N. Trachoo, Biofilms and the food industry, Songklanakarin J. Sci. Technol, vol.25, issue.6, pp.807-822, 2003.

M. Abdallah, C. Benoliel, D. Drider, P. Dhulster, and N. Chihib, Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments, Arch. Microbiol, vol.196, issue.7, pp.453-72, 2014.

M. I. Gil, M. V. Selma, F. López-gálvez, and A. Allende, Fresh-cut product sanitation and wash water disinfection: Problems and solutions, Int. J. Food Microbiol, vol.134, issue.1-2, pp.37-45, 2009.

P. S. Ibusquiza, J. Herrera, and M. L. Cabo, Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes, Food Microbiol, vol.28, issue.3, pp.418-443, 2011.

C. Soumet, D. Méheust, C. Pissavin, L. Grandois, P. Frémaux et al., Reduced susceptibilities to biocides and resistance to antibiotics in food-associated bacteria following exposure to quaternary ammonium compounds, J. Appl. Microbiol, vol.121, issue.5, pp.1275-81, 2016.
URL : https://hal.archives-ouvertes.fr/anses-01419300

A. Colagiorgi, D. Ciccio, P. Zanardi, E. Ghidini, S. Ianieri et al., A Look inside the Listeria monocytogenes, Biofilms Extracellular Matrix. Microorganisms, vol.4, issue.3, pp.1-12, 2016.

T. Pilchova, M. Hernould, H. Prévost, K. Demnerova, J. Pazlarova et al., Influence of food processing environments on structure initiation of static biofilm of Listeria monocytogenes, Food Control, vol.35, pp.366-72, 2014.

A. Bridier, P. Sanchez-vizuete, M. Guilbaud, J. Piard, M. Naïtali et al., , 2015.

, Biofilm-associated persistence of food-borne pathogens, Spec. Issue Predict. Model. Food, vol.45, pp.167-78

B. Carpentier and O. Cerf, Biofilms and their consequences, with particular reference to hygiene in the food industry, J Appl Bacteriol, vol.75, issue.6, pp.499-511, 1993.

. Reis-teixeira-fb-dos, V. F. Alves, E. Martinis, and . De, Growth, viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces, Braz. J. Microbiol, vol.48, issue.3, pp.587-591, 2017.

U. Joost, K. Juganson, M. Visnapuu, M. Mortimer, and A. Kahru, Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: Effects on Escherichia coli cells and fatty acids, J. Photochem. Photobiol. B, vol.142, p.111, 2015.

K. Nakata and A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C Photochem. Rev, vol.13, pp.169-89, 2012.

M. Gopal, W. Chan, and L. Jonghe, Room temperature synthesis of crystalline metal oxides, J. Mater. Sci, vol.32, issue.22, pp.6001-6009, 1997.

P. Navabpour, K. Cooke, and H. Sun, Photocatalytic Properties of Doped TiO2 Coatings Deposited Using Reactive Magnetron Sputtering, Coatings, vol.7, issue.1, pp.433-482, 2017.

U. Sirimahachai, S. Phongpaichit, and S. Wongnawa, Evaluation of bactericidal activity of TiO2 photocatalysts: a comparative study of laboratory-made and commercial TiO2 samples, Songklanakarin J. Sci. Technol, vol.31, issue.5, pp.517-542, 2009.

L. Miao, S. Tanemura, Y. Kondo, M. Iwata, S. Toh et al., Microstructure and bactericidal ability of photocatalytic TiO2 thin films prepared by RF helicon magnetron sputtering, Appl. Surf. Sci, vol.238, issue.1-4, pp.125-156, 2004.

S. Ede, L. Hafner, P. Dunlop, J. Byrne, and G. Will, Photocatalytic disinfection of bacterial pollutants using suspended and immobilized TiO2 powders, Photochem. Photobiol, vol.88, issue.3, pp.728-763, 2012.

Y. Nosaka and A. Y. Nosaka, Generation and Detection of Reactive Oxygen Species in Photocatalysis, Chem. Rev, vol.117, issue.17, pp.11302-11338, 2017.

N. G. Chorianopoulos, D. S. Tsoukleris, E. Z. Panagou, P. Falaras, and G. J. Nychas, Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing, Food Microbiol, vol.28, issue.1, pp.164-70, 2011.

B. Kim, D. Kim, D. Cho, and S. Cho, Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria, Chemosphere, vol.52, issue.1, pp.277-81, 2003.

S. Thabet, M. Weiss-gayet, F. Dappozze, P. Cotton, C. Guillard et al., The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity, Appl. Catal. B Environ, vol.258, issue.1, pp.18-24, 2006.

M. Heikkilä, E. Puukilainen, M. Ritala, M. Leskelä, A. J. Calabria et al., Effect of thickness of ALD grown TiO2 films on photoelectrocatalysis, J. Photochem. Photobiol. Chem, vol.204, issue.2-3, pp.200-208, 2009.

, Synthesis of sol-gel titania bactericide coatings on adobe brick, Constr. Build. Mater, vol.24, issue.3, pp.384-89

V. G. Bessergenev, M. C. Mateus, I. M. Morgado, M. Hantusch, and E. Burkel, Photocatalytic reactor, CVD technology of its preparation and water purification from pharmaceutical drugs and agricultural pesticides, Chem. Eng. J, vol.312, pp.306-322, 2017.

J. Singh, S. A. Khan, J. Shah, R. K. Kotnala, S. Mohapatra et al., A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles: Role of surface intermediates, Appl. Surf. Sci, vol.422, issue.1, pp.131-175, 2007.

T. C. Cheng, K. S. Yao, N. Yeh, C. I. Chang, and H. C. Hsu, Bactericidal effect of blue LED light irradiated TiO2/Fe3O4 particles on fish pathogen in seawater, Thin Solid Films, vol.519, issue.15, pp.5002-5008, 2011.

H. Joo, Y. Lim, M. Kim, H. Kwon, and J. Han, Characterization on titanium surfaces and its effect on photocatalytic bactericidal activity, Appl. Surf. Sci, vol.257, issue.3, pp.741-787, 2010.

L. Sisti, L. Cruciani, G. Totaro, M. Vannini, and C. Berti, TiO2 deposition on the surface of activated fluoropolymer substrate, Thin Solid Films, vol.520, pp.2824-2852, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00786406

H. U. Lee, S. C. Lee, S. M. Lee, J. W. Lee, H. J. Kim et al., Improved photocatalytic and antibacterial activities of three-dimensional polycrystalline anatase TiO2 photocatalysts, Appl. Catal. Gen, vol.467, pp.394-99, 2013.

I. Perelshtein, G. Applerot, N. Perkas, J. Grinblat, and A. Gedanken, A one-step process for the antimicrobial finishing of textiles with crystalline TiO2 nanoparticles, Chem. Weinh. Bergstr. Ger, vol.18, issue.15, pp.4575-82, 2012.

X. Liu, H. Zhang, C. Liu, J. Chen, and G. Li, UV and visible light photoelectrocatalytic bactericidal performance of 100% {111} faceted rutile TiO2 photoanode, Catal. Today, vol.224, pp.77-82, 2014.
DOI : 10.1016/j.cattod.2013.09.041

G. Veréb, L. Manczinger, G. Bozsó, A. Sienkiewicz, and L. Forró, Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase TiO2 photocatalysts under visible light for phenol degradation and E. coli inactivation, Appl. Catal. B Environ, vol.129, pp.566-74, 2013.

A. G. Rincon and C. Pulgarin, Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration, Appl. Catal. B-Environ, vol.44, issue.3, pp.263-84, 2003.

