where the saturable absorber element is inserted
through the use of a semiconductor saturable absorber mirror (SESAM) outside
the cavity [Keller 1996, Keller 2006], which implies for the introduction of a de-
lay into the equations. Here on the contrary, no delay term has to be considered.
The model we consider consists in a set of rate equations which is derived from
the Maxwell-Bloch equations [Fedorov 2000] where we have adiabatically elim-
inated the polarization. The spatial dependence is introduced by the transverse
Laplacian term that presents both a purely imaginary part, which accounts for
the diffraction (in the paraxial and slow varying envelope approximation), and
a real part, which is introduced phenomenologically to maintain a finite line-
width for the gain and plays the role of a diffusive term. Furthermore in the
equations for the carrier population in the active and the passive medium a ra-
diative recombination term has been introduced through the years [Prati 2007a]
for a better description of the experimental setup, allowing to find CSs for a line-
width enhancement factor larger than zero in the absorber and in cases where
the relaxation rates and the saturation intensities both in the carrier populations
of the amplifier and the absorber present similar values. Here we are going to
use the same model with a different purpose, which is analyzing and describing
the spatiotemporal chaos observed both numerically and experimentally in this
kind of lasers, in pursuit of characterizing the extreme events emerging from
this regime.

1.2 Model

The model used to describe the system of a monolithic broad-area VCSEL with
an intracavity saturable absorber, of which a schematic representation is plot-
ted in Fig. 1.2, is given by the following set of rate equations [Fedorov 2000,
Bache 2005, Prati 2007a], which is derived from the Maxwell-Bloch equations
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when the polarization is adiabatically eliminated:

Ḟ = [(1− iα)D + (1− iβ)D̄− 1 + (d + i)∇2
⊥]F , (1.1a)

Ḋ = b[µ− D(1 + |F|2)− BD2] , (1.1b)
˙̄D = rb[−γ− D̄(1 + s|F|2)− BD̄2] . (1.1c)

Where F is the slowly varying envelope of the electric field, D and D̄ are the
population variables related respectively to the carrier density in the amplifier
and in the absorber2.
The linewidth enhancement factor of the active (passive) medium is given by α
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Fig. 1.2 – Scheme of the system studied, a broad-area monolithic VCSEL with an intra-
cavity saturable absorber. Light is emitted perpendicularly to the mirrors in the Laser.
The transverse profile presents for certain parameter conditions, chaotic patterns, as the
one here represented.

(β), µ (γ) is the pump (absorption) parameter and s is the saturation parameter.
Time is scaled to the photon lifetime (≈ 10 ps), b is the ratio of the photon to
carrier lifetime in the amplifier and r is the ratio of the carrier lifetimes in the
amplifier and in the absorber. Space is instead scaled on the diffraction length
(≈ 4 µm). d is a diffusion coefficient included into the equations to take into
account the gain finite linewidth. Although this term has here been introduced
phenomenologically, a detailed derivation can be found in [Fedorov 2000], and
comes from a nonstandard adiabatic elimination of the polarization variable. Fi-
nally B is a coefficient of radiative recombination, assumed equal for the two
carrier densities [Prati 2007a]. For more details on the definition of these param-
eters see Appendix A as well as [Vahed 2012].
The dynamical equations are integrated through a Fourier split-step method
with periodic boundary conditions and the spatial grid considered measures
256× 256 pixels. More details about the integration method are given in Ap-
pendix B.

2Please note that here and throughout the Thesis we have adopted the convention for which
dotted variables represent the time derivative of such variables, ∂i A represent the partial deriva-
tive of a quantity A with respect to i and ∇2

⊥ is the transverse Laplacian ∇2
⊥ = ∂2

x + ∂2
y.
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1.3 HSSs and linear stability analysis

The model in Eqs. (1.1) presents the following trivial homogeneous stationary
solution (HSS)

Fs,0 = 0 , Ds,0 =

√
1 + 4Bµ− 1

2B
, D̄s,0 =

√
1− 4Bγ− 1

2B
, (1.2)

and the nontrivial HSS

Fs,nt =
√

Ise−iωst , (1.3a)

Ds,nt =

√
(1 + Is)2 + 4Bµ− (1 + Is)

2B
, (1.3b)

D̄s,nt =

√
(1 + sIs)2 − 4Bγ− (1 + sIs)

2B
, (1.3c)

with Is such that

Ds,nt + D̄s,nt − 1 = 0 , (1.4)

and laser frequency ωs as

ωs = αDs,nt + βD̄s,nt . (1.5)

Deriving µ from Eq. (1.3b) and using Eq. (1.4), we can write the pump parameter
µ as a function of the stationary homogeneous intensity Is as follows:

µ = (1− D̄s,nt) [B(1− D̄s,nt) + 1 + Is] (1.6)

which is plotted in Fig. 1.3(a) together with the trivial solution for a specific set
of parameters. For completeness we also plot in Fig. 1.3(b) the laser frequency
ωs as function of I for the same choice of parameters.

(a) Trivial and nontrivial HSSs. (b) ωs as in Eq. (1.5).

Fig. 1.3 – (a) Trivial I0 = |Fs,0|2 and nontrivial Is HSSs for the electric field intensity in
Eq. (1.6) as functions of the pump parameter µ. (b) Laser frequency ωs as in Eq. (1.5)
as function of I. The parameters used in both plots are α = 2, β = 1, γ = 2, s = 1 and
B = 0.1. µth = 5.18 is the laser threshold. Dashed lines highlight the unstable branches,
as illustrated in the following stability analysis.
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For the linear stability analysis we are going to recast Eqs. (1.1) in terms of
the variables ρ, φ such that F = ρei(φ−ωst), obtaining

ρ̇ = (D + D̄− 1)ρ− 2
(
∂xρ∂xφ + ∂yρ∂yφ

)
− ρ∇2

⊥φ

+d
{
−ρ
[
(∂xφ)2 +

(
∂yφ
)2
]
+∇2

⊥ρ
}

, (1.7a)

ρφ̇ = −ωsρ− (αD + βD̄) ρ− ρ
[
(∂xφ)2 +

(
∂yφ
)2
]
+∇2

⊥ρ

+d
[
2
(
∂xρ∂xφ + ∂yρ∂yφ

)
+ ρ∇2

⊥φ
]

, (1.7b)

Ḋ = b[µ− D(1 + ρ2)− BD2] , (1.7c)
˙̄D = rb[−γ− D̄(1 + sρ2)− BD̄2] . (1.7d)

We now study the stability of the stationary homogeneous solution considering
small spatiotemporal perturbations from the stationary values of Fs, Ds and D̄s,
modulated in the transverse plane by a wavevector k = (kx, ky) and exponen-
tially growing (decaying) in time, so that:

ρ
φ
D
D̄

 =


ρs
φs
Ds
D̄s

+ eλt+i(kxx+kyy)


δρ
δφ
δD
δD̄

 , (1.8)

with ρs =
√

Is, φs, Ds and D̄s HSSs of the model in Eq. (1.1), satisfying Eqs.
(1.2) for the trivial HSS and Eqs. (1.3), (1.4) and (1.5) for the nontrivial HSS with
φs = −ωst.
Inserting (1.8) into Eqs. (1.7) we obtain the following linearized equations for
the perturbations:

λδρ = (δD̄ + δD) ρs + (Ds + D̄s − 1) δρ +
(

k2
x + k2

y

)
(ρsδφ− dδρ) ,

ρsλδφ = (αδD + βδD̄) ρs −
(

k2
x + k2

y

)
(dρsδφ + δρ) ,

λδD = −b
[
2Dsρsδρ +

(
1 + 2BDs + ρ2

s
)

δD
]

,

λδD̄ = −rb
[
2D̄ssρsδρ +

(
1 + 2BD̄ + sρ2

s
)

δD̄
]

,

in matrix form,

λ


δρ
δφ
δD
δD̄

 = JLSA


δρ
δφ
δD
δD̄

 (1.9)

where JLSA is the Jacobian matrix
Ds + D̄s − 1− dk2 ρsk2 ρs ρs

− k2

ρs
−dk2 −α −β

−2bDsρs 0 −b
(
1 + 2BDs + ρ2

s
)

0
−2rbD̄ssρs 0 0 −rb

(
1 + 2BD̄s + sρ2

s
)
 ,

with k2 = |k|2 = k2
x + k2

y.
Eq. (1.9) admits non-zero eigenvectors if and only if

det(JLSA − λI) = 0 , (1.10)
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with I is the identity matrix. Eq. (1.10) gives a fourth degree polynomial in λ
(third degree in case of the trivial solution)

λ4 + c3λ3 + c2λ2 + c1λ + c0 = 0 , (1.11)

where the coefficients ci, with i = 0, 1, 2, 3, depend on the squared modulus of
the wave vector k2, the system parameters, the electric field intensity.
A system results stable if and only if the real parts of all the eigenvalues λ of
the characteristic equation (1.10) are negative. The Routh-Hurwitz stability cri-
terion [Routh 1877, Hurwitz 1895], illustrated more in details in Appendix C,
gives a necessary and sufficient condition for the real part of the eigenvalues to
be negative, exploiting the coefficients ci. In particular it states that the neces-
sary and sufficient condition for the real eigenvalues to be negative is that the
coefficient c0 satisfies

c0 > 0 , (1.12)

instead, regarding the complex eigenvalues, the necessary and sufficient condi-
tion for their real part to be negative is that

c2
1 + c0c2

3 − c1c2c3 > 0 , (1.13)

and for all the coefficients to be ci > 0. If for certain choices of parameters
and/or for certain values of k2 and ρ2

s the condition (1.12) is not satisfied then
we have a stationary instability, where the system will evolve toward a new
stationary state. On the other hand if the condition (1.13) is not satisfied we talk
about Hopf or dynamical instability, because the final state will not be stationary
but instead oscillatory or chaotic.

1.3.1 Bistability

To study the bistability of the system we are going to consider the laser very
close to the threshold µthr in Eq. (1.14). The Taylor series expansion of Eq. (1.4)
at the first order in Is is the following

Ds + D̄s − 1 = 0

Ds,0 + D̄s,0 − 1 +
ρ2

s
2B

[
−(1 + s) +

1√
1 + 4Bµ

+
s√

1− 4Bγ

]
= 0 ,

where we remind that if we set Ds,0 + ds,0 − 1 = 0 alone then we obtain µ =
µthr with µthr as in Eq. (1.14). The coefficient of the laser intensity is generally
small: for this reason inside the square parenthesis we can approximate µ with
its threshold value µthr which is equivalent to write√

1 + 4Bµ ≈ 2(1 + B)−
√

1− 4Bγ .

After some algebra we can then observe that the value of the pump parameter
close to the threshold can be approximates as follows

µ = µthr − aIs
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with µthr as in Eq. (1.14) and a as

a =

(
1− D̄s,0 +

1
2B

) [
−(1 + s) +

1
2(1 + B)−

√
1− 4Bγ

+
s√

1− 4Bγ

]
=

(1 + s)
(
1 + B−

√
1− 4Bγ

)2
+ (1 + B) [2s− (1 + s)(1 + B)]

2B
√

1− 4Bγ
+

(1− s)
2B

.

We can notice [Prati 2007a] that for s = 1 the expression for a simplifies as

a =

(
1 + B

√
1− 4Bγ

)2 − B(1 + B)
B
√

1− 4Bγ
.

If a > 0 the laser bifurcation is subcritical, otherwise if a < 0 it is supercritical.
In particular we find that the bifurcation is subcritical for γ > γmin with γmin
given by

γmin =
[2s + (1 + 2B) (1 + s)]

√
(1 + 2B)2 (1 + s)2 − 4s

8B(1 + s)2

+
(1 + 3s)(1− s)

8B(1 + s)2 − B
2
− 1 +

1
2(1 + s)

,

which, for s = 1 gets reduced to

1
2

√
(1 + B)3

B
− B

2
− 3

4
.

Furthermore the presence of the square root in the expression for a introduces
an upper limit for bistability, given by

γmax =
1

4B
.

We observe then that the quadratic recombination term introduces the possibil-
ity of having bistability even for s = 1, in contrast with the condition s > 1+ 1/γ
that applies when such term is neglected [Bache 2005].

1.3.2 Plane-wave instability

Let us now consider first the case of plane wave instabilities: to do so we neglect
any spatial dependence (in the form of k2) in the perturbations. We observe that
in this case, the second column of the Jacobian matrix JLSA contains only zero
elements: this means that, even if we have introduced a perturbation on the
phase δφ, such perturbation does not affect the evolution in time of the other
variables ρ, D, D̄, furthermore the phase evolution in time depends only on
the perturbations δρ, δD and δD̄. Hence we can completely neglect the second
row in the Jacobian matrix in the stability analysis of both the trivial and the
nontrivial solutions, and JLSA gets reduced to a 3×3 matrix.
For the trivial solution, substituting Eqs. (1.2), with ρs = 0 in JLSA, we obtain

JLSA,0 =

Ds,0 + D̄s,0 − 1 0 0
0 −b (1 + 2BDs,0) 0
0 0 −rb (1 + 2BD̄s,0)

 ,
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with Ds,0 and D̄s,0 as in Eqs. (1.2). The eigenvalues of JLSA,0 are immediately
found as

λ1 = Ds,0 + D̄s,0 − 1 ,
λ2 = −b (1 + 2BDs,0) ,
λ3 = −rb (1 + 2BD̄s,0) .

The eigenvalues λ2 and λ3 are always negative, instead for λ1 > 0 we obtain the
laser threshold [Prati 2007a]

µthr = (1 + B)
(

1 +
1−
√

1− 4Bγ

B

)
− γ , (1.14)

which gets reduced to µthr = 1 + γ in the case B = 0 [Bache 2005], hence the
trivial solution (1.2) is stable for µ < µthr.
For the nontrivial solution, substituting Eqs. (1.3) in JLSA, we obtain the follow-
ing

JLSA,nt =

 0 ρs ρs
−2bDsρs −b

(
1 + 2BDs + ρ2

s
)

0
−2rbD̄ssρs 0 −rb

(
1 + 2BD̄s + sρ2

s
)
 ,

where we have rewritten for simplicity Ds,nt = Ds and D̄s,nt = D̄s, defined as in
Eqs. (1.3) with ρs =

√
Is such that Eq. (1.4) results valid.

The characteristic equation (1.10) gives a third degree polynomial

λ3 + c2λ2 + c1λ + c0 = 0 ,

with the following coefficients

c0 = 2rb2 [Ds + D̄ss + 2BDsD̄s(1 + s) + sρ2
s
]

ρ2
s ,

c1 = 2b(Ds + D̄srs)ρ2
s + rb2 (1 + 2BDs + ρ2

s
) (

1 + 2BD̄s + sρ2
s
)

,

c2 = b
[
1 + r + (1 + rs)ρ2

s + 2B(Ds + D̄sr)
]

.

Exploiting the Routh-Hurwitz criterion (see Appendix C), we search for the
plane-wave stationary instability boundary setting c0 = 0. We observe that c0
presents the same sign as the derivative of Eq. (1.6) with respect to the intensity
Is = ρ2

s : in fact

c0

dµ (ρ2
s ) /dρ2

s
= 2rb2ρ2

s

√
(1 + sρ2

s )
2 − 4Bγ ,

which is always positive. In particular c0 presents then a negative value as long
as µ

(
ρ2

s
)

has a negative slope, the stationary instability boundary lies always on
the left turning point of the stationary homogeneous curve in Fig. 1.3(a) and the
negative slope branch of the nontrivial solutions results always unstable.
Regarding the plane-wave Hopf instability of the nontrivial solution we observe
that for B = 0 the stationary solutions for the carrier densities become

Ds,B=0 =
µ

1 + ρ2
s

, D̄s,B=0 = − γ

1 + sρ2
s

.
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Following the Routh-Hurwitz criterion, we observe the the plane-wave Hopf
instability boundary is given by the condition c1c2 − c0 = 0. Neglecting the
terms ≈ rb2 [Powell 1971] we obtain:

c1c2 − c0 = 0
2b2 (µ− r2γs

)
ρ2

s = 0

µ = r2γs ,

In particular for µ . r2γs = µh the system results Hopf unstable. In the case
of B 6= 0 the expression for µh is not as simple and an approximated expression
valid for B� γ is [Prati 2007a]

rc ≈ 1 +
3
2

(
B
γ

)1/3

+
1
8

(
B
γ

)2/3

+
53
96

(
B
γ

)
.

We observe then that, since B and γ are always positive, differently from the
model without radiative recombination [Bache 2005], for r = 1 and s = 1 the
system can be bistable without presenting any plane wave Hopf instability, thus
allowing cavity solitons.

1.3.3 Pattern-forming instabilities

We are now going to analyze the stability of the nontrivial HSS in Eq. (1.3) with
respect to spatially modulated perturbations. From the characteristic equation
(1.10) we obtain a forth degree polynomial in λ as in Eq. (1.11), whose coeffi-
cients are:

c0 = rb2
{[(

1 + d2) F (ρs)
]

k4 +
[
−2sρ4

s (αDs + βD̄s)

−2 [αDs + βD̄ss + 2B(α + sβ)DsD̄s] ρ2
s + 2dG (ρs)

]
k2} ,

c1 = b
{(

1 + d2)H(ρs)k4 +
[
−2 (αDs + βD̄srs) ρ2

s

+d
[
2(Ds + D̄srs)ρ2

s + 2brF(ρs)
]]

k2 + 2brG(ρs)
}

,

c2 =
(
1 + d2) k4 + 2bdH(ρs)k2 + 2b(Ds + D̄srs)ρ2

s + rb2F(ρs) ,

c3 = bH(ρs) + 2dk2

with

F(ρs) =
(
1 + 2BDs + ρ2

s
) (

1 + 2BD̄s + sρ2
s
)

,

G(ρs) =
[
Ds − D̄s + D̄s(1 + 2BDs)(1 + s) + sρ2

s
]

ρ2
s ,

H(ρs) = 1 + r + (1 + rs)ρ2
s + 2B(Ds + D̄sr) .

Exploiting the Routh-Hurwitz criterion we investigate first the stationary insta-
bility associated to the real eigenvalues setting c0 = 0. We obtain the following
condition on the square modulus of the transverse wave vector

k2 = 2ρ2
s
(αDs + βD̄s)(1 + sρ2

s ) + 2BDsD̄s(α + sβ) + βD̄s(s− 1)
(1 + d2) (1 + 2BDs + ρ2

s ) (1 + 2BD̄s + sρ2
s )

−2dρ2
s

Ds + D̄ss + 2BDsD̄s(1 + s) + sρ2
s

(1 + d2) (1 + 2BDs + ρ2
s ) (1 + 2BD̄s + sρ2

s )
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which for s = 1 gets reduced to

k2 = 2ρ2
s

(αDs + βD̄s)(1 + ρ2
s ) + 2BDsD̄s(α + β)

(1 + d2) (1 + 2BDs + ρ2
s ) (1 + 2BD̄s + sρ2

s )

−2dρ2
s

(
1 + 4BDsD̄s + ρ2

s
)

(1 + d2) (1 + 2BDs + ρ2
s ) (1 + 2BD̄s + sρ2

s )
,

that, for d = 0, corresponds exactly to the expression found in [Prati 2007a]. This
boundary condition is plotted in Fig. 1.4(a) for a specific choice of parameters,
which will be the similar for most of the simulations here considered: as we can
observe the upper branch of the stationary homogeneous solution is stationary
unstable. The (Hopf) instability associated with the complex eigenvalues for r >

Fig. 1.4 – Pattern instability domains plotted for the square modulus of the wave vector
k2 as a function of the laser intensity I. The common parameters considered are: s = 1,
B = 0.1, α = 2, β = 1, γ = 2 and d = 0.01. In (b) a specific value of r = 1.75 was
considered. The grey-shaded area is (a) stationary or (b) Hopf unstable while the red
dashed (and solid) line corresponds to the instability boundary for d = 0.

rc is the only one present in the plane wave limit, leading to Q-switching. More
in general for k2 6= 0 this instability is related to the transition from stationary
cavity solitons to oscillatory cavity solitons, both of which we are going to study
more into details in the next Sections. In Fig. 1.4(b) we show the Hopf instability
domain obtained with the Routh-Hurwitz criterion c2

1 + c0c2
3 − c1c2c3 < 0, for

r = 1.75, d = 0.01 (black solid line) and the same parameters as in 1.4(a): we can
notice that the grey shaded region is already stationary unstable.
Finally in Fig. 1.4 the pattern instability boundaries for d = 0 are also plotted,
respectively in red dashed and solid line, together with the boundaries at d =
0.01: as the reader can observe, at least for this set of parameters there is just a
small difference between the two boundaries, showing that the introduction of
the diffusion term d does not change the stability scenario.

1.4 Zoology of the stationary and nonstationary solutions

Let us now explore, numerically, what is the typical scenario regarding the sta-
tionary and nonstationary solutions of the model in Eqs. (1.1).

It is well known that, due to the combined effect of diffraction, nonlinearity,
cavity feedback and saturable absorption this kind of laser system can develop
self-pulsations and modulational instability. Between the possible stationary
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(a) r = 1 (b) r = 1.75

Fig. 1.5 – (a) Homogeneous stationary solution (in black), as given in Eqs. (1.2) and (1.3)
plotted together with the stationary soliton branch (blue line with triangle markers) and
the time-averaged maximum intensity of the chaotic solitons (green line with diamond
markers) and of the extended spatiotemporal chaos (orange line with square markers)
for r = 1. (b) Homogeneous stationary solution (in black) plotted together with the
oscillatory cavity soliton branch for r = 1.75. All the data here plotted are relative to
simulations for b = 0.01, s = 1, B = 0.1, α = 2, β = 1, γ = 2 and variable µ. µth = 5.18
is the laser threshold.

and nonstationary solutions that can occur in the transverse plane of our laser
we can list: cavity solitons, both stationary [Bache 2005] and oscillatory, chaotic
solitons [Vahed 2014], and spatiotemporal chaos [Selmi 2016, Coulibaly 2017].
All of these solutions are illustrated in Fig. 1.5 in function of the pump parame-
ter µ.

1.4.1 Cavity solitons

Cavity solitons (CSs), of which an example is illustrated in Fig. 1.6, are bright
intensity peaks that occur in configurations where a patterned solution, due
to pattern-forming instability, coexists with a stable homogeneous background.
Lasers with saturable absorber, when presenting a subcritical bifurcation, rep-
resent a privileged framework for the study of CSs because it is here possi-
ble to obtain CSs against the homogeneous background given by the trivial I0
laser-off solution as in Eq. (1.2) and illustrated in Fig. 1.3(a): therefore the con-
trast between the patterned solution and the homogeneous background results
at its maximum, and, also experimentally, CSs emerge from a background of
pure noise [Prati 2007a]. Furthermore the absence of an injected external field,
presents its own experimental advantages in terms of compactness of the setup.
Physically speaking these objects arise from the double compensation of, on one
side, the effects of nonlinearity and diffraction, and, on the other side, the gain
and the losses: this compensation makes it possible for CSs to maintain a spe-
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(a) Stationary CS in the transverse plane of the
electric field intensity.

(b) Transverse optical spectrum of the station-
ary CS (in logarithmic scale).

Fig. 1.6 – Stationary cavity soliton (CS) simulated for the following parameters b = 0.01,
r = 1, s = 1, B = 0.1, α = 2, β = 1, γ = 2, δ = 0.01, µ = 4.8 and represented (a) in the
transverse plane of electric field intensity and (b) in the Fourier space.

cific shape in time and space.
Due to the stability condition for I0, CSs are stable only below the laser thresh-

old in this kind of system: in particular, for the same parameters as in Fig. 1.5(a),
the cavity soliton branch results stable for 4.572 < µ < 5.16. In the simula-
tions these objects are obtained starting from the laser-off solution and injecting
a Gaussian beam of low intensity (of amplitude ≈ 3 and width ≈ 8 µm) for 3 ns.

1.4.2 Extended spatiotemporal chaos

Extended spatiotemporal chaos is a stable regime that appears both above and be-
low the laser threshold: in particular, for the same parameters (r = 1) as in Fig.
1.5(a), its branch is stable down to µ = 4.5 below the laser threshold, and, above
the laser threshold there seems to be no limit to its stability. This regime has
been the subject of extensive study in [Selmi 2016, Coulibaly 2017] and it has
there been characterized in the case of one spatial dimension plus time as spa-
tiotemporal chaos through a Lyapunov coefficients analysis and a study on the
Kaplan-Yorke dimension.
In Fig. 1.7 we present the intensity (a) and the phase (b) of the electric field in

the transverse plane for this solution. In the simulations this regime is obtained
starting from values of µ above the laser threshold and giving some random ini-
tial condition to the system: given our choice of parameters, the system ends
up on the only stable solution, which is the extended chaotic regime. Then to
obtain the same regime also below the laser threshold we set µ < µthr and we
use as initial condition the final state of the preceding simulation, displaying
spatiotemporal chaos: the system stays on that attractor allowing us to follow
and plot the whole branch as in Fig. 1.5(a). The intensity of the electric field in
the transverse plane continues to evolve and no periodicity has been observed
either in space or time. Regarding the phase we can qualitatively observe that
many full 2π phase rotations take place at any given time and, as we will see
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(a) Extended spatiotemporal chaos in the trans-
verse plane of the electric field intensity.

(b) Phase of the electric field in the extended spa-
tiotemporal chaotic regime.

Fig. 1.7 – Intensity (a) and phase (b) of the electric field in the transverse plane in the
regime of extended spatiotemporal chaos simulated for the following parameters b =
0.01, r = 1, s = 1, B = 0.1, α = 2, β = 1, γ = 2, δ = 0.01, µ = 4.8.

(a) Fourier spectrum in the extended chaotic
regime (linear scale).

(b) Fourier spectrum in the extended chaotic
regime (logarithmic scale).

Fig. 1.8 – Transverse optical spectrum in linear (a) and logarithmic (b) scale, in the
regime of extended spatiotemporal chaos, simulated for the following parameters b =
0.01, r = 1, s = 1, B = 0.1, α = 2, β = 1, γ = 2, δ = 0.01, µ = 4.8 (same as in Fig. 1.7).

further into details later in this Chapter, occur at zero intensity values, identify-
ing these objects as optical vortices.
Furthermore in Fig. 1.8 we depicted the transverse optical spectrum both in lin-
ear (a) and logarithmic scale (b): the spectrum results noticeably less smooth,
as one should expect, with respect to the case of the cavity solitons. In Fig. 1.9,
we plotted an averaged profile of the spatiotemporal chaos (STC) spectrum (in
yellow) of Fig. 1.8 during a simulation of 25 ns and compared it with the spec-
trum profile (in blue) of the CS in Fig. 1.6(b) and the (averaged) chaotic cavity
soliton (CCS) spectrum profile (in red) in Fig. 1.10(c) and (d), that we will illus-
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(a) Spectrum profiles for CS, CCS, and STC. (b) Normalized spectrum profiles for CS,
CCS, and STC.

(c) Zoom of the normalized spectrum profiles
for CS, CCS, and STC.

Fig. 1.9 – Averaged spectrum profiles of the CS in Fig. 1.6 (in blue), the chaotic cavity
soliton (CCS) in Fig. 1.10 (in red) and the extended spatiotemporal chaotic regime (STC)
in Fig. 1.7 and 1.8 (in yellow). In (a) no normalization has been applied to the data,
instead in (b) and (c) all the spectrum profiles are normalized to their maximum value.
The black dashed line represent a possible spectrum profile with a power law decay that
best fits the spectrum profile of the extended chaotic regime. We highlight that all these
spectra have been acquired for the same value of pumping current µ = 4.8.

trate in the following Section. First of all we can observe from Fig. 1.9(a) that the
amplitude of each mode interested by the extended chaotic dynamics is consid-
erably higher with respect to the cavity soliton cases. We can also observe from
Fig. 1.9(b) and (c), where all the spectrum profiles have been normalized to their
maximum value, a clear enlargement of the spectrum profile in the extended
chaotic case, showing a partition of energy on many different spatial scales. The
black dashed line depicts a possible spectrum profile with a power law (ak−n)
decay that best fits the spectrum profile of the extended chaotic regime. It is
well known in turbulence studies [Frisch 1995] that one of the requirements for
a regime to be considered turbulent, in the sense of Kolmogorov, is for its spec-
trum to follow a power law decay. In our case we can observe that the enlarge-
ment of the spectrum in the extended spatiotemporal chaotic regime makes the
system more “turbulent” than, for example, in the chaotic soliton case, neverthe-
less, given the comparison with the power law decaying spectrum profile in Fig.
1.9(b), we do not have any definitive arguments to claim the chaotic regime to be
turbulent, especially since in our case the spectrum clearly decays faster than a



38 Broad-area semiconductor laser with saturable absorber

power law for high modes. In any case the broadening of the spectrum confirms
the chaotic nature of the studied regime [Eckmann 1985, Manneville 1995].

(a) CCS in the transverse plane of the electric field
intensity.

(b) CCS in the transverse plane of the electric field
intensity.

(c) Transverse optical spectrum of the CCS. (d) Transverse optical spectrum of the CCS.

Fig. 1.10 – Chaotic cavity soliton (CCS) simulated for the following parameters b = 0.01,
r = 1, s = 1, B = 0.1, α = 2, β = 1, γ = 2, δ = 0.01, µ = 5 and represented (a-b) in the
transverse plane of electric field intensity and (c-d) in the Fourier space at two different
times. The white circles in (a-b) correspond to the same spots highlighted in Fig. 1.11
and represent optical vortices.

1.4.3 Chaotic cavity solitons

Chaotic cavity solitons (CCS) appear in a region of coexistence between the ex-
tended spatiotemporal chaotic regime and the stable laser-off solution (hence
below the laser threshold): these are localized chaotic solutions, similar to the
chaoticons described in [Verschueren 2013]. At difference with chaoticons, here
the spatial size is fixed and rather small (corresponding to two or three times
the diameter of a CS), whereas in [Verschueren 2013] chaoticons can exist with
any size. In the simulation these objects are obtained starting from the laser-off
solution and injecting a Gaussian beam of high intensity (of amplitude ≈ 5 and
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(a) Phase of the electric field for the CCS. (b) Phase of the electric field for the CCS.

Fig. 1.11 – Phase of the electric field for the CCS, simulated for the following parameters
b = 0.01, r = 1, s = 1, B = 0.1, α = 2, β = 1, γ = 2, δ = 0.01, µ = 5, the white circles
denote the presence of two optical vortices in the transverse plane. (a) has been recorded
at the same time as Fig. 1.10 (a) and (c), (b) has been recorded at the same time as Fig.
1.10 (b) and (d).

width ≈ 8 µm) for 3 ns: the amplitude of the injection is critical for the observa-
tion of CCS, as for lower amplitudes the system relaxes on the stable CS solution.
In the case here presented the chaotic cavity soliton branch results stable in an
inset of the stable cavity soliton branch: in particular for the same parameters
as in Fig. 1.5(a), the stability region amounts to 4.67 < µ < 4.84. Below the left
boundary of this domain the system falls on the cavity soliton branch and above
the right boundary the chaotic regime extends to the whole transverse plane.
In Fig. 1.10 we present (a-b) a CCS in the transverse plane of the electric field
intensity at two different times and (c-d) the corresponding Fourier spectrum.
The structure presented in Fig. 1.10 continues to evolve and change in time
but it remains localized in space on a specific area of the transverse plane. The
transverse optical spectrum reflects this evolution of the intensity and, in time,
its possible to observe that the modes interested by the CCS dynamics either
change (aperiodically) in a rotation around the central (kx, ky) = (0, 0) mode, as
visible in Fig. 1.10(c), or the energy associated is split in two lobes on the op-
posite sides of the central mode, like in the case of Fig. 1.10(d). The averaged
spectrum profile depicted in Fig. 1.9 results in the end quite symmetrical, and,
even if the spectrum appears larger than the one of CSs it is presents a smaller
width with respect to the extended chaotic regime. In particular, in the first case
depicted in Fig. 1.10(c), the radius of the ring corresponds to the maximum for
modes other than zero in Fig. 1.9(c).
In Fig. 1.11 we depicted the phase of the electric field at the same times as in Fig.
1.10. It is interesting to observe that in this regime optical vortices, highlighted
by the white circles in Figs. 1.10 and 1.11, are clearly observed in the trans-
verse plane: in these points the intensity of the electric field is zero or almost
zero (consistently with some small numerical noise) and the phase develops a
full 2π rotation around them. Since all the dynamics in the transverse plane is,
in this regime, limited to a very small area, no more than two or three vortices
are observed at the same time, giving us the possibility to observe with more
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clarity the evolution of each vortex. This observation allows us to consider the
chaotic cavity soliton regime as an unstable vortex regime somehow similar to
the vortex turbulence observed, in class A lasers for very low values of coherent
injection [Gibson 2016]. Furthermore this leads to a possible similar interpreta-
tion of the extended spatiotemporal chaotic regime, where many optical vortices
are also present, so much that it is difficult to understand their actual effect on
the dynamics. Further investigations are to be addressed in some future work.

(a) OCS in the transverse plane of the electric field
intensity.

(b) OCS in the transverse plane of the electric field
intensity.

(c) Transverse optical spectrum of the OCS. (d) Transverse optical spectrum of the OCS.

Fig. 1.12 – Oscillatory cavity soliton (OCS) simulated for the following parameters b =
0.01, r = 1.75, s = 1, B = 0.1, α = 2, β = 1, γ = 2, δ = 0.01, µ = 5 and represented
(a-b) in the transverse plane of electric field intensity and (c-d) in the Fourier space at
two different times.

1.4.4 Oscillatory cavity solitons

Oscillatory cavity solitons (OCSs), like the one depicted in Fig. 1.12, are a last pos-
sible scenario. In this case the cavity soliton solution is unstable and the system
develops a localized state whose peak intensity oscillates in time, as depicted in
Fig. 1.13(b). This kind of behavior presents features similar to those of passive
Q-switching [Dubbeldam 1999], but while passive Q-switching occurs there in a
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laser with a saturable absorber in a situation where no stable homogeneous so-
lution is found, here instead this peculiar form of localized passive Q-switching
occurs in a case where there is bistability with the stable background. In particu-
lar in Fig. 1.5(b), for r = 1.75, the OCS branch results stable for 4.91 < µ < 5.17.
In Fig. 1.12 we illustrated the behavior of the intensity in the transverse plane
in presence of an OCS at two different times (a-b) as well as the corresponding
Fourier transverse optical spectrum (c-d). In Fig. 1.13(a) we compared the two

(a) Fourier spectrum profiles at peak and baseline
points of the time trace.