C. Kim, E. Lee, S. Kang, E. De-josselin-de-jong, and B. Kim, Bactericidal effect of the photocatalystic reaction of titanium dioxide using visible wavelengths on Streptococcus mutans biofilm, Photodiagnosis Photodyn. Ther, vol.18, pp.279-83, 2017.

T. Zoltan, M. C. Rosales, and C. Yadarola, Reactive oxygen species quantification and their correlation with the photocatalytic activity of TiO2 (anatase and rutile) sensitized with asymmetric porphyrins, J. Environ. Chem. Eng, vol.4, issue.4, pp.3967-80, 2016.

R. J. Barnes, R. Molina, J. Xu, P. J. Dobson, and I. P. Thompson, Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria, J. Nanoparticle Res, vol.15, issue.2, pp.1-11, 2013.

C. Wu and J. Chern, Kinetics of Photocatalytic Decomposition of Methylene Blue, Ind. Eng. Chem. Res, vol.45, pp.6450-57, 2006.

D. Campoccia, L. Montanaro, and C. R. Arciola, A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials, vol.34, issue.34, pp.8533-54, 2013.

M. Yoshinari, Y. Oda, T. Kato, and K. Okuda, Influence of surface modifications to titanium on antibacterial activity in vitro, Biomaterials, vol.22, issue.14, pp.2043-2091, 2001.

E. Claro, E. D. Bidoia, and P. B. De-moraes, A high-performance doped photocatalysts for inactivation of total coliforms in superficial waters using different sources of radiation, J. Environ. Manage, vol.177, pp.264-70, 2016.

M. B. Fisher, D. A. Keane, P. Fernández-ibáñez, J. Colreavy, and S. J. Hinder, Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination, Appl. Catal. B Environ, pp.130-131, 2013.
DOI : 10.1016/j.apcatb.2012.10.013

URL : https://arrow.dit.ie/cgi/viewcontent.cgi?article=1019&context=cenresart

C. C. Kaan, A. A. Aziz, S. Ibrahim, M. Matheswaran, and P. Saravanan, Heterogeneous Photocatalytic Oxidation an Effective Tool for Wastewater Treatment-A Review, Studies on Wat. Manag. Issues, InTech, pp.219-236, 2012.

J. Robertson, J. Robertson, P. K. Lawton, and L. A. , A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms, J. Photochem. Photobiol. Chem, vol.175, issue.1, pp.51-56, 2005.

C. Guillard, B. Kartheuser, and S. Lacombe, La photocatalyse : dépollution de l'eau ou de l'air et matériaux autonettoyants, p.327, 2011.

G. Carré, E. Hamon, S. Ennahar, M. Estner, and M. Lett, Use of UV light for the inactivation of Listeria monocytogenes and lactic acid bacteria species in recirculated chill brines, Appl. Environ. Microbiol, vol.80, issue.8, pp.629-662, 2008.

E. Bonsaglia, N. Silva, F. Júnior, A. , A. Júnior et al., Biofilmforming ability and resistance to industrial disinfectants of Staphylococcus aureus isolated from fishery products, Food Control, vol.35, issue.1, pp.8-16, 2014.

J. Aarik, A. Aidla, A. Kiisler, T. Uustare, and V. Et-sammelselg, Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition, Thin Solid Films, vol.305, pp.270-273, 1997.

M. Abdallah, C. Benoliel, D. Drider, P. Dhulster, and N. Et-chihib, Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments, Arch. Microbiol, vol.196, pp.453-472, 2014.

T. Abee, Á. T. Kovács, O. P. Kuipers, and S. Van-der-veen, Biofilm formation and dispersal in Gram-positive bacteria, Curr. Opin. Biotechnol, vol.22, pp.172-179, 2011.

V. Allain, M. Chemaly, M. Laisney, S. Rouxel, S. Quesne et al., Prevalence of and risk factors for Campylobacter colonisation in broiler flocks at the end of the rearing period in France, Br. Poult. Sci, vol.55, pp.452-459, 2014.

A. Allion, Environnement des bactéries et sensibilité aux biocides : mise au point d'une technique rapide pour déterminer in situ l'efficacité bactéricide d'agents antimicrobiens, 2004.

A. Allion, M. Merlot, L. Boulangé-petermann, C. Archambeau, P. Choquet et al., Thin Photocatalytic TiO2 Coatings: Impact on Bioadhesion and Cell Viability. Plasma Process. Polym, vol.4, pp.374-379, 2007.

L. J. Anses-;-de-arauz, A. F. Jozala, P. G. Mazzola, and T. C. Et-vessoni-penna, Fiche de description de danger biologique transmissible par les aliments, Trends Food Sci. Technol, vol.20, pp.146-154, 2009.

A. A. Arrage, T. J. Phelps, R. E. Benoit, and D. C. Et-white, Survival of subsurface microorganisms exposed to UV radiation and hydrogen peroxide, Appl. Environ. Microbiol, vol.59, pp.3545-3550, 1993.

I. S. Arts, A. Gennaris, and J. Et-collet, Reducing systems protecting the bacterial cell envelope from oxidative damage, FEBS Lett, vol.589, pp.1559-1568, 2015.

B. ,

A. J. Bai and V. R. Rai, Bacterial Quorum Sensing and Food Industry, Compr. Rev. Food Sci. Food Saf, vol.10, pp.183-193, 2011.

S. Baig, Oxydation et réduction appliquées au traitement de l'eau-Ozone-Autres oxydants-Oxydation avancée-Réducteurs, 2010.

R. J. Barnes, R. Molina, J. Xu, P. J. Dobson, and I. P. Et-thompson, Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria, J. Nanoparticle Res, vol.15, pp.1-11, 2013.

K. Bazaka, M. V. Jacob, R. J. Crawford, and E. P. Et-ivanova, Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms, Appl. Microbiol. Biotechnol, vol.95, pp.299-311, 2012.

J. Beauclair, Usines agroalimentaires. Intégrer le nettoyage et la désinfection à la conception des locaux, 2011.

D. S. Bhatkhande, V. G. Pangarkar, and A. A. Et-beenackers, Photocatalytic degradation for environmental applications-a review, J. Chem. Technol. Biotechnol, vol.77, pp.102-116, 2002.

E. Birben, U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Et-kalayci, Oxidative Stress and Antioxidant Defense, World Allergy Organ. J, vol.5, pp.9-19, 2012.

. Bonetta, . Silvia, . Bonetta, . Sara, F. Motta et al., Photocatalytic bacterial inactivation by TiO2-coated surfaces, AMB Express, vol.3, p.59, 2013.

G. Bornert, Importance des bactéries psychrotrophes en hygiène des denrées alimentaires, Rev. Médecine Vét, vol.151, pp.1003-1010, 2000.

E. Boscher, E. Houard, and M. Denis, Prevalence and distribution of Listeria monocytogenes serotypes and pulsotypes in sows and fattening pigs in farrow-to-finish farms, J. Food Prot, vol.75, pp.889-895, 2008.

E. J. Bottone, Yersinia enterocolitica: overview and epidemiologic correlates, Microbes Infect, vol.1, pp.323-333, 1999.

T. Brauge, I. Sadovskaya, C. Faille, T. Benezech, E. Maes et al., Teichoic acid is the major polysaccharide present in the Listeria monocytogenes biofilm matrix, FEMS Microbiol. Lett, vol.363, p.229, 2016.

R. Briandet, Biofutur N° 341 : Biofilm. La société des microbes (Mars, 2013.

R. Briandet, F. Dubois-brissonnet, M. Naitali, T. Meylheuc, J. Herry et al., La microbiologie des surfaces dans les bio-industries, Bull.Soc.Fr.Microbiol, vol.21, pp.93-98, 2006.

R. Briandet, L. Fechner, M. Naïtali, and C. Et-dreanno, Biofilms, 2012.

R. Briandet, T. Meylheuc, C. Maher, and M. N. Et-bellon-fontaine, Listeria monocytogenes Scott A: Cell Surface Charge, Hydrophobicity, and Electron Donor and Acceptor Characteristics under Different Environmental Growth Conditions, Appl. Environ. Microbiol, vol.65, pp.5328-5333, 1999.

A. Bridier, R. Briandet, V. Thomas, and F. Et-dubois-brissonnet, Resistance of bacterial biofilms to disinfectants: a review, Biofouling, vol.27, pp.1017-1032, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001460

A. Bridier, P. Sanchez-vizuete, M. Guilbaud, J. Piard, M. Naïtali et al., Biofilm-associated persistence of food-borne pathogens, Food Microbiol, vol.45, pp.167-178, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204463

T. Bucher, Y. Oppenheimer-shaanan, A. Savidor, Z. Bloom-ackermann, and I. Et-kolodkin-gal, Disturbance of the bacterial cell wall specifically interferes with biofilm formation, Environ. Microbiol. Rep, vol.7, pp.990-1004, 2015.

C. ,

E. Cabiscol, Oxidative stress in bacteria and protein damage by reactive oxygen species, Int. Microbiol. Off. J. Span. Soc. Microbiol, vol.3, pp.3-8, 2000.

Y. Cai, M. Strömme, and K. Welch, Disinfection Kinetics and Contribution of Reactive Oxygen Species When Eliminating Bacteria with TiO2 Induced Photocatalysis, J. Biomater. Nanobiotechnology, vol.5, pp.200-209, 2014.

L. N. Calhoun and Y. M. Et-kwon, Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review, J. Appl. Microbiol, vol.110, pp.375-386, 2011.

N. Campbell and J. Et-reece, Chapitre 27 : Les procaryotes et l'origine de la diversité métabolique, 2004.

A. K. Camper, M. W. Lechevallier, S. C. Broadaway, and G. A. Et-mcfeters, Growth and persistence of pathogens on granular activated carbon filters, Appl. Environ. Microbiol, vol.50, pp.1378-1382, 1985.

D. Campoccia, L. Montanaro, and C. R. Et-arciola, A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials, vol.34, pp.8533-8554, 2013.

B. Carpentier and O. Cerf, Biofilms and their consequences, with particular reference to hygiene in the food industry, J Appl Bacteriol, vol.75, pp.499-511, 1993.

B. Carpentier and O. Cerf, Review-Persistence of Listeria monocytogenes in food industry equipment and premises, Int. J. Food Microbiol, vol.145, pp.1-8, 2011.

B. Carpentier and D. Chassaing, Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises, Int. J. Food Microbiol, vol.97, pp.111-122, 2004.

G. Carré, Compréhension des mécanismes lors de la photocatalyse appliquée à la dégradation des microorganismes : application au traitement de l'air et aux textiles autodécontaminants Strasbourg, 2013.

G. Carré, E. Hamon, S. Ennahar, M. Estner, M. Lett et al., TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia coli, Appl. Environ. Microbiol, vol.80, pp.2573-2581, 2014.

M. P. Casaletto, G. M. Ingo, S. Kaciulis, G. Mattogno, L. Pandolfi et al., Surface studies of in vitro biocompatibility of titanium oxide coatings, Appl. Surf. Sci, vol.172, pp.167-177, 2001.

M. S. Chae and H. Schraft, Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains, Int J Food Microbiol, vol.62, pp.103-114, 2000.

C. Charlier, S. Even, M. Gautier, and Y. Et-le-loir, Acidification is not involved in the early inhibition of Staphylococcus aureus growth by Lactococcus lactis in milk, Int. Dairy J, vol.18, pp.197-203, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00729833

E. Chasseignaux, Ecologie de Listeria monocytogenes dans les ateliers de transformation de viandes de volailles et de porcs, vol.1, 1999.

E. Chasseignaux, P. Gérault, M. Toquin, G. Salvat, P. Colin et al., Ecology of Listeria monocytogenes in the environment of raw poultry meat and raw pork meat processing plants, FEMS Microbiol. Lett, vol.210, pp.271-275, 2002.

E. Chasseignaux, M. T. Toquin, C. Ragimbeau, G. Salvat, P. Colin et al., Molecular epidemiology of Listeria monocytogenes isolates collected from the environment, raw meat and raw products in two poultry-and pork-processing plants, J Appl Microbiol, vol.91, pp.888-99, 2001.

C. Cheigh, M. Park, M. Chung, J. Shin, and Y. Park, Comparison of intense pulsed light-and ultraviolet (UVC)-induced cell damage in Listeria monocytogenes and Escherichia coli O157:H7, Food Control, vol.25, pp.654-659, 2012.

M. Chemaly, M. Toquin, Y. Le-nôtre, and P. Et-fravalo, Prevalence of Listeria monocytogenes in poultry production in France, J. Food Prot, vol.71, 1996.

A. H. Chiou, C. G. Kuo, C. H. Huang, W. F. Wu, C. P. Chou et al., Influence of oxygen flow rate on photocatalytic TiO2 films deposited by rf magnetron sputtering, J. Mater. Sci. Mater. Electron, vol.23, pp.589-594, 2012.

N. G. Chorianopoulos, D. S. Tsoukleris, E. Z. Panagou, P. Falaras, and G. J. Et-nychas, Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing, Food Microbiol, vol.28, pp.164-70, 2011.

N. Daude, C. Gout, and C. Et-jouanin, Electronic band structure of titanium dioxide, Phys. Rev. B, vol.15, pp.3229-3235, 1977.

M. E. Davey and G. A. Et-o'toole, Microbial Biofilms: from Ecology to Molecular Genetics. Microbiol. Mol. Biol. Rev, vol.64, pp.847-867, 2000.

S. Daviðsdóttir, S. Canulescu, K. Dirscherl, J. Schou, and R. Et-ambat, Investigation of photocatalytic activity of titanium dioxide deposited on metallic substrates by DC magnetron sputtering, Surf. Coat. Technol, vol.216, pp.35-45, 2013.

F. De-nardi, D. Delaunay, R. Talibart, X. Castel, L. Le-gendre et al., Antimicrobial activity of stainless steel with a modified TiN upperlayer on meat related contaminants, J. Food Sci. Eng, vol.6, pp.332-343, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386168

M. Denis, E. Henrique, B. Chidaine, A. Tircot, S. Bougeard et al., Campylobacter from sows in farrow-to-finish pig farms: risk indicators and genetic diversity, Vet. Microbiol, vol.154, pp.163-170, 2011.

C. Díaz, P. Schilardi, and M. F. Et-de-mele, Influence of surface sub-micropattern on the adhesion of pioneer bacteria on metals, Artif. Organs, vol.32, pp.292-298, 2008.

I. B. Ditta, A. Steele, C. Liptrot, J. Tobin, H. Tyler et al., Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4, Appl Microbiol Biotechnol, vol.79, pp.127-160, 2008.

S. M. Dizaj, F. Lotfipour, M. Barzegar-jalali, M. H. Zarrintan, and K. Et-adibkia, Antimicrobial Activity of the Metals and Metal Oxides Nanoparticles. Mater. Sci. Eng. C, vol.44, pp.278-284, 2014.