(b) Time trace of the OCS peak.

(c) Period of OCSs as function of µ.

Fig. 1.13 – (a) Comparison of the spectrum profiles at the same times depicted in Fig.
1.12(c) and (d), the data plotted in blue refers to a case of very small peak intensity, and
the data plotted in red refers to a high peak intensity. (b) Time trace of intensity in the
OCS peak during the same simulation as in Fig. 1.12. (c) Period of the OCS solutions
illustrated in Fig. 1.5(b) as a function of µ.

spectrum profiles taken when the oscillation of the soliton in time reaches its
minimum (blue profile) and its maximum (red profile). The Fourier spectrum at
maximum oscillation closely follows the same shape of the stationary CS spec-
trum depicted in Fig. 1.9, except for a decrease in the amplitude of the central
mode, a common thread also to the spectrum profile at minimum oscillation.
These objects can be obtained starting from a stable cavity soliton solution in
the middle of the stable branch, possibly not too close to the boundary of it,
since the stability region for CS and OCS might differ slightly, and increasing
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the parameter r. For instance the simulation whose results have been depicted
in Figs. 1.12 and 1.13(a-b) has been obtained starting from a stable cavity soli-
ton solution at µ = 5 and r = 1 and increasing r up to r = 1.75. The OCS
branch results also stable for a certain range of r [Vahed 2014]. Finally in Fig.
1.13(c) we illustrated the behavior of the pulsation period of the OCSs as a func-
tion of the pump parameter µ, for the same branch depicted in Fig. 1.5(b). In
good agreement with the results reported in [Vahed 2014], the pulsation period
of these objects appears to diverge logarithmically for low values of µ as was
also observed in [Turconi 2015].

1.4.5 Role of the diffusion coefficient d

Fig. 1.14 – Fourier spectrum profile of the chaotic regime for different values of the
diffusion coefficient d. The violet profile (d = 0.01) corresponds to the actual value
chosen in the simulations.

From the simulations, we observed that the diffusive term d results irrelevant
when we are dealing with localized structures such as CS, CCS and OCS but it
needs to be introduced in presence of STC, to avoid the formation of filaments
due to high spatial frequencies excitation. The basic effect of d consists in setting
a filter to the number of spatial frequencies involved in the dynamics. This phe-
nomenon is well illustrated in Fig. 1.14, where we plotted the Fourier spectrum
profile of the chaotic regime for different values of the diffusion coefficient d.
Without d we observe that the Fourier spectrum flattens and the spatial struc-
tures in the intensity narrow to single independent points of the grid, due to the
transportation of energy from the low unstable wave vectors to the higher ones.
All these phenomena make the simulations unreliable without d when study-
ing STC. The necessity of this term has been proven theoretically in Ref. [Fe-
dorov 2000]. The specific value of d has been chosen phenomenologically as the
smallest possible value to avoid self-collapsing without evidently disrupting or
changing the dynamics of the model and the stability of its solutions.
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1.5 Extreme event detection

The main focus of this study regards the investigation of the extended chaotic
regime to search for extreme events and figure out how the occurrence of these
objects might be affected by the parameters.
To this aim, first of all, we have to decide what quantity gives the best measure
of the amount of extreme events present in the system, and ultimately is suitable
to a statistical analysis.
Many different studies in optics (see for instance [Walczak 2015] and almost all
the works developed in optical fibers) consider the entire matrix of intensity, i.e.
all the values explored by the intensity of the electric field during the acquisition
time or the simulation, as a good candidate for this kind of analysis. The main is-
sue to be addressed when dealing with this variable is that any kind of statistics
developed on it does not allow us to identify directly an extreme event. Possible
deductions from a statistical analysis on the total intensity are, whether or not
there might be extreme events in the system and from what value of intensity
the system is most likely to exhibit one. This analysis does not discriminate be-
tween points relative to the same or to different peaks in the intensity. For this
reason, if in a system we have extreme events of different durations, the statis-
tics on the total intensity would be largely biased towards the extreme events
of larger duration instead then towards the likely more disruptive short-lived
extreme events. An obvious advantage of this kind of statistics is instead its
simplicity.

Since in our numerical simulations it is possible to sample the transverse
plane with enough accuracy to be able to follow the evolution of each individual
peak we decided for a different kind of analysis where the quantity of interest is
each spatiotemporal structure observed in the intensity of the electric field: we
then identify as events in our analysis the local spatiotemporal maxima of the
transverse field intensity. This allows us to discriminate between different peaks
during the analysis and, in particular, it assigns one single value (the peak value)
to each spatiotemporal structure occurring during the simulation, differently
from what would occur in the total intensity analysis. Extreme events are, in this
way directly identifiable by the statistics as all those spatiotemporal structures
with a peak value above a certain threshold.

1.5.1 Maxima individuation method

The method of individuation of the spatiotemporal maxima consists in a non-
trivial extension of the method introduced in Ref. [Coillet 2014] for a system of
1D+1 dimensions.
If we refer to the zooms of the transverse plane intensity in Fig. 1.15, the spatial

maximum highlighted by the red arrow in (a), (c) will not be selected as long
as it is only a maximum in space, it will be selected just when it reaches also its
maximum in time, at the point highlighted by the green arrow in (b) and only at
that point it will be registered. This procedure is applied to all the local maxima
in the spatial transverse plane throughout the entire simulation.
The pictures in Fig. 1.15 are separated 9 ps from each other just to give a good
idea of how the selection method works. Nevertheless we want to remark that
the sampling of the transverse plane occurs every 1 ps (and the integration time
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(a) t = 0 ps. (b) t = 9 ps. (c) t = 18 ps.

Fig. 1.15 – Snapshots of a zoom on the intensity transverse plane, separated 9 ps from
each other to exemplify the spatiotemporal maxima method of selection. The peak high-
lighted by the arrows is not selected as long as it is increasing (a) or decreasing (c) in
time, but only at its maximum value (b). The red circles indicate other spatiotemporal
maxima occurring at the same time of the snapshots.

Fig. 1.16 – 3D spatiotemporal grid representation illustrating the numerical procedure
of selection for the maxima. Each point of the grid (central point) is compared, in inten-
sity values, with all its 26 neighbors.

unit is 100 fs). The points highlighted by the red circles in Fig. 1.15 are other
spatiotemporal maxima occurring at the time of the snapshot.

From a more numerical point of view this procedure is accomplished as fol-
lows: each point of the 3D spatiotemporal grid is compared with its 26 neigh-
bors, including those on the diagonal directions, as depicted in Fig. 1.16, some-
how resembling the concept of looking at the spatial and temporal derivatives
of the intensity.
The basic requirement for each point of the grid to be considered a local max-
imum if its value of intensity is the highest among all its neighbors, underes-
timates the number of local maxima due to the numerical discretization, since
there are many cases in which a peak presents two points with the same inten-
sity value.
The requirement we make is then for a point to be a possible local maximum

if its intensity value is higher or equal to the values of intensity of all its neigh-
bors and strictly higher than that of a neighbor in at least one of the directions
depicted in Fig. 1.16. With this definition we are able to avoid the selection
of points with values of intensity that lie on a plateau but we still have to re-
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move the points at the border of intensity plateaux where the intensity starts to
decrease in one of the directions. We highlight that there is no real possible dis-
tinction between these border plateau points and the case of two or three points
on a peak event having the same value, so the strategy consists in removing all
the border plateau points except one, so that the statistics is not biased by the
possibly large amount of points lying at the edge of same-valued regions in in-
tensity and, at the same time we do not loose the peak points that represent the
events we are looking for.
To accomplish this goal for each candidate local maximum we select all the other
local maxima, if any, that are closer than five units (note that some points will be
obviously selected more than one time but this will not matter). Then, consid-
ering just the points with the problem of having other possible local maxima in
their proximity, we divide them in groups of all the points that are closer than
thirty units in any direction of the grid. This is done so that even if the border
plateau points cover a big area, all points have a good chance to be identified at
once. The distance of thirty units has also to be chosen as not too large because
it would risk considering other areas that are not related to the same plateau. Fi-
nally for each group we select all the points that have the same intensity values
and we erase them all except one.

The remaining points are the spatiotemporal maxima on which the statistical
studies have been developed.
A threshold of detection at I = 0.5 has also been introduced to avoid numerical
noise to bias the statistics.

Finally since for each simulation we are usually dealing with a big amount
of data (matrices of ≈ 256× 256× 25000 units3) we preferred to divide the data
and detect the local maxima in subset grids of ≈ 256× 256× 200 units3. Doing
so, to avoid missing any local maximum on the border of each grid, every time
we select a new grid we shift back the time coordinate of 10 units. Some local
maxima might be selected two times but after the full procedure only one of the
two points with the same coordinates will be kept into account.

1.6 Statistical analysis

The statistical analysis has been developed on all the spatiotemporal maxima
observed during 25 ns long simulation, with an acquisition rate of one image
of the transverse plane every 1 ps. The integration time step, as previously ex-
plained, is 100 fs.
The chosen spatial size is 256× 256 pixels which roughly corresponds to 256×
256 µm2, being the spatial step 0.25 units and space rescaled on the diffraction
length (which is about 4 µm).

1.6.1 PDF of the spatiotemporal maxima

Three typical probability density functions (PDFs) of the spatiotemporal max-
ima are illustrated in Fig. 1.17. To study the presence of extreme events we
introduced three threshold definitions. The first two threshold definitions are
the most commonly used in rogue wave (RW) analysis.



46 Broad-area semiconductor laser with saturable absorber

The first threshold, mostly used in spatially extended systems [Arecchi 2011,

(a) PDF of the spatiotemporal maxima for µ = 7
and r = 2.5.

(b) PDF of the spatiotemporal maxima for µ = 5
and r = 2.4.

(c) PDF of the spatiotemporal maxima for µ = 5
and r = 1.

Fig. 1.17 – PDFs of the spatiotemporal maxima detected numerically during the simu-
lations, as described in the previous Section. (a) corresponds to a simulation for µ = 7
and r = 2.5, (b) corresponds to a simulation for µ = 5 and r = 2.4 and (c) corresponds to
a simulation for µ = 5 and r = 1. All simulations lasted 25 ns. The three vertical dashed
lines correspond to the three different thresholds described in the text. The green and
magenta lines are, respectively a Gumbel and a Weibull PDF computed through the
average and standard deviation of the data.

Oppo 2013, Liu 2015, Gibson 2016], corresponding to the vertical black dashed
line in Fig. 1.17, consists in the mean intensity, averaged on all the points of the
transverse plane during the whole acquisition time, plus eight times the stan-
dard deviation.
The second threshold definition, corresponding to the vertical red dashed line in
Fig. 1.17, traditionally used in oceanography, consists in two times the signifi-
cant wave height Hs, which is the mean of the highest third of the spatiotemporal
maxima intensity values. We point out that through this threshold definition it
is possible to avoid spatially large events to count more in the statistics because
their width covers more grid points.
The third threshold definition, corresponding to the vertical blue dashed line in
Fig. 1.17, has been introduced specifically in this analysis for self-consistency
with the data and it somehow resembles the first definition for its form: it con-
sists in the average of the intensity values of just the spatiotemporal maxima
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plus eight times their standard deviation. As noticeable in Fig. 1.17 this third
definition is by far the most restrictive, which remains true for all the set of pa-
rameters considered in our analysis. For this reason, in this Chapter, we will
consider the third threshold as the main indicator of the presence of extreme
events in the data.
We would like also to highlight that all the RW thresholds here introduced have
been computed on the data above I = 0.5, to avoid any numerical noise to bias
the statistics, as it was done for the maxima detection method: this approach
makes the thresholds even more restrictive and is commonly used also in the
experiments [Selmi 2016].
In Fig. 1.17 we also introduced two different probability density functions, the
first one being the Gumbel PDF, plotted in green

GumPDF(z) =
1
β

exp[−z− exp(−z)] with z =
Imax − 〈Imax〉

β
+ γ ,

with γ Euler’s constant, and the second one being the Weibull PDF, plotted in
magenta

WeiPDF(Imax) =
k
λ

(
Imax

λ

)k−1

exp

[
−
(

Imax

λ

)k
]

. (1.15)

Both of these probability density functions and the reason for their introduc-
tion will be described more into details in the next Subsection. For now we just
want to remark that these two PDFs are not a fit of the our data: the parame-
ters β, k and λ are instead computed from the data average, median and stan-
dard deviation values and they represent what behavior the data would follow
if the statistics predicted by these distributions was the one to which the system
obeyed. We also observe that, for this reason, the probability density functions
here shown have no degree of freedom, hence the fact that the data well follows
one or another behavior is a stronger statement than what would have been in
case of a simple fit.

In Fig. 1.18 we also plotted, for comparison, the PDF of the total intensity,
that is, all the values in intensity of all the points in the spatial grid at all the
recorded times, which is actually the standard quantity studied by other groups.
The blue solid line corresponds to a negative exponential PDF computed as
exp(−I/〈I〉)/〈I〉, once again this PDF is not a fit, it is instead computed on
the mean intensity value of the data.
The three plots in Fig. 1.18 have been shown for comparison with other works
on extreme events but we would like to point out once again the few issues that
this representation of the data can lead us into: looking at the PDF of the total
intensity we can get an idea of whether the data under analysis is likely to ex-
hibit extreme events given a positive deviation from the negative exponential
decay rate. Nevertheless this data analysis treats equally all the intensity values
assumed by all the points of the grid, regardless of the presence of spatiotempo-
ral structures within the grid: this means that any spatiotemporal structure that
is somehow larger in space or longer in time is forced to weight more, no matter
its intensity, in the data analysis than smaller, and potentially more destruc-
tive, structures. One final observation about the two different kinds of PDFs
here shown is the following. For the PDF of the spatiotemporal maxima we are
looking at the distribution of events that could be extreme for certain values of
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(a) PDF of the total intensity for µ = 7 and r =
2.5.

(b) PDF of the total intensity for µ = 5 and r =
2.4.

(c) PDF of the total intensity for µ = 5 and r = 1.

Fig. 1.18 – PDFs of the total intensity. (a) corresponds to a simulation for µ = 7 and
r = 2.5, (b) corresponds to a simulation for µ = 5 and r = 2.4 and (c) corresponds
to a simulation for µ = 5 and r = 1. All simulations lasted 25 ns. The vertical black
dashed line corresponds to the first threshold described in the text, computed on the
average and standard deviation of the total intensity. The light blue line is a negative
exponential PDF computed on the average of the data as exp(−I/〈I〉)/〈I〉.

intensity: any given point of the plot above the threshold directly corresponds
to a certain known number of extreme events; in the case of the PDF of the to-
tal intensity we are instead not able to associate directly the points that deviate
from the negative exponential to any event.

From this data analysis we can conclude that for certain parameter values
Figs. (see 1.17(b)-1.18(b)) the system clearly exhibits extreme events, with a large
number of events above the third threshold in Fig. 1.17(b) and a clear deviation
from the negative exponential PDF In Fig. 1.18(b).
In Fig. 1.17-1.18 we used specific probability density functions for comparison
with the data. In the following we are going to explain the reason for this choice.

1.6.2 Rayleigh and negative exponential PDF

The use of a negative exponential PDF in comparison with the data of total
intensity is a known procedure in extreme event analysis, especially in fiber
optics [Suret 2016, Randoux 2016b] and comes directly from the analogy with
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oceanography. In this Subsection we will summarize the reason for its applica-
tion.
Let us consider the sea surface elevation variable η(t) [Onorato 2013, El Kous-
saifi 2017] and assume that such variable follows a Gaussian distribution such
that

Pg(η(t)) =
1

σ
√

2π
e−

η2(t)
2σ2 .

Considering the complex signal z(t) = η(t) + iη̃(t), with both η(t) and η̃(t)
following a distribution given by Pg(η(t)), the envelope of the wave is, in good
approximation, given by the amplitude of z(t) as

ρ(t) = |z(t)| =
√

η2(t) + η̃2(t) .

The probability distribution of the wave envelope is then computed as follows:
let us first consider the joint probability of η(t) and η̃(t) (uncorrelated by con-
struction),

P(η(t), η̃(t)) = Pg(η(t))Pg(η̃(t)) =
1

2πσ2 e−
η2(t)+η̃2(t)

2σ2 =
1

2πσ2 e−
ρ2(t)
2σ2 .

Changing variables from (η(t),η̃(t)) to amplitude and phase (ρ(t),θ(t)), the trans-
formation is given by the Jacobian

J =
[

cos θ(t) −ρ(t) sin θ(t)
sin θ(t) ρ(t) cos θ(t)

]
and its determinant is det (J) = ρ(t). Hence∫

P(η, η̃)dηdη̃ =
∫

ρ(t)
2πσ2 e−

ρ2(t)
2σ2 dρdθ

=
∫

ρ(t)
σ2 e−

ρ2(t)
2σ2 dρ (1.16)

=
∫

Pr(ρ(t))dρ

with Pr(ρ(t)), the distribution followed by the amplitude ρ(t) and the wave en-
velope, being a Rayleigh distribution:

Pr(ρ(t)) =
ρ(t)
σ2 e−

ρ2(t)
2σ2 .

Finally, in oceanography, the distribution of heights of the wave envelope (from
minimum to maximum) results more relevant for statistical and practical pur-
poses than the amplitude distribution. In good approximation, for a narrow
band process [Onorato 2013], we can assume here that any excursion from trough
to crest in the surface elevation is close to ρ(t) = H/2 where H is the height.
Hence the height distribution follows a Rayleigh distribution as well, unless a
factor 1/2

Ph(H) =
H

2σ2 e−
H2

8σ2 . (1.17)
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Now, in optics, the easier variable to record experimentally is usually the inten-
sity of the electric field: the distribution followed by the intensity I(t) = ρ(t)2 is
then given by changing the integration variable in Eq. (1.16)∫

ρ(t)
σ2 e−

ρ2(t)
2σ2 dρ =

∫ 1
2σ2 e−

I(t)
2σ2 dI

=
∫

Pe(I(t))dI

with Pe(I(t)), the distribution followed by I(t), being a negative exponential
distribution

Pe(I(t)) =
1

2σ2 e−
I(t)
2σ2 . (1.18)

Finally, for data treatment, we can observe that the mean value of the distribu-
tion Pe(I(t)) is 2σ2 and then:

Pe(I(t)) =
1
〈I(t)〉 e

− I(t)
〈I(t)〉 . (1.19)

As a side note, from Eq. (1.17), we can observe also the origin of the (first)
extreme event threshold definition containing 8σ, used earlier in the text: the
term in the exponent for Ph(H) can be considered as two times the squared ratio
between the wave height and a certain height threshold

− H2

8σ2 = −2
H2

16σ2 = −2
H2

H2
thr

with Hthr = 4σ. Similarly to the case of the significant wave height Hs, oceanog-
raphers consider a wave as rogue if its height is larger than 2Hthr = 8σ, which is
the same threshold definition we represented with the dashed vertical black line
in Fig. 1.17 (here for the intensity instead than for the amplitude), when consid-
ering that the average of the sea surface elevation is zero, given the assumption
of Gaussianity.

1.6.3 Weibull PDF

The Weibull PDF is often used in oceanography [Forristall 2000, Bitner - Greger-
sen 2012, Toffoli 2016] and in optics [Dudley 2008, Onorato 2013, Gibson 2016].
The reason for such an extensive use lies in the versatility of such density func-
tion

WeiPDF(x) =
k
λ

xk−1e−xk
,

where, with respect to Eq. (1.15) we just set x = Imax/λ, in fact, we can observe
that for

k = 1 WeiPDF(x) =
1
λ

e−x is a negative exponential distribution

k = 2 WeiPDF(x) =
2
λ

xe−x2
is a Rayleigh distribution .

As explained in the previous Section, in oceanography, under the assumption of
a Gaussian distribution for the sea elevation, the distribution of the water wave
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envelope heights should in good approximation follow a Rayleigh distribution:
the Weibull distribution for k > 0 gives then an idea of whether and how much
the data deviates from a Gaussian-related behavior, leading to possible rogue
waves in the system.
In optics instead we can observe that any Weibull distribution, for k > 1, well
describing the data, indicates a deviation from the negative exponential statistics
with the parameter k quantifying the magnitude of such deviation.
In our specific case we chose to use the Weibull PDF as a comparison for the
PDF of the spatiotemporal maxima and not in the PDF of the total intensity,
because in the second case it did not seem to well describe the data for any
parameter choice we made, thus not giving us any insight of how much the data
deviated from the negative exponential. Instead the application to the PDF of the
spatiotemporal maxima seemed more interesting because the Weibull PDF was
able to well describe the data in the case of few extreme events in the system (see
for example Fig. 1.17(a) and (c) where, respectively k ≈ 1.52, 1.54). In the case
of many rogue waves, depicted in Fig. 1.17(b), the deviation from the negative
exponential tail seems too big even for the Weibull distribution to adapt.

1.6.4 Gumbel PDF

The use of the Gumbel PDF as a comparison for the spatiotemporal maxima data
requires a larger explanation, especially for its connection with classical extreme
value theory [Gumbel 1958, Coles 2001, Albeverio 2006].
The main goal of classical extreme value theory, given a set of random, indepen-
dent and identically distributed (i.i.d.) variables, is the study of the extremes
(both maxima and minima) of the time series provided by such variables.
One of the main results of this theory consists in the following theorem [Albev-
erio 2006]:

Theorem (Fisher–Tippett–Gnedenko). Let {Xi}i∈N be a sequence of i.i.d. real ran-
dom variables, distributed according to some cumulative distribution F, and consider
the partial maxima Mn := max{Xi : i = 1, ..., n} with n ∈N.
If a sequence of pairs of real numbers {an, bn}n∈N exists such that an > 0 and

Mn − bn

an

d−→ H for n→ ∞, (1.20)

where d−→ indicates convergence in distribution, then H belongs to one of three non-
degenerate limit distribution, namely Fréchet, Weibull and Gumbel distributions.

Less rigorously what the theorem states [Albeverio 2006] is that if the maximum
Mn has a limit distribution then such distribution belongs to one of three stan-
dard types.

Considering now [Albeverio 2006] the probability P that Mn−bn
an

will assume a
value less or equal to x, called also cumulative probability, we can observe that

P
(

Mn − bn

an
≤ x

)
= P{Xi ≤ anx + bn, ∀i = 1, ..., n} = F(anx + bn)

n

where in the first equality we have observed that asking that for the n maxima
of the sequence {Xi}i∈N to be ≤ x is equivalent to ask for all the terms of the
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sequence to be ≤ x. In the second equality we observed that, since the variables
of the sequence Xi are F-distributed, then the probability that one variable of the
sequence Xi for a certain i is less or equal to anx + bn is F(anx + bn). Furthermore
the probability that every variable of the sequence is less than anx+ bn is F(anx+
bn)n because the variables are assumed independent.
At this point Eq. (1.20) can be expressed as follows:

lim
n→∞

F(anx + bn)
n = H(x) x ∈ R

with H(x) the cumulative distribution functions (CDF) of one of these three stan-
dard extreme value distributions

Fréchet : Φα(x) =

{
0 x ≤ 0
e−x−α

x > 0

Weibull : Ψα(x) =

{
e−(−x)α

x ≤ 0
1 x > 0

Gumbel : Λ(x) = e−e−x
x ∈ R

with α > 0.
It is important to notice that the Weibull extreme value distribution here casted
is more properly called reversed Weibull distribution, as in fact the CDF here rep-
resented corresponds to the complementary cumulative distribution function.
As it turns out in fact while the Gumbel and the Fréchet CDF relate to maxima,
the ordinary Weibull CDF

WeiCDF =

{
1−Ψα(x) = 1− e−(−x)α

x ≥ 0
0 x < 0

would relate to minima, as the smallest extreme value instead of the greatest.
In order then to make a comparison with the other two standard extreme value
distribution it is needed to reverse WeiCDF, so that also this distribution would
relate to maxima.

Up to a linear transformation the Fréchet, Weibull and Gumbel distributions
can be rearranged in the following common form, also known as generalized ex-
treme value (GEV) distribution [Albeverio 2006]

Pγ(x) = exp

[
−
(

1 + γ
x−m

σ
x
)− 1

γ

+

]
for x ∈ R

where (∗)+ = max(0, ∗) and γ is the extremum value index. For γ > 0 the GEV
distribution corresponds to the Fréchet distribution Φα(x), for γ < 0 it corre-
sponds to the reversed Weibull distribution Ψα(x) and for γ→ 0 it corresponds
to the Gumbel distribution Λ(x).
We would like to remark [Albeverio 2006] that there are many distributions
that do not belong to the three mentioned domains of attraction: for instance
the maximum distribution for geometric and Poisson distributions cannot be
well approximated by any of the standard extreme value distributions, instead
Pareto-like distributions usually fall in one of the three given categories.
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Another remark on the extreme value theorem [Albeverio 2006] is that its va-
lidity is for statistically independent data, but in reality the data under analysis
is often statistically dependent. Even if this is beyond the purpose of this digres-
sion and this Thesis, in this case we need to wonder to what extent the approxi-
mations of the GEV distribution are still valid for dependent data. The problem
is usually solved introducing appropriate mixing conditions, for instance, given
a stationary time series Xt with t ∈ N, with a marginal distribution function F,
we can still state that

P(Xt ≤ anx + bn, ∀i = 1, ...n) = Fθn(anx + bn)

where θ is called the extremal index. If θ ≈ 1 then it means that the data consid-
ered is almost independent.
Some examples for the use of the Gumbel distribution in oceanography, as di-
rectly related to classical extreme value theory are [Bitner - Gregersen 2012],
where the assumption of wave crests as independent events is made, and [Fe-
dele 2012a, Fedele 2012b]. In general we can observe that for a sufficient num-
ber of data the wave crest distributions in these papers seem indeed to follow a
Gumbel CDF.

In our present case, we apply, for comparison, the Gumbel PDF as an extreme
value PDF that can be considered to analyze data with large deviations from
their average. The other two distributions indicated in the extreme value theo-
rem do not seem to well describe the data, for any choice of parameter made.
To give an idea about a direct application of the theorem, we can assume that
for each spatiotemporal maximum it is possible to find a time series or a set of
grid points of which such spatiotemporal maximum presents the largest value
of intensity. These sets of grid points are assumed to be independent from each
other and together they could play the role of the sequence of i.i.d. real random
variables (each variable able to assume all the values in its set of grid points).
Then if the maxima of each variable, that are our spatiotemporal maxima, have
a limit distribution, that has to belong to one of the three standard extreme value
distributions.
As we will see further into details in the following Section, for the most extreme
choices of parameters (see for example Figs. 1.17(b) and 1.18(b)), the Gumbel
distribution does not well describe the data, which implies that the theorem
does not hold in this case. This occurs because either there is no limit distribu-
tion or, most probably, the sets of grid points is not to be approximated anymore
as independent: in fact the data shows the most extreme behavior when, glob-
ally, a self-pulsating, Q-switching-like phenomenon takes place. As observed
in the introduction of this Thesis, in the general theory of extremes the data of
extreme phenomena is often found to be dependent.

1.7 Dependence on the laser parameters

One of the aspects of this data analysis we are particularly interested in is iden-
tifying what parameter region is more likely to exhibit extreme events, also from
an experimental point of view. The main parameters that can affect the dynam-
ics of our model in Eqs. (1.1) are µ, the pump parameter and r, the ratio of the
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carrier lifetimes. To compare the extreme nature of the intensity values in each
simulation we considered two indicators.
The first indicator is the kurtosis of the PDFs, both of the spatiotemporal maxima
and of the total intensity. The kurtosis is the ratio of the forth moment about the
mean to the square of the variance of the data.
The second indicator, applied mainly to the PDFs of the spatiotemporal maxima,
is the rogue wave ratio, which is the ratio of extreme events, according to one of
the three rogue wave threshold definitions, to the number of all the spatiotem-
poral maxima. In the case of the PDF of the total intensity this indicator simply
consists in the ratio of the number of grid points with an intensity value above
the first threshold to the total number of grid points on which the simulation has
been computed.
In Fig. 1.19 we depicted four density plots relative to the PDF of the spatiotem-

(a) RW ratio according to threshold 1. (b) RW ratio according to threshold 2.

(c) RW ratio according to threshold 3. (d) Kurtosis.

Fig. 1.19 – RW ratios of the PDF of spatiotemporal maxima according to the first (a),
second (b) and third (c) RW threshold definitions introduced in the text. (d) Kurtosis of
the different spatiotemporal maxima PDFs.

poral maxima computed for different values of the control parameters µ and r.
Fig. 1.19(a)-(c) are the RW ratios with respect to the first (a), second (b) and third
(c) thresholds as depicted in Fig. 1.17. Instead Fig. 1.19(d) represents the kurto-
sis K of the PDFs. As a reference we would like to remind the reader that for a
Gaussian distribution KGauss = 3.
The first two RW thresholds, which do not introduce a particularly restrictive
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condition on the data, seem to show a similar behavior in the density plots (a)
and (b), identifying, as the region with the higher ratio of extreme events, the
one located to the higher left corner of the map. We would like to stress out that
the grey region at the top left corner is not to be considered part of the analysis,
since extended spatiotemporal chaos is not stable in this area: there is only the
laser-off solution. The third RW threshold, more restrictive for our data, and
the kurtosis density plots (c) and (d) illustrate a slightly different situation, in
comparison with (a) and (b), showing as the most favorable regime for extreme
events an area for µ close to 5 and r close to 2.4, corresponding to the PDFs plot-
ted in Figs. 1.17(b) and 1.18(b). Such favorable situation seems to disappear for
values of r higher than 2.7, at difference with what occurs in (a) and (b). In its
peak the kurtosis reaches a value of K ≈ 90 and the maximum ratio of extreme
events associated to the same simulation, according to the third threshold, is
RWratio ≈ 0.003.

(a) RW ratio according to threshold 1. (b) Kurtosis - Kexp.

Fig. 1.20 – RW ratio of the PDF of total intensity according to the first RW threshold
definition (a) introduced in the text. (b) Kurtosis of the total intensity PDFs, relative to
the negative exponential (see text).

For the sake of comparison, in Fig. 1.20 we depicted the density plots of the
total intensity PDFs for different values of µ and r, relative to the (first threshold)
RW ratio (a) and the kurtosis (b), here illustrated after subtracting the value of
kurtosis for the negative exponential PDF Kexp = 9.
A comparison with the results depicted in Fig. 1.19 shows that all the data plots
seem visually similar, with a typical structure at the left boundary of the ex-
tended spatiotemporal chaos regime. Some small differences are in any case
specific to the different quantity under study: in particular Fig. 1.20(a) and (b)
present more similarities with Fig. 1.19(a) and (b), especially showing a maxi-
mum value of RW ratio and kurtosis for higher values of r & 2.5, instead than
for r ≈ 2.4 and µ ≈ 5 as Fig. 1.19(c) and (d).
We believe that this small difference between the density plots of the total in-

tensity and the spatiotemporal maxima is to be related to the global behavior
of the system, in particular the time trace of the spatially averaged intensity: in
the peak parameter region highlighted in Fig. 1.19(c) and (d) such time trace
presents a pulsating behavior, as depicted in Fig. 1.21, somehow reminiscent
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Fig. 1.21 – Time trace of the spatially averaged intensity for a simulation with µ = 5
and r = 2.4.

of the passive Q-switching obtainable in a purely temporal LSA system. This
pulsating behavior implies that the transverse plane presents, most of the time,
low values of intensity, with some, but not many, spatiotemporal maxima, and,
every once in a while, it bursts everywhere to high values of intensity with a
big number of spatiotemporal maxima. Hence the long time intervals where
low values of intensity are displayed, will count more in the statistics of total
intensity than in the statistics of the spatiotemporal maxima. For this reason, ac-
cording to the statistics of the total intensity, and to the threshold computed on
such data, the system seems to present a lower number of extreme events than it
actually contains. This Q-switching-like behavior of the average intensity then
stops for higher values of r and the bias on the total intensity extreme event es-
timation method stops as well.

(a) Kurtosis and RW ratio for r = 2.2. (b) Kurtosis and RW ratio for µ = 5.

Fig. 1.22 – Values of kurtosis, in green solid line with circle markers, and (third thresh-
old) RW ratio, in blue dashed line with diamond markers, for (a) r = 2.2 and variable µ
and for (b) µ = 5 and variable r.

To show better the kurtosis and RW ratio behavior of Fig. 1.19 and their
agreement, we also plotted in Fig. 1.22 the values of the two indicators for fixed
r = 2.2 (a) and µ = 5 (b). In particular in Fig. 1.22(a) we preferred to display
a plot for a lower value of r, instead than for the most favorable situation of
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Fig. 1.23 – Homogeneous stationary solution (in black), as given in Eq. (1.6) plotted
together with the extended spatiotemporal chaos (orange line with square markers)
branch. All the data here plotted is relative to simulations for b = 0.005, r = 1, s = 10,
B = 0, α = 2, β = 0, γ = 0.5 [Bache 2005] and variable µ. µth = 1.5 is the laser threshold.

r = 2.4, since the highest value of the two indicators for r = 2.4 results too high
to provide a good comparison with the almost flat rest of the data. It is clear that
both indicators grow accordingly for high values of r and low values of µ, which
brings us to conclude that, through the use of relatively fast absorbers, with
2 . r . 3, and low pump currents, either below the laser threshold (µthr = 5.18)
or in the bistable region, it will be more likely to observe extreme events also
experimentally.

1.8 Comparison with other works in the field

We would like now to compare our results with those of Refs. [Selmi 2016, Cou-
libaly 2017], concerning the same system.
In Ref. [Selmi 2016] the authors observe extreme events experimentally in the
setup of a VCSEL with an intracavity saturable absorber. The data experimen-
tally collected consists in the intensity time trace, averaged on a small area of
diameter ≈ 5 µm [Coulibaly 2017], due to the size of a pinhole set before acqui-
sition and the finite size of the detector, a fast avalanche photodiode.
The model is numerically studied [Selmi 2016, Coulibaly 2017] in 1D+time, with-
out radiative recombination (B = 0) and with a linewidth enhancement factor
for the absorber equal to zero (β = 0) as in Ref. [Bache 2005]. In order to take
into account the finite linewidth of the gain, the authors prefer to consider a top-
hat finite pump profile, as the one in Ref. [Prati 2010a]: a spatial confinement in
the transverse plane introduces in fact a limitation in the number of transverse
modes involved in the dynamics.