M. Doberva, Le quorum sensing bactérien dans l'environnement marin : diversité moléculaire et génétique des auto-inducteurs, 2006.

R. M. Donlan, Biofilms: microbial life on surfaces, Emerg. Infect. Dis, vol.8, pp.881-890, 2002.
DOI : 10.3201/eid0809.020063

URL : https://doi.org/10.3201/eid0809.020063

R. M. Donlan, Preventing biofilms of clinically relevant organisms using bacteriophage, Trends Microbiol, vol.17, pp.66-72, 2009.

D. Dufour, V. Leung, and C. M. Et-lévesque, Bacterial biofilm: structure, function, and antimicrobial resistance, Endod. Top, vol.22, pp.2-16, 2010.
DOI : 10.1111/j.1601-1546.2012.00277.x

M. Dufour, R. S. Simmonds, and P. J. Et-bremer, Development of a method to quantify in vitro the synergistic activity of "natural" antimicrobials, Int. J. Food Microbiol, vol.85, pp.249-258, 2003.

E. Dumas, Listeria monocytogenes : Caractérisation fonctionnelle d'un mutant ferritine. Etude de la biodiversité par une approche protéomique, 2007.

C. W. Dunnill and I. P. Et-parkin, Nitrogen-doped TiO2 thin films: photocatalytic applications for healthcare environments, Dalton Trans, vol.40, pp.1635-1640, 2011.

E. ,

S. Ede, L. Hafner, P. Dunlop, J. Byrne, and G. Et-will, Photocatalytic disinfection of bacterial pollutants using suspended and immobilized TiO2 powders, Photochem. Photobiol, vol.88, pp.728-735, 2012.

, Report of the Task Force on Zoonoses. Data Collection on the analysis of the baseline survey on the prevalence of Salmonella in slaughter pigs, EFSA Jounal, vol.135, pp.1-111, 2008.

E. Esnault and M. Denis, Chapitre 5 : Yersinia enterocolitica, Sécurité sanitaire des aliments : épidémiologie et moyens de lutte contre les principaux contaminants zoonotiques, pp.98-121, 2015.

B. Ezraty, A. Gennaris, F. Barras, and J. Et-collet, Oxidative stress, protein damage and repair in bacteria, Nat. Rev. Microbiol, vol.15, pp.385-396, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01640049

F. ,

A. Ferreira, C. P. O'byrne, and K. J. Et-boor, Role of ?B in Heat, Ethanol, Acid, and Oxidative Stress Resistance and during Carbon Starvation in Listeria monocytogenes, Appl. Environ. Microbiol, vol.67, pp.4454-4457, 2001.

D. W. Fleming, S. L. Cochi, K. L. Macdonald, J. Brondum, P. S. Hayes et al., Pasteurized Milk as a Vehicle of Infection in an Outbreak of Listeriosis, N. Engl. J. Med, vol.312, pp.404-407, 1985.

M. Fondrevez, A. Labbé, E. Houard, P. Fravalo, F. Madec et al., A simplified method for detecting pathogenic Yersinia enterocolitica in slaughtered pig tonsils, J. Microbiol. Methods, vol.83, pp.244-249, 2010.

L. J. Forney and C. I. Moraru, Ultraviolet Light in Food Technology, p.300, 2009.

H. A. Foster, I. B. Ditta, S. Varghese, and A. Et-steele, Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity, Appl. Microbiol. Biotechnol, vol.90, pp.1847-1868, 2011.

L. M. Franco-arias, A. Kleiman, D. Vega, M. Fazio, E. Halac et al., Enhancement of rutile phase formation in TiO2 films deposited on stainless steel substrates with a vacuum arc, Thin Solid Films, vol.638, pp.269-276, 2017.

L. Franzetti and M. Scarpellini, Characterisation of Pseudomonas spp. isolated from foods, Ann. Microbiol, vol.57, pp.39-47, 2007.

P. M. Fratamico, B. A. Annous, and N. W. Guenther, Biofilms in the Food and Beverage Industries Elsevier, p.601, 2009.

P. Fu, Y. Luan, and X. Et-dai, Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity, J Mol Catal-Chem, vol.221, pp.81-88, 2004.

A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol.238, pp.37-38, 1972.

G. ,

A. Gennaris, B. Ezraty, C. Henry, R. Agrebi, A. Vergnes et al., Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons, Nature, vol.528, pp.409-412, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01477089

E. Giaouris, E. Heir, M. Hébraud, N. Chorianopoulos, S. Langsrud et al., Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods, Meat Sci, vol.97, pp.298-309, 2014.

H. Gibson, J. H. Taylor, K. E. Hall, and J. T. Et-holah, Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms, J. Appl. Microbiol, vol.87, pp.41-48, 1999.

I. Giovannacci, G. Ermel, G. Salvat, J. L. Vendeuvre, and M. N. Et-bellon-fontaine, Physicochemical surface properties of five Listeria monocytogenes strains from a porkprocessing environment in relation to serotypes, genotypes and growth temperature, J. Appl. Microbiol, vol.88, pp.992-1000, 2000.

W. H. Glaze, Drinking-water treatment with ozone, Environ. Sci. Technol, vol.21, pp.224-230, 1987.

O. Goerlich, P. Quillardet, and M. Et-hofnung, Induction of the SOS response by hydrogen peroxide in various Escherichia coli mutants with altered protection against oxidative DNA damage, J. Bacteriol, vol.171, pp.6141-6147, 1989.

G. Gogniat and S. Et-dukan, TiO2 Photocatalysis Causes DNA Damage via Fenton Reaction-Generated Hydroxyl Radicals during the Recovery Period, Appl. Environ. Microbiol, vol.73, pp.7740-7743, 2007.

G. Gogniat, M. Thyssen, M. Denis, C. Pulgarin, and S. Et-dukan, The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity, FEMS Microbiol. Lett, vol.258, pp.18-24, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00092800

M. Gohin, Films photocatalytiques par voie sol-gel pour applications vitrages en intérieur, 2009.

S. Goldstein and G. Czapski, Mannitol as an OH ? scavenger in aqueous solutions and in biological systems, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med, vol.46, pp.725-729, 1984.

M. Gross, S. E. Cramton, F. Götz, and A. Et-peschel, Key Role of Teichoic Acid Net Charge in Staphylococcus aureus Colonization of Artificial Surfaces, Infect. Immun, vol.69, pp.3423-3426, 2001.

H. Gu and D. Et-ren, Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances, Front. Chem. Sci. Eng, vol.8, pp.20-33, 2014.

G. Guerrero, J. Amalric, P. Mutin, A. Sotto, and J. Et-lavigne, Inhibition de l'adhésion bactérienne et prévention de la formation d'un biofilm : utilisation de monocouches autoassemblées organiques sur des surfaces inorganiques, Pathol. Biol, vol.57, pp.36-43, 2009.

N. Guettaï, . Et-ait, and H. Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study, Desalination, vol.185, pp.427-437, 2005.

C. Guillard, B. Kartheuser, and S. Et-lacombe, La photocatalyse : dépollution de l'eau ou de l'air et matériaux autonettoyants, p.327, 2011.

B. Guillaumin, Nettoyage et désinfection dans l'industrie de l'embouteillage, des aliments transformés et des surfaces ouvertes. Bull. Académique Véterinaire Fr, p.155, 2002.

K. Gupta, R. P. Singh, . Pandey, E. Ashutosh, and A. Pandey, Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli, Beilstein J. Nanotechnol, vol.4, pp.345-351, 2013.