The authors in [Selmi 2016, Coulibaly 2017] characterize the extended spa-
tiotemporal chaos in 1D+time through Lyapunov coefficients analysis and the
Kaplan-Yorke dimension, and relate the presence of extreme events to an in-
crease of the chaoticity of the system [Selmi 2016] and to quasiperiodic extended
spatiotemporal intermittency [Coulibaly 2017].
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Fig. 1.24 – Values of kurtosis, in green solid line with circle markers, and (third thresh-
old) RW ratio, in blue dashed line with diamond markers, for (a) r = 1 and variable µ.
The simulations were run for fixed parameters b = 0.005, r = 1, s = 10, B = 0, α = 2,
β = 0, γ = 0.5 [Selmi 2016].

We would like to highlight that one of the main differences between the nu-
merical results in Refs. [Selmi 2016, Coulibaly 2017] and the present study con-
sists in the fact the authors have limited themselves to 1D spatial dimension
instead of considering the full 2D transverse plane: this is justified in order to
describe the experimental results where a gold mask, set on the VCSEL surface,
assigns to the pump a rectangular geometry. Furthermore all the statistical anal-
ysis in [Selmi 2016] is developed on the (spatially averaged) total intensity time
trace. In the subsequent paper [Coulibaly 2017] the theoretical statistical analy-
sis has been developed on the spatiotemporal heights in the 1D+time system.

We computed a set of 25 ns-long simulations with the same parameters as
in [Bache 2005], referenced in [Selmi 2016, Coulibaly 2017]: that is b = 0.005,
r = 1, s = 10, B = 0, α = 2, β = 0, γ = 0.5 and variable µ. In Fig. 1.23 we de-
picted the homogeneous stationary solution (black line) together with the time-
averaged maximum intensity of the extended spatiotemporal chaotic branch,
plotted in orange. It is noticeable that for this set of parameters the chaotic
branch is not stable below the laser threshold µthr = 1.5 (its left boundary lies at
µ ≈ 1.49). This implies that there is almost no multistability between the chaotic
regime and the laser-off state.

Applying our method of analysis on the spatiotemporal maxima to this set
of simulations, we observed a clear increase of both the indicators of kurtosis
and (third threshold) RW ratio of the spatiotemporal maxima PDFs as depicted
in Fig. 1.24. This result is in agreement with what we have already observed
in the previous Section and it confirms that the system is more likely to exhibit
extreme events for low values of µ, possibly below the laser threshold, or, if that
is not allowed by the stability of the chaotic branch, as close as possible to µthr.
This result somehow disagrees with what has been observed in [Selmi 2016],
where the authors report an increase of the extreme events of the total intensity
time trace for higher values of µ and related this phenomenon to the similar
increase of the Kaplan-Yorke dimension (see for instance Fig. 1.25). We have
already noticed that, in the regions where our RW indicators are the largest, the
spatially averaged intensity might actually well behave in time, even showing
a Q-switching-like behavior, as in Fig. 1.21 where no extreme events could be
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Fig. 1.25 – Reprinted with permission from [Selmi 2016]. On the left side proportion
pEE of extreme events (blue circles) and kurtosis γ2 (red squares) as functions of µ. On
the right side the Kaplan-Yorke DKY dimension as function of µ.

Fig. 1.26 – Time trace of the intensity, averaged on a central square of 5× 5 µm2. The
simulation was run for b = 0.005, r = 1, s = 10, B = 0, α = 2, β = 0, γ = 0.5 and
µ = 1.49 (left boundary of the chaotic branch in Fig. 1.23).

found: the discrepancy between the results in Ref. [Selmi 2016] and this Thesis
is probably due to the quantity under study, somehow reductive of the nature
of the system, and also to 1D geometry. In fact in [Coulibaly 2017], an almost
opposite behavior for the kurtosis and RW ratio, in better agreement with our
results, is observed.

Finally we compared into details our usual method of analysis with the
method used in the experiments, which consists in studying the intensity time
trace, averaged in a small area of the transverse plane. A typical time trace of
this data is depicted in Fig. 1.26 for µ = 1.49.
In Fig. 1.27 we depicted the PDF of the spatiotemporal maxima obtained from
the analysis of the data for (a) µ = 1.49 (b) µ = 3, which are respectively the
left and right boundaries of the chaotic branch in Fig. 1.23. Furthermore in Fig.
1.27(c) we plotted the PDF of the temporal maxima observed in the time trace
(spatially averaged on a small area) as depicted in Fig. 1.26 for µ = 1.49, and
the same PDF for µ = 3. The RW thresholds have been computed for (c) and
(d) on the respective intensity averaged time traces. A small difference with
the method used in [Selmi 2016] consists in the fact that we are evaluating the
statistics of the maxima instead of that of the heights, but given that the baseline
in Fig. 1.26 is set to zero, the discrepancy between the data is assumed to be
small. It is clear from Fig. 1.27(a) and (c) that the experimental method under-
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(a) PDF of the spatiotemporal maxima µ = 1.49. (b) PDF of the spatiotemporal maxima µ = 3.

(c) PDF of the temporal maxima on a small area
µ = 1.49.

(d) PDF of the temporal maxima on a small area
µ = 3.

Fig. 1.27 – (a) PDF of the spatiotemporal maxima, detected during the simulation with
our usual method. (b) PDF of the temporal maxima, individuated on the time trace
of the intensity, spatially averaged on a small 5 × 5 µm2 area as in the experiments
[Selmi 2016, Coulibaly 2017]. In (d) the Weibull PDF is not depicted because it does not
describe well the data.

estimates the presence of extreme events in the system in their most favorable
regime, presenting (c) just one point above the third RW threshold in compar-
ison with the large amount of events with high values of intensity observed in
the spatiotemporal maxima PDF (a).

1.9 Waiting time statistics

The statistics of the waiting times between consecutive extreme events has been
reported to follow a log-Poissonian statistics in [Arecchi 2011, Dal Bosco 2013].

To verify this observation in our system we considered a 250 ns-long simu-
lation for µ = 6 and r = 1: this is not one of the most favorable regimes for the
occurrence of extreme events but, even if the number of events above the third
threshold is small, given the longer simulation time, we can any way obtain a
good amount of extreme events for our study.
For each extreme event registered at a time tw in the position (xw, yw) of the
transverse plane we verified if any other extreme events occurs at a further time
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Fig. 1.28 – PDF of the logarithmic waiting times between two consecutive extreme
events in the same 5 pixel area for a simulation with µ = 6 and r = 1. In green we
presented a fit of the data with a negative exponential.

tw + t in an area of 5 pixels centered on the same position (xw, yw). We would
like to highlight that, due to this procedure, a longer simulation time is also
needed in order to have enough cases where an extreme event occurs at least a
second time in the same spatial location.
In Fig. 1.28 the resulting PDF of log[tw + t/tw] seems to be in good agreement
with a negative exponential fit, plotted in green, leading us to conclude that the
extreme events in our system are, in good approximation, independent variables
as in Ref. [Arecchi 2011, Dal Bosco 2013].
This result is in contrast with what has been observed in [Coulibaly 2017], where
the waiting time distribution seems to deviate from a Poissonian statistics, fol-
lowing a stretched negative exponential. Once again the discrepancy between
the two studies seems to lie in the different quantity under analysis. In Ap-
pendix D we summarize the derivation of the log-Poissonian distribution per-
formed in [Sibani 1993, Sibani 2003].

1.10 Profiles and cavity soliton comparison

We are now going to analyze the spatial and temporal profiles of the extreme
events detected in a favorable parameter region.

In Fig. 1.29(a) we depicted an example of the kind of extreme events oc-
curring in the intensity in the transverse plane, here relative to a simulation for
µ = 4.8 and r = 2.2. Furthermore in Fig. 1.29 we reported the spatiotemporal
maxima PDF (b) and the total intensity PDF (c) for this specific simulation.

In Fig. 1.30 we illustrated the corresponding profiles in time (a) and space (b)
for the intensity I (red solid line) and the carrier densities in the active D (green
dotted line) and passive D̄ (yellow dash-dotted line) media. For the sake of sim-
plicity we limited our data analysis to the x and y axes. We can observe that the
occurrence of a high peak in the intensity implies, as expected, the presence of a
dip in the carrier density of the active medium and a peak in the carrier density
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(a) Extreme event in the transverse plane.

(b) Spatiotemporal maxima PDF. (c) Total intensity PDF.

Fig. 1.29 – (a) Example of extreme event in the transverse plane for a simulation at
µ = 4.8 and r = 2.2. (b) Spatiotemporal maxima PDF and (c) total intensity PDF for this
specific simulation.

(a) Temporal profile. (b) Spatial profile.

Fig. 1.30 – Temporal (a) and spatial (b) profile of the extreme event depicted in intensity
I in Fig. 1.29, together with the corresponding profiles of the carrier populations D and
D̄.

of the passive medium. In particular in the temporal profile of Fig. 1.30(a), ac-
quired registering the intensity values throughout the simulation in the spatial
point where the extreme event occurs, we can also appreciate the slower dynam-
ics of the carrier density in the recovery after the extreme event occurrence.
We would like to remark that, due to the movement of the spatiotemporal struc-
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tures along the transverse plane in time, in some cases it is difficult to acquire an
extreme event profile where only one structure is involved: what often occurs is
that the profile along one of the axis contains the merging between two or more
structures thus overestimating the size of a single extreme event. For this reason
we limited our analysis to the extreme event profiles whose closest minima (to
the left and to the right of the peak) have intensity values below I = 1. The
typical FWHM in space for the extreme events observed is 6 µm and the typical
FHWM in time is 16 ps. These values remain almost constant across all the dif-
ferent parameter choices made throughout this study, suggesting the presence
of a typical spatial and temporal size for this kind of phenomena.

(a) Comparison with the spatial profile of CS.

(b) Comparison with the temporal profile of OCS. (c) Comparison with the spatial profile of OCS.

Fig. 1.31 – (a) Comparison of an extreme event spatial profile with that of a CS, both
simulated for µ = 5 and r = 1. Comparison of an extreme event spatial (b) and (c)
temporal profiles with that of an OCS, both simulated for µ = 5 and r = 1.75.

In Fig. 1.31 we drew a qualitative comparison with the spatial size (a) of
stationary cavity solitons (CS) and the spatial (b) and temporal (c) size of oscil-
latory cavity solitons (OCS) also present in the system for certain choices of pa-
rameters. All profiles have been normalized in intensity to allow a comparison
between the different phenomena. CS and OCS have been studied into details
in Section 1.4. In particular Fig. 1.31(a) compares an extreme event in the chaotic
regime with a CS for µ = 5 and r = 1, and Figs. 1.31(b),(c) compare, respectively,
the spatial and temporal profiles of an extreme event in the chaotic regime with
an OCS for µ = 5 and r = 1.75. The difference in the parameter choice is due to
the fact that OCSs exist only for certain values of the parameter r, as illustrated
in Fig. 1.5(b), instead the CS branch, depicted in Fig. 1.5(a) and here studied,
has been simulated for r = 1 and does not coexist with OCSs [Vahed 2014]. We
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would like to point out that the parameter choice for the comparison with sta-
tionary CSs is not particularly favorable to extreme events (see Fig. 1.17(c) and
1.18(c)), nevertheless some extreme events still occur in the system allowing for
this shape comparison to take place.
Extreme events and cavity solitons, both stationary and self-pulsing, show a
very similar spatial and temporal size, seemingly implying the same generating
mechanisms to lie at the formation of both phenomena. In particular the gen-
erating mechanism of these structures in space is related to the modulational
instability of the homogeneous solution and their scale is determined by the
diffraction length (which depends on the cavity length and the wavelength of
light) [Spinelli 1998]. Instead the formation of these structures in time is due to
the effect of the Hopf instability on the stationary solutions (both the homoge-
neous and the CS ones), leading to Q-switching [Dubbeldam 1999].

Finally we observe that, for values of r where CSs exist, extreme events are
more frequent when the system presents multistability with soliton solutions.
Extreme event occurrence may therefore be enhanced by the presence of cavity
solitons and related to the existence of the dissipative soliton attractor.

1.11 Future perspectives

This work presents two main future perspectives: the first one consists in the
investigation of predictability both in space and time, for instance comparing
the shape of the field intensity when approaching an extreme event to check for
possible regularities (see for example [Zamora-Munt 2013, Birkholz 2015, Alva-
rez 2017]).
This study requires a specific nontrivial technique since the structures observed
in the chaotic regime move in time along the transverse plane and to develop a
rigorous study it is necessary to be able to identify and “follow” a structure also
when it does not present any peak.
This development would be in any case very interesting, also in light of the hy-
drodynamical analogy and, more in general, of the possible analogies with other
extreme event fields, since the presence of a typical shape either in space or time
could be identified as a precursor of the extreme event itself, thus enabling us to
reduce its possible damages.

Another possible perspective related to the study of this system is the inves-
tigation of its conservative limit, which we are going to explain in more detailed
in the following Subsection and in Appendix E.

1.11.1 Conservative limit of a LSA

It is possible to obtain a conservative limit for the model described in Eqs. (1.1).
In particular this system can be described as a particle of unitary mass subject
to a Toda potential. This alternative description, in the purely temporal case,
has already been proven for a Class B [Arecchi 1984] laser in [Oppo 1985] and
verified experimentally in [Cialdi 2013] but it has been extended only recently
to the case of a passive medium inside the laser cavity [Rimoldi 2014].
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Let us consider first Eqs. (1.1) without the radiative recombination terms
B = 0 and neglecting the transverse Laplacian∇2

⊥: the equations that describe a
purely temporal semiconductor laser with an intracavity saturable absorber are
the following

Ḟ = [(1− iα)D + (1− iβ)D̄− 1] F , (1.21a)
Ḋ = b

[
µ− D

(
1 + |F|2

)]
, (1.21b)

˙̄D = rb
[
−γ− D̄

(
1 + s|F|2

)]
. (1.21c)

We can recast Eq. (1.21a) for the electric field F (and the corresponding equation
for its complex conjugate) as two equations, one for intensity I and the second
for the phase φ such that F =

√
Ieiφ. We then obtain

İ = 2I(D + D̄− 1) ,
φ̇ = − (αD + βD̄) ,
Ḋ = b [µ− D (1 + I)] ,
˙̄D = rb [−γ− D̄ (1 + sI)] .

The trivial stationary solution is given by

Is,0 = 0 , Ds,0 = µ , D̄s,0 = −γ .

The nontrivial stationary solution is

φs = −ωst , Ds =
µ

1 + Is
, D̄s = −

γ

1 + sIs
,

with Is such that Ds + D̄s − 1 = 0. We also define ωs the reference frequency of
the emitted field

ωs = αDs + βD̄s = α + γ
α− β

1 + sIs
,

which implies [Bache 2005] that the laser frequency changes with the field in-
tensity, provided that α 6= β. In any case the stability of the nontrivial solution
is not influenced by the value of ωs.
Let us now consider just the equations for I, D and D̄

İ = 2I(D + D̄− 1) ,
Ḋ = b [µ− D (1 + I)] ,
˙̄D = rb [−γ− D̄ (1 + sI)] .

Introducing the following variables

x = log
I
Is

, D = Ds(1 + n) , D̄ = D̄s(1 + n̄) ,

we obtain

ẋ = 2 (Dsn + D̄sn̄) , (1.24a)
ṅ = −b [Is(ex − 1) + n(1 + Isex)] , (1.24b)
˙̄n = −rb [sIs(ex − 1) + n̄(1 + sIsex)] . (1.24c)
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If we now compute ẍ, we obtain the following expression

ẍ + 2b (Ds + sD̄sr) Is(ex − 1) (1.25)
=

−2b (Dsn + D̄srn̄)− 2b (Dsn + D̄srsn̄) Isex ,

which for r = 1 gets reduced to

ẍ + 2b(µ− γ− 1)Is(ex − 1) = −bẋ− 2b(Dsn + D̄ssn̄)Isex ,

where we have observed that

Ds − D̄s − 1 = 0

µ
1 + Is − Is

1 + Is
− γ

1 + sIs − sIs

1 + sIs
− 1 = 0

µ

(
1− Is

1 + Is

)
− γ

(
1− sIs

1 + sIs

)
− 1 = 0

µ− γ− 1 = Is

(
µ

1 + Is
− γs

1 + sIs

)
µ− γ− 1 = Is (Ds + sD̄s) .

Hence we can deduce that for similar values of the relaxation times for D and
D̄ the first term on the right hand side in Eq. (1.25) becomes purely dissipative
above the laser threshold and the second one acts as a forcing or damping term,
depending on the values of the parameters involved.
The conservative limit is then given by

ẍ + 2b (Ds + sD̄sr) Is(ex − 1) = 0 (1.26)

ẍ +
dVLSA(x)

dx
= 0

where we introduced the equation that describes the motion of a unitary mass
oscillator.
If we identify

ω2
LSA = 2b (Ds + sD̄sr) Is

as the frequency of the relaxation oscillations on the stable branch to the right of
the Hopf bifurcation, we can obtain an expression for the potential VLSA

VLSA(x) = ω2
LSAV(x) with V(x) = ex − x

where V(x) = ex − x is actually the Toda potential as studied in [Oppo 1985]
and illustrated in Fig. 1.32.
Eqs. (1.24) in the conservative limit can be recast as

ẋ = 2 (Dsn + D̄sn̄) , (1.27a)
ṅ = −b [Is(ex − 1)] , (1.27b)
˙̄n = −rb [sIs(ex − 1)] , (1.27c)

which in the original variables corresponds to

İ = 2 [(D− Ds)− (D̄− D̄s)] I ,
Ḋ = −bDs (I − Is) ,
˙̄D = −rbD̄ss (I − Is) .
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Fig. 1.32 – Toda potential V(x) = ex − x.

It is possible to obtain an analytic approximation for x, n and n̄ the variation of
energy along a period in the limit of large energies. In this limit it is also possi-
ble to give an analytically expression for the period and width of the pulses, as
defined in [Cialdi 2013], which results in very good agreement with the results
of numerical simulations both in the Q-switching and the damped oscillation
regimes. All these results have been illustrated into details in Appendix E.

The reintroduction of the radiative recombination term B 6= 0 does not affect
the conservative limit since B appears only in terms ∝ n, n̄, n2, n̄2. In fact the
complete Eqs. (1.24) (in the non conservative limit) become

ẋ = 2 (Dsn + D̄sn̄) , (1.28a)
ṅ = −b

[
Is(ex − 1) + n(1 + Isex + 2BDs) + n2BDs

]
, (1.28b)

˙̄n = −rb
[
sIs(ex − 1) + n(1 + sIsex + 2BD̄s) + n̄2BD̄s

]
, (1.28c)

where the term ∝ n2,n̄2 are neglectable. Computing ẍ we obtain

ẍ + 2b (Ds + sD̄sr) Is(ex − 1)
=

−2b (Dsn + D̄srn̄) + 2B
(

D2
s n + D̄2

s rn̄
)
− 2b (Dsn + D̄srsn̄) Isex

and the conservative limit is still the same as in Eq. (1.26).
Reintroducing the equation for the phase, which does not affect the conservative
nature of the system, and recasting the equations for F, D and D̄ we obtain

Ḟ = F [D(1− iα)− Ds + D̄(1− iβ)− D̄s]

Ḋ = −bDs (I − Is)
˙̄D = −rbD̄ss (I − Is) ,

and, observing that Ds + D̄s − 1 = 0, this gets reduced to

Ḟ = F [D(1− iα) + D̄(1− iβ)− 1] , (1.29a)
Ḋ = −bDs (I − Is) , (1.29b)
˙̄D = −rbD̄ss (I − Is) , (1.29c)
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where we can notice that the conservative limit affects only the equations for the
carrier densities.
Since the introduction of spatial coupling through the transverse Laplacian ∇2

⊥
term is also not supposed to affect the conservative nature of the system we can
now rewrite Eqs. (1.29) as the the conservative limit of a broad-area semicon-
ductor laser with saturable absorber

Ḟ = F
[
D(1− iα) + D̄(1− iβ)− 1 + (δ + i)∇2

⊥
]

, (1.30a)
Ḋ = −bDs (I − Is) , (1.30b)
˙̄D = −rbD̄ss (I − Is) . (1.30c)

These results have not yet been tested numerically or experimentally but
they represent an interesting possible development of the model in Eqs. (1.1),
both to observe how the stability of the system and its possible solutions would
be modified in the conservative limit and to verify if a Toda potential description
can actually well approximate the evolution of the 2D+time system as the one
in Eqs. (1.1).

1.12 Conclusions

In this Chapter we have studied the model for a monolithic broad-area VCSEL
with an intracavity saturable absorber, analyzing into details all the possible
solutions available for this kind of system. We then focused on the solution
of extended 2D spatiotemporal chaos and investigated the presence of extreme
events in this regime. This study required the development, for the first time,
of an algorithm of detection for the spatiotemporal maxima in three dimensions
(2D+time) in the transverse profile of the field intensity.
Through statistical analysis we have shown the numerical existence of extreme
events in the system, according to different possible definitions, illustrated the
most suitable parameter region to observe them, also experimentally, and char-
acterized their occurrence. A study on the spatial and temporal profile allowed
us to assign to these events a typical size.
The comparison of our work with others in the community [Coulibaly 2017]
showed some differences which are fully justifiable when considering the nu-
merical and experimental analysis have been, in those cases, developed in 1D +
time systems. We believe, as suggested in Ref. [Bonazzola 2013], that 2D spatial
effects play in fact a crucial role in the formation of extreme events.
Finally we focused on a comparison in spatial and temporal size of these objects
with the other solutions present in the system, namely cavity solitons, both sta-
tionary and self-pulsing. The striking similar shape between all these structures
may imply an enhancement of extreme events when close to the dissipative soli-
ton attractor.
Future perspectives of this work consist in the investigation of predictability and
in the study of the conservative limit for this model as well as its consequences
on the observed extreme events.



Chapter 2

Semiconductor ring laser with
injection

Preface

This Chapter is dedicated to the study of semiconductor lasers with optical in-
jection and one spatial dimension along the propagation, as in the case of optical
fibers.
The introductory part of the Chapter is devoted to the derivation of the model
and its characterization. The first main section of the Chapter consists in the
study of the results achieved in semiconductor lasers with injection in two dif-
ferent cavity configurations, where phase solitons have been experimentally ob-
served [Gustave 2015, Gustave 2016b, Walczak 2017]. In particular we will focus
on the formation of phase soliton complexes and on the possible collisions be-
tween phase solitons, that can lead to the development of extreme events. These
results have been published in [Gustave 2017, Walczak 2017].
The second main section of the Chapter is dedicated to the study of abnormally
high events in an unstable roll regime of the system. This regime has been ex-
tensively studied experimentally by F. Gustave [Gustave 2016a]. The results
obtained numerically in this study and their comparison with the experiment
have been published in [Rimoldi 2017a].
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2.1 Introduction

The model we will be studying in this Chapter has been introduced, in litera-
ture, by our collaborators to describe a semiconductor ring laser with optical
injection and one (longitudinal) spatial dimension [Gustave 2015], similar to the
one schematized in Fig. 2.1.

Fig. 2.1 – Schematization of a semiconduc-
tor ring laser with optical injection.

The main focus of the numerical
and theoretical work carried out in
previous papers regards the confir-
mation of the experimental observa-
tion of phase solitons in this system
[Gustave 2015, Gustave 2016b]. The
complete model is based on a set of
effective Maxwell-Bloch equations to
take into account the effective macro-
scopic polarization for a semiconduc-
tor material. This model considers the
free propagation in the empty cavity
space, and consists of three differen-
tial equations, for the electric field, the
carrier density and the polarization of
the semiconductor material. In partic-

ular in the complete model, instead of introducing any spectral filtering section
to describe the material gain dispersion, a phenomenological formula for the
gain and refractive index dependence on the frequency and carrier density has
been introduced to fit the microscopic susceptibility: this leads to an evolution
equation for the macroscopic polarization coupled with the equations for the
electric field and the carrier density dynamics [Prati 2007b]. As we will see in
the following the complete model is then reduced through the adiabatic elim-
ination of the polarization. This reduction corresponds to assume a flat gain
curve and even if it produces a model able to well describe phase solitons in the
system, when the dynamics observed becomes more complex, the same process
of “pixelation”, observed in Chapter 1, takes place and a corrective diffusion
term is to be phenomenologically inserted in the equation for the electric field to
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Fig. 2.2 – Schematization of the semiconductor ring laser used for the model derivation.

avoid self-collapsing.

More recently our group has started to focus its attention on different aspects
of the interaction dynamics between phase solitons, including merging in phase
soliton complexes [Gustave 2017] and collisions [Walczak 2017]. It is in this last
regime that we found experimental and numerical evidence of extreme events
rising from collisions.
Furthermore we have been able, through the use of the same model, to ob-
serve experimentally and numerically abnormally high events in an unstable
roll regime, where phase solitons are not a stable solution. Both kinds of high-
peak events observed in this system seem to be strictly related to the chirality of
the objects involved, as we will see in the following.

2.2 Model

Let us consider a ring resonator as the one schematized in Fig. 2.2, with a semi-
conductor active medium of length l = 1 mm placed in a unidirectional ring
cavity of total length L = 1 m, driven by coherent optical injection. This schema-
tization is slightly different from that illustrated as an example in Fig. 2.1 in or-
der to grant an easier model derivation. We suppose that the two beam splitters
(BS) have a transmittivity T 6= 0 and that the two mirrors (M) are perfect reflec-
tors with T = 0.
In the hypothesis of linear polarization, orthogonal to the direction of propaga-
tion, the electric field injected into the cavity at z = 0, Ẽ(0, t), and the electric
field propagating in the active medium, Ẽ(z, t), can be written as follows

ẼI(0, t) =
EI

2
exp (−iω0t) + c.c.

Ẽ(z, t) =
E(z, t)

2
exp [i (k0z−ω0t)] + c.c.

with EI ∈ R, k0 is the wave vector such that k0 = ω0n/c, where n =
√

εb is the
background refractive index, ω0 is the injected frequency and εb is the dielectric
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constant. Similarly, for the macroscopic material polarization we can write

P̃(z, t) =
P(z, t)

2
exp [i (k0z−ω0t)] + c.c. .

In the paraxial, slowly varying envelope and rotating wave approximations, the
radiation-matter interaction can be described through the following set of partial
differential equations [Prati 2007b]

∂E
∂z

+
1
v

∂E
∂t

= g̃P , (2.1a)

∂P
∂t

= ε0εb A(N)E − B(N)P , (2.1b)

∂N
∂t

=
I

eV
− N

τe
− i

4h̄
(E∗P − EP∗) , (2.1c)

where N is the carrier density in the semiconductor and τe is the carrier den-
sity nonradiative decay time. I, V and e are respectively the pump current, the
sample volume and the electric charge. The electric field propagation velocity in
the medium is given by v = c/nb and g̃ = iω0Γc/

(
2ε0nngc

)
, with ng the group

index and Γc the field confinement factor. We suppose here that the Fourier
components of the macroscopic polarization P̂(ω) and the electric field Ê(ω)
are linked through the relation

P̂(ω) = ε0εbχ1(ω)Ê(ω) , with χ1(ω) =
A(N)

B(N)− iω

where ε0 is the vacuum permittivity (and εb is the relative permittivity in the
background medium). The functions A(N) and B(N) are complex and can
be expressed in terms of the linewidth enhancement factor α, the transparency
carrier density N0, the gain width Γ(N) and the detuning δ(N) between the
gain peak and the reference frequency (for |δ(N)| � Γ(N)). In particular we
have [Prati 2007b]

A(N)

B(N)
= − f0(α + i) (N/N0 − 1) , with f0 ∈ R

B(N) = [Γ(N)(1− iα) + 2iδ(N)] /τd

where τd is the dipole dephasing time. Hence Eqs. (2.1) can be recast as

∂E
∂z

+
1
v

∂E
∂t

= g̃P ,

τd
∂P
∂t

=[Γ(N)(1− iα) + 2iδ(N)] [−iζ(1− iα) (N/N0 − 1) E − P ] ,

τe
∂N
∂t

=
Iτe

eV
− N − iτe

4h̄
(E∗P − EP∗) ,

where we highlight that ζ = f0ε0εb is the differential gain, with f0 measuring
the maximum gain [Prati 2007b].
Introducing the new variables

E = η̃E , P = iη̃P , D = ζ(N/N0 − 1)
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where η̃2 = ζτe/(2h̄N0), we obtain the following set of equations

∂E
∂z

+
1
v

∂E
∂t

= −ig̃P ,

τd
∂P
∂t

= [Γ(D)(1− iα) + 2iδ(D)] [(1− iα)ED− P] ,

τe
∂D
∂t

= ζ

(
I
I0
− 1
)
− D− 1

2
(E∗P + EP∗) ,

with I0 = eVN0/τe being the transparency current. The functions Γ(D) and
δ(D) can be phenomenologically derived by a linear fit of the gain curve calcu-
lated with a microscopic model for different values of D and have the following
expressions, as reported in [Prati 2007b],

Γ(D) = 0.276 + 1.016D
δ(D) = −0.169 + 0.216D .

Setting then g = −ig̃, so that g ∈ R, and µ = ζ(I/I0 − 1) we obtain

∂E
∂z

+
1
v

∂E
∂t

= gP , (2.2a)

τd
∂P
∂t

= [Γ(D)(1− iα) + 2iδ(D)] [(1− iα)ED− P] , (2.2b)

τe
∂D
∂t

= µ− D− 1
2
(E∗P + EP∗) . (2.2c)

Our objective is now to make the boundary conditions periodic and isochronous.
To do so [Lugiato 2015], referring to Fig. 2.2 we consider the field envelope at
z = 0 = L

E(0, t) =
√

TEI + RE(l, t− ∆t)e−iδ0 ,

with R = 1− T (in the hypothesis of no absorption by the beam splitters) and
EI = η̃E . Furthermore ∆t = (L− l)/c is the time required to the electric field
to travel along the cavity outside the active medium and δ0 = (ωc − ω0)Λ/c is
the cavity frequency closest to ω0 where Λ = L − l + nl is the effective cavity
length.
If we introduce the transformation [Gustave 2016b]

η =
z
l

, t′ = t +
z
l

∆t

the boundary condition assumes the isochronous form

E(0, t′) =
√

TEI + RE(1, t′)e−iδ0 .

Furthermore since

∂

∂z
=

1
l

∂

∂η
+

∆t
l

∂

∂t′

∂

∂t
=

∂

∂t′
,



74 Semiconductor ring laser with injection

Eq. (2.2a) becomes

1
l

∂E
∂η

+

(
∆t
l
+

n
c

)
∂E
∂t′

= gP

1
l

∂E
∂η

+
Λ
cl

∂E
∂t′

= gP

∂E
∂η

+
Λ
c

∂E
∂t′

= glP ,

hence Eqs. (2.2) becomes

∂E
∂η

+
Λ
c

∂E
∂t′

= glP ,

∂P
∂t′

=
1
τd

[Γ(D)(1− iα) + 2iδ(D)] [(1− iα)ED− P] ,

∂D
∂t′

=
1
τe

[
µ− D− 1

2
(E∗P + EP∗)

]
.

Introducing now the new field envelopes

E′(η, t′) = E(η, t′)e(ln R−iδ0)η +
√

TEIη (2.3)

P′(η, t′) = P(η, t′)e(ln R−iδ0)η (2.4)

we obtain
∂E′

∂η
+

Λ
c

∂E′

∂t′
=(ln R− iδ0)

(
E′ −

√
TEIη

)
+
√

TEI + glP′ ,

∂P′

∂t′
=

1
τd

[Γ(D)(1− iα) + 2iδ(D)]
[
(1− iα)D

(
E′ −

√
TEIη

)
− P′

]
,

∂D
∂t′

=
1
τe

{
µ− D− 1

2
e−2 ln Rη

[
E′∗P′ + E′P′∗ −

√
TEIη

(
P′ + P′∗

)]}
,

where we have used e(ln R−iδ0)η = (E′−
√

TEIη)/E, and the periodic isochronous
boundary condition becomes

E′(0, t′) =
√

TEI + RE(1, t′)e−iδ0 = E′(1, t′) .

2.2.1 Low transmission limit

We then apply the low transmission limit, defined as

T � 1 , gl � 1 , |δ0| � 1

with the pump parameter A and the cavity detuning θ such that

A =
gl
T

= O(1) , θ =
δ0

T
= O(1) .

In this limit E′ and P′ as defined in Eqs. (2.3) and (2.4) can be approximated by
E and P, respectively. Hence the set of equations gets reduced to

c
Λ

∂E
∂η

+
∂E
∂t′

=
1
τp

[
− (1 + iθ) E +

EI√
T
+AP

]
,

∂P
∂t′

=
1
τd

[Γ(D)(1− iα) + 2iδ(D)] [(1− iα)DE− P] ,

∂D
∂t′

=
1
τe

[
µ− D− 1

2
(E∗P + EP∗)

]
,
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with the boundary condition E(0, t′) = E(1, t′), where we have introduced the
photon decay time τp = Λ/(cT) and used the fact that ln R/T = ln(1− T)/T ≈
−1. Finally, setting the dimensionless time τ = t′/τd and the following substi-
tutions

σ =
τd

τp
, b =

τd

τe
, y =

EI√
T

,

we obtain
cτd

Λ
∂E
∂η

+
∂E
∂τ

= σ [− (1 + iθ) E + y +AP] ,

∂P
∂τ

= [Γ(D)(1− iα) + 2iδ(D)] [(1− iα)DE− P] ,

∂D
∂τ

= b
[

µ− D− 1
2
(E∗P + EP∗)

]
,

and, renaming AP, AD, Aµ as P, D and µ respectively, the model becomes

cτd

Λ
∂E
∂η

+
∂E
∂τ

= σ [y− (1 + iθ) E + P] , (2.5a)

∂P
∂τ

= [Γ(D)(1− iα) + 2iδ(D)] [(1− iα)DE− P] , (2.5b)

∂D
∂τ

= b
[

µ− D− 1
2
(E∗P + EP∗)

]
, (2.5c)

with the boundary condition

E(0, τ) = E(1, τ) .

In particular, in summary, the variables E, P are defined respectively, unless
renormalizations, as the slowly varying envelopes of the electric field and of the
effective macroscopic polarization, and D is the excess of carrier density with re-
spect to transparency. y is the amplitude of the injected field, θ is the frequency
mismatch between the injected field and the closest empty cavity resonance and
µ is the pump parameter.
As a final remark we also want to highlight that Maxwell-Bloch equations for
multilongitudinal mode emission, similar to the ones here illustrated, were in-
troduced for the first time for a two-level unidirectional ring laser with injected
field in [Narducci 1985].

2.2.2 Rate-equation model

The model in Eqs. (2.5) can be reduced to a rate-equation model, if we assume
a flat gain (that is a gain of infinite linewidth). This is performed by eliminating
adiabatically of the polarization P, setting ∂P

∂τ = 0, so that the evolution of P
results completely enslaved by the evolution of D and E

P = (1− iα)DE

and reducing Eqs. (2.5) to

cτd

Λ
∂E
∂η

+
∂E
∂τ

= σ [y− (1 + iθ) E + (1− iα)DE] , (2.6a)

∂D
∂τ

= b
[
µ− D

(
1 + |E|2

)]
, (2.6b)
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which can be written as

∂E
∂η

+
Λ

cτd

∂E
∂τ

= T [y− (1 + iθ) E + (1− iα)DE] ,

∂D
∂τ

= b
[
µ− D

(
1 + |E|2

)]
.

Rescaling then time to the cavity roundtrip time Λ/c instead of the dephasing
time τd, we obtain

∂E
∂η

+
∂E
∂τ

= T [y− (1 + iθ) E + (1− iα)DE] , (2.7a)

∂D
∂τ

=
bT
σ

[
µ− D

(
1 + |E|2

)]
. (2.7b)

This reduced model has been tested and compared with the complete one and
has been proven capable to well describe the dynamics of the system in the
regime of phase solitons and homogeneous solutions as we will also observe
further into details in the next Section.

From a more numerical point of view, Eqs. (2.7) are less stiff than Eqs. (2.5)
and their numerical integration is much faster.

2.2.3 Rate-equation model with a term of diffusion

A slightly different model that we will use for the larger part of this Chapter is
the following

∂E
∂η

+
∂E
∂τ
− d

∂2E
∂η2 = T [y− (1 + iθ) E + (1− iα)DE] , (2.8a)

∂D
∂τ

=
bT
σ

[
µ− D

(
1 + |E|2

)]
. (2.8b)

where a diffusion term in the electric field has been introduced phenomenologi-
cally to take into account the finite gain linewidth. We have in fact observed that,
simulating Eqs. (2.7) in more complex regimes than those of phase solitons or
homogeneous states, the system tends to self-collapse, similarly to what we have
already observed for the two-dimensional model of a laser with saturable ab-
sorber, studied in the previous Chapter. Even though the value of the coefficient
d is arbitrarily assigned as the smallest value capable of avoiding self-collapsing,
we will show in the next Subsection that it scales as the squared ratio of the cav-
ity free spectral range to the gain linewidth, as proved in [Fedorov 2000] for a
two-level medium.

2.2.4 Modified forced Ginzburg-Landau model

In order to determine the order of magnitude of the diffusion term in Eq. (2.8a),
we will show here how a similar (complex) term can be derived in a rigorous
way from the complete model with a nonstandard adiabatic elimination of the
polarization valid when the laser is close to threshold.



2.2 Model 77

We start from the complete model in Eqs. (2.5), reported here for convenience

cτd

Λ
∂E
∂η

+
∂E
∂τ

= σ [y− (1 + iθ) E + P] ,

∂P
∂τ

= ξ(D) [(1− iα)DE− P] ,

∂D
∂τ

= b
[

µ− D− 1
2
(E∗P + EP∗)

]
,

where we have defined ξ(D) = [Γ(D)(1− iα) + 2iδ(D)]. Dividing all the equa-
tions by

√
b, we obtain

c
√

τdτe

Λ
∂E
∂η

+
1√
b

∂E
∂τ

=
σ√
b
[y− (1 + iθ) E + P] , (2.9a)

1√
b

∂P
∂τ

=
ξ(D)√

b
[(1− iα)DE− P] , (2.9b)

1√
b

∂D
∂τ

=
√

b
[

µ− D− 1
2
(E∗P + EP∗)

]
. (2.9c)

Considering now ε = µ− 1 ≈ 10−2 as the smallness parameter, being µthr = 1
the pump value at threshold, we can observe that in the weak injection limit also
y = O(ε). The physical value of polarization dephasing time is τd ≈ 10−13 s,
and the photon and carrier lifetime result as τp ≈ 10−7 s and τe ≈ 10−9 s. Hence
σ = τd/τp ≈ 10−6 and b = τd/τe ≈ 10−4. We can then set

√
b = b0ε ,

σ√
b
= σ0ε2 with b0 = O(1) , σ0 = O(1) .

Regarding the complex function ξ(D) we can observe that

ξ(D)√
b

=
[Γ(D)(1− iα) + 2iδ(D)]√

b
=

ξ0(D)

ε

with

ξ0(D) = Γ0(D)(1− iα) + iε∆(D)

where

Γ0(D) =
Γ(D)

b0
, ∆(D) =

2δ(D)√
b

= O(1) .

Thus the model in Eqs. (2.9) can be approximated with

η0
∂E
∂η

+
1

b0ε

∂E
∂τ

= σ0ε2 [y− (1 + iθ) E + P] ,

1
b0ε

∂P
∂τ

=
ξ0(D)

ε
[(1− iα)DE− P] ,

1
b0ε

∂D
∂τ

= b0ε

[
µ− D− 1

2
(E∗P + EP∗)

]
.
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where we have defined η0 = cτd/(Λb0ε). Rescaling the time variable as τ′ =√
bτ = b0ετ we have

η0
∂E
∂η

+
∂E
∂τ′

= σ0ε2 [y− (1 + iθ) E + P] , (2.10a)

∂P
∂τ′

=
ξ0(D)

ε
[(1− iα)DE− P] , (2.10b)

∂D
∂τ′

= b0ε

[
µ− D− 1

2
(E∗P + EP∗)

]
. (2.10c)

We assume that

∂E
∂τ′

= O(1) ,
∂E

∂ (η/η0)
= η0

∂E
∂η

= O(1)

which is reasonable considering that, for the time scales introduced and a cavity
length Λ = 3 m, we have η0 = 10−3. Slightly modifying the equation for P, we
have

η0
∂E
∂η

+
∂E
∂τ′

= σ0ε2 [y− (1 + iθ) E + P] ,[
Γ0(D)(1− iα) + iε∆(D) + ε

∂

∂τ′

]
P = ξ0(D)(1− iα)DE ,

∂D
∂τ′

= b0ε

[
µ− D− 1

2
(E∗P + EP∗)

]
.

Given the assumptions already stated, the equation for the electric field results

∂E
∂τ′

= −η0
∂E
∂η

+O(ε2) ,

the equation for the carrier density reads

∂D
∂τ′

= O(ε)

and the equation for the polarization at order ε0 reads

P = (1− iα)DE .

We can then observe that at order ε0 the effects of an injected field of order ε are
negligible: D = µ/(1 + |E|2) = 1 as in the free running laser, where |E|2 = µ−
1 = O(ε) and the polarization follows adiabatically the dynamics of E. Then, in
presence of injection such that y of order ε, we assume |E|2 = µ− 1+O(ε2) and
it follows that D = 1 +O(ε2), hence we can write D = µ− |E|2. Furthermore
we can also set

ξ0(D) = ξ0(1) +O(ε3) = Γ0(1)(1− iα) + iε∆(1) +O(ε3) ,

where we assumed that ξ0(D) varies slowly with D (with dξ0(D)/dD ≈ O(ε2)).
Renaming for convenience ξ0(1) = ξ1, Γ0(1) = Γ1 and ∆(1) = ∆1 and neglecting
the terms of order ε3 and higher, the equation for P becomes[

Γ1(1− iα) + iε∆1 + ε
∂

∂τ′

]
P = ξ1(1− iα)DE[

1 + ε
∂/∂τ′ + i∆1

Γ1(1− iα)

]
P =

(
1− iα + iε

∆1

Γ1

)
DE .
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Then the solution for P truncated at order ε2 is

P =

(
1− iα + iε

∆1

Γ1

)[
1− ε

∂/∂τ′ + i∆1

Γ1(1− iα)
+ ε2 (∂/∂τ′ + i∆1)

2

Γ2
1(1− iα)2

]
DE

=

(
1− iα− ε

∂/∂τ′

Γ1
+ ε2 ∂2/∂τ′2 + i∆1∂/∂τ′

Γ2
1(1− iα)

)
DE

= (1− iα)DE− ε

Γ1

∂E
∂τ′

+
ε2(1 + iα)
Γ2

1(1 + α)2

(
∂2

∂τ′2
+ i∆1

∂

∂τ′

)
E

= (1− iα)
(
µ− |E|2

)
E− ε

Γ1

∂E
∂τ′

+
ε2(1 + iα)
Γ2

1(1 + α)2

(
∂2

∂τ′2
+ i∆1

∂

∂τ′

)
E ,

where we have observe that D is constant and D = 1 ≈ µ− |E|2. Finally, notic-
ing that, from the equation for the electric field, at order ε

∂E
∂τ′

= −η0
∂E
∂η

,

we can also write

P = (1− iα)
(
µ− |E|2

)
E− ε

Γ1

∂E
∂τ′

+
ε2(1 + iα)
Γ2

1(1 + α)2

(
η2

0
∂2

∂η2 − iη0∆1
∂

∂η

)
E .

This is the term given by the nonstandard adiabatic elimination of P and it is to
be inserted in Eq. (2.10a). The remaining first temporal derivative is negligible
since its contribution, once inserted in Eq. (2.10a), would be of order ε3 and a
temporal derivative is already present in the equation. We then obtain

η0
∂E
∂η

+
∂E
∂τ′

= σ0ε2 [y− (1 + iθ)E + (1− iα)
(
µ− |E|2

)
E

+
ε2(1 + iα)
Γ2

1(1 + α)2

(
η2

0
∂2

∂η2 − iη0∆1
∂

∂η

)
E
]

= σ0ε2 [y− (1 + iθ)E + (1− iα)
(
µ− |E|2

)
E

+
b(1 + iα)

Γ(1)2(1 + α)2

(
η2

0
∂2

∂η2 − iη0∆1
∂

∂η

)
E
]

,

where we can observe that the terms on the first line are given by a standard adi-
abatic elimination of P and D with the approximation that D ≈ 1/(1 + |E|2) ≈
1− |E|2, while the term on the second line comes from the nonadiabatic elim-
ination of P. In the original variables of space η and dimensionless time τ we
have then

cτd

Λ
∂E
∂η

+
∂E
∂τ

= σ
[
y− (1 + iθ)E + (1− iα)

(
µ− |E|2

)
E

+d̃

(
c2τ2

d
Λ2

∂2

∂η2 − 2i
cτdδ(1)

Λ
∂

∂η

)
E

]
∂E
∂η

+
Λ

cτd

∂E
∂τ

= T
[
y− (1 + iθ)E + (1− iα)

(
µ− |E|2

)
E
]

(2.11)

+d̃
(

σ2

T
∂2

∂η2 − 2iσδ(1)
∂

∂η

)
E
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where we have substituted η0 with its expression in terms of the different timescales
η0 = cτd/(Λ

√
b) and ∆1 = 2δ(1)/

√
b, set

d̃ =
1 + iα

Γ(1)2(1 + α2)

and remembered that σ = τd/τp and τp = Λ/(cT). Eq. (2.11) is a modified
forced Ginzburg-Landau equation, that has been introduced in [Gustave 2015]
to describe the dynamics of a phase soliton in this kind of system. Unfortunately,
the description of this system through just one equation for the electric field, as
in Eq. (2.11), has been shown to lack the system asymmetry typically observed
experimentally, where only structures carrying positive chiral charges result sta-
ble: in fact, even if Eq. (2.11) lacks the parity symmetry η → −η of the standard
Ginzburg-Landau, due to the term in δ(1), unless this parameter assumes an
unrealistically large value, the equation still supports both chiral charges [Gus-
tave 2015].

Ordering the equation so that all the derivatives are on the left hand side we
have [

1 + 2id̃σδ(1)
] ∂E

∂η
+

Λ
cτd

∂E
∂τ
− d̃σ2

T
∂2

∂η2 E

= T
[
y− (1 + iθ)E + (1− iα)

(
µ− |E|2

)
E
]

,

and, rescaling the time on the dimensionless ratio of cavity roundtrip time to the
polarization dephasing time τd, we obtain the equation in the same variables of
Eqs. (2.8)

[
1 + 2id̃σδ(1)

] ∂E
∂η

+
∂E
∂τ
− d̃σ2

T
∂2

∂η2 E (2.12)

= T
{

y− [1− µ + i (µα + θ)] E− (1− iα)|E|2E
}

,

Here we can observe that the diffusion coefficient is complex but its order of
magnitude corresponds more or less to the square of the ratio of dephasing time
to roundtrip time, unless an extra factor of order 10−1 given by T/

√
1 + α2 ≈

T/α.

2.2.5 Rate-equation model with a Ginzburg-Landau term

To preserve the asymmetry of the experimental system we observed that it is
necessary to keep the equation for the dynamics of the carrier density D, as
the main mechanism for the chiral selection and the strong η → −η symmetry
breaking lies in the non-instantaneous medium dynamics. To do so we develop
the same kind of approximation as in the previous Subsection but we avoid to
adiabatically eliminate D, thus obtaining

[
1 + 2id̃σδ0(1)

] ∂E
∂η

+
∂E
∂τ
− d̃σ2

T
∂2

∂η2 E = T [y− (1 + iθ)E + (1− iα)DE]

∂D
∂τ

=
Tb
σ

[
µ− D(1 + |E|2)

]
. (2.13)

The model in Eq. (2.13) is equivalent to the complete model of Eqs. (2.5) since
it maintains the chirality asymmetry and sets a filter on the spatial modes for
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(a) Stationary curve (b) Bistability boundaries

Fig. 2.3 – (a) Stationary intensity I = ρ2
s of the electric field as a function of the injection

amplitude y, as indicated in Eq. (2.15) for θ = −3.04, and µ = 1.1. (b) Bistability
boundaries as in Eq. (2.17) for the same parameters.

more complex dynamics. The only problem consists in the fact that such filter,
being that of the complete model, is not very efficient and would force us to run
longer simulations on larger grids (or consider larger values of σ) in order to
well describe the system under study, especially in complex regimes.
It is for this reason that we preferred to develop the studies in the next Sections
through the model in Eqs. (2.8), which provides both asymmetry and a more
efficient filter.

2.3 HSS and linear stability analysis

The complete model in Eqs. (2.5) admits the following homogeneous stationary
solution (HSS)

Es = ρseiφs , Ps = (1− iα)DE , Ds =
µ

1 + ρ2
s

(2.14)

with

y2 = ρ2
s

[
(1− Ds)

2 + (θ + αDs)
2
]

(2.15)

φs = arctan
(

θ + αDs

Ds − 1

)
(2.16)

where µ = 1 corresponds to the threshold value for the pump parameter in the
free running laser. In Fig. 2.3 we plotted the stationary intensity I = ρ2

s of the
electric field as a function of the injection amplitude y as indicated in Eq. (2.15)
for values of θ and µ similar to those studied in the rest of this Chapter. The
value of linewidth enhancement factor α = 3 has been kept constant in all the
results here shown.
The equation for the bistability boundaries is [Gustave 2016b]

θ± = −
µα±

√
µ2ρ4

s (1 + α2)−
[
(1 + ρ2

s )
2 − µ

]2

(1 + ρ2
s )

2 , (2.17)

from which we can derive that the rightmost point of the bistability domain is
given by θ = −µα/(1 + ρ2

s )
2. Hence in order to have bistability the detuning θ
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needs to be negative. In Fig. 2.3 we have plotted Eq. (2.17) for the same param-
eters of the stationary intensity in (a).
As in the previous Chapter, we now study the stability of the stationary ho-
mogeneous solution considering small spatiotemporal perturbations from the
stationary values of Es, Ps and Ds, modulated by a longitudinal wavevector kz
and exponentially growing (decaying) in time, so that:

E
E∗

P
P∗
D

 =


Es
E∗s
Ps
P∗s
Ds

+ eλt+ikzz


δE
δE∗

δP
δP∗

D

 , (2.18)

with Es (and E∗s ) satisfying Eqs. (2.15) and (2.16).
Inserting (2.18) into Eqs. (2.5) we obtain, in matrix form, the following linearized
equations for the perturbations

λ


δE
δE∗

δP
δP∗

δD

 = J(2.5)


δE
δE∗

δP
δP∗

δD

 (2.19)

where J(2.5) is the Jacobian matrix
−i cτd

Λ kz − σ(1 + iθ) 0 σ 0 0
0 −i cτd

Λ kz − σ(1− iθ) 0 σ 0
ξ(Ds)(1− iα)Ds 0 −ξ(Ds) 0 ξ(Ds)(1− iα)Es

0 ξ∗(Ds)(1 + iα)Ds 0 −ξ∗(Ds) ξ∗(Ds)(1 + iα)E∗s
− b

2 P∗s − b
2 Ps − b

2 E∗s − b
2 Es −b

 ,

with ξ(Ds) = Γ(Ds)(1− iα) + 2iδ(Ds).

The rate-equation model in Eq. (2.7) and the rate-equation model with dif-
fusion in Eq. (2.8) present the same homogeneous stationary solutions for the
electric field and carrier density of the complete model in Eqs. (2.14), (2.15) and
(2.16). Considering small spatiotemporal perturbations from the stationary val-
ues of Es, E∗s and Ds, modulated by the longitudinal wavevector kz, we have E

E∗

D

 =

Es
E∗s
Ds

+ eλt+ikzz

 δE
δE∗

D

 , (2.20)

Inserting Eq. (2.20) into Eqs. (2.7) and (2.8) we obtain two linearized sets of
equations for the perturbations in the two different models, with the Jacobian
matrix J(2.7) for the rate equation model defined as follows−ikz + T [Ds − 1− i (αDs + θ)] 0 T(1− iα)Es

0 −ikz + T [Ds − 1 + i (αDs + θ)] T(1 + iα)E∗s
− Tb

σ DsE∗s − Tb
σ DsEs − Tb

σ (1 + |Es|2)

 ,
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and the Jacobian matrix J(2.8) for the rate equation model with diffusion defined
as follows−ikz − dk2

z + T [Ds − 1− i (αDs + θ)] 0 T(1− iα)Es
0 −ikz − dk2

z + T [Ds − 1 + i (αDs + θ)] T(1 + iα)E∗s
− Tb

σ DsE∗s − Tb
σ DsEs − Tb

σ (1 + |Es|2)

 ,

An analytic stability analysis on the complete model, using mode expansion,
is reported in [Gustave 2016b] where, under the reasonable assumptions of b =
O(ε), σ = O(ε2) and the modes αn = 2πncτd/Λ = O(ε), the system is solved
perturbatively in ε. This assumption implies that σ � b and, together with the
fact that µthr = 1, brings, in the single mode limit, the model close to its class-A
limit. Noticing that the eigenvalues λ can be written as λ = λ1ε + λ2ε2 with
λ1 imaginary, the instability condition results simplified to Re(λ2) > 0, which
gives a biquadratic equation in αn for the boundary of the stability domain

c4b−4α4
n + c2b−2α2

n + c0 = 0

with coefficients in a convenient and short form as reported in [Gustave 2016b].
Setting c0 = 0, we observe that in the single mode limit n = 0

c0 =
[(

ρ2
s + 1

)2 − µ
]2 dy2

d (ρ2
s )

and, for a typical S-shape stationary curve as that in Fig. 2.15, c0 = 0 where
the derivative is zero, that is in the turning points which means, that the neg-
ative slope part of the stationary curve is, as usual, unstable. Still in the single
mode limit, the other solution ρ2

s =
√

µ − 1, which exists even when the sta-
tionary curve is single valued, corresponds to the injection locking threshold in
the class-A laser limit: in fact the stationary curve is unstable when the injected
amplitude is so small that ρ2

s <
√

µ− 1.

2.3.1 Comparison of the different models

In the present Subsection we will focus on a numerical comparison between the
three different models given by Eqs. (2.5), (2.7) and (2.8). We will not consider
the model of rate equations with a Ginzburg-Landau term as in Eq. (2.13) since
the instability domain regions do not basically differ from the complete model,
at least for the range of modes we are interested in.
The numerical method we use to compare the different models consists in com-
puting, for each mode kz,n, the eigenvalues λ of the Jacobian matrix and se-
lect the largest real part between these eigenvalues max(Re(λ)). For each n-th
mode, the value of the stationary intensity for which max(Re(λ)) changes its
sign, gives the instability boundary.
In all the results here shown we have kept constant the parameters α = 3,
σ = 3× 10−6, and T = 0.3 and considered different values of the parameters
µ, θ, b and d.
In Fig. 2.4 we depicted the instability domains for the pure rate-equation model
(in blue), the complete model (in green) and the rate equation model with a term
of diffusion (in red) for the specific choice of parameters µ = 1.1, θ = −3.04,
b = 0.0001. The coefficient of diffusion considered in Fig. 2.4(b) is d = 10−6
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(a) Instability domains for Eqs. (2.7) and (2.5)

(b) Zoom of the instability domains in (a). (c) Instability domains for Eqs. (2.7) and (2.8)

Fig. 2.4 – Comparison between the instability domains of the complete model of Eqs.
(2.5) (in green), the rate-equation model of Eqs. (2.7) (in blue) and the rate-equation
model with diffusion of Eqs. (2.8) (in red). The parameters considered are α = 3, σ =
3× 10−6, T = 0.3, µ = 1.1, θ = −3.04, b = 0.0001 and d = 10−6.

Fig. 2.5 – Stationary curve as in Eq. (2.15) for the parameters µ = 1.1, θ = −3.04 and
α = 3. The highlighted fixed value of injection corresponds to y = 0.004 and will be
relevant in the next Sections.

which we have observed to be the minimal value of d necessary to avoid self-
collapsing. As we can observe the model of pure rate equations does not intro-
duce a limit to the number of unstable sidemodes, such limit is instead present
in both the complete model and the model with diffusion, even if with different
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ranges.
The stationary curve relative to this particular choice of parameters is depicted
in Fig. 2.5. For a chosen value of injection y in the triple-valued region of the
stationary curve, as highlighted in Fig. 2.5, there are three fixed points A, B and
C: in particular A is a node, B is a saddle and C is a focus.
From Eqs. (2.14),(2.15) and (2.16) it is clear that for the free running laser (y = 0)
the stationary equation is reduced to Ds = 1 (which implies |Es|2 = µ− 1) and
θ = −α, which defines the frequency of the free running laser. For definition

θ =
ωc −ωinj

k
, −α =

ωc −ωL

k
,

with ωc cavity frequency, ωinj injection frequency and ωL, laser frequency. It
then results that

ωinj −ωL = −k(θ + α) .

Hence θ + α represents the frequency mismatch between the driving field and
the free running laser [Spinelli 1998]. As we will see further into detail in the next
Section, the necessary condition for the existence of a phase soliton, consists in
the stability of the whole upper branch: in particular for θ + α large and positive
the upper branch results stable, instead for θ + α small or even negative, a part
of the upper branch results unstable against a band of sidemodes as occurs in
Fig. 2.4 [Gustave 2016b]. Furthermore, when θ + α is negative, the instability of
the upper branch starts from the turning point, instead, for θ + α positive (but
small), it starts from a different point in the upper branch.

In Fig. 2.6 we depicted the stationary curves (a) and (b) and the instability
regions (c) and (d) of the rate-equation model with (in red) and without diffusion
(in blue) for different values of parameters, that will be also considered later in
the Chapter. In particular, Figs. 2.6(a) and (c) were depicted for µ = 1.1, θ =
−2.7 and b = 0.0005, and Figs. 2.6(b) and (d) were depicted for µ = 2, θ = −2.7
and b = 0.0001. In both these cases, the necessary condition for the existence of
phase solitons in the system is satisfied, since the upper branch results stable. In
Fig. 2.6(c) and (d) we did not report also the instability domain of the complete
model since, for the range of modes here depicted it overlaps with the rate-
equation instability domain.
In Fig 2.7 we depicted a comparison between all three different models for a
smaller value of the diffusion coefficient d = 10−12. The other parameters are
the same as in Fig. 2.4. We can clearly observe that for lower values of d the
model of Eq. (2.8) approximates better the instability domain of the complete
model: this is because, similarly to what observed in Subsection 2.2.5, the order
of magnitude for the diffusion coefficient in the complete model corresponds to

T√
1 + α2

(
τd

Λ/c

)2

≈ 1
10

(
10−13

10−8

)2

= 10−11

In fact, more rigorously, for a cavity length of 1 m, when assuming a gain line-
width of 10 THz, the number of modes under the gain line should be much
larger than what depicted in Fig. 2.4(c), leading to a value of d smaller by some
order of magnitude. In this work we chose to keep d = 10−6 in order to filter
the higher order modes that are not relevant for the dynamics: for this reason
we could then limit the number of grid points in the numerical simulations to
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(a) Stationary curve for µ = 1.1, θ = −2.7. (b) Stationary curve for µ = 2, θ = −2.7.

(c) Instability domains for µ = 1.1, θ = −2.7,
b = 0.0005.

(d) Instability domains for µ = 2, θ = −2.7,
b = 0.0001.

Fig. 2.6 – Stationary curves (a-b) and instability domains (c-d) for µ = 1.1, b = 0.0005
(a,c) and for µ = 2, b = 0.0001 (b,d). In (c-d) the instability domains are depicted for
the rate-equation model with diffusion (in red) and for the pure rate-equation model (in
blue). The other parameters are θ = −2.7, α = 3, σ = 3× 10−6, T = 0.3.

(a) Instability domain for Eqs. (2.5), (2.7) and
(2.8).

(b) Zoom of the instability domain in (a).

Fig. 2.7 – Instability domains for the pure rate-equation model (in blue), the complete
model (in green) and the rate-equation model with diffusion (in red) for a smaller value
of d = 10−12. The other parameters are the same as in Fig. 2.4.
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(a) µ = 1.01, θ = −3.01 (b) µ = 1.01, θ = −3.1

(c) µ = 1.1, θ = −3.01 (d) µ = 1.1, θ = −3.1

Fig. 2.8 – Stationary curves for (a) µ = 1.01, θ = −3.01, (b) µ = 1.01, θ = −3.1, (c)
µ = 1.1, θ = −3.01 and (d) µ = 1.1, θ = −3.1.

(a) µ = 1.01, θ = −3.01 (b) µ = 1.01, θ = −3.1

(c) µ = 1.1, θ = −3.01 (d) µ = 1.1, θ = −3.1

Fig. 2.9 – Instability domains for (a) µ = 1.01, θ = −3.01, (b) µ = 1.01, θ = −3.1, (c)
µ = 1.1, θ = −3.01 and (d) µ = 1.1, θ = −3.1. The instability domain for the rate-
equation model with diffusion is depicted in red and for the pure rate-equation model
is depicted in blue.
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a reasonable value (1024 points) and at the same time avoid the self-collapsing
effect that we would observe for lower choices of d. Finally we would like to
stress out that our choice for d is also justified when considering that all the sim-
ulations here presented have been run for values of injection close to the turning
point in the stationary curve: as we can observe from the instability plots in Fig.
2.4 and 2.6, in the proximity of the turning point, a larger value of d (for which
the instability domain would appear more similar to that of the rate equation
model) would affect only slightly the stability of the upper branch.

Finally in Fig. 2.8 and 2.9 we reported, respectively the stationary curves
and the instability domains of Eqs. (2.7) and (2.8) for four different values of µ
and θ. On the two rows θ is decreasing from left to right (i.e. moving farther
from the resonance condition θ = −3) while on the two columns µ is increasing
from top to bottom. We can observe that the farther we move from the threshold
value µthr = 1 the more modes are falling under the gain line for the model with
diffusion.

2.4 Experimental setup

The experimental setup is a macroscopic ring laser of length Λ ≈ 1 m with
a 4-mm-long, 980-nm semiconductor optical amplifier (SOA), acting as gain
medium and set inside a free space optical cavity [Gustave 2015].
This setup has been studied into details by F. Gustave in his Ph.D. thesis [Gus-
tave 2016a].
A schematization of this experimental setup is depicted in Fig. 2.10. The ring
cavity is eight-shaped to allow a lower incidence angle of the beam on the cavity
mirrors. An anti-reflection coating on the semiconductor optical amplifier pre-

Fig. 2.10 – Schematization of the main experimental setup. M are the mirrors, BS are
the beam splitters, OI is an optical isolator and piezo is a piezoelectric actuator. SOA
stays for semiconductor optical amplifier.

vents from the self-lasing of the semiconductor element and an optical isolator
(OI), placed to the opposite side of cavity with respect to the gain medium en-
sures the unidirectionality of the beam. The ring cavity itself consists of three
high reflectivity (R > 99%) mirrors M and one beam splitter (BS) of reflectivity
R ≈ 90%, that allows the injection of the external coherent field. The beam split-
ter used to provide the ring laser output has instead a reflectivity R ≈ 10%.
The coherent field comes from a tunable single-mode laser where it is possible
to broadly control the injection frequency and thus the detuning between the
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injection and the ring laser. Furthermore the presence of a piezoelectric actuator
(piezo) set on one of the mirror mounts inside the cavity allows to adjust the
cavity length, hence giving the possibility of a fine control of the cavity length
and thus of the detuning [Gustave 2016b].
The laser output is measured by means of fast photodiodes connected to a 12.5
GHz bandwidth real-time oscilloscope with 100 GS/s sampling rate. A hetero-
dyne setup based on a 3×3 fiber coupler allows to access both the power and
the relative phase between the forcing and the ring laser [Gustave 2015, Gus-
tave 2016b].

Fig. 2.11 – Schematization of a second experimental setup in a Fabry-Perot configura-
tion. M are the mirrors, BS are the beam splitters, OI is an optical isolator.

The second optical setup, studied, alternatively to the main one, by the ex-
perimental team at INPHYNI is depicted in Fig. 2.11. In this configuration the
slave laser is (a semiconductor laser) in a Fabry-Perot configuration. The ac-
tive medium is antireflection-coated only on one side, with the other side being
highly reflective. Once again the introduction of an optical isolator (OI) pre-
vents any reflection from the slave to the master laser (which provides the in-
put beam). M are the mirrors that enclose the cavity and present a reflectivity
R > 99% and BS are two beam splitters with reflectivity R ≈ 90%, inserted
to provide an input for the forcing field and an output for the detection of the
emitted field. The output can be observed through the same technique of the
previous setup, allowing access to the information on the phase of the field or,
when this is not necessary, through a high sensitive photodiode connected to a
fast oscilloscope, to obtain information just on the laser power [Walczak 2017].

We will compare our numerical results with the experimental ones obtained
in these two configurations. Even if these two setups differ by their geometry
in a relevant way, they have been found to present the same qualitative fea-
tures [Gustave 2017]. In particular both of them are very strongly multimode
semiconductor lasers with an external forcing. Furthermore even if in the Fabry-
Perot configuration the presence of forward and backward fields is evident, no
qualitative differences have been found with the case of ring geometry, at least
in the regimes studied.

2.5 Phase solitons and complexes

All the simulations here shown have been run with a split-step numerical method,
similar to the case of the previous Chapter. Further details on the numerical
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method can be found in Appendix F.
As anticipated in the linear stability analysis Section, a necessary condition for
the existence of phase solitons (PSs) is the stability of the upper branch of the
stationary curve, as the one depicted in Fig. 2.5: this requirement is satisfied if
θ + α is large and positive, provided that the amplitude of the injected field is
such that the fixed points A and B are sufficiently close (that is, the system is
close enough to the left turning point of the stationary curve) [Gustave 2016b].
Numerically, a phase soliton can be obtained setting as initial condition the
locked state corresponding, for fixed injection, to the point A on the upper
branch, and superimposing a positive phase kink of 2π along z for the field E: in
particular the form we used for the phase kink is Φ+(η) = 4 tan−1 [exp (−βη)],
with β large to have a steep kink [Gustave 2016b]. When the phase soliton is
stable, the final state corresponds to a traveling pulse with a 2π chiral charge.
Here and in most of the work presented in this Chapter we depicted our results

(a) Experimental reference frame (b) Numerical reference frame

Fig. 2.12 – Spatiotemporal diagrams in the (a) experimental reference frame, where η
is fixed at η = 1 (z = L) and (b) the numerical reference frame, where all the full spatial
intensity profiles, acquired one each roundtrip time, are stacked onto each other.

in a spatiotemporal representation. In Fig. 2.12 we plotted the spatiotemporal
diagram of 2000 cavity roundtrips in a generic unstable roll pattern in two dif-
ferent reference frames. The first reference frame, in Fig. 2.12(a), coincides with
the experimental one, where the data is acquired in a specific point of the cavity
(here at η = 1, that is z = L) as it would be when placing a detector right at the
output of the cavity. The second reference frame, in Fig. 2.12(b) is obtainable
only numerically and corresponds to acquiring, at each roundtrip τ = nτc with
n ∈ N, the entire spatial intensity profile along the cavity, and then stacking all
the recorded profiles (much like snapshots taken every roundtrip time τc) onto
each other, so to obtain the spatiotemporal diagram illustrated. We can clearly
notice that the two spatiotemporal diagrams are mirror images one of the other,
as it is expected in the case of any propagating structure. Even if the true spa-
tiotemporal diagram is given in Fig. 2.12(b), given this similarity, from now on
we will just represent the numerical results in the reference frame (a), to facili-
tate the comparison with the experimental data.
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In [Gustave 2015, Gustave 2016b] the numerical analysis on phase solitons
was made under the assumption that the laser was just a few percent above
threshold, with a pump parameter µ ranging from 1.01 to 1.03. Here we studied
phase solitons in a configuration more similar to the experimental case, where
the laser was about 10% above threshold [Gustave 2017]. Furthermore farther
from the laser threshold the dynamics tends to be faster and eventual merging
or collision of structures occur on a shorter temporal scale, which made it easier
to observe these phenomena.
In this Section we will use the pure rate-equation model as in Eq. (2.7), since it
was shown [Gustave 2016b] that phase solitons do not require a refined descrip-
tion of the active medium, which would be provided with the complete model,
and they are correctly described when the macroscopic polarization is adiabati-
cally eliminated.