D. Gutiérrez, L. Rodríguez-rubio, B. Martínez, A. Rodríguez, and P. Et-garcía, Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry, Front. Microbiol, vol.7, 2016.

J. Haiko and B. Et-westerlund-wikström, The Role of the Bacterial Flagellum in Adhesion and Virulence, Biology, vol.2, pp.1242-1267, 2013.

M. J. Hajipour, K. M. Fromm, A. Akbar-ashkarran, D. Jimenez-de-aberasturi, I. R. Larramendi et al., Antibacterial properties of nanoparticles, Trends Biotechnol, vol.30, pp.499-511, 2012.

M. Heikkilä, E. Puukilainen, M. Ritala, and M. Et-leskelä, Effect of thickness of ALD grown TiO2 films on photoelectrocatalysis, J. Photochem. Photobiol. Chem, vol.204, pp.200-208, 2009.

S. Helali, Application de la photocatalyse pour la dégradation des polluants chimiques et bactériologiques dans l'eau en utilisant des catalyseurs irradiés par des photons de lumière naturelle ou artificielle, 2012.

B. Henkel, T. Neubert, S. Zabel, C. Lamprecht, C. Selhuber-unkel et al., Photocatalytic properties of titania thin films prepared by sputtering versus evaporation et aging of induced oxygen vacancy defects, Appl. Catal. B Environ, vol.180, pp.362-371, 2016.

A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard et al., Photocatalytic degradation pathway of methylene blue in water, Appl. Catal. B Environ, vol.31, pp.145-157, 2001.

A. Houry, M. Gohar, J. Deschamps, E. Tischenko, S. Aymerich et al., Bacterial swimmers that infiltrate and take over the biofilm matrix, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.13088-13093, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004132

L. C. Hsu, J. Fang, D. A. Borca-tasciuc, R. W. Worobo, and C. I. Et-moraru, Effect of Micro-and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces, Appl. Environ. Microbiol, vol.79, pp.2703-2712, 2013.

O. Hue, V. Allain, M. Laisney, S. Le-bouquin, F. Lalande et al., Campylobacter contamination of broiler caeca and carcasses at the slaughterhouse and correlation with Salmonella contamination, Food Microbiol, vol.28, pp.862-868, 2011.

I. ,

J. A. Imlay, The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium, Nat. Rev. Microbiol, vol.11, pp.443-454, 2013.

. Invs, Listériose : données épidémiologiques, 2015.

A. Ioannidis, A. Kyratsa, V. Ioannidou, S. Bersimis, and S. Et-chatzipanagiotou, Detection of biofilm production of Yersinia enterocolitica strains isolated from infected children and comparative antimicrobial susceptibility of biofilm versus planktonic forms, Mol. Diagn. Ther, vol.18, pp.309-314, 2014.

K. ,

C. C. Kaan, A. A. Aziz, S. Ibrahim, M. Matheswaran, and P. Et-saravanan, Heterogeneous Photocatalytic Oxidation an Effective Tool for Wastewater TreatmentA Review, Studies on Wat. Manag. Issues, pp.219-236, 2012.

M. Kamiko, J. Ha, K. Aotani, and R. Et-yamamoto, Influences of underlayers on structure of TiO2 thin films prepared by radio frequency magnetron sputtering, J. Ceram. Soc. Jpn, vol.118, pp.5-8, 2010.

M. Kanna and S. Wongnawa, Mixed amorphous and nanocrystalline TiO2 powders prepared by sol-gel method: Characterization and photocatalytic study, Mater. Chem. Phys, vol.110, pp.166-175, 2008.

V. O. Karas, I. Westerlaken, and A. S. Meyer, The DNA-Binding Protein from Starved Cells (Dps) Utilizes Dual Functions To Defend Cells against Multiple Stresses, J. Bacteriol, vol.197, pp.3206-3215, 2015.

E. Karatan and P. Watnick, Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol, Mol. Biol. Rev. MMBR, vol.73, pp.310-347, 2009.

B. Kartheuser and C. Boonaert, Photocatalysis: A Powerful Technology for Cold Storage Applications, J. Adv. Oxid. Technol, vol.10, pp.107-110, 2016.

M. Kassir, Modification contrôlée des propriétés cristallochimiques et physicochimique de matériaux nanostructurés à base de TiO2 pour la maitrise des propriétés photocatalytiques, 2013.

M. Katsikogianni and Y. F. Et-missirlis, Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions, Eur. Cell. Mater, vol.8, pp.37-57, 2004.

M. J. Kazmierczak, S. C. Mithoe, K. J. Boor, and M. Wiedmann, Listeria monocytogenes ?B Regulates Stress Response and Virulence Functions, J. Bacteriol, vol.185, pp.5722-5734, 2003.

A. Kérouanton, M. Marault, L. Petit, J. Grout, T. T. Dao et al., Evaluation of a multiplex PCR assay as an alternative method for Listeria monocytogenes serotyping, J. Microbiol. Methods, vol.80, pp.134-137, 2010.

C. Kim, E. Lee, S. Kang, E. De-josselin-de-jong, and B. Kim, Bactericidal effect of the photocatalystic reaction of titanium dioxide using visible wavelengths on Streptococcus mutans biofilm, Photodiagnosis Photodyn. Ther, vol.18, pp.279-283, 2017.

S. Kim, K. Ghafoor, J. Lee, M. Feng, J. Hong et al., Bacterial inactivation in water, DNA strand breaking, and membrane damage induced by ultraviolet-assisted titanium dioxide photocatalysis, Water Res, vol.47, pp.4403-4414, 2013.

S. Y. Kim, M. Nishioka, and M. Et-taya, Promoted proliferation of an SOD-deficient mutant of Escherichia coli under oxidative stress induced by photoexcited TiO2, FEMS Microbiol. Lett, vol.236, pp.109-114, 2004.

T. Kim, B. M. Young, and G. M. Young, Effect of Flagellar Mutations on Yersinia enterocolitica Biofilm Formation, Appl. Environ. Microbiol, vol.74, pp.5466-5474, 2008.

L. K?rösi, M. Prato, A. Scarpellini, J. Kovács, D. Dömötör et al., H2O2-assisted photocatalysis on flower-like rutile TiO2 nanostructures: Rapid dye degradation and inactivation of bacteria, Appl. Surf. Sci, vol.365, pp.171-179, 2016.

M. Kostaki, N. Chorianopoulos, E. Braxou, G. Nychas, and E. Et-giaouris, Differential Biofilm Formation and Chemical Disinfection Resistance of Sessile Cells of Listeria monocytogenes Strains under Monospecies et Dual-Species (with Salmonella enterica) Conditions, Appl. Environ. Microbiol, vol.78, pp.2586-2595, 2012.

D. S. Krishna, Y. Sun, and Z. Et-chen, Magnetron sputtered TiO2 films on a stainless steel substrate: Selective rutile phase formation and its tribological and anti-corrosion performance, Thin Solid Films, vol.519, pp.4860-4864, 2011.

L. ,

L. Lerma, L. Benomar, N. Gálvez, A. Et-abriouel, and H. , Prevalence of bacteria resistant to antibiotics and/or biocides on meat processing plant surfaces throughout meat chain production, Int. J. Food Microbiol, vol.161, pp.97-106, 2013.

,. Le-guern, L. Martin, C. Savin, and E. Et-carniel, Yersiniosis in France: overview and potential sources of infection, Int. J. Infect. Dis, vol.46, pp.1-7, 2016.

I. Lebert, C. Begot, and A. Et-lebert, Growth of Pseudomonas fluorescens and Pseudomonas fragi in a meat medium as affected by pH (5.8-7.0), water activity (0.971.00) and temperature (7-25°C), Int. J. Food Microbiol, vol.39, pp.53-60, 1998.

V. Leriche and B. Carpentier, Limitation of adhesion and growth of Listeria monocytogenes on stainless steel surfaces by Staphylococcus sciuri biofilms, J. Appl. Microbiol, vol.88, pp.594-605, 2000.

V. Leriche, D. Chassaing, and B. Et-carpentier, Behaviour of L. monocytogenes in an artificially made biofilm of a nisin-producing strain of Lactococcus lactis, Int. J. Food Microbiol, vol.51, pp.169-182, 1999.

N. S. Leyland, J. Podporska-carroll, J. Browne, S. J. Hinder, B. Quilty et al., Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections, Sci. Rep, vol.6, p.24770, 2016.

Y. Li and X. Et-tian, Quorum Sensing and Bacterial Social Interactions in, Biofilms. Sensors, vol.12, pp.2519-2538, 2012.

X. Liu, H. Zhang, C. Liu, J. Chen, G. Li et al., UV and visible light photoelectrocatalytic bactericidal performance of 100% {111} faceted rutile TiO2 photoanode, Catal. Today, vol.224, pp.77-82, 2014.

K. J. Livak and T. D. Et-schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 ???Cy Method, Methods, vol.25, pp.402-408, 2001.

T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter et al., Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Sci. Rep. 4: srep04043.-M, 2014.

P. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum et al., Bactericidal Activity of Photocatalytic TiO2 Reaction: toward an Understanding of Its Killing Mechanism, Appl. Environ. Microbiol, vol.65, pp.4094-4098, 1999.

Y. Massiani, A. Medjahed, J. P. Crousier, P. Gravier, and I. Et-rebatel, Corrosion of sputtered titanium nitride films deposited on iron and stainless steel, Surf. Coat. Technol, vol.45, pp.115-120, 1991.

R. Masson, Matériaux photocatalytiques structurés à base de mousses alvéolaires de ?-SiC : applications au traitement de l'air, 2012.

R. Mazzette, F. Fois, S. G. Consolati, S. Salza, T. Tedde et al., Detection of Pathogenic Yersinia enterocolitica in Slaughtered Pigs by Cultural Methods and Real-Time Polymerase Chain Reaction, Ital. J. Food Saf, vol.4, 2015.

B. Meyer, Approaches to prevention, removal and killing of biofilms, Int. Biodeterior. Biodegrad, vol.51, pp.249-253, 2003.

B. Meyer, Does microbial resistance to biocides create a hazard to food hygiene?, Int. J. Food Microbiol, vol.112, pp.275-279, 2006.

T. Meylheuc, J. Herry, and M. Et-bellon-fontaine, Les biosurfactants, des biomolécules à forte potentialité d'application, Sci. Aliments, vol.21, pp.591-649, 2001.

H. Milane, La quercétine et ses dérivés : molécules à caractère pro-oxydant ou capteurs de radicaux libres; études et application thérapeutiques, 2004.

F. Moré, Elaboration de couches minces de TiO2 pour applications antibactériennes, 2012.

M. Mulet, J. Lalucat, and E. Et-garcía-valdés, DNA sequence-based analysis of the Pseudomonas species, Environ. Microbiol, vol.12, pp.1513-1530, 2010.

K. Myszka and K. Czaczyk, Bacterial Biofilms on Food Contact Surfaces-a Review. Pol. J. Food Nutr. Sci, vol.61, pp.173-180, 2011.

N. ,

P. B. Nair, V. B. Justinvictor, G. P. Daniel, K. Joy, K. C. James-raju et al., Optical parameters induced by phase transformation in RF magnetron sputtered TiO2 nanostructured thin films, Prog. Nat. Sci. Mater. Int, vol.24, pp.218-225, 2014.

K. Nakata and A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C Photochem. Rev, vol.13, pp.169-189, 2012.

F. C. Nascimento, C. E. Foerster, S. L. Silva, . Da, C. M. Lepienski et al., A comparative study of mechanical and tribological properties of AISI-304 and AISI-316 submitted to glow discharge nitriding, Mater. Res, vol.12, pp.173-180, 2009.

P. Navabpour, K. Cooke, and H. Et-sun, Photocatalytic Properties of Doped TiO2 Coatings Deposited Using Reactive Magnetron Sputtering, Coatings, vol.7, pp.433-449, 2017.

P. Navabpour, S. Ostovarpour, J. Hampshire, P. Kelly, J. Verran et al., The effect of process parameters on the structure, photocatalytic and self-cleaning properties of TiO2 and Ag-TiO2 coatings deposited using reactive magnetron sputtering, Thin Solid Films, vol.571, pp.75-83, 2014.

Y. Nosaka and A. Y. Nosaka, Generation and Detection of Reactive Oxygen Species in Photocatalysis, Chem. Rev, vol.117, pp.11302-11336, 2017.

O. ,

Y. Ojima, M. Nishioka, and M. Et-taya, Metabolic alternations in SOD-deficient Escherichia coli cells when cultivated under oxidative stress from photoexcited titanium dioxide, Biotechnol. Lett, vol.30, pp.1107-1113, 2008.

A. Overney, Persistance de Listeria monocytogenes dans les ateliers agroalimentaires : influence de facteurs environnementaux et étude des mécanismes d'adaptation aux stress, 2016.

L. A. Parolis, H. Parolis, G. G. Dutton, P. L. Wing, and B. J. Skura, Structure of the glycocalyx polysaccharide of Pseudomonas fragi ATCC 4973, Carbohydr. Res, vol.216, pp.495-504, 1992.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ, vol.125, pp.331-349, 2012.

I. Perelshtein, G. Applerot, N. Perkas, J. Grinblat, and A. Et-gedanken, A one-step process for the antimicrobial finishing of textiles with crystalline TiO2 nanoparticles, Chem. Weinh. Bergstr. Ger, vol.18, pp.4575-4582, 2012.

L. Peruchon, Caractérisation des propriétés photocatalytiques des verres autonettoyants-Corrélation entre paramètres physicochimiques et activité photocatalytique, 2007.

S. Pigeot-rémy, F. Simonet, E. Errazuriz-cerda, J. C. Lazzaroni, D. Atlan et al., Photocatalysis and disinfection of water: Identification of potential bacterial targets, Appl. Catal. B Environ, vol.104, pp.390-398, 2011.

L. Ploux, S. Beckendorff, M. Nardin, and S. Et-neunlist, Quantitative and morphological analysis of biofilm formation on self-assembled monolayers, Colloids Surf. B Biointerfaces, vol.57, pp.174-181, 2007.

Q. ,

J. Qian, K. Li, P. Wang, C. Wang, M. Shen et al., Toxic effects of three crystalline phases of TiO2 nanoparticles on extracellular polymeric substances in freshwater biofilms, Bioresour. Technol, vol.241, pp.276-283, 2017.

R. ,

S. Rana, R. S. Srivastava, M. M. Sorensson, and R. D. Misra, Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: Anatase TiO2-NiFe2O4 system, Mater. Sci. Eng. B, vol.119, pp.144-151, 2005.

M. Raulio, V. Pore, S. Areva, M. Ritala, M. Leskelä et al., Destruction of Deinococcus geothermalis biofilm by photocatalytic ALD and sol-gel TiO2 surfaces, J. Ind. Microbiol. Biotechnol, vol.33, pp.261-268, 2006.