2.5.1 Parameter choice

In order to search for the correct parameters to observe phase solitons in this
new configuration we are going to make some theoretical considerations [Gus-
tave 2017]. Starting from Eqs. (2.6) we assume that the excess pump with respect
to the threshold µ− 1 = ε remains small. We then introduce the field amplitude
F and the injection amplitude y0 defined so that

E = (µ− 1)1/2F = ε1/2F , y = (µ− 1)3/2y0 = ε3/2y0 .

Then Eq. (2.6a) for F becomes

cτd

Λ
∂F
∂η

+
∂F
∂τ

= σ [(µ− 1)y0 − (1 + iθ) F + (1− iα)DF]

cτd

Λ
∂F
∂η

+
∂F
∂τ

= σ [(µ− 1)y0 − (1 + iθ) F + (1− iα)(D− µ + µ)F]

cτd

Λ
∂F
∂η

+
∂F
∂τ

= σ {(µ− 1)y0 + [µ− 1− i(θ + µα)] F + (1− iα)(D− µ)F}

cτd

Λ
∂F
∂η

+
∂F
∂τ

= σε

[
y0 + (1− i∆) F + (1− iα)

D− µ

ε
F
]

, (2.21)

with

∆ =
θ + µα

µ− 1
=

θ + µα

ε
.

It is reasonable to assume that, in the limit of a laser very close to the threshold,
D deviates little from the unsaturated pump value µ by some correction of order
ε:

D = µ + εD1 with D1 = O(1) .

We can then rearrange Eq. (2.21) as

cτd

Λ
∂F
∂η

+
∂F
∂τ

= σε [y0 + (1− i∆) F + (1− iα)D1F] , (2.22)
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(a) Stationary curve with PS solution (b) Zoom of (a)

Fig. 2.13 – Homogeneous stationary solution of the model in Eq. (2.7) for µ = 1.1, α = 3
and θ = −2.7 with superimposed the stability domain of PSs. The square and triangle
markers correspond respectively to the maxima and minima of the PS profile.

where we can observe that all the terms in the square brackets are of order unity.
From Eq. (2.6b) the equation for D1 becomes

ε
∂D1

∂τ
= b

[
µ− (µ + εD1)

(
1 + ε|F|2

)]
(2.23)

and, at the leading order, under the assumptions made, the original set of rate
equations in Eqs. (2.6) can be written as

cτd

Λ
∂F
∂η

+
∂F
∂τ

= σε [y0 + (1− i∆) F + (1− iα)D1F]

∂D1

∂τ
= −b

(
D1 + |F|2

)
,

where we have used that µ ≈ 1 in the second equation. We can here notice
that, if the effective detuning ∆ and the injected field y0 are kept constant then
the only role of the smallness parameter ε is to determine the decay rate of the
electric field: this observation gives us a hint on how to change the parameters
to find PSs for any value of µ, provided we know their stability range for a
given pump value. For instance in [Gustave 2015] it was reported that a stable
PS exists for the parameters µ = 1.01, α = 3, θ = −2.97 and for a small range of
injection values around y = 1.4× 10−3, which corresponds to a value of ∆ = 6
and y0 = 1.4. For a different value of µ we expect to find stable PSs for θ =
−α + ε(6− α) in an interval around y = 1.4ε3/2. Hence, for instance, for µ = 1.1
and α = 3 we expect stable PSs for θ = −2.7 and a range of injection values
around y = 4.43× 10−2 [Gustave 2017].
All the simulations in this Section have been run setting µ = 1.1, θ = −2.7,
b = 0.0005 and, as usual, α = 3, σ = 3× 10−6, T = 0.3.

2.5.2 Single-charge phase soliton

In Fig. 2.13 we plotted the homogeneous stationary solution for the laser in-
tensity as in Eq. (2.15) and superimposed the phase soliton stability domain, in
particular indicating the maxima (square markers) and minima (triangle mark-
ers) of each PS profile for different values of injection. The instability domain
for this specific set of parameters has been reported in Fig. 2.6(c), where we can
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(a) Spatiotemporal diagram y = 0.0445 (b) Spatiotemporal diagram y = 0.0469

(c) Phase portrait y = 0.0445 (d) Phase portrait y = 0.0469

(e) Temporal profile y = 0.0445 (f) Temporal profile y = 0.0469

Fig. 2.14 – PSs at the boundaries of the stability domain: y = 0.0445 (left column) and
y = 0.0469 (right column). (a,b) are the spatiotemporal diagrams, (c,d) represent the
phase portraits and (e,f) are the temporal profiles of the PSs. The points 1 and 2 define
the width of the PS. For the points A, B and C see the text.

observe that, as required, the whole upper branch of the stationary curve results
stable.

From Fig. 2.13 we observe that the interval of stability for phase solitons is
4.45 · 10−2 ≤ y ≤ 4.69 · 10−2: the small difference with the theoretical prediction
may be associated to the fact that, first of all, the prediction is accurate up to a
order ε, which implies some small correction for ε = 0.1 as in our case. Further-
more we have observed that ε is involved in the definition of the decay rate of
the electric field: since the stability of PS depends also on the ratio of the decay
rates of the electric field and the gain, an increase in ε, even if small, can any
way partially affect the stability of the phase solitons.
It is interesting to observe, in the zoom depicted in Fig. 2.13(b), that, at the
boundaries of the stability domain, the minimum intensity of the phase soliton
results very close to that of the lower homogeneous state.
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(a) Trajectory in the phase space (b) Trajectory in the (Re(E), D) plane

Fig. 2.15 – Trajectory of the system during a single roundtrip in the presence of a PS for
a value of injection amplitude y = 0.0458. (a) is the trajectory in the phase space while
(b) is the projection of the same trajectory in the (Re(E), D) plane.

In Fig. 2.14 we depicted the spatiotemporal diagrams (a,b), the trajectories
in the complex plane (Re(E), Im(E)) (c,d) and the intensity temporal profiles
(e,f) at the boundaries of the PS stability domain in y: in particular the left col-
umn of Fig. 2.14 corresponds to y = 0.0445 and the right column corresponds to
y = 0.0469.
In Fig. 2.14(c,d) we also plotted the three fixed points, defined for a given value
of y in the triple-valued region of the stationary curve, as already illustrated in
Fig. 2.5: in particular for this choice of parameters A is a stable node, B is a sad-
dle and C is an unstable focus. We highlight that, due to the conditions for the
existence of PSs, these three fixed points are always defined in the presence of
stable phase solitons: during a single roundtrip, the trajectory of the system, in
the Argand plane (Re(E), Im(E)), starts from the stable homogeneous station-
ary solution, given by the point A, then gets repelled by the point B and circles
around, or passes near, C (in this projection).

Due to the different pump value with respect to previous studies [Gustave 2016b],
we were here able to observe that the trajectory described by the system in the
complex plane does not necessarily need to include the origin since the point
that has an actual role in the dynamics is C and not (Re(E), Im(E)) = (0, 0).
For a lower value of pump this difference was less evident since the value of
intensity for C was even closer to zero. Furthermore we can observe that, if the
dynamics was restricted to the Argand plane, the trajectory would always circle
around C, nevertheless from Fig. 2.14(d) we can notice that there are exceptions
to this rule, because the actual phase space includes a third dimension repre-
sented by the variable D as illustrated in Fig. 2.15. It is in fact for this reason
that, for the right extremum of the stability domain, the minimum intensity of
the PS results very close to that of C on the lower homogeneous branch. From
Fig. 2.15 we can also observe that the main role of the point C is of repulsive
nature, since the trajectory of the PS remains actually bounded to lower values
of carrier density.
The phase portraits in Fig. 2.14(c,d) seem in good agreement with the results by
Chaté et al. in [Chaté 1999] for phase-charged solitons observed with the forced
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Fig. 2.16 – Reprinted with permission from [Gustave 2016b]. On the left the authors
depicted the spatiotemporal diagram in a regime where phase solitons are stable, on the
top right the authors illustrated the phase portrait and, below it, the intensity temporal
profile of the PS.

complex Ginzburg-Landau equation in the condition of small forcing.
The results here shown for single-charge phase solitons are in very good agree-
ment with the experiment [Gustave 2015, Gustave 2016b], where PSs carrying
a topological charge with these specific characteristics have been observed, as
depicted in Fig. 2.16, where, in particular, on the right panel the (logarithmic)
color scale indicates the frequency of the observations.
In the spatiotemporal diagrams depicted in Fig. 2.14(a,b) we can observe that a

structure propagating on a vertical line would correspond to a pulse that moves
at velocity c, that is, a structure that covers the cavity length Λ in a roundtrip
time τc = Λ/c. Hence the more a line describing the propagation of a structure
is inclined towards the right side, the slower the object is propagating. From Fig.
2.14(a,b) and (e,f) we can then notice that for higher values of injection y the PS
increases its velocity and becomes shorter in time. In particular, a delay of ∆τ
accumulated over N roundtrips implies, for the PS, a velocity

v =
NΛ

Nτc + ∆τ
=

Λ/τc

1 + ∆τ/(Nτc)
=

c
1 + ∆τ/(Nτc)

,

so that

v
c
≈ 1− 1

N
∆τ

τc
.

We can define the width of a PS as the temporal interval between points 1 and
2 in Fig. 2.14(e,f). Points 1 and 2 are defined, respectively, as the points on the
PS temporal profile with intensity

(
Imin + Ibg

)
/2 and

(
Imax + Ibg

)
/2, with Imin,

Imax and Ibg the minimum, maximum and background intensity values.
In Fig. 2.17(a) we can observe the behavior of the PS velocity and width as

a function of the injected amplitude y: as we can observe the two quantities
present an almost linear dependence on the injection. As depicted in Fig. 2.17(b),
this implies also a linear decrease of the velocity with the width of the PSs.
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(a) Velocity and width of PSs as functions of y (b) Velocity as function of the width of PSs

Fig. 2.17 – (a) Velocity and width of PSs for varying values of the injection amplitude
y. (b) Dependence of the velocity on the width of the PS. The PS size is measured in
percentage of the roundtrip time.

Fig. 2.18 – Spatiotemporal diagram of attractive PS interaction between two PSs carry-
ing a single charge each, observed experimentally. This result has been obtained by P.
Walczak in our team, using the Fabry-Perot experimental setup illustrated in Fig. 2.11.

2.5.3 Attractive interaction

As depicted in Fig. 2.18, in the experiment, there are configurations where
chaotic regions coexist with multiple single-charge PSs. In this case, especially
when two PSs are separated by just a few times their width, a weak attractive
interaction may occur, causing the PSs to get closer to each other, experiencing a
stronger interaction the more they approach, and leading to their merging into
a double-charge PS. One particular feature illustrated in Fig. 2.18 consists in the
fact that after the merging the double-charge PS propagates at a smaller veloc-
ity than the previous single-charge phase solitons, as highlighted by the black
dashed line: a fact that will be better investigated in the next Subsection.

The numerical simulations exhibit the same kind of merging, thus confirm-
ing the experimental description of the phenomenon. In Fig. 2.19 we reported
nine cases of consecutive merging of single-charge phase solitons with other
multiple-charge phase solitons for a fixed value of injection y = 0.0458 in the
middle of the PS stability domain: in all cases a single-charge soliton is gener-
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(a) PS1 + PS1 → PS2 (b) PS2 + PS1 → PS3 (c) PS3 + PS1 → PS4

(d) PS4 + PS1 → PS5 (e) PS5 + PS1 → PS6 (f) PS6 + PS1 → PS7

(g) PS7 + PS1 → PS8 (h) PS8 + PS1 → PS9 (i) PS9 + PS1 → PS10

Fig. 2.19 – Attractive interaction between PSs of single (PS1) and n− 1 charges (PSn−1),
as observed numerically. All the simulation results here depicted have been run for a
value of injection y = 0.0458. The single charge PS is generated at a similar distance of
approximately 20% of the roundtrip time from the other structure for all the simulations.

(a) PS10 + PS1 → PS17 (b) PS17 + PS1 → instability

Fig. 2.20 – Merging of two PSs in two peculiar cases: in (a) the interaction between the
two PS does not lead to a PS whose charge is the sum of the charges of the previous
objects; in (b) the interaction causes the system to lose its stability. The simulations
have been run for y = 0.0458 and the single-charge PS is generated at a distance of
approximately 20% of the roundtrip time from the other structure.
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(a) Merging from distini = 5% (b) Merging from distini = 7% (c) Merging from distini = 10%

Fig. 2.21 – Interaction between two single-charge phase solitons at the initial distances
of 5%, 7% and 10%.

ated at a similar distance (corresponding approximately to 20% of the roundtrip
time) from a soliton of charge n− 1. Due to the different speed of the PSs, the
two objects merge, forming a PS of charge n. The objects resulting from the in-
teraction appear stable after the merging and propagate in the cavity without
any change over a long time. We can also observe, as in the experimental case,
that, of the two structures interacting, it is usually the one that is generated at a
following time that undergoes the most attraction to the previous PS, thus bend-
ing towards it. The times indicated on the spatiotemporal diagram of Fig. 2.19
do not give any indication regarding the interaction time, since, depending on
the figures, the initial distance between the two objects may not be necessarily
exactly the same.
In Fig. 2.20 we show two special cases of merging, for instance in Fig. 2.20(a) we
show that, for this specific choice of parameters, the merging of a PS of charge 10
with a single-charge PS does not lead to a PS of charge 11 but to a PS of charge
17, as six additional charges are generated as a result of the interaction. Further-
more (b) trying to merge the PS of charge 17 with another single-charge PS, the
system finally looses its stability and a more complex dynamics arises from the
collision, as the system falls locally on a turbulent state, which corresponds to
the (unstable) lower branch of the stationary curve, coexisting for this parameter
choice with the stable upper branch. Eventually this regime spreads to the all
cavity. The resulting dynamics is then not anymore well described by the pure
rate-equation model.

In Fig. 2.21 we depicted three cases of merging (for y = 0.0458) between two
single-charge PSs starting at an initial distance (distini) of, respectively, 5% (a),
7% (b) and 10% (c) of a roundtrip time τc from each other: as we can observe the
interaction between the two objects occurs at longer times for larger distances.
Furthermore, as in Fig. 2.19, we can distinguish a long initial stage where the
interaction results very weak, the distance between the two PS is barely affected
and the change in velocity of any of the two objects is almost not detectable: it is
only when the two PSs are sufficiently close that the velocity of the second pulse
is abruptly affected giving rise to the merging.

In Fig. 2.22, we reported the dependence of the merging times on the initial
distance at which the two phase solitons are generated, varying in particular the
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(a) Merging time vs distini (b) Same as (a) in semi-logarithmic scale

Fig. 2.22 – Merging time between two single-charge PSs as a function of the initial
distance distini between them, plotted in linear (a) and semi-logarithmic (b) scale.

(a) PS of charge 6 (b) PS of charge 10 (c) PS of charge 17

Fig. 2.23 – Numerical PSs of charge 6 (a), 10 (b) and 17 (c) simulated for a value of
injection amplitude y = 0.0458.

initial distance from 5% to 10% of the roundtrip time τc. The merging time seems
to increase exponentially, as shown in semi-logarithmic scale in Fig. 2.22(b).
In this study no critical distance has been found that causes the interaction be-
tween the two PSs to stop, but the numerical validation of this statement would
require extremely long simulations. For instance, from Fig. 2.22(a) we can no-
tice that more than 106 roundtrips would be necessary to observe the interaction
between two PSs set at an initial distance of 11%.
Weak and strong coupling and their role in the formation of 2D spatial soliton

complexes have been analyzed in [Rosanov 2005]: the extension of this concept
to our 1D longitudinal soliton complexes could be an interesting development of
the work here presented. However there would for sure be a few conceptual dif-
ferences: for instance in [Rosanov 2005] the system was phase-invariant, allow-
ing the phase to freely vary during the evolution of the system. In our case in-
stead the presence of a coherent injection fixes the reference phase, allowing only
multiples of 2π phase jumps in the system. Furthermore the non-instantaneous
active medium response permits just one sign for the chiral charges of phase
solitons, thus limiting the degrees of freedom of our system (see also the end of
Section 2.7.4).
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(a) PS of charge 6 (b) PS of charge 11

Fig. 2.24 – Experimental PSs of charge 6 (a) and 11 (b), observed with the ring laser
setup of Fig. 2.10.

Fig. 2.25 – Velocity as a function of the chiral charge of the PSs.

(a) Spatiotemporal diagram for
PS2

(b) Phase portrait of PS2 (c) Intensity temporal profile of
PS2

Fig. 2.26 – Experimental PS of charge 2, represented in its (a) spatiotemporal diagram,
(b) trajectory in the Argand plane, (c) intensity temporal profile. The experimental setup
used for these observations is the ring laser illustrated in Fig. 2.10.

2.5.4 Multiple-charge phase solitons

As already observed in Fig. 2.19, multiple-charge phase solitons are stable in
this system. In Fig. 2.23 we illustrated some examples of the possible multiple-
charge PSs that can be observed numerically: in particular (a) is a PS of charge
6, (b) is a PS of charge 10 and (c) is a PS of charge 17. In particular PSs stable
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Fig. 2.27 – Spatiotemporal diagrams (a,b) and phase portraits (c,d) of a phase soliton
of charge 2 (a,c) and a phase soliton of charge 3 (b,d), observed experimentally with the
setup illustrated in Fig. 2.11.

up to charge 17 have been obtained and n-charge PSs with n = 2, ..., 10 can be
obtained from collisions of (n− 1)-charge PSs with a single-charge PS.
These observations are in very good agreement with the experimental results
illustrated in Fig. 2.24 where PSs of charge 6 (a) and 11 (b) are depicted. We
would like to point out that the two experimental measurement were not per-
formed for exactly the same parameters, as it can be also noticed by the different
background intensity values. This can be due to the possible small alterations
of the cavity length, thus the different slopes of the experimental PSs are not to
be considered a good indicator for the velocity for these objects. The fact that in
the numerical simulations it was not possible to obtain a PS of charge 11 is due
to the possibly different value of injection used, which may affect the stability of
multiple-charge PSs more than that of a single-charge phase soliton.
From Fig. 2.23 we can observe that there is a clear dependence of the PS ve-
locity on the number of charges carried. This dependence is illustrated in Fig.
2.25, where we can observe that PSs with larger charge lag behind in the co-
propagating frame, reaching a plateau speed at approximately charge 4: which
is intuitive, in terms of radiation-carrier interaction, since we are to expect larger
structures to be dragged more by the active medium inertia.
Given the uncertainty on the exact setup cavity length it results difficult to com-
pare the velocity of the experimental PSs with different charges when they are
not measured simultaneously: for this reason it was preferred to observe the
evolution of the same multiple-charge PS during the course of time, when af-
fected by thermal fluctuations of the active medium (see [Gustave 2017]). These
fluctuations provoke an enlargement or a compression of the multiple-charge
phase soliton size, which, depending on its width will move at a different veloc-
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ity inside the cavity, allowing the experimentalists to find an excellent correla-
tion between structure size and velocity [Gustave 2017].

In Fig. 2.26 we depicted the phase portrait (b) and intensity temporal profile
(c) of a double-charge PS observed experimentally, which is stable during more
that 2×104 roundtrips. In (b,c) the color scale illustrates the number of observa-
tions, hence the yellow points in (b) are the most visited ones by the trajectory
of the system in the phase space. In the case of PSs these points identify the
approximate location of the fixed point A. The different position of this fixed
point with respect to the previous numerical (in Fig. 2.15) and experimental (in
Fig. 2.16) results is simply due to the fact that the experimental phase is actually
the phase difference between the injection and the laser relative to an arbitrary
reference phase, hence the trajectory in the phase portrait could be arbitrary ro-
tated around the origin without any change in shape and still be consistent with
the measurement. One interesting feature of the PS trajectory, that we will ad-
dress later in this Subsection, is that during a single roundtrip the field does not
reapproach the stationary solution in A until the end of the second rotation. The
intensity profile shown in Fig. 2.26(c) confirms the shape preservation property
of the PS, with basically no fluctuations appearing during the propagation over
2×104 roundtrips.
In Fig. 2.27 we can find a confirmation of the numerical results on the PS stability
domain illustrated in Fig. 2.14: in particular we can observe that PSs of double
(a,c) and triple (b,d) charge do not seem to necessarily include the origin in all
their rotations as it was already observed numerically for a single-charge PS in
Fig. 2.14(d). To better illustrate this point, in Fig. 2.28 we plotted the trajectory
of the system in the full 3D phase space (a,b) and its projection on the (Re(E), D)
plane during a single roundtrip in the case of a phase soliton of charge 2 (a-c)
and 3 (d-f). As we already observed in the case of a single-charge PS in Fig.
2.15, the 2π phase rotations occur at a certain distance from the point C, whose
main role in the dynamics is of repulsive nature. Furthermore we can notice that
n− 1 of the phase rotations performed by the trajectory lie almost on the same
plane of the phase space, set for high values of carrier density: the only rotation
that does not lie in such area is the one that connects the bounded trajectory to
the point A and gets repelled by the point B. Given the inclination of the plane
where the n− 1 phase rotations tend to lie, it is clear that there might be some
values of injection y for which the point C would not appear inside the rotations
circle in the projection of the trajectory on the Argand plane: this does not imply
that the point C terminates its important role in the dynamics, instead it simply
entails that the projection onto the complex plane does not perfectly capture the
whole dynamics of the system. Finally from Fig. 2.28(a,b) we can also observe
that the reason why, experimentally (in Figs. 2.26 and 2.27) and numerically
the trajectory of the system during a single roundtrip does not reapproach the
stationary solution in A until the end of the roundtrip, is due to the fact that,
when performing the n− 1 phase rotations the system is around another value
of carrier density, and actually not very close to the point A.
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(a) Phase space for a PS2 (b) Same as (a), in the (Re(E), D)
plane.

(c) Same as (a), in the
(Re(E), Im(E)) plane.

(d) Phase space for a PS3 (e) Same as (a), in the (Re(E), D)
plane.

(f) Same as (a), in the
(Re(E), Im(E)) plane.

Fig. 2.28 – Trajectory of the system in the phase space (a,b) and its projection onto the
(Re(E), D) (c,d) and (Re(E), D) plane (e,f) for a phase soliton of charge 2 (a-c) and of
charge 3 (d-f). A, B and C indicate the three fixed points given a value of injection.

2.6 Extreme events from phase soliton collisions

As illustrated in Fig. 2.20, when more complex dynamics is involved, the pure
rate-equation model of Eqs. (2.7) is not sufficient anymore to describe the sys-
tem. In this case the rate-equation model with diffusion of Eqs. (2.8) results
more appropriate while still preserving the main characteristics of the model in
Eqs. (2.7). The inclusion of the diffusion term can, in general alter a little the
instability boundaries, as illustrated in Section 2.3. Nevertheless, as illustrated
in Fig. 2.6, when close to the left turning point of the stationary curve, the stabil-
ity boundary is just slightly affected allowing us to observe most of the features
of the complete model in Eqs. (2.5) while preventing the self-collapsing, given
by the infinite gain linewidth in the rate-equation model, and avoiding the huge
computational time necessary for the simulations based on the complete model.
It is through this model that we are able to observe, in the PS stability region, for
high pump values, a regime where collisions give rise to extreme events.

2.6.1 Experimental results

In Figs. 2.29 and 2.30 we illustrated the main experimental results for this kind
of regime, achieved by P. Walczak in the experimental team with the Fabry-Perot
setup illustrated in Fig. 2.11. In particular in Fig. 2.29(a) we depicted the spa-
tiotemporal diagram relative to this specific regime. Initially (for the first≈ 7.7×
103 roundtrips) the system results in the homogeneous stationary state, then, a
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(a) Spatiotemporal diagram

(b) Zoom of (a) on the highest extreme event

(c) Temporal profile of the highest
extreme event

Fig. 2.29 – Collisional regime as observe experimentally. (a) represents the spatiotem-
poral diagram where the black dashed lines highlight the extreme event with the max-
imum intensity observed. (b) is a zoom on such extreme event where the two arrows
point out the collision between a PS of charge 2 and another structure propagating in the
opposite direction. (c) is the intensity temporal profile of the extreme event of maximum
intensity.

different regime occurs, where double charge phase solitons are spontaneously
nucleating from the homogeneous solution and colliding with other structures
propagating in the opposite direction in this reference frame (which does not im-
ply an opposite propagation direction in the laboratory frame). Around roundtrip
104 this regime ceases to exist, probably due to some change in the experimental
parameters (most probably temperature fluctuations leading to changes in the
detuning parameters), and the only object remaining is a stable double-charge
PS which propagates in the cavity without any collision.
In Fig. 2.29(b) we reported a zoom of Fig. 2.29(a) on the highest-peak event
observed (highlighted by the black dashed lines in (a)), where we can observe
more clearly the collision between the dissipative PS and a different transient
structure. After the collision, the PS complex seems to loose one charge, which
is then recovered around ten roundtrips later. The same PS incurs then in some
further collisions with other counterpropagating structures, and, after moving
past the collisional regime, propagates in a stable manner inside the cavity.
The collisional regime observed induces extreme events in the system as can be
observed in the experimental PDF of the intensity illustrated in Fig. 2.30. Since
during this regime we can have, at the same time, coherently locked and dy-
namically complex states, the best approach to understand the behavior of the
PDF consists in isolating, where possible, these different states, and identifying
which part of the PDF function they are building: in this way we can also use
an alternative definition for the extreme events present in the system as those
events escaping the statistics of a more simple bounded dynamics.
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Fig. 2.30 – Experimental PDF of the intensity. The two vertical lines are two thresholds
for extreme events computed as the average of the total intensity plus eight times the
standard deviation computed on the full intensity time trace (black dashed line) or just
on the time trace in the collisional regime (yellow dash-dotted line) of Fig. 2.29(a). For
the different PDFs description see the text.

In particular in Fig. 2.30 the black solid line represents the total intensity PDF
on the whole spatiotemporal diagram represented in Fig. 2.29. This PDF results
asymmetric (with a kurtosis of 19.95) and shows the presence of a heavy tail.
The dashed red line identifies the stationary homogeneous state, where the PDF
presents a mostly Gaussian shape (with a kurtosis of 2.95): the peak is at the
locked intensity value and the data are spread around this value due to physi-
cal and detection noise. The blue line with square markers isolates the PDF of
the stable PS regime, from around roundtrip 104 (with a kurtosis of 5.53), while
the green line with circle markers is relative to the PDF of the collisional regime
and presents a kurtosis of 11.1. For the definition of kurtosis please refer to the
previous Chapter.
We can notice that the emergence of extreme events in the collisional regime
strongly modifies the PDF, deviating from the Gaussian statistics with an heavy
tail. Furthermore we can observe that the first bump of the PDF, at low values
of intensity is clearly related to the PS shape: in particular, given the PS shape,
with a depression on the trailing edge (see for example Fig. 2.26), the probability
of low intensity values is increased.
The black dashed line and the yellow dash-dotted line are two rogue wave
thresholds, computed as the average intensity plus eight times the standard de-
viation. The black dashed line in particular is computed on the whole intensity
time trace while the yellow dash-dotted line is limited to the data in the colli-
sional regime. These two thresholds confirm the collisional events in the tail of
the PDF to be extreme.

2.6.2 Numerical simulations

In the simulations of the model in Eq. (2.8) we kept almost the same parameters
as in the previous Section, fixing α = 3, T = 0.3 and θ = −2.7. We instead in-
troduced a diffusion coefficient d = 10−6, and set the pump current well above
threshold µ = 2 (µth = 1) and b = 0.0001. The detuning θ = −2.7 and the injec-
tion amplitude y = 0.11 were chosen for the homogeneous stationary solution
to be triple-valued, where the upper state is stable, thus satisfying the conditions
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Fig. 2.31 – Example of the kind of collisions observed numerically. We can distinguish
PS complexes and other transient structures propagating, in this reference frame, in the
opposite direction. The collisions between these two objects can give rise to multiple
peaks as well illustrated here.

for the presence of PSs in the system. Furthermore the parameter choices for µ,
θ and y result very close to the experimental values. The stationary curve and
full instability domains for this choice of parameters are illustrated in Section
2.3 respectively in Fig. 2.6(b) and (d).

In Fig. 2.31 we show an example of the kind of collisions observed numeri-
cally in a zoom of the spatiotemporal diagram. We can notice that the dynamics
here presented shows some clear similarities with the experimental data. In par-
ticular we can observe the presence of phase solitons and the emergence of some
peculiar transient structures propagating at a different velocity that eventually
collide with the PSs, giving rise to an event of high intensity. The initial condi-
tion of this simulation was given by the homogeneous stationary solution with a
superimposed phase kink of 4π in the electric field (but the same kind of regime
can develop also starting from a random initial condition). Lots of collisions can
occur in this regime and we can notice that the kind of dynamics generated by
a collision can be rather complex, giving rise to three or four peaks as a result
of the interaction. In the three collision events represented here the number of
charges carried by the PS complex are conserved also after the collision but we
would like to point out that this is not always the case. In this work we will
not compute the PDF of the total intensity since, even if the regime is rather
similar to the experimental one, the larger number of PS complexes inside the
cavity and the more complex behavior observed in the simulations, modify the
statistics to a point that any comparison with the experimental data would be
pointless. Furthermore in the experiment it was possible, in the same acquisi-
tion to isolate the different regimes responsible for the whole shape of the PDF:
such technique is not available in the numerical case since the collisional regime
is not spontaneously alternating with other regimes, as in the experiment, and
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(a) Spatiotemporal diagram. (b) Phase portraits.

Fig. 2.32 – (a) Zoom of the spatiotemporal diagram around a collision observed in
the simulation. (b) phase portraits of the roundtrip sections highlighted in (a). On
roundtrip section 3 a high intensity event occurs, preceded by a clockwise phase rota-
tion on roundtrip section 2.

becomes even more tangled for larger times.

The main focus of this study consists in assessing the nature of the counter-
propagating structure that gives rise to collisions in the cavity. To this purpose
in Fig. 2.32(a) we show a zoom of the spatiotemporal diagram during the same
simulation of Fig. 2.31. In Fig. 2.32(b) we plotted the trajectory of the system in
the Argand plane, relative to the horizontal cuts highlighted in Fig. 2.32(a), with
time growing from blue to yellow. The points A, B and C represent the usual
three fixed points on the homogeneous stationary solution for a given value
on injection amplitude. In the first frame, relative to roundtrip section 1, we
can observe a phase soliton complex of charge 3 propagating inside the cavity:
the trajectory of the system consists in three counterclockwise phase rotations
in the Argand plane, passing only once close to point A, as already illustrated
for PS complexes in Fig. 2.28. On roundtrip section 2 a new object emerges on
the right side of the PS, together with a clockwise phase rotation (of charge -1).
The interaction between these two structures gives rise to a high intensity event
on roundtrip section 3, where the clockwise rotation has already been lost to a
positive charge rotation. We can notice, right after roundtrip section 3 that the
interaction has also the effect of altering the phase soliton complex velocity in-
side the cavity. On roundtrip section 4 the PS complex has regained its shape,
with one additional charge, coming from the interaction.

From this phase description we can argue that the appearance of these tran-
sient pulses with clockwise phase rotations, that collide with stable phase soli-
tons, is the basic physical mechanism responsible for the extreme events ob-
served in this system.
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(a) Spatiotemporal diagram (b) Phase space (c) Argand plane

Fig. 2.33 – Example of a roll pattern in the (a) spatiotemporal diagram, (b) its trajectory
in the phase space and (c) in the Argand plane. The simulation has been run for a value
of injection Y=0.1.

2.7 High-peak events in unstable roll regime

This second main section of the results focuses on the study of abnormally high
events in an unstable roll regime. This kind of events has been observed ex-
perimentally by F. Gustave in the experimental team in [Gustave 2016a], with
the experimental setup illustrated in Fig. 2.10, and is considered particularly
interesting due to its connection to the phase dynamics. The model we used to
describe this regime is, as in the previous Section, the rate-equation model with
diffusion illustrated in Eqs. (2.8).

2.7.1 Roll patterns

The parametric region here considered is chosen so that the stationary homoge-
neous solution results unstable and a nonstationary irregular roll pattern devel-
ops instead. This regime differs from the one reported in the previous Section
and in [Walczak 2017], since, there, the upper branch of the stationary curve was
stable and PSs were stable as well: the extreme events developed in such regime
were because of collisions between localized structures of different nature and
velocity while here high-peak events emerge due to the interplay of opposite
chiral charges with no clear collisions.

In the numerical results here illustrated we set as in the previous Section the
parameters α = 3, T = 0.3 and b = 0.0001. We also fix the pump value to µ = 1.1
and vary the detuning θ and the injection amplitude Y.
Setting θ = −3.04 we can observe from Fig. 2.4(c) that the upper branch results

stable from values of stationary homogeneous intensity I & 0.25. To obtain a roll
pattern we set as initial condition the stable homogeneous solution at Y = 0.3
and then decrease the injection amplitude to lower values. Note that to obtain
a roll regime some random initial condition of small amplitude has to be intro-
duced to jump on the rolls branch, such condition has no particular importance
and is not necessary in the further simulations without affecting the system dy-
namics. As an example at Y = 0.1 we obtain the spatiotemporal diagram of the
electric field intensity depicted in Fig. 2.33(a). Rolls are generated as a result
of a multimode instability, in particular when the system is not locked anymore
and there is beating between the fundamental mode and other high-order side-
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(a) Stationary curve with roll solution (b) Zoom of (a)

Fig. 2.34 – Stationary homogeneous solution with depicted (green triangles) the max-
imum and minimum values of the roll intensity profile for different values of injection
Y. The stationary curve is depicted with a dashed (solid) line where it is unstable (sta-
ble). The blue dotted line marks the boundary of the roll solution. The orange markers
correspond to the maxima and minima registered during the unstable roll regime.

modes. The trajectory in the phase space for such regime describes a closed loop
around the fixed point A in a bounded region, which does not include the ori-
gin, as illustrated in Figs. 2.33(b) and (c), respectively in the phase space and in
the Argand plane.