J. Rawat, S. Rana, M. M. Sorensson, and R. D. Misra, Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles, Mater. Sci. Technol, vol.23, pp.97-102, 2007.

J. Rawat, R. , S. Srivastava, R. Et-misra, and R. D. , Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core, Mater. Sci. Eng. C Biomim. Supramol. Syst, vol.27, pp.540-545, 2007.

M. W. Reij, . Et-den, and E. D. Aantrekker, Recontamination as a source of pathogens in processed foods, Int. J. Food Microbiol, vol.91, pp.1-11, 2004.

W. Ren, X. Sheng, X. Huang, F. Zhi, and W. Et-cai, Evaluation of detergents and contact time on biofilm removal from flexible endoscopes, Am. J. Infect. Control, vol.41, pp.89-92, 2013.

L. Rizzo, A. Della-sala, A. Fiorentino, and G. Et-li-puma, Disinfection of urban wastewater by solar driven and UV lamp-TiO2 photocatalysis: Effect on a multi drug resistant Escherichia coli strain, Water Res, vol.53, pp.145-152, 2014.

L. Rodrigues, H. C. Mei, . Van-der, J. Teixeira, and R. Oliveira, Influence of Biosurfactants from Probiotic Bacteria on Formation of Biofilms on Voice Prostheses, Appl. Environ. Microbiol, vol.70, pp.4408-4410, 2004.

P. Rodríguez-lópez and M. L. Cabo, Tolerance development in Listeria monocytogenes-Escherichia coli dual-species biofilms after sublethal exposures to pronase-benzalkonium chloride combined treatments, Food Microbiol, vol.67, pp.58-66, 2017.

J. Rogers, A. B. Dowsett, P. J. Dennis, J. V. Lee, and C. W. Et-keevil, Influence of temperature and plumbing material selection on biofilm formation and growth of, 1994.

, Legionella pneumophila in a model potable water system containing complex microbial flora, Appl. Environ. Microbiol, vol.60, pp.1585-1592

M. Rosenberg, Microbial adhesion to hydrocarbons: twenty-five years of doing Math, Fems Microbiol. Lett, vol.262, pp.129-134, 2006.

M. Rosenberg, D. Gutnick, and E. Et-rosenberg, Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity, FEMS Microbiol. Lett, vol.9, pp.29-33, 1980.

A. Roux and J. Ghigo, Bacterial biofilms, Bull. De l'Académie vét, vol.159, pp.261-268, 2006.

S. ,

F. Z. Saidi, Elimination du Bleu de Méthylène par des Procédés d'Oxydation Avancée, 2014.

C. Sarantopoulos and A. Gleizes, Photocatalyseurs à base de TIO2 préparés par infiltration chimique en phase vapeur (CVI) sur supports microfibreux, INP Toulouse, 2008.

C. Saulou, Evaluation des propriétés anti-adhésives et biocides de films nanocomposites avec inclusions d'argent, déposés sur acier inoxydable par procédé plasma, 2009.

M. Seki, K. Iida, M. Saito, H. Nakayama, and S. Et-yoshida, Hydrogen peroxide production in Streptococcus pyogenes: involvement of lactate oxidase and coupling with aerobic utilization of lactate, J. Bacteriol, vol.186, pp.2046-2051, 2004.

F. Serna, La diffraction des rayons X : une technique puissante pour résoudre certains problèmes industriels et technologiques, Chim. Nouv, pp.1-12, 2014.

D. Sharma and B. S. Et-saharan, Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus, Biotechnol. Rep, vol.11, pp.27-35, 2016.

H. Shi, R. Magaye, V. Castranova, and J. Et-zhao, Titanium dioxide nanoparticles: a review of current toxicological data, Part. Fibre Toxicol, vol.10, p.15, 2013.

X. Shi and X. Zhu, Biofilm formation and food safety in food industries, Trends Food Sci. Technol, vol.20, pp.407-413, 2009.

F. Shiraishi, T. Nakasako, and Z. Et-hua, Formation of Hydrogen Peroxide in Photocatalytic Reactions, J. Phys. Chem. A, vol.107, pp.11072-11081, 2003.

M. Simões, A review of current and emergent biofilm control strategies, LWT-Food Sci. Technol, vol.43, pp.573-583, 2010.

M. Simões, S. Cleto, M. O. Pereira, and M. J. Vieira, Influence of biofilm composition on the resistance to detachment, Water Sci Technol, vol.55, pp.473-80, 2007.

U. Sirimahachai, S. Phongpaichit, and S. Et-wongnawa, Evaluation of bactericidal activity of TiO2 photocatalysts: a comparative study of laboratory-made and commercial TiO2 samples, Songklanakarin J. Sci. Technol, vol.31, pp.517-525, 2009.

K. Skowron, J. Bauza-kaszewska, . Dobrza&#x144, Z. Ski, Z. Paluszak et al., UV-C Radiation as a Factor Reducing Microbiological Contamination of Fish Meal, Sci. World J, vol.928094, pp.1-8, 2014.

K. A. Soni, R. Nannapaneni, and T. Et-tsara, An Overview of Stress Response Proteomes in Listeria monocytogenes, Agric. Fodd Anal. Bacteriol, vol.1, pp.66-85, 2011.

C. Soumet, D. Méheust, C. Pissavin, P. Le-grandois, B. Frémaux et al., Reduced susceptibilities to biocides and resistance to antibiotics in food-associated bacteria following exposure to quaternary ammonium compounds, J. Appl. Microbiol, vol.121, pp.1275-1281, 2016.
URL : https://hal.archives-ouvertes.fr/anses-01419300

C. Soumet, Efficacité et limites des procédures de nettoyage et de désinfection usuelles. Présentation-Journée technique-Hygiène des environnements agroalimentaires, 2017.

K. Sunada, T. Watanabe, and K. Hashimoto, Studies on photokilling of bacteria on TiO2 thin film, J. Photochem. Photobiol. Chem, vol.156, pp.227-233, 2003.

Y. Suo, Y. Huang, Y. Liu, C. Shi, and X. Shi, The expression of superoxide dismutase (SOD) and a putative ABC transporter permease is inversely correlated during biofilm formation in Listeria monocytogenes 4b G, PLoS One, vol.7, p.48467, 2012.

Y. Suo, Y. Liu, X. Zhou, Y. Huang, C. Shi et al., Impact of Sod on the Expression of Stress-Related Genes in Listeria monocytogenes 4b G with/without Paraquat Treatment, J. Food Sci, vol.79, pp.1745-1749, 2014.

L. R. Swem, D. L. Swem, C. T. O'loughlin, R. Gatmaitan, B. Zhao et al., A Quorum-Sensing Antagonist Targets Both Membrane-Bound and Cytoplasmic Receptors And Controls Bacterial Pathogenicity, Mol. Cell, vol.35, pp.143-153, 2009.

J. G. Swoboda, J. Campbell, T. C. Meredith, and S. Walker, Wall Teichoic Acid Function, Biosynthesis, and Inhibition. Chembiochem Eur, J. Chem. Biol, vol.11, pp.35-45, 2010.

L. K. Tan, P. T. Ooi, and K. L. Et-thong, Prevalence of Yersinia enterocolitica from food and pigs in selected states of Malaysia, Food Control, vol.35, pp.94-100, 2014.

H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, and F. Et-lévy, Electrical and optical properties of TiO2 anatase thin films, J. Appl. Phys, vol.75, pp.2042-2047, 1994.

W. Z. Tang and . Et-huren-an, UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions, Chemosphere, vol.31, pp.4157-4170, 1995.