In Fig. 2.34 we depicted the rolls stability region (green dashed line with
upward and downward triangle markers) together with the stationary homoge-
neous solution for the choice of parameters made. In particular the orange and
green markers identify the roundtrip minima and maxima of the intensity time
trace over 1000 τc. If all the maxima (and all the minima) converge in one point
of the plot for a given value of injection, then the roll pattern is stable: in partic-
ular the rolls stability region corresponds here to 0.006 ≤ Y ≤ 0.2. If instead the
maxima and the minima spread along the vertical axis it means that the pattern
is unstable: this is what occurs for Y = 0.005 and lower values of injection in
Fig. 2.34(b), where we illustrated the unstable roll regime with orange markers.
This region of more complex dynamics is where we are going to search for ab-
normally high events. We can observe that rolls start to emerge near the tip of
the instability region in Fig. 2.4(b).

In Fig. 2.35 we illustrated more into details the roll pattern dynamics in the
phase space and its eventual breaking for low enough values of injection. On
the first column we represented the spatiotemporal diagrams relative to simu-
lations for different values of Y. Each row corresponds to a new simulation, in
particular we depicted here the final 5000 roundtrips of 10000 τc-long simula-
tions to be sure of removing any transient effect due to the initial change in the
injection value. In the second and third columns we depicted the system tra-
jectory during the last roundtrip of the simulation, respectively in the Argand
plane and in the (D, I) plane. The points A, B and C are the usual fixed points
on the stationary homogeneous solution for the given value of injection. The
right turning point in the stationary curve, illustrated in Fig. 2.5, is, for these
parameters, at Y = 0.0307 while the left turning point is at Y = 0.0037. Figs.
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(a) Spatiotemporal diagram (b) (Re(E), Im(E)) plane (c) (I, D) plane

(d) Spatiotemporal diagram (e) (Re(E), Im(E)) plane (f) (I, D) plane

(g) Spatiotemporal diagram (h) (Re(E), Im(E)) plane (i) (I, D) plane

(j) Spatiotemporal diagram (k) (Re(E), Im(E)) plane (l) (I, D) plane

Fig. 2.35 – Roll pattern breaking for decreasing values of injection in the spatiotemporal
diagram (first column), in the Argand plane (second column) and in the (D, I) plane
(third column). The simulations have been run for a value of injection Y = 0.02 (a-c),
0.006 (d-f), 0.004 (g-i) and 0.003 (j-l).



2.7 High-peak events in unstable roll regime 111

Fig. 2.36 – Spatiotemporal diagram observed experimentally, where abnormally high
events emerge above an unstable roll background.

2.35(a-c) show the system dynamics for a value of injection Y = 0.02 below the
right turning point. The second and third rows of Fig. 2.35 are relative to two
simulations respectively for Y = 0.006 and Y = 0.004 close to the left turning
point while Figs. 2.35(j-l) are relative to a value of injection Y = 0.003 right be-
low the left turning point. In the last two rows, for the trajectory of the system
in the Argand and (D, I) plane, the line color changes from dark green to yellow
for increasing time.
The roll patterns illustrated in the first two rows of Fig. 2.35 show that the addi-
tion of the fixed points B and C modifies the trajectory of the system: in partic-
ular we can notice that lowering the injection Y implies the point B to approach
the point A (see in particular the (D, I) projection of the system trajectory in the
third column): when the two fixed points are close enough (i.e. when we get
close enough to the left turning point) eventually the roll regime breaks. From
the description of the system dynamics in the Argand plane we can deduce that,
before breaking, the roll trajectory moves closer to the origin and assumes an
elongated shape.
Figs. 2.35(g-i) represent a typical unstable roll regime where the system presents
a trajectory almost bounded for most of the dynamics (dark green line in (h))
showing every once in a while some large excursion (yellow line in (h)) around
the origin in the Argand plane.
Finally below the (left) turning point the system describes some sort of bounded
trajectory around the origin. We would like to stress that, for low values of
stationary homogeneous intensity, the model in Eqs. (2.8) becomes less accurate
since it starts to present bigger differences with the complete model in Eqs. (2.5),
especially in terms of the number of sidemodes involved in the dynamics (see
Fig. 2.4), hence any consideration on this final regime is to be considered in its
limits.

From Fig. 2.35 it results clear that the most promising regime to observe
high-peak events is represented by the simulation depicted in (g-i), when the
system results very close to the left turning point, the three fixed points A, B and
C are still present, affecting the dynamics, and the roll regime becomes unstable.
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(a) Stationary curve as a function of θ (b) Same as (a) in semilogarithmic scale

Fig. 2.37 – Stationary homogeneous solution of the model in Eqs. (2.8) for the intensity
as a function of the detuning θ. The parameters considered are α = 3, µ = 1.1 and
Y = 0.004. The vertical red dash-dotted line indicates the chosen value of detuning
θ = −3.04.

This condition results very similar to the experimental case, where abnormally
high events on a roll background have been observed, as illustrated in Fig. 2.36.
Additionally to Fig. 2.5, in Fig. 2.37 we depicted the stationary homogeneous
solution of the system as in Eq. (2.15) for the intensity as a function of the de-
tuning θ, for the choice of parameters made: the vertical red dash-dotted line
identifies the value of θ = −3.04. This plot gives us an idea of the values of de-
tuning that still grant the presence of the three fixed points on the homogeneous
stationary solution and it will be useful in the statistical analysis.

2.7.2 Spectral analysis

In order to characterize better the unstable roll regime observed in Fig. 2.35(g), in
Fig. 2.38 we make a comparison between the Fourier spectrum for a simulation
at θ = −3.03, where the roll pattern is stable, and a simulation at θ = −3.04
(same as in Fig. 2.35). In Fig. 2.38(a) and (b), on a zoom of the frequency-time
diagram, we can notice that, while in the case (a) of the stable roll pattern the
Fourier spectrum remains the same for different roundtrips, in the case (b) of
unstable rolls it shows a more complex behavior. In Fig. 2.38(c) we show both
spectra averaged on 5× 104 roundtrips: here we can observe that the spectrum
in the case θ = −3.04 results more continuous but not particularly broader with
respect to the roll regime. For this reason we do not make any claim on the
turbulent nature of the unstable roll pattern here studied.

2.7.3 High-peak events and statistical analysis

In Fig. 2.39(a) we depicted a zoom of the spatiotemporal diagram on 2000
roundtrips in the middle of a simulation, run for the choice of parameters ex-
plained in the previous Subsection (in particular pump parameter µ = 1.1, de-
tuning θ = −3.04 and injection amplitude Y = 0.004). The total simulation
covers a time span of 3× 105 roundtrips where the first 9× 104 roundtrips were
excluded from the analysis to discharge any transient effect.
In Fig. 2.39(a) an abnormally high event, highlighted by line 3, emerges above
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(a) Fourier spectrum along a simulation
for θ = −3.03

(b) Fourier spectrum along a simulation
for θ = −3.04

(c) Plot of the Fourier spectra for θ =
−3.03,−3.04

Fig. 2.38 – Fourier spectra in a zoom of the frequency-time diagram along 104

roundtrips for a simulation (a) at θ = −3.03, where the roll regime is stable, and (b)
at θ = −3.04 where rolls are unstable. Both spectra are shown in (c), averaged along
5×104 roundtrips. The full frequency axis covers a range of (-50,50) GHz.

an unstable roll background. In Fig. 2.39(b) we show the four intensity tem-
poral profiles corresponding to the horizontal dashed lines illustrated in Fig.
2.39(a). Section 1 of the spatiotemporal diagram is chosen 500 roundtrips before
the event: the temporal profile displays a mostly bounded roll pattern regime,
which would be stable for higher values of injection. Section 3 is chosen on the
roundtrip where the maximum of the high-peak event occurs. Finally sections 2
and 4 have been chosen 40 roundtrips before the event and 160 roundtrips after
it.

As in the previous Chapter, to study this kind of abnormal events, we find
useful to perform a statistical analysis on the intensity values explored by the
system, as well as on the heights of all the observed intensity peaks. The results
of this study are illustrated in Fig. 2.40: in particular in Fig. 2.40(a) we illustrated
the PDF (in black) of the peak heights, measured as the difference between each
maximum and the previous minimum of the full time trace, while in Fig. 2.40(b)
we depicted (in black) the PDF of all the values explored by the intensity during
the simulation.

The dark yellow data in Fig. 2.40 reports the results of the same statisti-
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Fig. 2.39 – Zoom (a) of the spatiotemporal diagram of a simulation for µ = 1.1, θ =
−3.04 and Y = 0.004 centered on an event of high intensity (3). (b) shows the intensity
time traces at fixed roundtrip corresponding to the horizontal cuts highlighted on the
diagram.

cal analysis performed on a simulation with for a different value of detuning
θ = −3.048: in this case the system exhibits an unstable roll regime, which re-
mains bounded to a specific region of the phase space and does not show big
intensity excursions as illustrated in the spatiotemporal diagram in Fig. 2.42(e).
We can observe that the PDF (in black) of the peak heights (a) displays an ini-
tial slope, following a Gaussian distribution (green dashed line), which is to be
associated with the bounded regime. The events in the tail of the distribution
are escaping such statistics and occur more frequently than expected by it. In
Fig. 2.40(b), for the statistics of the total intensity (in black), we can notice an
initial almost flat distribution (in logarithmic scale), up to I/〈I〉 ≈ 3, followed
at first by an exponential decay (fitted by the green dashed line): such behav-
ior is closely followed by the dark yellow PDF of the simulation without high
peaks. The data in the tail of the black PDF seems once again to escape from the
negative exponential decay, displaying a higher probability than expected by
the bounded regime. In Fig. 2.41 we show the same data analysis performed in
the experimental case on a 27000 τc-long time trace of the data displayed in Fig.
2.36: these results are in very good agreement with the numerical ones, showing
once again the similarities between the experimental regime and the simulation.
In the experimental case, for the PDF of the peak heights in Fig. 2.41(a) it was
necessary to disregard all the events of height below 5, since for low values of
intensity there was no way to distinguish the field dynamics from the detection
noise: this choice avoids the use of any spectral filtering on the data which could
easily modify the shape of the distribution. For this reason also in the numerical
case we decided to put a threshold on the data with low values of intensity in
Fig. 2.40(a), to grant a better comparison with the experiment.

From the (nontrivial) shape of the PDFs here shown, we can easily under-
stand that the events in the tail of the distributions are generated by a different
mechanism with respect to the rest of the data.
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(a) PDF of the peak heights (b) PDF of the total intensity

Fig. 2.40 – (a) PDF of the temporal peak heights (in black), computed over 2.1×106 τc,
the green dashed line highlights a Gaussian fit of the initial slope of the distribution.
(b) PDF of all the values explored by the intensity (in black), computed over 2.1×105

roundtrips. The green dashed line corresponds to a negative exponential fit highlighting
the first exponential decay of the data for high values of intensity. The data in dark
yellow shows the corresponding PDFs for a simulation run with the same parameters
but a different detuning θ = −3.048.

(a) Experimental histogram of the peak heights (b) Experimental PDF of the total intensity

Fig. 2.41 – (a) Histogram of the temporal peak heights and (b) logarithm of the total
intensity PDF relative to the experimental case. Both statistics where computed on a
time trace of 27000 τc.

For the sake of completeness in Fig. 2.42 we show the spatiotemporal dia-
gram and PDF of peak heights for three other values of detuning, in a config-
uration of unstable rolls.The statistics on the heights has been computed here
over 3×105 roundtrips. The value of θ = −3.04, chosen in the analysis, results
the one producing the most high-peak events, hence the most adequate for this
study.

2.7.4 Phase dynamics

To better understand the underlying mechanism for the formation of these ab-
normal high-peak events we will now focus on the role of the phase dynamics.
To this aim, it is useful to set E = ρ exp (iφ) and recast Eqs. (2.8) for the field
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(a) Spatiotemporal diagram θ =
−3.042

Iheights

(b) PDF of peak heights θ = −3.042

(c) Spatiotemporal diagram θ =
−3.044

Iheights

(d) PDF of peak heights θ = −3.044

(e) Spatiotemporal diagram θ =
−3.048

Iheights

(f) PDF of peak heights θ = −3.048

Fig. 2.42 – Spatiotemporal diagrams and PDFs of peak heights for three different sim-
ulations run at θ = −3.042 (a-b), θ = −3.044 (c-d) and θ = −3.048 (e-f).

amplitude and phase:

∂ρ

∂z
+

∂ρ

∂t
= T [(D− 1) ρ + y cos φ] (2.24a)
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]
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∂D
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=
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σ

[
µ− D

(
1 + ρ2)] , (2.24c)
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(a) D(τ/τc) and Ds(τ/τc) over 104 roundtrips (b) Zoom of (a) over 6 roundtrips

Fig. 2.43 – (a) Time trace for D (blue solid line) and its adiabatic value Ds = µ/(1 + I)
(green solid line) over 104 roundtrips. (b) Zoom on the last 6 roundtrips.

where we have neglected the diffusion term d to keep the equations in a simpler
form and allow some qualitative considerations (d is any way present in all the
simulations here shown).
In Eq. (2.24b), we can observe that, for fixed z or t, the sign of the right hand
side determines the rotation direction of the electric field in the complex plane.
For θ + αD = 0 and constant ρ, Eq. (2.24b) becomes that of a pendulum, with
a stable fixed point in φ = 0 and an unstable one in φ = π. Nevertheless the
unstable focus C lying in the proximity of the origin, acts as a repeller and pre-
vents the field amplitude to assume values too close to the origin, hence the
ratio y/ρ in front of the sine remains usually very small. The dominant term
in Eq. (2.24b) is then the first one, which forces the electric field to rotate clock-
wise or counterclockwise depending on its sign. The boundary between the two
rotation directions is marked by the critical value of D,

Dc = −θ/α ,

in particular with our choice of the parameters Dc ≈ 1.013. If the dynamics of D
were fast enough to follow adiabatically that of the field intensity, we could also
define a critical amplitude through the stationary equation

Dc =
µ

1 + ρ2
c

, (2.25)

in particular with our parameters we would have ρc ≈ 0.292. In Fig. 2.43(a) and
(b) we can observe that the temporal evolution of D and its stationary homoge-
neous value Ds = µ/(1 + I) are not comparable in amplitude, hence enslaving
D to the evolution of I is here not really justifiable. In particular, using a loose
terminology we could say that a “drag” linked to the medium dynamics pre-
vents the system from the large excursions in D predicted by the instantaneous
model (where D adiabatically follows the dynamics of I). Nevertheless the crit-
ical amplitude ρc plays a role in the phase dynamics, as will be shown in the
following.
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Fig. 2.44 – Histogram of the values assumed by the electric field in the complex plane
(Re(E), Im(E)) in the experimental case (a), computed over 104 roundtrips, and in the
numerical case (b), computed over 105 roundtrips, in order to maintain the same num-
ber of events associated to the bounded state.

In Fig. 2.44 we draw a comparison between the histogram of the values as-
sumed by the electric field in the complex plane (Re(E), Im(E)), both in the ex-
perimental (a) and numerical case (b). There are some clear similarities between
the two figures, especially regarding the presence of an unstable bounded state
(yellow area) from which rarer events get detached, exploring other areas of the
histogram (depicted in red). As already explained in Section 2.5, the different
location of the bounded state in the experimental case is due to the fact that the
relative phase is measured up to a constant.

Chirality plays an important role in the formation of high-peak events both
in the experimental and in the numerical case. In Fig. 2.45 we show the evo-
lution of the unfolded phase in the experiment around the formation of an ab-
normal event: in this description each step depicted in Fig. 2.45 represents a 2π
rotation of the system trajectory around the origin. Here we can observe that the
phase does not perform any jump up to 20 ns before the abnormal event (arbi-
trary placed at t = 0), then a change in the phase slope identifies the acquisition
by the system of a positive chiral charge and shortly after a high-peak event oc-
curs.

In Fig. 2.46 we illustrated a zoom of the spatiotemporal diagram on an ab-
normally high event in the experiment (a), and four different intensity temporal
profiles (b) acquired at fixed roundtrip, corresponding to the cuts highlighted in
(a). Temporal profile II is acquired when the abnormal event assumes its high-
est value in intensity, temporal profile I corresponds to 43 roundtrips before the
event, while temporal profiles III and IV are collected respectively 12 and 37
roundtrips after the event.
The main experimental result about the phase dynamics is summarized in a
striking topological change for the trajectory of the system in the phase space:
as we can observe in Fig. 2.47, before the abnormal event, on roundtrip I, the sys-
tem trajectory in the complex plane remains bounded to a specific region while
when the high-peak event occurs, on roundtrip II, a 2π excursion of the phase
takes place with the trajectory of the system describing an excursion around the
origin in the complex plane.
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In Fig. 2.48(a) we illustrated the evolution of the unfolded phase when ap-
proaching an abnormally high event in the simulations, in a situation similar to
the experimental case. Here we can observe that an initial balance between the
number of positive and negative chiral charges is broken by the loss of a negative
charge, which gives rise to a change in the slope of the phase: then an abnormal
event, highlighted by the vertical red dashed line, occurs. This description finds
confirmation in the zoom of Fig. 2.48(b) around the slope change: here we can
distinguish the presence of both a positive and a negative chiral charge in the
initial plateau, which is then reduced to a single positive charge with the change
of slope.

Figs. 2.45 and 2.48 present similar results especially when discussing the
occurrence of the high-peak events in terms of a change of slope in the phase
evolution from an initially balanced (flat) situation. About this point we would
like to stress out the limits of the experimental results regarding the phase rota-
tion detection: as we will see in the following, both positive and negative chiral
charges (i.e. respectively counterclockwise and clockwise phase rotations) are
necessary to well describe the dynamics of the high-peak events observed and
eventually allow us to suggest a predictor for these abnormal events. Unfortu-
nately the only clear observations in the experiment always regard the positive
chiral charges: this is because clockwise rotations are instead bound to occur
for low intensity values, beyond the experimental noise level. Furthermore the
array of possible configurations regarding the evolution of the phase before or
after the occurrence of an abnormal high-peak event is more complex as well il-
lustrated in Fig. 2.49, where we depicted (a) the spatiotemporal diagram and (b)
the corresponding unfolded phase time trace during 2×104 τc of the simulation.
The five abnormal events occurring in this time span are highlighted with red
crosses in (a) and vertical red dashed lines in (b).

In general we can argue that, as a common thread, the occurrence of abnor-
mal events may be associated with a global change in the slope of the phase:
however, as it has been observed in the experiment, this change is not to be
considered as a precursor since it can occur either before or after the abnor-
mal event itself. In Fig. 2.49(b) we can also notice that, even if sometimes in
a single roundtrip, the number of clockwise rotations exceeds the number of
counterclockwise rotations, leading to a negative slope for the phase, the num-
ber of positive chiral charges largely exceeds the number of negative ones: this
strongly asymmetric behavior, observed also experimentally [Gustave 2015], is
to be related to the propagative nature of our system.

In order to go more into details in the phase description of the system, it is in-
teresting to analyze the trajectories in the phase space projections (Re(E), Im(E))
and (D, I) to point out any phase rotation peculiarities.
In Fig. 2.50 on columns (a) and (b) we show the trajectories of the four horizontal
sections highlighted in Fig. 2.39, where the line color changes from dark green
to yellow for increasing time (from the left to the right side of each section). The
(unstable) locked stationary states A, B and C of Fig. 2.5 are highlighted in each
figure. In column (b) of Fig. 2.50 the red vertical dashed line highlights the
critical value D = Dc = −θ/α relevant for the phase dynamics in Eq. (2.24b),
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Fig. 2.45 – Experimental phase time trace in the proximity of an abnormally high event
in a time span of 100 ns (a) and in a zoom at the beginning of the slope change (b). The
initial phase is arbitrarily set to zero and the high-peak event occurs at t = 0.
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Fig. 2.46 – Experimental spatiotemporal diagram of the intensity (a) and its temporal
profiles for fixed roundtrips (b) respectively 43 τc before the high-peak event (I), when
the event reaches its maximum intensity (II), 12 and 37 τc after the event (III) and (IV).
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Fig. 2.47 – Phase portrait of the temporal profiles I and II, highlighted in Fig. 2.46. (a)
displays a bounded regime while (b) shows a 2π excursion of the phase around the
origin.
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Fig. 2.48 – Numerical phase time trace when approaching an abnormally high event,
occurring at the time indicated by the vertical red dashed line. In particular in this case
we notice an initially balanced situation between the number of positive and negative
chiral charges that breaks when the negative chiral charge disappears.
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Fig. 2.49 – (a) Spatiotemporal diagram and (b) total evolution of the phase during 2×104

roundtrips. The red crosses in (a) and the vertical red dashed lines in (b) correspond to
five different abnormally high events occurring during this time span.

while the red dashed circle in column (a) indicates the critical radius ρ = ρc of
Eq. (2.25). As we already commented through Fig. 2.43, numerical simulations
do not fully support the assumption of the carrier density dynamics enslaved to
that of the intensity, which would lead to the definition of ρc. Nevertheless it is
interesting to observe that, as long as the term (y/ρ) sin φ in Eq. (2.24b) can be
neglected, the system trajectory will perform clockwise rotations inside the red
dashed circle (where approximately both fixed points A and B lie) and counter-
clockwise rotations outside it, giving to the radius ρc the meaning of a boundary
between the acquisition of positive and negative charges.
Finally in order to display also the information on the phase rotations in column
(b) of Fig. 2.50, we plotted a red (blue) cross every time a full 2π (−2π) coun-
terclockwise (clockwise) phase rotation was reached. The red and blue circles
indicate the starting point for the corresponding full rotation. To get the full pic-
ture in Fig. 2.50(c) we also illustrated the system trajectory in the (D, I, φ) phase
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Fig. 2.50 – System trajectory in the (Re(E), Im(E)) plane (a), in the (D, I) plane (b) and
in the phase space (D, I, φ) at fixed roundtrip in the time region close to an abnormal
event highlighted in Fig. 2.39. A, B and C represent the injection locked stationary solu-
tions highlighted in Fig. 2.5. The red (blue) cross indicates a complete counterclockwise
(clockwise) phase rotation, which starts from the point highlighted by the red (blue)
circle. As for the dashed red line/circle and red plane see the text.

space, where the red plane crossing the phase space identifies the critical Dc.
The fixed points A, B and C have been drawn every 2π in φ since their phase
values are defined unless a 2π-modulus.

In Fig. 2.50 at first we can observe in (a.1)-(c.1) a mostly bounded regime,
where the trajectory of the system remains in a specific area, also highlighted in
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Fig. 2.44, of the complex plane (a.1) without performing any full phase rotations.
Then, 40 roundtrips before the event, in Fig. 2.50(a.2)-(c.2) as the trajectory of
the system starts to move towards higher values of the population D, we can
observe the occurrence of a first clockwise phase rotation (blue circle → blue
cross) and a second counterclockwise rotation (red circle→ red cross). Here we
can notice that:

• the clockwise rotation is triggered for very low (almost zero) values of
intensity in the proximity of the condition D = Dc;

• after performing a full−2π rotation (ending on the blue cross), the system
reaches a maximum value of D and is then repelled to high values of the
intensity I due to the repulsive nature of the fixed point C;

• due to a favorable φ the term in sin φ in Eq. (2.24b) becomes more and more
important in the determination of the sign and, at the point highlighted by
the red circle in (b.2), a counterclockwise phase rotation starts forming;

• such rotation is then strengthen when the trajectory approaches the red
vertical dashed line, below which the first term of the phase equation be-
comes positive as well, reaching 2π at the point highlighted by the red
cross.

The trajectory excursion toward high values of intensity, due to the interplay be-
tween these two opposite phase rotations, reaches its maximum in Fig. 2.50(a.3)-
(c.3) and, after that, it starts decreasing, as depicted in Fig. 2.50(a.4)-(c.4), where
the two phase rotations are still present (as well indicated in (c)) but the trajec-
tory is slowly moving towards lower values of population, eventually evolving
into a bounded state as in Fig. 2.50(a.1)-(c.1), where phase rotations will disap-
pear (usually not at the same time).

In Fig. 2.50(c) the positive and negative phase rotations are particularly high-
lighted and we can well distinguish the difference between the mostly bounded
state of the first frame with the rest of the dynamics depicted. Please note that
in Fig. 2.50(c) the relative phase variable φ has been arbitrarily set to zero at the
beginning of the trajectory in the first frame, in order to better identify the two
main phase jumps. Furthermore we would like to point out that the phase ro-
tation starting points (red and blue circles) are completely determined since the
algorithm used is set to maximize the number of phase rotations encountered.
In particular, analyzing the unfolded phase time trace (as in Fig. 2.49(b)), we
identify all the maxima and all the minima. Starting, for the counterclockwise
(clockwise) phase rotations, from the first minimum (maximum) of the phase
time trace, we search for the first point with a phase value exceeding of 2π the
phase value of the first minimum (maximum), which identifies the first positive
(negative) phase rotation. For the next phase rotation we start from the last point
of the previous rotation but if, along the phase time trace, we encounter a new
lower minimum (higher maximum) we then set the starting point for the phase
rotation on such spot.

The phase and amplitude dynamics preceding the emergence of these high-
peak events are reminiscent of the defect-mediated turbulence discussed theo-
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retically in the context of forced oscillatory media [Coullet 1989, Gibson 2016].

The mechanism illustrated in Fig. 2.50 appears common to all the high-peak
events in the tail of the distribution in Fig. 2.40(a) and could serve as a predictor
for abnormal events. However a full analysis of the simulation results for other
parameter choices remains to be performed in order to confirm this statement.
In Fig. 2.51 we consider a zoom of the spatiotemporal diagram for the intensity

(a) Spatiotemporal diagram of I (b) Spatiotemporal diagram of D

Fig. 2.51 – Spatiotemporal diagram of the intensity I of the electric field (a) and of the
carrier population D (b). The light blue (orange) line corresponds to clockwise (coun-
terclockwise) phase rotations, the abnormal event has been highlighted by the green
circle.

I of the electric field (a) and the population carrier density D (b) on an abnormal
event (highlighted by the green circle). A light blue (orange) line identifies the
clockwise (counterclockwise) phase rotations.
The mechanism already illustrated in Fig. 2.50 is here even clearer: at first a
negative chiral charge (in light blue) appears; then, around 100 roundtrips be-
fore the event, a positive chiral charge (highlighted in orange) is formed. The
simultaneous presence of a clockwise and a counterclockwise phase rotations is
needed to observe the abnormal event. Finally, both charges disappear, at dif-
ferent times. We would like to highlight, from Figs. 2.50(b) and 2.51(b), that
clockwise rotations always occur only for high values of population, when the
intensity of the electric field approaches zero, and it is indeed the interplay of
clockwise and counterclockwise phase rotations that gives rise to the observed
abnormal events and could serve as a predictor for such abnormal chiral events.
In fact, it may happen that clockwise rotations occur without any positive chiral
charge in their proximity: such a configuration does not give rise to high-peak
events.

This interplay between ±2π phase rotations results completely absent in
other parameter choices, for simulations that do not exhibit big excursions in
intensity, as the one of θ = −3.048 illustrated in Fig. 2.40.

As a last remark we would like to point out that the observed phase rotations
may be associated with a transient exploration of the PS regime, unstable for this
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choice of parameters since, in a stable PS regime, counterclockwise rotations
would correspond to stable PSs. However clockwise rotations cannot be asso-
ciated with unstable PSs due to the asymmetric nature of this propagative sys-
tem [Gustave 2015], since, as anticipated in Section 2.2.5, the non-instantaneous
medium dynamics heavily breaks the η → −η symmetry of the system.

2.8 Conclusions

In this Chapter we have studied the dynamics of a semiconductor laser with
injection, spatially extended along the propagation direction. The model used
to describe this kind of laser has been carefully derived and compared with the
different models also used for the description of this system. The three main
regimes analyzed highlighted different aspects of the possible interactions be-
tween structures in this system.
In particular we studied into details the attractive interaction between PSs, which
leads to the possibility of phase soliton complexes in the PS regime, observed
also experimentally. Interestingly the merging time of two separate structures
appears in this case to depend exponentially from their initial distance, a fact
that will be recalled also in the next Chapter.
We then studied high-peak events in this model for two different configurations.
In a first configuration, for high enough pump values in the PS regime, collisions
between phase solitons and some transient structures leads to the emergence of
extreme events in the system. In a second configuration abnormally high peaks
are developed in an unstable roll pattern regime, where PSs are not a stable so-
lution.
Both these configurations present an excellent agreement with the experimental
data, which has been corroborated, in particular for the last case by a detailed
statistical analysis: here we observed that the abnormally high events in the tail
of the distribution are clearly distinguishable from the mostly phase-bounded
background, both by their size and their nature.

In all three regimes the chirality of the system plays a fundamental role. The
observed phase and amplitude dynamics is strongly reminiscent of the regime
of defect mediated turbulence [Coullet 1989] or vortex turbulence that has been
recently associated with optical rogue waves in an oscillatory two-dimensional
transverse spatial system with coherent forcing [Gibson 2016].
In our case, while counterclockwise phase rotations are intrinsically associated
to phase solitons or to transient explorations of such regime, clockwise phase ro-
tations, always unstable due to the propagative nature of the system, seem to be
a necessary tool to observe the emergence of high-peak events, when combined
with positive chiral charges.





Chapter 3

Broad-area semiconductor laser
with injection

Preface

This Chapter is devoted to the study of a broad-area vertical-cavity
semiconductor laser (VCSEL) with optical injection. After a brief introduction
on the relevance of this system in the context of cavity solitons studies, we are
going to compare two different models for the description of the system. We
will then focus on the study of the interaction between two cavity solitons in
the transverse plane. In particular we will observe that cavity solitons merge
for any given initial distance with a merging time displaying an exponential
dependence on such distance: this allowed us to associate an exponentially
decaying interaction potential to cavity solitons and permits for a possible
analogy with hydrophobic materials. The results here presented have been
submitted to Physical Review E [Anbardan 2017].
Furthermore we report a preliminary analysis on the presence of extreme
events in this system and compare the results with [Gibson 2016].
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3.1 Introduction

Broad-area semiconductor lasers, as already explained in the Introduction of
this Thesis, represent a privileged framework for the study of cavity solitons,
given their fast response and compactness, which makes them good candidates
in the context of optical information processing [Firth 1996, Brambilla 1997, Ack-
emann 2009].
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Spatial cavity solitons were first predicted in the transverse plane of semicon-
ductor cavities with optical injection in [Brambilla 1997, Michaelis 1997, Spi-
nelli 1998]. VCSELs with optical injection below threshold were the first ex-
perimental setup where cavity solitons in semiconductor microcavities were ob-
served [Barland 2002]. In this kind of setup CSs can be independently manipu-
lated, that is written and erased, through the use of an external optical pertur-
bation.

Interaction between CSs is a relevant subject in the context of optical infor-
mation encoding: in fact the interaction range of these structures defines the
maximum information density of an optical memory array (as for example the
one in [Pedaci 2006]).

In the case of temporal cavity solitons, a critical distance, above which CSs
stop interacting, has been found in [Leo 2010], corresponding to 40 ps, leading
to a maximum information storage density of 125 bit/m.
Regarding spatial localized structures, in the early studies of [Rosanov 1990,
Brambilla 1996], about nonlinear media as bistable interferometers or collections
of two-level atoms, two critical distances have been observed: a first one, d1, be-
low which CSs would merge or annihilate, and a second one, d2, above which
CSs would not interact. For an initial distance d in between d1 and d2 the two
CSs have been found to repel until the distance d2 was reached. More specifi-
cally in the case of a VCSEL with optical injection pumped below transparency,
the presence of the same critical distances was observed in [Tissoni 1999]. Fur-
thermore some equilibrium distances d∗ were found, such that the interaction
between the two CSs would become either attractive or repulsive in order to
reach a distance d = d∗ between the two structures.

3.2 Model

Let us consider a broad-area VCSEL with optical injection. This kind of system
is well described by the effective Maxwell Bloch equations [Hachair 2006]

Ė = σ
[
EI − (1 + iθ) E + P + i∇2

⊥E
]

, (3.1a)
Ṗ = ξ(D) [(1− iα) f (D)E− P] , (3.1b)
Ḋ = µ− D− (E∗P + EP∗) /2 + d̃∇2

⊥D , (3.1c)

where E and P are, respectively, the slowly varying electric field and effective
material polarization and D is the carrier density. EI is the injected field am-
plitude, θ represents the detuning between cavity and optical injection, α is the
linewidth enhancement factor, µ represents the injection current and σ is the
ratio of carriers lifetime τc to photon lifetime τph. Differently from the model in-
troduced in the previous Chapter a diffusive term is introduced in the equation
for the carrier density with d̃. Diffraction is instead described through the com-
plex term in the transverse Laplacian∇2

⊥ in the equation for E. Time is scaled to
τc (≈ 1 ns), while the spatial scale corresponds to the square root of the diffrac-
tion parameter (here equal to 1).
The gain nonlinearity, typical for quantum wells [Eslami 2014], is taken into
account by the real function f (D). In particular, assuming a quadratic nonlin-
earity, we have f (D) = (1− βD)D with the value of β = 0.125 resulting from
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Fig. 3.1 – Stationary curve as in Eq. (3.5) (blue solid line) and in Eq. (3.4) (red solid line)
for the parameters α = 4, β = 0.125, θ = −2, µ = 1.2µthr. The highlighted fixed value
of injection corresponds to EI = 1, used in the simulations of the model in Eqs. (3.2).

the best fit of the gain in the microscopic model [Eslami 2014]. The free running
laser threshold corresponds then to µthr = (1−

√
1− 4β)/(2β) and specifically

for β = 0.125 the threshold current results µthr = 1.17.
The complex function ξ(D) in the equation for the polarization P accounts for
the dependence of the gain linewidth and the maximum gain frequency on the
carrier density [Hachair 2006] similarly to the case of Chapter 2.
When θ + α is different from zero, for EI smaller than the injection locking point,
there are no stable solutions, the laser output is nonstationary and many trans-
verse modes can be excited. In these conditions the polarization P acts as a spec-
tral filter, since it includes the effects of the finite gain linewidth, thus avoiding
nonphysical short wavelength instabilities.
Since in the present case we are focused on the interaction of CSs occurring be-
yond the injection locking point, it is possible to reduce Eqs. (3.1) through the
adiabatic elimination of P [Prati 2010b] without the additional introduction of a
diffusive term and still obtain a model well describing the system under study,
given by the following set of equations

Ė = σ
[
EI − (1 + iθ) E + (1− iα) f (D)E + i∇2

⊥E
]

, (3.2a)

Ḋ = µ− D− f (D)|E|2 + d̃∇2
⊥D . (3.2b)

When describing the system solutions in other parameter configurations, such
as below the injection locking point (for example in the study of extreme events),
it will instead be necessary to consider a reduced model of the following kind

Ė = σ
[
EI − (1 + iθ) E + (1− iα) DE + (d + i)∇2

⊥E
]

(3.3a)

Ḋ = µ− D
(
1 + |E|2

)
(3.3b)

where d is the usual diffusive term, as the one introduced in Chapter 1.

3.3 HSS and linear stability analysis

The linear stability analysis of the complete model in Eqs. (3.1) for β = 0 is
reported in [Prati 2010b].
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The reduced model in Eq. (3.3) admits the following homogeneous stationary
solution (HSS)

Es = |Es|eiφs , Ds =
µ

1 + |Es|2

with

E2
I = |Es|2

[
(1− Ds)

2 + (θ + αDs)
2
]

(3.4)

φs = arctan
(

θ + αDs

Ds − 1

)
,

similarly to what was found for the semiconductor ring laser with optical injec-
tion in Chapter 2.
The model in Eqs. (3.2) admits instead the following HSS

Es = |Es|eiφs , Ds =

(
1 + |Es|2

)
−
√
(1 + |Es|2)2 − 4βµ|Es|2

2β|Es|2

with

E2
I = |Es|2

{
[1− f (Ds)]

2 + [θ + α f (Ds)]
2
}

(3.5)

φs = arctan
(

θ + α f (Ds)

f (Ds)− 1

)
.

In particular we can observe that for a Taylor expansion at the first order in β
the stationary homogeneous solution for the carrier density is approximated by

Ds ≈
µ

1 + |Es|2

(
1 +

βµ|Es|2

(1 + |Es|2)2

)
.

In Fig. 3.1 we illustrated the homogeneous stationary curve as in Eq. (3.5) (blue
solid line) and in Eq. (3.4) (red solid line) for the parameters α = 4, β = 0.125,
θ = −2 and µ = 1.2µthr (where µthr = 1 for the model in Eqs. (3.3)). The vertical
black dashed line indicates a chosen injection amplitude EI = 1 for the CS inter-
action study. Although some differences in the shape of the two curves can be
observed we can notice that the lower branches of the two solutions are almost
identical.

We now study the stability of the HSS of the two reduced models for small
spatiotemporal perturbations from the stationary values of Es, E∗s and D, mod-
ulated in the transverse plane by a wavevector k = (kx, ky) and exponentially
growing (decaying) in time so that: E

E∗

D

 =

Es
E∗s
Ds

+ eλt+i(kxx+kyy)

 δE
δE∗

δD

 . (3.6)

Inserting Eq. (3.6) into Eqs. (3.2) we obtain, in matrix form, the following lin-
earized equations for the perturbations

λ

 δE
δE∗

δD

 = J(3.2)

 δE
δE∗

δD
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Fig. 3.2 – Stationary instability domain of the model in Eqs. (3.2) for fixed parameters
α = 4, β = 0.125, θ = −2, d̃ = 0.052, µ = 1.2µthr = 1.404.

(a) σ = 1. (b) σ = 4.

(c) σ = 40. (d) σ = 400.

Fig. 3.3 – Hopf instability domains for fixed parameters α = 4, β = 0.125, θ = −2,
d̃ = 0.052, µ = 1.2µthr = 1.404 and σ = 1(a), 4(b), 40(c), 400(d).
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where J(3.2) is the Jacobian matrix−σ
[
1− α̃ f (Ds) + i

(
k2 + θ

)]
0 σα̃(1− 2βDs)Es

0 −σ
[
1− α̃∗ f (Ds)− i

(
k2 + θ

)]
σα̃∗(1− 2βDs)E∗s

− f (Ds)E∗s − f (Ds)Es −(1− 2βDs)|Es|2 − (1 + d̃k2)

 ,

with α̃ = 1− iα (and α̃∗ = 1 + iα).
Similarly, for the model in Eqs. (3.3), the following linearized equations for the
perturbations are obtained

λ

 δE
δE∗

δD

 = J(3.3)

 δE
δE∗

δD


where J(3.3) is the Jacobian matrix−σ

[
1− α̃Ds + i

(
k2 + θ

)
+ dk2] 0 σα̃Es

0 −σ
[
1− α̃∗Ds − i

(
k2 + θ

)
+ dk2] σα̃∗E∗s

−DsE∗s −DsEs −1− |Es|2

 .

The fixed parameters in the CS study are α = 4, θ = −2, d̃ = 0.052, EI = 1,
µ = 1.2µthr = 1.404 and β = 0.125. The diffusion coefficient d in Eqs. (3.3) is set
to d = 0.01, similarly to the model described in Chapter 1.
In Fig. 3.2 and 3.3 we indicated, respectively, the stationary and Hopf insta-
bility domains for σ =1(a), 4(b), 40(c) and 400(d) for the model in Eqs. (3.2).
From Fig. 3.2 we can observe that the stationary instability domain identifies
the negative slope and part of the upper branch of the homogeneous stationary
curve as stationary unstable. The Hopf instability domain in Fig. 3.3 displays a
peculiar behavior for low values of intensity, due to the absence of a diffusion
coefficient in the equation for the electric field: as we have already observed
in Chapter 2 (especially in Fig. 2.4) when the adiabatic elimination of the po-
larization variable is not compensated by a diffusive term in the second spatial
derivative of the electric field, no limitation on the number of sidemodes is in-
troduced, leading to nonphysical short wavelength instabilities. Nevertheless,
when avoiding the parameter regions where the homogeneous stationary curve
presents low values of intensity I . 0.23, the model in Eqs. (3.2) does not show
any self-collapsing problem. From Figs. 3.2, 3.3 we can observe that, for the
chosen value of injection amplitude EI = 1 (which corresponds to a value of in-
tensity I = 0.2825 on the homogeneous stationary curve for Eq. (3.5)), the lower
branch of the homogeneous stationary curve of the model in Eqs. (3.2) results
stable, while the negative slope and the upper branch are stationary unstable.

With the chosen parameters, the model in Eqs. (3.2) presents stable cavity
solitons on a stationary homogeneous background for EI = 1. In particular the
radius (HWHM) of a CS in these conditions is around one space unit.

In Fig. 3.4 we depicted the stationary curve (a) and the stationary (b) and
Hopf (c) instability domains for the model in Eqs. (3.3) and the parameters α =
4, θ = −2, µ = 6, d = 0.01 and σ = 400. These results will be useful for the
investigation of extreme events in the system, to which we dedicated the second
part of the present Chapter. In particular we can notice that for this choice of
parameters the model in Eqs. (3.3) results stationary unstable in the negative
slope branch and part of the upper branch of the stationary curve and Hopf
unstable in the lower branch.
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(a) Stationary curve.

(b) Stationary instability domain. (c) Hopf instability domain.

Fig. 3.4 – Stationary and Hopf instability domains for fixed parameters α = 4, θ = −2,
µ = 6, d = 0.01 and σ = 400. The value of injection amplitude highlighted by the
vertical black dashed line in (a) corresponds to EI = 0.5.

3.4 CS interaction

Interactions between CSs in a VCSEL with optical injection below transparency
and above transparency (but below threshold) have been studied extensively
in [Tissoni 1999, Barland 2002]. In the present Section we will show that the
interaction of CSs in a VCSEL with optical injection above threshold presents
some fundamental differences with the previous case and displays some inter-
esting analogies with hydrodynamics.

The simulations were performed on the model in Eqs. (3.2) as follows: two
CSs were switched on at the same time in the transverse plane of the electric
field intensity at an initial distance d0 through the use of two Gaussian input
beams, of width (FWHM) equal to one spatial unit, amplitude 1, for the ini-
tial 3 time units. After this initial time the two Gaussian inputs are turned off
and two stable CSs persist in the transverse plane of the electric field intensity.
At this point the attractive interaction between the two CSs starts to come into
play as illustrated for example in Fig. 3.5 for the parameters α = 4, θ = −2,
d̃ = 0.052, EI = 1, µ = 1.2µthr = 1.404, β = 0.125 and σ = 400. As usual the
dynamical equations are integrated through a Fourier split-step method with
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(a) t = 0 ns. (b) t = 0 ns.

(c) t = 1154 ns. (d) t = 1154 ns.

(e) t = 1158 ns. (f) t = 1158 ns.

(g) t = 1160 ns. (h) t = 1160 ns.

Fig. 3.5 – CS interaction process for the parameters α = 4, θ = −2, d̃ = 0.052, EI = 1,
µ = 1.2µthr = 1.404, β = 0.125 and σ = 400. The initial distance between the two CSs is
d0 = 20 spatial units. On the left side we illustrated the CSs in the transverse plane of
the electric field intensity, on the right side we depicted the intensity profile along the
y-axis at x = 0.
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Fig. 3.6 – Time evolution of cavity soliton distances r = d/2 for different initial values
and σ = 400. We can observe that the merging time separation between two consecutive
initial distances results almost constant in logarithmic scale.

periodic boundary conditions. Although the spatial grid dimension of 64× 64
pixels results slightly small to well describe the spatial structure of CSs, the dis-
tance between two CSs is very well evaluated through the use of a simple data
interpolation of the spatial profiles as in Fig. 3.5(b,d,f,h). More details about the
integration method of the model in Eqs. (3.2) are given in Appendix G.
Even for an initial distance of ≈ 20 spatial units, which is much larger than the
CS diameter, the two CSs still experience an attractive force, leading to the merg-
ing into a single structure. It is important to observe from Fig. 3.5 that for the
first 103 ns the two CSs approach each other very slowly, while the final merging
occurs in about 6 ns (for these value of σ and d0).

In Fig. 3.6 we displayed the time evolution of the cavity soliton distances for
different values of r0 = d0/2: also in this case we can observe that the interac-
tion results very weak in the beginning, in particular for large distances while, in
comparison, the final steps show a very strong attraction, leading to a fast merg-
ing. From Fig. 3.6 we can also observe that the merging time separation between
two consecutive initial distances results almost constant in a logarithmic scale,
which suggests that the merging time might depend exponentially on the initial
distance. In Fig. 3.7 we plotted the CSs merging times as a function of the ini-
tial distance, in a logarithmic scale: although the data relative to small distances
slightly deviates from the exponential fit for higher distances, the assumption
of an exponential dependence of the merging time on the initial distance results
here essentially confirmed.
This result is similar to what we have already observed in the case of phase soli-
ton (PS) complexes in Fig. 2.22 in Chapter 2, for the merging of two single-charge
PSs, where the dependence of the merging times on the initial distance was also
exponential [Gustave 2017]. The main difference between the two cases consists
in the fact that, for phase soliton complexes, the merging leads to a different
structure where both chiral charges survive in a bounded state, while, in the
present case, the CS after the merging is identical to the two previously-existing
CSs.
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Fig. 3.7 – Merging time of two CSs, in logarithmic scale, as a function of their initial
distance d0/2 for σ = 400. The black solid line represents a fit y = a + bx, with a =
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3.4.1 Interaction potential and merging time

The particle-like interaction of dissipative solitons is often described through the
use of effective potentials, especially to the aim of finding the equilibrium dis-
tance in bound states [Malomed 1993, Malomed 1994, Vladimirov 2002]. Here
we aim to extend this idea to the free fall motion of one soliton toward the
other. In general the merging time of two masses under gravitational poten-
tial U(r) ∝ 1/r scales as r3/2

0 [Foong 2008]. In the present case, given a merging
time that increases exponentially in time with the initial distance, we make the
assumption that the two CSs are subject to an interaction potential V(r) expo-
nentially decreasing with the distance between the two objects.

V(r) = −K2e−r/R .

where K and R represent respectively the strength and the range of the poten-
tial. We assume that the motion of the two CSs, considered as particles under
a potential, is conservative. Hence, given an initial distance r0 between the two
bodies, initially at rest, the total system energy is

E = V(r0) = −K2e−r0/R .

We obtain then for energy conservation, for a particle mass equal to 2, that at a
given distance 0 ≤ x ≤ r0

mv2(x)
2

− K2e−r/R = −K2e−r0/R

v2(x)− K2e−r/R = −K2e−r0/R

hence

v(x) = −K
√

e−x/R − e−r0/R ,

where we can observe that the potential strength K represents the impact veloc-
ity in the limit r0 � R.
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Fig. 3.8 – Temporal evolution of the distance between two CSs for σ = 400 and and
initial distance r0 = 10 (same simulation as in Fig. 3.5). The black solid line indicates
the simulation results, while the black dashed line depicts the analytic curve given by
Eq. (3.7) with the parameters R = 0.474 and K = 48.77.

Finally the time needed to reach a distance d corresponds to

t(r) =
1
K

∫ r0

r

dx
v(x)

=
2R
K

er0/(2R) arctan
√

e(r0−r)/R − 1 . (3.7)

and the merging time tm = t(0) is

tm =
2R
K

er0/(2R) arctan
√

er0/R − 1 .

For an initial distance r0 even just a few times larger than the interaction range
R, the arctan term can be replaced by π/2 thus leading to the following approx-
imated exponential law for the merging time

tm,ap = π
R
K

er0/(2R) . (3.8)

In Fig. 3.7 we plotted, in black solid line, a fit of the numerical data obtained
discarding the distances r0 < 10, since Eq. (3.8) results valid only in the limit of
large initial distances.
The slope of this linear fit (in a logarithmic scale) allows us to obtain a high
precision estimation for the potential range R as R = 0.474: this value corre-
sponds approximately to one half the CS radius, hence we can conclude that
the merging dynamics of the two CSs can be described as two particles under a
short-range potential.
A complete time evolution of the distance d could be obtained by graphically in-
verting Eq. (3.7) if both R and K were known. Unfortunately the uncertainty on
the intercept of the linear fit results much larger than that of the slope, thus pre-
cluding a precise estimation of the interaction strength. The analytic curve for
the initial distance r0 = 10 in Fig. 3.8 is plotted for a value K = 48.77, which cor-
responds to the intercept a = −3.382, a value compatible with the uncertainty
of the fit, chosen so that the merging time results the same for the numerical and
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Fig. 3.9 – Merging time of two CSs (in logarithmic scale) as a function of their initial
distance for different values of the relative decay rate σ.

analytic curves. The analytic curve seems to well describe the exact time depen-
dence of the distance, since the larger deviations observed (in the central stage
of the motion) remain smaller than 3%. For instance, at t = 700 t.u., the distance
in the numerical simulation is r = 9.493 and the theoretical one is r = 9.235.

In the simulations results illustrated in the previous figures the relative de-
cay rate σ = τc/τph was kept fixed as σ = 400: this corresponds to assuming
photons to be 400 times faster than the carriers, which is a typical value for
semiconductor microresonators.
We studied the influence of the relative decay rate σ on the interaction strength,
running simulations with σ = 40, 4 and 1. A smaller value of σ corresponds to a
longer (external) resonator. The linear stability analysis results for these values
of σ are illustrated in Figs. 3.2 and 3.3, where we can observe that, for the fixed
value of injection EI = 1, the fixed point on the lower branch of the homoge-
neous stationary curve is stable.
In Fig 3.9 we illustrated the CSs merging time (in logarithmic scale) as a function
of their initial distance for σ = 400, 4 and 1. The results for σ = 40 differ very
little from those for σ = 400 and were, for the sake of clarity, excluded from
this plot. We can observe that the three linear fits (in black solid line) displayed
in Fig. 3.9 present the same slope: the only difference consists in an upward
shift of the lines for decreasing values of σ, implying that the CSs merging time
increases with the photon lifetime. In conclusion the range R of the interaction
potential, related to the slope of the data, seems independent from the choice of
σ while the interaction strength K decreases with σ. Nevertheless, given the high
uncertainty on the values of K it is not possible to assume a particular functional
dependence between K and σ.

In Fig. 3.10 we plotted the CSs merging time dependence on σ−1 for different
values of initial distances, which clearly results linear. In general we observed
that

tm(r0) = f (r0)
(

1 +
η

σ

)
. (3.9)

where f (r0) represents the limit value of the merging time when the photon life-
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Fig. 3.10 – Merging time of two CSs as a function of the inverse of the relative decay
rate σ for different values of the initial distance r0.

time approaches zero and can be estimated as f (r0) = 0.0321e1.053r0 . Comparing
with Eq. (3.9) we obtain R ≈ 0.474, as expected, and K ≈ 51.5, which is the
maximal interaction strength and also the maximal possible impact velocity. As-
suming that one space unit corresponds to 4 µm and one time unit corresponds
to 1 ns, the maximal impact velocity amounts to 200 µm/ns = 200 km/s, which
is at least one order of magnitude larger than the average velocities measured
for a CS set in motion by a phase gradient [Pedaci 2008].
The parameter η in Eq. (3.9) does not seem to depend on r0, in particular, from
the four fits in Fig. 3.10, we obtain η = 1.7± 0.008. The time variable t is here
scaled as t = τ/τc where τ is the physical time and τc the carrier relaxation rate.
Considering that σ = τph/τc, we can rewrite Eq. (3.9) as follows

τm(r0) = f (r0)
(
τc + 1.7τph

)
. (3.10)

In conclusion in an optically injected VCSEL above threshold, cavity solitons
experience an attractive force even at distances much larger than their diameter,
in contrast with what reported for passive semiconductor cavities [Tissoni 1999].
The merging time with good approximation depends exponentially on the initial
distance and the CSs merging dynamics can be interpreted as the conservative
motion of two particles under an exponentially-decaying potential.

3.4.2 Possible analogy with hydrophobic materials

High-dimensional optical dynamics, arising from the competition of a large num-
ber of spatial and/or temporal degrees of freedom, often present several analo-
gies with hydrodynamics [Brambilla 1991, Staliunas 1993]: among these we can
list optical vortices [Coullet 1989], turbulence [Arecchi 1991], photon flux along
channels [Vaupel 1996], and, as extensively explained in the Introduction of this
Thesis, rogue waves [Solli 2007, Onorato 2013, Dudley 2014].
In the case of localized structures there are some striking similarities between the
trajectories of confined self-propelled cavity solitons in a laser with saturable
absorber [Prati 2011] and those of the so-called “walkers”, which are droplets
bouncing over a vessel containing the same liquid, vertically vibrating close to
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the Faraday instability threshold [Protière 2006].

An exponentially decaying interaction potential is usually associated to the
hydrophobic force [Israelachvili 1982], which is the strong attraction (stronger
than the van der Waals force) experienced by nonpolar molecules and surfaces
in water [Donaldson 2015]. We can then suggest that two CSs in an optically
driven laser above threshold interact in a way analog to hydrophobic materials.
These results are once again in contrast with the overdamped dynamics of CSs
in driven optical cavities pumped below transparency, where it was shown that
the interaction of two nearby solitons causes a non-Newtonian motion where the
velocity, rather than the acceleration, is proportional to the perturbation gener-
ated by one soliton onto the other [Vladimirov 2002].

3.5 Extreme event investigation

In this Section we will illustrate some preliminary results regarding the inves-
tigation of extreme events in the transverse plane of a broad-area VCSEL with
optical injection.

The chaotic regime where we searched for extreme events corresponds to
low values of optical injection. From the homogeneous stationary curve (blue
solid line), depicted in Fig. 3.1, and the linear stability analysis results, illus-
trated in Figs. 3.2 and 3.3, it seems clear that the model in Eqs. (3.2) is unfit
to this study, given the absence of a diffusive term in the equation for the elec-
tric field, which induces nonphysical short wavelength instabilities for intensity
values I . 0.23. Simulations of the model in Eqs. (3.1) require a much larger
computational time, due to the equations stiffness, furthermore the large sam-
pling required for the investigation of extreme events tends to slow even fur-
ther the time required for each simulation, making the complete model unfit
to this study as well. In order to investigate extreme events in this system we
will then adopt the model described in Eqs. (3.3), where the diffusive term in
the electric field equation sets a limit to the number of Hopf unstable modes.
The chaotic nature of the regime observed has not yet been rigorously charac-
terized in 2D+time, but we would like to highlight that in [Zamora-Munt 2013]
for the purely temporal description of the same kind of laser, a chaotic regime
was observed and characterized through Lyapunov exponent analysis. Further-
more the observed regime results visually similar (see for instance Fig. 3.11)
to the extended spatiotemporal chaos observed in Chapter 1 and characterized
in [Selmi 2016] in the 1D+time case through Lyapunov exponent analysis and
the study of the Kaplan-Yorke dimension.

As illustrated in the Introduction of this Thesis, extreme events in a class-
A laser with optical injection have been already observed numerically in [Gib-
son 2016], with the model of a forced Ginzburg-Landau equation. In the present
case we are considering a class-B laser, where the carrier density dynamics is
not fast enough for D to be adiabatically eliminated. Furthermore the laser con-
sidered is a VCSEL where the semiconductor nature of the system implies the
addition of a linewidth enhancement factor in the equation for the electric field.
The initial idea of the study consisted in searching the validity limits of the re-
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Fig. 3.11 – Example of the chaotic regime observed in the transverse plane of the electric
field intensity for low values of optical injection in the simulations of Eqs. (3.3). Here in
particular we considered the parameters σ = 400, θ = −2, µ = 1.404, α = 4, d = 0.01
and a value of injection EI = 0.5 below the locking point.

sults observed in [Gibson 2016] for vortex turbulence. Unfortunately inserting a
linewidth enhancement factor α, with a reasonable value, appears to change the
complexity of the turbulence observed.

We then studied the system dynamics in the chaotic regime occurring for
low values of injection and usual values of linewidth enhancement factor, set-
ting aside, for the time being, the search for the validity limits of the results
of [Gibson 2016]. Similarly to what was done in Chapter 1 we focused on the
statistics of the spatiotemporal maxima of the transverse field intensity, detected
through the new method already illustrated in Section 1.5. The simulations here
displayed were performed on a spatial grid of 256× 256 pixels (corresponding
roughly to 256 × 256 µm2). As in the case of Chapter 1, the sampling of the
transverse plane occurs every 1 ps and the integration time unit corresponds to
100 fs. The statistical analysis has been performed on a window of 25 ns after
the system had been initialized for a time of 10 ns.

In Fig. 3.12 we have illustrated the probability density functions (PDFs) of
the total intensity (a) and the spatiotemporal maxima (b) for the parameters
σ = 400, α = 4, d = 0.01, µ = 6 and EI = 0.5. In particular, with respect to
the parameters considered for the study of CS interaction we have increased the
value of the pump µ and reduced the injection amplitude y so that the system
results below the injection locking point, where it is Hopf unstable as already
illustrated in Figs. 3.4.
Even if the set of parameters is not optimized to obtain the maximum number
of extreme events, the data shows a considerable deviation in (a) from the nega-
tive exponential tail, expected in case of Gaussian statistics, and a fair amount of
events above the third extreme event threshold in (b). From these preliminary
results we can conclude that extreme events are present in the system for this
specific choice of parameters.

In Fig. 3.13 we illustrated an example of the kind of extreme events observed
in this system. We can observe that a series of ripples of the electric field inten-
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(a) Total intensity PDF. (b) Spatiotemporal maxima PDF.

Fig. 3.12 – PDFs of total intensity (a) and spatiotemporal maxima (b) for a simulation
with the parameters σ = 400, α = 4, d = 0.01, µ = 6 and EI = 0.5. The light blue
solid line in (a) is a negative exponential PDF computed on the average of the data as
exp(−I/〈I〉)/〈I〉. The three vertical dashed lines are three extreme event thresholds
and the green and magenta solid lines in (b) are, respectively, a Gumbel and a Weibull
PDF computed through the average and the standard deviation of the data (the defini-
tion of these PDFs and of the three extreme event thresholds are given in Section 1.6 in
Chapter 1).

sity is developed, starting from the extreme event spot: this appears even clearer
in Figs. 3.14 where we plotted a color map of (a) the same electric field intensity,
(b) the corresponding phase of the electric field and (c) the carrier density D at
the instant where the extreme event (highlighted by the dark red cross) occurs.
In general, for this specific set of parameters, extreme events appear to occur in
spots where the carrier density presents a higher value with respect to the back-
ground, similarly to what we have observed in Chapter 2. Given the high value
of the relative decay rate σ, the evolution of the carrier density results very slow
when compared to that of the electric field: this allows for an easier localiza-
tion of the extreme event and its evolution in time, unlike the case of Chapter 1
where the structures observed in the intensity would move around in the trans-
verse plane, making tracking them a difficult task.

In Fig. 3.15 we illustrated the trajectory (in time) of the system in the (D, φ, I)
phase space in the spot where this specific extreme event is observed: as in the
case of Chapter 2, the trajectory of the system towards a high-peak event is pre-
ceded by an evolution down to very low values of intensity and high values of
carrier density, in the direction of the fixed point C (an unstable focus) on the
lower branch of the homogeneous stationary curve. Thanks to the repulsive na-
ture of the point C, the system is then expelled towards high values of intensity
and finally ends up in a more bounded state for low values of carrier density.
Even if some similarities can be drawn with the case of high-peak events ob-
served in Chapter 2 in the unstable roll regime, one main difference consists in
the role of the phase: in fact, as illustrated in Fig. 3.15, in the temporal evolu-
tion of the spot where the extreme event occurs, the phase continues to decrease
and does not exhibit any counterclockwise rotation. Instead, as illustrated in the
zoom in Fig. 3.16, around the extreme event plenty of vortices occur: these ob-
jects are clearly identified in (b) by the crossing of the zero value isoline for the
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Fig. 3.13 – Example of an extreme event observed in the transverse plane of the electric
field intensity for the parameters σ = 400, α = 4, d = 0.01, µ = 6 and EI = 0.5. The
dark red cross highlights the extreme event.

(a) Electric field intensity. (b) Phase of the electric field.

(c) Carrier density D.

Fig. 3.14 – Color maps of (a) the electric field intensity, (b) the phase of the electric field
and (c) the carrier density in presence of the extreme event illustrated in Fig. 3.13. The
dark red cross corresponds to the spot where the extreme event occurs.
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Fig. 3.15 – Trajectory (in time) of the system in the (D, φ, I) phase space in the spot
highlighted in Fig. 3.14 by a dark red cross, where an extreme event occurs. Time
evolves along the trajectory from green to yellow. The blue line highlights the fixed
point C (unstable focus), whose phase has a 2π modulus.

(a) Phase of the electric field. (b) Isolines for Re(E) = 0, Im(E) = 0.

Fig. 3.16 – (a) Zoom of the phase of the electric field around the extreme event in Figs.
3.13, 3.14. (b) zero value isolines for the real (blue solid line) and imaginary (red dot-
ted line) part of the electric field zoomed in the same area as (a): the point of crossing
between the two different isolines correspond to optical vortices. The dark red cross
corresponds to the spot where the extreme event occurs.

real and the imaginary part of the electric field.

The results here shown consist just in a preliminary analysis of the system
dynamics. A full study of the extreme event dependence on the parameters con-
sidered (especially the injection y and the pumping current µ) as well as a deeper
investigation of the extreme events generating mechanism and its similarities
with the vortex turbulence observed in [Gibson 2016], remain to be performed
and will be addressed in a future work.
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3.6 Conclusions

In this Chapter we have studied the model of a broad-area VCSEL with optical
injection, described as a class-B laser.
The main focus of the Chapter consisted in the study of the interaction between
two cavity solitons in the transverse plane of the electric field intensity for values
of pumping current above the free running laser threshold. We observed that
CSs can be described as two particles subject to an interaction potential expo-
nential decreasing with the distance between the two objects. This assumption
lead us to an analytic expression for the cavity soliton merging time, which has,
in good approximation, an exponential dependence on the initial cavity soliton
distance. The numerical results confirmed this analytic description and gave
us some specific values for the interaction range and strength of the potential:
the attractive force is experienced by cavity solitons at distances much larger
than the structures diameters. The exponential dependence of the cavity soliton
merging time on the initial distance presents some clear differences with the sim-
ilar study of cavity soliton interaction for the same system, not pumped and be-
low transparency [Tissoni 1999], where some equilibrium distances and a partic-
ular maximal distance of interaction were observed. Furthermore this potential
allows for a possible analogy with the attraction experienced by hydrophobic
materials, that is nonpolar molecules and surfaces in water [Israelachvili 1982].

A preliminary analysis of the chaotic regime present in the system for low
values of injection (below the injection locking point) lead to the observation of
extreme events for a specific choice of parameters, in particular for high values
of pumping current. Extreme events seem in this case to occur close to large val-
ues of carrier density, in spots where the phase of the electric field continuously
decrease and generates some sort of ripples in the electric field intensity through
the transverse plane.
The dependence of extreme events on the optical injection amplitude and the
values of pumping current considered will be addressed in a future work, as
well as the investigation of the physical mechanism behind the formation of
these objects and its connection with the vortex turbulence identified in [Gib-
son 2016] and the dynamics observed in [Rimoldi 2017a].





Conclusions

In this Thesis we presented the study of extreme and abnormal events in three
different active optical systems. Localized structures represent an important
possible solution in all these models, hence their interaction and the role played
in the formation of extreme events have been also investigated into details.
The main focus in all the work here presented consisted in searching for the
physical and dynamical causes behind the formation of extreme events. Dif-
ferently from most of the work developed in fibers and other optical systems,
all the three types of laser considered in this Thesis present spatial degrees of
freedom, either in the transverse plane (Chapters 1 and 3), perpendicular to the
direction of propagation of light, or in the propagation direction (Chapter 2).

In Chapter 1 we studied the model of a monolithic broad-area semiconduc-
tor laser with an intracavity saturable absorber. A detailed analysis of all the
possible solutions of the system was performed, with a particular attention to
cavity solitons and extended spatiotemporal chaos. Extreme events were inves-
tigated in the latter and analyzed in their statistics and parameter dependence,
showing a larger amount of extreme events in the case of fast absorbers and
low pump values. This study required the development, for the first time, of an
algorithm for the detection of the spatiotemporal maxima of the electric field in-
tensity in three dimensions (2D+time). The comparison with other works in the
community [Selmi 2016, Coulibaly 2017], developed in 1D+time, showed that
the inclusion of 2D spatial effects may affect the way extreme events manifest
themselves in the system. The striking similar shape, in space and time, between
these events and cavity solitons, both stationary and self-pulsing suggests an
enhancement of extreme events when the system results close to the dissipative
soliton attractor [Rimoldi 2017b]. Furthermore, these similarities suggest that
the same generating mechanism could lie at the formation of both structures:
that is modulational instability of the homogeneous solution, in the spatial case,
and Hopf instability of the homogeneous and cavity soliton solutions, leading
to Q-switching, in the temporal case. The investigation of predictability in the
system as well as the study of its conservative limit are among the future devel-
opment of this work.

Chapter 2 is dedicated to the study of a semiconductor laser with optical
injection, spatially extended along the propagation direction. After a careful
derivation of the model and its comparison with other models, also used to de-
scribe this system, we analyzed into details three different regimes, each high-
lighting a different aspect of possible structure interactions. The main kind of
localized structures observed in this system are phase solitons [Gustave 2015],
that is objects propagating inside the cavity maintaining their shape in time and
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carrying a 2π chiral charge.
The first study focused on the attractive interaction between phase solitons,
leading to phase solitons complexes [Gustave 2017], carrying multiple chiral
charges. One interesting result consisted in the observation of an exponential
dependence of the merging time between two separate structures from their ini-
tial distance [Gustave 2017].
The second and the third studies focused more on the search for extreme events.
In particular in a first configuration, for high enough pump values, extreme
events have been observed due to the collision of phase solitons with another
kind of transient structure carrying a negative chiral charge [Walczak 2017]. In a
second configuration instead, high-peak events have been observed in an unsta-
ble roll pattern regime where phase solitons are not a stable solution. In this case
the interplay of positive and negative chiral charges can be suggested as a pre-
dictor for the formation of high-peak events in the system [Rimoldi 2017b]. The
three different regimes studied numerically, both in the context of phase soliton
merging and extreme events, present excellent agreement with the experimental
results corroborated, in the last case, by a detailed statistical analysis. There are
some clear similarities in the dynamical description of abnormal event appear-
ance in the regime of unstable rolls and in the case of a system without space
of [Bonatto 2011, Zamora-Munt 2013]. In particular, in both cases, these events
seem associated to an evolution of the trajectory toward an unstable focus, pre-
senting a high value of carrier density. As the system approaches the fixed point,
the electric field intensity becomes almost zero, thus increasing the value of car-
rier density, then due to the fixed point repulsive nature the system trajectory is
expelled toward lower values of carrier density, performing a large excursion in
intensity. Differently from [Zamora-Munt 2013] the system appears to feel the
repulsive effects of the unstable focus at a larger distance. The collisional regime
highlights instead another mechanism for extreme event formation where space
is a necessary requirement.
In this system chirality plays a fundamental role. In particular the observed
phase and amplitude dynamics appear reminiscent of the regime of defect me-
diated turbulence observed in [Coullet 1989] and vortex turbulence, which has
been recently associated to rogue wave formation in oscillatory two-dimensional
transverse spatial systems with coherent forcing [Gibson 2016].