S. Thabet, M. Weiss-gayet, F. Dappozze, P. Cotton, and C. Et-guillard, Photocatalysis on yeast cells: Toward targets and mechanisms, Appl. Catal. B Environ, pp.169-178, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00861192

N. Trachoo, Biofilms and the food industry, Songklanakarin J. Sci. Technol, vol.25, pp.807-815, 2003.

Y. D. Tremblay, S. Hathroubi, and M. Jacques, Les biofilms bactériens : leur importance en santé animale et en santé publique, Can. J. Vet. Res, vol.78, pp.110-116, 2014.

Y. Tsuang, J. Sun, Y. Huang, C. Lu, W. H. Chang et al., Studies of Photokilling of Bacteria Using Titanium Dioxide Nanoparticles, Artif. Organs, vol.32, pp.167-174, 2008.

O. Tunc, J. Thompson, and K. Et-tremellen, Development of the NBT assay as a marker of sperm oxidative stress, Int. J. Androl, vol.33, pp.13-21, 2010.

V. ,

S. Valencia, J. M. Marín, and G. Et-restrepo, Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment, Open Mater. Sci. J, vol.4, 2009.

D. Van-cauteren, Estimation de la morbidité des infections d'origine alimentaire en France, 2016.

T. Van-der-meulen, A. Mattson, and L. Et-Österlund, A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles: Role of surface intermediates, J. Catal, vol.251, pp.131-144, 2007.

S. Van-der-veen and T. Et-abee, Bacterial SOS response: a food safety perspective, Curr Opin Biotechnol, vol.22, pp.136-178, 2011.

R. Van-houdt and C. W. Et-michiels, Biofilm formation and the food industry, a focus on the bacterial outer surface, J. Appl. Microbiol, vol.109, pp.1117-1131, 2010.

E. Van-meervenne, R. De-weirdt, E. Van-coillie, F. Devlieghere, L. Herman et al., Biofilm models for the food industry: hot spots for plasmid transfer?, Pathog. Dis, vol.70, pp.332-338, 2014.

S. Van-der-veen and T. Et-abee, Importance of SigB for Listeria monocytogenes static and continuous-flow biofilm formation and disinfectant resistance, Appl. Environ. Microbiol, vol.76, pp.7854-7860, 2010.

S. Van-der-veen and T. Et-abee, Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid, Int. J. Food Microbiol, vol.144, pp.421-431, 2011.

G. Veréb, L. Manczinger, G. Bozsó, A. Sienkiewicz, L. Forró et al., Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase TiO2 photocatalysts under visible light for phenol degradation and E. coli inactivation, Appl. Catal. B Environ, vol.129, pp.566-574, 2013.

J. Verran, P. Airey, A. Packer, and K. A. Et-whitehead, Microbial retention on open food contact surfaces and implications for food contamination, Adv. Appl. Microbiol, vol.64, pp.223-246, 2008.

W. ,

R. W. Walker, L. M. Markillie, A. H. Colotelo, D. R. Geist, M. E. Gay et al., Ultraviolet radiation as disinfection for fish surgical tools, Anim. Biotelemetry, vol.1, p.4, 2013.

Z. Wang, N. Yao, X. Hu, and X. Shi, Structural and photocatalytic study of titanium dioxide films deposited by DC sputtering, Mater. Sci. Semicond. Process, vol.21, pp.91-97, 2014.

C. J. Weydert and J. J. Et-cullen, Measurement of superoxide dismutase, catalase, and glutathione peroxidase in cultured cells and tissue, Nat. Protoc, vol.5, pp.51-66, 2010.

P. R. Widders, K. J. Coates, S. Warner, J. C. Beattie, I. R. Morgan et al., Controlling microbial contamination on beef and lamb meat during processing, Aust. Vet. J, vol.72, pp.208-211, 1995.

E. J. Wolfrum, J. Huang, D. M. Blake, P. Maness, Z. Huang et al., Photocatalytic Oxidation of Bacteria, Bacterial and Fungal Spores, and Model Biofilm Components to Carbon Dioxide on Titanium Dioxide-Coated Surfaces, Environ. Sci. Technol, vol.36, pp.3412-3419, 2002.

C. Wu and J. Et-chern, Kinetics of Photocatalytic Decomposition of Methylene Blue, Ind. Eng. Chem. Res, vol.45, pp.6450-6457, 2006.

Y. ,

G. Yan, J. Chen, and Z. Et-hua, Roles of H2O2 and OH radical in bactericidal action of immobilized TiO2 thin-film reactor: An ESR study, J. Photochem. Photobiol. Chem, vol.207, pp.153-159, 2009.

V. K. Yemmireddy, G. D. Farrell, and Y. Et-hung, Development of Titanium Dioxide (TiO2) Nanocoatings on Food Contact Surfaces and Method to Evaluate Their Durability and Photocatalytic Bactericidal Property, J. Food Sci, vol.80, pp.1903-1911, 2015.

N. Yuangpho, S. T. Le, T. Treerujiraphapong, W. Khanitchaidecha, and A. Et-nakaruk, Enhanced photocatalytic performance of TiO2 particles via effect of anatase-rutile ratio, Phys. E Low-Dimens. Syst. Nanostructures, vol.67, pp.18-22, 2015.

Z. ,

A. Zaleska, Doped-TiO2: A, Review. Recent Pat. Eng, vol.2, pp.157-164, 2008.

J. Zhang, P. Zhou, J. Liu, and J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys, vol.16, pp.20382-20386, 2014.

T. Zoltan, M. C. Rosales, and C. Et-yadarola, Reactive oxygen species quantification and their correlation with the photocatalytic activity of TiO2 (anatase and rutile) sensitized with asymmetric porphyrins, J. Environ. Chem. Eng, vol.4, pp.3967-3980, 2016.

E. A. Zottola and K. C. Sasahara, Microbial biofilms in the food processing industryShould they be a concern?, Int. J. Food Microbiol, vol.23, pp.125-148, 1994.

, Annexes : Annexe 1 : Fiches JCPDS des phases cristallines du TiO2 Annexe 2 : Valorisation des travaux 194

, Annexe 1 : Fiche JCPDS des phases

M. Barthomeuf, X. Castel, L. Gendre, L. Pissavin, and C. , Adhésion et viabilité de Listeria monocytogenes sur films de TiO2, Congrès de la Société Française de Microbiologie (SFM). 31 mars 2014 au 1er avril, 2014.

M. Barthomeuf, C. Castel, L. Gendre, L. Denis, M. Pissavin et al., Adhesion and viability of Listeria monocytogenes on TiO2 thin layers, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01057060

M. Barthomeuf, P. Raymond, X. Castel, L. Gendre, L. Soumet et al., Bactericidal efficiency of UV-active TiO2 thin films on adhesion and viability of Listeria monocytogenes and Pseudomonas fragi, vol.ICAR, pp.30-31, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01084265

M. Barthomeuf, R. Raymond, X. Castel, L. Gendre, L. Denis et al., Bactericidal efficiency of UV-active TiO2 thin films on adhesion and viability of pathogenic bacteria, MRS 2015 Spring Meeting, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139492

J. Louis, M. Barthomeuf, C. Bernard, C. Xavier, L. Gendre et al., Activité antibactérienne de couches minces de TiO2 sur Listeria monocytogenes, 2017.

M. Barthomeuf, N. Policarpo, X. Castel, L. Gendre, L. Denis et al., Activité bactéricide de couches minces de TiO2 photoactivées, Journée Technique Biofilm, 2016.