Chapter 3 is focused on the study of cavity soliton interaction in a mono-
lithic broad-area VCSEL with optical injection, pumped above threshold. Some
preliminary results on the study of extreme events in this system are also given.
Differently from the model described in [Gibson 2016], the present system is a
class-B laser, where the dynamics of the carrier density is not fast enough to jus-
tify its adiabatic elimination. We observed that cavity solitons can be described
as two particles subjected to an interaction potential exponentially decreasing
with the distance between the two objects. As a consequence the merging time
between two localized structures presents an exponential dependence on their
initial distance, a result confirmed both analytically and numerically [Anbar-
dan 2017]. Furthermore this observation allowed for a possible analogy with
the attraction experienced by hydrophobic materials. In contrast with previ-
ous work [Tissoni 1999], developed for the same system below transparency, no
critical distance, above which cavity solitons stop interacting, has been found.
From the point of view of information processing, cavity solitons in semicon-
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ductor lasers have been long considered good candidates for optical informa-
tion encoding, due to the compactness and fast response of the device and to
the plasticity of cavity solitons themselves [Firth 1996, Brambilla 1997]. In this
context cavity soliton interaction can be considered as a limiting aspect of op-
tical information storage since, in order to treat cavity solitons as independent
bits of information, ideally no interaction effect should be exhibited: hence the
presence of a critical distance, defines the maximum information density of a
possible optical memory array. Nevertheless we would like to point out that
cavity soliton interaction could be positively exploited in order to develop logic
gates [Columbo 2014]. Furthermore, from the observations of Chapter 2, it is
clear that information could be encoded as well in the phase of localized struc-
tures (phase soliton complexes).
Extreme events have been preliminary investigated in this system in a chaotic
regime for low values of injection. In particular we observed extreme events
for a specific parameter choice, with high values of the pumping current. Ex-
treme events appear, in this case, to occur through a mechanism similar to [Ri-
moldi 2017a], in particular, once the trajectory of the system in a single spot
of the transverse plane approaches low values of intensity (and high values of
carrier density), getting closer to an unstable focus, it is repelled to low value
of carrier density, through a large excursion in intensity. Differently from [Ri-
moldi 2017a], the phase of the electric field appears to monotonically decrease
in time in the spot of the transverse plane where the extreme event is about to
occur. Further investigation on the extreme event parameter dependence and
their formation mechanisms, in connection with the vortex turbulence observed
in [Gibson 2016] and the dynamics observed in [Rimoldi 2017a] are to be ad-
dressed in future work.

From the results here presented it is clear that, even if extreme events can be
observed in system without space, describable through purely temporal mod-
els [Bonatto 2011, Zamora-Munt 2013], spatial effects may play an important
role in the formation of extreme events [Bonazzola 2013], either enabling or dis-
rupting some of the dynamical and physical mechanisms for their formation and
preserving others, when the spatial dimensionality of the system is altered.

As stated before, the general study of extreme events in active optical sys-
tems allows to address the dynamical and physical mechanisms behind the for-
mation of these objects, in systems that are mainly deterministic. Apart from
the obvious positive effects of a deeper understanding for these disruptive phe-
nomena, the study of extreme events will also have as a consequence, a general
deeper knowledge of the systems considered. The connection of this field to
the wider topic of extreme events in physics will allow for interesting develop-
ments in possible analogies with other physical systems, especially considering
the high capability to observe, control and study these events in optics.





Appendix A

LSA equations in physical
variables

In terms of the physical electric field E and the carrier densities in the active (N1)
and passive (N2) medium, Eqs. (1.1) can be written [Wilmsen 2001, Carr 2001]
as:

Ė =
1

2τp

[
a1L1

T
(1− iα) (N1 − N0,1)

+
a2L2

T
(1− iβ) (N2 − N0,2)− 1 + i∇2

⊥

]
E , (A.1a)

Ṅ1 =
I1

eV1
− N1

τnr,1
− Bsp,1N2

1 − a1(N1 − N0,1)vgNp , (A.1b)

Ṅ2 =
I2

eV2
− N2

τnr,2
− Bsp,2N2

2 − a2(N2 − N0,2)vgNp , (A.1c)

where [Vahed 2012] τp is the photon lifetime, a1;2 is the differential gain, N0,1;2
is the transparency carrier density, L1;2 is the effective length of each region,
α and β are the linewidth enhancement factors and the cavity losses, such as
the mirror losses and the linear absorption, are included through T. I1;2 is the
injected current, e is the electron charge and V1;2 is the volume of, respectively,
the gain and the absorption region, τnr,1;2 is the non-radiative recombination
time, Bsp,1;2 is the coefficient of bimolecular radiative recombination, vg is the
group velocity and Np =

(
ε0n2|E|2

)
/ (2h̄ω) is the photon density with n the

background refractive index and h̄ω the photon energy).
Let us now define η1 as the ratio of gain to losses and η2 as the ratio of absorption
to losses. Furthermore we introduce ζ1;2 as the ratio of non-radiative to radiative
decay times respectively in the active and passive media.

η1;2 =
a1;2N0,1;2L1;2

T
ζ1;2 = Bsp,1;2N0,1;2τnr,1;2

In this way we can observe that the radiative recombination parameter B that
appears in Eqs. (1.1) corresponds to

B =
1
η1

ζ1

1 + 2ζ1
=

1
η2

ζ2

1 + 2ζ2
.
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The variables in Eqs. (1.1) are rescaled as follows [Bache 2005]:

D = η1

(
N1

N0,1
− 1
)

, D̄ = η2

(
N2

N0,2
− 1
)

, F =

√
ε0vgn2a1τ1

2h̄ω
E .

The pump and absorption parameters are given as

µ = η1(1− Bη1)

(
I1

I0,1
− 1
)

, γ = η2(1− Bη2)

(
1− I2

I0,2

)
with transparency currents I0,1;2 = eV1;2N0,1;2/τnr,1;2(1 + ζ1;2). Note that in the
case studied in this Thesis the absorber is not pumped hence I2 = 0.
Finally b, r and s in Eqs. (1.1) are defined as

b =
2τp

τ1
, r =

τ1

τ2
, s =

a2b1

a1b2

with decay rates redefined as τ1;2 = τnr,1;2/(1 + 2ζ1;2).



Appendix B

Split-step method for Eqs. (1.1)

Let us consider the following model, same as in Eqs. (1.1),

Ḟ = [(1− iα)D + (1− iβ)d− 1 + (d + i)∇2
⊥]F

Ḋ = b[µ− D(1 + |F|2)− BD2] ,
˙̄D = rb[−γ− d(1 + s|F|2)− BD̄2] .

The split-step method consists here in separating the purely temporal part of
the evolution of the dynamical equations from the spatial part. Furthermore the
spatial part of the evolution is computed in the Fourier space.
In this case the temporal part is the following

Ḟ = [(1− iα)D + (1− iβ)d− 1]F ,
Ḋ = b[µ− D(1 + |F|2)− BD2] ,
˙̄D = rb[−γ− d(1 + s|F|2)− BD̄2]

which is integrated through a Runge-Kutta method at the second order, and the
spatial part is contained just in the differential equation for F

Ḟ = (d + i)∇2
⊥F

∂F
∂t

= (d + i)
(

∂2

∂x2 +
∂2

∂y2

)
F . (B.3)

Now, the Fourier transform of F is defined as follows

F [F(x, y, t)] = F̂(kx, ky, t) =
∫ +∞

−∞
F(x, y, t)e−i(kxx+kyy)dxdy

with F Fourier transform operator, and its inverse transform is

F(x, y, t) =
∫ +∞

−∞
F̂(kx, ky, t)ei(kxx+kyy)dkxdky .

Applying the operator F to Eq. (B.3), we obtain

F
(

∂F(x, y, t)
∂t

)
= (d + i)

[
F
(

∂2F(x, y, t)
∂x2

)
+F

(
∂2F(x, y, t)

∂y2

)]
∂F̂(kx, ky, t)

∂t
= (d + i)

[
F
(

∂2F(x, y, t)
∂x2

)
+F

(
∂2F(x, y, t)

∂y2

)]
.
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Since

F
(

∂2F(x, y, t)
∂x2

)
= F

[
∂2

∂x2

∫ +∞

−∞
F̂(kx, ky, t)ei(kxx+kyy)dkxdky

]
= −k2

xF
[∫ +∞

−∞
F̂(kx, ky, t)ei(kxx+kyy)dkxdky

]
= −k2

x F̂(kx, ky, t)

and, in the same manner,

F
(

∂2F(x, y, t)
∂y2

)
= −k2

y F̂(kx, ky, t) ,

then we have

∂F̂(kx, ky, t)
∂t

= −k2(d + i)F̂(kx, ky, t) , (B.4)

with k2 = k2
x + k2

y.
The differential Eq. (B.4) can be solved through separation of variables and,
unless constants, we obtain∫

∂F̂(kx, ky, t)
F̂(kx, ky, t)

=
∫
−k2(d + i)∂t

log F̂(kx, ky, t) = −k2(d + i)t

F̂(kx, ky, t) = e−k2(d+i)t .

Then at a following time t + ∆t

F̂(kx, ky, t + ∆t) = e−k2(d+i)(t+∆t)

F̂(kx, ky, t + ∆t) = F̂(kx, ky, t)e−k2(d+i)∆t .

We can in this way appreciate the advantage of solving the spatial part of the
equations evolution in the Fourier space: any spatial derivative leads to a sim-
ple multiplication in the Fourier space.

In our programs we implement the split-step method executing first a half
step ∆t/2 in the Fourier space, then a full step ∆t of the purely temporal part
of the equations through a Runge-Kutta method at second order and then com-
pleting with another half step in the Fourier space.



Appendix C

The Routh-Hurwitz stability
criterion

We will give here proof of the criterion for third and fourth degree polynomial.

Let us first consider the following characteristic equation:

det(J − λI) = 0 , (C.1)

where J is a 3× 3 Jacobian matrix for a set of three differential equations de-
scribing some kind of system. Then we need to find the roots of

λ3 + c2λ2 + c1λ + c0 = 0 . (C.2)

We are interested in studying where the system passes from a stable to an unsta-
ble domain, which occurs when the real part of the eigenvalues λ from negative
becomes positive. On the boundary of the instability domain λ results purely
imaginary, we can then substitute λ = iν in Eq. C.2 and obtain

−iν3 − c2ν2 + ic1ν + c0 = 0 . (C.3)

If λ is real then ν = 0 and the stationary instability boundary is given by

c0 = 0 ,

in particular if c0 < 0 the system is stationary unstable. On the other hand if λ
is complex then the Hopf instability boundary is given by

−c2ν2 + c0 = 0
−ν3 + c1ν = 0

where we have separated real and imaginary part of Eq. (C.3), and we therefore
obtain

c2c1 = c0 ,

in particular if c2c1 < c0 then the system is Hopf unstable.
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Let us now consider Eq. (C.1) where J is now a 4 × 4 Jacobian matrix for a
set of four differential equations describing some kind of system. Then we need
to find the roots of:

λ4 + c3λ3 + c2λ2 + c1λ + c0 = 0 . (C.4)

Proceeding in the same manner as in the previous case, we substitute λ = iν in
Eq. (C.4), obtaining

ν4 − ic3ν3 − c2ν2 + ic1ν + c0 = 0 . (C.5)

Once again the stationary instability boundary is given by the condition

c0 = 0

in particular if c0 < 0 the system is stationary unstable.
Regarding instead the Hopf instability boundary, we separate real and imagi-
nary part of Eq. (C.5) and obtain

ν4 − c2ν2 + c0 = 0
−c3ν3 + c1ν = 0

hence

c2
1 − c1c2c3 + c0c2

3 = 0 ,

in particular if c2
1 − c1c2c3 + c0c2

3 < 0, then the system if Hopf unstable.



Appendix D

Log-Poissonian distribution

Let us consider [Sibani 1993, Sibani 2003] a discrete time sequence of events (for
instance rogue waves) described by identically distributed positive stochastic
variables Ni, with i = 1, ..., t. A record occurs at a time j if and only if the
variable Nj is greater than any Ni previous variable. We immediately point out
that with this definition the first record will always happen at i = 1.
Let us derive now the probability Pn(t) that n records occur in a time between 0
and t.
It is clear that the probability of one and only one record at time 0 < m < t is

P1(m) =
1
m

,

therefore the probability of having exactly two records, the first at i = 1 and the
second at i = m is

P2|1,m(t) =
1

t(m− 1)
.

We can then observe that the probability of having the first record at i = 1 and
the second record at any subsequent time m is given by the sum over all possible
m values and in the limit t� 1 we obtain [Sibani 1993]

P2(t) =
t

∑
m=2

1
t(m− 1)

∼
∫ t

2

dm
t(m− 1)

=
log(m− 1)|t2

t
=

log(t− 1)
t

∼ log t
t

.

Now the probability of having k records, the first at i = 1 and the remaining
k− 1 exactly at times 1 < m1 < . . . < mk−1 ≤ t

Pk|1,m1,...,mk−1
(t) =

1
t(m1 − 1)(m2 − 1) . . . (mk−1 − 1)

therefore the probability of having k records at any time between 0 and t is

Pk(t) =
1

(k− 1)!

t−(k−2)

∑
m1=2

t−(k−3)

∑
m2=m1+1

. . .
t

∑
mk−1=mk−2+1

Pk|1,m1,...,mk−1
(t)
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where we now have to normalize with all the possible changes in the order of
the k− 1 events. Setting qi = mi − 1 we obtain, in the limit 1� k� t:

Pk(t) =
1

(k− 1)!

t−(k−1)

∑
q1=1

t−(k−2)

∑
q2=q1+1

. . .
t−1

∑
qk−1=qk−2+1

Pk|1,q1,...,qk−1
(t)

=
1

(k− 1)!
1
t

t−(k−1)

∑
q1=1

1
q1

t−(k−2)

∑
q2=q1+1

1
q2

. . .
t−1

∑
qk−1=qk−2+1

1
qk−1

Passing to the integral

Pk(t) ∼
1

(k− 1)!
1
t

∫ t−(k−1)

1

dq1

q1
. . .
∫ t−1

qk−2+1

dqk−1

qk−1

=
1

(k− 1)!
1
t

∫ t−(k−1)

1

dq1

q1
. . .
∫ t−2

qk−3

dqk−2

qk−2
log

t− 1
qk−2 + 1

∼ 1
(k− 1)!

1
t

∫ t−(k−1)

1

dq1

q1
. . .
∫ t−2

qk−3

dqk−2

qk−2
log (t− 1)

=
1

(k− 1)!
log (t− 1)

t

∫ t−(k−1)

1

dq1

q1
. . .
∫ t−3

qk−4

dqk−3

qk−3
log

t− 2
qk−3 + 1

∼ 1
(k− 1)!

log (t− 1) log (t− 2)
t

∫ t−(k−1)

1

dq1

q1
. . .
∫ t−3

qk−4

dqk−3

qk−3

∼ 1
(k− 1)!

log (t− 1) log (t− 2) · · · log (t− (k− 1))
t

∼ 1
(k− 1)!

(log t)k−1

t
.

Considering then a more generic time span between tw and tw + t the probability
of the occurrence of k events in such a time span is the following

Pk(tw, tw + t) =
1
k!

(
tw + t

tw

)−1 [
log

tw + t
tw

]k

,

furthermore [Sibani 2003], given α sequences of recordings, the probability of
having k events in the time span between tw and tw + t is the following

Pα,k(tw, tw + t) =
1
k!

(
tw + t

tw

)−α [
α log

tw + t
tw

]k

, (D.1)

Eq. (D.1) can be recognized as a Poisson distribution for the variable log (tw + t)/tw
also called log-Poisson. We can also observe that the logarithmic rate of events
approaches the constant value α for t� tw.
The total number of records produced by α independent sequences is then a sum
of log-Poisson variables, therefore it is also log-Poisson distributed [Sibani 2003].
Finally from Eq. (D.1) we can observe that in the limit 1� k� t the probability
goes as

Pα,k(tw, tw + t) =
1
k!
(e)−αx(tw,t) [αx(tw, t)]k

∼ (αe)k

kk
√

2πk
x(tw, t)ke−αx(tw,t) (D.2)

∼ e−αx(tw,t)
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where we also set for simplicity x(tw, t) = log[tw + t/tw] and used the Stirling
formula for the factorial n! ∼ e−nnn

√
2πn. Eq. (D.2) gives us then the possibility

to consider a negative exponential fit for the distribution of the waiting times
logarithm.





Appendix E

LSA conservative limit

Large energy analytic approximation in the conservative
limit

In Chapter 1 we observed that it is possible to describe the system of a purely
temporal (semiconductor) laser with an intracavity saturable absorber as a par-
ticle of unitary mass subject to a Toda potential.
In particular the conservative limit of this system is given by

ẋ = 2 (Dsn + D̄sn̄) , (E.1a)
ṅ = −b [Is(ex − 1)] , (E.1b)
˙̄n = −rb [sIs(ex − 1)] , (E.1c)

which is equivalent to write

ẍ + 2b (Ds + sD̄sr) Is(ex − 1) = 0 (E.2)

ẍ +
dVLSA(x)

dx
= 0

where

VLSA(x) = ω2
LSAV(x) with V(x) = ex − x

the Toda potential, and

ω2
LSA = 2b (Ds + sD̄sr) Is .

Eq. (E.2) can be rewritten as

ẍ = −ω2
LSA(e

x − 1)

which implies, from Eqs. (E.1)

ṅ =
bIs

ω2
LSA

ẍ , ˙̄n =
rsbIs

ω2
LSA

ẍ . (E.3)

Eqs. (E.3) can be integrated, obtaining

n =
bIs

ω2
LSA

ẋ , n̄ =
rsbIs

ω2
LSA

ẋ
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with null integration constants, since

2 (Dsn + D̄sn̄) =
2b (Ds + sD̄srn̄) Is

ω2
LSA

= ẋ .

Hence once solved Eq. (E.2) for x, we find also the solutions for n and n̄.
In the limit of large energies

x � 0 V(x) ≈ ex (E.4)
x � 0 V(x) ≈ −x

hence the energy of the system E

E = ω2
LSAV(xmax) ≈ ω2

LSAexmax ≈ −ω2
LSAxmin (E.5)

where xmax and xmin are as indicated in Fig. 1.32.
It is then possible to obtain an analytic expression for x, n and n̄ for large ener-
gies in the conservative limit.
Setting as initial condition in x(t = 0) = xmin, we obtain the following expres-
sions for the first period of the particle, which is the time that takes to the particle
to pass from xmin to xmax and then get back.

x(t) =


−exmax +

ω2
LSAt2

2
− t0 < t < t0

xmax + log sech2

[
ωLSA

√
exmax

2
(t− tmax)

]
t0 < t < −t0 + 2tmax

where we defined t0 = t|x=0 and tmax = t|x=xmax as follows

t0 =

√
2exmax

ωLSA

tmax =

√
2exmax

ωLSA
+

1
ωLSA

√
2

exmax
arctanh

√
1− e−xmax

= t0 +
1

ωLSA

√
2

exmax
arctanh

√
1− e−xmax

neglecting terms of order e− exp (xmax). These analytic expression can also be gen-
eralized for all periods,

x(t) =


− exmax +

ω2
LSA(t− 2mtmax)2

2

xmax + log sech2

{
ωLSA

√
exmax

2
[t− (2m + 1)tmax]

}

where the first solution is related to times −t0 + 2mtmax < t < t0 + 2mtmax and
the second solution is related to times t0 + 2mtmax < t < −t0 + 2(m + 1)tmax.
We verified that this analytic approximation well describes the behavior of the
conservative system in the limit of high energies.
About the expression we found for tmax, it is important to draw a quick compar-
ison with what is shown in [Oppo 1985] regarding the equation relating the pe-
riod of oscillation to the energy in the system (there multiplied by the frequency,
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due to a renormalization): in fact the same expression holds in our system. Fur-
thermore, in the limit of large energies H = exmax , if we define E + 1 = H due to
a different definition of the Toda potential in the article considered, we obtain

ωLSAT = 2ωLSAtmax = 2

(
√

2exmax +

√
2

exmax
arctanh

√
1− e−xmax

)

=
√

2
{

2exmax/2 + e−xmax/2 log
[

exmax/2 + (exmax − 1)1/2

exmax/2 − (exmax − 1)1/2

]}
=
√

2
{

2(E + 1)1/2 + (E + 1)−1/2 log
[
(E + 1)1/2 + E1/2

(E + 1)1/2 − E1/2

]}
.

Hence we conclude that the only actual difference between the period of oscilla-
tion in a class B laser and in a LSA consists in a different frequency of relaxation
(ω for the class B laser or ωLSA for the LSA).

Given the analytic expressions for x, n and n̄ in case of conservative large
energies we can obtain an analytic approximation also for the variation of energy
along a period. In particular the time derivative of the total energy of the system
is, according to the complete model in Eq. (1.24),

Ḣ =
d
dt

[
ẋ2

2
+ VLSA(x)

]
= ẋ[ẍ + ω2

LSA(e
x − 1)] = ẋ

(
ẍ +

dVLSA(x)
dx

)
= −ẋ [2b (Dsn + D̄srn̄) + 2b (Dsn + D̄srsn̄) Isex]

= − 2b2 Is

ω2
LSA

[(
Ds + D̄sr2s

)
ẋ2 +

(
Ds + D̄sr2s2) Is ẋ2ex] ,

where we have used the expressions for n and n̄ as functions of ẋ. The time
derivative of the mean energy on a period 2tmax is then given by

˙̄H =− 2b2 Is

ω2
LSA

(Ds + D̄sr2s
) 1

2tmax

∫
2tmax

ẋ2dt +
(

Ds + D̄sr2s2) Is
1

2tmax

∫
2tmax

ẋ2exdt

(E.6)

We can notice that this equation can be zero (since D̄ < 0), differently from the
case of a class B laser [Oppo 1985], where it is always negative.
Inserting the solution x(t) in Eq. (E.6) we obtain a complicated expression in
the solution of the integrals, depending on xmax and all the system parameters,
which we are not going to report in this Appendix. The value of xmax for which
Eq. (E.6) equals zero should allow us to find the Q-switching solution for any set
of parameters. The details of this study will be addressed in some future work.

Period and width of the pulses

In [Oppo 1985] and [Cialdi 2013] two particular temporal intervals are consid-
ered to verify the validity of the class B laser description through the Toda po-
tential: these are T1 and T2 (which correspond to 2tmax and 2t0). T1 represents
the laser period of oscillation, that is the time that takes to the particle to pass
from xmin to xmax and get back. On the other hand T2 is the time that takes to
the particle to get from 0 to xmax and come back. These two intervals have also a
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(a) (b)

Fig. E.1 – (a) Relaxation oscillations in a class B laser; (b) comparison between the peri-
ods T1 e T2 given by the numerical integration of Eq. E.7 (in blue and red, respectively)
and the analytic approximation for large energies (in cyan and green, respectively).

clear description on terms of usual laser dynamics: in fact T1 corresponds to the
temporal interval between two consecutive intensity peaks and T2 is the pulse
width, which corresponds to the temporal interval where the laser has an inten-
sity higher than its stationary value, as it has been illustrated in Fig. E.1(a).
We can apply the same kind of analysis to our system, in particular we have

T1,2 = 2
∫ xmax

xmin,0

dx
p

=
T0√
2π

∫ xmax

xmin,0

dx√
E−VLSA(x)

. (E.7)

with T0 = 2π period of the small oscillations with time determined by the fre-
quency ωLSA of the relaxation oscillations.
Using the semi-open extended Simpson formulas we can numerically evaluate
the two integrals and hence make a comparison between the two temporal in-
tervals below and above the the Hopf bifurcation.

For µ > µh the system exhibits relaxation oscillations: in Fig. E.2(a) we have
plotted in solid line the curves predicted from the theoretical model (in blue for
T1/T0 and red for T2/T0) and compared them with the data obtained from the
measured periods during the full system evolution.
For µ < µh the system, after a transient, reaches a pulsed solution of fixed ampli-
tude, typical of the Q-switching regime. In Fig. E.2(b) we can observe that also
the transient phase is well described by the Toda potential and in particular the
periods of the final pulsed solution are well aligned with the theoretical curve.
Finally we did different simulation where we kept fixed the parameters s = 3,
b = 10−4, r = 1 and the initial conditions (I0, n0, n̄0) = (0.001, 0, 0) and mean-
while changed the pump parameter µ, always below the Hopf bifurcation. In
Fig. E.2(c) we reported the data of the final pulsed solution for 30 different val-
ues of µthr < µ < µh: we can notice a good agreement with the theoretical
model.
We hence conclude that the Toda oscillator model well describes both the nonlin-
ear damped oscillation above the Hopf bifurcation and the passive Q-switching
regime below the bifurcation.

In the large energy limit we can obtain an analytic expression for the two in-
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(a)

(b) (c)

Fig. E.2 – Comparison between the values of T1,2/T0 predicted from the Toda oscillator
model and the data measured during the full system evolution. The simulation was
done for the following set of parameters: s = 3, b = 10−4, r = 1, µ = µh + 0.5 ≈ 3 (a),
µ = µh − 0.5 ≈ 2 (b), and initial conditions (I0, n0, n̄0) = (0.001, 0, 0). The system has
been numerically integrated on 106 temporal units. We indicated with a cross the data
related to the solution at regime in (b). (c) Same comparison for the same parameters
for 30 simulations with 30 different values of a, always below the Hopf bifurcation.

tervals, that is

T̃1 =
T0

π

√
2

exmax

[
exmax + arctanh

√
1− e−xmax

]
T̃2 =

T0

π

√
2

exmax
arctanh

√
1− e−xmax

In Fig. E.1(b) we can observe that the curves given by the analytic approximation
of these two temporal intervals seem almost the same as the theoretical curves
given by the numerical integration of Eq. (E.7).
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Further notes

It is possible to reduce the number of the equations of the conservative LSA
system from three to two: in fact starting from

ẋ = 2 (Dsn + D̄sn̄)
ṅ = −b [Is(ex − 1)]
˙̄n = −rb [sIs(ex − 1)]

we can notice that sṅ − ˙̄n/r = 0 hence sn − n̄/r is a constant of the system.
Therefore if we substitute z1 = sn + n̄/r, z2 = sn− n̄/r we obtain the following
system

ẋ =
1
s
[(Ds + rD̄ss)z1 + (Ds − rD̄ss)z2]

ż1 = −2bsIs(ex − 1)
ż2 = 0

If we then define as initial conditions z1,0 = 0, z2,0 = 0, which is n0 = 0 and
n̄0 = 0, we can apply the following reduction

ẋ =
ω2

LSA
b

z1

ż1 = −b(ex − 1).

where we have normalized the variable z1 to 2sIs.

If we insert optical injection into the model and we apply the same initial con-
ditions to the system in its reversible limit it is possible once again to reduce the
number of real variables, here from four to three. Interestingly enough, through
some substitutions and rescaling we can formally reach the same set of equa-
tions studied in [Politi 1986] for a class B laser with optical injection

ẋ = xz + y + f̃
ẏ = yz− x
ż = Ã− x2 − y2.

What was found in this system was a coexistence of conservative and dissipa-
tive behavior for certain values of the parameters Ã and f̃ (in [Politi 1986] for
Ã = 4/3 and f̃ = 0.42). We can then conclude that also in the case of a laser
with saturable absorber, the optical injection destroys the conservative limit of
the laser but preserves its reversible limit, giving rise to the same coexistence of
conservative and dissipative structures for specific sets of parameters and dif-
ferent initial conditions of the model under study.



Appendix F

Split-step method for Eqs. (2.7),
(2.8)

Let us consider the rate-equation model with a term of diffusion, same as in Eqs.
(2.8),

∂E
∂η

+
∂E
∂τ
− d

∂2E
∂η2 = T [y− (1 + iθ) E + (1− iα)DE] ,

∂D
∂τ

=
bT
σ

[
µ− D

(
1 + |E|2

)]
.

As in Appendix B we separate the purely temporal part of the evolution of
the dynamical equations from the spatial part, which will be computed in the
Fourier space.
In this case the temporal part is the following

∂E
∂τ

= T [y− (1 + iθ) E + (1− iα)DE] ,

∂D
∂τ

=
bT
σ

[
µ− D

(
1 + |E|2

)]
.

which is integrated through a Runge-Kutta method at the second order, and the
spatial part is contained just in the differential equation for E

∂E
∂η

+
∂E
∂τ
− d

∂2E
∂η2 = 0 , (F.1)

The Fourier transform of E is defined as follows

F [E(η, τ)] = Ê(kη , τ) =
∫ +∞

−∞
E(η, τ)e−ikηηdη

with F Fourier transform operator, and its inverse transform is

E(η, τ) =
∫ +∞

−∞
Ê(kη , τ)eikηηdkη .

Applying the operator F to Eq. (F.1), we obtain

F
(

∂E(η, τ)

∂τ

)
= −iF

(
∂E(η, τ)

∂η

)
+ dF

(
∂2E(η, τ)

∂η2

)
∂Ê(kη , τ)

∂τ
= −iF

(
∂E(η, τ)

∂η

)
+ dF

(
∂2E(η, τ)

∂η2

)
.
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Since

F
(

∂E(η, τ)

∂η

)
= F

[
∂

∂η

∫ +∞

−∞
Ê(kη , τ)eikηηdkη

]
= ikηF

[∫ +∞

−∞
Ê(kη , τ)eikηηdkη

]
= ikη Ê(kη , τ)

and

F
(

∂2E(η, τ)

∂η2

)
= F

[
∂2

∂η2

∫ +∞

−∞
Ê(kη , τ)eikηηdkη

]
= −k2

ηF
[∫ +∞

−∞
Ê(kη , τ)eikηηdkη

]
= −k2

η Ê(kη , τ)

then we have

∂Ê(kη , τ)

∂τ
= −kη

(
i + kηd

)
Ê(kη , τ) , (F.2)

The differential Eq. (F.2) can be solved through separation of variables and,
unless constants, we obtain∫

∂Ê(kη , τ)

Ê(kη , τ)
=

∫
−kη

(
i + kηd

)
∂τ

log Ê(kη , τ) = −kη

(
i + kηd

)
τ

Ê(kη , t) = e−kη(i+kηd)τ .

Then at a following time τ + ∆τ

Ê(kη , τ + ∆τ) = e−kη(i+kηd)(τ+∆τ)

Ê(kη , τ + ∆τ) = Ê(kη , τ)e−kη(i+kηd)∆τ .

Similarly, for the pure rate-equation model in Eq. (2.7), we have

Ê(kη , τ + ∆τ) = Ê(kη , τ)e−ikη∆τ .

In our programs we implement the split-step method executing first a half step
∆t/2 in the Fourier space, then a full step ∆t of the purely temporal part of the
equations through a Runge-Kutta method at second order and then completing
with another half step in the Fourier space.
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Split-step method for Eqs. (3.2)

Let us consider the following model, same as in Eqs. (3.2),

Ė = σ
[
EI − (1 + iθ) E + (1− iα) f (D)E + i∇2

⊥E
]

,

Ḋ = µ− D− f (D)|E|2 + d̃∇2
⊥D

As in Appendix B we separate the purely temporal part of the dynamical equa-
tion evolution from the spatial part, to be computed in the Fourier space.
In this case the temporal part is the following

Ė = σ [EI − (1 + iθ) E + (1− iα) f (D)E] ,
Ḋ = µ− D− f (D)|E|2

which is integrated through a Runge-Kutta method at the second order, and the
spatial part is given by

Ė = iσ∇2
⊥E ,

Ḋ = d̃∇2
⊥D

which is

∂E
∂t

= iσ
(

∂2

∂x2 +
∂2

∂y2

)
E , (G.3a)

∂D
∂t

= d̃
(

∂2

∂x2 +
∂2

∂y2

)
D . (G.3b)

The Fourier transforms of E and D are defined as follows

F [E(x, y, t)] = Ê(kx, ky, t) =
∫ +∞

−∞
E(x, y, t)e−i(kxx+kyy)dxdy ,

F [D(x, y, t)] = D̂(kx, ky, t) =
∫ +∞

−∞
D(x, y, t)e−i(kxx+kyy)dxdy

with F Fourier transform operator, and the inverse transforms are

E(x, y, t) =
∫ +∞

−∞
Ê(kx, ky, t)ei(kxx+kyy)dkxdky

D(x, y, t) =
∫ +∞

−∞
D̂(kx, ky, t)ei(kxx+kyy)dkxdky .
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Applying the operator F to Eqs. (G.3a), we obtain

F
(

∂E(x, y, t)
∂t

)
= iσ

[
F
(

∂2E(x, y, t)
∂x2

)
+F

(
∂2E(x, y, t)

∂y2

)]
∂Ê(kx, ky, t)

∂t
= iσ

[
F
(

∂2E(x, y, t)
∂x2

)
+F

(
∂2E(x, y, t)

∂y2

)]
.

Since

F
(

∂2E(x, y, t)
∂x2

)
= F

[
∂2

∂x2

∫ +∞

−∞
Ê(kx, ky, t)ei(kxx+kyy)dkxdky

]
= −k2

xF
[∫ +∞

−∞
Ê(kx, ky, t)ei(kxx+kyy)dkxdky

]
= −k2

xÊ(kx, ky, t)

and, in the same manner,

F
(

∂2E(x, y, t)
∂y2

)
= −k2

yÊ(kx, ky, t) ,

then we have

∂Ê(kx, ky, t)
∂t

= −iσk2Ê(kx, ky, t) , (G.4)

with k2 = k2
x + k2

y. Similarly for Eq. (G.3b) we obtain

F
(

∂D(x, y, t)
∂t

)
=

∂D̂(kx, ky, t)
∂t

= −d̃k2D̂(kx, ky, t) , (G.5)

The two differential Eqs. (G.4) and (G.5) can be solved through separation of
variables and, unless constants, we obtain, for Eq. (G.4),

∫
∂Ê(kx, ky, t)
Ê(kx, ky, t)

=
∫
−iσk2∂t

log Ê(kx, ky, t) = −iσk2t

Ê(kx, ky, t) = e−iσk2t ,

and, for Eq. (G.5),

∫
∂D̂(kx, ky, t)
D̂(kx, ky, t)

=
∫
−d̃k2∂t

log D̂(kx, ky, t) = −d̃k2t

D̂(kx, ky, t) = e−d̃k2t .

Then at a following time t + ∆t

Ê(kx, ky, t + ∆t) = e−iσk2(t+∆t) ,

D̂(kx, ky, t + ∆t) = e−d̃k2(t+∆t) ,
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and

Ê(kx, ky, t + ∆t) = Ê(kx, ky, t)e−iσk2∆t ,

D̂(kx, ky, t + ∆t) = D̂(kx, ky, t)e−d̃k2∆t .

In our programs we implement the split-step method executing first a half
step ∆t/2 in the Fourier space, then a full step ∆t of the purely temporal part
of the equations through a Runge-Kutta method at second order and then com-
pleting with another half step in the Fourier space.





List of acronyms

NLSE NonLinear Schroedinger Equation

LSA Laser with Saturable Absorber

VCSEL Vertical Cavity Surface Emitting Laser

QW Quantum Well

SA Saturable Absorber

CS Cavity Soliton

CSL Cavity Soliton Laser

CCS Chaotic Cavity Soliton

OCS Oscillatory Cavity Soliton

STC Spatio-Temporal Chaos

HSS Homogeneous Stationary Solution

RW Rogue Wave

PDF Probability Density Function

PS Phase Soliton
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